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versité de Montréal, Canada David Blei, Princeton University, USA Léon Bottou, NEC Research
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Fraunhofer FIRST, Germany



JMLR Editorial Board

Naoki Abe, IBM TJ Watson Research Center, USA Yasemin Altun, MPI for Biological Cybernet-
ics, Germany Jean-Yves Audibert, CERTIS, France Jonathan Baxter, Panscient Pty Ltd, Aus-
tralia Richard K. Belew, University of California at San Diego, USA Samy Bengio, Google, Inc.,
USA Kristin Bennett, Rensselaer Polytechnic Institute, USA Christopher M. Bishop, Microsoft
Research, UK Lashon Booker, The Mitre Corporation, USA Henrik Boström, Stockholm Univer-
sity/KTH, Sweden Craig Boutilier, University of Toronto, Canada Justin Boyan, ITA Software,
USA Rich Caruana, Cornell University, USA David Cohn, Google, Inc., USA Koby Crammer,
University of Pennsylvania, USA Nello Cristianini, UC Davis, USA Dennis DeCoste, Facebook,
USA Thomas Dietterich, Oregon State University, USA Jennifer Dy, Northeastern University,
USA Saso Dzeroski, Jozef Stefan Institute, Slovenia Usama Fayyad, DMX Group, USA Dou-
glas Fisher, Vanderbilt University, USA Peter Flach, Bristol University, UK Dan Geiger, The
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Abstract
We explore the framework of permutation-based p-values for assessing the performance of classi-
fiers. In this paper we study two simple permutation tests. The first test assess whether the classifier
has found a real class structure in the data; the corresponding null distribution is estimated by per-
muting the labels in the data. This test has been used extensively in classification problems in
computational biology. The second test studies whether the classifier is exploiting the dependency
between the features in classification; the corresponding null distribution is estimated by permut-
ing the features within classes, inspired by restricted randomization techniques traditionally used
in statistics. This new test can serve to identify descriptive features which can be valuable infor-
mation in improving the classifier performance. We study the properties of these tests and present
an extensive empirical evaluation on real and synthetic data. Our analysis shows that studying the
classifier performance via permutation tests is effective. In particular, the restricted permutation
test clearly reveals whether the classifier exploits the interdependency between the features in the
data.
Keywords: classification, labeled data, permutation tests, restricted randomization, significance
testing

1. Introduction

Building effective classification systems is a central task in data mining and machine learning.
Usually, a classification algorithm builds a model from a given set of data records in which the labels
are known, and later, the learned model is used to assign labels to new data points. Applications of
such classification setting abound in many fields, for instance, in text categorization, fraud detection,
optical character recognition, or medical diagnosis, to cite some.

For all these applications, a desired property of a good classifier is the power of generalization
to new, unknown instances. The detection and characterization of statistically significant predictive
patterns is crucial for obtaining a good classification accuracy that generalizes beyond the training
data. Unfortunately, it is very often the case that the number of available data points with labels is
not sufficient. Data from medical or biological applications, for example, are characterized by high

c©2010 Markus Ojala and Gemma C. Garriga.
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Figure 1: Examples of two 16× 8 nominal data sets D1 and D2 each having two classes. The last
column in both data sets denotes the class labels (+, –) of the samples in the rows.

dimensionality (thousands of features) and small number of data points (tens of rows). An important
question is whether we should believe in the classification accuracy obtained by such classifiers.

The most traditional approach to this problem is to estimate the error of the classifier by means
of cross-validation or leave-one-out cross-validation, among others. This estimate, together with a
variance-based bound, provides an interval for the expected error of the classifier. The error estimate
itself is the best statistics when different classifiers are compared against each other (Hsing et al.,
2003). However, it has been argued that evaluating a single classifier with an error measurement
is ineffective for small amount of data samples (Braga-Neto and Dougherty, 2004; Golland et al.,
2005; Isaksson et al., 2008). Also classical generalization bounds are not directly appropriate when
the dimensionality of the data is too high; for these reasons, some recent approaches using filtering
and regularization alleviate this problem (Rossi and Villa, 2006; Berlinet et al., 2008). Indeed,
for many other general cases, it is useful to have other statistics associated to the error in order
to understand better the behavior of the classifier. For example, even if a classification algorithm
produces a classifier with low error, the data itself may have no structure. Thus the question is, how
can we trust that the classifier has learned a significant predictive pattern in the data and that the
chosen classifier is appropriate for the specific classification task?

For instance, consider the small toy example in Figure 1. There are two nominal data matrices
D1 and D2 of sizes 16× 8. Each row (data point) has two different values present, x and o. Both
data sets have a clear separation into the two given classes, + and –. However, it seems at first sight
that the structure within the classes for data set D1 is much simpler than for data set D2. If we train
a 1-Nearest Neighbor classifier on the data sets of Figure 1, we have that the classification error
(leave-one-out cross-validation) is 0.00 on both D1 and D2. However, is it true that the classifier is
using a real dependency in the data? Or are the dependencies in D1 or D2 just a random artifact of
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some simple structure? It turns out that the good classification result in D1 is explained purely by
the different value distributions inside the classes whereas in D2 the interdependency between the
features is important in classification. This example will be analyzed in detail later on in Section 3.3.

In recent years, a number of papers have suggested to use permutation-based p-values for as-
sessing the competence of a classifier (Golland and Fischl, 2003; Golland et al., 2005; Hsing et al.,
2003; Jensen, 1992; Molinaro et al., 2005). Essentially, the permutation test procedure measures
how likely the observed accuracy would be obtained by chance. A p-value represents the fraction
of random data sets under a certain null hypothesis where the classifier behaved as well as or better
than in the original data.

Traditional permutation tests suggested in the recent literature study the null hypothesis that
the features and the labels are independent, that is, that there is no difference between the classes.
The null distribution under this null hypothesis is estimated by permuting the labels of the data set.
This corresponds also to the most traditional statistical methods (Good, 2000), where the results on
a control group are compared against the results on a treatment group. This simple test has been
proven effective already for selecting relevant genes in small data samples (Maglietta et al., 2007) or
for attribute selection in decision trees (Frank, 2000; Frank and Witten, 1998). However, the related
literature has not performed extensive experimental studies for this traditional test in more general
cases.

The goal of this paper is to study permutation tests for assessing the properties and performance
of the classifiers. We first study the traditional permutation test for testing whether the classifier has
found a real class structure, that is, a real connection between the data and the class labels. Our
experimental studies suggest that this traditional null hypothesis leads to very low p-values, thus
rendering the classifier significant most of the time even if the class structure is weak.

We then propose a test for studying whether the classifier is exploiting dependency between
some features for improving the classification accuracy. This second test is inspired by restricted
randomization techniques traditionally used in statistics (Good, 2000). We study its relation to
the traditional method both analytically and empirically. This new test can serve as a method for
obtaining descriptive properties for classifiers, namely whether the classifier is using the feature
dependency in the classification or not. For example, many existing classification algorithms are
like black boxes whose functionality is hard to interpret directly. In such cases, indirect methods
are needed to get descriptive information for the obtained class structure in the data.

If the studied data set is known to contain useful feature dependencies that increase the class
separation, this new test can be used to evaluate the classifier against this knowledge. For example,
often the data is gathered by a domain expert having deeper knowledge of the inner structure of
the data. If the classifier is not using a known useful dependency, the classifier performance could
be improved. For example, with medical data, if we are predicting the blood pressure of a person
based on the height and the weight of the individual, the dependency between these two features is
important in the classification as large body mass index is known to be connected with high blood
pressure. However, both weight and height convey information about the blood pressure but the
dependency between them is the most important factor in describing the blood pressure. Of course,
in this case we could introduce a new feature, the body mass index, but in general, this may not be
practical; for example, introducing too many new features can make the classification ineffective or
too time consuming.

If nothing is known previously from the structure of the data, Test 2 can give some descriptive in-
formation for the obtained class structure. This information can be useful as such for understanding
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the properties of the classifier, or it can guide the search towards an optimal classifier. For example,
if the classifier is not exploiting the feature dependency, there might be no reason to use the chosen
classifier as either more complex classifiers (if the data contains useful feature dependencies) or
simpler classifiers (if the data does not contain useful feature dependencies) could perform better.
Note, however, that not all feature dependencies are useful in predicting the class labels. Therefore,
in the same way that traditional permutation tests have already been proven useful for selecting
relevant features in some contexts as mentioned above (Maglietta et al., 2007; Frank, 2000; Frank
and Witten, 1998), the new test can serve for selecting combinations of relevant features to boost
the classifier performance for specific applications.

The idea is to provide users with practical p-values for the analysis of the classifier. The per-
mutation tests provide useful statistics about the underlying reasons for the obtained classification
result. Indeed, no test is better than the other, but all provide us with information about the classifier
performance. Each p-value is a statistic about the classifier performance; each p-value depends on
the original data (whether it contains some real structure or not) and the classifier (whether it is able
to use certain structure in the data or not).

The remaining of the paper is organized as follows. In Section 2, we give the background to
classifiers and permutation-test p-values, and discuss connections with previous related work. In
Section 3, we describe two simple permutation methods and study their behavior on the small toy
example in Figure 1. In Section 4, we analyze in detail the properties of the different permutations
and the effect of the tests for synthetic data on four different classifiers. In Section 5, we give
experimental results on various real data sets. Finally, Section 6 concludes the paper.1

2. Background

Let X be an n×m data matrix. For example, in gene expression analysis the values of the matrix X
are numerical expression measurements, each row is a tissue sample and each column represents a
gene. We denote the i-th row vector of X by Xi and the j-th column vector of X by X j. Rows are also
called observations or data points, while columns are also called attributes or features. Observe that
we do not restrict the data domain of X and therefore the scale of its attributes can be categorical or
numerical.

Associated to the data points Xi we have a class label yi. We assume a finite set of known class
labels Y , so yi ∈ Y . Let D be the set of labeled data D = {(Xi,yi)}ni=1. For the gene expression
example above, the class labels associated to each tissue sample could be, for example, “sick” or
“healthy”.

In a traditional classification task the aim is to predict the label of new data points by training
a classifier from D. The function learned by the classification algorithm is denoted by f : X →
Y . A test statistic is typically computed to evaluate the classifier performance: this can be either
the training error, cross-validation error or jackknife estimate, among others. Here we give as an
example the leave-one-out cross-validation error,

e( f ,D) =
1
n

n

∑
i=1
I( fD\Di(Xi) %= yi) (1)

1. A shorter version of this paper appears in the proceedings of the IEEE International Conference on DataMining (Ojala
and Garriga, 2009). This is an improved version based on valuable comments by reviewers which includes: detailed
discussions and examples, extended theoretical analysis of the tests including statistical power in special case scenar-
ios, related work comparisons and a thorough experimental evaluation with large data sets.
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where fD\Di is the function learned by the classification algorithm by removing the i-th observation
from the data and I(·) is the indicator function.

It has been recently argued that evaluating the classifier with an error measurement is ineffective
for small amount of data samples (Braga-Neto and Dougherty, 2004; Golland et al., 2005; Hsing
et al., 2003; Isaksson et al., 2008). Also classical generalization bounds are inappropriate when the
dimensionality of the data is too high. Indeed, for many other general cases, it is useful to have other
statistics associated to the error e( f ,D) in order to understand better the behavior of the classifier.
For example, even if a consistent algorithm produces a classifier with low error, the data itself may
have no structure.

Recently, a number of papers have suggested to use permutation-based p-values for assessing
the competence of a classifier. Essentially, the permutation test procedure is used to obtain a p-value
statistic from a null distribution of data samples, as described in Definition 1. In Section 3.1 we will
introduce two different null hypotheses for the data.

Definition 1 (Permutation-based p-value) Let D̂ be a set of k randomized versions D′ of the orig-
inal data D sampled from a given null distribution. The empirical p-value for the classifier f is
calculated as follows (Good, 2000),2

p=
|{D′ ∈ D̂ : e( f ,D′)≤ e( f ,D)}|+1

k+1
.

The empirical p-value of Definition 1 represents the fraction of randomized samples where the
classifier behaved better in the random data than in the original data. Intuitively, it measures how
likely the observed accuracy would be obtained by chance, only because the classifier identified in
the training phase a pattern that happened to be random. Therefore, if the p-value is small enough—
usually under a certain threshold, for example, α= 0.05—we can say that the value of the error in
the original data is indeed significantly small and in consequence, that the classifier is significant
under the given null hypothesis, that is, the null hypothesis is rejected.

Ideally the entire set of randomizations of D should be used to calculate the corresponding
permutation-based p-value. This is known as the exact randomization test; unfortunately, this is
computationally infeasible in data that goes beyond toy examples. Instead, we will sample from the
set of all permutations to approximate this p-value. It is known that the Monte Carlo approximation
of the p-value has a standard deviation of

√
p(1−p)

k , see, for example, Efron and Tibshirani (1993)
and Good (2000), where p is the underlying true p-value and k is the number of samples used.
Since p is unknown in practice, the upper bound 1

2
√
k is typically used to determine the number of

samples required to achieve the desired precision of the test, or the value of the standard deviation
in the critical point of p= α where α is the significance level. Alternatively, a sequential probability
ratio test can be used (Besag and Clifford, 1991; Wald, 1945; Fay et al., 2007), where we sample
randomizations ofD until it is possible to accept or reject the null hypothesis. With these tests, often
already 30 samples are enough for statistical inference with significance level α= 0.05.

2. Notice the addition of 1 in both the denominator and the numerator of the definition. This adjustment is an standard
procedure to compute empirical p-values and it is justified by the fact that the original database D is as well a
randomized version of itself.
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We will specify with more details in the next section how the randomized versions of the origi-
nal data D are obtained. Indeed, this is an important question as each randomization method entails
a certain null distribution, that is, which properties of the original data are preserved in the random-
ization test, directly affecting the distribution of the error e( f ,D′). In the following, we will assume
that the number of samples k is determined by any of the standard procedures just described here.

2.1 Related Work

As mentioned in the introduction, using permutation tests for assessing the accuracy of a classifier
is not new, see, for example, Golland and Fischl (2003), Golland et al. (2005), Hsing et al. (2003)
and Molinaro et al. (2005). The null distribution in those works is estimated by permuting labels
from the data. This corresponds also to the most traditional statistical methods (Good, 2000), where
the results on a control group are compared against the results on a treatment group. This traditional
null hypothesis is typically used to evaluate one single classifier at a time (that is, one single model)
and we will call it as Test 1 in the next section where the permutation tests are presented.

This simple traditional test has already been proven effective for selecting relevant genes in
small data samples (Maglietta et al., 2007) or for attribute selection in decision trees (Frank, 2000;
Frank and Witten, 1998). Particularly, the contributions by Frank and Witten (1998) show that
permuting the labels is useful for testing the significance of attributes at the leaves of the decision
trees, since samples tend to be small. Actually, when discriminating attributes for a decision tree,
this test is preferable to a test that assumes the chi-squared distribution.

In the context of building effective induction systems based on rules, permutation tests have been
extensively used by Jensen (1992). The idea is to construct a classifier (in the form of a decision
tree or a rule system) by searching in the space of several models generated in an iterative fashion.
The current model is tested against other competitors that are obtained by local changes (such as
adding or removing conditions in the current rules). This allows to find final classifiers with less
over-fitting problems. The evaluation of the different models in this local search strategy is done via
permutation tests, using the framework of multiple hypothesis testing (Benjamini and Hochberg,
1995; Holm, 1979). The first test used corresponds to permuting labels—that is, Test 1—while
the second test is a conditional randomization test. Conditionally randomization tests permute the
labels in the data while preserving the overall classification ability of the current classifier. When
tested on data with a conditionally randomized labelling, the current model will achieve the same
score as it does with the actual labelling, although it will misclassify different observations. This
conditionally randomization test is effective when searching for models that are more adaptable to
noise.

The different tests that we will contribute in this paper could be as well used in this process of
building an effective induction system. However, in general our tests are not directly comparable to
the conditional randomization tests of Jensen (1992) in the context of this paper. We evaluate the
classifier performance on the different randomized samples, and therefore, creating data set samples
that preserve such performance would only produce always p-values close to one.

The restricted randomization test that we will study in detail later, can be used for studying
the importance of dependent features for the classification performance. Related to this, group
variable selection is a method for finding similarities between the features (Bondell and Reich,
2008). In that approach, similar features are grouped together for decreasing the dimensionality
and improving the classification accuracy. Such methods are good for clustering the features while
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doing classification. However, our aim is to test whether the dependency between the features is
essential in the classification and not to reduce the dimensionality and similarities, thus differing
from the objective of group variable selection.

As part of the related work we should mention that there is a large amount of statistical literature
about hypothesis testing (Casella and Berger, 2001). Our contribution is to use the framework of hy-
pothesis testing for assessing the classifier performance by means of generating permutation-based
p-values. How the different randomizations affect these p-values is the central question we would
like to study. Also sub-sampling methods such as bootstrapping (Efron, 1979) use randomizations
to study the properties of the underlying distribution, but this is not used for testing the data against
some null model as we intend here.

3. Permutation Tests for Labeled Data

In this section we describe in detail two very simple permutation methods to estimate the null
distribution of the error under two different null hypotheses. The questions for which the two
statistical tests supply answers can be summarized as follows:

Test 1: Has the classifier found a significant class structure, that is, a real connection between the
data and the class labels?

Test 2: Is the classifier exploiting a significant dependency between the features to increase the
accuracy of the classification?

Note, that these tests study whether the classifier is using the described properties and not whether
the plain data contain such properties. For studying the characteristics of a population represented
by the data, standard statistical test could be used (Casella and Berger, 2001).

Let π be a permutation of n elements. We denote with π(y)i the i-th value of the vector label
y induced by the permutation π. For the general case of a column vector X j, we use π(X j) to
represent the permutation of the vector X j induced by π. Finally, we denote the concatenation of
column vectors into a matrix by X = [X1,X2, . . . ,Xm].

3.1 Two Simple Permutation Methods

The first permutation method is the standard permutation test used in statistics (Good, 2000). The
null hypothesis assumes that the data X and the labels y are independent, that is, p(X ,y)= p(X)p(y).
The distribution under this null hypothesis is estimated by permuting the labels in D.

Test 1 (Permute labels) Let D = {(Xi,yi)}ni=1 be the original data set and let π be a permutation
of n elements. One randomized version D′ of D is obtained by applying the permutation π on the
labels, D′ = {(Xi,π(y)i)}ni=1. Compute the p-value as in Definition 1.

A significant classifier for Test 1, that is, obtaining a small p-value, rejects the null hypothesis
that the features and the labels are independent, meaning that there is no difference between the
classes. Let us now study this by considering the following case analysis. If the original data
contains a real (i.e., not a random effect) dependency between data points and labels, then: (1) a
significant classifier f will use such information to achieve a good classification accuracy and this
will result in a small p-value (because the randomized samples do not contain such dependency
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by construction); (2) if the classifier f is not significant in the sense of Test 1 (that is, f was not
able to use the existing dependency between data and labels in the original data), then the p-value
would tend to be high because the error in the randomized data will be similar to the error obtained
in the original data. Finally, if the original data did not contain any real dependency between data
points and labels, that is, such dependency was similar to randomized data sets, then all classifiers
tend to have a high p-value. However, as a nature of statistical tests, about α of the results will be
incorrectly regarded as significant.

Applying randomizations on the original data is therefore a powerful way to understand how
the different classifiers use the structure implicit in the data, if such structure exists. However,
notice that a classifier might be using additionally some dependency structure in the data that is not
checked by Test 1. Indeed, it is very often the case that the p-values obtained from Test 1 are very
small on real data because a classifier is easily regarded as significant even if the class structure is
weak. We will provide more evidence about this fact in the experiments.

An important point is in fact, that a good classifier can be using other types of dependency if
this exists in the data, for example the dependency between the features. From this perspective,
Test 1 does not generate the appropriate randomized data sets to test such hypotheses. Therefore,
we propose a new test whose aim is to check for the dependency between the attributes and how
classifiers use such information.

The second null hypothesis assumes that the columns in X are mutually independent inside a
class, thus p(X(c)) = p(X(c)1) · · · p(X(c)m), where X(c) represents the submatrix of X that contains
all the rows having the class label c ∈ Y . This can be stated also using conditional probabilities,
that is, p(X | y) = p(X1 | y) · · · p(Xm | y). Test 2 is inspired by the restricted randomizations from
statistics (see, e.g., Good, 2000).

Test 2 (Permute data columns per class) Let D= {(Xi,yi)}ni=1 be the data. A randomized version
D′ of D is obtained by applying independent permutations to the columns of X within each class.
That is:

For each class label c ∈ Y do,

• Let X(c) be the submatrix of X in class label c, that is, X(c) = {Xi | yi = c} of size lc×m.

• Let π1, . . . ,πm be m independent permutations of lc elements.

• Let X(c)′ be a randomized version of X(c) where each π j is applied independently to the
column X(c) j. That is, X(c)′ = [π1(X(c)1), . . . ,πm(X(c)m)].

Finally, let X ′ = {X(c)′ | c ∈ Y} and obtain one randomized version D′ = {(X ′
i ,yi)}ni=1. Next,

compute the p-value as in Definition 1.

Thus, a classification result can be regarded as nonsignificant with Test 2, if either the features
are independent of each other inside the classes or if the classifier does not exploit the interdepen-
dency between the features. Notice that we are not testing the data but the classifier against the null
hypothesis corresponding to Test 2. The classification result is significant with Test 2 only if the
classifier exploits the interdependency between the features, if such interdependency exists. If the
dependency is not used, there might be no reason to use a complicated classifier, as simpler and
faster methods, such as Naive Bayes, could provide similar accuracy results for the same data. On
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Original data set Full permutation Test 1 Test 2
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Figure 2: Scatter plots of original Iris data set and randomized versions for full permutation of the
data and for Tests 1 and 2 (one sample for each test). The data points belong to three different classes
denoted by different markers, and they are scattered against petal length and width in centimeters.

the other hand, this observation can lead us to find a classifier that can exploit the possibly existing
dependency and thus improve the classification accuracy further, as discussed in the introduction.

There are three important properties of the permutation-based p-values and the two tests pro-
posed here. The first one is that the number of missing values, that is, the number of entries inD that
are empty because they do not have measured values, will be distributed equally across columns in
the original data set D and the randomized data sets D′; this is necessary for a fair p-value compu-
tation. The second property is that the proposed permutations are always relevant regardless of the
data domain, that is, values are permuted always within the same column, which does not change
the domain of the randomized data sets. Finally, we have that unbalanced data sets, that is, data sets
where the distribution of class labels is not uniform, remain equally unbalanced in the randomized
samples.

In all, with permutation tests we obtain useful statistics about the classification result. No test
is better than the other, but all provide us with information about the classifier. Each p-value is
a statistic about the classifier performance; each p-value depends on the original data (whether it
contains some real structure or not) and the classifier (whether it is able to use certain structure in
the data or not).

In Figure 2, we give as an example one randomization for each test on the well-known Iris
data set. We show here the projection of two features, before and after randomizations according
to each one of the tests. For comparison, we include a test corresponding to full permutation of
the data where each column is permuted separately, breaking the connection between the features
and mixing the values between different classes. Note how well Test 2 has preserved the class
structure compared to other tests. To provide more intuitions, in this case a very simple classifier,
which predicts the class by means of one single of these two features would suffice in reaching a
very good accuracy. In other words, the dependency between the two features is not significant as
such, so that a more complex classifier making use of such dependency would end up having a high
p-value with Test 2. We will discuss the Iris data more in the experiments.

3.2 Handling Instability of the Error

A related issue for all the above presented tests concerns the variability of the error estimate returned
by a classifier. Indeed, applying the same classifier several times over the original data set D can
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return different error estimates e( f ,D) if, for example, 10-fold cross-validation is used. So the
question is, how can we ensure that the p-values given by the tests are stable to such variance?

The empirical p-value depends heavily on the correct estimation of the original classification
accuracy, whereas the good estimation of the classification errors of the randomized data sets is not
so important. However, exactly the same classification procedure has to be used for both the original
and randomized data for the p-value to be valid. Therefore, we propose the following solution to
alleviate the problem of having instable test statistic: We train the classifier on the original data r
times, thus obtaining r different error estimates E = {e1( f ,D), . . . ,er( f ,D)} on D. Next, we obtain
k randomized samples of D according to the desired null hypothesis and compute the p-value for
each one of those original errors e ∈ E. We obtain therefore r different p-values by using the same
k randomized data sets for each computation. We finally output the average of those r different
p-values as the final empirical p-value.

Note that in total we will compute the error of the classifier r+ k times: r times on the original
data and one time for each of the k randomized data sets. Of course, the larger the k and the larger
the r, the more stable the final averaged p-value would be. A larger r decreases the variance in the
final p-value due to the estimation of the classification error of the original data set whereas a larger
k decreases the variance in the final p-value due to the random sampling from the null distribution.
In practice, we have observed that a value of r = 10 and k = 100 produce sufficiently stable results.

This solution is closely related to calculating the statistic ρ, or calculating the test statistic U
of the Wilcoxon-Mann-Whitney two-sample rank-sum test (Good, 2000). However, it is not valid
to apply these approaches in our context as the r classification errors of the original data are not
independent of each other. Nevertheless, the proposed solution has the same good properties as the
ρ andU statistics as well as it generalizes the concept of empirical p-value to instable results.

A different solution would be to use a more accurate error estimate. For example, we could use
leave-one-out cross-validation or cross-validation with 100 folds instead of 10-fold cross-validation.
This will decrease the variability but increase the computation time dramatically as we need to
perform the same slow classification procedure to all k randomized samples as well. However, it
turns out that the stability issue is not vital for the final result; our solution produces sufficiently
stable p-values in practice.

3.3 Example

We illustrate the concept of the tests by studying the small artificial example presented in the intro-
duction in Figure 1. Consider the two data sets D1 and D2 given in Figure 1. The first data set D1
was generated as follows: in the first eight rows corresponding to class +, each element is indepen-
dently sampled to be x with probability 80% and o otherwise; in the last eight rows the probabilities
are the other way around. Note that in the data set D1 the features are independent given the class
since, for example, knowing that X j1

i = x inside class + does not increase the probability of X j2
i

being x. The data set D2 was generated as follows: the first four rows contain x, the second four
rows contain o, the third four rows contain x in the first four columns and o in the last four columns,
and the last four rows contain o in the first four columns and x in the last four columns; finally, 10%
of noise was added to the data set, that is, each x was flipped to o with probability of 10%, and vice
versa.

Observe that both D1 and D2 have a clear separation into the two given classes, + and –. How-
ever, the structure inside the data set D1 is much simpler than in the data set D2. For illustration
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1-Nearest Neighbor
Orig. Test 1 Test 2

Data Set Err. Err. (Std) p-val. Err. (Std) p-val.

D1 0.00 0.53 (0.14) 0.001 0.06 (0.06) 0.358
D2 0.00 0.53 (0.14) 0.001 0.62 (0.14) 0.001

Table 1: Average error and p-value for Test 1 and Test 2 when using the 1-Nearest Neighbor classi-
fier to data sets of Figure 1.

purposes, we analyze this with the 1-Nearest Neighbor classifier using the leave-one-out cross-
validation given in Equation (1). Results for Test 1 and Test 2 are summarized in Table 1. The
classification error obtained in the original data is 0.00 for both D1 and D2, which is expected since
the data sets were generated to contain clear class structure.

First, we use the standard permutation test (i.e., permuting labels, Test 1) to understand the
behavior under the null hypothesis where data points and labels are independent. We produce 1000
random permutations of the class labels for both the data sets D1 and D2, and perform the same
leave-one-out cross-validation procedure to obtain a classification error for each randomized data
set. On the randomized samples of data set D1 we obtain an average classification error of 0.53,
a standard deviation 0.14 and a minimum classification error of 0.13. For the randomized data
from D2 the corresponding values are 0.53, 0.14 and 0.19, respectively. These values result in
two empirical p-values of both 0.001 on both the data sets D1 and D2. Thus, we can say that the
classifiers are significant under the null hypothesis that data and labels are independent. That is, the
connection between the data and the class labels is real in both data sets and the 1-Nearest Neighbor
classifier is able to find that connection in both data sets, resulting into a good classification accuracy.

However, it is easy to argue that the results of Test 1 do not provide much information about
the classifier performance. Actually the main problem of Test 1 is that p-values tend to be always
very low as the null hypothesis is typically easy to reject. To get more information of the properties
of the classifiers, we study next the performance of the classifiers by taking into account the inner
structure of data sets D1 and D2 by applying Test 2. Again, we produce 1000 random samples of the
data setsD1 andD2 by permuting each column separately inside each class. The same leave-one-out
cross-validation procedure is performed for the randomized samples, obtaining for the data set D1
the average classification error of 0.06, standard deviation of 0.06 and a minimum value of 0.00.
For the data set D2 the corresponding values are 0.62, 0.14 and 0.19, respectively. Therefore, under
Test 2 the empirical p-values are 0.358 for the data set D1 and 0.001 for the data set D2.

We can say that, for Test 2, the 1-Nearest Neighbor classifier is significant for data set D2 but
not for data set D1. Indeed, the data set D1 was generated so that the features are independent
inside the classes, and hence, the good classification accuracy of the algorithm on D1 is simply due
to different value distributions across the classes. Note, however, that none of the features in the
data set D1 is sufficient alone to correctly classify all the samples due to the noise in the data set.
Thus using a combination of multiple features for classification is necessary for obtaining a good
accuracy, even though the features are independent of each other. For data set D2 we have that the
dependency between the columns inside the classes is essential for the good classification result,
and in this case, the 1-Nearest Neighbor classifier has been able to exploit that information.
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4. Analysis

In this section we analyze the properties of the tests and demonstrate the behavior of the different p-
values on simulated data. First, we state the relationships between the different sets of permutations.

4.1 Connection between Test 1 and Test 2

Remember that the random samples from Test 1 are obtained by permuting the class labels and the
samples from Test 2 by permuting the features inside each class. To establish a connection between
these randomizations, we study the randomization where each data column is permuted separately,
regardless of the class label. This corresponds to the full permutation presented in Figure 2 in
Section 3.1 for Iris data set. It breaks the connection between the features, and furthermore, between
the data and the class labels. The following result states the relationship between Test 1, Test 2 and
the full permutation method.

Proposition 2 Let Πl(D), Πc(D), Πcc(D) be the sets of all possible randomized data sets obtained
from D via permuting labels (Test 1), permuting data columns (full permutation), or permuting data
columns inside class (Test 2), respectively. The following holds,

(1) Πl(D)⊂Πc(D)
(2) Πcc(D)⊂Πc(D)
(3) Πl(D) %=Πcc(D)

Note that Πl(D), Πc(D) and Πcc(D) refer to sets of data matrices. Therefore, we have that
permuting the data columns is the randomization method producing the most diverse samples, while
permuting labels (Test 1) and permuting data within class (Test 2) produce different randomized
samples.

Actually, the relationship stated by Proposition 2 implies the following property: the p-value
obtained by permuting the data columns is typically smaller than both the p-values obtained from
Test 1 and Test 2. The reason is that all the randomized data sets obtained by Test 1 and Test 2
can also be obtained by permuting data columns and the additional randomized data sets obtained
by permuting the columns are, in general, even more random. Theoretically, permuting the data
columns is a combination of Test 1 and Test 2, and thus, it is not a useful test. In practice, we have
observed that the p-value returned by permuting the data columns is very close to the p-value of
Test 1, which tends to be much smaller than the p-value of Test 2.

Considering Proposition 2, it makes only sense to restrict the randomization to classes by using
Test 2, whenever Test 1 has produced a small p-value. That is, it is only reasonable to study whether
the classifier uses feature dependency in separating the classes if it has found a real class structure.

4.2 Behavior of the Tests

To understand better the behavior of the tests, we study generated data where correlation is used
as the dependency between the features. Consider the following simulated data, inspired by the
data used by Golland et al. (2005): 100 data points are generated from two-dimensional normal
distribution with mean vector (1,0), unit variances and covariance ρ ∈ [−1,1]. Another 100 data
points are generated from similar normal distribution with mean (−1,0), unit variances and same
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Figure 3: Average values of stratified 10-fold cross-validation error (y-axis) for varying values of
correlation between the features per class (x-axis). The solid line shows the error on the original
data, and symbols × and • represent the average of the error on 1000 randomized samples obtained
from Test 1 and from Test 2, respectively. Each average of the error on the randomized samples ×
and • is depicted together with the [1%,99%]-deviation bar. If the solid line falls below the bars the
null hypothesis associated to the test is rejected; if the solid line crosses inside or above the bars the
null hypothesis cannot be rejected with significance level α= 0.01.

covariance ρ. The first 100 samples are assigned with class label y = +1 with probability 1− t
and y = −1 with probability t. For the other 100 samples the probabilities are the opposite. The
probability t ∈ [0,0.5] represents the noise level. When t = 0.5, there is no class structure at all.
Note that the correlation between the features improves the class separation: if the correlation ρ= 1
and the noise t = 0, we have that the class y = x1− x2 where x1, x2 are the values of the first and
second features, respectively.

For these data sets (with varying parameters of noise and correlation) we use as an error estimate
the stratified 10-fold cross-validation error. We study the behavior of four classifiers: 1-Nearest
Neighbor, Decision Tree, Naive Bayes and Support Vector Machine. We use Weka 3.6 data mining
software (Witten and Frank, 2005) with the default parameters of the implementations of those
classification algorithms. The Decision Tree classifier is similar to C4.5 algorithm, and the default
kernel used with Support Vector Machine is linear. Tuning the parameters of these algorithms is not
in the scope of this paper; our objective is to show the behavior of the discussed p-values for some
selected classifiers.

Figure 3 shows the behavior of the classifiers on data sets without class noise, t = 0, and with the
correlation ρ between features inside classes varying from −1 (negative correlation) to 1 (positive
correlation). The solid line corresponds to e( f ,D), that is, the error of the classifier in the original
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Figure 4: Average values of stratified 10-fold cross-validation error (y-axis) for the Decision Tree
classifier when noise varies on the original data set (x-axis) with four fixed correlation values be-
tween the features inside the classes. The solid line shows the error on the original data, and sym-
bols × and • show the average error on 1000 randomized samples from Test 1 and Test 2, respec-
tively. Each average of the error on the randomized samples × and • is depicted together with the
[1%,99%]-deviation bar below which the associated null hypothesis is rejected with significance
level α= 0.01.

data. The symbols “×” and “•” represent the average error obtained by the classifier on 1000
randomized samples from Test 1 and Test 2, respectively. When the solid line of e( f ,D) falls
below the [1%,99%]-deviation bars, the corresponding associated null hypothesis is rejected with
significance level α = 0.01. Actually, the correspondence between the confidence intervals and
hypotheses testing is only approximately true since the definition of empirical p-value contains the
addition of 1 in both the numerator and denominator. However, the practical difference is negligible.

First, note that the Decision Tree, 1-Nearest Neighbor and Support Vector Machine classifiers
have been able to exploit the dependency between the features, that is, the classification error goes to
zero when there is either a high positive or negative correlation between the features. However, with
Naive Bayes classifier the classification error seems to be independent of the correlation between
the features.

For all classifiers we observe that the null hypothesis associated to Test 1 (i.e., labels and data
are independent) is always rejected. Thus the data contains a clear class structure as expected since
there exists no class noise in the data. All classifiers are therefore significant under Test 1.

Another expected observation is that the null hypothesis for Test 2 (i.e., features are independent
within class) tends to be rejected as the magnitude of the correlation between features increases.
That is, the correlation is useful in classifying the data. When the magnitude of the correlation is
larger than approximately 0.4, the Decision Tree, Nearest Neighbor and Support Vector Machine
classifiers reject the null hypothesis. Thus these classifiers produce significant results under Test 2
when the features are highly correlated.

Finally, observe the behavior of Naive Bayes classifier for Test 2: the null hypothesis can never
be rejected. This is because Naive Bayes classifier explicitly assumes by default that the features
are independent, thus it always performs similarly on the original data and the randomized data sets,
which results in a very high p-value. Naive Bayes classifier is an example of such classifiers which
are not able to use the dependency between the features at all. Thus applying Test 2 for Naive Bayes
classifier will practically always produce a high p-value irrespective of the data.
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Finally, Figure 4 shows the behavior of the Decision Tree classifier when the noise t ∈ [0,0.5] is
increased on the x-axis. We also vary the correlation ρ between the features per class and show the
results on four cases: zero correlation, 0.5, 0.8 and total correlation. We observe that as the noise
increases the p-values tend to be larger. Therefore, it is more difficult to reject the null hypothesis
on very noisy data sets, that is, when the class structure is weak. This is true for both Test 1 and
Test 2. However, Test 1 rejects the null hypothesis even if there is 30% of noise. This supports the
fact already observed in related literature (Golland et al., 2005), that even a weak class structure is
easily regarded as significant with Test 1. Compared to this, Test 2 gives more conservative results.

4.3 Power Analysis of Test 2

The power of a statistical test is the probability that the test will reject the null hypothesis when the
alternative hypothesis is true. The power of the test depends on how much or how clearly the null
hypothesis is false. For example, in our case with Test 2, a classifier may rely solely on a strong
dependency structure between some specific features in the classification, or it may use a weak
feature dependency to slightly improve the classification accuracy. Rejecting the null hypothesis of
Test 2 is much easier in the former than in the latter case. Note, however, that a strong dependency
between the features is not always useful in separating the classes, as seen in Figure 2 with Iris
data set. So, the question with Test 2 is whether the classifier is exploiting some of the dependency
structure between the features in the data and how important such feature dependency is for the
classification of the data.

In general, the power of the test can only be analyzed in special cases. Nevertheless, such
analysis can give some general idea of the power the test. Next, we present a formal power analysis
in the particular case where we vary the correlation between the features that is useful in separating
the classes from each other. Note, however, that there exist also other types of dependency than
correlation. The amount of correlation is just easy to measure, thus being suitable for formal power
analysis.

We present the power analysis on similar data as studied in Section 4.2. The results in the
previous subsection can be seen as informal power analysis. In summary, we observed that when
the magnitude of the correlation in the data studied in Section 4.2 was larger than about 0.5 and
the classifier was exploiting the feature dependency, that is, a classifier different from Naive Bayes,
Test 2 was able to reject the null hypothesis. However, based on the data it is clear that even smaller
correlations increased the class separation and were helpful in classifying the data but Test 2 could
not regard such improvement as significant. The following analysis supports these observations.

Let the data set X consist of n points with two features belonging to two classes, +1 and −1.
Let a point x ∈ X be in class y= +1 with probability 0.5 and in class y = −1 with probability 0.5.
Let the point x ∈ X be sampled from two-dimensional normal distribution with mean (0,0), unit
variances and covariance yρ where ρ ∈ [0,1] is a given parameter. Thus, in the first class, y = +1,
the correlation between the two features is positive and in the second class, y = −1, it is negative.
Compared to the data sets in Section 4.2, now the covariance changes between the classes, not the
mean vector. An optimal classifier assigns a point x ∈ X to class y = +1 if x1x2 > 0 and to class
y=−1 if x1x2 < 0, where xi is the i-th feature of the vector x.

The null hypothesis of Test 2 is that the classifier is not exploiting the dependency between
the features in classification. To alleviate the power analysis, we assume that the classifier is able
to find the optimal classification, that is, it assigns the point x to class sgn(x1x2) where sgn(·) is
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the signum function. If the classifier is not optimal, it will just decrease the power of the test.
The nonoptimality of the classifier could be taken into account by introducing a probability t for
reporting a nonoptimal class label; this approach is used in the next subsection for power analysis
of Test 1 but is left out here for simplicity in the analysis. Under this optimality scenario, the
probability of correctly classifying a sample is

Pr(sgn(x1x2) = y) =
1
2
Pr(x1x2 > 0 | y=+1)+

1
2
Pr(x1x2 < 0 | y=−1)

= Pr(x1x2 > 0 | y=+1) = 2
∫ ∞

0

∫ ∞

0
Pr(x1,x2)dx1dx2

= 2
∫ ∞

0

∫ ∞

0

1
2π

√
1−ρ2

exp
[
−
x21−2ρx1x2+ x22
2(1−ρ2)

]
dx1dx2

=
1
2
+
1
π
arcsinρ, (2)

where Pr(x1,x2) is just the standardized bivariate normal distribution. The null hypothesis corre-
sponds to the case where the correlation parameter is zero, ρ = 0, that is, no feature dependency
exists. In that case, the probability of correctly classifying a sample is 1/2.

In our randomization approach, we are using classification error as the test statistic. Since we
assume that the optimal classifier is given, we use all the n points of the data set X for testing
the classifier and calculating the classification error. Under the null hypothesis H0 and under the
alternative hypothesis H1 of Test 2, the classification errors e( f | H0) and e( f | H1) are distributed
as follows:

n · e( f | H0)∼ Bin
(
n,
1
2

)
≈N

(n
2
,
n
4

)
,

n · e( f | H1)∼ Bin
(
n,
1
2
−
1
π
arcsinρ

)
≈N

(n
2
−
n
π
arcsinρ,

n
4
−

n
π2
arcsin2ρ

)
,

where 12 −
1
π arcsinρ is the probability of incorrectly classifying a sample by Equation (2). The nor-

mal approximationN (np,np(1− p)) of a binomial distribution Bin(n, p) holds with good accuracy
when np> 5 and n(1− p)> 5. In our case, the approximation is valid if n( 12−

1
π arcsinρ)> 5. This

holds, for example, if n≥ 20 and ρ≤ 0.7.
Now the power of Test 2 for this generated data is the probability of rejecting the null hypothesis

H0 of ρ = 0 with significance level α when the alternative hypothesis H1 is that the correlation
ρ > 0. Note that we are implicitly assuming that the classifier is optimal, that is, we are excluding
the classifier quality from the power analysis. Thus, the power is the probability that e( f | H1) is
smaller than 1−α of the errors e( f | H0) under the alternative hypothesis H1:

Power= Pr
(
e( f | H1)< F−1

e( f |H0)(α)
)

≈ Pr

(
1
2
−
1
π
arcsinρ+

√
1
4n

−
1
nπ2

arcsin2ρ ·Z <
1
2
+

1
2
√
n
Φ−1(α)

)

=Φ



2
√
narcsinρ+πΦ−1(α)√
π2−4arcsin2ρ



 , (3)
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Figure 5: Contour plots of the statistical power of Test 2 as a function of the number of rows n in the
generated data set and the correlation parameter ρ. Each solid line corresponds to a constant value
of the power that is given on top of the contour. The power values are calculated by Equation (3)
for two different values of significance level α.

where Fe( f |H0) is the cumulative distribution function of e( f | H0), Z is a random variable following
standard normal distribution and Φ is the cumulative distribution function of the standard normal
distribution. Note that we are using exact p-value instead of empirical p-value, effectively leaving
out the influence of variance by using k randomized samples; see Fay et al. (2007) for analysis of
resampling risk of using k samples. However, this has little effect to the power of the test. When the
correlation ρ = 0, the power is α, that is, when the null hypothesis is true, it is rejected incorrectly
about α of the times. Therefore, α is really the significance level of the tests.

In Figure 5 we present contour plots of the statistical power in Equation (3) for different values
of the two varying parameters. As expected, the higher the correlation ρ and the number of rows
n are, the higher the statistical power of Test 2 is. For example, if the data set contains about 1000
rows, we can infer with 90% probability that the classifier is exploiting the feature dependency of
approximately a correlation of 0.2 in the data. The results are also in line with the results from
Section 4.2 although the studied data sets are slightly different. When the significance level used is
α = 0.01 we can infer that the classifier is exploiting the feature dependency of correlation larger
than 0.4 approximately 90% of the times when the data set has 200 rows.

Notice that if we had not considered an “optimal” classifier, that is, if we had introduced a
probability t of assigning each observation to the incorrect label, then Equation (3) would depend
on three parameters. In that case, the higher t, the smaller is the power of the test; however, for
a fixed t we still would observe the same behaviour as in the contourplots above: the higher the
correlation ρ and the larger the n, the higher is the statistical power of Test 2. The error parameter t
is taken into account in the next section, where the power analysis of Test 1 does not depend on ρ
between the features.
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4.4 Power Analysis of Test 1

Let the data set X consist of n observations belonging to two different classes with equal probability.
We assume that we have a classifier f whose error rate is t ∈ [0,1], that is, the classifier assigns each
observation to the correct class with probability 1− t. Another way to see this is that the classifier
f is optimal but the original class label of each point is erroneous with probability t. We perform
power analysis of Test 1 for this general form of data.

Note that the results in Section 4.2 can be seen as informal power analysis of Test 1 on similar
setting as studied here. The results in Figure 4 can be summarized as follows. When the error rate
was smaller than t < 0.4, Test 1 was able to reject the null hypotheses. Note, however, that the error
rate t used in this section is not directly comparable to the error rate used in Section 4.2.

The power analysis of Test 1 proceeds similarly as in the previous subsection for Test 2. Under
the null hypothesis H0 and under the alternative hypothesis H1 of Test 1, the classification errors
e( f | H0) and e( f | H1) are distributed as follows:

n · e( f | H0)∼ Bin
(
n,
1
2

)
≈N

(n
2
,
n
4

)
,

n · e( f | H1)∼ Bin(n, t)≈N (nt,nt(1− t)) .

The null hypothesis H0 assumes that there is no connection between the data and the class labels
thus the probability of incorrect classification is 1/2 as the classes are equally probable. Note that
the null hypothesis corresponds to the case where the error rate of the classifier f is t = 1/2.

Now the power of Test 1 is the probability of rejecting the null hypothesis H0 with significance
level α when the alternative hypothesis H1 is true, that is,

Power= Pr
(
e( f | H1)< F−1

e( f |H0)(α)
)

≈ Pr

(

t+
√
t(1− t)

n
Z <

1
2
+

1
2
√
n
Φ−1(α)

)

=Φ

(
(1−2t)

√
n+Φ−1(α)

2
√
t(1− t)

)

, (4)

where the same notation as in the previous subsection is used. First, note that when the null hypoth-
esis is true, that is, t = 1/2, the power of Test 1 calculated by Equation (4) equals the significance
level α as it should.

In Figure 6 we present contour plots of the statistical power of Test 1 calculated by Equation (4)
for different values of parameters. As expected, when the number of observations n increases or the
error rate t decreases, the power increases. Furthermore, the larger the significance level α is, the
larger the power of Test 1 is. When the parameter values are α = 0.01, n = 200 and t = 0.4, the
power of Test 1 is about 0.7 that is comparable to the results in Section 4.2.

In this section, we analyzed the behaviour and the power of the tests. Note that although we used
correlation as the only type of dependency between features in this section, there exist also other
forms of dependency that the classifier can exploit. As conclusions from the power analysis, the
more rows the data set has, the easier we can infer that the classifier is using the feature dependency
or some other properties in the data.
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Figure 6: Contour plots of the statistical power of Test 1 as a function of the number of rows n in
the generated data set and the probability of misclassification t. Each solid line corresponds to a
constant value of the power that is given on top of the contour. The power values are calculated by
Equation (4) for two different values of significance level α.

5. Empirical Results

In this section, we give extensive empirical results on 33 various real data sets from UCI machine
learning repository (Asuncion and Newman, 2007). Basic characteristics of the data sets are de-
scribed in Table 2. The data sets are divided into three categories based on their size: small, medium
and large. Some data sets contain only nominal or numeric features whereas some data sets contain
both kind of features (mixed). About one-third of the data sets contain also missing values. Notice
that in most data sets the features are measured in different scales, thus it is not sensible to swap the
values between different features. This justifies why it is only reasonable to consider column-wise
permutations, and why some recent data mining randomization methods (Gionis et al., 2007; Ojala
et al., 2009; Chen et al., 2005) are not generally applicable in assessing classification results.

In the experiments we useWeka 3.6 data mining software (Witten and Frank, 2005) that contains
open source Java implementations of many classification algorithms. We use four different types
of classification algorithms with the default parameters: Decision Tree, Naive Bayes, 1-Nearest
Neighbor and Support Vector Machine classifier. The Decision Tree classifier is similar to C4.5
algorithm. The default kernel used with Support Vector Machine is linear. Missing values and the
combination of nominal and numerical values are given as such as the input for the classifiers; the
default approaches in Weka of the classifiers are used to handle these cases. Notice that tuning the
parameters of these algorithms is not in the scope of this paper; our objective is to show the behavior
of the discussed p-values for some selected classifiers on various data sets.

We use different classification procedures and the number of randomized data sets for each
of the different size categories of the data sets (small, medium and large). For small data sets,
we use stratified 10-fold cross-validation error as the statistic and 1000 randomized data sets for
calculating the empirical p-values. For medium-sized data sets, we use the same stratified 10-fold
cross-validation error and 100 randomized data sets. Finally, for large data sets, we divide the data
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Data Set Rows Features Classes Missing Domain

Sm
al
l

Audiology 226 70 24 2.0% nominal
Autos 205 25 6 1.2% mixed
Breast 286 9 2 0.3% nominal
Glass 214 9 6 No numeric
Hepatitis 155 19 2 5.7% mixed
Ionosphere 351 34 2 No numeric
Iris 150 4 3 No numeric
Lymph 148 18 4 No mixed
Promoters 106 57 2 No nominal
Segment 210 19 7 No numeric
Sonar 208 60 2 No numeric
Spect 267 22 2 No nominal
Tumor 339 17 21 3.9% nominal
Votes 435 16 2 5.6% nominal
Zoo 101 17 7 No mixed

M
ed
iu
m

Abalone 4177 8 28 No mixed
Anneal 898 38 5 65.0% mixed
Balance 625 4 3 No numeric
Car 1728 6 4 No nominal
German 1000 20 2 No mixed
Mushroom 8124 22 2 1.4% nominal
Musk 6598 166 2 No numeric
Pima 768 8 2 No numeric
Satellite 6435 36 6 No numeric
Spam 4601 57 2 No numeric
Splice 3190 60 3 No nominal
Tic-tac-toe 958 9 2 No nominal
Yeast 1484 8 10 No numeric

La
rg
e

Adult 48842 15 2 0.9% mixed
Chess 28056 6 18 No mixed
Connect-4 67557 42 3 No nominal
Letter 20000 16 26 No numeric
Shuttle 58000 9 7 No numeric

Table 2: Summary of 33 selected data sets from UCI machine learning repository (Asuncion and
Newman, 2007). The data sets are divided into three categories based on their size: small, medium
and large.
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set into training set with 10 000 random rows and to test set with the rest of the rows. We use 100
randomized data sets for calculating the empirical p-values with large data sets. The reason for the
smaller number of randomized samples for medium and large data sets is mainly computation time.
However, 100 samples is usually enough for statistical inference. Furthermore, as seen in Section 4
the power of the tests is greater when the data sets have more rows, that is, with large data sets it is
easier to reject the null-hypotheses, supporting the need of fewer randomized samples in hypothesis
testing.

Since the original classification error is not a stable result due to the randomness in training
the classifier and dividing the data set into test and train data, we perform the same classification
procedure ten times for the original data sets and calculate an empirical p-value for each of the ten
results. This was described in Section 3.2. We give the average value of these empirical p-values as
well as the average value and the standard deviation of the original classification errors.

As we are testing multiple hypotheses simultaneously, we need to correct for multiple compar-
isons. We apply the approach by Benjamini and Hochberg (1995) to control the false discovery rate
(FDR), that is, the expected proportion of results incorrectly regarded as significant. In the exper-
iments, we restrict the false discovery rate below α = 0.05 separately for Test 1 and Test 2. In the
Benjamini-Hochberg approach, if p1, . . . , pm are the original empirical p-values in increasing order,
the results p1, . . . , pl are regarded as significant where l is the largest value such that pl ≤ l

mα.
The significance testing results for the Decision Tree classifier are given in Table 3, for Naive

Bayes in Table 4, for 1-Nearest Neighbor classifier in Table 5 and finally for Support Vector Ma-
chine classifier in Table 6. The mean and the standard deviation of the 10 original classification
errors are given as well as the mean and standard deviation of the errors on the 1000 or 100 ran-
domized samples with Test 1 and Test 2. The empirical p-values corresponding to nonsignificant
results, when the false discovery rate is restricted below 0.05, are in boldface in the tables. With all
classifiers, the largest significant empirical p-value was 0.01. The smallest non-significant p-values
were 0.03 with Decision Tree and 1-Nearest Neighbor classifiers, 0.08 with Naive Bayes classifier
and 0.19 with Support Vector Machine classifier.

The results for the traditional permutation method Test 1 show that the classification errors with
most data sets are regarded as significant. These results show that the data sets contain clear class
structure. However, they do not give any additional insight for understanding the class structure in
the data sets.

There are two reasons why the simple permutation test, Test 1, regards the class structure of
the data sets as significant. Firstly, most of the data sets that are publicly available, as all the
data sets used in this paper, have already passed some quality checks, that is, someone has already
found some interesting structure in them. Secondly, and as a more important reason, the traditional
permutation tests easily regard the results as significant even if there is only a slight class structure
present because in the corresponding permuted data sets there is no class structure, especially if the
original data set is large.

Furthermore, the few results which were regarded as nonsignificant with Test 1 are with such
classifiers that have not performed well on the data. That is, the other classifiers have produced
smaller classification errors on the same data sets, and, in contrast, these results are regarded as
significant.

Next, we consider the results for permuting the features inside each class, that is, Test 2. The
results show that there are actually now almost equal amount of nonsignificant and significant results
with respect to Test 2. This means that in many data sets the original structure inside the classes is
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Decision Tree
Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
Sm
al
l

Audiology 0.22 (0.01) 0.82 (0.03) 0.001 0.23 (0.02) 0.482
Autos 0.19 (0.01) 0.76 (0.04) 0.001 0.38 (0.04) 0.001
Breast 0.26 (0.01) 0.30 (0.00) 0.001 0.29 (0.02) 0.116
Glass 0.33 (0.02) 0.72 (0.03) 0.001 0.34 (0.03) 0.457
Hepatitis 0.22 (0.02) 0.23 (0.02) 0.319 0.15 (0.03) 0.955
Ionosphere 0.10 (0.01) 0.38 (0.02) 0.001 0.07 (0.01) 0.964
Iris 0.05 (0.01) 0.67 (0.03) 0.001 0.05 (0.01) 0.765
Lymph 0.22 (0.02) 0.51 (0.05) 0.001 0.23 (0.04) 0.437
Promoters 0.21 (0.04) 0.50 (0.06) 0.002 0.22 (0.05) 0.377
Segment 0.13 (0.02) 0.86 (0.03) 0.001 0.17 (0.02) 0.132
Sonar 0.27 (0.02) 0.49 (0.03) 0.001 0.27 (0.03) 0.507
Spect 0.19 (0.01) 0.22 (0.01) 0.004 0.15 (0.02) 0.966
Tumor 0.58 (0.01) 0.82 (0.02) 0.001 0.60 (0.02) 0.138
Votes 0.03 (0.00) 0.42 (0.02) 0.001 0.03 (0.01) 0.791
Zoo 0.07 (0.01) 0.64 (0.03) 0.001 0.07 (0.01) 0.593

M
ed
iu
m

Abalone 0.79 (0.01) 0.89 (0.00) 0.01 0.67 (0.01) 1.00
Anneal 0.07 (0.01) 0.24 (0.00) 0.01 0.13 (0.01) 0.01
Balance 0.22 (0.01) 0.55 (0.02) 0.01 0.29 (0.02) 0.01
Car 0.08 (0.00) 0.30 (0.00) 0.01 0.26 (0.01) 0.01
German 0.29 (0.01) 0.32 (0.01) 0.01 0.28 (0.01) 0.66
Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.01 (0.00) 0.01
Musk 0.03 (0.00) 0.16 (0.00) 0.01 0.09 (0.00) 0.01
Pima 0.25 (0.01) 0.35 (0.01) 0.01 0.24 (0.01) 0.67
Satellite 0.14 (0.00) 0.81 (0.00) 0.01 0.07 (0.00) 1.00
Spam 0.07 (0.00) 0.40 (0.00) 0.01 0.06 (0.00) 1.00
Splice 0.06 (0.00) 0.60 (0.01) 0.01 0.07 (0.01) 0.01
Tic-tac-toe 0.15 (0.01) 0.36 (0.01) 0.01 0.30 (0.01) 0.01
Yeast 0.44 (0.01) 0.76 (0.01) 0.01 0.47 (0.01) 0.03

La
rg
e

Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00 (0.00) 1.00
Chess 0.46 (0.00) 0.89 (0.00) 0.01 0.77 (0.00) 0.01
Connect-4 0.25 (0.00) 0.34 (0.00) 0.01 0.33 (0.00) 0.01
Letter 0.16 (0.01) 0.96 (0.00) 0.01 0.38 (0.01) 0.01
Shuttle 0.00 (0.00) 0.21 (0.00) 0.01 0.01 (0.00) 0.01

Table 3: Classification errors and empirical p-values obtained with Decision Tree classifier for
Test 1 and Test 2. The empirical p-values are calculated over 1000 randomized samples for small
data sets and over 100 randomized samples for medium and large data sets. Classification on the
original data is repeated ten times. In the table, the average values and standard deviations of the
classification errors are given. Bold p-values correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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Naive Bayes
Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
Sm
al
l

Audiology 0.27 (0.00) 0.79 (0.03) 0.001 0.26 (0.01) 0.869
Autos 0.43 (0.01) 0.79 (0.04) 0.001 0.22 (0.02) 1.000
Breast 0.27 (0.01) 0.33 (0.02) 0.001 0.24 (0.02) 0.959
Glass 0.52 (0.02) 0.81 (0.05) 0.001 0.45 (0.02) 0.994
Hepatitis 0.16 (0.01) 0.30 (0.05) 0.001 0.09 (0.02) 1.000
Ionosphere 0.17 (0.00) 0.46 (0.03) 0.001 0.01 (0.01) 1.000
Iris 0.05 (0.01) 0.67 (0.05) 0.001 0.01 (0.01) 0.999
Lymph 0.16 (0.01) 0.53 (0.05) 0.001 0.11 (0.02) 0.995
Promoters 0.08 (0.01) 0.50 (0.06) 0.001 0.07 (0.02) 0.746
Segment 0.21 (0.01) 0.86 (0.03) 0.001 0.13 (0.01) 1.000
Sonar 0.32 (0.01) 0.50 (0.04) 0.001 0.13 (0.02) 1.000
Spect 0.21 (0.01) 0.25 (0.03) 0.077 0.07 (0.01) 1.000
Tumor 0.50 (0.01) 0.81 (0.02) 0.001 0.49 (0.02) 0.751
Votes 0.10 (0.00) 0.44 (0.02) 0.001 0.00 (0.00) 1.000
Zoo 0.03 (0.00) 0.81 (0.05) 0.001 0.03 (0.01) 0.541

M
ed
iu
m

Abalone 0.76 (0.00) 0.88 (0.01) 0.01 0.56 (0.01) 1.00
Anneal 0.35 (0.01) 0.36 (0.04) 0.65 0.31 (0.01) 1.00
Balance 0.09 (0.00) 0.54 (0.02) 0.01 0.24 (0.01) 0.01
Car 0.14 (0.00) 0.30 (0.00) 0.01 0.24 (0.01) 0.01
German 0.25 (0.00) 0.33 (0.01) 0.01 0.23 (0.01) 1.00
Mushroom 0.04 (0.00) 0.50 (0.01) 0.01 0.00 (0.00) 1.00
Musk 0.16 (0.00) 0.34 (0.06) 0.01 0.02 (0.00) 1.00
Pima 0.24 (0.00) 0.37 (0.01) 0.01 0.22 (0.01) 0.99
Satellite 0.20 (0.00) 0.80 (0.02) 0.01 0.00 (0.00) 1.00
Spam 0.20 (0.00) 0.49 (0.05) 0.01 0.10 (0.00) 1.00
Splice 0.05 (0.00) 0.53 (0.01) 0.01 0.03 (0.00) 1.00
Tic-tac-toe 0.30 (0.00) 0.35 (0.01) 0.01 0.28 (0.01) 1.00
Yeast 0.42 (0.00) 0.71 (0.01) 0.01 0.42 (0.01) 0.36

La
rg
e

Adult 0.02 (0.00) 0.24 (0.01) 0.01 0.01 (0.00) 0.96
Chess 0.66 (0.00) 0.84 (0.00) 0.01 0.70 (0.00) 0.01
Connect-4 0.28 (0.00) 0.34 (0.00) 0.01 0.29 (0.00) 0.19
Letter 0.36 (0.00) 0.96 (0.00) 0.01 0.26 (0.00) 1.00
Shuttle 0.10 (0.01) 0.47 (0.24) 0.01 0.04 (0.01) 1.00

Table 4: Classification errors and empirical p-values obtained with Naive Bayes classifier for Test 1
and Test 2. The empirical p-values are calculated over 1000 randomized samples for small data sets
and over 100 randomized samples for medium and large data sets. Classification on the original data
is repeated ten times. In the table, the average values and standard deviations of the classification
errors are given. Bold p-values correspond to nonsignificant results when the false discovery rate is
restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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1-Nearest Neighbor
Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
Sm
al
l

Audiology 0.26 (0.01) 0.86 (0.03) 0.001 0.32 (0.03) 0.030
Autos 0.26 (0.01) 0.77 (0.03) 0.001 0.45 (0.03) 0.001
Breast 0.31 (0.02) 0.41 (0.03) 0.007 0.32 (0.03) 0.324
Glass 0.30 (0.01) 0.74 (0.04) 0.001 0.42 (0.03) 0.001
Hepatitis 0.19 (0.01) 0.33 (0.04) 0.002 0.14 (0.03) 0.970
Ionosphere 0.13 (0.00) 0.46 (0.03) 0.001 0.26 (0.01) 0.001
Iris 0.05 (0.00) 0.66 (0.05) 0.001 0.02 (0.01) 0.962
Lymph 0.18 (0.02) 0.53 (0.04) 0.001 0.20 (0.03) 0.307
Promoters 0.19 (0.02) 0.50 (0.06) 0.001 0.26 (0.04) 0.083
Segment 0.14 (0.01) 0.86 (0.03) 0.001 0.15 (0.02) 0.266
Sonar 0.13 (0.01) 0.50 (0.04) 0.001 0.27 (0.03) 0.001
Spect 0.24 (0.02) 0.32 (0.04) 0.011 0.18 (0.02) 0.970
Tumor 0.66 (0.02) 0.88 (0.02) 0.001 0.62 (0.02) 0.860
Votes 0.08 (0.01) 0.47 (0.03) 0.001 0.01 (0.00) 1.000
Zoo 0.03 (0.01) 0.75 (0.05) 0.001 0.04 (0.02) 0.333

M
ed
iu
m

Abalone 0.80 (0.00) 0.90 (0.00) 0.01 0.68 (0.01) 1.00
Anneal 0.05 (0.00) 0.40 (0.02) 0.01 0.08 (0.01) 0.01
Balance 0.20 (0.01) 0.57 (0.02) 0.01 0.35 (0.02) 0.01
Car 0.22 (0.01) 0.41 (0.05) 0.01 0.29 (0.01) 0.01
German 0.28 (0.01) 0.42 (0.02) 0.01 0.33 (0.02) 0.01
Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.01 (0.00) 0.01
Musk 0.04 (0.00) 0.26 (0.00) 0.01 0.53 (0.01) 0.01
Pima 0.29 (0.00) 0.45 (0.02) 0.01 0.27 (0.02) 0.88
Satellite 0.10 (0.00) 0.81 (0.01) 0.01 0.01 (0.00) 1.00
Spam 0.09 (0.00) 0.48 (0.01) 0.01 0.09 (0.00) 0.31
Splice 0.24 (0.01) 0.61 (0.01) 0.01 0.30 (0.01) 0.01
Tic-tac-toe 0.21 (0.02) 0.44 (0.07) 0.01 0.38 (0.02) 0.01
Yeast 0.47 (0.01) 0.78 (0.01) 0.01 0.52 (0.01) 0.01

La
rg
e

Adult 0.02 (0.00) 0.36 (0.00) 0.01 0.01 (0.00) 1.00
Chess 0.48 (0.00) 0.90 (0.00) 0.01 0.80 (0.00) 0.01
Connect-4 0.34 (0.00) 0.50 (0.00) 0.01 0.43 (0.00) 0.01
Letter 0.06 (0.00) 0.96 (0.00) 0.01 0.46 (0.00) 0.01
Shuttle 0.00 (0.00) 0.36 (0.00) 0.01 0.02 (0.00) 0.01

Table 5: Classification errors and empirical p-values obtained with 1-Nearest Neighbor classifier
for Test 1 and Test 2. The empirical p-values are calculated over 1000 randomized samples for
small data sets and over 100 randomized samples for medium and large data sets. Classification on
the original data is repeated ten times. In the table, the average values and standard deviations of
the classification errors are given. Bold p-values correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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Support Vector Machine
Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
Sm
al
l

Audiology 0.20 (0.01) 0.83 (0.03) 0.001 0.20 (0.02) 0.443
Autos 0.30 (0.02) 0.73 (0.04) 0.001 0.26 (0.03) 0.873
Breast 0.30 (0.01) 0.31 (0.01) 0.191 0.25 (0.02) 0.970
Glass 0.42 (0.01) 0.65 (0.03) 0.001 0.43 (0.02) 0.363
Hepatitis 0.14 (0.01) 0.21 (0.00) 0.001 0.08 (0.02) 0.999
Ionosphere 0.12 (0.01) 0.37 (0.01) 0.001 0.08 (0.01) 0.995
Iris 0.04 (0.01) 0.67 (0.05) 0.001 0.02 (0.01) 0.990
Lymph 0.14 (0.01) 0.51 (0.05) 0.001 0.12 (0.03) 0.686
Promoters 0.09 (0.01) 0.50 (0.06) 0.001 0.10 (0.03) 0.455
Segment 0.12 (0.01) 0.86 (0.03) 0.001 0.12 (0.01) 0.529
Sonar 0.23 (0.02) 0.49 (0.04) 0.001 0.10 (0.02) 0.999
Spect 0.17 (0.01) 0.21 (0.00) 0.001 0.08 (0.02) 1.000
Tumor 0.53 (0.01) 0.77 (0.01) 0.001 0.53 (0.02) 0.406
Votes 0.04 (0.00) 0.39 (0.01) 0.001 0.01 (0.00) 1.000
Zoo 0.04 (0.00) 0.66 (0.04) 0.001 0.04 (0.01) 0.666

M
ed
iu
m

Abalone 0.75 (0.00) 0.84 (0.00) 0.01 0.57 (0.01) 1.00
Anneal 0.15 (0.00) 0.24 (0.00) 0.01 0.14 (0.01) 0.78
Balance 0.12 (0.01) 0.54 (0.03) 0.01 0.25 (0.01) 0.01
Car 0.06 (0.00) 0.30 (0.00) 0.01 0.25 (0.01) 0.01
German 0.25 (0.00) 0.30 (0.00) 0.01 0.22 (0.01) 1.00
Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.00 (0.00) 0.01
Musk 0.05 (0.00) 0.15 (0.00) 0.01 0.01 (0.00) 1.00
Pima 0.23 (0.00) 0.35 (0.00) 0.01 0.21 (0.01) 1.00
Satellite 0.13 (0.00) 0.77 (0.00) 0.01 0.00 (0.00) 1.00
Spam 0.10 (0.00) 0.39 (0.00) 0.01 0.04 (0.00) 1.00
Splice 0.07 (0.00) 0.48 (0.00) 0.01 0.06 (0.01) 0.99
Tic-tac-toe 0.02 (0.00) 0.37 (0.01) 0.01 0.30 (0.01) 0.01
Yeast 0.43 (0.00) 0.69 (0.01) 0.01 0.42 (0.01) 0.72

La
rg
e

Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00 (0.00) 1.00
Chess 0.66 (0.01) 0.85 (0.00) 0.01 0.72 (0.00) 0.01
Connect-4 0.24 (0.00) 0.45 (0.07) 0.01 0.29 (0.00) 0.01
Letter 0.19 (0.01) 0.96 (0.00) 0.01 0.32 (0.00) 0.01
Shuttle 0.04 (0.01) 0.21 (0.00) 0.01 0.04 (0.00) 0.45

Table 6: Classification errors and empirical p-values for the Support Vector Machine classifier for
Test 1 and Test 2. The empirical p-values are calculated over 1000 randomized samples for small
data sets and over 100 randomized samples for medium and large data sets. Classification on the
original data is repeated ten times. In the table, the average values and standard deviations of the
classification errors are given. Bold p-values correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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pretty simple, or it is not used by the classification algorithm. That is, the classes differ from each
other, from the point of view of the classifiers, mainly due to their different value distributions of
the features and not due to some dependency between the features. Thus, in many data sets the class
structure is explained by considering the features independently of each other.

The results with Naive Bayes classifier are in line with the analysis in Section 4.2. That is,
practically all of the results are nonsignificant with Naive Bayes with Test 2 as it explicitly assumes
independence of the features. However, there are three data sets where the results are regarded
as significant with Test 2: Balance, Car and Chess. These three data sets seem to contain a good
balance between the features that makes the Naive Bayes classifier to perform better on the original
data than on the randomized data sets. That is, each instance contains usually at least one feature
which makes the classification easy whereas in the randomized data sets there are instances that do
not have separating values in any of the features. Thus, applying Test 2 to Naive Bayes classifier
does not tell whether the classifier uses the interdependency between the features but whether the
data are such that usually at least one feature in each instance has a clear separating value.

Compared to the other three classifiers, Naive Bayes is having both better and worse perfor-
mance with all kind of data sets. Surprisingly, however, Naive Bayes is performing better also in a
few such cases where the other classifiers are exploiting the feature dependency. For example, with
data sets Splice and Yeast the Naive Bayes classifier has the best accuracy although the Decision
Tree and 1-Nearest Neighbor classifiers are significant with Test 2. Thus if a classifier is using
the feature dependency in the classification, it does not directly imply that some other classifier
could not do better without using the dependency. In such case, however, it is likely that neither
of the classifiers are optimal and we could obtain even better performance by combining the good
properties of both the classifiers.

In the rest of this section, we will consider only the three other classifiers, namely Decision Tree,
1-Nearest Neighbor and Support Vector Machine classifiers. There is a clear difference between the
small and large data sets with these classifiers. The results with Test 2 for small data sets are almost
all nonsignificant whereas the results for large data sets are almost all significant. Only the Adult
data set from large data sets seems to contain simple class structure. Actually, the Decision Tree and
Support Vector Machine classifiers are able to classify correctly all the test samples on the original
Adult data set as well as on the randomized versions of the Adult data set of Test 2. The results with
the studied small UCI data sets are understandable, as many of them are known to contain fairly
simple structure.

The results with the three classifiers are close to each other with all tests. Surprisingly, however,
1-Nearest Neighbor classifier has been able to use the interdependency between the features the
most, that is, it contains the most of small, significant p-values with Test 2. However, other more
complex classifiers could be able to find more data sets where the dependency between the features
is useful in classification.

Let us now study the results with Test 2 in more detail. Consider the well-known Iris data set
that contains measurements of three different species of iris flowers from four features: the length
and the width of sepal and petal. It turns out that the classes are almost linearly separable given
the length of petal or given the width of petal. Although there is a high positive linear correlation
between the length and width of petal, it is not important for the classification result as both features
can explain the classes by themselves.

Actually, observe that for the Iris data set with Test 2, the classification error on the random-
ized samples is even smaller than in the original data set. This phenomenon is explained by the
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positive linear correlation between the length and the width of petal, which disappears after the
randomizations, as seen in Figure 2 in Section 3.1. Randomizations eliminate most of the rows
containing extreme values for both of the features inside the classes. Thus, the classifiers do not use
the dependency between these two features, as their correlation does not help in classifying the Iris
data. When this positive correlation is eliminated per classes, the separation between the classes
increases, and therefore, the classification accuracy is improved.

For most of the data sets where the empirical p-values are very high for the null hypothesis of
Test 2, there are either outliers inside the classes or positive correlation between some features that
is not used in the classification as it does not help in separating the classes. For example, the data set
Votes contains congressional “yes” and “no” voting records from republicans and democrats. There
are few voting cases where the opinion of the voter clearly reveals the political views. However,
there are some outliers, that is, people who have behaved more like democrats although they are
republicans, or vice versa, that vanish after randomization. Nevertheless, these reasons do not
remove the fact that the features independently classify the voting records.

Finally, we discuss the results for the Balance data set. With all classifiers the classification
results of the Balance data set are significant under the null hypothesis of Test 2, that is, the clas-
sifiers have exploited the dependency between the features. The structure of the data supports
this: The data contains four features of a balance scale: left-weight, left-distance, right-weight and
right-distance. The scale is in balance if left-weight times left-distance equals right-weight times
right-distance. There are three classes: the scale tips to the left, to the right, or is in balance. It is
clear that the dependency between the features is necessary for correct classification result.

Note however, that understanding the structure inside the data sets where the classification re-
sults are regarded as significant under the null hypothesis of Test 2 requires more study, that is,
we just know that the features do not explain the class structure independently. Analyzing the de-
pendency structure of the features is then a further task. But as seen, the null hypothesis of Test 2
explains about half of the good classification results in the 33 data sets.

We conclude the experiments with a summary about the running times of the methods. We used
MATLAB for producing the randomized data sets and Weka for performing the classification on a
2.2 GHz Opteron with 4 GB of main memory. The running times of producing one randomization
of each data set and the running times of calculating the classification errors on the original data sets
and on the randomized data sets are given in Table 7. The running times of producing the random-
ized data sets are negligible compared to the running times of calculating the classification errors
of the data sets, that is, training and testing the classifiers. There is, however, a small difference
between the running times of obtaining the classification errors on the original and the randomized
data sets. Usually, the classification is a little bit faster on the original data set than on the random-
ized data sets. Furthermore, the classification on randomized data sets of Test 2 is usually faster
than on randomized data sets of Test 1. The reason is that it is harder to teach a classifier on a
randomized data set which has usually a weaker class structure than the original data set. Among
the two randomization tests, Test 2 generally preserves the original class structure the most because
it preserves some connection between the data and the class labels.

6. Conclusions

We have considered the problem of assessing the classifier performance with permutation tests in
the statistical framework of hypothesis testing. We have described two different null hypotheses and
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Rand. Decision Tree Naive Bayes 1-Near. Neighbor Supp. Vect. Mach.

Data Set T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2

Sm
al
l

Audiology 0.0 0.0 1.9 2.0 1.5 1.8 1.8 1.8 1.8 1.5 1.8 39 36 36
Autos 0.0 0.0 0.5 0.5 0.5 0.5 0.4 0.4 0.5 0.4 0.4 3.2 2.2 2.3
Breast 0.0 0.0 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 1.1 0.9 0.7
Glass 0.0 0.0 0.4 0.4 0.3 0.3 0.3 0.2 0.3 0.2 0.2 2.4 2.3 2.3
Hepatitis 0.0 0.0 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.5 0.4 0.4
Ionosphere 0.0 0.0 1.2 1.0 0.9 0.8 0.7 0.7 0.9 0.8 0.9 1.2 1.3 1.0
Iris 0.0 0.0 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.5 0.6 0.4
Lymph 0.0 0.0 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.1
Promoters 0.0 0.0 0.8 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 1.0 0.9 0.8
Segment 0.0 0.0 0.5 0.6 0.4 0.4 0.3 0.3 0.4 0.3 0.4 3.6 2.4 2.3
Sonar 0.0 0.0 1.2 0.9 1.1 0.9 0.7 0.7 0.9 0.9 0.9 1.1 1.1 0.9
Spect 0.0 0.0 0.7 0.6 0.6 0.6 0.8 0.6 0.8 0.6 0.6 0.8 0.8 0.7
Tumor 0.0 0.0 0.9 0.8 0.8 0.8 0.7 0.6 0.8 0.8 0.8 30 21 26
Votes 0.0 0.0 1.0 0.8 0.7 0.9 0.9 0.7 1.0 0.9 0.8 1.2 1.1 1.1
Zoo 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 3.1 3.1 2.6

M
ed
iu
m

Abalone 0.0 0.0 7.0 8.9 6.7 3.1 3.0 3.0 7.6 7.8 7.8 54 78 60
Anneal 0.0 0.0 2.9 2.9 2.9 2.3 2.3 2.3 3.1 3.1 3.2 4.7 9.3 4.6
Balance 0.0 0.0 0.5 0.5 0.5 0.4 0.3 0.4 0.5 0.5 0.4 0.9 1.0 0.8
Car 0.0 0.0 1.4 1.5 1.4 1.4 1.4 1.3 1.8 1.8 1.7 5.1 8.0 7.7
German 0.0 0.0 1.8 1.5 1.5 1.6 1.2 1.5 2.0 2.1 2.1 9.4 6.3 9.8
Mushroom 0.0 0.0 21 24 21 20 21 20 68 70 70 60 1197 26
Musk 0.0 0.2 130 110 176 55 63 80 230 309 318 502 5816 86
Pima 0.0 0.0 0.8 0.7 0.9 0.7 0.7 0.5 0.8 0.7 0.8 0.9 0.8 0.9
Satellite 0.0 0.0 26 128 21 13 14 14 59 62 81 19 157 15
Spam 0.0 0.1 32 16 23 14 14 14 39 56 56 21 38 17
Splice 0.0 0.0 17 17 16 15 16 15 36 28 28 87 1922 95
Tic-tac-toe 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 3.1 3.5 6.6
Yeast 0.0 0.0 1.7 2.2 1.6 1.3 1.0 1.3 1.4 1.4 1.7 5.2 5.3 4.9

La
rg
e

Adult 0.0 0.4 55 60 58 56 62 67 315 325 304 77 134 63
Chess 0.0 0.1 71 57 54 45 54 59 131 105 111 93 89 102
Connect-4 0.0 0.9 379 380 292 387 391 291 1161 1297 1285 975 558 1066
Letter 0.0 0.1 37 45 42 32 45 34 95 103 99 43 50 45
Shuttle 0.0 0.2 176 139 142 141 143 138 339 419 319 149 170 140

Table 7: Average running times in seconds for obtaining one randomization version of each data set
for Test 1 (T1) and Test 2 (T2), as well as running times for obtaining one classification error for the
four studied classifiers on each original data set (Or.) and on each randomized version of each data
set (T1, T2). The running times are the average values over all the samples produced. Note that the
classification procedures for small, medium and large data sets differ from each other.
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shown how samples can be produced from the corresponding null models by simple permutation
methods. Each test provides an empirical p-value for the classifier performance; each p-value
depends on the original data (whether it contains the type of structure tested) and the classifier
(whether it is able to use the structure). The two null hypotheses can be summarized as follows: (1)
the data and the class labels are independent; and (2) the features are mutually independent given
the class label.

Each test evaluates whether a certain structure (label–class dependency or dependency between
features inside a class) is present in the data, and whether the classifier can use such structure
for obtaining good results. If the original data really contains the structure being tested, then a
significant classifier should use such information and thus obtain a low p-value. If the classifier is
not significant then it will not notice the structure from the original data and thus, get a high p-value.
On the other hand, if the original data does not contain any structure at all, then all p-values should
be very high.

We have performed extensive experiments both on synthetic and real data. Experiments showed
that the traditional permutation test (i.e., data and class labels are independent) is not useful in
studying real data sets as it produces a small p-value even if there is only a weak class structure
present. Compared to this, the new test proposed, that is, permuting the features inside a class, was
able to evaluate the underlying reasons for the classifier performance on the real data sets. Surpris-
ingly, however, in about half of the studied real data sets the class structure looks fairly simple; the
dependency between the features is not used in classifying the data with the four tested classifiers.
In such cases, there might be no reason to use the chosen classifier. That is, either the same or even
better performance could be obtained by using some simpler methods, or the classification perfor-
mance could be improved further by taking some useful unused feature dependency into account by
changing the classification algorithm.

Interpreting the descriptive information provided by Test 2 needs care. If the classifier is signif-
icant with Test 2, then the data really contains a feature dependency that the classifier is exploiting.
However, if the classifier is not significant with Test 2, that is, we obtain a high p-value, there are
three different possibilities: (1) there are no dependencies between the features in the data; (2) there
are some dependencies between the features in the data but they do not increase the class separation;
or (3) there are useful dependencies between the features in the data that increase the class sepa-
ration but the chosen classifier is not able to exploit them. In the third case, we would like to find
such a classifier that could use the feature dependency to improve the classification performance.
However, in general, when a high p-value is obtained with Test 2, we cannot know which of these
applies to the data and to the chosen classifier. Thus the best we can do is to continue the search for a
better classifier by assuming that any of them could be true. That is, we try more complex classifiers
that could use the possible existing feature dependency, as well as simpler classifiers that could per-
form better if no feature dependency exists. Nevertheless, the answer provided by Test 2 is definite,
that is, it tells whether the chosen classifier uses feature dependency to improve the classification
performance.

Future work should explore the use of Test 2 for selecting the best discriminant features for
classifiers, in similar fashion as Test 1 has been used for decision trees and other biological appli-
cations (Frank, 2000; Frank and Witten, 1998; Maglietta et al., 2007). Also, it would be useful to
extend the setting to unsupervised learning, such as clustering. In addition, more study is needed
for exploiting the descriptive information provided by Test 2. Specifically, how should we proceed
to improve and study the classification performance when a high p-value is obtained with Test 2?
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Abstract
We present a new sparse Gaussian Process (GP) model for regression. The key novel idea is to
sparsify the spectral representation of the GP. This leads to a simple, practical algorithm for regres-
sion tasks. We compare the achievable trade-offs between predictive accuracy and computational
requirements, and show that these are typically superior to existing state-of-the-art sparse approx-
imations. We discuss both the weight space and function space representations, and note that the
new construction implies priors over functions which are always stationary, and can approximate
any covariance function in this class.
Keywords: Gaussian process, probabilistic regression, sparse approximation, power spectrum,
computational efficiency

1. Introduction

One of the main practical limitations of Gaussian processes (GPs) for machine learning (Rasmussen
and Williams, 2006) is that in a direct implementation the computational and memory requirements
scale as O(n2) and O(n3), respectively. In practice this limits the applicability of exact GP imple-
mentations to data sets where the number of training samples n does not exceed a few thousand.

A number of computationally efficient approximations to GPs have been proposed, which re-
duce storage requirements to O(nm) and the number of computations to O(nm2), where m is much
smaller than n. One family of approximations, reviewed in Quiñonero-Candela and Rasmussen
(2005), is based on assumptions of conditional independence given a reduced set of m inducing

∗. Also at Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany .
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inputs. Examples of such models are those proposed in Seeger et al. (2003), Smola and Bartlett
(2001), Tresp (2000), Williams and Seeger (2001) and Csató and Opper (2002), as well as the Fully
Independent Training Conditional (FITC) model, introduced as Sparse Pseudo-input GP (SPGP)
by Snelson and Ghahramani (2006). Walder et al. (2008) introduced the Sparse Multiscale GP
(SMGP), a modification of FITC that allows each basis function to have its own set of length-
scales.1 This additional flexibility typically yields some performance improvement over FITC, but
it also requires learning twice as many parameters. SMGP can alternatively be derived within the
unifying framework of Quiñonero-Candela and Rasmussen (2005) if we allow the inducing inputs
to lie in a transformed domain, as shown in Lázaro-Gredilla and Figueiras-Vidal (2010).

Another family of approximations is based on approximate matrix-vector-multiplications
(MVMs), where m is for example a reduced number of conjugate gradient steps to solve a sys-
tem of linear equations. Some of these methods have been briefly reviewed in Quiñonero-Candela
et al. (2007). Local mixtures of GP have been used by Urtasun and Darrell (2008) for efficient
modelling of human poses.

In this paper we introduce a stationary trigonometric Bayesian model for regression that retains
the computational efficiency of the aforementioned approaches, while improving performance. The
model consists of a linear combination of trigonometric functions where both weights and phases are
integrated out. All hyperparameters of the model (frequencies and amplitudes) are learned jointly by
maximizing the marginal likelihood. This model is a stationary sparse GP that can approximate any
desired stationary full GP. Sparse trigonometric expansions have been proposed in several contexts,
for example, Lázaro-Gredilla et al. (2007) and Rahimi and Recht (2008), as discussed further in
Section 4.3.

FITC, SMGP, and the model introduced in this paper focus on predictive accuracy at low com-
putational cost, rather than on faithfully converging towards the full GP as the number of basis func-
tions grows. Performance-wise, FITC and the more recent SMGP can be regarded as the current
state-of-the-art sparse GP approximations, so we will use them as benchmarks in the performance
comparisons.

In Section 2 we give a brief review of GP regression. In Section 3 we introduce the trigono-
metric Bayesian model, and in Section 4 we present the Sparse Spectrum Gaussian Process (SSGP)
algorithm. Section 5 contains a comparative performance evaluation on several data sets.

2. Gaussian Process Regression

Regression is often formulated as the task of predicting the scalar output y∗ associated to the D-
dimensional input x∗, given a training data set D ≡ {x j,y j| j = 1, . . .n} of n input-output pairs. A
common approach is to assume that the outputs have been generated by an unknown latent function
f (x) and independently corrupted by additive Gaussian noise of constant variance σ2n:

y j = f (x j)+ ε j, ε j ∼ N (0, σ2n) .

The regression task boils down to making inference about f (x). Gaussian process (GP) regression
is a probabilistic, non-parametric Bayesian approach. A Gaussian process prior distribution on f (x)
allows us to encode assumptions about the smoothness (or other properties) of the latent function

1. Note that SMGP only extends FITC in the specific case of the anisotropic squared exponential covariance function,
whereas FITC can be applied to any covariance function.
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(Rasmussen and Williams, 2006). For any set of inputs {xi}ni=1 the corresponding vector of function
evaluations f= [ f (x1), . . . , f (xn)]% has a joint Gaussian distribution:

p(f|{xi}ni=1) = N (f|0,Kff) .

This paper follows the common practice of setting the mean of the process to zero.2 The properties
of the GP prior over functions are governed by the covariance function

[

Kff
]

i j = k(xi,x j) = E[ f (xi) f (x j)] , (1)

which determines how the similarity between a pair of function values varies as a function of the
corresponding pair of inputs. A covariance function is stationary if it only depends on the difference
between its inputs

k(xi,x j) = k(xi−x j) = k(τ).

The elegance of the GP framework is that the properties of the function are conveniently expressed
directly in terms of the covariance function, rather than implicitly via basis functions.

To obtain the predictive distribution p(y∗|x∗,D) it is useful to express the model in matrix
notation by stacking the targets y j in vector y = [y1, . . . ,yn]% and writing the joint distribution of
training and test targets:

[

y
y∗

]

∼ N

(

0,
[

Kff+σ2nIn kf∗
k%f∗ k∗∗+σ2n

])

,

where kf∗ is the vector of covariances between f (x∗) and the training latent function values, and
k∗∗ is the prior variance of f (x∗). In is the n×n identity. The predictive distribution is obtained by
conditioning on the observed training outputs:

p(y∗|x∗,D) = N (µ∗,σ2∗), where
{

µ∗ = k∗f(Kff+σ2nIn)−1y
σ2∗ = σ2n+ k∗∗ −k∗f(Kff+σ2nIn)−1kf∗ .

(2)

The covariance function is parameterized by hyperparameters. Consider for example the sta-
tionary anisotropic squared exponential covariance function

kARD(τ) = σ20 exp(− 1
2τ

%Λ−1τ), where Λ = diag([!21, !22, . . . !2D]). (3)

The hyperparameters are the prior variance σ20 and the lengthscales {!d} that determine how rapidly
the covariance decays with the distance between inputs. This covariance function is also known
as the ARD (Automatic Relevance Determination) squared exponential, because it can effectively
prune input dimensions by growing the corresponding lengthscales.

It is convenient to denote all hyperparameters including the noise variance by θ. These can be
learned by maximizing the evidence, or log marginal likelihood:

log p(y|θ) = −
n
2
log(2π)−

1
2
|Kff+σ2nIn|−

1
2
y%

(

Kff+σ2nIn
)−1 y. (4)

Provided there exist analytic forms for the gradients of the covariance function with respect to the
hyperparameters, the evidence can be maximized by using a gradient-based search. Unfortunately,
computing the evidence and the gradients requires the inversion of the covariance matrixKff+σ2nIn
at a cost of O(n3) operations, which is prohibitive for large data sets.

2. The extension to GPs with general mean functions is straightforward.
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3. Trigonometric Bayesian Regression

In this section we present a Bayesian linear regression model with trigonometric basis functions,
and related it to a full GP in the next section. Consider the model

f (x) =
m

∑
r=1

ar cos(2πs%r x)+br sin(2πs%r x) , (5)

where each of them pairs of basis functions is parametrized by aD-dimensional vector sr of spectral
frequencies. Note that each pair of basis functions share frequencies, but each have independent
amplitude parameters, ar and br. We treat the frequencies as deterministic parameters and the
amplitudes in a Bayesian way. The priors are independent Gaussian

ar ∼ N
(

0,
σ20
m
)

, br ∼ N
(

0,
σ20
m
)

,

where the variances are scaled down linearly by the number of basis functions. Under the prior, the
distribution over functions from Equation (5) is Gaussian with mean function zero and covariance
function (from Equation (1))

k(xi,x j) =
σ20
m
φ(xi)%φ(x j) =

σ20
m

m

∑
r=1
cos

(

2πs%r (xi−x j)
)

, (6)

where we define the column vector of length 2m containing the evaluation of the m pairs of trigono-
metric functions at x

φ(x) =
[

cos(2πs%1 x) sin(2πs%1 x) . . . cos(2πs%mx) sin(2πs%mx)
]%

.

Sparse linear models generally induce priors over functions whose variance depends on the input.
In contrast, the covariance function in Equation (6) is stationary, that is, the prior variance is inde-
pendent of the input and equal to σ20. This is due to the particular nature of the trigonometric basis
functions and implies that the predictive variances cannot be “healed”, as proposed in Rasmussen
and Quiñonero-Candela (2005) for the case of the Relevance Vector Machine.

The predictions and marginal likelihood can be evaluated using Equations (2) and (4), although
direct evaluation is computationally inefficient when 2m< n. For the predictive distribution we use
the more efficient

E[y∗] = φ(x∗)%A−1Φfy, V[y∗] = σ2n+σ2nφ(x∗)%A−1φ(x∗), (7)

where we have defined the 2m by n design matrix Φf = [φ(x1), . . . ,φ(xn)] and A=ΦfΦ%
f +

mσ2n
σ20
I2m.

Similarly, for the log marginal likelihood

log p(y|θ) = −
[

y%y−y%Φ%
f A−1Φfy

]

/(2σ2n)−
1
2
log |A|+m log

mσ2n
σ20

−
n
2
log2πσ2n . (8)

A stable and efficient implementation uses Cholesky decompositions, Appendix A. Both the predic-
tive distribution and the marginal likelihood can be computed in O(nm2). The predictive mean and
variance at an additional test point can be computed in O(m) and O(m2) respectively. The storage
costs are also reduced, since we no longer store the full covariance matrix (of size n×n), but only
the design matrix (of size n×2m).
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3.1 Periodicity

One might be tempted to assume that this model would only be useful for modeling periodic func-
tions, since strictly speaking a linear combination of periodic signals is itself periodic. However,
if the individual frequencies are not all multiples of a common base frequency, then the period
of the resulting signal will be very long, typically exceeding the range of the inputs by orders of
magnitude. Thus, the model based on trigonometric basis functions has practical use for modeling
non-periodic functions. The same principle is used (interchanging input and frequency domains)
in uneven sampling to space apart frequency replicas an avoid aliasing, see for instance Bretthorst
(2000). As our experimental results suggest, the model provides satisfactory predictive variances.

3.2 Representation

An alternative and equivalent representation of the model in Equation (5), which only uses half
the number of trigonometric basis functions is possible, by writing the linear combination of a
sine and a cosine as a cosine with an amplitude and a phase. Although these two representations
are equivalent, inference based on them differs. Whereas we have been able to integrate out the
amplitudes to arrive at the GP in Equation (6), this would not be possible analytically using the
more parsimonious representation.

Optimization instead of marginalization of the phases has two important consequences. Firstly,
we lose the property of stationarity of the prior over functions. Secondly we may expect that the
model becomes more prone to overfitting. When considering the contribution from a basis func-
tion (pair) with a specific frequency, the optimization based scheme could fit arbitrarily the phase,
whereas the integration based inference is constrained to use a flat prior over phases. In Section 5.3
we empirically verify that the computation vs accuracy tradeoff typically favors the less compact
representation.

4. The Sparse Spectrum Gaussian Process

In the previous section we presented an explicit basis function regression model, but we did not dis-
cuss how to select the frequencies defining the basis functions. In this section, we present a sparse
GP approximation view of this model, which shows how it can be understood as a computation-
ally efficient approximation to any GP with stationary covariance function. In the next section we
present experimental results showing that dramatic improvements over other state-of-the-art sparse
GP regression algorithms are possible.

We will now take a generic GP with stationary covariance function and sparsify its power spec-
tral density to obtain a sparse GP that approximates the full GP. The power spectral density (or power
spectrum) S(s) of a stationary random process expresses how the power is distributed over the fre-
quency domain. For a stationary GP, the power is equal to the prior variance k(x,x) = k(0) = σ20.
The frequency vector s has the same length D as the input vector x. The d-th element of s can be in-
terpreted as the frequency associated to the d-th input dimension. The Wiener-Khintchine theorem
(see for example Carlson, 1986, p. 162) states that the power spectrum and the autocorrelation of
the random process constitute a Fourier pair. In our case, given that f (·) is drawn from a stationary
Gaussian process, the autocorrelation function is equal to the stationary covariance function, and
we have:

k(τ) =
∫
RD
e2πis

%τS(s)ds, S(s) =
∫
RD
e−2πis

%τk(τ)dτ. (9)
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We thus see that there are two equivalent representations for a stationary Gaussian process: the
traditional one in terms of the covariance function in the (input) space domain, and a perhaps less
usual one as the power spectrum in the frequency domain.

Bochner’s theorem (Stein, 1999, p. 24) states that any stationary covariance function k(τ) can
be represented as the Fourier transform of a positive finite measure. This means that the power
spectrum in (9) is a positive finite measure, and in particular that it is proportional to a probability
measure, S(s) ∝ pS(s). The proportionality constant can be directly obtained by evaluating the
covariance function in (9) at τ= 0. We obtain the relation:

S(s) = k(0) pS(s) = σ20 pS(s). (10)

We can use the fact that S(s) is proportional to a multivariate probability density in s to rewrite the
covariance function in (9) as an expectation:

k(xi,x j) = k(τ) =
∫
RD
e2πis

%(xi−x j)S(s)ds = σ20

∫
RD
e2πis

%xi
(

e2πis
%x j

)∗
pS(s)ds

= σ20EpS

[

e2πis
%xi

(

e2πis
%x j

)∗]

, (11)

where EpS denotes expectation wrt. pS(s) and superscript asterisk3 denotes complex conjugation.
This last expression is an exact expansion of the covariance function as the expectation of a product
of complex exponentials with respect to a particular distribution over their frequencies. This integral
can be approximated by simple Monte Carlo by taking an average of a few samples corresponding
to a finite set of frequencies, which we call spectral points.

Since the power spectrum is symmetric around zero, a valid Monte Carlo procedure is to sample
frequencies always as a pair {sr,−sr}. This has the advantage of preserving the property of the exact
expansion, Equation (11) that the imaginary terms cancel:

k(xi,x j) (
σ20
2m

m

∑
r=1

[

e2πis
%
r xi

(

e2πis
%
r x j

)∗
+
(

e2πis
%
r xi

)∗
e2πis

%
r x j

]

=
σ20
m
Re

[ m

∑
r=1

e2πis
%
r xi

(

e2πis
%
r x j

)∗ ]

=
σ20
m

m

∑
r=1
cos

(

2πs%r (xi−x j)
)

,

where sr is drawn from pS(s) and Re [·] denotes the real part of a complex number. Notice, that
we have recovered exactly the expression for the covariance function induced by the trigonometric
basis functions model, Equation (6). Further, we have given an interpretation of the frequencies as
spectral Monte Carlo samples, approximating any stationary covariance function. This is a more
general result than that of (MacKay, 2003, Ch. 45), which only applies to Gaussian covariances.
The approximation is equivalent to replacing the original spectrum S(s) by a set of Dirac deltas of
amplitude σ20 distributed according to pS(s). Thus, we “sparsify” the spectrum of the GP.

This convergence result can also be stated as follows: A stationary GP can be seen as a neural
network with infinitely many hidden units and trigonometric activations if independent priors fol-
lowing Gaussian and pS(s) distributions are placed on the output and input weights, respectively.
This is analogous to the result of Williams (1997) for the non-stationary multilayer perceptron co-
variance function.
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Figure 1: Squared exponential covariance function and its approximation with (a) 10 and (b) 50
random spectral points respectively.

4.1 Example: The Squared Exponential Covariance Function

The probability density associated to the squared exponential covariance function of Equation (3)
can be obtained from the Fourier transform

pARDS (s) =
1

kARD(0)

∫
RD
e−2πis

%τkARD(τ)dτ =
√

|2πΛ|exp(−2π2s%Λs), (12)

which also has the form of a multivariate Gaussian distribution. For illustration purposes, we com-
pare the exact squared exponential covariance function with its spectral approximation in Figure 1,
where the spectral points are sampled from Equation (12). As expected, the quality of the approxi-
mation improves with the number of samples.

4.2 The SSGP Algorithm

One of the main goals of sparse approximations is to reduce the computational burden while re-
taining as much predictive accuracy as possible. Sampling from the spectral density constitutes a
way of building a sparse approximation. However, we may suspect that we can obtain much sparser
models if the spectral frequencies are learned by optimizing the marginal likelihood, an idea which
we pursue in the following.

The algorithm we propose uses conjugate gradients to optimize the marginal likelihood (8)
with respect to the spectral points {sr} and the hyperparameters σ20, σ2n, and {!1, !2, . . . !D}.
Optimizing with respect to the lengthscales in addition to the spectral points is effectively an over-
parametrization, but in our experience this redundancy proves helpful in avoiding undesired local
minima. As is usual with this kind of optimization, the problem is non-convex and we cannot expect
to find the global optimum. The goal of the optimization is to find a reasonable local optimum.

In detail, model selection for the SSGP algorithm consists in:

1. Initialize {!d}, σ20, and σ2n to some sensible values. We use one half of the ranges of the input
dimensions, the variance of {y j} and σ20/4, respectively.

2. Initialize the {sr} by sampling from (10).

3. The superscript asterisk denotes complex conjugate and the subscript asterisk indicates test quantity.
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3. Jointly optimize the marginal likelihood wrt. spectral points and hyperparameters.

The computational cost of training the SSGP algorithm is O(nm2) per conjugate gradient step.
At prediction time, the cost is O(m) for the predictive mean and O(m2) for the predictive vari-
ance per test point. These computational costs are of the same order as those of the majority of
the sparse GP approximations that have recently been proposed (see Quiñonero-Candela and Ras-
mussen, 2005, for a review).

Learning the spectral frequencies by optimization departs from the original motivation of ap-
proximating a full GP. The optimization stage poses a risk of overfitting, which we assess in the
experimental section that follows. However, the additional flexibility can potentially improve per-
formance since it allows learning a covariance function suitable to the problem at hand.

4.3 Related Algorithms

Finite decompositions in terms of harmonic basis functions, such as Fourier series, are a classic
idea. In the context of kernel machines recent work include Lázaro-Gredilla et al. (2007) for GPs
and Rahimi and Recht (2008) for Support Vector Machines (SVMs). As we show in the experimen-
tal section, the details of the implementation turn out to have a critical impact on the performance
of the algorithms. The SVM based approach uses projections onto a random set of harmonic func-
tions, whereas the approach used in this paper uses the evidence framework to carefully craft an
optimized sparse harmonic representation. As is revealed in the experimental section, optimization
of the frequencies, amplitudes and noise offers dramatic performance improvements for comparable
sparseness.

5. Experiments

In this section we investigate properties of the SSGP algorithm, and evaluate the computational
complexity vs. accuracy tradeoff. We first relate the FITC and SSGP approximations. We then
present empirical comparisons on several data sets, using FITC and SMGP as benchmarks. Finally,
we revisit the alternative more compact representation of SSGP using phases, and discuss a data set
where SSGP performs badly.

Our implementation of SSGP in matlab is available from http://www.tsc.uc3m.es/~miguel/
simpletutorialssgp.php together with a simple usage tutorial and the data sets from this sec-
tion. An implementation of FITC is available from Snelson’s web page at http://www.gatsby.
ucl.ac.uk/~snelson .

5.1 Comparing Predictive Distributions for SSGP and FITC

Whereas SSGP relies on a sparse approximation to the spectrum, the FITC approximation is sparse
in a spatial sense: A set of pseudo-inputs is used as an information bottleneck. The only evaluations
of the covariance function allowed are those involving a function value at a pseudo-input. For a set
of m pseudo-inputs the computational complexity of FITC is of the same order as that of SSGP with
m spectral points.

The covariance function induced by FITC has a constant prior variance, but it is not stationary.
The original covariance of the full GP is only approximated faithfully in the vicinity of the pseudo-
inputs and the covariance between any two function values that are both far apart from any pseudo-
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Figure 2: Learning the sinc(x) function from 100 noisy observations (plusses) using 40 basis func-
tions with shaded area showing 95% (noise free) posterior confidence area. In panel (a)
the SSGP method with three functions drawn from the posterior is shown. In (b) the same
data for the FITC method with samples (dots) drawn from the joint posterior.
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Figure 3: Kin-40k data set. (a) NMSE and (b) MNLP as a function of the number of basis functions.

input decays to zero. As a result, functions sampled from the GP prior induced by FITC tend to
white Gaussian noise away from the pseudo-inputs.
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Figure 4: Pumadyn-32nm data set. (a) NMSE and (b) MNLP as a function of the number of basis
functions.

Figure 2 compares the predictive posterior distributions of SSGP and FITC for a simple synthetic
data set. The training data is generated by evaluating the sinc function on 100 random inputs x ∈
[−1,5] and adding white, zero-mean Gaussian noise of variance σ2n = 0.052. SSGP is given 20 fixed
spectral points sampled from the spectrum of a squared exponential covariance function, and FITC
is given 40 fixed pseudo-inputs sampled uniformly from the range of the training inputs. The rest
of the hyperparameters are optimized in both cases by maximizing the marginal likelihood. We plot
the 95% confidence interval for both predictive distributions (mean± two standard deviations), and
draw three samples from the SSGP posterior and one sample from the FITC posterior.

Despite the different nature of the approximations, the figure shows that for an equal number
of basis functions both predictive distributions are qualitatively very similar: the uncertainty grows
away from the training data. In the following section, we verify empirically that the SSGP is a
practical approximation for modelling non-periodic data.

5.2 Performance Evaluation

Wewill use two quantitative performance measures: the test NormalizedMean Square Error (NMSE)
and the test Mean Negative Log Probability (MNLP) , defined as:

NMSE=
〈(y∗ j−µ∗ j)2〉
〈(y∗ j− y)2〉

and MNLP=
1
2

〈(y∗ j−µ∗ j
σ∗ j

)2
+ logσ2∗ j+ log2π

〉

, (13)

where µ∗ j and σ2∗ j are, respectively, the predictive mean and variance for test sample j and y∗ j is
the actual test value for that sample. The average output value for training data is y. We denote
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the average over test cases by 〈·〉. For all experiments the values reported are averages over ten
repetitions.

For each data set we report the performance of five different methods: first, the SSGP algorithm
as presented in Section 4.2; second, a version of SSGP where the spectral points are “fixed” to sam-
ples from the spectral density of a squared exponential covariance function whose lengthscales are
learned (SSGP fixed spectral points);4 third, the FITC approximation, learning the pseudo-inputs;
fourth, SMGP, trained as described in Walder et al. (2008); and finally as a base line comparison
we report the result of a full GP trained on the entire training set. We plot the performance as a
function of the number of basis functions. For FITC this is equivalent to the number of pseudo-
inputs, whereas for SSGP a spectral point corresponds to two basis functions. The number of basis
functions is a good proxy for computational cost.

We consider four data sets of size moderate enough to be tractable by a full GP, but still large
enough that there is a motivation for computationally efficient approximations.

The two first data sets are both artificially generated using a robot arm simulator and are highly
non-linear and have very low noise. They were both used in Seeger et al. (2003) and Snelson and
Ghahramani (2006), but note that their definition of the NMSE measure differs by a factor of 2
from our definition in (13). We follow precisely their preprocessing and use the original splits. The
first data set is Kin-40k (8 dimensions, 10000 training and 30000 testing samples) and the results
are displayed in Figure 3. For both error measures SSGP outperforms FITC and SMGP by a large
margin, and even improves on the performance of the full GP. The SSGP with fixed spectral points
is inferior, proving that a greater sparsity vs. accuracy tradeoff can be achieved by optimizing the
spectral points.

The Pumadyn-32nm problem (32 dimensions, 7168 training and 1024 testing samples) can be
seen as a test of the ARD capabilities of a regression model, since only 4 out of the 32 input
dimensions are relevant. Following Snelson and Ghahramani (2006), to avoid getting stuck at an
undesirable bad local optimum, lengthscales are initialized from a full GP on a subset of 1024
training data points, for all compared methods. The results are shown in figure 4.

The conclusions are similar as for the Kin-40k data set. SSGP matches the full GP for a surpris-
ingly small number of basis functions.

The Pole Telecomm and the Elevators data sets are taken from http://www.liaad.up.pt/
~ltorgo/Regression/DataSets.html . In the Pole Telecomm data set we retain 26 dimensions,
removing constants. We use the original split, 10000 data for training and 5000 for testing. Both the
inputs and the outputs take a discrete set of values. In particular, the outputs take values between
0 and 100, in multiples of 10. We take into account the output quantization by lower bounding the
value of σ2n to the value of the quantization noise, bin2spacing/12. This lower bounding is applied to
all the compared methods. The effect is to provide a better estimation for σ2n and therefore, better
MNLP measures, but we have observed that this modification has no noticeable effect on NMSE
values. Resulting plots are in Figure 5.

SSGP is superior in terms of NMSE, getting very close to the full GP for more than 200 basis
functions. In terms of MNLP, SSGP is between FITC and SMGP for small m, but slightly worse
for more than 100 basis functions. This may be an indication that SSGP produces better predictive
means than variances. We also see that SSGP with fixed spectral points is uniformly worse.

4. In practice the spectral points are sampled from the spectral density of a squared exponential covariance function,
and scaled as the lengthscales adapt.
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Figure 5: Pole Telecomm data set. (a) NMSE and (b) MNLP as a function of the number of basis
functions.

The fourth data set, Elevators, relates to controlling the elevators of an F16 aircraft. After
removing some constant inputs the data is 17-dimensional. We use the original split with 8752 data
for training and 7847 for testing. Results are displayed in Figure 6. SSGP consistently outperforms
FITC and SMGP and gets very close to the full GP using a very low number of basis functions. The
large NMSE average errors incurred by SSGP with fixed spectral points for small numbers of basis
functions are due to outliers that are present in a small number (about 10 out of 7847) of the test
inputs, in some of the 10 repeated runs. The predictive variances for these few points are also big,
so their impact on the MNLP score is small. Such an effect has not been observed in any of the
other data sets.

5.3 Explicit Phase Representation

In Section 3.2 we considered an alternative representation of the SSGP model using only half the
basis functions, but explicitly representing the phases. Bayesian inference in this representation is
intractable, but one can optimize the phases instead, at the possibly increased risk of overfitting.
As an example, we evaluate the performance of the cosine only expansion with explicit phases
on the Pole-Telecomm data set in Figure 7. Whereas the performance for the two variants are
comparable for small numbers of basis functions, the cosine only representation becomes worse
when the number of basis functions gets larger, confirming our suspicion that optimization of the
phases increases the risk of overfitting.
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Figure 6: Elevators data set. (a) NMSE and (b) MNLP as a function of the number of basis func-
tions.

5.4 The Pendulum Data Set

So far we have seen data sets where SSGP consistently outperforms FITC and SMGP, and often
approaches the performance of a full GP for quite small numbers of basis functions. In this section
we present a counter example, showing that SSGP may occasionally fail, although we suspect that
this is the exception rather than the norm.

The small data set Pendulum (9 dimensions, 315 training and 315 testing samples) represents
the problem of predicting the change in angular velocity of a simulated mechanical pendulum over
a short time frame (50 ms) as a function of various parameters of the dynamical system. The target
variable depends heavily on all inputs and the targets are almost noise free. Figure 8 shows the
results of our experiments. Note that we use up to 800 basis functions for investigation, although
for computational reasons it would make sense to use the full GP rather than an approximation
with more than 315 basis functions. Although the SSGP NMSE performance is good, we see that
especially for large number of basis functions, the MNLP performance is spectacularly bad. A
closer inspection shows that the mean predictions are quite accurate, the predictive variances are
excessively small. This SSGP model thus exhibits overfitting in the form of being overconfident.
Note, that the SSGP with fixed spectral points seems to suffer much less from this effect, as would
be expected. Interestingly, re-running the SSGP algorithm with different random initializations
gives very different predictions, the predictive distributions from separate runs disagreeing wildly.
One could perhaps diagnose the occurrence of the problem in this way. The bottom line is that
any algorithm which optimizes the marginal likelihood over a large number of parameters, will risk
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Figure 7: Pole Telecomm data set. (a) NMSE and (b) MNLP as a function of the number of basis
functions, comparing SSGP with the version with cosines only and explicit phases.

falling in the overfitting trap. We nevertheless think that the SSGP algorithm will often have very
good performance, and will be a practically important algorithm, although one must use it with care.

6. Discussion

We have introduced the Sparse Spectrum Gaussian Process (SSGP) algorithm, a novel perspective
on sparse GP approximations where rather than the usual sparsity approximation in the spatial do-
main, it is the spectrum of the covariance function that is subject to a sparse approximation by
means of a discrete set of samples, the spectral points. We have provided a detailed comparison
of the computational complexity vs. accuracy tradeoff of SSGP to that of the state of the art GP
sparse approximation FITC and its extension SMGP. SSGP shows a dramatic improvement in four
commonly used benchmark regression data sets, including the two data sets used for evaluation
in the paper where FITC was originally proposed (Snelson and Ghahramani, 2006). However, we
found a small data set where SSGP badly fails, with good predictive means but with overconfident
predictive variances. This indicates that although SSGP is practically a very appealing algorithm,
care must be taken to avoid the occasional risk of overfitting.

Other algorithms, such as the variational approach of Titsias (2009) which focus on approaching
the full GP in the limit of large numbers of basis functions are to a large degree safeguarded from
overfitting. However, algorithms derived from GPs whose focus is on achieving good predictive
accuracy on a limited computational budget, such as FITC, SMGP and the currently proposed SSGP,
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Figure 8: Pendulum data set. (a) NMSE and (b) MNLP as a function of the number of basis func-
tions.

typically achieve superior performance, see Figure 3 in Titsias (2009), with some risk of overfitting.
Note, that these algorithms don’t generally converge toward the full GP.

An equivalent view of SSGP is as a sparse Bayesian linear combination of pairs of trigonometric
basis functions, a sine and a cosine for each spectral point. The weights are integrated out, and at
the price of having two basis functions per frequency, the phases are effectively integrated out as
well. We have shown that although a representation in terms of a single basis function per frequency
and an explicit phase is possible, learning the phases poses an increased risk of overfitting. If the
spectral points are sampled from the power spectrum of a stationary GP, then SSGP approximates
its covariance function. However, much sparser solutions can be achieved by learning the spectral
points, which effectively implies learning the covariance function. The SSGP model is to the best
of our knowledge the only sparse GP approximation that induces a stationary covariance function.

SSGP has been presented here as a Gaussian process prior for regression with a tractable like-
lihood function from the assumption of Gaussian observation noise. Extending to other types of
analytically intractable likelihood functions, such as sigmoid for classification or Laplace for robust
regression is possible by using the same approximation techniques as for full GPs. An example
is the use of Expectation Propagation in the derivation of generalized FITC (Naish-Guzman and
Holden, 2008). Further modifications and extensions of SSGP are discussed in Lázaro-Gredilla
(2010).

The main differences between SSGP and most previous approaches to sparse GP regression is
the stationarity of the prior and the non-local nature of the basis functions. It will be interesting to
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investigate more carefully in the future the exact conditions under which these spectacular sparsity
vs. accuracy improvements can be expected.
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Appendix A. Details of the Implementation

In practice, to improve numerical accuracy and speed, Equations (7) and (8) should be implemented
using the Cholesky decomposition R= chol(A). Thus the predictive distribution is computed as

E[y∗] = φ(x∗)%R\(R%\(Φfy)) V[y∗] = σ2n+σ2n||R%\φ(x∗)||2,

and the log evidence as

log p(y|θ) = −
1
2σ2n

[

||y||2− ||R%\(Φfy) ||2
]

−
1
2∑i

logR2ii+m log
mσ2n
σ20

−
n
2
log2πσ2n ,

where Rii refers to the diagonal elements of R.
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M. L. Stein. Interpolation of Spatial Data. Springer Verlag, 1999.

M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Proceed-
ings of the 12th International Workshop on AI Stats, 2009.

V. Tresp. A Bayesian committee machine. Neural Computation, 12:2719–2741, 2000.

R. Urtasun and T. Darrell. Sparse probabilistic regression for activity-independent human pose
inference. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,
pages 1–8, 2008.

C. Walder, K. I. Kim, and B. Schölkopf. Sparse multiscale Gaussian process regression. In 25th
International Conference on Machine Learning. ACM Press, New York, 2008.

C. K. I. Williams. Computing with infinite networks. In Advances in Neural Information Processing
Systems 9, pages 1069–1072. MIT Press, 1997.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
Advances in Neural Information Processing Systems 13, pages 682–688. MIT Press, 2001.

1881



 



Journal of Machine Learning Research 11 (2010) 1883-1926 Submitted 1/10; Published 6/10

Fast and Scalable Local Kernel Machines

Nicola Segata SEGATA@DISI.UNITN.IT
Enrico Blanzieri BLANZIER@DISI.UNITN.IT
Department of Information Engineering and Computer Science
University of Trento
Trento, Italy

Editor: Léon Bottou

Abstract
A computationally efficient approach to local learning with kernel methods is presented. The Fast
LocalKernel Support VectorMachine (FaLK-SVM) trains a set of local SVMs on redundant neigh-
bourhoods in the training set and an appropriate model for each query point is selected at testing
time according to a proximity strategy. Supported by a recent result by Zakai and Ritov (2009) relat-
ing consistency and localizability, our approach achieves high classification accuracies by dividing
the separation function in local optimisation problems that can be handled very efficiently from the
computational viewpoint. The introduction of a fast local model selection further speeds-up the
learning process. Learning and complexity bounds are derived for FaLK-SVM, and the empirical
evaluation of the approach (with data sets up to 3 million points) showed that it is much faster and
more accurate and scalable than state-of-the-art accurate and approximated SVM solvers at least
for non high-dimensional data sets. More generally, we show that locality can be an important
factor to sensibly speed-up learning approaches and kernel methods, differently from other recent
techniques that tend to dismiss local information in order to improve scalability.
Keywords: locality, kernel methods, local learning algorithms, support vector machines, instance-
based learning

1. Introduction

Efficiently processing large amount of data is one of the challenges of current research in kernel
methods. Although most of the recently proposed techniques are based on different approaches,
their common assumption is that scalability can be obtained by limiting or reducing the complex-
ity of the decision function. In fact, very fast training algorithms have been developed for linear
SVM (Keerthi and DeCoste, 2005; Collins et al., 2008; Chang et al., 2008; Bordes et al., 2009; Fan
et al., 2008), and indeed they are effective when the linear separation is a good choice such as in
high-dimensionality problems. Other approaches permit the non-linear feature space setting, but
they limit the complexity by working with a reduced number of examples or a small set of sup-
port vectors (Lee and Mangasarian, 2001), using active and online example selection (Bordes et al.,
2005; Bordes and Bottou, 2005) or bounding the number of basis functions (Keerthi et al., 2006;
Joachims and Yu, 2009).

In the works referenced above, computational efficiency is sought bounding some aspects of the
optimisation problem. The result is an approximation of the optimal separation and a smoothing of
the decision function which is more influenced by the global distribution of the examples than by the
local behaviour of the unknown target function in each specific sub-region. The emerging approach
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is thus to trade locality for scalability permitting, with a potentially high level of under-fitting, to
achieve a fast convergence to an approximated solution of the optimisation problem.

We show here that locality is not necessary related to computational inefficiency, but, instead,
it can be the key factor to obtain very fast kernel methods without the need to smooth locally the
global decision function. In our proposed approach, the model is formed by a set of accurate lo-
cal models trained on fixed-cardinality sub-regions of the training set and the prediction module
uses for each query point the more appropriate local model. In this setting, we are not approximat-
ing with some level of inaccuracy the original SVM optimisation problem, but we are separately
considering different parts of the decision function with the potential advantage of better capturing
the local separation. So, instead of locally under-fit the decision function by globally smoothing
it like approximated SVM solvers do, we search for decision functions that are locally-calculated
and they are very similar (or even better) in terms of accuracy to the global decision function in the
proximity of each testing point. This approach is theoretically supported also by the recent result
obtained by Zakai and Ritov (2009) that showed how, roughly speaking, “consistency implies local
behaviour”.

In this work we present Fast Local Kernel Support Vector Machine (FaLK-SVM), that pre-
computes a set of local SVMs covering with adjustable redundancy the whole training set and uses
for prediction a model which is the nearest (in terms of neighbourhood rank in feature space) to each
testing point. FaLK-SVM is obtained introducing various strategies, detailed below, to speed-up the
Local SVM approach (see Blanzieri and Melgani, 2006 and Section 3.3). Scalability is obtained
approximating the Local SVM approach softening the assumption that the query point must be the
central example of the neighbourhood on which the local SVM is trained; in this way we use the
same local SVM model for more than one testing point and we can also pre-compute the local
models during training. The locality of the approach is regulated by the neighbourhood size k and
the method uses all the training points. Starting from the theory of local learning algorithms (Bottou
and Vapnik, 1992; Vapnik and Bottou, 1993) we derive generalisation bounds for FaLK-SVM, and
we analyse the computational complexity stating that, under reasonable assumptions, the training
of our technique scales as N logN and the testing as logN where N is the training set size. We also
introduce a procedure for local model selection in order to speed-up the selection of the parameters
and better capturing local properties of the data. The empirical evaluation (with data sets with up
to 3 million examples) shows that FaLK-SVM outperforms accurate and approximated SVM solvers
both in term of generalisation accuracy and computational performances.

The effectiveness and efficiency of our approach is directly related to the role that locality plays
in the learning problem. It is well known, for example, that for very high-dimensional problems
such as text and document classification, the linear kernel performs better than non-linear kernels
which are hard to tune and can be subject to the “curse of dimensionality” (Bengio et al., 2005).
On the other hand, there are problems (Blackard and Dean, 1999; Uzilov et al., 2006) which in-
herently require non-linear approaches to be tackled. This is due to the combination of an intrinsic
dimensionality which is low with respect to the training set size and of a decision function which is
not simple to learn. In general, locality plays a more important role as the number of training ex-
amples increases because the ratio between training set cardinality and the dimensionality is more
favourable and the local characteristics are more evident. Other signals for the need of a non-linear
kernel are the detection of uneven distributions in the data sets (typical of real-world problems), the
monotonic increasing of accuracy with respect to training size also for already large amount of data
and the inclusion of a high fraction of training examples in the support vector set. A representative
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of this class of problems is the Forest CoverType data set (Blackard and Dean, 1999) which is a
large real data set (more than half a million examples) with bounded dimensionality (54 features)
that needs as many examples as possible to increase accuracy. We already showed in a very prelim-
inary study (Segata and Blanzieri, 2009c) that our approach on this data set is more accurate than
SVM and much faster than both accurate and approximated SVM solvers.

The present contribution can be seen from multiple viewpoints. (i) FaLK-SVM modifies the
Local SVM approach (Blanzieri and Melgani, 2006; Zhang et al., 2006) that showed excellent clas-
sification performances but had dramatic computational problems, leading to a scalable Local SVM
classifier asymptotically much faster than SVM. (ii) The approach is also an enhancement of the
local learning algorithms because the learning process is not delayed until the prediction phase
(lazy learning) but the construction of the local models occurs during training (eager learning).
(iii) From a practical viewpoint, FaLK-SVM is a novel kernel method which outperforms accurate
and approximated SVM solvers for non high-dimensional data sets. (iv) For complex classification
problems that require an high fraction of support vectors (SVs), we exploit locality to avoid the need
of bounding the number of total SVs as existing approximated SVM solvers do for computational
reasons. (v) More generally, our approach can also be seen as a framework for localising and make
scalable any kernel method, classifier and regressor and in general every data analysis that can be
applied on sub-regions of the entire data set. The proposed FaLK-SVM classifier and related tools are
freely available with source code as part of the Fast Local Kernel Machine Library (Segata, 2009,
FaLKM-lib).

In the next Section we analyse the work on local learning algorithms, Local SVM and fast
large margin classifiers that are all related with our work. Section 3 formally introduces some
machine learning tools that we need in order to introduce FaLK-SVM in Section 4 and analyse its
learning bounds, complexity bounds, implementation, local model selection procedure and intuitive
interpretation. Section 5 details the empirical evaluation with respect to accurate and approximated
approaches.

2. Related Work

Locality is often a crucial component of machine learning systems, although we are not aware of
approaches exploiting locality for improving the computational performances. We review in this
section those areas that are more related with our approach: local learning algorithms, local support
vector machines, approximated and scalable SVM solvers.

2.1 Local Learning Algorithms

Local learning algorithms (LLAs) are a class of learning approaches introduced by Bottou and
Vapnik (1992). Instead of estimating a decision function which is optimal (with respect to some
criteria) for all possible unseen testing examples, the idea underlying LLAs consists in estimating
the optimal decision function for each single testing point. The value of the function is estimated
in a small sub-region of the input space around the query point. For a local learning algorithm,
the points in the proximity of the query point have an higher influence in the training of the local
model. The approach is particularly effective for uneven distributed data sets, that is, data sets
presenting regions in which the examples have different spatial resolutions. In fact, with LLAs,
the characteristics of the learning process can be locally adjusted. A proper choice of the locality
parameter can reduce the generalisation error with respect to a global classifier as formalised by the
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Local Risk Minimization principle (Vapnik and Bottou, 1993; Vapnik, 2000). Notice that there are
various ways of specifying the degree of locality for LLAs as discussed for instance by Atkeson et al.
(1997). Examples of LLAs are the well-known k-Nearest Neighbours (kNN) classifier, the Radial
Basis Function networks (Broomhead and Lowe, 1988), and the Local SVM classifier (Blanzieri
and Melgani, 2006; Zhang et al., 2006) described in Section 2.2.

Despite their theoretical and practical appeal, LLAs seem not to have been studied in depth in
the last few years. This is probably due to the fact that LLAs, as formulated by Bottou and Vapnik
(1992), fall in the class of lazy learning (or memory-based learning) that have great overhead on the
testing phase, as opposed to eager learning in which the function estimation is performed during
training increasing the computational performances of the testing phase.

2.2 Local Support Vector Machines

The main idea of Local SVM, described in details in Section 3.3, is to build at prediction time an
example-specific maximal marginal hyperplane based on the set of k-neighbours.

Local SVM is a LLA and was independently proposed by Blanzieri and Melgani (2006, 2008)
and by Zhang et al. (2006) and applied respectively to remote sensing and visual recognition tasks.
Other successful applications of the approach are detailed by Segata and Blanzieri (2009a) for gen-
eral real data sets, by Blanzieri and Bryl (2007) for spam filtering and by Segata, Blanzieri, Delany,
and Cunningham (2009b) for noise reduction. Similar approaches have been presented by Yang
and Kecman (2008) and applied in the medical domain (Yang and Kecman, 2009) and for face
recognition problems (Yang and Kecman, 2010).

However, Local SVM suffers from the high computational cost of the testing phase that com-
prises, for each example, (i) the selection of the k nearest neighbours and (ii) the computation of
the maximal separating hyperplane on the k examples. An attempt to computationally improve
the Local SVM approach of Zhang et al. (2006) has been proposed by Cheng et al. (2007) where
the idea is to train multiple SVMs on clusters found by a variant of k-means, called MagKmeans,
that introduces in the clustering criterion the requirement that the clusters cannot have unbalanced
class cardinalities. However the method does not follow directly the idea of Local SVM, the main
difference being that it can build only local linear models and the size of the clusters is not fixed
(MagKmeans does not have constraints on the cardinalities and the balancing requirement can cause
the detection of clusters with high cardinalities). The achieved computational performances are bet-
ter than their formulation of Local SVM, but worse than global SVM.

2.3 Fast Large Margin Classifiers

The need for fast and scalable kernel-based classifiers led to the development of several methods
in the last few years, although considerable attention seems to have been focused especially on
linear SVM classifiers. Below, we initially consider the works applicable also to non-linear kernels,
successively we review the works on the linear case.

One of the first large-scale maximal margin learning that can use non-linear kernel functions is
represented by Core Vector Machines (Tsang et al., 2005, CVM); reformulating the SVM approach
as a minimum enclosing ball problem, the authors proved that it is possible to obtain approxi-
mated optimal solution in competitive training times by using the core sets. Good results have been
achieved using non-linear kernels although it has been pointed out that the choice of the stopping
criteria is crucial for the trade-off between computational efficiency and generalisation accuracy.
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Ball Vector Machines (Tsang et al., 2007, BVM) are a modification of CVM in which the minimality
of the enclosing balls is not required, because the radius of the ball is fixed. The resulting clas-
sifier improves the computational performances. Another approach based on an online setting of
the SVM optimisation problem has been proposed by Bordes et al. (2005, LASVM) and by Bordes
and Bottou (2005) and it is an algorithm that converges to the SVM solution. It has been shown
that competitive accuracies can be achieved also after a single pass over the training set. The ap-
proach can be seen as a SVM solver that includes a support vector removal step. In addition, several
strategies for active training-points selection can further improve computational and generalisation
performances. Formulating the optimisation problem in the primal, Keerthi et al. (2006, SpSVM)
proposed a method that bounds the number of basis functions considered and thus the computa-
tional complexity. Increasing the cardinality of the basis function set allows the method to converge
to the SVM solution. A greedy strategy guides the choice of the basis functions to be included in
the working set. Collobert et al. (2006, USVM) showed that softening the convex setting of maximal
margin classifiers using a non-convex loss function can bring computational advantage over the cor-
responding standard convex problem. The non-convex problem is solved using the concave-convex
procedure (Yuille and Rangarajan, 2003). Recently, the Cutting-Plane Subspace Pursuit (Joachims
and Yu, 2009, CPSP) based on cutting-plane training (Joachims et al., 2009) has been proposed; it
permits to learn maximal-margin decision functions in the feature space using arbitrary basis vectors
instead of the support vectors only. This can results in sparser solutions increasing the testing and
training computational performances especially for high-dimensional data sets. Although not al-
ways considered a method for large-scale learning, LibSVM (Chang and Lin, 2001) demonstrated to
be competitive with approximated approaches from the computational viewpoint. LibSVM is a SVM
solver implementing a SMO-type decomposition method proposed by Fan et al. (2005) integrating
it with caching and shrinking (Joachims, 1999).

Large margin classifiers can also achieve scalability using subsampling-based approaches that
train the model on a relatively small subset of the whole training set. However, the accuracy of
SVM with subsampling can decrease due to the loss of information contained in the discarded
training points. The decreasing of accuracy with respect to SVM without subsampling is more
dramatic when a complex decision function is needed. In these cases the accuracy problems can
be mitigated or reduced by developing an ensemble of classifiers. Bootstrap aggregating (bagging)
by Breiman (1996) is an effective strategy to perform accurate classification using an ensemble of
classifiers trained on subsets of the training set (using uniform sampling with replacement) that can
also overcome the accuracies of SVM. Bagging with SVM can thus be used for obtaining scalability
as long as the advantage of training smaller SVMmodels on subsets of the training set (that can scale
cubically) overcome the disadvantage of training multiple SVMs.

Recently a lot of work has been performed in order to develop very fast and scalable solvers
applicable to linear SVM only. Keerthi and DeCoste (2005) modified the Finite Newton method of
Mangasarian (2002) introducing robust conjugate gradient techniques and other heuristics. Joachims
(2006) developed an alternative formulation of the SVM optimisation problem exploiting a differ-
ent form of sparsity. Lin et al. (2007) used logistic regression with Trust Region Newton Methods.
Variants of coordinate descent methods for linear SVM are developed by Chang et al. (2008) in
the primal and by Hsieh et al. (2008) in the dual. A different gradient approach was developed
by Smola et al. (2008). Other approaches are based on Stochastic Gradient Descent (SGD) like those
developed by Shalev-Shwartz et al. (2007) and by Bordes et al. (2009) which work in the primal,
whereas Collins et al. (2008) apply SGD in the dual. Although SGD methods can be theoretically
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used for non-linear SVM the performances are analysed for the linear case only. LIBLINEAR (Fan
et al., 2008) is a fast software package implementing some of the cited works. The common idea
of all the proposed methods is that the advantage of having a method that uses a huge number of
training points overcomes the disadvantage of approximating the decision function with a linear
model. This is effective, as explicitly noticed in almost all the cited works, when the dimensionality
is very large and thus the problem is very sparse. This is, for example, the typical situation of text
document classification. However, when the needed decision function is highly non-linear and the
intrinsic dimensionality of the space is relatively small, the linear SVM approach cannot compete
with SVM using non-linear kernels in terms of generalisation accuracy. Apart from the generalisa-
tion ability also the computational performances can be compromised in these cases, because the
algorithm cannot find a good decision function and so convergence problems can occur.

3. Preliminaries

In order to introduce our approach, we need to analyse the formulation of kNN, SVM, kNNSVM
and cover trees.

Here and in the following of the paper, we consider a binary class classification with examples
(xi,yi)∈H ×{−1,+1} for i= 1, . . . ,N and X = {xi | i= 1, . . . ,N}, whereH is an Hilbert space with
inner product 〈·, ·〉 and norm ‖ ·‖. Extensions to multi-class problems will be explicitly discussed.

3.1 The k Nearest Neighbour Algorithm

Given an example x′ ∈ H , it is possible to order an entire set of points X with respect to x′. This
corresponds to define a function rx′ : {1, . . . ,N}→ {1, . . . ,N} that recursively reorders the indexes
of the N points in X :











rx′(1) = argmin
i=1,...,N

‖xi−x′‖

rx′( j) = argmin
i=1,...,N

‖xi−x′‖ i *= rx′(1), . . . ,rx′( j−1) for j = 2, . . . ,N.

In this way, xrx′ ( j) is the example in the j-th position in terms of distance from x
′, namely the

j-th nearest neighbour, ‖xrx′ ( j)−x
′‖ is its distance from x′ and yrx′ ( j) is its class. In other terms:

j < k⇒‖xrx′ ( j)−x
′‖ ≤ ‖xrx′ (k)−x

′‖.

Given the above definition, the majority decision rule of kNN for binary classification problems
is defined by

kNN(x) = sign
(

k

∑
i=1

yrx(i)

)

.

For problems with more than two classes, the decision rule of kNN is the usual majority rule, namely
the method selects the class with the highest number of representatives in the k-neighbourhood
instead of taking the sign of the summation.
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3.2 Support Vector Machines

SVMs (Cortes and Vapnik, 1995) are classifiers with sound foundations in statistical learning the-
ory (Vapnik, 2000). The decision rule is

SVM(x) = sign(〈w,Φ(x)〉F +b)

where Φ(x) : H → F is a mapping in a transformed Hilbert feature space, called F , with inner
product 〈·, ·〉F . The parameters w ∈ F and b ∈ R are such that they minimise an upper bound on
the expected risk while minimising the empirical risk. The minimisation of the complexity term is
achieved by the minimisation of the quantity 12 ·‖w‖

2, which is equivalent to the maximisation of the
margin between the classes. In the optimisation problem, the violation of the margin is prevented
by the following set of constraints:

yi (〈w,Φ(xi)〉F +b)≥ 1. (1)

If a linear separation cannot be found in the input or feature space, the soft-margin variant of
SVM permits the violation of the margin and the presence of misclassified training examples. This
is possible introducing slack variables ξi (the empirical risk):

yi (〈w,Φ(xi)〉F +b)≥ 1−ξi ξi ≥ 0, i= 1, . . . ,N. (2)

For soft-margin SVM the optimisation problem with linear penalisation of ξi (L1-norm), becomes
the minimisation of 12 · ‖w‖

2+C∑i ξi subject to (2). Reformulating such an optimisation problem
with Lagrange multipliers αi (i= 1, . . . , N), and introducing a positive definite kernel (PD) function1
K(·, ·) that substitutes the scalar product in the feature space 〈Φ(xi),Φ(x)〉F the decision rule can
be expressed as:

SVM(x) = sign
(

N

∑
i=1

αiyiK(xi,x)+b

)

.

Throughout this work, SVM denotes the soft-margin SVM.
The kernel trick avoids the explicit definition of the feature space F and of the mapping function

Φ (Schölkopf and Smola, 2002). Popular kernels are the linear kernel, the radial basis function
kernel, and the homogeneous and inhomogeneous polynomial kernels. Their definitions are:

Klin(x,x′) = 〈x,x′〉 Krb f (x,x′) = exp
(

−‖x−x′‖2
σ

)

,

Khpol(x,x′) = 〈x,x′〉d Kipol(x,x′) = (〈x,x′〉+1)d.

The maximal separating hyperplane defined by SVM has been shown to have important gener-
alisation properties and nice bounds on the VC dimension (Vapnik, 2000).

Multiple methods has been proposed in order to apply the maximal margin principle of SVM
on multiple class problems. The more popular are the one-against-all method (Bottou et al., 1994)
which builds a number of binary decision functions equal to the number of classes Ncl , the one-
against-one method (Knerr et al., 1990; Kressel, 1999) which builds Ncl ·(Ncl−1)/2 binary decision
functions using voting in the prediction phase, and the Directed Acyclic Graph SVM (Platt et al.,

1. For convention we refer to kernel functions with the capital letter K and to the number of nearest neighbours with the
lower-case letter k.
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2000, DAGSVM) which is a modification of the one-against-all method. Other general strategies for
reducing the multi-class classification setting to a binary classification problem have been analysed
and developed by Allwein et al. (2000). The study carried on by Hsu and Lin (2002) shows that, for
SVM, the more effective strategies are the one-against-one and DAGSVM approaches.

3.3 Local SVM: The kNNSVM Classifier

We already introduced the idea of Local SVM in Section 2.2, here we detail kNNSVM which is the
formulation of Local SVM proposed by Blanzieri and Melgani (2006, 2008). kNNSVM can be seen
as a modification of the SVM approach in order to obtain a LLA able to locally adjust the capacity
of the training systems.

In order to classify a given example x′ ∈H , we need first to retrieve its k-neighbourhood in the
transformed feature space F and, then, to search for an optimal separating hyperplane only over
this k-neighbourhood. In practice, this means that an SVM is built over the neighbourhood in F of
each test example x′. Accordingly, the constraints in (1) become:

yrx′ (i)
(

w ·Φ(xrx′ (i))+b
)

≥ 1−ξrx′ (i), with i= 1, . . . ,k

where rx′ : {1, . . . ,N}→ {1, . . . ,N} is a function that reorders the indexes of the training examples
defined as:











rx′(1) = argmin
i=1,...,N

‖Φ(xi)−Φ(x′)‖2F

rx′( j) = argmin
i=1,...,N

‖Φ(xi)−Φ(x′)‖2F i *= rx′(1), . . . ,rx′( j−1) for j = 2, . . . ,N.
(3)

In this way, xrx′ ( j) is the example in the j-th position in terms of distance from x′ and thus
j< k⇒‖Φ(xrx′ ( j))−Φ(x

′)‖F ≤‖Φ(xrx′ (k))−Φ(x
′)‖F because of the monotonicity of the quadratic

operator. The computation is expressed in terms of kernels as:

||Φ(x)−Φ(x′)||2F = 〈Φ(x),Φ(x)〉F + 〈Φ(x′),Φ(x′)〉F −2 · 〈Φ(x),Φ(x′)〉F =

= K(x,x)+K(x′,x′)−2 ·K(x,x′).

If the kernel is the RBF kernel or any polynomial kernels with degree 1, the ordering function
is equivalent to the one defined by the Euclidean metric. In general, for some non-linear kernels
(other than the RBF kernel) the ordering function can be quite different to that produced using the
Euclidean metric.

The decision rule associated with the method for an example x is:

kNNSVM(x) = sign
(

k

∑
i=1

αrx(i)yrx(i)K(xrx(i),x)+b

)

.

For k = N, the kNNSVM method is the usual SVM whereas, for k = 2, the method implemented
with the linear or Gaussian radial basis function kernel corresponds to the standard 1-NN classifier.
Notice that in situations where the neighbourhood contains only one class the local SVM does
not find any separation and so considers all the neighbourhood to belong to the predominant class
similarly to the behaviour of the majority rule. Considering kNNSVM as a local SVM classifier
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built in the feature space, the method has been shown to have a potentially favourable bound on the
expectation of the probability of test error with respect to SVM (Blanzieri and Melgani, 2008).

The generalisation of kNNSVM for multi-class classification can occur locally, that is solving
the local multi-class SVM problem, or globally, that is applying the binary kNNSVM classifier on
multiple global binary problems. In Segata and Blanzieri (2009a) the adopted strategy for multi-
class classification with kNNSVM is the one-against-one strategy applied on the local problems.
The choice of the one-against-one approach gave good results in comparison with the same strategy
on SVM, but no specific empirical studies have been performed yet to identify the most appropriate
strategy for multi-class classification with Local SVM.

3.4 Cover Trees

A cover tree is a data structure introduced by Beygelzimer et al. (2006) for performing exact nearest-
neighbour operations in a fast and efficient way. Cover trees can be applied in general metric
spaces without any other assumption on their structure and thus also in Hilbert spaces calculating
the distances by means of kernel functions using the kernel trick.

In more detail, a cover tree can be viewed as a sub-graph of a navigating net (Krauthgamer and
Lee, 2004) and it is a levelled tree in which each level (indexed by a decreasing integer i) is a cover
(i.e., is representative) for the level beneath it. Every node of a cover tree T is associated with a point
of a data set S. Denoting withCi the set of points associated with nodes in T at level i, with b> 1 a
constant, and with dist(·, ·) the distance function defining the metric of the space, the invariants of
a cover tree are:

Nesting Ci ⊂Ci−1

Covering tree For every p ∈ Ci−1 there exists a q ∈ Ci such that dist(p,q) < bi and the node in
level i associated with q is a parent of the node in level i−1 associated with p.

Separation For all distinct p,q ∈Ci, dist(p,q)> bi.

Intuitively, the nesting invariant means that once a point appears in a level, it is present for every
lower level. The covering tree invariant implies that every node has a parent in a higher level such
that the distance between the respective points is less than bi, while separation invariant assures that
the distance between every pair of points associated to the nodes of a level i is higher than bi. In
addition, the root of the tree (called C∞ and containing only one example) is a randomly chosen
example.

Cover trees have state-of-the-art performance for exact nearest neighbour operations for general
metrics in low-dimensional spaces both in terms of computational complexity and space require-
ments. As theoretically proved by Beygelzimer et al. (2006), the space required by the cover tree
data-structure is linear in the data set size (O(n)), the computational time of single point insertions,
deletions and exact nearest neighbour queries is logarithmic (O(logn)) while the cover tree can be
built in O(n logn).

4. FaLK-SVM: A Fast and Scalable Local Kernel Machine

In this section we introduce our novel technique. Initially we detail the way to pre-compute the
local models during training (Section 4.1) and the strategies to reduce the number of local models
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(Section 4.2). We then describe the prediction mechanism in Section 4.2.2 and our approach for fast
local model selection in Section 4.3. Successively, we derive learning bounds for the approach in
Section 4.4 before discussing the computational complexity in Section 4.5 and some details about
the implementation (Section 4.6).

4.1 Pre-computing the Local Models during Training Phase

For the local approach we are proposing here, we need to generalise the decision rule of kNNSVM
to the case in which the local model is trained on the k-neighbourhood of a point distinct, in the
general case, from the query point. A modified decision function for a query point q ∈ H and
another (possibly different) point t ∈H is:

kNNSVMt(q) = sign
(

k

∑
i=1

αrt(i)yrt(i)K(xrt(i),q)+b

)

(4)

where rt(i) is the kNNSVM ordering function (see above Section 3.3) and αrt(i) and b come from
the training of an SVM on the k-neighbourhood of t in the feature space. In the following we will
refer to kNNSVMt(q) as being centred on t, to t as the centre of the model, and, if t ∈ X , to Vt as
the Voronoi cell induced by t in X , formally:

Vt = {p ∈H s.t. ‖p− t‖ ≤ ‖p−x‖, ∀x ∈ X with t *= x}.

The original decision function of kNNSVM corresponds to the case in which t = q, and thus
kNNSVMq(q) = kNNSVM(q).

kNNSVM requires that the training of an SVM on the k-neighbourhood of the query point must
be performed in the prediction step. This approach is computationally feasible only for problems
with few points to test which is a condition that rarely holds in real-world classification problems.
In general, we need to speed-up the prediction phase. The first modification of kNNSVM consists
in predicting the label of a test point q using the local SVM model built on the k-neighbourhood of
its nearest neighbour in X . Formally, this can be written as:

kNNSVMt(q) with t= xrq(1). (5)

Notice that in situations where the k-neighbourhood contains only one class the local model does
not find any separation and so it can adopt the majority rule for improving the computational per-
formances.

With this formulation the local learning can switch from the lazy learning (Aha, 1997) setting of
the original formulation of kNNSVM to the eager learning setting with clear advantages in terms of
prediction step complexity. This is possible computing a local SVMmodel for each x∈X during the
training phase obtaining the sets {(t,kNNSVMt)

∣

∣ t∈ X } and applying the precomputed kNNSVMt
model such that t= xrq(1) for each query point q during the testing phase.

This approximation slightly modifies the approach of kNNSVM as a local learning algorithm.
Instead of estimating the decision function for a given test example q and thus for a specific point
in the input metric space, we estimate a decision function for each Voronoi cell Vx induced by the
training set in the input metric space. In this way, the construction of the models in the training
phase requires the estimation of N local decision functions. The prediction of a test point q is done
using the model built for the Voronoi region in which q lies (Vh with h= xrq(1)) that can be retrieved
by searching for the nearest neighbour of q in X .
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4.2 Reducing the Number of Local Models that Need to Be Trained

The pre-computation of the local models during the training phase introduced above, increases the
computational efficiency of the prediction step. However, a considerable overhead is added to the
training phase. In fact, the training of an SVM for each training point can be slower than the training
of a unique global SVM (especially for non small k values), so we introduce another modification of
the method which aims to dramatically reduce the number of SVMs that need to be pre-computed.
The idea is that we can relax the constraint that a query point x′ is always evaluated using the model
trained around its nearest training point. The decision function of this approach is

FastLSVM(x) = kNNSVM f (x)(x) (6)

where f : H 0→ C ⊆ X is a function mapping each unseen example x to a unique training example
f (x) which is, accordingly to Equation 4, the centre of the local model that is used to evaluate x.
The set C is the image of f (·), so C = f (H ).

Notice that if f (·) = xr·(1), we have that C = X and that FastLSVM(x) is equivalent to the
kNNSVM formulation of Equation 5, and this can happen if we use all the examples in the training
set as centres for local SVM models. In the general case, however, we select only a proper subset
C ⊂ X of points to be used as centres of kNNSVM models. In this case, if xrx(1) ∈ C then f (x)
can be defined as f (x) = xrx(1), but if xrx(1) /∈ C then f (x) must be defined in a way such that the
principle of locality is preserved and the retrieval of the model is fast at prediction time.

Two aspects need to be addressed now: the strategy to select the subset C of X , and the formu-
lation of the function f associating each query example with an example in C .

4.2.1 SELECTING THE CENTRES OF THE LOCAL MODELS

The approach we developed for selecting the set C of the centres of the local models is based on
the idea that each training point must be in the k′-neighbourhood of at least one centre with k′
being a fixed parameter and k′ ≤ k. From a slightly different viewpoint, we need to cover the entire
training set with a set of hyper-spheres whose centres will be the examples in C and each hyper-
sphere contains exactly k′ points. We can formalise this idea with the concept of k′-neighbourhood
covering set:

Definition 1 Given k′ ∈ N, a k′-neighbourhood covering set of centres C ⊆ X is a subset of the
training set such that the following holds:

⋃
c∈C

{

xrc(i) | i= 1, . . . ,k
′
}

= X .

Definition 1 means that the union of the sets of the k′-nearest neighbours of C corresponds to the
whole training set. Theoretically, for a fixed k′, the minimisation of the number of local SVMs
that we need to train can be obtained computing the SVMs centred on the points contained in the
minimal k′-neighbourhood covering set of centres.

Definition 2 TheMinimal k′-neighbourhood covering set of centres is a k′-neighbourhood covering
set C ⊆ X which have the minimal cardinality.
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This problem is related to the Set Cover Problem (SC) (Garey and Johnson, 1979; Kearns and
Vazirani, 1994; Marchand and Shawe-Taylor, 2003) and to theMinimum Sphere Set Covering Prob-
lem (MSSC) (Chen, 2005). However, in the SC and MSSC problems one specifies the radius of the
spheres rather than their cardinality in terms of points they contain and it is not required that the
centres of the hyperspheres correspond to points in the set. It is easy to show that MSSC is NP-hard
but some efficient approximated results are available based on greedy approaches (Chvatal, 1979;
Wang et al., 2006), integer and linear programming (Wei and Li, 2008).

In our case, however, we do not need the minimality of the constraints of the k′-neighbourhood
covering set of centres to be strictly satisfied, because training some more local SVMs is acceptable
instead of solving an NP-hard problem.

The heuristic procedure we developed can be seen as a modification of the greedy approach for
the MSSC problem (Chvatal, 1979; Wang et al., 2006). The first k′-neighbourhood is selected ran-
domly choosing its centre in X , the following k′-neighbourhoods are retrieved selecting the centres
that are still not members of other k′-neighbourhoods and are as far as possible from the already
selected centres. The selection of the farthest example, still not included in the k′-neighbourhoods,
as the centre of the next k′-neighbourhood, is the counterpart of the selection of the set of points
having the minimum overlapping with the already covered set of points used by the greedy approach
to the MSSC and SC problems.

For detailing the greedy approach we adopt, we need the concepts of minimum and maximum
distance between the elements of a set of points A defined respectively as:

d(A) =min‖x−x′‖ with x,x′ ∈ A and x *= x′

and
D(A) =max‖x−x′‖ with x,x′ ∈ A.

In particular, the minimum distance between points in X is m = d(X ) and the maximum is M =
D(X ). Our intention is to identify a system of subsets Si ⊆ X with decreasing minimum distances
d(Si); we can in this way define an ordering on the sets . . . ⊂ Si+1 ⊂ Si ⊂ Si−1 ⊂ . . . such that
. . . > d(Si+1) > d(Si) > d(Si−1) > .. .. With this strategy we can choose the centres of the local
models first in the set Si+1, then in the set Si and so on, thus selecting first the centres that are
assured to be distant at least d(Si+1), then at least d(Si) < d(Si+1) and so on. More in detail, we
require that in the ith set Si ⊆ X the two nearest points are farther than bi with b > 1, that is, they
are subject to the constraint d(Si)> bi with b> 1. The bound on the minimum distance d(Si) thus
varies as powers of b depending on the set Si.

Let us define precisely the system of sets {Si}. The maximum i index of Si is named top and the
minimum is named bot, and they are univocally defined as those indexes satisfying btop−1 ≤M <
btop and bbot < m≤ bbot+1. The Si are recursively defined as:







Stop = {choose(X )}

Si = Si+1∪ argmax
S∈X \Si+1

(|S| s.t. d(Si+1∪S)> bi) for i= top−1, . . . ,bot , (7)

where choose(A) is a function that selects only one element of the non-empty set A. An example
of choose() for our case can be the following definition that selects the example with the minimum
index:

choose(A) = xi with i= min(z ∈N|xz ∈ A).
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Notice that, since Si contains Si+1 we have that

Stop = {choose(X )}⊆ Stop−1 ⊆ . . .⊆ Sbot+1 ⊆ Sbot = X (8)

and, forcing for definition that d(A) = ∞ if |A|= 1,

d(Stop) = ∞> d(Stop−1) =M > d(Stop−2)> .. . > d(Sbot+1)> d(Sbot) = m.

We can now formalise the selection of the centres from X using the Si sets. The first centre c1
is simply the (only) example in Stop. The next centre c2 is chosen among the non-empty Sl sets
obtained removing from Si the first centre c1 and the points in its k′-neighbourhood; in particular
c2 is chosen from the non-empty Sl with highest l. The general case for the c j centre is similar,
with the only difference being that we remove from the Si sets all the centres ct with t < j and their
k′-neighbourhood. More formally:

{

c1 = choose(Stop)

c j = choose(Sl) with l =max(m ∈N|Sm \Xc j−1 *= /0)
, (9)

where

Xc j−1 =
j⋃

l=1

{

xrcl (h)
∣

∣h= 1, . . . ,k′
}

.

is the union of all the k′-neighbourhoods of the centres already included in C .
We can briefly show that the C set found with Equation 9 is a k′-neighbourhood covering set of

centres. In fact, the iterative procedure for selecting the centres in C terminates when the choose()
function cannot select a point from Sl because all S j with j = bot, . . . , top are empty. Since for the
set Sbot we always have that Sbot = X , this happens only when Xci−1 = X . Noticing that Xci in this
situation is equivalent to the constraint of Definition 1, we can conclude that C is a k′-neighbourhood
covering set of centres.

Computationally, the selection of the centres from the S j sets with Equation 9 can be performed
efficiently once the S j are identified. More problematic is the construction of the nested set of S j
sets. We can however notice that the S j sets share some characteristics with the levels of cover trees.
First, from Equation 7 we can easily see that for each S j set with j < top all the points in it are at
least distant as b j because d(S j) > b j; this is equivalent to the separation invariant of cover trees
reported in Section 3.4. Second, always from Equation 7 we can conclude that each S j is contained
in every St set with t < j as also explicated in Equation 8; this is equivalent to the nesting invariant
of cover trees. The only constraint of our strategy to identify the S j sets that is not respected by
cover trees is the maximality of the set added to each S j set to obtain S j+1. However, the procedure
to insert a new point in a cover tree is based on adding it to the highest possible level, and this is an
efficient approximation of the maximality constraint we have in Equation 7. Taking all these facts
into consideration, we chose to use the levels of cover tree as the S j sets from which we select the
centres as reported in Equation 9.

Consequently with the goal of reducing the number of local models, this approach no longer
requires that a local SVM is trained for each training example, but we need to train only |C | SVMs
centred on each c ∈ C obtaining the following models:

kNNSVMc(x), ∀c ∈ C .
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Figure 1: Graphical representation of the proposed approach using local models with k′ = 4,
k = 15, and local SVM with RBF kernel. The bold dotted circles highlights the k′-
neighbourhoods covering all the training set (with some unavoidable redundancy), the
thin dotted circles denotes the k-neighbourhoods on which the local models are trained.
Some k-neighbourhoods do not produce an explicit decision function because entirely
composed by points of the same class. The local SVM (with RBF kernel) decision func-
tions are drawn in blue. Notice that, due both to the adoption of the k′-neighbourhood
cover set and to the fact that only a fraction of the neighbourhoods need to be trained, we
have only 17 local decision functions for 185 points.

Moreover if a neighbourhood contains only points belonging to one class the local model is the
majority rule (specifically, unanimity) and the training of the SVM is avoided.

Figure 1 graphically shows the result of adopting the approach described above on a simple
artificial data set with k and k′ chosen for illustrative purposes. In fact, the example just aims to
show the intuition behind the approach that is instead developed for large data sets and for non-
extreme values of the neighbourhood parameters.

From Figure 1 we can also notice that the level of overlapping between k′-neighbourhoods
and thus between k-neighbourhoods depends on the value of k′. If k′ is low, a large number of
k′-neighbourhoods are required to cover the entire training set, whereas if k′ is large fewer k′-
neighbourhoods are needed. The k′ parameter thus tune the level of redundancy of the local models.

4.2.2 SELECTING THE LOCAL MODELS FOR TESTING POINTS

Once the set of centres C is defined and the corresponding local models are trained, we need to
select the proper model to use for predicting the label of a test point. A simple strategy we can
adopt consists in selecting the model whose centre c ∈ C is the nearest centre with respect to the
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testing example. Using the general definition of FastLSVM of Equation 6 with f (x) = rCx (1) where
rC corresponds to the reordering function defined in Equation 3 performed on the C set instead of
X , the method, called FaLK-SVMc, is defined as:

FaLK-SVMc(x) = kNNSVMc(x) where c= xrCx (1). (10)
FaLK-SVMc is satisfactory from the computational viewpoint, for it performs the nearest neighbour
search on C only. However, it does not assure that the testing point is evaluated with the model
centred on the point for which the testing point itself is the nearest in terms of neighbour ranking.
For example, a testing point q can be closer to c1 than c2 using the Euclidean distance, but at the
same time we can have that q is the i-th nearest neighbour of c1 in X and the j-th nearest neighbour
of c2 with i > j. This is a problem because using the model centred on c2 is better in terms of
proximity. In order to overcome this issue of FaLK-SVMc we propose to use, for a testing point q,
the model centred on the training point which is the nearest in terms of the neighbourhood ranking
to its training nearest neighbour. We can do this defining a function cnt : X 0→ C in the following
way:

cnt(xi) = choose(
{

cz ∈ C |xi = xrcz (h)
}

)

where h=min
(

t ∈ {1, . . . ,k′}
∣

∣xrc j (t) = xi and c j ∈ C
)

.
(11)

The cnt function finds, for each example x, the minimum value h such that x is in the h-neighbourhood
of at least one centre c ∈ C ; then, among the centres having x in their h-neighbourhoods, it selects
the centre with the minimum index. The existence of h is guaranteed by the k′-neighbourhood
covering strategy. In this way each training point is univocally assigned to a centre and so the de-
cision function of this approximation of Local SVM derivable from FastLSVM of Equation 6 with
f (x) = cnt(x), and called FaLK-SVM, is simply:

FaLK-SVM(x) = kNNSVMcnt(t)(x) where t= xrx(1). (12)

The association between training points and centres defined by Equation 11 can be efficiently
precomputed during the training phase, delaying to the testing phase only the retrieval of the nearest
neighbour of the testing point and the evaluation of the local SVM model.

Figure 2 graphically shows the application of the FaLK-SVM(x) prediction strategy on a toy data
set; the training phase for the same data set is illustrated in Figure 1.

FaLK-SVM can be generalised for multi-class problems in the same way of kNNSVM, but in
this paper we focus on binary problems in order to better evaluate the approach.

4.3 FaLK-SVM with Internal Model Selection: FaLK-SVMl

For training a kernel machine, once a proper kernel is chosen, it is crucial to carefully tune the
kernel parameters and, for SVM, to set the soft margin regularisation constant C. Model selection
is very often performed estimating the empirical error with different parameter values and a popular
method is the κ-fold cross-validation2 with a grid search on parameter space. Given the following
loss function for the two-class classification case

L(y,SVM(x)) =
{

0 if y= SVM(x)
1, if y *= SVM(x) ,

2. Although κ can be confused with the neighbourhood size k or with the kernel function K, κ is always used for
denoting κ-fold CV, so the context should be sufficient to avoid ambiguity.
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Figure 2: Graphical representation of the global decision function (black dotted line) obtained with
the local decision functions (the same of Figure 1) using the described approach that uses
for each query point the local decision function of the Voronoi region in which it lies.

and partitioning the training set X in κ subsets each with the same cardinality3 (called folds), the
κ-fold cross validation (CV) procedure consists in searching for the parameters that minimise the
average of the losses on X f of the classifier trained on X \X f for f = 1, . . . ,κ. The effectiveness in
terms of testing accuracies of κ-fold CV is high, but it adds a computational overhead to the training
phase. In fact, the computational complexity of a κ-fold CV run on a single parameter choice is in
the order of κ times the training time; if we have p parameters to set and c possible choices for each
parameter, the κ-fold cross-validation with grid selection is κ ·cp times slower than a single training
of the classifier.

The model selection for FaLK-SVM and FaLK-SVMc can be performed using κ-fold CV. The
only difference with SVM is that our local kernel machines need to estimate an additional parameter
which is the neighbourhood size k (which is however usually chosen in a small set of possible
values). However, with the local setting of the classification problem we are discussing in this paper,
it is also possible to efficiently tackle the complexity of the model selection phase. Basically, since
FaLK-SVM trains a set of local models, we can perform the model selection in a grid-search setting
on a subset of the neighbourhoods. In this way we can efficiently estimate the global parameters
of FaLK-SVM without considering all the training points during model selection. The classifier
implementing this approach to model selection is called FaLK-SVMl.

As a first step for defining the model selection approach of FaLK-SVMl, we define a different
setting of model selection for kNNSVM.

3. Without loss of generality, we assume |X | mod κ= 0.

1898



FAST AND SCALABLE LOCAL KERNEL MACHINES

Definition 3 (Localised κ-fold CV model selection for kNNSVM) The procedure applies the κ-
fold CV model selection on the k-neighbourhood of the query point.

However, since the local model is used by kNNSVM only for the central point, the model selec-
tion should be performed in order to make the local models predictive especially for the very internal
points. The idea thus consists in selecting the κ validation sets exclusively from the k′ most inter-
nal points, taking as each corresponding training fold the union of the remaining k′-neighbourhood
points and of the k− k′ most external points of the k-neighbourhood.

Definition 4 (k′-internal κ-fold CV model selection for kNNSVM)
The procedure applies the localised κ-fold CV model selection on the k′-neighbourhood of the query
point in the training set adding to each training fold the points in the k-neighbourhood that are not
in the k′-neighbourhood with k > k′.

For FaLK-SVM we can apply the k′-internal κ-fold CV for kNNSVM model selection on a
randomly chosen training example and use the resulting parameters for all the local models. In order
to be robust the procedure is repeated on more than one k-neighbourhood choosing the parameters
that minimise the average k′-internal κ-fold CV error among the k-neighbourhoods.

Definition 5 (k′-internal κ-fold CV model selection for FaLK-SVM)
The procedure applies the k′-internal κ-fold CV for kNNSVM model selection on the k-neighbour-
hoods of 1≤ m≤ |C | randomly chosen centres selecting the parameters that minimise the average
error rate among the m applications.

The variant of FaLK-SVM that adopts the k′-internal κ-fold CV described in Definition 5 is
named FaLK-SVMl. Since FaLK-SVMl selects the local model parameters using a small subset of the
training set, the variance of the error may be higher than the standard cross-validation strategies.
However, for huge data sets the standard model selection can be too slow to be applied and, in any
case, one may use large values of m to decrease the risk of selecting non-optimal parameters.

4.3.1 A SPECIFIC STRATEGY FOR SETTING THE RBF KERNEL WIDTH

As already proposed by Tsang et al. (2005) and by Segata and Blanzieri (2009b), good choices for
the RBF kernel width σ of SVM are based on the median (or other percentiles) of the distribution of
distances. In FaLK-SVMl we can thus efficiently estimate σ for each local model simply calculating
the median of the distances in the neighbourhood. This approach has some analogies with standard
SVM using a variable RBF kernel width that have good potentialities for classification (Chang et al.,
2005). Since other percentiles different from the median can give better accuracy performances, in
FaLK-SVMl the percentile can be a value to set using the k′-internal κ-fold CV approach.

4.4 Generalisation Bounds for kNNSVM and FaLK-SVM

The class of LLAs introduced by Bottou and Vapnik (1992) includes kNNSVM, and can be theo-
retically analysed using the framework based on the local risk minimisation (Vapnik and Bottou,
1993; Vapnik, 2000). On the other hand, FaLK-SVM is not a LLA as intended by Bottou and Vapnik
(1992). In fact, LLAs compute the local function for each specific testing point thus delaying the
neighbourhood retrieval and model training until the testing point is available. However, we show
here that generalisation bounds for FaLK-SVM can be derived starting from the LLA ones.
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We need to recall the bound for the local risk minimisation, which is a generalisation of the
global risk minimisation theory.

Theorem 6 (Vapnik (2000)) For a testing point x′ and with probability 1−η simultaneously for
all bounded functions A≤ L(y, f (x,α))≤ B, α∈Λ (where Λ is a set of parameters), and all locality
functions 0≤ T (x,x0,β)≤ 1, β ∈ (0,∞), the following inequality holds true:

RLLA(α,β,x′)≤
1
N ∑

N
i=1L(yi, f (xi,α))T (xi,x′,β)+(B−A)γ(N,hΣ)

| 1N ∑
N
i=1T (xi,x′,β)− γ(N,hβ)|

,

where

γ(N,h) =
√

h ln(2N/h+1)− lnη/2
N

,

and hΣ is the VC dimension of the set of functions L(yi, f (xi,α))T (xi,x′,β),α ∈ Λ,β ∈ (0,∞) and
hβ is the VC dimension of T (xi,x′,β)

For kNNSVM, the loss function is simply

L(yi, f (xi,α)) =
{

0 if yi = f (xi,α)
1 if yi *= f (xi,α)

and the locality function is

T (xi,x′,k) =
{

1 if ∃ j ≤ k s.t. i= rx′( j)
0 otherwise .

It is straightforward to show that∑N
i=1T (xi,x′,k) = k. Moreover T (xi,x′,k) has VC dimension equal

to 2; it is, in fact, the class of functions corresponding to hyperspheres centred on x′ with diameters
equal to the distances of the points from x′ and can thus shatter any set of two points with different
classes, but cannot shatter three points with the nearest and furthest points having a class different
from the third point.

We observe that, in our case,

N

∑
i=1

L(yi, f (xi,α))T (xi,x′,β) =
k

∑
i=1

L(yi, f (xi,α))

and so we can obtain:

RkNNSVM(α,k,x′)≤
1
N k ·νx′ + γ(N,hΣ)
| 1N k− γ(N,2)|

(13)

where νx′ is the ratio of misclassified training points in the k-neighbourhood of x′.
The possibility of local approaches to obtain a lower bound on test misclassification probabil-

ity acting with the locality parameter, as stated in Vapnik and Bottou (1993); Vapnik (2000) for
LLA, it is even more evident for kNNSVM considering Equation 13. In fact, although choosing
a k < N is not sufficient to lower the bound, as the model training becomes more and more local
k decreases and (very likely) the misclassification training rate νx′ decreases as well. Moreover,
also the complexity of the classifier (and thus hΣ) can decrease when the neighbourhood decreases,
because simpler decision functions can be used when fewer points are considered. Taking this into
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consideration, it is necessary to consider the trade-off between the degree of locality k, the function
of the empirical error with respect to k and the complexity of the local classifier needed with respect
to k, in order to find a minimum of the expected risk which is lower than the k = N case. Multiple
strategies can be used to tune this trade-off, especially if prior or high-level information are available
for a specific problem; since in this work we aim to be as general as possible, the expected risk is
estimated for the computational experiments using cross-validation based approaches.

FaLK-SVM pre-computes local models to be used for testing points lying in sub-regions (k-NN
Voronoi cells) of the training set. The risk associated to FaLK-SVM considering a specific query
point x′ can be defined using the risk of kNNSVM, supposing that x′ ∈ Vxi and so xrx′ (1) = xi:

RFaLK-SVM(α,k,x′) = RkNNSVM(α,k,x′)+λ(x′,xrx′ (1))≤ RkNNSVM(α,k,x′)+λrx′ (1) (14)

where λ(x′,xrx′ (1)) is due to the approximation introduced, for the prediction of the label of the
query point x’, by the use of the k-neighbourhood of rx′(1) instead of the k-neighbourhood of x′
itself and

λrx′ (1) = max
x′′∈Vxi

λ(x′′,xrx′ (1)).

If we consider k′ = 1, the approximation is due to the fact that {rc(i)| i = 1, . . . ,k} and {rx′(i)| i =
1, . . . ,k} can be slightly different; however, considering a non very low value for k, the differences
between the two sets are possible only for the very peripheral points of the neighbourhoods which
are those that influence less the shape of the decision function in the central region. We will empiri-
cally show that λrx′ (1) is, on average, a small penalising term that still permits to achieve lower risks
than SVM using k′ values higher than 1.

The risk of FaLK-SVM in its eager learning setting (i.e., without the explicit dependency on the
query point) can thus be defined as:

RFaLK-SVM(α,k) =
∫
x′
RFaLK-SVM(α,k,x′)g(x′)dx′ (15)

≤
∫
x′

(

RkNNSVM(α,k,xi)+λrx′ (1)
)

g(x′)dx′

=
∫
x′
RkNNSVM(α,k,xi)g(x′)dx′+

∫
x′
λrx′ (1)g(x

′)dx′

=
∫
x′
RkNNSVM(α,k,xi)g(x′)dx′+E[λ].

where E[λ] is the expectation of the term due to the use of the kNNSVM risk for FaLK-SVM as
discussed above.

4.5 Computational Complexity Analysis

We analyse here the computational performances of FaLK-SVM from the theoretical complexity
viewpoint. The training phase of FaLK-SVM can be subdivided in four steps:

• the building of the cover tree that scales as O(N logN);

• the retrieval of the local models that scales as O(|C | · k logN);

• the assignment of each point to a k′-neighbourhood that scales as O(N);
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• the training of the local SVM models that scales as O(|C | · k3).

The overall training time, considering the worst case in which k′ = 1 so |C |= N, scales as:

O(N logN+C · k logN+N+C · k3) = O(kN ·max(logN,k2))

which is, considering a reasonably low and fixed value for k as happens in practice for large data
sets, sub-quadratic, and in particular O(N logN), in the number of training points.

For the testing phase of FaLK-SVM we can distinguish two steps (for each testing point):

• the retrieval of the nearest training point that scales as O(logN);

• the prediction of the testing label using the selected local model that scales as O(k).

The testing can thus be performed in O(max(logN,k)), so it is logarithmic in N. FaLK-SVMc is
even faster because it scales as O(max(log |C |,k))≤ O(max(logN,k)).

FaLK-SVM is thus asymptotically faster than SVM (also considering the worst case in which
SVM scales quadratically and k′ = 1) and all the classifiers taking more than O(N logN) for training
and O(logN) for testing. Moreover, FaLK-SVM can be very easily parallelised differently from
SVM whose parallelisation, although possible (Zanni et al., 2006; Dong, 2005), is rather critical;
for FaLK-SVM is sufficient that, every time the points for a model are retrieved, the training of the
local SVM is performed on a different processor. In this way the time complexity of FaLK-SVM can
be further lowered to O(N ·max(k logN,k3/Nproc)) where Nproc is the number of processors.

Another advantage of FaLK-SVM over SVM is space complexity. Since FaLK-SVM performs
SVM training on small subregions (assuming a reasonable low k), there are no problems of fitting
the kernel matrix into main memory. The overall required space is, in fact, O(N+k2), that is, linear
in N, which is much lower than SVM space complexity of O(N2). For large data sets, FaLK-SVM
can still maintain in memory the entire local kernel matrix (if k is not too large), whereas SVMmust
discard some kernel values thus increasing SVM time complexity due to the need of recomputing
them. Analysing the space required to store the trained model in secondary storage devices (e.g.,
hard disks), we can notice that FaLK-SVM needs to save in the model file the entire set of local
models; although we store the models with pointers to the training set points, we need to maintain
the whole training set in the model file (or give as input for the testing module both the model file
and the original training set). FaLK-SVM, in other words, needs to store the training set also in
the model file, differently from SVM that needs to store only the support vectors (whose number
however grows linearly with N).

4.5.1 CURSE OF DIMENSIONALITY

Although not explicitly considered here, cover trees have a constant in the complexity bounds de-
pending on the so-called doubling constant (Clarkson, 1997; Krauthgamer and Lee, 2004) which is a
robust estimation of the intrinsic dimensionality of the data. Notice that the intrinsic dimensionality
of a data set can be much lower than the dimensionality intended simply as the number of fea-
tures. Regardless of the doubling constant, FaLK-SVM maintains the derived complexity bounds4
with respect to N, but the overhead introduced for building the cover tree and retrieving the k-
neighbourhoods can be very high. This drawback, due to the well-known problem of the curse of

4. The high intrinsic dimensionality can cause the need for an high value of |C |, but in the bound we already considered
the worst case in which k′ = 1 and thus |C |= N.
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Algorithm 1 FaLK-SVM-train (training set x[], training size n, neighbourhood size k, assignment
neighbourhood size k’ )
1: models[]⇐ null // the set of models
2: modelPtrs[]⇐ null // the set of pointers to the models
3: c⇐ 0 // the counter for the centres of the models
4: indexes[]⇐ {1, . . . ,N} // the indexes for centres selection
5: Randomise indexes // randomise the indexes
6: for i⇐ 1 to N do
7: index⇐ indexes[i] // get the i-th index
8: if modelPtrs[index] = null then // if the point has not been assigned to a model. . .
9: localPoints[]⇐ get ordered kNN of x[i] // . . . retrieve its k-neighbourhood . . .
10: models[c]⇐ SVMtrain on localPoints[] // . . . train a local SVM. . .
11: modelPtrs[index]⇐ models[c] // . . . assign the centre to the trained model.
12: for j = 1 to k′ do // Assign the model to the k’<k nearest neighbours of the centre
13: ind ⇐ get index of localPoints[ j]
14: if modelPtrs[ind] = null then // assign the points in the k′-neighbourhood . . .
15: modelPtrs[ind]⇐ models[c] // . . . to the c-th model
16: end if
17: end for
18: c⇐ c+1
19: end if
20: end for
21: return models, modelPtrs

Algorithm 2 FaLK-SVM-predict (training set x[], points-to-model pointers modelPtrs, Local SVM
models models, query point q )
1: Set p = get NN of q in x // retrieve the nearest training point with respect to q. . .
2: Set nnIndex = get index of p // . . . retrieve its index . . .
3: return label = SVMpredict q with modelPtrs[nnIndex] // . . . and use the corresponding model
for predict the label of the query point.

dimensionality that affects also SVM with local kernels (Bengio et al., 2005), is not however crucial
here, as we are considering non-linear classification problems that are not high-dimensional. In fact,
apart from computational problems, high-dimensional problems are typically tackled by approaches
not related with the concept of locality (e.g., linear SVM instead of SVM with a RBF kernel).

4.6 Implementation and Availability

FaLK-SVM (and also FkNN and FkNNSVM that are the implementations of kNN and kNNSVM
using cover trees) is available as part of the Fast Local Kernel Machine Library (Segata, 2009,
FaLKM-lib). FaLK-SVM is written in C/C++ and it uses LibSVM v. 2.88 (Chang and Lin, 2001)
for local SVM training and testing whereas we use our own implementation of the cover trees data-
structure. The pseudo-code for the training phase is reported in Algorithm 1 and for the testing phase
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method brief description
FkNN implementation of kNN (Section 3.1) with cover trees

FkNNSVM implementation of kNNSVM (Section 3.3) with cover trees
FaLK-SVM implementation of fast and scalable local kernel machines (see Equation 12)

FaLK-SVM-train module for the training of FaLK-SVM (see Algorithm 1)
FaLK-SVM-predict module for the testing of FaLK-SVM (see Algorithm 2)

FaLK-SVMc faster prediction variant of FaLK-SVM (see Equation 10)
FaLK-SVMl implementation of FaLK-SVM with local model selection (Section 4.3)

FkNNSVM-nr implementation of kNNSVM for noise reduction (Segata et al., 2009b)
FaLKNR impl. of noise reduction with FaLK-SVM (Segata et al., 2009a)

Table 1: Summary for the classifiers developed in the local kernel machine framework and imple-
mented in FaLKM-lib.

in Algorithm 2 (use of cover trees and minimisation of t in Equation 11 are omitted for clearness).
Table 1 summarizes the classifiers discussed in this paper and the modules of FaLKM-lib.

5. Empirical Analysis

The empirical analysis is organised into three experiments performed with different objectives and
using different data sets. Experiment 1 (Section 5.1) has the objective of assessing the generali-
sation performances of FaLK-SVM with respect to SVM (using LibSVM) and to kNNSVM (using
FkNNSVM) and thus assessing if FaLK-SVM is more accurate than SVM and if it is a good approxi-
mation of kNNSVM. For this experiment we use 25 non-large data sets. Experiment 2 (Section 5.2)
focuses on comparing the classification accuracies and the computational performances of FaLK-
SVM (and its variants FaLK-SVMc and FaLK-SVMl) with respect to SVM (using LibSVM) on large
data sets. For this experiment we use 8 data sets with training set cardinalities ranging from about
50k examples to more than 1 million. Experiment 3 (Section 5.3) aims to understand (i) whether
FaLK-SVM has better scalability and accuracy performances than LibSVM, a number of approxi-
mated SVM solvers (CVM, BVM, LASVM, CPSP and USVM) and SVM-bagging and (ii) which are
the computational and accuracy differences between FaLK-SVM, FaLK-SVMc and FaLK-SVMl. For
this last experiment we use 4 data sets with increasing training set size up to 3 million examples.
The experiments, unless otherwise specified, are carried out on an AMD Athlon 64 X2 Dual Core
Processor 5000+, 2600MHz, with 3.56Gb of RAM with Linux operating system.

5.1 Experiment 1: Comparison of FaLK-SVM with LibSVM and FkNNSVM

In this evaluation we compare SVM (using LibSVM), kNNSVM (using FkNNSVM) and FaLK-
SVM on 25 non-large data sets, with the objective of studying the generalisation performances of
kNNSVM with respect to SVM and the level of approximation introduced by FaLK-SVM to the
FkNNSVM algorithm.
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data set # of # of class data set # of # of class
name features points balancing name features points balancing
sonar 60 208 53%/47% fourclass 2 862 64%/36%
heart 13 270 56%/44% tic-tac-toe 9 958 65%/35%

mushrooms 112 300 53%/47% mam 5 961 54%/46%
haberman 3 306 74%/26% numer 24 1000 70%/30%

liver 6 345 58%/42% splice 60 1000 52%/48%
ionosphere 34 351 64%/36% spambase 57 1000 57%/43%

vote 15 435 61%/39% vehicle 21 1243 76%/24%
musk1 166 476 57%/43% cmc 7 1473 57%/43%

hill-valley 100 606 51%/49% ijcnn1 22 1500 68%/32%
breast 10 683 65%/35% a1a 123 1605 76%/24%

australian 14 690 56%/44% chess 35 2130 52%/48%
transfusion 4 748 76%/24% astro 4 3089 65%/35%
diabetes 8 768 65%/35%

Table 2: The 25 binary-class data sets of Experiment 1.

5.1.1 EXPERIMENTAL PROTOCOL

The data sets are listed in Table 2; they are retrieved from the UCI (Asuncion and Newman, 2007)
and STATLOG (Michie et al., 1994) repositories, with cardinality between 200 and 3100 points
(some data sets have been randomly sub-sampled), dimensionality lower than 200, not very unbal-
anced, and they are all scaled in the [0,1] interval. The comparison is carried out using three different
kernel functions (linear, RBF and homogeneous polynomial), in a 10-fold CV experimental setting.
Internal to each training fold the model selection is performed with a nested 10-fold CV choosing
the parameters in the following ranges. The regularisation parameterC is chosen for all methods in
the set {2−2,2−1, . . . ,29,210}, the width parameter σ of the RBF kernel in {2−5,2−4, . . . ,22,23}, the
degree of the polynomial kernels in {1,2,3}. The neighbourhood parameter k for FkNNSVM and
FaLK-SVM is selected by the cross-validation procedure in the set {21,22, . . . , 29,210, |X |} where
|X | is the cardinality of the training set,5 while the k′ parameter of FaLK-SVM is fixed to k/2 which
is a value that privileges scalability over accuracy because we want to test a value that can permit
good computational results for large and very large data sets.

5.1.2 RESULTS AND DISCUSSION

Table 3 reports the accuracy results of all tested methods and kernels. In addition to the mean ranks
reported in the figure, we assessed the statistical significance of the differences between pairs of
methods using the Wilcoxon Signed Rank Test (Wilcoxon, 1945; Demšar, 2006) with α = 0.05.
The test highlights that FkNNSVM is significantly better than LibSVM for the linear and polynomial
kernels, whereas for the RBF kernel no significant differences are detected, although the mean rank
of FkNNSVM with RBF kernel is lower than LibSVM with RBF kernel. Applied to FaLK-SVM, the
Wilcoxon Signed Rank Test detects a significant difference with respect to LibSVM only for the
linear kernel. If we perform the Friedman test (Friedman, 1940) (α = 0.05), the null hypothesis is

5. For data set with less than 1024 points some k values are of course not tested.
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data set LibSVM FkNNSVM FaLK-SVM
Klin Krb f Khpol Klin Krb f Khpol Klin Krb f Khpol

sonar 74.52 87.83 83.16 89.36 86.90 87.40 84.55 87.88 84.05
heart 84.81 82.22 84.81 84.81 81.11 84.81 83.70 81.85 83.70

mushrooms 97.99 98.33 98.32 98.67 98.33 98.6 99.00 99.00 99.00
haberman 73.20 73.20 72.89 75.82 75.16 74.18 73.25 73.20 73.87

liver 68.71 74.24 71.90 73.64 73.96 73.94 70.73 71.92 71.92
ionosphere 88.04 93.72 88.88 93.75 94.59 93.75 86.91 94.01 89.18

vote 94.95 96.32 94.95 96.32 96.33 96.32 94.94 96.32 94.94
musk1 86.55 94.54 93.07 89.44 94.96 91.17 87.18 93.90 92.43

hill-valley 63.70 66.00 63.70 64.86 65.18 64.86 65.17 64.03 65.00
breast 96.78 96.78 96.78 96.49 96.49 96.35 96.19 96.49 96.19

australian 85.50 84.78 84.20 84.78 85.50 84.92 85.07 85.07 84.78
transfusion 76.21 77.40 76.47 79.81 78.74 79.81 79.67 78.87 79.94
diabetes 76.54 76.54 76.68 76.81 78.24 77.07 75.90 76.68 75.12
fourclass 77.39 100.00 78.66 100.00 100.00 100.00 100.00 100.00 100.00
tic-tac-toe 98.33 99.68 100.00 100.00 100.00 100.00 100.00 100.00 100.00

mam 82.10 82.63 81.27 82.95 82.73 82.85 81.80 82.63 80.97
numer 77.00 75.90 76.50 76.30 75.70 76.00 76.70 74.70 75.90
splice 80.41 86.70 86.60 80.41 86.30 86.60 78.30 86.20 86.60

spambase 89.80 90.60 89.80 90.60 90.50 90.60 90.70 90.60 90.70
vehicle 82.71 84.16 84.80 82.78 84.64 84.71 83.27 84.72 85.04
cmc 59.26 65.45 64.16 62.46 67.72 63.61 63.61 65.31 64.36

ijcnn1 85.53 93.94 92.73 93.93 93.47 93.60 92.80 94.47 93.20
a1a 83.43 81.94 83.43 82.87 82.06 82.87 82.87 82.06 82.87

chess 96.57 98.45 98.03 97.84 98.50 98.08 97.32 98.45 98.08
astro 95.34 96.73 96.89 96.96 96.92 97.05 96.96 96.67 96.86

mean rank 7.04 4.60 5.80 4.38 3.86 4.02 5.72 4.56 5.02

Table 3: 10-fold CV accuracy results for the 25 data set of Experiment 1. The best results for each
data set are highlighted in bold (taking into account all decimal values).

violated, but, according to the Nemenyi post-hoc test (Nemenyi, 1963) (α= 0.05) the only method
that is statistically significantly different from the others is SVM with linear kernel.

The observation that FkNNSVM is significantly better than SVM if a non-local kernel is used,
is a confirmation of what we already noticed (Segata and Blanzieri, 2009a). Using the RBF kernel,
instead, no significant differences are detected, although the mean rank of FkNNSVM with RBF
kernel is lower than LibSVM with RBF kernel. This is mainly due to the fact that SVM with RBF
kernel is already very accurate and significant improvements over it are very difficult. We may
also say that locality is already included in the RBF kernel and thus, at least for non-large data
sets, the adoption of a local method is somehow equivalent. Regarding FaLK-SVM, significant
differences with respect to LibSVM are detected only for the linear kernel. Although FaLK-SVM does
not achieve the accuracy results of FkNNSVM, if we look to the mean ranks, we can conclude that the
approximation on the kNNSVM approach introduced in FaLK-SVM still permits to achieve slightly
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data set # of train. testing class original
name feat. points points balancing source
ijcnn1 22 49990 91701 90%/10% LibSVM rep. (Chang and Lin, 2001)

cov-type * 54 100000 481010 51%/49% LibSVM rep. (Chang and Lin, 2001)
census-inc 41 199523 99762 94%/6% UCI rep. (Asuncion and Newman, 2007)

cod-rna 8 364651 121549 67%/33% (Uzilov et al., 2006)
intr-det 40 1026588 311029 79%/21% UCI KDD rep. (Hettich and Bay, 1999)

2-spirals * 2 100000 100000 50%/50% Synthetic (Segata and Blanzieri, 2009c)
ndcc * 5 100000 100000 61%/39% Synthetic (Thompson, 2006)

checker-b * 2 300000 100000 50%/50% Synthetic (e.g., see Tsang et al., 2005)

Table 4: The 8 large data sets of the second empirical experiment. The data sets whose extensions
are used also in Experiment 3 are denoted with *.

better results than SVM also on non-large data sets, confirming our preliminary analysis (Segata and
Blanzieri, 2009c). These results also indicates that the E[λ] term introduced in the risk of FaLK-SVM
(Section 4.4), due to the approximations introduced to the kNNSVM approach, is small enough to
assure higher generalisation accuracies with respect to SVM.

The overall outcome of this experiment is that FaLK-SVM is a good approximation of FkNNSVM
that maintains a little advantage over SVM and it is particularly effective with the RBF kernel with
respect to linear and polynomial kernels. Notice that the experiment is carried out using small data
sets in which locality is very likely to play a marginal role differently from large data sets in which
it can be crucial.

5.2 Experiment 2: FaLK-SVM, FaLK-SVMc and FaLK-SVMl vs. LibSVM and FkNN on Large
Data Sets

In this experiment we apply FaLK-SVM, FaLK-SVMc, FaLK-SVMl, LibSVM on 8 large data sets
comparing the computational and generalisation performances using the RBF kernel, because pre-
liminary experiments showed that the linear or polynomial kernels have very low accuracy results
on the considered problems. We also add to the comparison the kNN classifier (implemented with
cover trees and called FkNN) using the Euclidean distance.

5.2.1 EXPERIMENTAL PROTOCOL

The data sets considered in this experiment are listed in Table 4 with the corresponding sources and
are all scaled in the [0,1] interval. They range from a training set cardinality of about 50k points
to more than one million, whereas the dimensionality is not high (always under 60) with separated
test sets. In order to select the parameters a 10-fold CV procedure is performed in the training
set (apart from FaLK-SVMl) choosing the values in the following sets: C ∈ {2−2,2−1, . . . ,29,210},
σ ∈ {2−15,2−14, . . . ,24,25}, k for FaLK-SVM in {250,500,1000,2000,4000,8000} with k′ = k/2,
and k for FkNNSVM in {1,3,5,9,15,21,31,51,71,101,151}. FaLK-SVM does not necessarily test
all values for k because if the maximum empirical accuracy is found for a specific value of k,
for example k = 500, and for the following value, in this case k = 1000, the maximum is lower,
the remaining higher values of k are not tested. Due to the computational resources necessary
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data set FkNN LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMl
10f-CV test 10f-CV test 10f-CV test 10f-CV test test

ijcnn1 97.37 96.64 98.99 97.98 99.04 98.04 98.96 97.98 98.03
cov-type 91.73 91.99 92.60 92.83 92.68 92.89 92.44 92.60 92.84

census-inc 94.53 94.52 95.14 95.13 95.07 95.07 95.00 94.99 94.99
cod-rna 95.88 96.25 97.18 97.17 97.19 97.23 97.06 97.09 97.29
intr-det 99.74 92.04 99.89 91.77 99.74 91.97 99.69 92.01 91.91

2-spirals 88.43 88.43 85.18 85.29 88.42 88.47 88.29 88.45 88.30
ndcc 85.47 84.99 86.66 86.21 86.63 86.29 86.33 85.93 86.24

checker-b 94.31 94.08 94.46 94.21 94.46 94.21 94.45 94.19 94.23
test acc. 4.25 3.25 1.63 3.38 2.50mean rank

Table 5: Empirical (using 10-fold CV) and generalisation accuracies of FkNN, LibSVM, FaLK-SVM,
FaLK-SVMc and FaLK-SVMl on the 8 large data sets of Experiment 2. The best generalisa-
tion accuracy for each data set is highlighted in bold. The last line reports the mean rank
of each method among the 8 data sets.

for performing model selection, especially for LibSVM, we performed the cross-validation runs
on a Linux-based TORQUE cluster with 20 nodes. For FaLK-SVMl the local model selection is
performed on 10 local models,C ∈ {20,22,24,26}, k ∈ {500,1000,2000,4000}, σ locally estimated
with the 1st, 10th, 50th or 90th percentile of the distribution of the distances.

5.2.2 RESULTS AND DISCUSSION

Table 5 reports the generalisation accuracies of the analysed classifiers. Looking at the mean ranks,
we can see that FaLK-SVM is the most accurate (it achieves the best results in half of the data sets),
followed by FaLK-SVMl. LibSVM and FaLK-SVMc seem to perform very similar but little worse
than FaLK-SVM and FaLK-SVMl. Not surprisingly, FkNN performs poorly in almost all the data sets,
except for the intr-det data set in which it achieves the best result. According to the Wilcoxon Signed
Rank Test (Wilcoxon, 1945; Demšar, 2006) FaLK-SVM is significantly more accurate than LibSVM,
whereas, excluding FkNN, no other significant differences are detected. Apart for the intr-det data
set that has slightly different distribution in the training and testing sets (some types of network
attacks are present in the test set only), the best empirical accuracies are always very similar to the
generalisation accuracies meaning that all techniques avoid over-fitting.

Table 6 reports the training times together with the speed-ups of FaLK-SVM, FaLK-SVMc and
FaLK-SVMl with respect to LibSVM. We can notice that the speed-ups achieved by FaLK-SVM and
FaLK-SVMc are always greater than 4.7, and in the majority of the cases they are at least one order
of magnitude bigger than LibSVM. Generally, FaLK-SVMc turns out to be faster than FaLK-SVM
although the two classifiers implement the same training algorithm. This happens because the model
selection chooses for FaLK-SVMc a lower value of k with respect to FaLK-SVM. In fact, FaLK-SVMc
is less accurate than FaLK-SVM in choosing the nearest model for a testing point, and this causes an
higher value of the E[λ] constant that increases the risk of FaLK-SVMc with respect to FaLK-SVM
(see Equation 14 and Equation 15). So using a lower k (and thus a lower k′) tends to have more
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data set
LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMl
training training speed-up training speed-up train. time speed-up
time (s) time (s) on LibSVM time (s) on LibSVM with l.m.s. on LibSVM

ijcnn1 102 15 6.8 15 6.8 1850 0.1
cov-type 8362 88 95.0 38 220.1 1214 6.9

census-inc 13541 6047 4.7 2391 5.7 10271 1.3
cod-rna 9777 395 24.8 225 43.5 579 16.9
intr-det 5262 286 18.4 284 18.5 450 11.7

2-spirals 4043 188 21.5 81 49.9 3442 1.2
ndcc 1487 302 4.9 92 16.2 4609 0.3

checker-b 6047 334 18.1 366 16.5 1374 4.4

Table 6: Training times for Experiment 2 of LibSVM, FaLK-SVM, FaLK-SVMc and FaLK-SVMl and
the speed-ups of the three local methods with respect to LibSVM. The best training time
for each data set is highlighted in bold.

data set
LibSVM FaLK-SVM FaLK-SVMc FaLK-SVMl
testing testing speed-up testing speed-up testing speed-up
time (s) time (s) on LibSVM time (s) on LibSVM time (s) on LibSVM

ijcnn1 43 32 1.3 5 8.6 36 1.2
cov-type 2795 202 13.8 73 38.3 191 14.6

census-inc 597 1347 0.4 58 10.3 1328 0.4
cod-rna 396 261 1.5 58 6.8 259 1.5
intr-det 192 146 1.3 76 2.5 149 1.3

2-spirals 957 10 95.7 5 191.4 18 53.2
ndcc 148 61 2.4 7 21.1 61 2.4

checker-b 167 10 16.7 7 23.9 7 23.9

Table 7: Testing times for Experiment 2 of LibSVM, FaLK-SVM, FaLK-SVMc and FaLK-SVMl and
the speed-ups of the three local methods with respect to LibSVM. The best testing time for
each data set is highlighted in bold.

models in the proximity of the testing point making the choice less problematic. FaLK-SVMl is
sometimes slower than LibSVM, but we have to consider that FaLK-SVMl includes model selection,
whereas for the other methods the time needed by model selection is not considered in the training
time, so, practically speaking, FaLK-SVMl is the fastest method if the optimal parameters are not a
priori known.

The testing times required by the analysed methods are reported in Table 7. As expected FaLK-
SVMc is the fastest among all methods with speed-up over LibSVM ranging from more than 2 to
almost 200. FaLK-SVM and FaLK-SVMl are also generally faster than LibSVM with only one case in
which the testing time is about two times slower.

This experiment shows that for 8 non high-dimensional data sets, our approach outperforms a
state-of-the-art accurate SVM solver both in terms of generalisation accuracies and computational
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performances. Although we have an additional parameter to tune (k), FaLK-SVM and FaLK-SVMc
are faster enough to maintain the performance advantages over LibSVM also for model selection
(we choose k in a small set of values). Moreover, with FaLK-SVMl we addressed the problem of
model selection with a specific approach to set the parameters; FaLK-SVMl outperforms LibSVM in
generalisation accuracy, and the time it needs for both internal model selection and training is at
least comparable (faster in 7 cases on a total of 8) with the time LibSVM needs for the training only.

5.3 Experiment 3: Comparison of Scalability Performances of FaLK-SVM, FaLK-SVMc,
FaLK-SVMl, LibSVM and Approximated SVM Solvers

In this experiment we test the scalability performances of our techniques (FaLK-SVM, FaLK-SVMc,
FaLK-SVMl) on training sets with increasing sizes using the RBF kernel against several other tech-
niques. The techniques taken into account are LibSVM, the approximated SVM solvers called CVM,
LASVM, USVM, BVM, CPSP (Section 2.3), SVM-bagging with fixed dimension of the sub-sampled
training sets (SVM-B) and SVM-bagging with fixed proportion of the sub-sampled training sets with
respect to the whole training set (SVM-Bs). Although we apply all the classifiers with the same pro-
tocol on the same data sets, we report, for clearness, the results in two parts: the comparison of
FaLK-SVM with LibSVM and the approximated SVM solvers in Section 5.3.2, the comparison of
FaLK-SVM with its variants FaLK-SVMc and FaLK-SVMl in Section 5.3.3.

5.3.1 EXPERIMENTAL PROTOCOL

We consider here the data sets of Table 4 for which we can further enlarge the training set size.
The data sets for which we can add sets of new training examples are the cov-type data set (full
training set of 500k points) and the three artificial data sets named 2-spirals, ndcc and checker-b (up
to 3 million points). For cov-type the testing set is reduced to 50k examples (the other examples
are added to the training set) so the accuracy results are not directly comparable to the previous
experiment.

The model selection for all the classifiers (with the exception of FaLK-SVMl that performs in-
ternally a local model selection) is performed on the smallest training set only, using the chosen
parameter for all the higher training set sizes. This is necessary, especially for LibSVM and approx-
imated SVM solvers, for computational reasons. For LibSVM, BVM, CVM, USVM (with the convex
concave procedure) and CPSP, we performed cross validation forC and σ using the same setting of
the previous experiment. The default threshold value ε for the stopping criteria are maintained: 10−3
for LibSVM, FaLK-SVM, LASVM and 10−1 for CPSP while CVM and BVM automatically choose the
value of ε based on the data at each application. We set the same size of the kernel cache (100M)
for all the methods. The maximum number of core vectors for CVM and BVM is 50000 (the default
value), the maximum number of basis vectors for CPSP is set to 1000. For SVM-B and SVM-Bs we
need to set respectively the size and the proportion of the sub-sampled training sets and the param-
eters of the SVMs. For SVM-B the size of the sub-sampled training sets is equal to the 5% of the
original training sets of each data set (namely 100000 for cov-type, 2-spirals and ndcc and 300000
for checker-b), whereas SVM-Bs maintains the same sampling rate (5%) for all the applications
and so the cardinality of the sub-sampled training sets increases with the cardinality of the training
set. Both SVM-B and SVM-Bs train 101 SVMs and the prediction is performed using the majority
voting. The value of 101 is chosen because it is a sufficient high number for allowing good accura-
cies and it is an odd number preventing possible ties in the majority voting. The parameters of the
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SVM for SVM-B and SVM-Bs (using LibSVM) are chosen using model selection with the same grids
of parameters used for LibSVM. We also tested FaLK-SVMl using the same setting of the previous
experiment. Each algorithm is tested for training set sizes requiring no more than 100000 seconds
(more than 27 hours) for training.

Since the authors of BVM (Tsang et al., 2005) and CVM (Tsang et al., 2007) declared the Linux
implementation of their techniques deprecated (see the authors reply to Loosli and Canu (2007)
available on BVM webpage), we use the Windows executables on a Intel Pentium D Dual Core
CPU 3.40GHz with 2Gb of RAM running Windows XP instead of the AMD Athlon 64 X2 Dual
Core Processor 5000+, 2600MHz, with 3.56Gb of RAM with Linux operating system used for all
the other classifiers. Because of the use of different operating systems and hardware for BVM and
CVM, their running times should not be directly compared to the others. However, the comparison
is justified by preliminary tests that showed that the Linux version of BVM on the AMD Athlon
machine and the Windows version of BVM on the Intel Pentium machine have similar running
times.

5.3.2 RESULTS AND DISCUSSION: FALK-SVM VS LIBSVM AND APPROXIMATED SVM
SOLVERS

Figure 3 shows the generalisation accuracies of the methods at increasing training set sizes. Some
methods do not appear in the figures due to low generalisation results or computational difficulties
that cause abnormal terminations of the algorithms, and some accuracy results for large training
set sizes are not present due to the excessive computational time required for training (more than
100000 seconds). We can observe that it is very important to use as many points as possible in
order to increase the accuracies for the cov-type and ndcc data sets. The same consideration can
be done for the 2-spirals data, although FaLK-SVM already starts from very high accuracies and the
increment is limited, while for the checker-b data set the increment of the accuracies is negligible for
almost all the methods. For the checker-b data set, the enlarging of the training set is not motivated
from the accuracy viewpoint, but we still use it as a benchmark for the computational performances.

Comparing the generalisation accuracies of Figure 3 among the tested methods, we can see
that FaLK-SVM is almost always on top for each of the four data sets. In this experiment as well
as in the previous ones, we set k′ = k/2; lower values for k′ would probably allow FaLK-SVM
to achieve higher accuracy results (although with worse computational performances). However,
even if the choice of the k′ parameter can be non-optimal, we decided to avoid the model selection
for k′ since the results are already satisfactory. The methods that seem to give results comparable
with FaLK-SVM (apart from the 2-spirals data set) are LibSVM and USVM and they are able, in few
cases, to slightly improve the FaLK-SVM results (LibSVM for 2 training set sizes for cov-type and
checker-b, USVM for 2 training set sizes for cov-type and checker-b and 1 for ndcc). The bagging
techniques give high accuracies only for the checker-b data set; this is not surprising because we
already noticed that for the checker-b problem the use of large data sets is not required and thus
subsampling-based methods like SVM-B and SVM-Bs are competitive. The results of the online and
active learning approach of LASVM are slightly lower than FaLK-SVM, LibSVM and USVM. CPSP
gives acceptable results in only one case, and for the 2-spirals and checker-b data sets it suffers from
numerical problems possibly due to the scaling of the features in the [0,1] interval. Enlarging the
maximum number of basis functions for CPSP gives higher accuracies but the computational time
needed to build the models is too high. The results we achieve here for LibSVM and LASVM on the
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Figure 3: Generalisation accuracies of FaLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP,
SVM-B and SVM-Bs on the cov-type, 2-spirals, ndcc and checker-b data sets with increas-
ing training set sizes (Experiment 3). Some accuracies are missing due to the excessive
computational requirements (more than 100000 seconds for training) of the correspond-
ing method for large training set sizes.
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cov-type data sets are a little higher than the results in Bordes et al. (2005) (about 1% better both for
100k and 500k training set sizes), and we believe that this is due to the model selection approach we
used here that is performed with an exhaustive cross-validation grid search for C and σ. As we can
notice in Figure 3, we observed stability problems for CVM and BVM, even if we used the Windows
binaries as suggested by the authors.

The training computational performances shown in Figure 4 highlight that FaLK-SVM is always
much faster than the alternative techniques that are competitive from the accuracy viewpoint. In
fact, although CVM, BVM and SVM-B show good scalability performances and in few cases they
overcome the performances of FaLK-SVM, we noticed from Figure 3 that their generalisation abil-
ities are poor. The scaling behaviours of LibSVM, LASVM and USVM are very similar (among the
three methods LibSVM is the fastest for ndcc, LASVM is the fastest for 2-spirals and USVM is the
fastest for checker-b) but substantially worse than FaLK-SVM one (FaLK-SVM is always at least one
order of magnitude faster with speed-ups increasing with the training set sizes). SVM-Bs is slightly
faster than LibSVM but the scalability behaviour is very similar. The methods that achieve acceptable
accuracy results on the smallest training set size (i.e., LibSVM, LASVM, USVM) are not applicable
when the number of training examples increases sensibly because of poor computational scalability
performance; this is evident for the 2-spirals, ndcc and checker-b data sets in which the training
times of LibSVM, LASVM, USVM exceed 100000 seconds as soon as the training set cardinality ap-
proaches one million (the only exception is USVM that is applicable on 1.5 training examples of the
checker-b data set). On the contrary, FaLK-SVM processes data sets of 3 millions examples in the
order of minutes or few hours. An experiment comparing LibSVM and LASVM on the cov-type data
set with conclusions similar to ours is reported by Bordes et al. (2005) in which however LASVM is
about a third faster than LibSVM whereas here LibSVM slightly overcomes LASVM; this is probably
due to the fact that for LASVM the only available implementation is the original one by Bordes et al.
(2005) whereas LibSVM is frequently updated and improved. Finally, CPSP performs slightly better
than LibSVM, LASVM and USVM.

The computational performances of the prediction phase are reported in Figure 5. Also in this
case the performance of FaLK-SVM is excellent: only CPSP and CVM are faster in 2 data sets than
FaLK-SVM, but their corresponding generalisation accuracies are low. As expected, CPSP achieves
very fast predictions because it limits the number of basis function to 1000 and thus for each testing
points no more than 1000 kernel functions are computed. LibSVM, LASVM and USVM achieve
similar results also in testing performances and, apart from small training sets for the ndcc data set,
they are at least one order of magnitude slower than FaLK-SVM and the difference grows for large
training set sizes. The slowest approach is SVM-Bs and this is due to the high number of models
that need to be evaluated for each testing point and to the fact that the size of the models increases
with the training set size. Also SVM-B has rather high prediction times but, since the size of the
models is almost constant, also the performances at increasing training sizes are constant. It can be
argued that the number of models used for bagging can be lowered to obtain faster prediction times;
however, if we want to achieve the computational performances of FaLK-SVM we need to use no
more than 20 models (in the worst case) and this seriously affects the prediction accuracies that are
already much lower than FaLK-SVM ones.

The overall conclusion we can draw about the scalability of the proposed techniques is that, at
least for these 4 non high-dimensional data sets, FaLK-SVM is substantially better than the state-
of-the-art kernel methods for classification, and this is achieved without affecting the accuracy
performances that showed to be always at least as good as the best alternative technique. Apart
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Figure 4: Training times of FaLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP, SVM-B and
SVM-Bs on the cov-type, 2-spirals, ndcc and checker-b data sets with increasing training
set sizes (Experiment 3). The times (in seconds) are reported in logarithmic scale.
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(b) 2-spirals data set
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Figure 5: Testing times of FaLK-SVM, LibSVM, BVM, CVM, LASVM, USVM, CPSP, SVM-B and
SVM-Bs on the data sets of Experiment 3 with increasing training set sizes. The times
(in seconds) are reported in logarithmic scale. Some testing times are missing due to
the excessive computational requirements (more than 100000 seconds for training) of the
corresponding method for large training set sizes.
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for LibSVM (and consequently for SVM-B and SVM-Bs), we have to say that the available code of
the other tested techniques has not been recently updated and for this reason it is possible to argue
that higher performances with more optimised implementations of the tested approaches could be
reached. It is also necessary to underline that in literature LASVM, USVM, CPSP, BVM and CVM
have been prevalently tested on data sets with high dimensionality or, apart for cov-type, on data
sets not requiring highly non-linear decision functions. The approximated non-linear SVM solvers
and bagging approaches we tested could be indicated for data in which the linear kernel is not the
optimal choice, but, at the same time, the decision function can be accurately reconstructed with a
reduced amount of information (number of examples, support vectors or basis functions).

5.3.3 RESULTS AND DISCUSSION: COMPARISON BETWEEN FALK-SVM, FALK-SVMC AND
FALK-SVML

Figure 6 reports the comparison of the generalisation accuracies of FaLK-SVM, FaLK-SVMc and
FaLK-SVMl at increasing training set size. The computational performances for the training phase
are reported in Figure 7, and for the testing phase in Figure 8.

From the accuracy viewpoint, we can notice that, as expected, FaLK-SVM is almost always
slightly more accurate than FaLK-SVMc. FaLK-SVMl, apart from checker-b, is less accurate than
FaLK-SVM for the smaller training set sizes, and this is due to the fact that FaLK-SVM performs a
full grid search for model selection whereas FaLK-SVMl adopts the very fast local model selection
approach. However, FaLK-SVMl rivals FaLK-SVM as the training set sizes increases. This is rea-
sonable because FaLK-SVM uses for all the training set sizes the parameters found for the smaller
training sets, and the best cross-validated parameters can differ for sub-sampled sets with differ-
ent cardinality. For example, as the number of training points increases, the radius of the local
neighbourhoods decreases if we maintain the same k and k′ values, and the original value for the
width parameter of the RBF kernel can no longer be the optimal one. For this reason, in the case of
cov-type and ndcc data sets, FaLK-SVMl achieves higher accuracies than FaLK-SVM for the largest
training sets. FaLK-SVMl shows a slightly higher accuracy variability then FaLK-SVM and FaLK-
SVMc at different training set sizes; this is an empirical confirmation that the parameters selected
by FaLK-SVMl can be less stable than the parameters selected with standard cross validation, but the
phenomenon seems to be acceptable if not negligible.

The training computational performances of Figure 7 confirm (as already discussed in Sec-
tion 5.2.2) that, although FaLK-SVM and FaLK-SVMc make use of the same training algorithm, the
model selection procedure selects lower values of k for FaLK-SVMc, thus assuring faster training
times than FaLK-SVM. The speed-ups of FaLK-SVMc with respect to FaLK-SVM are however never
higher than one order of magnitude. For FaLK-SVMl we can notice a somehow irregular behaviour
for increasing dimensions of the training set and this is due to the different values of the neighbour-
hood, kernel and regularisation parameters it chooses during the internal fast local model selection
phase. In some cases FaLK-SVMl is significantly slower than FaLK-SVM. However, the training
times for FaLK-SVMl include the model selection procedure whereas for FaLK-SVM we consider
only the training with the optimal parameters, so we can conclude that FaLK-SVMl is a good choice
for huge training sets on which traditional model selection becomes intractable.

The testing times reported in Figure 8 confirm that FaLK-SVMc is always faster than FaLK-SVM
and FaLK-SVMl. In particular, we can notice that FaLK-SVMc at least halves the testing time of FaLK-
SVM. FaLK-SVMl is computationally very similar to FaLK-SVM. This is not surprising because the
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Figure 6: Generalisation accuracies of FaLK-SVM, FaLK-SVMc and FaLK-SVMl on the cov-type,
2-spirals, ndcc and checker-b data sets with increasing training set sizes (Experiment 3).
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Figure 7: Training times of FaLK-SVM, FaLK-SVMc, and FaLK-SVMl on the cov-type, 2-spirals,
ndcc and checker-b data sets with increasing training set sizes (Experiment 3). The times
(in seconds) are reported in logarithmic scale.
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(b) 2-spirals data set
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Figure 8: Testing times of FaLK-SVM, FaLK-SVMc, and FaLK-SVMl on the cov-type, 2-spirals, ndcc
and checker-b data sets with increasing training set sizes (Experiment 3). The times (in
seconds) are reported in logarithmic scale.
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only difference between FaLK-SVM and FaLK-SVMl regards the model selection but both classifiers
need, during testing, to perform a nearest neighbour search of the query points among all training
examples, differently from FaLK-SVMc that performs the nearest neighbour search only among the
centres of the local models.

The FaLK-SVMl results permit us to discuss the sensitivity of the local kernel machine ap-
proaches with respect to the neighbourhood parameter k. The local model selection of FaLK-SVMl
selects different values of k at each application and the k selected by FaLK-SVMl is very often dif-
ferent from the value selected by FaLK-SVM with standard model selection. However, the accuracy
results are not very dependent on this as we notice in Figure 6 in which the accuracy variations
of FaLK-SVMl as the training sets increase are rather smooth and the accuracies are very similar to
FaLK-SVM. So the sensitivity of the accuracies with respect to k for local kernel machines seems to
be low at least for large data sets. From the computational viewpoint, instead, we know from the
complexity analysis that the advantages of local kernel machines are effective as long as k is sub-
stantially lower then N. In our experiments the value of k selected by model selection is bounded to
8000; higher values, although not tested, may decrease the computational performances.

We can conclude that FaLK-SVM, FaLK-SVMc and FaLK-SVMl achieve similar accuracy and
computational results. When the model selection for FaLK-SVM and FaLK-SVMc become computa-
tionally intractable, FaLK-SVMl is an option to efficiently perform model selection and thus obtain
a lower overall training time. When very low testing times are required, FaLK-SVMc is preferable
to FaLK-SVM at the price of a slightly lower generalisation accuracy.

6. Conclusions

In this work, we have introduced a new local kernel-based classifier, called FaLK-SVM, that is scal-
able for large non high-dimensional data. The approach is developed starting from the theory of
local learning algorithms and in particular from the Local SVM classifier, called kNNSVM. Various
strategies are introduced to overcome the computational problems of kNNSVM and to switch from
a completely lazy-learning setting to a eager learning setting with efficient predictions. Learning
and complexity bounds for FaLK-SVM are favourable if compared with the SVM ones. FaLK-SVM
has, in fact, a training time complexity which is sub-quadratic in the training set size, and a predic-
tion time complexity which is logarithmic. A novel approach for model selection, again based on
locality, is introduced obtaining the FaLK-SVMl classifier which substantially unburdens the model
selection strategies based on cross-validation. Another variant of the algorithm, calledFaLK-SVMc,
permits to simplify the prediction phase. We thus showed that locality can be used to develop
computationally efficient classifiers.

We carried out an extensive empirical evaluation of the introduced approaches showing that,
for large classification problems requiring non linear decision functions our FaLK-SVM algorithm
is much faster and accurate than traditional and approximated SVM solvers. In fact, (i) FaLK-SVM
achieves very good accuracy results because it considers all the points without locally under-fitting
the data and (ii) FaLK-SVM is very fast and scalable because the cardinality of the local problems
can be maintained low. The variant called FaLK-SVMc further enhances testing speed at the price of
a little accuracy loss, and the other variant, called FaLK-SVMl, decreases the overall training time.

In general, we have showed that locality can be the key not only for obtaining accurate classi-
fiers, but also for effectively speeding-up kernel-based algorithms.
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Further developments of the approach include a dimensionality reduction preprocessing step in
order to attack also high-dimensional problems, the application of local classifiers different from
SVM, and a distributed parallel version. Also the determination of the critical value of the intrin-
sic dimensionality (rather than the number of features) above which the local approaches are not
effective is still an open question and the answer should be very data-dependent.
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39, rue Joliot Curie
F-13013 Marseille, France

Editor: Nicolas Vayatis

Abstract
PAC-Bayes bounds are among the most accurate generalization bounds for classifiers learned from
independently and identically distributed (IID) data, and it is particularly so for margin classifiers:
there have been recent contributions showing how practical these bounds can be either to perform
model selection (Ambroladze et al., 2007) or even to directly guide the learning of linear classifiers
(Germain et al., 2009). However, there are many practical situations where the training data show
some dependencies and where the traditional IID assumption does not hold. Stating generalization
bounds for such frameworks is therefore of the utmost interest, both from theoretical and prac-
tical standpoints. In this work, we propose the first—to the best of our knowledge—PAC-Bayes
generalization bounds for classifiers trained on data exhibiting interdependencies. The approach
undertaken to establish our results is based on the decomposition of a so-called dependency graph
that encodes the dependencies within the data, in sets of independent data, thanks to graph frac-
tional covers. Our bounds are very general, since being able to find an upper bound on the fractional
chromatic number of the dependency graph is sufficient to get new PAC-Bayes bounds for specific
settings. We show how our results can be used to derive bounds for ranking statistics (such as AUC)
and classifiers trained on data distributed according to a stationary β-mixing process. In the way,
we show how our approach seamlessly allows us to deal with U-processes. As a side note, we also
provide a PAC-Bayes generalization bound for classifiers learned on data from stationary ϕ-mixing
distributions.

Keywords: PAC-Bayes bounds, non IID data, ranking, U-statistics, mixing processes
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1. Introduction

This introductory section first recalls a few PAC-Bayesian results that set the background of the
present work. An overview of our contributions is then given, and results from the literature closely
related to ours are described. Lastly, the structure of the paper is provided.

1.1 Background

Recently, there has been much progress in the field of generalization bounds for classifiers, the
most noticeable of which are Rademacher-complexity-based bounds (Bartlett andMendelson, 2002;
Bartlett et al., 2005), stability-based bounds (Bousquet and Elisseeff, 2002) and PAC-Bayes bounds
(McAllester, 1999). PAC-Bayes bounds, introduced by McAllester (1999), and refined in several
occasions (Seeger, 2002a; Langford, 2005; Audibert and Bousquet, 2007), are some of the most
appealing advances from the tightness and accuracy points of view (an excellent monograph on the
PAC-Bayesian framework is that of Catoni (2007)). Among others, striking results have been ob-
tained concerning PAC-Bayes bounds for linear classifiers: Ambroladze et al. (2007) showed that
PAC-Bayes bounds are a viable route to do actual model selection; Germain et al. (2009) recently
proposed to learn linear classifiers by directly minimizing the linear PAC-Bayes bound with conclu-
sive results, while Langford and Shawe-taylor (2002) showed that under some margin assumption,
the PAC-Bayes framework allows one to tightly bound not only the risk of the stochastic Gibbs clas-
sifier (see below) but also the risk of the Bayes classifier. The variety of (algorithmic, theoretical,
practical) outcomes that can be expected from original contributions in the PAC-Bayesian setting
explains and justifies the increasing interest it generates.

1.2 Contribution

To the best of our knowledge, PAC-Bayes bounds have essentially been derived for the setting where
the training data are independently and identically distributed (IID). Yet, being able to learn from
non-IID data while having strong theoretical guarantees on the generalization properties of the
learned classifier is an actual problem in a number of real world applications such as, for instance,
bipartite ranking (and more generally k-partite ranking) or classification from sequential data. Here,
we propose the first PAC-Bayes bounds for classifiers trained on non-IID data; they constitute a
generalization of the IID PAC-Bayes bound and they are generic enough to provide a principled
way to establish generalization bounds for a number of non-IID settings. To establish these bounds,
we make use of simple tools from probability theory, convexity properties of some functions, and
we exploit the notion of fractional covers of graphs (Schreinerman and Ullman, 1997). One way to
get a high level view of our contribution is the following: fractional covers allow us to cope with
the dependencies within the set of random variables at hand by providing a strategy to make (large)
subsets of independent random variables on which the usual IID PAC-Bayes bound is applied. Note
that we essentially provide bounds for the case of identically and non-independently distributed
data; the additional results that we give in the appendix generalizes to non-identically and non-
independently distributed data.

1.3 Related Results

We would like to mention that the idea of dealing with sums of interdependent random variables by
separating them into subsets of independent variables to establish concentration inequalities dates
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back to the work of Hoeffding (1948, 1963) on U-statistics. Explicitly using the notion of (frac-
tional) covers—or, equivalently, colorings—of graphs to derive such concentration inequalities has
been proposed by Pemmaraju (2001) and Janson (2004) and later extended by Usunier et al. (2006)
to deal with functions that are different from the sum. Just as Usunier et al. (2006), who used their
concentration inequality to provide generalization bounds based on the fractional Rademacher com-
plexity, we take the approach of decomposing a set of dependent random variables into subsets of
dependent random variables a step beyond establishing concentration inequality to provide what we
call chromatic PAC-Bayes generalization bounds.

The genericity of our bounds is illustrated in several ways. It allows us to derive generalization
bounds on the ranking performance of scoring/ranking functions using two different performance
measures, among which the area under the ROC curve (AUC) . These bounds are directly related to
the work of Agarwal et al. (2005), Agarwal and Niyogi (2009), Clémençon et al. (2008) and Freund
et al. (2003). Even if our bounds are obtained as simple specific instances of our generic PAC-Bayes
bounds, they exhibit interesting peculiarities. Compared with the bound of Agarwal et al. (2005)
and Freund et al. (2003), our AUC bound depends in a less stronger way on the skew (that is, the
imbalance between positive and negative data) of the distribution; besides it does not rest on (rank-
)shatter coefficients/VC dimension that may sometimes be hard to assess accurately; in addition,
our bound directly applies to (kernel-based) linear classifiers. Agarwal and Niyogi (2009) base their
analysis of ranking performances on algorithmic stability, and the qualitative comparison of their
bounds and ours is not straightforward because stability arguments are somewhat different from
the arguments used for PAC-Bayes bounds (and other uniform bounds). As already observed by
Janson (2004), coloring provides a way to generalize large deviation results based on U-statistics;
this observation carries over when generalization bounds are considered, which allows us to draw a
connection between the results we obtain and that of Clémençon et al. (2008).

Another illustration of the genericity of our approach deals with mixing processes. In particular,
we show how our chromatic bounds can be used to easily derive new generalization bounds for β-
mixing processes. Rademacher complexity based bounds for such type of processes have recently
been established by Mohri and Rostamizadeh (2009). To the best of our knowledge, it is the first
time that such a bound is given in the PAC-Bayes framework. The striking feature is that it is
done at a very low price: the independent block method proposed by Yu (1994) directly gives a
dependency graph whose chromatic number is straightforward to compute. As we shall see, this
suffices to instantiate our chromatic bounds, which, after simple calculations, leads to appropriate
generalization bound. For sake of completeness, we also provide a PAC-Bayes bound for stationary
ϕ-mixing processes; it is based on a different approach and its presentation is postponed to the
appendix together with the tools that allows us to derive it.

1.4 Organization of the Paper

The paper is organized as follows. Section 2 recalls the standard IID PAC-Bayes bound. Section 3
introduces the notion of fractional covers and states the new chromatic PAC-Bayes bounds, which
rely on the fractional chromatic number of the dependency graph of the data at hand. Section 4 pro-
vides specific versions of our bounds for the case of IID data, ranking and stationary β-mixing pro-
cesses, giving rise to original generalization bounds. A PAC-Bayes bound for stationary ϕ-mixing
based on arguments different from the chromatic PAC-Bayes bound is provided, in the appendix.
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2. IID PAC-Bayes Bound

We introduce notation that will hold from here on. We mainly consider the problem of binary
classification over the input space X and we denote the set of possible labels as Y = {−1,+1} (for
the case of ranking described in Section 4, we we use Y = R ); Z denotes the product space X ×Y .
H ⊆R X is a family of real valued classifiers defined on X : for h∈H , the predicted output of x∈ X
is given by sign(h(x)), where sign(x) =+1 if x≥ 0 and−1 otherwise. D is a probability distribution
defined over Z and Dm denotes the distribution of an m-sample; for instance, Dm = ⊗m

i=1D = Dm

is the distribution of an IID sample Z = {Zi}mi=1 of size m (Zi ∼ D, i = 1 . . .m). P and Q are
distributions over H . For any positive integer m, [m] stands for {1, . . . ,m}.

The IID PAC-Bayes bound, can be stated as follows (McAllester, 2003; Seeger, 2002a; Lang-
ford, 2005).

Theorem 1 (IID PAC-Bayes Bound) ∀D, ∀H , ∀δ ∈ (0,1], ∀P, with probability at least 1−δ over
the random draw of Z∼ Dm = Dm, the following holds:

∀Q, kl(êQ(Z)||eQ)≤
1
m

[

KL(Q||P)+ ln
m+1
δ

]

. (1)

This theorem provides a generalization error bound for the Gibbs classifier gQ: given a distribution
Q, this stochastic classifier predicts a class for x ∈ X by first drawing a hypothesis h according to Q
and then outputting sign(h(x)). Here, êQ is the empirical error of gQ on an IID sample Z of size m
and eQ is its true error:

êQ(Z) := Eh∼Q
1
m

m

∑
i=1

r(h,Zi) = Eh∼QR̂(h,Z) with R̂(h,Z) := 1
m ∑

m
i=1 r(h,Zi),

eQ := EZ∼DmêQ(Z) = Eh∼QR(h) with R(h) := EZ∼DmR̂(h,Z),
(2)

where, for Z = (X ,Y ),
r(h,Z) := IYh(X)<0.

Note that we will use this binary 0-1 risk function r throughout the paper and that a generalization of
our results to bounded real-valued risk functions is given in appendix. Since Z is an (independently)
identically distributed sample, we have

R(h) = EZ∼DmR̂(h,Z) = EZ∼Dr(h,Z). (3)

For p,q ∈ [0,1], kl(q||p) is the Kullback-Leibler divergence between the Bernoulli distributions
with probabilities of success q and p, and KL(Q||P) is the Kullback-Leibler divergence between Q
and P:

kl(q||p) := q ln
q
p
+(1−q) ln

1−q
1− p

,

KL(Q||P) := Eh∼Q ln
Q(h)
P(h)

,

where kl(0||0) = kl(1||1) = 0. All along, we assume that the posteriors are absolutely continuous
with respect to their corresponding priors.
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It is straightforward to see that the mapping klq : t +→ kl(q||q+ t) is strictly increasing for t ∈
[0,1−q) and therefore defines a bijection from [0,1−q) to R+: we denote by kl−1q its inverse. Then,
as pointed out by Seeger (2002a), the function kl−1 : (q,ε) +→ kl−1(q,ε) = kl−1q (ε) is well-defined
over [0,1)×R +, and, by definition:

t ≥ kl−1(q,ε)⇔ kl(q||q+ t)≥ ε.

This makes it possible to rewrite bound (1) in a more ‘usual’ form:

∀Q, eQ ≤ êQ(Z)+kl−1
(

êQ(Z),
1
m

[

KL(Q||P)+ ln
m+1
δ

])

. (4)

We observe that even if bounds (1) and (4) apply to the risk eQ of the stochastic classifier
gQ, a straightforward argument gives that, if bQ is the (deterministic) Bayes classifier such that
bQ(x) = sign(Eh∼Qh(x)), then R(bQ) =EZ∼Dr(bQ,Z)≤ 2eQ (see for instance Herbrich and Graepel,
2001). Langford and Shawe-taylor (2002) show that under some margin assumption, R(bQ) can be
bounded even more tightly.

3. Chromatic PAC-Bayes Bounds

The problem we focus on is that of generalizing Theorem 1 to the situation where there may exist
probabilistic dependencies between the elements Zi of Z= {Zi}mi=1 while the marginal distributions
of the Zi’s are identical. As announced before, we provide PAC-Bayes bounds for classifiers trained
on identically but not independently distributed data. These results rely on properties of a depen-
dency graph that is built according to the dependencies within Z. Before stating our new bounds,
we thus introduce the concepts of graph theory that will play a role in their statements.

3.1 Dependency Graph, Fractional Covers

Definition 2 (Dependency Graph) Let Z = {Zi}mi=1 be a set of m random variables taking values
in some space Z. The dependency graph Γ(Z) = (V,E) of Z is such that:

• the set of vertices V of Γ(Z) is V = [m];

• (i, j) .∈ E (there is no edge between i and j)⇔ Zi and Z j are independent.

Definition 3 (Fractional Covers, Schreinerman and Ullman, 1997) Let Γ = (V,E) be an undi-
rected graph, with V = [m].

• C⊆V is independent if the vertices inC are independent (no two vertices inC are connected).

• C= {Cj}nj=1, with Cj ⊆V, is a proper cover of V if each Cj is independent and
⋃n
j=1Cj =V.

It is exact if C is a partition of V . The size of C is n.

• C= {(Cj,ω j)}nj=1, with Cj ⊆V and ω j ∈ [0,1], is a proper exact fractional cover of V if each
Cj is independent and ∀i ∈ V, ∑n

j=1ω jIi∈Cj = 1; ω(C) = ∑n
j=1ωi is the chromatic weight of

C.

• The (fractional) chromatic number χ(Γ) (χ∗(Γ)) is the minimum size (chromatic weight) over
all proper exact (fractional) covers of Γ

1931



RALAIVOLA, SZAFRANSKI AND STEMPFEL

A cover is a fractional cover such that all the weights ωi are equal to 1 (and all the results we state
for fractional covers apply to the case of covers). If n is the size of a cover, it means that the nodes
of the graph at hand can be colored with n colors in a way such that no two adjacent nodes receive
the same color.

The problem of computing the (fractional) chromatic number of a graph is NP-hard (Schreiner-
man and Ullman, 1997). However, for some particular graphs as those that come from the settings
we study in Section 4, this number can be evaluated precisely. If it cannot be evaluated, it can be
upper bounded using the following property.

Property 1 (Schreinerman and Ullman, 1997) Let Γ= (V,E) be a graph. Let c(Γ) be the clique
number of Γ, that is, the order of the largest clique in Γ. Let Δ(Γ) be the maximum degree of a
vertex in Γ. We have the following inequalities:

1≤ c(Γ)≤ χ∗(Γ)≤ χ(Γ)≤ Δ(Γ)+1.

In addition, 1= c(Γ) = χ∗(Γ) = χ(Γ) = Δ(Γ)+1 if and only if Γ is totally disconnected.

If Z= {Zi}mi=1 is a set of random variables over Z then a (fractional) proper cover of Γ(Z), splits
Z into subsets of independent random variables. This is a crucial feature to establish our results. In
addition, we can see χ∗(Γ(Z)) and χ(Γ(Z)) as measures of the amount of dependencies within Z.

The following lemma (Lemma 3.1 in Janson, 2004) will be very useful in the following.

Lemma 4 If C= {(Cj,ω j)}nj=1 is an exact fractional cover of Γ= (V,E), with V = [m], then

∀t ∈ R m,
m

∑
i=1

ti =
n

∑
j=1

ω j ∑
k∈Cj

tk.

In particular, m= ∑n
j=1ω j|Cj|.

3.2 Chromatic PAC-Bayes Bounds

We now provide new PAC-Bayes bounds for classifiers trained on samples Z drawn from distribu-
tions Dm where dependencies exist. We assume these dependencies are fully determined by Dm and
we define the dependency graph Γ(Dm) of Dm to be Γ(Dm) = Γ(Z). As said before, the marginal
distributions of Dm along each coordinate are the same and are equal to some distribution D.

We introduce additional notation. PEFC(Dm) is the set of proper exact fractional covers of
Γ(Dm). Given a cover C= {(Cj,ω j)}nj=1 ∈ PEFC(Dm), we use the following notation:

• Z( j) = {Zk}k∈Cj ;

• D( j)
m , the distribution of Z( j): it is equal to D|Cj| =⊗

|Cj|
i=1D (Cj is independent);

• α= (α j)1≤ j≤n with α j = ω j/ω(C): we have α j ≥ 0 and ∑ jα j = 1;

• π= (π j)1≤ j≤n, with π j = ω j|Cj|/m: we have π j ≥ 0 and ∑ j π j = 1 (cf. Lemma 4).

In addition, Pn and Qn denote distributions over H n, Pj
n and Qj

n are the marginal distributions of Pn
and Qn with respect to the jth coordinate, respectively.

We can now state our main results.
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Theorem 5 (Chromatic PAC-Bayes Bound (I)) ∀Dm, ∀H , ∀δ ∈ (0,1], ∀C = {(Cj,ω j)}nj=1 ∈
PEFC(Dm), ∀Pn, with probability at least 1− δ over the random draw of Z ∼ Dm, the following
holds:

∀Qn, kl(ēQn(Z)||eQn)≤
ω
m

[

n

∑
j=1

α jKL(Qj
n||Pj

n)+ ln
m+ω
δω

]

, (5)

where ω stands for ω(C), and

ēQn(Z) :=
n

∑
j=1

π jEh∼Qj
n
R̂(h,Z( j)),

eQn := EZ∼DmēQn(Z).

Proof Deferred to Section 3.4.

We would like to emphasize that the same type of result, using the same proof techniques, can be
obtained if simple (that is, not exact nor proper) fractional covers are considered. However, as we
shall see, the ‘best’ (in terms of tightness) bound is achieved for covers from the set of proper exact
fractional covers, and this is the reason why we have stated Theorem 5 with a restriction to this
particular set of covers.

The empirical quantity ēQn(Z) is a weighted average of the empirical errors on Z( j) of Gibbs
classifiers with respective distributions Qj

n. The following proposition characterizes
eQn = EZ∼DmēQn(Z).

Proposition 6 ∀Dm, ∀H , ∀C= {(Cj,ω j)}nj=1 ∈ PEFC(Dm), ∀Qn: eQn = EZ∼DmēQn(Z) is the error
of the Gibbs classifier based on the mixture of distributions Qπ = ∑n

j=1π jQ
j
n.

Proof From the definition of π, π j ≥ 0 and ∑n
j=1π j = 1. Thus,

EZ∼DmēQn(Z) = EZ∼Dm∑
j
π jEh∼Qj

n
R̂(h,Z( j))

=∑
j
π jEh∼QjEZ( j)∼D( j)

m
R̂(h,Z( j)) (marginalization)

=∑
j
π jEh∼Qj

n
R(h) (EZ( j)∼D( j)

m
R̂(h,Z( j)) = R(h),∀ j)

= Eh∼π1Q1n+...+π jQ j
n
R(h) = Eh∼QπR(h).

Where, in the third line, we have used the fact that the variables in Z( j) are identically distributed
(by assumption, they are IID).

Remark 7 The prior Pn and the posterior Qn enter into play in Proposition 6 and Theorem 5
through their marginals only. This advocates for the following learning scheme. Given a cover and
a (possibly factorized) prior Pn, look for a factorized posterior Qn = ⊗n

j=1Qj such that each Qj

independently minimizes the usual IID PAC-Bayes bound given in Theorem 1 on each Z( j). Then
make predictions according to the Gibbs classifier defined with respect to Qπ = ∑ j π jQ j.

The following theorem gives a result that readily applies without choosing a specific cover.
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Theorem 8 (Chromatic PAC-Bayes Bound (II)) ∀Dm, ∀H , ∀δ ∈ (0,1], ∀P, with probability at
least 1−δ over the random draw of Z∼ Dm, the following holds

∀Q, kl(êQ(Z)||eQ)≤
χ∗

m

[

KL(Q||P)+ ln
m+χ∗

δχ∗

]

, (6)

where χ∗ is the fractional chromatic number of Γ(Dm), and where êQ(Z) and eQ are as in (2).

Proof This theorem is just a particular case of Theorem 5. Assume that C = {(Cj,ω j)}nj=1 ∈
PEFC(Dm) such that ω(C) = χ∗(Γ(Dm)), Pn =⊗n

j=1P= Pn and Qn =⊗n
j=1Q=Qn, for some P and

Q.
For the right-hand side of (6), it directly comes that

∑
j
α jKL(Qj

n||Pj
n) =∑

j
α jKL(Q||P) = KL(Q||P).

It then suffices to show that ēQn(Z) = êQ(Z):

ēQn(Z) =∑
j
π jEh∼Qj

n
R̂(h,Z( j)) =∑

j
π jEh∼QR̂(h,Z( j))

=
1
m∑j

ω j|Cj|Eh∼Q
1

|Cj|
∑
k
r(h,Zk) (π j =

ω j|Cj|
m ,∀ j)

= Eh∼Q
1
m∑j

ω j∑
k
r(h,Zk)

= Eh∼Q
1
m∑i

r(h,Zi) (cf. Lemma 4)

= Eh∼QR̂(h,Z) = êQ(Z).

A few comments are in order.

• A χ∗ worsening. This theorem says that even in the case of non IID data, a PAC-Bayes bound
very similar to the IID PAC-Bayes bound (1) can be stated, with a worsening (since χ∗ ≥ 1)
proportional to χ∗, that is, proportional to the amount of dependencies in the data. In addition,
the new PAC-Bayes bounds is valid with any priors and posteriors, without the need for these
distributions to depend on the chosen cover (as is the case with the more general Theorem 5).

• χ∗: the optimal constant. Among all elements of PEFC(Dm), χ∗ is the best constant achievable
in terms of the tightness of the bound (6) on eQ: getting an optimal coloring gives rise to an
‘optimal’ bound. Indeed, it suffices to observe that the right-hand side of (5) is decreasing
with respect to ωwhen all Qj

n are identical (we let the reader check that). As χ∗ is the smallest
chromatic weight, it gives the tightest bound.

• Γ(Dm) vs. induced subgraphs. If s ⊆ [m] and Zs = {Zs : s ∈ s}, it is obvious that Theorem 8
holds for |s|-samples drawn from the marginal distribution Ds of Zs. Considering only Zs
amounts to working with the subgraph Γ(Ds) of Γ(Dm) induced by the vertices in s: this
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(a) Γ1-edge (b) Γu

Figure 1: Γu is the subgraph induced by Γ1-edge (which contains only one edge, between u and
v) when u is removed: it might be preferable to consider the distribution corresponding to Γu in
Theorem 8 instead of the distribution defined wrt Γ1-edge, since χ∗(Γ1-edge) = 2 and χ∗(Γu) = 1 (see
text for detailed comments).

might provide a better bound in situations where χ∗(Ds)/|s| is smaller than χ∗(Dm)/m (this is
not guaranteed, however, because the empirical error êQ(Zs) computed on Zs might be larger
than êQ(Z)). To see this, consider a graph Γ1-edge = (V,E) of m vertices where |E| = 1, that
is, there are only two nodes, say u and v, that are connected (see Figure 1). The fractional
chromatic number χ∗1-edge of Γ1-edge is 2 (u and vmust use distinct colors) while the (fractional)
chromatic number χ∗u of the subgraph Γu of Γ1-edge obtained by removing u is 1: χ∗1-edge is
twice as big as χ∗u while the number of nodes only differ by 1 and, for large m, this ratio
roughly carries over for χ∗1-edge/m and χ∗u/(m−1).

This last comment outlines that considering a subset of Z, or, equivalently, a subgraph of Γ(Dm),
in (6), might provide a better generalization bound. However, it is assumed that the choice of the
subgraph is done before computing the bound: the bound does only hold with probability 1−δ for
the chosen subgraph. To alleviate this and provide a bound that takes advantage of several induced
subgraphs, we have the following proposition:

Proposition 9 Let {m}#k denote {s : s⊆ [m], |s|=m−k}. ∀Dm, ∀H , ∀k ∈ [m], ∀δ∈ (0,1], ∀P, with
probability at least 1−δ over the random draw of Z∼ Dm: ∀Q,

eQ ≤ min
s∈{m}#k

{

êQ(Zs)+kl−1
(

êQ(Zs),
χ∗s
|s|

[

KL(Q||P)+ ln
|s|+χ∗s
χ∗s

+ ln
(

m
k

)

+ ln
1
δ

])}

.

where χ∗s is the fractional chromatic number of Γ(Ds), and where êQ(Zs) is the empirical error of
the Gibbs classifier gQ on Zs, that is: êQ(Zs) = Eh∼QR̂(h,Zs).

Proof Simply apply the union bound to Equation (6) of Theorem 8: for fixed k, there are
( m
m−k

)

=
(m
k
)

subgraphs and using δ/
(m
k
)

makes the bound hold with probability 1− δ for all possible
(m
k
)

subgraphs (simultaneously). Making use of the form (4) gives the result.

This bound is particularly useful when, for some small k, there exists a subset s ⊆ {m}#k such
that the induced subgraph Γ(Ds), which has k fewer nodes than Γ(Dm), has a fractional chromatic
number χ∗s that is smaller than χ∗(Dm) (as is the case with the graph Γ1-edge of Figure 1, where
k = 1). Obtaining a similar result that holds for subgraphs associated with sets s of sizes larger or
equal to m−k is possible by replacing ln

(m
k
)

with ln∑k
κ=0

(m
κ

)

in the bound (in that case, k should be
kept small enough with respect to m—for example, k = Om(1)—to ensure that the resulting bound
still goes down to zero when m→ ∞).
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3.3 On the Relevance of Fractional Covers

One may wonder whether using the fractional cover framework is the only way to establish a result
similar to the one provided by Theorem 5. Of course, this is not the case and one may imagine other
ways of deriving closely related results without mentioning the idea of fractional/cover coloring.
(For instance, one may manipulate subsets of independent variables, assign weights to these subsets
without referring to fractional covers, and arrive at results that are comparable to ours.)

However, if we assume that singling out independent sets of variables is the cornerstone of
dealing with interdependent random variables, we find it enlightening to cast our approach within
the rich and well-studied fractional cover/coloring framework. On the one hand, our objective of
deriving tight bounds amounts to finding a decomposition of the set of random variables at hand
into few and large independent subsets and taking the graph theory point of view, this obviously
corresponds to a problem of graph coloring. Explicitly using the fractional cover/coloring argument
allows us to directly benefit from the wealth of related results, such as Property 1 or, for instance,
approaches as to how compute a cover or approximate the fractional chromatic number (for instance,
linear programming). On the other hand, from a technical point of view, making use of the fractional
cover argument allows us to preserve the simple structure of the proof of the classical IID PAC-
Bayes bound to derive Theorem 5.

To summarize, the richness of the results on graph (fractional) coloring provides us with elegant
tools to deal with a natural representation of the dependencies that may occur within a set of random
variables. In addition, and as showed in this article, it is possible to seamlessly take advantage of
these tools in the PAC-Bayesian framework (and probably in other bound-related frameworks).

3.4 Proof of Theorem 5

A proof in three steps, following the lines of the proofs given by Seeger (2002a) and Langford
(2005) for the IID PAC-Bayes bound, can be provided.

Lemma 10 ∀Dm, ∀δ ∈ (0,1], ∀C = {(Cj,ω j)}nj=1, ∀Pn distribution over H n, with probability at
least 1−δ over the random draw of Z∼ Dm, the following holds (here, ω stands for ω(C))

Eh∼Pn

n

∑
j=1

α je|Cj|kl(R̂(h j,Z( j))||R(h j)) ≤
m+ω
δω

,

where h= (h1, . . . ,hn) is a random vector of hypotheses.

Proof We first observe the following:

EZ∼Dm∑
j
α je|Cj|kl(R̂(h j,Z( j))||R(h j)) =∑

j
α jEZ( j)∼D( j)

m
e|Cj|kl(R̂(h,Z( j))||R(h))

≤∑
j
α j(|Cj|+1) (Lemma 20, Appendix)

=
1
ω∑j

ω j(|Cj|+1)

=
m+ω
ω

, (Lemma 4)
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where using Lemma 20 is made possible by the fact that Z( j) is an IID sample. Therefore,

EZ∼DmEh∼Pn

n

∑
j=1

α je|Cj|kl(R̂(h j,Z( j))||R(h j)) ≤
m+ω
ω

.

According to Markov’s inequality (Theorem 22, Appendix),

PZ

(

Eh∼Pn∑
j
α je|Cj|kl(R̂(h j,Z( j))||R(h j)) ≥

m+ω
ωδ

)

≤ δ.

Lemma 11 ∀Dm, ∀C = {(Cj,ω j)}nj=1, ∀Pn, ∀Qn, with probability at least 1− δ over the random
draw of Z∼ Dm, the following holds

m
ω∑

n
j=1π jEh∼Qj

n
kl(R̂(h,Z( j))||R(h))≤∑n

j=1α jKL(Qj
n||Pj

n)+ ln
m+ω
δω

.

Proof It suffices to use Jensen’s inequality (Theorem 21, Appendix) with ln and the fact that
EX∼P f (X) = EX∼Q

P(X)
Q(X) f (X), for all f ,P,Q. Therefore, ∀Qn:

lnEh∼Pn∑
j
α je|Cj|kl(R̂(h j,Z( j))||R(h j)) = ln∑

j
α jEh∼Pjn e

|Cj|kl(R̂(h,Z( j))||R(h))

= ln∑
j
α jEh∼Qj

n

P j
n(h)
Qj
n(h)

e|Cj|kl(R̂(h,Z( j))||R(h))

≥∑
j
α jEh∼Qj

n
ln

[

Pj
n(h)
Qj
n(h)

e|Cj|kl(R̂(h,Z( j))||R(h))

]

(Jensen’s inequality)

=−∑
j
α jKL(Qj

n||Pj
n)+∑

j
α j|Cj|Eh∼Qj

n
kl
(

R̂(h,Z( j))||R(h)
)

=−∑
j
α jKL(Qj

n||Pj
n)+

m
ω∑j

π jEh∼Qj
n
kl
(

R̂(h,Z( j))||R(h)
)

.

Lemma 10 then gives the result.

Lemma 12 ∀Dm, ∀C= {(Cj,ω j)}nj=1, ∀Qn,, the following holds

m
ω∑

n
j=1π jEh∼Qj

n
kl(R̂(h,Z( j))||R(h))≥ kl(ēQ||eQ). (7)

Proof This simply comes from the convexity of kl(x,y) in (x,y) (Lemma 23, Appendix). This, in
combination with Lemma 11, closes the proof of Theorem 5.
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(a) IID data (b) Bipartite ranking data

Figure 2: Dependency graphs for different settings described in Section 4. Nodes of the same color
are part of the same cover element; hence, they are probabilistically independent. (a) When the data
are IID, the dependency graph is disconnected and the fractional number is χ∗ = 1; (b) a dependency
graph obtained for bipartite ranking from a sample of 4 positive and 2 negative instances: χ∗ = 4.

4. Applications

In this section, we provide instances of Theorem 8 for various settings; amazingly, they alllow us
to easily derive PAC-Bayes generalization bounds for problems such as ranking and learning from
stationary β-mixing processes. The theorems we provide here are all new PAC-Bayes bounds for
different non-IID settings.

4.1 IID Case

The first case we are interested in is the IID setting. In this case, the training sampleZ= {(Xi,Yi)}mi=1
is distributed according to Dm = Dm and the fractional chromatic number of Γ(Dm) is χ∗ = 1, since
the dependency graph, depicted in Figure 2a is totally disconnected (see Property 1). Plugging in
this value of χ∗ in the bound of Theorem 8 gives the IID PAC-Bayes bound of Theorem 1. This
emphasizes the fact that the standard PAC-Bayes bound is a special case of our more general results.

4.2 General Ranking and Connection to U-Statistics

Here, the learning problem of interest is the following. D is a distribution over X ×Y with Y = R
and one looks for a ranking rule h ∈ R X×X that minimizes the ranking risk Rrank(h) defined as:

Rrank(h) := P (X ,Y )∼D
(X ′ ,Y ′)∼D

((Y −Y ′)h(X ,X ′)< 0). (8)

For a random pair (X ,Y ), Y can be thought of as a score that allows one to rank objects: given two
pairs (X ,Y ) and (X ′,Y ′), X has a higher rank (or is ‘better’) than X ′ if Y > Y ′. The ranking rule h
predicts X to be better than X ′ if sign(h(X ,X ′)) = 1 and conversely. The objective of learning is to
produce a rule h that makes as few misrankings as possible, as measured by (8). Given a finite IID
(according to D) sample S= {(Xi,Yi)}!i=1 an unbiased estimate of Rrank(h) is R̂rank(h,S), with:

R̂rank(h,S) := 1
!(!−1)∑i.= j

I(Yi−Yj)h(Xi,Xj)<0 =
1

!(!−1)∑i.= j
IYi jh(Xi,Xj)<0, (9)
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where Yi j := (Yi−Yj). A natural question is to bound the ranking risk for any learning rule h given
S, where the difficulty is that (9) is a sum of identically but not independently random variables,
namely the variables IYi jh(Xi,Xj).

Let us define Xi j := (Xi,Xj), Zi j := (Xi j,Yi j), and Z := {Zi j}i.= j. We note that the number ! of
training data suffices to determine the structure of the dependency graph Γrank of Z and its distribu-
tion, which we denote D!(!−1). Henceforth, we are clearly in the framework for the application of
the chromatic PAC-Bayes bounds defined in the previous section. In particular, to instantiate Theo-
rem 8 to the present ranking problem, we simply need to have at hand the value χ∗rank, or an upper
bound thereof, of the fractional chromatic number of Γrank. We claim that χ∗rank ≤ !(!− 1)/1!/22
where 1x2 is the largest integer less than or equal to x. We provide the following new PAC-Bayes
bound for the ranking risk:

Theorem 13 (Ranking PAC-Bayes bound) ∀D over X ×Y , ∀H ⊆ R X×X , ∀δ ∈ (0,1], ∀P, with
probability at least 1−δ over the random draw of S∼ D!, the following holds

∀Q, kl(êrankQ (S)||erankQ )≤
1

1!/22

[

KL(Q||P)+ ln
1!/22+1

δ

]

,

where

êrankQ (S) := Eh∼QR̂rank(h,S),
erankQ := ES∼D! êrankQ (S).

Proof We essentially need to prove our claim on the bound on χ∗rank. To do so, we consider a
fractional cover of Γrank motivated by the theory of U-statistics (Hoeffding, 1948, 1963). R̂(h,S) is
indeed a U-statistics of order 2 and it might be rewritten as a sum of IID blocks as follows

R̂(h,S) = 1
!(!−1)∑i.= j

r(h,Zi j) =
1
!! ∑σ∈Σ!

1
1!/22

1!/22

∑
i=1

r
(

h,Zσ(i)σ(1!/22+i)
)

,

where Σ! is the set of permutations over [!]. The innermost sum is obviously a sum of IID random
variables as no two summands share the same indices.

A proper exact fractional cover Crank can be derived from this decomposition as1

Crank :=
{(

Cσ :=
{

Zσ(i)σ(1!/22+i)
}1!/22
i=1 ,ωσ :=

1
(!−2)!1!/22

)}

σ∈Σ!

.

Indeed, as remarked before, each Cσ is an independent set and each random variable Zpq for p .= q,
appears in exactly (!− 2)!×1!/22 sets Cσ (for i fixed, the number of permutations σ such that
σ(i) = p and σ(1!/22+ i) = q is equal to (!− 2)!, that is, the number of permutations on !− 2
elements; as i can take 1!/22 values, this gives the result). Therefore, ∀p,q, p .= q:

∑
σ∈Σ!

ωσIZpq∈Cσ =
1

(!−2)!1!/22 ∑σ∈Σ!
IZpq∈Cσ =

1
(!−2)!1!/22

× (!−2)!1!/22= 1,

1. Note that the cover defined here considers elements Cσ containing random variables themselves instead of their
indices. This abuse of notation is made for sake of readability.
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which proves that Crank is a proper exact fractional cover. Its weight ω(Crank) is

ω(Crank) = !!×ωσ =
!(!−1))
1!/22

.

Hence, from the definition of χ∗rank,

χ∗rank ≤
!(!−1))
1!/22

.

The theorem follows by an instantiation of Theorem 8 with m := !(!−1) and the bound on χ∗rank
we have just proven.

To our knowledge, this is the first PAC-Bayes bound on the ranking risk, while a Rademacher-
complexity based analysis was given by Clémençon et al. (2008). In the proof, we have used
arguments from the analysis of U-processes, which allow us to easily derive a convenient fractional
cover of the dependency graph of Z. Note however that our framework still applies even if not all the
Zi j’s are known, as required if an analysis based on U-processes is undertaken. This is particularly
handy in practical situations where one may only be given the values Yi j—but not the values of Yi
and Yj—for a limited number of (i, j) pairs (and not all the pairs).

An interesting question is to know how the so-called Hoeffding decomposition used by Clémençon
et al. (2008) to establish fast rates of convergence for empirical ranking risk minimizers could be
used to draw possibly tighter PAC-Bayes bounds. This would imply being able to appropriately take
advantage of moments of order 2 in PAC-Bayes bounds, and a possible direction for that has been
proposed by Lacasse et al. (2006). This is left for future work as it is not central to the present paper.

Of course, the ranking rule may be based on a scoring function f ∈ R X such that h(X ,X ′) =
f (X)− f (X ′), in which case all the results that we state in terms of h can be stated similarly in terms
of f . This is important to note from a practical point of view as it is probably more usual to learn
functions defined over X rather than X ×X (as is h).

Finally, we would like to stress that the bound on χ∗rank that we have exhibited is actually rather
tight. Indeed, it is straightforward to see that the clique number of Γrank is 2(!−1) (the cliques are
made of variables {Zip}p

⋃
{Zpi}p for every i), and according to Property 1, 2(!− 1) is therefore a

lower bound on χ∗rank. If ! is even, then our bound on χ∗rank is equal to 2(!−1) and so is χ∗rank; if ! is
odd, then our bound is 2!.

4.3 Bipartite Ranking and a Bound on the AUC

A particular ranking setting is that of bipartite ranking, where Y = {−1,+1}. LetD be a distribution
over X ×Y and D+1 (D−1) be the class conditional distribution DX |Y=+1 (DX |Y=−1) with respect to
D. In this setting (see, for instance, Agarwal et al., 2005), one may be interested in controlling what
we call the bipartite misranking risk RAUC(h) (the reason for the AUC superscript will become clear
in the sequel), of a ranking rule h ∈ R X×X by

RAUC(h) := P X∼D+1
X ′∼D−1

(h(X ,X ′)< 0). (10)

Note that the relation between RAUC and Rrank (cf. Equation 8) can be made clear whenever the
hypotheses h under consideration are such that h(x,x′) and h(x′,x) have opposite signs. In this
situation, it is straightforward to see that

Rrank(h) = 2P(Y =+1)P(Y =−1)RAUC(h).
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Let S= {(Xi,Yi)}!i=1 be an IID sample distributed according toD! =D!. The empirical bipartite
ranking risk R̂AUC(h,S) of h on S defined as

R̂AUC(h,S) := 1
!+!− ∑

i:Yi=+1
j:Yj=−1

Ih(Xi,Xj)<0 (11)

where !+ (!−) is the number of positive (negative) data in S, estimates the fraction of pairs (Xi,Xj)
that are incorrectly ranked incorrectly (given that Yi = +1 and Yj = −1) by h: it is an unbiased
estimator of RAUC(h).

As before, h may be expressed in terms of a scoring function f ∈ R X such that h(X ,X ′) =
f (X)− f (X ′), in which case (overloading notation):

RAUC( f ) = P X∼D+1
X ′∼D−1

( f (X)< f (X ′)) and R̂AUC( f ,S) = 1
!+!− ∑

i:Yi=+1
j:Yj=−1

I f (Xi)< f (Xj),

where we recognize in R̂AUC( f ,S) one minus the Area under the ROC curve, or AUC, of f on S
(Agarwal et al., 2005; Cortes and Mohri, 2004), hence the AUC superscript in the name of the risk.
As a consequence, providing a PAC-Bayes bound on RAUC(h) (or RAUC( f )) amounts to providing a
generalization (lower) bound on the AUC, which is a widely used measure in practice to evaluate
the performance of a scoring function.

Let us define Xi j := (Xi,Xj), Zi j := (Xi j,1) and Z := {Zi j}i j:Yi=+1,Yj=−1, that is, Z is a sequence
of pairs Xi j made of one positive example and one negative example. We then are once again in
the framework defined earlier,2 that is, the Zi j’s share the same distribution but are dependent on
each other, since Zi j depends on {Zpq : p = i or q = j} (see Figure 2). Note that in order to ease
the reading of the present subsection, we make the implicit decomposition of training set S into
S = S+ ∪ S−, where S+ (resp. S−) is made of the !+ (!−) positive (negative) data of S; the size
! of S is therefore ! = !+ + !−. This decomposition entails a separate reindexing of the positive
(negative) data from 1 to !+ (from 1 to !−).

Building on Theorem 8, we have the following result:

Theorem 14 (AUC PAC-Bayes bound) ∀D over X ×Y , ∀H ⊆ R X×X , ∀δ ∈ (0,1], ∀P, with prob-
ability at least 1−δ over the random draw of S∼ D!, the following holds

∀Q, kl(êAUCQ (S)||eAUCQ )≤
1

!min

[

KL(Q||P)+ ln
!min+1

δ

]

,

where !min =min(!+,!−), and

êAUCQ (S) := Eh∼QR̂AUC(h,S),
eAUCQ := ES∼D! êAUCQ (S).

Proof The proof works in three steps and borrows ideas from Agarwal et al. (2005). The first two
parts are necessary to deal with the fact that the dependency graph of Z, as it depends on the random
sample S, does not have a deterministic structure.

2. The slight difference with what has been described above is that the dependency graph is now a random variable: it
depends on the Yi’s. It is shown in the proof of Theorem 14 how this can be dealt with.
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4.3.1 CONDITIONING ON Y= y

Let y ∈ {−1,+1}! be a fixed vector and let !+y and !−y be the number of positive and negative labels
in y, respectively. We define the distribution Dy as Dy :=⊗!

i=1Dyi ; this is a distribution on X !. With
a slight abuse of notation, Dy will also be used to denote the distribution over (X ×Y )! of samples
S = {(Xi,yi)}!i=1 such that the sequence {Xi}!i=1 is distributed according to Dy. It is easy to check
that ∀h ∈H , ES∼DyR̂rank(h,S) = Rrank(h) (cf. Equations 10 and 11).

Given S, if we define, as said earlier, Xi j := (Xi,Xj), Yi j := 1 and Zi j := (Xi j,Yi j), then Z :=
{Zi j}i:yi=1, j:y j=−1 is a sample of identically distributed variables, each with distribution D±1 =
D+1⊗D−1⊗ 1 over X ×X ×Y , where Y = {−1,+1} and where 1 is the distribution that pro-
duces 1 with probability 1.

Letting m = !+y !
−
y we denote by Dy,m the distribution of the training sample Z, within which

interdependencies exist, as illustrated in Figure 2. Theorem 8 can thus be directly applied to clas-
sifiers trained on Z, the structure of Γ(Dy,m) and its corresponding fractional chromatic number χ∗y
being completely determined by y. Hence, letting H ⊆ R X×X , we have: ∀δ ∈ (0,1], ∀P over H ,
with probability at least 1−δ over the random draw of Z∼ Dy,m,

∀Q, kl(êQ(Z)||eQ)≤
χ∗y
m

[

KL(Q||P)+ ln
m+χ∗y
δχ∗y

]

,

where êQ(Z) = Eh∼QR̂(h,Z) = Eh∼Q∑i j IYi jh(Zi j)<0 = Eh∼Q∑i j Ih(Zi j)<0, which is exactly equal to
êAUCQ (S) (cf. Equation 11); likewise, eQ = EZ∼Dy,mêQ(Z) = ES∼Dy êAUCQ (S) = eAUCQ . Hence, ∀δ ∈
(0,1], ∀P, with probability at least 1−δ over the random draw of S∼ Dy,

∀Q, kl(êAUCQ (S)||eAUCQ )≤
χ∗y
m

[

KL(Q||P)+ ln
m+χ∗y
δχ∗y

]

. (12)

4.3.2 UNCONDITIONING ON Y

As proposed by Agarwal et al. (2005), let us call Φ(P,S,δ) the event (12); we just stated that
∀y ∈ {−1,+1}!, ∀P, ∀δ ∈ (0,1], PS∼Dy(Φ(P,S,δ))≥ 1−δ, or, equivalently

PS∼D!(¬Φ(P,S,δ)|Y = y) = PS∼Dy(¬Φ(P,S,δ))< δ,

that is to say, the conditional (to Y = y) probability of the event ¬Φ(P,S,δ) is bounded by δ. This
directly implies that the unconditional probability of ¬Φ(P,S,δ) is bounded by δ as well:

PS∼D!(¬Φ(P,S,δ))≤ PS∼D!(¬Φ(P,S,δ)|Y = y)< δ.

Hence, ∀δ ∈ (0,1], ∀P, with probability at least 1−δ over the random draw of S∼ D!,

∀Q, kl(êAUCQ ||eAUCQ )≤
χ∗S
mS

[

KL(Q||P)+ ln
mS+χ∗S
δχ∗S

]

. (13)

where χ∗S is the fractional chromatic number of the graph Γ(Z), with Z defined from S as in the first
part of the proof, where the observed (random) labels are now taken into account; here mS = !+!−,
where !+ (!−) is the number of positive (negative) data in S.
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4.3.3 COMPUTING THE FRACTIONAL CHROMATIC NUMBER

In order to finish the proof, it suffices to observe that, for Z = {Zi j}i j, if !max = max(!+,!−), then
the fractional chromatic number of Γ(Z) is χ∗ = !max.

Indeed, the clique number of Γ(Z) is !max as for all i = 1, . . . ,!+ ( j = 1, . . . ,!−), {Zi j : j =
1, . . . ,!−} ({Zi j : i = 1, . . . ,!+}) defines a clique of order !− (!+) in Γ(Z). Thus, from Property 1:
χ≥ χ∗ ≥ !max.

A proper exact cover C= {Ck}!maxk=1 of Γ(Z) can be constructed as follows. Suppose that !max =
!+, thenCk = {Ziσk(i) : i= 1, . . . ,!

−}, with

σk(i) = (i+ k−2 mod !+)+1,

is an independent set: no two variables Zi j and Zpq in Ck are such that i = p or j = q. In addition,
it is straightforward to check that C is indeed a cover of Γ(Z). This cover is of size !+ = !max,
which means that it achieves the minimal possible weight over proper exact (fractional) covers
since χ∗ ≥ !max. Hence, χ∗ = χ = !max(= c(Γ)). Plugging in this value of χ∗ in (13), and noting
that mS = !max!min with !min =min(!+,!−), closes the proof.

We observe that in the theorem, the dependence on the skew of the sample is expressed in terms
of 1/min(!+,!−), whereas in the the works of Agarwal et al. (2005) and Usunier et al. (2005), the
bound depends on the larger 1/!++1/!−.

The PAC-Bayes bound of Theorem 14 can be specialized to the case where h(x,x′) = f (x)−
f (x′) with f ∈ {x +→ w ·x : w ∈ X }: f is therefore a linear scoring function and h(x,x′) = w · (x−x′).
The ranking rule h is thus a linear classifier acting on the difference of its arguments (the next result
we present therefore carries over to kernel classifiers). As proposed by Langford (2005), we may
assume an isotropic Gaussian prior P = N (0, I) and a family of posteriors Qw,µ parameterized by
w ∈ X and µ> 0 such that Qw,µ is N (µ,1) in the direction w and N (0,1) in all perpendicular
directions, we arrive at the following theorem:

Theorem 15 (AUC Linear PAC-Bayes bound) ∀!,∀D over X ×Y , ∀δ∈ (0,1], the following holds
with probability at least 1−δ over the draw of S∼ D!:

∀w,µ> 0, kl(êAUCQw,µ (S)||e
AUC
Qw,µ )≤

1
!min

[

µ2

2
+ ln

!min+1
δ

]

.

Proof Straightforward from the bound of Langford (2005) and Theorem 14.

Note that this specific parameterization of Q could have been done in Theorem 13 as well. We
arbitrarily choose to provide it for this AUC based bound as learning linear ranking rule by AUC
minimization is a common approach (Ataman et al., 2006; Brefeld and Scheffer, 2005; Rakotoma-
monjy, 2004), and the presented result may be of practical interest (for model selection purpose, for
instance) for a larger audience.

The bounds given in Theorem 14 and Theorem 15 are very similar to what we would get if
applying IID PAC-Bayes bound to one (independent) elementCj of a minimal cover (i.e., its weight
equals the fractional chromatic number) C = {Cj}nj=1 such as the one we used in the proof of
Theorem 14. This would imply the empirical error êrankQ to be computed on only one specificCj and
not all the Cj’s simultaneously, as is the case for the new results. It turns out that, for proper exact
fractional covers C = {(Cj,ω)}nj=1 with elements Cj having the same size, it is better, in terms of
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absolute moments of the empirical error, to assess it on the whole data set, rather than on only one
Cj. The following proposition formalizes this.

Proposition 16 ∀Dm, ∀H , ∀C= {(Cj,ω j}nj=1 ∈ PEFC(Dm), ∀Q, ∀r ∈N ,r≥ 1, if |C1|= . . .= |Cn|
then

EZ∼Dm |êQ(Z)− eQ|r ≤ EZ( j)∼D( j)
m
|êQ(Z( j))− eQ|r,∀ j ∈ {1, . . .n}.

Proof Using the convexity of | · |r for r ≥ 1, the linearity of E and the notation of Section 3, for
Z∼ Dm:

|êQ(Z)− eQ|r = |∑
j
π j(Eh∼QR̂(h,Z( j))−R(h))|r

≤∑
j
π j|Eh∼Q(R̂(h,Z( j))−R(h))|r

=∑
j
π j|êQ(Z( j))− eQ|r.

Taking the expectation of both sides with respect to Z and noting that the random variables
|êQ(Z( j))− eQ|r, have the same distribution, gives the result.

This proposition upholds the idea of Pemmaraju (2001) to base the decomposition of a dependency
graph on equitable coloring.

4.4 β-mixing Processes

Here, we provide a PAC-Bayes theorem for classifiers trained on data from a stationary β-mixing
process, of which we recall some definitions, as formulated by Yu (1994) (see also, for example,
Mohri and Rostamizadeh, 2009).

Definition 17 (Stationarity) A sequence of random variables Z= {Zt}+∞t=−∞ is stationary if, for any
t and nonnegative integer m and k, the random subsequences (Zt , . . . ,Zt+m) and (Zt+k, . . . ,Zt+m+k)
are identically distributed.

Definition 18 (β-mixing process) Let Z= {Zt}+∞t=−∞ be a stationary sequence of random variables.
For any i, j ∈ Z ∪ {−∞,+∞}, let σ j

i denote the σ-algebra generated by the random variables Zk,
i≤ k ≤ j. Then, for any positive integer k, the β-mixing coefficient β(k) of the stochastic process Z
is defined as

β(k) = sup
n≥1

Esup
{

|P(A|σn1)−P(A)| : A ∈ σ+∞n+k
}

.

Z is said to be β-mixing if β(k)→ 0 when k→ ∞.

(Note there is an equivalent definition of the β-mixing coefficient based on finite partitions; see
Yu, 1994 for details.) Stationary β-mixing processes model a situation where the interdependence
between the random variables at hand is temporal. When the process is mixing, it means that the
strengh of dependence between variables weakens over times.

The bound that we propose is in the same vein as the one proposed by Mohri and Rostamizadeh
(2009), with the difference that our bound is a PAC-Bayes bound and theirs a Rademacher-complexity-
based bounds. In addition to being a new type of data-dependent bound for the case of stationary
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β-mixing process, we may anticipate that, in practical situations, our bound inherits the tightness
of the IID PAC-Bayes bound (whereas, to the best of our knowledge, there is no evidence of such
practicality for Rademacher-complexity-based bounds).

Let us state our generalization bound for classifiers trained on samples Z drawn from stationary
β-mixing distributions.

Theorem 19 (β-mixing process PAC-Bayes bound) Let m be a positive integer. Let Dβ be a sta-
tionary β-mixing distribution over Z and Dβm be the distribution of m-samples according to Dβ.
∀H ⊆ R X , ∀µ,a ∈N such that 2µa=m, ∀δ ∈ (2(µ−1)β(a),1], ∀P, with probability at least 1−δ
over the random draw of Z∼ Dβm, the following holds

∀Q, kl(êβQ(Z)||e
β
Q)≤

1
µ

[

KL(Q||P)+ ln
2(µ+1)

δ−2(µ−1)β(a)

]

,

where

êβQ(Z) := Eh∼QR̂(h,Z) = Eh∼Q

m

∑
t=1

IYth(Xt)<0,

eβQ := EZ∼Dβm
êβQ(Z).

Proof The proof makes use of the independent block decomposition proposed by Yu (1994), our
chromatic PAC-Bayes bound of Theorem 8, and Corollary 24 (Appendix).

4.4.1 THE CHROMATIC BOUND FOR INDEPENDENT BLOCKS

Let Z= {Z1, . . . ,Zm} be the random variables we have to deal with. If µ and a are two integers such
that 2µa= m (we assume that m is even, if it is odd one may drop the last variable Zm and work on
a sample of size m−1). Then Z can be decomposed into two subsequences Z0 and Z1 as follows:

Z0 := {Zs0 := (Za(2s−2)+1, . . . ,Za(2s−2)+a) : s ∈ [µ]},
Z1 := {Zs1 := (Za(2s−1)+1, . . . ,Za(2s−1)+a) : s ∈ [µ]}.

Both Z0 and Z1 are made of µ blocks of a consecutive random variables. The blocks are interde-
pendent as well as the variables within each block. D0 will denote the distribution of Z0.

We now define a sequence Z of independent blocks as:

Z := {Zs := (Zs1, . . . ,Zsa) : s ∈ [µ]},

such that the blocks Zs are mutually independent and such that each block Zs has the same dis-
tribution as Zs0, that is, from the stationarity assumption, the distribution of Z10 (the blocks Zs are
IID).

The dependency graph Γ of Z is such that all the variables in a block are all connected and
such that there are no connections between blocks. Theorem 8 can readily be applied to the random
sample Z, whose distribution we denote D: for all P and δ ∈ (0,1],

PZ∼D (Φ(P,Z,δ))< δ, (14)
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with eQ := EZ∼DêQ(Z) and Φ(P,Z,δ) is the event defined as:

Φ(P,Z,δ) :=
{

∃Q, kl(êQ(Z)||eQ)>
1
µ

[

KL(Q||P)+ ln
µ+1
δ

]}

.

To see why and how Theorem 8 can be used to get (14), observe that:

• the number of variables in Z is µa;

• by stationarity, all variables Zsα, for α ∈ [a] and s ∈ [µ] share the same distribution: we there-
fore do actually work with dependent but identically distributed variables;

• the (fractional) chromatic number χ∗ of Γ is a, since

1. the clique number is a (that is, the number of variables in each block),

2. the cover C of Γ with

C :=
{(

Cα := {Z1α, . . . ,Z
µ
α},1

)}

1≤α≤a

is a proper exact cover of size a.

Noting that, consequently

χ∗

µa
=

a
µa

=
1
µ

and
µa+χ∗

δχ∗
=
µa+a
δa

=
µ+1
δ

,

gives the expression of Φ(P,Z,δ) and (14).
The last two steps of the proof are similar to those used by Mohri and Rostamizadeh (2009) to

establish their bound.

4.4.2 A BOUND FOR Z0
To establish the bound for Z0, it suffices to use Corollary 24 (Appendix) with c(z) being defined as:

c(z) := IΦ(P,z,δ),

which is a bounded measurable function on the blocks Zs0 (and thus on the blocks Zs). We have:

|EZ0∼D0c(Z0)−EZ∼Dc(Z)|≤ (µ−1)β(a),

and therefore, since PZ0∼D0(Φ(P,Z0,δ)) = EZ0∼D0c(Z0) and PZ∼D (Φ(P,Z,δ)) = EZ∼Dc(Z):

PZ0∼D0(Φ(P,Z0,δ))≤ PZ∼D (Φ(P,Z,δ))+(µ−1)β(a) (15)
< δ+(µ−1)β(a). (cf. Equation 14)
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4.4.3 ESTABLISHING THE BOUND

Finally, observe that:

Φ(P,Z,δ)⇒∃Q :
1
2
kl(êQ(Z0)||eQ)+

1
2
kl(êQ(Z1)||eQ)>

1
µ

[

KL(Q||P)+ ln
µ+1
δ

]

⇒∃Q :
∨

i∈{0,1}

{

kl(êQ(Zi)||eQ))>
1
µ

[

KL(Q||P)+ ln
µ+1
δ

]}

⇒
∨

i∈{0,1}

{

∃Q : kl(êQ(Zi)||eQ))>
1
µ

[

KL(Q||P)+ ln
µ+1
δ

]}

⇔Φ(P,Z0,δ)∨Φ(P,Z1,δ),

where we used êQ(Z) = êQ(Z0)/2+ êQ(Z1)/2 and the convexity of kl in the first line.
This leads to:

PZ∼Dβm
(Φ(P,Z,δ))≤ PZ∼Dβm

(Φ(P,Z0,δ)∨Φ(P,Z1,δ))

≤ PZ∼Dβm
(Φ(P,Z0,δ))+PZ∼Dβm

(Φ(P,Z1,δ)) (union bound)

= 2PZ∼Dβm(Φ(P,Z0,δ)) (stationarity)

= 2PZ0∼D0(Φ(P,Z0,δ)) (marginalization wrt Z0)
≤ 2δ+2(µ−1)β(a). (cf. Equation 15)

Adjusting δ to δ/2− (µ−1)β(a) ends the proof.

5. Conclusion

In this work, we propose the first PAC-Bayes bounds applying for classifiers trained on non-IID
data. The derivation of these results rely on the use of fractional covers of graphs, convexity and
standard tools from probability theory. The results that we provide are very general and can easily
be instantiated for specific learning settings such as ranking and learning from from mixing dis-
tributions: amazingly, we obtain at a very low cost original PAC-Bayes bounds for these settings.
Using a generalized PAC-Bayes bound, we provide in the appendix a chromatic PAC-Bayes bound
that holds for non-independently and non-identically distributed data: it allows us to derive a PAC-
Bayes bound for classifiers trained on data from a stationary ϕ-mixing distribution.

This work gives rise to many interesting questions. First, it seems that using a fractional cover
to decompose the non-IID training data into sets of IID data and then tightening the bound through
the use of the chromatic number is some form of variational relaxation as often encountered in
the context of inference in graphical models, the graphical model under consideration in this work
being one that encodes the dependencies in Dm. It might be interesting to make this connection
clearer to see if, for instance, tighter and still general bounds can be obtained with more appropriate
variational relaxations than the one incurred by the use of fractional covers.

Besides, Theorem 5 advocates for the learning algorithm described in Remark 7. We would like
to see how such a learning algorithm based on possibly multiple priors/multiple posteriors could
perform empirically and how tight the proposed bound could be.
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On another empirical side, it might be interesting to run simulations on bipartite ranking prob-
lems to see how accurate the bound of Theorem 15 can be: we expect the results to be of good
quality, because of the resemblance of the bound of the theorem with the IID PAC-Bayes theo-
rem for margin classifiers, which has proven to be rather accurate (Langford, 2005). The work of
Germain et al. (2009) is also another contribution that tends to support that a practical use of our
bounds should provide competitive results (note that Theorem 25 gives a sufficient condition for
the general PAC-Bayes bound of Germain et al. (2009) to be non degenerate). Likewise, it would
be interesting to see how the possibly more accurate PAC-Bayes bound for large margin classifiers
proposed by Langford and Shawe-taylor (2002), which should translate to the case of bipartite rank-
ing as well, performs empirically. The question also remains as to what kind of strategies to learn
the prior(s) could be used to render the bound of Theorem 5 the tightest possible. This is one of
the most stimulating question as performing such prior learning makes it possible to obtain very
accurate generalization bound (Ambroladze et al., 2007).

The connection between our ranking bounds and the theory of U-statistics makes it possible to
envision the use of higher order moments in establishing PAC-Bayes bounds, thanks to Hoeffding’s
decomposition. We plan to investigate further in this direction, for both the ranking measures we
have studied (noting that the AUC is a two-sample U-statistics Hoeffding, 1963).

Finally, we have been working on a more general way to establish chromatic bounds from
IID bounds (covering VC, Rademacher, PAC-Bayes and—possibly—binomial tail test set bounds),
without the need to perform ‘low-level’ calculations such as the ones proposed in Section 3.4. The
meta-bound that we have been developing is in the spirit of that proposed by Blanchard and Fleuret
(2007), except that the randomization we propose is on the subsets constituting the fractional cover
(and not the hypothesis set). In other terms, given a cover C = {(Cj,ω j)} j, the fact that an IID
bound holds on one subsetCj of a cover is considered as a random event, the probability of a subset
to be chosen being ω j/ω(C). A simple union bound gives our generic result, which translates
into cover-independent (but fractional-chromatic-number-dependent) chromatic bounds such as (6)
(Theorem 8) under very mild conditions on the shape of the base IID bound. Along with that
work, we try to answer the question of establishing a principled way to handle situations where
random variables show weak dependencies (as is the case for β-mixing processes), as for now, the
framework described here applies when variables are either dependent or independent, disregarding
the magnitude of the dependencies—our PAC-Bayes bound for β-mixing processes would then be a
specific case of such general result.
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Appendix A. Technical Lemmas

This appendix gathers useful (and well-known) results for the different proofs.

Lemma 20 Let D be a distribution over Z.

∀h ∈H ,EZ∼Dmemkl(R̂(h,Z)||R(h)) ≤ m+1.
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Proof Let h ∈ H . For z ∈ Zm, we let q(z) = R̂(h,z); we also let p = R(h). Note that since Z is
i.i.d, mq(Z) is binomial with parameters m and p (recall that r(h,Z) takes the values 0 and 1 upon
correct and erroneous classification of Z by h, respectively).

EZ∼Dmemkl(q(Z)||p) = ∑
z∈Zm

emkl(q(z)||p)PZ∼Dm(Z= z)

= ∑
0≤k≤m

emkl(
k
m ||p)PZ∼Dm(mq(Z) = k)

= ∑
0≤k≤m

(

m
k

)

emkl(
k
m ||p)pk(1− p)m−k

= ∑
0≤k≤m

(

m
k

)

em(
k
m ln

k
m+(1− k

m ) ln(1−
k
m ))

= ∑
0≤k≤m

(

m
k

)(

k
m

)k(

1−
k
m

)m−k
.

However, it is obvious that, from the definition of the binomial distribution,

∀m ∈N ,∀k ∈ [0,m],∀t ∈ [0,1],
(

m
k

)

tk(1− t)m−k ≤ 1.

This is obviously the case for t = k
m , which gives

∑
0≤k≤m

(

m
k

)(

k
m

)k(

1−
k
m

)m−k
≤ ∑
0≤k≤m

1= m+1.

Theorem 21 (Jensen’s inequality) Let f ∈ R X be a convex function. For all probability distribu-
tion P on X :

f (EX∼PX)≤ EX∼P f (X).

Theorem 22 (Markov’s Inequality) Let X be a positive random variable on R , such that EX <∞.

∀t ∈ R ,PX

{

X ≥
EX
t

}

≤
1
t
.

Consequently: ∀M ≥ EX ,∀t ∈ R ,PX
{

X ≥ M
t
}

≤ 1
t .

Lemma 23 (Convexity of kl) ∀p,q,r,s ∈ [0,1],∀α ∈ [0,1],

kl(αp+(1−α)q||αr+(1−α)s)≤ αkl(p||r)+(1−α)kl(q||s).

Proof It suffices to see that f ∈ R [0,1]2 , f (v = [p q]) = kl(q||p) is convex over [0,1]2: the Hessian
H of f is

H =

[

q
p2 +

1−q
(1−p)2 − 1

p −
1
1−p

− 1
p −

1
1−p

1
q +

1
1−q

]

,
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and, for p,q∈ [0,1], q
p2 +

1−q
(1−p)2 ≥ 0 and detH = (p−q)2

q(1−q)p2(1−p)2 ≥ 0: H 7 0 and f is indeed convex.

Finally, we have the following version by Mohri and Rostamizadeh (2009) of Corollary 2.7 in
Yu (1994), which is based on the definition of the blocks Zsk:

Corollary 24 Let c be a measurable function defined with respect to the blocks Zs0. If c has absolute
value bounded by M, then

|EZ0∼D0c(Z)−EZ∼Dc(Z)|≤ (µ−1)Mβ(a).

Appendix B. Applications of a Generic PAC-Bayes Theorem

Let us first recall the following generic PAC-Bayes result, which is a corollary/compound of results
proposed by Seeger (2002b) and McAllester (2003). In particular, the γ function need not be dif-
ferentiable with respect to its second argument and it applies to any ‘risk’ functional ψ for which a
concentration inequality exists.

Corollary 25 (Generic PAC-Bayes Theorem) Let H ⊆ R X and ψ : H ×
⋃∞
m=1Z

m → R . If there
exist α ≥ 1,β > 1 and a nonnegative convex function Δ : R ×R → R+ that is strictly increasing
with respect to its second argument such that

∀h ∈H ,∀ε> 0, PZ∼Dm [Eψ(h)−ψ(h,Z)≥ ε]≤ αexp(−βΔ(Eψ(h),ε)) , (16)

where Eψ(h) stands for EZ∼Dmψ(h,Z), then, ∀P, with probability at least 1− δ over the draw of
Z∼ Dm:

∀Q, Δ(eψQ,e
ψ
Q− êψQ(Z))≤

1
β−1

[

KL(Q||P)+ ln
αβ
δ

]

.

where

êψQ(Z) := Eh∼Qψ(h,Z)
eψQ := EZêψQ(Z) = Eh∼QEZψ(h,Z)

Proof Along lines from Seeger (2002b) and McAllester (2003).

1. Observe that, thanks to Lemma 26 (below) with δ(ε) := Δ(Eψ(h),ε),

EZe(β−1)Δ(Eψ(h),Eψ(h)−ψ(h,Z)) ≤ αβ, and, Eh∼PEZe(β−1)Δ(Eψ(h),Eψ(h)−ψ(h,Z)) ≤ αβ

Applying Markov’s inequality then gives:

PZ

[

Eh∼Pe(β−1)Δ(Eψ(h),Eψ(h)−ψ(h,Z)) ≥
αβ
δ

]

≤ δ

2. Using the entropy extremal inequality lnEX∼P f (X)≥−KL(Q||P))+EX∼Q ln f (X), ∀P,Q,X
(see the proof of Lemma 11), and the fact that x +→ lnx is nondecreasing, the previous step
leads to

PZ

[

∃Q :−KL(Q||P)+(β−1)Eh∼QΔ(Eψ(h),Eψ(h)−ψ(h,Z))≥ ln αβ
δ

]

≤ δ.
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3. Since Δ is convex, Jensen’s inequality can be used to give (here, h∼ Q)

PZ

[

∃Q :−KL(Q||P)+(β−1)Δ(Eh,Zψ(h,Z),Eh,Zψ(h,Z)−Ehψ(h,Z))≥ ln
αβ
δ

]

≤ δ.

Lemma 26 (McAllester, 2003) Let X be a real-valued random variable on X and α ≥ 1,β > 1.
Let δ : R → R be a nonnegative and strictly increasing function. We have:

∀x ∈ R , P[X ≥ x]≤ αe−βδ(x) ⇒ E

[

e(β−1)δ(X)
]

≤ αβ.

Proof See the proof of McAllester (2003). Here, we take α into account. As f is strictly increasing:

P [X ≥ x] = P [δ(X)≥ δ(x)] = P

[

e(β−1)δ(X) ≥ e(β−1)δ(x)
]

.

Hence: P
[

e(β−1)δ(X) ≥ e(β−1)δ(x)
]

≤ αe−βδ(x). Setting ν= e(β−1)δ(x), we get:

P

[

e(β−1)δ(X) ≥ ν
]

≤min(1,αν−β/(β−1))).

Thus, as for a nonnegative random variableW , E[W ] =
∫ ∞
0 P[W ≥ ν]dν:

E

[

e(β−1)δ(X)
]

≤ 1+α
∫ ∞

1
ν−β/(β−1) = 1+α(β−1).

Since α> 1, 1+α(β−1)≤ αβ, which ends the proof.

We observe that:

• ifψ(h,Z) =∑m
i=1 IYih(Xi)<0 then, by the one-sided Chernoff bound, α= 1, β=m and Δ(p,ε) =

kl(p−ε||p)make Equation (16) hold. The PAC-Bayes bound provided by Corollary 25 is that
of Theorem 1 where m is replaced by m−1;

• if
∀i ∈ [m], sup

z1,...,zm,z′i∈Z
|ψ(z1, . . . ,zm)−ψ(z1, . . . ,zi−1,z′i,zi+1, . . . ,zm)|≤ ci,

then, thanks to McDiarmid inequality (McDiarmid, 1989), α= 1, β= 2/∑i c2i and Δ(p,ε) =
ε2, make Equation (16) hold and a PAC-Bayes bound can be derived (we let the reader write
the corresponding PAC-Bayes bound);

• it suffices to have an appropriate concentration inequality for the problem at hand to have an
effective PAC-Bayes bound.
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B.1 Generalized Chromatic PAC-Bayes Bound

To get a chromatic PAC-Bayes theorem for non-identically non-independently distributed data, we
simply make use of the following concentration inequality of Janson (2004).

Theorem 27 (Janson, 2004) Suppose that Z= {Zi}mi=1 is an m-sample of real-valued random vari-
ables distributed according to some distribution Dm. Suppose that each Zi has range [ai,bi]. If
SZ = ∑m

i=1Zi, then,

∀ε> 0, PSZ [ESZ−SZ ≥ ε]≤ exp
[

−
2ε2

χ∗(Dm)∑m
i=1(bi−ai)2

]

,

where χ∗(Dm) is the fractional chromatic number of the dependency graph of Dm.

Note that no assumption is made on the Zi’s being identically distributed.
This concentration inequality gives rise to the following generalized chromatic PAC-Bayes

bound that applies to non independently, possibly non identically distributed data and allows us
to use any bounded loss functions r.

Theorem 28 (Generalized Chromatic PAC-Bayes Bound) ∀Dm, ∀H , ∀δ ∈ (0,1], ∀P, with prob-
ability at least 1−δ over the random draw of Z∼ Dm, the following holds

∀Q, |êQ(Z)− eQ|2 ≤
χ∗M2

2m−χ∗M2

[

KL(Q||P)+ ln
2m
χ∗M2 + ln

1
δ

]

,

where χ∗ stands for χ∗(Dm), r is a bounded function with range M and

êQ(Z) := Eh∼QR̂(h,Z)
eQ := Eh∼QêQ(Z) = Eh∼QEZ∼DmR̂(h,Z),

with R̂(h,Z) := ∑i r(h,Zi)/m.

Proof It suffices to apply Corollary 25 with Theorem 27, α = 1, Δ(p,ε) = ε2 and β = 2m/χ∗M
(since, as r has range M, R̂ has rangeM/m).

We notice the following.

• Here, as no assumption is done regarding the identical distribution of the Zi’s, the expected
risk R(h) = EZR̂(h,Z) does not unfold as in (3).

• In the case of using identically distributed random variables and the 0-1 loss, there is no
concentration inequality that allows us to retrieve the tighter PAC-Bayes bound given in The-
orem 8.

• From a more general point of view, it is enticing to try to establish even more generic results
resting on the principle of graph coloring with the aim of decoupling this approach to the
PAC-Bayesian framework. This is the subject of ongoing work.
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B.2 ϕ-mixing PAC-Bayes Bound

The definition of a ϕ-mixing process follows.

Definition 29 (ϕ-mixing process) LetZ= {Zt}+∞t=−∞ be a stationary sequence of random variables.
For any i, j ∈ Z∪ {−∞,+∞}, let σ j

i denote the σ-algebra generated by the random variables Zk,
i≤ k ≤ j. Then, for any positive integer k, the ϕ-mixing coefficient ϕ(k) of the stochastic process Z
is defined as

ϕ(k) = sup
n,A∈σ+∞n+k,B∈σ

n
−∞

|P [A|B]−P [A]| .

Z is said to be ϕ-mixing if ϕ(k)→ 0 as k→ 0.

In order to establish our new PAC-Bayes bounds for stationary ϕ-mixing distributions, it suffices
to make use of the following concentration inequality by Kontorovich and Ramanan (2008).

Theorem 30 (Kontorovich and Ramanan, 2008) Let ψ : Um → R be a function defined over a
countable space U. If ψ is l-Lipschitz with respect to the Hamming metric for some l > 0, then the
following holds for all t > 0:

PZ [|ψ(Z)−EZ[ψ(Z)]|> t]≤ 2exp
[

−
t2

2ml2‖Λm‖2∞

]

,

where ‖Λm‖∞ ≤ 1+2∑m
k=1ϕ(k).

Suppose that the loss function r is again such that it takes values in [0,M]. Then, for any h ∈H ,
the function ψ(Z) = 1

m ∑
m
i=1 r(h,Zi) = R̂(h,Z) is obviouslyM/m-Lipschitz. Therefore, for a sample

Z drawn according to a ϕ-mixing process, we have the following concentration inequality on R̂(h,Z)
that holds for any h ∈H :

PZ∼Dm
[
∣

∣R̂(h,Z)−R(h)
∣

∣> t
]

≤ 2exp
[

−
mt2

2M2‖Λm‖2∞

]

. (17)

We directly get the following PAC-Bayes bound for ϕ-mixing processes.

Theorem 31 (PAC-Bayes bound for stationary ϕ-mixing processes) Let Dϕ be a stationary ϕ-
mixing distribution over Z and Dϕm be the distribution of m-samples according to Dϕ. ∀H ⊆ R X ,
∀δ ∈ (0,1], ∀P, with probability at least 1−δ over the random draw of Z∼Dϕm, the following holds

∀Q, |êϕQ(Z)− eϕQ|
2 ≤

2M2‖Λm‖2∞
m−2M2‖Λm‖2∞

[

KL(Q||P)+ ln
m

M2‖Λm‖2∞
+ ln

1
δ

]

,

where ‖Λm‖∞ ≤ 1+2∑m
k=1ϕ(k), r(h,Z) = IYh(X)<0 and

êϕQ(Z) := Eh∼QR̂(h,Z) = Eh∼Q

m

∑
t=1

IYth(Xt)<0

eϕQ := EZ∼Dϕmê
ϕ
Q(Z).

Proof Equation (17), and Corollary 25 with α= 2, β= m/(2M2‖Λ‖2∞), Δ(p,ε) = ε2.
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Abstract
Principal component analysis (PCA) is a classical data analysis technique that finds linear transfor-
mations of data that retain the maximal amount of variance. We study a case where some of the data
values are missing, and show that this problem has many features which are usually associated with
nonlinear models, such as overfitting and bad locally optimal solutions. A probabilistic formulation
of PCA provides a good foundation for handling missing values, and we provide formulas for doing
that. In case of high dimensional and very sparse data, overfitting becomes a severe problem and
traditional algorithms for PCA are very slow. We introduce a novel fast algorithm and extend it to
variational Bayesian learning. Different versions of PCA are compared in artificial experiments,
demonstrating the effects of regularization and modeling of posterior variance. The scalability of
the proposed algorithm is demonstrated by applying it to the Netflix problem.
Keywords: principal component analysis, missing values, overfitting, regularization, variational
Bayes

1. Introduction

Principal component analysis (PCA) is a data analysis technique that can be traced back to Pearson
(1901). It can be used to compress data sets of high dimensional vectors into lower dimensional
ones. This is useful, for instance, in visualization and feature extraction. PCA has been exten-
sively covered in the literature (e.g., Jolliffe, 2002; Bishop, 2006; Diamantaras and Kung, 1996;
Haykin, 1989; Cichocki and Amari, 2002). PCA can be derived from a number of starting points
and optimization criteria. The most important of these are minimization of the mean-square error
in data compression, finding mutually orthogonal directions in the data having maximal variances,
and decorrelation of the data using orthogonal transformations.

In the data compression formulation, PCA finds a smaller-dimensional linear representation of
data vectors such that the original data could be reconstructed from the compressed representation
with the minimum square error. Assume that we have n d× 1 data vectors y1,y2, . . . ,yn that are
modeled as

y j ≈Wx j+m, (1)

where W is a d× c matrix, x j are c× 1 vectors of principal components, and m is a d× 1 bias
vector. We assume that c ≤ d ≤ n. Principal subspace methods (e.g., Cichocki and Amari, 2002;

c©2010 Alexander Ilin and Tapani Raiko.
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Diamantaras and Kung, 1996) findW, x j and m such that the reconstruction error

C =
n

∑
j=1

‖y j−Wx j−m‖2 (2)

is minimized. In matrix notation, the data vectors and principal components can be compiled into
d× n and c× n matrices Y = [y1 y2 . . . yn ] and X = [x1 x2 . . . xn ], and yi j, wik and xk j denote
the elements of the matrices Y,W and X, respectively. The bias matrixM contains n copies of the
bias vector m as its columns. Principal subspace methods find W and X such that Y ≈WX+M
and the minimized cost function is the sum of the squared elements (or Frobenius norm) of matrix
Y−WX−M:

C = ‖Y−WX−M‖2F . (3)

Without any further constraints, there exist infinitely many ways to perform a decomposition that
minimizes (2) or equivalently (3). This can be seen by noting that any rotation or scaling ofW can
be compensated by rotating or scaling X accordingly, leaving the productWX the same. However,
the subspace spanned by the column vectors of the matrix W, called the principal subspace, is
unique.

PCA finds a specific representation of the principal subspace. It is traditionally defined using
the requirement that the column vectors of W are mutually orthogonal, have unit length and, fur-
thermore, for each k = 1, . . . ,c, the first k vectors form the k-dimensional principal subspace. This
makes the solution practically unique (except for changing the sign, and in the special case of having
equal eigenvalues, e.g., Diamantaras and Kung, 1996; Jolliffe, 2002; Haykin, 1989). In this article,
we use the term PCA for methods which seek representations (1) by minimizing the error (2). Thus
we assume that once the principal subspace is found, it can be transformed into the PCA solution.
This is indeed true for the case of fully observed vectors y j but can be more difficult in the case with
missing values, as we discuss in Section 4.

Let us now consider the same problem when the data matrixY has missing entries. In this paper,
we make the typical assumption that values are missing at random (MAR) (Little and Rubin, 1987),
that is, given the observed data, the missingness does not depend on the unobserved data or latent
variables. An example where the assumption does not hold is when out-of-scale measurements are
marked missing. In the following example, the data matrix contains N = 9 observed values and 6
missing values (marked with a sign ×):

Y=




y11 y12 y13 y14 ×
y21 y22 × × y25
× × y33 y34 ×



 .

A natural extension of PCA for the case with missing values would be to find a representation such
that Y ≈WX+M for the observed values. The rest of the matrix WX+M can be taken as the
reconstruction of missing values.

Although the PCA problem in the presence of missing values seems to be as easy as classical
PCA, there are some important distinctions: 1) There is no analytical solution available since even
the estimation of the data covariance matrix is nontrivial. Therefore, iterative learning procedures
must be exploited. 2) The optimized cost function typically has multiple local minima and thus
finding the optimal solution is more difficult. 3) There is no analytical solution even for the bias
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Figure 1: Two examples of PCA with missing values. In the left, the missing value mechanism is
missing at random (MAR), while on the right, it is missing not at random (MNAR). The
black dots represent fully observed samples, while the blue crosses represent observations
where only the horizontal value has been observed. The red circles represent the recon-
structions of the missing values produced by VBPCA. The dashed red ellipses represent
the estimated data covariance. On the left, the estimated covariance is quite close to the
data covariance (black ellipse).

term m in (1), which is not generally equal to the row-wise mean of the data matrix, as in clas-
sical PCA. 4) Standard PCA approaches can easily lead to overfitting, thus regularization is often
required. 5) The algorithms may require heavy computations, especially for large-scale problems.
6) The concept of the PCA basis in the principal subspace is not easily generalized in the pres-
ence of missing values. 7) The choice of the dimensionality of the principal subspace is generally
more difficult than in classical PCA. Thus, the PCA problem has many features which are usually
associated with nonlinear models. This paper discusses some of these important issues providing
illustrative examples and presenting ways to overcome possible difficulties.

All the methods studied in this work assume MAR, so they cannot be expected to work in the
missing not at random (MNAR) case. Fig. 1 gives a first example of PCA with missing values. The
data contain 200 samples generated from a Gaussian distribution represented by the black ellipse.
In the first case (left subfigure), the vertical value is missing when the horizontal value is negative.
This setting is MAR since the missingness depends only on the observed data. In the second case
(right subfigure), the vertical value is missing when the vertical value itself is negative. Now the
missingness depends on the missing data, and the missing value mechanism is thus MNAR. As
expected, the variational Bayesian PCA (VBPCA, see Section 3.3) works well in the MAR case and
gives reasonable reconstructions for the missing values. Also, the vertical part of the bias termm is
estimated to be 1.13 which is much closer to the true value 1.10 than the row-wise mean 1.50 of the
observed values in the data.

PCA in the presence of missing values can be relevant for many data sets which appear in
practical applications. Sometimes, data sets contain relatively few missing observations and the
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problem is to adjust standard PCA algorithms to handle partially observed instances. The choice
of the algorithm is not very crucial in such a simple case, as most of the approaches would provide
similar solutions. However, in other applications, the available observations can be very sparse and
the modeling task is often to reconstruct the missing part from the observed data only. Examples
include collaborative filtering problems which is the task of predicting preferences by using other
people’s preferences (e.g., Hofmann, 2004), and historical data reconstruction in climatic records
(e.g., Kaplan et al., 1997).

Historically, the missing value problem in PCA was first studied by Dear (1959) who used only
one component and just one imputation iteration (see below). It was based on the minimum mean-
square error formulation of PCA introduced by Young (1941). Christoffersson (1970) also used a
one-component model for reconstructing missing values. Wiberg (1976) first suggested to directly
minimize the mean-square error of the observed part of the data. An algorithm by de Ligny et al.
(1981) already worked with up to half of the values missing. The missing values problem using
a multivariate normal distribution has been studied even earlier than using PCA, for instance, by
Anderson (1957). More historical references can be found in the book by Jolliffe (2002).

More recently, PCA with missing values was studied by Grung and Manne (1998). They pro-
posed using either the imputation or the faster alternating W–X algorithm (see below). They dis-
cussed the overfitting problem and suggested to delete troublesome rows or columns from data.
Tipping and Bishop (1999) introduced the probabilistic formulation of PCA (PPCA). Although
they mentioned shortly missing data, they did not provide the formulas to be used for incomplete
data. Bishop (1999) introduced variational Bayesian PCA (VBPCA) for choosing the number of
components in PCA. Raiko and Valpola (2001) reconstructed missing values with VBPCA to com-
pare some nonlinear models to it. Oba et al. (2003) applied VBPCA for missing value estimation in
gene expression profile data, and mentioned that it performs much better than the existing methods
for missing value estimation.

The present article reviews possible approaches to the problem with the emphasis on probabilis-
tic models and Bayesian methods. The rest of the article is organized as follows. In Section 2, we
present classical algorithms for PCA based on minimizing the reconstruction error similar to (2) and
the method based on estimation of the covariance matrix (imputation algorithm). We review how
the algorithms are normally used for fully observed data and explain how they can be adapted to the
case with missing values. We explain possible difficulties of the standard methods including bad lo-
cally optimal solutions, numerical problems and overfitting. Simple examples are given to illustrate
these problems. In the same section, we discuss the properties of the imputation algorithm, such
as implicit remedies against overfitting and overlearning and its expectation-maximization (EM)
interpretation.

Section 3 presents probabilistic models for PCA which provide a good foundation for handling
missing values. First, we introduce formulas for the probabilistic PCA model in the case with
missing values. Then, we describe Bayesian regularization for handling problems that arise when
data are sparse. We provide formulas for performing maximum a posteriori estimation and for
variational Bayesian inference.

In Section 4, we propose an extension of the PCA-basis notion to the case of incomplete data.
We also show how to find the PCA basis in a principal subspace estimated by different methods.
Section 5 provides formulas for computing missing value reconstructions and the variance of the
predicted values. We briefly discuss possible ways to select the right number of principal compo-
nents to obtain reliable reconstructions.
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Section 6 discusses large-scale problems and computational complexity. In case of high dimen-
sional and very sparse data, overfitting becomes a severe problem and traditional algorithms for
PCA are very slow. We introduce a novel fast optimization algorithm and show how to use it in
Bayesian models.

In Section 7, different versions of PCA are compared in artificial experiments, demonstrating
the effects of regularization and modeling of posterior variance. We demonstrate the importance of
tricks such as fixing hyperparameters for the early learning in variational Bayesian methods. The
scalability of the proposed algorithm is demonstrated by applying it to the Netflix problem. Finally,
we conclude in Section 8.

1.1 Notation

The following notation is used throughout the article. Bold capital letters denote matrices, bold
lower-case letters denote vectors, and normal lower-case letters denote scalars. The basic model
equation is y j ≈Wx j+m, where column vectors y j are the data cases,W is the matrix that maps
the principal components x j to the data, andm is the bias vector. Indices i= 1, . . . ,d and j= 1, . . . ,n
go over the rows and columns of Y, respectively. The index of a principal component is denoted by
k = 1, . . . ,c. Notation i j is used for the index of yi j, the i j-th element of matrix Y. O is the set of
indices i j corresponding to observed values yi j, Oi is the set of indices j (similarly Oj is the set of
indices i) for which yi j is observed. |Oi| is the number of elements in Oi and N = |O| is the number
of observed data elements. Notation Ai: and A: j is used for the i-th row and j-th column of a matrix
A, respectively. Both Ai: and A: j are column vectors. The i-th row ofW is denoted by wi =Wi:,
and the j-th column of X is x j = X: j. Table 1 lists the symbols used in the paper.

2. Least Squares Techniques

In this section, we present classical algorithms for PCA based on minimizing the reconstruction
error similar to (2) and the method based on estimation of the covariance matrix.

2.1 The Cost Function

The minimum mean-square error compression of data is the formulation for PCA (Young, 1941)
that can be generalized to the case with missing values in a very straightforward manner. The cost
function (2) is adapted such that the sum is taken over only those indices i and j for which the data
entry yi j is observed (Wiberg, 1976):

C = ∑
i j∈O

(yi j− ŷi j)2 , (4)

ŷi j = wTi x j+mi =
c

∑
k=1

wikxk j+mi . (5)

In this section, we consider algorithms optimizing cost function (4), which we call the least squares
(LS) approach to PCA of incomplete data.

The cost function (2) in the fully observed case has practically unique (up to an arbitrary rota-
tion in the principal subspace) global minimum w.r.t. model parametersW, X, m provided that all
eigenvalues of the sample covariance matrix are distinct. Srebro and Jaakkola (2003) showed that
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d dimensionality of the data vectors (indexed by i)
n number of data vectors (indexed by j)
c number of principal components (indexed by k)
Y= {yi j} d×n data matrix
y j d-dimensional data vector ( j-th column of Y)
ŷi j reconstruction of the data element yi j
m= {mi} d-dimensional bias vector
M = [m m . . . m ], d×n bias matrix
mi posterior mean of mi (scalar)
m̃i posterior variance of mi (scalar)
W= {wik} d× c matrix for the mapping from principal components to the data
W:k k-th column of matrixW (d-dimensional vector)
wi i-th row ofW (c-dimensional vector)
wi posterior mean of wi (c-dimensional vector)
W = [w1 w2 . . . wd ]T, d× c matrix of posterior means of wi
Σwi posterior covariance of wi (c× c matrix)
w̃ik posterior variance of wik (scalar)
X= {xk j} c×n matrix of principal components
x j c-dimensional principal component vector ( j-th column of X)
x j posterior mean of x j (c-dimensional vector)
X = [x1 x2 . . . xn ], c×n matrix of posterior means of x j
Σx posterior covariance of x j (same c× c matrix for each j)
Σx j posterior covariance of x j (separate c× c matrix for each j)
x̃k j posterior variance of xk j (scalar)
C cost function to be minimized
O set of indices i, j for which yi j is observed
Oi set of indices j for which yi j is observed
Oj set of indices i for which yi j is observed
γ learning rate (positive scalar)
ε j d-dimensional noise vector ( j-th out of n vectors)
vy noise variance (scalar)
N (x;µ,Σ) Gaussian pdf over variable x with mean µ and covariance Σ
vm prior variance for the elements ofm (scalar)
vw,k prior variance for the elements ofW:k (scalar for each k)
ξ = (vy,vw,k,vm) hyperparameters
θ parameters, typically θ= (W,X,m)

Table 1: Symbols used in the paper. See also Section 1.1 about notation.
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an extension to the weighted case, where each observation has a weight varying from 0 to 1, is a dif-
ficult non-convex problem where the cost function can have multiple local minima. We demonstrate
this phenomenon for a simple data set with missing values, that is with weights either 0 (missing
value) or 1 (observed value). In our example, model (1) with one principal component and fixed
m= 0 is fitted to the data

Y=




0.8 0.8
1 ×
× 1



≈




w1
w2
w3



[
x1 x2

]
.

To discard the scaling ambiguity of the PCA solution, the column vector W can be restricted to
have unit length. Thus, the minimized error can be represented as a function of two parameters
which define a unit length vector in the three-dimensional space. The cost function in this simple
example has three local minima, as shown in Fig. 2: The global minimumW=±[0.49 0.62 0.62]T
corresponds to zero cost while the other two minima (close to ±[0 1 0]T and ±[0 0 1]T) provide a
non-zero error. Each of the two sub-optimal solutions reconstructs perfectly only three out of four
observed values in Y.
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Figure 2: Example of local minima for the cost function (4). Data are three-dimensional (d = 3),
the model has one principal component (c = 1) and therefore the PCA solution can be
defined by a unit length vector W. Left: The cost function plotted on a surface of unit
length vectors. Right: The same plot using the Euler vector representation: The matrixW
is constructed from α and β asW = eA[1 0 0]T with A a 3×3 matrix with four nonzero
elements a12 = −a21 = α and a13 = −a31 = β. Coordinates in brackets correspond to
coordinates in Euclidian space in the left hand side plot.

The cost function (4) can be minimized using any optimization procedure. Two possible ap-
proaches are presented in the following.

2.2 Alternating W–X Algorithm

Complete data. It is possible to optimize the cost function (3), and therefore to find the principal
subspace, by updating W and X alternately. When either of these matrices is fixed, the other one
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can be obtained from an ordinary least squares problem. We will further refer to this approach as
the alternating algorithm.

The algorithm alternates between the updates

X= (WTW)−1WTY, (6)
W= YXT(XXT)−1. (7)

This iteration can be efficient when only a few principal components are needed, that is c( d
(Roweis, 1998). The bias vectorm is the row-wise mean of the data and the above equations assume
that it has been subtracted from the data as a preprocessing step.

Incomplete data. Grung and Manne (1998) studied the alternating algorithm in the case of
missing values. In order to get the accurate least squares solution, we include the bias term into the
estimation procedure, yielding the update rules

x j =
(
∑
i∈Oj

wiwTi
)−1

∑
i∈Oj

wi(yi j−mi) , j = 1, . . . ,n, (8)

mi =
1

|Oi| ∑j∈Oi
[
yi j−wTi x j

]
, (9)

wi =
(
∑
j∈Oi
x jxTj

)−1
∑
j∈Oi
x j(yi j−mi) , i= 1, . . . ,d , (10)

where mi is the i-th element of m.

2.3 Gradient Descent Algorithm

Complete data. The basis of neural network implementation of PCA learning rules is a gradient
descent optimization procedure. Such algorithms work online, processing only one input vector y j
at once. The learning rules implement stochastic gradient descent and the algorithms will eventually
converge to a basis in the principal subspace. Each data vector may have to be processed several
times for convergence. The same can also be implemented in a batch procedure.

Using gradient descent for minimization of (4) w.r.t.W yields the update rule

W←W+ γ(Y−WX)XT , (11)

where γ > 0 is called the learning rate. Minimization w.r.t. matrix X can be performed using the
least squares solution in (6). Some neural algorithms use learning rules which either explicitly or-
thogonalize W or which yield an orthogonal W at the convergence. Then the update of X can be
simplified to X =WTY, which together with (11) is the batch version of the Oja learning algo-
rithm (Oja, 1983; Diamantaras and Kung, 1996). The bias m is again removed from the data as a
preprocessing step.

Incomplete data. In the presence of missing values, the gradient descent update rule forW is

W←W− γ
∂C
∂W , with

∂C
∂wik

=−2 ∑
j∈Oi

(yi j− ŷi j)xk j ,

1964



PRINCIPAL COMPONENT ANALYSIS WITH MISSING VALUES

where ŷi j is given in (5). Matrix X could be updated using (8) but a gradient-based update can also
be used:

X← X− γ
∂C
∂X , with

∂C
∂xk j

=−2 ∑
i∈Oj

(yi j− ŷi j)wik .

The bias term m can be updated using (9). As we discuss in Section 6.1, gradient-based learning
can be computationally more efficient than the alternating algorithm because there is no need to
compute matrices

(
∑i∈OjwiwTi

)−1
and

(
∑ j∈Oi x jxTj

)−1
in (8) and (10).

2.4 Numerical Problems and Overfitting

Least squares PCA methods can work well for data sets with few missing values but they may not
be applicable to sparse data sets because of severe problems with overfitting. Suppose that for some
j the number |Oj| of observed measurements yi j is smaller than the number of principal components
c. Then, the corresponding least square problem is ill posed: the matrix ∑i∈OjwiwTi is rank deficient
and Equation (8) cannot be used. Moreover, even if |Oj| is greater than c, matrix ∑i∈OjwiwTi may
be badly conditioned and the corresponding x j can become infinitely large. This means that the
parameters would be overfitted to explain well a few observed values but the generalization ability
of the model would be poor (e.g., reconstruction of missing data would be very inaccurate). This is
exactly what happens in the vicinity of the two local minima in the example in Fig. 2.

The same problem can happen when the rows of W are estimated using, for example, (10):
matrix ∑ j∈Oi x jxTj can be rank deficient or badly conditioned. This is more probable when some
rows of Y contain very few measurements. However, these problems can generally appear for any
data set and for any algorithm optimizing the cost function (4).

Overfitting problems can be avoided by using proper regularization. A common way to prevent
unbounded growth of model parameters is to add terms which penalize large parameter values into
the cost function. The amount of regularization can be determined, for instance, by cross-validation.
Another possibility is to use probabilistic methods (see Section 3) in which the extra penalty terms
come naturally from a probabilistic model.

2.5 Method Using Singular Value Decomposition

Complete data. Perhaps the most popular approach to PCA is based on singular value decomposition
(SVD) of the data matrix or (equivalently) eigen-decomposition of the sample covariance matrix.
SVD of the data matrix is given by:

Y= UΣVT ,

where U is a d× d orthogonal matrix, V is an n× n orthogonal matrix and Σ is a d× n pseudo-
diagonal matrix (diagonal if d = n) with the singular values on the main diagonal (e.g., Haykin,
1989). The PCA solution is obtained by selecting the c largest singular values from Σ, by forming
W from the corresponding c columns of U, and X from the corresponding c rows of ΣVT (Jolliffe,
2002). The biasm is again removed from the data as a preprocessing step.

PCA can equivalently be defined using the eigen-decomposition of the d×d covariance matrix
C of the column vectors of the data matrix Y:

C=
1
n
YYT = UDUT .
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The diagonal matrix D contains the eigenvalues of C, and the columns of the matrix U contain
the unit-length eigenvectors of C in the same order (Cichocki and Amari, 2002; Diamantaras and
Kung, 1996; Jolliffe, 2002; Haykin, 1989). Again, the columns of U corresponding to the largest
eigenvalues are taken asW, and X is computed asWTY. This approach can be more efficient for
cases where d( n, since it avoids the computation of the n×n matrix V.

Incomplete data. The same approach cannot be directly used in the presence of missing values.
Estimating the covariance matrix C becomes difficult. Let us consider a simple (but incorrect)
estimate where we just leave out terms with missing values from the average for each element of C.
For the data matrix below, we get

Y=




−1 +1 0 0 ×
−1 +1 × × 0
× × −1 +1 ×



 , C=
1
n
YYT =




0.5 1 0
1 0.667 ×
0 × 1



 .

There are at least two problems. First, the estimated covariance 1 between the first and second
components is larger than their estimated variances 0.5 and 0.667. This clearly leads to the sit-
uation where the covariance matrix is not positive (semi)definite and some of its eigenvalues are
negative. Secondly, the covariance between the second and the third component could not be esti-
mated at all. For these reasons, this is a viable option only if the number of missing values is not
significant. There are many algorithms for finding a proper estimate of the covariance matrix (e.g.,
Ghahramani and Jordan, 1994; Boscardin and Zhang, 2004) but they are computationally intensive
iterative algorithms.

A simple alternative is an iterative procedure which performs PCA more directly. It alternates
between imputing the missing values inY and applying standard PCA to the infilled (complete) data
matrix Yc (e.g., Jolliffe, 2002). Initially, the missing values can be replaced, for example, by the
row-wise means of Y. The covariance matrix of the complete data Yc can be estimated without the
problems mentioned above, andW can be computed using its eigen-decomposition. The bias term
m can be updated as the row-wise mean of Yc. Next, the principal components X are calculated:

X=WT(Yc−M) ,

the reconstructions can be used as a better estimate for the missing values:

Yc =
{
Y for observed values
WX+M for missing values

and PCA can be applied again to the updated data matrix Yc. This process can be iterated until
convergence. We will further refer to this approach as the imputation algorithm. In Appendix A,
we show that the imputation algorithm also minimizes the cost function (4) and that it implements
the EM steps for a simple probabilistic model. This approach requires the use of the complete data
matrix, and therefore it is computationally very expensive for large-scale problems.

Although the imputation algorithm belongs to the class of least-squares PCA algorithms (i.e., it
does not use explicit regularization), it still provides some remedy against overfitting. Performing
SVD of a complete data matrix is equivalent to minimizing a cost function which is a sum of
two terms: the reconstruction error for the observed values (which is the true minimized error)
and the reconstruction error for the infilled missing data (which is a penalty term forcing the new
reconstructions of missing data to be close to the infilled values). Initialization of the reconstructions
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with the row-wise means of the data matrix introduces a bias in favor of the most “conservative”
solutions. In practice, there can be infinitely many solutions that provide the same reconstruction
error for the observed part but that have different reconstructions for the missing part. In such cases,
the effect of the initialization can last even if the algorithm is iterated indefinitely.

Our experiments show that the imputation algorithm also has resistance against overlearning.
By overlearning we mean situations when the training error decreases but the generalization ability
of the model gets worse. Badly overfitted solutions correspond to regions in the parameter space
where a small decrease of the training error can cause a large increase of the test error. However, the
penalty term (which keeps the reconstructions of missing data close to the infilled values) makes the
steps shorter and learning can practically stop once the algorithm enters regions where the training
error changes very little. Thus, this regularization effect is due to early stopping.

3. Probabilistic Models for PCA

In this section, we presents probabilistic models for PCA which provide a good foundation for
handling missing values.

3.1 Probabilistic PCA

The probabilistic formulation of PCA offers a number of benefits, including well-founded regular-
ization, model comparison, interpretation of results, and extendability. Probabilistic PCA (Tipping
and Bishop, 1999) explicitly includes the noise term in a generative model

y j =Wx j+m+ ε j . (12)

Both the principal components x j and the noise ε j are assumed normally distributed:

p(x j) =N (x j;0,I) , (13)
p(ε j) =N (ε j;0,vyI) , (14)

whereN (x;µ,Σ) denotes the normal probability density function (pdf) over variable x with mean µ
and covariance Σ. The parameters of the model includeW, m and vy. The model can be identified
by finding the maximum likelihood (ML) estimate for the model parameters using the EM algorithm
(Dempster et al., 1977).

Complete data. The E-step estimates the conditional distribution of the hidden variables X
given the data and the current values of the model parameters:

p(X|Y,W,vy) =
n

∏
j=1

N
(
x j;x j,Σx j

)
,

where the covariance matrix Σx j is same for all x j:

Σx j = Σx = vy
(
vyI+WTW

)−1
, j = 1, . . .n ,

and the means x j can be summarized in the columns of matrix

X=
1
vy
ΣxWTY . (15)
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The M-step re-estimates the model parameters as

W= YXT(XXT+nΣx)−1, (16)

vy =
1
nd

d

∑
i=1

n

∑
j=1

(
yi j−wTi x j

)2
+
1
d
tr(WΣxWT) .

Note that vy is updated as the mean-square error plus the extra term which accounts for the uncer-
tainty in X.

Tipping and Bishop (1999) showed that W converges to the principal subspace. In the zero-
noise limit, that is for vy → 0, the iterations (15)–(16) reduce to the least squares projections in
(6)–(7) (Roweis, 1998). Note also that the ML estimator form is given by the row-wise mean of the
data (Tipping and Bishop, 1999). Therefore, it can be computed once and removed from the data in
the preprocessing step.

Incomplete data. The generalization to the case with missing values happens as follows. First
we write an element-wise version of the probabilistic model in (12)–(14):

yi j = wTi x j+mi+ εi j , ∀i j ∈ O,
p(x j) =N (x j;0,I) ,
p(εi j) =N (εi j;0,vy) .

We treat wi, mi, and vy as model parameters and x j as latent variables and apply the standard EM
algorithm to arrive at the following update rules:

Σx j = vy
(
vyI+ ∑

i∈Oj

wiwTi
)−1

, (17)

x j =
1
vy
Σx j ∑

i∈Oj

wi(yi j−mi) , j = 1, . . . ,n,

mi =
1

|Oi| ∑j∈Oi
[
yi j−wTi x j

]
,

wi =
(
∑
j∈Oi

[
x jxTj +Σx j

])−1
∑
j∈Oi
x j(yi j−mi) , i= 1, . . . ,d, (18)

vy =
1
N ∑i j∈O

[(
yi j−wTi x j−mi

)2
+wTi Σx jwi

]
.

There are several distinctions compared to the fully observed data: 1) The optimal m depends
on other parameters and therefore it has to be updated in the iterative procedure. 2) The covariance
Σx j is different for each x j. 3) Each row of W is recomputed based only on those columns of X
which contribute to the reconstruction of the observed values in the corresponding row of the data
matrix. The same applies to the computation of the columns of X. Thus, the computations required
for incomplete data are generally heavier.

3.2 Examples of Overfitting with Probabilistic PCA

PPCA provides some remedy against overfitting, in contrast to the least squares approach. First,
a nonzero noise level vy regularizes badly conditioned matrices ∑i∈OjwiwTi in (17). Second, even
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if the noise level is small, badly conditioned matrices ∑i∈OjwiwTi result in large values both in the
means x j and in the covariance matrices Σx j . This diminishes the effect of large values in x j when
W is re-estimated using (18).

However, PPCA can overfit, for example, if the estimated number of principal components is
unreasonably large. In the example in Fig. 3, PPCA with one (c= 1) principal component is applied
to two-dimensional (d = 2) data and each data vector is only partly observed (i.e., either y1 j or
y2 j is known for all js). The observations are represented by triangles placed on the two axes in
Fig. 3. The data points reconstructed with a trained PPCAmodel lie on a line, thus the model invents
correlations that are not observed in the data. In fact, there are infinitely many PPCA models which
are equally good and the final solution (and hence the reconstructions) depends on initialization.
The situation would not change significantly if there were a few fully observed data vectors. Then,
the trained model would be defined by those few samples and it would not generalize well for new
data.

A similar overfitting example is presented in Fig. 4. There, three-dimensional data are described
well by a model with c = 1 principal component. The first two rows of Y are fully observed while
there are only two measurements in the third row (Fig. 4a). The reconstructions of the third row of
Y are very inaccurate because the model relies only on the two available observations.

3.3 Variational Bayesian PCA (VBPCA)

A common way to cope with the overfitting problem is to penalize parameter values which cor-
respond to more complex explanations of the data. A natural regularization in PCA is using pe-
nalization of large values in matrices W and X. In the Bayesian formulation, this is equivalent to
introducing a prior over the model parameters. For example, the PPCA model in (12)–(14) can be
complemented with Gaussian priors over the elements of vectorm and matrixW:

p(m) =N (m;0,vmI) , (19)

p(W) =
c

∏
k=1

N (W:k;0,vw,kI) . (20)

Here, we use a zero mean prior for m for the sake of simplicity. Including a mean hyperparameter
µ, that is p(m) =∏iN (mi;µ,vm), can be useful in practice.

The model (20) uses a shared prior for all elements in the same column of W, parameterized
with vw,k. This is done to allow automatic selection of the right number of components needed for
PCA. The hyperparameters vm, vw,k can also be updated during learning (e.g., using the evidence
framework or variational approximations). If the evidence of the relevance of the k-th principal com-
ponent for reliable data modeling is weak, the corresponding vw,k should tend to zero. This is called
automatic relevance determination (e.g., Bishop, 2006). The prior in (19)–(20) also introduces a
bias towards the PCA basis within the principal subspace (Luttinen and Ilin, 2010).

Let us assume that we perform ML estimation of the hyperparameters ξ = (vy,vw,k,vm) in the
probabilistic model defined in (12)–(14) and (19)–(20). This can be done using the EM-algorithm
if one treats the model parameters θ = (W,X,m) as hidden random variables. Implementation of
the EM algorithm would require the computation of the posterior of the hidden variables p(θ|Y,ξ)
on the E-step. Unfortunately, the true posterior p(θ|Y,ξ) does not have an analytic form and one
possible solution is to approximate it with a simpler pdf q(θ). This is justified by the variational
view of the EM algorithm (Neal and Hinton, 1999).
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Figure 3: A simple example of overfitting with PPCA: data are two-dimensional and each sample
contains only one observed value. The measurements are marked with blue and red trian-
gles at the two axes. The reconstructions provided by a trained PPCA model are shown
with crosses.
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Figure 4: Example of inaccurate reconstruction with PPCA. Left: The “true” values in the three
rows of Y are shown with blue lines. The first two rows are fully observed, the only
two observations in the third row are marked with circles. The PPCA reconstruction is
shown with red dots. Right: The blue dots is the scatter plot of the third row of Y (x-axis)
against the principal component estimated by PPCA (y-axis). The dots corresponding to
the two observations are marked with circles. The red crosses is the reconstruction of
the third row (x-axis) against the estimated principal component (y-axis). The estimated
correlation are due to the two fully observed data vectors.
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Using the variational approach (Wallace, 1990; Hinton and van Camp, 1993), the E-step is
modified to update the approximation q(θ) so as to minimize the cost function

C(q(θ),ξ) =
∫
q(θ) log

q(θ)
p(Y,θ|ξ)dθ=

∫
q(θ) log

q(θ)
p(θ|Y,ξ)dθ− log p(Y|ξ) . (21)

On the M-step, the approximation q(θ) is used as it was the actual posterior p(θ|Y,ξ) in order to
increase likelihood p(Y|ξ). This can be seen as minimization of (21) w.r.t. ξ (Neal and Hinton,
1999).

The first term in (21) is the Kullback-Leibler divergence between the true posterior and its
approximation. Since it is always non-negative, the cost function provides a lower bound of the
log-likelihood:

log p(Y|ξ)≥−C(q(θ),ξ) . (22)

This property can be used to compare solutions corresponding to different local minima of (21).
More details on variational methods can be found, for example, in the book by Bishop (2006).

The variational Bayesian (VB) approach to PCA can be implemented by minimization of (21)
w.r.t. the approximating pdf q(θ) and ξ.1 The complexity of the cost function (21) depends on the
form of the approximating pdf q(θ). A computationally convenient form for the PCA model is

q(θ) =
d

∏
i=1

q(mi)
d

∏
i=1

q(wi)
n

∏
j=1

q(x j) . (23)

Then, the cost function can be minimized alternately w.r.t. one factor q(θi) in (23) while keeping the
other ones fixed. Because we use conjugate priors in (19)–(20), it is possible to find optimal pdfs
q(θi) on each step: The optimal q(mi), q(wi) and q(x j) are Gaussian and their update boils down to
re-estimation of the corresponding means and covariance matrices.

In Appendix C, we present the update rules for the resulting algorithm, which we call VBPCA.
There, we assume incomplete data sets, the update rules for the fully observed data can be found in
the paper by Bishop (1999). Note the resemblance of the learning rules to the EM algorithm applied
to PPCA. The mean parameters W, X, m of the approximating pdfs can be used as estimates of
the corresponding model parameters. The covariance matrices Σwi , Σx j and variances m̃i reflect the
uncertainty about the corresponding quantities.

The advantages of the VB approach can be summarized in the following.

• VB learning is sensitive to posterior probability mass rather than posterior probability density,
which makes it more resistant against overfitting compared to point estimation (e.g., PPCA or
MAPPCA presented in Section 6.4). Typically, overfitted solutions correspond to high peaks
in the posterior density while robust solutions contain much of the posterior probability mass
in their neighborhood.

• The method provides information about uncertainty for the unknown quantities (in the esti-
mated posterior covariance matrices). This can be useful to detect unreliable results similar
to the one presented in Fig. 4. For example, the uncertainty of the reconstructions of missing
values can be estimated as we show in Section 5.

1. In the fully Bayesian treatment, the hyperparameters ξ are also assigned priors and they are treated equally to the rest
of the parameters θ. We omit the effect of the prior for the hyperparameters to simplify the equations.
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• The VB cost function can be used for comparison between different solutions based on (22):
A smaller cost yields a greater lower bound of the solution evidence. This is a useful feature
for PCA of incomplete data as, in this problem, even simpler models can provide cost func-
tions with multiple local minima. A greater lower bound does not guarantee a better solution,
but still it seems to be a reliable measure in practice, see Figure 11 for an example.

4. Rotation in the Principal Subspace to the PCA Basis

A useful property of classical PCA is that the principal components are ordered by the amount of
data variance they explain, which allows an intuitive interpretation of the results. Such a represen-
tation is quite trivial for complete data sets but the extensions to the case of incomplete data is not
straightforward. In this section, we show how to find such a basis in the principal subspace esti-
mated by different algorithms for incomplete data. We refer to this basis as the PCA basis in the
principal subspace.

One can define the PCA basis for complete data as the solution which minimizes (2) and which
satisfies the following conditions: 1) the principal components (in the rows of X) are zero mean,
mutually uncorrelated and scaled to unit variance:

1
n

n

∑
j=1
x j = 0, (24)

1
n

n

∑
j=1
x jxTj =

1
n
XXT = I (25)

and 2) matrixW has mutually orthogonal columns which are ordered according to their norms:

WTW= diag(s), (26)
sk ≥ sl , k < l , (27)

where diag(s) denotes a diagonal matrix with diagonal elements sk = ‖W:k‖2. Note that the nor-
malized columns ofW and their squared norms sk are the eigenvectors and eigenvalues of the data
covariance matrix.

We propose to use the same conditions (24)–(27) to define the PCA basis in the principal sub-
space estimated for incomplete data. Note the important difference to the complete data case: The
PCA basis for complete data is unique (assuming distinct eigenvalues of the data covariance matrix)
and it does not depend on the dimensionality for the assumed principal subspace. This cannot be
guaranteed for incomplete data case: The principal subspace estimated with the same algorithm us-
ing fewer components may differ from the leading directions of the PCA basis found in the subspace
with more components.

In the following, we show how to transform a solution found with different algorithms to the
PCA basis such that conditions (24)–(27) are satisfied.
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4.1 Least Squares Approaches

The first step to transform a solution {W,m,X} found by a least squares algorithm (as presented in
Sections 2.2-2.3) is to center the rows in X to zero mean:

x j ← x j−µ, (28)
mpca =m+Wµ, (29)

with µ= 1
n ∑

n
j=1 x j. This ensures (24). The next step is to transform linearlyW and X:

Wpca =WUD1/2x V, (30)

Xpca = VTD−1/2
x UTX , (31)

where matrices U, Dx are computed by eigen-decomposition

1
n
XXT = UDxUT (32)

and V is calculated by eigen-decomposition

D1/2x UTWTWUD1/2x = VDwVT . (33)

It is easy to show that the transformed solution satisfies (25)–(26):

1
n
XpcaXTpca =

1
n
VTD−1/2

x UTXXTUD−1/2
x V

= VTD−1/2
x UTUDxUTUD−1/2

x V= VTD−1/2
x DxD−1/2

x V= VTV= I,

WT
pcaWpca = VTD1/2x UTWTWUD1/2x V= VTVDwVTV= Dw .

4.2 Probabilistic PCA

We show in Appendix B that the following conditions hold at the convergence of PPCA:

1
n

n

∑
j=1
x j = 0, (34)

Σ∗ =
1
n

n

∑
j=1

[
x jxTj +Σx j

]
= I , (35)

which can be seen as the analogue of (24)–(25). Note that Σ∗ becomes the sample covariance matrix
of the principal components in the noiseless limit, when vy → 0. The extra requirements (26)–(27)
can be used to define the (practically) unique PCA basis for a PPCA solution. They resolve the
rotational ambiguity caused by the fact that any orthogonal transformation of the principal subspace
does not change Σ∗ in (35).

One can easily perform a transformation of a PPCA solution such that (34)–(35) and (26)–(27)
hold. This is done by first normalizing x j to zero mean and updating the bias term similarly to (28)–
(29). Then, a rotation of the subspace is performed similarly to (30)–(33) with the exception that
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1
nXX

T is replaced with Σ∗. Finally, one can rotate the posterior covariance matrices of the estimated
principal components:

Σx j,pca = VTD
−1/2
x UTΣx jUD

−1/2
x V , (36)

which follows from (31).
Although the optimal PPCA solution satisfy at least conditions (34)–(35), convergence of the

learning algorithm to the optimal solution can be very slow. Therefore, performing the described
transformations during learning can speed up learning. In the experiments, we use the transforma-
tions after each iteration.

4.3 VBPCA

It can be shown (Luttinen and Ilin, 2010) that VBPCA described in Section 3.3 converges to the
solution which satisfies (34)–(35) and the condition analogous to (26):

d

∑
i=1

[
wiwiT+Σwi

]
= diag(s) , (37)

where wi, Σwi are the posterior means and covariance matrices for the rows of matrixW (see Ap-
pendix C for notation details). Thus, one can simply use the ordering requirement (27) to define a
meaningful basis for a VBPCA solution. Performing a transformation that ensures (34)–(35) and
(37) during learning can speed up convergence (Luttinen and Ilin, 2010). The transformation can
be performed similarly to (30)–(33) with the exception that XXT is replaced with ∑n

j=1
[
x jxTj +Σx j

]

in (32) andWTW is replaced with ∑d
i=1

[
wiwiT+Σwi

]
in (33). Finally, one can rotate the posterior

covariance matrices using (36) and

Σwi,pca = VTD
1/2
x UTΣwiUD

1/2
x V .

In the experiments, we use the transformations after each iteration.

5. Reconstruction of Missing Values and Selection of Model Rank

PCA is a popular approach to the problem of missing value reconstruction. The estimated principal
components capture the correlations between different variables, which allows for reconstruction of
missing values from the observed ones. The models discussed in this article compute reconstruc-
tions using (5), in which wi, mi, x j are replaced with the respective posterior means wi, mi, x j when
applicable. Additionally, one can estimate the uncertainty of the predictions for PPCA and VBPCA
by computing its variance

ỹi j = m̃i+wTi Σx jwi+xTj Σwix j+ tr(Σx jΣwi) ,

where m̃i, Σx j , Σwi represent the posterior uncertainties of the respective parameters and Σwi is
zero for PPCA. This is a useful feature of the probabilistic methods compared to the least-squares
approach.

The quality of reconstruction depends on the number of estimated principal components and
therefore selection of the model rank is an important problem. In this section, we briefly outline
possible solutions to this problem leaving out the detailed discussion.
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The most straightforward way to define the rank of the model is to use cross-validation. The
data set is divided into training and validation parts, models with different ranks are fitted to the
training set and the the rank is selected based on the performance on the held-out validation set.

Another way is to use probabilistic methods for model selection. For example, Minka (2001)
developed a means to detect the dimensionality of the principal subspace for complete data using
Laplace’s method and Bayesian information criterion (BIC) applied to the PPCA model. He also
discussed other alternatives but his approach showed the best performance. However, the extension
of Laplace’s method to the case of incomplete data is not straightforward. An additional difficulty
is the possibility that the posterior distribution over the model parameters has multiple modes cor-
responding to different principal subspaces. VBPCA can select the optimal number of components
automatically by setting some columns of W to zero. However, the VB cost function may have
many local minima which correspond to different model ranks and exploring different local solu-
tions can be a tedious procedure. Hoff (2008) estimated the dimensionality of the principal subspace
in the complete data using a sampling procedure.

6. Speeding Up Learning For Sparse High-Dimensional Data Sets

Obtaining a reasonably good solution in appropriate time is a very important issue for
high-dimensional problems in which learning may take several days, as in the example consid-
ered in Section 7.4. The algorithms presented in the previous sections scale differently to problems
with large dimensions and large degree of sparsity of observed values.

The computational complexities of different algorithms are summarized in Tables 2 and 3. For
example, the alternating optimization algorithm for PPCA requires computation and inversion of
matrices ∑ j∈Oi

[
x jxTj +Σx j

]
and

(
vyI+∑i∈OjwiwTi

)
, which are generally unique for each row ofW

and each column of X, respectively. The corresponding computational complexity is O(Nc2+nc3)
per iteration,2 which is quite a bit heavier than O(ndc) per iteration (Roweis, 1998) required for
complete data.

The computational complexity O(Nc+ nc) of the gradient method is small compared to previ-
ously reported results. For instance, Srebro and Jaakkola (2003) reported the complexity O(ndc2)
for a more general model which was a huge improvement over the complexity O(n3c3) of the al-
gorithms proposed even earlier. Using the numbers from the Netflix problem considered in Sec-
tion 7.4 (N ≈ 108, n ≈ 480189, d = 17770, c = 30), we get rough estimates of the differences in
practice: Imputation algorithm nd2 ≈ 1014, (Srebro and Jaakkola, 2003) ndc2 ≈ 1012, alternating
W–X Nc2+nc3 ≈ 1011, and gradient Nc+nc≈ 109.5.

Once the model has been learned and fixed, doing inference on a new sample is fast. Using the
alternating algorithm, it requires only one E-step with O(N0c2+c3), where N0 ≤ d is the number of
observed values in the new sample, while imputation and gradient algorithms require a number of
iterations with O(dc) and O(N0c) each.

Efficient memory usage is an important issue for sparse data sets. It is preferable that the amount
of used memory scales linearly with the number of observed values regardless of the data matrix
dimensionalities. In Table 2, we provide the number of parameters estimated by different models,
which gives the lower bound for the amount of the required memory. Only the imputation algorithm

2. The computational complexity of the alternatingW–X scheme can be reduced if the matrices requiring inversion are
computed once for all rows (columns) ofY that have observed values at exactly the same columns (rows respectively).
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Number of Imputation Alternating Gradient
Section parameters with SVD W–X descent

LS 2 (d+n)c ! ! !

MAPPCA 6.4 (d+n)c ! !

PPCA 3.1 (d+n)c+nc2 !

VBPCA 3.3 (d+n)(c+ c2) !

PPCAd 6.3 (d+2n)c !

VBPCAd 6.3 (2d+2n)c !

Table 2: Memory requirements and applicability of optimization methods to different models. We
mark only the optimization schemes which can easily be implemented using the formulas
provided in this paper. Some of the methods mentioned here will be presented in the
upcoming sections.

Imputation Alternating Gradient
with SVD W–X descent
O(nd2) O(Nc2+nc3) O(Nc+nc)

Table 3: Summary of computational complexities (per iteration) of different optimization methods,
assuming naı̈ve computation of products and inverses of matrices and ignoring the com-
putation of SVD in the imputation algorithm.

requires memory for the complete data matrix, and even that requirement can be diminished at a cost
of greater time complexity.

6.1 Gradient-Based Learning

The gradient-based optimization scheme, extending the Oja learning algorithm to regularized PCA
models, can be very efficient for large-scale problems and sparse data sets. The computational
complexity of one iteration scales very well with dimensionalities, which can lead to faster learning
in practice. The gradient-based approach can also be advantageous compared to the alternating
optimization scheme as the latter discards the joint effect of parameters W and X on the changes
in the cost function. This results in slow convergence without proper speed-up procedures (e.g.,
Honkela et al., 2003).

We also propose to use a speed-up to the gradient descent algorithm. In Newton’s method for
optimization, the gradient is multiplied by the inverse of the Hessian matrix. Newton’s method is
known to be fast-converging, but using the full Hessian is computationally costly in
high-dimensional problems (d . 1). We propose a simplified approach which uses only the diago-
nal part of the Hessian matrix and includes a control parameter α that allows the learning algorithm
to vary from the standard gradient descent (α = 0) to the diagonal Newton’s method (α = 1). The
final learning rules then take the form

θi ← θi− γ

(
∂2C
∂θ2i

)−α
∂C
∂θi

.
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For example, the cost function (4) has the second-order derivatives

∂2C
∂w2ik

= ∑
j∈Oi

x2k j ,
∂2C
∂x2k j

= ∑
i∈Oj

w2ik ,

which can be computed efficiently for sparse data. We showed the efficiency of the proposed op-
timization scheme in the application to large-scale PCA problems in our conference papers (Raiko
et al., 2008, 2007a).

6.2 Online Learning

In cases where the number of data samples is very large, n. d, it is wasteful to go through the
whole data set before updating W (and m). Using online learning (Oja, 1983), one sample j is
processed at a time as follows: The principal components x j are inferred using (8) (or the E-step in
general), andW is updated using the gradient approach. When sweeping through the data, updates
concerning the latter samples benefit from using the W that has already been updated using the
earlier ones. This reduces the required number of iterations. Downsides of this approach include
that determining the step size, or using speed-ups such as the one in Section 6.1 or the conjugate
gradient, becomes difficult. Also, for enabling parallel implementation, one should process at least
a small batch of samples at a time before updating W (e.g., Salakhutdinov et al., 2007). Online
learning was not considered in this paper.

6.3 Factorial Variational Approximations

The overfitting problem can be more severe for high-dimensional sparse data sets. The situations
discussed in Sections 2.4 and 3.2 are more probable when data points are sparsely distributed in high
dimensions. Thus, methods penalizing large values of model parameters and taking into account
their posterior uncertainty are especially relevant here.

The PPCA and VBPCA approaches, which take into account the posterior uncertainty at least
in X, are hardly applicable to large-scale problems. First, the computational burden of one iteration
of the alternating W–X scheme is very large (see Table 3) and application of the gradient-based
optimization is cumbersome because of the need to compute c×c covariance matrices. Second, the
required memory is at least nc2 elements for storing posterior correlations only in X. This becomes
infeasible for many large-scale problems even for a decent number of principal components.

A possible solution is to take into account only some posterior correlations and to use variational
techniques for learning. For example, the posterior approximation q(θ) in VBPCA can be made
fully factorial leading to

q(θ) =
d

∏
i=1

q(mi)
d

∏
i=1

c

∏
k=1

q(wik)
k

∏
c=1

n

∏
j=1

q(xk j) . (38)

instead of (23). Such posterior approximation was used, for example, by Raiko et al. (2007b) for
PCA in the presence of missing values. The implementation proposed there was based on the
imputation algorithm and thus not easily scalable to high-dimensional sparse problems.

The fully factorial approximation (38) reduces significantly the number of variational parame-
ters. They now include the mean parameters mi, wik and xk j and the variance parameters m̃i, w̃ik,
x̃k j in addition to hyperparameters vy, vw,k, vm, which can be point-estimated. The corresponding

1977



ILIN AND RAIKO

cost function is given in Appendix D. It can be minimized in different ways, for example, by using
the gradient-based optimization scheme explained in Section 6.1. The complete algorithm works by
alternating four update steps: {w̃ik,∀i,k}, {x̃k j,∀k, j}, {wik,xk j,∀i,k, j}, and {vy,vw,k,vm,∀k}. The
required derivatives are reported in Appendix D. We will further refer to this algorithm as VBPCAd.

The idea of fully factorial approximation can also be used for reducing the complexity of PPCA.
The posterior of the hidden states p(X|Y,W,m,vy) can be approximated to be fully factorial on
the E-step. The approximating pdf (38) can be fitted to the true posterior by minimizing the cost
function

CPPCA =
∫
q(X) log q(X)

p(Y,X|W,m,vy)
dX ,

which is motivated by the variational view of the EM algorithm. The resulting update rules resemble
the ones of VBPCAd with the exceptions outlined in Fig. 5. We refer to this approach as PPCAd.

Note that the approximation used in PPCAd does not restrict the generality of the PPCA model
when it is applied to complete data. The variational approximation introduces a bias in favor of so-
lutions for which the form of the posterior approximation agrees with the form of the true posterior
(e.g., Ilin and Valpola, 2005). The posterior covariance matrix Σx j , which is the same for each j in
the fully observed case, is diagonal if and only if the columns ofW are mutually orthogonal. There-
fore, restricting the posterior covariance to be diagonal guarantees that (26) holds at convergence.
Requirements (24)–(25) are fulfilled because of the assumed prior model for X. Thus, PPCAd for
complete data should converge to the PCA basis. PPCAd applied to incomplete data is biased in
favor of solutions in which the true posterior covariance matrices are closer to being diagonal. Note
also that the idea of speeding up learning by using transformations as described in Section 4.3 for
VBPCA, cannot be used for VBPCAd, because the transformations would break up the diagonality
of the posterior covariance matrices.

There is an interesting connection between the speed-up proposed in Section 6.1 and the fully
diagonal posterior approximation. The second order derivatives needed for the speed-up coincide
with the inverse of the posterior variance of each parameter, and thus their computation is practically
free.

6.4 Ignoring Posterior Uncertainty (MAPPCA)

A further simplification is to use maximum a posteriori (MAP) estimation for the model parameters.
The minimized cost function is then minus log-posterior of the parameters. Assuming uniform prior
for hyperparameters vy, vw,k, vm, it is proportional to

CMAP =
1
vy ∑i j∈O

(yi j−wTi x j−mi)
2+N log2πvy+

1
vm

d

∑
i=1

m2i +d log2πvm

+
c

∑
k=1

[
1
vw,k

d

∑
i=1

w2ik+d log2πvw,k+
n

∑
j=1

x2k j+n log2π

]

. (39)

and it should be minimized w.r.t. the unknown quantitiesW,X, vy, vw,k, vm. We refer to this approach
as MAPPCA.

Minimization of (39) can be done by any suitable optimization procedure. Derivatives required
for gradient-based optimization are given in Appendix E. However, some difficulties should be
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avoided. First, using an improper prior for hyperparameters leads to a situation where the posterior
pdf is infinitely large when vw,k → 0, ∑d

i=1w2ik → 0. This can be overcome by penalizing too small
values of the variance hyperparameters. For example, a hyperparameter vz, which is a variance
parameter of the prior for a set of zero-mean variables {zi, i = 1, . . . ,M}, can be updated as vz =
2β+∑Mi=1〈z2i 〉
2α+M , where

〈
z2i
〉
denotes the expectation of z2i over the posterior, and α and β are some

small values (we used α = 10−3 and β = 10−3). This update rule corresponds to broad priors
restricting vz to be positive and it guarantees that vz ≥ β

α+M/2 . The maximum likelihood (ML)
estimate vz = 1

M ∑
M
i=1

〈
z2i
〉
is achieved when α→ 0, β→ 0.3

Another issue is the non-identifiability of scaling betweenW and X. A practical way to avoid
this problem is to fix the scale by normalizing the rows of X to zero mean and unit variance (after
each update) and compensating by scaling the columns of W accordingly. This guarantees the
fulfilment of (24)–(25), which are the conditions justified by the prior model.

6.5 Summary of the PCA Variants

The differences between the six described variants of the PCA models are summarized in Table 4
and Fig. 5. The approaches differ on the posterior models and on the use of prior forW and m. All
the variants can be derived as special cases of VBPCA by making simplifying assumptions, which
is shown in Fig. 5.

7. Experiments

We study the properties of the discussed algorithms first using artificial data and then presenting
a case study using the Netflix competition data (Netflix, 2007). In the experiments with artificial
data, we generated data matrices Y according to model (12)–(14) with fixed dimensionalities d, c
and n. The mixing matrixW was generated by taking a random orthogonal matrix and scaling its
columns by 1,2, . . . ,c. The bias term m was selected randomly from a Gaussian distribution with
variance 10. For one of the data sets (10-5-mlp), we nonlinearly transformed the resulting data. The
observed values were selected randomly in Y and the rest of the data matrix was used to compute
the test reconstruction error.

We used four types of data sets in the experiments:

• Data Set 10-5-g: The data set is for the case where d ( n and Gaussian components. We
generated n= 1000 samples from a 10-dimensional Gaussian distribution with c= 5 principal
directions. The standard deviation of the noise in (14) was√vy = 0.5.

• Data Set 10-5-mlp: The data lie within a nonlinear manifold and d ( n. The data were
generated by a random nonlinear transformation of five-dimensional Gaussian data to the
10-dimensional space and adding relatively small Gaussian noise. The transformation was
performed by randomly initialized multi-layer perceptron networks. The number of samples
was n= 1000.

• Data Set 10-4-mog: The data set is a linear combination (12) of non-Gaussian x j and d ( n.
We used c = 4 independently distributed non-Gaussian components (elements of x j). The

3. In the formulas reported in the article, we always present the ML update rules, although more robust update rules
were used in practice.
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prior forW, m posterior forW, m posterior for X
LS uniform point point
PPCA uniform point full
PPCAd uniform point diagonal
VBPCA yes full full
VBPCAd yes diagonal diagonal
MAPPCA yes point point

Table 4: Variants of probabilistic approaches to PCA.

VBPCA

!

diagonal posterior
Σx j = diag(x̃k j)

VBPCAd

!

uniform prior
vw,k,vm → ∞

point posterior
Σwi , m̃i → 0

PPCA
!

diagonal posterior
Σx j = diag(x̃k j)

PPCAd
!

uniform prior
vw,k,vm → ∞

point posterior
w̃ik, m̃i → 0

!

point posterior
Σx j → 0

LS "

point posterior
x̃k j → 0

MAPPCA

#

uniform prior
vw,k,vm → ∞

!

point posterior
Σwi , m̃i,Σx j → 0

Figure 5: Relationships between the PCA variants are easily described by deriving each of them as
a special case of VBPCA. The corresponding update rules can also be derived from the
VBPCA update rules using the given restrictions.
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Figure 6: The distributions of the four components used to generate the 10-4-mog data set.

Data Set d n c Gaussianity Square root of variances
10-5-g 10 1000 5 yes [5 4 3 2 1 0.5 ... 0.5]
10-5-mlp 10 1000 5 no varying by nonlinear transformation
10-4-mog 10 1000 4 no [4 3 2 1 0.5 ... 0.5]
100-10-g 100 100 10 yes [10 9 ... 1 0.1 ... 0.1 ]

Table 5: Characteristics of four types of data sets used in artificial experiments.
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distributions of the four components are presented in Fig. 6. The standard deviation of the
noise in (14) was√vy = 0.5. The number of samples was n= 1000.

• Data Set 100-10-g: The data set is for the case where d ≈ n and small noise. The data were
generated from a 100-dimensional Gaussian distribution with c= 10 principal directions. The
standard deviation of the noise in (14) was √vy = 0.5. The number of samples was n= 100.

The ratio of missing values was varied for all data sets. We used data sets with relatively small
dimensionalities in order to test the performance of many alternative algorithms in a reasonable
time. The summary of the data sets is shown in Table 5.

Different PCA algorithms considered in this article were used to estimate the same number c
of principal components that was used for generating the data (see Table 5). The algorithms were
initialized randomly except for the imputation algorithm which has a standard procedure of infilling
missing values with the row-wise means of Y.

The performance of the algorithms was assessed by the speed of their convergence and the
accuracy in the task of missing value reconstruction. We computed three quantities: the average
training root mean square (RMS) reconstruction error

√
1
N ∑i j∈O(yi j− ŷi j)2, the average test RMS

reconstruction error and the average time to convergence. Averaging was done across 30 different
data sets of the same type and the same ratio of missing values. The algorithms were run until the
deviation of the training error was less than 0.0001 during 100 iterations. This stopping criterion
was used to estimate the time to convergence.

7.1 Performance of Least Squares Approaches and MAPPCAWhen d( n

In this section, we present the performance of three techniques:

• LS: the least squares approach which optimizes the cost function (4) using the gradient-based
procedure with the speed-up explained in Section 6.1

• LS (es): the same algorithm which also used early stopping: 20% of data was reserved as
validation set and learning was stopped when the reconstruction error for the validation set
started to increase

• LS (imp): the imputation algorithm presented in Section 2.5

• MAPPCA: method presented in Section 6.4. We used the gradient-based optimization proce-
dure with the speed-up explained in Section 6.1.

The estimated performance of the four algorithms is presented in Fig. 7. There, we also show
the results of VBPCAwhich turned out to be the most accurate method. We summarize the observed
results in the following.

The gradient-based LS approach can be used for data sets with a relatively small amount of
missing data. For such data sets, it provides reasonable accuracy, converges fast and scales well to
high-dimensional data. However, its performance deteriorates fast with the increase of the ratio of
missing values. The algorithm can get stuck at regions where learning proceeds very slowly and
overfitting problems become very frequent. When overfitting happens, some parameter values can
grow very large to explain perfectly only part of data. This results in very bad generalization and
large test reconstruction errors (see discussion in Section 2.1). Thus, this method can badly overfit
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Figure 7: Left: Average test RMS errors (colored bars) and training RMS errors (white bars) ob-
tained from 30 realizations of data sets of three types. Right: Average time to conver-
gence, in seconds, estimated in the same way. Note the different scale on the r.h.s. plots
for VBPCA.
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even in relatively simple problems. We observed similar performance for the alternating optimiza-
tion (see Section 2.2) of the sum-squared cost function: The alternating optimization procedure
provided similar reconstruction errors but it seemed to get stuck in regions with slow convergence
more often.

The simplest strategy of early stopping did not seem to improve the performance of the LS
algorithms. On the contrary, the obtained accuracy was the worst among the considered approaches.

The imputation algorithm can also be a good choice for data sets with a relatively small amount
of missing data. The algorithm converges fast, provides good accuracy and it has less problems with
overfitting compared to explicit optimization of the sum-squared error. However, the complexity of
the required computations grows fast with the increase of the dimensionalities, and therefore the
algorithm is hardly applicable to large-scale data sets.

MAPPCA is a fast algorithm which provides reasonable accuracy for data sets with a relatively
small amount of missing data. In many cases, it slightly outperforms the LS approaches in terms
of the reconstruction accuracy. It is also less prone to serious overfitting problems compared to
explicit optimization of (4). Again, similar performance was observed for MAPPCA optimized
with the alternating optimization procedure explained in Section 2.2.

7.2 Performance of More Advanced Probabilistic Approaches When d( n

In this section, we present the performance of the more advanced probabilistic approaches:

• PPCA presented in Section 3.1

• PPCAd which is PPCA with fully factorial variational approximation explained in Section 6.3

• VBPCA presented in Section 3.3

• VBPCAd which is VBPCA with fully factorial variational approximation explained in Sec-
tion 6.3.

We used the gradient-based optimization procedure with the speed-up explained in Section 6.1 for
training PPCAd and VBPCAd.

Fig. 8 presents the estimated performance of the algorithms for three data sets with d ( n. We
also show the results of MAPPCA for comparison. We summarize the results in the following.

Approaches using variational approximations, especially VBPCA and VBPCAd, may suffer
from the underfitting problem. The algorithms may converge to a sub-optimal solution (corre-
sponding to a local minimum of the VB cost function) in which some potentially useful principal
components are not used. The algorithms seem to find such sub-optimal solutions more often for
sparse data. Special care has to be taken to avoid such local minima. For example, in the presented
experiments we fixed priors for W to be very broad at the beginning of learning and this helped
improve the performance of VBPCA and VBPCAd significantly. See also the experiment showing
the effect of the broad priors in Section 7.3.

PPCAd is a very efficient algorithm for data sets with d ( n. Its reconstruction accuracy is
comparable to the best results (obtained with VBPCA) but the algorithm converges fast and scales
well to high-dimensional problems. The difference of the accuracy of PPCAd compared to the best
results of VBPCA becomes more noticeable when the ratio of missing values or the number of
estimated principle components increase.
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Figure 8: Left: Average test RMS errors (colored bars) and training RMS errors (white bars) ob-
tained from 30 realizations of data sets of three types. Right: Average time to conver-
gence, in seconds, estimated in the same way. Note the different scale on the r.h.s. plots
for VBPCA.
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VBPCAd provides similar performance to PPCAd for data sets with d ( n but it is more prone
to the underfitting problem mentioned earlier.

VBPCA and PPCA are the most accurate algorithms in these experiments. However, they are
also very slow because of the required computations of the posterior covariance matrices. Thus,
the methods are computationally very expensive to use in high-dimensional problems but if they
are feasible, they are worth trying. The difference in the accuracy of VBPCA and PPCA is not
noticeable in these experiments. This is likely due to the fact that the number n of samples was very
large and the effect of priors was very small. VBPCA is also more prone to the underfitting problem
compared to PPCA.

7.3 Performance in Difficult Sparse Problems

In this section, we test the performance of the considered algorithms on a more challenging data
set 100-10-g. The data set is quite sparse (up to 75% of values are missing) and the number n of
samples is very small compared to the data dimensionality d. Sparse data sets with d ≈ n can appear
in some practical applications. For example, in collaborative filtering the number of users can be
comparable to the number of ranked items and the number of missing values can be large. Here we
used Gaussian data with n= d = 100, c= 10 principal directions and with relatively small noise.

Fig. 9 presents the performance of the considered algorithms for these data. The LS algorithms
and MAPPCA do not provide good performance because of overfitting problems. The probabilistic
approaches perform much better and the best results are obtained with VBPCA. The advantage
of VBPCA becomes more significant for data sets with many missing values. The experiments
also show a larger effect of using priors in VBPCA and VBPCAd (in comparison with PPCA and
PPCAd) for data sets with a relatively small number of samples.

One of the reasons for the superior performance of the VB approach is its ability to select
automatically the optimal rank of the model by cutting off useless principal components. Model
selection is useful even in such artificial tests (when the number of principal components used
for data generation is known) because the number of components which are useful for reliable
reconstruction of missing data can turn out to be smaller than the model rank used for generating
the data. Thus, the reported accuracy of the algorithms alternative to VBPCA and VBPCAd might
be improved if model selection was explicitly performed for them (e.g., by cross-validation).

In Section 7.2, we pointed out that the downside of the VB model selection is the existence
of multiple sub-optimal solutions corresponding to different local minima of the VB cost function.
Solutions in which the effect of some components is set to zero are potentially attractive for the
method. In order to avoid sub-optimal solutions, we fixed the priors forW to be very broad at the
beginning of learning for VBPCA and VBPCAd in our experiments. We show the effect of the
number of iterations with fixed broad priors on the resulting accuracy in Fig. 10.

A useful feature of the VB approach is that the value of the VB cost function at a local minimum
can be used to estimate the accuracy of the corresponding model. This follows from the fact that the
VB cost gives the lower bound of the likelihood, as shown in (22). In Fig. 11, we demonstrate the
correlations between the accuracy of a trained VBPCA model and the corresponding value of the
cost function. In that experiment, we initialized VBPCA in two different ways and applied it to 30
realizations of the 100-10-g data set with 80% of missing data. The negative result was that different
initializations led to different VBPCA solutions for most of the 30 realizations. The positive result
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Figure 9: Left: Average test rms errors (colored bars) and training rms errors (white bars) obtained
from 30 realizations of data set 100-10-g. Right: Average time to convergence, in sec-
onds, estimated in the same way.

was that the solutions with the smaller cost function values generally provided better reconstruction
accuracy. Similar results were obtained for VBPCAd (not shown here).

Thus, in order to find a globally good VB solution, one could, in practice, run the learning
algorithm many times. The algorithm should be run until full convergence, otherwise the cost
function values cannot be used for model comparison. Running VBPCA can be computationally
heavy because it is the slowest algorithm among the considered ones. Therefore, VBPCAd is an
attractive alternative for large-scale data sets.

7.4 Experiments with the Netflix Data

We have tested different PCA approaches in the task of collaborative filtering. The Netflix (2007)
problem is a collaborative filtering task that has received a lot of attention recently. It consists of
movie ratings given by n = 480189 customers to d = 17770 movies. There are N = 100480507
ratings from 1 to 5 given, and the task is to predict 2817131 other ratings among the same group of
customers and movies. 1408395 of the ratings are reserved for validation (or probing). Note that
98.8% of the values are thus missing.
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Figure 10: The underfitting effect for VBPCA when the priors are updated too early: Box plots of
test (left) and training (right) RMS errors depending on the number of iterations with
fixed broad priors forW (x-axes) at the beginning of learning. VBPCA was applied to
30 data sets of type 100-10-g with 75% of missing values.
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Figure 11: Test RMS error (y-axis) against cost function values (x-axis) obtained with VBPCA for
30 realizations of the data set 100-10-g with 80% of missing values. Two initializations
were used for each realization: random (the corresponding local minima are shown with
triangles) and with 100 iterations of PPCAd (the corresponding local minima are shown
with circles). The dotted lines connect two solutions obtained for the same realization.
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The PCA approach is one of the most popular techniques considered by the Netflix contestants
(e.g., Funk, 2006; Bell et al., 2007; Salakhutdinov et al., 2007; Paterek, 2007; Lim and Teh, 2007).
In our recent conference papers (Raiko et al., 2007a, 2008), we tried to estimate c = 15 principal
components from the data using unregularized (LS) PCA, MAPPCA, and VBPCAd approaches.
We reproduce the results for the LS approaches in Fig. 12. The results clearly show that overfitting
is a serious problem for this sparse data set and the LS approach fails. It is also evident that the
alternating optimization algorithm is very slow and it can hardly be used for such high-dimensional
data. The imputation algorithm is also infeasible in this problem (Raiko et al., 2008). The proposed
remedy is to use probabilistic approaches.

Fig. 13 presents the results obtained with MAPPCA and VBPCAd using a varying number of
principal components. MAPPCA starts to overfit after about five hours of computation, that is, the
RMS error on the test data (lower curves) starts to degrade even if the RMS error on the training
data is still diminishing. This does not happen with VBPCAd as the validation error seems to
decrease monotonically. The experiments also confirm that VBPCAd is computationally scalable to
very large problems. We also tried to run VBPCA, but the straightforward Matlab implementation
turned out to be too slow to produce meaningful results. The experiments were run on a dual cpu
AMD Opteron SE 2220 using Matlab and the implementations did not use parallel computing.

Our best RMS error for the probing Netflix data was 0.9055 and it was achieved with VBPCAd
with 50 components. The same model re-trained using both training and probing data provided an
RMS error 0.8990 on the quiz set. The only pre/post-processing that we used was bounding the
reconstructions ŷi j such that 1 ≤ ŷi j ≤ 5. This is a good result compared to conceptually similar
models developed by other contestants. For example, Bell et al. (2007) reported an RMS error
of 0.9135 with basic factor analysis with 40 components. Lim and Teh (2007) studied a model
which basically implements VBPCA and they reported an RMS error of 0.9141 for a model with
30 components. Salakhutdinov and Mnih (2008b) reported the probing RMS error 0.9280 for an
SVD method which essentially implements the LS approach. Their constrained probabilistic matrix
factorization model provided a probing RMS error 0.9016 but it used extra informations and more
sophisticated priors. The accuracy of our VBPCAd model is comparable to the accuracy of an
MCMC approach applied to a similar generative model (Salakhutdinov and Mnih, 2008a). The
RMS error achieved with a model with 60 components trained by MCMC was 0.8989 for the quiz
set.

Besides reconstruction of missing values, probabilistic PCA methods provide extra information
which can be useful in practice. For example, one can predict the uncertainty of the provided
reconstructions, as discussed in Section 5. Fig. 14 shows good correlation between the probing
RMS errors and the uncertainty of the reconstructions computed by VBPCAd. It is clear that the
predicted uncertainty is underestimated, which is largely because of the approximations used in
modeling the posterior distributions.

The estimated uncertainty can provide additional information when PCA is used as a prepro-
cesing step for more sophisticated methods. For example, Bell and Koren (2007) used PCA results
for constructing a user-oriented neighborhood model for collaborative filtering. Because each col-
umn of matrix X computed by PCA can be considered as a collection of some features associated
with a particular user, the similarity between n users can be estimated based on the similarity be-
tween the columns of X. The information about the uncertainty of the feature estimates could be
used to build a robust similarity measure: Users who have rated few movies (and whose features
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Figure 12: Learning curves for LS algorithms in the Netflix problem. The RMS error (y-axis) is
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while the lower curves show the test error (for the probing data provided by Netflix).
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Figure 14: Uncertainty predicted by VBPCAd for the Netflix probing data. The RMS error for the
probing data (y-axis) is plotted against the square root of the reconstruction variance
estimated by VBPCAd with 50 components (x-axis). To show the dependency more
clearly, the estimates of the probing RMS errors are obtained by averaging over a batch
of ratings with similar predicted uncertainties.

are estimated with high uncertainty) should not affect the predictions of their neighbors as much as
users who have rated many movies (and whose features are estimated more accurately).

Finally, we note that the accuracy achieved by the best teams in the Netflix competition is
significantly better than the numbers reported here. However, that does not mean that PCA (and its
implementations discussed in this paper) is of no use in collaborative filtering tasks. On the contrary,
PCA or its close relatives were used by the leading teams (e.g., Bell et al., 2007) as an important
element of the final blend of models. The key to success in that competition was in combining a
vast collection of different models rather than in perfecting a single approach (e.g., The Ensemble,
2009).

8. Discussion

We have reviewed the problem of PCA learning in the presence of missing values and discussed
various approaches to it. We demonstrated that the simplicity of PCA is lost when introducing
missing values. Firstly, the estimation of the bias term and the covariance matrix of the data be-
comes difficult and thus the solution by eigen-decomposition cannot be used directly. Secondly, the
convergence to a unique solution cannot be guaranteed even for the simplest PCA models.

Missing values also make the problem of overfitting more relevant to PCA, so there is a need for
some form of regularization. In regularized solutions, reconstructions of data vectors are no longer
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conditions small-scale problems large-scale problems
few missing values imputation gradient-based LS

d( n PPCA PPCAd
many missing values or d ≈ n VBPCA VBPCAd

Table 6: Recommendations on the use of different PCA algorithms.

the projections of the data to the principal subspace. Regularization can be done elegantly using
probabilistic models.

Inference and learning in the relevant probabilistic models are generally more complex com-
pared to the complete data case. For example, the posterior covariance of principal components Σx j
is no longer same for each sample. Thus, a diagonal posterior covariance Σx j is no longer sufficient
for finding the optimal PCA solution. Regularized models typically have more local minima of the
optimized cost function. In particular, there can be local minima corresponding to zero values of
hyperparameters.

Another type of treatment for random variables is to use MCMC methods. Their benefits com-
pared to VBPCA includes not having to assume posterior independence like in (23) and being able
to vary the number of components (Hoff, 2008), but the downsides include worse interpretability,
higher computational complexity, and the need to store samples in case the model is to be applied
to new incoming data. Salakhutdinov and Mnih (2008a) used Gibbs sampling initialized with the
MAPPCA method for the Netflix problem. The resulting accuracy was similar to ours with simi-
lar number of components (0.8989 with 60 components against our 0.8990 for VBPCAd with 50
components).

Large-scale PCA problems require fast converging learning algorithms which allow for efficient
implementation. Additionally, sparse data sets require that the amount of computer memory would
scale linearly with the number of observed values regardless of the data matrix dimensionalities. In
this paper, efficient solutions are proposed based on fully factorial variational approximations and
approximate Newton’s iteration for the relevant optimization procedure. An alternative learning
algorithm based on natural gradient was discussed in our conference paper (Raiko et al., 2008).

The choice of the right PCA algorithm depends on a particular data analysis problem. We gave
some recommendations in Sections 7.1–7.3 and we summarize our recommendations in Table 6.
The LS approaches can be applied to data sets with relatively few missing data: The imputation
algorithm can be a good choice for smaller-scale problems and the gradient-based LS algorithms
would be good for large data sets. When the number n of samples is relatively large and the data
matrix is relatively densely populated, PPCA is a proper choice (or PPCAd for large-scale prob-
lems). VB algorithms can be most efficient when there are very few samples (d ≈ n) or for very
sparse data sets. Again, VBPCAd would be a better alternative for large-scale problems.

A Matlab toolbox which contains implementations of all the considered PCA techniques is
available online at http://www.cis.hut.fi/projects/bayes/. Some of the implemented algo-
rithms scale well to large-scale sparse data sets, which is achieved by low level implementation of
core computations and by support of parallel computing. For example, the experiments with the
Netflix data reported in Fig. 13 were obtained using the provided Matlab code.
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Appendix A. Notes on the Imputation Algorithm

The imputation algorithm can be seen as the application of the EM algorithm (Dempster et al., 1977)
to the model

y j =Wx j+m+ ε j

with isotropic Gaussian noise p(ε j) =N (ε j;0,vyI) and model parametersW, x j, m, vy. Note that
x j belong to the model parameters and missing values in y j are treated as hidden variables. This is
contrary to the probabilistic PCA model (see Section 3.1) where x j are treated as hidden variables.
Note also that with this interpretation, there is no well defined inference procedure for a new data
case outside of the training set.

Following the view of the EM algorithm presented by Neal and Hinton (1999), we can write
down the cost function

Cimp(θ,vy,q(Ymis)) =
∫
q(Ymis) log

q(Ymis)
p(Y|θ,vy)

dYmis

=
∫
q(Ymis) log

q(Ymis)
p(Ymis|θ,vy)

dYmis− log p(Yobs|θ,vy) , (40)

which should be minimized w.r.t. model parameters θ = {W,m,x j,∀ j}, vy and the pdf over the
missing data q(Yimp). We denoted the missing data by Ymis = {yi j , i j /∈O} and the observed data by
Yobs = {yi j , i j ∈ O}.

Minimization of (40) w.r.t. q(Ymis) for fixed θ and vy yields that q(Ymis) = p(Ymis|θ,vy) because
the first term in (40) is simply the Kullback-Leibler divergence between the two pdfs. It is straight-
forward that

p(Ymis|θ,vy) = ∏
i j∈O

N (yi j; ŷi j(θ),vy) ,

where ŷi j(θ) are the reconstructed missing values using (5) with the current estimates θ. Thus,
infilling missing data with the reconstructions ŷi j(θ) is the step of the imputation algorithm which
corresponds to the E-step of the EM-algorithm.
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Collecting the terms in (40) which depend only on θ and vy gives

−
∫
q(Ymis) log p(Yobs,Ymis|θ,vy)dYmis

=−
dn
2
log2πvy−

1
2vy ∑i j∈O

(
yi j− ŷi j(θ)

)2−
1
2vy ∑i j/∈O

[(
yi j− ŷi j(θ)

)2
+ vy

]

=−
dn
2
log2πvy−

1
2vy∑i j

(
yi j− ŷi j(θ)

)2−
dn−N
2

. (41)

It is easy to see that minimization of (41) w.r.t. θ is equivalent to minimizing the LS cost (2) for the
infilled data matrix. This is done in the imputation algorithm by SVD of the complete data matrix.
Thus, the M-step of the EM-algorithm corresponds to performing SVD in the imputation algorithm.
Minimization of (41) w.r.t. vy does not affect the steps of the imputation algorithm.

The imputation algorithm implicitly minimizes the cost function (4), thus it belongs to the class
of LS PCA algorithms. It can be shown (Neal and Hinton, 1999) that the minimum of (40) coincides
with the minimum of minus log-likelihood

− log p(Yobs|θ,vy) =
N
2
log2πvy+

1
2vy ∑i j∈O

(
yi j− ŷi j(θ)

)2
. (42)

Replacing vy in (42) with its maximum likelihood estimate yields that the function being minimized
is

N
2

[
log

(
2π
N ∑

i j∈O

(
yi j− ŷi j(θ)

)2
)
+1

]
,

from which it follows that the imputation algorithm implicitly optimizes the sum-squared error.

Appendix B. Conditions Fulfilled at the Convergence of Probabilistic PCA

The variational view of the EM algorithm allows for an interpretation of the PPCA learning algo-
rithm in which the cost function

C =
∫
q(X) log q(X)

p(X)dX−
∫
q(X) log p(Y|W,X,m,vy)dX (43)

is minimized w.r.t. to the model parametersW, m, vy and the pdf q(X). The E-step fixes the model
parameters and minimizes the cost function w.r.t. the distribution q(X) while the M-step minimizes
C w.r.t.W, m and vy assuming that q(X) is fixed.

Let us consider simple transformations of {W,m,q(X)} which do not change the second term
in (43). For example, subtraction of a constant b from the columns of X can be compensated by
changing the bias termm correspondingly:

q(X)←
n

∏
j=1

N
(
x j;x j−µ,Σx j

)
, (44)

m←m+Wµ. (45)
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because y =Wx+m =W(x− µ) + (Wµ+m). Similarly, rotation of the columns of X can be
compensated by changingW:

q(X)←
n

∏
j=1

N
(
x j;Ax j,AΣx jAT

)
, (46)

W←WA−1 (47)

because y=Wx+m= (WA−1)(Ax)+m.
These transformations generally affect the first term in (43) which is the Kullback-Leibler di-

vergence between q(X) and p(X):

D=
n

∑
j=1

∫
q(x j) log

q(x j)
p(x j)

dx j =
1
2

n

∑
j=1

[
tr(Σx j)+xTj x j− logdetΣx j

]
. (48)

and at the convergence this term cannot be made smaller by transformations of the form (44)–(45)
or (46)–(47).

Transformation (44)–(45) changes (48) to

D=
1
2

n

∑
j=1

[
tr(Σx j)+(x j−µ)T(x j−µ)− logdetΣx j

]
.

Now taking the derivative w.r.t. µ and equating it to zero gives the optimal µ= 1
n ∑

n
j=1 x j. At the

convergence, the optimal µ should be zero and therefore (34) should hold.
Similarly, transformation (46)–(47) gives

D=
1
2

n

∑
j=1

[
tr(AΣx jAT)+xTjATAx j− logdet(AΣx jAT)

]

=
n
2
tr(AΣ∗AT)−

1
2

n

∑
j=1
logdet(AΣx jAT) ,

where Σ∗ = 1
n ∑

n
j=1

[
x jxTj +Σx j

]
. Taking the derivative w.r.t. A gives

AΣ∗ − (AT)−1 = 0

and therefore the optimalA satisfiesAΣ∗AT = I. Transformation (46)–(47) yields that Σ∗ ←AΣ∗AT
and therefore at the convergence Σ∗ = I, which is condition (35).

Appendix C. Variational Bayesian PCA (VBPCA)

The following form of the posterior approximation is used:

q(W,X,m) =
d

∏
i=1

N (mi;mi, m̃i)
d

∏
i=1

N (wi;wi,Σwi)
n

∏
j=1

N
(
x j;x j,Σx j

)
.
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The update of the principal components:

Σx j = vy
(
vyI+ ∑

i∈Oj

[
wiwTi +Σwi

])−1
,

x j =
1
vy
Σx j ∑

i∈Oj

wi(yi j−mi) , j = 1, . . . ,n .

The update of the bias term and matrixW:

mi =
vm

|Oi|(vm+ vy/|Oi|) ∑j∈Oi
[yi j−wTi x j], (49)

m̃i =
vyvm

|Oi|(vm+ vy/|Oi|)
, (50)

Σwi = vy
(
vy diag(v−1w,k)+ ∑

j∈Oi

[
x jxTj +Σx j

])−1
,

wi =
1
vy
Σwi ∑

j∈Oi
x j(yi j−mi) , i= 1, . . . ,d

and the variance parameters:

vy =
1
N ∑i j∈O

[
(yi j−wTi x j−mi)

2+ m̃i+wTi Σx jwi+xTj Σwix j+ tr(Σx jΣwi)
]
,

vw,k =
1
d

d

∑
i=1

(
w2ik+ w̃ik

)
, vm =

1
d

d

∑
i=1

(
m2i + m̃i

)
, (51)

where w̃ik is the k-th element on the diagonal of Σwi .

Appendix D. VBPCA with Fully Factorial Approximation (VBPCAd)

VBPCAd uses the fully factorial posterior approximation

q(W,X,m) =
d

∏
i=1

N (mi;mi, m̃i)
d

∏
i=1

c

∏
k=1

N (wik;wik, w̃ik)
c

∏
k=1

n

∏
j=1

N
(
xk j;xk j, x̃k j

)
.

The VB cost function is then the sum of the following terms:

Cvb = ∑
i j∈O

Cyi j+
d

∑
i=1
Cmi+

d

∑
i=1

c

∑
k=1

Cwik+
c

∑
k=1

n

∑
j=1
Cxk j ,

where the individual terms are

Cyi j =
1
2vy

[
(yi j−wTi x j−mi)

2+ m̃i+
c

∑
k=1

(
w̃ikx2k j+w2ikx̃k j+ w̃ikx̃k j

)]
+
1
2
log2πvy ,

Cmi =
〈
log

q(mi)

p(mi)

〉
=
m2i + m̃i
2vm

−
1
2
log

m̃i
vm

−
1
2
,

Cwik =
〈
log

q(wik)
p(wik)

〉
=
w2ik+ w̃ik
2vw,k

−
1
2
log

w̃ik
vw,k

−
1
2
,

Cxk j =
〈
log

q(xk j)
p(xk j)

〉
=
1
2
(x2k j+ x̃k j)−

1
2
log x̃k j−

1
2
.
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Variational parameters mi, m̃i, vw,k and vm are updated to minimize the cost function using the
update rules in (49)–(51). Parameters w̃, x̃ can be updated to minimize the cost function:

w̃ik = vy
[
vy
vw,k

+ ∑
j∈Oi

(
x2k j+ x̃k j

)]−1
, (52)

x̃k j = vy
[
vy+ ∑

i∈Oj

(
w2ik+ w̃ik

)]−1
. (53)

The update rule for vy is

vy =
1
N ∑i j∈O

[
(yi j−wTi x j−mi)

2+ m̃i+
c

∑
k=1

(
w̃ikx2k j+w2ikx̃k j+ w̃ikx̃k j

)]
.

Minimizing the cost function w.r.t. each parameter wi j keeping the others fixed would lead
to a slow algorithm (e.g., Honkela et al., 2003). Instead, derivatives required for gradient-based
optimization are:

∂Cvb
∂wik

=
wik
vw,k

+
1
vy ∑j∈Oi

[
−
(
yi j−wTi x j−mi

)
xk j+wikx̃k j

]
,

∂Cvb
∂xk j

= xk j+
1
vy ∑i∈Oj

[
−
(
yi j−wTi x j−mi

)
wik+ w̃ikxk j

]
.

The second-order derivatives which can be used to speed up learning, as explained in Sec-
tion 6.1, coincide with the inverse of the updated variances given in (52)–(53): ∂2Cvb/∂w2ik = w̃−1

ik
and ∂2Cvb/∂x2k j = x̃−1k j .

Appendix E. MAPPCA

The cost functionCMAP is given in (39). The alternating optimization procedure can be implemented
as follows:

x j =
(
vyI+ ∑

i∈Oj

wiwTi
)−1

∑
i∈Oj

wi(yi j−mi) , j = 1, . . . ,n ,

mi =
vm

|Oi|(vm+ vy/|Oi|) ∑j∈Oi
[
yi j−wTi x j

]
,

wi =
(
vy diag(v−1w,k)+ ∑

j∈Oi
x jxTj

)−1
∑
j∈Oi
x j(yi j−mi) , i= 1, . . . ,d ,

vy =
1
N ∑i j∈O

(yi j−wTi x j−mi)
2 ,

vw,k =
1
d

d

∑
i=1

w2ik , vm =
1
d

d

∑
i=1

m2i .
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Gradient-based learning discussed in Section 6.1 requires the following derivatives:

∂CMAP
∂wik

=
wik
vw,k

+
1
vy ∑j∈Oi

[
−
(
yi j−wTi x j−mi

)
xk j

]
,

∂CMAP
∂xk j

= xk j+
1
vy ∑i∈Oj

[
−
(
yi j−wTi x j−mi

)
wik

]
,

∂2CMAP
∂w2ik

=
1
vw,k

+
1
vy ∑j∈Oi

x2k j ,

∂2CMAP
∂x2k j

= 1+
1
vy ∑i∈Oj

w2ik .
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Abstract
We present posterior regularization, a probabilistic framework for structured, weakly supervised
learning. Our framework efficiently incorporates indirect supervision via constraints on posterior
distributions of probabilistic models with latent variables. Posterior regularization separatesmodel
complexity from the complexity of structural constraints it is desired to satisfy. By directly impos-
ing decomposable regularization on the posterior moments of latent variables during learning, we
retain the computational efficiency of the unconstrained model while ensuring desired constraints
hold in expectation. We present an efficient algorithm for learning with posterior regularization and
illustrate its versatility on a diverse set of structural constraints such as bijectivity, symmetry and
group sparsity in several large scale experiments, including multi-view learning, cross-lingual de-
pendency grammar induction, unsupervised part-of-speech induction, and bitext word alignment.1

Keywords: posterior regularization framework, unsupervised learning, latent variables models,
prior knowledge, natural language processing

1. Introduction

In unsupervised problems where data has sequential, recursive, spatial, relational, and other kinds
of structure, we often employ structured statistical models with latent variables to tease apart the
underlying dependencies and induce meaningful semantic categories. Unsupervised part-of-speech
and grammar induction, and word and phrase alignment for statistical machine translation in nat-
ural language processing are examples of such aims. Generative models (probabilistic grammars,

1. A preliminary version of the PR framework appeared in Graça et al. (2007). Various extensions and applications
appeared in Ganchev et al. (2008a), Ganchev et al. (2008b), Ganchev et al. (2009), Graça et al. (2009a) and Graça
et al. (2010).

c©2010 Kuzman Ganchev, João Graça, Jennifer Gillenwater and Ben Taskar.
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graphical models, etc.) are usually estimated by maximizing the likelihood of the observed data
by marginalizing over the hidden variables, typically via the Expectation Maximization (EM) al-
gorithm. Because of computational and statistical concerns, generative models used in practice are
very simplistic models of the underlying phenomena; for example, the syntactic structure of lan-
guage or the language translation process. A pernicious problem with such models is that marginal
likelihood may not guide the model towards the intended role for the latent variables, instead fo-
cusing on explaining irrelevant but common correlations in the data. Since we are mostly interested
in the distribution of the latent variables in the hope that they capture intended regularities without
direct supervision, controlling this latent distribution is critical. Less direct methods such as clever
initialization, ad hoc procedural modifications, and complex data transformations are often used to
affect the posteriors of latent variables in a desired manner.

A key challenge for structured, weakly supervised learning is developing a flexible, declarative
framework for expressing structural constraints on latent variables arising from prior knowledge
and indirect supervision. Structured models have the ability to capture a very rich array of possible
relationships, but adding complexity to the model often leads to intractable inference. In this article,
we present the posterior regularization (PR) framework (Graça et al., 2007), which separatesmodel
complexity from the complexity of structural constraints it is desired to satisfy. Unlike parametric
regularization in a Bayesian framework, our approach incorporates data-dependent constraints that
are easy to encode as information about model posteriors on the observed data, but may be difficult
to encode as information about model parameters through Bayesian priors. In Sections 5-8 we
describe a variety of such useful prior knowledge constraints in several application domains.

The contributions of this paper are:

• A flexible, declarative framework for structured, weakly supervised learning via posterior
regularization.

• An efficient algorithm for model estimation with posterior regularization.

• An extensive evaluation of different types of constraints in several domains: multi-view learn-
ing, cross-lingual dependency grammar induction, unsupervised part-of-speech induction,
and bitext word alignment.

• A detailed explanation of the connections between several other recent proposals for weak
supervision, including structured constraint-driven learning (Chang et al., 2007), generalized
expectation criteria (Mann and McCallum, 2008, 2007) and Bayesian measurements (Liang
et al., 2009).

The rest of this paper is organized as follows. Section 2 describes the posterior regularization
framework and Section 3 illustrates the range of different types of weak supervision constraints
representable in our framework. Section 4 describes the relationship between posterior regulariza-
tion and other related frameworks. Sections 5-8 describe applications of PR to several problems:
word alignment (§5), multi-view learning (§6), cross-lingual projection (§7) and inducing sparsity
structure (§8). Section 9 concludes the paper and presents areas for future work.

2. Posterior Regularization Framework

In this section we describe the posterior regularization framework, which incorporates side-informa-
tion into parameter estimation in the form of linear constraints on posterior expectations. As we will
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show, this allows tractable learning and inference even when the constraints would be intractable
to encode directly in the model parameters. By defining a flexible language for specifying diverse
types of problem-specific prior knowledge, we make the framework applicable to a wide variety
of probabilistic models, both generative and discriminative. In Sections 2.1-2.7 we will focus on
generative models, and describe the case of discriminative models in Section 2.8. We will use a
problem from natural language processing as a running example in the exposition:

Running Example The task is part-of-speech (POS) tagging with limited or no training data.
Suppose we know that each sentence should have at least one verb and at least one noun, and
would like our model to capture this constraint on the unlabeled sentences. The model we
will be using is a first-order hidden Markov model (HMM).

We describe four other applications with empirical results in Sections 5-8, but it will be easier
to illustrate key concepts using this simple example.

2.1 Preliminaries and Notation

We assume that there is a natural division of variables into “input” variables x and “target” variables
y for each data instance, where x’s are always observed. We denote the set of all instances of
unlabeled data as X. In case of semi-supervised learning, we have some labeled data as well, and
we will use the notation (XL,YL) to denote all the labeled instances.

The starting point for using the PR framework is a probabilistic model. Let θ be the parameters
of the model. For now we assume a generative model pθ(x,y), and we use L(θ) = log pθ(XL,YL)+
log∑Y pθ(X,Y)+ log p(θ) to denote the parameter-regularized log-likelihood of the data.

Running Example In the POS tagging example from above, we would use x= {x1,x2, . . .x|x|}
to denote a sentence (i.e., a sequence of words xi) and y= {y1,y2, . . .y|x|} to denote a possible
POS assignment. Using an HMM, it is defined in the normal way as:

pθ(x,y) =
|x|

∏
i=1

pθ(yi|yi−1) pθ(xi|yi),

with θ representing the multinomial distributions directly, and where pθ(y1|y0) = pθ(y1) rep-
resents a set of initial probabilities. Suppose we have a small labeled corpus and a larger
unlabeled corpus. For a generative model such as an HMM, the log-likelihood (+ log-prior)
is:

L(θ) = log pθ(XL,YL)+ log∑
Y
pθ(X,Y)+ log p(θ),

where corpus probabilities are products over instances: pθ(x,y) = ∏ pθ(x,y) and analo-
gously for XL,YL; and where p(θ) is a prior distribution over the parameters θ.

2.2 Regularization via Posterior Constraints

The goal of the posterior regularization framework is to restrict the space of the model posteriors
on unlabeled data as a way to guide the model towards desired behavior. In this section we describe
a version of PR specified with respect to a set of constraints. In this case, posterior information is
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specified with sets Q of allowed distributions over the hidden variables y. We will define Q in terms
of constraint features φ(X,Y) and their expectations.2

Running Example Recall that in our running example, we want to bias learning so that each
sentence is labeled to contain at least one verb. To encode this formally, we define a feature
φ(x,y) = “number of verbs in y”, and require that this feature has expectation at least 1. For
consistency with the rest of the exposition and standard optimization literature, we will use
the equivalent φ(x,y) = “negative number of verbs in y” and require this has expectation at
most -1:3

Qx = {qx(y) : Eq[φ(x,y)]≤−1}.

Note that we enforce the constraint only in expectation, so there might be a labeling with non-
zero probability that does not contain a verb. To actually enforce this constraint in the model
would break the first-order Markov property of the distribution.4 In order to also require at
least one noun per sentence in expectation, we would add another constraint feature, so that
φ would be a function from x,y pairs to R2.

We defineQ , the set of valid distributions, with respect to the expectations of constraint features,
rather than their probabilities, so that our objective leads to an efficient algorithm. As we will see
later in this section, we also require that the constraint features decompose as a sum in order to
ensure an efficient algorithm. More generally than in the running example, we will define constraints
over an entire corpus:

Constrained Posterior Set : Q = {q(Y) : Eq[φ(X,Y)]≤ b}.

In words, Q denotes the region where constraint feature expectations are bounded by b. Addi-
tionally, it is often useful to allow small violations whose norm is bounded by ε≥ 0:

Constrained Set (with slack) : Q = {q(Y) : ∃ξ, Eq[φ(X,Y)]−b≤ ξ; ||ξ||β ≤ ε}. (1)

Here ξ is a vector of slack variables and ||·||β denotes some norm. Note that the PR method we
describe will only be useful if Q is non-empty:

Assumption 2.1 Q is non-empty.

We explore several types of constraints in Sections 5-8, including: constraints similar to the
running example, where each hidden state is constrained to appear at most once in expectation;
constraints that bias two models to agree on latent variables in expectation; constraints that en-
force a particular group-sparsity of the posterior moments. The constraint set defined in Equation 1
is usually referred to as inequality constraints with slack, since setting ε = 0 enforces inequality
constraints strictly. The derivations for equality constraints are very similar to the derivations for
inequality so we leave them out in the interest of space. Note also that we can encode equality

2. Note: the constraint features do not appear anywhere in the model. If the model has a log-linear form, then it would
be defined with respect to a different set of model features, not related to the constraint features we consider here.

3. Note that the distribution qx and Qx depend on x because the features φ(x,y) might depend on the particular example
x.

4. At every position in the sentence, we would need to know whether a verb was used at any other position.
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Symbol Meaning
x (observed) input variables for a particular example
y (usually hidden) output variables for a particular example
X,Y x and y for the entire unlabeled portion of the corpus
XL,YL x and y for the entire labeled portion of the corpus (possibly empty)
pθ(x,y) a generative, joint model with parameters θ
L(θ) data log-likelihood and parameter prior: log pθ(XL,YL)+ log∑Y pθ(X,Y)+ log p(θ)
Qx,Q posterior regularization set: constrained set of desired data-conditional distributions
φ(x,y) constraint features: used to encode posterior regularization
b bounds on the desired expected values of constraint features
ξ slack variables used to allow small violations of constraints

JQ (θ) posterior regularized likelihood: L(θ)−KL(Q ‖ pθ(Y|X))

Table 1: Summary of notation used.

constraints by adding two inequality constraints, although this will leave us with twice as many
variables in the dual. The assumption of linearity of the constraints is computationally important,
as we will show below. For now, we do not make any assumptions about the features φ(x,y), but
if they factor in the same way as the model, then we can use the same inference algorithms in
PR training as we use for the original model (see Proposition 2.2). In PR, the log-likelihood of a
model is penalized with the KL-divergence between the desired distribution space Q and the model
posteriors,

KL(Q ‖ pθ(Y|X)) =min
q∈Q

KL(q(Y) ‖ pθ(Y|X)).

The posterior-regularized objective is:

Posterior Regularized Likelihood : JQ (θ) = L(θ)−KL(Q ‖ pθ(Y|X)). (2)

The objective trades off likelihood and distance to the desired posterior subspace (modulo getting
stuck in local maxima) and provides an effective means of controlling the posteriors. In many cases,
prior knowledge is easy to specify in terms of posteriors, and much more difficult to specify as priors
on model parameters or by explicitly adding constraints to the model. A key advantage of using reg-
ularization on posteriors is that the learned model itself remains simple and tractable, while during
learning it is driven to obey the constraints through setting appropriate parameters θ. The advantage
of imposing the constraints via KL-divergence from the posteriors is that the objective above can be
optimized using a simple EM scheme described in Section 2.6. It is also possible to use a similar
algorithm to maximize L(θ)−αKL(Q ‖ pθ(Y | X)), for α ∈ [0,1]. See Appendix A for details.
Note that the algorithm we will present in Section 2.6 will not allow us to optimize an objective
with α > 1, and this leads us to have both a KL-penalty term in Equation 2 and also to potentially
have slack in the definition of the constraint set Q . We do not need to allow slack in the objective,
as long as we are sure that the constraint set Q is non-empty. At increased computational cost, it
is also possible to eliminate the KL-penalty portion of the objective, instead directly constraining
the model’s posterior distribution to be inside the constraint set pθ(Y|X) ∈ Q . See Section 4 for
details. Figure 1 illustrates the objective in Equation 2. Normal maximum likelihood training is
equivalent to minimizing the KL distance between the distribution concentrated on X and the set of
distributions representable by the model. Any particular setting of the model parameters results in
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representable
by model

Q

p(Y)p(X)

pθ(X) δ(X)
KL(Q||pθ(Y

| X))

pθ(Y | X)
KL(δ(X)||pθ (X))

θ



q(Y)

Θ

Figure 1: An illustration of the PR objective for generative models, as a sum of two KL terms. The
symbol Θ represents the set of possible model parameters, δ(X) is a distribution that puts
probability 1 on X and 0 on all other assignments. Consequently KL(δ(X)||pθ(X)) =
L(θ). (We ignore the parameter prior and additional labeled data in this figure for clarity.)

the posterior distribution pθ(Y|X). PR adds to the maximum likelihood objective a corresponding
KL distance for this distribution. If Q has only one distribution, then we recover labeled maximum
likelihood training. This is one of the justifications for the use and the particular direction of the KL
distance in the penalty term.

Running Example In order to represent a corpus-wide constraint set Q for our POS prob-
lem, we stack the constraint features into a function fromX,Y pairs (sentences, part-of-speech
sequences) to R2|X|, where |X| is the number of sentences in our unlabeled corpus. For the
POS tagging example, the PR objective penalizes parameters that do not assign each sentence
at least one verb and one noun in expectation.

For PR to be successful, the model pθ(Y|X) has to be expressive enough to ensure that the
learned model has posteriors pθ(Y|X) in or nearly inQ . Even if that is the case, the same parameters
might not ensure that the constraints are satisfied on a test corpus, so we could also use q(Y) =
argminq′∈Q KL(q′(Y) ‖ pθ(Y|X)) for prediction instead of pθ(Y|X). We will see in Sections 5
and 7 that this sometimes results in improved performance. Chang et al. (2007) report similar
results for their constraint-driven learning framework.

2.3 Slack Constraints vs. Penalty

In order for our objective to be well defined, Q must be non-empty. When there are a large number
of constraints, or when the constraint features φ are defined by some instance-specific process, it
might not be easy to choose constraint values b and slack ε that lead to satisfiable constraints. It
is sometimes easier to penalize slack variables instead of setting a bound ε on their norm. In these
cases, we add a slack penalty to the regularized likelihood objective in Equation 2:

L(θ) − min
q,ξ

KL(q(Y) || pθ(Y|X))+σ ||ξ||β

s. t. Eq[φ(X,Y)]−b≤ ξ.
(3)
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The slack-constrained and slack-penalized versions of the objectives are equivalent in the sense
that they follow the same regularization path: for every ε there exists some σ that results in identical
parameters θ. Note that while we have used a norm ||·||β to impose a cost on violations of the
constraints, we could have used any arbitrary convex penalty function, for which the minimal q is
easily computable.

2.4 Computing the Posterior Regularizer

In this subsection, we describe how to compute the objective we have introduced for fixed parame-
ters θ. The regularization term is stated in Equations 2 and 3 in terms of an optimization problem.
We assume that we have algorithms to do inference5 in the statistical model of interest, pθ. We
describe the computation of the regularization term for the inequality constraints:

min
q,ξ

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)]−b≤ ξ; ||ξ||β ≤ ε. (4)

Proposition 2.1 The regularization problems for PR with inequality constraints in Equation 4 can
be solved efficiently in its dual form. The primal solution q∗ is unique since KL divergence is strictly
convex and is given in terms of the dual solution λ∗ by:

q∗(Y) = pθ(Y|X)exp{−λ∗ ·φ(X,Y)}
Z(λ∗)

(5)

where Z(λ∗) = ∑Y pθ(Y|X)exp{−λ∗ ·φ(X,Y)}. Define ||·||β∗ as the dual norm of ||·||β. The dual
of the problem in Equation 4 is:

max
λ≥0

−b ·λ− logZ(λ) − ε ||λ||β∗ . (6)

The proof is included in Appendix B using standard Lagrangian duality results and strict convex-
ity of KL (e.g., Bertsekas, 1999). The dual form in Equation 6 is typically computationally more
tractable than the primal form (Equation 4) because there is one dual variable per expectation con-
straint, while there is one primal variable per labeling Y. For structured models, this is typically
intractable. An analogous proposition can be proven for the objective with penalties (Equation 3),
with almost identical proof. We omit this for brevity.

2.5 Factored q(Y) for Factored Constraints

The form of the optimal q with respect to pθ(Y|X) and φ has important computational implications.

Proposition 2.2 If pθ(Y|X) factors as a product of clique potentials over a set of cliques C , and
φ(X,Y) factors as a sum over some subset of those cliques, then the optimizer q∗(Y) of Equation 5
will also factor as a product of potentials of cliques in C .

This is easy to show. Our assumptions are a factorization for pθ:

Factored Posteriors : p(Y | X) = 1
Z(X)∏c∈C

ψ(X,Yc)

5. Specifically, we need to be able to compute marginal distributions efficiently.
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M − Step :
max

θ
F (q, θ)

E′ − Step :
max
q∈Q

F (q, θ)

θ

q(Y)
Q

pθ(Y|X)

q(Y)

min KL

Figure 2: Modified EM for optimizing generative PR objective L(θ)−KL(Q ‖ pθ(Y|X)).

and the same factorization for φ:

Factored Features : φ(X,Y) = ∑
c∈C

φ(X,Yc)

which imply that q∗(Y) will also factor as a product over the cliques C :

Factored Solution : q∗(Y) =
1

Z(X)Z(λ)∏c∈C
ψ(X,Yc) exp{−λ ·φ(X,Yc)}

=
1

Z′(X)∏c∈C
ψ′(X,Yc),

where ψ′(X,Yc) = ψ(X,Yc)exp{−λ ·φ(X,Yc)} and Z′(X) = Z(X)Z(λ).

2.6 Generative Posterior Regularization via Expectation Maximization

This section presents an optimization algorithm for the PR objective. The algorithm we present is
a minorization-maximization algorithm akin to EM, and both slack-constrained and slack-penalized
formulations can be optimized using it. To simplify the exposition, we focus first on slack-constrained
version, and leave a treatment of optimization of the slack-penalized version to Section 2.7.

Recall the standard expectation maximization (EM) algorithm used to optimize marginal likeli-
hood L(θ) = log∑Y pθ(X,Y). Again, for clarity of exposition, we ignore log p(θ), the prior on θ,
as well as log pθ(XL,YL), the labeled data term, as they are simple to incorporate, just as in regular
EM. Neal and Hinton (1998) describe an interpretation of the EM algorithm as block coordinate
ascent on a function that lower-bounds L(θ), which we also use below. By Jensen’s inequality, we
define a lower-bound F(q,θ) as

L(θ) = log∑
Y
q(Y) pθ(X,Y)

q(Y) ≥∑
Y
q(Y) log pθ(X,Y)

q(Y) = F(q,θ).
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we can re-write F(q,θ) as

F(q,θ) =∑
Y
q(Y) log(pθ(X)pθ(Y|X))−∑

Y
q(Y) logq(Y)

= L(θ)−∑
Y
q(Y) log q(Y)

pθ(Y|X)
= L(θ)−KL(q(Y)||pθ(Y|X)).

Using this interpretation, we can view EM as performing coordinate ascent on F(q,θ). Starting
from an initial parameter estimate θ0, the algorithm iterates two block-coordinate ascent steps until
a convergence criterion is reached:

E : qt+1 = argmax
q

F(q,θt) = argmin
q

KL(q(Y) ‖ pθt (Y | X)),

M : θt+1 = argmax
θ

F(qt+1,θ) = argmax
θ

Eqt+1 [log pθ(X,Y)] . (7)

It is easy to see that the E-step sets qt+1(Y) = pθt (Y|X).
The PR objective (Equation 2) is

JQ (θ) =max
q∈Q

F(q,θ) = L(θ)− min
q(Y)∈Q

KL(q(Y)||pθ(Y|X)),

where Q = {q(Y) : ∃ξ, Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε}. In order to optimize this objective, it
suffices to modify the E-step to include the constraints:

E′ : qt+1 = argmax
q∈Q

F(q,θt) = argmin
q∈Q

KL(q(Y) ‖ pθt (Y|X)). (8)

The projected posteriors qt+1(Y) are then used to compute sufficient statistics and update the
model’s parameters in the M-step, which remains unchanged, as in Equation 7. This scheme is
illustrated in Figure 2.

Proposition 2.3 The modified EM algorithm illustrated in Figure 2, which iterates the modified E-
step (Equation 8) with the normal M-step (Equation 7), monotonically increases the PR objective:
JQ (θt+1)≥ JQ (θt).

Proof: The proof is analogous to the proof of monotonic increase of the standard EM objective.
Essentially,

JQ (θt+1) = F(qt+2,θt+1)≥ F(qt+1,θt+1)≥ F(qt+1,θt) = JQ (θt).
The two inequalities are ensured by the E′-step and M-step. E′-step sets qt+1= argmaxq∈Q F(q,θt),
hence JQ (θt) = F(qt+1,θt). The M-step sets θt+1 = argmaxθF(qt+1,θ), hence F(qt+1,θt+1) ≥
F(qt+1,θt). Finally, JQ (θt+1) =maxq∈Q F(q,θt+1)≥ F(qt+1,θt+1) !

Note that the proposition is only meaningful when Q is non-empty and JQ is well-defined.
As for standard EM, to prove that coordinate ascent on F(q,θ) converges to stationary points of
JQ (θ), we need to make additional assumptions on the regularity of the likelihood function and
boundedness of the parameter space as in Tseng (2004). This analysis can be easily extended to our
setting, but is beyond the scope of the current paper.

We can use the dual formulation of Proposition 2.1 to perform the projection. Proposition 2.2
implies that we can use the same algorithms to perform inference in our projected model q as we
did in our original model pθ. We illustrate this with the running example.
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Running Example For the POS tagging example with zero slack, the optimization problem
we need to solve is:

argmin
q

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)]≤−1

where 1 is a vector of with 1 in each entry. The dual formulation is given by

argmax
λ≥0

1 ·λ− logZ(λ) with q∗(Y) = pθ(Y|X)exp{−λ∗ ·φ(X,Y)}
Z(λ∗)

. (9)

We can solve the dual optimization problem by projected gradient ascent. The HMM model
can be factored as products over sentences, and each sentence as a product of emission prob-
abilities and transition probabilities.

pθ(y | x) =
∏

|x|
i=1 pθ(yi|yi−1)pθ(xi|yi)

pθ(x)
(10)

where pθ(y1|y0) = pθ(y1) are the initial probabilities of our HMM. The constraint features
φ can be represented as a sum over sentences and further as a sum over positions in the
sentence:

φ(x,y) =
|x|

∑
i=1

φi(x,yi) =
|x|

∑
i=1











(−1,0)* if yi is a verb in sentence x
(0,−1)* if yi is a noun in sentence x
(0,0)* otherwise

(11)

combining the factored Equations 10 and 11 with the definition of q(Y) we see that q(Y) must
also factor as a first-order Markov model for each sentence:

q∗(Y) ∝ ∏
x∈X

|x|

∏
i=1

pθ(yi|yi−1)pθ(xi|yi)e−λ
∗·φi(x,yi).

Hence q∗(Y) is just a first-order Markov model for each sentence, and we can compute the
normalizer Z(λ∗) and marginals q(yi) for each example using forward-backward. This allows
computation of the dual objective in Equation 9 as well as its gradient efficiently. The gradient
of the dual objective is 1−Eq[φ(X,Y)]. We can use projected gradient (Bertsekas, 1999) to
perform the optimization, and the projection can be done sentence-by-sentence allowing for
online optimization such as stochastic gradient. Optimization for non-zero slack case can be
done using projected subgradient (since the norm is not smooth).

Note that on unseen unlabeled data, the learned parameters θ might not satisfy the constraints
on posteriors exactly, although typically they are fairly close if the model has enough capacity.

2.7 Penalized Slack via Expectation Maximization

If our objective is specified using slack-penalty such as in Equation 3, then we need a slightly
different E-step. Instead of restricting q ∈ Q , the modified E′-step adds a cost for violating the
constraints

E′ : min
q,ξ

KL(q(Y) || pθ(Y|X))+ σ ||ξ||β

s. t. Eq[φ(X,Y)]−b≤ ξ.
(12)
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An analogous monotonic improvement of modified EM can be shown for the slack-penalized ob-
jective. The dual of Equation 12 is

max
λ≥0

−b ·λ− logZ(λ) s. t. ||λ||β∗ ≤ σ.

2.8 PR for Discriminative Models

The PR framework can be used to guide learning in discriminative models as well as generative
models. In the case of a discriminative model, we only have pθ(y|x), and the likelihood does not
depend on unlabeled data. Specifically,

LD(θ) = log pθ(YL|XL)+ log p(θ),

where (YL,XL) are any available labeled data and log p(θ) is a prior on the model parameters. With
this definition of L(θ) for discriminative models we will optimize the discriminative PR objective
(zero-slack case):

Discriminative PR Likelihood : JDQ (θ) = LD(θ)−KL(Q ‖ pθ(Y|X)). (13)

In the absence of both labeled data and a prior on parameters p(θ), the objective in Equation 2 is
optimized (equal to zero) for any pθ(Y | X) ∈ Q . If we employ a parametric prior on θ, then we
will prefer parameters that come close to satisfying the constraints, where proximity is measured by
KL-divergence.

Running Example For the POS tagging example, our discriminative model might be a first
order conditional random field. In this case we model:

pθ(y|x) =
exp{θ · f(x,y)}

Zθ(x)

where Zθ(x) = ∑y exp{θ · f(x,y)} is a normalization constant and f(x,y) are the model fea-
tures. We will use the same constraint features as in the generative case: φ(x,y) = “negative
number of verbs in y”, and define Qx and qx also as before. Note that f are features used
to define the model and do not appear anywhere in the constraints while φ are constraint
features that do not appear anywhere in the model.

Traditionally, the EM algorithm is used for learning generative models (the model can condition
on a subset of observed variables, but it must define a distribution over some observed variables).
The reason for this is that EM optimizes marginal log-likelihood (L in our notation) of the observed
data X according to the model. In the case of a discriminative model, pθ(Y|X), we do not model
the distribution of the observed data, the value of LD as a function of θ depends only on the para-
metric prior p(θ) and the labeled data. By contrast, the PR objective uses the KL term and the
corresponding constraints to bias the model parameters. These constraints depend on the observed
data X and if they are sufficiently rich and informative, they can be used to train a discriminative
model. In the extreme case, consider a constraint set Q that contains only a single distribution q,
with q(Y∗) = 1. So, q is concentrated on a particular labeling Y∗. In this case, the PR objective in
Equation 13 reduces to

JDQ (θ) = LD(θ)+ log pθ(Y∗|X) = log p(θ)+ log pθ(YL|XL)+ log pθ(Y∗|X).
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§# Problem Gen/Disc p/q Summary of Structural Constraints
§5 Word Alignment G q Translation process is symmetric and bijective
§6 Multi-view learning D q Multiple views should agree on label distribution
§7 Dependency Parsing G+D p Noisy, partially observed labels encoded in φ and b
§8 Part-of-speech induction G p Sparsity structure independent of model parameters:

each word should be generated by a small number of
POS tags

Table 2: Summary of applications of Posterior Regularization described in this paper. Gen/Disc
refers to generative or discriminative models. The p/q column shows whether we use the
original model p or the projected distribution q at decode time.

Thus, if Q is informative enough to uniquely specify a labeling of the unlabeled data, the PR objec-
tive reduces to the supervised likelihood objective. When Q specifies a range of distributions, such
as the one for multi view learning (Section 6), PR biases the discriminative model to have pθ(Y|X)
close to Q .

Equation 13 can also be optimized with a block-coordinate ascent, leading to an EM style algo-
rithm very similar to the one presented in Section 2.6. We define a lower bounding function:

F ′(q,θ) =−KL(q(Y) ‖ pθ(Y|X)) =∑
Y
q(Y) log pθ(Y|X)

q(Y) .

Clearly, maxq∈Q F ′(q,θ) =−KL(Q ‖ pθ(Y|X)) so F ′(q,θ)≤−KL(Q ‖ pθ(Y|X)) for q ∈ Q .
The modified E′ andM′ steps are:6

E′ : qt+1 = argmax
q∈Q

F ′(q,θt) = argmin
q∈Q

KL(q(Y) ‖ pθt (Y|X)),

M′ : θt+1 = argmax
θ

F ′(qt+1,θ) = argmax
θ

Eqt+1 [log pθ(Y|X)] . (14)

Here the difference between Equation 7 and Equation 14 is that now there is no generative compo-
nent in the lower-bound F ′(q,θ) and hence we have a discriminative update to the model parameters
in Equation 14.

3. Summary of Applications

Because the PR framework allows very diverse prior information to be specified in a single formal-
ism, the application Sections (§5-§8) are very diverse in nature. This section attempts to summarize
their similarities and differences without getting into the details of the problem applications and
intuition behind the constraints. Table 2 summarizes the applications and constraints described in
the rest of the paper while Table 3 summarizes the meanings of the variables x, y and φ(X,Y) as
well as the optimization procedures used for the applications presented in the sequel.

In the statistical word alignment application described in Section 5, the goal is to identify pairs or
sets of words that are direct translations of each other. The statistical models used suffer from what

6. As with the M-step in Equation 7 we have ignored the prior p(θ) on model parameters and the labeled data terms,
which can be easily incorporated in theM′ step.
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Application Symbol Meaning
Word x Pair of sentences that are translations of each other.
Alignment y Set of alignment links between words in the sentences (exponen-

tially many possibilities).
φ(x,y) Bijective: number of times each source word is used in the align-

ment y.
Symmetric: expected difference in number of times each link is used
by source→target model and target→source model.

OPT Bijective: projected gradient. Symmetric: L-BFGS.
Multi-view x Varies by application.
learning y Varies by application.

φ(x,y) Indexed by label; ±1 if only one model predicts the label, and 0 if
both or none predict the label.

OPT Closed form.
Dependency x Natural language sentence as a sequence of words.
Parsing y Dependency parse tree (set of edges from one word to another, form-

ing a tree).
φ(x,y) Number of edges in y that are in the set of translated edges.
OPT Line search.

Part-of-speech x Natural language sentence as a sequence of words.
induction y Sequence of syntactic categories, one for each word.

φ(X,Y) Indexed by w, i,s; 1 if the ith occurrence of word w in the corpus is
tagged with syntactic category s, and 0 otherwise.

OPT Projected gradient.

Table 3: Summary of input and output variable meanings as well as meanings of constraint features
and optimization methods used (OPT) for the applications summarized in Table 2.

is known as a garbage collector effect: the likelihood function of the simplistic translation models
used prefers to align sections that are not literal translations to rare words, rather than leaving them
unaligned (Brown et al., 1993). This results in each rare word in a source language being aligned
to 4 or 5 words in the target language. To alleviate this problem, we introduce constraint features
that count how many target words are aligned to each source word, and use PR to encourage models
where this number is small in expectation. Modifying the model itself to include such a preference
would break independence and make it intractable.

The multi-view learning application described in Section 6 leverages two or more sources of
input (“views”) along with unlabeled data. The requirement is to train two models, one for each
view, such that they usually agree on the labeling of the unlabeled data. We can do this using PR,
and we recover the Bhattacharyya distance as a regularizer. The PR approach also extends naturally
to structured problems, and cases where we only want partial agreement.

The grammar induction application of Section 7 takes advantage of an existing parser for a
resource-rich language to train a comparable resource for a resource-poor language. Because the
two languages have different syntactic structures, and errors in word alignment abound, using such
out-of-language information requires the ability to train with missing and noisy labeling. This is
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achieved using PR constraints that guide learning to prefer models that tend to agree with the noisy
labeling wherever it is provided, while standard regularization guides learning to be self-consistent.

Finally, Section 8 describes an application of PR to ensure a particular sparsity structure, which
can be independent of the structure of the model. Section 8 focuses on the problem of unsuper-
vised part-of-speech induction, where we are given a sample of text and are required to specify a
syntactic category for each token in the text. A well-known but difficult to capture piece of prior
knowledge for this problem is that each word type should only occur with a small number of syn-
tactic categories, even though there are some syntactic categories that occur with many different
word types. By using an !1/!∞ norm on constraint features we are able to encourage the model to
have precisely this kind of sparsity structure, and greatly increase agreement with human-generated
syntactic categories.

Table 2 also shows for each application whether we use the distribution over hidden variables
given by the model parameters pθ(Y|X) to decode, or whether we first project the distribution to the
constraint set and use q(Y) to decode. In general we found that when applying the constraints on the
labeled data is sensible, performing the projection before decoding tends to improve performance.
For the word alignment application and the multi-view learning application we found decoding with
the projected distribution improved performance. By contrast, for dependency parsing, we do not
have the English translations at test time and so we cannot perform a projection. For part-of-speech
induction the constraints are over the entire corpus, and different regularization strengths might be
needed for the training and test sets. Since we did not want to tune a second hyperparameter, we
instead decoded with p.

4. Related Frameworks

The work related to learning with constraints on posterior distributions is described in chronological
order in the following three subsections. An overall summary is most easily understood in reverse
chronological order though, so we begin with a few sentences detailing the connections to it in that
order. Liang et al. (2009) describe how we can view constraints on posterior distributions as mea-
surements in a Bayesian setting, and note that inference using such information is intractable. By
approximating this problem, we recover either the generalized expectation constraints framework of
Mann and McCallum (2007), or with a further approximation we recover a special case of the pos-
terior regularization framework presented in Section 2. Finally, a different approximation recovers
the constraint driven learning framework of Chang et al. (2007). To the best of our knowledge, we
are the first to describe all these connections.

4.1 Constraint Driven Learning

Chang et al. (2007, 2008) describe a framework called constraint driven learning (CODL) that can
be viewed as an approximation to optimizing the slack-penalized version of the PR objective (Equa-
tion 3). Chang et al. (2007) are motivated by hard-EM, where the distribution q is approximated by
a single sample at the mode of log pθ(Y|X). Chang et al. (2007) propose to augment log pθ(Y|X)
by adding to it a penalty term based on some domain knowledge. When the penalty terms are well-
behaved, we can view them as adding a cost for violating expectations of constraint features φ. In
such a case, CODL can be viewed as a “hard” approximation to the PR objective:

argmax
θ

L(θ) −min
q∈M

(

KL(q(Y)||pθ(Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]−b
∣

∣

∣

∣

β

)
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whereM is the set of distributions concentrated on a single Y. The modified E-Step becomes:

CODL E′-step : max
Y
log pθ(Y|X) − σ ||φ(X,Y)−b||β .

Because the constraints used by Chang et al. (2007) do not allow tractable inference, they use
a beam search procedure to optimize the min-KL problem. Additionally they consider a K-best
variant where instead of restricting themselves to a single point estimate for q, they use a uniform
distribution over the top K samples.

Carlson et al. (2010) train several named entity and relation extractors concurrently in order
to satisfy type constraints and mutual exclusion constraints. Their algorithm is related to CODL
in that hard assignments are made in a way that guarantees the constraints are satisfied. However,
their algorithm is motivated by adding these constraints to algorithms that learn pattern extractors: at
each iteration, they make assignments only to the highest confidence entities, which are then used to
extract high confidence patterns for use in subsequent iterations. By contrast hard EM and CODL
would make assignments to every instance and change these assignments over time. Daumé III
(2008) also use constraints to filter out examples for self-training and also do not change the labels.

4.2 Generalized Expectation Criteria

Generalized expectation criteria (GE) allow a user to specify preferences about model expectations
in the form of linear constraints on some feature expectations (Mann and McCallum, 2007, 2008).
As with PR, a set of constraint features φ are introduced, and a penalty term is added to the log-
likelihood objective. The GE objective is

max
θ

L(θ)−σ ||Epθ [φ(X,Y)]−b||β . (15)

where ||·||β is typically the l2 norm (Druck et al., 2009 use l22) or a distance based on KL diver-
gence (Mann and McCallum, 2008), and the model is a log-linear model such as maximum entropy
or a CRF.

The idea leading to this objective is the following: Suppose that we only had enough resources
to make a very small number of measurements when collecting statistics about the true distribution
p∗(y|x). If we try to create a maximum entropy model using these statistics we will end up with
a very impoverished model. It will only use a small number of features and consequently will fail
to generalize to instances where these features cannot occur. In order to train a more feature-rich
model, GE defines a wider set of model features f and uses the small number of estimates based
on constraint features φ to guide learning. By using l2 regularization on model parameters, we can
ensure that a richer set of model features are used to explain the desired expectations.

Druck et al. (2009) use a gradient ascent method to optimize the objective. Unfortunately,
because the second term in the GE objective (Equation 15) couples the constraint features φ and the
model parameters θ, the gradient requires computing the covariance between model features f and
the constraint features φ under pθ:

∂Epθ [φ(X,Y)]
∂θ

= Epθ [f(X,Y)φ(X,Y)]−Epθ [φ(X,Y)]Epθ [f(X,Y)].

Because of this coupling, the complexity of the dynamic program needed to compute the gradient is
higher than the complexity of the dynamic program for the model. In the case of graphical models
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where f and φ have the same Markov dependencies, computing this gradient usually squares the
running time of the dynamic program. A more efficient dynamic program might be possible (Li and
Eisner, 2009; Pauls et al., 2009), however current implementations are prohibitively slower than PR
when there are many constraint features.

In order to avoid the costly optimization procedure described above, Bellare et al. (2009) pro-
pose a variational approximation. Recall that at a high level, the difficulty in optimizing Equa-
tion 15 is because the last term couples the constraint features φ with the model parameters θ.
In order to separate out these quantities, Bellare et al. (2009) introduce an auxiliary distribution
q(Y)≈ pθ(Y|X), which is used to approximate the last term in Equation 15. The variational objec-
tive contains three terms instead of two:

argmax
θ

L(θ) −min
q

(

KL(q(Y)||pθ(Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]−b
∣

∣

∣

∣

β

)

. (16)

This formulation is identical to the slack-penalized version of PR, and Bellare et al. (2009) use
the same optimization procedure (described in Section 2). Because both the minorization and the
maximization steps implement minimum Kullback-Leibler projections, Bellare et al. (2009) refer
to this algorithm as alternating projections. Note that PR can also be trained in an online fashion,
and Ganchev et al. (2009) use an online optimization for this objective to train a dependency parser.
These experiments are described in Section 7.

Closely related to GE, is the work of Quadrianto et al. (2009). The authors describe a setting
where the constraint values, b, are chosen as the empirical estimates on some labeled data. They then
train a model to have high likelihood on the labeled data, but also match the constraint features on
unlabeled data. They show that for appropriately chosen constraint features, the estimated constraint
values should be close to the true means, and show good experimental improvements on an image
retrieval task.

4.3 Measurements in a Bayesian Framework

Liang et al. (2009) approach the problem of incorporating prior information about model posteriors
from a Bayesian point of view. They motivate their approach using the following caricature. Sup-
pose we have log-linear model pθ(y|x) ∝ exp(θ · f(y,x)). In addition to any labeled data (XL,YL),
we also have performed some additional experiments.7 In particular, we have observed the expected
values of some constraint features φ(X,Y) on some unlabeled dataX. Because there is error in mea-
surement, they observe b ≈ φ(X,Y). Figure 3 illustrates this setting. The leftmost nodes represent
(x,y) pairs from the labeled data (XL,YL). The nodes directly to the right of θ represent unlabeled
(x,y) pairs from the unlabeled dataX. All the data are tied together by the dependence on the model
parameters θ. The constraint features take as input the unlabeled data set X as well as a full labeling
Y, and produce some value φ(X,Y), which is never observed directly. Instead, we observe some
noisy version b ≈ φ(X,Y). The measured values b are distributed according to some noise model
pN(b|φ(X,Y)). Liang et al. (2009) note that the optimization is convex for log-concave noise and
use box noise in their experiments, giving b uniform probability in some range near φ(X,Y).

In the Bayesian setting, the model parameters θ as well as the observed measurement values
b are random variables. Liang et al. (2009) use the mode of p(θ|XL,YL,X,b) as a point estimate

7. In their exposition, Liang et al. (2009) incorporate labeled data by including the labels among experiments. We prefer
to separate these types of observations because full label observations do not require approximations.
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XL θ X

YL Y

φ(X,Y)

b

Figure 3: The model used by Liang et al. (2009), using our notation. We have separated treatment
of the labeled data (XL,YL) from treatment of the unlabeled data X.

for θ:
argmax

θ
p(θ|XL,YL,X,b) = argmax

θ
∑
Y
p(θ,Y,b|X,XL,YL),

with equality because p(θ|XL,YL,X,b)∝ p(θ,b|XL,YL,X) =∑Y p(θ,Y,b|X,XL,YL). Liang et al.
(2009) focus on computing p(θ,Y,b|X,XL,YL). They define their model for this quantity as fol-
lows:

p(θ,Y,b|X,XL,YL) = p(θ|XL,YL) pθ(Y|X) pN(b|φ(X,Y)) (17)

where theY andX are particular instantiations of the random variables in the entire unlabeled corpus
X. Equation 17 is a product of three terms: a prior on θ, the model probability pθ(Y|X), and a noise
model pN(b|φ). The noise model is the probability that we observe a value, b, of the measurement
features φ, given that its actual value was φ(X,Y). The idea is that we model errors in the estimation
of the posterior probabilities as noise in the measurement process. Liang et al. (2009) use a uniform
distribution over φ(X,Y)± ε, which they call “box noise”. Under this model, observing b farther
than ε from φ(X,Y) has zero probability. In log space, the exact MAP objective, becomes:

max
θ

L(θ) + logEpθ(Y|X)
[

pN(b|φ(X,Y))
]

. (18)

Unfortunately with almost all noise models (including no noise), and box noise in particular, the
second term in Equation 18 makes the optimization problem intractable.8 Liang et al. (2009) use a
variational approximation as well as a further approximation based on Jensen’s inequality to reach
the PR objective, which they ultimately optimize for their experiments. We also relate their frame-
work to GE and CODL. If we approximate the last term in Equation 18 by moving the expectation
inside the probability:

Epθ(Y|X)
[

pN(b | φ(X,Y))
]

≈ pN
(

b | Epθ(Y|X)[φ(X,Y)]
)

,

we end up with an objective equivalent to GE for appropriate noise models. In particular Gaus-
sian noise corresponds to l22 regularization in GE, since the log of a Gaussian is squared Euclidean
distance (up to scaling). This approximation can be motivated by the case when pθ(Y|X) is con-
centrated on a particular labeling Y∗: pθ(Y|X) = δ(Y∗). In this special case the ≈ is an equality.

8. For very special noise, such as noise that completely obscures the signal, we can compute the second term in Equa-
tion 18.
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Measurements
Posterior

Regularization
Generalized
Expectation

Constraint
Driven

Learning

variational
approximation;

Jensen’s inequality

variational
approximation

MAP
approximation

MAP
approximation

logE[pN(b|φ)]
≈

log pN (b|E[φ])

Model maxθ L(θ)+ . . .
PR minq log pN

(

b|Eq(Y)[φ(X,Y)]
)

−KL(q||pθ)
M logEpθ(Y|X) [pN(b|φ(X,Y))]
GE log pN

(

b|Epθ(Y|X)[φ(X,Y)]
)

CODL minY log pN (b|φ(X,Y))−KL(δ(Y)||pθ)

Figure 4: A summary of the different models. We use pθ(Y|X) to denote the model probability,
q(Y) to denote a proposal distribution, and pN for the noise model. The symbol δ(Y)
denotes a distribution concentrated on Y. The approximations are described in the text:
M→GE near Equation 19, GE→PR near Equation 16, PR→CODL at the end of Sec-
tion 4.3.

This approximation is also used in Liang et al. (2009). This provides an interpretation of GE as an
approximation to the Bayesian framework proposed by Liang et al. (2009):

max
θ

L(θ) + log pN
(

b Epθ(Y|X)[φ(X,Y)]
)

. (19)

Note that the objective in Equation 19 is a reasonable objective in and of itself, essentially
stating that the measured values b are not dependent on any particular instantiation of the hidden
variables, but rather represent the integral over all their possible assignments. Liang et al. (2009)
also use a variational approximation similar to the one of Bellare et al. (2009) so that the objective
they optimize is exactly the PR objective, although their optimization algorithm is slightly different
from the one presented in Section 2. Finally, if we restrict the set of allowable distributions further
to be concentrated on a single labeling Y, we recover the CODL algorithm. Figure 4 summarizes
the relationships.

5. Statistical Word Alignments

Word alignments, introduced by Brown et al. (1994) as hidden variables in probabilistic models for
statistical machine translation (IBM models 1-5), describe the correspondence between words in
source and target sentences. We will denote each target sentence as xt = (xt1, . . . ,xti, . . . ,xtI) and each
source sentence as xs = (xs1, . . . ,xsj, . . . ,xsJ). A word alignment will be represented as a matrix with
entries yi j indicating that target word i is a translation of source word j. Although the original IBM
models are no longer competitive for machine translation, the resulting word alignments are still a
valuable resource. Word alignments are used primarily for extracting minimal translation units for
machine translation, for example, phrases in phrase-based translation systems (Koehn et al., 2003)
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and rules in syntax-based machine translation (Galley et al., 2004; Chiang et al., 2005), as well as
for MT system combination (Matusov et al., 2006). But their importance has grown far beyond
machine translation: for instance, transferring annotations between languages by projecting POS
taggers, NP chunkers and parsers through word alignment (Yarowsky and Ngai, 2001; Rogati et al.,
2003; Hwa et al., 2005; Ganchev et al., 2009); discovery of paraphrases (Bannard and Callison-
Burch, 2005; Callison-Burch, 2007, 2008); and joint unsupervised POS and parser induction across
languages (Snyder and Barzilay, 2008; Snyder et al., 2009).

Here we describe two types of prior knowledge that when introduced as constraints in different
word alignment models significantly boost their performance. The two constraints are: (i) bijec-
tivity: “one word should not translate to many words”; and (ii) symmetry: “directional alignments
of one model should agree with those of another model”. A more extensive description of these
constraints applied to the task of word alignments and the quality of the resulting alignments can be
found in Graça et al. (2010).

5.1 Models

We consider two models below: IBM Model 1 proposed by Brown et al. (1994) and the HMM
model proposed by Vogel et al. (1996). Both models can be expressed as:

p(xt ,y | xs) =∏
j
pd(y j | j,y j−1)pt(xtj | xsy j),

where y is the alignment and y j is the index of the hidden state (source language index) generating
the target language word at index j. The models differ in their definition of the distortion probability
pd(y j | j,y j−1). Model 1 assumes that the target words are generated independently and assigns
uniform distortion probability. The HMMmodel assumes that only the distance between the current
and previous source word index is important pd(y j | j,y j−1) = pd(y j | y j− y j−1). Both models are
augmented by adding a special “null” word to the source sentence.

The likelihood of the corpus, marginalized over possible alignments, is concave for Model 1,
but not for the HMM model (Brown et al., 1994; Vogel et al., 1996). For both models though, stan-
dard training using the Expectation Maximization algorithm (Dempster et al., 1977) seeks model
parameters θ that maximize the log-likelihood of the parallel corpus.

On the positive side, both models are simple and complexity of inference is O(I× J) for IBM
Model 1 and O(I×J2) for the HMM. However there are several problems with the models that arise
from their directionality.

• Non-bijective: Multiple target words can align to a single source word with no penalty.

• Asymmetric: Swapping the source and target languages can produce very different align-
ments, since only constraints and correlations between consecutive positions on one side are
enforced by the models.

The top row of Figure 5 shows an example of the posterior distribution for the alignment be-
tween an English and a French sentence using the HMMmodel. The left figure shows the alignment
in the English to French direction where the rows are source words and columns are target words,
while the right figure shows the alignment posteriors of the opposite direction. The first observa-
tion we make is that the posteriors are concentrated around particular source words (rare words
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et que à le lieu de provoquer

la rupture
, et que à le lieu de provoquer

la rupture
,

Figure 5: Posterior distributions on an English to French sentence using the HMM model. Left:
EN→FR model. Right: FR→ EN model. Top: Regular EM posteriors. Middle: After
applying bijective constraint. Bottom: After applying symmetric constraint. Sure align-
ments are squares with borders; possible alignments are squares without borders. Circle
size indicates probability value. See Graça et al. (2010) for a description of the difference
between sure and possible alignments. Circle color in the middle and bottom rows indi-
cates difference in posterior from the top row. Green (light gray) - higher probability, red
(dark gray) - lower probability.

occurring less than 5 times in the corpus) in both directions, instead of being spread across differ-
ent words. This is a well known problem when training using EM, called the “garbage collector
effect” (Brown et al., 1993). That is, rare words in the source language end up aligned to too many
words in the target language because the generative model has to distribute translation probability
for each source word among all candidate target words. Since the rare source word occurs in only
a few sentences it needs to spread its probability mass over fewer competing target words. In this
case, choosing to align the rare word to all of these target words leads to higher likelihood than
correctly aligning them or aligning them to the special null word, since it increases the likelihood
of this sentence without lowering the likelihood of many other sentences. Moreover, by correcting
the garbage collector effect we increase the overall performance on the common words, since now
these common words can be aligned to the correct words. For this particular corpus, 6.5% of the
English tokens and 7.7% of the French tokens are rare.

5.2 Bijectivity Constraints

Bijectivity constraints are based on the observation that in most gold alignments, words are aligned
one-to-one (98% for the sure alignments in the Hansard corpus). We would like to introduce this

2020



POSTERIOR REGULARIZATION FOR STRUCTURED LATENT VARIABLE MODELS

trend into the model, but adding it directly requires large factors (breaking the Markov property). In
fact, summing over one-to-one or near one-to-one weighted matchings is a classical #P-Complete
problem (Valiant, 1979). However, introducing alignment degree constraints in expectation in the
PR framework is easy and tractable. We simply add inequality constraints E[φ(x,y)]≤ 1 where we
have one feature for each source word j that counts how many times it is aligned to a target word in
the alignment y:

Bijective Features : φ j(x,y) =∑
i
1(yi = j).

For example, in the alignment at the top right of Figure 5, the posteriors over the source word
schism clearly sum to more than 1. The effect of applying PR constraints to the posteriors is shown in
the second row. Enforcing the one to (at most) one constraint clearly alleviates the garbage collector
effect. Moreover, when distributing the probability mass to the other words, most of the probability
mass goes into the correct positions (as can be seen by comparison to the gold alignments). Note
that the bijectivity constraints only hold approximately in practice and so we expect that having a
KL-based penalty for them might be better than ensuring that the model satisfies them, since we can
violate bijectivity in order to achieve higher likelihood. Another way to understand what is going
on is to see how the parameters are affected by the bijectivity constraint. In particular the translation
table becomes much cleaner, having a much lower entropy. The average entropy for the translation
probability, averaged over all source language words for EM training is 2.0-2.6 bits, depending on
the direction. When we train using PR with the bijectivity constraint, this entropy drops to 0.6
for both directions. We see that while the model does not have any particular parameter that can
enforce bijectivity, in practice the model is expressive enough to learn a preference for bijectivity
by appropriately setting the existing model parameters.

5.3 Symmetry Constraints

Word alignment should not depend on translation direction, but this principle is clearly violated
by the directional models. In fact, each directional model makes different mistakes. The standard
approach is to train two models independently and then intersect their predictions (Och and Ney,
2003).9 However, we show that it is much better to train two directional models concurrently, cou-
pling their posterior distributions over alignments with constraints that force them to approximately
agree. The idea of training jointly has also been explored by Matusov et al. (2004) and Liang et al.
(2006), although their formalization is quite different.

Let the directional models be defined as: −→p θ(
−→y ) (forward) and←−p θ(

←−y ) (backward). We sup-
press dependence on xs and xt for brevity. Define y to range over the union of all possible directional
alignments−→y ∪←−y . We then define a mixture model pθ(y) = 1

2
−→p θ(y)+ 1

2
←−p θ(y)where←−p θ(

−→y ) = 0
and vice-versa (i.e., the alignment of one directional model has probability zero according to the
other model). We then define the following feature for each target-source position pair i, j:

Symmetric Features : φi j(x,y) =











+1 y ∈ −→y and −→yi = j
−1 y ∈←−y and←−y j = i
0 otherwise.

The feature takes the value zero in expectation if a word pair i, j is aligned with equal probability in
both directions. So the constraint we want to impose is Eq[φi j(x,y)] = 0 (possibly with some small

9. Sometimes union or a heuristic is used instead of intersection.
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violation). Note that this constraint is only feasible if the posteriors are bijective. Clearly these
features are fully factored, so to compute expectations of these features under the model q we only
need to be able to compute them under each directional model, as we show below. To see this, we
have by the definition of qλ and pθ,

qλ(y | x) =
−→p θ(y | x)+←−p θ(y | x)

2
exp{−λ ·φ(x,y)}

Z
=

−→q (y | x) Z−→q
−→p θ(x)

+←−q (y | x) Z←−q
←−p θ(x)

2Z
,

where we have defined:

−→q (y | x) = 1
Z−→q

−→p θ(y,x)exp{−λ ·φ(x,y)} with Z−→q =∑
y

−→p θ(y,x)exp{−λ ·φ(x,y)},

←−q (y | x) = 1
Z←−q

←−p θ(y,x)exp{−λ ·φ(x,y)} with Z←−q =∑
y

←−p θ(y,x)exp{−λ ·φ(x,y)},

Z =
1
2

(

Z−→q
−→p θ(x)

+
Z←−q

←−p θ(x)

)

.

All these quantities can be computed separately in each model.
The last row in Figure 5 shows both directional posteriors after imposing the symmetric con-

straint. Note that the projected posteriors are equal in the two models. Also, one can see that in most
cases the probability mass was moved to the correct place with the exception of the word pair inter-
nal/le; this is because the word internal does not appear on the French side, but the model still has
to spread around the probability mass for that word. In this case the model decided to accumulate it
on the word le instead of moving it to the null word.

5.4 Algorithm for Projection

Because both the symmetric and bijective constraints decompose over sentences, and the model
distribution p(Y|X) decomposes as a product distribution over instances, the projected distribution
q(Y) will also decompose as a product over instances. Furthermore, because the constraints for
different instances do not interact, we can project the sentences one at a time and we do not need
to store the posteriors for the whole corpus in memory at once. We compute q(y) for each sentence
pair x using projected gradient ascent for the bijective constraints and L-BFGS for the symmetric
constraints.

5.5 Results

We evaluated the constraints using the Hansard corpus (Och and Ney, 2000) of English/French.
Following prior work by Och and Ney (2003), we initialize the Model 1 translation table with
uniform probabilities over word pairs that occur together in same sentence. The HMM is initialized
with the translation probabilities from Model 1 and with uniform distortion probabilities. We train
M1 for 5 iterations and train the HMM model until no further improvement on precision and recall
is seen on standard (small) development set for this corpus. We note that when using regular EM
training this requires around 4 iterations, while just 2 iterations suffices when using PR. This is
likely due to the added information that the constraints provide. We use a 40 word maximum length
cutoff for training sentences and train all models on 100,000 sentences, testing precision and recall
on the standard test set.
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Figure 6: Precision vs Recall curves of both models using standard EM training (Regular) versus
PR with bijective constraints (Bijective) and symmetry constraints (Symmetric) and dif-
ferent decoding types: decoding without any projection (NP), doing bijective projection
before decoding (BP), and doing symmetric projection before decoding (SP). Data is
100k sentences of the Hansard corpus. Highest label in the legend corresponds to highest
line in the graph, second highest label to second highest line, and so on.

Figure 6 shows the precision vs recall curves of both models (EN-FR, FR-EN independently)
when training using standard EM versus PR with both constraints, and the results of additionally
applying the constraints at decode time in order to tease apart the effect of the constraints during
training vs. during testing. The first observation is that training with PR significantly boosts the
performance of each model. Moreover using the projection at decode time always increases perfor-
mance. Comparing both constraints, it seems that the bijective constraint is more useful at training
time. Note that using this constraint at decode time with regular training yields worse results than
just training with the same constraint using PR. On the other hand, the symmetric constraint is
stronger at decode time.

A comprehensive comparison of the word alignment application is presented in Graça et al.
(2010), where in six different languages the use of these constraints always significantly outperforms
the simpler unconstrained HMM model. Moreover, in 9 out of 12 times using these constraints
outperforms the more complex model IBM M4 (Brown et al., 1994). The alignments are also
evaluated in the task of statistical machine translation where they are used as an initial step to extract
parallel phrases used for translation. Using these constraints leads to better translation quality.
Finally, the different alignments are tested on the task of transferring syntactic annotations, which
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is described in the next section. The new alignments increase the number of correctly transferred
edges.

6. Multi-view learning

Multi-view learning refers to a set of semi-supervised methods which exploit redundant views of
the same input data (Blum and Mitchell, 1998; Collins and Singer, 1999; Brefeld et al., 2005;
Sindhwani et al., 2005). These multiple views can come in the form of context and spelling features
in the case of text processing and segmentation, hypertext link text and document contents for
document classification, and multiple cameras or microphones in the case of speech and vision.
Multi-view methods typically begin by assuming that each view alone can yield a good predictor.
Under this assumption, we can regularize the models from each view by constraining the amount
by which we permit them to disagree on unlabeled instances. This regularization can lead to better
convergence by significantly decreasing the effective size of our hypothesis class (Balcan and Blum,
2005; Kakade and Foster, 2007; Rosenberg and Bartlett, 2007). This idea is related to the symmetry
constraints described in Section 5.

In this section, we use PR to derive a multi-view learning algorithm. The idea is very simple:
train a model for each view, and use constraints that the models should agree on the label distribu-
tion. Where our work is most similar to co-regularization schemes, a minimum Kullbeck-Leibler
(KL) distance projection can be computed in closed form resulting in an algorithm that performs
better than both CoBoosting and two view Perceptron on several natural language processing tasks.
In this case, the resulting regularizer is identical to adding a penalty term based on the Bhattacharyya
distance (Kailath, 1967) between models trained using different views.

In addition, this framework allows us to use different labeled training sets for the two classifiers,
in the case where they have different label sets. That is, we don’t require that our two views are both
on the same labeled corpus. In that case, we can reduce the hypothesis space by preferring pairs of
models that agree on compatible labeling of some additional unlabeled data rather than on identical
labeling, while still minimizing KL in closed form. When the two views come from models that
differ not only in the label set but also in the model structure of the output space, our framework can
still encourage agreement, but the KLminimization cannot be computed in closed form. Finally, this
method uses soft assignments to latent variables resulting in a more stable optimization procedure.

6.1 Stochastic Agreement

Note that the constraint in this section is similar to the one described in Section 5, but here we focus
on discriminative learning and the formulation is slightly different. For notational convenience,
we focus on two view learning in this exposition, however the generalization to more than two
views is fairly straightforward. Also, we focus on two discriminative log-linear models and start
by considering the setting of complete agreement. In this setting we have a common desired output
for the two models and we believe that each of the two views is sufficiently rich to predict labels
accurately. We can leverage this knowledge by restricting our search to model pairs p1,p2 that satisfy
p1(y | x) ≈ p2(y | x). Since p1 and p2 each define a distribution over labels, we will consider the
product distribution p1(y1)p2(y2) and define constraint features such that our proposal distribution
q(y1,y2)will have the same marginal for y1 and y2. In particular, we will have one constraint feature
for each label y:

φy(y1,y2) = δ(y1 = y)−δ(y2 = y).
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Where δ(·) is the 0-1 indicator function. The constraint set Q = {q : Eq[φ] = 0} will require that the
marginals over the two output variables are identical q(y1) = q(y2). It will be useful in the sequel
to define an agreement between two models agree(p1, p2) as

agree(p1, p2) = argmin
q

KL(q(y1,y2)||p1(y1)p2(y2)) s. t. Eq[φ] = 0. (20)

Proposition 6.1 relates the Bhattacharyya regularization term to the value of the optimization prob-
lem in Equation 20. The Bhattacharyya distance is a very natural, symmetric measure of difference
between distributions which has been used in many signal detection applications (Kailath, 1967). It
is also related to the well-known Hellinger distance.

Proposition 6.1 The Bhattacharyya distance − log∑y
√

p1(y)p2(y) is equal to 1
2 of the value of

the convex optimization problem

min
q∈Q

KL(q(y1,y2)||p1(y1)p2(y2))

where Q =
{

q : Eq[δ(y1 = y)−δ(y2 = y)] = 0 ∀y
}

,
(21)

and where δ(cond) is 1 if cond is true and 0 otherwise. Furthermore, the minimizer decomposes as
q(y1,y2) = q1(y1)q2(y2) and is given by qi(y) ∝

√

p1(y)p2(y).

Proof Taking the dual of the optimization problem in Equation 21 we get

argmax
λ

− log ∑
y1,y2

p(y1,y2)exp(λ ·φ)

with q(y1,y2) ∝ p(y1,y2)exp(λ · φ(y1,y2)). Where φ(y1,y2) is a vector of features of the form
δ(y1 = y)−δ(y2 = y) with one entry for each possible label y. Noting that the features decompose
into φ′(y1)− φ′(y2), we know that q(y1,y2) decomposes as q1(y1)q2(y2). Furthermore, our con-
straints require that q1(y) = q2(y)∀y so we have q(y1)q(y2)∝ p1(y1)exp(λ ·φ′(y1))p2(y2)exp(−λ ·
φ′(y2)). Letting y1 = y2 we have q(y)2 = p1(y)p2(y) which gives us a closed form computation of
agree(p1, p2) ∝

√

p1(y)p2(y). Substituting this solution into the problem of Proposition 6.1, and
performing algebraic simplification yields the desired result.

Replacing the minimum KL term in Equation 2 with a Bhattacharyya regularization term yields
the objective

min
θ
L1(θ1)+L2(θ2)+ cEU [B(p1(θ1), p2(θ2))]

where Li = E[− log(pi(yi|x;θi))]+ 1
σ2i
||θi||2 for i = 1,2 are the standard regularized log likelihood

losses of the models p1 and p2, EU [B(p1, p2)] is the expected Bhattacharyya distance (Kailath,
1967) between the predictions of the two models on the unlabeled data, and c is a constant defining
the relative weight of the unlabeled data relative to the labeled data.

Our regularizer extends to full agreement for undirected graphical models. In the case where p1
and p2 have the same structure, q= agree(p1, p2) will share this structure and the projection can be
computed in closed form.
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Proposition 6.2 Suppose pi(Y|X), i∈ {1,2} factor as a set of clique potentials from a set of cliques
C :

pi(Y|X) =
1

Zi(X)∏c∈C
ψi(X,Yc),

then qi(Y) also factors as a product over clique potentials in C , and can be computed in closed
form modulo normalization as q(Y1,Y2) = q1(Y1)q2(Y2) with

qi(Y|X) =
1

Z′(X)∏c∈C
√

ψ1(X,Yc)ψ2(X,Yc).

Proof The proof is simple algebraic manipulation. We start with Equation 22, an application of
Proposition 6.1.

qi(Y)2 ∝ p1(Y|X)p2(Y|X) (22)
= Z−11 Z−12 ∏

c
ψ1(X,Yc)ψ2(X,Yc)

=

(

1
Z′(X)∏c

√

ψ1(X,Yc)ψ2(X,Yc)
)2

.

Note that Proposition 6.2 is not a special case of Proposition 2.2 because we have defined one
constraint feature φy for each possible labeling y, and these do not decompose according to C . We
could alternatively have proven that ensuring agreement on clique potentials is identical to ensuring
agreement on labelings. In the case of log-linear Markov random fields, the clique potentials are
stored in log space so computing q corresponds to averaging the values before computing normal-
ization.

6.2 Partial Agreement and Hierarchical Labels

Our method extends naturally to partial-agreement scenarios. For example we can encourage two
part-of-speech taggers with different tag sets to produce compatible parts of speech, such as noun
in tag set one and singular-noun in tag set 2, as opposed to noun in tag set 1 and verb in tag set 2.
In particular, suppose we have a mapping from both label sets into a common space where it makes
sense to encourage agreement. For the part-of-speech tagging example, this could mean mapping
all nouns from both tag sets into a single class, all verbs into another class and so on. In general
suppose we have functions g1(y1) and g2(y2) that map variables for the two models onto the same
space {z}. Then, pi(yi) and gi induce a distribution:

pi(z) = ∑
y : gi(y)=z

pi(y) and pi(yi|z) = pi(yi)/pi(z).

We can encourage p1(z)≈ p2(z) by adding a feature for each label in the joint space:

φz(yi) =











1 if i= 1 and g1(y1) = z
−1 if i= 2 and g2(y2) = z
0 otherwise.

(23)
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In this case our objective becomes:

min
θ
L1(θ1)+L2(θ2)+ cEU [B(p1(z), p2(z))] .

In the special case where some labels are identical for the two models and others are incompatible,
we have g1(z1) mapping the incompatible labels into one bin and the others into their own special
bins. Proposition 6.3 along with the optimization algorithm described in Section 2.6 allows us to
optimize this objective.

Proposition 6.3 The Bhattacharyya distance − log∑z
√

p1(z)p2(z) is 1
2 the value of the convex

optimization problem
min
q

KL(q(Y1,Y2)||p1(Y1)p2(Y2))
s. t. Eq(φ) = 0,

where the constraint features φ are defined as in Equation 23. Furthermore, the minimizer decom-
poses as q(Y1,Y2) = q1(Y1|z1)q1(z1)q2(Y2|z2)q2(z2), where q1(z1) = q2(z2) ∝

√

p1(z1)p2(z2)
and qi(Yi|zi) = pi(Yi|zi) i ∈ {1,2}.

Note that the computation of agree(p1, p2) is still in closed form if our models are unstructured.
Unfortunately, if we collapse some labels for structured models, p(Y) might not have the same

Markov properties as p(z). For example, consider the case where p is a distribution over three
states (1,2,3) that assigns probability 1 to the sequence (1,2,3,1,2,3,. . . ) and probability zero to
other sequences. This is a first-order Markov chain. If the mapping is 1 1→ 1 and 2,3 1→ 0 then
p(y) assigns probability 1 to (1,0,0,1,0,0,. . . ), which cannot be represented as a first-order Markov
chain. Essentially, the original chain relied on being able to distinguish between the allowable
transition (2,3) and the disallowed transition (3,2). When we collapse the states, both of these
transitions map to (0,0) and cannot be distinguished. Consequently, the closed form solution given
in Proposition 6.3 is not usable. Potentially, we could compute some approximation to p(y) and
from that compute an approximation to q. Instead, we re-formulate our constraints to require only
that the marginals of each clique in p1 and p2 match each other rather than requiring the joint to
have the same probability:

φc,zc(Y1,Y2) =











1 if i= 1 and g1(y1)c = zc
−1 if i= 2 and g2(y2)c = zc
0 otherwise.

(24)

By Proposition 2.2, the features in Equation 24 lead to a q that respects the Markov properties of
the original models.

6.3 Relation to Other Multi-View Learning

To avoid a long detour from PR, we describe here only CoBoosting (Collins and Singer, 1999) and
two view Perceptron (Brefeld et al., 2005), the frameworks with which we empirically compare
our method in the next section. Since these methods are based on different objective functions
from ours it is worth examining where each one works best. Altun et al. (2003) compare log-loss
and exp-loss for sequential problems. They find that the loss function does not have as great an
effect on performance as the feature choice. However, they also note that exp-loss is expected to
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Figure 7: Different Loss Functions. Top: Bhattacharyya distance regularization. Bottom left: Exp-
loss regularization. Bottom right: Least squares regularization.

perform better for clean data, while log-loss is expected to perform better when there is label noise.
The intuition behind this is in the rate of growth of the loss functions. Exp-loss grows exponentially
with misclassification margin while log-loss grows linearly. Consequently when there is label noise,
AdaBoost focuses more on modeling the noise. Since CoBoosting optimizes a co-regularized exp-
loss while our work optimizes a co-regularized log-loss we expect to do better on problems where
the labels are noisy.

To get more intuition about this, Figure 7 shows the co-regularization loss functions for our
method, CoBoosting, and co-regularized least squares (Sindhwani et al., 2005). For two underlying
binary linear classifiers, ŷ1 = sign(w1 ·x) and ŷ2 = sign(w2 ·x), the horizontal axes represent the val-
ues ŷ1 and ŷ2, while the vertical axis is the loss. If we consider the plane parallel to the page, we see
how the different co-regularizers penalize the classifiers when they disagree and are equally confi-
dent in their decision. Restricted to this plane, all three co-regularizers grow at the same asymptotic
rate as the loss functions for the individual models: Linearly for our work, exponentially for Co-
Boosting and quadratically for co-RLS. If we look at the area where the two models agree (the flat
part of the CoBoosting graph) we see what the penalty is when the classifiers agree but have different
confidence. In this case co-RLS is harshest since it penalizes differences in the dot product equally
regardless of the absolute value of the dot product. Intuitively, this is a problem. If one model pre-
dicts 1 with confidence 0.5 and the other predicts -1 with confidence 0.5 they are disagreeing while
if they both predict 1 with confidence 1000 and 1001 respectively, they are agreeing on the label
and are very close in their confidence estimates. At the other extreme, CoBoosting imposes almost
no penalty whenever the two classifiers agree, regardless of their confidence. The Bhattacharyya
distance co-regularizer lies between these extremes, penalizing differences in confidence near the
origin but is more lenient when the classifiers are both very confident and agree.

Finally, if we have labeled data from one domain but want to apply it to another domain we
can use any of the co-training frameworks mentioned earlier, including our own, to perform do-
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Domains MIRA Boost Perc mx-ent SCL CoBoost coPerc PR
books→dvds 77.2 72.0 74 78.5 75.8 78.8 75.5 79.8
dvds→books 72.8 74.8 74.5 80.3 79.7 79.8 74.5 81.3
books→electr 70.8 70.3 73.3 72.5 75.9 77.0 69.3 75.5
electr→books 70.7 62.5 73 72.8 75.4 71.0 67.5 74.3
books→kitchn 74.5 76.3 73.5 77.8 78.9 78.0 76.5 81.0
kitchn→books 70.9 66.5 67.3 70.3 68.6 69.8 66 72.8
dvds→electr 73.0 73.2 73.5 75.5 74.1 75.3 71.2 76.5
electr→dvds 70.6 66.3 64.8 69.3 76.2 73.5 63.3 73.0
dvds→kitchn 74.0 75.5 78.3 80.5 81.4 79.0 78.25 82.8
kitchn→dvds 72.7 61.8 64 69.5 76.9 70.1 60.5 72.8
electr→kitchn 84.0 73.2 81 86.5 85.9 85.0 83.3 85.8
kitchn→electr 82.7 66.3 81 82.8 86.8 83.0 80.5 85.5
Average improvement -1.87 -6.47 -3.18 N/A 1.61 0.33 -4.16 2.07
Standard deviation 3.04 4.73 2.21 N/A 3.31 2.03 2.12 1.27

Table 4: Performance of several methods on a sentiment classification transfer learning task. Re-
views of objects of one type are used to train a classifier for reviews of objects of another
type. The abbreviations in the column names are as follows. Boost: AdaBoost algorithm,
Perc: Perceptron, mx-ent: maximum entropy, SCL: structural correspondence learning,
CoBoost: CoBoosting, coPerc: two view Perceptron, PR: this work. The best accuracy is
shown in bold for each task. The last two rows of the table show the average improvement
over maximum entropy (the best performing supervised method), and also the standard
deviation of the improvement.

main transfer. For sentiment classification we will see that our method performs comparably with
Structural Correspondence Learning (Blitzer et al., 2006), which is based on Alternating Structure
Optimization (Ando and Zhang, 2005).

6.4 Experiments

Our first set of experiments is for transfer learning for sentiment classification. We use the data
from Blitzer et al. (2007). The two views are generated from a random split of the features. We
compare our method to several supervised methods as well as CoBoosting (Collins and Singer,
1999), two view Perceptron (Brefeld et al., 2005) and structural correspondence learning (Blitzer
et al., 2007). Results are in Table 4. The column labeled “SCL” contains the best results from Blitzer
et al. (2007), and is not directly comparable with the other methods since it uses some extra knowl-
edge about the transfer task to choose auxiliary problems. For all the two-view methods we weigh
the total labeled data equally with the total unlabeled data. We regularize the maximum entropy
classifiers with a unit variance Gaussian prior. Out of the 12 transfer learning tasks, our method per-
forms best in 6 cases, SCL in 4, while CoBoosting performs best only once. Two view Perceptron
never outperforms all other methods. One important reason for the success of our method is the
relative strength of the maximum entropy classifier relative to the other supervised methods for this
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particular task. We expect that CoBoosting will perform better than our method in situations where
Boosting significantly out-performs maximum entropy.

The next set of our experiments are on named entity disambiguation. Given a set of already
segmented named entities, we want to predict what type of named entity each one is. We use the
training data from the 2003 CoNLL shared task (Sang and Meulder, 2003). The two views comprise
content versus context features. The content features are words, POS tags and character n-grams of
length 3 for all tokens in the named entity, while context features the same but for three words before
and after the named entity. We used 2000 examples as test data and roughly 30,000 as unlabeled
(train) data. Table 5 shows the results for different amounts of labeled train data. For this data,
we choose the variance of the Gaussian prior as well as the relative weighting of the labeled and
unlabeled data by cross validation on the train set. In order to test whether the advantage our method
gets is from the joint objective or from the use of agree(p1, p2), which is an instance of logarithmic
opinion pools, we also report the performance of using agree(p1, p2) when the two views p1 and
p2 have been trained only on the labeled data. In the column labeled “agree0” we see that for this
data set the benefit of our method comes from the joint objective function rather than from the use
of logarithmic opinion pools.

Data size mx-ent agree0 PR RRE
500 74.0 74.4 76.4 9.2%
1000 80.0 80.0 81.7 8.5%
2000 83.4 83.4 84.8 8.4%

Table 5: Named entity disambiguation. Prior variance and c chosen by cross validation. agree0
refers to performance of two view model before first iteration of EM. RRE is reduction in
error relative to error of MaxEnt model.

In order to investigate the applicability of our method to structured learning we apply it to the
shallow parsing task of noun phrase chunking. We our experiments are on the English training
portion of the CoNLL 2000 shared task (Sang and Buchholz, 2000). We select 500 sentences as
test data and varying amounts of data for training; the remainder was used as unlabeled (train) data.
We use content and context views, where the content view is the current word and POS tag while
the context view is the previous and next words and POS tags. We regularize the CRFs with a
variance 10 Gaussian prior and weigh the unlabeled data so that it has the same total weight as the
labeled data. The variance value was chosen based on preliminary experiments with the data. Table
6 shows the F-1 scores of the different models. We compare our method to a monolithic CRF as
well as averaged Perceptron the two view Perceptron of Brefeld et al. (2005) with averaging. The
Perceptron models were trained for 20 iterations. Preliminary experiments show that performance
on held out data does not change after 10 iterations so we believe the models have converged. Both
two view semi-supervised methods show gains over the corresponding fully-supervised method for
10-100 sentences of training data, but do not improve further as the amount of labeled data increases.
The method presented in this paper out-performs two view Perceptron when the amount of labeled
data is very small, probably because regularized CRFs perform better than Perceptron for small
amounts of data. As the number of training sentences increases, two view Perceptron performs
as well as our method, but at this point it has little or no improvement over the fully-supervised
Perceptron.
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size CRF SAR(RRE) Perc coPerc
10 73.2 78.2 (19%) 69.4 71.2
20 79.4 84.2 (23%) 74.4 76.8
50 86.3 86.9 (4%) 80.1 84.1
100 88.5 88.9 (3%) 86.1 88.1
200 89.6 89.6 (0%) 89.3 89.7
500 91.3 90.6 (-8%) 90.8 90.9
1000 91.6 91.1 (-6%) 91.5 91.8

Table 6: F-1 scores for noun phrase chunking with context/content views. Test data comprises 500
sentences, with 8436 sentences divided among labeled and unlabeled train data. The best
score is shown in bold for each train data size.

7. Cross Lingual Projection

For English and a handful of other languages, there are large, well-annotated corpora with a variety
of linguistic information ranging from named entity to discourse structure. Unfortunately, for the
vast majority of languages very few linguistic resources are available. This situation is likely to per-
sist because of the expense of creating annotated corpora that require linguistic expertise (Abeillé,
2003). On the other hand, parallel corpora between many resource-poor languages and resource-
rich languages are ample, motivating recent interest in transferring linguistic resources from one
language to another via parallel text.

Dependency grammars are one such resource. They are useful for language modeling, textual
entailment and machine translation (Haghighi et al., 2005; Chelba et al., 1997; Quirk et al., 2005;
Shen et al., 2008), to name a few tasks. Dependency grammars are arguably more robust to transfer
than constituent grammars, since syntactic relations between aligned words of parallel sentences are
better conserved in translation than phrase structure (Fox, 2002; Hwa et al., 2005). The two main
challenges to accurate training and evaluation from aligned bitext are: (1) errors in word alignments
and source language parses, (2) unaligned words due to non-literal or distant translation.

Hwa et al. (2005) proposed to learn generative dependency grammars using Collins’ parser (Collins,
1999) by constructing full target parses via projected dependencies. To address challenge (1), they
introduced on the order of one to two dozen language-specific transformation rules. To address
challenge (2), they used a set of tree-completion rules. We present here an alternative approach to
dependency grammar transfer. Our approach uses a single, intuitive PR constraint to guide gram-
mar learning. With this constraint, we avoid the need for complex tree completion rules and many
language-specific rules, yet still achieve acceptable parsing accuracy.

It should be noted that while our source of supervision, a bitext, is the same as that of Hwa
et al. (2005), our learning method is more closely related to that of Druck et al. (2009). They use
the GE framework to train a dependency parser. Their source of supervision comes in the form of
corpus-wide expected values of linguistic rules provided by a linguistic informant.

In what follows, X will indicate parallel part-of-speech tagged sentences in a bitext corpus,
along with a dependency parse of the source language. Y will indicate the dependency parses for
the target language sentences.
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(a)

(b)

Figure 8: (a) An example word-aligned sentence pair with perfectly projected dependencies. (All
dependency edges are conserved in this case.) (b) Overview of our grammar induction
approach via bitext: the source (English) is parsed and word-aligned with target; after
filtering, projected dependencies define constraints over target parse tree space, providing
weak supervision for learning a target grammar.

7.1 Approach

Figure 8(a) shows an aligned sentence pair example where dependencies are perfectly “conserved”
across the alignment. An edge from English parent p to child c is called conserved if word p aligns
to word p′ in the second language, c aligns to c′ in the second language, and p′ is the parent of c′.
Note that we are not restricting ourselves to one-to-one alignments here; p, c, p′, and c′ can all also
align to other words. Unfortunately the sentence in Figure 8(a) is highly unusual in its amount of
dependency conservation, so we need to do more than directly transfer conserved edges to get good
parsing accuracy.

The key to our approach is a single PR constraint, which ensures that the expected proportion
of conserved edges in a sentence pair is at least η (the exact proportion we used was 0.9, which
was determined using unlabeled data as described in the experiments section). Specifically, let Cx
be the set of directed edges projected from English for a given sentence x. Then given a parse y,
the proportion of conserved edges is φ(x,y) = 1

|Cx| ∑y∈y 1(y ∈ Cx) and the expected proportion of
conserved edges under distribution p(y | x) is

Ep[φ(x,y)] =
1

|Cx| ∑y∈Cx
p(y | x).

Consider how this constraint addresses errors in word alignment and source language parses, chal-
lenge (1) from above. First, note that we are constraining groups of edges rather than a single edge.
For example, in some sentence pair we might find 10 edges that have both end points aligned and
can be transferred. Rather than requiring our target language parse to contain each of the 10 edges,
we require that the expected number of edges from this set is at least 10η. This gives the parser free-
dom to have some uncertainty about which edges to include, or alternatively to choose to exclude
some of the transferred edges.

Our constraint does not address unaligned words due to non-literal or distant translation, chal-
lenge (2), as directly. Yet, we find that the constraint sufficiently limits the distribution over possible
parses of unaligned words, such that the parser still makes reasonable choices for them. It is also
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Basic Uni-gram Features
xi-word, xi-pos
xi-word
xi-pos
x j-word, x j-pos
x j-word
x j-pos

Basic Bi-gram Features
xi-word, xi-pos, x j-word, x j-pos
xi-pos, x j-word, x j-pos
xi-word, x j-word, x j-pos
xi-word, xi-pos, x j-pos
xi-word, xi-pos, x j-word
xi-word, x j-word
xi-pos, x j-pos

In Between POS Features
xi-pos, b-pos, x j-pos

Surrounding Word POS Features
xi-pos, xi-pos+1, x j-pos-1, x j-pos
xi-pos-1, xi-pos, x j-pos-1, x j-pos
xi-pos, xi-pos+1, x j-pos, x j-pos+1
xi-pos-1, xi-pos, x j-pos, x j-pos+1

Table 7: Features used by the MSTParser. For each edge (i, j), xi-word is the parent word and x j-
word is the child word, analogously for POS tags. The +1 and -1 denote preceeding and
following tokens in the sentence, while b denotes tokens between xi and x j.

worth noting that if we wished to more directly address challenge (2), we could add additional con-
straint features to the PR framework. For example, it seems intuitive that unaligned words might
tend to be leaves (e.g., articles that are dropped in some languages but not in others). Thus, one
constraint we could enforce would be to restrict the number of children of unaligned words to fall
below some threshold.

For both models, we compute the projection onto the constraint set using a simple line search.
This is possible since there is only one constraint per sentence and the constraints do not interact.

At a high level our approach is illustrated in Figure 8(b). A parallel corpus is word-level aligned
using the method described in Section 5, where we train an alignment model via PR using symmetry
constraints. The source (English) is parsed using a dependency parser (McDonald et al., 2005).
Then, the filtering stage eliminates low-confidence alignments such as noun-to-verb alignments,
restricts the training set to exclude possible sentence fragments, and follows the method of Klein
and Manning (2004) in stripping out punctuation. We then learn a probabilistic parsing model using
PR. In our experiments we evaluate the learned models on dependency treebanks (Nivre et al.,
2007).

7.2 Parsing Models

We explored two parsing models: a generative model used by several authors for unsupervised
induction and a discriminative model previously used for fully supervised training.

The discriminative parser is based on the edge-factored model and features of theMSTParser (Mc-
Donald et al., 2005). The parsing model defines a conditional distribution pθ(y | x) over each pro-
jective parse tree y for a particular sentence x, parameterized by a vector θ. The probability of any
particular parse is

pθ(y | x) ∝∏
y∈y

eθ·f(y,x),

where y is a directed edge contained in the parse tree y and f is a feature function. In the fully super-
vised experiments we run for comparison, parameter estimation is performed by stochastic gradient
ascent on the conditional likelihood function, similar to maximum entropy models or conditional
random fields. One needs to be able to compute expectations of the features f(y,x) under the dis-
tribution pθ(y | x). A version of the inside-outside algorithm (Lee and Choi, 1997) performs this
computation. Viterbi decoding is done using Eisner’s algorithm (Eisner, 1996).
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We also used a generative model based on dependency model with valence (Klein and Manning,
2004). Under this model, the probability of a particular parse y and a sentence with part-of-speech
tags x is given by

pθ(y,x) = proot(r(x)) ·
(

∏
y∈y

p¬stop(yp,yd,vy) pchild(yp,yd,yc)
)

·

(

∏
x∈x

pstop(x, left,vl) pstop(x, right,vr)
)

where r(x) is the part-of-speech tag of the root of the parse tree y, y is an edge from parent yp to
child yc in direction yd , either left or right, and vy indicates valency—false if yp has no other children
further from it in direction yd than yc, true otherwise. The valencies vr/vl are marked as true if x has
any children on the left/right in y, false otherwise.

We regularize the models by parameter prior − log p(θ) = R(θ), where p(θ) is Gaussian for the
discriminative model and Dirichlet for the generative.

7.3 Experiments

We evaluate our approach by transferring from an English parser trained on the Penn treebank to
Bulgarian and Spanish. We evaluate our results on the Bulgarian and Spanish corpora from the
CoNLL X shared task. The Bulgarian experiments transfer a parser from English to Bulgarian,
using the OpenSubtitles corpus (Tiedemann, 2007). The Spanish experiments transfer from English
to Spanish using the Spanish portion of the Europarl corpus (Koehn, 2005). For both corpora,
we performed word alignments with the open source PostCAT (Graça et al., 2009b) toolkit. We
used the Tokyo tagger (Tsuruoka and Tsujii, 2005) to POS tag the English tokens, and generated
parses using the first-order model of McDonald et al. (2005) with projective decoding, trained on
sections 2-21 of the Penn treebank with dependencies extracted using the head rules of Yamada
and Matsumoto (2003). For Bulgarian we trained the Stanford POS tagger (Toutanova et al., 2003)
on the Bulgtreebank corpus from CoNLL X. The Spanish Europarl data was POS tagged with
the FreeLing language analyzer (Atserias et al., 2006). The discriminative model used the same
features asMSTParser, summarized in Table 7. Our model uses constraints of the form: the expected
proportion of conserved edges in a sentence pair is at least η= 90%.10

In order to better evaluate our method, we construct a baseline inspired by Hwa et al. (2005).
The baseline creates a full parse tree from the incomplete and possibly conflicting transferred edges
using a simple random process. We start with no edges and try to add edges one at a time verifying
at each step that it is possible to complete the tree. We first try to add the transferred edges in
random order, then for each orphan node we try all possible parents (both in random order). We
then use this full labeling as supervision for a parser. Note that this baseline is very similar to the
first iteration of our model, since for a large corpus the different random choices made in different
sentences tend to smooth each other out. We also tried to create rules for the adoption of orphans,
but the simple rules we tried added bias and performed worse than the baseline we report.

10. We chose η in the following way: We split the unlabeled parallel text into two portions. We trained models with
different η on one portion and ran it on the other portion. We chose the model with the highest fraction of conserved
constraints on the second portion.
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Figure 9: Learning curves. Each graph compares transferring a single tree of edges (baseline) and
transferring all possible projected edges (our method). The models were trained on sen-
tences of length up to 20 and tested on CoNLL train sentences of length up to 10. Punctu-
ation was stripped at train time. Top: Bulgarian. Bottom: Spanish. Left: Discriminative
model. Right: Generative model. The non-monotonicity of the (such as bottom left)
is because each point is based on a single random sample of sentences. This random
selection can greatly affect performance when the number of sentences is small.

7.3.1 RESULTS

Models are evaluated based on attachment accuracy—the fraction of words assigned the correct
parent. Figure 9 shows that models generally improve with more transfer-type data. It also shows
our method consistently outperforms the baseline. Note that each point in these graphs is based on
a single random subsample of the data, which leads to some non-monotonicity in the left-half of
some of the curves. The exact accuracy numbers for the 10k training sentences point of Figure 9
are given in Table 8. Link-left baselines for these corpora are much lower: 33.8% and 27.9% for
Bulgarian and Spanish respectively.

7.3.2 GENERATIVE PARSER

The generative model we use is a state of the art model for unsupervised parsing. Before evaluating,
we smooth the resulting models by adding e−10 to each learned parameter, merely to remove the
chance of zero probabilities for unseen events. (We did not bother to tune this value at all as it makes
very little difference for final parses.) Unfortunately, we found generative model performance was
disappointing in the unsupervised setting. Using the initialization procedure from Klein and Man-
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(1a)

(1b)

(1c)

(2a)

(2b)

(2c)

Figure 10: Posteriors of two Spanish sentences from Europarl. The number on each edge indicates
the edge’s posterior probability. Edges with probability less than 0.25 are not shown.
Darker (more saturated) edges are higher probability. Green (with boxed number) in-
dicates a correct edge, red (no box) an incorrect. Dotted edges are conserved. (a) The
gold source and target parses and their alignment. (b) Unsupervised model initialized
as per Klein and Manning (2004) and trained for 100 EM iterations. (c) PR projection
applied to the posteriors of the middle figure, forcing Ep[C] ≥C ∗η = 3∗0.9, where C
is the number of conserved edges.
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Discriminative Generative
Bulgarian Spanish Bulgarian Spanish

Baseline 63.8 67.6 66.5 68.2
Post.Reg. 66.9 70.6 67.8 69.5

Table 8: Accuracy values at the 10k training sentences point of Figure 9.

ning (2004), the maximum unsupervised accuracy it achieves is 55.4% for Bulgarian and 41.7% for
Spanish, and these results are not stable. Changing the initialization parameters or training sample
drastically affects the results, even for samples with several thousand sentences. But when we use
the transferred information to constrain the learning, EM stabilizes and achieves much better perfor-
mance, also beating the Hwa et al. (2005)-inspired baseline. With the transferred information, even
setting all parameters equal at the outset does not prevent the model from learning the dependency
structure of the aligned language. Figure 10 shows an example of how PR projection helps better
estimate posteriors of two example sentences.

7.3.3 DISCRIMINATIVE PARSER

We trained our discriminative parser for 100 iterations of online EM with a Gaussian prior variance
of 100. The transfer system performs better than the unsupervised generative model and the baseline
model for both Bulgarian and Spanish. We observed another desirable property of the discriminative
model: While the generative model can get confused and perform poorly when the training data
contains very long sentences, the discriminative parser does not appear to have this drawback. In
fact we observed that as the maximum training sentence length increased, the parsing performance
also improved.

8. Enforcing Sparsity Structure

Many important NLP tasks (e.g., tagging, parsing, named-entity recognition) involve word classi-
fication. Often, we know a priori that a word type might belong to a small set of classes (where
the class of a specific instance depends on its context) and should never belong to any of the many
possible classes outside this small set. The part-of-speech tagging task, described in the running
example, is one instance of this phenomenon. For example, consider the word type “run”. It might
belong to the verb class in some instances and the noun class in others, but it will never be an ad-
jective, adverb, conjunction, determiner, etc. Learning algorithms typically assume that each word
type can be associated with any existing tag, even though in reality each word type is only ever
associated with a few tags.

Unsupervised induction of this latent structure is normally performed using the EM algorithm,
but it has exhibited disappointing performance in previous work. One well-known reason for this is
that EM tends to allow each word to be generated by most POS tags some of the time. In reality, we
would like most words to have a small number of possible POS tags. Previous work has attempted
to solve this problem by applying the Bayesian approach, using a prior to encourage sparsity in
the model parameters (Gao and Johnson, 2008; Johnson, 2007; Goldwater and Griffiths, 2007).
However, this approach has the drawback of enforcing sparsity in the wrong direction; sparsity
at the parameter level encodes a preference that each POS tag should generate only a few words,
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pθ λ qti ∝ pθe−λti
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Figure 11: An illustration of !1/!∞ regularization. Left panel: initial tag distributions (columns) for
15 instances of a word. Middle panel: optimal regularization parameters λ, each row
sums to σ = 20. Right panel: q concentrates the posteriors for all instances on the NN
tag, reducing the !1/!∞ norm from just under 4 to a little over 1.

instead of encoding that each word should generate only a few POS tags. Here we explore the
problem of biasing unsupervised models to favor the correct sparsity by encouraging the model to
achieve posterior sparsity on unlabeled training data.

8.1 !1/!∞ Regularization

We focus on the slack-penalized formulation of Section 2.3 for this task. We choose the PR con-
straint to encourage each word to be associated with only a few parts of speech. Let the constraint
feature φwti(X,Y) have value 1 whenever the ith occurrence of word w has part-of-speech tag t, and
value 0 otherwise. For every word w, we would like there to be only a few POS tags t such that
there are occurrences i where t has nonzero probability. This can be achieved if it “costs” a lot the
first time an occurrence of a word takes a particular tag, but afterwards future occurrences of the
word can receive that same tag for free. More precisely, for each word type w, we would like the
sum (!1 norm), over tags t, of the maximum (!∞ norm), over all occurrences wi of w, of p(wi | t),
to be small; we want ∑t,wmaxi p(wi | t) to be small. Note that in contrast to previous applications,
these constraints are corpus-wide instead of instance-specific. For notational simplicity we will
write φwti(X,Y) = φwti(Y), since any dependence on X is captured in the subscripts of φwti.

Formally, this objective is an example of the slack-penalized formulation (as in Equation 3), but
for simplicity we will use the notation:

min
q,cwt

KL(q||pθ)+σ∑
wt
cwt s. t. Eq[φwti]≤ cwt .

Mapping this notation to the original equation we have: b = 0 and regularization strength σ. The
constraints on the features φwti and the summation over cwt together encode the !1/!∞ norm. The
variables cwt represent the !∞ norm of φwti, cwt = ||φwti||!∞ , while the summation is the !1 norm of
cwt . The dual of this objective has a very simple form:

max
λ≥0

− log

(

∑
y
pθ(Y)exp(−λ ·φ(Y))

)

s. t. ∑
i
λwti ≤ σ, (25)
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whereY ranges over assignments to the hidden tag variables for all of the occurrences in the training
data, φ(Y) is the vector of φwti constraint feature values for assignment Y, λ is the vector of dual
parameters λwti, and the primal parameters are q(Y) ∝ pθ(Y)exp(−λ ·φ(Y)).

An advantage of using slack penalties in this case is that !1/!∞ as a slack constraint in the primal
would lead to a non-differentiable dual penalty term, which somewhat complicates optimization.
Using a slack penalty makes sparsity regularization a primal penalty, yielding dual simplex con-
straints, solvable efficiently via projected gradient, as described by Bertsekas (1999). Note that the
simplex constraints in Equation 25 can be interpreted as an !∞/!1 norm, which is the dual of the
!1/!∞.

Figure 11 illustrates how the !1/!∞ norm operates on a toy example. For simplicity suppose we
are only regularizing one word and our model pθ is just a product distribution over 15 instances of
the word. The left panel in Figure 11 shows the posteriors under pθ. We would like to concentrate
the posteriors on a small subset of rows. The center panel of the figure shows the λ values deter-
mined by Equation 25, and the right panel shows the projected distribution q, which concentrates
most of the posterior on the bottom row. Note that we are not requiring the posteriors to be sparse,
which would be equivalent to preferring that the distribution is peaked; rather, we want a word to
concentrate its tag posterior on a few tags across all instances of the word. Indeed, most of the
instances (columns) become less peaked than in the original posterior to allow posterior mass to
be redistributed away from the outlier tags. Since they are more numerous than the outliers, they
moved less. This also justifies only regularizing relatively frequent events in our model.

8.2 Results

In this section we present an empirical comparison of first-order HMMs trained with three different
methods: classic EM (EM), !1/!∞ PR (Sparse), and Bayesian estimation using a variational ap-
proximation described in Johnson (2007) and Gao and Johnson (2008) (VEM). Models are trained
and tested on three different corpora: the Wall Street Journal portion of the Penn treebank (Marcus
et al., 1993) using a reduced set of 17 tags (Smith et al., 2005) (PTB17); the Bosque subset of the
Portuguese Floresta Sinta(c)tica Treebank (Afonso et al., 2002)11 used for the ConLL X shared task
on dependency parsing (PT-CoNLL)12; and the Bulgarian BulTreeBank (Simov et al., 2002) (Bul-
Tree) with 12 coarse tags. All words that occurred only once were replaced by the token “unk”. To
measure model sparsity, we compute the average !1/!∞ norm over words occurring more than 10
times; the label ‘L1LMax’ denotes this measure in figures. Table 9 gives statistics for each corpus
as well as the sparsity for a first-order HMM trained on the labeled data.

Following Gao and Johnson (2008), the parameters were initialized with a “pseudo E-step” as
follows: we filled the expected count matrices with numbers 1+X ×U(0,1), where U(0,1) is a
random number between 0 and 1 and X is a parameter. These matrices are then fed to the M-
step; the resulting “random” transition and emission probabilities are used for the first real E step.
For VEM X was set to 0.0001 (almost uniform) since this showed a significant improvement in
performance. On the other hand EM showed less sensitivity to initialization, and we used X = 1
which resulted in the best results. The models were trained for 200 iterations as longer runs did not
significantly change the results. For VEM we tested 4 different prior combinations based on the
results of Johnson (2007); in later work Gao and Johnson (2008) considered a wider range of values

11. The subset can be found at http://www.linguateca.pt/Floresta/.
12. The task can be found at http://nextens.uvt.nl/~conll/.
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Types Tokens Unk Tags !1/!∞
PTB17 23768 950028 2% 17 1.23
PT-Conll 11293 206678 8.5% 22 1.14
BulTree 12177 174160 10% 12 1.04

Table 9: Corpus statistics. All words with only one occurrence where replaced by the ‘unk’ token.
The third column shows the percentage of tokens replaced. !1/!∞ is the value of the
sparsity for a fully supervised HMM trained in all available data.

but did not identify definitely better choices. Sparse was initialized with the parameters obtained by
running EM for 30 iterations, followed by 170 iterations of the new training procedure. Predictions
were obtained using posterior decoding since this consistently showed small improvements over
Viterbi decoding.

We compare the models by measuring the mutual information between the distribution of hidden
states and the distribution of the truth. Ideally, a perfect method would have mutual information
equal to the entropy of both distributions. The farther the distribution that a method produces is
from the truth the smaller the information gain is. We also evaluate the accuracy of the models using
two established mappings between hidden states and POS tags: (1-Many) maps each hidden state
to the tag with which it co-occurs the most; 1-1 (Haghighi and Klein, 2006) greedily picks a tag for
each state under the constraint of never using the same tag twice. This results in an approximation
of the optimal 1-1 mapping. If the numbers of hidden states and tags are not the same, some hidden
states will be unassigned (and hence always wrong) or some tags not used. In all our experiments
the number of hidden states is the same as the number of POS tags.

Figure 12 (Top Left) shows mutual information between the hidden state distribution of each
method and the truth. The entropy of the true distribution are: BulTree 3.05, PT-CoNLL 3.49 and
PTB17 3.22. Sparse is the method that achieves the biggest information gain across all corpora, and
is not particularly sensitive to the strength of regularization used. Interestingly, VEM often has the
smallest !1/!∞, even though mutual information is often worst than EM.

Figure 12 (Top Right) shows the different average values of the L1LMax statistics for each
method across corpora. We see that both VEM and Sparse achieve values of !1/!∞ close to the gold
standard, on the other hand EM as expected as bigger values which confirms the intuition that EM
allows each word to be generated by most of the possible POS tags.

Figure 12 (Bottom Left) shows errors for all methods on the different corpora after 10 random
initializations using the 1-Many mapping. For both VEM and Sparse we pick parameter settings
resulting in the best average performance. A first conclusion is that using the !1/!∞ constraint
consistently and significantly improves the results when compared with the other two methods.

Figure 12 (Bottom Right) shows the same errors for the 1-1 mapping. In this case Sparse
still beats the EM but does not always outperform VEM. One reason for this behavior is that this
metric is very sensitive to the number of word types associated with each hidden state. VEM tends
to encourage some large hidden states with many word types, which is preferable using the 1-1
mapping for large word categories such as nouns. On the other hand Sparse tends to spread the
nouns over 4 different hidden states. This difference is particularly pronounced for the condensed
tag sets (PTB17, PT-CoNLL) where different kinds of nouns are joined into one large tag. Also this
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Figure 12: (Top Left) Mutual information in bits between gold tag distribution and hidden state
distribution. The maximum is the entropy of the gold set (BulTree 3.05, PT-CoNLL
3.49 and PTB17 3.22), (Top Right) !1/!∞ value, and average (Bottom Left) 1-Many
error, (Bottom Right) 1-1 error over 10 different runs (same seeds used for each model)
for 200 iterations. Error bars are standard deviation for the 10 runs. All models are
first order HMMs: EM trained using expectation maximization, VEM trained using
variational EM using 0.1 state to state prior and (01,0.0001) observation prior; Sparse
trained using PR with constraint strength σ= 10,32,100.

difference is bigger for VEM when the observation prior is set to bigger values (0.1), leading at the
same time to worse results in 1-Many mapping.

9. Conclusion

In this paper we have presented posterior regularization (PR), a technique for regularizing mod-
els by encoding prior knowledge in constraints on model posteriors. On the algorithmic side, we
have shown that PR can be solved efficiently in dual form, and that the regularization can be easily
incorporated into a variant of the classical EM optimization method. In relating PR to similar frame-
works, we have clarified its main advantages: faster optimization speed with respect to generalized
expectation (Mann and McCallum, 2007, 2008), and greater distributional estimation accuracy with
respect to constraint-driven learning (Chang et al., 2007). To the best of our knowledge, we are the
first to link all these learning frameworks by explicitly stating a sense in which they all approximate
the Bayesian perspective that motivates Liang et al. (2009). An interesting avenue for future work
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includes an exploration of the tradeoff between computational complexity and accuracy of the dif-
ferent approximations presented in this and related work (Figure 4). For example, is there a large
performance drop as we go from GE to PR and from PR to CODL, or are the variational and MAP
approximations accurate in practice?

In addition to discussing PR’s theoretical potential, we have demonstrated that it lives up to
this potential in a wide variety realistic applications. The applications we focus on in this paper
are word alignment, multi-view learning, dependency parsing, and part-of-speech tagging. Yet PR
can express such a wide variety of prior knowledge that can be encoded by functions of model
posteriors, and there remains a vast array of unexplored possible applications for this technique.

In addition to using PR in other applications, we would like to investigate alternative optimiza-
tion methods. The main optimization bottleneck that PR implementations encounter is the extensive
time required for projecting the posterior distribution into the constrained posterior space. Each
evaluation of the objective or its gradient requires inference in the original model. One direction for
exploration is the use of second order or approximate second-order optimization methods. Another
potential direction is to use approximate inference in some parts of the optimization, for example
fully factored variational inference. Finally, for applications where some constraints span multiple
instances, but others do not not, it would be interesting to combine online and batch methods.

A last key extension to the current PR work is to explore the case where the constraint set Q
is not easily specified using linear constraints on some constraint features φ. Thus far we have
only developed theory and applications for linear constraints. It would be interesting to explore
applications and derive efficient learning methods when the constraints are not linear, for example,
applications with semi-definite or polynomial constraints.
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Appendix A. Scaling the Strength of PR

This appendix describes how to optimize a version of our objective with scaled posterior regular-
ization strength. In this case, we will use a modified EM algorithm that maximizes:

F ′(q,θ) = L(θ)−αKL(q(Y) ‖ pθ(Y | X)) s. t.q ∈ Q

where α∈ [0,1]. The optimization procedure closely follows the one in Section 2.6. When perform-
ing the M-step, we use a mixture of the projected posteriors q and the model posteriors pθ(Y|X) to
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update the model parameters. The updated EM algorithm is:

E′ − step : max
q
F ′(q,θ) = min

q ∈ Q
KL(q(Y) ‖ pθ(Y|X)),

M′ − step : max
θ
F ′(q,θ) =max

θ
(1−α)Epθ′ [log pθ(X,Y)]+αEq [log pθ(X,Y)] .

Note that the E′-step is identical to the one in Equation 8.

Appendix B. Proof of Proposition 2.1

The modified E-step involves a projection step that minimizes the Kullback-Leibler divergence:

argmin
q,ξ

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)]−b≤ ξ; ||ξ||β ≤ ε.

Assuming the set Q = {q(Y) : ∃ξ :Eq[φ(X,Y)]−b≤ ξ; ||ξ||β ≤ ε} is non-empty, the correspond-
ing Lagrangian is

max
λ≥0,α≥0,γ

min
q(Y),ξ

L(q(Y),ξ,λ,α,γ),

where

L(q,ξ,λ,α,γ) =KL(q(Y) ‖ pθ(Y|X)) +λ · (Eq[φ(X,Y)]−b−ξ)

+α(||ξ||β− ε) + γ

(

∑
Y
q(Y)−1

)

.

In order to compute the dual of this Lagrangian, we first represent

α ||ξ||β =maxη ξ ·η s. t. ||η||β∗ ≤ α.

This results in a variational Lagrangian

max
λ≥0,α≥0,γ

max
||η||β∗≤α

min
q(Y),ξ

L(q(Y),ξ,λ,α,γ,η),

with L(q(Y),ξ,λ,α,γ,η) defined as

L(q,ξ,λ,α,γ,η) = KL(q(Y) ‖ pθ(Y|X)) +λ · (Eq[φ(X,Y)]−b−ξ)

+ξ ·η−αε + γ

(

∑
Y
q(Y)−1

)

,

∂L(q(Y),ξ,λ,α,γ,η)
∂q(Y) = logq(Y)+1− log pθ(Y|X)+λ ·φ(X,Y)+ γ= 0

=⇒ q(Y) = pθ(Y|X)exp(−λ ·φ(X,Y))
eexp(γ)

,

∂L(q(Y),ξ,λ,α,γ,η)
∂ξi

= ηi−λi = 0 =⇒ η= λ. (26)
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Note that Equation 26 implies that we have the constraint ||λ||β∗ ≤ α and also the positive and
negative λ · ξ cancel each other out. Plugging q(Y), η = λ in L(q(Y),ξ,λ,α,γ,η) and taking the
derivative with respect to γ

∂L(λ,α,γ)
∂γ

=∑
Y

pθ(Y|X)exp(−λ ·φ(X,Y))
eexp(γ)

−1= 0

=⇒ γ= log
(

∑Y pθ(Y|X)exp(−λ ·φ(x,z))
e

)

.

From there we can simplify q(Y) = pθ(Y|X)exp(−λ·φ(X,Y))
Zλ

where Zλ =∑Y pθ(Y|X)exp(−λ ·φ(X,Y))
ensures that q(Y) is properly normalized. Plugging γ into L(λ,α,γ)

L(λ,α) =− log(Zλ)−b ·λ−αε.

Now our objective is:

max
λ≥0,α≥0

− log(Zλ)−b ·λ−αε s. t. ||λ||β∗ ≤ α.

We can analytically see that the optimum of this objective with respect to α is α= ||λ||β∗ and placing
this in L(λ,α) we get the dual objective:

Dual E′ : argmax
λ≥0

−b ·λ− log(Zλ)− ε ||λ||β∗

as desired.
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Abstract

An exceedingly large number of scientific and engineering fields are confronted with the need for
computer simulations to study complex, real world phenomena or solve challenging design prob-
lems. However, due to the computational cost of these high fidelity simulations, the use of neural
networks, kernel methods, and other surrogate modeling techniques have become indispensable.
Surrogate models are compact and cheap to evaluate, and have proven very useful for tasks such
as optimization, design space exploration, prototyping, and sensitivity analysis. Consequently, in
many fields there is great interest in tools and techniques that facilitate the construction of such
regression models, while minimizing the computational cost and maximizing model accuracy. This
paper presents a mature, flexible, and adaptive machine learning toolkit for regression modeling
and active learning to tackle these issues. The toolkit brings together algorithms for data fitting,
model selection, sample selection (active learning), hyperparameter optimization, and distributed
computing in order to empower a domain expert to efficiently generate an accurate model for the
problem or data at hand.

Keywords: surrogate modeling, metamodeling, function approximation, model selection, adaptive
sampling, active learning, distributed computing

1. Background and Motivation

In many science and engineering problems researchers make heavy use of computer simulation
codes in order to replace expensive physical experiments and improve the quality and performance
of engineered products and devices. Such simulation activities are collectively referred to as com-
putational science/engineering. Unfortunately, while allowing scientists more flexibility to study
phenomena under controlled conditions, computer simulations require a substantial investment of
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computation time. One simulation may take many minutes, hours, days or even weeks, quickly
rendering parameter studies impractical (Forrester et al., 2008; Simpson et al., 2008).

Of the different ways to deal with this problem, this paper is concerned with the construction
of simpler approximation models to predict the system performance and develop a relationship
between the system inputs and outputs. When properly constructed, these approximation models
mimic the behavior of the simulation accurately while being computationally cheap(er) to evalu-
ate. Different approximation methods exist, each with their relative merits. This work concentrates
on the use of data-driven, global approximations using compact surrogate models (also known as
metamodels, replacement models, or response surface models). Examples include: rational func-
tions, Kriging models, Artificial Neural Networks (ANN), splines, and Support Vector Machines
(SVM). Once such a global approximation is available it is of great use for gaining insight into the
behavior of the underlying system. The surrogate may be easily queried, optimized, visualized, and
seamlessly integrated into CAD/CAE software packages.

The challenge is thus how to generate an approximation model that is as accurate as possible
over the complete domain of interest while minimizing the simulation cost. Solving this challenge
involves multiple sub-problems that must be addressed: how to interface with the simulation code,
how to run simulations (locally, or on a cluster or cloud), which model type to approximate the data
with and how to set the model complexity (e.g., topology of a neural network), how to estimate the
model quality and ensure the domain expert trusts the model, how to decide which simulations to
run (data collection), etc. The data collection aspect is worth emphasizing. Since data is compu-
tationally expensive to obtain and the optimal data distribution is not known up front, data points
should be selected iteratively, there where the information gain will be the greatest. A sampling
function is needed that minimizes the number of sample points selected in each iteration, yet max-
imizes the information gain of each iteration step. This process is called adaptive sampling but is
also known as active learning, or sequential design.

There is a complex dependency web between these different options and dealing with these de-
pendencies is non-trivial, particularly for a domain expert for whom the surrogate model is just an
intermediate step towards solving a larger, more important problem. Few domain experts will be
experts in the intricacies of efficient sampling and modeling strategies. Their primary concern is
obtaining an accurate replacement metamodel for their problem as fast as possible and with min-
imal overhead (Gorissen et al., 2009d). As a result these choices are often made in a pragmatic,
sometimes even ad-hoc, manner.

This paper discusses an advanced, and integrated software framework that provides a flexible
and rigorous means to tackle such problems. This work lies at the intersection of Machine Learn-
ing/AI, Modeling and Simulation, and Distributed Computing. The methods developed are appli-
cable to any domain where a cheap, accurate, approximation is needed to replace some expensive
reference model. Our experience has been that the availability of such a framework can facilitate
the transfer of knowledge from surrogate modeling researchers and lower the barrier of entry for
domain experts.

2. SUMO Toolbox

The platform in question is the Matlab SUrrogate MOdeling (SUMO) Toolbox, illustrated in Figure
1. Given a simulation engine (Fluent, Cadence, Abaqus, HFSS, etc.) or other data source (data
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Figure 1: The SUMO Toolbox is a flexible framework for accurate global surrogate modeling and
adaptive sampling (active learning). It features a rich set of plugins, is applicable to a wide
range of domains, and can be applied in an autonomous, black-box fashion, or under full
manual control. Written in Matlab and Java it is fully cross platform and comes with a
large (60+) number of example problems.

set, Matlab script, Java class, etc.), the toolbox drives the data source to produce a surrogate model
within the time and accuracy constraints set by the user.

The SUMO Toolbox adopts a microkernel design philosophy with many different plugins avail-
able for each of the different sub-problems:1 model types (rational functions, Kriging, splines,
SVM, ANN, etc.), hyperparameter optimization algorithms (Particle Swarm Optimization, Efficient
Global Optimization, simulated annealing, Genetic Algorithm, etc.), model selection algorithms
(cross validation, AIC, Leave-out set, etc.), sample selection (random, error based, density based,
hybrid, etc.), Design of Experiments (Latin hypercube, Box-Bhenken, etc.), and sample evaluation
methods (local, on a cluster or grid). The behavior of each software component is configurable
through a central XML file and components can easily be added, removed or replaced by custom
implementations. In addition the toolbox provides ‘meta’ plugins. For example to automatically
select the best model type for a given problem (Gorissen et al., 2009d) or to use multiple model
selection or sample selection criteria in concert (Gorissen et al., 2010).

Furthermore, there is built-in support for high performance computing. On the modeling side,
the model generation process can take full advantage of multi-core CPUs and even of a complete
cluster or grid. This can result in significant speedups for model types where the fitting process can
be expensive (e.g., neural networks). Likewise, sample evaluation (simulation) can occur locally
(with the option to take advantage of multi-core architectures) or on a separate compute cluster
or grid (possibly accessed through a remote head-node). All interfacing with the grid middleware

1. The full list of plugins and features can be found at http://www.sumowiki.intec.ugent.be.
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(submission, job monitoring, rescheduling of failed/lost simulation points, etc.) is handled transpar-
ently and automatically (see Gorissen et al., 2009c for more details). Also, the sample evaluation
component runs in parallel with the other components (non-blocking) and not sequentially. This
allows for an optimal use of computational resources.

In addition the SUMO Toolbox contains extensive logging and profiling capabilities so that the
modeling process can easily be tracked and the modeling decisions understood. Once a final model
has been generated, a GUI tool is available to visually explore the model (including derivatives and
prediction uncertainty), assess its quality, and export it for use in other software tools.

3. Applications

The SUMO Toolbox has already been applied successfully to a very wide range of applications,
including RF circuit block modeling (Gorissen et al., 2009b), hydrological modeling (Couckuyt
et al., 2009), Electronic Packaging (Zhu and Franzon, 2009), aerodynamic modeling (Gorissen
et al., 2009a), process engineering (Stephens et al., 2009), and automotive data modeling (Gorissen
et al., 2010). Besides global modeling capabilities, the SUMO Toolbox also includes a powerful
optimization framework based on the Efficient Global Optimization framework developed by Jones
et al. (1998). As of version 6.1, the toolbox also contains an example of how the framework can
also be applied to solve classification problems.

In sum, the goal of the toolbox is to fill the void in machine learning software when it comes to
the challenging, costly, real-valued, problems faced in computational engineering. The toolbox is
in use successfully at various institutions and we are continuously refining and extending the set of
available plugins as the number of applications increase. Usage instructions, design documentation,
and stable releases for all major platforms can be found at http://www.sumo.intec.ugent.be.
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Abstract
Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observa-
tions of a small, random subset of its entries. The problem arises in a variety of applications, from
collaborative filtering (the ‘Netflix problem’) to structure-from-motion and positioning. We study
a low complexity algorithm introduced by Keshavan, Montanari, and Oh (2010), based on a com-
bination of spectral techniques and manifold optimization, that we call here OPTSPACE. We prove
performance guarantees that are order-optimal in a number of circumstances.
Keywords: matrix completion, low-rank matrices, spectral methods, manifold optimization

1. Introduction

Spectral techniques are an authentic workhorse in machine learning, statistics, numerical analysis,
and signal processing. Given a matrix M, its largest singular values—and the associated singular
vectors—‘explain’ the most significant correlations in the underlying data source. A low-rank ap-
proximation of M can further be used for low-complexity implementations of a number of linear
algebra algorithms (Frieze et al., 2004).

In many practical circumstances we have access only to a sparse subset of the entries of an
m×n matrixM. It has recently been discovered that, if the matrixM has rank r, and unless it is too
‘structured’, a small random subset of its entries allow to reconstruct it exactly. This result was first
proved by Candès and Recht (2008) by analyzing a convex relaxation introduced by Fazel (2002). A
tighter analysis of the same convex relaxation was carried out by Candès and Tao (2009). A number
of iterative schemes to solve the convex optimization problem appeared soon thereafter (Cai et al.,
2008; Ma et al., 2009; Toh and Yun, 2009).

In an alternative line of work, Keshavan, Montanari, and Oh (2010) attacked the same problem
using a combination of spectral techniques and manifold optimization: We will refer to their al-
gorithm as OPTSPACE. OPTSPACE is intrinsically of low complexity, the most complex operation
being computing r singular values (and the corresponding singular vectors) of a sparsem×nmatrix.
The performance guarantees proved by Keshavan et al. (2010) are comparable with the information
theoretic lower bound: roughly nrmax{r, logn} random entries are needed to reconstructM exactly
(here we assume m of order n). A related approach was also developed by Lee and Bresler (2009),
although without performance guarantees for matrix completion.

∗. Also in Department of Statistics.
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The above results crucially rely on the assumption that M is exactly a rank r matrix. For many
applications of interest, this assumption is unrealistic and it is therefore important to investigate
their robustness. Can the above approaches be generalized when the underlying data is ‘well ap-
proximated’ by a rank r matrix? This question was addressed by Candès and Plan (2009) within the
convex relaxation approach of Candès and Recht (2008). The present paper proves a similar robust-
ness result for OPTSPACE. Remarkably the guarantees we obtain are order-optimal in a variety of
circumstances, and improve over the analogous results of Candès and Plan (2009).

1.1 Model Definition

LetM be an m×n matrix of rank r, that is

M =UΣVT . (1)

whereU has dimensions m×r,V has dimensions n×r, and Σ is a diagonal r×r matrix. We assume
that each entry ofM is perturbed, thus producing an ‘approximately’ low-rank matrix N, with

Ni j =Mi j+Zi j ,

where the matrix Z will be assumed to be ‘small’ in an appropriate sense.
Out of the m×n entries of N, a subset E ⊆ [m]× [n] is revealed. We let NE be the m×n matrix

that contains the revealed entries of N, and is filled with 0’s in the other positions

NE
i j =

{
Ni j if (i, j) ∈ E ,
0 otherwise.

Analogously, we let ME and ZE be the m× n matrices that contain the entries of M and Z, re-
spectively, in the revealed positions and is filled with 0’s in the other positions. The set E will be
uniformly random given its size |E|.

1.2 Algorithm

For the reader’s convenience, we recall the algorithm introduced by Keshavan et al. (2010), which
we will analyze here. The basic idea is to minimize the cost function F(X ,Y ), defined by

F(X ,Y ) ≡ min
S∈Rr×r

F (X ,Y,S) , (2)

F (X ,Y,S) ≡
1
2 ∑
(i, j)∈E

(Ni j− (XSYT )i j)2 .

Here X ∈Rn×r, Y ∈Rm×r are orthogonal matrices, normalized by XTX = mI, YTY = nI.
Minimizing F(X ,Y ) is an a priori difficult task, since F is a non-convex function. The key

insight is that the singular value decomposition (SVD) of NE provides an excellent initial guess,
and that the minimum can be found with high probability by standard gradient descent after this
initialization. Two caveats must be added to this description: (1) In general the matrix NE must be
‘trimmed’ to eliminate over-represented rows and columns; (2) For technical reasons, we consider
a slightly modified cost function to be denoted by F̃(X ,Y ).
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OPTSPACE( matrix NE )
1: Trim NE , and let ÑE be the output;
2: Compute the rank-r projection of ÑE , Pr(ÑE) = X0S0YT0 ;
3: Minimize F̃(X ,Y ) through gradient descent, with initial condition (X0,Y0).

We may note here that the rank of the matrix M, if not known, can be reliably estimated from
ÑE (Keshavan and Oh, 2009).

The various steps of the above algorithm are defined as follows.
Trimming. We say that a row is ‘over-represented’ if it contains more than 2|E|/m revealed

entries (i.e., more than twice the average number of revealed entries per row). Analogously, a
column is over-represented if it contains more than 2|E|/n revealed entries. The trimmed matrix ÑE

is obtained from NE by setting to 0 over-represented rows and columns.
Rank-r projection. Let

ÑE =
min(m,n)

∑
i=1

σixiyTi ,

be the singular value decomposition of ÑE , with singular values σ1 ≥ σ2 ≥ . . . . We then define

Pr(ÑE) =
mn
|E|

r

∑
i=1

σixiyTi .

Apart from an overall normalization, Pr(ÑE) is the best rank-r approximation to ÑE in Frobenius
norm.

Minimization. The modified cost function F̃ is defined as

F̃(X ,Y ) = F(X ,Y )+ρG(X ,Y )

≡ F(X ,Y )+ρ
m

∑
i=1

G1

(
‖X (i)‖2

3µ0r

)

+ρ
n

∑
j=1

G1

(
‖Y ( j)‖2

3µ0r

)

,

where X (i) denotes the i-th row of X , and Y ( j) the j-th row of Y . The function G1 :R+ →R is such
that G1(z) = 0 if z≤ 1 and G1(z) = e(z−1)2 −1 otherwise. Further, we can choose ρ=Θ(|E|).

Let us stress that the regularization term is mainly introduced for our proof technique to work
(and a broad family of functions G1 would work as well). In numerical experiments we did not find
any performance loss in setting ρ= 0.

One important feature of OPTSPACE is that F(X ,Y ) and F̃(X ,Y ) are regarded as functions
of the r-dimensional subspaces of Rm and Rn generated (respectively) by the columns of X and
Y . This interpretation is justified by the fact that F(X ,Y ) = F(XA,YB) for any two orthogonal
matrices A, B ∈ Rr×r (the same property holds for F̃). The set of r dimensional subspaces of Rm

is a differentiable Riemannian manifold G(m,r) (the Grassmann manifold). The gradient descent
algorithm is applied to the function F̃ : M(m,n) ≡ G(m,r)×G(n,r) → R. For further details on
optimization by gradient descent on matrix manifolds we refer to Edelman et al. (1999) and Absil
et al. (2008).
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1.3 Some Notations

The matrix M to be reconstructed takes the form (1) where U ∈ Rm×r, V ∈ Rn×r. We write U =
[u1,u2, . . . ,ur] andV = [v1,v2, . . . ,vr] for the columns of the two factors, with ‖ui‖=

√
m, ‖vi‖=

√
n,

and uTi u j = 0, vTi v j = 0 for i -= j (there is no loss of generality in this, since normalizations can be
absorbed by redefining Σ).

We shall write Σ= diag(Σ1, . . . ,Σr) with Σ1 ≥ Σ2 ≥ · · ·≥ Σr > 0. The maximum and minimum
singular values will also be denoted by Σmax = Σ1 and Σmin = Σr. Further, the maximum size of an
entry of M isMmax ≡maxi j |Mi j|.

Probability is taken with respect to the uniformly random subset E ⊆ [m]× [n] given |E| and
(eventually) the noise matrix Z. Define ε≡ |E|/

√
mn. In the case when m= n, ε corresponds to the

average number of revealed entries per row or column. Then it is convenient to work with a model
in which each entry is revealed independently with probability ε/

√
mn. Since, with high probability

|E| ∈ [ε
√
αn−A

√
n logn,ε

√
αn+A

√
n logn], any guarantee on the algorithm performances that

holds within one model, holds within the other model as well if we allow for a vanishing shift in ε.
We will useC, C′ etc. to denote universal numerical constants.

It is convenient to define the following projection operator PE(·) as the sampling operator, which
maps an m×n matrix onto an |E|-dimensional subspace in Rm×n

PE(N)i j =
{
Ni j if (i, j) ∈ E ,
0 otherwise.

Given a vector x ∈Rn, ‖x‖ will denote its Euclidean norm. For a matrix X ∈Rn×n′ , ‖X‖F is its
Frobenius norm, and ‖X‖2 its operator norm (i.e., ‖X‖2 = supu -=0 ‖Xu‖/‖u‖). The standard scalar
product between vectors or matrices will sometimes be indicated by 〈x,y〉 or 〈X ,Y 〉 ≡ Tr(XTY ),
respectively. Finally, we use the standard combinatorics notation [n] = {1,2, . . . ,n} to denote the
set of first n integers.

1.4 Main Results

Our main result is a performance guarantee for OPTSPACE under appropriate incoherence assump-
tions, and is presented in Section 1.4.2. Before presenting it, we state a theorem of independent
interest that provides an error bound on the simple trimming-plus-SVD approach. The reader inter-
ested in the OPTSPACE guarantee can go directly to Section 1.4.2.

Throughout this paper, without loss of generality, we assume α≡ m/n≥ 1.

1.4.1 SIMPLE SVD

Our first result shows that, in great generality, the rank-r projection of ÑE provides a reasonable
approximation ofM. We define Z̃E to be an m×n matrix obtained from ZE , after the trimming step
of the pseudocode above, that is, by setting to zero the over-represented rows and columns.

Theorem 1.1 Let N =M+Z, where M has rank r, and assume that the subset of revealed entries
E ⊆ [m]× [n] is uniformly random with size |E|. Let Mmax =max(i, j)∈[m]×[n] |Mi j|. Then there exists
numerical constants C and C′ such that

1√
mn

‖M−Pr(ÑE)‖F ≤CMmax

(
nrα3/2

|E|

)1/2

+C′ n
√
rα

|E|
‖Z̃E‖2 ,
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with probability larger than 1−1/n3.

Projection onto rank-r matrices through SVD is a pretty standard tool, and is used as first analysis
method for many practical problems. At a high-level, projection onto rank-r matrices can be in-
terpreted as ‘treat missing entries as zeros’. This theorem shows that this approach is reasonably
robust if the number of observed entries is as large as the number of degrees of freedom (which is
about (m+ n)r) times a large constant. The error bound is the sum of two contributions: the first
one can be interpreted as an undersampling effect (error induced by missing entries) and the second
as a noise effect. Let us stress that trimming is crucial for achieving this guarantee.

1.4.2 OPTSPACE

Theorem 1.1 helps to set the stage for the key point of this paper: a much better approximation
is obtained by minimizing the cost F̃(X ,Y ) (step 3 in the pseudocode above), provided M satisfies
an appropriate incoherence condition. Let M =UΣVT be a low rank matrix, and assume, without
loss of generality, UTU = mI and VTV = nI. We say that M is (µ0,µ1)-incoherent if the following
conditions hold.

A1. For all i ∈ [m], j ∈ [n] we have, ∑r
k=1U2

ik ≤ µ0r, ∑r
k=1V 2ik ≤ µ0r.

A2. For all i ∈ [m], j ∈ [n] we have, |∑r
k=1Uik(Σk/Σ1)Vjk|≤ µ1r1/2.

Theorem 1.2 Let N =M+Z, where M is a (µ0,µ1)-incoherent matrix of rank r, and assume that
the subset of revealed entries E ⊆ [m]× [n] is uniformly random with size |E|. Further, let Σmin =
Σr ≤ · · · ≤ Σ1 = Σmax with Σmax/Σmin ≡ κ. Let M̂ be the output of OPTSPACE on input NE. Then
there exists numerical constants C and C′ such that if

|E| ≥ Cn
√
ακ2 max

{
µ0r

√
α logn ; µ20r2ακ4 ; µ21r2ακ4

}
,

then, with probability at least 1−1/n3,

1√
mn

‖M̂−M‖F ≤C′κ2
n
√
rα

|E|
‖ZE‖2 . (3)

provided that the right-hand side is smaller than Σmin.

As discussed in the next section, this theorem captures rather sharply the effect of important
classes of noise on the performance of OPTSPACE.

1.5 Noise Models

In order to make sense of the above results, it is convenient to consider a couple of simple models
for the noise matrix Z:

Independent entries model. We assume that Z’s entries are i.i.d. random variables, with zero
mean E{Zi j}= 0 and sub-Gaussian tails. The latter means that

P{|Zi j|≥ x}≤ 2e−
x2
2σ2 ,

for some constant σ2 uniformly bounded in n.
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Worst case model. In this model Z is arbitrary, but we have an uniform bound on the size of its
entries: |Zi j|≤ Zmax.

The basic parameter entering our main results is the operator norm of Z̃E , which is bounded as
follows in these two noise models.

Theorem 1.3 If Z is a random matrix drawn according to the independent entries model, then for
any sample size |E| there is a constant C such that,

‖Z̃E‖2 ≤Cσ
(
|E| logn

n

)1/2
, (4)

with probability at least 1−1/n3. Further there exists a constant C′ such that, if the sample size is
|E|≥ n logn (for n≥ α), we have

‖Z̃E‖2 ≤C′σ

(
|E|
n

)1/2
, (5)

with probability at least 1−1/n3.
If Z is a matrix from the worst case model, then

‖Z̃E‖2 ≤
2|E|
n
√
α
Zmax ,

for any realization of E.

It is elementary to show that, if |E| ≥ 15αn logn, no row or column is over-represented with high
probability. It follows that in the regime of |E| for which the conditions of Theorem 1.2 are satisfied,
we have ZE = Z̃E and hence the bound (5) applies to ‖Z̃E‖2 as well. Then, among the other things,
this result implies that for the independent entries model the right-hand side of our error estimate,
Eq. (3), is with high probability smaller than Σmin, if |E| ≥Crαnκ4(σ/Σmin)2. For the worst case
model, the same statement is true if Zmax ≤ Σmin/C

√
rκ2.

1.6 Comparison with Other Approaches to Matrix Completion

Let us begin by mentioning that a statement analogous to our preliminary Theorem 1.1 was proved
by Achlioptas and McSherry (2007). Our result however applies to any number of revealed entries,
while the one of Achlioptas and McSherry (2007) requires |E| ≥ (8logn)4n (which for n ≤ 5 · 108
is larger than n2). We refer to Section 1.8 for further discussion of this point.

As for Theorem 1.2, we will mainly compare our algorithm with the convex relaxation approach
recently analyzed by Candès and Plan (2009), and based on semidefinite programming. Our basic
setting is indeed the same, while the algorithms are rather different.

Figures 1 and 2 compare the average root mean square error ‖M̂−M‖F/
√
mn for the two al-

gorithms as a function of |E| and the rank-r respectively. Here M is a random rank r matrix of
dimension m= n= 600, generated by letting M = ŨṼ T with Ũi j,Ṽi j i.i.d. N(0,20/

√
n). The noise

is distributed according to the independent noise model with Zi j ∼ N(0,1). In the first suite of sim-
ulations, presented in Figure 1, the rank is fixed to r = 2. In the second one (Figure 2), the number
of samples is fixed to |E|= 72000. These examples are taken from Candès and Plan (2009, Figure
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Figure 1: Numerical simulation with random rank-2 600× 600 matrices. Root mean square error
achieved by OPTSPACE is shown as a function of the number of observed entries |E| and
of the number of line minimizations. The performance of nuclear norm minimization and
an information theoretic lower bound are also shown.
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Figure 2: Numerical simulation with random rank-r 600× 600 matrices and number of observed
entries |E|/n = 120. Root mean square error achieved by OPTSPACE is shown as a
function of the rank and of the number of line minimizations. The performance of nuclear
norm minimization and an information theoretic lower bound are also shown.
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Figure 3: Numerical simulation with random rank-2 600× 600 matrices and number of observed
entries |E|/n= 80 and 160. The standard deviation of the i.i.d. Gaussian noise is 0.001.
Fit error and root mean square error achieved by OPTSPACE are shown as functions of
the number of line minimizations. Information theoretic lower bounds are also shown.

2), from which we took the data points for the convex relaxation approach, as well as the informa-
tion theoretic lower bound described later in this section. After a few iterations, OPTSPACE has a
smaller root mean square error than the one produced by convex relaxation. In about 10 iterations
it becomes indistinguishable from the information theoretic lower bound for small ranks.

In Figure 3, we illustrate the rate of convergence of OPTSPACE. Two metrics, root mean squared
error(RMSE) and fit error ‖PE(M̂−N)‖F/

√
|E|, are shown as functions of the number of iterations

in the manifold optimization step. Note, that the fit error can be easily evaluated since NE = PE(N)
is always available at the estimator. M is a random 600× 600 rank-2 matrix generated as in the
previous examples. The additive noise is distributed as Zi j ∼N(0,σ2)with σ= 0.001 (A small noise
level was used in order to trace the RMSE evolution over many iterations). Each point in the figure
is the averaged over 20 random instances, and resulting errors for two different values of sample
size |E| = 80 and |E| = 160 are shown. In both cases, we can see that the RMSE converges to the
information theoretic lower bound described later in this section. The fit error decays exponentially
with the number iterations and converges to the standard deviation of the noise which is 0.001. This
is a lower bound on the fit error when r2 n, since even if we have a perfect reconstruction of M,
the average fit error is still 0.001.

For a more complete numerical comparison between various algorithms for matrix completion,
including different noise models, real data sets and ill conditioned matrices, we refer to Keshavan
and Oh (2009).

Next, let us compare our main result with the performance guarantee of Candès and Plan (2009,
Theorem 7). Let us stress that we require the condition number κ to be bounded, while the analysis
of Candès and Plan (2009) and Candès and Tao (2009) requires a stronger incoherence assumption
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(compared to our A1). Therefore the assumptions are not directly comparable. As far as the error
bound is concerned, Candès and Plan (2009) proved that the semidefinite programming approach
returns an estimate M̂ which satisfies

1√
mn

‖M̂SDP−M‖F ≤ 7
√ n

|E|
‖ZE‖F +

2
n
√
α
‖ZE‖F . (6)

(The constant in front of the first term is in fact slightly smaller than 7 in Candès and Plan (2009),
but in any case larger than 4

√
2. We choose to quote a result which is slightly less accurate but

easier to parse.)
Theorem 1.2 improves over this result in several respects: (1)We do not have the second term on

the right-hand side of (6), that actually increases with the number of observed entries; (2) Our error
decreases as n/|E| rather than (n/|E|)1/2; (3) The noise enters Theorem 1.2 through the operator
norm ‖ZE‖2 instead of its Frobenius norm ‖ZE‖F ≥ ‖ZE‖2. For E uniformly random, one expects
‖ZE‖F to be roughly of order ‖ZE‖2

√
n. For instance, within the independent entries model with

bounded variance σ, ‖ZE‖F =Θ(
√
|E|) while ‖ZE‖2 is of order

√
|E|/n (up to logarithmic terms).

Theorem 1.2 can also be compared to an information theoretic lower bound computed by Candès
and Plan (2009). Suppose, for simplicity, m = n and assume that an oracle provides us a linear
subspace T where the correct rank r matrix M =UΣVT lies. More precisely, we know that M ∈ T
where T is a linear space of dimension 2nr− r2 defined by

T = {UYT +XVT | X ∈R
n×r,Y ∈R

n×r} .

Notice that the rank constraint is therefore replaced by this simple linear constraint. The minimum
mean square error estimator is computed by projecting the revealed entries onto the subspace T ,
which can be done by solving a least squares problem. Candès and Plan (2009) analyzed the root
mean squared error of the resulting estimator M̂ and showed that

1√
mn

‖M̂Oracle−M‖F ≈

√
1
|E|

‖ZE‖F .

Here ≈ indicates that the root mean squared error concentrates in probability around the right-hand
side.

For the sake of comparison, suppose we have i.i.d. Gaussian noise with variance σ2. In this case
the oracle estimator yields (for r = o(n))

1√
mn

‖M̂Oracle−M‖F ≈ σ

√
2nr
|E|

.

The bound (6) on the semidefinite programming approach yields

1√
mn

‖M̂SDP−M‖F ≤ σ
(
7
√
n|E|+

2
n
|E|

)
.

Finally, using Theorems 1.2 and 1.3 we deduce that OPTSPACE achieves

1√
mn

‖M̂OptSpace−M‖F ≤ σ

√
Cnr
|E|

.

Hence, when the noise is i.i.d. Gaussian with small enough σ, OPTSPACE is order-optimal.
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1.7 Related Work on Gradient Descent

Local optimization techniques such as gradient descent of coordinate descent have been intensively
studied in machine learning, with a number of applications. Here we will briefly review the recent
literature on the use of such techniques within collaborative filtering applications.

Collaborative filtering was studied from a graphical models perspective in Salakhutdinov et al.
(2007), which introduced an approach to prediction based on Restricted BoltzmannMachines (RBM).
Exact learning of the model parameters is intractable for such models, but the authors studied the
performances of a contrastive divergence, which computes an approximate gradient of the likeli-
hood function, and uses it to optimize the likelihood locally. Based on empirical evidence, it was
argued that RBM’s have several advantages over spectral methods for collaborative filtering.

An objective function analogous to the one used in the present paper was considered early on
in Srebro and Jaakkola (2003), which uses gradient descent in the factors to minimize a weighted
sum of square residuals. Salakhutdinov and Mnih (2008) justified the use of such an objective
function by deriving it as the (negative) log-posterior of an appropriate probabilistic model. This
approach naturally lead to the use of quadratic regularization in the factors. Again, gradient descent
in the factors was used to perform the optimization. Also, this paper introduced a logistic mapping
between the low-rank matrix and the recorded ratings.

Recently, this line of work was pushed further in Salakhutdinov and Srebro (2010), which em-
phasize the advantage of using a non-uniform quadratic regularization in the factors. The basic
objective function was again a sum of square residuals, and version of stochastic gradient descent
was used to optimize it.

This rich and successful line of work emphasizes the importance of obtaining a rigorous under-
standing of methods based on local minimization of the sum of square residuals with respect to the
factors. The present paper provides a first step in that direction. Hopefully the techniques developed
here will be useful to analyze the many variants of this approach.

The relationship between the non-convex objective function and convex relaxation introduced
by Fazel (2002) was further investigated by Srebro et al. (2005) and Recht et al. (2007). The basic
relation is provided by the identity

‖M‖∗ =
1
2
min

M=XYT

{
‖X‖2F +‖Y‖2F

}
, (7)

where ‖M‖∗ denotes the nuclear norm ofM (the sum of its singular values). In other words, adding a
regularization term that is quadratic in the factors (as the one used in much of the literature reviewed
above) is equivalent to weightingM by its nuclear norm, that can be regarded as a convex surrogate
of its rank.

In view of the identity (7) it might be possible to use the results in this paper to prove stronger
guarantees on the nuclear norm minimization approach. Unfortunately this implication is not im-
mediate. Indeed in the present paper we assume the correct rank r is known, while on the other
hand we do not use a quadratic regularization in the factors. (See Keshavan and Oh, 2009 for a
procedure that estimates the rank from the data and is provably successful under the hypotheses of
Theorem 1.2.) Trying to establish such an implication, and clarifying the relation between the two
approaches is nevertheless a promising research direction.
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1.8 On the Spectrum of Sparse Matrices and the Role of Trimming

The trimming step of the OPTSPACE algorithm is somewhat counter-intuitive in that we seem to be
wasting information. In this section we want to clarify its role through a simple example. Before
describing the example, let us stress once again two facts: (i) In the last step of our the algorithm,
the trimmed entries are actually incorporated in the cost function and hence the full information
is exploited; (ii) Trimming is not the only way to treat over-represented rows/columns in ME , and
probably not the optimal one. One might for instance rescale the entries of such rows/columns. We
stick to trimming because we can prove it actually works.

Let us now turn to the example. Assume, for the sake of simplicity, that m = n, there is no
noise in the revealed entries, and M is the rank one matrix with Mi j = 1 for all i and j. Within
the independent sampling model, the matrix ME has i.i.d. entries, with distribution Bernoulli(ε/n).
The number of non-zero entries in a column is Binomial(n,ε/n) and is independent for different
columns. It is not hard to realize that the column with the largest number of entries has more than
C logn/ log logn entries, with positive probability (this probability can be made as large as we want
by reducing C). Let i be the index of this column, and consider the test vector e(i) that has the i-th
entry equal to 1 and all the others equal to 0. By computing ‖MEe(i)‖, we conclude that the largest
singular value of ME is at least

√
C logn/ log logn. In particular, this is very different from the

largest singular value of E{ME} = (ε/n)M which is ε. This suggests that approximating M with
the Pr(ME) leads to a large error. Hence trimming is crucial in proving Theorem 1.1. Also, the
phenomenon is more severe in real data sets than in the present model, where each entry is revealed
independently.

Trimming is also crucial in proving Theorem 1.3. Using the above argument, it is possible to
show that under the worst case model,

‖ZE‖2 ≥C′(ε)Zmax

√
logn
log logn

.

This suggests that the largest singular value of the noise matrix ZE is quite different from the largest
singular value of E{ZE} which is εZmax.

To summarize, Theorems 1.1 and 1.3 (for the worst case model) simply do not hold without
trimming or a similar procedure to normalize rows/columns of NE . Trimming allows to overcome
the above phenomenon by setting to 0 over-represented rows/columns.

2. Proof of Theorem 1.1

As explained in the introduction, the crucial idea is to consider the singular value decomposition
of the trimmed matrix ÑE instead of the original matrix NE . Apart from a trivial rescaling, these
singular values are close to the ones of the original matrixM.

Lemma 1 There exists a numerical constant C such that, with probability greater than 1−1/n3,

∣∣∣
σq
ε
−Σq

∣∣∣≤CMmax

√
α
ε
+
1
ε
‖Z̃E‖2 ,

where it is understood that Σq = 0 for q> r.
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Proof For any matrix A, let σq(A) denote the qth singular value of A. Then, σq(A+B)≤ σq(A)+
σ1(B), whence

∣∣∣
σq
ε
−Σq

∣∣∣ ≤

∣∣∣∣∣
σq(M̃E)

ε
−Σq

∣∣∣∣∣+
σ1(Z̃E)

ε

≤ CMmax

√
α
ε
+
1
ε
‖Z̃E‖2 ,

where the second inequality follows from the next Lemma as shown by Keshavan et al. (2010).

Lemma 2 (Keshavan, Montanari, Oh, 2009) There exists a numerical constant C such that, with
probability larger than 1−1/n3,

1√
mn

∣∣∣∣

∣∣∣∣M−
√
mn
ε

M̃E
∣∣∣∣

∣∣∣∣
2
≤CMmax

√
α
ε
.

We will now prove Theorem 1.1.
Proof (Theorem 1.1) For any matrix A of rank at most 2r, ‖A‖F ≤

√
2r‖A‖2, whence

1√
mn

‖M−Pr(ÑE)‖F ≤
√
2r√
mn

∣∣∣∣∣

∣∣∣∣∣M−
√
mn
ε

(
ÑE − ∑

i≥r+1
σixiyTi

)∣∣∣∣∣

∣∣∣∣∣
2

=

√
2r√
mn

∣∣∣∣∣

∣∣∣∣∣M−
√
mn
ε

(
M̃E + Z̃E − ∑

i≥r+1
σixiyTi

)∣∣∣∣∣

∣∣∣∣∣
2

=

√
2r√
mn

∣∣∣∣∣

∣∣∣∣∣

(
M−

√
mn
ε

M̃E
)
+

√
mn
ε

(

Z̃E −
(
∑

i≥r+1
σixiyTi

))∣∣∣∣∣

∣∣∣∣∣
2

≤
√
2r√
mn

(∣∣∣
∣∣∣M−

√
mn
ε

M̃E
∣∣∣
∣∣∣
2
+

√
mn
ε

‖Z̃E‖2+
√
mn
ε

σr+1

)

≤ 2CMmax

√
2αr
ε

+
2
√
2r
ε

‖Z̃E‖2

≤ C′Mmax

(
nrα3/2

|E|

)1/2

+ 2
√
2
(
n
√
rα

|E|

)
‖Z̃E‖2 .

where on the fourth line, we have used the fact that for any matrices Ai, ‖∑i Ai‖2 ≤ ∑i ‖Ai‖2. This
proves our claim.

3. Proof of Theorem 1.2

Recall that the cost function is defined over the Riemannian manifoldM(m,n)≡ G(m,r)×G(n,r).
The proof of Theorem 1.2 consists in controlling the behavior of F in a neighborhood of u= (U,V )
(the point corresponding to the matrix M to be reconstructed). Throughout the proof we let K (µ)
be the set of matrix couples (X ,Y ) ∈Rm×r×Rn×r such that ‖X (i)‖2 ≤ µr, ‖Y ( j)‖2 ≤ µr for all i, j.
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3.1 Preliminary Remarks and Definitions

Given x1 = (X1,Y1) and x2 = (X2,Y2) ∈ M(m,n), two points on this manifold, their distance is
defined as d(x1,x2) =

√
d(X1,X2)2+d(Y1,Y2)2, where, letting (cosθ1, . . . ,cosθr) be the singular

values of XT1 X2/m,

d(X1,X2) = ‖θ‖2 .

The next remark bounds the distance between two points on the manifold. In particular, we will
use this to bound the distance between the original matrix M =UΣVT and the starting point of the
manifold optimization M̂ = X0S0YT0 .

Remark 3 (Keshavan, Montanari, Oh, 2009) Let U,X ∈ Rm×r with UTU = XTX = mI, V,Y ∈
Rn×r with VTV = YTY = nI, and M =UΣVT , M̂ = XSYT for Σ = diag(Σ1, . . . ,Σr) and S ∈ Rr×r.
If Σ1, . . . ,Σr ≥ Σmin, then

d(U,X)≤
π√

2αnΣmin
‖M− M̂‖F , d(V,Y )≤

π√
2αnΣmin

‖M− M̂‖F

Given S achieving the minimum in Eq. (2), it is also convenient to introduce the notations

d−(x,u)≡
√
Σ2mind(x,u)2+‖S−Σ‖2F ,

d+(x,u)≡
√
Σ2maxd(x,u)2+‖S−Σ‖2F .

3.2 Auxiliary Lemmas and Proof of Theorem 1.2

The proof is based on the following two lemmas that generalize and sharpen analogous bounds in
Keshavan et al. (2010).

Lemma 4 There exist numerical constants C0,C1,C2 such that the following happens. Assume
ε≥C0µ0r

√
αmax{ logn ; µ0r

√
α(Σmin/Σmax)4 } and δ≤ Σmin/(C0Σmax). Then,

F(x)−F(u) ≥ C1nε
√
αd−(x,u)2−C1n

√
rα‖ZE‖2d+(x,u) , (8)

F(x)−F(u) ≤ C2nε
√
αΣ2max d(x,u)2+C2n

√
rα‖ZE‖2d+(x,u) , (9)

for all x∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least 1−1/n4. Here S∈Rr×r

is the matrix realizing the minimum in Eq. (2).

Corollary 3.1 There exist a constant C such that, under the hypotheses of Lemma 4

‖S−Σ‖F ≤CΣmaxd(x,u)+C
√
r
ε

‖ZE‖2 .

Further, for an appropriate choice of the constants in Lemma 4, we have

σmax(S)≤ 2Σmax+C
√
r
ε

‖ZE‖2 , (10)

σmin(S)≥
1
2
Σmin−C

√
r
ε

‖ZE‖2 . (11)
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Lemma 5 There exist numerical constants C0,C1,C2 such that the following happens. Assume
ε≥C0µ0r

√
α(Σmax/Σmin)2max{ logn ; µ0r

√
α(Σmax/Σmin)4 } and δ≤ Σmin/(C0Σmax). Then,

‖grad F̃(x)‖2 ≥C1 nε2Σ4min
[
d(x,u)−C2

√
rΣmax
εΣmin

‖ZE‖2
Σmin

]2

+

, (12)

for all x ∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least 1−1/n4. (Here [a]+ ≡
max(a,0).)

We can now turn to the proof of our main theorem.
Proof (Theorem 1.2). Let δ= Σmin/C0Σmax withC0 large enough so that the hypotheses of Lemmas
4 and 5 are verified.

Call {xk}k≥0 the sequence of pairs (Xk,Yk) ∈ M(m,n) generated by gradient descent. By as-
sumption the right-hand side of Eq. (3) is smaller than Σmin. The following is therefore true for
some numerical constantC:

‖ZE‖2 ≤
ε

C
√
r

(
Σmin
Σmax

)2
Σmin . (13)

Notice that the constant appearing here can be made as large as we want by modifying the constant
appearing in the statement of the theorem. Further, by using Corollary 3.1 in Eqs. (8) and (9) we get

F(x)−F(u) ≥ C1nε
√
αΣ2min

{
d(x,u)2−δ20,−

}
, (14)

F(x)−F(u) ≤ C2nε
√
αΣ2max

{
d(x,u)2+δ20,+

}
, (15)

withC1 andC2 different from those in Eqs. (8) and (9), where

δ0,− ≡C
√
rΣmax
εΣmin

‖ZE‖2
Σmin

, δ0,+ ≡C
√
rΣmax
εΣmin

‖ZE‖2
Σmax

.

By Eq. (13), with large enough C, we can assume δ0,− ≤ δ/20 and δ0,+ ≤ (δ/20)(Σmin/Σmax).
Next, we provide a bound on d(u,x0). Using Remark 3, we have d(u,x0)≤ (π/n

√
αΣmin)‖M−

X0S0YT0 ‖F . Together with Theorem 1.1 this implies

d(u,x0)≤
CMmax
Σmin

(rα
ε

)1/2
+
C′ √r
εΣmin

‖Z̃E‖2 .

Since ε ≥ C′′αµ21r2(Σmax/Σmin)4 as per our assumptions and Mmax ≤ µ1
√
rΣmax for incoherent M,

the first term in the above bound is upper bounded by Σmin/20C0Σmax, for large enough C′′. Using
Eq. (13), with large enough constant C, the second term in the above bound is upper bounded by
Σmin/20C0Σmax. Hence we get

d(u,x0)≤
δ
10

.

We make the following claims :
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1. xk ∈K (4µ0) for all k.
First we notice that we can assume x0 ∈ K (3µ0). Indeed, if this does not hold, we can
‘rescale’ those rows of X0, Y0 that violate the constraint. A proof that this rescaling is possible
was given in Keshavan et al. (2010) (cf. Remark 6.2 there). We restate the result here for the
reader’s convenience in the next Remark.

Remark 6 Let U,X ∈ Rn×r with UTU = XTX = nI and U ∈ K (µ0) and d(X ,U) ≤ δ ≤ 1
16 .

Then there exists X ′ ∈Rn×r such that X ′TX ′ = nI, X ′ ∈ K (3µ0) and d(X ′,U)≤ 4δ. Further,
such an X ′ can be computed from X in a time of O(nr2).

Since x0 ∈ K (3µ0) , F̃(x0) = F(x0) ≤ 4C2nε
√
αΣ2maxδ

2/100. On the other hand F̃(x) ≥
ρ(e1/9− 1) for x -∈ K (4µ0). Since F̃(xk) is a non-increasing sequence, the thesis follows
provided we take ρ≥C2nε

√
αΣ2min.

2. d(xk,u)≤ δ/10 for all k.
Since ε≥Cαµ21r2(Σmax/Σmin)6 as per our assumptions in Theorem 1.2, we have d(x0,u)2 ≤
(C1Σ2min/C2Σ2max)(δ/20)2. Also assuming Eq. (13) with large enoughC, we have δ0,− ≤ δ/20
and δ0,+ ≤ (δ/20)(Σmin/Σmax). Then, by Eq. (15),

F(x0)≤ F(u)+C1nε
√
αΣ2min

2δ2

400
.

Also, using Eq. (14), for all xk such that d(xk,u) ∈ [δ/10,δ], we have

F(x)≥ F(u)+C1nε
√
αΣ2min

3δ2

400
.

Hence, for all xk such that d(xk,u) ∈ [δ/10,δ], we have F̃(x) ≥ F(x) ≥ F(x0). This contra-
dicts the monotonicity of F̃(x), and thus proves the claim.

Since the cost function is twice differentiable, and because of the above two claims, the sequence
{xk} converges to

Ω=
{
x ∈K (4µ0)∩M(m,n) : d(x,u)≤ δ ,grad F̃(x) = 0

}
.

By Lemma 5 for any x ∈Ω,

d(x,u)≤C
√
rΣmax
εΣmin

‖ZE‖2
Σmin

. (16)

Using Corollary 3.1, we have d+(x,u)≤ Σmaxd(x,u)+‖S−Σ‖F ≤CΣmaxd(x,u)+C(
√
r/ε)‖ZE‖2.

Together with Eqs. (18) and (16), this implies

1
n
√
α
‖M−XSYT‖F ≤C

√
rΣ2max‖ZE‖2
εΣ2min

,

which finishes the proof of Theorem 1.2.
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3.3 Proof of Lemma 4 and Corollary 3.1

Proof (Lemma 4) The proof is based on the analogous bound in the noiseless case, that is, Lemma
5.3 in Keshavan et al. (2010). For readers’ convenience, the result is reported in Appendix A,
Lemma 7. For the proof of these lemmas, we refer to Keshavan et al. (2010).

In order to prove the lower bound, we start by noticing that

F(u)≤ 1
2
‖PE(Z)‖2F ,

which is simply proved by using S= Σ in Eq. (2). On the other hand, we have

F(x) =
1
2
‖PE(XSYT −M−Z)‖2F

=
1
2
‖PE(Z)‖2F +

1
2
‖PE(XSYT −M)‖2F −〈PE(Z),(XSYT −M)〉 (17)

≥ F(u)+Cnε
√
αd−(x,u)2−

√
2r‖ZE‖2‖XSYT −M‖F ,

where in the last step we used Lemma 7. Now by triangular inequality

‖XSYT −M‖2F ≤ 3‖X(S−Σ)YT‖2F +3‖XΣ(Y −V )T‖2F +3‖(X−U)ΣVT‖2F

≤ 3nm‖S−Σ‖2F +3n2αΣ2max(
1
m
‖X−U‖2F +

1
n
‖Y −V‖2F)

≤ Cn2αd+(x,u)2 , (18)

In order to prove the upper bound, we proceed as above to get

F(x) ≤ 1
2‖PE(Z)‖

2
F +Cnε

√
αΣ2max d(x,u)2+

√
2rα‖ZE‖2Cnd+(x,u) .

Further, by replacing x with u in Eq. (17)

F(u) ≥
1
2
‖PE(Z)‖2F −〈PE(Z),(U(S−Σ)VT )〉

≥
1
2
‖PE(Z)‖2F −

√
2rα‖ZE‖2Cnd+(x,u) .

By taking the difference of these inequalities we get the desired upper bound.

Proof (Corollary 3.1) By putting together Eq. (8) and (9), and using the definitions of d+(x,u),
d−(x,u), we get

‖S−Σ‖2F ≤
C1+C2
C1

Σ2maxd(x,u)2+
(C1+C2)

√
r

C1ε
‖ZE‖2

√
Σ2maxd(x,u)2+‖S−Σ‖2F .

Let x≡ ‖S−Σ‖F , a2 ≡
(
(C1+C2)/C1

)
Σ2maxd(x,u)2, and b≡

(
(C1+C2)

√
r/C1ε

)
‖ZE‖2. The above

inequality then takes the form

x2 ≤ a2+b
√
x2+a2 ≤ a2+ab+bx ,

which implies our claim x≤ a+b.
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The singular value bounds (10) and (11) follow by triangular inequality. For instance

σmin(S)≥ Σmin−CΣmaxd(x,u)−C
√
r
ε
‖ZE‖2 .

which implies the inequality (11) for d(x,u) ≤ δ = Σmin/C0Σmax and C0 large enough. An analo-
gous argument proves Eq. (10).

3.4 Proof of Lemma 5

Without loss of generality we will assume δ≤ 1,C2 ≥ 1 and
√
r
ε

‖ZE‖2 ≤ Σmin , (19)

because otherwise the lower bound (12) is trivial for all d(x,u)≤ δ.
Denote by t 5→ x(t), t ∈ [0,1], the geodesic on M(m,n) such that x(0) = u and x(1) = x,

parametrized proportionally to the arclength. Let ŵ = ẋ(1) be its final velocity, with ŵ = (Ŵ , Q̂).
Obviously ŵ ∈ Tx (with Tx the tangent space ofM(m,n) at x) and

1
m
‖Ŵ‖2+

1
n
‖Q̂‖2 = d(x,u)2,

because t 5→ x(t) is parametrized proportionally to the arclength.
Explicit expressions for ŵ can be obtained in terms of w ≡ ẋ(0) = (W,Q) (Keshavan et al.,

2010). If we letW = LΘRT be the singular value decomposition ofW , we obtain

Ŵ =−URΘsinΘRT +LΘcosΘRT . (20)

It was proved in Keshavan et al. (2010) that 〈gradG(x), ŵ〉 ≥ 0. It is therefore sufficient to lower
bound the scalar product 〈gradF, ŵ〉. By computing the gradient of F we get

〈gradF(x), ŵ〉 = 〈PE(XSYT −N),(XSQ̂T +ŴSYT )〉
= 〈PE(XSYT −M),(XSQ̂T +ŴSYT )〉−〈PE(Z),(XSQ̂T +ŴSYT )〉
= 〈gradF0(x), ŵ〉−〈PE(Z),(XSQ̂T +ŴSYT )〉 (21)

where F0(x) is the cost function in absence of noise, namely

F0(X ,Y ) = min
S∈Rr×r

{
1
2 ∑
(i, j)∈E

(
(XSYT )i j−Mi j

)2
}

. (22)

As proved in Keshavan et al. (2010),

〈gradF0(x), ŵ〉 ≥Cnε
√
αΣ2mind(x,u)2 (23)

(see Lemma 9 in Appendix).
We are therefore left with the task of upper bounding 〈PE(Z),(XSQ̂T +ŴSYT )〉. Since XSQ̂T

has rank at most r, we have

〈PE(Z),XSQ̂T 〉 ≤
√
r‖ZE‖2 ‖XSQ̂T‖F .

2073



KESHAVAN, MONTANARI AND OH

Since XTX = mI, we get

‖XSQ̂T‖2F = mTr(STSQ̂T Q̂)≤ nασmax(S)2‖Q̂‖2F

≤ Cn2α
(
Σmax+

√
r
ε
‖ZE‖F

)2
d(x,u)2 (24)

≤ 4Cn2αΣ2max d(x,u)2 ,

where, in inequality (24), we used Corollary 3.1 and in the last step, we used Eq. (19). Proceeding
analogously for 〈PE(Z),ŴSYT 〉, we get

〈PE(Z),(XSQ̂T +ŴSYT )〉 ≤C′nΣmax
√
rα‖ZE‖2 d(x,u) .

Together with Eq. (21) and (23) this implies

〈gradF(x), ŵ〉 ≥C1nε
√
αΣ2mind(x,u)

{
d(x,u)−C2

√
rΣmax
εΣmin

‖ZE‖2
Σmin

}
,

which implies Eq. (12) by Cauchy-Schwartz inequality.

4. Proof of Theorem 1.3

Proof (Independent entries model ) We start with a claim that for any sampling set E, we have

‖Z̃E‖2 ≤ ‖ZE‖2 .

To prove this claim, let x∗ and y∗ be m and n dimensional vectors, respectively, achieving the opti-
mum in max‖x‖≤1,‖y‖≤1{xT Z̃Ey}, that is, such that ‖Z̃E‖2 = x∗T Z̃Ey∗. Recall that, as a result of the
trimming step, all the entries in trimmed rows and columns of Z̃E are set to zero. Then, there is no
gain in maximizing xT Z̃Ey to have a non-zero entry x∗i for i corresponding to the rows which are
trimmed. Analogously, for j corresponding to the trimmed columns, we can assume without loss of
generality that y∗j = 0. From this observation, it follows that x∗T Z̃Ey∗ = x∗TZEy∗, since the trimmed
matrix Z̃E and the sample noise matrix ZE only differ in the trimmed rows and columns. The claim
follows from the fact that x∗TZEy∗ ≤ ‖ZE‖2, for any x∗ and y∗ with unit norm.

In what follows, we will first prove that ‖ZE‖2 is bounded by the right-hand side of Eq. (4)
for any range of |E|. Due to the above observation, this implies that ‖Z̃E‖2 is also bounded by
Cσ

√
ε
√
α logn, where ε≡ |E|/

√
αn. Further, we use the same analysis to prove a tighter bound in

Eq. (5) when |E|≥ n logn.
First, we want to show that ‖ZE‖2 is bounded by Cσ

√
ε
√
α logn, and Zi j’s are i.i.d. random

variables with zero mean and sub-Gaussian tail with parameter σ2. The proof strategy is to show that
E
[
‖ZE‖2

]
is bounded, using the result of Seginer (2000) on expected norm of random matrices, and

use the fact that ‖ · ‖2 is a Lipschitz continuous function of its arguments together with concentration
inequality for Lipschitz functions on i.i.d. Gaussian random variables due to Talagrand (1996).

Note that ‖ · ‖2 is a Lipschitz function with a Lipschitz constant 1. Indeed, for any M and M′,∣∣‖M′‖2−‖M‖2
∣∣ ≤ ‖M′ −M‖2 ≤ ‖M′ −M‖F , where the first inequality follows from triangular

inequality and the second inequality follows from the fact that ‖ · ‖2F is the sum of the squared
singular values.
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To bound the probability of large deviation, we use the result on concentration inequality for
Lipschitz functions on i.i.d. sub-Gaussian random variables due to Talagrand (1996). For a 1-
Lipschitz function ‖ ·‖2 on m×n i.i.d. random variables ZEi j with zero mean, and sub-Gaussian tails
with parameter σ2,

P
(
‖ZE‖2−E[‖ZE‖2]> t

)
≤ exp

{
−

t2

2σ2
}
. (25)

Setting t =
√
8σ2 logn, this implies that ‖ZE‖2 ≤ E

[
‖Z‖2

]
+
√
8σ2 logn with probability larger

than 1−1/n4.
Now, we are left to bound the expectation E

[
‖ZE‖2

]
. First, we symmetrize the possibly asym-

metric random variables ZEi j to use the result of Seginer (2000) on expected norm of randommatrices
with symmetric random variables. Let Z′i j’s be independent copies of Zi j’s, and ξi j’s be independent
Bernoulli random variables such that ξi j = +1 with probability 1/2 and ξi j = −1 with probability
1/2. Then, by convexity of E

[
‖ZE −Z′E‖2|Z′E

]
and Jensen’s inequality,

E
[
‖ZE‖2

]
≤ E

[
‖ZE −Z′E‖2

]
= E

[
‖(ξi j(ZEi j−Z′Ei j ))‖2

]
≤ 2E

[
‖(ξi jZEi j)‖2

]
,

where (ξi jZEi j) denotes an m×nmatrix with entry ξi jZEi j in position (i, j). Thus, it is enough to show
that E

[
‖ZE‖2

]
is bounded byCσ

√
ε
√
α logn in the case of symmetric random variables Zi j’s.

To this end, we apply the following bound on expected norm of random matrices with i.i.d.
symmetric random entries, proved by Seginer (2000, Theorem 1.1).

E
[
‖ZE‖2

]
≤C

(
E
[
max
i∈[m]

‖ZEi•‖
]
+E

[
max
j∈[n]

‖ZE• j‖
])

, (26)

where ZEi• and ZE• j denote the ith row and jth column of A respectively. For any positive parameter
β, which will be specified later, the following is true.

E
[
max
j

‖ZE• j‖2
]
≤ βσ2ε

√
α+

∫ ∞

0
P
(
max
j

‖ZE• j‖2 ≥ βσ2ε
√
α+ z

)
dz . (27)

To bound the second term, we can apply union bound on each of the n columns, and use the follow-
ing bound on each column ‖ZE• j‖2 resulting from concentration of measure inequality for the i.i.d.
sub-Gaussian random matrix Z.

P

( m

∑
k=1

(ZEk j)2 ≥ βσ2ε
√
α+ z

)
≤ exp

{
−
3
8

(
(β−3)ε

√
α+

z
σ2

)}
. (28)

To prove the above result, we apply Chernoff bound on the sum of independent random vari-
ables. Recall that ZEk j = ξ̃k jZk j where ξ̃’s are independent Bernoulli random variables such that
ξ̃ = 1 with probability ε/

√
mn and zero with probability 1− ε/

√
mn. Then, for the choice of

λ= 3/8σ2 < 1/2σ2,

E

[
exp

(
λ

m

∑
k=1

(ξ̃k jZk j)2
)]

=
(
1−

ε√
mn

+
ε√
mn

E[eλZ
2
k j ]
)m

≤
(
1−

ε√
mn

+
ε√

mn(1−2σ2λ)

)m

= exp
{
m log

(
1+

ε√
mn

)}

≤ exp
{
ε
√
α
}
,
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where the first inequality follows from the definition of Zk j as a zero mean random variable with
sub-Gaussian tail, and the second inequality follows from log(1+ x) ≤ x. By applying Chernoff
bound, Eq. (28) follows. Note that an analogous result holds for the Euclidean norm on the rows
‖ZEi•‖2.

Substituting Eq. (28) and P
(
max j ‖ZE• j‖2 ≥ z

)
≤ mP

(
‖ZE• j‖2 ≥ z

)
in Eq. (27), we get

E
[
max
j

‖ZE• j‖2
]
≤ βσ2ε

√
α+

8σ2m
3

e−
3
8 (β−3)ε

√
α . (29)

The second term can be made arbitrarily small by taking β = C logn with large enough C. Since
E
[
max j ‖ZE• j‖

]
≤
√

E
[
max j ‖ZE• j‖2

]
, applying Eq. (29) with β=C logn in Eq. (26) gives

E
[
‖ZE‖2

]
≤Cσ

√
ε
√
α logn .

Together with Eq. (25), this proves the desired thesis for any sample size |E|.
In the case when |E|≥ n logn, we can get a tighter bound by similar analysis. Since ε≥C′ logn,

for some constantC′, the second term in Eq. (29) can be made arbitrarily small with a large constant
β. Hence, applying Eq. (29) with β=C in Eq. (26), we get

E
[
‖ZE‖2

]
≤Cσ

√
ε
√
α .

Together with Eq. (25), this proves the desired thesis for |E|≥ n logn.

Proof (Worst Case Model ) LetD be them×n all-ones matrix. Then for any matrix Z from the worst
case model, we have ‖Z̃E‖2 ≤ Zmax‖D̃E‖2, since xT Z̃Ey ≤ ∑i, j Zmax|xi|D̃E

i j|y j|, which follows from
the fact that Zi j’s are uniformly bounded. Further, D̃E is an adjacency matrix of a corresponding
bipartite graph with bounded degrees. Then, for any choice of E the following is true for all positive
integers k:

‖D̃E‖2k2 ≤ max
x,‖x‖=1

∣∣xT ((D̃E)T D̃E)kx
∣∣≤ Tr

(
((D̃E)T D̃E)k

)
≤ n(2ε)2k .

Now Tr
(
((D̃E)T D̃E)k

)
is the number of paths of length 2k on the bipartite graph with adjacency

matrix D̃E , that begin and end at i for every i ∈ [n]. Since this graph has degree bounded by 2ε, we
get

‖D̃E‖2k2 ≤ n(2ε)2k .

Taking k large, we get the desired thesis.
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Appendix A. Three Lemmas on the Noiseless Problem

Lemma 7 There exists numerical constants C0,C1,C2 such that the following happens. Assume
ε≥C0µ0r

√
αmax{ logn ; µ0r

√
α(Σmin/Σmax)4 } and δ≤ Σmin/(C0Σmax). Then,

C1
√
αΣ2min d(x,u)2+C1

√
α‖S0−Σ‖2F ≤

1
nε
F0(x)≤C2

√
αΣ2maxd(x,u)2 ,

for all x ∈ M(m,n)∩K (4µ0) such that d(x,u) ≤ δ, with probability at least 1− 1/n4. Here S0 ∈
Rr×r is the matrix realizing the minimum in Eq. (22).

Lemma 8 There exists numerical constants C0 and C such that the following happens. Assume
ε≥C0µ0r

√
α(Σmax/Σmin)2max{ logn ; µ0r

√
α(Σmax/Σmin)4 } and δ≤ Σmin/(C0Σmax). Then

‖grad F̃0(x)‖2 ≥Cnε2Σ4mind(x,u)2 ,

for all x ∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least 1−1/n4.

Lemma 9 Define ŵ as in Eq. (20). Then there exists numerical constants C0 and C such that the
following happens. Under the hypothesis of Lemma 8

〈gradF0(x), ŵ〉 ≥Cnε
√
αΣ2mind(x,u)2 ,

for all x ∈M(m,n)∩K (4µ0) such that d(x,u)≤ δ, with probability at least 1−1/n4.
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Abstract
Model selection strategies for machine learning algorithms typically involve the numerical opti-
misation of an appropriate model selection criterion, often based on an estimator of generalisation
performance, such as k-fold cross-validation. The error of such an estimator can be broken down
into bias and variance components. While unbiasedness is often cited as a beneficial quality of a
model selection criterion, we demonstrate that a low variance is at least as important, as a non-
negligible variance introduces the potential for over-fitting in model selection as well as in training
the model. While this observation is in hindsight perhaps rather obvious, the degradation in perfor-
mance due to over-fitting the model selection criterion can be surprisingly large, an observation that
appears to have received little attention in the machine learning literature to date. In this paper, we
show that the effects of this form of over-fitting are often of comparable magnitude to differences
in performance between learning algorithms, and thus cannot be ignored in empirical evaluation.
Furthermore, we show that some common performance evaluation practices are susceptible to a
form of selection bias as a result of this form of over-fitting and hence are unreliable. We dis-
cuss methods to avoid over-fitting in model selection and subsequent selection bias in performance
evaluation, which we hope will be incorporated into best practice. While this study concentrates
on cross-validation based model selection, the findings are quite general and apply to any model
selection practice involving the optimisation of a model selection criterion evaluated over a finite
sample of data, including maximisation of the Bayesian evidence and optimisation of performance
bounds.
Keywords: model selection, performance evaluation, bias-variance trade-off, selection bias, over-
fitting

1. Introduction

This paper is concerned with two closely related topics that form core components of best practice in
both the real world application of machine learning methods and the development of novel machine
learning algorithms, namely model selection and performance evaluation. The majority of machine
learning algorithms are based on some form of multi-level inference, where the model is defined
by a set of model parameters and also a set of hyper-parameters (Guyon et al., 2009), for example
in kernel learning methods the parameters correspond to the coefficients of the kernel expansion
and the hyper-parameters include the regularisation parameter, the choice of kernel function and
any associated kernel parameters. This division into parameters and hyper-parameters is typically
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performed for computational convenience; for instance in the case of kernel machines, for fixed
values of the hyper-parameters, the parameters are normally given by the solution of a convex
optimisation problem for which efficient algorithms are available. Thus it makes sense to take
advantage of this structure and fit the model iteratively using a pair of nested loops, with the hyper-
parameters adjusted to optimise a model selection criterion in the outer loop (model selection) and
the parameters set to optimise a training criterion in the inner loop (model fitting/training). In
our previous study (Cawley and Talbot, 2007), we noted that the variance of the model selection
criterion admitted the possibility of over-fitting during model selection as well as the more familiar
form of over-fitting that occurs during training and demonstrated that this could be ameliorated to
some extent by regularisation of the model selection criterion. The first part of this paper discusses
the problem of over-fitting in model selection in more detail, providing illustrative examples, and
describes how to avoid this form of over-fitting in order to gain the best attainable performance,
desirable in practical applications, and required for fair comparison of machine learning algorithms.

Unbiased and robust1 performance evaluation is undoubtedly the cornerstone of machine learn-
ing research; without a reliable indication of the relative performance of competing algorithms,
across a wide range of learning tasks, we cannot have the clear picture of the strengths and weak-
nesses of current approaches required to set the direction for future research. This topic is consid-
ered in the second part of the paper, specifically focusing on the undesirable optimistic bias that
can arise due to over-fitting in model selection. This phenomenon is essentially analogous to the
selection bias observed by Ambroise and McLachlan (2002) in microarray classification, due to
feature selection prior to performance evaluation, and shares a similar solution. We show that some,
apparently quite benign, performance evaluation protocols in common use by the machine learning
community are susceptible to this form of bias, and thus potentially give spurious results. In order
to avoid this bias, model selection must be treated as an integral part of the model fitting process and
performed afresh every time a model is fitted to a new sample of data. Furthermore, as the differ-
ences in performance due to model selection are shown to be often of comparable magnitude to the
difference in performance between learning algorithms, it seems no longer meaningful to evaluate
the performance of machine learning algorithms in isolation, and we should instead compare learn-
ing algorithm/model selection procedure combinations. However, this means that robust unbiased
performance evaluation is likely to require more rigorous and computationally intensive protocols,
such a nested cross-validation or “double cross” (Stone, 1974).

None of the methods or algorithms discussed in this paper are new; the novel contribution
of this work is an empirical demonstration that over-fitting at the second level of inference (i.e.,
model selection) can have a very substantial deleterious effect on the generalisation performance of
state-of-the-art machine learning algorithms. Furthermore the demonstration that this can lead to a
misleading optimistic bias in performance evaluation using evaluation protocols in common use in
the machine learning community is also novel. The paper is intended to be of some tutorial value in
promoting best practice in model selection and performance evaluation, however we also hope that
the observation that over-fitting in model selection is a significant problem will encourage much
needed algorithmic and theoretical development in this area.

The remainder of the paper is structured as follows: Section 2 provides a brief overview of the
kernel ridge regression classifier used as the base classifier for the majority of the experimental work

1. The term “robust” is used here to imply insensitivity to irrelevant experimental factors, such as the sampling and par-
titioning of the data to form training, validation and test sets; this is normally achieved by computationally expensive
resampling schemes, for example, cross-validation (Stone, 1974) and the bootstrap (Efron and Tibshirani, 1994).
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and Section 3 describes the data sets used. Section 4 demonstrates the importance of the variance
of the model selection criterion, as it can lead to over-fitting in model selection, resulting in poor
generalisation performance. A number of methods to avoid over-fitting in model selection are also
discussed. Section 5 shows that over-fitting in model selection can result in biased performance
evaluation if model selection is not viewed as an integral part of the modelling procedure. Two
apparently benign and widely used performance evaluation protocols are shown to be affected by
this problem. Finally, the work is summarised in Section 6.

2. Kernel Ridge Regression

In this section, we provide a brief overview of the Kernel Ridge Regression (KRR) classifier (Saun-
ders et al., 1998), also known as the Least-Squares Support Vector Machine (Suykens et al., 2002),
Regularised Least Squares (Rifkin and Lippert, 2007), Regularisation Network (Poggio and Girosi,
1990) etc., used as the base classifier in most of the empirical demonstrations in the sequel. Assume
we are given labeled training data,D = {(xi,yi)}!i=1, where xi ∈ X ⊂Rd is a vector of input features
describing the ith example and yi ∈ {−1,+1} is an indicator variable such that yi = +1 if the ith
example is drawn from the positive class, C+, and yi = −1 if from the negative class, C−. Further
let us assume there are !+ positive examples and !− = !− !+ negative examples. The Kernel Ridge
Regression classifier aims to construct a linear model f (x) = w · φ(x)+ b in a fixed feature space,
φ : X → F , that is able to distinguish between examples drawn from C− and C+, such that

x ∈
{

C+ if f (x)≥ 0
C− otherwise .

However, rather than specifying the feature space, F , directly, it is induced by a kernel function,
K : X ×X →R, giving the inner product between the images of vectors in the feature space, F , that
is, K (x,x′) = φ(x) ·φ(x′). A common kernel function, used throughout this study, is the Gaussian
radial basis function (RBF) kernel

K (x,x′) = exp
{

−η‖x− x′‖2
}

, (1)

where η is a kernel parameter controlling the sensitivity of the kernel function. However, the inter-
pretation of the kernel function as evaluating the inner product between points in an implied feature
space is valid for any kernel for which the kernel matrix K = [ki j =K (xi,x j)]!i, j=1 is positive definite
(Mercer, 1909), such that

aTKa> 0, ∀ a += 0.

The model parameters (w,b) are given by the minimum of a regularised (Tikhonov and Arsenin,
1977) least-squares loss function,

L =
1
2
‖w‖2+

1
2λ

!

∑
i=1

[yi−w ·φ(xi)−b]2 , (2)

where λ is a regularisation parameter controlling the bias-variance trade-off (Geman et al., 1992).
The accuracy of the kernel machine on test data is critically dependent on the choice of good values
for the hyper-parameters, in this case λ and η. The search for the optimal values for such hyper-
parameters is a process known as model selection. The representer theorem (Kimeldorf and Wahba,
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1971) states that the solution to this optimisation problem can be written as an expansion of the
form

w=
!

∑
i=1

αiφ(xi) =⇒ f (x) =
!

∑
i=1

αiK (xi,x)+b.

The dual parameters of the kernel machine, α, are then given by the solution of a system of linear
equations,

[

K+λI 1
1T 0

][

α
b

]

=

[

y
0

]

. (3)

where y = (y1,y2, . . . ,y!)T , which can be solved efficiently via Cholesky factorisation of K+ λI,
with a computational complexity of O(!3) operations (Suykens et al., 2002). The simplicity and
efficiency of the kernel ridge regression classifier makes it an ideal candidate for relatively small-
scale empirical investigations of practical issues, such as model selection.

2.1 Efficient Leave-One-Out Cross-Validation

Cross-validation (e.g., Stone, 1974) provides a simple and effective method for both model selec-
tion and performance evaluation, widely employed by the machine learning community. Under
k-fold cross-validation the data are randomly partitioned to form k disjoint subsets of approximately
equal size. In the ith fold of the cross-validation procedure, the ith subset is used to estimate the
generalisation performance of a model trained on the remaining k− 1 subsets. The average of
the generalisation performance observed over all k folds provides an estimate (with a slightly pes-
simistic bias) of the generalisation performance of a model trained on the entire sample. The most
extreme form of cross-validation, in which each subset contains only a single pattern is known as
leave-one-out cross-validation (Lachenbruch and Mickey, 1968; Luntz and Brailovsky, 1969). An
attractive feature of kernel ridge regression is that it is possible to perform leave-one-out cross-
validation in closed form, with minimal cost as a by-product of the training algorithm (Cawley and
Talbot, 2003). Let C represent the matrix on the left hand side of (3), then the residual error for the
ith training pattern in the ith fold of the leave-one-out process is given by,

r(−i)i = yi− ŷ(−i)i =
αi
C−1
ii

,

where ŷ(− j)
i is the output of the kernel ridge regression machine for the ith observation in the jth fold

of the leave-one-out procedure and C−1
ii is the ith element of the principal diagonal of the inverse

of the matrix C. Similar methods have been used in least-squares linear regression for many years,
(e.g., Stone, 1974; Weisberg, 1985). While the optimal model parameters of the kernel machine
are given by the solution of a simple system of linear equations, (3), some form of model selection
is required to determine good values for the hyper-parameters, θ = (λ,η), in order to maximise
generalisation performance. The analytic leave-one-out cross-validation procedure described here
can easily be adapted to form the basis of an efficient model selection strategy (cf. Chapelle et al.,
2002; Cawley and Talbot, 2003; Bo et al., 2006). In order to obtain a continuous model selection
criterion, we adopt Allen’s Predicted REsidual Sum-of-Squares (PRESS) statistic (Allen, 1974),

PRESS(θ) =
!

∑
i=1

[

r(−i)i

]2
.
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The PRESS criterion can be optimised efficiently using scaled conjugate gradient descent (Williams,
1991) or Nelder-Mead simplex (Nelder and Mead, 1965) procedures. For full details of the train-
ing and model selection procedures for the kernel ridge regression classifier, see Cawley (2006).
A public domain MATLAB implementation of the kernel ridge regression classifier, including au-
tomated model selection, is provided by the Generalised Kernel Machine (GKM) (Cawley et al.,
2007) toolbox.2

3. Data Sets used in Empirical Demonstrations

In this section, we describe the benchmark data sets used in this study to illustrate the problem
of over-fitting in model selection and to demonstrate the bias this can introduce into performance
evaluation.

3.1 A Synthetic Benchmark

A synthetic benchmark, based on that introduced by Ripley (1996), is used widely in the next
section to illustrate the nature of over-fitting in model selection. The data are drawn from four
spherical bivariate Gaussian distributions, with equal probability. All four Gaussians have a com-
mon variance, σ2 = 0.04. Patterns belonging to the positive classes are drawn from Gaussians
centered on [+0.4,+0.7] and [−0.3,+0.7]; the negative patterns are drawn from Gaussians cen-
tered on [−0.7,+0.3] and [+0.3,+0.3]. Figure 1 shows a realisation of the synthetic benchmark,
consisting of 256 patterns, showing the Bayes-optimal decision boundary and contours representing
an a-posteriori probability of belonging to the positive class of 0.1 and 0.9. The Bayes error for
this benchmark is approximately 12.38%. This benchmark is useful firstly as the Bayes optimal
decision boundary is known, but also because it provides an inexhaustible supply of data, allowing
the numerical approximation of various expectations.

3.2 A Suite of Benchmarks for Robust Performance Evaluation

In addition to illustrating the nature of over-fitting in model selection, we need to demonstrate that
it is a serious concern in practical applications and show that it can result in biased performance
evaluation if not taken into consideration. Table 1 gives the details of a suite of thirteen benchmark
data sets, introduced by Rätsch et al. (2001). Each benchmark is based on a data set from the
UCI machine learning repository, augmented by a set of 100 pre-defined partitions to form multiple
realisations of the training and test sets (20 in the case of the larger image and splice data sets).
The use of multiple benchmarks means that the evaluation is more robust as the selection of data
sets that provide a good match to the inductive bias of a particular classifier becomes less likely.
Likewise, the use of multiple partitions provides robustness against sensitivity to the sampling of
data to form training and test sets. Results on this suite of benchmarks thus provides a reasonable
indication of the magnitude of the effects of over-fitting in model selection that we might expect to
see in practice.

2. Toolbox can be found at http://theoval.cmp.uea.ac.uk/˜gcc/projects/gkm.
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Figure 1: Realisation of the Synthetic benchmark data set, with Bayes optimal decision bound-
ary (a) and kernel ridge regression classifier with an automatic relevance determination
(ARD) kernel where the hyper-parameters are tuned so as to minimise the true test MSE
(b).

Data Set Training Testing Number of Input
Patterns Patterns Replications Features

banana 400 4900 100 2
breast cancer 200 77 100 9
diabetis 468 300 100 8
flare solar 666 400 100 9
german 700 300 100 20
heart 170 100 100 13
image 1300 1010 20 18
ringnorm 400 7000 100 20
splice 1000 2175 20 60
thyroid 140 75 100 5
titanic 150 2051 100 3
twonorm 400 7000 100 20
waveform 400 4600 100 21

Table 1: Details of data sets used in empirical comparison.

4. Over-fitting in Model Selection

We begin by demonstrating that it is possible to over-fit a model selection criterion based on a finite
sample of data, using the synthetic benchmark problem, where ground truth is available. Here we
use “over-fitting in model selection” to mean minimisation of the model selection criterion beyond
the point at which generalisation performance ceases to improve and subsequently begins to decline.
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Figure 1 (b) shows the output of a kernel ridge regression classifier for the synthetic problem, with
the Automatic Relevance Determination (ARD) variant of the Gaussian radial basis function kernel,

K (x,x′) = exp

{

−
d

∑
i=1

ηi(xi− x′i)2
}

,

which has a separate scaling parameter, ηi, for each feature. A much larger training set of 4096
samples was used, and the hyper-parameters were tuned to minimise the true test mean squared
errors (MSE). The performance of this model achieved an error rate of 12.50%, which suggests that
a model of this form is capable of approaching the Bayes error rate for this problem, at least in
principle, and so there is little concern of model mis-specification.

     























     

























(a) (b)

Figure 2: Evolution of the expected four-fold cross-validation and true test mean squared error as a
function of the number of iterations (optimisation steps in the minimisation of the model
selection criterion) of the model selection process, for a kernel ridge regression classifier
trained on the synthetic benchmark data set (a) and (b) the evolution of those statistics
for a particular realisation of the data set.

A further one thousand independent realisations of this benchmark were generated, each consist-
ing of 64 samples. A kernel ridge regression classifier, based on the ARD kernel, was constructed for
each realisation, with the hyper-parameters tuned so as to minimise a four-fold cross-validation es-
timate of the mean squared error. The true generalisation performance of each model was estimated
numerically using the underlying generative model of the data set. Figure 2 (a) shows the expected
true test and cross-validation estimates of the mean squared error averaged over all 1000 realisations
of the benchmark. As would be expected, the cross-validation estimate of the mean squared error,
forming the model selection criterion, is monotonically decreasing. However, the expected value of
the true test MSE initially shows a decrease, as the hyper-parameters are modified in a manner that
provides genuine improvements in generalisation, but after a relatively short time (approximately
30–40 iterations), the test error begins to climb slowly once more as the hyper-parameters are tuned
in ways that exploit the meaningless statistical peculiarities of the sample. This produces a close
analog of the classic plot used to illustrate the nature of over-fitting in training, for example, Figure
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9.7 of the book by Bishop (1995). Figure 2 (b) shows the same statistics for one particular realisation
of the data, demonstrating that the over-fitting can in some cases be quite substantial, clearly in this
case some form of early-stopping in the model selection process would have resulted in improved
generalisation. Having demonstrated that the classic signature of over-fitting during training is also
apparent in the evolution of cross-validation and test errors during model selection, we discuss in
the next section the origin of this form of over-fitting in terms of the bias and variance of the model
selection criterion.

4.1 Bias and Variance in Model Selection

Model selection criteria are generally based on an estimator of generalisation performance evaluated
over a finite sample of data, this includes resampling methods, such as split sample estimators,
cross-validation (Stone, 1974) and bootstrap methods (Efron and Tibshirani, 1994), but also more
loosely, the Bayesian evidence (MacKay, 1992; Rasmussen and Williams, 2006) and theoretical
performance bounds such as the radius-margin bound (Vapnik, 1998). The error of an estimator can
be decomposed into two components, bias and variance. Let G(θ) represent the true generalisation
performance of a model with hyper-parameters θ, and g(θ;D) be an estimate of generalisation
performance evaluated over a finite sample, D , of n patterns. The expected squared error of the
estimator can then be written in the form (Geman et al., 1992; Duda et al., 2001),

ED
{

[g(θ;D)−G(θ)]2
}

= [ED {g(θ;D)−G(θ)}]2+ ED
{

[

g(θ;D)−ED ′

{

g(θ;D ′)
}]2

}

,

where ED{·} represents an expectation evaluated over independent samples, D , of size n. The first
term, the squared bias, represents the difference between the expected value of the estimator and the
unknown value of the true generalisation error. The second term, known as the variance, reflects
the variability of the estimator around its expected value due to the sampling of the data D on
which it is evaluated. Clearly if the expected squared error is low, we may reasonably expect g(·) to
perform well as a model selection criterion. However, in practice, the expected squared error may
be significant, in which case, it is interesting to ask whether the bias or the variance component is
of greatest importance in reliably achieving optimal generalisation.

It is straightforward to demonstrate that leave-one-out cross-validation provides an almost un-
biased estimate of the true generalisation performance (Luntz and Brailovsky, 1969), and this is
often cited as being an advantageous property of the leave-one-out estimator in the setting of model
selection (e.g., Vapnik, 1998; Chapelle et al., 2002). However, for the purpose of model selection,
rather than performance evaluation, unbiasedness per se is relatively unimportant, instead the pri-
mary requirement is merely for the minimum of the model selection criterion to provide a reliable
indication of the minimum of the true test error in hyper-parameter space. This point is illustrated
in Figure 3, which shows a hypothetical example of a model selection criterion that is unbiased (by
construction) (a) and another that is clearly biased (b). Unbiasedness provides the assurance that
the minimum of the expected value of the model selection criterion, ED{g(θ;D)} coincides with
the minimum of the test error, G(θ). However, in practice, we have only a finite sample of data, Di,
over which to evaluate the model selection criterion, and so it is the minimum of g(θ;Di) that is of
interest. In Figure 3 (a), it can be seen that while the estimator is unbiased, it has a high variance,
and so there is a large spread in the values of θ at which the minimum occurs for different samples
of data, and so g(θ;Di) is likely to provide a poor model selection criterion in practice. On the other
hand, Figure 3 (b) shows a criterion with lower variance, and hence is the better model selection
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criterion, despite being biased, as the minima of g′(θ;Di) for individual samples lie much closer
to the minimum of the true test error. This demonstrates that while unbiasedness is reassuring, as
it means that the form of the model selection criterion is correct on average, the variance of the
criterion is also vitally important as it is this that ensures that the minimum of the selection criterion
evaluated on a particular sample will provide good generalisation.
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θ

θ

     


















θ


θ

θ

(a) (b)

Figure 3: Hypothetical example of an unbiased (a) and a biased (b) model selection criterion. Note
that the biased model selection criterion (b) is likely to provide the more effective model
selection criterion as it has a lower variance, even though it is significantly biased. For
clarity, the true error rate and the expected value of the model selection criteria are shown
with vertical displacements of −0.6 and −0.4 respectively.

4.2 The Effects of Over-fitting in Model Selection

In this section, we investigate the effect of the variance of the model selection criterion using a
more realistic example, again based on the synthetic benchmark, where the underlying generative
model is known and so we are able to evaluate the true test error. It is demonstrated that over-fitting
in model selection can cause both under-fitting and over-fitting of the training sample. A fixed
training set of 256 patterns is generated and used to train a kernel ridge regression classifier, using
the simple RBF kernel (1), with hyper-parameter settings defining a fine grid spanning reasonable
values of the regularisation and kernel parameters, λ and η respectively. The smoothed error rate
(Bo et al., 2006),

SER(θ) =
1
2n

n

∑
i=1

[1− yi tanh{γ f (xi)}]

is used as the statistic of interest, in order to improve the clarity of the figures, where γ is a param-
eter controlling the amount of smoothing applied (γ = 8 is used throughout, however the precise
value is not critical). Figure 4 (a) shows the true test smoothed error rate as a function of the hyper-
parameters. As these are both scale parameters, a logarithmic representation is used for both axes.
The true test smoothed error rate is an approximately unimodal function of the hyper-parameters,
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with a single distinct minimum, indicating the hyper-parameter settings giving optimal generalisa-
tion.
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Figure 4: Plot of the true test smoothed error rate (a) and mean smoothed error rate over 100 random
validation sets of 64 samples (b), for a kernel ridge regression classifier as a function of
the hyper-parameters. In each case, the minimum is shown by a yellow cross, +.

In practical applications, however, the true test error is generally unknown, and so we must rely
on an estimator of some sort. The simplest estimator for use in model selection is the error computed
over an independent validation set, that is, the split-sample estimator. It seems entirely reasonable
to expect the split-sample estimator to be unbiased. Figure 4 (b) shows a plot of the mean smoothed
error rate using the split-sample estimator, over 100 random validation sets, each of which consists
of 64 patterns. Note that the same fixed training set is used in each case. This plot is very similar
to the true smoothed error, shown in Figure 4 (a), demonstrating that the split sample estimator is
indeed approximately unbiased.

While the split-sample estimator is unbiased, it may have a high variance, especially as in this
case the validation set is (intentionally) relatively small. Figure 5 shows plots of the split-sample
estimate of the smoothed error rate for six selected realisations of a validation set of 64 patterns.
Clearly, the split-sample error estimate is no longer as smooth, or indeed unimodal. More impor-
tantly, the hyper-parameter values selected by minimising the validation set error, and therefore the
true generalisation performance, depends on the particular sample of data used to form the valida-
tion set. Figure 6 shows that the variance of the split-sample estimator can result in models ranging
from severely under-fit (a) to severely over-fit (f), with variations in between these extremes.

Figure 7 (a) shows a scatter plot of the validation set and true error rates for kernel ridge re-
gression classifiers for the synthetic benchmark, with split-sample based model selection using 100
random realisations of the validation set. Clearly, the split-sample based model selection procedure
normally performs well. However, there is also significant variation in performance with different
samples forming the validation set. We can also see that the validation set error is strongly biased,
having been directly minimised during model selection, and (of course) should not be used for
performance estimation.
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Figure 5: Contour plot of the split-sample estimate of the smoothed error rate for a kernel ridge
regression machine as a function of the hyper-parameters, for six random realisations of
the validation set. The minimum is shown by a cross, +.

Note that in this section we have deliberately employed a split-sample based model selection
strategy with a relatively high variance, due to the limited size of the validation set. A straightfor-
ward way to reduce the variance of the model selection criterion is simply to increase the size of the
validation sample over which it is evaluated. Figure 8 shows the optimal hyper-parameter settings
obtained using 100 realisations of validation sets of 64 (a) and 256 (b) samples. It can be clearly
seen that the use of a larger validation set has resulted in a tighter clustering of hyper-parameter
values around the true optimum, note also that the hyper-parameters are concentrated along the bot-
tom of a broad valley in hyper-parameter space, so even when the selected values are different from
the optimal value, they still lie in positions giving good generalisation. This is further illustrated
in Figure 7 (b), where the true smoothed error rates are much more tightly clustered, with fewer
outliers, for the larger validation sets than obtained using smaller validation sets, shown in Figure 7
(a).

The variation in performance for different realisations of the benchmark suggests that evaluation
of machine learning algorithms should always involve multiple partitions of the data to form train-
ing/validation and test sets, as the sampling of data for a single partition of the data might arbitrarily
favour one classifier over another. This is illustrated in Figure 9, which shows the test error rates for
Gaussian Process and Kernel Logistic Regression classifiers (GPC and KLR respectively), for 100
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(d) (e) (f)

Figure 6: Kernel ridge regression models of the synthetic benchmark, using hyper-parameters se-
lected according to the smoothed error rate over six random realisations of the validation
set (shown in Figure 5). The variance of the model selection criterion can result in models
ranging from under-fit, (a) and (b), through well-fitting, (c) and (d), to over-fit (e) and (f).

random realisations of the banana benchmark data set used in Rätsch et al. (2001) (see Section 5.1
for details). On 64 realisations of the data GPC out-performs KLR, but on 36 KLR out-performs
GPC, even though the GPC is better on average (although the difference is not statistically signif-
icant in this case). If the classifiers had been evaluated on only one of the latter 36 realisations, it
might incorrectly be concluded that the KLR classifier is superior to the GPC for that benchmark.
However, it should also be noted that a difference in performance between two algorithms is un-
likely to be of practical significance, even if it is statistically significant, if it is smaller than the
variation in performance due to the random sampling of the data, as it is probable that a greater
improvement in performance would be obtained by further data collection than by selection of the
optimal classifier.

4.3 Is Over-fitting in Model Selection Really a Genuine Concern in Practice?

In the preceding part of this section we have demonstrated the deleterious effects of the variance
of the model selection criterion using a synthetic benchmark data set, however this is not sufficient
to establish that over-fitting in model selection is actually a genuine concern in practical applica-
tions or in the development of machine learning algorithms. Table 2 shows results obtained using
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Figure 7: Scatter plots of the true test smoothed error rate as a function of the validation set
smoothed error rate for 100 randomly generated validation sets of (a) 64 and (b) 256
patterns.
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Figure 8: Contour plot of the mean validation set smoothed error rate over 100 randomly generated
validation sets of (a) 64 and (b) 256 patterns. The minimum of the mean validation set
error is marked by a large (yellow) cross, and the minimum for each realisation of the
validation set marked by a small (red) cross.

kernel ridge regression (KRR) classifiers, with RBF and ARD kernel functions over the thirteen
benchmarks described in Section 3.2. In each case, model selection was performed independently
for each realisation of each benchmark by minimising the PRESS statistic using the Nelder-Mead
simplex method (Nelder and Mead, 1965). For the majority of the benchmarks, a significantly lower
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Figure 9: Scatter plots of the test set error for Gaussian process and Kernel Logistic regression
classifiers (GPC and KLR respectively) for 100 realisations of the banana benchmark.

test error is achieved (according to the Wilcoxon signed ranks test) using the basic RBF kernel; the
ARD kernel only achieves statistical superiority on one of the thirteen (image). This is perhaps a
surprising result as the models are nested, the RBF kernel being a special case of the ARD kernel,
so the optimal performance that can be achieved with the ARD kernel is guaranteed to be at least
equal to the performance achievable using the RBF kernel. The reason for the poor performance of
the ARD kernel in practice is because there are many more kernel parameters to be tuned in model
selection and so many degrees of freedom available in optimising the model selection criterion. If
the criterion used has a non-negligible variance, this includes optimisations exploiting the statistical
peculiarities of the particular sample of data over which it is evaluated, and hence there will be more
scope for over-fitting. Table 2 also shows the mean value of the PRESS statistic, following model
selection, the fact that the majority of ARD models display a lower value for the PRESS statistic
than the corresponding RBF model, while exhibiting a higher test error rate, is a strong indication
of over-fitting the model selection criterion. This is a clear demonstration that over-fitting in model
selection can be a significant problem in practical applications, especially where there are many
hyper-parameters or where only a limited supply of data is available.

Table 3 shows the results of the same experiment performed using expectation-propagation
based Gaussian process classifiers (EP-GPC) (Rasmussen and Williams, 2006), where the hyper-
parameters are tuned independently for each realisation, for each benchmark individually by max-
imising the Bayesian evidence. While the leave-one-out cross-validation based PRESS criterion
is known to exhibit a high variance, the variance of the evidence (which is also evaluated over a
finite sample of data) is discussed less often. We find again here that the RBF covariance function
often out-performs the more general ARD covariance function, and again the test error rate is often
negatively correlated with the evidence for the models. This indicates that over-fitting the evidence
is also a significant practical problem for the Gaussian process classifier.
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Data Set Test Error Rate PRESS
RBF ARD RBF ARD

banana 10.610 ± 0.051 10.638 ± 0.052 60.808 ± 0.636 60.957 ± 0.624
breast cancer 26.727 ± 0.466 28.766 ± 0.391 70.632 ± 0.328 66.789 ± 0.385
diabetis 23.293 ± 0.169 24.520 ± 0.215 146.143 ± 0.452 141.465 ± 0.606
flare solar 34.140 ± 0.175 34.375 ± 0.175 267.332 ± 0.480 263.858 ± 0.550
german 23.540 ± 0.214 25.847 ± 0.267 228.256 ± 0.666 221.743 ± 0.822
heart 16.730 ± 0.359 22.810 ± 0.411 42.576 ± 0.356 37.023 ± 0.494
image 2.990 ± 0.159 2.188 ± 0.134 74.056 ± 1.685 44.488 ± 1.222
ringnorm 1.613 ± 0.015 2.750 ± 0.042 28.324 ± 0.246 27.680 ± 0.231
splice 10.777 ± 0.144 9.943 ± 0.520 186.814 ± 2.174 130.888 ± 6.574
thyroid 4.747 ± 0.235 4.693 ± 0.202 9.099 ± 0.152 6.816 ± 0.164
titanic 22.483 ± 0.085 22.562 ± 0.109 48.332 ± 0.622 47.801 ± 0.623
twonorm 2.846 ± 0.021 4.292 ± 0.086 32.539 ± 0.279 35.620 ± 0.490
waveform 9.792 ± 0.045 11.836 ± 0.085 61.658 ± 0.596 56.424 ± 0.637

Table 2: Error rates of kernel ridge regression (KRR) classifier over thirteen benchmark data sets
(Rätsch et al., 2001), using both standard radial basis function (RBF) and automatic rel-
evance determination (ARD) kernels. Results shown in bold indicate an error rate that is
statistically superior to that obtained with the same classifier using the other kernel func-
tion, or a PRESS statistic that is significantly lower.

Data Set Test Error Rate -Log Evidence
RBF ARD RBF ARD

banana 10.413 ± 0.046 10.459 ± 0.049 116.894 ± 0.917 116.459 ± 0.923
breast cancer 26.506 ± 0.487 27.948 ± 0.492 110.628 ± 0.366 107.181 ± 0.388
diabetis 23.280 ± 0.182 23.853 ± 0.193 230.211 ± 0.553 222.305 ± 0.581
flare solar 34.200 ± 0.175 33.578 ± 0.181 394.697 ± 0.546 384.374 ± 0.512
german 23.363 ± 0.211 23.757 ± 0.217 359.181 ± 0.778 346.048 ± 0.835
heart 16.670 ± 0.290 19.770 ± 0.365 73.464 ± 0.493 67.811 ± 0.571
image 2.817 ± 0.121 2.188 ± 0.076 205.061 ± 1.687 123.896 ± 1.184
ringnorm 4.406 ± 0.064 8.589 ± 0.097 121.260 ± 0.499 91.356 ± 0.583
splice 11.609 ± 0.180 8.618 ± 0.924 365.208 ± 3.137 242.464 ± 16.980
thyroid 4.373 ± 0.219 4.227 ± 0.216 25.461 ± 0.182 18.867 ± 0.170
titanic 22.637 ± 0.134 22.725 ± 0.133 78.952 ± 0.670 78.373 ± 0.683
twonorm 3.060 ± 0.034 4.025 ± 0.068 45.901 ± 0.577 42.044 ± 0.610
waveform 10.100 ± 0.047 11.418 ± 0.091 105.925 ± 0.954 91.239 ± 0.962

Table 3: Error rates of expectation propagation based Gaussian process classifiers (EP-GPC), using
both standard radial basis function (RBF) and automatic relevance determination (ARD)
kernels. Results shown in bold indicate an error rate that is statistically superior to that
obtained with the same classifier using the other kernel function or evidence that is signif-
icantly higher.
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4.4 Avoiding Over-fitting in Model Selection

It seems reasonable to suggest that over-fitting in model selection is possible whenever a model
selection criterion evaluated over a finite sample of data is directly optimised. Like over-fitting in
training, over-fitting in model selection is likely to be most severe when the sample of data is small
and the number of hyper-parameters to be tuned is relatively large. Likewise, assuming additional
data are unavailable, potential solutions to the problem of over-fitting the model selection criterion
are likely to be similar to the tried and tested solutions to the problem of over-fitting the training
criterion, namely regularisation (Cawley and Talbot, 2007), early stopping (Qi et al., 2004) and
model or hyper-parameter averaging (Cawley, 2006; Hall and Robinson, 2009). Alternatively, one
might minimise the number of hyper-parameters, for instance by treating kernel parameters as sim-
ply parameters and optimising them at the first level of inference and have a single regularisation
hyper-parameter controlling the overall complexity of the model. For very small data sets, where
the problem of over-fitting in both learning and model selection is greatest, the preferred approach
would be to eliminate model selection altogether and opt for a fully Bayesian approach, where the
hyper-parameters are integrated out rather than optimised (e.g., Williams and Barber, 1998). An-
other approach is simply to avoid model selection altogether using an ensemble approach, for exam-
ple the Random Forest (RF) method (Breiman, 2001). However, while such methods often achieve
state-of-the-art performance, it is often easier to build expert knowledge into hierarchical models,
for example through the design of kernel or covariance functions, so unfortunately approaches such
as the RF are not a panacea.

While the problem of over-fitting in model selection is of the same nature as that of over-fitting
at the first level of inference, the lack of mathematical tractability appears to have limited the the-
oretical analysis of model selection via optimisation of a model selection criterion. For example,
regarding leave-one-out cross-validation, Kulkarni et al. (1998) comment “In spite of the practical
importance of this estimate, relatively little is known about its properties. The available theory is
especially poor when it comes to analysing parameter selection based on minimizing the deleted
estimate.” (our emphasis). While some asymptotic results are available (Stone, 1977; Shao, 1993;
Toussaint, 1974), these are not directly relevant to the situation considered here, where over-fitting
occurs due to optimising the values of hyper-parameters using a model selection criterion evaluated
over a finite, often quite limited, sample of data. Estimates of the variance of the cross-validation
error are available for some models (Luntz and Brailovsky, 1969; Vapnik, 1982), however Bengio
and Grandvalet (2004) have shown there is no unbiased estimate of the variance of (k-fold) cross-
validation. More recently bounds on the error of leave-one-out cross-validation based on the idea of
stability have been proposed (Kearns and Ron, 1999; Bousquet and Elisseeff, 2002; Zhang, 2003).
In this section, we have demonstrated that over-fitting in model selection is a genuine problem in
machine learning, and hence is likely to be an area that could greatly benefit from further theoretical
analysis.

5. Bias in Performance Estimation

Avoiding potentially significant bias in performance evaluation, arising due to over-fitting in model
selection, is conceptually straightforward. The key is to treat both training and model selection
together, as integral parts of the model fitting procedure and ensure they are never performed sepa-
rately at any point of the evaluation process. We present two examples of potentially biased evalua-
tion protocols that do not adhere to this principle. The scale of the bias observed on some data sets
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is much larger than the difference in performance between learning algorithms, and so one could
easily draw incorrect inferences based on the results obtained. This highlights the importance of
this issue in empirical studies. We also demonstrate that the magnitude of the bias depends on the
learning and model selection algorithms involved in the comparison and that combinations that are
more prone to over-fitting in model selection are favored by biased protocols. This means that stud-
ies based on potentially biased protocols are not internally consistent, even if it is acknowledged
that a bias with respect to other studies may exist.

5.1 An Unbiased Performance Evaluation Methodology

We begin by describing an unbiased performance protocol, that correctly accounts for any over-
fitting that may occur in model selection. Three classifiers are evaluated using an unbiased proto-
col, in which model selection is performed separately for each realisation of each data set. This
is termed the “internal” protocol as the model selection process is performed independently within
each fold of the resampling procedure. In this way, the performance estimate includes a component
properly accounting for the error introduced by over-fitting the model selection criterion. The clas-
sifiers used were as follows: RBF-KRR—kernel ridge regression with a radial basis function kernel,
with model selection based on minimisation of Allen’s PRESS statistic, as described in Section 2.
RBF-KLR—kernel logistic regression with a radial basis function kernel and model selection based
on an approximate leave-one-out cross-validation estimate of the log-likelihood (Cawley and Tal-
bot, 2008). EP-GPC—expectation-propagation based Gaussian process classifier, with an isotropic
squared exponential covariance function, with model selection based on maximising the marginal
likelihood (e.g., Rasmussen and Williams, 2006). The mean error rates obtained using these classi-
fiers under an unbiased protocol are shown in Table 4. In this case, the mean ranks of all methods
are only minimally different, and so there is little if any evidence for a statistically significant superi-
ority of any of the classifiers over any other. Figure 10 shows a critical difference diagram (Demšar,
2006), providing a graphical illustration of this result. A critical difference diagram displays the
mean rank of a set of classifiers over a suite of benchmark data sets, with cliques of classifiers
with statistically similar performance connected by a bar. The critical difference in average ranks
required for a statistical superiority of one classifier over another is also shown, labelled “CD”.



  

 
 



Figure 10: Critical difference diagram (Demšar, 2006) showing the average ranks of three classi-
fiers with internal model selection protocol.
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Data Set GPC KLR KRR
(internal) (internal) (internal)

banana 10.413 ± 0.046 10.567 ± 0.051 10.610 ± 0.051
breast cancer 26.506 ± 0.487 26.636 ± 0.467 26.727 ± 0.466
diabetis 23.280 ± 0.182 23.387 ± 0.180 23.293 ± 0.169
flare solar 34.200 ± 0.175 34.197 ± 0.170 34.140 ± 0.175
german 23.363 ± 0.211 23.493 ± 0.208 23.540 ± 0.214
heart 16.670 ± 0.290 16.810 ± 0.315 16.730 ± 0.359
image 2.817 ± 0.121 3.094 ± 0.130 2.990 ± 0.159
ringnorm 4.406 ± 0.064 1.681 ± 0.031 1.613 ± 0.015
splice 11.609 ± 0.180 11.248 ± 0.177 10.777 ± 0.144
thyroid 4.373 ± 0.219 4.293 ± 0.222 4.747 ± 0.235
titanic 22.637 ± 0.134 22.473 ± 0.103 22.483 ± 0.085
twonorm 3.060 ± 0.034 2.944 ± 0.042 2.846 ± 0.021
waveform 10.100 ± 0.047 9.918 ± 0.043 9.792 ± 0.045

Table 4: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets: The
results for each method are presented in the form of the mean error rate over test data for
100 realisations of each data set (20 in the case of the image and splice data sets), along
with the associated standard error.

It is not unduly surprising that there should be little evidence for any statistically significant
superiority, as all three methods give rise to structurally similar models. The models though dif-
fer significantly in their model selection procedures, the EP-GPC is based on stronger statistical
assumptions, and so can be expected to excel where these assumptions are justified, but poorly
where the model is mis-specified (e.g., the ringnorm benchmark). The cross-validation based model
selection procedures, on the other hand, are more pragmatic and being based on much weaker as-
sumptions might be expected to provide a more consistent level of accuracy.

5.2 An Example of Biased Evaluation Methodology

The performance evaluation protocol most often used in conjunction with the suite of benchmark
data sets, described in Section 3.2, seeks to perform model selection independently for only the
first five realisations of each data set. The median values of the hyper-parameters over these five
folds are then determined and subsequently used to evaluate the error rates for each realisation. This
“median” performance evaluation protocol was introduced in the same paper that popularised this
suite of benchmark data sets (Rätsch et al., 2001) and has been widely adopted (e.g., Mika et al.,
1999; Weston, 1999; Billings and Lee, 2002; Chapelle et al., 2002; Chu et al., 2003; Stewart, 2003;
Mika et al., 2003; Gold et al., 2005; Peña Centeno and D., 2006; Andelić et al., 2006; An et al.,
2007; Chen et al., 2009). The original motivation for this protocol was that the internal model
selection protocol was prohibitively expensive using workstations available (Rätsch et al., 2001),
which was perfectly reasonable at the time, but is no longer true.3 The use of the median, however,
can be expected to introduce an optimistic bias into the performance estimates obtained using this
“median” protocol. Firstly all of the training data comprising the first five realisations have been

3. All of the experimental results presented in this paper were obtained using a single modern Linux workstation.
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Data Set KRR KRR Bias
(internal) (median)

banana 10.610 ± 0.051 10.384 ± 0.042 0.226 ± 0.034
breast cancer 26.727 ± 0.466 26.377 ± 0.441 0.351 ± 0.195
diabetis 23.293 ± 0.169 23.150 ± 0.157 0.143 ± 0.074
flare solar 34.140 ± 0.175 34.013 ± 0.166 0.128 ± 0.082
german 23.540 ± 0.214 23.380 ± 0.220 0.160 ± 0.067
heart 16.730 ± 0.359 15.720 ± 0.306 1.010 ± 0.186
image 2.990 ± 0.159 2.802 ± 0.129 0.188 ± 0.095
ringnorm 1.613 ± 0.015 1.573 ± 0.010 0.040 ± 0.010
splice 10.777 ± 0.144 10.763 ± 0.137 0.014 ± 0.055
thyroid 4.747 ± 0.235 4.560 ± 0.200 0.187 ± 0.100
titanic 22.483 ± 0.085 22.407 ± 0.102 0.076 ± 0.077
twonorm 2.846 ± 0.021 2.868 ± 0.017 -0.022 ± 0.014
waveform 9.792 ± 0.045 9.821 ± 0.039 -0.029 ± 0.020

Table 5: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets: The
results for each method are presented in the form of the mean error rate over test data for
100 realisations of each data set (20 in the case of the image and splice data sets), along
with the associated standard error.

used during the model selection process for the classifiers used in every fold of the re-sampling. This
means that some of the test data for each fold is no longer statistically “pure” as it has been seen
during model selection. Secondly, and more importantly, the median operation acts as a variance
reduction step, so the median of the five sets of hyper-parameters is likely to be better on average
than any of the five from which it is derived. Lastly, as the hyper-parameters are now fixed, there is
no longer scope for over-fitting the model selection criterion due to peculiarities of the sampling of
data for the training and test partitions in each realisation.

We begin by demonstrating that the results using the internal and median protocols are not com-
mensurate, and so the results obtained using different methods are not directly comparable. Table 5
shows the error rate obtained using the RBF-KRR classifier with the internal and median perfor-
mance evaluation protocols and the resulting bias, that is, the difference between the mean error
rates obtained with the internal and median protocols. It is clearly seen that the median protocol
introduces a positive bias on almost all benchmarks (twonorm and waveform being the exceptions)
and that the bias can be quite substantial on some benchmarks. Indeed, for several benchmarks,
breast cancer, german, heart and thyroid in particular, the bias is larger than the typical dif-
ference in performance between classifiers evaluated using an unbiased protocol. Demšar (2006)
recommends the Wilcoxon signed ranks test for determination of the statistical significance of the
superiority of one classifier over another over multiple data sets. Applying this test to the data shown
for EP-GPC (internal), RBF-KLR (internal) and RBF-KRR (median), from Tables 4 and 5, reveals
that the RBF-KRR (median) classifier is statistically superior to the remaining classifiers, at the 95%
level of significance. A critical difference diagram summarising this result is shown in Figure 12.
However, the difference in performance is entirely spurious as it is purely the result of reducing the
effects of over-fitting in model selection and does not reflect the true operational performance of
the combination of classifier and model selection method. It is clear then that results obtained using
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the internal and median protocols are not directly comparable, and so reliable inferences cannot be
drawn by comparison of results from different studies, using biased and unbiased protocols.

5.2.1 IS THE BIAS SOLELY DUE TO INADVERTENT RE-USE OF TEST SAMPLES?

One explanation for the observed bias of the median protocol is that some of the training samples for
the first five realisations of the benchmark, which have been used in tuning the hyper-parameters,
also appear in the test sets for other realisations of the benchmark used for performance analysis.
In this section, we demonstrate that this inadvertent re-use of test samples is not the only cause of
the bias. One hundred replications of the internal and median protocol were performed using the
synthetic benchmark, for which an inexhaustible supply of i.i.d. data is available. However, in
this case in each realisation, 100 training sets of 64 patterns and a large test set of 4096 samples were
generated, all mutually disjoint. This means the only remaining source of bias is the amelioration
of over-fitting in model selection by the reduction of variance by taking the median of the hyper-
parameters over the first five folds (cf. Hall and Robinson, 2009). Figure 11 shows the mean test
errors for the internal and median protocols over 100 replications, showing a very distinct optimistic
bias in the median protocol (statistically highly significant according to the Wilcoxon signed ranks
test, p< 0.001), even though there is absolutely no inadvertent re-use of test data.

   






























Figure 11: Mean error rates for the internal and median evaluation protocols for the synthetic
benchmark, without inadvertent re-use of test data.

5.2.2 IS THE MEDIAN PROTOCOL INTERNALLY CONSISTENT?

Having established that the median protocol introduces an optimistic bias, and that the results ob-
tained using the internal and median protocols do not give comparable results, we next turn our
attention to whether the median protocol is internally consistent, that is, does the median protocol
give the correct rank order of the classifiers? Table 6 shows the performance of three classifiers
evaluated using the median protocol; the corresponding critical difference diagram is shown in Fig-
ure 13. In this case the difference in performance between classifiers is not statistically significant
according to the Friedman test, however it can clearly be seen that the bias of the median protocol
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Data Set EP-GPC RBF-KLR RBF-KRR
(median) (median) (median)

banana 10.371 ± 0.045 10.407 ± 0.047 10.384 ± 0.042
breast cancer 26.117 ± 0.472 26.130 ± 0.474 26.377 ± 0.441
diabetis 23.333 ± 0.191 23.300 ± 0.177 23.150 ± 0.157
flare solar 34.150 ± 0.170 34.212 ± 0.176 34.013 ± 0.166
german 23.160 ± 0.216 23.203 ± 0.218 23.380 ± 0.220
heart 16.400 ± 0.273 16.120 ± 0.295 15.720 ± 0.306
image 2.851 ± 0.102 3.030 ± 0.120 2.802 ± 0.129
ringnorm 4.400 ± 0.064 1.574 ± 0.011 1.573 ± 0.010
splice 11.607 ± 0.184 11.172 ± 0.168 10.763 ± 0.137
thyroid 4.307 ± 0.217 4.040 ± 0.221 4.560 ± 0.200
titanic 22.490 ± 0.095 22.591 ± 0.135 22.407 ± 0.102
twonorm 3.241 ± 0.039 3.068 ± 0.033 2.868 ± 0.017
waveform 10.163 ± 0.045 9.888 ± 0.042 9.821 ± 0.039

Table 6: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets: The
results for each method are presented in the form of the mean error rate over test data for
100 realisations of each data set (20 in the case of the image and splice data sets), along
with the associated standard error.

has favored one classifier, namely the RBF-KRR, much more strongly than the others. It seems
feasible then that the bias of the median protocol may be sufficient in other cases to amplify a small
difference in performance, due perhaps to an accidentally favorable choice of data sets, to the point
where it spuriously appears to be statistically significant. This suggests that the median protocol
may be unreliable and perhaps should be deprecated.



  

 
 



Figure 12: Critical difference diagram (Demšar, 2006) showing the average ranks of three clas-
sifiers, EP-GPC and RBF-KLR with internal model selection protocol and RBF-KLR
using the optimistically biased median protocol (cf. Figure 10).

Next, we perform a statistical analysis to determine whether there is a statistically significant
difference in the magnitude of the biases introduced by the median protocol for different classifiers,
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Data Set RBF-KRR RBF-EP-GPC Wilcoxon
bias bias p-value

banana 0.226 ± 0.034 0.043 ± 0.012 < 0.05
breast cancer 0.351 ± 0.195 0.390 ± 0.186 0.934
diabetis 0.143 ± 0.074 -0.053 ± 0.051 < 0.05
flare solar 0.128 ± 0.082 0.050 ± 0.090 0.214
german 0.160 ± 0.067 0.203 ± 0.051 0.458
heart 1.010 ± 0.186 0.270 ± 0.120 < 0.05
image 0.188 ± 0.095 -0.035 ± 0.032 0.060
ringnorm 0.040 ± 0.010 0.006 ± 0.002 < 0.05
splice 0.014 ± 0.055 0.002 ± 0.014 0.860
thyroid 0.187 ± 0.100 0.067 ± 0.064 0.159
titanic 0.076 ± 0.077 0.147 ± 0.090 0.846
twonorm -0.022 ± 0.014 -0.180 ± 0.032 < 0.05
waveform -0.029 ± 0.020 -0.064 ± 0.022 0.244

Table 7: Results of a statistical analysis of the bias introduced by the median protocol into the test
error rates for RBF-KRR and RBF-EP-GPC, using the Wilcoxon signed ranks test.



  

 
 



Figure 13: Critical difference diagram showing the average ranks of three classifiers with the me-
dian model selection protocol (cf. Figure 10).

for each benchmark data set.4 First the bias introduced by the use of the median protocol was
computed for the RBF KRR and RBF EP-GPC classifiers as the difference between the test set error
estimated by the internal and median protocols. The Wilcoxon signed rank test was then used to
determine whether there is a statistically significant difference in the bias, over the 100 realisations
of the benchmark (20 in the case of the image and splice benchmarks) . The results obtained
are shown in Table 7, the p-value is below 0.05 for five of the thirteen benchmarks, indicating
that in each case the median protocol is significantly biased in favour of the RBF KRR classifier.
Clearly, as the median protocol does not impose a commensurate bias on the estimated test error
rates for different classifiers, it does not provide a reliable protocol for comparing the performance
of machine learning algorithms.

4. We are grateful to an anonymous reviewer for suggesting this particular form of analysis.
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(a) (b)

Figure 14: Mean ranks of three classifiers as a function of the number of folds used in the re-
peated split sample model selection procedure employed by the kernel ridge regression
(RBF-KRR) machine, using (a) the unbiased internal protocol and (b) the biasedmedian
protocol.

In the final illustration of this section, we show that the magnitude of the bias introduced by
the median protocol is greater for model selection criteria with a high variance. This means the
median protocol favors most the least reliable model selection procedures and as a result does not
provide a reliable indicator even of relative performance of classifier-model selection procedures
combinations. Again the RBF-KRR model is used as the base classifier, however in this case a
repeated split-sample model selection criterion is used, where the data are repeatedly split at random
to form disjoint training and validation sets in proportions 9:1, and the hyper-parameters tuned to
optimise the average mean-squared error over the validation sets. In this way, the variance of the
model selection criterion can be controlled by varying the number of repetitions, with the variance
decreasing as the number of folds becomes larger. Figure 14 (a) shows a plot of the average ranks
of EP-GPC and RBF-KLR classifiers, with model selection performed as in previous experiments,
and RBF-KRR with repeated split-sample model selection, as a function of the number of folds.
In each case the unbiased internal evaluation protocol was used. Clearly if the number of folds is
small (five or less), the RBF-KRR model performs poorly, due to over-fitting in model selection due
to the high variance of the criterion used. However, as the number of folds increases, the variance
of the model selection criterion falls, and the performances of all three algorithms are very similar.
Figure 14 (b) shows the corresponding result using the biased median protocol. The averaging of
hyper-parameters reduces the apparent variance of the model selection criterion, and this disguises
the poor performance of the RBF-KRRmodel when the number of folds is small. This demonstrates
that the bias introduced by the median protocol favors most the worst model selection criterion,
which is a cause for some concern.
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Data Set External Internal Bias
banana 10.355 ± 0.146 10.495 ± 0.158 0.140 ± 0.035
breast cancer 26.280 ± 0.232 27.470 ± 0.250 1.190 ± 0.135
diabetis 22.891 ± 0.127 23.056 ± 0.134 0.165 ± 0.050
flare solar 34.518 ± 0.172 34.707 ± 0.179 0.189 ± 0.051
german 23.999 ± 0.117 24.217 ± 0.125 0.219 ± 0.045
heart 16.335 ± 0.214 16.571 ± 0.220 0.235 ± 0.073
image 3.081 ± 0.102 3.173 ± 0.112 0.092 ± 0.035
ringnorm 1.567 ± 0.058 1.607 ± 0.057 0.040 ± 0.014
splice 10.930 ± 0.219 11.170 ± 0.280 0.240 ± 0.152
thyroid 3.743 ± 0.137 4.279 ± 0.152 0.536 ± 0.073
titanic 22.167 ± 0.434 22.487 ± 0.442 0.320 ± 0.077
twonorm 2.480 ± 0.067 2.502 ± 0.070 0.022 ± 0.021
waveform 9.613 ± 0.168 9.815 ± 0.183 0.203 ± 0.064

Table 8: Error rate estimates for kernel ridge regression over thirteen benchmark data sets, for
model selection schemes that are internal and external to the cross-validation process. The
results for each approach and the relative bias are presented in the form of the mean error
rate over for 100 realisations of each data set (20 in the case of the image and splice data
sets), along with the associated standard error.

5.3 Another Example of Biased Evaluation Methodology

In a biased evaluation protocol, occasionally observed in machine learning studies, an initial model
selection step is performed using all of the available data, often interactively as part of a “preliminary
study”. The data are then repeatedly re-partitioned to form one or more pairs of random, disjoint
design and test sets. These are then used for performance evaluation using the same fixed set of
hyper-parameter values. This practice may seem at first glance to be fairly innocuous, however the
test data are no longer statistically pure, as they have been “seen” by the models in tuning the hyper-
parameters. This would not present a serious problem were it not for the danger of over-fitting in
model selection, which means that in practice the hyper-parameters will inevitably be tuned to an
extent in ways that take advantage of the statistical peculiarities of this particular set of data rather
than only in ways that favor improved generalisation. As a result the hyper-parameter settings
retain a partial “memory” of the data that now form the test partition. We should therefore expect to
observe an optimistic bias in the performance estimates obtained in this manner.

Table 8 shows a comparison of 10-fold cross-validation estimates of the test error rate, for ker-
nel ridge regression with a Gaussian radian basis function kernel, obtained using protocols where
the model selection stage is either external or internal to the cross-validation procedure. In the ex-
ternal protocol, model selection is performed once using the entire design set, as described above.
In the internal protocol, the model selection step is performed separately in each fold of the cross-
validation. The internal cross-validation procedure therefore provides a more realistic estimate of
the performance of the combination of model selection and learning algorithm that is actually used
to construct the final model. The table also shows the relative bias (i.e., the mean difference between
the internal and external cross-validation protocols). The external protocol clearly exhibits a con-
sistently optimistic bias with respect to the more rigorous internal cross-validation protocol, over
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all thirteen benchmarks. Furthermore, the bias is statistically significant (i.e., larger than twice the
standard error of the estimate) for all benchmarks, apart from splice and twonorm. In many cases,
the bias is of similar magnitude to the typical difference observed between competitive learning al-
gorithms (cf. Table 4). In some cases, for example, banana and thyroid benchmarks, the bias is of
a surprising magnitude, likely to be large enough to conceal even the true difference between even
state-of-the-art and uncompetitive learning algorithms. This clearly shows that the external cross-
validation protocol exhibits a consistent optimistic bias, potentially of a very substantial magnitude
even when the number of hyper-parameters is small (in this case only two), and so should not be
used in practice.

6. Conclusions

In this paper, we have discussed the importance of bias and variance in model selection and perfor-
mance evaluation, and demonstrated that a high variance can lead to over-fitting in model selection,
and hence poor performance, even when the number of hyper-parameters is relatively small. Fur-
thermore, we have shown that a potentially severe form of selection bias can be introduced into
performance evaluation by protocols that have been adopted in a number of existing empirical stud-
ies. Fortunately, it seems likely that over-fitting in model selection can be overcome using methods
that have already been effective in preventing over-fitting during training, such as regularisation or
early stopping. Little attention has so far been focused on over-fitting in model selection, however
in this paper we have shown that it presents a genuine pitfall in the practical application of machine
learning algorithms and in empirical comparisons. In order to overcome the bias in performance
evaluation, model selection should be viewed as an integral part of the model fitting procedure, and
should be conducted independently in each trial in order to prevent selection bias and because it
reflects best practice in operational use. Rigorous performance evaluation therefore requires a sub-
stantial investment of processor time in order to evaluate performance over a wide range of data
sets, using multiple randomised partitionings of the available data, with model selection performed
separately in each trial. However, it is straightforward to fully automate these steps, and so requires
little manual involvement. Performance evaluation according to these principles requires repeated
training of models using different sets of hyper-parameter values on different samples of the avail-
able data, and so is also well-suited to parallel implementation. Given the recent trend in processor
design towards multi-core designs, rather than faster processor speeds, rigorous performance eval-
uation is likely to become less and less time-consuming, and so there is little justification for the
continued use of potentially biased protocols.
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Abstract
We describe version 2.0 of the R add-on package mboost. The package implements boosting for
optimizing general risk functions using component-wise (penalized) least squares estimates or re-
gression trees as base-learners for fitting generalized linear, additive and interaction models to
potentially high-dimensional data.
Keywords: component-wise functional gradient descent, splines, decision trees

1. Overview

The R add-on package mboost (Hothorn et al., 2010) implements tools for fitting and evaluating
a variety of regression and classification models that have been suggested in machine learning
and statistics. Optimization within the empirical risk minimization framework is performed via
a component-wise functional gradient descent algorithm. The algorithm originates from the statis-
tical view on boosting algorithms (Friedman et al., 2000; Bühlmann and Yu, 2003). The theory and
its implementation in mboost allow for fitting complex prediction models, taking potentially many
interactions of features into account, as well as for fitting additive and linear models. The model
class the package deals with is best described by so-called structured additive regression (STAR)
models, where some characteristic ξ of the conditional distribution of a response variable Y given
features X is modeled through a regression function f of the features ξ(Y |X = x) = f (x). In order
to facilitate parsimonious and interpretable models, the regression function f is structured, that is,
restricted to additive functions f (x) = ∑

p
j=1 f j(x). Each model component f j(x) might take only
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a subset of the features into account. Special cases are linear models f (x) = x"β, additive mod-
els f (x) = ∑

p
j=1 f j(x( j)), where f j is a function of the jth feature x( j) only (smooth functions or

stumps, for example) or a more complex function where f (x) is implicitly defined as the sum of
multiple decision trees including higher-order interactions. The latter case corresponds to boosting
with trees. Combinations of these structures are also possible. The most important advantage of
such a decomposition of the regression function is that each component of a fitted model can be
looked at and interpreted separately for gaining a better understanding of the model at hand.

The characteristic ξ of the distribution depends on the measurement scale of the response Y
and the scientific question to be answered. For binary or numeric variables, some function of the
expectation may be appropriate, but also quantiles or expectiles may be interesting. The definition
of ξ is determined by defining a loss function ρ whose empirical risk is to be minimized under some
algorithmic constraints (i.e., limited number of boosting iterations). The model is then fitted using

( f̂1, . . . , f̂ p) = argmin
( f1,..., fp)

n

∑
i=1

wiρ

(

yi,
p

∑
j=1

f j(x)

)

.

Here (yi,xi), i= 1, . . . ,n, are n training samples with responses yi and potentially high-dimensional
feature vectors xi, and wi are some weights. The component-wise boosting algorithm starts with
some offset for f and iteratively fits residuals defined by the negative gradient of the loss function
evaluated at the current fit by updating only the best model component in each iteration. The details
have been described by Bühlmann and Yu (2003). Early stopping via resampling approaches or AIC
leads to sparse models in the sense that only a subset of important model components f j defines the
final model. A more thorough introduction to boosting with applications in statistics based on
version 1.0 of mboost is given by Bühlmann and Hothorn (2007).

As of version 2.0, the package allows for fitting models to binary, numeric, ordered and censored
responses, that is, regression of the mean, robust regression, classification (logistic and exponential
loss), ordinal regression,1 quantile1 and expectile1 regression, censored regression (including Cox,
Weibull1, log-logistic1 or lognormal1 models) as well as Poisson and negative binomial regression1
for count data can be performed. Because the structure of the regression function f (x) can be chosen
independently from the loss function ρ, interesting new models can be fitted (e.g., in geoadditive
regression, Kneib et al., 2009).

2. Design and Implementation

The package incorporates an infrastructure for representing loss functions (so-called ‘families’),
base-learners defining the structure of the regression function and thus the model components f j,
and a generic implementation of component-wise functional gradient descent. The main progress
in version 2.0 is that only one implementation of the boosting algorithm is applied to all possible
models (linear, additive, tree-based) and all families. Earlier versions were based on three imple-
mentations, one for linear models, one for additive models, and one for tree-based boosting. In
comparison to the 1.0 series, the reduced code basis is easier to maintain, more robust and regres-
sion tests have been set-up in a more unified way. Specifically, the new code basis results in an
enhanced and more user-friendly formula interface. In addition, convenience functions for hyper-
parameter selection, faster computation of predictions and improved visual model diagnostics are
available.
1. Model family is new in version 2.0 or was added after the release of mboost 1.0.
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Currently implemented base-learners include component-wise linear models (where only one
variable is updated in each iteration of the algorithm), additive models with quadratic penalties
(e.g., for fitting smooth functions via penalized splines, varying coefficients or bi- and trivariate
tensor product splines, Schmid and Hothorn, 2008), and trees.

As a major improvement over the 1.0 series, computations on larger data sets (both with re-
spect to the number of observations and the number of variables) are now facilitated by memory
efficient implementations of the base-learners, mostly by applying sparse matrix techniques (pack-
age Matrix, Bates and Mächler, 2009) and parallelization for a cross-validation-based choice of the
number of boosting iterations (per default via package multicore, Urbanek, 2009). A more elaborate
description of mboost 2.0 features is available from the mboost vignette.2

3. User Interface by Example

We illustrate the main components of the user-interface by a small example on human body fat
composition: Garcia et al. (2005) used a linear model for predicting body fat content by means
of common anthropometric measurements that were obtained for n = 71 healthy German women.
In addition, the women’s body composition was measured by Dual Energy X-Ray Absorptiometry
(DXA). The aim is to describe the DXA measurements as a function of the anthropometric features.
Here, we extend the linear model by i) an intrinsic variable selection via early stopping, ii) addi-
tional terms allowing for smooth deviations from linearity where necessary (by means of penalized
splines orthogonalized to the linear effect, Kneib et al., 2009), iii) a possible interaction between
two variables with known impact on body fat composition (hip and waist circumference) and iv)
using a robust median regression approach instead of L2 risk. For the data (available as data frame
bodyfat), the model structure is specified via a formula involving the base-learners correspond-
ing to the different model components (linear terms: bols(); smooth terms: bbs(); interactions:
btree()). The loss function (here, the check function for the 0.5 quantile) along with its negative
gradient function are defined by the QuantReg(0.5) family (Fenske et al., 2009). The model struc-
ture (specified using the formula fm), the data and the family are then passed to function mboost()
for model fitting:3

R> library("mboost") ### attach package ‘mboost’
R> print(fm) ### model structure

DEXfat ~ bols(age) + bols(waistcirc) + bols(hipcirc) + bols(elbowbreadth) +
bols(kneebreadth) + bols(anthro3a) + bols(anthro3b) + bols(anthro3c) +
bols(anthro4) + bbs(age, center = TRUE, df = 1) + bbs(waistcirc,
center = TRUE, df = 1) + bbs(hipcirc, center = TRUE, df = 1) +
bbs(elbowbreadth, center = TRUE, df = 1) + bbs(kneebreadth,
center = TRUE, df = 1) + bbs(anthro3a, center = TRUE, df = 1) +
bbs(anthro3b, center = TRUE, df = 1) + bbs(anthro3c, center = TRUE,
df = 1) + bbs(anthro4, center = TRUE, df = 1) + btree(hipcirc,
waistcirc, tree_controls = ctree_control(maxdepth = 2, mincriterion = 0))

R> ### fit model for conditional median of DEXfat
R> model <- mboost(fm, ### model structure

2. Accessible via vignette("mboost", package = "mboost").
3. The complete R code for reproducing this example is given in the accompanying file mboost-MLOSS.R.
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Figure 1: Out-of-bag empirical risk (A) indicating that 500 iterations are appropriate. Fitted model
components for variable anthro3b, consisting of a linear (B) and smooth term (C). The
right panel shows the interaction model component between hip and waist circumfer-
ences.

+ data = bodyfat, ### 71 observations
+ family = QuantReg(tau = 0.5)) ### median regression

Once the model has been fitted it is important to assess the appropriate number of boosting iterations
via the out-of-sample empirical risk. By default, 25 bootstrap samples from the training data are
drawn and the out-of-bag empirical risk is computed (parallel computation if possible):

R> ### bootstrap for assessing the ‘optimal’ number
R> ### of boosting iterations
R> cvm <- cvrisk(model, grid = 1:100 * 10)
R> model[mstop(cvm)] ### restrict model to optimal mstop(cvm) iterations

Now, the final model is ready for a visual inspection:

R> plot(cvm) ### depict out-of bag risk and
R> plot(model) ### selected components

The resulting plots are given in Figure 1. They indicate that a model based on three components,
including a smooth function of anthro3b and a bivariate function of hip and waist circumference,
provides the best characterization of the median body fat composition (given the model specification
offered to the boosting algorithm). A hip circumference larger than 110 cm leads to increased body
fat but only if the waist circumference is larger than 90 cm.

The sources of the mboost package are distributed at the Comprehensive R Archive Network
under GPL-2, along with binaries for all major platforms as well as documentation and regression
tests. Development versions are available from http://R-forge.R-project.org.
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Abstract
A continuous time Bayesian network (CTBN) uses a structured representation to describe a dynamic sys-
tem with a finite number of states which evolves in continuous time. Exact inference in a CTBN is often
intractable as the state space of the dynamic system grows exponentially with the number of variables. In this
paper, we first present an approximate inference algorithm based on importance sampling. We then extend it
to continuous-time particle filtering and smoothing algorithms. These three algorithms can estimate the ex-
pectation of any function of a trajectory, conditioned on any evidence set constraining the values of subsets of
the variables over subsets of the time line. We present experimental results on both synthetic networks and a
network learned from a real data set on people’s life history events. We show the accuracy as well as the time
efficiency of our algorithms, and compare them to other approximate algorithms: expectation propagation and
Gibbs sampling.
Keywords: continuous time Bayesian networks, importance sampling, approximate inference, filtering,
smoothing

1. Introduction
Many real world applications involve highly complex dynamic systems. These systems usually contain a
large number of stochastic variables, which evolve asynchronously in continuous time. Such dynamic sys-
tems include computer networks, sensor networks, social networks, mobile robots, and cellular metabolisms.
Modeling, learning and reasoning about these complex dynamic systems is an important task and a great
challenge.

1.1 Structured Process Representation

A central task of the above applications is to calculate probability distributions of the system over time. For
instance, we may wish to know the distribution over when a variable will change next or the state of a current
variable, given past (partial) evidence. However, as the number of the variables increases, the state space of
the distribution grows exponentially. Such growth makes the inference task very difficult for large systems.
One solution is to use structured representation to factorize the state space according to the dependencies of
the variables. For dynamic systems, Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa, 1989) are
commonly used. A DBN describes the dynamic system as a time-sliced model by measuring the evolution of
the system with a (usually fixed) time interval Δt . The transition probabilities from states at time t to states
at time t+Δt are represented by a Bayesian network. DBNs can work well for systems that are observed at
regular time steps. However, for many applications, discretizing time has several limitations. First, we usually
choose a fixed time interval, Δt. In many real world systems, variables evolve at different time granularities.
Some variables may evolve very fast whereas some evolve very slowly. Choosing an appropriate time interval
is a difficult task. Larger Δt may result in an inaccurate model while smaller Δt may cause inference in the
model to be inefficient.

c©2010 Yu Fan, Jing Xu and Christian R. Shelton.
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Second, the dependencies of the transition model are unstable with respect to Δt. That is, different choices
of Δt may result in different network structures between t and t + Δt. The network structure represents
independencies between variables at t and Δt. This is a function of Δt, both theoretically and empirically
(Nodelman et al., 2003). If Δt is an inherent parameter of the process, this is not a problem. However, if it
is chosen for estimation or computational reasons, this becomes an issue as its choice is not unique. Finally,
DBNs (and discrete-time Markov processes in general) do not necessarily correspond to processes that are
Markovian outside of the sampled instants of time. Consider that if T is the transition matrix for a process
with time interval Δt, T 1/2 is the transition matrix for the same process with time interval Δt2 . However, such
a square root may not exist in the space of real matrices. Therefore, there may not be any simple extension
of a DBN to the times between the sampled instants.

An alternative and more natural approach to model dynamic systems is to use a continuous-time model.
For systems with a finite number of states, one way is to consider the entire system as a continuous-time
discrete-state Markov process. Like discrete-time processes, this method suffers from the fact that the state
space of the process grows exponentially with the number of variables in the system. Recently, Nodelman
et al. (2002) extended this framework to a continuous time Bayesian network (CTBN), which factorizes a
system into local variables using a graphical representation, much as a DBN does for a discrete-time pro-
cess. Parameter estimation in CTBNs with fully observed data and partially observed data were provided
in Nodelman et al. (2003) and Nodelman et al. (2005b) respectively. Because CTBNs explicitly represent
the temporal dynamics in continuous time and explore the dependencies among stochastic variables using a
structured representation, they have been applied to various real world systems, including human-computer
interactions (Nodelman and Horvitz, 2003), server farm failures (Herbrich et al., 2007), robot monitoring
(Ng et al., 2005) and network intrusion detection (Xu and Shelton, 2008). Kan and Shelton (2008) used the
CTBN representation in their solution of structured continuous-time Markov decision processes.

Queueing theory (Bolch et al., 1998) and Petri nets (Petri, 1962) provide an alternative continuous-time
structured process models. However, they make different assumptions about the structure. They were de-
signed to answer questions about steady-state distributions. Their algorithms are not suited to learning from
partial data nor to answering many statistical questions. A singular and recent exception is the work of Sutton
and Jordan (2008) which applied Gibbs sampling to queueing models.

1.2 Prior CTBN Inference Methods

In CTBNs, a trajectory (or sample) consists of the starting values for the system along with the (real-valued)
times at which the variables change and their corresponding new values. Inference for a CTBN is the task
of estimating the distribution over trajectories given a partial trajectory (in which some values or transitions
are missing for some variables during some time intervals). Inference plays a central role as it not only helps
us answer queries about distributions, but it is also involved in parameter estimation when the observation
data is incomplete. Performing exact inference in a CTBN requires constructing a single rate matrix for the
entire system and computing the exponential of the matrix, which is often intractable: the exponentiation
must be performed separately for each period of constant evidence and (more problematic) even a sparse rep-
resentation of the matrix may not fit in memory. Thus, many applications of CTBNs require an approximate
inference method. A method based on expectation propagation (Minka, 2001) was presented in Nodelman
et al. (2005a). Saria et al. (2007) extended it to full belief propagation and provided a method to adapt the
approximation quality.

Other approximate inference methods are based on sampling. They have the advantage of being anytime
algorithms. (We can stop at any time during the computation and obtain an answer.) Furthermore, in the limit
of infinite samples (computation time), they converge to the true answer.

As we note below, because time is a continuous variable, any evidence containing a record of the change in
a variable has a zero probability under the model. Therefore rejection sampling and straightforward likelihood
weighting are generally not viable methods.

Ng et al. (2005) developed a continuous-time particle filtering algorithm. However, it only handles point
evidence on binary and ternary discrete variables using rejection sampling and focuses primarily on the incor-
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poration of evidence from a continuous-state part of the system (which we do not consider here). Recently,
El-Hay et al. (2008) provided another sampling algorithm for CTBNs using Gibbs sampling. The algorithm
starts from an arbitrary trajectory that is consistent with the evidence. Then, in each iteration, it randomly
picks one variable X , and samples an entire trajectory for that variable by fixing the trajectory of all the other
variables. Since only X is not fixed, the conditioned cumulative distribution that X stays in one state less
than t and the state transition probabilities can be calculated exactly using standard forward and backward
propagation within the Markov blanket of X . The Gibbs sampling algorithm can handle any type of evidence
and it provides an approach to sample from the exact posterior distribution given the evidence. However, the
posterior distribution can be any arbitrary function. To sample exactly from it, binary search has to be applied
and F(t) is repeatedly evaluated, which may affect the efficiency of the algorithm.

1.3 Outline of This Work

In this paper we explore a different sampling approach using importance sampling. Our algorithm generates
weighted samples to approximate the expectation of a function of the trajectory. It differs from previous
approaches in a number of key ways. There is no exact inference method involved in our approach. Thus,
our algorithm does not depend on complex numeric computations. The transition times for variables are
sampled from regular exponential distributions in our algorithm, which can be done in constant time. Our
algorithm can be adapted to a population-based filter (a particle filter). It can handle both point and continuous
evidence, is simple to implement, and can be easily extended to continuous time systems other than CTBNs.
The formulation of this sampling procedure is not trivial due to the infinite extent of the trajectory space,
both in the transition time continuum and the number of transitions. The algorithm was first presented in Fan
and Shelton (2008). This paper extends that work by comparing the algorithm to the newly developed Gibbs
sampling algorithm (El-Hay et al., 2008), evaluating its performance on parameter learning with partially
observed data, and demonstrating its performance on real-world networks.

The remainder of the paper is structured as follows. In Section 2, we briefly describe the notation for
CTBNs. In Section 3, we describe our importance sampling algorithm for CTBNs and extend the algorithm
to particle filtering and particle smoothing algorithms. In Section 4, we describe our experiment results.

2. Continuous Time Bayesian Networks
We first briefly describe the definition, likelihood, and sufficient statistics of the CTBN model. We then
review the exact inference and parameter estimation algorithms for CTBNs.

2.1 The CTBN Model

Continuous time Bayesian networks (Nodelman et al., 2002) are based on the framework of continuous time,
finite state, homogeneous Markov processes (Norris, 1997). Let X be a continuous time, finite state, homo-
geneous Markov process with n states {x1, . . . ,xn}. The behavior of X is described by the initial distribution
P0X and the transition model which is often represented by the intensity matrix

QX =





−qx1 qx1x2 · · · qx1xn
qx2x1 −qx2 · · · qx2xn
...

...
. . .

...
qxnx1 qxnx2 · · · −qxn




,

where qxix j is the intensity with which X transitions from xi to x j and qxi = ∑ j #=i qxix j . The intensity matrix
QX is time invariant. Given QX , the transient behavior of X can be described as the following: X stays in
state xi for an amount of time t and transitions to state x j. t is exponentially distributed with parameter qxi .
That is, the probability density function and the corresponding distribution function for X staying in state xi
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Exercise

Weather Body Weight

Calorie Intake

Figure 1: CTBN Example: Weight Control Effect

are

f (qxi , t) = qxi exp(−qxit), t ≥ 0.
F(qxi , t) = 1− exp(−qxit), t ≥ 0.

The expected time of transitioning is 1/qxi . Upon transitioning, the probability X transitions from state xi to
x j is θxix j = qxix j/qxi .The distribution over the state of X at time t can be calculated as

PX (t) = P0X exp(QXt)

where P0X is the distribution over X at time 0 represented as a row vector, and exp is the matrix exponential.
To model a dynamic system containing several variables, we can consider the whole system as one vari-

able, enumerate the entire state space, calculate the transition intensity of each pair of these states and put
them into a single intensity matrix. However, the size of the state space grows exponentially with the number
of variables in the system, which makes this method infeasible for large systems.

Nodelman et al. (2002) defined a continuous time Bayesian network (CTBN), which uses a graphical
model to provide a compact factored representation of continuous time Markov process. A CTBN models
each local variable X as an inhomogeneous Markov process, whose parametrization depends on some subset
of other variables U. The intensity matrix of X is called a conditional intensity matrix (CIM) QX |U, which is
defined as a set of intensity matrices QX |u, one for each instantiation u of the variable set U. The evolution
of X depends instantaneously on the values of the variables in U.

LetX be a dynamic system containing several variables X . A continuous time Bayesian network N over
X consists of two components: an initial distribution P0

X
, specified as a Bayesian network B over X , and

a continuous transition model, specified using a directed (possibly cyclic) graph G whose nodes are X ∈X .
Let UX denote the parents of X in G . Each variable X ∈X is associated with a conditional intensity matrix,
QX |UX .

Example 1 Assume we want to model the behavior of a person controlling his body weight. When the
person is overweight, he may exercise more to lose the excess weight. Increasing exercise intensity tends
to increase his appetite, which will increase his daily calorie intake. Both exercise intensity and calorie
intake contribute to his body weight. Furthermore, the exercise intensity also depends on the weather. Such
a dynamic system contains four variables: body weight, exercise, calorie intake, and weather. Each variable
changes in continuous time and its change rate depends on the current value of some other variables.

We can use a CTBN to represent such behavior. The dependencies of these four variables are depicted
using a graphical structure, as shown in Figure 1. The quantitative transient dynamics for each variable is
represented using a conditional intensity matrix. Let us assume all the four variables are binary. Let B(t)
be the person’s body weight ( Val(B(t)) = {b0 = normal,b1 = overweight}), E(t) be the exercise intensity
(Val(E(t) = {e0 = light,e1 = heavy}), C(t) be his daily calorie intake ( Val(C(t) = {c0 = low,c1 = high})
andW (t) be the weather ( Val(W (t) = {w0 = rainy,w1 = sunny}). The conditional intensity matrices for the
four variables can be specified as
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QW QW =
[

−0.5 0.5
0.5 −0.5

]
,

QE|W,B

QE|w0,b0 =
[

−0.1 0.1
2 −2

]
, QE|w1,b0 =

[
−0.3 0.3
1 −1

]
,

QE|w0,b1 =
[

−0.5 0.5
0.5 −0.5

]
, QE|w1,b0 =

[
−1 1
0.1 −0.1

]
,

QC|E QC|e0 =
[

−0.2 0.2
1 −1

]
, QC|e1 =

[
−1 1
0.2 −0.2

]
,

QB|E,C

QB|e0,c0 =
[

−0.2 0.2
0.8 −0.8

]
, QB|e1,c0 =

[
−0.1 0.1
1 −1

]
,

QB|e0,c1 =
[

−1 1
0.1 −0.1

]
, QB|e1,c1 =

[
−0.2 0.2
0.6 −0.6

]
.

Notice that unlike Bayesian networks, the CTBN model allows cycles. The transient behavior of each
local variable is controlled by the current value of its parents. If the person is doing light exercise and his
calorie intake is low, the dynamics of his body weight are determined by the intensity matrix QB|e0,c0 . If the
time unit is one month, we expect his weight will go back to normal in 1/0.8= 1.25 months if he is currently
overweight and doing light exercise and controlling his daily calorie intake.

We can also use a single continuous time Markov process to represent this network, which requires an
intensity matrix of size 16× 16. To generate the single intensity matrix, we can follow the amalgamation
algorithm in Nodelman et al. (2002). Basically, we enumerate the entire state space (W,E,C,B), and assign
intensity 0 to transitions that change two variables simultaneously. For any transition involving only one of
the variables, simply use the entry from the appropriate intensity matrix above. The resulting matrix is

w0e0c0b0




−1 0.5 0.1 0 0.2 0 0 0 0.2 0 0 0 0 0 0 0
0.5 −1.2 0 0.3 0 0.2 0 0 0 0.2 0 0 0 0 0 0
2 0 −3.6 0.5 0 0 1 0 0 0 0.1 0 0 0 0 0
0 1 0.5 −2.6 0 0 0 1 0 0 0 0.1 0 0 0 0
1 0 0 0 −2.6 0.5 0.1 0 0 0 0 0 1 0 0 0
0 1 0 0 0.5 −2.8 0 0.3 0 0 0 0 0 1 0 0
0 0 0.2 0 2 0 −2.9 0.5 0 0 0 0 0 0 0.2 0
0 0 0 0.2 0 1 0.5 −1.9 0 0 0 0 0 0 0 0.2
0.8 0 0 0 0 0 0 0 −2 0.5 0.5 0 0.2 0 0 0
0 0.8 0 0 0 0 0 0 0.5 −2.5 0 1 0 0.2 0 0
0 0 1 0 0 0 0 0 0.5 0 −3 0.5 0 0 1 0
0 0 0 1 0 0 0 0 0 0.1 0.5 −2.6 0 0 0 1
0 0 0 0 0.1 0 0 0 1 0 0 0 −2.1 0.5 0.5 0
0 0 0 0 0 0.1 0 0 0 1 0 0 0.5 −2.6 0 1
0 0 0 0 0 0 0.6 0 0 0 0.2 0 0.5 0 −1.8 0.5
0 0 0 0 0 0 0 0.6 0 0 0 0.2 0 0.1 0.5 −1.4





.

w1e0c0b0
w0e1c0b0
w1e1c0b0
w0e0c1b0
w1e0c1b0
w0e1c1b0
w1e1c1b0
w0e0c0b1
w1e0c0b1
w0e1c0b1
w1e1c0b1
w0e0c1b1
w1e0c1b1
w0e1c1b1
w1e1c1b1

As we include more variables in this system, the size of the intensity matrix grows exponentially with the
number of variables.

2.2 Likelihood and Sufficient Statistics

The probability density over trajectories σ of a set of variables X described by a CTBN belongs to the
exponential family. Therefore, the distribution of a CTBN can be described in terms of the sufficient statistics
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of σ (Nodelman et al., 2003). Let T [x|u] be the amount of time X = x while UX = u, and M[x,x′|u] be the
number of transitions from x to x′ while UX = u. If we let M[x|u] = ∑x′M[x,x′|u], the probability density of
trajectory σ (omitting the starting distribution) is

PN (σ) = ∏
X∈X

LX (T [X |UX ],M[X |UX ]) (1)

where

LX (T [X |UX ],M[X |UX ]) =∏
u
∏
x

(
qM[x|u]
x|u exp(−qx|uT [x|u])∏

x′ #=x
θM[x,x′|u]
xx′|u

)
(2)

is the local likelihood for variable X . The likelihood also decomposes by time. That is, the likelihood of a
trajectory on [0,T ) is equal to the likelihood based only on sufficient statistics from time 0 to time t multiplied
by the likelihood based only on sufficient statistics from time t to time T .

2.3 Evidence and Queries

Given a CTBN model, we would like to use it to answer queries conditioned on observations. There are
two common types of observations: point evidence and continuous evidence. Point evidence represents the
observation of the value of some variables at a particular time instant. Continuous evidence provides the
behavior of some variables throughout an interval [t1, t2). For instance, x = 1 during the interval [2,3.5), or
x= 1 from t = 2 to t = 3 and then x transitions to x= 0 at t = 3 and stays in that state until t = 5. We define
x[t1 : t2) be the behavior of variable X on the interval [t1, t2), x[t1 : t2] be the behavior of X on the interval
[t1, t2] and x(t1 : t2] be the behavior of X on the interval (t1, t2].

Queries can ask about the marginal distribution of some variables at a particular time, such as the dis-
tribution of x and y at t = 2, or questions about the timing of a transition, such as the distribution over the
time that y transitions from y= 1 to y= 2 for the first time in the interval [1,4). In learning (especially when
employing expectation-maximization), we might query the expected sufficient statistics of a CTBN, which
include the total amount of time that a variable spends in a state, and the total number of times that a variable
transitions from one state to another state under certain conditions. For example, we might want to know the
total amount of time that x= 0 throughout the entire interval, or the number of times that x transitions from 1
to 2 during the time interval [2,3) when y= 0. In this paper, we will concentrate on answering queries given
the continuous evidence, but our method can be trivially extended to point evidence.

2.4 Exact Inference in CTBNs

A CTBN can be viewed as a homogeneous Markov process with a large joint intensity matrix amalgamated
from the CIMs of the CTBN. Exact inference in a CTBN can be performed by generating a single joint
intensity matrix over the entire state space of the CTBN and running the forward-backward algorithm on the
joint intensity matrix of the homogeneous Markov process. We review this method here, but a more complete
treatment can be found in Nodelman et al. (2002).

Assume that we have a partially observed trajectory σ of a CTBN N from 0 to T . We can divide the
evidence σ into N intervals [ti, ti+1) (i= 0, . . . ,N−1) according to the observed transition times. That is, each
interval contains a constant observation of the CTBN, and ti is the time that a variable begins to be observed,
stops being observed, or is observed to transition. We set t0 = 0 and tN = T .

To perform exact inference, we first generate the intensity matrix Q for the joint homogeneous Markov
process and incorporate the evidence into Q. If each variable Xi in the CTBN N has ni states, the number of
states of the joint Markov process is n=∏ni and Q is an n×nmatrix. The value of the off-diagonal element
qi j in Q for which only one variable value is different between states i and j is the corresponding intensity in
the CIM of that variable. All the other off-diagonal elements are zero since two variables can not transition
at exactly the same time in a CTBN. The diagonal elements are computed to make each row sum to zero.

To incorporate the evidence, we reduce the joint intensity matrix Q to Qi for each interval [ti, ti+1) by
zeroing out the rows and columns of Q which represent states that are inconsistent with the evidence. Addi-
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tionally, let Qi, j be the matrix Q with all elements zeroed out except the off-diagonal elements that represent
the intensities of transitioning from non-zero rows in Qi to non-zero columns in Q j. If evidence blocks i
and j differs only in which variables are observed (no transition is observed between them), then Qi, j is the
identity matrix instead.

exp(Qi(ti+1− ti)) represents the transition matrix for interval [ti, ti+1) and Qi,i+1 corresponds to the tran-
sition probability density between two consecutive intervals at time ti+1. We can use the forward-backward
algorithm for Markov process to answer queries.

We define the forward and backward probability vectors αt and βt as

αt = p(Xt ,σ[0,t)),
βt = p(σ[t,T )|Xt) .

Let α0 be the initial distribution P0X over the state and βT be a vector of ones. The forward and backward
distribution vector for each interval can be calculated recursively:

αti+1 = αti exp(Qi(ti+1− ti))Qi,i+1,

βti = Qi−1,i exp(Qi(ti+1− ti))βti+1 .

The distribution over the state of the CTBN at time t ∈ [ti, ti+1) given the evidence σ[0,T ) can be computed
as

P(Xt = k,σ[0,T )) =αti exp(Qi(t− ti))∆k,k exp(Qi(ti+1− t))βti+1 (3)

where ∆i, j is an n× n matrix of zeros with a single one in position i, j. Other queries can be similarly
computed.

2.5 CTBN Parameter Estimation

Given a set of trajectories D= {σ1,σ2, . . . ,σn} and a fixed graphical structure, we would like to estimate the
parameters (the conditional intensity matrix) of the CTBN model.

When the data set D is complete, where each trajectory σi is a complete set of state transitions and the
times at which they occurred, the parameters can be learned by maximizing the log-likelihood of the data set
(Nodelman et al., 2003). According to Equation 1 and Equation 2, the log-likelihood can be written as the
sum of the log-likelihood for each local variable. By maximizing the log-likelihoods, the parameters can be
derived as

q̂x|u =
M[x|u]
T [x|u] ; θ̂xx′|u =

M[x,x′|u]
M[x|u] . (4)

When the data set is incomplete, the expectation maximization (EM) algorithm (Dempster et al., 1977)
can be used to find the maximum likelihood parameters (Nodelman et al., 2005b). The EM algorithm begins
with an arbitrary initial parameter assignment, and alternatively repeats the expectation step and maximization
step until convergence. In expectation step, for each trajectory σi ∈ D, expected sufficient statistics M̄[x|u],
M̄[x,x′|u] and T̄ [x|u] are computed using exact inference. In maximization step, new parameters are computed
according to Equation 4 as if the expected sufficient statistics came from complete data.

3. Sampling-based Inference
As we described in the previous section, exact inference in a CTBN can be performed by generating a single
joint intensity matrix over the entire state space. As the number of states is exponential in the number of the
nodes in the network, this approach is infeasible when the network size is large. In this section we describe
an algorithm for approximate CTBN inference based on importance sampling.
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Procedure CTBN-Sample(tend)
1. t ← 0, σ← /0
2. For each variable X ∈X

Choose state x(0) according to θBX |paB (X)
.

Loop:
3. For each variable X such that Time(X) is undefined:

Choose Δt for next X transition from an exponential with parameter qx(t)|uX (t).
Define Time(X)← t+Δt

4. Let X = argminX∈X [Time(X)]
5. If Time(X)≥ tend return σ
6. Update t ← Time(X)
7. Choose x(t), the next value of X , from the multinomial with parameters θx(t)|uX (t).

Add 〈X ← x(t), t〉 to σ.
Undefine Time(X), and Time(Y ) for all variables Y for which X ∈ UY .

Figure 2: Forward sampling semantics for a CTBN

3.1 Forward Sampling

Queries that are not conditioned on evidence can be answered by randomly sampling many trajectories and
looking at the fraction that match the query. More formally, if we have a CTBN N we generate a set of
particles D = {σ[1], . . . ,σ[M]} where each particle is a sampled trajectory. With D we can estimate the
expectation of any function g by computing

ÊN [g] =
1
M

M

∑
m=1

g(σ[m]) . (5)

For example, if we let g= 1{x(5) = x1} then we could use the above formula to estimate PN (x(5) = x1). Or
the function g(σ) might count the total number of times that X transitions from x1 to x2 while its parent U
has value u1, allowing us to estimate the expected sufficient statisticM[x1,x2|u1]. The algorithm for sampling
a trajectory is shown in Figure 2. For each variable X ∈X , it maintains x(t)—the state of X at time t—and
Time(X)—the next potential transition time for X . The algorithm adds transitions one at a time, advancing
t to the next earliest variable transition. When a variable X (or one of its parents) undergoes a transition,
Time(X) is resampled from the new exponential waiting time distribution. We use uX (t) to represent the
instantiation to parents of X at time t.

If we want to obtain a conditional probability of a query given evidence, the situation is more complicated.
We might try to use rejection sampling: forward sample to generate possible trajectories, and then simply
reject the ones that are inconsistent with our evidence. The remaining trajectories are sampled from the
posterior distribution given the evidence, and can be used to estimate probabilities as in Equation 5. However,
this approach is entirely impractical in our setting, as in any setting involving an observation of a continuous
quantity—in our case, time. In particular, suppose we observe that X transitions from x1 to x2 at time t. The
probability of sampling a trajectory in which that transition occurs at precisely that time is zero. Thus, if we
have evidence about transitions, with probability 1, none of our sampled trajectories will be relevant.

3.2 Gibbs Sampling

Recently, El-Hay et al. (2008) provided a Markov Chain Monte Carlo (MCMC) procedure which used a
Gibbs sampler to generate samples from the posterior distribution given the evidence.

Suppose we want to sample trajectories from a CTBN with n variables (Xi,X2, . . . ,Xn) given the evidence
e. The Gibbs sampler starts with an arbitrary trajectory that is consistent with the evidence. In each iteration,
the sampler randomly picks one variable Xi and samples the entire trajectory of Xi by fixing the trajectories
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of the other variables Y = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn} as evidence. To generate the entire trajectory of Xi
according to the evidence e, the states and transitions of Xi need to be sampled in those intervals that Xi is
not observed according to the evidence. The trajectory in each unobserved interval of Xi can be generated
by alternatively sampling transition time Δt and new state x from the posterior distribution given e and the
trajectories of the other variables Y .

Assume we are sampling the trajectory of X for the interval [0,T ], and Xi(0) = x0, Xi(T ) = xT . The
transition time Δt is sampled by inverse transform sampling: first draw ξ from the [0,1] uniform distribution
and set Δt = F−1(ξ), where F−1(ξ) is the inverse of the conditional cumulative distribution function F(t)
that Xi stays in state x0 for a time less than t:

F(t) = 1−Pr(Xi(0 : t] = x0|x0,xT ,Y [0 : T ]) .

F(t) can be calculated by decomposing Pr(Xi(0 : t] = x0|x0,xT ,Y [0 : T ]) using the Markov property of
the process:

Pr(Xi(0 : t] = x0|x0,xT ,Y [0 : T ]) =
α̃(t)β̃x0(t)
β̃x0(0)

where

α̃(t) = Pr(Xi(0 : t] = x0,Y [0 : t]|x0,Y0),
β̃x(t) = Pr(xT ,Y (t : T ]|Xi(t) = x,Y (t)) .

α̃(t) and β̃x(t) can be calculated using a slightly modified version of the standard forward-backward algorithm
described in Section 2.4. Using the fact that Xi is independent of all the other components given the entire
trajectory of its Markov blanket, the computation of α̃(t) and β̃(t) can be limited to Xi and its Markov blanket
(the parents of Xi, the children of Xi, and the children’s parents).

Since the conditional cumulative distribution function F(t) can be arbitrarily complex, the inverse func-
tion F−1(t) can not be solved analytically. Finding Δt that satisfies F(Δt) = ξ is performed using a two-step
searching method: first find the interval [τk,τk+1] that satisfies F(τk) < ξ < F(τk+1), where τk are the tran-
sition points of the Markov blanket of Xi. Then Δt is found by performing an L step binary search on the
interval [τk,τk+1].

The transition probability that Xi transitions from x(0) to a new state x can be calculated similarly:

Pr(Xi(t+) = x|Xi(0 : t] = x(0),Y (0 : T ]) =
qXi|Yx0,x β̃x(t)

∑x′ #=x0 q
Xi|Y
x0,x′ β̃x′(t)

.

The Gibbs sampling algorithm can handle any type of evidence. The sampled trajectories are guaranteed
to be consistent with the evidence. However, sampling the transition time Δt requires using a binary search
algorithm and repeatedly computing the conditional cumulative distribution function F(t), which may require
long running time.

3.3 Importance Sampling

In this section, we introduce another approximate inference method using importance sampling, which does
not require computing the exact posterior distribution. This method first appeared in Fan and Shelton (2008).

In importance sampling, we generate samples from a proposal distribution P′ which guarantees that our
sampled trajectories will conform to our evidence e. We must weight our samples to correct for the fact that
we are drawing them from P′ instead of the target distribution PN defined by the CTBN. In particular, if σ is
a sample from P′ we set its weight to be

w(σ) =
PN (σ,e)
P′(σ)

. (6)
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In normalized importance sampling, we draw a set of samples D = {σ[1], . . . ,σ[M]} i.i.d. from the proposal
distribution, and estimate the conditional expectation of a function g given evidence e as

ÊN [g | e] = 1
W

M

∑
m=1

g(σ[m])w(σ[m])

whereW is the sum of the weights.
This estimator is consistent if the support of P′ is a superset of the support of PN . In general, ÊN is

biased and the bias decreases as O(M−1). The variance of the estimator also decreases as O(M−1). For more
information on this and related sampling estimates, see Hesterberg (1995).

For our algorithm, we base the proposal distribution on the forward sampling algorithm. As we are
sampling a trajectory, we occasionally depart from the regular forward sampling algorithm and “force” the
behavior of one or more variables to ensure consistency with the evidence.

3.4 Simple Evidence

The simplest query involves evidence over some subset of variables V ⊂ X for the total length of the tra-
jectory. We force only the behavior of the variables V and there are no choices about how to do that. In
particular, we use the following proposal distribution: forward sample the behavior of variables X ∈ (X \V )
inserting the known transitions at known times for variables in V as determined by the evidence. As there
are no choices in our forcing, the likelihood of drawing σ from the proposal distribution is just the likeli-
hood contribution of forward sampling the behavior of the variables X ∈ (X \V ), in the context of the total
behavior of the system.

According to Section 2.2, x[t1 : t2) can be summarized by the sufficient statistics over X on the inter-
val [t1, t2). Let L̃X (x[t1 : t2)) be a partial likelihood contribution function, computed by plugging the suf-
ficient statistics of x[t1 : t2) into Equation 2. The partial contribution function can be defined over a col-
lection of intervals I as L̃X (I ) = ∏x[t1 : t2)∈I L̃X (x[t1 : t2)). Returning to our simple evidence above, let
τ1 < τ2 . . . ,τn−1 < τn be all the transition times in σ[0,T ), τ0 = 0 and τn+1 = T . The likelihood of drawing σ
from the target distribution PN is

L̃N (σ) = ∏
X∈X

n

∏
i=0

L̃X (x[τi : τi+1))

Let L̃′X (x[t1 : t2)) be the corresponding probability density for our sampling procedure. Since we force the
values and transitions of variables in V according to the evidence, the probability that we sample an interval
x[τi : τi+1) for X ∈ V from proposal distribution P′ is always 1. Therefore, the likelihood of drawing σ from
the proposal distribution P′ is

L̃′N (σ) = ∏
X∈X

n

∏
i=0

L̃′X (x[τi : τi+1))

= ∏
X∈(X\V )

n

∏
i=0

L̃X (x[τi : τi+1))× ∏
X∈V

n

∏
i=0
1.

To compute the proper weight w(σ) we substitute in Equation 6, and get

w(σ) =
PN (σ,e)
P′(σ)

=
∏X∈X∏n

i=0 L̃X (x[τi : τi+1))
∏X∈(X\V )∏

n
i=0 L̃X (x[τi : τi+1))

= ∏
X∈V

n

∏
i=0

L̃X (x[τi : τi+1)).

Therefore, the weight w(σ) is the likelihood contribution of all the variables in V . This algorithm exactly
corresponds to likelihood weighting in Bayesian networks (Shachter and Peot, 1989; Fung and Chang, 1989).
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Intuitively, this makes sense because we can account for all the evidence by simply assigning the observed
trajectories to the observed variables.

3.5 General Evidence

Now, consider a general evidence pattern e, in which we have time instants where variables become observed
or unobserved. How can we force our trajectory to be consistent with e? Suppose there is a set of variables
which has evidence beginning at te. We can not simply force a transition at time te to make the variables
consistent with the evidence e: if the set contains more than one variable, the sample would have multiple
simultaneous transitions, an event whose likelihood is zero.

Instead, we look ahead for each variable we sample. If the current state of the variable does not agree with
the upcoming evidence, we force the next sampled transition time to fall before the time of the conflicting
evidence. To do this, we sample from a truncated exponential distribution instead of the full exponential
distribution. In particular, if we are currently at time t and there is conflicting evidence for X at time te > t,
we sample from an exponential distribution with the same q value as the normal sampling procedure, but
where the sample for Δt (the time to the next transition) is required to be less than te− t. The probability
density of sampling Δt from this truncated exponential is qexp(−qΔt)

1−exp(−q(te−t)) where q is the relevant intensity for
the current state of X (the diagonal element of QX |UX corresponding to the current state of X).

The subsequent state is still sampled from the same (forward sampling) distribution. In Section 3.6 we
explore a more intelligence option. Note that we cannot, in general, transition directly to the evidence state, as
such a transition may not be possible (have 0 rate). Furthermore, if we are still “far away” from the upcoming
evidence, such a transition may lead to a highly unlikely trajectory resulting in an inefficient algorithm.

To calculate the weight w(σ), we partition σ into two pieces. Let σe be the collection for all variables
X ∈X of intervals x[t1 : t2) where the behavior of X is set by the evidence. Let σs be the complement of σe
containing the collection of intervals of unobserved behavior for all variables. By applying Equation 6, we
have

w(σ) =
PN (σ,e)
P′(σ)

= ∏
x[τi : τi+1)∈σs

L̃X (x[τi : τi+1))
L̃′X (x[τi : τi+1))

× ∏
x[τi : τi+1)∈σe

L̃X (x[τi : τi+1))
L̃′X (x[τi : τi+1))

= ∏
x[τi : τi+1)∈σs

L̃X (x[τi : τi+1))
L̃′X (x[τi : τi+1))

× ∏
x[τi : τi+1)∈σe

L̃X (x[τi : τi+1)). (7)

Based on the distribution we sampled for transition time of the variable in each step, we can further
partition σs into three pieces:

σsn be the collection for all variables X ∈X of intervals x[t1 : t2) where the transition time is sampled
from an exponential distribution.

σst be the collection for all variables X ∈X of intervals x[t1 : t2) where the transition time is sampled
from a truncated exponential distribution and the variable is involved in the next transition.

σs f be the collection for all variables X ∈X of intervals x[t1 : t2) where the transition time is sampled
from a truncated exponential distribution and the variable is not involved in the next transition.
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Figure 3: (a) Evidence of a CTBN. (b) A sampled trajectory agreeing with the evidence. (c). Partitioning of
the trajectory according to the evidence and the transitions. σe equals x[τ3 : τ4) and x[τ7 : τ8) (d)
Partitioning of the trajectory based on the different sampling situations.

Therefore, we can rewrite Equation 7 as

w(σ) = ∏
x[τi : τi+1)∈σsn

L̃X (x[τi : τi+1))
L̃′X (x[τi : τi+1))

× ∏
x[τi : τi+1)∈σst

L̃X (x[τi : τi+1))
L̃′X (x[τi : τi+1))

× ∏
x[τi : τi+1)∈σs f

L̃X (x[τi : τi+1))
L̃′X (x[τi : τi+1))

× ∏
x[τi : τi+1)∈σe

L̃X (x[τi : τi+1)). (8)

Example 2 Assume that we are given a CTBN with two binary variables X and Y . X has two states x0 and
x1. Y has two states y0 and y1. We have such observation: X is x1 in interval [t1, t2) and [t3,T ), as shown
in Figure 3(a). To answer queries based on the evidence, we use the method above to sample trajectories.
Figure 3(b) shows one of the sampled trajectories. To calculate the weight of the trajectory, we partition the
trajectory into four categories (as shown in Figure 3(c) and Figure 3(d)), and apply Equation 8.

According to Equation 8, each time we add a new transition to the trajectory, we advance time from t to
t+Δt. For each variable xwe must update the weight of trajectory to reflect the likelihood ratio for x[t : t+Δt]
based on the distribution we use to sample the “next time” and the transition variable we select. Each such
variable can be considered separately as their times are sampled independently.

For any variable x whose value is given in the evidence during the interval [t, t +Δt), as we discussed
above, the contribution to the trajectory weight is just L̃N (x[t : t+Δt)). For any variable x[t : t+Δt) ∈ σns,
whose “next time” was sampled from an exponential distribution, L̃X (x[τi : τi+1)) = L̃′X (x[τi : τi+1)) and the
ratio is 1.

Now, we consider segments x[t : t+Δt) ∈ σst and x[t : t+Δt) ∈ σs f . The behavior of the variables in
these segments are forced due to upcoming evidence.

For variable X that x[t : t+Δt) ∈ σst , the variable’s “next time” is sampled from a truncated exponential
distribution and it is part of the next transition. The weight must be multiplied by the probability density of
sampling the transition in PN divided by the the probability density in the sampling algorithm. The former is

2126



IMPORTANCE SAMPLING FOR CONTINUOUS TIME BAYESIAN NETWORKS

an exponential distribution and the latter is the same exponential distribution, truncated to be less than te− t.
The ratio of these two probabilities is 1− exp(−q(te− t)), where q is the relevant intensity.

Otherwise, x[t : t+Δt) ∈ σs f , the next time for the variable was sampled from a truncated exponential
but was longer than Δt. In this case, the ratio of the probabilities of a sample being greater than Δt is
1−exp(−q(te−t))

1−exp(−q(te−t−Δt)) . Note that when Δt is small (relative to te− t, the time to the next evidence point for this
variable), the ratio is almost 1. So, while the trajectory’s weight is multiplied by this ratio for every transition
for every variable that does not agree with the evidence, it does not overly reduce the weight of the entire
trajectory.

The algorithm for CTBN importance sampling is shown in Figure 4. To more easily describe the evidence,
we define a few helper functions:

evalX (t) is the value of X at time t according to the evidence, or undefined if X has no evidence at t.

etimeX (t) is the first time after t when evalX (t) is defined.

eendX (t) is the first time after or equal to t when evalX (t) changes value or becomes undefined.

Note that eendX (t) = t when there is point evidence at t, when t is the end of an interval of evidence, and
when there is a transition in the evidence at time t.

The line numbers follow those given in the forward sampling algorithm with new or changed lines marked
with an asterisk. Time(X) might be set to the end of an interval of evidence which is not a transition time but
simply a time when we need to resample a next potential transition. This means that we will not update σ
with a new transition every time through the loop. The algorithm differs from the forward sampling procedure
as follows. Step 2 now accounts for evidence at the beginning of the trajectory (using standard likelihood
weighting for Bayesian networks). In Step 3, we draw Δt from the truncated exponential if the current value
disagrees with upcoming evidence. If the current evidence includes this variable, Δt is set to the duration of
such evidence. Step 5 updates the weights using the procedure Update-Weight. Finally, Step 7 now deals
with variables that are just leaving the evidence set.

3.6 Predictive Lookahead

The algorithm in Figure 4 draws the next state for a variable from the same distribution as the forward
sampling algorithm. This may cause a variable to transition several times in a short interval before evidence
as the variable “searches” to find a way to transition into the evidence. Thus, we may generate many unlikely
samples, making the algorithm inefficient. We can help mitigate this problem by trying to force the variable
into a state that will lead to the evidence.

When sampling the next state for variable X at time t, instead of sampling from the multinomial according
to θx(t)|uX (t), we would like to sample from the distribution of the next state conditioned on the upcoming
evidence. Suppose X is in state xi at time t, and the next evidence for X is state xk at te. Assuming the parents
of X do not change before te and ignoring evidence over the children of X , the distribution of the state of X
at t given only the evidence can be calculated using Equation 3:

P̃(Xt+Δt = x j|X [t : t+Δt) = xi,Xte = xk) =
1
Z

1,j QX exp(QX (te− t))1k = pi, j

where 1 j is the vector of zeros, except for a one in position j. We can therefore select our new state according
to the distribution of P̃(Xt+Δt |X [t : t+Δt) = xi,Xte = xk) and, assuming state x j is selected, multiply the

weight by
θxix j |uX (t)

pi, j to account for the difference between the target and sampling distributions.

3.7 Particle Filtering

The algorithm in Figure 4 allows us to generate a single trajectory and its weight, given the evidence. To apply
this algorithm to the task of online inference in a dynamic system, we can generate multiple trajectories in
parallel, advancing time forward as evidence is obtained.

2127



FAN, XU AND SHELTON

Procedure CTBN-Importance-Sample(tend,e)
1. t ← 0, σ← /0, w← 1 *
2. For each variable X ∈X

If evalX (0) defined,
set x(0)← evalX (0), *
Set w← w ·θBx(0)|paB (0)

*
Else

choose state x(0) according to θBX |paB (X)
Loop:
3. For each X ∈X such that Time(X) is undefined:

If evalX (t) is defined, set Δt ← eendX (t)− t *
Elseif evalX (te) is defined where te = etimeX (t), x(t) #= evalX (te),

choose Δt from an exponential distribution with
parameter qx(t)|uX (t) given Δt < (te− t). *

Else choose Δt from an exponential w/ param. qx(t)|uX (t)
Define Time(X)← t+Δt

4. Let X = argminX∈X [Time(X)]
5. If Time(X)≥ tend

w← Update-Weight(X ,w, t, tend) *
return (σ,w)

Else *
w← Update-Weight(X ,w, t,Time(X)) *

6. Update t ← Time(X)
7. If eendX (t) #= t or evalX (t) is defined *

If evalX (t) is defined, set x(t)← evalX (t) *
Else choose x(t), the next value of X , from a

multinomial with parameter θx(t)|uX (t)
Add 〈X ← x(t), t〉 to σ.
Undefine Time(X) and Time(Y ) for all variables Y
for which X ∈ UY

Else *
Undefine Time(X). *

Procedure Update-Weight(Y,w, t1, t2)
1. For each X ∈X such that evalX (t) is defined for t ∈ [t1, t2):

w← w · L̃X (x[t1 : t2))
2. For each X ∈X such that evalX (te) is defined,

where te = etimeX (t1), and x(t1) #= evalX (te):
If X = Y , w← w · (1− exp(−qx(t1)|uX (t1)(te− t1)))
Else w← w · 1−exp(−qx(t1)|uX (t1)(te−t1))

1−exp(−qx(t1)|uX (t1)(te−t2))
3. return w

Figure 4: Importance sampling for CTBNs. Changes from Figure 2 are noted with asterisks.

The resulting algorithm is an instance of sequential importance sampling, and therefore suffers from
its characteristic flaw: As the trajectory length increases, the distribution of the importance weights gets
increasingly skewed, with most importance weights converging to zero exponentially quickly. Thus, the
number of “relevant” samples gets increasingly small, and the estimates provided by the set of samples
quickly become meaningless. A family of methods, commonly known as sequential Monte Carlo or particle
filtering (Doucet et al., 2001), have been proposed in the setting of discrete-time processes to address this flaw.
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Procedure CTBN-Particle-Filtering({Xi0,wi0}i=1...N , tend,e)
1. k← 0,Wt ← 1,Nr ← N
2. For i← 1 to N: Pai0 ← i, wi ← 1/N
Loop:
3. For each i such that tik < tend :

(Xik+1, t
i
k+1,w

i
k+1)←

Sample-Segment(XPa
i
k

k , tPa
i
k

k ,wi, tend,e)
If tik+1 ≥ tend

Nremain ← Nr−1,
Wt ←Wt −wik+1

4. k← k+1
5. If Nr = 0

return {Ximi , t
i
mi ,w

i
mi ,Pa

i
mi}i=1...N,mi=1...ni ,

where ni is the number of transitions of the ith particle
6. Calculate N̂e f f of all incomplete particles
7. If N̂e f f < Nthr

Sample Paik according to w
i
k

wi ←Wt ×1/Nr
Else
wi ← wik, Pa

i
k ← Paik−1

Figure 5: Particle Filtering for CTBNs

At a high level, these methods re-apportion our samples to focus more efforts on more relevant samples—
those with higher weights.

The application of this idea to our setting introduces some subtleties because different samples are not
generally synchronized. We could pick a time t and run the algorithm in Figure 4 with tend = t so that
samples are synchronized at t. We would re-apportion the weights and continue each trajectory from its state
at t, first setting Time(X) to be undefined for all X . However, choosing the proper synchronization time t is a
non-trivial problem which may depend on the evidence and the speed the system evolves.

Instead of synchronizing all the particles by the time, we can align particles by the number of transitions.
If we let ti be the ith transition time and Xi be the value of X from ti−1 to ti, the following recursion holds.

P(X [0 : tn)) = P(X1:n, t1:n,e[0:tn))
= P(X1:n−1, t1:n−1,e[0:tn−1))P(Xn|Xn−1)P(X[tn−1,tn),e[tn−1,tn)|Xn−1,etn−1).

The weighted approximation of this probability is given by

P(X [0 : tn))≈
N

∑
i=1

w(Xi[0 : tn))δ(X [0 : tn),Xi[0 : tn))

where Xi[0 : tn) is the ith sample and w(Xi[0 : tn)) is the normalized weight of the ithsample. According to
Equation 8, the weight can be updated after every transition step. The weight update equation can be shown
as

w(Xi[0 : tn)) ∝ w(Xi[0 : tn−1))
L̃X (Xi[tn−1 : tn))
L̃′X (Xi[tn−1 : tn))

.

Thus, to sample multiple trajectories in parallel, we apply the CTBN importance sampling algorithm to
each trajectory until a transition occurs. To avoid the degeneracy of the weights, we resample the particles
when the estimated effective sample size N̂e f f = 1

∑i(wik)2
is below a threshold Nthr. This procedure is similar

to the regular particle filtering algorithm except that all particles are not synchronized by time but the number
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Procedure CTBN-Particle-Smoothing({Ximi , t
i
mi ,w

i
mi}, tend,e)

i= 1 . . .N,mi = 1 . . .Mi
1. σ← /0
2. Choose k with probability proportional to wMi

i
3. set Y = XMk

k
, s←Mk, t ← tks

Loop:
4. σ[ts−1,s) ← Y
5. If σ is complete

return σ
6. For j← 1 to N

w′
j ← Check-Weight(Y, t,X j

s−1, t
j
s−1,w

j
s−1)

7. Choose i with probability proportional to w′
i

8. Y ← Xsi , t ← t js s← s−1

Procedure Check-Weight(X , t,Xs, ts,ws)
1. If t ≤ ts or e(ts,t) contains a transition, or

the value of X and Xs do not differ by only one variable
return 0

2. σ[ts,t) ← Xs, σ(t)← X
3. w← ws · L̃X (σ[ts,t2])
4. return w

Figure 6: Particle Smoothing for CTBNs

of transitions. To answer queries in the time interval [0,T ), we propagate the particles until all of their last
transitions are greater than T .

Figure 5 shows the algorithm for generating N trajectories from 0 to T in a CTBN. It assumes that the
initial values and the weights have already been sampled. The procedure Sample-Segment loops from line
3 to 7 in Figure 4 until a transition occurs, returns the transition time and variables value, and updates the
corresponding weight for that segment. Note that we are approximating the distribution P(X1:n, t1:n,e[0:tn)) for
all possible n. Therefore, we only propagate and re-apportion weights for particles that have not yet reached
time T . Particles that have been sampled past T are left untouched.

3.8 Particle Smoothing

Although the resampling step in the particle filtering algorithm reduces the skew of the weights, it leads to
another problem: the diversity of the trajectories is also reduced since particles with higher weights are likely
to be duplicated multiple times in the resampling step. Many trajectories share the same ancestor after the
filtering procedure. A Monte Carlo smoothing algorithm using backward simulation addresses this problem
(Godsill et al., 2004).

The smoothing algorithm for discrete-time systems generates trajectories using N weighted particles
{xit ,wit} from the particle filtering algorithm. It starts with the particles at time T , moves backward one
step each iteration and samples a particle according to the product of its weight and the probability of it tran-
sitioning to the previously sampled particle. Specifically, in the first step, it samples x̃T from particles xiT at
time T with probability wiT . In the backward smoothing steps it samples x̃t according to wit|t+1=wit f (x̃t+1|xit),
where f (x̃t+1|xit) is the probability that the particle transitions from state xit to x̃t+1. The resulting trajectory
set is an approximation of P(x1:T |y1:T ) where y1:T is the observation.

This idea can be used in our setting with modification. Given the filtered particles {Ximi , t
i
mi ,w

i
mi},we need

to sample both variable values and transition times at each step when we move backward. There are two
main differences from the algorithm in Godsill et al. (2004): There are fewer than N particles that can be
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Figure 7: Drug Effect Network

used at the beginning steps of the backward smoothing since the trajectories do not have exactly the same
number of transitions, and not all particles at step n can be considered as candidates to move backward. A
particle {Xin, tin,win} is a valid candidate as the predecessor for {X̃n+1, t̃n+1} only if (1) tin < t̃n+1, (2) the values
of Xin and X̃n+1 differ in only one variable (thus a single transition is possible), and (3) e(tin ,̃tn+1) contains no
transitions.

Figure 6 shows the smoothing algorithm which generates a trajectory from the filtering particles. We
apply the algorithm N times to sample N trajectories. These equally weighted trajectories can be used to
approximate the smoothing distribution P(X[0,T )|e). Generating one trajectory with this smoothing process
requires considering all the particles at each step. The running time of sampling N trajectories using particle
smoothing is N times of that of particle filtering.

4. Experimental Results
In this section, we report on the performance of our algorithm on synthetic networks and a network built
from a real data set of people’s life histories. We tested our algorithm’s accuracy for the task of inference
and parameter estimation. We also compare our algorithms with other approximate inference algorithms for
CTBNs: the method based on the expectation propagation in Saria et al. (2007) and the method based on
Gibbs sampling in El-Hay et al. (2008).

All the algorithms we used in the experiments were implemented in the same code base to make fair
comparisons. We tried our best to optimize all the code. The implementations are general so that they can be
applied to any CTBN model. Our implementation of EP is adapted from that of Saria et al. (2007) who were
kind enough to share their code. The code base is described in Shelton et al. (2010) and is available from the
authors’ website.

4.1 Networks

In our experiments, different types of network structures were used, including the drug effect network (Nodel-
man et al., 2002), a chain-structured network, and the BHPS network (Nodelman et al., 2005b). All the net-
works are at the upper size limit for the exact inference algorithm so that we can compare our result to the
true value.

Drug Effect Network: The drug effect network is a toy model of the effect of a pain-relief medicine.
It has 8 (5 binary and 3 ternary) variables. The structure of the network is shown in Figure 7. At t = 0 the
person is not hungry, is not eating, has an empty stomach and is not drowsy. He has joint pain due to the
falling barometric pressure and takes the drug to alleviate the pain.
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Chain Structured Network: The chain network contains five nodes X0, . . . ,X5, where Xi is the parent
of Xi+1 for i < 5. Each node has five states, s0, . . . ,s4. X0 (usually) cycles in two loops: s0 → s1 → s3 → s0
and s0 → s2 → s4 → s0. All the other nodes stay at their current state if it matches their parent and otherwise
transition to their parent’s state with a high probability. Each variable starts in state s0.

More specifically, the intensity matrix of X0 is

QX0 =





−2.02 1 1 0.01 0.01
0.01 −2.03 0.01 2 0.01
0.01 0.01 −2.03 0.01 2
2 0.01 0.01 −2.03 0.01
2 0.01 0.01 0.01 −2.03




.

For all other nodes, the off-diagonal elements of the intensity matrices are given by

qsi,s j |u=sk =

{
0.1 if i #= j and j #= k,
10 if i #= j and j = k.

BHPS Network: This network was learned from the British Household Panel Survey (BHPS) (ESRC
Research Centre on Micro-social Change, 2003) data set. The data set provides information about British
citizens. The data are collected yearly by asking thousands of households questions such as household or-
ganization, employment, income, wealth and health. Similar to Nodelman et al. (2005b), we keep a small
set of variables so that exact inference could be applied. We chose four variables: employ (ternary: student,
employed, unemployed), children (ternary: 0, 1, 2+), married (binary: not married, married), and smoking
(binary: non-smoker, smoker), and we assumed there is a hidden variable (binary) for each of those four
variables. We trained the network on 8935 trajectories of people’s life histories. We applied the structural
EM algorithm in Nodelman et al. (2005b) and learned the structure of the network shown in Figure 8. We
then estimated the parameters of the network using the EM algorithm and exact inference. We consider the
learned model as the true BHPS network model for these experiments.

4.2 Evaluation Method

We evaluated the performance of the approximate inference algorithms in two tasks: the inference task of
answering queries given evidence and the learning task of parametric learning with partially observed data.
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Figure 9: Relative bias and standard deviation of sampling with and without predictive lookahead.

In the inference task, each evidence is a partially observed trajectory of the CTBN network. The evidence
is generated using two methods. The first method is to set it manually. The second is to generate a trajectory
using the forward sampling algorithm and randomly remove some parts of the sampled trajectory. In particu-
lar, we repeated the following procedure n times: for each variable, we randomly removed the information of
the trajectory from ts to ts+ γT , where T is the total length of the trajectory, ts is randomly sampled from the
[0,T − γT ] uniform distribution and γ< 1. After we run the removing procedure n times, there are at most nγ
time units of information missing for each variable. In all comparisons, this procedure was applied once and
the same evidence was given to all algorithms.

In our experiments, we set our query to be one of three types: the expected total amount of time a variable
X stays on some state xi, the expected total number of times that a variable transitions from state xi to state
x j, or the distribution of variable at time t.

For each query, we ran the sampling based algorithms with different sample sizes, M. For each sample
size, we ran the experiment N times. We calculated our query according to Equation 6 and compared the
result to the true value calculated using exact inference. We used two metrics: the relative bias |∑vM−v∗|

v∗N ,
where vM is the query value of sampling algorithm with sample size M, and v∗ is the true value; and the
relative standard deviation σM

v∗ where σM is the standard deviation from the true value when sample size is
M. For each sample size, we also recorded the average running time t̄M of each experiment and used t̄M to
evaluate the efficiency of the algorithm.

In the learning task, we used the sampling algorithms to estimate the parameters of a CTBN network
given some partially observed data. Monte Carlo EM (Wei and Tanner, 1990) was applied in this task: In
each iteration, we used the sampling based algorithm to estimate the expected sufficient statistics given the
incomplete data and used Equation 4 to compute the parameters.

The training data were generated by sampling trajectories from the true model and randomly removing
some portion of the information as described above. We sampled another set of trajectories from the true
model as the testing data. We calculated the log-likelihood of the testing data under the learned model to
evaluate the learning accuracy.

4.3 Inference Experimental Results

In this section, we evaluate the performance of our importance sampling based algorithms in answering
queries and compare with the EP algorithm in Saria et al. (2007) and the Gibbs sampling algorithm in El-Hay
et al. (2008).

4.3.1 COMPARISON OF IMPORTANCE SAMPLING AND PREDICTIVE LOOKAHEAD

We first tested the importance sampling algorithm and the predictive lookahead modification using the drug
effect network. We set the observed evidence: on t = [0,1) the stomach is empty, on t = [0.5,1.2) the
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Figure 10: Time-efficiency comparison of particle filtering, smoothing and importance sampling

barometer is falling, and on t = [1.5,2.5) he is drowsy. Our query is the expected total amount of time that
he has no joint pain on [0,2.5). (The true value is 0.1093). We ran the two algorithms with sample sizes,
M, from 5 to 90000. For each sample size, we ran the algorithms N = 1000 times. The results are shown in
Figure 9. Both algorithms achieve the correct result when the sample size is large. The standard deviation
decreases at a rate of O( 1√

M ) (shown by the thin solid line). The sampling algorithm with prediction achieves
lower standard deviation than the non-prediction version.

4.3.2 IMPORTANCE SAMPLING, PARTICLE FILTERING AND SMOOTHING

We then used the chain network to evaluate the efficiency of the importance sampling, particle filtering, and
smoothing algorithms. We assumed that only X4 was observed in this experiment. We used four different
evidences. The first one is a simple evidence: only part of the behavior of X4 is observed: on [1,1.7), X4 = s3,
and on [2,2.5), X4 = s2. For the other three, the behavior of X4 is fully observed during the interval [0,T ),
where T = 3,6,9. This is done by forward sampling a trajectory from 0 to T and keeping only the information
about X4. Our query is the marginal distribution P(X2(T2 )|e[0,T )). Note that this is the most difficult case for
the importance sampling algorithm since the chain network is nearly deterministic. We recorded the average
running time and KL-divergence between the estimated and true distributions, for each sample size across
N = 300 trials.

Figure 10 shows the efficiency of the three algorithms. In Figure 10(a), we used the simple evidence.
In Figure 10 (b)-(d), we used the evidence with X4 fully observed and T = 3,6,9 respectively. In all four
cases, the particle filtering and smoothing algorithms both outperform the importance sampling algorithm
when the sample size is small (small running time). For simple evidence (Figure 10(a)), the importance
sampling algorithm achieves comparable performance when the sample size is large. When the evidence
is complicated (Figure 10 (b)-(d)), the error of importance sampling is large, even when we use very large
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Figure 11: Comparison to expectation propagation: Drug Network

sample sizes. When the trajectory is short, the particle filtering algorithm is slightly better than the particle
smoothing algorithm. This is because the filtering algorithm can generate more samples than the smoothing
algorithm with the same running time. However, as the trajectory length increases, the particle smoothing
algorithm outperforms the filtering algorithm due to particle diversity problems.

4.3.3 COMPARISON OF IMPORTANCE SAMPLING AND EP

We also compared our three sampling algorithms to the approximate inference algorithm based on expectation
propagation in Saria et al. (2007). We did not use their adaptive splitting method (for reasons we explain
below). Even without the adaptive splitting, their method still differs from that of Nodelman et al. (2005a),
in that it allows asynchronous propagation of messages along time.

We used the same evidence as in Section 4.3.1 on the drug effect network and answered two queries: the
total amount of time that the concentration is low and the total amount of time the person has no joint pain.
For the EP algorithm, we first tried a segmentation that split the timeline at the evidence. We then gradually
decreased the time interval of the segments to 0.15. The results of accuracy with respect to running time are
shown in Figure 11. The importance sampling algorithm and the particle filtering algorithm outperforms the
EP algorithm in answering both queries. Among the sampling-based algorithms, the importance sampling
algorithm performs the best and the smoothing algorithm is the worst. This is not surprising given that
most of the nodes are binary. At each transition time, the sampled trajectory has no choice as to the next
state. Therefore, smoothing (or filtering) has less effect as there is no need to intelligently select the next
state. However, the extra computation time for resampling and backward simulation makes the filtering and
smoothing algorithm less efficient.

As mentioned above, we did not employ the adaptive splitting method of Saria et al. (2007). It would not
have changed our results much. The left-most points in our Figure 11 correspond to the minimum number
of splits. (They are as fast as possible.) The right-most points of the Figure 11 correspond to many fine
splits, and are about as accurate as possible, and we can see that the accuracy has flattened out. So, while the
horizontal widths of the EP curves would have been shortened (by allowing for the better accuracy in less
time), the vertical spread would have been approximately the same. In neither plot of Figure 11 would this
have made a large difference in the comparisons to our sampling method.

4.3.4 COMPARISON OF IMPORTANCE SAMPLING AND GIBBS SAMPLING

We compared our importance sampling algorithm to the Gibbs Sampling algorithm in El-Hay et al. (2008).
We used three CTBN network models: the drug effect network, the BHPS network and the chain structured
network. For each network, we randomly generated evidence using the procedure described in Section 4.2.
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Figure 12: Comparison to Gibbs Sampling: Drug Network. Note burn-in time for Gibbs Sampling is not
included (3.94 seconds on average).

We ran the procedure 4 times for each variable and each time, we removed 20% of the content. Thus, there
are at most 80% information missing for each variable.

For the importance sampling algorithm, we chose the sample size M from 10 to 500000. For Gibbs
sampling algorithm, we chose the sample size M from 10 to 5000. We ran the experiments for each sample
size N = 100 times and recorded the average running time for each algorithm. For Gibbs sampling algorithm,
we first ran 100 “burn-in” iterations for each sample size before we sample trajectories from the sampler. The
time spent on the “burn-in” iterations was not included in the final running time.

For the drug effect network, the evidence trajectory begins at time t = 0 and ends at time t = 5. We asked
two queries: the expected total amount of time the person’s stomach is half full, and the expected number of
times that the person’s stomach changes from empty to half full.

Using enough running time (sample size), we observed that both algorithms could answer the queries
accurately (with a relative bias below 0.1%). The decreasing of the relative standard deviation with respect to
the running time of the two algorithms are shown in Figure 12. The average “burn-in” time for Gibbs sampler
is about 3.94 seconds. From the figure, we can see that importance sampling outperforms Gibbs sampling in
answering both queries.

For the BHPS network, we set the evidence from t = 0 to t = 50 (years). We asked similar queries: the
expected total amount of time a person’s employment status is as a student and the expected number of times
that he becomes employed. We chose the same sample sizes as on the drug effect network and ran each
sample size N = 100 times. Figure 13 shows the result of the decreasing of the standard deviation of the two
algorithms. The average “burn-in” time for Gibbs sampling algorithm in this experiment is 30.88 seconds.

We achieved similar result as the experiments with the drug effect network. The importance sampling
algorithm outperformed the Gibbs sampling algorithm in answering the query of time. The performances on
the query of transitions are almost the same.

In both networks, importance sampling outperformed Gibbs sampling in three of the four cases, even
when the running time on “burn-in” iterations was not considered. To achieve the same accuracy and stan-
dard deviation, Gibbs sampling algorithm requires fewer samples. This is because for each variable, Gibbs
sampling samples from the true posterior distribution given the evidence and its Markov blanket. However,
sampling from the true posterior distribution is computational costly, since it requires repeatedly computing
the conditional cumulative distribution function. Using the same amount of time, importance sampling can
sample far more trajectories, which outperforms Gibbs sampling.

We last compared these two algorithms using the chain structured network. The evidence trajectory begins
at time t = 0 and ends at time t = 5. We set the queries to be the expected total amount of time X2 stays in
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Figure 13: Comparison to Gibbs Sampling: BHPS Network. Note burn-in time for Gibbs Sampling is not
included (30.88 seconds on average).
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Figure 14: Comparison to Gibbs Sampling: Chain Network. Note burn-in time for Gibbs Sampling is not
included (11.42 seconds on average).

state s1 and the expected number of times that X2 transitions from s0 to s1. Figure 14 shows the result over
N = 100 runs. The average “burn-in” time for Gibbs sampling algorithm in this experiment is 11.42 seconds.

The Gibbs sampling algorithm achieved better performance in this experiment. The result is not surpris-
ing. As we have mentioned before, the chain structured network is nearly deterministic, and it is the hardest
case for the importance sampling algorithm. We further examined the randomly generated evidence. The
only observed state on X0 is s0, which makes this experiment even harder for the importance sampling algo-
rithm. However, it is a very easy case for the Gibbs sampling algorithm since it is nearly deterministic and is
structurally simple. (There are only at most one parent and one child for each node.) Although importance
sampling can generate many more samples in the same period of time, most of these samples are trajectories
with very small weights.

4.4 Parameter Estimation Experimental Results

In this section, we evaluate the performance of importance sampling algorithm on parameter estimation and
compare to the Gibbs sampling algorithm and the EP algorithm.
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Figure 15: Learning results for the drug effect network. Standard deviations across training data selection
(and random samples for the sampling methods) are shown jittered slightly for clarity.

We used the drug effect network for this experiment. We sampled increasing We sampled increasing
numbers of trajectories of 5 time lengths. To hide part of the trajectory, we did the following: In each
iteration, for each variable we randomly selected a time window of 0.5 time lengths and removed the content
in that window. We repeated this until we dropped 50% of the content of the trajectory. We used these
incomplete trajectories as our training data. We sampled another 50 trajectories with the same length as our
testing data.

To estimate the parameters of the CTBN network, we followed the EM algorithm in Nodelman et al.
(2005b). When calculating the expected sufficient statistics, importance sampling, Gibbs sampling, and
expectation propagation were used. Therefore, the likelihood in the E-step was calculated approximately. In
our experiment, we fixed the total number of iterations for the EM algorithm at 15. In each iteration, we
compared the calculated likelihood to the likelihood in the previous iteration. If the likelihood decreased, we
kept the parameters in the previous iteration.

We chose the initial parameters for the EM algorithm by sampling the diagonal elements of the condi-
tional intensity matrices from the Gamma distribution with parameters (0.5,1) and sampling the transition
probabilities from a Dirichlet distribution. We randomly sampled 5 models as the initial parameters for the
EM algorithm. For each initial parameter set, we ran the EM algorithm 10 times for the sampling methods
(and once for EP which is deterministic). We evaluated the learning accuracy by calculating the average
log-likelihood of the testing data on the 50 learned networks. To compare the running efficiency of the two
sampling-based algorithms, we fixed the total amount of time for the sampler to generate samples in each EM
iteration to be the same time as the EP algorithm took (approximately 23 seconds). For the Gibbs sampling
algorithm, we dropped the first 50 trajectories as “burn-in” iterations. Figure 15 shows the results as we
increased the number of training trajectories from 1 to 6.

All algorithms obtain higher log-likelihood on the testing data when we increase the number of training
trajectories. The sampling methods do better (and have lower variation), especially as the data size grows.

5. Conclusion
We have presented an approximate inference algorithm with two variations based on importance sampling.
We naturally extended the algorithm to sequential Monte Carlo methods such as particle filtering and smooth-
ing in CTBNs. We applied our sampling algorithm to synthetic networks and a network from real data. We
evaluated the efficiency of our algorithms and compared to other approximate inference algorithms based on
expectation propagation and Gibbs sampling. Our importance sampling algorithm outperformed both in most
of the experiments presented in this paper. In the situation of a highly deterministic system, Gibbs sampling
performed better.
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The networks used in this paper are at the upper size limit for exact computation. For example, calculating
the expected sufficient statistics of the chain structured network given evidence takes more than two days
using exact inference. Thus, approximate inference methods are critical for tracking, predicting, and learning
in continuous time Bayesian networks for real applications. Our importance sampling based algorithms are
fast, simple to implement and can be used to calculate the expected value of any function of a trajectory,
including the expected sufficient statistics necessary for expectation-maximization for parameter estimation
with missing data.
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Abstract
Microarray gene expressions provide new opportunities for molecular classification of heteroge-
neous diseases. Although various reported classification schemes show impressive performance,
most existing gene selection methods are suboptimal and are not well-matched to the unique charac-
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teristics of the multicategory classification problem. Matched design of the gene selection method
and a committee classifier is needed for identifying a small set of gene markers that achieve accurate
multicategory classification while being both statistically reproducible and biologically plausible.
We report a simpler and yet more accurate strategy than previous works for multicategory classifi-
cation of heterogeneous diseases. Our method selects the union of one-versus-everyone (OVE) phe-
notypic up-regulated genes (PUGs) and matches this gene selection with a one-versus-rest support
vector machine (OVRSVM). Our approach provides even-handed gene resources for discriminating
both neighboring and well-separated classes. Consistent with the OVRSVM structure, we evaluated
the fold changes of OVE gene expressions and found that only a small number of high-ranked genes
were required to achieve superior accuracy for multicategory classification. We tested the proposed
PUG-OVRSVM method on six real microarray gene expression data sets (five public benchmarks
and one in-house data set) and two simulation data sets, observing significantly improved perfor-
mance with lower error rates, fewer marker genes, and higher performance sustainability, as com-
pared to several widely-adopted gene selection and classification methods. The MATLAB toolbox,
experiment data and supplement files are available at http://www.cbil.ece.vt.edu/software.htm.
Keywords: microarray gene expression, multiclass gene selection, phenotypic up-regulated gene,
multicategory classification

1. Background

The rapid development of gene expression microarrays provides an opportunity to take a genome-
wide approach for disease diagnosis, prognosis, and prediction of therapeutic responsiveness (Clarke
et al., 2008; Wang et al., 2008). When the molecular signature is analyzed with pattern recognition
algorithms, new classes of disease are identified and new insights into disease mechanisms and di-
agnostic or therapeutic targets emerge (Clarke et al., 2008). For example, many studies demonstrate
that global gene expression profiling of human tumors can provide molecular classifications that
reveal distinct tumor subtypes not evident by traditional histopathological methods (Golub et al.,
1999; Ramaswamy et al., 2001; Shedden et al., 2003; Wang et al., 2006).

While molecular classification falls neatly within supervised pattern recognition, high gene di-
mensionality and paucity of microarray samples pose challenges for, and inspire novel develop-
ments in classifier design and gene selection methodologies (Wang et al., 2008). For multicategory
classification using gene expression data, various classifiers have been proposed and have achieved
promising performance, including k-Nearest Neighbor Rule (kNN) (Golub et al., 1999), artificial
neural networks (Wang et al., 2006), Support Vector Machine (SVM) (Ramaswamy et al., 2001),
Naı̈ve Bayes Classifier (NBC) (Liu et al., 2002), Weighted Votes (Tibshirani et al., 2002), and Lin-
ear Regression (Fort and Lambert-Lacroix, 2005). Many comparative studies show that SVM based
classifiers outperform other methods on most bench-mark microarray data sets (Li et al., 2004;
Statnikov et al., 2005).

An integral part of classifier design is gene selection, which can improve both classification
accuracy and diagnostic economy (Liu et al., 2002; Shi et al., 2008; Wang et al., 2008). Many
microarray-based studies suggest that, irrespective of the classification method, gene selection is
vital for achieving good generalization performance (Statnikov et al., 2005). For multicategory clas-
sification using gene expression data, the criterion function for gene selection should possess high
sensitivity and specificity, well match the specific classifiers used, and identify gene markers that are
both statistically reproducible and biologically plausible (Shi et al., 2008; Wang et al., 2008). There
are limitations associated with existing gene selection methods (Li et al., 2004; Statnikov et al.,
2005). While wrapper methods consider joint discrimination power of a gene subset, complex clas-
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sifiers used in wrapper algorithms for small sample size may overfit, producing non-reproducible
gene subsets (Li et al., 2004; Shi et al., 2008). Moreover, discernment of the (biologically plausible)
gene interactions retained by wrapper methods is often difficult due to the black-box nature of most
classifiers (Shedden et al., 2003).

Conversely, most filtering methods for multicategory classification are straightforward exten-
sions of binary discriminant analysis. These methods are devised without well matching to the
classifier that is used, which typically leads to suboptimal classification performance (Statnikov
et al., 2005). Popular multicategory filtering methods (which are extensions of two-class methods)
include Signal-to-Noise Ratio (SNR) (Dudoit et al., 2002; Golub et al., 1999), Student’s t-statistics
(Dudoit et al., 2002; Liu et al., 2002), the ratio of Between-groups to Within-groups sum of squares
(BW) (Dudoit et al., 2002), and SVM based Recursive Feature Elimination (RFE) (Li and Yang,
2005; Ramaswamy et al., 2001; Zhou and Tuck, 2007). However, as pointed out by Loog et al.
(2001) in proposing their weighted Fisher criterion (wFC), simple extensions of binary discriminant
analysis to multicategory gene selection are suboptimal because they overemphasize large between-
class distances, that is, these methods choose gene subsets that preserve the distances of (already)
well-separated classes, without reducing (and possibly with increase in) the large overlap between
neighboring classes. This observation and the application of wFC to multicategory classification
are further evaluated experimentally by Wang et al. (2006) and Xuan et al. (2007).

The work most closely related to our gene selection scheme is that of Shedden et al. (2003).
These investigators focused on marker genes that are highly expressed in one phenotype relative
to one or more different phenotypes and proposed a tree-based one-versus-rest (OVR) fold change
evaluation between mean expression levels. The potential limitation here is that the criterion func-
tion considers the “rest of the classes” as a “super class”, and thus may select genes that can distin-
guish a single class from the remaining super class, yet without giving any benefit in discriminating
between classes within the super class. Such genes may compromise multicategory classification
accuracy, especially when a small gene subset is chosen.

It is also important to note that, while univariate or multivariate analysis methods using complex
criterion functions may reveal subtle marker effects (Cai et al., 2007; Liu et al., 2005; Xuan et al.,
2007; Zhou and Tuck, 2007), they are also prone to overfitting. Recent studies have found that for
small sample sizes, univariate methods fared comparably to multivariate methods (Lai et al., 2006;
Shedden et al., 2003) and simple fold change analysis produced more reproducible marker genes
than significance analysis of variance-incorporated t-tests (Shi et al., 2008).

In this paper, we propose matched design of the gene selection mechanism and a committee
classifier for multicategory molecular classification using microarray gene expression data. A key
feature of our approach is to match a simple one-versus-everyone (OVE) gene selection scheme to
the OVRSVM committee classifier (Ramaswamy et al., 2001). We focus on marker genes that are
highly expressed in one phenotype relative to each of the remaining phenotypes, namely Phenotypic
Up-regulated Genes (PUGs). PUGs are identified using the fold change ratio computed between the
specified phenotype mean and each of the remaining phenotype means. Thus, we consider a gene
to be a marker for the specified phenotype if the average expression associated with this phenotype
is high relative to the average expressions in each of the other phenotypes. To assure evenhanded
resources for discriminating both neighboring and well-separated classes, we use a fixed number
of PUGs for each phenotypic class and pool all phenotype-specific PUGs together to form a gene
marker subset used by the OVRSVM committee classifier. All PUGs referenced by the committee
classifier are individually interpretable as potential markers for phenotypic classes, allowing each
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gene to inform the classifier in a way that is consistent with its mechanistic role (Shedden, et al.,
2003). Since PUGs are the union of subPUGs selected by simple univariate OVE fold change
analysis, they are expected to be statistically reproducible (Lai et al., 2006; Shedden et al., 2003;
Shi et al., 2008).

We tested PUG-OVRSVM on five publicly available benchmarks and one in-house microarray
gene expression data set and on two simulation data sets, observing significantly improved perfor-
mance with lower error rates, fewer marker genes, and higher performance stability, as compared
to several widely-adopted gene selection and classification methods. The reference gene selection
methods are OVRSNR (Golub et al., 1999), OVRt-stat (Liu et al., 2002), pooled BW (Dudoit et al.,
2002), and OVRSVM-RFE (Guyon et al., 2002), and the reference classifiers are kNN, NBC, and
one-versus-one (OVO) SVM. With accuracy estimated by leave-one-out cross-validation (LOOCV)
(Hastie et al., 2001), our experimental results show that PUG-OVRSVM outperforms all combina-
tions of the above referenced gene selection and classification methods in the two simulation data
sets and 5 out of the 6 real microarray gene expression data sets, and produces comparable perfor-
mance on the one remaining data set. Specifically, tested on the widely-used benchmark microarray
gene expression data set “multicategory human cancers data” (GCM) (Ramaswamy et al., 2001;
Statnikov et al., 2005), PUG-OVRSVM produces a lower error rate of 11.05% (88.95% correct
classification rate) than the best known benchmark error rate of 16.72% (83.28% correct classifica-
tion rate) (Cai et al., 2007; Zhou and Tuck, 2007).

2. Methods

In this section, we first discuss multicategory classification and associated feature selection, with an
emphasis on OVRSVM and application to gene selection for the microarray domain. This discussion
then naturally leads to our proposed PUG-OVRSVM scheme.

2.1 Maximum a Posteriori Decision Rule

Classification of heterogeneous diseases using gene expression data can be considered a Bayesian
hypothesis testing problem (Hastie et al., 2001). Let xi = [xi1, ...,xi j, ...,xid] be the real-valued gene
expression profile associated with sample i across d genes for i= 1, . . . ,N and j= 1, . . . ,d. Assume
that the sample points xi come from M classes, and denote the class conditional probability density
function and class prior probability by p(xi | ωk) and P(ωk), respectively, for k = 1, . . . ,M. To
minimize the Bayes risk averaged over all classes, the optimum classifier uses the well-known
maximum a posteriori (MAP) decision rule (Hastie et al., 2001). Based on Bayes’ rule, the class
posterior probability for a given sample xi is

P(ωk | xi) =
P(ωk) p(xi | ωk)

∑M
k′=1P(ωk′) p(xi | ωk′)

and is used to (MAP) classify xi to ωk when

P(ωk | xi)> P(ωl | xi) (1)

for all l #= k.
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2.2 Supervised Learning and Committee Classifiers

Practically, multicategory classification using the MAP decision rule can be approximated using
parameterized discriminant functions that are trained by supervised learning. Let fk (xi,θ), k =
1,2, . . . ,M, be the M outputs of a machine classifier designed to discriminate between M classes
(>2), where θ represents the set of parameters that fully specify the classifier, and with the output
values assumed to be in the range [0,1]. The desired output of the classifier will be “1” for the class
to which the sample belongs and “0” for all other classes. Suppose that the classifier parameters
are selected based on a training set so as to minimize the mean squared error (MSE) between the
outputs of the classifier and the desired (class target) outputs,

MSE=
1
N

M

∑
k=1

∑
xi∈ωk

[

[ fk (xi,θ)−1]2+∑l #=k f
2
l (xi,θ)

]

. (2)

Then, it can be shown that the classifier is being trained to approximate the posterior probability
for class ωk given the observed xi, that is, the classifier outputs will converge to the true posterior
class probabilities

fk (xi,θ)→ P(ωk | xi)

if we allow the classifier to be arbitrarily complex and if N is made sufficiently large. This result
is valid for any classifier trained with the MSE criterion, where the parameters of the classifier are
adjusted to simultaneously approximateM discriminant functions fk (xi,θ) (Gish, 1990).

While there are numerous machine classifiers that can be used to implement the MAP decision
rule (1) (Hastie et al., 2001), a simple yet elegant way of discriminating between M classes, and
which we adopt here, is based on an OVRSVM committee classifier (Ramaswamy et al., 2001;
Rifkin and Klautau, 2002; Statnikov et al., 2005). Intuitively, each term within the sum over k
in (2) corresponds to an OVR binary classification problem and can be effectively minimized by
suitable training of a binary classifier (discriminating class k from all other classes). By separately
minimizing the MSE associated with each term in (2) via binary classifier training and, thus, effec-
tively minimizing the total MSE, a set of discriminant functions { fk (xi,θk ⊆ θ)} can be constructed
which, given a new sample point, apply the decision rule (1), but with fk (xi,θ) playing the role of
the posterior probability.

Among the great variety of binary classifiers that use regularization to control the capacity of
the function spaces they operate in, the best known example is the SVM (Hastie et al., 2001; Vap-
nik, 1998). To carry over the advantages of regularization approaches for binary classification tasks
to multicategory classification, the OVRSVM committee classifier uses M different SVM binary
classifiers, each one separately trained to distinguish the samples in a single class from the sam-
ples in all remaining classes. For classifying a new sample point, the M SVMs are run, and the
SVM that produces the largest (most positive) output value is chosen as the “winner” (Ramaswamy
et al., 2001). For more detailed discussion, see the critical review and experimental comparison by
Rifkin and Klautau (2002). Figure 1 shows an illustrative OVRSVM committee classifier for three
classes. The OVRSVM committee classifier has proved highly successful at multicategory classifi-
cation tasks involving finite or limited amounts of high dimensional data in real-world applications.
OVRSVM produces results that are often at least as accurate as other more complicated methods
including single machine multicategory schemes (Statnikov et al., 2005). Perhaps more importantly
for our purposes, the OVR scheme can be matched with an OVE gene selection method, as we
elaborate next.
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Figure 1: Conceptual illustration of OVR committee classifier for multicategory classification
(three classes, in this case). The dotted lines are the decision hyperplanes associated with
each of the component binary SVMs and the bold line-set represents the final decision
boundary after the winner-take-all classification rule is applied.

2.3 One-Versus-Everyone Fold-change Gene Selection

While gene selection is vital for achieving good generalization performance (Guyon et al., 2002;
Statnikov et al., 2005), perhaps even more importantly, the identified genes, if statistically repro-
ducible and biologically plausible, are “markers”, carrying information about the disease phenotype
(Wang et al., 2008). We will propose two novel, effective gene selection methods for multicategory
classification that are well-matched to OVRSVM committee classifiers, namely, OVR and OVE
fold-change analyses.

OVR fold-change based PUG selection follows directly from the OVRSVM scheme. Let Nk be
the number of sample points belonging to phenotype k; the geometric mean of the expression levels
(on the untransformed scale) for gene j under phenotype k is

µj(k) = Nk
√

∏i∈ωk
xi j

j = 1, . . . ,d; k = 1, . . . ,M. Then, we define the OVRPUGs as:

JPUG =
M⋃

k=1
JPUG(k) =

M⋃

k=1

{

j

∣

∣

∣

∣

∣

µj(k)
M−1
√

∏l #=k µj(l)
! τk

}

(3)

where {τk} are pre-defined thresholds chosen so as to select a fixed (equal) number of PUGs for
each phenotype k. This PUG selection scheme (3) is similar to what has been previously proposed
by Shedden et al. (2003):

JPUG =
M⋃

k=1
JPUG(k) =

M⋃

k=1

{

j

∣

∣

∣

∣

∣

µj(k)
N−Nk
√

∏i/∈ωk xi j
! τk

}

. (4)

The critical difference between (3) and (4) is that the denominator term in (3) is the overall geo-
metric center of the “geometric centers” associated with each of the remaining phenotypes while
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the denominator term in (4) is the geometric center of all sample points belonging to the remaining
phenotypes. When {Nk} are significantly imbalanced for different k, the denominator term in (4)
will be biased toward the dominant phenotype(s).

However, a problem associated with both PUG selection schemes specified by (3) and (4) (and
with the OVRSNR criterion Golub et al., 1999) is that the criterion function considers the remaining
classes as a single super class, which is suboptimal because it ignores a gene’s ability to discriminate
between classes within the super class.

We therefore propose OVE fold-change based PUG selection to fully support the objective of
multicategory classification. Specifically, the OVEPUGs are defined as:

JPUG =
M⋃

k=1
JPUG(k) =

M⋃

k=1

{

j

∣

∣

∣

∣

∣

µj(k)
maxl #=k

{

µj(l)
} ! τk

}

(5)

where the denominator term is the maximum phenotypic mean expression level over the remaining
phenotype classes. This seemingly technical modification turns out to have important consequences
since it assures that the selected PUGs are highly expressed in one phenotype relative to each of the
remaining phenotypes, that is, “high” (up-regulated) in phenotype k and “low” (down-regulated)
in all phenotypes l #= k. In our experimental results, we will demonstrate that (5) leads to better
classification accuracy than (4) on a well-known multi-class cancer domain.

Adopting the same strategy as in Shedden et al. (2003), to assure even-handed gene resources
for discriminating both neighboring and well-separated classes, we select a fixed (common) number
of top-ranked phenotype-specific subPUGs for each phenotype, that is, ‖JPUG(k)‖= NsubPUG for all
k, and pool all these subPUGs together to form the final gene marker subset JPUG for the OVRSVM
committee classifier. In our experiments, the optimum number of PUGs per phenotype, NsubPUG, is
determined by surveying the curve of classification accuracy versus NsubPUG and selecting the num-
ber that achieves the best classification performance. More generally, in practice, NsubPUG can be
chosen via a cross validation procedure. Figure 2 shows the geometric distribution of the selected
PUGs specified by (5), where the PUGs (highlighted data points) constitute the lateral-edge points
of the convex pyramid defined by the scatter plot of the phenotypic mean expressions (Zhang et al.,
2008). Different from the PUG selection schemes given by (3) and (4), the PUGs selected based
on (5) are most compact yet informative, since the down-regulated genes that are not differentially
expressed between the remaining phenotypes (the genes on the lateral faces of the scatter plot con-
vex pyramid) are excluded. From a statistical point of view, extensive studies on the normalized
scatter plot of microarray gene expression data by many groups including our own indicate that the
PUGs selected by (5) approximately follow an independent multivariate super-Gaussian distribution
(Zhao et al., 2005) where subPUGs are mutually exclusive and phenotypic gene expression patterns
defined over the PUGs are statistically independent (Wang et al., 2003).

It is worth noting that the PUG selection by (5) also adopts a univariate fold-change evaluation
that does not require calculation of either expression variance or of correlation between genes (Shi
et al., 2008). For the small sample size case typical of microarray data, multivariate gene selec-
tion schemes may introduce additional uncertainty in estimating the correlation structure (Lai et al.,
2006; Shedden et al., 2003) and thus may fail to identify true gene markers (Wang et al., 2008).
The exclusion of the variance in our criterion is also supported by the variance stabilization the-
ory (Durbin et al., 2002; Huber et al., 2002), because the geometric mean in (5) is equivalent to the
arithmetic mean after logarithmic transformation and the gene expression after logarithmic transfor-
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Figure 2: Geometric illustration of the selected one-versus-everyone phenotypic upregulated genes
(OVEPUGs) associated with three phenotypic classes. Three-dimensional geometric dis-
tribution (on the untransformed scale) of the selected OVEPUGs, which reside around
the lateral-edges of the phenotypic gene expression scatter plot convex pyramid, is shown
in the left subfigure. A projected distribution of the selected OVEPUGs together with
OVEPDGs is shown in the right cross-sectional plot, where OVEPDGs reside along the
face-edges of the cross-sectional triangle.

mation approximately has the equal variance across different genes, especially for the up-regulated
genes.

Corresponding to the definition of OVEPUGs, the OVEPDGs (which are down-regulated in one
class while being up-regulated in all other classes) can be defined by the following criterion:

JPDG =
M⋃

k=1
JPDG(k) =

M⋃

k=1

{

j

∣

∣

∣

∣

∣

minl #=k
{

µj(l)
}

µj(k)
! τk

}

. (6)

Furthermore, the combination of PUGs and PDGs can be defined as:

JPUG+PDG =
M⋃

k=1
JPUG+PDG(k) =

M⋃

k=1

{

j

∣

∣

∣

∣

∣

max

{

µj(k)
maxl #=k

{

µj(l)
} ,

minl #=k
{

µj(l)
}

µj(k)

}

! τk

}

. (7)

Purely from the machine learning view, PDGs have the theoretical capability of being as dis-
criminating as PUGs. Thus, PDGs merit consideration as candidate genes. However, there are
several critical differences, with consequential implications, between lowly-expressed genes and
highly-expressed genes, such as the extraordinarily large proportion and relatively large noise of
the lowly-expressed genes. We have evaluated the classification performance of PUGs, PDGs, and
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PUGs+PDGs, respectively. Experimental results show that PDGs have less discriminatory power
than PUGs and the inclusion of PDGs actually worsens classification accuracy, compared to just
using PUGs. Experiments and further discussion will be given in the results section.

2.4 Review of Relevant Gene Selection Methods

Here we briefly review four benchmark gene selection methods that have been previously proposed
for multicategory classification, namely, OVRSNR (Golub et al., 1999), OVR t-statistic (OVRt-stat)
(Liu et al., 2002), BW (Dudoit et al., 2002), and SVMRFE (Guyon et al., 2002).

Let µj,k and µj,-k be the arithmetic means of the expression levels of gene j associated with
phenotype k and associated with the super class of remaining phenotypes, respectively, on the
log-transformed scale, with σ j,k and σ j,-k the corresponding standard deviations. OVRSNR gene
selection for multicategory classification is given by:

JOVRSNR =
M⋃

k=1
JOVRSNR(k) =

M⋃

k=1

{

j

∣

∣

∣

∣

∣

∣

∣µj,k−µj,-k
∣

∣

σ j,k+σ j,-k
! τk

}

, (8)

where τk is a pre-defined threshold (Golub et al., 1999). To assess the statistical significance of the
difference between µj,k and µj,-k, OVRt-stat applies a test of the null hypothesis that the means of
two assumed normally distributed measurements are equal. Accordingly, OVRt-stat gene selection
is given by Liu et al. (2002):

JOVRt-stat =
M⋃

k=1
JOVRt-stat(k) =

M⋃

k=1















j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣µj,k−µj,-k
∣

∣

√

σ2j,k

/

Nk+σ2j,-k

/

(N−Nk)
! τk















, (9)

where the p-values associated with each gene may be estimated. As aforementioned, one limitation
of the gene selection schemes (8) and (9) is that the criterion function considers the remaining
classes as a single group. Another is that they both require variance estimation.

Dudoit et al. (2002) proposed a pooled OVO gene selection method based on the BW sum of
squares across all paired classes. Specifically, BW gene selection is specified by

JBW =

{

j

∣

∣

∣

∣

∣

∑N
i=1∑

M
k=1 1ωk (i)

(

µj,k−µj
)2

∑N
i=1∑

M
k=1 1ωk (i)

(

xi j−µj,k
)2 ! τ

}

, (10)

where µj is the global arithmetic center of gene j over all sample points and 1ωk (i) is the indicator
function reflecting membership of sample i in class k. As pointed out by Loog et al. (2001), BW gene
selection may only preserve the distances of already well-separated classes rather than neighboring
classes.

From a dimensionality reduction point of view, Guyon et al. (2002) proposed a feature subset
ranking criterion for linear SVMs, dubbed the SVMRFE. Here, one first trains a linear SVM classi-
fier on the full feature space. Features are then ranked based on the magnitude of their weights and
are eliminated in the order of increasing weight magnitude. A widely adopted reduction strategy is
to eliminate a fixed or decreasing percentage of features corresponding to the bottom portion of the
ranked weights and then to retrain the SVM on the reduced feature space. Application to microarray
gene expression data shows that the genes selected matter more than the classifiers with which they
are paired (Guyon et al., 2002).
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3. Results

We tested PUG-OVRSVM on five benchmarks and one in-house real microarray data set, and com-
pared the performance to several widely-adopted gene selection and classification methods.

3.1 Description of the Real Data Sets

The numbers of samples, phenotypes, and genes, as well as the microarray platforms used to gener-
ate these gene expression data sets, are briefly summarized in Supplementary Tables 1∼7. The six
data sets are the MIT 14 Global Cancer Map data set (GCM) (Ramaswamy et al., 2001), the NCI
60 cancer cell lines data set (NCI60) (Staunton et al., 2001), the University of Michigan cancer data
set (UMich) (Shedden et al., 2003), the Central Nervous System tumors data set (CNS) (Pomeroy
et al., 2002), the Muscular Dystrophy data set (MD) (Bakay et al., 2006), and the Norway Ascites
data set (NAS). To assure a meaningful and well-grounded comparison, we emphasized data quality
and suitability in choosing these test data sets. For example, the data sets cannot be too “simple” (if
the classes are well-separated, all methods perform equally well) or too “complex” (no method will
then perform reasonably well), and each class should contain sufficient samples to support some
form of cross-validation assessment.

We also performed several important pre-processing steps widely adopted by other researchers
(Guyon et al., 2002; Ramaswamy et al., 2001; Shedden et al., 2003; Statnikov et al., 2005). When
the expression levels in the raw data take negative values, probably due to global probe-set calls
and/or data normalization procedures, these negative values are replaced by a fixed small quantity
(Shedden et al., 2003). On the log-transformed scale, we further conducted a variance-based unsu-
pervised gene filtering operation to remove the genes whose expression standard deviations (across
all samples) were less than a pre-determined small threshold; this effectively reduces the number of
genes by half (Guyon et al., 2002; Shedden et al., 2003).

3.2 Experiment Design

We decoupled the two key steps of multicategory classification: 1) selecting an informative subset
of marker genes and then 2) finding an accurate decision function. For the crucial first step we
implemented five gene selection methods, including OVEPUG specified by (5), OVRSNR specified
by (8), OVRt-stat specified by (9), pooled BW specified by (10), and SVMRFE described in Ra-
maswamy et al. (2001). We applied these methods to the six data sets, and for each data set, we
selected a sequence of gene subsets with varying sizes, indexed by NsubPUG, the number of genes per
class. In our experiments, this number was increased from 2 up to 100. There are several reasons
why we do not go beyond 100 subPUGs per class. First, classification accuracy may be either flat
or monotonically decreasing as the number of features increases beyond a certain point, due to the
theoretical bias-variance dilemma. Second, even in some cases where best performance is achieved
using all the gene features, the idea of feature selection is to find the minimum number of features
needed to achieve good (near-optimal) classification accuracy. Third, when NsubPUG = 100, the total
number of genes used for classification is already quite large (this number is maximized if the sets
JPUG(k) are mutually exclusive, in which case it is NsubPUG times the number of classes). Fourth,
but not least important, a large feature reduction may be necessary not only complexity-wise, but
also for interpreting the biological functions and pathway involvement when the selected PUGs are
most relevant and statistically reproducible.
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The quality of the marker gene subsets was then assessed by prediction performance on four
subsequently trained classifiers, including OVRSVM, kNN, NBC, and OVOSVM. In relation to
the proposed PUG-OVRSVM approach, we evaluated all combinations of these four different gene
selection methods and three different classifiers on all six benchmark microarray gene expression
data sets.

To properly estimate the accuracy of predictive classification, a validation procedure must be
carefully designed, recognizing limits on the accuracy of estimated performance, in particular for
small sample size. Clearly, classification accuracy must be assessed on labelled samples ‘unseen’
during training. However, for multicategory classification based on small, class-imbalanced data
sets, single batch held-out test data may be precluded, as there will be insufficient samples for both
accurate classifier training and accurate validation (Hastie et al., 2001). A practical alternative is
a sound cross-validation procedure, wherein all the data are used for both training and testing, but
with held-out samples in a testing fold not used for any phase of classifier training, including gene
selection and classifier design (Wang et al., 2008). In our experiments, we chose LOOCV, wherein
a test fold consists of a single sample; the rest of the samples are placed in the training set. Using
only the training set, the informative genes are selected and the weights of the linear OVRSVM are
fit to the data (Liu et al., 2005; Shedden et al., 2003; Yeang et al., 2001). It is worth noting that
LOOCV is approximately unbiased, lessening the likelihood of misestimating the prediction error
due to small sample size; however, LOOCV estimates do have considerable variance (Braga-Neto
and Dougherty, 2004; Hastie et al., 2001). We evaluated both the lowest “sustainable” prediction
error rate and the lowest prediction error rate, where the sequence of sustainable prediction error
rates were determined based on a moving-average of error rates along the survey axis of the number
of genes used for each class, NsubPUG, with a moving window of width 5. We also report the number
of genes per class at which the best sustainable performance was obtained.

While the error rate is estimated through LOOCV and the optimum number of PUGs used per
class is obtained by the aforementioned surveying strategy, we should point out that a two-level
LOOCV could be applied to jointly determine the optimum NsubPUG and estimate the associated
error rate; however, such an approach is computationally expensive (Statnikov et al., 2005). For the
settings of structural parameters in the classifiers, we usedC = 1.0 in the SVMs for all experiments
(Vapnik, 1998), and chose k = 1,2,3 in kNNs under different training sample sizes per class, as
recommended by Duda et al. (2001).

3.3 Experimental Results

Our first comparative study focused on the GCM data widely used for evaluating multicategory
classification algorithms (Cai et al., 2007; Ramaswamy et al., 2001; Shedden et al., 2003; Zhou and
Tuck, 2007). The performance curves of OVRSVM committee classifiers trained on the commonly
pre-processed GCM data using the five different gene selection methods (OVEPUG, OVRSNR,
OVRt-stat, BW, and SVMRFE) are detailed in Figure 3. It can be seen that our proposed OVEPUG
selection significantly improved the overall multicategory classification when using different num-
bers of marker genes, as compared to the results produced by the four competing gene selection
methods. For example, using as few as 9 genes per phenotypic class (with 126 distinct genes in
total, that is, mutually exclusive PUGs for each class), we classified 164 of 190 (86.32%) of the
tumors correctly. Furthermore, using LOOCV on the GCM data set of 190 primary malignant tu-
mors, and using the optimal number of genes (61 genes per phenotypic class or 769 unique genes
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in total), we achieved the best (88.95% or 169 of 190 tumors) sustainable correct predictions. In
contrast, at its optimum performance, OVRSNR gene selection achieved 85.37% sustainable cor-
rect predictions using 25 genes per phenotypic class, OVRt-stat gene selection achieved 84.53%
sustainable correct predictions using 71 genes per phenotypic class, BW gene selection achieved
80.53% sustainable correct predictions using 94 genes per phenotypic class, and SVMRFE gene
selection achieved 84.74% sustainable correct predictions using 96 genes per phenotypic class. In
our comparative study, instead of solely comparing the lowest error rates achieved by different gene
selection methods, we also emphasized the sustainable correct prediction rates, as potential overfit-
ting to the data may produce an (unsustainably) good prediction performance. For our experiments
in Figure 3, based on the realistic assumption that the probability of good predictions purely “by
chance” over a sequence of consecutive gene numbers is low, we defined the sustainable predic-
tion/error rates based on the moving-averaged prediction/error rates over δ = 5 consecutive gene
numbers. Here, δ gives the sustainability requirement.

Figure 3: Comparative study on five gene selection methods (OVEPUG, OVRSNR, OVRt-stat, BW,
and SVMRFE) using the GCM benchmark data set. The curves of classification error
rates were generated by using OVRSVM committee classifiers with varying size of the
input gene subset.

For the purpose of information sharing with readers, based on publicly reported optimal results
for different methods, we have summarized in Table 1 the comparative performance achieved by
PUG-OVRSVM and eight existing/competing methods on the benchmark GCM data set, along
with the gene selection methods used, the chosen classifiers, sample sizes, and the chosen cross-
validation schemes. Obviously, since the reported prediction error rates were generated by different
algorithms and under different conditions, any conclusions based on simple/direct comparisons of
the reported results must be carefully drawn. We have chosen not to independently reproduce results
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by re-implementing the methods listed in Table 1, firstly because we typically do not have access to
public domain code implementing other authors’ methods and secondly because we feel that high
reproducibility of previously published results may not be expected without knowing some likely
undeclared optimization steps and/or additional control parameters used in the actual computer
codes. Nevertheless, many reported prediction error rates on the GCM data set were actually based
on the same/similar training sample set (144 ∼ 190 primary tumors) and the LOOCV scheme used
in our PUG-OVRSVM experiments; furthermore, it was reported that the prediction error rates
estimated by LOOCV and 144/54 split/held-out test were very similar (Ramaswamy et al., 2001).
Specifically, the initial work on GCM by Ramaswamy et al. (2001) reported an achieved 77.78%
prediction rate, and some improved performance was later reported by Yeang et al. (2001) and Liu
et al. (2002), achieving 81.75% and 79.99% prediction rates, respectively. In the work most closely
related to our gene selection scheme by Shedden et al. (2003), using a kNN tree classifier and using
OVR fold-change based gene selection specified by (4), a prediction rate of 82.63% was achieved.
In relation to these reported results on GCM, as indicated in Table 1, our proposed PUG-OVRSVM
method produced the best sustainable prediction rate of 88.95%.

References Gene-select Classifier Sample CV scheme Error rate
Ramaswamy et al. (2001) OVRSVM RFE OVRSVM 144&198 LOOCV 144/54 22.22%
Yeang et al. (2001) N/A OVRSVM 144 LOOCV 18.75%
Ooi and Tan (2003) Genetic algorithm MLHD 198 144/54 18.00%
Shedden et al. (2003) OVR fold-change kNN Tree 190 LOOCV 17.37%
Liu et al. (2005) Genetic algorithm OVOSVM N/A LOOCV 20.01%
Statnikov et al. (2005) No gene selection CS-SVM 308 10-fold 23.40%
Zhou and Tuck (2007) CS-SVM RFE OVRSVM 198 4-fold 16.72%
Cai et al. (2007) DISC-GS kNN 190 144/46 21.74%
PUG-OVRSVM PUG OVRSVM 190 LOOCV 11.05%

Table 1: Summary of comparative performances by OVEPUG-OVRSVM and eight competing
methods (based on publicly reported optimum results) on the GCM benchmark data set.

A more stringent evaluation of the robustness of a classification method is to carry out the
predictions on multiple data sets and then assess the overall performance (Statnikov et al., 2005).
Our second comparative study evaluated the aforementioned five gene selection methods using the
six benchmark microarray gene expression data sets. To determine whether the genes selected
matter more than the classifiers used (Guyon et al., 2002), we used a common OVRSVM committee
classifier and LOOCV scheme in all the experiments, and summarized the corresponding results in
Table 2. For each experiment that used a distinct gene selection scheme applied to a distinct data set,
we reported both sustainable (with sustainability requirement δ= 5) and lowest (within parentheses)
prediction error rates, as well as the number of genes per class that were used to produce these
results. Clearly, the selected PUGs based on (5) produced the highest overall sustainable prediction
rates as compared to the other four competing gene selection methods. Specifically, PUG is the
consistent winner in 22 of 24 competing experiments (combinations of four gene selection schemes
and six testing data sets). It should be noted that although BW and OVRSNR achieved comparably
low prediction error rates on the CNS data set (with relatively balanced mixture distributions), they
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also produced high prediction error rates on the other testing data sets; the other competing gene
selection methods also show some level of performance instability across data sets.

Gene-select GCM NCI60 UMich CNS MD NAS

OVE PUG 11.05% 27.33% 1.08% 7.14% 19.67% 13.16%
(11.05%) (26.67%) (0.85%) (7.14%) (19.01%) (13.16%)
[61 g/class] [52 g/class] [26 g/class] [71 g/class] [46 g/class] [42 g/class]

OVR SNR 14.63% 31.67% 1.42% 7.14% 23.97% 16.32%
(13.68%) (31.67%) (1.42%) (7.14%) (23.97%) (15.79%)
[25 g/class] [58 g/class] [62 g/class] [57 g/class] [85 g/class] [54 g/class]

OVR t-stat 15.47% 31.67% 1.70% 7.62% 23.47% 15.79%
(15.26%) (31.67%) (1.70%) (7.14%) (22.31%) (15.79%)
[71 g/class] [56 g/class] [45 g/class] [92 g/class] [56 g/class] [74 g/class]

BW 19.47% 31.67% 1.30% 7.14% 19.83% 21.05%
(18.95%) (31.67%) (1.13%) (7.14%) (19.01%) (21.05%)
[94 g/class] [55 g/class] [92 g/class] [56 g/class] [71 g/class] [65 g/class]

SVM RFE 15.26% 29.00% 1.13% 14.29% 29.09% 32.11%
(14.21%) (28.33%) (1.13%) (14.29%) (28.10%) (31.58%)
[96 g/class] [81 g/class] [58 g/class] [53 g/class] [73 g/class] [94 g/class]

Table 2: Performance comparison between five different gene selection methods tested on six
benchmark microarray gene expression data sets, where the predictive classification error
rates for all methods were generated based on OVRSVM committee classification and an
LOOCV scheme. Both sustainable and lowest (within parentheses) error rates are reported
together with number of genes used per class.

To give more complete comparisons that also involved different classifiers (Statnikov et al.,
2005), we further illustrate the superior prediction performance of the matched OVEPUG selection
and OVRSVM classifier as compared to the best results produced by combinations of three different
classifiers (OVOSVM, kNN, NBC) and four gene selection methods (PUG, OVRSNR, OVRt-stat,
pooled BW). The optimum experimental results achieved over all combinations of these methods
on the six data sets are summarized in Table 3, where we report both sustainable prediction error
rates and the corresponding gene selection methods. Again, PUG-OVRSVM outperformed all other
methods on all six data sets and was a clear winner in all 15 competing experiments. Our compara-
tive studies also reveal that although gene selection is a critical step of multi-category classification,
the classifiers used do indeed play an important role in achieving good prediction performance.

3.4 Comparison Results on the Realistic Simulation Data Sets

To more reliably validate and compare the performance of the different gene selection methods, we
have conducted additional experiments involving realistic simulations. The advantage of using syn-
thetic data is that, unlike the real data sets often with small sample size and with LOOCV as the only
applicable validation method, large testing samples can be generated to allow an accurate and reli-
able assessment of a classifier’s generalization performance. Two different simulation approaches
were implemented. In both, we modeled the joint distribution for microarray data under each class
and generated i.i.d. synthetic data sets consistent both with these distributions and with assumed
class priors. In the first approach, we chose the class-conditional models consistent with commonly
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GCM NCI60 UMich CNS MD NAS

OVR SVM 11.05% 27.33% 1.08% 7.14% 19.67% 13.16%
(OVEPUG) (OVEPUG) (OVEPUG) (OVEPUG) (OVEPUG) (OVEPUG)

OVO SVM 14.74% 33.33% 1.70% 9.52% 19.83% 16.32%
(OVEPUG) (OVRSNR) (OVEPUG) (BW) (BW) (OVRSNR)

kNN 21.05% 31.67% 2.27% 13.33% 21.81% 13.68%
(OVEPUG) (OVRt-stat) (OVEPUG) (OVEPUG) (BW) (OVRt-stat)

NBC 36.00% 51.67% 2.83% 37.62% 37.69% 34.21%
(OVRSNR) (OVRSNR) (OVRt-stat) (BW) (BW) (OVEPUG)

Table 3: Performance comparison based on the lowest predictive classification error rates produced
by OVEPUG-OVRSVM and the optimum combinations of five different gene selection
methods and three different classifiers, tested on six benchmark microarray gene expres-
sion data sets and assessed via the LOOCV scheme.

accepted properties of microarray data (few discriminating features, many non-discriminating fea-
tures, and with small sample size) (Hanczar and Dougherty, 2010; Wang et al., 2002). In the second
approach, we directly estimated the class-conditional models based on a real microarray data set
and then generated the i.i.d. samples according to the learned models.

3.4.1 DESIGN I

We simulated 5000 genes, with 90 “relevant” and 4910 “irrelevant” genes. Inspired by gene clus-
tering concept in modelling local correlations, we divided the genes into 1000 blocks of size five,
each containing exclusively either relevant or irrelevant genes. Within each block the correlation
coefficient is 0.9, with zero correlation across blocks. Irrelevant genes are assumed to follow a
(univariate) standard normal distribution, for all classes. Relevant genes also follow a normal distri-
bution with variance 1 for all classes. There are three equally likely classes, A, B and C. The mean
vectors of the 90 relevant genes under each class are shown in Table 4. The means were chosen
to make the classification task neither too easy nor too difficult and to simulate unequal distances
between the classes—A and B are relatively close, with C more distant from both A and B.

The mean vector µ for each class

µA [2.8 2.8 2.8 2.8 2.8 1 1 1 1 1 2 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 1 1 1
1 1 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 1 1 1 1 1 3
3 3 3 3 0.1 0.1 0.1 0.1 0.1]

µB [1 1 1 1 1 2.8 2.8 2.8 2.8 2.8 2 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 1 1 1
1 1 2 2 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 1 1 1 1 1 3
3 3 3 3 0.1 0.1 0.1 0.1 0.1]

µC [1 1 1 1 1 1 1 1 1 1 14.4 14.4 14.4 14.4 14.4 8.5 8.5 8.5 8.5 8.5 8 8 8 8 8 10 10 10 10 10 10
10 10 10 10 10 9 9 9 9 9 10 10 10 10 10 3 3 3 3 3 10 10 10 10 10 10 10 10 10 10 10 10 10
10 8.5 8.5 8.5 8.5 8.5 8 8 8 8 8 9 9 9 9 9 11 11 11 11 11 7.1 7.1 7.1 7.1 7.1]

Table 4: The mean vectors of the 90 relevant genes under each of the three classes.

We randomly generated 100 synthetic data sets, each partitioned into a small training set of 60
samples (20 per class) and a large testing set of 6000 samples.
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3.4.2 DESIGN II

The second approach models each class as a more realistic multivariate normal distribution N (µ,Σ),
with the class’s mean vector µ and covariance matrix Σ directly learned from the real microarray
data set GCM. Estimation of a covariance matrix is certainly a challenging task, specifically due
to the very high dimensionality of the gene space (p = 15,927 genes in the GCM data) and only
a few dozen samples available for estimating p(p− 1)/2 free covariate parameters per class. It is
also computationally prohibitive to generate random vectors based on full covariances on a general
desktop computer. To address both of these problems, we applied a factor model (McLachlan and
Krishnan, 2008), which can significantly reduces the number of free parameters to be estimated
while capturing the main correlation structure in the data.

In factor analysis, the observed p×1 vector t is modeled as

t= µ+Wx+ ε,

where µ is the mean vector of observation t, W is a p× q matrix of factor loadings, x is the q× 1
latent variable vector with standard normal distribution N (0,I) and ε is noise with independent
multivariate normal distribution N (0,Ψ),Ψ= diag

(

σ21, . . . ,σ
2
p
)

. The resulting covariance matrix Σ
is

Σ=WWT +Ψ.

Estimation of Σ reduces to estimatingW andΨ, totaling p(q+1) parameters. Usually, we have
q much less than p. The factor model is learned via the EM algorithm (McLachlan and Krishnan,
2008), initialized by probabilistic principal component analysis (Tipping and Bishop, 1999).

In our experiments, we set q= 5, which typically accounted for 60% of the energy. We also tried
q= 3 and 7 and observed that the relative performance remained unchanged, although the absolute
performance of all methods does change with q.

Five phenotypic classes were used in our simulation: breast cancer, lymphoma, bladder cancer,
leukemia and CNS. 100 synthetic data sets were generated randomly according to the learned class
models from the real data of these five cancer types. The dimension for each sample is 15,927.
For each data set, the training sample size was the same as used in the real data experiments, with
11, 22, 11, 30, and 20 samples in the five respective classes; and the testing set consisted of 3,000
samples, 600 per class.

3.5 Evaluation of Performance

For a given gene-selection method and for each data set (indexed by i= 1, . . . ,100), the classifier Fi
is learned. We then evaluate Fi on the i-th testing set, and measure the error rate εi. Since the testing
set has quite large sample size, we would expect εi to be close to the true classification error rate for
Fi. Over 100 simulation data sets, we then calculated both the average classification error ε̄ and the
standard deviation σ.

Furthermore, let εi,PUG denote the error rate associated with PUGs on testing set i, and similarly,
let εi,SNR, εi,t-stat , εi,BW and εi,SVMRFE denote the error rates associated with the four peer gene
selection methods. The error rate difference between two methods, for example, PUG and SNR, is
defined by

Di (PUG,SNR) = εi,PUG− εi,SNR.
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For each synthetic data set, we define the “winner” as the one with the least testing error rate.
For each method, the mean and standard deviation of the error rate and the frequency of winning are
examined for performance evaluation. In addition, the histogram of error rate differences between
PUG and peer methods are provided.

3.6 Experimental Results on the Simulation Data Sets

We tested all gene selection methods using the common OVRSVM classifier. All the experiments
were done using the same procedure as on the real data sets, except with LOOCV error estimation
replaced by the error estimation using large size independent testing data. Figure 4, analogous
to Figure 3 while on the realistic synthetic data whose model was estimated from GCM data set
(simulation data under design II), shows the comparative study on five gene selection methods
(OVEPUG, OVRSNR, OVRt-stat, BW, and SVMRFE). Tables 5 and 6 show the average error,
standard deviation, and frequency of winning, estimated based on the 100 simulation data sets.
PUG has the smallest average error over all competing methods. PUG also is the most stable
method (with the smallest standard deviation). Tables 7 and 8 provide the comparison results of
the five competing methods on the first ten data sets.

Figures 5 and 6 show histograms of the error difference between PUG and other methods, where
a negative value of the difference indicates better performance by PUG. The red bar shows the
position where the two methods are equal. We can see that the vast majority of differences are
negative. Actually, as indicated in Tables 5 and 6, there is no positive difference in the subfigures of
Figure 5 and at most one positive difference in the subfigures of Figure 6.

PUG SNR t-stat BW SVMRFE
mean 0.0724 0.1129 0.1135 0.1165 0.1203

std deviation 0.0052 0.0180 0.0188 0.0177 0.0224
frequency of ‘winner’ 100 0 0 0 0

Table 5: The mean and standard deviation of classification error and the frequency of winner based
on 100 simulation data sets with design I.

PUG SNR t-stat BW SVMRFE
mean 0.0712 0.1311 0.1316 0.2649 0.0910

std deviation 0.0201 0.0447 0.0449 0.0302 0.0244
frequency of ‘winner’ 99 0 0 0 1

Table 6: The mean and standard deviation of classification error and the frequency of winner based
on 100 simulation data sets with design II.

3.7 Comparison Between PUGs and PDGs

In this experiment, we selected PDGs according to the definition given in (6) and evaluated gene
selection based on PUGs, PDGs, and based on their union, as given in (7). Again, all gene selection
methods were coupled with the OVRSVM classifier. Table 9 shows classification performance for
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Figure 4: Comparative study on five gene selection methods (OVEPUG, OVRSNR, OVRt-stat, BW,
and SVMRFE) on one simulation data set under design II. The curves of classification
error rates were generated by using OVRSVM committee classifiers with varying size of
the input gene subset.

sim 1 sim 2 sim 3 sim 4 sim 5 sim 6 sim 7 sim 8 sim 9 sim 10
PUG 0.0864 0.0773 0.0697 0.0681 0.0740 0.0761 0.0740 0.0721 0.0666 0.0758
SNR 0.1078 0.1092 0.1028 0.1279 0.1331 0.1004 0.1011 0.1253 0.0817 0.0838
t-stat 0.1109 0.1089 0.1022 0.1251 0.1333 0.0991 0.1016 0.1268 0.0823 0.0832
BW 0.1127 0.0995 0.1049 0.1271 0.1309 0.1107 0.1044 0.1291 0.0903 0.0845

SVMRFE 0.1030 0.1009 0.0967 0.1219 0.1248 0.1016 0.1107 0.1191 0.1198 0.0933

Table 7: Comparison of the classification error for the first ten simulation data sets with design I.

PUGs, PDGs and PUGs+PDGs. Clearly, PDGs have less discriminatory power than PUGs, and the
inclusion of PDGs (generally) worsens classification accuracy, compared with just using PUGs.

sim 1 sim 2 sim 3 sim 4 sim 5 sim 6 sim 7 sim 8 sim 9 sim 10
PUG 0.0694 0.0610 0.0748 0.0675 0.0536 0.0474 0.0726 0.0818 0.0560 0.0700
SNR 0.1559 0.0659 0.1142 0.1211 0.0508 0.1937 0.1568 0.1464 0.0797 0.0711
t-stat 0.1559 0.0659 0.1142 0.1210 0.0508 0.1939 0.1568 0.1464 0.0797 0.0712
BW 0.2373 0.2698 0.2510 0.2650 0.3123 0.2464 0.3070 0.2236 0.2800 0.3055

SVMRFE 0.0906 0.0739 0.0864 0.0852 0.0426 0.0776 0.0863 0.0973 0.0655 0.0730

Table 8: Comparison of the classification error for the first ten simulation data sets with design II.
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Figure 5: Histogram of the error difference between PUG and other methods with design I.

Error Rate GCM NCI60 UMich CNS MD NAS
PUG 11.05% 27.33% 1.08% 7.14% 19.67% 13.16%
PDG 17.58% 30.33% 1.98% 9.52% 26.28% 25.79%

PUG+PDG 14.53% 30.67% 1.13% 7.14% 23.14% 15.79%

Table 9: Classification comparison of PUG and PDG on the six benchmark data sets.

There are several potential reasons that may jointly explain the non-contributing or even nega-
tive role of the included PDGs. First, the number of PDGs are much less than that of PUGs, that
is, PUGs represent the significant majority of informative genes when PUGs and PDGs are jointly
considered, as shown in Table 10 (Top PUG+PDGs were selected with 10 genes per class and we
counted how many PUGs are included in the total). Second, PDGs are less reliable than PUGs due
to the noise characteristics of gene expression data, that is, low gene expressions contain relatively
large additive noise after log-transformation (Huber et al., 2002; Rocke and Durbin, 2001). This is
further exacerbated by the follow-up one-versus-rest classifier because there are many more samples
in the ‘rest’ group than in the ‘one’ group. This practically increases the relative noise/variability
associated with PDGs in the ‘one’ group. In addition, PUGs are consistent with the practice of
molecular pathology and thus may have broader clinical utility, for example, most currently avail-
able disease gene markers are highly expressed (Shedden et al., 2003).
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Figure 6: Histogram of the error difference between PUG and other methods with design II.

GCM NCI60 UMich CNS MD NAS
No. of PUG 113 76 56 33 76 65

No. of PUG+PDG 140 90 60 50 130 70
% of PUG 80.71% 84.44% 93.33% 66.00% 58.46% 92.86%

Table 10: Classification comparison of PUG and PDG on the six benchmark data sets.

3.8 Marker Gene Validation by Biological Knowledge

We have applied existing biological knowledge to validate biological plausibility of the selected
PUG markers for two data sets, GCM and NAS. The full list of genes most highly associated with
each of the 14 tumor types in the GCM data set are detailed in the Supplementary Tables 8 and 9.

3.8.1 BIOLOGICAL INTERPRETATION FOR GCM DATA SET

Prolactin-induced protein, which is regulated by prolactin activation of its receptors, ranks highest
among the PUGs associated with breast cancer. Postmenopausal breast cancer risk is strongly asso-
ciated with elevated prolactin levels (PubMed IDs 15375001, 12373602, 10203283). Interestingly,
prolactin release proportionally increases with increasing central fat in obese women (PubMed ID
15356045) and women with this pattern of obesity have an increased risk of breast cancer mortality
(PubMed ID 14607804). Other genes of interest that rank among the top 10 breast cancer PUGs in-
clude CRABP2, which transports retinoic acid to the nucleus. Retinoids are important regulators of
breast cell function and show activity as potential breast cancer chemopreventive agents (PubMed
IDs 11250995, 12186376). Mammglobin is primarily expressed in normal breast epithelium and
breast cancers (PubMed ID 12793902). Carbonic anhydrase XII is expressed in breast cancers and
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is generally considered a marker of a good prognosis (PubMed ID 12671706). The selective expres-
sion and/or function of these genes in breast cancers are consistent with their selection as PUGs in
the classification scheme.

The top 10 PUGs associated with prostate cancer include several genes strongly associated
with the prostate including prostate specific antigen (PSA) and its alternatively spliced form 2, and
prostatic secretory protein 57. The role of PSA gene KLK3 and KLK1 as a biomarker of prostate
cancer is well established (PubMed ID 19213567). Increased NPY expression is associated with
high-grade prostatic intraepithelial neoplasia and poor prognosis in prostate cancers (PubMed ID
10561252). ACPP is another prostate specific protein biomarker (PubMed ID 8244395). The strong
representation of genes that show clear selectivity for expression within the prostate illustrates the
potential of the PUGs as bio-markers linked to the biology of the underlying tissues.

Several of the selected PUG markers for uterine cancer fit very well with our current biological
understanding of this disease. It is well-established that estrogen receptor alpha (ESR1) is expressed
or amplified in human uterine cancer (PubMed IDs 18720455, 17911007, 15251938), while the
Hox7 gene (MSX1) contributes to uterine function in cow and mouse models, especially at the onset
of pregnancy (PubMed IDs 7908629, 14976223, 19007558). Mammaglobin 2 (SCGB2A1) is highly
expressed in a specific type of well-differentiated uterine cancer (endometrial cancers) (PubMed ID
18021217), and PAM expression in the rat uterus is known to be regulated by estrogen (PubMed IDs
9618561, 9441675). Other PUGs provide novel insights into uterine cancer that are deserving of
further study. Our PUG selection ranks HE4 higher than the well-established CA125 marker, which
may suggest HE4 as a promising alternative for the clinical management of endometrial cancer. One
recent study (PubMed ID 18495222) shows that, at 95% specificity, the sensitivity of differentiating
between controls and all stages of uterine cancer is 44.9% using HE4 versus 25.2% using CA125 (p
= 0.0001).

Osteopontin (OPN) is an integrin-binding protein that is involved in tumorigenesis and metas-
tasis. OPN levels in the plasma of patients with ovarian cancer are much higher compared with
plasma from healthy individuals (PubMed ID 11926891). OPN can increase the survival of ovarian
cancer cells under stress conditions in vitro and can promote the late progression of ovarian cancer
in vivo, and the survival-promoting functions of OPN are mediated through Akt activation (PubMed
ID 19016748). Matrix metalloproteinase 2 (MMP2) is an enzyme degrading collagen type IV and
other components of the basement membrane. MMP-2 is expressed by metastatic ovarian cancer
cells and functionally regulates their attachment to peritoneal surfaces (PubMed ID 18340378).
MMP2 facilitates the transmigration of human ovarian carcinoma cells across endothelial extracel-
lular matrix (PubMed ID 15609323). Glutathione peroxidase 3 (GPX3) is one of several isoforms
of peroxidases that reduce hydroperoxides to the corresponding alcohols by means of glutathione
(GSH) (PubMed ID 17081103). GPX3 has been shown to be highly expressed in ovarian clear cell
adenocarcinoma. Moreover, GPX3 has been associated with low cisplatin sensitivity (PubMed ID
19020706).

3.8.2 BIOLOGICAL INTERPRETATION FOR NAS DATA SET

Several top-ranking gene products identified by our computational method have been well estab-
lished as tumor-type specific markers and many of them have been used in clinical diagnosis. For
example, mucin 16, also known as CA125, is a FDA-approved serum marker to monitor disease
progression and recurrence in ovarian cancer patients (PubMed ID 19042984). Likewise, kallikrein
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family members including KLK6 and KLK8 are known to be ovarian cancer associated markers
which can be detected in body fluids in ovarian cancer patients (PubMed ID 17303231). TITF1 (also
known as TTF1) has been reported as a relatively specific marker in lung adenocarcinoma (PubMed
ID 17982442) and it has been used to assist differential diagnosis of lung cancer from other types of
carcinoma. Fatty acid synthase (FASN) is a well-known gene that is often upregulated in breast can-
cer (PubMed ID 17631500) and the enzyme is amenable for drug targeting using FASN inhibitors,
suggesting that it can be used as a therapeutic target in breast cancer. The above findings indi-
cate the robustness of our computational method in identifying tumor-type specific markers and in
classifying different types of neoplastic diseases. Such information could be useful in translational
studies (PubMed ID 12874019). Metastatic carcinoma of unknown origin is a relatively common
presentation in cancer patients and an accurate diagnosis of the tumor type in the metastatic diseases
is important to direct appropriate treatment and predict clinical outcome. The distinctive patterns
of gene expression characteristic to various types of cancer may help pathologists and clinicians to
better manage their patients.

3.9 Gene Comparisons Between Methods

It may be informative to provide some initial analysis on how the selected genes compare between
methods; however, without definitive ground truth on cancer markers, the utility of this information
is somewhat limited and should, thus, be treated as anecdotal, rather than conclusive. Specifically,
we have now done some assessment of how differentially these gene selection methods rank some
known cancer marker genes. The overlap rate is defined as the number of genes commonly selected
by two methods over the maximum size of the two selected gene sets. Let G1 and G2 denote the
gene sets selected by gene selection methods 1 and 2, respectively, and |G| denote the cardinality
(the size) of set G. The overlap rate between G1 and G2 is

R=
|G1∩G2|

max(|G1| , |G2|)
.

Table 11 shows the overlap rate between methods on the top 100 genes per class. We can see
that the overlap rates between methods are generally low except for the pair of SNR and t-stat. BW
genes are quite different from the genes selected by all other methods and have only about 15%
overlap rate with PUG and SVMRFE. The relatively high overlap rate between SNR and t-stat may
be expected since they use quite similar summary statistics in their selection criteria.

We have also examined a total of 16 genes with known associations with 4 tumor types. These 16
genes are well-known markers supported by current biological knowledge. The rank of biomedical
importance of these genes produced by each method is summarized in Table 12. When a gene is
not listed in the top 100 genes by a wrapper method like SVMRFE, we simply assign the rank as
‘>100’. Generally but not uniformly across cancer types, these validated marker genes are highly
ranked in the PUGs list as compared to other methods, and thus will be surely selected by PUG
criterion.

4. Discussion

In this paper, we address several critical yet subtle issues in multicategory molecular classification
applied to real-world biological and/or clinical applications. We propose a novel gene selection
methodology matched to the multicategory classification approach (potentially with an unbalanced
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Overlapping Rate PUG SNR t-stat BW SVMRFE
PUG 1 0.4117 0.3053 0.1450 0.4057
SNR 0.4117 1 0.7439 0.3307 0.3841
t-stat 0.3053 0.7439 1 0.2907 0.3941
BW 0.1450 0.3307 0.2907 1 0.1307

SVMRFE 0.4057 0.3841 0.3941 0.1307 1

Table 11: The overlapping rate between methods on the top 100 genes per class.

Breast Cancer Relevant Genes Prostate Cancer Relevant Genes
Rank Rank

Gene Symbol PUG SNR t-stat BW SVMRFE Gene Symbol PUG SNR t-stat BW SVMRFE
PIP 1 5745 6146 473 >100 KLK3 4 5 11 61 15

CRABP2 4 5965 6244 498 >100 KLK1 5 3 9 76 16
SCGB2A2 6 6693 6773 458 14 NPY 7 18 22 344 30
CA12 9 6586 6647 518 >100 ACPP 3 4 8 71 12

Uterine Cancer Relevant Genes Ovarian Cancer Relevant Genes
Rank Rank

Gene Symbol PUG SNR t-stat BW SVMRFE Gene Symbol PUG SNR t-stat BW SVMRFE
ESR1 1 2 16 130 5 OPN 15 334 517 371 63
Hox7 2 4 52 307 12 MMP2 42 2626 3045 481 >100

SCGB2A1 8 3 19 190 4 GPX3 7 411 812 446 >100
PAM 10 83 281 365 71
HE4 3 1 3 99 5

Table 12: Detailed comparison between methods on several validated marker genes.

mixture distribution) that is not a straightforward pooled extension of binary (two-class) differential
analysis. We emphasize the statistical reproducibility and biological plausibility of the selected gene
markers under small sample size, supported by their detailed biological interpretations. We tested
our method on six benchmark and in-house real microarray gene expression data sets and com-
pared its performance with that of several existing methods. We imposed a rigorous performance
assessment where each and all components of the scheme including gene selection are subjected to
cross-validation, for example, held-out/unseen samples in a testing fold are not used for any phase
of classifier training.

Tested on six benchmark real microarray data sets, the proposed PUG-OVRSVM method out-
performs several widely-adopted gene selection and classification methods with lower error rates,
fewer marker genes, and higher performance sustainability. Moreover, while for some data sets,
the absolute gain in classification accuracy percentage of PUG-OVRSVM is not dramatically large,
it must be recognized that the performance may be approaching the minimum Bayes error rate, in
which case PUG-OVRSVM is achieving nearly all the improvement that is theoretically attainable.
Furthermore, the improved performance is achieved by correct classifications on some of the most
difficult cases, which is considered significant for clinical diagnosis (Ramaswamy et al., 2001).
Lastly, although improvements will be data set-dependent, our multi-data set tests have shown that
PUG-OVRSVM is the consistent winner as compared to several peer methods.
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We note that we have opted for simplicity as opposed to theoretical optimality in designing our
method. Our primary goal was to demonstrate that a small number of reproducible phenotypic-
dependent genes are sufficient to achieve improved multicategory classification, that is, small sam-
ple sizes and a large number of classes need not preclude a high level of performance. Our studies
suggest that using genes’ marginal associations with the phenotypic categories as we do here has the
potential to stabilize the learning process, leading to a substantial reduction in performance variabil-
ity with small sample size; whereas, the current generation of complex gene selection techniques
may not be stable or powerful enough to reliably exploit gene interactions and/or variations unless
the sample size is sufficiently large. We have not explored the full flexibility that this method read-
ily allows, with different numbers of subPUGs used by different classifiers. Presumably, equal or
better performance could be achieved with fewer genes if more markers were selected for the most
difficult classifications, involving the nearest phenotypes. However, such flexibility could actually
degrade performance in practice since it introduces extra design choices and, thus, extra sources of
variation in classification performance. We may also extend our method to account for variation in
fold-changes, with the uncertainty estimated on bootstrap samples judiciously applied to eliminate
those PUGs with high variations.

Notably, multicategory classification is intrinsically a nonlinear classification problem, and this
method (using one-versus-everyone fold-change based PUG selection, linear kernel SVMs, and
the MAP decision rule) is most practically suitable to discriminating unimodal classes. Future
work will be required to extend PUG-OVRSVM for multimodal class distributions. An elegant
yet simple strategy is to introduce unimodal pseudo-classes for the multi-modal classes via a pre-
clustering step, with the final class decision readily made without the need of any decision combiner.
Specifically, for each (pseudo-class, super pseudo-class) pair (where, for a pseudo-class originating
from class k, the paired super pseudo-class is the union of all pseudo-classes that do not belong
to class k), a separating hyperplane is constructed. Accordingly, in selecting subPUGs for each
pseudo-class, the pseudo-classes originating from the same class will not be considered.
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Abstract
This paper describes the software package libDAI, a free & open source C++ library that provides
implementations of various exact and approximate inference methods for graphical models with
discrete-valued variables. libDAI supports directed graphical models (Bayesian networks) as well
as undirected ones (Markov random fields and factor graphs). It offers various approximations of
the partition sum, marginal probability distributions and maximum probability states. Parameter
learning is also supported. A feature comparison with other open source software packages for
approximate inference is given. libDAI is licensed under the GPL v2+ license and is available at
http://www.libdai.org.
Keywords: probabilistic graphical models, approximate inference, open source software, factor
graphs, Markov random fields, Bayesian networks

1. Introduction

Probabilistic graphical models (Koller and Friedman, 2009) are at the core of many applications in
machine learning nowadays. Because exact inference in graphical models is often infeasible, an
extensive literature has evolved in recent years describing various approximation methods for this
task. Unfortunately, there exist only few free software implementations for many of these methods.
The software package libDAI presented in this paper is the result of an ongoing attempt to improve
this situation.

libDAI is a free and open source C++ library (licensed under the GNU General Public License
version 2, or higher) that provides implementations of various exact and approximate inference
methods for graphical models. libDAI supports factor graphs with discrete variables. This paper
describes the most recent libDAI release, version 0.2.7.

The modular design of libDAI makes it easy to implement novel inference algorithms. The
large number of inference algorithms already implemented in libDAI allows for easy comparison of
accuracy and performance of various algorithms.

2. Inference in Factor Graphs

Although Bayesian networks and Markov random fields are the most commonly used graphical
models, libDAI uses a slightly more general type of graphical model: factor graphs (Kschischang
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et al., 2001). A factor graph is a bipartite graph consisting of variable nodes i∈V and factor nodes
I ∈ F , a family of random variables (Xi)i∈V , a family of factors ( fI)I∈F (which are nonnegative
functions depending on subsets NI ⊆ V of the variables), and a set of edges E ⊆ V ×F , where
variable node i and factor node I are connected by an undirected edge if and only if the factor fI
depends on variable Xi, that is, if i ∈ NI . The probability distribution encoded by the factor graph is
given by:

P(XV ) =
1
Z ∏I∈F

fI(XNI ), Z :=∑
XV
∏
I∈F

fI(XNI ).

A Bayesian network can easily be represented as a factor graph by introducing a factor for each
variable, namely the (conditional) probability table of the variable given its parents in the Bayesian
network. A Markov random field can be represented as a factor graph by taking the clique potentials
as factors. Factor graphs naturally express the factorization structure of probability distributions.
Therefore, they form a convenient representation for approximate inference algorithms that exploit
this factorization. This is the reason that libDAI uses factor graphs as the basic representation for
graphical models.

Given a factor graph, the following important inference tasks can be distinguished: calculating
the partition sum Z; calculating marginal probability distributions P(XA) = 1

Z ∑XV \A∏I∈F fI(XI)
over subsets of variables XA, A⊆V ; calculating theMaximum A Posteriori (MAP) state, that is, the
joint configuration argmaxXV ∏I∈F fI(XI) which has the maximum probability mass. libDAI offers
several inference algorithms which solve these tasks either approximately or exactly, for factor
graphs with discrete variables.

2.1 Inference Methods Implemented in libDAI

Apart from exact inference by brute force enumeration and the junction-tree method, libDAI cur-
rently offers the following approximate inference methods for calculating partition sums, marginals
and MAP states:1 mean field, (loopy) belief propagation (Kschischang et al., 2001), fractional belief
propagation (Wiegerinck and Heskes, 2003), tree-reweighted belief propagation (Wainwright et al.,
2003), tree expectation propagation (Minka and Qi, 2004), generalized belief propagation (Yedidia
et al., 2005), double-loop generalized belief propagation (Heskes et al., 2003), loop-corrected belief
propagation (Mooij and Kappen, 2007; Montanari and Rizzo, 2005), conditioned belief propagation
(Eaton and Ghahramani, 2009), a Gibbs sampler and a decimation method.

In addition, libDAI supports parameter learning of conditional probability tables by maximum
likelihood or expectation maximization (in case of missing data).

3. Technical Details

libDAI is targeted at researchers that have a good understanding of graphical models. The best
way to use libDAI is by writing C++ code that directly invokes the library functions and classes. In
addition, part of the functionality is accessible by using various interfaces: a command line interface,
a limited MatLab interface, and experimental Python and Octave interfaces (powered by SWIG, see
http://www.swig.org). Because libDAI is implemented in C++, it is very fast compared with
implementations in pure MatLab or Python; the difference in computation time can be up to a few
orders of magnitude.

1. Not all inference tasks are implemented by each method.
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libDAI BNT PNL FastInf GRMM Factorie JProGraM
Language C++ MatLab, C C++ C++ Java Scala Java
License GPL2+ LGPL2 BSD GPL3 CPL 1.0 CC-by 3.0 GPL3
Junction tree + + + + + - +
Belief propagation (BP) + + + + + + -
Fractional BP + - - - - - -
Tree-reweighted BP + - - + - - -
Generalized BP (GBP) + - - + + - -
Double-loop GBP + - - - - - -
Loop-corrected BP + - - - - - -
Conditioned BP + - - - - - -
Tree expectation propagation + - - - - - -
Mean field + - - + - - -
Gibbs sampling + + + + + + +
Other sampling methods - + + + + + -
Decimation + - - - - - -
Continuous variables - + + - - + +
Dynamic Bayes nets - + + - - + -
Conditional random fields - - - - + + -
Relational models - - - + - + -
Influence diagrams - + - - - - -
Parameter learning + + + + + + +
Structure learning - + + - - - +

Table 1: Feature comparison of various open source software packages for approximate inference
on graphical models.

libDAI is designed to be cross-platform and is known to compile on GNU/Linux distributions
and on Mac OS X using the GCC compiler suite, and also under Windows using either CygWin or MS
Visual Studio 2008.

The libDAI sources and documentation can be downloaded or browsed from the libDAI web-
site at http://www.libdai.org. The Google group libDAI (see http://groups.google.com/
group/libdai) can be used for getting support and discussing development issues. Extensive doc-
umentation generated by Doxygen (see http://www.doxygen.org) is available, both as part of
the source code and online. Unit tests and various example programs are provided, including the
full source code of the solver which won in two categories of the 2010 UAI Approximate Infer-
ence Challenge (see also http://www.cs.huji.ac.il/project/UAI10/) and uses several of the
algorithms implemented in libDAI.

4. Related Work

Other prominent open source software packages supporting both directed and undirected graphical
models are the Bayes Net Toolbox (BNT, see http://bnt.googlecode.com), the Probabilistic
Networks Library (PNL, see http://sourceforge.net/projects/openpnl), FastInf (Jaimovich
et al., 2010), GRMM (http://mallet.cs.umass.edu/grmm), Factorie (http://code.google.
com/p/factorie), and JProGraM (http://jprogram.sourceforge.net). A feature comparison
of libDAI with these other packages is provided in Table 1.

2171



MOOIJ

Acknowledgments

Part of this work was part of the Interactive Collaborative Information Systems (ICIS) project, sup-
ported by the Dutch Ministry of Economic Affairs, grant BSIK03024. I would like to express my
gratitude to the following people who made major contributions to libDAI: Martijn Leisink (for
laying down the foundations for the library), Frederik Eaton (for contributing the Gibbs sampler,
conditioned BP, fractional BP and various other improvements), Charles Vaske (for contributing the
parameter learning algorithms), Giuseppe Passino (for various improvements), Bastian Wemmen-
hove (for contributing the MR algorithm), Patrick Pletscher (for contributing the SWIG interface).
I am also indebted to the following people for bug fixes and miscellaneous smaller patches: Clau-
dio Lima, Christian Wojek, Sebastian Nowozin, Stefano Pellegrini, Ofer Meshi, Dan Preston, Peter
Gober, Jiuxiang Hu, Peter Rockett, Dhruv Batra, Alexander Schwing, Alejandro Lage, Matt Dun-
ham.

References

F. Eaton and Z. Ghahramani. Choosing a variable to clamp. In Proceedings of the Twelfth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS 2009), volume 5 of JMLR
Workshop and Conference Proceedings, pages 145–152, 2009.

T. Heskes, K. Albers, and B. Kappen. Approximate inference and constrained optimization. In
C. Meek and U. Kjærulff, editors, Proceedings of the Nineteenth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-03), pages 313–320. Morgan Kaufmann, 2003.

A. Jaimovich, O. Meshi, I. McGraw, and G. Elidan. FastInf: An efficient approximate inference
library. Journal of Machine Learning Research, 11:17331736, 2010.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498–519, 2001.

T. Minka and Y. Qi. Tree-structured approximations by expectation propagation. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages
193–200. MIT Press, 2004.

A. Montanari and T. Rizzo. How to compute loop corrections to the Bethe approximation. Journal
of Statistical Mechanics: Theory and Experiment, 2005(10):P10011, 2005.

J. Mooij and B. Kappen. Loop corrections for approximate inference on factor graphs. Journal of
Machine Learning Research, 8:1113–1143, 2007.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree-reweighted belief propagation algorithms and
approximate ML estimation by pseudo-moment matching. In C. Bishop and B. Frey, editors,
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics (AIS-
TATS 2003), 2003.

2172



LIBDAI: A FREE AND OPEN SOURCE C++ LIBRARY FOR DISCRETE APPROXIMATE INFERENCE

W. Wiegerinck and T. Heskes. Fractional belief propagation. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Processing Systems 15, pages 438–445. MIT
Press, 2003.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized
belief propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–2312,
2005.

2173



 



Journal of Machine Learning Research 11 (2010) 2175-2198 Submitted 7/07; Revised 2/09; Published 8/10

Learning Gradients: Predictive Models that Infer Geometry and
Statistical Dependence

Qiang Wu WUQIANG@MATH.MSU.EDU
Department of Mathematics
Michigan State University
East Lansing, MI 48824, USA

Justin Guinney JUSTIN.GUINNEY@SAGEBASE.ORG
Sage Bionetworks
Fred Hutchinson Cancer Research Center
Seattle, WA 98109, USA

Mauro Maggioni∗ MAURO.MAGGIONI@DUKE.EDU
Sayan Mukherjee† SAYAN@STAT.DUKE.EDU
Departments of Mathematics and Statistical Science
Duke University
Durham, NC 27708, USA

Editor:Marina Meila

Abstract
The problems of dimension reduction and inference of statistical dependence are addressed by the
modeling framework of learning gradients. The models we propose hold for Euclidean spaces as
well as the manifold setting. The central quantity in this approach is an estimate of the gradient
of the regression or classification function. Two quadratic forms are constructed from gradient
estimates: the gradient outer product and gradient based diffusion maps. The first quantity can be
used for supervised dimension reduction on manifolds as well as inference of a graphical model
encoding dependencies that are predictive of a response variable. The second quantity can be used
for nonlinear projections that incorporate both the geometric structure of the manifold as well as
variation of the response variable on the manifold. We relate the gradient outer product to standard
statistical quantities such as covariances and provide a simple and precise comparison of a variety of
supervised dimensionality reduction methods. We provide rates of convergence for both inference
of informative directions as well as inference of a graphical model of variable dependencies.
Keywords: gradient estimates, manifold learning, graphical models, inverse regression, dimension
reduction, gradient diffusion maps

1. Introduction

The problem of developing predictive models given data from high-dimensional physical and bi-
ological systems is central to many fields such as computational biology. A premise in modeling
natural phenomena of this type is that data generated by measuring thousands of variables lie on or
near a low-dimensional manifold. This hearkens to the central idea of reducing data to only relevant
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information. This idea was fundamental to the paradigm of Fisher (1922) and goes back at least to
Adcock (1878) and Edgeworth (1884). For an excellent review of this program see Cook (2007).
In this paper we examine how this paradigm can be used to infer geometry of the data as well as
statistical dependencies relevant to prediction.

The modern reprise of this program has been developed in the broad areas of manifold learn-
ing and simultaneous dimension reduction and regression. Manifold learning has focused on the
problem of projecting high-dimensional data onto a few directions or dimensions while respect-
ing local structure and distances. A variety of unsupervised methods have been proposed for this
problem (Tenenbaum et al., 2000; Roweis and Saul, 2000; Belkin and Niyogi, 2003; Donoho and
Grimes, 2003). Simultaneous dimension reduction and regression considers the problem of finding
directions that are informative with respect to predicting the response variable. These methods can
be summarized by three categories: (1) methods based on inverse regression (Li, 1991; Cook and
Weisberg, 1991; Fukumizu et al., 2005; Wu et al., 2007), (2) methods based on gradients of the
regression function (Xia et al., 2002; Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006), (3)
methods based on combining local classifiers (Hastie and Tibshirani, 1996; Sugiyama, 2007). Our
focus is on the supervised problem. However, we will use the core idea in manifold learning, local
estimation.

We first illustrate with a simple example how gradient information can be used for supervised
dimension reduction. Both linear projections as well as nonlinear embeddings based on gradient
estimates are used for supervised dimension reduction. In both approaches the importance of using
the response variable is highlighted.

The main contributions in this paper consist of (1) development of gradient based diffusion
maps, (2) precise statistical relations between the above three categories of supervised dimension
reduction methods, (3) inference of graphical models or conditional independence structure given
gradient estimates, (4) rates of convergence of the estimated graphical model. The rate of con-
vergence depends on a geometric quantity, the intrinsic dimension of the gradient on the manifold
supporting the data, rather than the sparsity of the graph.

2. A Statistical Foundation for Learning Gradients

The problem of regression can be summarized as estimating the function

fr(x) = E(Y | X = x)

from data D = {Li = (Yi,Xi)}ni=1 where Xi is a vector in a p-dimensional compact metric space
X ∈ X ⊂ Rp and Yi ∈ R is a real valued output. Typically the data are drawn iid from a joint
distribution, Li

iid∼ ρ(X ,Y ) thus specifying a model

yi = fr(xi)+ εi

with εi drawn iid from a specified noise model. We define ρX as the marginal distribution of the
explanatory variables.

In this paper we will explain how inference of the gradient of the regression function

∇ fr =
(

∂ fr
∂x1

, ...,
∂ fr
∂xp

)T
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provides information on the geometry and statistical dependencies relevant to predicting the re-
sponse variable given the explanatory variables. Our work is motivated by the following ideas.
The gradient is a local concept as it measures local changes of a function. Integrating informa-
tion encoded by the gradient allows for inference of the geometric structure in the data relevant
to the response. We will explore two approaches to integrate this local information. The first ap-
proach is averaging local gradient estimates and motivates the study of the gradient outer product
(GOP) matrix. The GOP can be used to motivate a variety of linear supervised dimension reduction
formulations. The GOP can also be considered as a covariance matrix and used for inference of
conditional dependence between predictive explanatory variables. The second approach is to paste
local gradient estimates together. This motivates the study of gradient based diffusion maps (GDM).
This operator can be used for nonlinear supervised dimension reduction by embedding the support
of the marginal distribution onto a much lower dimensional manifold that varies with respect to the
response.

The gradient outer product Γ is a p× p matrix with elements

Γi j =

〈

∂ fr
∂xi

,
∂ fr
∂x j

〉

L2ρX

,

where ρX is the marginal distribution of the explanatory variables and L2ρX is the space of square
integrable functions with respect to the measure ρX . Using the notation a⊗ b = abT for a,b ∈ Rp,
we can write

Γ= E(∇ fr⊗∇ fr).
This matrix provides global information about the predictive geometry of the data (developed in
Section 2.2) as well as inference of conditional independence between variables (developed in Sec-
tion 5). The GOP is meaningful in both the Euclidean as well as the manifold setting where the
marginal distribution ρX is concentrated on a much lower dimensional manifold M of dimension
dM (developed in Section 4.1.2).

Since the GOP is a global quantity and is constructed by averaging the gradient over the marginal
distribution of the data it cannot isolate local information or local geometry. This global summary
of the joint distribution is advantageous in statistical analyses where global inferences are desired:
global predictive factors comprised of the explanatory variables or global estimates of statistical de-
pendence between explanatory variables. It is problematic to use a global summary for constructing
a nonlinear projection or embedding that captures the local predictive geometry on the marginal
distribution.

Random walks or diffusions on manifolds and graphs have been used for a variety of nonlinear
dimension reduction or manifold embedding procedures (Belkin and Niyogi, 2003, 2004; Szummer
and Jaakkola, 2001; Coifman et al., 2005a,b). Our basic idea is to use local gradient information
to construct a random walk on a graph or manifold based on the ideas of diffusion analysis and
diffusion geometry (Coifman and Lafon, 2006; Coifman and Maggioni, 2006). The central quantity
in diffusion based approaches is the definition of a diffusion operator L based on a similarity metric
Wi j between two points xi and x j. A commonly used diffusion operator is the graph Laplacian

L= I−D−1/2WD−1/2, where Dii =∑
j
Wi j.

Dimension reduction is achieved by projection onto a spectral decomposition of the operator L or
powers of the operator Lt which corresponds to running the diffusion for some time t.
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We propose the following similarity metric called the gradient based diffusion map (GDM) to
smoothly paste together local gradient estimates

Wi j =Wf (xi,x j) = exp

(

−
‖xi− x j‖2

σ1
−

| 12(∇ fr(xi)+∇ fr(x j)) · (xi− x j)|2

σ2

)

.

In the above equation the first term ‖xi−x j‖2 encodes the local geometry of the marginal distribution
and the second term pastes together gradient estimates between neighboring points. The first term is
used in unsupervised dimension reduction methods such as Laplacian eigenmaps or diffusion maps
(Belkin and Niyogi, 2003). The second term can be interpreted as a diffusion map on the function
values, the approximation is due to a first order Taylor expansion

1
2
(∇ fr(xi)+∇ fr(x j)) · (xi− x j)≈ fr(xi)− fr(x j) if xi ≈ x j.

A related similarity was briefly mentioned in Coifman et al. (2005b) and used in Szlam et al. (2008)
in the context of semi-supervised learning. In Section 4.2 we study this nonlinear projection method
under the assumption that the marginal distribution is concentrated on a much lower dimensional
manifoldM .

2.1 Illustration of Linear Projections and Nonlinear Embeddings

The simple example in this section fixes the differences between linear projections and nonlinear
embeddings using either diffusion maps or gradient based diffusion maps. The marginal distribution
is uniform on the following manifold

X1 = t cos(t), X2 = 70h, X3 = t sin(t) where t =
3π
2
(1+2θ), θ ∈ [0,1], h ∈ [0,1],

and the regression function is Y = sin(5πθ), see Figure 1(a). In this example a two dimensional
manifold is embedded in R3 and the variation of the response variable can be embedded onto one
dimension. The points in Figure 1(a) are the points on the manifold and the false color signifies
the function value at these points. In Figure 1(b) the data is embedded in two dimensions using
diffusion maps with the function values displayed in false color. It is clear that the direction of
greatest variation is X2 which corresponds to h. It is not the direction along which the regression
function has greatest variation. In Figure 1(c) the data is projected onto two axes using the GOP
approach and we see that the relevant dimensions X1,X3 are recovered. This example also shows
that linear dimension reduction may still make sense in the manifold setting. In Figure 1(d) the data
is embedded using gradient based diffusion maps and we capture the direction θ in which the data
varies with respect to the regression function.

2.2 Gradient Outer Product Matrix and Dimension Reduction

In the case of linear supervised dimension reduction we assume the following semi-parametric
model holds

Y = fr(X)+ ε= g(bT1X , . . . ,bTd X)+ ε, (1)

where ε is noise and B= (bT1 , ...,bTd ) is the dimension reduction (DR) space. In this case the number
of explanatory variables p is large but the the response variable Y depends on a few directions in Rp

2178



LEARNING GRADIENTS: PREDICTIVE MODELS THAT INFER GEOMETRY

−10 0 10 200
50

100
−15

−10

−5

0

5

10

15  

x

(a) Data

 

y

z

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

D
im

en
si

on
 2

(b) Diffusion map

 

 

−10 0 10 20
−15

−10

−5

0

5

10

15

Dimension 1

D
im

en
si

on
 2

(c) GOP

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

D
im

en
si

on
 2

(d) GDM

 

 

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 1: (a) Plot of the original three dimensional data with the color of the point correspond-
ing to the function value; (b) Embedding the data onto two dimensions using diffusion
maps, here dimensions 1 and 2 corresponds to h and θ respectively; (c) Projection of the
data onto two dimensions using gradient based dimension reduction, here dimensions 1
and 2 corresponds to x and z respectively; (d) Embedding the data onto two dimensions
using gradient based diffusion maps, here dimensions 1 and 2 corresponds to θ and h
respectively.

and dimension reduction becomes the central problem in finding an accurate regression model. In
the following we develop theory relating the gradient of the regression function to the above model
of dimension reduction.

Observe that for a vector v ∈ Rp, ∂ fr(x)∂v = v ·∇ fr is identically zero if fr does not depends on v
and is not zero if fr changes along the direction v. The following lemma relates the gradient outer
product matrix to supervised dimension reduction.
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Lemma 1 Under the assumptions of the semi-parametric model (1), the gradient outer product
matrix Γ is of rank at most d. Denote by {v1, . . . ,vd} the eigenvectors associated to the nonzero
eigenvalues of Γ. The following holds

span(B) = span(v1, . . . ,vd).

Lemma 1 states the dimension reduction space can be computed by a spectral decomposition
of Γ. Notice that this method does not require additional geometric conditions on the distribution.
This is in contrast to other supervised dimension reduction methods (Li, 1991; Cook and Weisberg,
1991; Li, 1992) that require a geometric or distributional requirement on X , namely that the level
sets of the distribution are elliptical.

This observation motivates supervised dimension reduction methods based on consistent esti-
mators ΓD of Γ given data D. Several methods have been motivated by this idea, either implicitly as
in minimum average variance estimation (MAVE) (Xia et al., 2002), or explicitly as in outer product
of gradient (OPG) (Xia et al., 2002) and learning gradients (Mukherjee et al., 2010).

The gradient outer product matrix is defined globally and its relation to dimension reduction in
Section 2.2 is based on global properties. However, since the gradient itself is a local concept we
can also study the geometric structure encoded in the gradient outer product matrix from a local
point of view.

2.3 Gradient Outer Product Matrix as a Covariance Matrix

A central concept used in dimension reduction is the covariance matrix of the inverse regression
function ΩX |Y = covY [EX (X | Y )]. The fact that ΩX |Y encodes the DR directions B = (b1, . . . ,bd)
under certain conditions was explored in Li (1991).

The main result of this subsection is to relate the two matrices: Γ and ΩX |Y . The first observa-
tion from this relation is that the gradient outer product matrix is a covariance matrix with a very
particular construction. The second observation is that the gradient outer product matrix contains
more information than the covariance of the inverse regression since it captures local information.
This is outlined for linear regression and then generalized to nonlinear regression. Proofs of the
propositions and the underlying mathematical ideas will be developed in Section 4.1.1.

The linear regression problem is often stated as

Y = βTX+ ε, Eε= 0. (2)

For this model the following relation between gradient estimates and the inverse regression holds.

Proposition 2 Suppose (2) holds. Given the covariance of the inverse regression,ΩX |Y = covY (EX (X |
Y )), the variance of the output variable, σ2Y = var(Y ), and the covariance of the input variables,
ΣX = cov(X), the gradient outer product matrix is

Γ= σ2Y

(

1− σ2ε
σ2Y

)2
Σ−1X ΩX |YΣ

−1
X , (3)

assuming that ΣX is full rank.

The above result states that for a linear model the matrices Γ and ΩX |Y are equivalent modulo a
scale parameter—approximately the variance of the output variable—and a rotation—the precision
matrix (inverse of the covariance matrix) of the input variables.
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In order to generalize Proposition 2 to the nonlinear regression setting we first consider piece-
wise linear functions. Suppose there exists a non-overlapping partition of the input space

X =
I⋃
i=1

Ri

such that in each region Ri the regression function fr is linear and the noise has zero mean

fr(x) = βTi x, Eεi = 0 for x ∈ Ri. (4)

The following corollary is true.

Corollary 3 Given partitions Ri of the input space for which (4) holds, define in each partition
Ri the following local quantities: the covariance of the input variables Σi = cov(X ∈ Ri), the co-
variance of the inverse regression Ωi = covY (EX (X ∈ Ri | Y )), the variance of the output variable
σ2i = var(Y | X ∈ Ri). Assuming that matrices Σi are full rank, the gradient outer product matrix
can be computed in terms of these local quantities

Γ=
I

∑
i=1

ρX (Ri)σ
2
i

(

1− σ2εi
σ2i

)2
Σ−1i ΩiΣ

−1
i , (5)

where ρX (Ri) is the measure of partition Ri with respect to the marginal distribution ρX .

If the regression function is smooth it can be approximated by a first order Taylor series ex-
pansion in each partition Ri provided the region is small enough. Theoretically there always exist
partitions such that the locally linear models (4) hold approximately (i.e., Eεi ≈ 0). Therefore (5)
holds approximately

Γ≈
I

∑
i=1

ρX (Ri)σ
2
i

(

1− σ2εi
σ2i

)2
Σ−1i ΩiΣ

−1
i .

Supervised dimension reduction methods based on the covariance of the inverse regression re-
quire an elliptic condition on X . This condition ensures that ΩX |Y encodes the DR subspace but not
necessarily the entire DR subspace. In the worst case it is possible that E(X | Y ) = 0, ΩX |Y = 0.
and as a result ΩX |Y contains no information. In the linear case ΩX |Y will encode the full DR sub-
space, the one predictive direction. Since the GOP is an average the inverse covariance matrix of
the locally linear models it contains all the predictive directions. This motivates the centrality of the
gradient outer product.

This derivation of the gradient outer product matrix based on local variation has two potential
implications. It provides a theoretical comparison between dimension reduction approaches based
on the gradient outer product matrix and inverse regression. This will be explored in Section 4.1.1
in detail. The integration of local variation will be used to infer statistical dependence between the
explanatory variables conditioned on the response variable in Section 5.

A common belief in high dimensional data analysis is that the data are concentrated on a low
dimensional manifold. Both theoretical and empirical evidence of this belief is accumulating. In
the manifold setting, the input space is a manifold X =M of dimension dM + p. We assume the
existence of an isometric embedding ϕ :M → Rp and the observed input variables (xi)ni=1 are the
image of points (qi)ni=1 drawn from a distribution on the manifold: xi = ϕ(qi). In this case, global
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statistics are not as meaningful from a modeling perspective.1 In this setting the gradient outer
product matrix should be defined in terms of the gradient on the manifold, ∇M fr,

Γ= E(dϕ(∇M fr)⊗dϕ(∇M fr)) = E
(

dϕ(∇M fr⊗∇M fr)(dϕ)T
)

.

This quantity is meaningful from a modeling perspective because gradients on the manifold capture
the local structure in the data. Note that the dM × dM matrix ΓM = ∇M fr⊗∇M fr is the central
quantity of interest in this setting. However, we know neither the manifold nor the coordinates on
the manifold and are only provided points in the ambient space. For this reason we cannot compute
ΓM . However, we can understand its properties by analyzing the gradient outer product matrix Γ
in the ambient space, a p× p matrix. Details on conditions under which Γ provides information on
ΓM are developed in Section 4.1.2.

3. Estimating Gradients

An estimate of the gradient is required in order to estimate the gradient outer product matrix Γ.
Many approaches for computing gradients exist including various numerical derivative algorithms,
local linear/polynomial smoothing (Fan and Gijbels, 1996), and learning gradients by kernel models
(Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006). Our main focus is on what can be done
given an estimate of Γ rather than estimation methods for the gradient. The application domain we
focus on is the analysis of high-dimensional data with few observations, where p- n and some
traditional methods do not work well because of computational complexity or numerical stability.
Learning gradients by kernel models was specifically developed for this type of data in the Euclidean
setting for regression (Mukherjee and Zhou, 2006) and classification (Mukherjee and Wu, 2006).
The same algorithms were shown to be valid for the manifold setting with a different interpretation
in Mukherjee et al. (2010). In this section we review the formulation of the algorithms and state
properties that will be relevant in subsequent sections.

The motivation for learning gradients is based on Taylor expanding the regression function

fr(u)≈ fr(x)+∇ fr(x) · (u− x), for x≈ u,

which can be evaluated at data points (xi)ni=1
fr(xi)≈ fr(x j)+∇ fr(x j) · (xi− x j), for xi ≈ x j.

Given data D = {(yi,xi)}ni=1 the objective is to simultaneously estimate the regression function fr
by a function fD and the gradient ∇ fr by the p-dimensional vector valued function !fD.

In the regression setting the following regularized loss functional provides the estimates (Mukher-
jee and Zhou, 2006).

Definition 4 Given the data D = {(xi,yi)}ni=1, define the first order difference error of function f
and vector-valued function !f = ( f1, . . . , fp) on D as

ED( f ,!f ) =
1
n2

n

∑
i, j=1

wsi, j
(

yi− f (x j)+!f (xi) · (x j− xi)
)2

.

1. Consider Ω(X | Y ) as an example. For any given y, the set {x | Y = y} is a submanifold. The global mean will not
necessarily lie on the manifold. Therefore, from a modeling perspective E(X | Y ) and hence Ω(X | Y ) may convey
nothing about the manifold. Although this does not mean it is useless in practice, a theoretical justification seems
impossible.
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The regression function and gradient estimate is modeled by

( fD,!fD) := arg min
( f ,!f )∈H p+1

K

(

ED( f ,!f )+λ1‖ f‖2K+λ2‖!f‖2K
)

,

where fD and !fD are estimates of fr and ∇ fr given the data, wsi, j is a weight function with bandwidth
s, ‖ · ‖K is the reproducing kernel Hilbert space (RKHS) norm, λ1 and λ2 are positive constants
called the regularization parameters, the RKHS norm of a p-vector valued function is the sum of
the RKHS norm of its components ‖!f‖2K := ∑

p
t=1 ‖!ft‖2K.

A typical weight function is a Gaussian wsi, j = exp(−‖xi− x j‖2/2s2). Note this definition is
slightly different from that given in Mukherjee and Zhou (2006) where f (x j) is replaced by y j and
only the gradient estimate !fD is estimated.

In the classification setting we are given D = {(yi,xi)}ni=1 where yi ∈ {−1,1} are labels. The
central quantity here is the classification function which we can define by conditional probabilities

fc(x) = log
[

ρ(Y = 1 | x)
ρ(Y =−1 | x)

]

= argminEφ(Y f (X))

where φ(t) = log(1+e−t) and the sign of fc is a Bayes optimal classifier. The following regularized
loss functional provides estimates for the classification function and gradient (Mukherjee and Wu,
2006).

Definition 5 Given a sample D= {(xi,yi)}ni=1 we define the empirical error as

E
φ
D( f ,!f ) =

1
n2

n

∑
i, j=1

wsi jφ
(

yi
(

f (x j)+!f (xi) · (xi− x j)
)

)

.

The classification function and gradient estimate given a sample is modeled by

( fD,!fD) = arg min
( f ,!f )∈H p+1

K

(

E
φ
D( f ,!f )+λ1‖ f‖2K+λ2‖!f‖2K

)

,

where fD and !fD are estimates of fc and ∇ fc, and λ1,λ2 are the regularization parameters.

In the manifold setting the above algorithms are still valid. However the interpretation changes.
We state the regression case, the classification case is analogous (Mukherjee et al., 2010).

Definition 6 LetM be a Riemannian manifold and ϕ :M →Rp be an isometric embedding which
is unknown. Denote X = ϕ(M ) and HK = HK(X ). For the sample D = {(qi,yi)}ni=1 ∈ (M ×R)n,
xi = ϕ(qi) ∈ Rp, the learning gradients algorithm onM provides estimates

( fD,!fD) := arg min
f ,!f∈H p+1

K

{

1
n2

n

∑
i, j=1

wsi, j
(

yi− f (x j)+!f (xi) · (x j− xi)
)2

+λ1‖ f‖+λ2‖!f‖2K
}

,

where !fD is a model for dϕ(∇M
fr) and fD is a model for fr.
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From a computational perspective the advantage of the RKHS framework is that in both regres-
sion and classification the solutions satisfy a representer theorem (Wahba, 1990; Mukherjee and
Zhou, 2006; Mukherjee and Wu, 2006)

fD(x) =
n

∑
i=1

αi,DK(x,xi), !fD(x) =
n

∑
i=1

ci,DK(x,xi), (6)

with cD = (c1,D, . . . ,cn,D) ∈Rp×n, and αD = (α1,D, ...,αn,D)T ∈Rp. In Mukherjee and Zhou (2006)
and Mukherjee and Wu (2006) methods for efficiently computing the minima were introduced in
the setting where p- n. The methods involve linear systems of equations of dimension nd where
d ≤ n.

The consistency of the gradient estimates for both regression and classification were proven in
Mukherjee and Zhou (2006) and Mukherjee and Wu (2006) respectively.

Proposition 7 Under mild conditions (see Mukherjee and Zhou, 2006; Mukherjee and Wu, 2006
for details) the estimates of the gradients of the regression or classification function f converge to
the true gradients: with probability greater than 1−δ,

‖!fD−∇ f‖L2ρx ≤C log
(

2
δ

)

n−1/p.

Consistency in the manifold setting was studied in Mukherjee et al. (2010) and the rate of con-
vergence was determined by the dimension of the manifold, d

M
, not the dimension of the ambient

space p.

Proposition 8 Under mild conditions (see Mukherjee et al., 2010 for details), with probability
greater than 1−δ,

||(dϕ)∗!fD−∇
M
f ||L2ρ

M

≤C log
(

2
δ

)

n−1/dM ,

where where (dϕ)∗ is the dual of the map dϕ.

4. Dimension Reduction Using Gradient Estimates

In this section we study some properties of dimension reduction using the gradient estimates. We
also relate learning gradients to previous approaches for dimension reduction in regression.

4.1 Linear Dimension Reduction

The theoretical foundation for linear dimension reduction using the spectral decomposition of the
gradient outer production matrix was developed in Section 2.2. The estimate of the gradient obtained
by the kernel models in Section 3 provides the following empirical estimate of the gradient outer
product matrix

Γ̂ := cDK2cTD =
1
n

n

∑
i=1

!fD(xi)⊗!fD(xi),

where K is the kernel matrix with Ki j = K(xi,x j) and cD is defined in (6). The eigenvectors corre-
sponding to the top eigenvalues of Γ̂ can be used to estimate the d dimension reduction directions.
The following proposition states that the estimate is consistent.
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Proposition 9 Suppose that f satisfies the semi-parametric model (1) and !fD is an empirical ap-
proximation of ∇ f . Let v̂1, . . . , v̂d be the eigenvectors of Γ̂ associated to the top d eigenvalues. The
following holds

lim
n→∞

span(v̂1, . . . , v̂d) = span(B).

Moreover, the remaining eigenvectors correspond to eigenvalues close to 0.

Proof : Proposition 7 implies that limn→∞ Γ̂i j = Γi j and hence limn→∞Γ = Γ in matrix norm. By
perturbation theory the eigenvalues (see Golub and Loan, 1996, Theorem 8.1.4 and Corollary 8.1.6)
and eigenvectors (see Zwald and Blanchard, 2006) of Γ̂ converge to those of Γ respectively. The
conclusions then follow from Lemma 1.

Proposition 9 justifies linear dimension reduction using consistent gradient estimates from a
global point of view.

In the next subsection we study the gradient outer product matrix from the local point of view
and provide details on the relation between gradient based methods and sliced inverse regression.

4.1.1 RELATION TO SLICED INVERSE REGRESSION (SIR)

The SIR method computes the DR directions using a generalized eigen-decomposition problem

ΩX |Yβ= νΣXβ. (7)

In order to study the relation between our method with SIR, we study the relation between the
matrices ΩX |Y and Γ.

We start with a simple model where the DR space contains only one direction which means the
regression function satisfies the following semi-parametric model

Y = g(βTX)+ ε

where ‖β‖= 1 and Eε= 0. The following theorem holds and Proposition 2 is a special case.

Theorem 10 Suppose that ΣX is invertible. There exists a constant C such that

Γ=CΣ−1X ΩX |YΣ
−1
X .

If g is a linear function the constant is C = σ2Y

(

1− σ2ε
σ2Y

)2
.

Proof It is proven in Duan and Li (1991) that

ΩX |Y = var(h(Y ))ΣXββ
TΣX

where h(y) = E(βT (X−µ)|y)
βTΣX β

with µ= E(X) and ΣX is the covariance matrix of X . In this case, the
computation of matrix Γ is direct:

Γ= E[(g′(βTX))2]ββT .

By the assumption ΣX is invertible, we immediately obtain the first relation with

C = E[(g′(βTX))2]var(h(Y ))−1.
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If g(t) = at+b, we have h(y) = y−b−βT µ
aβTΣX β

and consequently

var(h(Y )) =
σ2Y

a2(βTΣXβ)2
.

By the simple fact E(g′(βTX)2] = a2 and σ2Y = a2βTΣXβ+σ2ε , we get

C =
a4(βTΣXβ)

2

σ2Y
=

(σ2Y −σ2ε)
2

σ2Y
= σ2Y

(

1− σ2ε
σ2Y

)2
.

This finishes the proof.

It is apparent that Γ and ΩX |Y differ only up to a linear transformation. As a consequence the
generalized eigen-decomposition (7) of ΩX |Y with respect to ΣX yields the same first direction as the
eigen-decomposition of Γ.

Consider the linear case. Without loss of generality suppose X is normalized to satisfy ΣX = σ2I,
we see ΩX |Y is the same as Γ up to a constant of about

σ2Y
σ4 . Notice that this factor measures the ratio

of the variation of the response to the variation over the input space as well as along the predictive
direction. This implies that Γ is more informative because it not only contains the information of the
descriptive directions but also measures their importance with respect to the change of the response
variable.

When there are more than one DR directions as in model (1), we partition the input space into
I small regions X =

⋃I
i=1Ri such that over each region Ri the response variable y is approximately

linear with respect to x and the descriptive direction is a linear combination of the column vectors
of B. By the discussion in Section 2.2

Γ=∑
i
ρX (Ri)Γi ≈

I

∑
i=1

ρX (Ri)σ
2
i Σ

−1
i ΩiΣ

−1
i ,

where Γi is the gradient outer product matrix on Ri and Ωi = covY (EX (X ∈ Ri | Y )). In this sense,
the gradient covariance matrix Γ can be regarded as the weighted sum of the local covariance ma-
trices of the inverse regression function. Recall that SIR suffers from the possible degeneracy of
the covariance matrix of the inverse regression function over the entire input space while the local
covariance matrix of the inverse regression function will not be degenerate unless the function is
constant. Moreover, in the gradient outer product matrix, the importance of local descriptive di-
rections are also taken into account. These observations partially explain the generality and some
advantages of gradient based methods.

Note this theoretical comparison is independent of the method used to estimate the gradient.
Hence the same comparison holds between SIR and other gradient based methods such as mean
average variance estimation (MAVE) and outer product of gradients (OPG) developed in Xia et al.
(2002).

4.1.2 THEORETICAL FEASIBILITY OF LINEAR PROJECTIONS FOR NONLINEAR MANIFOLDS

In this section we explore why linear projections based on the gradient outer product matrix are
feasible and have meaning when the manifold structure is nonlinear. The crux of the analysis will
be demonstrating that the estimated gradient outer product matrix Γ̂ is still meaningful.
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Again assume there exists an unknown isometric embedding of the manifold onto the ambient
space, ϕ :M → Rp. From a modeling perspective we would like the gradient estimate from data
!fD to approximate dϕ(∇M

fr) (Mukherjee et al., 2010). Generally this is not true when the manifold
is nonlinear, ϕ is a nonlinear map. Instead, the estimate provides the following information about
∇

M
fr

lim
n→∞

(dϕ)∗!fD = ∇M fr,

where (dϕ)∗ is the dual of dϕ, the differential of ϕ.
Note that fr is not well defined on any open set of Rp. Hence, it is not meaningful to consider

the gradient of ∇ fr in the ambient space Rp. Also, we cannot recover directly the gradient of fr on
the manifold since we know neither the manifold nor the embedding. However, we can still recover
the DR directions from the matrix Γ̂.

Assume fr satisfies the semi-parametric model (1). The matrix Γ is not well defined but Γ̂ is
well defined. The following proposition ensures that the spectral decomposition of Γ̂ provides the
DR directions.

Proposition 11 If v⊥ bi for all i= 1, . . . ,d, then limn→∞ vT Γ̂v= 0.

Proof Let !fλ be the sample limit of !fD, that is

!fλ = arg min
!f∈H p

K

{

∫
M

∫
M
e−

‖x−ξ‖2

2s2
(

fr(x)− fr(ξ)+!f (x) · (ξ− x)
)2
dρ

M
(x)dρ

M
(ξ)+λ‖!f‖2K

}

.

By the assumption and a simple rotation argument we can show that v · !fλ = 0.
It was proven in Mukherjee and Zhou (2006) that limn→∞ ‖!fD−!fλ‖K = 0. A result of this is for

Ξ̂= cDKcTD
vT Ξ̂v= ‖v · !fD‖2K

n→∞−→ ‖v · !fλ‖2K = 0.
This implies that limn→∞ vT Γ̂v= 0 and proves the proposition.

Proposition 11 states that all the vectors perpendicular to the DR space correspond to eigenval-
ues near zero of Γ̂ and will be filtered out. This means the DR directions can be still found by the
spectral decomposition of the estimated gradient outer product matrix.

4.2 Nonlinear Projections: Gradient Based Diffusion Maps (GDM)

As discussed in Section 2 the gradient of the regression function can be used for nonlinear projec-
tions. The basic idea was to use local gradient information to construct a diffusion operator L based
on a similarity metricWi j between two points xi and x j. A commonly used diffusion operator is the
graph Laplacian

L= I−D−1/2WD−1/2, where Dii =∑
j
Wi j.

Dimension reduction is achieved by projection onto a spectral decomposition of the operator L or
powers (I−L)t of the operator (I−L) which corresponds to running the diffusion (I−L) for some
time t. The gradient based diffusion map (GDM) was defined as

Wi j =Wf (xi,x j) = exp

(

−
‖xi− x j‖2

σ1
−

| 12(∇ fr(xi)+∇ fr(x j)) · (xi− x j)|2

σ2

)

. (8)
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In the above equation the first term ‖xi−x j‖2 encodes the local geometry of the marginal distribution
and the second term pastes together gradient estimates between neighboring points. The first term is
used in unsupervised dimension reduction methods such as Laplacian eigenmaps or diffusion maps
(Belkin and Niyogi, 2003). The second term can be interpreted as a first order Taylor expansion
leading to the following approximation

1
2
(∇ fr(xi)+∇ fr(x j)) · (xi− x j)≈ fr(xi)− fr(x j).

The form (8) is closely related to the following function adapted similarity proposed in Szlam et al.
(2008)

Wf (xi,x j) = exp
(

−
‖xi− x j‖2

σ1
−

| f (xi)− f (x j)|2

σ2

)

,

where the function evaluations f (xi) are computed based on a first rough estimate of the regression
function from the data.

The utility of nonlinear dimension reduction has been shown to be dramatic with respect to
prediction accuracy in the semi-supervised learning setting where a large set of unlabeled data,
{x1, ...,xu}, drawn from the marginal distribution, were used to learn the projection and a small set
of labeled data {(y1,x1), ...,(y",x")}were used to learn the regression function on the projected data.
Of practical importance in this setting is the need to evaluate the similarity function on out of sample
data. The labeled data is used to compute the gradient estimate, which can be evaluated on out-of-
sample data. Given the gradient estimate and the labeled and unlabeled data (x1, ...,x",x"+1,x"+u)
the following GDM can be defined on all the samples

W̃i j = exp

(

−
‖xi− x j‖2

σ1
−

| 12(!fD(xi)+!fD(x j)) · (xi− x j)|2

σ2

)

, i, j = 1, ..,u+ ".

An analysis of the accuracy of the GDM approach is based on how well f (xi)− f (x j) can be
estimated using the gradient estimate !fD. The first order Taylor expansion on the manifold results
in the following approximation

f (xi)− f (x j)≈ ∇
M
f (xi) · vi j, for vi j ≈ 0,

where vi j ∈ TxiM is the tangent vector such that x j = Expxi(vi j) where Expxi is the exponential map
at xi (see do Carmo, 1992; Mukherjee et al., 2010). Since we cannot compute ∇M

f we use !fD.
The following proposition states that estimates of the function value differences can be accurately
estimated from gradient estimate !fD.

Proposition 12 The following holds

fr(xi)− fr(x j)≈ !fD(xi) · (xi− x j), for xi ≈ x j.

Proof By the fact xi− x j ≈ dϕ(vi j) we have

!fD(xi) · (xi− x j)≈ 〈!fD(xi),dϕ(vi j)〉= 〈(dϕ)∗(!fD(xi)),vi j〉 ≈ 〈∇
M
fr(xi),vi j〉

which implies the conclusion.
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This proposition does not prove consistency of the GDM approach. This research program
of proving convergence of the eigenvectors of a graph Laplacian to the eigenfunctions of a cor-
responding Laplace-Beltrami operator is a source of extensive research in diffusion maps (Belkin
and Niyogi, 2005; Giné and Koltchinskii, 2006). It would be of interest to adapt these approaches
to the gradient setting. The limiting operator will in general depend on how σ1 and σ2 approach
0 as the number of points tends to infinity. For example, it is easy to see that if σ1,σ2 → 0+
suitably as n→ +∞, with σ1/σ2 = α, then the limiting operator is the Laplacian on the manifold
(x,α f (x))⊂M ×R.

4.2.1 EMPIRICAL RESULTS FOR GRADIENT BASED DIFFUSION MAPS

In this section we motivate the efficacy of the GDM approach with an empirical study of predic-
tive accuracy in the semi-supervised setting on six benchmark data sets found in Chapelle et al.
(2006). In the semi-supervised setting using the labeled as well as the unlabeled data for dimension
reduction followed by fitting a regression model has often increased predictive accuracy. We used
the benchmark data so we could compare the performance of DM and GDM to eleven algorithms
(Chapelle et al., 2006, Table 21.11). The conclusion of our study is that GDM improves predictive
accuracy over DM and that GDM is competitive with respect to the other algorithms.

For each data set twelve splits were generated with 100 samples labeled in each split. We
applied DM and GDM to each of these sets to find DR directions. We projected the data (labeled
and unlabeled) onto the DR directions and used a k-Nearest-Neighbor (kNN) classifier to classify
the unlabeled data. The parameters of the DM, GDM, and number of neighbors were set using
a validation set in each trial. The average classification error rate for the unlabeled data over the
twelve splits are reported in Table 1. We also report in Table 1 the top performing algorithm for
the data sets in Chapelle et al. (2006, Table 21.11). Laplacian RLS stands for Laplacian regularized
least-squares, SGT stands for spectral graph transducer, Cluster-Kernel is an algorithm that uses two
kernel functions, see (Chapelle et al., 2006, Chapter 11) for details.

A reasonable conclusion from Table 1 is that having label information improves the performance
of diffusion operator with respect to prediction. In addition, dimension reduction using GDM fol-
lowed by a simple classifier is competitive to other approaches. We suspect that integrating GDM
with a penalized classification algorithm in the same spirit as Laplacian regularized least-squares
can improve performance.

5. Graphical Models and Conditional Independence

One example of a statistical analysis where global inferences are desired or explanations with re-
spect to the coordinates of the data is important is a graphical model over undirected graphs. In this
setting it is of interest to understand how coordinates covary with respect to variation in response,
as is provided by the GOP. Often of greater interest is to infer direct or conditional dependencies
between two coordinates as a function of variation in the response. In this section we explore how
this can be done using the GOP.

A natural idea in multivariate analysis is to model the conditional independence of a multivariate
distribution using a graphical model over undirected graphs. The theory of Gauss-Markov graphs
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Data DM GDM Best
G241C 19.96% 18.61% 13.49% (Cluster-Kernel)
G241D 14.27% 13.64% 4.95% (Cluster-Kernel)
Digit1 1.8% 1.8% 1.8% (DM, GDM)
BCI 48.53% 31.36% 31.36% (GDM, Laplacian RLS)
USPS 12.85% 10.76% 4.68% (Laplacian RLS)
Text 24.71% 23.57% 23.09% (SGT)

Table 1: Error rates for DM and GDM over six data sets reported in Chapelle et al. (2006, Table
21.11). The column ’Best’ reports the error rate for the algorithm with the smallest error
of the 13 applied to the data.

(Speed and Kiiveri, 1986; Lauritzen, 1996) was developed for multivariate Gaussian densities

p(x) ∝ exp
(

−
1
2
xT Jx+hT x

)

,

where the covariance is J−1 and the mean is µ= J−1h. The result of the theory is that the precision
matrix J, given by J = Σ−1X , provides a measurement of conditional independence. The meaning
of this dependence is highlighted by the partial correlation matrix RX where each element Ri j is a
measure of dependence between variables i and j conditioned on all other variables S/i j and i 3= j

Ri j =
cov(Xi,Xj | S/i j)

√

var(Xi | S/i j)
√

var(Xj | S/i j)
.

The partial correlation matrix is typically computed from the precision matrix J

Ri j =−Ji j/
√

JiiJ j j.

In the regression and classification framework inference of the conditional dependence between
explanatory variables has limited information. Much more useful would be the conditional depen-
dence of the explanatory variables conditioned on variation in the response variable. In Section 2
we stated that both the covariance of the inverse regression as well as the gradient outer product
matrix provide estimates of the covariance of the explanatory variables conditioned on variation in
the response variable. Given this observation, the inverses of these matrices

JX |Y =Ω−1
X |Y and JΓ = Γ−1,

provide evidence for the conditional dependence between explanatory variables conditioned on the
response. We focus on the inverse of the gradient outer product matrix in this paper since it is of use
for both linear and nonlinear functions.

The two main approaches to inferring graphical models in high-dimensional regression have
been based on either sparse factor models (Carvalho et al., 2008) or sparse graphical models repre-
senting sparse partial correlations (Meinshausen and Buhlmann, 2006). Our approach differs from
both of these approaches in that the response variable is always explicit. For sparse factor models

2190



LEARNING GRADIENTS: PREDICTIVE MODELS THAT INFER GEOMETRY

the factors can be estimated independent of the response variable and in the sparse graphical model
the response variable is considered as just another node, the same as the explanatory variables.
Our approach and the sparse factor models approach both share an assumption of sparsity in the
number of factors or directions. Sparse graphical model approaches assume sparsity of the partial
correlation matrix.

Our proof of the convergence of the estimated conditional dependence matrix (Γ̂)−1 to the pop-
ulation conditional dependence matrix Γ−1 relies on the assumption that the gradient outer product
matrix being low rank. This again highlights the difference between our modeling assumption of
low rank versus sparsity of the conditional dependence matrix. Since we assume that both Γ and Γ̂
are singular and low rank we use pseudo-inverses in order to construct the dependence graph.

Proposition 13 Let Γ−1 be the pseudo-inverse of Γ. Let the eigenvalues and eigenvectors of Γ̂ be
λ̂i and v̂i respectively. If ε > 0 is chosen so that ε = εn = o(1) and ε−1n ‖Γ̂−Γ‖ = o(1), then the
convergence

∑
λ̂i>ε

v̂iλ̂−1i v̂i
n→∞−→ Γ−1

holds in probability.

Proof We have shown in Proposition 9 that ‖Γ̂−Γ‖= o(1). Denote the eigenvalues and eigenvec-
tors of Γ as λi and vi respectively. Then

|λ̂i−λi|= O(‖Γ̂−Γ‖) and ‖v̂i− vi‖= O(‖Γ̂−Γ‖).

By the condition ε−1n ‖Γ̂−Γ‖= o(1) the following holds

λ̂i > ε=⇒ λi > ε/2=⇒ λi > 0

implying {i : λ̂i > ε}⊂ {i : λi > 0} in probability. On the other hand, denoting τ=min{λi : λi > 0},
the condition εn = o(1) implies

{i : λi > 0}= {i : λ≥ τ}⊂ {i : λ̂i ≥ τ/2}⊂ {i : λ̂i > ε}

in probability. Hence we obtain
{i : λi > 0}= {i : λ̂i > ε}

in probability.
For each j ∈ {i : λi > 0} we have λ j, λ̂ j ≥ τ/2 in probability, so

|λ̂−1j −λ−1j |≤ |λ̂ j−λ j|/(2τ)
n→∞−→ 0.

Thus we finally obtain
∑
λ̂i>ε

v̂iλ̂−1i v̂i
n→∞−→ ∑

λi>0
viλ−1i vTi = Γ−1.

This proves the conclusion.
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5.1 Results on Simulated and Real Data

We first provide an intuition of the ideas behind our inference of graphical models using simple sim-
ulated data. We then apply the method to study dependencies in gene expression in the development
of prostate cancer.

5.1.1 SIMULATED DATA

The following simple example clarifies the information contained in the covariance matrix as well
as the gradient outer product matrix. Construct the following dependent explanatory variables from
standard random normal variables θ1, ...,θ5

iid∼ N (0,1)

X1 = θ1, X2 = θ1+θ2, X3 = θ3+θ4, X4 = θ4, X5 = θ5−θ4,

and the following response
Y = X1+(X3+X5)/2+ ε1,

where ε1 ∼N (0, .52).
We drew 100 observations (xi1 ,xi2 ,xi3 ,xi4 ,xi5 ,yi)100i=1 from the above sampling design. From this

data we estimate the covariance matrix of the marginals Σ̂X and the gradient outer product matrix
Γ̂. From Σ̂X , Figure 2(a), we see that X1 and X2 covary with each other and X3, X4, X5 covary. The
conditional independence matrix R̂X , Figure 2(b), provides information on more direct relations
between the coordinates as we see that X5 is independent of X3 given X4, X5 ⊥⊥ X3 | X4. The
dependence relations are summarized in the graphical model in Figure 2(c). Taking the response
variable into account, we find in the gradient outer product matrix, Figure 2(d), the variables X2 and
X4 are irrelevant while X1,X3,X5 are relevant. The matrix R̂Γ̂ is shown in Figure 2(e) and implies that
any pair of X1,X3,X5 are negatively dependent conditioned on the other and the response variable
Y . The graphical model is given in Figure 2(f).

5.1.2 GENES DRIVING PROGRESSION OF PROSTATE CANCER

A fundamental problem in cancer biology is to understand the molecular and genetic basis of the
progression of a tumor from less serious states to more serious states. An example is the progression
from a benign growth to malignant cancer. The key interest in this problem is to understand the
genetic basis of cancer. A classic model for the genetic basis of cancer was proposed by Fearon and
Vogelstein (1990) describing a series of genetic events that cause progression of colorectal cancer.

In Edelman et al. (2008) the inverse of the gradient outer product was used to infer the depen-
dence between genes that drive tumor progression in prostate cancer and melanoma. In the case of
melanoma the data consisted of genomewide expression data from normal, primary, and metastatic
skin samples. Part of the analysis in this paper was inference of conditional dependence graphs
or networks of genes that drive differential expression between stages of progression. The gradi-
ent outer product matrix was used to infer detailed models of gene networks that may drive tumor
progression.

In this paper, we model gene networks relevant in driving progression in prostate cancer as an
illustration of how the methodology can be used to posit biological hypotheses. The objective is to
understand the dependence structure between genes that are predictive of progression from benign
to malignant prostate cancer. in progressing from benign to malignant prostate cancer. The data
consists of 22 benign and 32 advanced prostate tumor samples (Tomlins et al., 2007; Edelman et al.,
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Figure 2: (a) Covariance matrix Σ̂X ; (b) Partial correlation matrix R̂X ; (c) Graphical model repre-
sentation of partial correlation matrix; (d) Gradient outer product matrix Γ̂; (e) Partial
correlations R̂Γ̂ with respect to Γ̂; (f) Graphical model representation of R̂Γ̂.

2008). For each sample the expression level of over 12,000 probes corresponding to genes were
measured. We eliminated many of those probes with low variation across all samples resulting in
a 4095 probes or variables. From this reduced data set we estimated the gradient outer product
matrix, Γ̂, and used the pseudo-inverse to compute the conditional independence matrix, Ĵ = (Γ̂)−1.
From the conditional independence matrix we computed the partial correlation matrix R̂ where
R̂i j = − Ĵi j√

ĴiiĴ j j
for i 3= j and 0 otherwise. We again reduced the R matrix to obtain 139 nodes and

400 edges corresponding to the largest partial correlations and construct the graph seen in Figure 3.

The structure of the partial correlation graph recapitulates some known biological processes
in the progression of prostate cancer. The most highly connected gene is MME (labeled green)
which is known to have significant deregulation in prostate cancer and is associated with aggressive
tumors (Tomlins et al., 2007). We also observe two distinct clusters annotated in yellow and purple
in the graph that we call C1 and C2 respectively. These clusters derive their associations principally
through 5 genes, annotated in light blue and dark blue in the graph. The light blue genes AMACR,
ANXA1, and CD38 seem to have strong dependence with respect to the genes in C1 wile C2 is
dependent on these genes in addition to the dark blue genes LMAN1L and SLC14A1. AMACR
and ANXA1 as well as CD38 are well-known to have roles in prostate cancer progression (Jiang
et al., 2004; Hsiang et al., 2004; Kramer et al., 1995). The other two genes LMAN1L and SLC14A1
are known to have tumorigenic properties and would be candidates for further experiments to better
understand their role in prostate cancer.
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Figure 3: Graphical model of genes relevant in tumors progressing from benign to malignant
prostate tissue. The edges correspond to partial correlations.

6. Discussion

The main contribution of this paper is to describe how inference of the gradient of the regression or
classification function encodes information about the predictive geometry as well as the predictive
conditional dependence in the data. Two methods are introduced gradient based diffusion maps
and inference of conditional independence structure given gradient estimates. Precise statistical re-
lations between different approaches to supervised dimension reduction are described. Simulated
and real data are used to illustrate the utility of the methods developed. We prove convergence
of the estimated graphical model to the population dependence graph. We find this direct link be-
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tween graphical models and dimension reduction intriguing and suggest that the manifold learning
perspective holds potential in the analysis and inference of graphical models.
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Abstract
Fisher linear discriminant analysis (FDA) and its kernel extension—kernel discriminant analysis
(KDA)—are well known methods that consider dimensionality reduction and classification jointly.
While widely deployed in practical problems, there are still unresolved issues surrounding their
efficient implementation and their relationship with least mean squares procedures. In this paper
we address these issues within the framework of regularized estimation. Our approach leads to
a flexible and efficient implementation of FDA as well as KDA. We also uncover a general rela-
tionship between regularized discriminant analysis and ridge regression. This relationship yields
variations on conventional FDA based on the pseudoinverse and a direct equivalence to an ordinary
least squares estimator.
Keywords: Fisher discriminant analysis, reproducing kernel, generalized eigenproblems, ridge
regression, singular value decomposition, eigenvalue decomposition

1. Introduction

In this paper we are concerned with Fisher linear discriminant analysis (FDA), an enduring clas-
sification method in multivariate analysis and machine learning. It is well known that the FDA
formulation reduces to the solution of a generalized eigenproblem (Golub and Van Loan, 1996) that
involves the between-class scatter matrix and total scatter matrix of the data vectors. To solve the
generalized eigenproblem, FDA typically requires the pooled scatter matrix to be nonsingular. This
can become problematic when the dimensionality is high, because the scatter matrix is likely to be
singular. In applications such as information retrieval, face recognition and microarray analysis, for
example, we often meet undersampled problems which are in a “small n but large p” regime; that
is, there are a small number of samples but a very large number of variables. There are two main
variants of FDA in the literature that aim to deal with this issue: the pseudoinverse method and the
regularization method (Hastie et al., 2001; Webb, 2002).

Another important family of methods for dealing with singularity is based on a two-stage pro-
cess in which two symmetric eigenproblems are solved successively. This approach was pioneered
by Kittler and Young (1973). Recently, Howland et al. (2003) used this approach to introduce the
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generalized singular value decomposition (GSVD) (Paige and Saunders, 1981) into the FDA solu-
tion by using special representations of the pooled scatter matrix and between-class scatter matrix.
A similar general approach has been used in the development of efficient approximation algorithms
for FDA (Cheng et al., 1992; Ye et al., 2004). However, the challenge of developing an efficient
general implementation methodology for FDA still remains.

In the binary classification problem, FDA is equivalent to a least mean squared error proce-
dure (Duda et al., 2001). It is of great interest to obtain a similar relationship in multi-class prob-
lems. A significant literature has emerged to address this issue (Hastie et al., 2001; Park and Park,
2005b; Ye, 2007). However, the results obtained by these authors are subject to restrictive condi-
tions. The problem of finding a general theoretical link between FDA and least mean squares is still
open.

In this paper we address the issues within a regularization framework. We propose a novel
algorithm for solving the regularized FDA (RFDA) problem. Our algorithm is more efficient than
the GSVD-based algorithm (Howland et al., 2003), especially in the setting of “small n but large p”
problems. More importantly, our algorithm leads us to an equivalence between RFDA and a ridge
estimator for multivariate linear regression (Hoerl and Kennard, 1970). This equivalence is derived
in a general setting and it is fully consistent with the established result in the binary problem (Duda
et al., 2001).

Our algorithm is also appropriate for the pseudoinverse variant of FDA. Indeed, we establish
an equivalence between the pseudoinverse variant and an ordinary least squares (OLS) estimation
problem. Thus, we are able to resolve the open problem concerning the relationship between the
multi-class FDA and multivariate linear estimation problems.

FDA relies on the assumption of linearity of the data manifold. In recent years, kernel methods
(Shawe-Taylor and Cristianini, 2004) have aimed at removing such linearity assumptions. The
kernel technology can circumvent the linearity assumption of FDA, because it works by nonlinearly
mapping vectors in the input space to a higher-dimensional feature space and then implementing
traditional versions of FDA in the feature space. Many different approaches have been proposed to
extend FDA to kernel spaces in the existing literature (Baudat and Anouar, 2000; Mika et al., 2000;
Roth and Steinhage, 2000).

The KDA method in Mika et al. (2000) was developed for binary problems only, and it was
based on using the relationship between KDA and the least mean squared error procedure. A more
general method, known as generalized discriminant analysis (GDA) (Baudat and Anouar, 2000),
requires that the kernel matrix be nonsingular. Unfortunately, centering in the feature space will
violate this requirement. Park and Park (2005a) argued that this might break down the theoretical
justification for GDA and proposed their GSVD method to avoid this requirement for nonsingularity.

KDA methods have been successfully deployed in many practical problems. The approach
to FDA that we present in the current paper not only handles the nonsingularity issue but also
extends naturally to KDA, both in its regularization and pseudoinverse forms. We will see that our
regularized KDA is different from the existing regularization methods for KDA (see, e.g., Park and
Park, 2005a), where as we discuss later, there is a problem with inconsistency of solutions. Our
methods for regularized KDA derive directly from the corresponding methods for regularized FDA
and avoid the inconsistency problem.

Finally, we extend our approach for FDA as well as KDA to a certain family of generalized
eigenvalue problems.
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The paper is organized as follows. Section 2 reviews FDA and KDA, and Section 3 presents
our KDA formulations. In Sections 4 and 5 we propose two new algorithms for FDA and KDA,
respectively. An equivalence between FDA and multivariate linear regression problems is presented
in Section 6. We conduct empirical comparisons in Section 7. We extend the approach to a certain
family of generalized eigenproblems in Section 8 and conclude in Section 9.

2. Problem Formulation

We are concerned with a multi-class classification problem. Given a set of n p-dimensional data
points, {x1, . . . ,xn} ∈ X ⊂ Rp, we assume that the xi are to be grouped into c disjoint classes and
that each xi belongs to one and only one class. Let V = {1,2, . . . ,n} denote the index set of the data
points xi and partition V into c disjoint subsets Vj; that is, Vi ∩Vj = ∅ for i %= j and ∪cj=1Vj = V ,
where the cardinality of Vj is n j so that ∑c

j=1 n j = n. We also make use of a matrix representation
for the partitions. In particular, we let E= [ei j] be an n×c indicator matrix with ei j = 1 if input xi is
in class j and ei j = 0 otherwise.

In this section we review FDA and KDA solutions to this multi-class classification problem. We
begin by presenting our notation.

2.1 Preliminaries

Throughout this paper, Im denotes the m×m identity matrix, 1m the m×1 vector of ones, 0 the zero
vector or matrix with appropriate size, and H = In− 1

n1n1
′
n the n×n centering matrix. For an m×1

vector a= (a1, . . . ,am)′, diag(a) represents the m×m diagonal matrix with a1, . . . ,am as its diagonal
entries. For an m×m matrix A = [ai j], we let A+ be the Moore-Penrose inverse of A, tr(A) be the
trace of A, rk(A) be the rank of A and ‖A‖F =

√

tr(A′A) be the Frobenius norm of A. For an m×q
real matrix A, R (A) and N (A) denote its range and null spaces; that is, R (A) = {Ax|x ∈ Rq} and
N (A) = {x ∈ Rq|Ax= 0}.

For a matrix A ∈ Rm×q with m ≥ q, we always express the (reduced) singular value decompo-
sition (SVD) of A as A = UΓV′ where U ∈ Rm×q is a matrix with orthonormal columns (that is,
U′U = Iq), V ∈ Rq×q is orthogonal (i.e., V′V = VV′ = Iq), and Γ = diag(γ1, . . . ,γq) is arrayed in
descending order of γ1 ≥ γ2 ≥ · · · ≥ γq (≥ 0). Let the rank of A be r (≤ min{m,q}) and denote
rk(A) = r. The condensed SVD of A is then A = UAΓAV′

A where UA ∈ Rm×r and VA ∈ Rq×r are
matrices with orthonormal columns (i.e., U′

AUA = Ir and V′
AVA = Ir), and ΓA = diag(γ1, . . . ,γr)

satisfies γ1 ≥ γ2 ≥ · · ·≥ γr > 0.
Given two matrices Σ1 and Σ2 ∈ Rm×m, we refer to (Λ,B) where Λ= diag(λ1, . . . ,λq) and B=

[b1, . . . ,bq] as q eigenpairs of the matrix pencil (Σ1,Σ2) if Σ1B= Σ2BΛ; namely,

Σ1bi = λiΣ2bi, for i= 1, . . . ,q.

The problem of finding eigenpairs of (Σ1,Σ2) is known as a generalized eigenproblem. In this
paper, we especially consider the problem with the nonzero λi for i= 1, . . . ,q and refer to (Λ,B) as
the nonzero eigenpairs of (Σ1,Σ2). If Σ2 is nonsingular, (Λ,B) is also referred to as the (nonzero)
eigenpairs of Σ−1

2 Σ1 because the generalized eigenproblem is equivalent to the eigenproblem:

Σ−1
2 Σ1B= BΛ.

In the case that Σ2 is singular, one typically resorts to a pseudoinverse eigenproblem:

Σ+2 Σ1B= BΛ.

2201



ZHANG, DAI, XU AND JORDAN

Fortunately, we are able to establish a connection between the solutions of the generalized eigen-
problem and its corresponding pseudoinverse eigenproblem. In particular, we have the following
theorem, the proof of which is given in Appendix A.

Theorem 1 Let Σ1 and Σ2 be two m×m real matrices. Assume R (Σ1) ⊆ R (Σ2). Then, if (Λ,B)
are the nonzero eigenpairs of Σ+2 Σ1, we have that (Λ,B) are the nonzero eigenpairs of the matrix
pencil (Σ1,Σ2). Conversely, if (Λ,B) are the nonzero eigenpairs of the matrix pencil (Σ1,Σ2), then
(Λ,Σ+2 Σ2B) are the nonzero eigenpairs of Σ+2 Σ1.

As we see from Appendix A, a necessary and sufficient condition for R (Σ1)⊆ R (Σ2) is

Σ2Σ
+
2 Σ1 = Σ1.

Since Rm is equal to the direct sum of R (Σ1) (or R (Σ2)) and N (Σ′1) (or N (Σ′2)), we obtain that
R (Σ1) ⊆ R (Σ2) if and only if N (Σ′2) ⊆ N (Σ′1). Furthermore, if both Σ1 and Σ2 are symmetric,
then N (Σ2)⊆N (Σ1) is equivalent to R (Σ1)⊆ R (Σ2).

2.2 Fisher Linear Discriminant Analysis

Let m = 1
n ∑

n
i=1 xi be the sample mean, and let m j =

1
n j ∑i∈Vj xi be the jth class mean for j =

1, . . . ,c. We then have the pooled scatter matrix St = ∑n
i=1(xi−m)(xi−m)′ and the between-class

scatter matrix Sb=∑c
j=1 n j(m j−m)(m j−m)′. Conventional FDA solves the following generalized

eigenproblem:
Sba j = λ jSta j, λ1 ≥ λ2 ≥ · · ·≥ λq > λq+1 = 0 (1)

where q ≤ min{p, c−1} and where we refer to a j as the jth discriminant direction. Note that we
ignore a multiplier 1/n in these scatter matrices for simplicity.

Since St = Sb+ Sw where Sw is the pooled within-class scatter matrix, FDA is equivalent to
finding a solution to

Sba= λ/(1−λ)Swa.

We see that FDA involves solving the generalized eigenproblem in (1), which can be expressed in
matrix form:

SbA= StAΛ. (2)

Here A= [a1, . . . ,aq] (n×q) and Λ= diag(λ1, . . . ,λq) (q×q). If St is nonsingular, we obtain

S−1
t SbA= AΛ.

Thus, the (λ j,a j) are the eigenpairs of S−1
t Sb and the eigenvectors corresponding to the largest

eigenvalues of S−1
t Sb are used for the discriminant directions. Since rk(Sb) is at most c−1, the

projection will be onto a space of dimension at most c−1 (i.e., q≤ c−1).
In applications such as information retrieval, face recognition and microarray analysis, however,

we often meet a “small n but large p” problem. Thus, St is usually ill-conditioned; that is, it is
either singular or close to singular. In this case, S−1

t Sb is not well defined or cannot be computed
accurately.

2202



REGULARIZED DISCRIMINANT ANALYSIS

Let X = [x1, . . . ,xn]′ (n×p), M = [m1, . . . ,mc]′ (c×p), Π = diag(n1, . . . ,nc) (c×c),
Π

1
2 = diag(

√
n1, . . . ,

√
nc), π= (n1, . . . ,nc)′,

√
π= (

√
n1, . . . ,

√
nc)′ and Hπ = Ic−1

n
√
π
√
π′. It then

follows that 1′nE= 1′cΠ= π′, E1c = 1n, 1′cπ= n, E′E=Π, Π−1π= 1c, and

M=Π−1E′X.

In addition, we have
EΠ− 1

2Hπ =HEΠ− 1
2

given that EΠ− 1
2Hπ = EΠ− 1

2 − 1
n1n

√
π′ and HEΠ− 1

2 = EΠ− 1
2 − 1

n1n
√
π′.

Based on these results and the idempotency of H, St can be written as

St = X′HHX= X′HX, (3)

and we have

Sb = M′
[

Π−
1
n
ππ′

]

M

= M′
[

Π
1
2−

1
n
π
√
π
′
][

Π
1
2−

1
n
√
ππ′

]

M

= X′EΠ−1Π
1
2HπHπΠ

1
2Π−1E′X

= X′HEΠ−1E′HX. (4)

Given these representations of St and Sb, the problem in (2) can be solved by using the GSVD
method (Van Loan, 1976; Paige and Saunders, 1981; Golub and Van Loan, 1996; Howland et al.,
2003).

There are also two variants of conventional FDA in the literature that aim to handle the ill-
conditioned problem (Webb, 2002). The first variant, the pseudoinverse method, involves replacing
S−1
t by S+t and solving the following eigenproblem:

S+t SbA= AΛ. (5)

Note that S+t exists and is unique (Golub and Van Loan, 1996). Moreover, S+t is equal to S−1
t

whenever St is nonsingular. Thus, we will use (5) when St is either nonsingular or singular.
The second variant is referred to as regularized discriminant analysis (RDA) (Friedman, 1989).

It replaces St by St +σ2Ip and solves the following eigenproblem:

(St +σ2Ip)−1SbA= AΛ. (6)

It is a well known result that FDA is equivalent to a least mean squared error procedure in
the binary classification problem (c = 2) (Duda et al., 2001). Recently, similar relationships have
been studied for multi-class (c> 2) problems (Hastie et al., 2001; Park and Park, 2005b; Ye, 2007).
Moreover, Park and Park (2005b) proposed an efficient algorithm for FDA based on a least mean
squared error procedure in the multi-class problem.

We can see that the solution A for (5) or (6) is not unique. For example, if A is the solution, then
so is AD where D is an arbitrary q×q nonsingular diagonal matrix. Thus, the constraint A′(St +
σ2Ip)A = Iq is typically imposed in the literature. In this paper we concentrate on the solution of
(6) with or without this constraint, and investigate the connection with a ridge regression problem
in the multi-class setting.

2203



ZHANG, DAI, XU AND JORDAN

2.3 Kernel Discriminant Analysis

Kernel methods (Shawe-Taylor and Cristianini, 2004) work in a feature space F , which is related
to the original input space X ⊂ Rp by a mapping,

ϕ : X → F .

That is, ϕ is a vector-valued function which gives a vector ϕ(s), called a feature vector, correspond-
ing to an input s ∈ X . In kernel methods, we are given a reproducing kernel K : X ×X → R such
that K(s, t) = ϕ(s)′ϕ(t) for s, t ∈ X . The mapping ϕ(·) itself is typically not given explicitly.

In the sequel, we use the tilde notation to denote vectors and matrices in the feature space.
For example, the data vectors and mean vectors in the feature space are denoted as x̃i and m̃ j.
Accordingly, X̃ = [x̃1, . . . , x̃n]′ (n×g) and M̃ = [m̃1, . . . ,m̃c]′ (c×g) are the data and mean matrices
in the feature space. Here g is the dimension of the feature space. Although g is possibly infinite,
we here assume that it is finite but not necessarily known.

Kernel discriminant analysis (KDA) seeks to solve the following generalized eigenproblem:

S̃bÃ= S̃tÃΛ, (7)

where S̃t and S̃b are the pooled scatter matrix and the between-class scatter matrix in F , respec-
tively:

S̃t =
n

∑
i=1

(x̃i− m̃)(x̃i− m̃)′ = X̃′HX̃,

S̃b =
c

∑
j=1

n j(m̃ j− m̃)(m̃ j− m̃)′ = X̃′HEΠ−1E′HX̃.

The KDA problem is to solve (7), doing so by working solely with the kernel matrix K= X̃X̃′.
This is done by noting that Ã can be expressed as

Ã=
n

∑
i=1

(x̃i− m̃)β′i+N= X̃′Hϒ+N, (8)

where ϒ= [β1, . . . ,βn] (n×q) and N∈Rg×q such that N′X̃′H= 0 (Park and Park, 2005a; Mika et al.,
2000). It then follows from (7) that

X̃′HEΠ−1E′HX̃X̃′Hϒ= X̃′HX̃X̃′HϒΛ. (9)

This implies that (Λ, X̃′Hϒ) are also the q eigenpairs of the matrix pencil (S̃b, S̃t). Thus, in the
literature the solution of (7) is typically restricted to R (X̃′H); that is, N= 0 is set.

Premultiplying both sides of the Equation (9) by HX̃, we have a new generalized eigenvalue
problem

CEΠ−1E′Cϒ= CCϒΛ, (10)

which involves only the kernel matrix K= X̃X̃′ via its centered form C=HKH.
The current concern then becomes that of solving the problem (10). AlthoughK can be assumed

to be nonsingular, C is positive semidefinite but not positive definite because the centering matrix
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H is singular. In fact, the rank of C is not larger than n−1 because the rank of H is n−1. Thus the
GDA method devised by Baudat and Anouar (2000) cannot be used directly for problem (10).

To address this problem Park and Park (2005a) proposed a GSVD-based algorithm to solve
(10). Running this algorithm requires the complete orthogonal decomposition (Golub and Van Loan,
1996) of matrix [CEΠ− 1

2 ,C]′, which is of size (n+c)×n. This approach is infeasible for large values
of n. Thus, Park and Park (2005a) developed an efficient alternative which consists of two SVD
procedures but does not involve the complete orthogonal decomposition of an (n+c)×n matrix. We
refer to it as the SVD-based algorithm.

Another approach to solving the problem (10) is based on the following regularized version of
the problem:

CEΠ−1E′Cϒ= (CC+σ2In)ϒΛ, (11)

which was also studied by Park and Park (2005a). Note that this variant is not a directly regularized
form of the original KDA problem in (7).

After having obtained ϒ from (10) or (11), for a new input vector x, the projection z of its feature
vector x̃ onto Ã is computed by

z= ϒ′HX̃
(

x̃− 1
n
X̃′1n

)

= ϒ′H
(

kx−
1
n
K1n

)

, (12)

where kx =
(

K(x,x1), . . . ,K(x,xn)
)′. This shows that the kernel trick can be used for KDA, and

this approach has been widely deployed in practical problems. However, a theoretical justification
for using the projection in (12) has been lacking in the literature. We are able to provide such as
justification as follows. Recall that if (Λ, X̃′Hϒ) is the solution of (7), then (Λ,ϒ) is the solution of
(10). As we will see in Theorem 3, if (Λ,ϒ) is the solution of (10), (Λ, X̃′Hϒ) is the solution of (7).
This justifies the projection (12).

Note, however, that if (Λ,ϒ) is the solution of (11) this does not imply that (Λ, X̃′Hϒ) is the
solution of (7). This shows that the projection (12) is inconsistent with (11). This is an inconsistency
that underlies the regularized KDA methodology of Park and Park (2005a). The new methodology
that we propose in the following section surmounts this problem.

3. New Approaches to Kernel Discriminant Analysis

Recall that we are interested in the pseudoinverse and regularization forms of (7), defined respec-
tively by

S̃+t S̃bÃ= ÃΛ (13)

and
S̃bÃ= (S̃t +σ2Ig)ÃΛ. (14)

We wish to find solutions of (7) and (13) or (14) that are consistent with each other.
Since R (S̃t) = R (X̃′HHX̃) = R (X̃′H) and R (S̃b) = R (X̃′HEΠ−1E′HX̃) = R (X̃′HE), we

have that R (S̃b)⊆ R (S̃t). As a direct corollary of Theorem 1, we thus obtain a connection between
(7) and (13); that is,

Theorem 2 If (Λ, Ã) (nonzero eigenpairs) is the solution of (13), then (Λ, Ã) is the solution of (7).
Conversely, if (Λ, Ã) is the solution of (7), then (Λ, S̃+t S̃tÃ) is the solution of (13).
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Theorem 2 implies that the solution of (7) can be obtained from (13). To solve (13), we consider
the pseudoinverse form of (10), which is

C+EΠ−1E′Cϒ= ϒΛ (15)

due to C+C+C = C+ (see Lemma 11). To obtain the solution of (14), we substitute (8) into (14)
and then premultiply by HX̃. As a result, we have

CEΠ−1E′Cϒ= (CC+σ2C)ϒΛ. (16)

The following theorem shows that we are able to obtain the solutions of (7), (13) and (14)
respectively from the solutions of (10), (15) and (16). That is,

Theorem 3 Considering the KDA problems, we have:

(i) If (Λ,ϒ) is the solution of (10), then
(

Λ, X̃′Hϒ
)

is the solution of (7).

(ii) If (Λ,ϒ) is the solution of (15), then
(

Λ, X̃′Hϒ
)

is the solution of (13).

(iii) If (Λ,ϒ) is the solution of (16), then
(

Λ, X̃′Hϒ
)

is the solution of (14).

The proof of this theorem is given in Appendix C. Theorem 3 shows that the solutions of (7),
(13) and (14) lie in span{X̃′H}. Moreover, we see that

(

Λ, X̃′Hϒ
)

are their solutions. We also note
that (16) is different from (11). Theorem 3 provides a relationship between (14) and (16); there is
not a similar relationship between (14) and (11).

Finally, as a corollary of Theorems 2 and 3, we have

Corollary 4 If (Λ,ϒ) is the solution of (15), then
(

Λ, X̃′Hϒ
)

is the solution of (7). Moreover, if
(Λ,ϒ) is the solution of (10), then

(

Λ, X̃′Hϒ
)

is the solution of (13).

We see from Corollary 4 that the solution of (7) can be also obtained from (15). We now
concentrate our attention on the regularized KDA problem (14). We first handle (14) by using (16)
and Theorem 3, and then we present an approach for directly solving (14).

4. SVD-based Algorithms for RDA Problems

It is clear that we can solve the regularized KDA (RKDA) problem in (11) by solving

(CC+σ2In)−1CEΠ−1E′Cϒ= ϒΛ.

However, since CC+σ2C is singular, this approach is not appropriate for the RKDA problem in
(16). In this section we show how to solve the RKDA problems in both (11) and (16), as well as the
regularized FDA (RFDA) problem in (6).

In particular, we exploit the SVD-based algorithm developed for solving (10) by Park and Park
(2005a). Our algorithms are summarized as Algorithm 1, which is an SVD-based method for solving
RFDA problem (6), and Algorithms 2 and 3, which are SVD-based algorithms for RKDA problems
(11) and (16). We defer the derivations to Section 8 in which we consider the SVD-based algorithm
for a more general generalized eigenvalue problem. According to Theorem 3 and the following
theorem, we immediately have the solution of (14) as Ã= X̃′Hϒ.

2206



REGULARIZED DISCRIMINANT ANALYSIS

Algorithm 1 SVD-based Algorithm for RFDA problem (6)
1: procedure RFDA(X,E,π,Π,σ2)
2: Perform the condensed SVD of HX as HX= UXΓXV′

X ;
3: Calculate F= (Γ2

X +σ2Ir)−
1
2ΓXU′

XEΠ− 1
2 where r = rk(ΓX);

4: Perform the condensed SVD of F as F= UFΓFV′
F and set q= rk(ΓF);

5: Return A= VX(Γ2
X +σ2Ir)−

1
2UF as the solution of RFDA.

6: end procedure

Algorithm 2 SVD-based Algorithm for RKDA problem (11)
1: procedure RKDA(C,E,π,Π,σ2)
2: Perform the condensed SVD of C as C= UCΓCU′

C;
3: Calculate F= (Γ2

C+σ2Ir)−
1
2ΓCU′

CEΠ− 1
2 where r = rk(ΓC);

4: Perform the condensed SVD of F as F= UFΓFV′
F ;

5: Let ϒ= UC(Γ2
C+σ2Ir)−

1
2UF and set q= rk(ΓF);

6: Calculate z via (12) as the q-dimensional representation of x.
7: end procedure

Theorem 5 Consider Algorithms 1, 2 and 3 for the corresponding RDA problems.

(i) If A is obtained from Algorithm 1, then,

A′(St +σ2Ip)A= Iq and A′SbA= Γ2
F .

(ii) If ϒ is obtained from Algorithm 2, then

ϒ′(CC+σ2In)ϒ= Iq and ϒ′CEΠ−1E′Cϒ= Γ2
F .

(iii) If ϒ is obtained from Algorithm 3 and Ã= X̃′Hϒ, then

ϒ′(CC+σ2C)ϒ= Iq and ϒ′CEΠ−1E′Cϒ= Γ2
F ,

and
Ã′(S̃t +σ2Ig)Ã= Iq and Ã′S̃bÃ= Γ2

F .

The proof of the theorem is given in Appendix D. According to this theorem, for a new x, the
projection z onto Ã is given by

z= ϒ′H
(

kx−
1
n
K1n

)

. (17)

Note that if σ2 = 0, Algorithm 1 degenerates to the SVD-based algorithm for the conventional
FDA in (2) (Howland et al., 2003) and Algorithms 2 and 3 become identical.

5. EVD-based Algorithms for RDA

It is desirable to directly find the solution of the RKDA problem (14), rather than obtaining the
solution indirectly via (16). However, it is not feasible to devise a SVD-based algorithm for directly
solving the RKDA problem in (14). In this section we propose a new approach to solving the RFDA
problem (6). We then extend this approach for the solution of the RKDA problem (14).
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Algorithm 3 SVD-based Algorithm for RKDA problem (16) as well as for (14)
1: procedure RKDA(C,E,π,Π,σ2)
2: Perform the condensed SVD of C as C= UCΓCU′

C;
3: Calculate F= (Γ2

C+σ2ΓC)−
1
2ΓCU′

CEΠ− 1
2 where r = rk(ΓC);

4: Perform the condensed SVD of F as F= UFΓFV′
F ;

5: Let ϒ= UC(Γ2
C+σ2ΓC)−

1
2UF and set q= rk(ΓF);

6: Calculate z via (17) as the q-dimensional representation of x.
7: end procedure

5.1 The Algorithm for RFDA

We reformulate the eigenproblem in (6) as

GΠ− 1
2E′HXA= AΛ,

where

G= (X′HX+σ2Ip)−1X′HEΠ− 1
2 (18)

due to (3) and (4). We also have

G= X′H(HXX′H+σ2In)−1EΠ− 1
2 (19)

due to (X′HX+σ2Ip)−1X′H = X′H(HXX′H+σ2In)−1. If n < p, we can use (19) to reduce the
computational cost. Moreover, we will see that (19) plays a key role in the development of an
efficient algorithm for KDA to be presented shortly.

Let R=Π− 1
2E′HXG. Since GΠ− 1

2E′HX (p×p) and R (c×c) have the same nonzero eigenval-
ues (Horn and Johnson, 1985), the λ j, j = 1, . . . ,q, are the nonzero eigenvalues of R. Moreover, if
(Λ,V) is the nonzero eigenpair of R, (Λ,GV) is the nonzero eigenpair of GΠ− 1

2E′HX. Note that

R=Π− 1
2E′HX(X′HX+σ2Ip)−1X′HEΠ− 1

2 . (20)

This shows that R is positive semidefinite.
We use these facts to develop an algorithm for solving the RFDA problem in (6). This is also a

two-step process, which is presented in Algorithm 4. The first step computes (σ2Ip+X′HX)−1 (or
(σ2In+HXX′H)−1), while the second step is an SVD procedure. Note that the first step can be im-
plemented by computing the condensed SVD of X′HX (or HXX′H). Since R and X′HX (HXX′H)
are positive semidefinite, their SVD are equivalent to the eigenvalue decomposition (EVD). Thus,
we refer to this two-step process as an EVD-based algorithm, distinguishing it from the SVD-based
algorithm.

The first step calculates G by either (18) or (19). The computational complexity is O(m3)
where m= min(n, p). The second step forms the condensed SVD of R for which the computational
complexity is O(c3). If both n and p are large, we recommend an approximate strategy; that is,
we first perform the incomplete Cholesky decomposition of HXX′H (or X′HX) and then calculate
(HXX′H+σ2In)−1 (or (X′HX+σ2Ip)−1) via the Sherman-Morrison-Woodbury formula (Golub
and Van Loan, 1996). This strategy makes the first step still efficient.
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When σ2 = 0, we can solve the problem in (5) by simply adjusting the first step in the EVD-
based algorithm. In particular, we calculate G by

G= (X′HX)+X′HEΠ− 1
2

(or)
= X′H(HXX′H)+EΠ− 1

2 . (21)

Algorithm 4 EVD-based Algorithm for RFDA problem (6)
1: procedure RFDA(X,E,Π,σ2)
2: Calculate G by (18) or (19) and R by (20);
3: Perform the condensed SVD of R as R= VRΓRV′

R;
4: Return A=GVRΓ

− 1
2

R or B=GVR as the solution of RFDA problem (6).
5: end procedure

Compared with the SVD-based algorithm, the EVD-based algorithm is more efficient, especially
for “small n but large p” problems. Using the notation in Algorithms 1 and 4, we have

R= F′F

by performing some matrix computations. This implies that ΓR = Γ2
F . Moreover, it is immediate to

obtain the following result.

Theorem 6 Let A be obtained from Algorithm 4. Then,

A′(St +σ2Ip)A= Iq and A′SbA= Γ2
F .

This theorem shows that Algorithms 1 and 4 are essentially equivalent. As mentioned before, it
is not feasible to develop an SVD-based algorithm for solving the RKDA problem (14), which is
the kernel extension of RFDA in (6). On the other hand, in the next subsection we will see that
Algorithm 4 can be used for solving the RKDA problem (14).

5.2 The Algorithm for RKDA

It follows immediately from (19) that

G̃= X̃′H(HX̃X̃′H+σ2In)−1EΠ− 1
2

from which, using (20), we calculate R by

R=Π− 1
2E′C(C+σ2In)−1EΠ− 1

2 .

Moreover, given a new input vector x, we can compute the projection z of the feature vector x̃ onto
Ã through

z= Ã′(x̃− m̃)

= Γ
− 1

2
R V′

RΠ
− 1

2E′(C+σ2In)−1HX̃
(

x̃− 1
n
X̃′1n

)

= Γ
− 1

2
R V′

RΠ
− 1

2E′(C+σ2In)−1H
(

kx−
1
n
K1n

)

. (22)

2209



ZHANG, DAI, XU AND JORDAN

This shows that we can calculate R and z directly using K and kx. We thus obtain an EVD-based
algorithm for RKDA, which is given in Algorithm 5. Also, when σ2 = 0, we calculate R by

R=Π− 1
2E′CC+EΠ− 1

2

and exploit the EVD-based algorithm to solve the following variant of KDA:

S̃+t S̃bÃ= ÃΛ.

We see that the EVD-based algorithm is more efficient than the SVD-based algorithm (i.e.,
Algorithm 2) for the RKDA problem in (11). Recall that the RKDA problem (14) is not fully
equivalent to that in (11). Moreover, we also have an EVD-based algorithm for solving (11), by
replacing C by CC in calculating R and (22) by (17) in calculating z. However, the resulting
algorithm is less efficient computationally.

Algorithm 5 EVD-based Algorithm for RKDA problem (14)
1: procedure RKDA(K,E,kx,Π,σ2)
2: Calculate R=Π− 1

2E′C(C+σ2In)−1EΠ− 1
2 ;

3: Perform the condensed SVD of R as R= VRΓRV′
R;

4: Calculate z by (22);
5: Return z as the q-dimensional representation of x.
6: end procedure

Let us investigate the relationship between the solutions of (14) from Algorithms 3 and 5. First,
let ϒ be obtained from Algorithm 3. It follows from (16) that (C+σ2In)−1CEΠ−1E′Cϒ = CϒΛ,
that is,

C(C+σ2In)−1EΠ− 1
2Π− 1

2E′Cϒ= CϒΛ.

Thus, (Λ,Π− 1
2E′CϒΓ−1

F ) is the nonzero eigenpair of R. Finally, we have Λ= Γ2
F = ΓR. In addition,

it follows from Theorem 5 that

Γ−1
F ϒ′CEΠ−1E′CϒΓ−1

F = Iq.

Moreover, we have

G̃Π− 1
2E′CϒΓ−2

R = X̃′H(C+σ2In)−1EΠ−1E′CϒΛ−1

= X̃′HC+C(C+σ2In)−1EΠ−1E′CϒΛ−1

= X̃′HC+Cϒ= X̃′Hϒ (23)

because X̃′H= X̃′HC+C. This implies that Ã= X̃′Hϒ obtained from Algorithm 3 is equivalent to
that obtained from Algorithm 5.

On the other hand, let R= VRΓRV′
R be the condensed SVD of R. Then

CEΠ−1E′Cϒ= (C2 +σ2C)ϒΓR,

where ϒ= (C+σ2In)−1EΠ− 1
2VΓ−

1
2

R . Moreover, it is easily checked that

ϒ′(C2 +σ2C)ϒ= Iq and ϒ′CEΠ−1E′Cϒ= ΓR.
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This implies that (ΓR,ϒ) is the solution of (16). Again, using (23), we conclude that the solution of
(14) from Algorithm 5 is equivalent to the one from Algorithm 3.

In summary, Algorithms 5 and 3 yield equivalent solutions for (14). However, Algorithm 5 is
more efficient than Algorithm 3.

6. Relationships Between RFDA and Ridge Regression

It is a well known result that FDA (or KDA) is equivalent to a least mean squared error procedure in
the binary classification problem (c = 2) (Duda et al., 2001; Mika et al., 2000). Recently, relation-
ships between FDA and a least mean squared error procedure in multi-class (c> 2) problems have
been discussed by Hastie et al. (2001), Park and Park (2005b), and Ye (2007).

Motivated by this line of work, we investigate a possible equivalency between RFDA and ridge
regression (Hoerl and Kennard, 1970). We then go on to consider a similar relationship between
RKDA and the corresponding ridge regression problem.

Let Y= [y1, . . . ,yn]′ = EΠ− 1
2Hπ. That is, yi = (yi1, . . . ,yic) is defined by

yi j =

{ n−n j
n√n j if i ∈Vj,

−
√n j
n otherwise.

Regarding {(xi,yi), i = 1, . . . ,n} as the training samples, we fit the following multivariate linear
function:

f(x) = w0 +W′x
where w0 ∈Rc andW∈Rp×c. We now find ridge estimates ofw0 andW. In particular, we consider
the following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2
F +

σ2

2
tr(W′W). (24)

We focus on the solution forW:

W= (X′HX+σ2Ip)−1M′Π
1
2Hπ = (X′HX+σ2Ip)−1X′HEΠ− 1

2 . (25)

The derivation is given in Appendix E. It is then seen from (18) that W = G. Moreover, when
σ2 = 0, W reduces to the ordinary least squares (OLS) estimate of W, which is the solution of the
following minimization problem:

min
w0,W

L(w0,W) =
1
2
‖Y−1nw′

0−XW‖2
F . (26)

In this case, if X′HX is singular, a standard treatment uses (X′HX)+ in (25). Such a W is identical
with G in (21).

In summary, we have obtained a relationship between the ridge estimation problem in (24) and
the RFDA problem in (6).

Theorem 7 LetW be the solution of the ridge estimation problem in (24) (resp. the OLS estimation
problem in (26)) and A be defined in Algorithm 4 for the solution of the RFDA problem in (6) (resp.
the FDA problem in (5)). Then

A=WVRΓ
− 1

2
R ,

where VR and ΓR are defined in Algorithm 4.
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This theorem provides an important connection between A and W. Indeed B = AΓ
1
2
R is also a

solution of the RFDA problem (6). However, B satisfies the condition B′(St +σ2Ip)B= ΓR, rather
than B′(St +σ2Ip)B = Iq. Thus, with this B, we obtain the following result, which is the principal
theoretical result of this paper.

Theorem 8 Under the conditions in Theorem 7, we have

BB′ =WW′.

Moreover, we have
(xi−x j)′BB′(xi−x j) = (xi−x j)′WW′(xi−x j)

for any xi and x j ∈ Rp.

The proof of this theorem is given in Appendix F. Theorem 8 shows that when applying a
distance-based classifier such as the K-nearest neighbor (KNN) in the reduced dimensional space,
the classification results obtained by the multi-class FDA and multivariate linear estimators are
same. Since Theorem 8 holds in general cases, we obtain a complete solution to the open problem
concerning the relationship between multi-class FDA problems and multivariate linear estimators.

Similar results have been obtained by Park and Park (2005b); Ye (2007), but under restrictive
conditions which arise from a different definition of the label scoring matrixY than ours. The choice
that of label scoring matrix that we have presented has also been used by Ye (2007), but Ye (2007)
attempted to establish a connection between the solutionW and A as given in Algorithm 1.

It is also worth noting that Zhang and Dai (2009) discussed a connection between the label
scoring matrix Y and the optimal scoring procedure in Hastie et al. (1994). Moreover, Zhang and
Jordan (2008) exploited this label scoring matrix in spectral clustering.

Our theorem also goes through immediately in the kernel setting. In particular, for the RKDA
problem defined by (11), the corresponding ridge estimator is

min
w0,Φ∈Rn×c

L(w0,Φ)!
1
2
‖Y−1nw′

0−KHΦ‖2
F +

σ2

2
tr(Φ′Φ). (27)

The ridge estimation problem corresponding to our RKDA in (14) is given by

min
w0,W̃∈Rg×c

L(w0,W̃)!
1
2
‖Y−1nw′

0−X̃W̃‖2
F +

σ2

2
tr(W̃′W̃),

while the estimation problem for the RKDA in (16) is

min
w0,Φ∈Rn×c

L(w0,Φ)!
1
2
‖Y−1nw′

0−KHΦ‖2
F +

σ2

2
tr(Φ′CΦ), (28)

which is no longer a conventional ridge regression problem. In fact, this problem can be regarded a
multi-class extension of the least squares SVM (LS-SVM) (Suykens and Vandewalle, 1999; Suykens
et al., 2002); (see, e.g., Van Gestel et al., 2002; Pelckmans et al., 2005). Our work thus provides the
relationship between RKDA and the LS-SVM.

Note that when σ2 = 0, the problems in (27) and (28) are identical. Moreover, the solution of
the problems is given by

Φ= (HKHKH)+HKHEΠ− 1
2 = C+EΠ− 1

2 .
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In this case, the RKDA methods in (11) and (16) are also the same. As we see from Section 3, its cor-
responding pseudoinverse form is given by (15). Let the condensed SVD of R=Π− 1

2E′CC+EΠ− 1
2

be R = VRΓRV′
R. Then (ΓR,ΦVRΓ

− 1
2

R ) is the solution of (15). This implies that in the case of
σ2 = 0, there is still the connection between the least squares kernel-based SVM and RKDA shown
in Theorem 7.

7. Experimental Study

To evaluate the performance of the proposed algorithms for FDA and KDA, we conducted experi-
mental comparisons with other closely related algorithms for FDA and KDA on several real-world
data sets. In particular, the comparison was implemented on four face data sets, two handwritten
digits data sets, the “letters” data set, and the WebKB data set. All algorithms were implemented in
Matlab on a PC configured with an Intel Dual Core 2.0GHz CPU and 2.06GB of memory.

7.1 Setup

The four face data sets are the ORL face database, the Yale face database, the Yale face database B
with extension, and the CMU PIE face database, respectively.

− The ORL face database contains 400 facial images of 40 subjects with 10 different im-
ages for each subject. This database was developed at the Olivetti Research Laboratories
in Cambridge, U.K. The images were taken at different times with variations in facial details
(glasses/no glasses), facial expressions (open/closed eyes, smiling/nonsimling), and facial
poses (tilted and rotated up to 20 degrees). There is also variation in the scale of up to about
10%. The spatial resolution of the images is 112×92, with 256 gray levels.

− The Yale face images for each subject were captured under different facial expressions or
configurations (e.g., center-light, w/glasses, happy, left-light, w/no glasses, normal, right-
light, sad, sleepy, surprised, and wink).

− The Yale face database with extension includes the Yale face database B (Georghiades et al.,
2001) and the extended Yale Face Database B (Lee et al., 2005). The Yale face database B
contains 5760 face images of 10 subjects with 576 different images for each subject, and the
extended Yale Face Database B contains 16128 face images of 28 subjects, with each subject
having 576 different images. The facial images for each subject were captured under 9 poses
and 64 illumination conditions. For the sake of simplicity, a subset called the YaleB&E was
collected from two databases; it contains the 2414 face images of 38 subjects.

− The CMU PIE face database contains 41,368 face images of 68 subjects. The facial images
for each subject were captured under 13 different poses, 43 different illumination conditions,
and with 4 different expressions. In our experiments, we considered only the five near-frontal
poses under different illuminations and expressions. For simplicity, we collected a subset
of the PIE face database, containing the 6800 face images of 68 subjects with 100 different
images for each subject.

In all of the experiments, each whole image was cropped and further resized to have a spatial
resolution of 32×32 with 256 gray levels. Figure 1 shows some samples from the four data sets,
where four subjects are randomly chosen from each data set and each subject has six sample images.
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(a) ORL (b) Yale

(c) YaleB&E (d) PIE

Figure 1: Some sample images randomly chosen from the four data sets, where four subjects from
each data set and each subject with six sample images.

The two handwritten digits data sets are the USPS data set and the Binary Alphadigits (BA) data
set, respectively.

− The USPS data set was derived from the well-known United States Postal Service (USPS) set
of handwritten digits, and contains 2000 images of 10 digits, each digit with 200 images. The
spatial resolution of the images in the USPS data set is 16×16, with 256 gray levels.

− The Binary Alphadigits (BA) data set was collected from a binary 20×16 digits database of
“0” through “9” and capital “A” through “Z,” and thus contains 1404 images of 36 subjects,
each subject with 39 image.

The “letters” data set can be obtained from Statlog(http://www.liacc.up.pt/ML/) and it
consists of images of the letters “A,” “B,” “C,” “D” and “E” with 789, 766, 736, 805 and 768 cases
respectively.

Finally, the WebKB data set contains web pages gathered from computer science departments
in several universities (Craven et al., 1998). The pages can be divided into seven categories. In
our experiments, we used the four most populous categories, namely, student, faculty, course, and
project, resulting in a total of 4192 pages. Based on information gain, 300 features were selected.

Table 1 summarizes these benchmark data sets. In our experiments, each data set was randomly
partitioned into two disjoint subsets as the training and test data sets, according to the percentage
n/k listed in the last column of Table 1. Ten random partitions were obtained for each data set, and
several evaluation criteria were reported, including average classification accuracy rate, standard
deviation, and average computational time.

The hyperparameters involved in the following methods were selected by cross-validation. After
having obtained the q-dimensional representations zi of the xi from each method, we used a simple
nearest neighbor classifier to evaluate the classification accuracy.

7.2 Comparison of FDA Methods

In the linear setting, we compared Algorithm 4 with Algorithm 1 (RFDA/SVD-based), the FDA/GSVD (How-
land and Park, 2004) and FDA/MSE methods. Here the FDA/MSE method was derived by Park and
Park (2005b) from the relationship between FDA and the minimum squared error solution. We refer
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Data set c p k n/k
ORL 40 1024 400 40%
Yale 15 1024 165 50%
YaleB&E 38 1024 2414 30%
PIE 68 1024 6800 20%
USPS 10 256 2000 10%
BA 36 320 1404 50%
Letters 5 16 3864 10%
WebKB 4 300 4192 10%

Table 1: Summary of the benchmark data sets: c−the number of classes; p−the dimension of the
input vector; k−the size of the data set; n−the number of the training data.

to Algorithm 4 working with A as the RFDA/EVD-based method. As we have shown, when B is
used, Algorithm 4 provides the solution of ridge regression. We thus refer to the algorithm working
with B as RFDA/RR. Similar notation also applies to the kernel setting in the next subsection.

Empirically, the performance of the RFDA/EVD-based method is fully identical to that of the
RFDA/SVD-based method. This bears out the theoretical analysis in Theorem 6. Thus, we only
report the classification accuracies of the RFDA/RR method for Algorithm 4.

Table 2 presents an overall comparison of the methods on all of the data sets and Figure 2
presents the comparative classification results on the four face data sets. It is seen that the RFDA
methods have better classification accuracy overall than other methods throughout a range of choices
of the number of discriminant variates. Particularly striking is the performance of the RFDA meth-
ods when the number of discriminant variates q is small.

From Figure 2, we see that the performance of RFDA/RR method is a little better than that of
RFDA/SVD-based method. This implies that RFDA/RR outperforms RFDA/EVD-based method;
that is, the performance using the transformation matrixB is better than that using the transformation
matrix A in Algorithm 4. Therefore, the constraint A′(St +σ2Ip)A = Iq is not necessarily the best
choice for RFDA. This also shows that the ridge regression method given in Section 6 is effective
and efficient.

We also compared the computational time of the different methods on the four face data sets.
Figure 3 plots the results as a function of the training percentage n/k on the four face data sets.
We see that our method has an overall favorable computational complexity in comparison with the
other methods on the four face data sets. As the training percentage n/k increases, our method
yields more efficient performance.

Note that when the training percentage n/k on the YaleB&E and PIE data sets increases, the
singularity problem of the within-class scatter matrix Sw, that is, the small sample size problem,
tends to disappear. Figures 3 (c) and (d) show that the FDA/MSE method becomes more efficient in
this case, and the corresponding computational time becomes flat with respect to the increase of the
training percentage n/k. On the other hand, Figures 3 (c) and (d) also reveal that the computational
time of the FDA/SVD-based method significantly increases as the size of training data increases.
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Data Set FDA/GSVD FDA/MSE RFDA/SVD-based RFDA/RR
acc (±std) time acc (±std) time acc (±std) time acc (±std) time

ORL 91.54 (±1.98) 1.952 91.58 (±2.00) 0.293 93.17 (±1.94) 0.347 94.04 (±1.95) 0.079
Yale 78.56 (±2.29) 1.281 78.44 (±2.47) 0.047 79.22 (±4.19) 0.072 79.56 (±3.75) 0.014
YaleB&E 59.54 (±11.8) 43.18 65.34 (±9.23) 9.967 89.86 (±1.15) 9.177 90.20 (±1.09) 1.479
PIE 77.26 (±1.05) 89.85 77.26 (±1.05) 23.10 90.40 (±0.65) 83.88 91.14 (±0.63) 2.726
USPS 43.02 (±1.86) 0.392 42.95 (±1.82) 0.229 82.16 (±1.07) 0.273 83.49 (±1.39) 0.035
Letters 91.23 (±0.98) 0.017 91.23 (±0.98) 0.011 91.68 (±0.89) 0.013 91.89 (±0.65) 0.021
WebKB 67.45 (±2.29) 0.853 67.45 (±2.29) 0.595 83.40 (±0.61) 0.748 83.39 (±0.63) 0.073
BA 36.40 (±2.40) 1.586 36.40 (±2.40) 0.784 68.51 (±1.91) 0.981 68.85 (±1.35) 0.157

Table 2: Experimental results for the four methods on different data sets in the linear setting: acc−
the best classification accuracy percentage; std− the corresponding standard deviation;
time− the corresponding computational time (s).

7.3 Comparison of RKDA Methods

In the kernel setting, we compared Algorithms 2, 3 and RKDA/RR (Algorithm 5 working with
B). We also implemented the KDA/GSVD method (Park and Park, 2005a) as a baseline. The
RBF kernel K(xi,x j) = exp(−‖xi− x j‖2/θ2) was employed, and θ was set to the mean Euclidean
distance among training data points. This setting was empirically found to be effective in real-world
applications.

Table 3 summarizes the different evaluation criteria on all the data sets. Figures 4 and 5 fur-
ther illustrate these results. As we see, our two RKDA methods yield better accuracy than the
KDA/GSVD method and Algorithm 2. Moreover, RKDA/RR is more efficient computationally
than the other methods, especially as the size of training data increases. It should be mentioned
here that the data sets in our experiments range from small-sample to large-sample problems. Thus,
Table 3 also confirms that the RKDA method based on (14) is more effective and efficient than the
method based on (11).

Finally, Figure 6 presents the performance of the four regularized methods with respect to dif-
ferent regularization parameters σ on the four face data sets. From this figure, it can be seen that the
regularized parameter σ plays an important role in our RFDA/RR and RKDA/RR methods. Similar
results are obtained for the other regularized FDA or KDA methods compared here.

8. Beyond FDA

In this section we extend our results to a more general setting. We first apply the SVD-based
algorithm to a family of generalized eigenvector problems, and then propose an efficient algorithm
for penalized kernel canonical correlation analysis (KCCA) (Akaho, 2001; Van Gestel et al., 2001;
Bach and Jordan, 2002).
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Figure 2: Comparison of the classification accuracies for FDA methods on the four face data sets:
(a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

8.1 A Family of Generalized Eigenvector Problems

Assume that Q is a p×p semidefinite positive matrix. Here and later, we define

f (Q) =
k

∑
j=0

b jQ j = b0Ip+b1Q+b2Q2 + · · ·+bkQk

where b0, . . . ,bk are nonnegative real scalars for some positive integer k. We assume that there is at
least one b j such that b j > 0. Let Q= VΓV′ be the SVD of Q. We have

f (Q) = V(b0Ip+b1Γ+b2Γ2 + · · ·+bkΓk)V′.

This implies that f (Q) is also semidefinite positive. Moreover, we have rk(Q)≤ rk( f (Q)). In fact,
we have rk(Q) = rk( f (Q)) if b0 = 0. However, f (Q) is nonsingular whenever b0 > 0.
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Figure 3: Comparison of the computational times for FDA methods as the training percentage k/n
increases on the four face data sets: (a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

Letting X ∈ Rn×p and Y ∈ Rn×m, we consider the following general optimization problem:

max
A∈Rp×q

tr
(

A′X′YY′XA(A′ f (Q)A)−1). (29)

where Q = (X′X)1/2 and rk(Q) = rk(X) ≥ q. This problem can be formulated as a generalized
eigenproblem as follows:

X′YY′XA= f (Q)AΛ. (30)

Thus, we consider the following eigenproblem:
(

f (Q)
)+X′YY′XA= AΛ. (31)

The following theorem shows a relationship between (30) and (31).

Theorem 9 If (Λ,A) (nonzero eigenpairs) is the solution of (31), then (Λ,A) is the solution of (30).
Conversely, if (Λ,A) is the solution of (30), then (Λ,( f (Q))+ f (Q)A) is the solution of (31).
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Figure 4: Comparison of the classification accuracies for KDA methods on the four face data sets:
(a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

The theorem obviously holds when b0 > 0, because f (Q) is nonsingular. In the case that b0 = 0,
this theorem is a special case of Theorem 1.

Returning to the optimization problem in (29), we have the following theorem.

Theorem 10 Assume that rk(X) = r ≥ q. Let the condensed SVD of X be X = UXΓXV′
X and

the condensed SVD of F = ( f (ΓX))−
1
2ΓXU′

XY be F = UFΓFV′
F . We have: (i) (Λ,T) where T =

VX( f (ΓX))−
1
2UF and Λ = Γ2

F are r eigenpairs of the pencil (X′YY′X, f (Q)); (ii) the matrix Tq
consisting of the first q columns of T is a maximizer of the generalized Rayleigh quotient in (29).

The proof is given in Appendix G. This theorem shows that we can use the SVD-based algorithm
to solve (29). That is, we obtain a derivation of Algorithm 6. Moreover, it is easily seen that the
RFDA problems (6), (11), (14) and (16) are special cases of the problem (29) with different settings
for the b j.
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Figure 5: Comparison of the computational times for KDA methods as the training percentage k/n
increases on the four face data sets: (a) ORL; (b) Yale; (c) YaleB&E; (d) PIE.

Algorithm 6 SVD-based Algorithm for Problem (29)
1: procedure GEP({X,Y,σ2})
2: Perform the condensed SVD of X as X= UXΓXV′

X .
3: Calculate F= ( f (ΓX))−

1
2ΓXU′

XY where r = rk(ΓX).
4: Perform the condensed SVD of F as F= UFΓFV′

F .
5: Let T= VX( f (ΓX))−

1
2UF

6: Return A= T(:,1 : q) for q≤ r as a maximizer of Problem (29).
7: end procedure

8.2 Penalized KCCA

Given two data matrices X ∈ X ⊂ Rn×p and Y ∈ Y ⊂ Rn×m, CCA finds two matrices Ax ∈ Rp×q

and Ay ∈ Rm×q of canonical correlation vectors by solving the following optimization problem:

max Ax, Ay tr(A′
xSxyAy),

s.t. A′
xSxxAx = Iq and A′

ySyyAy = Iq,2220
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KDA/GSVD Algorithm 2 Algorithm 3 RKDA/RR
Data Set acc (±std) time acc (±std) time acc (±std) time acc (±std) time
ORL 94.45 (±1.63) 0.231 92.79 (±1.74) 0.159 94.41 (±2.03) 0.162 94.50 (±1.64) 0.032
Yale 76.44 (±3.50) 0.017 76.44 (±2.71) 0.025 76.44 (±2.38) 0.025 76.78 (±3.20) 0.004
YaleB&E 40.34 (±22.4) 7.898 88.83 (±0.99) 6.520 88.20 (±0.88) 6.554 89.06 (±0.81) 0.818
PIE 91.00 (±0.36) 48.07 87.33 (±0.65) 40.71 91.52 (±0.45) 40.90 91.52 (±0.45) 5.079
USPS 82.25 (±1.59) 0.305 83.96 (±1.10) 0.238 84.92 (±1.56) 0.234 83.94 (±0.84) 0.020
Letters 92.74 (±2.10) 1.162 95.88 (±0.63) 1.100 94.60 (±0.99) 1.028 96.05 (±0.67) 0.134
WebKB 77.27 (±2.77) 1.684 83.51 (±0.51) 1.464 83.47 (±0.49) 1.452 83.47 (±0.49) 0.156
BA 66.19 (±1.21) 7.883 68.70 (±1.76) 6.715 69.86 (±1.30) 6.626 69.82 (±1.10) 0.709

Table 3: Experimental results for the five methods on different data sets in the kernel setting: acc−
the best classification accuracy percentage; std− the corresponding standard deviation;
time− the corresponding computational time (s).
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Figure 6: Performance of the RFDA/RR and RKDA/RR methods for different regularization pa-
rameters σ, where (a) displays the results of RFDA/RR on different data sets and (b)
displays the results of RKDA/RR on different data sets.

where q ≤ min{p,m,n−1}, Sxx = X′HX and Syy = Y′HY are the pooled covariance matrices of x
and y, respectively, and Sxy = X′HY= S′yx is the pooled cross-covariance matrix between x and y.

Consider that either Sxx or Syy is ill-conditioned. The penalized CCA method (Hastie et al.,
1995) solves the following optimization problem

max Ax, Ay tr(A′
xSxyAy),

s.t. A′
x(Sxx+σ2

xIp)Ax = Iq and A′
y(Syy+σ2

yIm)Ay = Iq.
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This problem can be solved in a two-step process (Mardia et al., 1979). The first step solves the
following generalized problem:

Syx(Sxx+σ2
xIp)−1SxyAy = (Syy+σ2

yIm)AyΛ,

where Λ is a q×q diagonal matrix with positive diagonal elements. The second step calculates Ax
by

Ax = (Sxx+σ2
xIp)−1SxyAyΛ− 1

2 .

Assume that we have kernel functions Kx(·, ·): X×X → R, and Ky(·, ·): Y ×Y → R. Similar to
the linear case, penalized KCCA first solves the following generalized problem:

S̃xy(S̃yy+σ2
yIh)−1S̃yxÃx = (S̃xx+σ2

xIg)ÃxΛ, (32)

and then calculates Ãy by
Ãy = (S̃yy+σ2

yIh)−1S̃yxÃxΛ− 1
2 .

Here g and h are the dimensions of the corresponding feature spaces. We now address the solution
to the generalized eigenproblem in (32). Consider

(S̃xx+σ2
xIg)−1S̃xy(S̃yy+σ2

yIh)−1S̃yx
= (X̃′HX̃+σ2

xIg)−1X̃′HỸ(Ỹ′HỸ+σ2
yIh)−1Ỹ′HX̃

= X̃′H(HX̃X̃′H+σ2
xIn)−1(HỸỸ′H+σ2

yIn)−1HỸỸ′HX̃
= X̃′H(Cx+σ2

xIn)−1(Cy+σ2
yIn)−1CyHX̃,

where Cx = HX̃X̃′H and Cy = HỸỸ′H. Since X̃′H(Cx+σ2
xIn)−1(Cy+σ2

yIn)−1CyHX̃ and (Cx+
σ2
xIn)−1(Cy+σ2

yIn)−1CyCx have the same nonzero eigenvalues, we let

(Cx+σ2
xIn)−1(Cy+σ2

yIn)−1CyCxϒ= ϒΛ

where Λ consists of the q largest nonzero eigenvalues of (Cx+σ2
xIn)−1(Cy+σ2

yIn)−1CyCx. We thus
define

Ãx = X̃′Hϒ

and
Ãy = Ỹ′H(Cy+σ2

yIn)−1CxϒΛ− 1
2

as the solution of the KCCA problem. Given x ∈ Rp and y ∈ Rm, we can directly calculate their
canonical variables by

zx = Ã′
x(x̃− m̃x) = ϒ′

(

kx−
1
n
Kx1n

)

,

where m̃x =
1
n ∑

n
i=1 x̃i, kx = (Kx(x,x1), . . . ,Kx(x,xn))′ and Kx = X̃X̃′, and

zy = Ã′
y(ỹ−m̃y) = Λ− 1

2ϒ′Cx(Cy+σ2
yIn)−1

(

ky−
1
n
Ky1n

)

,

where m̃y =
1
n ∑

n
i=1 ỹi, ky = (Ky(y,y1), . . . ,Ky(y,yn))′ and Ky = ỸỸ′.

As we see, the canonical vectors zx and zy can be calculated without the explicit use of X̃ and
Ỹ. Moreover, if σ2

x = 0 or σ2
y = 0, the algorithm still works by using C+

x or C+
y instead.
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9. Conclusion

In this paper we have provided a solution to an open problem concerning the relationship between
multi-class discriminant analysis problems and multivariate regression problems, both in the linear
setting and the kernel setting. Our theory has yielded efficient and effective algorithms for FDA and
KDA within both the regularization and pseudoinverse paradigms. The favorable performance of
our algorithms has been demonstrated empirically on a collection of benchmark data sets. We have
also extended our algorithms to a more general family of generalized eigenvalue problems.
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Appendix A. Proof of Theorem 1

Let Σ1 = U1Γ1V′
1 and Σ2 = U2Γ2V′

2 be the condensed SVD of Σ1 and Σ2. Thus, we have R (Σ1) =
R (U1) and R (Σ2) = R (U2). Moreover, we have Σ+2 = V2Γ

−1
2 U′

2 and Σ2Σ+2 = U2U′
2. It follows

from R (Σ1) ⊆ R (Σ2) that R (U1) ⊆ R (U2). This implies that U1 can be expressed as U1 = U2Q
where Q is some matrix of appropriate order. As a result, we have

Σ2Σ
+
2 Σ1 = U2U′

2U2QΓ1V′
1 = Σ1.

It is worth noting that the condition Σ2Σ+2 Σ1 = Σ1 is not only necessary but also sufficient for
R (Σ1)⊆ R (Σ2).

If (Λ,B) are the eigenpairs of Σ+2 Σ1, then it is easily seen that (Λ,B) are also the eigenpairs of
(Σ1,Σ2) due to Σ2Σ+2 Σ1 = Σ1.

Conversely, suppose (Λ,B) are the eigenpairs of (Σ1,Σ2). Then we have Σ2Σ+2 Σ1B = Σ2BΛ.
This implies that (Λ,Σ+2 Σ2B) are the eigenpairs of Σ+2 Σ1 due to Σ2Σ+2 Σ1 = Σ1 and Σ+2 Σ2Σ+2 = Σ+2 .

Appendix B. Some Properties of Moore-Penrose Inverses

In order to prove Theorem 3, we will need some properties of Moore-Penrose inverses.

Lemma 11 Let C=HX̃X̃′H, S̃t = X̃′HX̃ and S̃b = X̃′HEΠ−1E′HX̃. Then

(a) CC+ = (CC+)′ = C+C, C+CC= CC+C= C, C+C+C= C+CC+ = C+;

(b) S̃+t X̃′H= (X̃′HHX̃)+X̃′H= X̃′H(HX̃X̃′H)+ = X̃′HC+;

(c) X̃′H= S̃t S̃+t X̃′H= X̃′HHX̃(X̃′HHX̃)+X̃′H
= X̃′H(HX̃X̃′H)+HX̃X̃′H= X̃′HC+C;

(d) S̃t S̃+t S̃b = S̃b.

These results can be found in Lütkepohl (1996).
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Appendix C. Proof of Theorem 3

First, if (Λ,ϒ) is the solution of (10), we have

S̃bX̃′Hϒ= X̃′HEΠ−1E′Cϒ
= X̃′HHX̃(X̃′HHX̃)+X̃′HEΠ−1E′Cϒ
= S̃tX̃′HC+EΠ−1E′Cϒ= S̃tX̃′HC+C+CEΠ−1E′Cϒ
= S̃tX̃′HC+C+CCϒΛ= S̃tX̃′HC+CϒΛ
= S̃tX̃′HϒΛ.

This implies that
(

Λ, X̃′Hϒ
)

is the solution of (7).
Second, if (Λ,ϒ) is the solution of (15), we have

S̃+t S̃bX̃′Hϒ= (X̃′HHX̃)+X̃′HEΠ−1E′HX̃X̃′Hϒ
= X̃′HC+EΠ−1E′Cϒ
= X̃′HϒΛ.

This implies that (Λ, X̃′Hϒ) is the solution of (13).
Finally, it follows from (16) that

(C+σ2In)−1CEΠ−1E′Cϒ= CϒΛ.

In addition, note that (S̃t+σ2Ig)−1X̃′H= X̃′H(C+σ2In)−1. Hence, we have

(S̃t+σ2Ig)−1S̃bX̃′Hϒ= (S̃t+σ2Ig)−1X̃′HEΠ−1E′Cϒ
= X̃′H(C+σ2In)−1EΠ−1E′Cϒ
= X̃′HC+C(C+σ2In)−1EΠ−1E′Cϒ
= X̃′HC+(C+σ2In)−1CEΠ−1E′Cϒ= X̃′HC+Cϒ
= X̃′HϒΛ.

This completes the proof of part (iii).

Appendix D. Proof of Theorem 5

We prove the final part. As for other parts, their proof can be immediately obtained from Ap-
pendix G. In terms of Algorithm 3, we have

Ã′(S̃t+σ2Ig)Ã= ϒ′HX̃(S̃t+σ2Ig)X̃′Hϒ
= ϒ′C(C+σ2In)ϒ= Iq

and
Ã′S̃bÃ= ϒ′CEΠ−1E′Cϒ= Γ2

F .
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Appendix E. Derivation of Equation 25

The first-order derivatives of L(w0,W) with respect to w0 andW are given by

∂L
∂w0

= nw0 +W′X′1n−Y′1n,

∂L
∂W = (X′X+σ2Ip)W+X′1nw′

0 −X′Y,

Letting ∂L
∂w0

= 0, ∂L
∂W = 0 and x̄= 1

n ∑
n
i=1 xi = 1

nX
′1n, we obtain

{

w0 +W′x̄= 0
nx̄w′

0 +(X′X+σ2Ip)W=M′Π
1
2Hπ

due to Y′1n = 0 and X′Y=M′Π
1
2Hπ. Further, it follows that w0 =−Wx̄, and hence,

(X′HX+σ2Ip)W=M′Π
1
2Hπ

because of X′X−nx̄x̄′ = X′HX. We thus obtain W in (25). It then follows from (18) that W = G.
Moreover, when σ2 = 0, W reduces to the solution of the minimization problem in (26). In this
case, if X′HX is singular, a standard treatment is to use the Moore-Penrose inverse (X′HX)+ in
(25). Such aW is identical with G in (21).

Appendix F. Proof of Theorem 8

Since VR is an c×q orthogonal matrix, there exists a c×(c−q) orthogonal matrix V2 such that V=
[VR,V2] is a c×c orthogonal matrix. Noting that R= VRΓRV′

R, we have RV2 = 0 and V′
2RV2 = 0.

Let Q = M′Π
1
2HπV2. Then we obtain Q′(X′HX+σ2Ip)−1Q = 0. This implies Q = 0 because

(X′HX+σ2Ip)−1 is positive definite. Hence,WV2 = (X′HX+σ2Ip)−1Q= 0. As a result, we have

WW′ =WVV′W′

=WVRV′
RW′+WV2V′

2W′

= BB′.

Note that if σ2 = 0 and X′HX is nonsingular, we still have WW′ = BB′. In the case that X′HX is
singular, we haveQ′(X′HX)+Q= 0. Since (X′HX)+ is positive semidefinite, its square root matrix
exists and it is denoted by Ω. It thus follows fromQ′(X′HX)+Q=QΩΩQ′ = 0 that ΩQ′ = 0. This
shows thatWV2 = (X′HX)+Q= 0. Thus, we also obtainWW′ = BB′. The proof is complete.

Appendix G. Proof of Theorem 10

It is immediate that

X′YY′XT= VXΓXU′
XYY′UXΓXV′

XVX( f (ΓX))−
1
2UF

= VX( f (ΓX))
1
2UFΓFV′

FVFΓFU′
FUF

= VX( f (ΓX))
1
2UFΓ2

F
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and

f (Q)TΛ= V
[

f (ΓX) 0
0 b0Ip−r

]

V′VX( f (ΓX))−
1
2UFΓ2

F

= VX( f (ΓX))
1
2UFΓ2

F .

where V= [VX ,V2] such that V′
XV2 = 0. In addition, we have

T′ f (Q)T= Ir and T′X′YY′XT= Γ2
F .
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Abstract

The SGD-QN algorithm described in Bordes et al. (2009) contains a subtle flaw that prevents it
from reaching its design goals. Yet the flawed SGD-QN algorithm has worked well enough to be a
winner of the first Pascal Large Scale Learning Challenge (Sonnenburg et al., 2008). This document
clarifies the situation, proposes a corrected algorithm, and evaluates its performance.

Keywords: stochastic gradient descent, support vector machine, conditional random fields

1. Introduction

Bordes et al. (2009) propose to improve the practical speed of stochastic gradient descent by effi-
ciently estimating a diagonal matrix for rescaling the gradient estimates. The proposed algorithm,
SGD-QN, works well enough to be a winner of the first Pascal Large Scale Learning Challenge
(Sonnenburg et al., 2008). A couple months after the publication of the paper, Jonathan Chang and
S. Alex Smith contacted Léon Bottou regarding some curious aspects of the algorithm mathematics
(see Section 4.1). This initial observation was then traced back to a more subtle flaw that prevents
the proposed algorithm to truly reach is design objectives.

We first explain the flaw and present experimental results describing its consequences. Then we
present a corrected algorithm and evaluate its performance for training both linear Support Vector
Machines (SVMs) and Conditional Random Fields (CRFs). Finally we draw updated conclusions.

c©2010 Antoine Bordes, Léon Bottou, Patrick Gallinari, Jonathan Chang, and S. Alex Smith.
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2. Setup

Consider a binary classification problem with examples (x,y) ∈ Rd × {−1,+1}. Given a set of
examples {(x1,y1) . . .(xn,yn)}, we obtain a linear SVM classifier by minimizing the cost

Pn(w) =
λ
2
‖w‖2 +

1
n

n

∑
i=1

!(yiw&xi) =
1
n

n

∑
i=1

(

λ
2
‖w‖2 + !(yiw&xi)

)

.

Each iteration of the SGD-QN algorithm consists of drawing an independent random example (xt ,yt)
from the training set and computing an updated parameter vector

wt+1 = wt −
1

t+ t0
Bgt(wt) with gt(wt) = λwt + !′(ytw&

txt)yt xt (1)

where B is a diagonal scaling matrix estimated on-the-fly.
In the following, expectations and probabilities refer to the discrete distribution describing the

training examples randomly picked from the finite training set at each iteration. Let Ft denote the
examples {(x1,y1) . . .(xt−1,yt−1)} picked before reaching the t-th iteration.

We would like to find B such that

wt+1 −wt = B
(

P ′
n(wt+1)−P ′

n(wt)+ξt
)

, (2)

with an error term ξt verifying E [ξt |Ft ] = 0. Following Schraudolph et al. (2007), we replace
the computationally expensive gradients P ′

n by the cheap stochastic estimates gτ(wt) and gτ(wt+1)
computed on a same single example (xτ,yτ) ,

wt+1 −wt = B
(

gτ(wt+1)−gτ(wt)+ζt +ξt
)

, (3)

where ζt represents the additional error term introduced by this substitution. Estimating B with (2)
or (3) leads to the same solution if we make sure that E [ζt |Ft ] = 0 as well.

The SGD-QN algorithm updates the diagonal elements of matrix B on-the-fly on the basis of
the term-by-term ratios of the observed differences wt+1 −wt and gτ(wt+1)−gτ(wt). The obvious
choices τ = t and τ = t+1 only require one additional gradient evaluation because the parameter
update formula (1) demands the computation of all the gradients gt(wt) anyway.

3. The Flaw

Let us now evaluate

E [ζt |Ft ] = E
[

P ′
n(wt+1)−P ′

n(wt)−gτ(wt+1)+gτ(wt)
∣

∣Ft
]

.

Let us first consider the case τ= t+1. Since gt+1(wt+1) is a function of (xt+1,yt+1,xt ,yt ,Ft),

E [gτ(wt+1)|Ft ] =
∫
gt+1(wt+1) dP(xt+1,yt+1,xt ,yt |Ft)

=
∫ [∫

gt+1(wt+1) dP(xt+1,yt+1)

]

dP(xt ,yt |Ft) .
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Since the variables wt+1 and (xt+1,yt+1) are independent, the inner integral above is simply the
average of gt+1(wt+1) for all possible (xt+1,yt+1) picked from the training set. Therefore

E [gτ(wt+1)|Ft ] =
∫
P ′
n(wt+1) dP(xt ,yt |Ft) = E

[

P ′
n(wt+1)

∣

∣Ft
]

.

Using a similar derivation for E [gτ(wt)|Ft ] with τ= t+1, we can easily establish that E [ζt |Ft ] = 0.
Therefore estimating B on the basis of (3) leads to the same solution as estimating B on the basis of
(2), albeit with a higher noise level.

Such a derivation is impossible when τ= t because (xt ,yt) andwt+1 are not independent. There-
fore we cannot ensure that estimating B with (2) or (3) leads to the same result. Unfortunately, the
SGD-QN paper (see Section 5.3 of Bordes et al., 2009) describes the algorithm with τ= t.

4. The Consequences

In order to take maximal advantage of sparse data sets, the Flawed SGD-QN algorithm (see Figure 2
in the original paper) splits the stochastic parameter update (1) in two halves in order to schedule
them separately. The first half involves only the gradient of the loss,

w← w− (t+ t0)−1B !′(yt w&xt) yt xt .

The second half involves only the gradient of the regularization term,

w←

{

w most of the time,
w−skipλ (t+ t0)−1Bw once every skip iterations.

The Flawed SGD-QN algorithm measures the differences wt+1 −wt and gt(wt+1)− gt(wt) during
iterations for which the second half does nothing. Therefore, using notations [x]i for the i-th coeffi-
cient of vector x, and Bii for the terms of the diagonal matrix B, we always have

[gt(wt+1)−gt(wt)]i
[wt+1 −wt ]i

= λ−

(

!′(ytw&
t+1xt)− !′(ytw&

txt)
)

yt [xt ]i
Bii (t+ t0)−1!′(ytw&xt) yt [xt ]i

.

• When [xt ]i is nonzero, we can simplify this expression as

[gt(wt+1)−gt(wt)]i
[wt+1 −wt ]i

= λ−
!′(ytw&

t+1xt)− !′(ytw&
txt)

Bii (t+ t0)−1!′(ytw&
txt)

. (4)

This ratio is always greater than λ because of the loss function ! is convex. As explained in
the original paper, the coefficients Bii then remain smaller than λ−1.

• When [xt ]i is zero, the original paper uses a continuity argument to justify the equality

[gt(wt+1)−gt(wt)]i
[wt+1 −wt ]i

= λ . (5)
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Figure 1: Plots of the training cost and test misclassification percentage versus the number of
epochs for SVMSGD2 (red) and Flawed SGD-QN (green) for various values of t0 on
the dense Delta data set. The Flawed SGD-QN algorithm never outperforms the best
SVMSGD2.

4.1 Impact on Dense Data Sets

The coefficients [xt ]i for dense data sets are rarely zero. Assume all the Bii are equal before being
updated. All the ratios (4) will then be equal. Therefore all the Bii coefficients will be updated in
exactly the same way and therefore remain equal. Since the Bii coefficients are initially equal, they
remain equal all the time, except maybe when encountering an occasional zero in the patterns xt .
This observation led to the discovery of the flaw.

Since the scaling matrix reduces to a scalar gain, similar results could in principle be obtained
using the ordinary stochastic gradient descent with a better gain schedule. This clearly defeats the
purpose of the SGD-QN algorithm design.

Figure 1 compares the evolutions of the training cost and the test misclassification error for the
SVMSGD2 and the Flawed SGD-QN algorithms for selected values of the parameter t0 instead of
the usual heuristic defaults. We observe that there is almost always a choice of t0 in SVMSGD2
that performs as well as the best choice of t0 for the Flawed SGD-QN. Both algorithms perform
identically poorly for excessive values of t0. On the other hand, when t0 is too small, the perfor-
mance of Flawed SGD-QN degrades much more gracefully than the performance of SVMSGD2. In
some cases, Flawed SGD-QN can even slightly outperforms SVMSGD2 because, despite the flaw,
it can still update its learning rate on the course of learning. This explains partially why we have
consistently obtained better results with the flawed algorithm.

4.2 Impact on Sparse Data Sets

The situation is more complex in the case of sparse data sets because there is special case for
updating the Bii coefficients when dealing with zero coefficients (5). As a result, the Flawed SGD-
QN algorithm gives higher values to the scaling coefficients Bii when the i-th feature is more likely
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Figure 2: Plots of the training cost and test misclassification error versus the number of epochs for
both SVMSGD2 (red) and Flawed SGD-QN (green) running on the RCV1 data set. Both
algorithms reach optimal performance after seeing half the training set.

to be zero. Since this is a sensible scaling for such data sets, the Flawed SGD-QN algorithm works
relatively well in the presence of sparse features.

Figure 2 compares the SVMSGD2 and Flawed SGD-QN algorithms for many choices for the
t0 parameter on the Reuters RCV1 data set. Unfortunately there is nothing to see there. Both
algorithms reach optimal performance after processing only one half of the training set.

In order to find a more challenging sparse data set, we have adapted both the SVMSGD2 and
the Flawed SGD-QN algorithms for the optimization of Conditional Random Fields (Lafferty et al.,
2001). This is an interesting case where preconditioning is difficult because the features are gener-
ated on the fly on the basis of position-independent templates.

Figure 3 compares the algorithms on the CoNLL 2000 “chunking” task (Sang and Buchholz,
2000) using the template setup provided as an example with the CRF++ code (Kudo, 2007). The
Flawed SGD-QN algorithm reaches the best test performance after less epochs than the SVMSGD2
algorithm, but this does not translate into a large improvement in terms of training time.

5. Correcting SGD-QN

At first glance, correcting SGD-QN simply involves computing the difference gτ(wt+1)−gτ(wt)
with τ = t+1 instead of τ = t. In fact, during the weeks preceding the Pascal challenge deadline,
we tried both versions and found that picking τ= t+1 performs significantly worse!

5.1 The Failure of the Straightforward Fix

When experimenting with the oLBFGS algorithm (Schraudolph et al., 2007), we observed and re-
ported that setting the global learning gain was very difficult. We encounter the same difficulty
when we modify the SGD-QN algorithm to use τ= t+1.
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CRF ON THE CONLL 2000 CHUNKING TASK

Figure 3: Plots of the training cost, test loss, and test F1 score for a CRF trained using both
SVMSGD2 (red) and Flawed SGD-QN (green) for various initial rates η0 =

1
λt0 .

In order to form an intuition about the learning rate, we must pay attention to its influence on
the stochastic noise. Stochastic gradient descent with a constant learning rate generates a cloud
of parameter estimates wt covering a zone whose extent is defined by the learning rate and by the
curvature of the cost function. When the rates decrease with an appropriate speed, this zone shrinks
around the solution. Rewriting (1) term-by-term gives

[wt+1]i = [wt ]i−ηflawQN

i,t [gt(wt)]i with ηflawQN

i,t =
Bii
t0 + t

. (6)

Since the algorithm periodically adapts Bii on the basis of the observed differences wt+1 −wt and
gt+1(wt+1)−gt+1(wt), the sequence of learning rates ηflawQN

i,t can occasionally increase. This is
confirmed by the middle plot of Figure 5 which displays the evolution of the learning rates Bii

t0+t for
SGD-QN implementing this straightforward fix. Such fluctuations are the source of the difficulty.
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Flawed SGD-QN Corrected SGD-QN

Require: λ , t0 , T , skip
1: t ← 0 , w← 0 , count← skip , r← 2
2: v← 0 , updateB← false , ∀i Bii ← (λ)−1

3: while t ≤ T do
4: w← w− yt !′(ytw&xt) (t+ t0)−1Bxt
5: if updateB then
6: ∀i ri ← [gt(w)−gt(v)]i / [w−v]i
7: ∀i ri ← min{ri,100λ}}
8: ∀i Bii ← Bii+ 2

r (r
−1
i − Bii)

9: updateB← false , r← r+1
10: end if
11:
12: count← count−1
13: if count≤ 0 then
14: count← skip , updateB← true

15: w← w−skipλ (t+ t0)−1Bw
16: v← w
17: end if
18:
19: t ← t+1
20: end while
21: return w

Require: λ , t0 , T , skip
1: t ← 0 , w← 0 , count← skip

2: v← 0 , updateB← false , ∀i Bii ← (λt0)−1

3: while t ≤ T do
4:
5: if updateB then
6: ∀i ri ← [gt(w)−gt(v)]i / [w−v]i
7: ∀i ri ← max{λ,min{100λ,ri}}
8: ∀i Bii ← Bii(1+skipBii ri)−1

9: updateB← false

10: end if
11: z← ytw&xt
12: count← count−1
13: if count≤ 0 then
14: count← skip , updateB← true

15: v← w
16: w← w−skipλBw
17: end if
18: w← w− yt !′(z)Bxt
19: t ← t+1
20: end while
21: return w

Figure 4: Pseudo-codes for the Flawed SGD-QN and Corrected SGD-QN algorithms. The main
changes have been colored: each color stands for a particular change.

5.2 Managing the Speed of the Learning Rate Decrease

The schedule with which the learning rate decreases during training appears to be a key factor, so we
propose to fix SGD-QN by using the second-order information to manage this diminution. Hence,
we use learning rates of the form

ηcorQN

i,t =

(

λt0 +
t−1

∑
k=1

ri,k

)−1

where ri,t =
[gt+1(wt+1)−gt+1(wt)]i

[wt+1 −wt ]i
. (7)

When t becomes large, we recover an expression comparable to the original formulation (6),
ηcorQN

i,t =
r̄ −1
i

λt0 r̄ −1
i + t +o

(1
t
)

, where r̄i denotes the average value of the ratios ri,t and can be viewed as
the coefficient of a diagonal matrix R such that R

(

wt+1 −wt
)

= gτ(wt+1)−gτ(wt)+ζt+ξt .

It is also interesting to compare the formula ηcorQN

i,t with the first order version ηSGD

i,t = 1
λt0+∑tk=1 λ

which decreases the learning rate after each iteration by adding λ to the denominator. Instead of
adding a lower bound of the curvature, the proposed learning rate formula adds a stochastic estimate
of the curvature.
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Figure 5: Plots of the learning rates corresponding to each feature on the course of learning on the
Delta data set. All rates are equal for Flawed SGD-QN (left plot). As explained in Sec-
tion 5.1, implementing the straightforward fix (middle plot) causes rates to alternatively
increase or decrease very fast. The Corrected SGD-QN (right plot) proposes learning rates
nicely decreasing at different speeds for each feature.

Interestingly, Equation (7) leads to a convenient recursive formula

ηcorQN

i,t =

(

1
ηcorQN

i,t−1
+ ri,t−1

)−1

=
ηcorQN

i,t−1
1 + ri,t−1 η

corQN

i,t−1
. (8)

Figure 4 describes the Corrected SGD-QN algorithm and compares it with a slightly reorganized
version of the Flawed SGD-QN algorithm. The diagonal matrix B is used to store the gains (7). The
algorithm schedules a gain update (line 14) whenever it performs a regularization update (line 16).
During the next iteration, the algorithm computes ri,t−1 (line 6) and implements the learning rate
update (8) with an additional multiplicative factor (line 8) because this only happens every skip
iterations. The effect on the learning rates of using Corrected SGD-QN instead of Flawed SGD-QN
is illustrated by Figure 5 if we compare the left and the right plots.

5.3 Performances on Dense Data Sets

Figure 6 (top row) compares the performances of Corrected SGD-QN with the best results of Flawed
SGD-QN and SVMSGD2 on the Delta data set. We must recognize that the improvement is minimal.
Before running the SGD algorithms, we always precondition the dense data sets by centering all the
features, normalizing their variances, and rescaling every example to ensure that ‖xk‖ = 1. This
operation in fact steals all the improvements SGD-QN can bring. With its adaptive learning rates,
the Corrected SGD-QN does not perform worse than the first order SVMSGD2 algorithm. Yet,
implementing a strategy involving a single learning rate for all the features appears already very
rewarding and, for such cases, the Flawed SGD-QN algorithm is a strong choice because of its
capacity to adapt its learning rate.

Corrected SGD-QN should be more efficient for ill-conditioned data. To illustrate this assertion,
we created a “deconditioned” version of Delta by applying the usual normalization procedures and
then multiplying every tenth feature by twelve. Figure 6 (bottom row) compares the performances
of SVMSGD2, Flawed SGD-QN and Corrected SGD-QN on this deconditioned data. The Flawed
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Figure 6: Plots of the training cost and test misclassification error versus the number of epochs
for SVMSGD2 (red) and Flawed SGD-QN (green) with their optimal t0 parameter, and
Corrected SGD-QN (brown) running on the Delta data set. Both normalized (top) and
deconditioned (bottom) cases are considered; see the text for details. All methods can
perform roughly identically well on normalized examples but only the Corrected SGD-
QN algorithm is able to handle ill-conditioned data.

SGD-QN algorithm clearly suffers from the deconditioning operation because it can not assign a
different learning rate per feature. The Corrected SGD-QN works much better. We also verified that
the estimated learning rates replicate the deconditioning pattern.

In conclusion, on dense data sets, the Corrected SGD-QN bring little improvement over those
associated with a good preconditioning technique. Preconditioning was probably the main reason
of the good SGD-QN results on dense data sets in the Pascal Large Scale Challenge. This does not
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Figure 7: Plots of the training cost and test error versus the number of epochs for SVMSGD2 (red)
and Flawed SGD-QN (green) with their optimal t0 parameter, and Corrected SGD-QN
(brown) running on the RCV1 data set. All algorithms quickly reach optimal perfor-
mance.

mean that SGD algorithms cannot be improved. Xu (2010) reports impressive results on Linear
SVMs using a well sorted Averaged SGD algorithm (Polyak and Juditsky, 1992).

5.4 Performances on Sparse Data Sets

Preconditioning sparse data sets is much more difficult because it is impossible to center sparse
features and keep them sparse. In addition, normalizing the variance of very rare features generates
a small number of coefficients with high values. This fat tail distribution usually has very negative
impact on the test performance. Figure 7 compares the SVMSGD2, Flawed SGD-QN and Corrected
SGD-QN algorithms on the Reuters RCV1 data set, but, as we explained for Figure 2, this task is
too easy to draw any conclusions.

Figure 8 then compares the adaptations of SVMSGD2, Flawed SGD-QN (with their best param-
eters) and Corrected SGD-QN for Conditional Random Fields on the CoNLL 2000 “chunking” task
with the setup described in Section 4.2. The Corrected SGD-QN algorithm achieves its optimal
test performance after only 75 seconds while SVMSGD2 and Flawed SGD-QN need around twice
this time. For comparison, the CRF++ LBFGS optimizer needs 4300 seconds on a slightly faster
machine.

6. Conclusion

Despite its flaw, the original SGD-QN algorithm works well enough to be a winner of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008) because it benefits from our careful
preconditioning and handles sparse examples efficiently. However, as explained in this document,
this original version often does not achieve the full benefits of a diagonal scaling approach.
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Figure 8: Plots of the training cost, test loss, and test F1 score for a CRF trained using the best setups
of SVMSGD2 (red) and Flawed SGD-QN (green), and Corrected SGD-QN for various
initial rates η0 =

1
λt0 (brown). Corrected SGD-QN learns significantly faster.

This paper proposes a correction. Unlike the original SGD-QN algorithm, the Corrected SGD-
QN algorithm discovers sensible diagonal scaling coefficients. However, experiments on dense
data sets of intermediate dimensionality show that similar speed improvements can be achieved by
simple preconditioning techniques such as normalizing the means and the variances of each feature
and normalizing the length of each example. On the other hand, normalization is not always an
attractive strategy. The Corrected SGD-QN algorithm then becomes interesting because it can adapt
automatically to skewed feature distributions (see Section 5.3) or very sparse data (see Section 5.4.)
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Abstract
Methods based on !1-relaxation, such as basis pursuit and the Lasso, are very popular for sparse re-
gression in high dimensions. The conditions for success of these methods are now well-understood:
(1) exact recovery in the noiseless setting is possible if and only if the design matrix X satisfies the
restricted nullspace property, and (2) the squared !2-error of a Lasso estimate decays at the minimax
optimal rate k log p

n , where k is the sparsity of the p-dimensional regression problem with additive
Gaussian noise, whenever the design satisfies a restricted eigenvalue condition. The key issue is
thus to determine when the design matrix X satisfies these desirable properties. Thus far, there
have been numerous results showing that the restricted isometry property, which implies both the
restricted nullspace and eigenvalue conditions, is satisfied when all entries of X are independent
and identically distributed (i.i.d.), or the rows are unitary. This paper proves directly that the re-
stricted nullspace and eigenvalue conditions hold with high probability for quite general classes of
Gaussian matrices for which the predictors may be highly dependent, and hence restricted isometry
conditions can be violated with high probability. In this way, our results extend the attractive theo-
retical guarantees on !1-relaxations to a much broader class of problems than the case of completely
independent or unitary designs.
Keywords: Lasso, basis pursuit, random matrix theory, Gaussian comparison inequality, concen-
tration of measure

1. Introduction

Many fields in modern science and engineering—among them computational biology, astrophysics,
medical imaging, natural language processing, and remote sensing—involve collecting data sets in
which the dimension of the data p exceeds the sample size n. Problems of statistical inference in
this high-dimensional setting have attracted a great deal of attention in recent years. One concrete
instance of a high-dimensional inference problem concerns the standard linear regression model,
in which the goal is to estimate a vector β∗ ∈ Rp that connects a real-valued response y to a vec-
tor of covariates X = (X1, . . . ,Xp). In the setting p # n, the classical linear regression model is
unidentifiable, so that it is not meaningful to estimate the parameter vector β∗ ∈ Rp. However,
many high-dimensional regression problems exhibit special structure that can lead to an identifiable
model. In particular, sparsity in the regression vector β∗ is an archetypal example of such struc-
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ture, and there is now a substantial and rapidly growing body of work on high-dimensional linear
regression with sparsity constraints.

Using the !1-norm to enforce sparsity has been very successful, as evidenced by the widespread
use of methods such as basis pursuit (Chen et al., 1998), the Lasso (Tibshirani, 1996) and the
Dantzig selector (Candes and Tao, 2007). There is now a well-developed theory on what condi-
tions are required on the design matrix X ∈ Rn×p for such !1-based relaxations to reliably estimate
β∗. In the case of noiseless observation models, it is known that imposing a restricted nullspace
property on the design matrix X ∈ Rn×p is both necessary and sufficient for the basis pursuit linear
program to recover β∗ exactly. The nullspace property and its link to the basis pursuit linear pro-
gram has been discussed in various papers (Cohen et al., 2009; Donoho and Huo, 2001; Feuer and
Nemirovski, 2003). In the case of noisy observations, exact recovery of β∗ is no longer possible,
and one goal is to obtain an estimate β̂ such that the !2-error ‖β̂−β∗‖2 is well-controlled. To this
end, various sufficient conditions for the success of !1-relaxations have been proposed, including
restricted eigenvalue conditions (Bickel et al., 2009; Meinshausen and Yu, 2009) and the restricted
Riesz property (Zhang and Huang, 2008). Of the conditions mentioned, one of weakest known suf-
ficient conditions for bounding !2-error are the restricted eigenvalue (RE) conditions due to Bickel
et al. (2009) and van de Geer (2007). In this paper, we consider a restricted eigenvalue condition
that is essentially equivalent to the RE condition in Bickel et al. (2009). As shown by Raskutti et al.
(2009), a related restriction is actually necessary for obtaining good control on the !2-error in the
minimax setting.

Thus, in the setting of linear regression with random design, the interesting question is the fol-
lowing: for what ensembles of design matrices do the restricted nullspace and eigenvalue conditions
hold with high probability? To date, the main routes to establishing these properties have been via
either incoherence conditions (Donoho and Huo, 2001; Feuer and Nemirovski, 2003) or via the re-
stricted isometry property (Candes and Tao, 2005), both of which are sufficient but not necessary
conditions (Cohen et al., 2009; van de Geer and Buhlmann, 2009). The restricted isometry property
(RIP) holds with high probability for various classes of random matrices with i.i.d. entries, includ-
ing sub-Gaussian matrices (Mendelson et al., 2008) with sample size n=Ω(k log(p/k)), and for
i.i.d. subexponential random matrices (Adamczak et al., 2009) provided that n=Ω(k log2(p/k)). It
has also been demonstrated that RIP is satisfied for matrices from unitary ensembles (e.g., Guédon
et al., 2007, 2008; Romberg, 2009; Rudelson and Vershynin, 2008), for which the rows are gener-
ated based on independent draws from a set of uncorrelated basis functions.

Design matrices based on i.i.d. or unitary ensembles are well-suited to the task of compressed
sensing (Candes and Tao, 2005; Donoho, 2006), where the matrix X can be chosen by the user.
However, in most of machine learning and statistics, the design matrix is not under control of the
statistician, but rather is specified by nature. As a concrete example, suppose that we are fitting
a linear regression model to predict heart disease on the basis of a set of p covariates (e.g., diet,
exercise, smoking). In this setting, it is not reasonable to assume that the different covariates are
i.i.d. or unitary—for instance, one would expect a strong positive correlation between amount
of exercise and healthiness of diet. Nonetheless, at least in practice, !1-methods still work very
well in settings where the covariates are correlated and non-unitary, but currently lacking is the
corresponding theory that guarantees the performance of !1-relaxations for dependent designs.

The main contribution of this paper is a direct proof that both the restricted nullspace and eigen-
value conditions hold with high probability for a broad class of dependent Gaussian design matrices.
In conjunction with known results on !1-relaxation, our main result implies as corollaries that the
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basis pursuit algorithm reliably recovers β∗ exactly in the noiseless setting, and that in the case
of observations contaminated by Gaussian noise, the Lasso and Dantzig selectors produces a so-
lution β̂ such that ‖β̂− β∗‖2 = O(

√
k log p
n ). Our theory requires that the sample size n scale as

n = Ω(k log p), where k is the sparsity index of the regression vector β∗ and p is its dimensions.
For sub-linear sparsity (k/p→ 0), this scaling matches known optimal rates in a minimax sense for
the sparse regression problem (Raskutti et al., 2009), and hence cannot be improved upon by any
algorithm. The class of matrices covered by our result allows for correlation among different covari-
ates, and hence covers many matrices for which restricted isometry or incoherence conditions fail
to hold but the restricted eigenvalue condition holds. Interestingly, one can even sample the rows
of the design matrix X from a multivariate Gaussian with a degenerate covariance matrix Σ, and
nonetheless, our results still guarantee that the restricted nullspace and eigenvalue conditions will
hold with high probability (see Section 3.3). Consequently, our results extend theoretical guarantees
on !1-relaxations with optimal rates of convergence to a much broader class of random designs.

The remainder of this paper is organized as follows. We begin in Section 2 with background on
sparse linear models, the basis pursuit and Lasso !1-relaxations, and sufficient conditions for their
success. In Section 3, we state our main result, discuss its consequences for !1-relaxations, and
illustrate it with some examples. Section 4 contains the proof of our main result, which exploits
Gaussian comparison inequalities and concentration of measure for Lipschitz functions.

2. Background

We begin with background on sparse linear models and sufficient conditions for the success of
!1-relaxations.

2.1 High-dimensional Sparse Models and !1-relaxation

In the classical linear model, a scalar output yi ∈ R is linked to a p-dimensional vector Xi ∈ Rp of
covariates via the relation yi = XTi β∗+wi, where wi is a scalar observation noise. If we make a set
of n such observations, then they can be written in the matrix-vector form

y = Xβ∗+w, (1)

where y ∈ Rn is the vector of outputs, the matrix X ∈ Rn×p is the set of covariates (in which row
Xi ∈ Rp represents the covariates for ith observation), and w ∈ Rn is a noise vector where w ∼
N (0,σ2In×n). Given the pair (y,X), the goal is to estimate the unknown regression vector β∗ ∈ Rp.

In many applications, the linear regression model is high-dimensional in nature, meaning that
the number of observations n may be substantially smaller than the number of covariates p. In this
p# n regime, it is easy to see that without further constraints on β∗, the statistical model (1) is
not identifiable, since (even when w = 0), there are many vectors β∗ that are consistent1 with the
observations y and X . This identifiability concern may be eliminated by imposing some type of
sparsity assumption on the regression vector β∗ ∈ Rp. The simplest assumption is that of exact
sparsity: in particular, we say that β∗ ∈ Rp is s-sparse if its support set

S(β∗) :=
{
j ∈ {1, . . . , p} | β∗j *= 0

}

1. Indeed, any vector β∗ in the nullspace of X , which has dimension at least p−n, leads to y= 0 when w= 0.
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has cardinality at most s.
Disregarding computational cost, the most direct approach to estimating an s-sparse β∗ in the

linear regression model would be solving a quadratic optimization problem with an !0-constraint,
say

β̂ ∈ arg min
β∈Rp

‖y−Xβ‖22 such that ‖β‖0 ≤ s,

where ‖β‖0 simply counts the number of non-zero entries in β. Of course, this problem is non-
convex and combinatorial in nature, since it involves searching over all

(p
s
)
subsets of size s. A

natural relaxation is to replace the non-convex !0 constraint with the !1-norm, which leads to the
constrained form of the Lasso (Chen et al., 1998; Tibshirani, 1996), given by

β̂ ∈ arg min
β∈Rp

‖y−Xβ‖22 such that ‖β‖1 ≤ R,

where R is a radius to be chosen by the user. Equivalently, by Lagrangian duality, this program can
also be written in the penalized form

β̂ ∈ arg min
β∈Rp

{
‖y−Xβ‖22+λ‖β‖1

}
,

where λ> 0 is a regularization parameter. In the case of noiseless observations, obtained by setting
w = 0 in the observation model (1), a closely related convex program is the basis pursuit linear
program (Chen et al., 1998), given by

β̂ ∈ arg min
β̂∈Rp

‖β‖1 such that Xβ= y. (2)

Chen et al. (1998) also study the constrained Lasso (2.1), which they refer to as relaxed basis pursuit.
Another closely related estimator based on !1-relaxation is the Dantzig selector (Candes and Tao,
2007).

2.2 Sufficient Conditions for Success

The high-dimensional linear model under the exact sparsity constraint has been extensively ana-
lyzed. Accordingly, as we discuss here, there is a good understanding of the necessary and sufficient
conditions for the success of !1-based relaxations such as basis pursuit and the Lasso.

2.2.1 RESTRICTED NULLSPACE IN NOISELESS SETTING

In the noiseless setting (w= 0), it is known that the basis pursuit linear program (LP) (2) recovers
β∗ exactly if and only if the design matrix X satisfies a restricted nullspace condition. In particular,
for a given subset S⊂ {1, . . . , p} and constant α≥ 1, let us define the set

C (S;α) :=
{
θ ∈ R

p | ‖θSc‖1 ≤ α‖θS‖1
}
.

For a given sparsity index k ≤ p, we say that the matrix X satisfies the restricted nullspace (RN)
condition of order k if null(X)∩ C (S;1) = {0} for all subsets S of cardinality k. Although this
definition appeared in earlier work (Donoho and Huo, 2001; Feuer and Nemirovski, 2003), the
terminology of restricted nullspace is due to Cohen et al. (2009).
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This restricted nullspace property is important, because the basis pursuit LP recovers any vector
k-sparse vector β∗ exactly if and only if X satisfies the restricted nullspace property of order k.
See the papers (Cohen et al., 2009; Donoho and Huo, 2001; Elad and Bruckstein, 2002; Feuer and
Nemirovski, 2003) for more discussion of restricted nullspaces and equivalence to exact recovery
of basis pursuit.

2.2.2 RESTRICTED EIGENVALUE CONDITION FOR !2 ERROR

In the noisy setting, it is impossible to recover β∗ exactly, and a more natural criterion is to bound
the !2-error between β∗ and an estimate β̂. Various conditions have been used to analyze the !2-
norm convergence rate of !1-based methods, including the restricted isometry property (Candes and
Tao, 2007), various types of restricted eigenvalue conditions (van de Geer, 2007; Bickel et al., 2009;
Meinshausen and Yu, 2009), and a partial Riesz condition (Zhang and Huang, 2008). Of all these
conditions, the least restrictive are the restricted eigenvalue conditions due to Bickel et al. (2009)
and van de Geer (2007). As shown by Bickel et al. (2009), their restricted eigenvalue (RE) condition
is less severe than both the RIP condition (Candes and Tao, 2007) and an earlier set of restricted
eigenvalue conditions due to Meinshausen and Yu (2009). All of these conditions involve lower
bounds on ‖Xθ‖2 that hold uniformly over the previously defined set C (S;α),

Here we state a condition that is essentially equivalent to the restricted eigenvalue condition due
to Bickel et al. (2009). In particular, we say that the p× p sample covariance matrix XTX/n satisfies
the restricted eigenvalue (RE) condition over S with parameters (α,γ) ∈ [1,∞)× (0,∞) if

1
n
θTXTXθ =

1
n
‖Xθ‖22 ≥ γ2 ‖θ‖22 for all θ ∈ C (S;α).

If this condition holds uniformly for all subsets S with cardinality k, we say that XTX/n satisfies
a restricted eigenvalue condition of order k with parameters (α,γ). On occasion, we will also say
that a deterministic p× p covariance matrix Σ satisfies an RE condition, by which we mean that
‖Σ1/2θ‖2 ≥ γ‖θ‖2 for all θ ∈ C (S;α). It is straightforward to show that the RE condition for some
α implies the restricted nullspace condition for the same α, so that the RE condition is slightly
stronger than the RN property.

Again, the RE condition is important because it yields guarantees on the !2-error of any Lasso
estimate β̂. For instance, if X satisfies the RE condition of order k with parameters α≥ 3 and γ> 0,
then it can be shown that (with appropriate choice of the regularization parameter) any Lasso esti-
mate β̂ satisfies the error bound ‖β̂−β∗‖2 = O(

√
k log p
n ) with high probability over the Gaussian

noise vector w. A similar result holds for the Dantzig selector provided the RE condition is satis-
fied for α ≥ 1. Bounds with this scaling have appeared in various papers on sparse linear models
(Bunea et al., 2007; Bickel et al., 2009; Candes and Tao, 2007; Meinshausen and Yu, 2009; van de
Geer, 2007; van de Geer and Buhlmann, 2009). Moreover, this !2-convergence rate is known to be
minimax optimal (Raskutti et al., 2009) in the regime k/p→ 0.

3. Main Result and Its Consequences

Thus, in order to provide performance guarantees (either exact recovery or !2-error bounds) for !1-
relaxations applied to sparse linear models, it is sufficient to show that the RE or RN conditions
hold. Given that our interest is in providing sufficient conditions for these properties, the remainder
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of the paper focuses on providing conditions for the RE condition to hold for random designs, which
implies that the RN condition is satisfied.

3.1 Statement of Main Result

Our main result guarantees that the restricted eigenvalue (and hence restricted nullspace) conditions
hold for a broad class of random Gaussian designs. In particular, we consider the linear model
yi = XTi β∗+wi, in which each row Xi ∼ N (0,Σ). We define ρ2(Σ) = max j=1,...,pΣ j j to be the
maximal variance, and let Σ1/2 denote the square root of Σ.

Theorem 1 For any Gaussian random design X ∈ Rn×p with i.i.d. N (0,Σ) rows, there are univer-
sal positive constants c,c′ such that

‖Xv‖2√
n

≥
1
4
‖Σ1/2v‖2−9ρ(Σ)

√
log p
n

‖v‖1 for all v ∈ Rp, (3)

with probability at least 1− c′ exp(−cn).

The proof of this claim is given later in Section 4. Note that we have not tried to obtain sharpest
possible leading constants (i.e., the factors of 1/4 and 9 can easily be improved).

In intuitive terms, Theorem 1 provides some insight into the eigenstructure of the sample co-
variance matrix Σ̂ = XTX/n. One implication of the lower bound (3) is that the nullspace of X
cannot contain any vectors that are “overly” sparse. In particular, for any vector v ∈ Rp such that
‖v‖1/‖Σ1/2v‖2 = o(

√
n

log p), the right-hand side of the lower bound (3) will be strictly positive,
showing that v cannot belong to the nullspace of X . In the following corollary, we formalize this
intuition by showing how Theorem 1 guarantees that whenever the population covariance Σ satisfies
the RE condition of order k, then the sample covariance Σ̂ = XTX/n satisfies the same property as
long as the sample size is sufficiently large.

Corollary 1 (Restricted eigenvalue property) Suppose that Σ satisfies the RE condition of order
k with parameters (α,γ). Then for universal positive constants c,c′,c′′, if the sample size satisfies

n > c′′
ρ2(Σ)(1+α)2

γ2
k log p, (4)

then the matrix Σ̂ = XTX/n satisfies the RE condition with parameters (α, γ8) with probability at
least 1− c′ exp(−cn).

Proof Let S be an arbitrary subset of cardinality k, and suppose that v ∈ C (S;α). By definition, we
have

‖v‖1 = ‖vS‖1+‖vSc‖1 ≤ (1+α)‖vS‖1,

and consequently ‖v‖1 ≤ (1+α)
√
k‖v‖2. By assumption, we also have ‖Σ1/2v‖2 ≥ γ‖v‖2 for all

v ∈ C (S;α). Substituting these two inequalities into the bound (3) yields

‖Xv‖2√
n

≥
{
γ
4
−9(1+α)ρ(Σ)

√
k log p
n

}
‖v‖2.

2246



RESTRICTED EIGENVALUE PROPERTIES FOR CORRELATED GAUSSIAN DESIGNS

Under the assumed scaling (4) of the sample size, we have

9(1+α)ρ(Σ)

√
k log p
n

≤ γ/8,

which shows that the RE condition holds for XTX/n with parameter (α,γ/8) as claimed.

Remarks:

(a) From the definitions, it is easy to see that if the RE condition holds with α = 1 and any
γ> 0 (even arbitrarily small), then the RN condition also holds. Indeed, if the matrix XTX/n
satisfies the (1,γ)-RE condition, then for any v ∈ C (S;1)\{0}, we have ‖Xv‖2√

n ≥ γ‖v‖2 > 0,
which implies that C (S,1)∩ (X) = {0}.

(b) As previously discussed, it is known (Bickel et al., 2009; van de Geer, 2000; van de Geer
and Buhlmann, 2009) that if XTX/n satisfies the RE condition, then the !2 error of the Lasso
under the sparse linear model with Gaussian noise satisfies the bound

‖β̂−β∗‖2 = O(

√
k log p
n

) with high probability.

Consequently, in order to ensure that the !2-error is bounded, the sample size must scale as
n=Ω(k log p), which matches the scaling (4) required in Corollary 1, as long as the sequence
of covariance matrices Σ have diagonal entries that stay bounded.

(c) Finally, we note that Theorem 1 guarantees that the sample covariance XTX/n satisfies a
property that is slightly stronger than the RE condition. As shown by Negahban et al. (2009),
this strengthening also leads to error bounds for the Lasso when β∗ is not exactly k-sparse, but
belongs to an !q-ball. The resulting rates are known to be minimax-optimal for these !q-balls
(Raskutti et al., 2009).

3.2 Comparison to Related Work

At this point, we provide a brief comparison of our results with some related results in the literature
beyond the papers discussed in the introduction. Haupt et al. (2010) showed that a certain class of
random Toeplitz matrices, where the entries in the first row and first column are Bernoulli random
variables and the rest fill out the Toeplitz structure satisfy RIP ( and hence the weaker RE condition)
provided that n = Ω(k3 log(p/k)). In Section 3.3, we demonstrate that Gausssian design matrices
where the covariance matrix is a Toeplitz matrix satisfies the RE condition under the milder scaling
requirement n = Ω(k log(p)). It would be of interest to determine such scaling can be established
for the random Toeplitz matrices considered by Haupt et al. (2010).

It is worth comparing the scaling (4) to a related result due to van de Geer and Buhlmann
(2009). In particular, their Lemma 10.1 also provides sufficient conditions for a restricted eigenvalue
condition to hold for design matrices with dependent columns. They show that if the true covariance
matrix satisfies an RE condition, and if the elementwise maximum ‖Σ̂−Σ‖∞ between the sample
covariance Σ̂= XTX/n and true covariance Σ is suitably bounded, then the sample covariance also
satisfies the RE condition. Their result applied to the case of Gaussian random matrices guarantees
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that Σ̂ satisfies the RE property as long as n = Ω(k2 log p) and Σ satisfies the RE condition. By
contrast, Corollary 1 guarantees the RE condition with the less restrictive scaling n = Ω(k log p).
Note that if k= O(

√
n), our scaling condition is satisfied while their condition fails. This quadratic-

linear gap in sparsity between k2 and k arises from the difference between a local analysis (looking
at individual entries of Σ̂) versus the global analysis of this paper, which studies the full random
matrix. On the other hand, the result of van de Geer and Buhlmann (2009) applies more generally,
including the case of sub-Gaussian random matrices (e.g., those with bounded entries) in addition
to the Gaussian matrices considered in Theorem 1.

Finally, in work that followed up on the initial posting of this work (Raskutti et al., 2009), a paper
by Zhou (2009) provides an extension of Theorem 1 to the case of correlated random matrices with
sub-Gaussian entries. Theorem 1.6 in her paper establishes that certain families of sub-Gaussian
matrices satisfy the RE condition w.h.p. with sample size n=Ω(s log(p/s). This extension is based
on techniques developed byMendelson et al. (2008), while we use Gaussian comparison inequalities
and simple concentration results for the case of Gaussian design.

3.3 Some Illustrative Examples

Let us illustrate some classes of matrices to which our theory applies. We will see that Corollary 1
applies to many sequences of covariance matrices Σ = Σp×p that have much more structure than
the identity matrix. Our theory allows for the maximal eigenvalue of Σ to be arbitrarily large, or
for Σ to be rank-degenerate, or for both of these degeneracies to occur at the same time. In all
cases, we consider sequences of matrices for which the maximum variance ρ2(Σ) =max j=1,...,pΣ j j
stays bounded. Under this mild restriction, we provide several examples where the RE condition
is satisfied with high probability. For suitable choices, these same examples show that the RE
condition can hold with high probability, even when the restricted isometry property (RIP) of Candes
and Tao (2005) is violated with probability converging to one.

Example 1 (Toeplitz matrices) Consider a covariance matrix with the Toeplitz structure Σi j =
a|i− j| for some parameter a ∈ [0,1). This type of covariance structure arises naturally from au-
toregressive processes, where the parameter a allows for tuning of the memory in the process. The
minimum eigenvalue of Σ is 1−a> 0, independent of the dimension p, so that the population matrix
Σ clearly satisfies the RE condition. Since ρ2(Σ) = 1, Theorem 1 implies that the sample covariance
matrix Σ̂ = XTX/n obtained by sampling from this distribution will also satisfy the RE condition
with high probability as long as n = Ω(k log p). This provides an example of a matrix family with
substantial correlation between covariates for which the RE property still holds.

However, regardless of the sample size, the submatrices of the sample covariance Σ̂ will not
satisfy restricted isometry properties (RIP) if the parameter a is sufficiently large. For instance,
defining S= {1,2, . . . ,k}, consider the sub-block Σ̂SS of the sample covariance matrix. Satisfying
RIP requires that that the condition number λmax(Σ̂SS)/λmin(Σ̂SS) be very close to one. As long
as n = Ω(k log p), known results in random matrix theory (Davidson and Szarek, 2001) guarantee
that the eigenvalues of Σ̂SS will be very close to the population versions ΣSS; see also the concrete
calculation in Example 2 to follow. Consequently, imposing RIP amounts to requiring that the
population condition number λmax(ΣSS)/λmin(ΣSS) be very close to one. This condition number
grows as the parameter a ∈ [0,1) increases towards one (Gray, 1990), so RIP will be violated once
a< 1 is sufficiently large.
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We now consider a matrix family with an even higher amount of dependency among the covariates,
where the RIP constants are actually unbounded as the sparsity k increases, but the RE condition is
still satisfied.

Example 2 (Spiked identity model) For a parameter a ∈ [0,1), the spiked identity model is given
by the family of covariance matrices

Σ := (1−a)Ip×p+a"1"1T ,

where"1 ∈Rp is the vector of all ones. The minimum eigenvalue of Σ is 1−a, so that the population
covariance clearly satisfies the RE condition for any fixed a ∈ [0,1). Since this covariance matrix
has maximum variance ρ2(Σ) = 1, Corollary 1 implies that a sample covariance matrix Σ̂= XTX/n
will satisfy the RE property with high probability with sample size n=Ω(k log p).

On the other hand, the spiked identity matrix Σ has very poorly conditioned sub-matrices, which
implies that a sample covariance matrix Σ̂ = XTX/n will violate the restricted isometry property
(RIP) with high probability as n grows. To see this fact, for an arbitrary subset S of size k, consider
the associated k× k submatrix ΣSS. An easy calculation shows that λmin(ΣSS) = 1− a > 0 and
λmax(ΣSS) = 1+a(k−1), so that the population condition number of this sub-matrix is

λmax(ΣSS)
λmin(ΣSS)

=
1+a(k−1)

1−a
.

For any fixed a ∈ (0,1), this condition number diverges as k increases. We now show that the
same statement applies to the sample covariance with high probability, showing that the RIP is
violated. Let u ∈ Rk and v ∈ Rk denote (respectively) unit-norm eigenvectors corresponding to the
minimum and maximum eigenvalues of ΣSS, and define the random variables Zu = ‖Xu‖22/n and
Zv = ‖Xv‖22/n. Since 〈Xi, v〉 ∼ N(0,λmax(ΣSS)) by construction, we have

Zv =
1
n

n

∑
i=1

〈Xi, v〉2
d
= λmax(ΣSS)

{1
n

n

∑
i=1

y2i
}
,

where yi ∼ N(0,1) are i.i.d. standard Gaussians, and d
= denotes equality in distribution. By χ2 tail

bounds, we have P[ 1n ∑
n
i=1 y2i ≥ 1

2
]
≤ c1 exp(−c2n), so that Zv ≥ λmax(ΣSS)/2 with high probability.

A similar argument shows that Zu ≤ 2λmin(ΣSS) with high probability, and putting together the
pieces shows that w.h.p.

λmax(Σ̂SS)

λmin(Σ̂SS)
≥
1
4
λmax(ΣSS)
λmin(ΣSS)

≥
1
4
1+a(k−1)
1−a

,

which diverges as k increases.

In both of the preceding examples, the minimum eigenvalue of Σ was bounded from below and
the diagonal entries of Σ were bounded from above, which allowed us to assert immediately that
the RE condition was satisfied for the population covariance matrix. As a final example, we now
consider sampling from population covariance matrices that are actually rank degenerate, but for
which our theory still provides guarantees.
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Example 3 (Highly degenerate covariance matrices) Let Σ be any matrix with bounded diagonal
that satisfies the RE property of some order k. Suppose that we sample n times from a N(0,Σ)
distribution, and then form the empirical covariance matrix Σ̂ = XTX/n. If n < p, then Σ̂ must be
rank degenerate, but Corollary 1 guarantees that Σ̂ will satisfy the RE property of order k with high
probability as long as n = Ω(k log p). Moreover, by χ2-tail bounds, the maximal diagonal element
ρ2(Σ̂) will be bounded with high probability under this same scaling.

Now if we condition on the original design matrix X in the high probability set, we may view Σ̂
as a fixed but highly rank-degenerate matrix. Suppose that we draw a new set of n i.i.d. vectors X̃i ∼
N(0, Σ̂) using this degenerate covariance matrix. Such a resampling procedure could be relevant
for a bootstrap-type calculation for assessing errors of the Lasso. We may then form a second
empirical covariance matrix Σ̃= 1

n X̃
T X̃ . Conditionally on Σ̂ having the RE property of order k and

a bounded diagonal, Corollary 1 shows that the resampled empirical covariance Σ̃ will also have
the RE property of order k with high probability, again for n=Ω(k log p).

This simple example shows that in the high-dimensional setting p # n, it is possible for the
RE condition to hold with high probability even when the original population covariance matrix
(Σ̂ in this example) has a p− n-dimensional nullspace. Note moreover that this is not an isolated
phenomenon—rather, it will hold for almost every sample covariance matrix Σ̂ constructed in the
way that we have described.

4. Proof of Theorem 1

We now turn to the proof of Theorem 1. The main ingredients are the Gordon-Slepian comparison
inequalities (Gordon, 1985) for Gaussian processes, concentration of measure for Lipschitz func-
tions (Ledoux, 2001), and a peeling argument. The first two ingredients underlie classical proofs on
the ordinary eigenvalues of Gaussian random matrices (Davidson and Szarek, 2001), whereas the
latter tool is used in empirical process theory (van de Geer, 2000).

4.1 Proof Outline

Recall that Theorem 1 states that the condition

‖Xv‖2√
n

≥
1
4
‖Σ1/2v‖2−9ρ(Σ)

√
log p
n

‖v‖1 for all v ∈ Rp, (5)

holds with probability at least 1− c′ exp(−cn), where c,c′ are universal positive constants. Hence,
we are bounding the random quantity ‖Xv‖2 in terms of ‖Σ1/2v‖2 and ‖v‖1 for all v with high
probability. It suffices to prove Theorem 1 for ‖Σ1/2v‖2 = 1. Indeed, for any vector v ∈ Rp such
that Σ1/2v = 0, the claim holds holds trivially. Otherwise, we may consider the re-scaled vector
v̆= v/‖Σ1/2v‖2, and note that ‖Σ1/2v̆‖2= 1 by construction. By scale invariance of the condition (5),
if it holds for the re-scaled vector v̆, it also holds for v.

Therefore, in the remainder of the proof, our goal is to lower bound the quantity ‖Xv‖2 over the
set of v such that ‖Σ1/2v‖2 = 1 in terms of ‖v‖1. At a high level, there are three main steps to the
proof:

(1) We begin by considering the setV(r) := {v ∈Rp | ‖Σ1/2v‖2 = 1,‖v‖1 ≤ r}, for a fixed radius
r. Although this set may be empty for certain choices of r > 0, our analysis only concerns
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those choices for which it is non-empty. Define the random variable

M(r,X) := 1− inf
v∈V(r)

‖Xv‖2√
n

= sup
v∈V(r)

{
1−

‖Xv‖2√
n

}
.

Our first step is to upper bound the expectation E[M(r,X)], where the expectation is taken
over the random Gaussian matrix X .

(2) Second, we establish that M(r,X) is a Lipschitz function of its Gaussian arguments, and then
use concentration inequalities to assert that for each fixed r > 0, the random variable M(r,X)
is sharply concentrated around its expectation with high probability.

(3) Third, we use a peeling argument to show that our analysis holds with high probability and
uniformly over all possible choice of the !1-radius r, which then implies that the condition (5)
holds with high probability as claimed.

In the remainder of this section, we provide the details of each of these steps.

4.2 Bounding the Expectation E[M(r,X)]

This subsection is devoted to a proof of the following lemma:

Lemma 1 For any radius r > 0 such that V(r) is non-empty, we have

E[M(r,X)]≤
1
4
+3ρ(Σ)

√
log p
n

r.

Proof : Let Sn−1= {u∈Rn | ‖u‖2= 1} be the Euclidean sphere of radius 1, and recall the previously
defined set V(r) := {v ∈ Rp | ‖Σ1/2v‖2 = 1,‖v‖1 ≤ r}. For each pair (u,v) ∈ Sn−1×V(r), we may
define an associated zero-mean Gaussian random variable Yu,v := uTX v. This representation is
useful, because it allows us to write the quantity of interest as a min-max problem in terms of this
Gaussian process. In particular, we have

− inf
v∈V(r)

‖Xv‖2 =− inf
v∈V(r)

sup
u∈Sn−1

uTXv = sup
v∈V(r)

inf
u∈Sn−1

uTXv.

We may now upper bound the expected value of the above quantity via a Gaussian comparison
inequality; here we state a form of Gordon’s inequality used in past work on Gaussian random
matrices (Davidson and Szarek, 2001). Suppose that {Yu,v,(u,v)∈U×V} and {Zu,v,(u,v)∈U×V}
are two zero-mean Gaussian processes onU×V . Using σ(·) to denote the standard deviation of its
argument, suppose that these two processes satisfy the inequality

σ(Yu,v−Yu′,v′)≤ σ(Zu,v−Zu′,v′) for all pairs (u,v) and (u′,v′) inU×V ,

and this inequality holds with equality when v= v′. Then we are guaranteed that

E[sup
v∈V

inf
u∈U

Yu,v] ≤ E[sup
v∈V

inf
u∈U

Zu,v].

We use Gordon’s inequality to show that

E[M(r,X)] = 1+E[ sup
v∈V(r)

inf
u∈Sn−1

Yu,v]≤ 1+E[ sup
v∈V(r)

inf
u∈Sn−1

Zu,v],
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where we recall that Yu,v = uTXv and Zu,v is a different Gaussian process to be defined shortly.
We begin by computing σ2(Yu,v−Yu′,v′). To simplify notation, we note that the X ∈Rn×p can be

written asWΣ1/2, whereW ∈Rn×p is a matrix with i.i.d. N (0,1) entries, and Σ1/2 is the symmetric
matrix square root. In terms ofW , we can write

Yu,v = uTWΣ1/2v = uTWṽ,

where ṽ= Σ1/2v. It follows that

σ2(Yu,v−Yu′,v′) := E
( n

∑
i=1

p

∑
j=1
Wi, j(uiṽ j−u′iṽ′j)

)2
= |||uṽT − (u′)(ṽ′)T |||2F ,

where ||| · |||F is the Frobenius norm (!2-norm applied elementwise to the matrix). This equality
follows immediately since theWi j variables are i.i.d N (0,1).

Now consider a second zero-mean Gaussian process Zu,v indexed by Sn−1×V(r), and given by

Zu,v = "gTu+"hTΣ1/2v,

where"g∼N(0, In×n) and"h∼N(0, Ip×p) are standard Gaussian random vectors. With ṽ= Σ1/2v, we
see immediately that

σ2(Zu,v−Zu′,v′) = ‖u−u′‖22+‖ṽ− ṽ′‖22.

Consequently, in order to apply the Gaussian comparison principle to {Yu,v} and {Zu,v}, we need
to show that

|||uṽT − (u′)(ṽ′)T |||2F ≤ ‖u−u′‖22+‖ṽ− ṽ′‖22 (6)

for all pairs (u, ṽ) and (u′, ṽ′) in the set of interest. Since the Frobenius norm ||| · |||F is simply the
!2-norm on the vectorized form of a matrix, we can compute

|||u ṽT −u′(ṽ′)T |||2F = |||(u−u′)ṽT +u′(ṽ− ṽ′)T |||2F

=
n

∑
i=1

p

∑
j=1

[(ui−u′i)ṽ j+u′i(ṽ j− ṽ′j)]2

= ‖ṽ‖22 ‖u−u′‖22+‖u′‖22‖ṽ− ṽ′‖22+2(uTu′ −‖u′‖22)(‖ṽ‖22− ṽT ṽ′)
= ‖u−u′‖22+‖ṽ− ṽ′‖22−2(‖u′‖22−uTu′)(‖ṽ‖22− ṽT ṽ′),

where we have used equalities ‖u‖2 = ‖u′‖2 = 1 and ‖ṽ‖2 = ‖ṽ′‖2 = 1. By the Cauchy-Schwarz
inequality, we have ‖u‖22− uTu′ ≥ 0, and ‖ṽ‖22− ṽT ṽ′ ≥ 0, from which the claimed inequality (6)
follows. When v= v′, we also have ṽ=Σ1/2v=Σ1/2v′= ṽ′, so that equality holds in the condition (6)
when ṽ= ṽ′.

Consequently, we may apply Gordon’s inequality to conclude that

E
[
sup
v∈V(r)

inf
u∈Sn−1

uTXv
]

≤ E
[
sup
v∈V(r)

inf
u∈Sn−1

Zu,v
]

= E[ inf
u∈Sn−1

"gTu]+E[ sup
v∈V(r)

"hTΣ1/2v]

= −E[‖"g‖2]+E[ sup
v∈V(r)

"hTΣ1/2v].
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We now observe that by definition of V(r), we have

sup
v∈V(r)

|"hTΣ1/2v|≤ sup
v∈V(r)

‖v‖1 ‖Σ1/2"h‖∞ ≤ r‖Σ1/2"h‖∞.

Each element (Σ1/2"h) j is zero-mean Gaussian with variance Σ j j. Consequently, known results on
Gaussian maxima (cf. Ledoux and Talagrand, 1991, Equation (3.13)) imply that E[‖Σ1/2h‖∞] ≤
3
√
ρ2(Σ) log p, where ρ2(Σ) = max jΣ j j. Noting2 that E[‖"g‖2]≥ 3

4
√
n for all n ≥ 10 by standard

χ2 tail bounds and putting together the pieces, we obtain the bound

E[− inf
v∈V(r)

‖Xv‖2] ≤ −
3
4
√
n+3

[
ρ2(Σ) log p

]1/2 r.

Dividing by
√
n and adding 1 to both sides yields

E[M(r,X)] = E[1− inf
v∈V(r)

‖Xv‖2/
√
n]≤ 1/4+3ρ(Σ)

√
log p
n

r,

as claimed.

4.3 Concentration Around the Mean forM(r,X)

Having controlled the expectation, the next step is to establish concentration of M(r,X) around its
mean. Note that Lemma 1 shows that E[M(r,X)]≤ t(r), where

t(r) :=
1
4
+3rρ(Σ)

√
log p
n

. (7)

Now we prove the following claim:

Lemma 2 For any r such that V(r) is non-empty, we have

P

[
M(r,X)≥

3t(r)
2

]
≤ 2exp(−nt2(r)/8).

Proof In order to prove this lemma, it suffices to show that

P
[
|M(r,X)−E[M(r,X)]|≥ t(r)/2

]
≤ 2exp(−nt2(r)/8),

and use the upper bound on E[M(r,X)] derived in Lemma 1.
By concentration of measure for Lipschitz functions of Gaussians (see Appendix B), this tail

bound will follow if we show that the Lipschitz constant of M(r,X) as a function of the Gaussian
random matrix is less than 1/

√
n. To make this functional dependence explicit, let us write M(r,X)

as the function h(W ) = supv∈V(r)
(
1−‖WΣ1/2v‖2/

√
n
)
. We find that

√
n
[
h(W )−h(W ′)

]
= sup

v∈V(r)
−‖WΣ1/2v‖2− sup

v∈V(r)
−‖W ′Σ1/2v‖2.

2. In fact, |E[‖"g‖2]−
√
n|= o(

√
n), but this simple bound is sufficient for our purposes.
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SinceV(r) is closed and bounded and the objective function is continuous, there exists v̂∈V(r) such
that v̂= argmaxv∈V(r)−‖WΣ1/2v‖2. Therefore

sup
v∈V(r)

(
−‖WΣ1/2v‖2

)
− sup

v∈V(r)

(
−‖W ′Σ1/2v‖2

)
= −‖WΣ1/2v̂‖2− sup

v∈V(r)

(
−‖W ′Σ1/2v‖2

)

≤ ‖W ′Σ1/2v̂‖2−‖WΣ1/2v̂‖2
≤ sup

v∈V(r)

(
‖(W ′ −W )Σ1/2v‖2

)
.

For a matrix A, we define its spectral norm |||A|||2 = sup‖u‖2=1 ‖Au‖2. With this notation, we can
bound the Lipschitz constant of h as

√
n
[
h(W )−h(W ′)

]
≤ sup

v∈V(r)

(
‖(W −W ′)Σ1/2v‖2

)

(a)
≤

{
sup
v∈V(r)

(
‖Σ1/2v‖2

)}
|||(W −W ′)|||2

(b)
≤

{
sup
v∈V(r)

(
‖Σ1/2v‖2

)}
|||(W −W ′)|||F

(c)
= |||W −W ′|||F .

In this argument, inequality (a) follows by definition of the matrix spectral norm ||| · |||2; inequality
(b) follows from the bound |||(W −W ′)|||2 ≤ |||(W −W ′)|||F between the spectral and Frobenius ma-
trix norms (Horn and Johnson, 1985); and equality (c) follows since ‖Σ1/2v‖2 = 1 for all v ∈ V(r).
Thus, we have shown that h has Lipschitz constant L ≤ 1/

√
n with respect to the Euclidean norm

onW (viewed as a vector with np entries). Finally we use a standard result on the concentration for
Lipschitz functions of Gaussian random variables (Ledoux, 2001; Massart, 2003)—see Appendix B
for one statement. Applying the concentration result (9) with m= np, g̃=W , and t = t(r)/2 com-
pletes the proof.

4.4 Extension to All Vectors Via Peeling

Thus far, we have shown that

M(r,X) = 1− inf
v∈V(r)

‖Xv‖2√
n

= sup
v∈V(r)

{
1−

‖Xv‖2√
n

}
≥ 3t(r)/2, (8)

with probability no larger than 2exp(−nt2(r)/8) where t(r) = 1
4 + 3r ρ(Σ)

√
log p
n . The set V(r)

requires that ‖v‖1 ≤ r for some fixed radius r, whereas the claim of Theorem 1 applies to all vectors
v. Consequently, we need to extend the bound (8) to an arbitrary !1 radius.

In order do so, we define the event

T :=
{
∃ v ∈ R

p s.t. ‖Σ1/2v‖2 = 1 and
(
1−‖Xv‖2/

√
n)≥ 3t(‖v‖1)

}
.

Note that there is no r in the definition of T , because we are setting ‖v‖1 to be the argument of the
function t. We claim that there are constants positive constants c, c′ such that P[T ] ≤ cexp(−c′n),
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from which Theorem 1 will follow. We establish this claim by using a device known as peeling
(Alexander, 1985; van de Geer, 2000); for the version used here, see Lemma 3 proved in the Ap-
pendix. In particular, we apply Lemma 3 with the functions

f (v,X) = 1−‖Xv‖2/
√
n, h(v) = ‖v‖1, and g(r) = 3t(r)/2,

the sequence an = n, and the set A = {v ∈ Rp | ‖Σ1/2v‖2 = 1}. Recall that the quantity t, as
previously defined (7), satisfies t(r) ≥ 1/4 for all r > 0 and is strictly increasing. Therefore, the
function g(r) = 3t(r)/2 is non-negative and strictly increasing as a function of r, and moreover
satisfies g(r) ≥ 3/8, so that Lemma 3 is applicable with µ= 3/8. We can thus conclude that
P[T c]≥ 1− cexp(−c′n) for some numerical constants c and c′.

Finally, conditioned on the event T c, for all v ∈ Rp with ‖Σ1/2v‖2 = 1, we have

1−‖Xv‖2/
√
n ≤ 3t(‖v‖1) =

3
4
+9‖v‖1 ρ(Σ)

√
log p
n

,

which implies that

‖Xv‖2/
√
n≥

1
4
−9‖v‖1 ρ(Σ)

√
log p
n

.

As noted in the proof outline, this suffices to establish the general claim.

5. Conclusion

Methods based on !1-relaxations are very popular, and the weakest possible conditions on the de-
sign matrix X required to provide performance guarantees—namely, the restricted nullspace and
eigenvalue conditions—are well-understood. In this paper, we have proved that these conditions
hold with high probability for a broad class of Gaussian design matrices allowing for quite general
dependency among the columns, as captured by a covariance matrix Σ representing the dependence
among the different covariates. As a corollary, our result guarantees that known performance guar-
antees for !1-relaxations such as basis pursuit and Lasso hold with high probability for such prob-
lems, provided the population matrix Σ satisfies the RE condition. Interestingly, our theory shows
that !1-methods can perform well when the covariates are sampled from a Gaussian distribution
with a degenerate covariance matrix. Some follow-up work (Zhou, 2009) has extended these results
to random matrices with sub-Gaussian rows. In addition, there are a number of other ways in which
this work could be extended. One is to incorporate additional dependence across the rows of the de-
sign matrix, as would arise in modeling time series data for example. It would also be interesting to
relate the allowable degeneracy structures of Σ to applications involving real data. Finally, although
this paper provides various conditions under which the RE condition holds with high probability, it
does not address the issue of how to determine whether a given sample covariance matrix matrix
Σ̂= XTX/n satisfies the RE condition. It would be interesting to study if there are computationally
efficient methods for verifying the RE condition.
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Appendix A. Peeling Argument

In this appendix, we state a result on large deviations of the constrained optimum of random ob-
jective functions of the form f (v;X), where v ∈ Rp is the vector to be optimized over, and X is
some random vector. Of interest is the problem suph(v)≤r, v∈A f (v;X), where h : Rp → R+ is some
non-negative and increasing constraint function, and A is a non-empty set. With this set-up, our goal
is to bound the probability of the event defined by

E :=
{
∃ v ∈ A such that f (v;X)≥ 2g(h(v)))

}
,

where g : R→ R is non-negative and strictly increasing.
Lemma 3 Suppose that g(r) ≥ µ for all r ≥ 0, and that there exists some constant c > 0 such that
for all r > 0, we have the tail bound

P
[

sup
v∈A, h(v)≤r

f (v;X)≥ g(r)] ≤ 2exp(−can g2(r)),

for some an > 0. Then we have

P[E ] ≤
2exp(−4canµ2)
1− exp(−4canµ2)

.

Proof : Our proof is based on a standard peeling technique (e.g., see van de Geer, 2000, p. 82). By
assumption, as v varies over A, we have g(r) ∈ [µ,∞). Accordingly, for m = 1,2, . . ., defining the
sets

Am :=
{
v ∈ A | 2m−1µ≤ g(h(v))≤ 2mµ

}
,

we may conclude that if there exists v ∈ A such that f (v,X) ≥ 2g(h(v)), then this must occur for
some m and v ∈ Am. By union bound, we have

P[E ] ≤
∞

∑
m=1

P
[
∃ v ∈ Am such that f (v,X)≥ 2g(h(v))

]
.

If v ∈ Am and f (v,X) ≥ 2g(h(v)), then by definition of Am, we have f (v,X)≥ 2(2m−1)µ= 2mµ.
Since for any v ∈ Am, we have g(h(v))≤ 2mµ, we combine these inequalities to obtain

P[E ] ≤
∞

∑
m=1

P
[

sup
h(v)≤g−1(2mµ)

f (v,X)≥ 2mµ
]

≤
∞

∑
m=1

2exp
(
− can [g(g−1(2mµ))]2

)

= 2
∞

∑
m=1

exp
(
− can 22mµ2

)
,

from which the stated claim follows by upper bounding this geometric sum.
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Appendix B. Concentration for Gaussian Lipschitz Functions

We say that a function F : Rm → R is Lipschitz with constant L if |F(x)−F(y)|≤ L‖x− y‖2 for all
x,y∈Rm. It is a classical fact that Lipschitz functions of standard Gaussian vectors exhibit Gaussian
concentration. We summarize one version of this fact in the following:

Theorem 2 (Theorem 3.8 from Massart 2003) Let w ∼ N (0, Im×m) be an m-dimensional Gaus-
sian random variable. Then for any L-Lipschitz function F, we have

P

[
|F(w)−E[F(w)]|≥ t

]
≤ 2exp

(
−

t2

2L2

)
, for all t ≥ 0. (9)

This result can be interpreted as saying that in terms of tail behavior, the random variable F(w)−
E[F(w)] behaves like a zero-mean Gaussian with variance L2.
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Abstract
This paper considers the problem of estimating a high dimensional inverse covariance matrix that
can be well approximated by “sparse” matrices. Taking advantage of the connection between mul-
tivariate linear regression and entries of the inverse covariance matrix, we propose an estimating
procedure that can effectively exploit such “sparsity”. The proposed method can be computed
using linear programming and therefore has the potential to be used in very high dimensional prob-
lems. Oracle inequalities are established for the estimation error in terms of several operator norms,
showing that the method is adaptive to different types of sparsity of the problem.
Keywords: covariance selection, Dantzig selector, Gaussian graphical model, inverse covariance
matrix, Lasso, linear programming, oracle inequality, sparsity

1. Introduction

One of the classical problems in multivariate statistics is to estimate the covariance matrix or its
inverse. Let X = (X1, . . . ,Xp)′ be a p-dimensional random vector with an unknown covariance
matrix Σ0. The goal is to estimate Σ0 or its inverse Ω0 := Σ−10 based on n independent copies of X ,
X (1), . . . ,X (n). The usual sample covariance matrix is most often adopted for this purpose:

S=
1
n

n

∑
i=1

(X (i)− X̄)(X (i)− X̄)′,

where X̄ = ∑X (i)/n. The behavior of S is well understood and it is known to perform well in the
classical setting when the dimensionality p is small (see, e.g., Anderson, 2003; Muirhead, 2005).
On the other hand, with the recent advances in science and technology, we are more and more often
faced with the problem of high dimensional covariance matrix estimation where the dimensionality
p is large when compared with the sample size n. Given the large number of parameters (p(p+1)/2)
involved, exploiting the sparse nature of the problem becomes critical. In particular, traditional
estimates such as S do not take advantage of the possible sparsity and are known to perform poorly
under many usual matrix norms when p is large. Motivated by the practical demands and the failure
of classical methods, a number of sparse models and approaches have been introduced in recent
years to deal with high dimensional covariance matrix estimation. See, for example, Ledoit and
Wolf (2004), Levina, Rothman and Zhu (2007), Deng and Yuan (2008), El Karoui (2008), Fan, Fan
and Lv (2008), Ravikumar, Raskutti, Wainwright and Yu (2008), Ravikumar, Wainwright, Ruskutti
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and Yu (2008), Rocha, Zhao and Yu (2008), Lam and Fan (2009), and Rothman, Levina and Zhu
(2009) among others.

Bickel and Levina (2008a) pioneered the theoretical study of high dimensional sparse covariance
matrices. They consider the case where the magnitude of the entries of Σ0 decays at a polynomial
rate of their distance from the diagonal; and show that banding the sample covariance matrix or
S leads to well-behaved estimates. More recently, Cai, Zhang and Zhou (2010) established min-
imax convergence rates for estimating this type of covariance matrices. A more general class of
covariance matrix model is investigated in Bickel and Levina (2008b) where the rows or columns
of Σ0 is assumed to come from an !α ball with 0 < α < 1. They suggest thresholding the entries
of S and study its theoretical behavior when p is large. In addition to the aforementioned methods,
sparse models have also been proposed for the modified Cholesky factor of the covariance matrix
in a series of papers by Pourahmadi and co-authors (Pourahmadi, 1999; Pourahmadi, 2000; Wu and
Pourahmadi, 2003; Huang et al., 2006).

In this paper, we focus on another type of sparsity—sparsity in terms of the entries of the inverse
covariance matrix. This type of sparsity naturally connects with the problem of covariance selection
(Dempster, 1972) and Gaussian graphical models (see, e.g., Whittaker, 1990; Lauritzen, 1996; Ed-
wards, 2000), which makes it particularly appealing in a number of applications. Methods to exploit
such sparsity have been proposed recently. Inspired by the nonnegative garrote (Breiman, 1995) and
Lasso (Tibshirani, 1996) for the linear regression, Yuan and Lin (2007) propose to impose !1 type of
penalty on the entries of the inverse covariance matrix when maximizing the normal log-likelihood
and therefore encourages some of the entries of the estimated inverse covariance matrix to be exact
zero. Similar approaches are also taken by Banerjee, El Ghaoui and d’Aspremont (2008). One
of the main challenges for this type of methods is computation which has been recently addressed
by d’Aspremont, Banerjee and El Ghaoui (2008), Friedman, Hastie and Tibshirani (2008), Rocha,
Zhao and Yu (2008), Rothman et al. (2008) and Yuan (2008). Some theoretical properties of this
type of methods have also been developed by Yuan and Lin (2007), Ravikumar et al. (2008), Roth-
man et al. (2008) and Lam and Fan (2009) among others. In particular, the results from Ravikumar
et al. (2008) and Rothman et al. (2008) suggest that, although better than the sample covariance
matrix, these methods may not perform well when p is larger than the sample size n. It remains
unclear to what extent the sparsity of inverse covariance matrix entails well-behaved covariance
matrix estimates.

Through the study of a new estimating procedure, we show here that the estimability of a high
dimensional inverse covariance matrix is related to how well it can be approximated by a graphical
model with a relatively low degree. The revelation that the degree of a graph dictates the diffi-
culty of estimating a high dimensional covariance matrix suggests that the proposed method may be
more appropriate to harness sparsity in the inverse covariance matrix than those mentioned earlier in
which the !1 penalty serves as a proxy to control the total number of edges in the graph as opposed
to its degree. The proposed method proceeds in two steps. A preliminary estimate is first con-
structed using a well known relationship between inverse covariance matrix and multivariate linear
regression. We show that the preliminary estimate, although often dismissed as an estimate of the
inverse covariance matrix, can be easily modified to produce a satisfactory estimate for the inverse
covariance matrix. We show that the resulting estimate enjoys very good theoretical properties by
establishing oracle inequalities for the estimation error.

The probabilistic bounds we prove suggest that the estimation error of the proposed method
adapts to the sparseness of the true inverse covariance matrix. The implications of these oracle in-
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equalities are demonstrated on a couple of popular covariance matrix models. WhenΩ0 corresponds
to a Gaussian graphical model of degree d, we show that the proposed method can achieve conver-
gence rate of the order Op[d(n−1 log p)−1/2] in terms of several matrix operator norms. We also
examine the more general case where the rows or columns of Ω0 belong to an !α ball (0< α< 1),
the family of positive definite matrices introduced by Bickel and Levina (2008b). We show that the
proposed method achieves the convergence rate of Op[(n−1 log p)(1−α)/2], the same as that obtained
by Bickel and Levina (2008b) when assuming that Σ0 rather than Ω0 belongs to the same family of
matrices. For both examples, we also show that the obtained rates are optimal in a minimax sense
when considering estimation error in terms of matrix !1 or !∞ norms.

The proposed method shares similar spirits with the neighborhood selection approach proposed
by Meinshausen and Bühlmann (2006). However, the two techniques are developed for different
purposes. Neighborhood selection aims at identifying the correct graphical model whereas our goal
is to estimate the covariance matrix. The distinction is clear when the inverse covariance matrix is
only “approximately” sparse and does not have many zero entries. Even when the inverse covariance
matrix is indeed sparse, the two tasks of estimation and selection can be different. In particular,
our results suggest that good estimation can be achieved under conditions weaker than those often
assumed to ensure good selection.

The rest of the paper is organized as follows. In the next section, we describe in details the
estimating procedure. Theoretical properties of the method are established in Section 3. All detailed
proofs are relegated to Section 6. Numerical experiments are presented in Section 4 to illustrate the
merits of the proposed method before concluding with some remarks in Section 5.

2. Methodology

In what follows, we shall write X−i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xp)′. Similarly, denote by Σ−i,− j the
submatrix of Σ with its ith row and jth column removed. Other notation can also be interpreted in
the same fashion. For example, Σi,− j or Σ−i, j represents the ith row of Σ with its j entry removed or
the jth column with its ith entry removed respectively.

2.1 Regression and Inverse Covariance Matrix

It is well known that if X follows a multivariate normal distribution N (µ,Σ), then the conditional
distribution of Xi given X−i remains normally distributed (Anderson, 2003), that is,

Xi|X−i ∼N
(
µi+Σi,−iΣ

−1
−i,−i(X−i−µ−i),Σii−Σi,−iΣ

−1
−i,−iΣ−i,i

)
.

This can be equivalently expressed as the following regression equation:

Xi = αi+X ′
−iθ(i) + εi, (1)

where αi = µi−Σi,−iΣ
−1
−i,−iµ−i is a scalar, θ(i) = Σ−1−i,−iΣ−i,i is a p− 1 dimensional vector and εi ∼

N (0,Σii− Σi,−iΣ
−1
−i,−iΣ−i,i) is independent of X−i. When X follows a more general distribution,

similar relationship holds in that αi+X ′
−iθ(i) is the best linear unbiased estimate of Xi given X−i

whereas Var(εi) = Σii−Σi,−iΣ
−1
−i,−iΣ−i,i.
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Now by the inverse formula for block matrices, Ω := Σ−1 is given by

(
Σ11 Σ1,−1
Σ−1,1 Σ−1,−1

)−1
=





Ω11︷ ︸︸ ︷(
Σ11−Σ1,−1Σ

−1
−1,−1Σ−1,1

)−1
−Ω11Σ1,−1Σ

−1
−1,−1

−Σ−1−1,−1Σ−1,1Ω11 ∗



 .

More generally, the ith column of Ω can be written as

Ωii =
(
Σii−Σi,−iΣ

−1
−i,−iΣ−i,i

)−1
;

Ω−i,i = −
(
Σii−Σi,−iΣ

−1
−i,−iΣ−i,i

)−1
Σ−1−i,−iΣ−i,i.

This immediately connects with (1):

Ωii = (Var(εi))−1 ;
Ω−i,i = −(Var(εi))−1θ(i).

Therefore, an estimate of Ω can potentially be obtained by regressing Xi over X−i for i = 1, . . . , p.
Furthermore, the sparsity in the entries ofΩ can be translated into sparsity in regression coefficients
θ(i)s.

2.2 Initial Estimate

From the aforementioned relationship, a zero entry on the ith column of the inverse covariance
matrix implies a zero entry in the regression coefficient θ(i) and vice versa. This property is exploited
by Meinshausen and Bühlmann (2006) to identify the zero pattern of the inverse covariance matrix.
Specifically, in the so-called neighborhood selection method, the zero entries of the ith column of
Ω0 are identified by doing variable selection when regressing Xi over X−i. More specifically, they
suggest to use Lasso (Tibshirani, 1996) for the purpose of variable selection.

Our goal here, however, is rather different. Instead of identifying which entries of Ω0 are zero,
our focus is on estimating it. The distinction is apparent when Ω0 is only “approximately” sparse
instead of having a lot of zero entries. Even if Ω0 indeed has lot of zeros, the two tasks can still
be quite different in high dimensional problems. For example, in identifying the nonzero entries of
Ω0, it is necessary to assume that all nonzero entries are sufficiently different from zero (see, e.g.,
Meinshausen and Bühlmann, 2006). Such assumptions may be unrealistic and can be relaxed if the
purpose is to estimate the covariance matrix. With such a distinction in mind, the question now
is whether or not similar strategies of applying sparse multivariate linear regression to recover the
inverse covariance matrix remains useful. The answer is affirmative.

To this end, we consider estimating Ω0 as follows:

Ω̃ii =
(
V̂ar(εi)

)−1
;

Ω̃−i,i = −
(
V̂ar(εi)

)−1
θ̂(i),

where V̂ar(εi) and θ̂(i) are estimated from regressing Xi over X−i. In particular, we suggest to use
the so-called Dantzig selector (Candès and Tao, 2007) for estimating the regression coefficients. We
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begin by centering each variable Xi to eliminate the intercept αi in (1). Denote by Zi = Xi− X̄i where
X̄i is the sample average of Xi. The Dantzig selector estimate of θ(i) is the solution to

min
β∈Rp−1,β0∈R

‖β‖!1 subject to
∥∥En

[(
Zi−Z′−iβ

)
Z−i
]∥∥

!∞
≤ δ,

where En represents the sample average, and δ> 0 is a tuning parameter. Recall that EnZiZ j = Si j.
The above problem can also be written in terms of S:

min
β∈Rp−1,β0∈R

‖β‖!1 subject to
∥∥S−i,i−S−i,−iβ

∥∥
!∞

≤ δ. (2)

The minimization of the !1 norm of the regression coefficient reflects our preference towards sparse
models which is particularly important when dealing with high dimensional problems. Once an
estimate of θ(i) is obtained, we can then estimate the variance of εi by the mean squared error of the
residuals:

V̂ar(εi) = En
(
Xi−X ′

−iθ̂(i)
)2

= Sii−2θ̂′(i)S−i,i+ θ̂′(i)S−i,−iθ̂(i).

We obtain Ω̃ by repeating this procedure for i= 1, . . . , p.
We emphasize that for practical purposes, one can also use the Lasso in place of the Dantzig

selector for constructing Ω̃. The choice of Dantzig selector is made for the sake of our further
technical developments. In the light of the results of Bickel, Ritov and Tsybakov (2009), similar
performance can be expected with either the Lasso or the Dantzig selector although a more rigorous
proof when using the Lasso is beyond the scope of the current paper.

2.3 Symmetrization

Ω̃ is is usually dismissed as an estimate of Ω for it is not even symmetric. In fact, it is not obvi-
ous that Ω̃ is in any sense a reasonable estimate of Ω0. But a more careful examination suggests
otherwise. It reveals that Ω̃ could be a good estimate in a certain matrix operator norm.

The matrix operator norm is a class of matrix norms induced by vector norms. Let ‖x‖!q be the
!q norm of an p dimensional vector x= (x1, . . . ,xp)′, that is,

‖x‖!q = (|x1|q+ . . .+ |xp|q)1/q.

Then the matrix !q norm for an p× p square matrix A= (ai j)1≤i, j≤p is given by

‖A‖!q = sup
x *=0

‖Ax‖!q
‖x‖!q

.

In the case of q= 1 and q= ∞, the matrix norm can be given more explicitly as

‖A‖!1 = max
1≤ j≤p

p

∑
i=1

∣∣ai j
∣∣ ;

‖A‖!∞ = max
1≤i≤p

p

∑
j=1

∣∣ai j
∣∣ .

When q = 2, the matrix operator norm of A amounts to its leading singular value, and is often
referred to as the spectral norm.
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A careful study shows that Ω̃ can be a good estimate of Ω in terms of the matrix !1 norm in
sparse circumstances. It is therefore of interest to consider improved estimates from Ω̃ that inherits
this property. To this end, we propose to adjust Ω̃ by seeking a symmetric matrix Ω̂ that is the the
closest to Ω̃ in the sense of the matrix !1 norm, that is, it solves the following problem:

min
Ω is symmetric

‖Ω− Ω̃‖!1 . (3)

Recall that

‖Ω− Ω̃‖!1 = max
1≤ j≤p

p

∑
i=1

∣∣Ωi j− Ω̃i j
∣∣ .

Problem (3) can therefore be re-formulated as a linear program just like the computation of Ω̃.
To sum up, our estimate of the inverse covariance matrix is obtained in the following steps:

ALGORITHM FOR COMPUTING Ω̂

Input: Sample covariance matrix – S, tuning parameter – δ.
Output: An estimate of the inverse covariance matrix – Ω̂.

• Construct Ω̃
for i= 1 to p

– Estimate θ(i) by θ̂(i), the solution to

min
β∈Rp−1

‖β‖!1 subject to
∥∥S−i,i−S−i,−iβ

∥∥
!∞

≤ δ.

– Set
Ω̃ii =

(
Sii−2θ̂′(i)S−i,i+ θ̂′(i)S−i,−iθ̂(i)

)−1
.

– Set
Ω̃−i,i =−Ω̃iiθ̂(i).

end

• Construct Ω̂

– Set Ω̂ as the solution to
min

Ω is symmetric
‖Ω− Ω̃‖!1 .

It is worth pointing out that that proposed method depends on the data only through the sample
covariance matrix. This fact is of great practical importance since it suggests that a large sample
size will not affect the computational complexity in calculating Ω̂ more than the evaluation of S.
Furthermore, only linear programs are involved in the computation of Ω̂, which makes the approach
appealing when dealing with very high dimensional problems.

2266



COVARIANCE MATRIX ESTIMATION

3. Theory

In what follows, we shall assume that the components of X are uniformly sub-gaussian, that is, there
exist constants c0 ≥ 0, and T > 0 such that for any |t|≤ T

EetX
2
i ≤ c0, i= 1,2, . . . , p.

This condition is clearly satisfied when X follows a multivariate normal distribution. It also holds
true when Xis are bounded.

3.1 Oracle Inequality

Our main tool to study the theoretical properties of Ω̂ is an oracle type of inequality regarding
the estimation error ‖Ω̂−Ω0‖!1 . To this end, we introduce the following set of “oracle” inverse
covariance matrices:

O(ν,η,τ) =




Ω, 0 :
ν−1 ≤ λmin(Ω)≤ λmax(Ω)≤ ν (Bounded Eigenvalues)
‖Σ0Ω− I‖max ≤ η (“Good” Approximation)
‖Ω‖!1 ≤ τ (Sparsity)




 ,

where A, 0 indicates that a matrix A is symmetric and positive definite; ν> 1, τ> 0, and η≥ 0 are
parameters; λmin and λmax represent the smallest and largest eigenvalue respectively; and ‖ · ‖max
represents the entry-wise !∞ norm, that is,

‖A‖max = max
1≤i, j≤p

|ai j|.

We refer to O(ν,η,τ) as an “oracle” set because its definition requires the knowledge of the true
covariance matrix Σ0. Every member of O(ν,η,τ) is symmetric, positive definite with eigenvalues
bounded away from 0 and ∞, and belongs to an !1 ball. Moreover, O(ν,η,τ) consists of matrices
that approximate Ω0 well. It is worth noting that different from the usual vector case, the choice of
metric is critical when evaluating approximating error for matrices. In particular for our purpose,
the approximation error is measured by ‖Σ0Ω− I‖max, which vanishes if and only if Ω = Ω0. We
are now in position to state our main result.

Theorem 1 There exist constants C1,C2 depending only on ν,τ, λmin(Ω0) and λmax(Ω0), and C3
depending only on c0 such that, for any A> 0, with probability at least 1− p−A,

∥∥Ω̂−Ω0
∥∥
!1
≤C1 inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
!1
+deg(Ω)δ

)
, (4)

provided that
inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
!1
+deg(Ω)δ

)
≤C2, (5)

and
δ≥ νη+C3ντλ−1min(Ω0)((A+1)n

−1 log p)1/2, (6)

where deg(Ω) =maxi∑ j I(Ωi j *= 0).
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We remark that the oracle inequality given in Theorem 1 is of probabilistic nature and non-
asymptotic. However, (4) holds with overwhelming probability as we are interested in the case
when p is very large. The requirement (5) is in place to ensure that the true inverse covariance
matrix is indeed “approximately” sparse. Another note is on the choice of the tuning parameter
δ. To ensure an tight upper bound in (4), smaller δs are preferred. On the other hand, Condition
(6) specifies how small they can be. For simplicity, we have used the same tuning parameter δ for
estimating all θ(i)s. In practice, it may be beneficial to use different δs for different θ(i)s. Following
the same argument, it can be shown that the statement of Theorem 1 continue to hold if all tuning
parameters used satisfy Condition (6).

Recall that for a symmetric matrix A, ‖A‖!∞ = ‖A‖!1 and

‖A‖!2 ≤ (‖A‖!1‖A‖!∞)
1/2 = ‖A‖!1 .

A direct consequence of Theorem 1 is that the same upper bound holds true under matrix !∞ and !2
norms.

Corollary 2 There exist constants C1,C2 depending only on ν,τ, λmin(Ω0) and λmax(Ω0), and C3
depending only on c0 such that, for any A> 0, with probability at least 1− p−A,

∥∥Ω̂−Ω0
∥∥
!∞
,
∥∥Ω̂−Ω0

∥∥
!2
≤C1 inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
!1
+deg(Ω)δ

)
,

provided that
inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
!1
+deg(Ω)δ

)
≤C2,

and
δ≥ νη+C3ντλ−1min(Ω0)((A+1)n

−1 log p)1/2.

The bound on the matrix !2 has great practical implications when we are interested in estimating
the covariance matrix or need to a positive definite estimate of Ω. The proposed estimate Ω̂ is
symmetric but not guaranteed to be positive definite. However, Corollary 2 suggests that with
overwhelming probability, it is indeed positive definite provided that the upper bound is sufficiently
small because

λmin(Ω̂)≥ λmin(Ω0)−
∥∥Ω̂−Ω0

∥∥
!2
.

Moreover, a positive definite estimate of Ω can always be constructed by replacing its negative
eigenvalues with δ. Denote the resulting estimate by ˆ̂Ω. By Corollary 2, it can be shown that

Corollary 3 There exist constants C1,C2 depending only on ν,τ, λmin(Ω0) and λmax(Ω0), and C3
depending only on c0 such that, for any A> 0, with probability at least 1− p−A,

∥∥ ˆ̂Ω−1−Σ0
∥∥
!2
,
∥∥ ˆ̂Ω−Ω0

∥∥
!2
≤C1 inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
!1
+deg(Ω)δ

)
,

provided that
inf

Ω∈O(ν,η,τ)

(∥∥Ω−Ω0
∥∥
!1
+deg(Ω)δ

)
≤C2,

and
δ≥ νη+C3ντλ−1min(Ω0)((A+1)n

−1 log p)1/2.
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When considering a particular class of inverse covariance matrices, we can use the oracle in-
equalities established here with a proper choice of the oracle set O. Typically in choosing a good
oracle setO, we take ν and τ to be of finite magnitude whereas the approximation error η sufficiently
small. To further illustrate their practical implications, we now turn to a couple of more concrete
examples.

3.2 Sparse Models

We begin with a class of matrix models that are closely connected with graphical models. When
X follows a multivariate normal distribution, the sparsity of the entries of the inverse covariance
matrix relates to the notion of conditional independence: the (i, j) entry of Ω0 being zero implies
that Xi is independent of Xj conditional on the remaining variables and vice versa. The conditional
independence relationships among the coordinates of the Gaussian random vector X can be repre-
sented by an undirected graph G= (V,E), often referred to as a Gaussian graphical model, whereV
contains p vertices corresponding to the p coordinates and the edge between Xi and Xj is present if
and only if Xi and Xj are not independent conditional on the others. The complexity of a graphical
model is commonly measured by its degree:

deg(G) = max
1≤i≤p∑j

ei j,

where ei j = 1 if there is an edge between Xi and Xj and 0 otherwise. Gaussian graphical models
are an indispensable statistical tool in studying communication networks and gene pathways among
many other subjects. The readers are referred to Whittaker (1990), Lauritzen (1996) and Edwards
(2000) for further details.

Motivated by this connection, we consider the following class of inverse covariance matrices:

M1(τ0,ν0,d) =
{
A, 0 : ‖A‖!1 < τ0,ν

−1
0 < λmin(A)< λmax(A)< ν0,deg(A)< d

}
,

where τ0,ν0 > 1, and deg(A) = maxi∑ j I(Ai j *= 0). In this case, taking an oracle set such that
Ω0 ∈ O yields the following result:

Theorem 4 Assume that d(n−1 log p)1/2 = o(1). Then

sup
Ω0∈M1(τ0,ν0,d)

∥∥Ω̂−Ω0
∥∥
!q
= Op

(
d
√
log p
n

)
, (7)

provided that δ=C(n−1 log p)1/2 and C is large enough.

Theorem 4 follows immediately from Theorem 1 and Corollary 2 by taking η= 0, τ= ‖Ω0‖!1 ,
and ν = max{λ−1min(Ω0),λmax(Ω0)}, which ensures that Ω0 ∈ O(ν,η,τ). We note that the rate of
convergence given by (7) is also optimal in the minimax sense when considering matrix !1 norm.

Theorem 5 Assume that d(n−1 log p)1/2 = o(1). Then there exists a constant C> 0 depending only
on τ0, and ν0 such that

inf
Ω̄

sup
Ω0∈M1(τ0,ν0,d)

P

{
∥∥Ω̄−Ω0

∥∥
!1
≥Cd

√
log p
n

}
> 0,

where the infimum is taken over all estimate Ω̄ based on observations X (1), . . . ,X (n).
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Theorem 5 indicates that the estimability of a sparse inverse covariance matrix is dictated by its
degree as opposed to the total number of nonzero entries. This observation gives a plausible expla-
nation on why the usual !1 penalized likelihood estimate (see, e.g., Yuan and Lin, 2007; Banarjee,
El Ghaoui and d’Aspremont, 2008) may not be the best to exploit this type of sparsity because the
penalty employed by these methods is convex relaxations of the constraint on total number of edges
in a graphical model instead of its degree.

It is also of interest to compare our results with those from Meinshausen and Bühlmann (2006).
As mentioned before, the goal of the neighborhood selection from Meinshausen and Bühlmann
(2006) is to select the correct graphical model whereas our focus here is on estimating the covariance
matrix. However, the neighborhood selection method can be followed by the maximum likelihood
estimation based on the selected graphical model to yield a covariance matrix estimate. Clearly
the success of this method hinges upon the ability of the neighborhood selection to choose a correct
graphical model. It turns out that selecting the graphical model can be more difficult than estimating
the covariance matrix as reflected by the more restrictive assumptions made in Meinshausen and
Bühlmann (2006). In particular, to be able to identify the nonzero entries of the inverse covariance
matrix, it is necessary that they are sufficiently large in magnitude whereas such requirement is
generally not needed for the purpose of estimation. Moreover, Meinshausen and Bühlmann (2006)
only deals with the case when the dimensionality is of a polynomial order of the sample size, that
is, p= O(nγ) for some γ> 0.

3.3 Approximately Sparse Models

In many applications, the inverse covariance matrix is only approximately sparse. A popular way
to model this class of covariance matrix is to assume that its rows or columns belong to an !α ball
(0< α< 1):

M2 (τ0,ν0,α,M) =

{
A, 0 : ‖A−1‖!1 < τ0,ν

−1
0 ≤ λmin(A)≤ λmax(A)≤ ν0,

p

∑
j=1

∣∣Ai j
∣∣α ≤M

}
,

where τ0,ν0 > 1 and 0 < α < 1. M2 can be viewed as a natural extension of the sparse model
M1. In particular,M1 can be viewed as the limiting case ofM2 when α approaches 0. By relaxing
α, M2 includes matrices that are less sparse than those included in M1. The particular class of
matrices were first introduced by Bickel and Levina (2008b) who investigate the case when Σ0 ∈
M2(τ0,ν0,α,M). We note that their setting is different from ours as M2 is not closed with respect
to inversion. An application of Theorem 1 and Corollary 2 yields:

Theorem 6 Assume that M
(
n−1 log p

) 1−α
2 = o(1). Then

sup
Ω0∈M2(τ0,ν0,α,M)

‖Ω̂−Ω0‖!q = Op

(
M
(
log p
n

) 1−α
2
)
, (8)

provided that δ=C(n−1 log p)1/2 and C is sufficiently large.

Assuming that Σ0 ∈M2, Bickel and Levina (2008b) study thresholding estimator of the covari-
ance matrix. Their setting is different from ours because M2 is not closed under inversion. It is
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however interesting to note that Bickel and Levina (2008b) show that thresholding the sample co-
variance matrix S at an appropriate level can achieve the same rate given by right hand side of (8).
The coincidence should not come as a surprise despite the difference in problem setting because the
size of the parameter space in both problems are the same. Moreover, the following theorem shows
that in both settings, the rate is optimal in the minimax sense.

Theorem 7 Assume that M
(
n−1 log p

) 1−α
2 = o(1). Then there exists a constant C > 0 depending

only on τ0, and ν0 such that

inf
Ω̄

sup
Ω0∈M2(τ0,ν0,α,M)

P

{
∥∥Ω̄−Ω0

∥∥
!1
≥CM

(
log p
n

) 1−α
2
}

> 0, (9)

and

inf
Σ̄

sup
Σ0∈M2(τ0,ν0,α,M)

P

{
∥∥Σ̄−Σ0

∥∥
!1
≥CM

(
log p
n

) 1−α
2
}

> 0, (10)

where the infimum is taken over all estimate, Ω̄ or Σ̄, based on observations X (1), . . . ,X (n).

4. Numerical Experiments

To illustrate the merits of the proposed method and compare it with other popular alternatives, we
now conduct a set of numerical studies. Specifically, we generated n = 50 observations from a
multivariate normal distribution with mean 0 and variance covariance matrix given by Σ0i j = ρ|i− j|

for some ρ *= 0. Such covariance structure corresponds to an AR(1) model. Its inverse covariance
matrix is banded with the magnitude of ρ determining the strength of the dependence among the
coordinates. We consider combinations of seven different values of ρ, 0.1, 0.2,. . . , 0.7 and four val-
ues of the dimensionality, p = 25, 50, 100 or 200. Two hundred data sets were simulated for each
combination. For each simulated data set, we ran the proposed method to construct estimate of the
inverse covariance matrix. As suggested by the theoretical developments, we set δ= (2n−1 log p)−1
throughout all simulation studies. For comparison purposes, we included a couple of popular alter-
native covariance matrix estimates in the study. The first is the !1 penalized likelihood estimate of
Yuan and Lin (2007). As suggested by Yuan and Lin (2007), the BIC criterion was used to choose
the tuning parameter among a total of 20 pre-specified values. The second is a variant of the neigh-
borhood selection approach of Meinshausen and Bühlmann (2006). As pointed out earlier, the goal
of the neighborhood selection is to identify the underlying graphical model rather than estimating
the covariance matrix. We consider here a simple two-step procedure where the maximum likeli-
hood estimate based on the selected graphical model is employed. As advocated by Meinshausen
and Bühlmann (2006), the level of significance is set at α= 0.05 in identifying the graphical model.
Figure 1 summarizes the estimation error measured by the spectral norm, that is, ‖Ĉ−C‖!2 , for the
three methods, averaged over two hundred runs.

A few observations can be made from Figure 1. We first note that the proposed method tends to
outperform the other two methods when ρ is small and the advantage becomes more evident as the
dimensionality increases. On the other hand, the advantage over the neighborhood selection based
method gradually vanishes as ρ increases yet the proposed method remains competitive. A plausible
explanation is the distinction between estimation and selection in high dimensional problems as
pointed out earlier. The success of the neighbor selection based method hinges upon a good selection
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Figure 1: Estimation error of the proposed method (black solid lines), the !1 penalized likelihood
estimate (red dashed lines) and the maximum likelihood estimate based on the graphical
model selected through neighborhood selection (green dotted lines). Each panel corre-
sponds to a different value of the dimensionality. X-axes represent the value of ρ. The
estimation errors are averaged over two hundred runs.

of the graphical model. Recall that the inverse covariance matrix is banded with nonzero entries
increasing in magnitude with ρ. For large values of ρ, the task of identifying the correct graphical
model is relatively easier. With a good graphical model chosen, refitting it with the maximum
likelihood estimator could reduce biases often associated with regularization approaches. Such
benefit diminishes for small values of ρ as identifying nonzero entries in the inverse covariance
matrix becomes more difficult.

At last, we note that all three methods are relatively efficient to compute. For example, when
p= 200 and ρ= 0.5, the averaged CPU time for the !1 penalized likelihood estimate is 0.53 seconds,
for the neighborhood selection based method is 1.42 seconds, and for the proposed method is 3.21
seconds. Both the !1 penalized likelihood estimate and the neighborhood selection based method
are computed using the graphical Lasso algorithm of Friedman, Hastie and Tibshirani (2008) which
iteratively solves a sequence of p Lasso problems using a modified Lars algorithm (Efron et al.,
2004). The algorithm is specially developed to take advantage of the sparse nature of the problem
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and available in the glasso package in R. The proposed method is implemented in MATLAB using
its general purpose interior-point algorithm based linear programming solver and could be further
improved using more specialized algorithms (see, e.g., Asif, 2008).

5. Discussions

High dimensional (inverse) covariance matrix estimation is becoming more and more common in
various scientific and technological areas. Most of the existing methods are designed to benefit
from sparsity of the covariance matrix, and based on banding or thresholding the sample covari-
ance matrix. Sparse models for the inverse covariance matrix, despite its practical appeal and close
connection to graphical modeling, are more difficult to be taken advantage of due to heavy computa-
tional cost as well as the lack of a coherent theory on how such sparsity can be effectively exploited.
In this paper, we propose an estimating procedure that addresses both challenges. The proposed
method can be formulated using linear programming and therefore computed very efficiently. We
also show that the resulting estimate enjoys nice probabilistic properties, which translates to sharp
convergence rates in terms of matrix operator norms under a couple of common settings.

The choice of the tuning parameter δ is of great practical importance. Our theoretical devel-
opments have suggested reasonable choices of the tuning parameter and it seems to work well in
the well-controlled simulation settings. In practice, however, a data-driven choice such as those
determined by multi-fold cross-validation may yield improved performance.

We also note that the method can be easily extended to handle prior information regarding the
sparsity patterns of the inverse covariance matrices. Such situations often arise in the context of, for
example, genomics. In a typical gene expression experiment, tens of thousands of genes are often
studied simultaneously. Among these genes, there are often known pathways which corresponding
to conditional (in)dependence among a subset of the genes, or in our notation, variables. This can
be naturally interpreted as some of the entries of Ω0 being known to be nonzero or zero. Such prior
information can be easily incorporated in our procedure. In particular, it suffices to set some of
the entries of β to be exact zero apriori in (2). Likewise, if a particular entry of β is known to be
nonzero, we can also opt to minimize the !1 norm of only the remaining entries.

6. Proofs

We now present the proofs to Theorems 1, 5, 6 and 7.

6.1 Proof of Theorem 1

We begin by comparing θ̂(i) with θ(i). For brevity, we shall abbreviate the subscript (i) in what
follows when no confusion occurs. Recall that θ=−Ω0−i,i/Ω

0
ii and

θ̂= argmin
β∈F

‖β‖!1 ,

where F = {β : ‖S−i,i−S−i,−iβ‖!∞ ≤ δ}. For a given Ω ∈ O(ν,η,τ), let Ω ∈ O and γ=−Ω−i,i/Ωii.
We first show that γ ∈ F .

Lemma 8 Under the event that ‖S−Σ0‖max <C0λmax(Σ0)((A+1)n−1 log p)1/2,

‖S−i,i−S−i,−iγ‖!∞ ≤ δ,
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provided that
δ≥ ην+C0τνλmax(Σ0)((A+1)n−1 log p)1/2.

Proof By the definition of O(ν,η,τ), for any j *= i,
∣∣Σ0j·Ω·i

∣∣=Ωii
∣∣Σ0ji−Σ0j,−iγ

∣∣≤ ‖Σ0Ω− I‖max ≤ η,

which implies that
∥∥Σ0−i,i−Σ0−i,−iγ

∥∥
!∞

=max
j *=i

∣∣Σ0ji−Σ0j,−iγ
∣∣≤Ω−1

ii η≤ λ−1min(Ω)η≤ ην.

An application of the triangular inequality now yields

‖S−i,i−S−i,−iγ‖!∞ ≤
∥∥S−i,i−Σ0−i,i

∥∥
!∞
+
∥∥(S−i,−i−Σ0−i,−i

)
γ
∥∥
!∞
+
∥∥Σ0−i,i−Σ0−i,−iγ

∥∥
!∞

≤ ‖S−Σ0‖max+‖S−Σ0‖max‖γ‖!1 +ην

= ‖S−Σ0‖max‖Ω·i‖!1/Ωii+ην

≤ τν‖S−Σ0‖max+ην.

The claim now follows.

Now that γ ∈ F , by the definition of θ̂,

‖θ̂‖!1 ≤ ‖γ‖!1 ≤Ω−1
ii ‖Ω·i‖!1 −1≤ λ−1min(Ω)‖Ω‖!1 −1≤ ντ−1. (11)

Write J = { j : γ j *= 0}. Denote by dJ = card(J ). It is clear that dJ ≤ deg(Ω). From (11),

0≤ ‖γ‖!1 −‖θ̂‖!1 ≤ ‖θ̂J − γJ ‖!1 −‖θ̂J c‖!1 .

Thus,

‖θ̂− γ‖!1 = ‖θ̂J − γJ ‖!1 +‖θ̂J c‖!1
≤ 2‖θ̂J − γJ ‖!1

≤ 2d1/2J ‖θ̂J − γJ ‖!2

≤ 2d1/2J ‖θ̂− γ‖!2

≤ 2d1/2J λ−1min(Σ
0
−i,−i)

[(
θ̂− γ

)′
Σ0−i,−i

(
θ̂− γ

)]1/2

≤ 2λ−1min(Σ0)d
1/2
J

[(
θ̂− γ

)′
Σ0−i,−i

(
θ̂− γ

)]1/2

= 2λmax(Ω0)d
1/2
J

[(
θ̂− γ

)′
Σ0−i,−i

(
θ̂− γ

)]1/2
.

Observe that (
θ̂− γ

)′
Σ0−i,−i

(
θ̂− γ

)
≤ ‖θ̂− γ‖!1

∥∥Σ0−i,−i
(
θ̂− γ

)∥∥
!∞
.

Therefore,
‖θ̂− γ‖!1 ≤ 2λmax(Ω0)d

1/2
J ‖θ̂− γ‖1/2!1

∥∥Σ0−i,−i
(
θ̂− γ

)∥∥1/2
!∞

,
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which implies that
‖θ̂− γ‖!1 ≤ 4λ

2
max(Ω0)dJ

∥∥Σ0−i,−i
(
θ̂− γ

)∥∥
!∞
. (12)

We now set up to further bound the last term on the right hand side. We appeal to the following
result.

Lemma 9 Under the event that ‖S−Σ0‖max <C0λmax(Σ0)((A+1)n−1 log p)1/2, we have
∥∥Σ0−i,−i

(
θ̂− γ

)∥∥
!∞

≤ 2δ,

provided that
δ≥ ην+C0τνλmax(Σ0)((A+1)n−1 log p)1/2.

Proof By triangular inequality,
∥∥Σ0−i,−i

(
θ̂− γ

)∥∥
!∞

≤
∥∥Σ0−i,−i (θ− γ)

∥∥
!∞
+
∥∥Σ0−i,−i

(
θ̂−θ

)∥∥
!∞
. (13)

We begin with the first term on the right hand side. Recall that

Σ0−i,iΩ
0
ii+Σ0−i,−iΩ

0
−i,−i = 0,

which implies that
Σ0−i,−iθ= Σ0−i,i. (14)

Hence,
∥∥Σ0−i,−i (θ− γ)

∥∥
!∞

=
∥∥Σ0−i,i−Σ0−i,−iγ

∥∥
!∞

=Ω−1
ii
∥∥Σ0−i,iΩii+Σ0−i,−iΩ−i,i

∥∥
!∞

≤ νη.

We now turn to the second term on the right hand side of (13). Again by triangular inequality
∥∥Σ0−i,−i

(
θ̂−θ

)∥∥
!∞

≤
∥∥(S−i,−i−Σ0−i,−i

)
θ̂
∥∥
!∞
+
∥∥S−i,−iθ̂−Σ0−i,−iθ

∥∥
!∞
.

To bound the first term on the right hand side, note that
∥∥(S−i,−i−Σ0−i,−i

)
θ̂
∥∥
!∞

≤
∥∥S−i,−i−Σ0−i,−i

∥∥
max ‖θ̂‖!1 ≤ ‖S−Σ0‖max ‖θ̂‖!1 .

Also recall that ∥∥S−i,i−S−i,−iθ̂
∥∥
!∞

≤ δ,

and Σ0−i,−iθ= Σ0−i,i. Therefore, by triangular inequality and (14),
∥∥S−i,−iθ̂−Σ0−i,−iθ

∥∥
!∞

≤ δ+‖Σ0−i,i−S−i,i‖!∞ ≤ δ+‖S−Σ0‖max .

To sum up,
∥∥Σ0−i,−i

(
θ̂− γ

)∥∥
!∞

≤ δ+νη+‖S−Σ0‖max+‖S−Σ0‖max ‖θ̂‖!1
≤ δ+νη+‖S−Σ0‖max (1+‖γ‖!1)

≤ δ+νη+‖S−Σ0‖max ‖Ω‖!1/Ωii

≤ δ+νη+‖S−Σ0‖max ‖Ω‖!1λ
−1
min(Ω)

≤ δ+νη+ τν‖S−Σ0‖max ,
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which, under the event that ‖S−Σ0‖max <C0λmax(Σ0)((A+1)n−1 log p)1/2, can be further bounded
by 2δ by Lemma 8.

Together with (12), Lemma 9 implies that for all i= 1, . . . , p

‖θ̂− γ‖!1 ≤ 8λ
2
max(Ω0)dJ δ,

if ‖S−Σ0‖max < C0λmax(Σ0)((A+ 1)n−1 log p)1/2. We are now in position to bound ‖Ω̃−Ω0‖!1 .
We begin with the diagonal elements |Ω̃ii−Ω0ii|.

Lemma 10 Assume that ‖S−Σ0‖max <C0λmax(Σ0)((A+1)n−1 log p)1/2 and

δλmax(Ω0)
(
ντ+8λ2max(Ω0)λ−1min(Ω0)dJ

)
+ντλmax(Ω0)λ

−2
min(Ω0)‖Ω−Ω0‖!1 ≤ c0

for some numerical constant 0< c0 < 1. Then
∣∣Ω0ii− Ω̃ii

∣∣≤ 1
1− c0

(
δλ2max(Ω0)

(
ντ+8λ2max(Ω0)dJλ−1min(Ω0)

)
+ντλ−2min(Ω0)λ

2
max(Ω0)‖Ω−Ω0‖!1

)
,

provided that
δ≥ ην+C0τνλmax(Σ0)((A+1)n−1 log p)1/2.

Proof Recall that Σ0−i,i = Σ0−i,−iθ. Therefore

Ω0ii =
(
Σ0ii−2Σ0i,−iθ+θ′Σ0−i,−iθ

)−1
=
(
Σ0ii−Σ0i,−iθ

)−1
.

Because
Ω̃ii =

(
Sii−2Si,−iθ̂+ θ̂′S−i,−iθ̂

)−1
,

we have ∣∣∣Ω̃−1
ii −

(
Ω0ii
)−1∣∣∣≤ |Sii−Σ0ii|+

∣∣θ̂′S−i,−iθ̂−Si,−iθ̂
∣∣+
∣∣Si,−iθ̂−Σ0i,−iθ

∣∣ . (15)

We now bound the three terms on the right hand side separately. It is clear that the first term can be
bounded by ‖S−Σ0‖max. Recall that θ̂ ∈ F . Hence the second term can be bounded as follows:

∣∣θ̂′S−i,−iθ̂−Si,−iθ̂
∣∣≤

∥∥S−i,−iθ̂−S−i,i
∥∥
!∞
‖θ̂‖!1 ≤ δ‖θ̂‖!1 .

The last term on the right hand side of (15) can also be bounded similarly.
∣∣Si,−iθ̂−Σ0i,−iθ

∣∣ ≤
∣∣(Si,−i−Σ0i,−i

)
θ̂
∣∣+
∣∣Σ0i,−i

(
θ̂−θ

)∣∣

≤ ‖S−Σ0‖max‖θ̂‖!1 +‖Σ0i,−i‖!∞‖θ̂−θ‖!1
≤ ‖S−Σ0‖max‖θ̂‖!1 +λmax(Σ0)

(
‖θ̂− γ‖!1 +‖γ−θ‖!1

)

= ‖S−Σ0‖max‖θ̂‖!1 +λ−1min(Ω0)
(
‖θ̂− γ‖!1 +‖γ−θ‖!1

)
.

In summary, we have
∣∣∣Ω̃−1

ii −
(
Ω0ii
)−1∣∣∣ ≤ ‖S−Σ0‖max+δ‖θ̂‖!1 +‖S−Σ0‖max‖θ̂‖!1

+λ−1min(Ω0)
(
‖θ̂− γ‖!1 +‖γ−θ‖!1

)

≤ ντ‖S−Σ0‖max+δ‖θ̂‖!1 +λ−1min(Ω0)
(
8λ2max(Ω0)dJ δ+‖γ−θ‖!1

)

≤ δ
(
ντ+8λ2max(Ω0)λ−1min(Ω0)dJ

)
+λ−1min(Ω0)‖γ−θ‖!1 ,
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provided that ‖S−Σ0‖max < C0λmax(Σ0)((A+ 1)n−1 log p)1/2. Together with the fact that Ω0ii ≤
λmax(Ω0), this yields

∣∣∣∣
Ω0ii
Ω̃ii

−1
∣∣∣∣≤ δλmax(Ω0)

(
ντ+8λ2max(Ω0)λ−1min(Ω0)dJ

)
+λmax(Ω0)λ

−1
min(Ω0)‖γ−θ‖!1 .

Moreover, observe that

‖γ−θ‖!1 ≤
(
Ω0ii
)−1

‖Ω−i,i−Ω0−i,i‖!1 +Ω−1
ii
(
Ω0ii
)−1

|Ωii−Ω0ii|‖Ω−i,i‖!1

≤ λ−1min(Ω0)‖Ω−Ω0‖!1 +λ−1min(Ω0)‖Ω−Ω0‖!1(ντ−1)
≤ ντλ−1min(Ω0)‖Ω−Ω0‖!1 .

Therefore,

∣∣∣∣
Ω0ii
Ω̃ii

−1
∣∣∣∣≤ δλmax(Ω0)

(
ντ+8λ2max(Ω0)λ−1min(Ω0)dJ

)
+ντλmax(Ω0)λ

−2
min(Ω0)‖Ω−Ω0‖!1 , (16)

which implies that
Ω0ii
Ω̃ii

≥ 1− c0.

Subsequently,

Ω̃ii ≤
1

1− c0
Ω0ii ≤

1
1− c0

λmax(Ω0).

Together with (16), this implies

∣∣Ω0ii− Ω̃ii
∣∣ ≤ Ω̃ii

∣∣∣∣
Ω0ii
Ω̃ii

−1
∣∣∣∣

≤
1

1− c0
δλ2max(Ω0)

(
ντ+8λ2max(Ω0)λ−1min(Ω0)dJ

)

+
1

1− c0
ντλ−2min(Ω0)λ

2
max(Ω0)‖Ω−Ω0‖!1 .

We now turn to the off-diagonal entries of Ω̃−Ω0.

Lemma 11 Under the assumptions of Lemma 10, there exist positive constants C1,C2 and C3 de-
pending only on ν,τ, λmin(Ω0) and λmax(Ω0) such that

‖Ω̃−i,·−Ω0−i,·‖!1 ≤ (C1+C2dJ )δ+C3‖Ω−Ω0‖!1 .
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Proof Note that

‖Ω̃−i,i−Ω0−i,i‖!1 =
∥∥Ω̃iiθ̂−Ω0iiθ

∥∥
!1

≤ Ω0ii‖θ̂−θ‖!1 +
∣∣Ω̃ii−Ω0ii

∣∣‖θ̂‖!1
≤ λ−1min(Ω0)

(
‖θ̂− γ‖!1 +‖γ−θ‖!1

)

+
ντ−1
1− c0

δλ2max(Ω0)
(
ντ+8λ2max(Ω0)dJλ−1min(Ω0)

)

+
ντ−1
1− c0

ντλ−2min(Ω0)λ
2
max(Ω0)‖Ω−Ω0‖!1

≤ 8ν2dJλ−1min(Ω0)δ+ντλ−2min(Ω0)‖Ω−Ω0‖!1

+
ντ−1
1− c0

δλ2max(Ω0)
(
ντ+8λ2max(Ω0)dJλ−1min(Ω0)

)

+
ντ−1
1− c0

ντλ−2min(Ω0)λ
2
max(Ω0)‖Ω−Ω0‖!1 .

Therefore,

‖Ω̃−i,·−Ω0−i,·‖!1 =
∣∣Ω0ii− Ω̃ii

∣∣+‖Ω̃−i,i−Ω0−i,i‖!1

≤ δ

(
1

1− c0
ν2τ2λ2max(Ω0)+8

(
1+

ντ
1− c0

)
λ2max(Ω0)dJλ−1min(Ω0)

)

+

(
1+

ντ
1− c0

λ2max(Ω0)

)
ντλ−2min(Ω0)‖Ω−Ω0‖!1 .

From Lemma 11, it is clear that under the assumptions of Lemma 10,

‖Ω̃−Ω0‖!1 ≤C inf
Ω∈O(ν,η,τ)

(‖Ω−Ω0‖!1 +deg(Ω)δ) , (17)

where C = max{C1,C2,C3} is a positive constant depending only on ν,τ, λmin(Ω0) and λmax(Ω0).
By the definition of Ω̂,

‖Ω̂− Ω̃‖!1 ≤ ‖Ω̃−Ω0‖!1 ≤C inf
Ω∈O(ν,η,τ)

(‖Ω−Ω0‖!1 +deg(Ω)δ) .

An application of triangular inequality immediately gives

‖Ω̂−Ω0‖!1 ≤ ‖Ω̂− Ω̃‖!1 +‖Ω̃−Ω0‖!1
≤ 2C inf

Ω∈O(ν,η,τ)
(‖Ω−Ω0‖!1 +deg(Ω)δ) .

To complete the proof, we appeal to the following lemma showing that

‖S−Σ0‖max ≤C0λmax(Σ0)
√
t+ log p

n
,

for a numerical constantC0 > 0, with probability at least 1− e−t . Taking t = A log p yields

P

{
‖S−Σ0‖max <C0λmax(Σ0)((A+1)n−1 log p)1/2

}
≥ 1− p−A.
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Lemma 12 Assume that there exist constants c0 ≥ 0, and T > 0 such that for any |t|≤ T

EetX
2
i ≤ c0, i= 1,2, . . . , p.

Then there exists a constant C > 0 depending on c0 and T such that

‖S−Σ0‖max ≤C
√
t+ log p

n

with probability at least 1− e−t for all t > 0.

Proof Observe that S is invariant to EX . We shall assume that EX = 0 without loss of generality.
Note that Si j = EnXiXj−EnXiEnXj. We have

|Si j−Σ0i j|≤ |EnXiXj−EXiXj|+ |EnXi||EnXj|=: Δ1+Δ2.

We begin by bounding Δ1.

∣∣(En−E)XiXj
∣∣ =

1
4
∣∣(En−E)

(
(Xi+Xj)2− (Xi−Xj)2

)∣∣

≤
1
4
∣∣(En−E)(Xi+Xj)2

∣∣+ 1
4
∣∣(En−E)(Xi−Xj)2

∣∣ .

The two terms in the upper bound can be bounded similarly and we focus only on the first term. By
the sub-Gaussianity of Xi and Xj, for any |t|≤ T/4,

Eet(Xi+Xj)
2
≤ Ee2tX

2
i e2tX

2
j ≤ E

1/2e4tX
2
i E

1/2e4tX
2
j ≤ c0.

In other words, {Xi+Xj : 1≤ i, j ≤ p} are also sub-Gaussian. Observe that

ln
(
Eet[(Xi+Xj)

2−E(Xi+Xj)2]
)

= lnEet(Xi+Xj)
2
− tE(Xi+Xj)2

≤ E

[
et(Xi+Xj)

2
− t(Xi+Xj)2−1

]
,

where we used the fact that lnu ≤ u−1 for all u > 0. An application of the Taylor expansion now
yields that there exist constants c1,T1 > 0 such that

ln
(
Eet[(Xi+Xj)

2−E(Xi+Xj)2]
)
≤ c1t2

for all |t|< T1. In other words,

Eet[(Xi+Xj)
2−E(Xi+Xj)2] ≤ ec1t

2

for any |t|< T1. Therefore,
Eet[(En−E)(Xi+Xj)2] ≤ ec1t

2/n.

By Markov inequality

P
{
(En−E)(Xi+Xj)2 ≥ x

}
≤ e−txEet[(En−E)(Xi+Xj)2] ≤ exp

(
c1t2/n− tx

)
.
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Taking t = nx/2c1 yields

P
{
(En−E)(Xi+Xj)2 ≥ x

}
≤ exp

{
−
nx2

4c1

}
.

Similarly,

P
{
(En−E)(Xi+Xj)2 ≤−x

}
≤ exp

{
−
nx2

4c1

}
.

Therefore,

P
{∣∣(En−E)(Xi+Xj)2

∣∣≥ x
}
≤ 2exp

{
−
nx2

4c1

}
.

Following the same argument, one can show that

P
{∣∣(En−E)(Xi−Xj)2

∣∣≥ x
}
≤ 2exp

{
−
nx2

4c1

}
.

Note also that this inequality holds trivially when i= j. In summary, we have

P{Δ1 ≥ x} ≤ P
{∣∣(En−E)(Xi+Xj)2

∣∣≥ 2x
}
+P

{∣∣(En−E)(Xi−Xj)2
∣∣≥ 2x

}

≤ 4exp
{
−c−11 nx2

}
.

Now consider Δ2.

EetEnXiEnXj ≤ E
1/2e2tEnXiE1/2e2tEnXj ≤ max

1≤i≤p
Ee2tEnXi .

Following a similar argument as before, we can show that there exist constants c2,T2 > 0 such that

Ee2tEnXi ≤ ec2t
2/n

for all |t|< T2. This further leads to, similar to before,

P{Δ1 ≥ x}≤ 2exp
{
−c−12 nx2

}
.

To sum up,

P{‖S−Σ0‖max ≥ x} ≤ p2 max
1≤i, j≤p

P
{
|Si j−Σ0i j‖ ≥ x

}

≤ p2 [P(Δ1 ≥ x/2)+P(Δ2 ≥ x/2)]
≤ 4p2 exp

{
−c3nx2

}
.

for some constant c3 > 0. The claimed result now follows.
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6.2 Proof of Theorem 5

First note that the claim follows from

inf
Ω̄

sup
Ω0∈M1(τ0,ν0,d)

E
∥∥Ω̄−Ω0

∥∥
!1
≥C′d

√
log p
n

(18)

for some constant C′ > 0. We establish the minimax lower bound (18) using the tools from Ko-
rostelev and Tsybakov (1993), which is based upon testing many hypotheses as well as statistical
applications of Fano’s lemma and the Varshamov-Gilbert bound. More specifically, it suffices to find
a collection of inverse covariance matricesM ′ = {Ω1, . . . ,ΩK+1}⊂M1(τ0,ν0,d) such that

(a) for any two distinct membersΩ j,Ωk ∈M ′, ‖Ω j−Ωk‖!1 > Ad(n−1 log p)1/2 for some constant
A> 0;

(b) there exists a numerical constant 0< c0 < 1/8 such that

1
K

K

∑
k=1

K (P (Ωk),P (ΩK+1))≤ c0 logK,

where K stands for the Kullback-Leibler divergence and P (Ω) is the probability measure
N (0,Ω).

To construct M ′, we assume that d(n−1 log p)1/2 < 1/2, τ0,ν0 > 2 without loss of generality.
As shown by Birgé and Massart (1998), from the Varshamov-Gilbert bound, there is a set of binary
vectors of length p−1, B = {b1, . . . ,bK}⊂ {0,1}p−1 such that (i) there are d ones in a vector b j for
any j = 1, . . . , p−1; (ii) the Hamming distance between b j and bk is at least d/2 for any j *= k; (iii)
logK > 0.233d log(p/d). We now take Ωk for k = 1, . . . ,K as follows. It differs from the identity
matrix only by its first row and column. More specifically, Ωk

11 = 1, Ωk
−1,1 = (Ωk

1,−1)
′ = anbk,

Ωk
−1,−1 = Ip−1, that is,

Ωk =

(
1 anb′k

anbk I

)
,

where an = a0(n−1 log p)1/2 with a constant 0 < a0 < 1 to be determined later. Finally, we take
ΩK+1 = I. It is clear that Condition (a) is satisfied with this choice ofM ′ and A= a0/2. It remains
to verify Condition (b). Simple algebraic manipulations yield that for any 1≤ k ≤ K,

K (P (Ωk),P (ΩK+1)) =−
n
2
logdet(Ωk) =−

n
2
log(1−a2nb′kbk).

Recall that a2nb′kbk = da2n < d2a2n < 1/4. Together with the fact that− log(1−x)≤ log(1+2x)≤ 2x
for 0< x< 1/2, we have

K (P (Ωk),P (ΩK+1))≤ nda2n.

By setting a0 small enough, this can be further bounded by 0.233c0d log(p/d) and subsequently
c0 logK. The proof is now completed.
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6.3 Proof of Theorem 6

We prove the theorem by applying the oracle inequality from Theorem 1. To this end, we need to
find an “oracle” inverse covariance matrix Ω. Let

Ωi j =Ω0i j1
(∣∣Ω0i j

∣∣≥ ζ
)
,

where ζ > 0 is to be specified later. We now verify that Ω ∈ O(ν,η,τ) with appropriate choices of
the three parameters.

First observe that

‖Ω−Ω0‖!1 ≤ max
1≤i≤p

p

∑
j=1

∣∣Ω0i j
∣∣1
(∣∣Ω0i j

∣∣≤ ζ
)

≤ ζ1−α max
1≤i≤p

p

∑
j=1

∣∣Ω0i j
∣∣α 1

(∣∣Ω0i j
∣∣≤ ζ

)

≤ Mζ1−α.

Thus,
ν−10 −Mζ1−α ≤ λmin(Ω)≤ λmax(Ω)≤ ν0+Mζ1−α.

In particular, setting ζ small enough such thatMζ1−α < (2ν0)−1 yields

(2ν0)−1 ≤ λmin(Ω)≤ λmax(Ω)≤ 2ν0.

We can therefore take ν= 2ν0.
Now consider the approximation error ‖Σ0Ω− I‖max. Note that the (i, j) entry of Σ0Ω− I =

Σ0(Ω−Ω0) can be bounded as follows
∣∣∣∣∣

p

∑
k=1

Σ0ikΩ
0
k j1
(∣∣Ω0k j

∣∣≤ ζ
)
∣∣∣∣∣ ≤

p

∑
k=1

∣∣Σ0ik
∣∣ ∣∣Ω0k j

∣∣1
(∣∣Ω0k j

∣∣≤ ζ
)

≤ ζ max
1≤k≤p

p

∑
k=1

∣∣Σ0ik
∣∣

= ζ‖Σ0‖!1 .

This implies that
‖Σ0Ω− I‖max ≤ ζ‖Σ0‖!1 .

In other words, we can take η= ζ‖Σ0‖!1 .
Furthermore, it is clear that we can take ‖Ω‖!1 ≤ ‖Ω0‖!1 . Therefore, by Theorem 1, there exist

constantsC1,C2 > 0 depending only on ‖Ω0‖!1 , ‖Σ0‖!1 , and ν0 such that for any

δ≥C1

(
ζ+

√
(A+1) log p

n

)
(i= 1,2, . . . , p),

we have
‖Ω̂−Ω0‖!1 ≤C2

(
Mζ1−α+deg(Ω)δ

)
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with probability at least 1− p−A. Now note that

deg(Ω) = max
1≤i≤p

p

∑
j=1
1
(∣∣Ω0i j

∣∣≥ ζ
)
≤Mζ−α.

The claimed the results then follows by taking ζ = C3((A+ 1)n−1 log p)1/2 for a small enough
constantC3 > 0 such thatMζ1−α < (2ν0)−1.

6.4 Proof of Theorem 7

Assume that M(n−1 log p)(1−α)/2 < 1/2, τ0,ν0 > 2 without loss of generality. Similar to Theorem
5, there eixs a collection of inverse covariance matricesM ′ = {Ω1, . . . ,ΩK+1}⊂M2 such that

(a) for any two distinct members Ω j,Ωk ∈ M ′, ‖Ω j −Ωk‖!1 > AM(n−1 log p)(1−α)/2 for some
constant A> 0;

(b) there exists a numerical constant 0< c0 < 1/8 such that

1
K

K

∑
k=1

K (P (Ωk),P (ΩK+1))≤ c0 logK.

To this end, we follow the same construction as in the proof of Theorem 5 by taking

d =

⌊
M
(
log p
n

)− α
2
⌋
,

and .x/ stands for the integer part of x. First, we need to show that M ′ ⊂ M2. Because
d(n−1 log p)1/2 < 1/2, it is clear that the bounded eigenvalue condition and ‖Ωk‖!1 < τ0 can en-
sured by setting a0 small enough. It is also obvious that

max
1≤ j≤p

p

∑
i=1

|Ωk
i j|
α ≤M.

It remains to check that ‖Σk‖!1 is bounded. By the block matrix inversion formula

Σk =

( 1
1−a2nb′kbk

− an
1−a2nb′kbk

b′k
− an
1−a2nb′kbk

bk I+ a2n
1−a2nb′kbk

bkb′k

)
.

It can then be readily checked that ‖Σk‖!1 can also be bounded from above by setting a0 small
enough.

Next we verify Conditions (a) and (b). It is clear that Condition (a) is satisfied with this choice
ofM ′ and A= a0/2. It remains to verify Condition (b). Simple algebraic manipulations yield that
for any 1≤ k ≤ K,

K (P (Ωk),P (ΩK+1)) =−
n
2
logdet(Ωk) =−

n
2
log(1−a2nb′kbk).

Recall that a2nb′kbk = da2n < d2a2n < 1/4. Together with the fact that− log(1−x)≤ log(1+2x)≤ 2x
for 0< x< 1/2, we have

K (P (Ωk),P (ΩK+1))≤ nda2n.
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By setting a0 small enough, this can be further bounded by 0.233c0d log(p/d) and subsequently
c0 logK. The proof of (9) is now completed.

The proof of (10) follows from a similar argument. We essentially construct the same subset
M ′ but with

Σk =

(
1 anb′k

anbk I

)
.

The only difference from before is the calculation of Kullback-Leibler divergence, which in this
case is

K (P (Σk),P (ΣK+1)) =
n
2
(trace(Ωk)+ logdet(Σk)− p)

where

Ωk =

( 1
1−a2nb′kbk

− an
1−a2nb′kbk

b′k
− an
1−a2nb′kbk

bk I+ a2n
1−a2nb′kbk

bkb′k

)
.

Therefore, trace(Ωk) = p+ 2da2n/(1− da2n). Together with the fact that det(Σk) = 1− da2n, we
conclude that

K (P (Σk),P (ΣK+1)) =
n
2

(
2da2n

(1−da2n)
+ log(1−da2n)

)
≤
1
2
nda2n.

where we used the fact that log(1−x)≤−x. The rest of the argument proceeds in the same fashion
as before.
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Abstract
We use convex relaxation techniques to provide a sequence of regularized low-rank solutions for
large-scale matrix completion problems. Using the nuclear norm as a regularizer, we provide a sim-
ple and very efficient convex algorithm for minimizing the reconstruction error subject to a bound
on the nuclear norm. Our algorithm SOFT-IMPUTE iteratively replaces the missing elements with
those obtained from a soft-thresholded SVD. With warm starts this allows us to efficiently compute
an entire regularization path of solutions on a grid of values of the regularization parameter. The
computationally intensive part of our algorithm is in computing a low-rank SVD of a dense matrix.
Exploiting the problem structure, we show that the task can be performed with a complexity of or-
der linear in the matrix dimensions. Our semidefinite-programming algorithm is readily scalable to
large matrices; for example SOFT-IMPUTE takes a few hours to compute low-rank approximations
of a 106×106 incomplete matrix with 107 observed entries, and fits a rank-95 approximation to the
full Netflix training set in 3.3 hours. Our methods achieve good training and test errors and exhibit
superior timings when compared to other competitive state-of-the-art techniques.
Keywords: collaborative filtering, nuclear norm, spectral regularization, netflix prize, large scale
convex optimization

1. Introduction

In many applications measured data can be represented in a matrix Xm×n, for which only a rela-
tively small number of entries are observed. The problem is to “complete” the matrix based on
the observed entries, and has been dubbed the matrix completion problem (Candès and Recht,
2008; Candès and Tao, 2009; Rennie and Srebro, 2005). The “Netflix” competition (for example,
SIGKDD and Netflix, 2007) is a popular example, where the data is the basis for a recommender
system. The rows correspond to viewers and the columns to movies, with the entry Xi j being the
rating ∈ {1, . . . ,5} by viewer i for movie j. There are about 480K viewers and 18K movies, and
hence 8.6 billion (8.6× 109) potential entries. However, on average each viewer rates about 200

∗. Also in the Department of Health, Research and Policy.
†. Also in the Department of Statistics.

c©2010 Rahul Mazumder, Trevor Hastie and Rob Tibshirani.
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movies, so only 1.2% or 108 entries are observed. The task is to predict the ratings that viewers
would give to movies they have not yet rated.

These problems can be phrased as learning an unknown parameter (a matrix Zm×n) with very
high dimensionality, based on very few observations. In order for such inference to be meaningful,
we assume that the parameter Z lies in a much lower dimensional manifold. In this paper, as is
relevant in many real life applications, we assume that Z can be well represented by a matrix of low
rank, that is, Z ≈Vm×kGk×n, where k&min(n,m). In this recommender-system example, low rank
structure suggests that movies can be grouped into a small number of “genres”, with G! j the relative
score for movie j in genre !. Viewer i on the other hand has an affinityVi! for genre !, and hence the
modeled score for viewer i on movie j is the sum ∑k

!=1Vi!G! j of genre affinities times genre scores.
Typically we view the observed entries in X as the corresponding entries from Z contaminated with
noise.

Srebro et al. (2005a) studied generalization error bounds for learning low-rank matrices. Re-
cently Candès and Recht (2008), Candès and Tao (2009), and Keshavan et al. (2009) showed the-
oretically that under certain assumptions on the entries of the matrix, locations, and proportion of
unobserved entries, the true underlying matrix can be recovered within very high accuracy.

For a matrix Xm×n let Ω ⊂ {1, . . . ,m}× {1, . . . ,n} denote the indices of observed entries. We
consider the following optimization problem:

minimize rank(Z)
subject to ∑

(i, j)∈Ω
(Xi j−Zi j)2 ≤ δ, (1)

where δ≥ 0 is a regularization parameter controlling the tolerance in training error. The rank con-
straint in (1) makes the problem for general Ω combinatorially hard (Srebro and Jaakkola, 2003).
For a fully-observed X on the other hand, the solution is given by a truncated singular value decom-
position (SVD) of X . The following seemingly small modification to (1),

minimize ‖Z‖∗
subject to ∑

(i, j)∈Ω
(Xi j−Zi j)2 ≤ δ, (2)

makes the problem convex (Fazel, 2002). Here ‖Z‖∗ is the nuclear norm, or the sum of the singular
values of Z. Under many situations the nuclear norm is an effective convex relaxation to the rank
constraint (Fazel, 2002; Candès and Recht, 2008; Candès and Tao, 2009; Recht et al., 2007). Op-
timization of (2) is a semi-definite programming problem (Boyd and Vandenberghe, 2004) and can
be solved efficiently for small problems, using modern convex optimization software like SeDuMi
and SDPT3 (Grant and Boyd., 2009). However, since these algorithms are based on second order
methods (Liu and Vandenberghe, 2009), they can become prohibitively expensive if the dimensions
of the matrix get large (Cai et al., 2008). Equivalently we can reformulate (2) in Lagrange form

minimize
Z

1
2 ∑
(i, j)∈Ω

(Xi j−Zi j)2+λ‖Z‖∗. (3)

Here λ ≥ 0 is a regularization parameter controlling the nuclear norm of the minimizer Ẑλ of (3);
there is a 1-1 mapping between δ≥ 0 and λ≥ 0 over their active domains.
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In this paper we propose an algorithm SOFT-IMPUTE for the nuclear norm regularized least-
squares problem (3) that scales to large problems with m,n≈ 105–106 with around 106–108 or more
observed entries. At every iteration SOFT-IMPUTE decreases the value of the objective function
towards its minimum, and at the same time gets closer to the set of optimal solutions of the prob-
lem (2). We study the convergence properties of this algorithm and discuss how it can be extended
to other more sophisticated forms of spectral regularization.

To summarize some performance results1

• We obtain a rank-40 solution to (2) for a problem of size 105×105 and |Ω|= 5×106 observed
entries in less than 18 minutes.

• For the same sized matrix with |Ω|= 107 we obtain a rank-5 solution in less than 21 minutes.

• For a 106× 105 sized matrix with |Ω| = 108 a rank-5 solution is obtained in approximately
4.3 hours.

• We fit a rank-66 solution for the Netflix data in 2.2 hours. Here there are 108 observed entries
in a matrix with 4.8×105 rows and 1.8×104 columns. A rank 95 solution takes 3.27 hours.

The paper is organized as follows. In Section 2, we discuss related work and provide some context
for this paper. In Section 3 we introduce the SOFT-IMPUTE algorithm and study its convergence
properties in Section 4. The computational aspects of the algorithm are described in Section 5,
and Section 6 discusses how nuclear norm regularization can be generalized to more aggressive
and general types of spectral regularization. Section 7 describes post-processing of “selectors” and
initialization. We discuss comparisons with related work, simulations and experimental studies in
Section 9 and application to the Netflix data in Section 10.

2. Context and Related Work

Candès and Tao (2009), Cai et al. (2008), and Candès and Recht (2008) consider the criterion

minimize ‖Z‖∗
subject to Zi j = Xi j, ∀(i, j) ∈Ω. (4)

With δ = 0, the criterion (1) is equivalent to (4), in that it requires the training error to be zero.
Cai et al. (2008) propose a first-order singular-value-thresholding algorithm SVT scalable to large
matrices for the problem (4). They comment on the problem (2) with δ> 0, but dismiss it as being
computationally prohibitive for large problems.

We believe that (4) will almost always be too rigid and will result in over-fitting. If minimization
of prediction error is an important goal, then the optimal solution Ẑ will typically lie somewhere in
the interior of the path indexed by δ (Figures 2, 3 and 4).

In this paper we provide an algorithm SOFT-IMPUTE for computing solutions of (3) on a grid of
λ values, based on warm restarts. The algorithm is inspired by SVD-IMPUTE (Troyanskaya et al.,

1. For large problems data transfer, access and reading take quite a lot of time and is dependent upon the platform
and machine. Over here we report the times taken for the computational bottle-neck, that is, the SVD computations
over all iterations. All times are reported based on computations done in a Intel Xeon Linux 3GHz processor using
MATLAB, with no C or Fortran interlacing.
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2001)—an EM-type (Dempster et al., 1977) iterative algorithm that alternates between imputing the
missing values from a current SVD, and updating the SVD using the “complete” data matrix. In its
very motivation, SOFT-IMPUTE is different from generic first order algorithms (Cai et al., 2008; Ma
et al.; Ji and Ye, 2009). The latter require the specification of a step size, and can be quite sensitive
to the chosen value. Our algorithm does not require a step-size, or any such parameter.

The iterative algorithms proposed in Ma et al. and Ji and Ye (2009) require the computation
of a SVD of a dense matrix (with dimensions equal to the size of the matrix X) at every iteration,
as the bottleneck. This makes the algorithms prohibitive for large scale computations. Ma et al.
use randomized algorithms for the SVD computation. Our algorithm SOFT-IMPUTE also requires
an SVD computation at every iteration, but by exploiting the problem structure, can easily handle
matrices of very large dimensions. At each iteration the non-sparse matrix has the structure:

Y = YSP (Sparse) + YLR (Low Rank). (5)

In (5) YSP has the same sparsity structure as the observed X , and YLR has rank r̃ & m,n, where r̃
is very close to r& m,n the rank of the estimated matrix Z (upon convergence of the algorithm).
For large scale problems, we use iterative methods based on Lanczos bidiagonalization with partial
re-orthogonalization (as in the PROPACK algorithm, Larsen, 1998), for computing the first r̃ sin-
gular vectors/values of Y. Due to the specific structure of (5), multiplication by Y and Y ′ can both
be achieved in a cost-efficient way. In decomposition (5), the computationally burdensome work
in computing a low-rank SVD is of an order that depends linearly on the matrix dimensions. More
precisely, evaluating each singular vector requires computation of the order ofO((m+n)r̃)+O(|Ω|)
flops and evaluating r′ of them requires O((m+n)r̃r′)+O(|Ω|r′) flops. Exploiting warm-starts, we
observe that r̃ ≈ r—hence every SVD step of our algorithm computes r singular vectors, with com-
plexity of the order O((m+ n)r2)+O(|Ω|r) flops. This computation is performed for the number
of iterations SOFT-IMPUTE requires to run till convergence or a certain tolerance.

In this paper we show asymptotic convergence of SOFT-IMPUTE and further derive its non-
asymptotic rate of convergence which scales as O(1/k) (k denotes the iteration number). However,
in our experimental studies on low-rank matrix completion, we have observed that our algorithm
is faster (based on timing comparisons) than the accelerated version of Nesterov (Ji and Ye, 2009;
Nesterov, 2007), having a provable (worst case) convergence rate ofO( 1k2 ) . With warm-starts SOFT-
IMPUTE computes the entire regularization path very efficiently along a dense series of values for
λ.

Although the nuclear norm is motivated here as a convex relaxation to a rank constraint, we
believe in many situations it will outperform the rank-restricted estimator (1). This is supported by
our experimental studies. We draw the natural analogy with model selection in linear regression, and
compare best-subset regression (!0 regularization) with the LASSO (!1 regularization, Tibshirani,
1996; Hastie et al., 2009). There too the !1 penalty can be viewed as a convex relaxation of the
!0 penalty. But in many situations with moderate sparsity, the LASSO will outperform best subset
in terms of prediction accuracy (Friedman, 2008; Hastie et al., 2009; Mazumder et al., 2009). By
shrinking the parameters in the model (and hence reducing their variance), the lasso permits more
parameters to be included. The nuclear norm is the !1 penalty in matrix completion, as compared
to the !0 rank. By shrinking the singular values, we allow more dimensions to be included without
incurring undue estimation variance.

Another class of techniques used in collaborative filtering problems are close in spirit to (2).
These are known as maximum margin matrix factorization methods—in short MMMF—and use
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a factor model for the matrix Z (Srebro et al., 2005b). Let Z = UV ′ where Um×r′ and Vn×r′ , and
consider the following problem

minimize
U,V

1
2 ∑
(i, j)∈Ω

(Xi j− (UV ′)i j)
2+

λ
2
(‖U‖2F +‖V‖2F). (6)

It turns out that (6) is intimately related to (3), since (see Lemma 6)

||Z||∗ = min
U,V : Z=UV ′

1
2
(
‖U‖2F +‖V‖2F

)
.

For example, if r′ =min(m,n), the solution to (6) coincides with the solution to (3).2 However, (6)
is not convex in its arguments, while (3) is. We compare these two criteria in detail in Section 8,
and the relative performance of their respective algorithms in Section 9.2.

3. SOFT-IMPUTE–an Algorithm for Nuclear Norm Regularization

We first introduce some notation that will be used for the rest of this article.

3.1 Notation

We adopt the notation of Cai et al. (2008). Define a matrix PΩ(Y ) (with dimension m×n)

PΩ(Y ) (i, j) =
{
Yi j if (i, j) ∈Ω
0 if (i, j) /∈Ω,

(7)

which is a projection of the matrix Ym×n onto the observed entries. In the same spirit, define the
complementary projection P⊥

Ω (Y ) via P⊥
Ω (Y )+PΩ(Y ) = Y. Using (7) we can rewrite ∑(i, j)∈Ω(Xi j−

Zi j)2 as ‖PΩ(X)−PΩ(Z)‖2F .

3.2 Nuclear Norm Regularization

We present the following lemma, which forms a basic ingredient in our algorithm.

Lemma 1 Suppose the matrix Wm×n has rank r. The solution to the optimization problem

minimize
Z

1
2
‖W −Z‖2F +λ‖Z‖∗ (8)

is given by Ẑ = Sλ(W ) where

Sλ(W )≡UDλV ′ with Dλ = diag [(d1−λ)+, . . . ,(dr−λ)+] , (9)

UDV ′ is the SVD of W, D= diag [d1, . . . ,dr], and t+ =max(t,0).

The notation Sλ(W ) refers to soft-thresholding (Donoho et al., 1995). Lemma 1 appears in Cai
et al. (2008) and Ma et al. where the proof uses the sub-gradient characterization of the nuclear
norm. In Appendix A.1 we present an entirely different proof, which can be extended in a relatively
straightforward way to other complicated forms of spectral regularization discussed in Section 6.
Our proof is followed by a remark that covers these more general cases.

2. We note here that the original MMMF formulation uses r′ =min{m,n}. In this paper we will consider it for a family
of r′ values.
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3.3 Algorithm

Using the notation in 3.1, we rewrite (3) as:

minimize
Z

fλ(Z) :=
1
2
‖PΩ(X)−PΩ(Z)‖2F +λ‖Z‖∗ . (10)

We now present Algorithm 1—SOFT-IMPUTE—for computing a series of solutions to (10) for
different values of λ using warm starts.

Algorithm 1 SOFT-IMPUTE

1. Initialize Zold = 0.

2. Do for λ1 > λ2 > .. . > λK :

(a) Repeat:
i. Compute Znew ← Sλk(PΩ(X)+P⊥

Ω (Zold)).

ii. If ‖Znew−Zold‖2F
‖Zold‖2F

< ε exit.

iii. Assign Zold ← Znew.
(b) Assign Ẑλk ← Znew.

3. Output the sequence of solutions Ẑλ1 , . . . , ẐλK .

The algorithm repeatedly replaces the missing entries with the current guess, and then updates
the guess by solving (8). Figures 2, 3 and 4 show some examples of solutions using SOFT-IMPUTE
(blue continuous curves). We see test and training error in the top rows as a function of the nuclear
norm, obtained from a grid of values Λ. These error curves show a smooth and very competitive
performance.

4. Convergence Analysis

In this section we study the convergence properties of Algorithm 1. Unlike generic first-order
methods (Nesterov, 2003) including competitive first-order methods for nuclear norm regularized
problems (Cai et al., 2008; Ma et al.), SOFT-IMPUTE does not involve the choice of any additional
step-size. Most importantly our algorithm is readily scalable for solving large scale semidefinite
programming problems (2) and (10) as will be explained later in Section 5.

For an arbitrary matrix Z̃, define

Qλ(Z|Z̃) =
1
2
‖PΩ(X)+P⊥

Ω (Z̃)−Z‖2F +λ‖Z‖∗ (11)

as a surrogate of the objective function fλ(z). Note that fλ(Z̃) = Qλ(Z̃|Z̃) for any Z̃.
In Section 4.1, we show that the sequence Zkλ generated via SOFT-IMPUTE converges asymptot-

ically, that is, as k→ ∞ to a minimizer of the objective function fλ(Z). SOFT-IMPUTE produces a
sequence of solutions for which the criterion decreases to the optimal solution with every iteration
and the successive iterates get closer to the optimal set of solutions of the problem 10. Section 4.2
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derives the non-asymptotic convergence rate of the algorithm. The latter analysis concentrates on
the objective values fλ(Zkλ). Due to computational resources if one wishes to stop the algorithm
after K iterations, then Theorem 2 provides a certificate of how far Zkλ is from the solution. Though
Section 4.1 alone establishes the convergence of fλ(Zkλ) to the minimum of fλ(Z), this does not, in
general, settle the convergence of Zkλ unless further conditions (like strong convexity) are imposed
on fλ(·).

4.1 Asymptotic Convergence

Lemma 2 For every fixed λ≥ 0, define a sequence Zkλ by

Zk+1λ = argmin
Z
Qλ(Z|Zkλ)

with any starting point Z0λ. The sequence Z
k
λ satisfies

fλ(Zk+1λ )≤ Qλ(Zk+1λ |Zkλ)≤ fλ(Zkλ).

Proof Note that
Zk+1λ = Sλ(PΩ(X)+P⊥

Ω (Zkλ)). (12)

By Lemma 1 and the definition (11) of Qλ(Z|Zkλ), we have:

fλ(Zkλ) = Qλ(Zkλ|Z
k
λ)

=
1
2
‖PΩ(X)+P⊥

Ω (Zkλ)−Zkλ‖
2
F +λ‖Zkλ‖∗

≥ min
Z

1
2

{
‖PΩ(X)+P⊥

Ω (Zkλ)−Z‖2F
}
+λ‖Z‖∗

= Qλ(Zk+1λ |Zkλ)

=
1
2
‖
{
PΩ(X)−PΩ(Zk+1λ )

}
+
{
P⊥
Ω (Zkλ)−P⊥

Ω (Zk+1λ )
}
‖2F +λ‖Zk+1λ ‖∗

=
1
2

{
‖PΩ(X)−PΩ(Zk+1λ )‖2F +‖P⊥

Ω (Zkλ)−P⊥
Ω (Zk+1λ )‖2F

}
+λ‖Zk+1λ ‖∗ (13)

≥
1
2
‖PΩ(X)−PΩ(Zk+1λ )‖2F +λ‖Zk+1λ ‖∗ (14)

= Qλ(Zk+1λ |Zk+1λ )

= f (Zk+1λ ).

Lemma 3 The nuclear norm shrinkage operator Sλ(·) satisfies the following for any W1, W2 (with
matching dimensions)

‖Sλ(W1)−Sλ(W2)‖2F ≤ ‖W1−W2‖2F .

In particular this implies that Sλ(W ) is a continuous map in W.
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Lemma 3 is proved in Ma et al.; their proof is complex and based on trace inequalities. We give a
concise proof based on elementary convex analysis in Appendix A.2.

Lemma 4 The successive differences ‖Zkλ−Zk−1λ ‖2F of the sequence Zkλ are monotone decreasing:

‖Zk+1λ −Zkλ‖
2
F ≤ ‖Zkλ−Zk−1λ ‖2F ∀k. (15)

Moreover the difference sequence converges to zero. That is

Zk+1λ −Zkλ → 0 as k→ ∞.

The proof of Lemma 4 is given in Appendix A.3.

Lemma 5 Every limit point of the sequence Zkλ defined in Lemma 2 is a stationary point of

1
2
‖PΩ(X)−PΩ(Z)‖2F +λ‖Z‖∗.

Hence it is a solution to the fixed point equation

Z = Sλ(PΩ(X)+P⊥
Ω (Z)). (16)

The proof of Lemma 5 is given in Appendix A.4.

Theorem 1 The sequence Zkλ defined in Lemma 2 converges to a limit Z
∞
λ that solves

minimize
Z

1
2
‖PΩ(X)−PΩ(Z)‖2F +λ‖Z‖∗. (17)

Proof It suffices to prove that Zkλ converges; the theorem then follows from Lemma 5.
Let Ẑλ be a limit point of the sequence Zkλ. There exists a subsequence mk such that Zmkλ → Ẑλ.

By Lemma 5, Ẑλ solves the problem (17) and satisfies the fixed point equation (16).
Hence

‖Ẑλ−Zkλ‖
2
F = ‖Sλ(PΩ(X)+P⊥

Ω (Ẑλ))−Sλ(PΩ(X)+P⊥
Ω (Zk−1λ ))‖2F (18)

≤ ‖(PΩ(X)+P⊥
Ω (Ẑλ))− (PΩ(X)+P⊥

Ω (Zk−1λ ))‖2F

= ‖P⊥
Ω (Ẑλ−Zk−1λ )‖2F

≤ ‖Ẑλ−Zk−1λ ‖2F . (19)

In (18) two substitutions were made; the left one using (16) in Lemma 5, the right one using (12).
Inequality (19) implies that the sequence ‖Ẑλ−Zk−1λ ‖2F converges as k→ ∞. To show the conver-
gence of the sequence Zkλ it suffices to prove that the sequence Ẑλ−Zkλ converges to zero. We prove
this by contradiction.

Suppose the sequence Zkλ has another limit point Z
+
λ 2= Ẑλ. Then Ẑλ−Zkλ has two distinct limit

points 0 and Z+λ − Ẑλ 2= 0. This contradicts the convergence of the sequence ‖Ẑλ−Zk−1λ ‖2F . Hence
the sequence Zkλ converges to Ẑλ := Z∞λ .

The inequality in (19) implies that at every iteration Zkλ gets closer to an optimal solution for the
problem (17).3 This property holds in addition to the decrease of the objective function (Lemma 2)
at every iteration.

3. In fact this statement can be strengthened further—at every iteration the distance of the estimate decreases from the
set of optimal solutions.
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4.2 Convergence Rate

In this section we derive the worst case convergence rate of SOFT-IMPUTE.

Theorem 2 For every fixed λ ≥ 0, the sequence Zkλ;k ≥ 0 defined in Lemma 2 has the following
non-asymptotic (worst) rate of convergence:

fλ(Zkλ)− fλ(Z∞λ )≤
2‖Z0λ−Z∞λ ‖

2
F

k+1
. (20)

The proof of this theorem is in Appendix A.6.
In light of Theorem 2, a δ > 0 accurate solution of fλ(Z) is obtained after a maximum of

2
δ‖Z

0
λ−Z∞λ ‖

2
F iterations. Using warm-starts, SOFT-IMPUTE traces out the path of solutions on a grid

of λ values λ1 > λ2 > .. . > λK with a total of 4

K

∑
i=1

2
δ
‖Ẑλi−1 −Z∞λi‖

2
F (21)

iterations. Here Ẑλ0 = 0 and Ẑλi denotes the output of SOFT-IMPUTE (upon convergence) for λ= λi
(i ∈ {1, . . . ,K−1}). The solutions Z∞λi and Z

∞
λi−1

are likely to be close to each other, especially on a
dense grid of λi’s. Hence every summand of (21) and the total number of iterations is expected to
be significantly smaller than that obtained via arbitrary cold-starts.

5. Computational Complexity

The computationally demanding part of Algorithm 1 is in Sλ(PΩ(X)+P⊥
Ω (Zkλ)). This requires cal-

culating a low-rank SVD of a matrix, since the underlying model assumption is that rank(Z) &
min{m,n}. In Algorithm 1, for fixed λ, the entire sequence of matrices Zkλ have explicit

5 low-rank
representations of the formUkDkV ′

k corresponding to Sλ(PΩ(X)+P⊥
Ω (Z

k−1
λ )).

In addition, observe that PΩ(X)+P⊥
Ω (Zkλ) can be rewritten as

PΩ(X)+P⊥
Ω (Zkλ) =

{
PΩ(X)−PΩ(Zkλ)

}
+ Zkλ

= Sparse + Low Rank. (22)

In the numerical linear algebra literature, there are very efficient direct matrix factorization methods
for calculating the SVD of matrices of moderate size (at most a few thousand). When the matrix is
sparse, larger problems can be solved but the computational cost depends heavily upon the sparsity
structure of the matrix. In general however, for large matrices one has to resort to indirect iterative
methods for calculating the leading singular vectors/values of a matrix. There is a lot research in
numerical linear algebra for developing sophisticated algorithms for this purpose. In this paper we
will use the PROPACK algorithm (Larsen, 2004, 1998) because of its low storage requirements,
effective flop count and its well documented MATLAB version. The algorithm for calculating the
truncated SVD for a matrixW (say), becomes efficient if multiplication operationsWb1 andW ′b2
(with b1 ∈ℜn, b2 ∈ℜm) can be done with minimal cost.

4. We assume the solution Ẑλ at every λ ∈ {λ1, . . . ,λK} is computed to an accuracy of δ> 0.
5. Though we cannot prove theoretically that every iterate of the sequence Zkλ will be of low-rank; this observation is
rather practical based on the manner in which we trace out the entire path of solutions based on warm-starts. Our
simulation results support this observation as well.

2295



MAZUMDER, HASTIE AND TIBSHIRANI

Algorithm SOFT-IMPUTE requires repeated computation of a truncated SVD for a matrix W
with structure as in (22). Assume that at the current iterate, the matrix Zkλ has rank r̃. Note that in
(22) the term PΩ(Zkλ) can be computed in O(|Ω|r̃) flops using only the required outer products (i.e.,
our algorithm does not compute the matrix explicitly).

The cost of computing the truncated SVD will depend upon the cost in the operationsWb1 and
W ′b2 (which are equal). For the sparse part these multiplications cost O(|Ω|). Although it costs
O(|Ω|r̃) to create the matrix PΩ(Zkλ), this is used for each of the r̃ such multiplications (which also
cost O(|Ω|r̃)), so we need not include that cost here. The Low Rank part costs O((m+n)r̃) for the
multiplication by b1. Hence the cost is O(|Ω|)+O((m+n)r̃) per vector multiplication. Supposing
we want a r̃ rank SVD of the matrix (22), the cost will be of the order of O(|Ω|r̃)+O((m+n)(r̃)2)
(for that iteration, that is, to obtain Zk+1λ from Zkλ). Suppose the rank of the solution Z

k
λ is r, then in

light of our above observations r̃ ≈ r&min{m,n} and the order is O(|Ω|r)+O((m+n)r2).
For the reconstruction problem to be theoretically meaningful in the sense of Candès and Tao

(2009) we require that |Ω|≈ nr ·poly(logn). In practice often |Ω| is very small. Hence introducing
the Low Rank part does not add any further complexity in the multiplication byW andW ′. So the
dominant cost in calculating the truncated SVD in our algorithm is O(|Ω|). The SVT algorithm
(Cai et al., 2008) for exact matrix completion (4) involves calculating the SVD of a sparse matrix
with costO(|Ω|). This implies that the computational order of SOFT-IMPUTE and that of SVT is the
same. This order computation does not include the number of iterations required for convergence. In
our experimental studies we use warm-starts for efficiently computing the entire regularization path.
On small scale examples, based on comparisons with the accelerated gradient method of Nesterov
(see Section 9.3; Ji and Ye, 2009; Nesterov, 2007) we find that our algorithm converges faster
than the latter in terms of run-time and number of SVD computations/ iterations. This supports
the computational effectiveness of SOFT-IMPUTE. In addition, since the true rank of the matrix
r&min{m,n}, the computational cost of evaluating the truncated SVD (with rank ≈ r) is linear in
matrix dimensions. This justifies the large-scale computational feasibility of our algorithm.

The above discussions focus on the computational complexity for obtaining a low-rank SVD,
which is to be performed at every iteration of SOFT-IMPUTE. Similar to the total iteration complexity
bound of SOFT-IMPUTE (21), the total cost to compute the regularization path on a grid of λ values
is given by:

K

∑
i=1

O
(
(|Ω|r̄λi +(m+n)r̄2λi)

2
δ
‖Ẑλi−1 −Z∞λi‖

2
F

)
.

Here r̄λ denotes the rank6 (on an average) of the iterates Zkλ generated by SOFT-IMPUTE for fixed λ.
The PROPACK package does not allow one to request (and hence compute) only the singular

values larger than a threshold λ—one has to specify the number in advance. So once all the com-
puted singular values fall above the current threshold λ, our algorithm increases the number to be
computed until the smallest is smaller than λ. In large scale problems, we put an absolute limit on
the maximum number.

6. We assume, above that the grid of values λ1 > .. .λK is such that all the solutions Zλ,λ ∈ {λ1, . . . ,λK} are of small
rank, as they appear in Section 5.

2296



MATRIX COMPLETION BY SPECTRAL REGULARIZATION

6. Generalized Spectral Regularization: From Soft to Hard Thresholding

In Section 1 we discussed the role of the nuclear norm as a convex surrogate for the rank of a matrix,
and drew the analogy with LASSO regression versus best-subset selection. We argued that in many
problems !1 regularization gives better prediction accuracy. However, if the underlying model is
very sparse, then the LASSO with its uniform shrinkage can both overestimate the number of non-
zero coefficients (Friedman, 2008) in the model, and overly shrink (bias) those included toward zero.
In this section we propose a natural generalization of SOFT-IMPUTE to overcome these problems.

Consider again the problem

minimize
rank(Z)≤k

1
2
‖PΩ(X)−PΩ(Z)‖2F ,

a rephrasing of (1). This best rank-k solution also solves

minimize
1
2
‖PΩ(X)−PΩ(Z)‖2F +λ∑

j
I(γ j(Z)> 0),

where γ j(Z) is the jth singular value of Z, and for a suitable choice of λ that produces a solution
with rank k.

The “fully observed” matrix version of the above problem is given by the !0 version of (8) as
follows:

minimize
Z

1
2
‖W −Z‖2F +λ‖Z‖0, (23)

where ‖Z‖0 = rank(Z). The solution of (23) is given by a reduced-rank SVD of W ; for every λ
there is a corresponding q = q(λ) number of singular-values to be retained in the SVD decompo-
sition. Problem (23) is non-convex in W but its global minimizer can be evaluated. As in (9) the
thresholding operator resulting from (23) is

SHλ (W ) =UDqV ′ where Dq = diag(d1, . . . ,dq,0, . . . ,0) .

Similar to SOFT-IMPUTE (Algorithm 1), we present below HARD-IMPUTE (Algorithm 2) for the
!0 penalty. The continuous parameterization via λ does not appear to offer obvious advantages
over rank-truncation methods. We note that it does allow for a continuum of warm starts, and is a
natural post-processor for the output of SOFT-IMPUTE (next section). But it also allows for further
generalizations that bridge the gap between hard and soft regularization methods.

In penalized regression there have been recent developments directed towards “bridging” the
gap between the !1 and !0 penalties (Friedman, 2008; Zhang, 2010; Mazumder et al., 2009). This
is done via using non-convex penalties that are a better surrogate (in the sense of approximating the
penalty) to !0 over the !1. They also produce less biased estimates than those produced by the !1
penalized solutions. When the underlying model is very sparse they often perform very well, and
enjoy superior prediction accuracy when compared to softer penalties like !1. These methods still
shrink, but are less aggressive than the best-subset selection.

By analogy, we propose using a more sophisticated version of spectral regularization. This goes
beyond nuclear norm regularization by using slightly more aggressive penalties that bridge the gap
between !1 (nuclear norm) and !0(rank constraint). We propose minimizing

fp,λ(Z) =
1
2
‖PΩ(X)−PΩ(Z)‖2F +λ∑

j
p(γ j(Z);µ), (24)
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Algorithm 2 HARD-IMPUTE

1. Initialize Z̃λk k = 1, . . . ,K (for example, using SOFT-IMPUTE; see Section 7).

2. Do for λ1 > λ2 > .. . > λK :

(a) Repeat:
i. Compute Znew ← SHλk(PΩ(X)+P⊥

Ω (Zold)).

ii. If ‖Znew−Zold‖2F
‖Zold‖2F

< ε exit.

iii. Assign Zold ← Znew.
(b) Assign ẐH,λk ← Znew.

3. Output the sequence of solutions ẐH,λ1 , . . . , ẐH,λK .

where p(|t|;µ) is concave in |t|. The parameter µ ∈ [µinf,µsup] controls the degree of concavity.
We may think of p(|t|;µinf) = |t| (!1 penalty) on one end and p(|t|;µsup) = ‖t‖0 (!0 penalty) on
the other. In particular for the !0 penalty denote fp,λ(Z) by fH,λ(Z) for “hard” thresholding. See
Friedman (2008), Mazumder et al. (2009) and Zhang (2010) for examples of such penalties.

In Remark 1 in Appendix A.1 we argue how the proof can be modified for general types of
spectral regularization. Hence for minimizing the objective (24) we will look at the analogous
version of (8, 23) which is

minimize
Z

1
2
‖W −Z‖2F +λ∑

j
p(γ j(Z);µ).

The solution is given by a thresholded SVD ofW ,

Spλ(W ) =UDp,λV ′,

whereDp,λ is a entry-wise thresholding of the diagonal entries of the matrixD consisting of singular
values of the matrixW . The exact form of the thresholding depends upon the form of the penalty
function p(·; ·), as discussed in Remark 1. Algorithm 1 and Algorithm 2 can be modified for the
penalty p(·;µ) by using a more general thresholding function Spλ(·) in Step 2(a)i. The corresponding
step becomes:

Znew ← Spλ(PΩ(X)+P⊥
Ω (Zold)).

However these types of spectral regularization make the criterion (24) non-convex and hence it
becomes difficult to optimize globally. Recht et al. (2007) and Bach (2008) also consider the rank
estimation problem from a theoretical standpoint.

7. Post-processing of “Selectors” and Initialization

Because the !1 norm regularizes by shrinking the singular values, the number of singular values
retained (through cross-validation, say) may exceed the actual rank of the matrix. In such cases it is
reasonable to undo the shrinkage of the chosen models, which might permit a lower-rank solution.
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If Zλ is the solution to (10), then its post-processed version Zuλ obtained by “unshrinking” the
eigen-values of the matrix Zλ is obtained by

α = argmin
αi≥0, i=1,...,rλ

‖PΩ(X)−
rλ
∑
i=1

αiPΩ(uiv′i)‖2 (25)

Zuλ = UDαV ′,

where Dα = diag(α1, . . . ,αrλ). Here rλ is the rank of Zλ and Zλ =UDλV ′ is its SVD. The estimation
in (25) can be done via ordinary least squares, which is feasible because of the sparsity of PΩ(uiv′i)
and that rλ is small.7 If the least squares solutions α do not meet the positivity constraints, then the
negative sign can be absorbed into the corresponding singular vector.

Rather than estimating a diagonal matrix Dα as above, one can insert a matrix Mrλ×rλ between
U and V above to obtain better training error for the same rank. Hence givenU, V (each of rank rλ)
from the SOFT-IMPUTE algorithm, we solve

M̂ = argmin
M

‖PΩ(X)−PΩ(UMV ′)‖2, (26)

where, Ẑλ = UM̂V ′.

The objective function in (26) is the Frobenius norm of an affine function of M and hence can be
optimized very efficiently. Scalability issues pertaining to the optimization problem (26) can be
handled fairly efficiently via conjugate gradients. Criterion (26) will definitely lead to a decrease
in training error as that attained by Ẑ =UDλV ′ for the same rank and is potentially an attractive
proposal for the original problem (1). However this heuristic cannot be caste as a (jointly) convex
problem in (U,M,V ). In addition, this requires the estimation of up to r2λ parameters, and has the
potential for over-fitting. In this paper we report experiments based on (25).

In many simulated examples we have observed that this post-processing step gives a good es-
timate of the underlying true rank of the matrix (based on prediction error). Since fixed points of
Algorithm 2 correspond to local minima of the function (24), well-chosen warm starts Z̃λ are help-
ful. A reasonable prescription for warms-starts is the nuclear norm solution via (SOFT-IMPUTE),
or the post processed version (25). The latter appears to significantly speed up convergence for
HARD-IMPUTE. This observation is based on our simulation studies.

8. Soft-Impute and Maximum-Margin Matrix Factorization

In this section we compare in detail the MMMF criterion (6) with the SOFT-IMPUTE criterion (3).
For ease of comparison here, we put down these criteria again using our PΩ notation.

MMMF solves

minimize
U,V

1
2
||PΩ(X−UV )||2F +

λ
2
(‖U‖2F +‖V‖2F), (27)

where Um×r′ and Vn×r′ are arbitrary (non-orthogonal) matrices. This problem formulation and re-
lated optimization methods have been explored by Srebro et al. (2005b) and Rennie and Srebro
(2005).

7. Observe that the PΩ(uiv′i), i= 1, . . . ,rλ are not orthogonal, though the uiv′i are.
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SOFT-IMPUTE solves
minimize

Z

1
2
||PΩ(X−Z)||2F +λ‖Z‖∗. (28)

For each given maximum rank, MMMF produces an estimate by doing further shrinkage with its
quadratic regularization. SOFT-IMPUTE performs rank reduction and shrinkage at the same time,
in one smooth convex operation. The following theorem shows that this one-dimensional SOFT-
IMPUTE family lies exactly in the two-dimensional MMMF family.

Theorem 3 Let X be m×n with observed entries indexed by Ω.

1. Let r′ =min(m,n). Then the solutions to (27) and (28) coincide for all λ≥ 0.

2. Suppose Ẑ∗ is a solution to (28) for λ∗ > 0, and let r∗ be its rank. Then for any solution
Û , V̂ to (27) with r′ = r∗ and λ= λ∗, ÛV̂ T is a solution to (28). The SVD factorization of Ẑ∗
provides one such solution to (27). This implies that the solution space of (28) is contained in
that of (27).

Remarks:

1. Part 1 of this theorem appears in a slightly different form in Srebro et al. (2005b).

2. In part 1, we could use r′ > min(m,n) and get the same equivalence. While this might seem
unnecessary, there may be computational advantages; searching over a bigger space might
protect against local minima. Likewise in part 2, we could use r′ > r∗ and achieve the same
equivalence. In either case, no matter what r′ we use, the solution matrices Û and V̂ have the
same rank as Ẑ.

3. Let Ẑ(λ) be a solution to (28) at λ. We conjecture that rank [Ẑ(λ)] is monotone non-increasing
in λ. If this is the case, then Theorem 3, part 2 can be further strengthened to say that for all
λ≥ λ∗ and r′ = r∗ the solutions of (27) coincide with that of (28).

The MMMF criterion (27) defines a two-dimensional family of models indexed by (r′,λ), while the
SOFT-IMPUTE criterion (28) defines a one-dimensional family. In light of Theorem 3, this family is
a special path in the two-dimensional grid of solutions [Û(r′,λ),V̂(r′,λ)]. Figure 1 depicts the situation.
Any MMMF model at parameter combinations above the red squares are redundant, since their fit
is the same at the red square. However, in practice the red squares are not known to MMMF, nor
is the actual rank of the solution. Further orthogonalization of Û and V̂ would be required to reveal
the rank, which would only be approximate (depending on the convergence criterion of the MMMF
algorithm).

Despite the equivalence of (27) and (28) when r′ = min(m,n), the criteria are quite different.
While (28) is a convex optimization problem in Z, (27) is a non-convex problem in the variables
U,V and has possibly several local minima; see also Abernethy et al. (2009). It has been observed
empirically and theoretically (Burer and Monteiro, 2005; Rennie and Srebro, 2005) that bi-convex
methods used in the optimization of (27) can get stuck in sub-optimal local minima for a small value
of r′ or a poorly chosen starting point. For a large number of factors r′ and large dimensions m,n
the computational cost may be quite high (See also experimental studies in Section 9.2).

Criterion (28) is convex in Z for every value of λ, and it outputs the solution Ẑ in the form of
its soft-thresholded SVD, implying that the “factors” U,V are already orthogonal and the rank is
known.
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Figure 1: Comparison of the parameter space for MMMF (grey and black points), and SOFT-
IMPUTE (red squares) for a simple example. Since all MMMF solutions with parameters
above the red squares are identical to the SOFT-IMPUTE solutions at the red squares, all
the grey points are redundant.

MMMF has two different tuning parameters r′ and λ, both of which are related to the rank
or spectral properties of the matrices U,V . SOFT-IMPUTE has only one tuning parameter λ. The
presence of two tuning parameters is problematic:

• It results in a significant increase in computational burden, since for every given value of r′,
one needs to compute an entire system of solutions by varying λ (see Section 9 for illustra-
tions).

• In practice when neither the optimal values of r′ and λ are known, a two-dimensional search
(for example, by cross validation) is required to select suitable values.

Further discussions and connections between the tuning parameters and spectral properties of the
matrices can be found in Burer and Monteiro (2005) and Abernethy et al. (2009).

The proof of Theorem 3 requires a lemma.

Lemma 6 For any matrix Z, the following holds:

||Z||∗ = min
U,V : Z=UVT

1
2
(
‖U‖2F +‖V‖2F

)
. (29)

If rank(Z) = k ≤ min{m,n}, then the minimum above is attained at a factor decomposition Z =
Um×kVT

n×k.

Note that in the decomposition Z =UVT in (29) there is no constraint on the number of columns r
of the factor matricesUm×r and Vn×r. Lemma 6 is stronger than similar results appearing in Rennie
and Srebro (2005) and Abernethy et al. (2009) which establish (29) for r = min{m,n}—we give a
tighter estimate of the rank k of the underlying matrices. The proof is given in Appendix A.5.
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8.1 Proof of Theorem 3

Part 1. For r = min(m,n), any matrix Zm×n can be written in the form of Z =UVT . The criterion
(27) can be written as

min
U,V

1
2 ||PΩ(X−UVT )||2F +

λ
2 (‖U‖2F +‖V‖2F) (30)

=min
U,V

1
2 ||PΩ(X−UVT )||2F +λ‖UVT‖∗ (by Lemma 6)

=min
Z

1
2 ||PΩ(X−Z)||2F +λ‖Z‖∗. (31)

The equivalence of the criteria in (30) and (31) completes the proof of part 1.
Part 2. Note that if we know that the solution Ẑ∗ to (28) with λ= λ∗ has rank r∗, then Ẑ∗ also solves

min
Z, rank(Z)=r∗

1
2 ||PΩ(X−Z)||2F +λ‖Z‖∗.

We now repeat the steps (30)—(31), restricting the rank r′ of U and V to be r′ = r∗, and the result
follows.

9. Numerical Experiments and Comparisons

In this section we study the performance of SOFT-IMPUTE, its post-processed variants, and HARD-
IMPUTE for noisy matrix completion problems. The examples assert our claim that the matrix
reconstruction criterion (4) (Cai et al., 2008) is too rigid if one seeks good predictive models. We
include the related procedures of Rennie and Srebro (2005) and Keshavan et al. (2009) in our com-
parisons.

The reconstruction algorithm OPTSPACE, described in Keshavan et al. (2009) considers crite-
rion (1) (in the presence of noise). It uses the representation Z =USV ′ (which need not correspond
to the SVD). OPTSPACE alternates between estimating S and U,V (in a Grassmann manifold) for
computing a rank-r decomposition Ẑ = Û ŜV̂ ′. It starts with a sparse SVD on a clean version of the
observed matrix PΩ(X). This is similar to the formulation of MMMF (27) as detailed in Section 8,
without the squared Frobenius norm regularization on the componentsU,V .

To summarize, we study the following methods:

1. SOFT-IMPUTE–Algorithm 1;

2. SOFT-IMPUTE+–post-processing on the output of SOFT-IMPUTE, as in Section 7;

3. HARD-IMPUTE–Algorithm 2, starting with the output of SOFT-IMPUTE+;

4. SVT–algorithm by Cai et al. (2008);

5. OPTSPACE–reconstruction algorithm by Keshavan et al. (2009);

6. MMMF–algorithm for (6) as in Rennie and Srebro (2005).
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In all our simulation studies we use the underlying model Zm×n =Um×rV ′
r×n+ε, whereU andV are

random matrices with standard normal Gaussian entries, and ε is i.i.d. Gaussian. Ω is uniformly
random over the indices of the matrix with p% percent of missing entries. These are the models
under which the coherence conditions hold true for the matrix completion problem to be meaningful
(Candès and Tao, 2009; Keshavan et al., 2009). The signal to noise ratio for the model and the test-
error (standardized) are defined as

SNR=

√
var(UV ′)

var(ε)
; Test Error=

‖P⊥
Ω (UV ′ − Ẑ)‖2F
‖P⊥

Ω (UV ′)‖2F
.

Training error (standardized) is defined as

Training Error=
‖PΩ(Z− Ẑ)‖2F
‖PΩ(Z)‖2F

,

the fraction of the error explained on the observed entries by the estimate relative to a zero estimate.
Figures 2, 3 and 4 show training and test error for all of the algorithms mentioned above—both

as a function of nuclear norm and rank—for the three problem instances. The results displayed
in the figures are averaged over 50 simulations, and also show one-standard-error bands (hardly
visible). In all examples (m,n) = (100,100). For MMMF we use r′ =min(m,n) = 100, the number
of columns inU and V . The performance of MMMF is displayed only in the plots with the nuclear
norm along the horizontal axis, since the algorithm does not deliver a precise rank. SNR, true rank
and percentage of missing entries are indicated in the figures. There is a unique correspondence
between λ and nuclear norm. The plots versus rank indicate how effective the nuclear norm is as a
rank approximation—that is whether it recovers the true rank while minimizing prediction error.

For routines not our own we use the MATLAB code as supplied on webpages by the authors.
For SVT second author of Cai et al. (2008), for OPTSPACE third author of Keshavan et al. (2009),
and for MMMF first author of Rennie and Srebro (2005).

9.1 Observations

The captions of each of Figures 2–4 detail the results, which we summarize here. For the first two
figures, the noise is quite high with SNR= 1, and 50% of the entries are missing. In Figure 2 the
true rank is 10, while in Figure 3 it is 6. SOFT-IMPUTE, MMMF and SOFT-IMPUTE+ have the best
prediction performance, while SOFT-IMPUTE+ is better at estimating the correct rank. The other
procedures perform poorly here, although OPTSPACE improves somewhat in Figure 3. SVT has
very poor prediction error, suggesting once again that exactly fitting the training data is far too rigid.
SOFT-IMPUTE+ has the best performance in Figure 3 (smaller rank—more aggressive fitting), and
HARD-IMPUTE starts recovering here. In both figures the training error for SOFT-IMPUTE (and
hence MMMF) wins as a function of nuclear norm (as it must, by construction), but the more
aggressive fitters SOFT-IMPUTE+ and HARD-IMPUTE have better training error as a function of
rank.

Though the nuclear norm is often viewed as a surrogate for the rank of a matrix, we see in
these examples that it can provide a superior mechanism for regularization. This is similar to the
performance of LASSO in the context of regression. Although the LASSO penalty can be viewed as a
convex surrogate for the !0 penalty in model selection, its !1 penalty provides a smoother and often
better basis for regularization.
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50% missing entries with SNR=1, true rank =10
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Figure 2: SOFTIMP+ refers to the post-processing after SOFT-IMPUTE; HARD-IMPUTE uses SOFT-
IMP+ as starting values. Both SOFT-IMPUTE and SOFT-IMPUTE+ perform well (predic-
tion error) in the presence of noise; the latter estimates the actual rank of the matrix.
MMMF (with full rank 100 factor matrices) has performance similar to SOFT-IMPUTE.
HARD-IMPUTE and OPTSPACE show poor prediction error. SVT also has poor predic-
tion error, confirming our claim in this example that criterion (4) can result in overfitting;
it recovers a matrix with high nuclear norm and rank > 60 where the true rank is only 10.
Values of test error larger than one are not shown in the figure. OPTSPACE is evaluated
for a series of ranks ≤ 30.
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50% missing entries with SNR=1, true rank =6
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Figure 3: SOFT-IMPUTE+ has the best prediction error, closely followed by SOFT-IMPUTE and
MMMF. Both HARD-IMPUTE and OPTSPACE have poor prediction error apart from
near the true rank 6 of the matrix, where they show reasonable performance. SVT has
very poor prediction error; it recovers a matrix with high nuclear norm and rank > 60,
where the true rank is only 6. OPTSPACE is evaluated for a series of ranks ≤ 35.
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80% missing entries with SNR=10, true rank =5
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Figure 4: With low noise the performance of HARD-IMPUTE improves. It gets the correct rank
whereas OPTSPACE slightly overestimates the rank. HARD-IMPUTE has the best pre-
diction error, followed by OPTSPACE. Here MMMF has slightly better prediction error
than SOFT-IMPUTE. Although the noise is low here, SVT recovers a matrix with high
rank (approximately 30) and has poor prediction error as well. The test error of SVT is
found to be different from the limiting solution of SOFT-IMPUTE; although in theory the
limiting solution of (10) should coincide with that of SVT, in practice we never go to the
limit.
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In Figure 4 with SNR= 10 the noise is relatively small compared to the other two cases. The
true underlying rank is 5, but the proportion of missing entries is much higher at eighty percent. Test
errors of both SOFT-IMPUTE+ and SOFT-IMPUTE are found to decrease till a large nuclear norm
after which they become roughly the same, suggesting no further impact of regularization. MMMF
has slightly better test error than SOFT-IMPUTE around a nuclear norm of 350, while in theory
they should be identical. Notice, however, that the training error is slightly worse (everywhere),
suggesting that MMMF is sometimes trapped in local minima. The fact that this slightly underfit
solution does better in test error is a quirk of this particular example. OPTSPACE performs well in
this high-SNR example, achieving a sharp minima at the true rank of the matrix. HARD-IMPUTE
performs the best in this example. The better performance of both OPTSPACE and HARD-IMPUTE
over SOFT-IMPUTE can be attributed both to the low-rank truth and the high SNR. This is reminis-
cent of the better predictive performance of best-subset or concave penalized regression often seen
over LASSO in setups where the underlying model is very sparse (Friedman, 2008).

9.2 Comparison with Fast MMMF (Rennie and Srebro, 2005)

In this section we compare SOFT-IMPUTE with MMMF in terms of computational efficiency. We
also examine the consequences of two regularization parameters (r′,λ) for MMMF over one for
SOFT-IMPUTE.

Rennie and Srebro (2005) describes a fast algorithm based on conjugate-gradient descent for
minimization of the MMMF criterion (6). With (6) being non-convex, it is hard to provide theo-
retical optimality guarantees for the algorithm for arbitrary r′,λ—that is, what type of solution it
converges to or how far it is from the global minimizer.

In Table 1 we summarize the performance results of the two algorithms. For both SOFT-IMPUTE
and MMMF we consider a equi-spaced grid of 150 λ ∈ [λmin,λmax], with λmin corresponding to a
full-rank solution of SOFT-IMPUTE and λmax the zero solution. For MMMF, three different values
of r′ were used, and for each (Û ,V̂ ) were solved for over the grid of λ values. A separate held-out
validation set with twenty percent of the missing entries sampled from Ω⊥ were used to train the
tuning parameter λ (for each value of r′) for MMMF and SOFT-IMPUTE. Finally we evaluate the
standardized prediction errors on a test set consisting of the remaining eighty percent of the missing
entries in Ω⊥. In all cases we report the training errors and test errors on the optimally tuned
λ. SOFT-IMPUTE was run till a tolerance of 10−4 was achieved (fraction of decrease of objective
value). Likewise for MMMF we set the tolerance of the conjugate gradient method to 10−4.

In Table 1, for every algorithm total time indicates the time required for evaluating solutions
over the entire grid of λ values. In these examples, we used direct SVD factorization based methods
for the SVD computation, since the size of the problems were quite small. In all these examples
we observe that SOFT-IMPUTE performs very favorably in terms of total times. For MMMF the
time to train the models increase with increasing rank r′; and in case the underlying matrix has rank
which is larger than r′, the computational cost will be large in order to get competitive predictive
accuracy. This point is supported in the examples of Table 1. It is important to note that, the
prediction error of SOFT-IMPUTE as obtained on the validation set is actually within standard error
of the best prediction error produced by all the MMMF models. In addition we also performed
some medium-scale examples increasing the dimensions of the matrices. To make comparisons fair,
SOFT-IMPUTE made use of direct SVD computations (in MATLAB) instead of iterative algorithms
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Data Method (rank) Test error Training error Time (secs)
(m,n) = (102,102) SOFT-IMPUTE (39) 0.7238 (0.0027) 0.0720 4.1745
|Ω|= 5×103(50%) MMMF (20) 0.7318 (0.0031) 0.2875 48.1090
SNR= 3 MMMF (60) 0.7236 (0.0027) 0.1730 62.0230
rank (R)= 30 MMMF (100) 0.7237 (0.0027) 0.1784 96.2750
(m,n) = (102,102) SOFT-IMPUTE (37) 0.5877 (0.0047) 0.0017 4.0976
|Ω|= 2×103(20%) MMMF (20) 0.5807 (0.0049) 0.0186 53.7533
SNR= 10 MMMF (60) 0.5823 (0.0049) 0.0197 62.0230
rank(R)= 10 MMMF (100) 0.5823 (0.0049) 0.0197 84.0375
(m,n) = (102,102) SOFT-IMPUTE (59) 0.6008 (0.0028) 0.0086 3.8447
|Ω|= 8×103(80%) MMMF (20) 0.6880 (0.0029) 0.4037 33.8685
SNR= 10 MMMF (60) 0.5999 (0.0028) 0.0275 57.3488
rank(R)= 45 MMMF (100) 0.5999 (0.0028) 0.0275 89.4525

Table 1: Performances of SOFT-IMPUTE and MMMF for different problem instances, in terms of
test error (with standard errors in parentheses), training error and times for learning the
models. SOFT-IMPUTE,“rank” denotes the rank of the recovered matrix, at the optimally
chosen value of λ. For the MMMF, “rank” indicates the value of r′ inUm×r′ ,Vn×r′ . Results
are averaged over 50 simulations.

exploiting the specialized Sparse+Low-Rank structure (22). We report our findings on one such
simulation example:

• For (m,n) = (2000,1000), |Ω|/(m ·n) = 0.2, rank= 500 and SNR=10; SOFT-IMPUTE takes
1.29 hours to compute solutions on a grid of 100 λ values. The test error on the validation set
and training error are 0.9630 and 0.4375 with the recovered solution having a rank of 225.
For the same problem, MMMF with r′ = 200 takes 6.67 hours returning a solution with test-
error 0.9678 and training error 0.6624. With r′ = 400 it takes 12.89 hrs with test and training
errors 0.9659 and 0.6564 respectively.

We will like to note that DeCoste (2006) proposed an efficient implementation of MMMF via an
ensemble based approach, which is quite different in spirit from the batch optimization algorithms
we are studying in this paper. Hence we do not compare it with SOFT-IMPUTE.

9.3 Comparison with Nesterov’s Accelerated Gradient Method

Ji and Ye (2009) proposed a first-order algorithm based on Nesterov’s acceleration scheme (Nes-
terov, 2007), for nuclear norm minimization for a generic multi-task learning problem (Argyriou
et al., 2008, 2007). Their algorithm (Liu et al., 2009; Ji and Ye, 2009) can be adapted to the SOFT-
IMPUTE problem (10); hereafter we refer to it as NESTEROV. It requires one to compute the SVD of
a dense matrix having the dimensions of X , which makes it prohibitive for large-scale problems. We
instead would make use of the structure (22) for the SVD computation, a special characteristic of
matrix completion which is not present in a generic multi-task learning problem. Here we compare
the performances of SOFT-IMPUTE and NESTEROV on small scale examples, where direct SVDs
can be computed easily.
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Since both algorithms solve the same criterion, the quality of the solutions—objective values,
training and test errors—will be the same (within tolerance). We hence compare their performances
based on the times taken by the algorithms to converge to the optimal solution of (10) on a grid of
values of λ. Both algorithms compute a path of solutions using warm starts. Results are shown in
Figure 5, for four different scenarios described in Table 2.

Example (m,n) |Ω|/(m ·n) Rank Test Error
i (100,100) 0.5 5 0.4757
ii (100,100) 0.2 5 0.0668
iii (100,100) 0.8 5 0.0022
iv (1000,500) 0.5 30 0.0028

Table 2: Four different examples used for timing comparisons of SOFT-IMPUTE and NESTEROV
(accelerated Nesterov algorithm of Ji and Ye 2009). In all cases the SNR= 10.

Figure 5 shows the time to convergence for the two algorithms. Their respective number of
iterations are not comparable. This is because NESTEROV uses a line-search to compute an adaptive
step-size (approximate the Lipschitz constant) at every iteration, whereas SOFT-IMPUTE does not.

SOFT-IMPUTE has a rate of convergence given by Theorem 2, which for large k is worse than
the accelerated version NESTEROV with rate O(1/k2). However, timing comparisons in Figure 5
show that SOFT-IMPUTE performs very favorably. We do not know the exact reason behind this, but
mention some possibilities. Firstly the rates areworst case convergence rates. On particular problem
instances of the form (10), the rates of convergence in practice of SOFT-IMPUTE and NESTEROV
may be quite similar. Since Ji and Ye (2009) uses an adaptive step-size strategy, the choice of a
step-size may be time consuming. SOFT-IMPUTE on the other hand, uses a constant step size.

Additionally, it appears that the use of themomentum term in NESTEROV affects the Sparse+Low-
rank decomposition (22). This may prevent the algorithm to be adapted for solving large problems,
due to costly SVD computations.

9.4 Large Scale Simulations for SOFT-IMPUTE

Table 3 reports the performance of SOFT-IMPUTE on some large-scale problems. All computations
are performed in MATLAB and the MATLAB implementation of PROPACK is used. Data input,
access and transfer in MATLAB take a sizable portion of the total computational time, given the
size of these problems. However, the main computational bottle neck in our algorithm is the struc-
tured SVD computation. In order to focus more on the essential computational task, Table 3 displays
the total time required to perform the SVD computations over all iterations of the algorithm. Note
that for all the examples considered in Table 3, the implementations of algorithms NESTEROV (Liu
et al., 2009; Ji and Ye, 2009) and MMMF (Rennie and Srebro, 2005) are prohibitively expensive
both in terms of computational time and memory requirements, and hence could not be run. We
used the value λ = ||PΩ(X)||2/K with SOFT-IMPUTE, with K = 1.5 for all examples but the last,
where K = 2. λ0 = ||PΩ(X)||2 is the largest singular value of the input matrix X (padded with ze-
ros); this is the smallest value of λ for which Sλ0(PΩ(X)) = 0 in the first iteration of SOFT-IMPUTE
(Section 3).
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Figure 5: Timing comparisons of SOFT-IMPUTE and NESTEROV (accelerated Nesterov algorithm
of Ji and Ye 2009). The horizontal axis corresponds to the standardized nuclear norm,
with C = maxλ ‖Ẑλ‖∗. Shown are the times till convergence for the two algorithms over
an entire grid of λ values for examples i–iv (in the last the matrix dimensions are much
larger). The overall time differences between Examples i–iii and Example iv is due to the
increased cost of the SVD computations. Results are averaged over 10 simulations. The
times for NESTEROV change far more erratically with λ than they do for SOFT-IMPUTE.

The prediction performance is awful for all but one of the models, because in most cases the
fraction of observed data is very small. These simulations were mainly to show the computational
capabilities of SOFT-IMPUTE on very large problems.

10. Application to the Netflix Data Set

The Netflix training data consists of the ratings of 17,770 movies by 480,189 Netflix customers. The
resulting data matrix is extremely sparse, with 100,480,507 or 1% of the entries observed. The task
was to predict the unseen ratings for a qualifying set and a test set of about 1.4 million ratings each,
with the true ratings in these data sets held in secret by Netflix. A probe set of about 1.4 million
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(m,n) |Ω| |Ω|/(m ·n) Recovered Time (mins) Test error Training error
×100% rank

(104,104) 105 0.1 40∗ 0.2754 0.9946 0.6160
(104,104) 105 0.1 40∗ 0.3770 0.9959 0.6217
(104,104) 105 0.1 50∗ 0.4292 0.9962 0.3862
(104,104) 106 1.0 5 1.6664 0.6930 0.6600
(105,105) 5×106 0.05 40∗ 17.2518 0.9887 0.8156
(105,105) 107 0.1 5 20.3142 0.9803 0.9761
(106,105) 108 0.1 5 259.9620 0.9913 0.9901
(106,106) 107 0.001 20∗ 99.6780 0.9998 0.5834

Table 3: Performance of SOFT-IMPUTE on different problem instances. All models are generated
with SNR=10 and underlying rank=5. Recovered rank is the rank of the solution matrix
Ẑ at the value of λ used in (10). Those with stars reached the “maximum rank” threshold,
and option in our algorithm. Convergence criterion is taken as “fraction of improvement of
objective value” less than 10−4 or a maximum of 15 iterations for the last four examples.
All implementations are done in MATLAB including the MATLAB implementation of
PROPACK on a Intel Xeon Linux 3GHz processor.

ratings was distributed to participants, for calibration purposes. The movies and customers in the
qualifying, test and probe sets are all subsets of those in the training set.

The ratings are integers from 1 (poor) to 5 (best). Netflix’s own algorithm has an RMSE of
0.9525, and the contest goal was to improve this by 10%, or an RMSE of 0.8572 or better. The
contest ran for about 3 years, and the winning team was “Bellkor’s Pragmatic Chaos”, a merger
of three earlier teams (see http://www.netflixprize.com/ for details). They claimed the grand
prize of $1M on September 21, 2009.

Many of the competitive algorithms build on a regularized low-rank factor model similar to (6)
using randomization schemes like mini-batch, stochastic gradient descent or sub-sampling to reduce
the computational cost over making several passes over the entire data-set (see Salakhutdinov et al.,
2007; Bell and Koren., 2007; Takacs et al., 2009, for example). In this paper, our focus is not on
using randomized or sub-sampling schemes. Here we demonstrate that our nuclear-norm regular-
ization algorithm can be applied in batch mode on the entire Netflix training set with a reasonable
computation time. We note however that the conditions under which the nuclear-norm regulariza-
tion is theoretically meaningful (Candès and Tao, 2009; Srebro et al., 2005a) are not met on the
Netflix data set.

We applied SOFT-IMPUTE to the training data matrix and then performed a least-squares un-
shrinking on the singular values with the singular vectors and the training data row and column
means as the bases. The latter was performed on a data-set of size 105 randomly drawn from the
probe set. The prediction error (RMSE) is obtained on a left out portion of the probe set. Table 4
reports the performance of the procedure for different choices of the tuning parameter λ (and the
corresponding rank); times indicate the total time taken for the SVD computations over all itera-
tions. A maximum of 10 iterations were performed for each of the examples. Again, these results
are not competitive with those of the competition leaders, but rather demonstrate the feasibility of
applying SOFT-IMPUTE to such a large data set.
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λ Rank Time (hrs) RMSE
λ0/250 42 1.36 0.9622
λ0/300 66 2.21 0.9572
λ0/500 81 2.83 0.9543
λ0/600 95 3.27 0.9497

Table 4: Results of applying SOFT-IMPUTE to the Netflix data. λ0 = ||PΩ(X)||2; see Section 9.4.
The computations were done on a Intel Xeon Linux 3GHz processor; timings are reported
based on MATLAB implementations of PROPACK and our algorithm. RMSE is root-
mean squared error, as defined in the text.
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Appendix A. Proofs

We begin with the proof of Lemma 1.

A.1 Proof of Lemma 1

Proof Let Z = Ũm×nD̃n×nṼ ′
n×n be the SVD of Z. Assume without loss of generality, m≥ n. We will

explicitly evaluate the closed form solution of the problem (8). Note that

1
2
‖Z−W‖2F +λ‖Z‖∗ =

1
2

{

‖Z‖2F −2
n

∑
i=1

d̃iũ′iW ṽi+
n

∑
i=1

d̃2i

}

+λ
n

∑
i=1

d̃i (32)

where
D̃= diag

[
d̃1, . . . , d̃n

]
, Ũ = [ũ1, . . . , ũn] , Ṽ = [ṽ1, . . . , ṽn] .

Minimizing (32) is equivalent to minimizing

−2
n

∑
i=1

d̃iũ′iW ṽi+
n

∑
i=1

d̃2i +
n

∑
i=1
2λd̃i; w.r.t. (ũi, ṽi, d̃i), i= 1, . . . ,n,

under the constraints Ũ ′Ũ = In, Ṽ ′Ṽ = In and d̃i ≥ 0 ∀i.
Observe the above is equivalent to minimizing (w.r.t. Ũ ,Ṽ ) the function Q(Ũ ,Ṽ ):

Q(Ũ ,Ṽ ) =min
D̃≥0

1
2

{

−2
n

∑
i=1

d̃iũ′iW ṽi+
n

∑
i=1

d̃2i

}

+λ
n

∑
i=1

d̃i. (33)
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Since the objective (33) to be minimized w.r.t. D̃, is separable in d̃i, i = 1, . . . ,n; it suffices to
minimize it w.r.t. each d̃i separately.

The problem
minimize

d̃i≥0

1
2
{
−2d̃iũ′iW ṽi+ d̃2i

}
+λd̃i (34)

can be solved looking at the stationary conditions of the function using its sub-gradient (Nes-
terov, 2003). The solution of the above problem is given by Sλ(ũ′iW ṽi) = (ũ′iW ṽi− λ)+, the soft-
thresholding of ũ′iW ṽi (without loss of generality, we can take ũ′iW ṽi to be non-negative). More
generally the soft-thresholding operator (Friedman et al., 2007; Hastie et al., 2009) is given by
Sλ(x) = sgn(x)(|x|− λ)+. See Friedman et al. (2007) for more elaborate discussions on how the
soft-thresholding operator arises in univariate penalized least-squares problems with the !1 penal-
ization.

Plugging the values of optimal d̃i, i= 1, . . . ,n; obtained from (34) in (33) we get

Q(Ũ ,Ṽ ) =
1
2

{

‖Z‖2F −2
n

∑
i=1

(ũ′iW ṽi−λ)+(ũ′iW ṽi−λ)+(ũ′iX ṽi−λ)2+

}

. (35)

Minimizing Q(Ũ ,Ṽ ) w.r.t. (Ũ ,Ṽ ) is equivalent to maximizing
n

∑
i=1

{
2(ũ′iW ṽi−λ)+(ũ′iW ṽi−λ)− (ũ′iW ṽi−λ)2+

}
= ∑

ũ′iW ṽi>λ
(ũ′iW ṽi−λ)2. (36)

It is a standard fact that for every i the problem

maximize
‖u‖22≤1,‖v‖22≤1

u′Wv; such that u⊥ {û1, . . . , ûi−1}, v⊥ {v̂1, . . . , v̂i−1}

is solved by ûi, v̂i, the left and right singular vectors of the matrixW corresponding to its ith largest
singular value. The maximum value equals the singular value. It is easy to see that maximizing
the expression to the right of (36) wrt (ui,vi), i= 1, . . . ,n is equivalent to maximizing the individual
terms ũ′iW ṽi. If r(λ) denotes the number of singular values ofW larger than λ then the (ũi, ṽi) , i =
1, . . . that maximize the expression (36) correspond to

[
u1, . . . ,ur(λ)

]
and

[
v1, . . . ,vr(λ)

]
; the r(λ) left

and right singular vectors ofW corresponding to the largest singular values. From (34) the optimal
D̃= diag

[
d̃1, . . . , d̃n

]
is given by Dλ = diag [(d1−λ)+, . . . ,(dn−λ)+] .

Since the rank ofW is r, the minimizer Ẑ of (8) is given byUDλV ′ as in (9).

Remark 1 For a more general spectral regularization of the form λ∑ip(γi(Z)) (as compared to
∑iλγi(Z) used above) the optimization problem (34) will be modified accordingly. The solution
of the resultant univariate minimization problem will be given by Spλ(ũ

′
iW ṽi) for some generalized

“thresholding operator” Spλ(·), where

Spλ(ũ
′
iW ṽi) = argmin

d̃i≥0

1
2
{
−2d̃iũ′iW ṽi+ d̃2i

}
+λp(d̃i).

The optimization problem analogous to (35) will be

minimize
Ũ ,Ṽ

1
2

{

‖Z‖2F −2
n

∑
i=1

d̂iũ′iW ṽi+
n

∑
i=1

d̂2i

}

+λ∑
i
p(d̂i), (37)
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where d̂i = Spλ(ũ
′
iW ṽi), ∀i. Any spectral function for which the above (37) is monotonically increas-

ing in ũ′iW ṽi for every i can be solved by a similar argument as given in the above proof. The solution
will correspond to the first few largest left and right singular vectors of the matrix W. The optimal
singular values will correspond to the relevant shrinkage/ threshold operator Spλ(·) operated on the
singular values ofW. In particular for the indicator function p(t) = λ1(t 2= 0), the top few singular
values (un-shrunk) and the corresponding singular vectors is the solution.

A.2 Proof of Lemma 3

This proof is based on sub-gradient characterizations and is inspired by some techniques used in
Cai et al. (2008).
Proof From Lemma 1, we know that if Ẑ solves the problem (8), then it satisfies the sub-gradient
stationary conditions:

0 ∈ −(W − Ẑ)+λ∂‖Ẑ‖∗. (38)

Sλ(W1) and Sλ(W2) solve the problem (8) withW =W1 andW =W2 respectively, hence (38) holds
withW =W1, Ẑ1 = Sλ(W1) andW =W2, Ẑ2 = Sλ(W1).

The sub-gradients of the nuclear norm ‖Z‖∗ are given by

∂‖Z‖∗ = {UV ′+ω : ωm×n, U ′ω= 0, ωV = 0, ‖ω‖2 ≤ 1}, (39)

where Z =UDV ′ is the SVD of Z.
Let p(Ẑi) denote an element in ∂‖Ẑi‖∗. Then

Ẑi−Wi+λp(Ẑi) = 0, i= 1,2.

The above gives
(Ẑ1− Ẑ2)− (W1−W2)+λ(p(Ẑ1)− p(Ẑ2)) = 0, (40)

from which we obtain

〈Ẑ1− Ẑ2, Ẑ1− Ẑ2〉−〈W1−W2, Ẑ1− Ẑ2〉+λ〈p(Ẑ1)− p(Ẑ2), Ẑ1− Ẑ2〉= 0,

where 〈a,b〉= trace(a′b).
Now observe that

〈p(Ẑ1)− p(Ẑ2), Ẑ1− Ẑ2〉= 〈p(Ẑ1), Ẑ1〉−〈p(Ẑ1), Ẑ2〉−〈p(Ẑ2), Ẑ1〉+ 〈p(Ẑ2), Ẑ2〉. (41)

By the characterization of subgradients as in (39), we have

〈p(Ẑi), Ẑi〉= ‖Ẑi‖∗ and ‖p(Ẑi)‖2 ≤ 1, i= 1,2.

This implies
|〈p(Ẑi), Ẑ j〉|≤ ‖p(Ẑi)‖2‖Ẑ j‖∗ ≤ ‖Ẑ j‖∗ for i 2= j ∈ {1,2}.

Using the above inequalities in (41) we obtain:

〈p(Ẑ1), Ẑ1〉+ 〈p(Ẑ2), Ẑ2〉 = ‖Ẑ1‖∗+‖Ẑ2‖∗ (42)
−〈p(Ẑ1), Ẑ2〉−〈p(Ẑ2), Ẑ1〉 ≥ −‖Ẑ2‖∗ −‖Ẑ1‖∗. (43)
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Using (42,43) we see that the r.h.s. of (41) is non-negative. Hence

〈p(Ẑ1)− p(Ẑ2), Ẑ1− Ẑ2〉 ≥ 0.

Using the above in (40), we obtain:

‖Ẑ1− Ẑ2‖2F = 〈Ẑ1− Ẑ2, Ẑ1− Ẑ2〉 ≤ 〈W1−W2, Ẑ1− Ẑ2〉. (44)

Using the Cauchy-Schwarz Inequality, ‖Ẑ1− Ẑ2‖F‖W1−W2‖F ≥ 〈Ẑ1− Ẑ2,W1−W2〉 in (44) we
get

‖Ẑ1− Ẑ2‖2F ≤ 〈Ẑ1− Ẑ2,W1−W2〉 ≤ ‖Ẑ1− Ẑ2‖F‖W1−W2‖F

and in particular
‖Ẑ1− Ẑ2‖2F ≤ ‖Ẑ1− Ẑ2‖F‖W1−W2‖F .

The above further simplifies to

‖W1−W2‖2F ≥ ‖Ẑ1− Ẑ2‖2F = ‖Sλ(W1)−Sλ(W2)‖2F .

A.3 Proof of Lemma 4

Proof We will first show (15) by observing the following inequalities:

‖Zk+1λ −Zkλ‖
2
F = ‖Sλ(PΩ(X)+P⊥

Ω (Zkλ))−Sλ(PΩ(X)+P⊥
Ω (Zk−1λ ))‖2F

(by Lemma 3) ≤ ‖
(
PΩ(X)+P⊥

Ω (Zkλ)
)
−
(
PΩ(X)+P⊥

Ω (Zk−1λ )
)
‖2F

= ‖P⊥
Ω (Zkλ−Zk−1λ )‖2F (45)

≤ ‖Zkλ−Zk−1λ ‖2F . (46)

The above implies that the sequence {‖Zkλ−Zk−1λ ‖2F} converges (since it is decreasing and bounded
below). We still require to show that {‖Zkλ−Zk−1λ ‖2F} converges to zero.

The convergence of {‖Zkλ−Zk−1λ ‖2F} implies that:

‖Zk+1λ −Zkλ‖
2
F −‖Zkλ−Zk−1λ ‖2F → 0 as k→ ∞.

The above observation along with the inequality in (45,46) gives

‖P⊥
Ω (Zkλ−Zk−1λ )‖2F −‖Zkλ−Zk−1λ ‖2F → 0 =⇒ PΩ(Zkλ−Zk−1λ )→ 0, (47)

as k→ ∞.
Lemma 2 shows that the non-negative sequence fλ(Zkλ) is decreasing in k. So as k → ∞ the

sequence fλ(Zkλ) converges.
Furthermore from (13,14) we have

Qλ(Zk+1λ |Zkλ)−Qλ(Zk+1λ |Zk+1λ )→ 0 as k→ ∞,
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which implies that
‖P⊥

Ω (Zkλ)−P⊥
Ω (Zk+1λ )‖2F → 0 as k→ ∞.

The above along with (47) gives

Zkλ−Zk−1λ → 0 as k→ ∞.

This completes the proof.

A.4 Proof of Lemma 5

Proof The sub-gradients of the nuclear norm ‖Z‖∗ are given by

∂‖Z‖∗ = {UV ′+W :Wm×n, U ′W = 0, WV = 0, ‖W‖2 ≤ 1}, (48)

where Z =UDV ′ is the SVD of Z. Since Zkλ minimizes Qλ(Z|Zk−1λ ), it satisfies:

0 ∈ −(PΩ(X)+P⊥
Ω (Zk−1λ )−Zkλ)+∂‖Zkλ‖∗ ∀k. (49)

Suppose Z∗ is a limit point of the sequence Zkλ. Then there exists a subsequence {nk}⊂ {1,2, . . .}
such that Znkλ → Z∗ as k→ ∞.

By Lemma 4 this subsequence Znkλ satisfies

Znkλ −Znk−1λ → 0

implying
P⊥
Ω (Z

nk−1
λ )−Znkλ −→ P⊥

Ω (Z∗λ)−Z∗λ =−PΩ(Z∗).

Hence,

(PΩ(X)+P⊥
Ω (Z

nk−1
λ )−Znkλ )−→ (PΩ(X)−PΩ(Z∗λ)). (50)

For every k, a sub-gradient p(Zkλ) ∈ ∂‖Zkλ‖∗ corresponds to a tuple (uk,vk,wk) satisfying the proper-
ties of the set ∂‖Zkλ‖∗ (48).

Consider p(Znkλ ) along the sub-sequence nk. As nk −→ ∞, Znkλ −→ Z∗λ.
Let

Znkλ = unkDnkv
′
nk , Z

∗ = u∞D∗v′∞
denote the SVD’s. The product of the singular vectors converge u′nkvnk → u′∞v∞. Furthermore due
to boundedness (passing on to a further subsequence if necessary) wnk → w∞. The limit u∞v′∞+w∞
clearly satisfies the criterion of being a sub-gradient of Z∗. Hence this limit corresponds to p(Z∗λ) ∈
∂‖Z∗λ‖∗.

Furthermore from (49, 50), passing on to the limits along the subsequence nk, we have

0 ∈ −(PΩ(X)−PΩ(Z∗λ))+∂‖Z∗λ‖∗.

Hence the limit point Z∗λ is a stationary point of fλ(Z).
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We shall now prove (16). We know that for every nk

Znkλ = Sλ(PΩ(X)+P⊥
Ω (Z

nk−1
λ )). (51)

From Lemma 4, we know Znkλ −Znk−1λ → 0. This observation along with the continuity of Sλ(·) gives

Sλ(PΩ(X)+P⊥
Ω (Z

nk−1
λ ))→ Sλ(PΩ(X)+P⊥

Ω (Z∗λ)).

Thus passing over to the limits on both sides of (51) we get

Z∗λ = Sλ(PΩ(X)+P⊥
Ω (Z∗λ)),

therefore completing the proof.

A.5 Proof of Lemma 6

The proof is motivated by the principle of embedding an arbitrary matrix into a positive semidefinite
matrix (Fazel, 2002). We require the following proposition, which we prove using techniques used
in the same reference.

Proposition 1 Suppose matrices Wm×m,W̃n×n,Zm×n satisfy the following:
(

W Z
ZT W̃

)
6 0.

Then trace(W )+ trace(W̃ )≥ 2‖Z‖∗.

Proof Let Zm×n = Lm×rΣr×rRTn×r denote the SVD of Z, where r is the rank of the matrix Z. Observe
that the trace of the product of two positive semidefinite matrices is always non-negative. Hence we
have the following inequality:

trace
(

LLT −LRT
−RLT RRT

)(
W Z
ZT W̃

)
6 0.

Simplifying the above expression we get:

trace(LLTW )− trace(LRTZT )− trace(RLTZ)+ trace(RRTW̃ )≥ 0. (52)

Due to the orthogonality of the columns of L,R we have the following inequalities:

trace(LLTW )≤ trace(W ) and trace(RRTW̃ )≤ trace(W̃ ).

Furthermore, using the SVD of Z:

trace(LRTZT ) = trace(Σ) = trace(LRTZT ).

Using the above in (52), we have:

trace(W )+ trace(W̃ )≥ 2trace(Σ) = 2‖Z‖∗.
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Proof [Proof of Lemma 6.] For the matrix Z, consider any decomposition of the form Z = Ũm×rṼ T
n×r

and construct the following matrix
(
ŨŨT Z
ZT ṼṼ T

)
=

(
Ũ
Ṽ

)
(ŨTṼ T ), (53)

which is positive semidefinite. Applying Proposition 1 to the left hand matrix in (53), we have:

trace(ŨŨT )+ trace(ṼṼ T )≥ 2‖Z‖∗.

Minimizing both sides above w.r.t. the decompositions Z = Ũm×rṼ T
n×r; we have

min
Ũ ,Ṽ ; Z=ŨṼ T

{
trace(ŨŨT )+ trace(ṼṼ T )

}
≥ 2‖Z‖∗. (54)

Through the SVD of Z we now show that equality is attained in (54). Suppose Z is of rank
k ≤ min(m,n), and denote its SVD by Zm×n = Lm×kΣk×kRTn×k. Then for Ũ = Lm×kΣ

1
2
k×k and Ṽ =

Rn×kΣ
1
2
k×k the equality in (54) is attained.

Hence, we have:

‖Z‖∗ = min
Ũ ,Ṽ ;Z=ŨṼ T

{
trace(ŨŨT )+ trace(ṼṼ T )

}

= min
Ũ ,Ṽ ;Z=Ũm×kṼ T

n×k

{
trace(ŨŨT )+ trace(ṼṼ T )

}
.

Note that the minimum can also be attained for matrices with r≥ k or even r≥min(m,n); however,
it suffices to consider matrices with r= k. Also it is easily seen that the minimum cannot be attained
for any r < k; hence the minimal rank r for which (29) holds true is r = k.

A.6 Proof of Theorem 2

There is a close resemblance between SOFT-IMPUTE and Nesterov’s gradient method (Nesterov,
2007, Section 3). However, as mentioned earlier the original motivation of our algorithm is very
different.

The techniques used in this proof are adapted from Nesterov (2007).
Proof Plugging Zkλ = Z̃ in (11), we have

Qλ(Z|Zkλ) = fλ(Zkλ)+
1
2
‖P⊥

Ω (Zkλ−Z)‖2F (55)

≥ fλ(Zkλ).

Let Zkλ(θ) denote a convex combination of the optimal solution (Z
∞
λ ) and the k

th iterate (Zkλ):

Zkλ(θ) = θZ∞λ +(1−θ)Zkλ. (56)
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Using the convexity of fλ(·) we get:

fλ(Zkλ(θ))≤ (1−θ) fλ(Zkλ)+θ fλ(Z∞λ ). (57)

Expanding Zkλ(θ) using (56), and simplifying P
⊥
Ω (Zkλ−Zkλ(θ)) we have:

‖P⊥
Ω (Zkλ−Zkλ(θ))‖

2
F = θ2‖P⊥

Ω (Zkλ−Z∞λ )‖
2
F

≤ θ2‖Zkλ−Z∞λ ‖
2
F (58)

≤ θ2‖Z0λ−Z∞λ ‖
2
F . (59)

Line 59 follows from (58) by observing that ‖Zmλ −Z∞λ ‖
2
F ≤ ‖Zm−1λ −Z∞λ ‖

2
F , ∀m—a consequence of

the inequalities (19) and (18), established in Theorem 1.
Using (55), the value of fλ(Z) at the (k+1)th iterate satisfies the following chain of inequalities:

fλ(Zk+1λ ) ≤ min
Z

{
fλ(Z)+

1
2
‖P⊥

Ω (Zkλ−Z)‖2F
}

≤ min
θ∈[0,1]

{
fλ(Zkλ(θ))+

1
2
‖P⊥

Ω (Zkλ−Zkλ(θ))‖
2
F

}
(60)

≤ min
θ∈[0,1]

{
fλ(Zkλ)+θ( fλ(Z∞λ )− fλ(Zkλ))+

1
2
θ2‖Z0λ−Z∞λ ‖

2
F

}
. (61)

Line 61 follows from Line 60, by using (57) and (59).
The r.h.s. expression in (61), is minimized at θ̂(k+1) given by

θ̂(k+1) = min{1,θk} ∈ [0,1], where,

θk =
fλ(Zkλ)− fλ(Z∞λ )
‖Z0λ−Z∞λ ‖

2
F

.

If ‖Z0λ−Z∞λ ‖
2
F = 0, then we take θk = ∞.

Note that θk is a decreasing sequence. This implies that if θk0 ≤ 1 then θm ≤ 1 for all m≥ k0.
Suppose, θ0 > 1. Then θ̂(1) = 1. Hence using (61) we have:

fλ(Z1λ)− fλ(Z∞λ )≤
1
2
‖Z0λ−Z∞λ ‖

2
F =⇒ θ1 ≤

1
2
.

Thus we get back to the former case.
Hence θk ≤ 1 for all k ≥ 1.
In addition, observe the previous deductions show that, if θ0 > 1 then (20) holds true for k = 1.
Combining the above observations, plugging in the value of θ̂ in (61) and simplifying, we get:

fλ(Zk+1λ )− fλ(Zkλ)≤−
( fλ(Zkλ)− fλ(Z∞λ ))

2

2‖Z0λ−Z∞λ ‖
2
F

. (62)

For the sake of notational convenience, we define the sequence αk = fλ(Zkλ)− fλ(Z∞λ ). It is easily
seen that αk is a non-negative decreasing sequence.
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Using this notation in (62) we get:

αk ≥
α2k

2‖Z0λ−Z∞λ ‖
2
F
+αk+1

(Since αk ↓) ≥
αkαk+1

2‖Z0λ−Z∞λ ‖
2
F
+αk+1. (63)

Dividing both sides of the inequality in (63), by αkαk+1 we have:

α−1
k+1 ≥

1
2‖Z0λ−Z∞λ ‖

2
F
+α−1

k . (64)

Summing both sides of (64) over 1≤ k ≤ (k−1) we get:

α−1
k ≥

k−1
2‖Z0λ−Z∞λ ‖

2
F
+α−1

1 . (65)

Since θ1 ≤ 1, we observe α1/(2‖Z0λ−Z∞λ ‖
2
F) ≤ 1/2—using this in (65) and rearranging terms we

get, the desired inequality (20)—completing the proof of the Theorem.
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Abstract
We introduce a simple order-based greedy heuristic for learning discriminative structure within
generative Bayesian network classifiers. We propose two methods for establishing an order of N
features. They are based on the conditional mutual information and classification rate (i.e., risk),
respectively. Given an ordering, we can find a discriminative structure with O

(

Nk+1) score evalu-
ations (where constant k is the tree-width of the sub-graph over the attributes). We present results
on 25 data sets from the UCI repository, for phonetic classification using the TIMIT database,
for a visual surface inspection task, and for two handwritten digit recognition tasks. We provide
classification performance for both discriminative and generative parameter learning on both dis-
criminatively and generatively structured networks. The discriminative structure found by our new
procedures significantly outperforms generatively produced structures, and achieves a classifica-
tion accuracy on par with the best discriminative (greedy) Bayesian network learning approach, but
does so with a factor of ∼10-40 speedup. We also show that the advantages of generative discrim-
inatively structured Bayesian network classifiers still hold in the case of missing features, a case
where generative classifiers have an advantage over discriminative classifiers.
Keywords: Bayesian networks, classification, discriminative learning, structure learning, graphi-
cal model, missing feature

1. Introduction

Bayesian networks (Pearl, 1988; Cowell et al., 1999) have been widely used as a space within
which to search for high performing statistical pattern classifiers. Such networks can be produced
in a number of ways, and ideally the structure of such networks will be learned discriminatively. By
“discriminative learning” of Bayesian network structure, we mean simply that the process of learn-
ing corresponds to optimizing an objective function that is highly representative of classification
error, such as maximizing class conditional likelihood, or minimizing classification error under the
0/1-loss function or some smooth convex upper-bound surrogate (Bartlett et al., 2006).

Unfortunately, learning the structure of Bayesian networks is hard. There have been a number
of negative results over the past years, showing that optimally learning various forms of constrained
Bayesian networks is NP-complete even in the “generative” sense. For example, it has been shown

c©2010 Franz Pernkopf and Jeff A. Bilmes.
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that learning paths (Meek, 1995), polytrees (Dasgupta, 1997), k-trees (Arnborg et al., 1987) or
bounded tree-width graphs (Karger and Srebro, 2001; Srebro, 2003), and general Bayesian networks
(Geiger and Heckerman, 1996) are all instances of NP-complete optimization problems. Learning
the best “discriminative structure” is no less difficult, largely because the cost functions that are
needed to be optimized do not in general decompose (Lauritzen, 1996), but there has as of yet not
been any formal hardness results in the discriminative case.

Discriminative optimization of a Bayesian network structure for the purposes of classification
does have its advantages, however. For example, the resulting networks are amenable to interpre-
tation compared to a purely discriminative model (the structure specifies conditional independen-
cies between variables that may indicate distinctive aspects of how best to discern between objects
Bilmes et al., 2001), it is simple to work with missing features and latent variables (as we show
in this paper), and to incorporate prior knowledge (see below for further details). Since discrimi-
native learning of such networks optimizes for only one inference scenario (e.g., classification) the
resulting networks might be simpler or more parsimonious than generatively derived networks, may
better abide Occam’s razor, and may restore some of the benefits mentioned in Vapnik (1998).

Many heuristic methods have been produced in the past to learn the structure of Bayesian net-
work classifiers. For example, Friedman et al. (1997) introduced the tree-augmented naive (TAN)
Bayes approach, where a naive Bayes (NB) classifier is augmented with edges according to various
conditional mutual information criteria. Bilmes (1999, 2000) introduced the explaining away resid-
ual (EAR) for discriminative structure learning of dynamic Bayesian networks for speech recogni-
tion applications, which also happens to correspond to “synergy” in the neural code (Brenner et al.,
2000). The EAR measure is in fact an approximation to the expected class conditional distribution,
and so improving EAR is likely to decrease the KL-divergence between the true class posterior and
the resultant approximate class posterior. A procedure for providing a local optimum of the EAR
measure was outlined in Narasimhan and Bilmes (2005) but it may be computationally expensive.
Greiner and Zhou (2002); Greiner et al. (2005) express general Bayesian networks as standard lo-
gistic regression—they optimize parameters with respect to the conditional likelihood (CL) using a
conjugate gradient method. Similarly, Roos et al. (2005) provide conditions for general Bayesian
networks under which the correspondence to logistic regression holds. In Grossman and Domin-
gos (2004) the conditional log likelihood (CLL) function is used to learn a discriminative structure.
The parameters are set using maximum likelihood (ML) learning. They use a greedy hill climbing
search with the CLL function as a scoring measure, where at each iteration one edge is added to the
structure which conforms with the restrictions of the network topology (e.g., TAN) and the acyclic-
ity property of Bayesian networks. In a similar algorithm, the classification rate (CR)1 has also
been used for discriminative structure learning (Keogh and Pazzani, 1999; Pernkopf, 2005). The
hill climbing search is terminated when there is no edge which further improves the CR. The CR is
the discriminative criterion with the fewest approximations, so it is expected to perform well given
sufficient data. The problem, however, is that this approach is extremely computationally expensive,
as a complete re-evaluation of the training set is needed for each considered edge. Many generative
structure learning algorithms have been proposed and are reviewed in Heckerman (1995), Murphy
(2002), Jordan (1999) and Cooper and Herskovits (1992). Independence tests may also be used for
generative structure learning using, say, mutual information (de Campos, 2006) while other recent

1. Maximizing CR is equivalent to minimizing classification error which is identical to empirical risk (Vapnik, 1998)
under the 0/1-loss function. We use the CR terminology in this paper since it is somewhat more consistent with
previous Bayesian network discriminative structure learning literature.
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independence test work includes Gretton and Gÿorfi (2008) and Zhang et al. (2009). An experimen-
tal comparison of discriminative and generative parameter training on both discriminatively and
generatively structured Bayesian network classifiers has been performed in Pernkopf and Bilmes
(2005). An empirical and theoretical comparison of certain discriminative and generative classifiers
(specifically logistic regression and NB) is given in Ng and Jordan (2002). It is shown that for small
sample sizes the generative NB classifier can outperform the discriminative model.

This work contains the following offerings. First, a new case is made for why and when dis-
criminatively structured generative models can be usefully used to solve multi-class classification
problems.

Second, we introduce a new order-based greedy search heuristic for finding discriminative struc-
tures in generative Bayesian network classifiers that is computationally efficient and that matches
the performance of the currently top-performing but computationally expensive greedy “classifi-
cation rate” approach. Our resulting classifiers are restricted to TAN 1-tree and TAN 2-trees, and
so our method is a form of search within a complexity-constrained model space. The approach
we employ looks first for an ordering of the N features according to classification based informa-
tion measures. Given the resulting ordering, the algorithm efficiently discovers high-performing
discriminative network structure with no more than O

(

Nk+1) score evaluations where k indicates
the tree-width of the sub-graph over the attributes, and where a score evaluation can either be a
mutual-information or a classification error-rate query. Our order-based structure learning is based
on the observations in Buntine (1991) and the framework is similar to the K2 algorithm proposed
in Cooper and Herskovits (1992). We use, however, a discriminative scoring metric and suggest
approaches for establishing the variable ordering based on conditional mutual information (CMI)
(Cover and Thomas, 1991) and CR.

Lastly, we provide a wide variety of empirical results on a diverse collection of data sets show-
ing that the order-based heuristic provides comparable classification results to the best procedure -
the greedy heuristic using the CR score, but our approach is computationally much cheaper. Fur-
thermore, we empirically show that the chosen approaches for ordering the variables improve the
classification performance compared to simple random orderings. We experimentally compare both
discriminative and generative parameter training on both discriminative and generatively structured
Bayesian network classifiers. Moreover, one of the key advantages of generative models over dis-
criminative ones is that it is still possible to marginalize away any missing features. If it is not
known at training time which features might be missing, a typical discriminative model is rendered
unusable. We provide empirical results showing that discriminatively learned generative models are
reasonably insensitive to such missing features and retain their advantages over generative models
in such case.

The organization of the paper is as follows: In Section 2, Bayesian networks are reviewed
and our notation is introduced. We briefly present the NB, TAN, and 2-tree network structures. In
Section 3, a practical case is made for why discriminative structure can be desirable. The most com-
monly used approaches for generative and discriminative structure and parameter learning are sum-
marized in Section 4. Section 5 introduces our order-based greedy heuristic. In Section 6, we report
classification results on 25 data sets from the UCI repository (Merz et al., 1997) and from Kohavi
and John (1997) using all combinations of generative/discriminative structure/parameter learning.
Additionally, we present classification experiments for synthetic data, for frame- and segment-based
phonetic classification using the TIMIT speech corpus (Lamel et al., 1986), for a visual surface in-
spection task (Pernkopf, 2004), and for handwritten digit recognition using the MNIST (LeCun
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et al., 1998) and USPS data set. Last, Section 7 concludes. We note that a preliminary version of a
subset of our results appeared in Pernkopf and Bilmes (2008b).

2. Bayesian Network Classifiers

A Bayesian network (BN) (Pearl, 1988; Cowell et al., 1999) B = 〈G ,Θ〉 is a directed acyclic graph
G = (Z,E) consisting of a set of nodes Z and a set of directed edges E =

{

EZi,Zj ,EZi,Zk , . . .
}

con-
necting the nodes where EZi,Zj is an edge directed from Zi to Zj. This graph represents factorization
properties of the distribution of a set of random variables Z = {Z1, . . . ,ZN+1}. Each variable in
Z has values denoted by lower case letters {z1,z2, . . . ,zN+1}. We use boldface capital letters, for
example, Z, to denote a set of random variables and correspondingly boldface lower case letters
denote a set of instantiations (values). Without loss of generality, in Bayesian network classifiers
the random variable Z1 represents the class variable C ∈ {1, . . . , |C|}, |C| is the cardinality of C or
equivalently the number of classes, X1:N = {X1, . . . ,XN}= {Z2, . . . ,ZN+1} denote the set of random
variables of the N attributes of the classifier. Each graph node represents a random variable, while
the lack of edges in a graph specifies some conditional independence relationships. Specifically, in
a Bayesian network each node is independent of its non-descendants given its parents (Lauritzen,
1996). A Bayesian network’s conditional independence relationships arise due to missing parents
in the graph. Moreover, conditional independence can reduce computation for exact inference on
such a graph. The set of parameters which quantify the network are represented by Θ. Each node
Zj is represented as a local conditional probability distribution given its parents ZΠ j . We use θ

j
i|h to

denote a specific conditional probability table entry (assuming discrete variables), the probability
that variable Zj takes on its ith value assignment given that its parents ZΠ j take their hth (lexico-
graphically ordered) assignment, that is, θ ji|h = PΘ

(

Zj = i|ZΠ j = h
)

. Hence, h contains the parent
configuration assuming that the first element of h, that is, h1, relates to the conditioning class and
the remaining elements h\h1 denote the conditioning on parent attribute values. The training data
consists of M independent and identically distributed samples S = {zm}Mm=1 =

{(

cm,xm1:N
)}M

m=1.
For most of this work, we assume a complete data set with no missing values (the exception being
Section 6.6 where input features are missing at test time). The joint probability distribution of the
network is determined by the local conditional probability distributions as

PΘ (Z) =
N+1

∏
j=1

PΘ
(

Zj|ZΠ j

)

and the probability of a sample zm is

PΘ (Z= zm) =
N+1

∏
j=1

|Zj|

∏
i=1
∏
h

(

θ ji|h

)u j,mi|h
,

where we introduced an indicator function u j,mi|h of the m
th sample

u j,mi|h =

{

1, if zmj = i and zmΠ j
= h

0, otherwise
.

In this paper, we restrict our experiments to NB, TAN 1-tree (Friedman et al., 1997), and TAN
2-tree classifier structures (defined in the next several paragraphs). The NB network assumes that
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all the attributes are conditionally independent given the class label. This means that, given C, any
subset of X is independent of any other disjoint subset of X. As reported in the literature (Friedman
et al., 1997; Domingos and Pazzani, 1997), the performance of the NB classifier is surprisingly
good even if the conditional independence assumption between attributes is unrealistic or even false
in most of the data. Reasons for the utility of the NB classifier range between benefits from the
bias/variance tradeoff perspective (Friedman et al., 1997) to structures that are inherently poor from
a generative perspective but good from a discriminative perspective (Bilmes, 2000). The structure
of the naive Bayes classifier represented as a Bayesian network is illustrated in Figure 1a.

(a)

C

X1 X2 X3 XN

(b)

C

X1 X2 X3 XN

Figure 1: Bayesian Network: (a) NB, (b) TAN.

In order to correct some of the limitations of the NB classifier, Friedman et al. (1997) intro-
duced the TAN classifier. A TAN is based on structural augmentations of the NB network, where
additional edges are added between attributes in order to relax some of the most flagrant conditional
independence properties of NB. Each attribute may have at most one other attribute as an additional
parent which means that the tree-width of the attribute induced sub-graph is unity, that is, we have to
learn a 1-tree over the attributes. The maximum number of edges added to relax the independence
assumption between the attributes is N− 1. Thus, two attributes might not be conditionally inde-
pendent given the class label in a TAN. An example of a TAN 1-tree network is shown in Figure 1b.
A TAN network is typically initialized as a NB network and additional edges between attributes are
determined through structure learning. An extension of the TAN network is to use a k-tree, that is,
each attribute can have a maximum of k attribute nodes as parents. In this work, TAN and k-tree
structures are restricted such that the class node remains parent-less, that is, CΠ = /0. While many
other network topologies have been suggested in the past (and a good overview is provided in Acid
et al., 2005), in this work we keep the class variable parent-less since it allows us to achieve one of
our goals, which is to concentrating on generative models and their structures.

3. Discriminative Learning in Generative Models

A dichotomy exists between the two primary approaches to statistical pattern classifiers, generative
and discriminative (Bishop and Lasserre, 2007; Jebara, 2001; Ng and Jordan, 2002; Bishop, 2006;
Raina et al., 2004; Juang et al., 1997; Juang and Katagiri, 1992; Bahl et al., 1986). Under generative
models, what is learned is a model of the joint probability of the features X and the corresponding
class random variablesC. Complexity penalized likelihood of the data is often the objective used for
optimization, leading to standard maximum likelihood (ML) learning. Prediction with such a model
is then performed either by using Bayes rule to form the class posterior probability or equivalently
by forming class-prior penalized likelihood. Generative models have been widely studied, and are
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desirable because they are amenable to interpretation (e.g., the structure of a generative Bayesian
network specifies conditional independencies between variables that might have a useful high-level
explanation). Additionally, they are amenable to a variety of probabilistic inference scenarios ow-
ing to the fact that they often decompose (Lauritzen, 1996)—the decomposition (or factorization)
properties of a model are often crucial to their efficient computation.

Discriminative approaches, on the other hand, more directly represent aspects of the distribution
that are important for classification accuracy, and there are a number of ways this can be done. For
example, some approaches model only the class posterior probability (the conditional probability
of the class given the features) or p(C|X). Other approaches, such as support vector machines
(SVMs) (Schölkopf and Smola, 2001; Burges, 1998) or neural networks (Bishop, 2006, 1995),
directly model information about decision boundary sometimes without needing to concentrate on
obtaining an accurate conditional distribution (neural networks, however, are also used to produce
conditional distributions above and beyond just getting the class ranks correct Bishop, 1995). In
each case, the objective function that is optimized is one whose minima occur not necessarily when
the joint distribution p(C,X) is accurate, but rather when the classification error rate on a training
set is small. Discriminative models are usually restricted to one particular inference scenario, that
is, the mapping from observed input features X to the unknown class output variableC, and not the
other way around.

There are several reasons for using discriminative rather than generative classifiers, one of which
is that the classification problem should be solved most simply and directly, and never via a more
general problem such as the intermediate step of estimating the joint distribution (Vapnik, 1998).
The superior performance of discriminative classifiers has been reported in many application do-
mains (Ng and Jordan, 2002; Raina et al., 2004; Juang et al., 1997; Juang and Katagiri, 1992; Bahl
et al., 1986).

Why then should we have an interest in generative models for discrimination? We address this
question in the next several paragraphs. The distinction between generative and discriminative mod-
els becomes somewhat blurred when one considers that there are both generative and discriminative
methods to learn a generative model, and within a generative model one may make a distinction
between learning model structure and learning its parameters. In fact, in this paper, we make a clear
distinction between learning the parameters of a generative model and learning the structure of a
generative model. When using Bayesian networks to describe factorization properties of generative
models, the structure of the model corresponds to the graph: fixing the graph, the parameters of
the model are such that they must respect the factorization properties expressed by that graph. The
structure of the model, however, can be independently learned, and different structures correspond
to different families of graph (each family is spanned by the parameters respecting a particular
structure). A given structure is then evaluated under a particular “best” set of parameter values, one
possibility being the maximum likelihood settings. Of course, one could consider optimizing both
parameters and structure simultaneously. Indeed, both structure and parameters are “parameters”
of the model, and it is possible to learn the structure along with the parameters when a complexity
penalty is applied that encourages sparse solutions, such as !1-regularization (Tibshirani, 1996) in
linear regression and other models. We, however, find it useful to maintain this distinction between
structure and parameters for the reason that parameter learning is inherently a continuous optimiza-
tion procedure, while structure learning is inherently a combinatorial optimization problem. In our
case, moreover, it is possible to stay within a given fixed-complexity model family—if we wish to
stay within the family of say k-trees for fixed k, !1 regularization is not guaranteed to oblige.
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Moreover, both parameters and structure of a generative model can be learned either genera-
tively or discriminatively. Discriminative parameter learning of generative models, such as hidden
Markov models (HMMs) has occurred for many years in the speech recognition community (Bahl
et al., 1986; Ephraim et al., 1989; Ephraim and Rabiner, 1990; Juang and Katagiri, 1992; Juang
et al., 1997; Heigold et al., 2008), and more recently in the machine learning community (Greiner
and Zhou, 2002; Greiner et al., 2005; Roos et al., 2005; Ng and Jordan, 2002; Bishop and Lasserre,
2007; Pernkopf and Wohlmayr, 2009). Discriminative structure learning has also more recently re-
ceived some attention (Bilmes, 1999, 2000; Pernkopf and Bilmes, 2005; Keogh and Pazzani, 1999;
Grossman and Domingos, 2004). In fact, there are four possible cases of learning a generative
model as depicted in Figure 2. Case A is when both structure and parameter learning is generative.
Case B is when the structure is learned generatively, but the parameters are learned discriminatively.
Case C is the mirror image of case B. Case D, potentially the most preferable case for classification,
is where both the structure and parameters are discriminatively learned.

Parameter Learning
Generative Discriminative

Structure
Learning

Generative Case A Case B
Discriminative Case C Case D

Figure 2: Learning generative-model based classifiers: Cases for each possible combination of gen-
erative and discriminative learning of either the parameters or the structure of Bayesian
network classifiers.

In this paper, we are particularly interested in learning the discriminative structure of a gener-
ative model. With a generative model, even discriminatively structured, some aspect of the joint
distribution p(C,X) is still being represented. Of course, a discriminatively structured generative
model needs only represent that aspect of the joint distribution that is beneficial from a classifica-
tion error rate perspective, and need not “generate” well (Bilmes et al., 2001). For this reason, it is
likely that a discriminatively trained generative model will not need to be as complex as an accurate
generatively trained model. In other words, the advantage of parsimony of a discriminative model
over a generative model will likely be partially if not mostly recovered when one trains a generative
model discriminatively. Moreover, there are a number of reasons why one might, in certain contexts,
prefer a generative to a discriminative model including: parameter tying and domain knowledge-
based hierarchical decomposition is facilitated; it is easy to work with structured data; there is less
sensitivity to training data class skew; generative models can still be trained and structured discrim-
inatively (as mentioned above); and it is easy to work with missing features by marginalizing over
the unknown variables. This last point is particularly important: a discriminatively structured gen-
erative model still has the ability to go from p(C,X) to p(C,X′) where X′ is a subset of the features
in X. This amounts to performing the marginalization p(C,X′) = ∑X\X′ p(C,X), something that
can be tractable if the complexity class of p(C,X) is limited (e.g., k-trees) and the variable order
in the summation is chosen appropriately. In this work, we verify that a discriminatively structured
model retains its advantages in the missing feature case (see Section 6.6). A discriminative model,
however, is inherently conditional and it is not possible in general when some of the features are
missing to go from p(C|X) to p(C|X′). This problem is also true for SVMs, logistic regression, and
multi-layered perceptrons.
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Learning a discriminatively structured generative model is inherently a combinatorial optimiza-
tion problem on a “discriminative” objective function. This means that there is an algorithm that
operates by tending to prefer structures that perform better on some measure that is related to clas-
sification error. Assuming sufficient training data, the ideal objective function is empirical risk
under the 0/1-loss (what we call CR, or the average error rate over training data), which can be im-
plicitly regularized by constraining the optimization process to consider only a limited complexity
model family (e.g., k-trees for fixed k). In the case of discriminative parameter learning, CR can be
used, but typically alternative continuous and differentiable cost functions, which may upper-bound
CR and might be convex (Bartlett et al., 2006), are used and include conditional (log) likelihood
CLL(B|S) = log∏M

m=1PΘ
(

C = cm|X1:N = xm1:N
)

—this last objective function in fact corresponds to
maximizing the mutual information between the class variable and the features (Bilmes, 2000), and
can easily be augmented by a regularization term as well.

One may ask, given discriminative parameter learning, is discriminative structure still neces-
sary? In the following, we present a simple synthetic example (similar to Narasimhan and Bilmes,
2005) and actual training and test results that indicate when a discriminative structure would be
necessary for good classification performance in a generative model. The model consists of 3 bi-
nary valued attributes X1,X2,X3 and a binary uniformly distributed class variable C. X̄1 denotes the
negation of X1. For both classes, X1 is uniformly distributed and X2 = X1 with probability 0.5 and a
uniformly distributed random number with probability 0.5. So we have the following probabilities
for both classes:

X1 :=
{

0 with probability 0.5
1 with probability 0.5

X2 :=







X1 with probability 0.5
0 with probability 0.25
1 with probability 0.25

For class 1, X3 is determined according to the following:

X3 :=















X1 with probability 0.3
X2 with probability 0.5
0 with probability 0.1
1 with probability 0.1

.

For class 2, X3 is given by:

X3 :=















X̄1 with probability 0.3
X2 with probability 0.5
0 with probability 0.1
1 with probability 0.1

.

For both classes, the dependence between X1−X2 is strong. The dependence X2−X3 is stronger
than X1−X3, but only from a generative perspective (i.e., I (X2;X3) > I (X1;X3) and I (X2;X3|C) >
I (X1;X3|C)). Hence, if we were to use the strength of mutual information, or conditional mutual
information, to choose the edge, we would choose X2−X3. However, it is the X1−X3 dependency
that enables discrimination between the classes. Sampling from this distribution, we first learn
structures using generative and discriminative methods, and then we perform parameter training
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on these structures using either ML or CL (Greiner et al., 2005). For learning a generative TAN
structure, we use the algorithm proposed by Friedman et al. (1997) which is based on optimizing
the CMI between attributes given the class variable. For learning a discriminative structure, we
apply our order-based algorithm proposed in Section 5 (we note that optimizing the EAR measure
(Pernkopf and Bilmes, 2005) leads to similar results in this case).
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TAN−Discriminative Structure−ML
TAN−Discriminative Structure−CL
SVM
TAN−Generative Structure−ML
TAN−Generative Structure−CL
NB−ML
NB−CL

Figure 3: Generative and discriminative learning of Bayesian network classifiers on synthetic data.

Figure 3 compares the classification performance of these various cases, and in addition we
show results for a NB classifier, which resorts to random guessing between both classes due to the
lack of any feature dependency. Additionally, we provide the classification performance achieved
with SVMs using a radial basis function (RBF) kernel.2 On the x-axis, the training set sample size
varies according to {20,50,100,200,500,1000} and the test data set contains 1000 samples. Plots
are averaged over 100 independent simulations. The solid line is the performance of the classifiers
using ML parameter learning, whereas, the dashed line corresponds to CL parameter training.

(a)

X1 X2 X3

(b)

X1 X3 X2

Figure 4: (a) Generatively learned 1-tree, (b) Discriminatively learned 1-tree.

Figure 4 shows (a) the generative (b) the discriminative 1-tree over the attributes of the resulting
TAN network (the class variable which is the parent of each feature is not shown in this figure).
A generative model prefers edges between X1−X2 and X2−X3 which do not help discrimination.

2. The SVM uses two parameters C∗ and σ, where C∗ is the penalty parameter for the errors of the non-separable case
and σ is the variance parameter for the RBF kernel. We set the values for these parameters toC∗ = 3 and σ= 1.
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The dependency between X1 and X3 enables discrimination to occur. Note that for this example
the difference between ML and CL parameter learning is insignificant and for the generative model,
only a discriminative structure enables correct classification. The performance of the non-generative
SVM is similar to our discriminatively structured Bayesian network classifier. Therefore, when a
generative model is desirable (see the reasons why this might be the case above), there is clearly a
need for good discriminative structure learning.

In this paper, we show that the loss of a “generative meaning” of a generative model (when
it is structured discriminatively) does not impair the generative model’s ability to easily deal with
missing features (Figure 11).

4. Learning Bayesian Networks

In the following sections, we briefly summarize state-of-the-art generative and discriminative struc-
ture and parameter learning procedures that are used to compare our order-based discriminative
structure learning heuristics (which will be described in Section 5 and evaluated in Section 6).

4.1 Generative Parameter Learning

The parameters of the generative model are learned by maximizing the log likelihood of the data
which leads to the ML estimation of θ ji|h. The log likelihood function of a fixed structure of B is

LL(B|S) =
M

∑
m=1

logPΘ (Z= zm) =
M

∑
m=1

N+1

∑
j=1
logPΘ

(

Zj = zmj |ZΠ j = zmΠ j

)

=

M

∑
m=1

N+1

∑
j=1

|Zj|

∑
i=1
∑
h
u j,mi|h log

(

θ ji|h

)

.

(1)

It is easy to show that the ML estimate of the parameters is

θ ji|h =
∑M
m=1 u

j,m
i|h

∑M
m=1∑

|Zj|
l=1 u

j,m
l|h

,

using Lagrange multipliers to constrain the parameters to a valid normalized probability distribution.
Since we are optimizing over constrained BN structures (k-trees), we do not perform any further
regularization during training other than simple smoothing to remove zero-probability entries (see
Section 6.1).

4.2 Discriminative Parameter Learning

As mentioned above, for classification purposes, having a good approximation to the posterior prob-
ability is sufficient. Hence, we want to learn parameters so that CL is maximized. Unfortunately,
CL does not decompose as ML does. Consequently, there is no closed-form solution and we have to
resort to iterative optimization techniques. The objective function of the conditional log likelihood
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is

CLL(B|S) = log
M

∏
m=1

PΘ (C = cm|X1:N = xm1:N) =
M

∑
m=1

log
PΘ

(

C = cm,X1:N = xm1:N
)

|C|
∑
c=1

PΘ
(

C = c,X1:N = xm1:N
)

=

M

∑
m=1

[

logPΘ (C = cm,X1:N = xm1:N)− log
|C|

∑
c=1

PΘ (C = c,X1:N = xm1:N)
]

.

Similar to Greiner and Zhou (2002) we use a conjugate gradient algorithm with line-search (Press
et al., 1992). In particular, the Polak-Ribiere method is used (Bishop, 1995). The derivative of the
objective function is

∂CLL(B|S)
∂θ ji|h

=
M

∑
m=1

[

∂

∂θ ji|h
logPΘ (C = cm,X1:N = xm1:N)−

1
|C|
∑
c=1

PΘ
(

C = c,X1:N = xm1:N
)

∂

∂θ ji|h

|C|

∑
c=1

PΘ (C = c,X1:N = xm1:N)
]

.

Further, we distinguish two cases for deriving ∂CLL(B|S)
∂θ ji|h

. For TAN, NB, or 2-tree structures each

parameter θ ji|h involves the class node value, either C = i for j = 1 (Case A) or C = h1 for j > 1
(Case B) where h1 denotes the class instantiation h1 ∈ h.

4.2.1 CASE A

For the class variable, that is, j = 1 and h= /0, we get

∂CLL(B|S)
∂θ1i

=
M

∑
m=1

[

u1,mi
θ1i

−
Wm
i
θ1i

]

,

where we use Equation 1 for deriving the first term (omitting the sum over j and h) and we intro-
duced the posterior

Wm
i = PΘ (C = i|X1:N = xm1:N) =

PΘ
(

C = i,X1:N = xm1:N
)

|C|
∑
c=1

PΘ
(

C = c,X1:N = xm1:N
)

.

4.2.2 CASE B

For the attribute variables, that is, j > 1, we derive correspondingly and have

∂CLL(B|S)
∂θ ji|h

=
M

∑
m=1

[

u j,mi|h
θ ji|h

−Wm
h1

v j,mi|h\h1
θ ji|h

]

,

whereWm
h1 = PΘ

(

C = h1|X1:N = xm1:N
)

is the posterior for class h1 and sample m, and

v j,mi|h\h1 =
{

1, if zmj = i and zmΠ j
= h\h1

0, otherwise
.
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The probability θ ji|h is constrained to θ
j
i|h ≥ 0 and ∑|Zj|

i=1θ
j
i|h = 1. We re-parameterize the problem

to incorporate the constraints of θ ji|h in the conjugate gradient algorithm. Thus, we use different
parameters β ji|h as follows

θ ji|h =
exp

(

β ji|h

)

∑
|Zj|
l=1 exp

(

β jl|h

) .

This requires the gradient ∂CLL(B|S)
∂β ji|h

which is computed after some modifications as

∂CLL(B|S)
∂β ji|h

=
|Zj|

∑
k=1

∂CLL(B|S)
∂θ jk|h

∂θ jk|h

∂β ji|h
=

M

∑
m=1

[

u1,mi −Wm
i

]

−θ1i
M

∑
m=1

|C|

∑
c=1

[

u1,mc −Wm
c
]

for Case A and similarly for Case B we get the gradient

∂CLL(B|S)
∂β ji|h

=
M

∑
m=1

[

u j,mi|h −Wm
h1v

j,m
i|h\h1

]

−θ ji|h

M

∑
m=1

|Zj|

∑
l=1

[

u j,ml|h −Wm
h1v

j,m
l|h\h1

]

.

4.3 Generative Structure Learning

The conditional mutual information between the attributes given the class variable is computed as:

I (Xi;Xj|C) = EP(Xi,Xj,C) log
P(Xi,Xj|C)

P(Xi|C)P(Xj|C)
.

This measures the information between Xi and Xj in the context of C. Friedman et al. (1997) gives
an algorithm for constructing a TAN network using this measure. This algorithm is an extension of
the approach in Chow and Liu (1968). We briefly review this algorithm in the following:

1. Compute the pairwise CMI I (Xi;Xj|C) ∀ 1≤ i≤ N and i< j ≤ N.

2. Build an undirected 1-tree using the maximal weighted spanning tree algorithm (Kruskal,
1956) where each edge connecting Xi and Xj is weighted by I (Xi;Xj|C).

3. Transform the undirected 1-tree to a directed tree. That is, select a root variable and direct
all edges away from this root. Add to this tree the class node C and the edges from C to all
attributes X1, . . . ,XN .

4.4 Discriminative Structure Learning

As a baseline discriminative structure learning method, we use a greedy edge augmentation method
and also the SuperParent algorithm (Keogh and Pazzani, 1999).

4.4.1 GREEDY HEURISTICS

While this method is expected to perform well, it is much more computationally costly then the
method we propose below. The method proceeds as follows: a network is initialized to NB and at
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each iteration we add the edge that, while maintaining a partial 1-tree, gives the largest improve-
ment of the scoring function (defined below). This process is terminated when there is no edge
which further improves the score. This process might thus result in a partial 1-tree (forest) over the
attributes. This approach is computationally expensive since each time an edge is added, the scores
for all O

(

N2
)

edges need to be re-evaluated due to the discriminative non-decomposable scoring
functions we employ. This method overall has cost O

(

N3
)

score evaluations to produce a 1-tree,
which in the case of an O (NM)) score evaluation cost (such as the below), has an overall complexity
of O

(

N4
)

. There are two score functions we consider: the CR (Keogh and Pazzani, 1999; Pernkopf,
2005)

CR(BS |S) =
1
M

M

∑
m=1

δ(BS (xm1:N) ,cm)

and the CL (Grossman and Domingos, 2004)

CL(B|S) =
M

∏
m=1

PΘ (C = cm|X1:N = xm1:N) ,

where the expression δ
(

BS
(

xm1:N
)

,cm
)

= 1 if the Bayesian network classifier BS
(

xm1:N
)

trained with
samples in S assigns the correct class label cm to the attribute values xm1:N , and is equal to 0 other-
wise.3 In our experiments, we consider the CR score which is directly related to the empirical risk
in Vapnik (1998). The CR is the discriminative criterion that, given sufficient training data, most
directly judges what we wish to optimize (error rate), while an alternative would be to use a convex
upper-bound on the 0/1-loss function (Bartlett et al., 2006). Like in the generative case above, since
we are optimizing over a constrained model space (k-trees), and are performing simple parameter
smoothing, again regularization is implicit. This approach has in the literature been shown to be
the algorithm that produces the best performing discriminative structure (Keogh and Pazzani, 1999;
Pernkopf, 2005) but at the cost of a very expensive optimization procedure. To accelerate this algo-
rithm in our implementation of this procedure (which we use as a baseline to compare against our
still to-be-defined proposed approach), we apply two techniques:

1. The data samples are reordered during structure learning so that misclassified samples from
previous evaluations are classified first. The classification is terminated as soon as the perfor-
mance drops below the currently best network score (Pazzani, 1996).

2. During structure learning the parameters are set to the ML values. When learning the structure
we only have to update the parameters of those nodes where the set of parents ZΠ j changes.
This observation can be also used for computing the joint probability during classification.
We can memorize the joint probability and exchange only the probabilities of those nodes
where the set of parents changed to get the new joint probability (Keogh and Pazzani, 1999).

In the experiments this greedy heuristic is labeled as TAN-CR and 2-tree-CR for 1-tree and 2-tree
structures, respectively.

4.4.2 SUPERPARENT AND ITS k-TREE GENERALIZATION

Keogh and Pazzani (1999) introduced the SuperParent algorithm to efficiently learn a discriminative
TAN structure. The algorithm starts with a NB network and the edges pointing from the class

3. Note that the CR scoring measure is determined from a classifier trained and tested on the same data S .
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variable to each attribute remain fixed throughout the algorithm. In the first step, each attribute in
turn is considered as a parent of all other parentless attributes (except the class variable). If there
are no parentless attributes left, the algorithm terminates. The parent which improves the CR the
most is selected and designated the current superparent. The second step fixes the most recently
chosen superparent and keeps only the single best child attribute of that superparent. The single
edge between superparent and best child is then kept and the process of selecting a new superparent
is repeated, unless no improvement is found at which point the algorithm terminates. The number of
CR evaluations therefore in a complete run of the algorithm is O

(

N2
)

. Moreover, CR determination
can be accelerated as mentioned above.

We can extend this heuristic to learn 2-trees by simply modifying the first step accordingly:
consider each attribute as an additional parent of all parentless or single-parented attributes (while
ensuring acyclicity), and choose as the superparent the one that evaluates best, requiring O (N)
CR evaluations. Next, we retain the pair of edges between superparent and (parentless or single-
parented) children that evaluates best using CR, requiring O

(

N2
)

CR evaluations. The process
repeats if successful and otherwise terminates. The obvious k-tree generalization modifies the first
step to choose an additional parent of all attributes with fewer than k parents, and then selects the
best children for edge retention, leading overall to a process with O

(

Nk+1) score evaluations. In
this paper, we compare against this heuristic in the case of k = 1 and k = 2, abbreviating them,
respectively, as TAN-SuperParent and 2-tree-SuperParent.

5. New Heuristics: Order-based Greedy Algorithms

It was first noticed in Buntine (1991); Cooper and Herskovits (1992) that the best network consis-
tent with a given variable ordering can be found with O (Nq+c) score evaluations where q is the
maximum number of parents per node in a Bayesian network, and where c is a small fixed constant.
These facts were recently exploited in Teyssier and Koller (2005) where generative structures were
learned. Here, we are inspired by these ideas and apply them to the case of learning discriminative
structures. Also, unlike Teyssier and Koller (2005), we establish only one ordering, and since our
scoring cost is discriminative, it does not decompose and the learned discriminative structure is not
guaranteed to be optimal. However, experiments show good results at relatively low computational
learning costs.

Our procedure looks first for a total ordering≺ of the variablesX1:N according to certain criteria
which are outlined below. The parents of each node are chosen in such a way that the ordering is
respected, and that the procedure results in at most a k-tree. We note here, a k-tree is typically
defined on an undirected graphical model as one that has a tree-width of k—equivalently, there
exists an elimination order in the graph such that at each elimination step, the node being eliminated
has no more than k neighbors at the time of elimination. When we speak of a Bayesian network
being a k-tree, what we really mean is that the moralized version of the Bayesian network is a k-tree.
As a reminder, our approach is to learn a k-tree (i.e., a computationally and parameter constrained
Bayesian network) over the features X1:N . We still assume, as is done with a naive Bayes model,
that C is a parent of each Xi and this additional is not counted in k—thus, a 1-tree would have two
parents for each Xi, bothC and one additional feature. As mentioned above, in order to stay strictly
within the realm of generative models, we do not consider the case whereC has any parents.
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5.1 Step 1: Establishing an Order ≺

We propose three separate heuristics for establishing an ordering ≺ of the attribute nodes prior to
parent selection. In each case as we will see later, we use the resulting ordering such that later
features may only have earlier features as parents—this limit placed on the set of parents leads to
reduced computational complexity. Two of the heuristics are based on the conditional mutual infor-
mation I (C;XA|XB) between the class variable C and some subset of the features XA given some
disjoint subset of variables XB (so A∩B= /0). The conditional mutual information (CMI) measures
the degree of dependence between the class variable and XA given XB and it may be expressed
entirely in terms of entropy via I(C;XA|XB) = −H(C,XA,XB)+H(XA,XB)+H(C,XB)−H(XB),
where entropy of X is defined as H(X) = −∑x p(x) log p(x). When B = /0, we of course obtain
(unconditional) mutual information. A structure that maximizes the mutual information between C
and X is one that will lead to the best approximation of the posterior probability. In other words, an
ideal form of optimization would do the following:

B∗ ∈ argmax
B∈FB

IB(X1:N ;C),

where FB is a complexity constrained class of BNs (e.g., k-trees), andB∗ is an optimum network. Of
course, this procedure being intractable, we use mutual information to produce efficient heuristics
but that we show work well in practice on a wide variety of tasks (Section 6). The third heuristic
we describe is similar to the first two except that it is based directly on CR (i.e., empirical error
or 0/1-loss) itself. The heuristics detailed in the following are compared against random orderings
(RO) of the attributes in Section 6 to show that they are doing better than chance.
1: OMI: Our initial approach to finding an order is a greedy algorithm that first chooses the

attribute node that is most informative about C. The next attribute in the order is the attribute node
that is most informative aboutC conditioned on the first attribute, and subsequent nodes are chosen
to be most informative aboutC conditioned on previously chosen attribute nodes. More specifically,
our algorithm forms an ordered sequence of attribute nodes X1:N≺ =

{

X1≺,X2≺, . . . ,XN≺
}

according to

X j
≺ ← argmax

X∈X1:N\X1: j−1≺

[

I
(

C;X |X1: j−1≺

)]

, (2)

where j ∈ {1, . . . ,N}.
It is not possible to describe the motivation for this approach without considering at least the

general way parents of each attribute node are ultimately selected—more details are given below,
but for now it is sufficient to say that each node’s set of potential parents is restricted to come from
nodes earlier in the ordering. Let XΠ j ⊆ X

1: j−1
≺ be the set of chosen parents for Xj in an ordering.

There are several reasons why the above ordering should be useful. First, suppose we consider two
potential next variables Xj1 and Xj2 as the jth variable in the ordering, where I(Xj1 ;C|X1: j−1) 0
I(Xj2 ;C|X1: j−1). Choosing Xj1 could potentially lead to the case that no additional variable within
the allowable set of parents X1: j−1 could be beneficially added to the model as a parent of Xj1 . The
reason is that, conditioning on all of the potential parents of Xj1 , the variable Xj1 is less informative
about C. If Xj2 is chosen, however, then there is a possibility that some edge augmentation as
parents of Xj2 will render Xj2 residually informative about C—the reason for this is that Xj2 chosen
to have this property, and one set of parents that renders Xj2 residually informative aboutC is the set
X1: j−1≺ . Stated more concisely, we wish to choose as a next variable in the ordering one that has the
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potential to be strongly and residually predictive of C when choosing earlier variables as parents.
When choosing Xj such that I

(

C;Xj|X1: j−1≺

)

is large, this is possible at least in the case when X
may have up to j−1 additional parents.

Of course, only a subset of these nodes will ultimately be chosen to ensure that the model is
a k-tree and remains tractable and just because I(Xj;C|X1: j−1) is large does not necessarily mean
that I(Xj;C|XB) is also large for some B ⊂ {1, . . . ,( j− 1)}. The strict sub-set relationship, where
|B| < ( j− 1), is necessary to restrict the complexity class of our models, but this goal involves
an accuracy-computation tradeoff. Our approach, therefore, is only a heuristic. Nevertheless, one
justification for our ordering heuristic is based on the aspect of our algorithm that achieves compu-
tational tractability, namely the parent-selection strategy where variables are only allowed to have
previously ordered variables as their parents (as we describe in more detail below). Moreover, we
have empirically found this property to be the case in both real and artificial random data (see be-
low). Loosely speaking, we see our ordering as somewhat analogous to Ada-boost but applied to
feature selection, where later decisions on the ordering are chosen to correct for the deficiencies of
earlier decisions.

A second reason our ordering may be beneficial stems from the reason that a naive Bayes model
is itself useful. In a NB, we have that each Xi is independent of Xj given C. This has beneficial
properties both from the bias-variance (Friedman et al., 1997) and from the discriminative structure
perspective (Bilmes, 2000). In any given ordering, variables chosen earlier in the order have more
of a chance in the resulting model to render later variables conditionally independent of each other
conditioned on both C and the earlier variable. For example, if two later variables both ask for
the same earlier single parent, the two later variables are modeled as independent given C and that
earlier parent. This normally would not be useful, but in our ordering, since the earlier variables
are in general more correlated with C, this mimics the situation in NB: C and variables similar to C
render conditionally independent other variables that are less similar toC (with NB alone,C renders
all other variables conditionally independent). For reasons similar to NB (Friedman et al., 1997),
such an ordering will tend to work well.

Our approach rests on being able to compute CMI queries over a large number of variables,
something that requires both solving a potentially difficult inference problem and also is sensitive
to training-data sparsity. In our case, however, a conditional mutual information query can be
computed efficiently by making only one pass over the training data, albeit with a potential problem
with bias and variance of the mutual information estimate. As mentioned above, each CMI query
can be represented as a sum of signed entropy terms. Moreover, since all variables are discrete in
our studies, an entropy query can be obtained in one pass over the data by computing an empirical
histogram of random variable values only that exist in the data, then summing over only the resulting
non-zero values. Let us assume, for simplicity, that integer variable Y represents the Cartesian
product of all possible values of the vector random variable for we wish to obtain an entropy value.
Normally, H(Y ) = −∑y p(y) log p(y) would require an exponential number of terms, but we avoid
this by computing H(Y ) = −∑y∈Ty p(y) log p(y)− |Dy \Ty|ε logε, where Ty are the set of y values
that occur in the training data, andDy is the set of all possible y values, and ε is any smoothing value
that we might use to fill in zeros in the empirical histogram. Therefore, if our algorithm requires only
a polynomial number of CMI queries, then the complexity of the algorithm is still only polynomial
in the size of the training data. Of course, as the number of actual variables increases, the quality
of this estimate decreases. To mitigate these problems, we can restrict the number of variables in
X1: j−1≺ for a CMI query, leading to the following second heuristic based on CMI.
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2: OMISP: For a 1-tree each variable X j
≺ has one single parent (SP) XΠ j which is selected from

the variables X1: j−1≺ appearing before X j
≺ in the ordering (i.e., |Π j| = 1,∀ j). This leads to a simple

variant of the above, where CMI conditions only on a single variable within X1: j−1≺ . Under this
heuristic, an ordered sequence is determined by

X j
≺ ← argmax

X∈X1:N\X1: j−1≺

[

max
X≺∈X1: j−1≺

[I (C;X |X≺)]

]

.

Note, in this work, we do not present results using OMISP since the results were not significantly
different than OMI. We refer the interested reader to Pernkopf and Bilmes (2008a) which gives the
results for this heuristic, and more, in their full glory.
3: OCR: Here, CR on the training data is used in a way similar to the aforementioned greedy

OMI approach. The ordered sequence of nodes X1:N≺ is determined according to

X j
≺ ← argmax

X∈X1:N\X1: j−1≺

CR(BS |S) ,

where j ∈ {1, . . . ,N} and the graph of BS at each evaluation is a fully connected sub-graph only
over the nodes C,X , and X1: j−1≺ , that is, we have a saturated sub-graph (note, here BS depends on
the current X and the previously chosen attribute nodes in the order, but this is not indicated for
notational simplicity). This can of course lead to very large local conditional probability tables. We
thus perform this computation by using sparse probability tables that have been slightly smoothed
as described above. We then compute CR on the basis of P

(

C|X ,X1: j−1≺

)

∝ P
(

X ,X1: j−1≺ |C
)

P(C).
The justification for this approach is that it produces an ordering based not on mutual information
but on a measure more directly related to classification accuracy.

5.2 Step 2: Heuristic for Selecting Parents w.r.t. a Given Order to Form a k-tree

Once we have the ordering X1:N≺ , we select XΠ j ⊆ X
1: j−1
≺ for each X j

≺, with j ∈ {2, . . . ,N}. When
the size of XΠ j (i.e., N) and of k are small we can use even a computational costly scoring function
to find XΠ j . In case of a large N, we can restrict the size of the parent set XΠ j similar to the sparse
candidate algorithm (Friedman et al., 1999). While either the CL or the CR can be used as a cost
function for selecting parents, we in this work restrict our experiments to CR for parent selection
(empirical results show it performed better). The parent selection proceeds as follows. For each
j ∈ {2, . . . ,N}, we choose the best k parents XΠ j ⊆ X

1: j−1
≺ for X j

≺ by scoring each of the O
(

(N
k
)

)

possibilities with CR. We note that for j ∈ {2, . . . ,N−1} there will be a set of variables that have
not yet had their parents chosen, namely variables X j+1:N

≺ —for these variables, we simply use the
NB assumption. That is, those variables have no parents other thanC for the selection of parents for
X j
≺ (we relax this property in Pernkopf and Bilmes, 2008a). Note that the set of parents is judged
using CR, but the model parameters for any given candidate set of parents selected are trained using
ML (we did not find further advantages, in addition to using CR for parent selection, in also using
discriminative parameter training). We also note that the parents for each attribute node are retained
in the model only when CR is improved, and otherwise the node X j

≺ is left parent-less. This therefore
might result in a partial k-tree (forest) over the attributes. We evaluate our algorithm for k = 1 and
k= 2, but is defined above to learn k-trees (k≥ 1), and thus uses O

(

Nk+1) score evaluations where,
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due to ML training, each CR evaluation is O (NM). Overall, for learning a 1-tree, the ordering and
the parent selection costs O

(

N2
)

score evaluations. We see that the computation is comparable to
that of the SuperParent algorithm and its k-tree generalization.

Algorithm 1 OMI-CR
Input: X1:N ,C,S
Output: set of edges E for TAN network
X1≺,X2≺ ← argmaxX ,X ′∈X1:N [I (C;X ,X ′)]
if I

(

C;X1≺
)

< I
(

C;X2≺
)

then
X2≺ ↔ X1≺

end if
E←

{

ENaive Bayes∪EX1≺,X2≺
}

j← 2
CRold ← 0
repeat
j← j+1
X j
≺ ← argmaxX∈X1:N\X1: j−1≺

[

I
(

C;X |X1: j−1≺

)]

X∗
≺ ← argmaxX∈X1: j−1≺

CR(BS |S) where edges of BS are
{

E∪EX ,X j
≺

}

CRnew ←CR(BS |S) where edges of BS are
{

E∪EX∗
≺,X

j
≺

}

ifCRnew >CRold then
CRold ←CRnew
E←

{

E∪EX∗
≺,X

j
≺

}

end if
until j = N

5.3 OMI-CR Algorithm

Recapitulating, we have introduced three order-based greedy heuristics for producing discriminative
structures in Bayesian network classifiers: First, there is OMI-CR (Order based on Mutual Infor-
mation with CR used for parent selection); Second, there is OMISP-CR (Order based on Mutual
Information conditioned on a Single Parent, with CR used for parent selection); and third OCR-CR
(Order based on Classification Rate, with CR used for parent selection). For evaluation purposes,
we also consider random orderings in step 1 and CR for parent selection (RO-CR). The OMI-CR
procedure is summarized in Algorithm 1 where both steps (order and parent selection) are merged
at each loop iteration (which is of course equivalent to considering both steps separately). The
different algorithmic variants are obtained by modifying the ordering criterion.

6. Experiments

We present classification results on 25 data sets from the UCI repository (Merz et al., 1997) and from
Kohavi and John (1997), for frame- and segment-based phonetic classification experiments using
the TIMIT database (Lamel et al., 1986), for a visual surface inspection task (Pernkopf, 2004),
and for handwritten digit recognition using the MNIST (LeCun et al., 1998) and USPS data set.
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Additionally, we show performance results on synthetic data. We use NB, TAN, and 2-tree network
structures. Different combinations of the following parameter/structure learning approaches are
used to learn the classifiers:

• Generative (ML) (Pearl, 1988) and discriminative (CL) (Greiner et al., 2005) parameter learn-
ing.

• CMI: Generative structure learning using CMI as proposed in Friedman et al. (1997).
• CR: Discriminative structure learning with greedy heuristic using CR as scoring function
(Keogh and Pazzani, 1999; Pernkopf, 2005) (see Section 4.4).

• RO-CR: Discriminative structure learning using random ordering (RO) in step 1 and CR for
parent selection in step 2 of the order-based heuristic.

• SuperParent k-tree: Discriminative structure learning using the SuperParent algorithm (Keogh
and Pazzani, 1999) with k = 1,2 (see Section 4.4).

• OMI-CR: Discriminative structure learning using CMI for ordering the variables (step 1) and
CR for parent selection in step 2 of the order-based heuristic.

• For OMI-CR, we also evaluate discriminative parameter learning by optimizing CL during
the selection of the parent in step 2. We call this OMI-CRCL. Discriminative parameter
learning while optimizing discriminative structure is computationally feasible only on rather
small data sets due to the cost of the conjugate gradient parameter optimization.

We do not include experimental results for OMISP-CR and OCR-CR for space reasons. The
results, however, show similar performance to OMI-CR, and can be found in an extended technical-
report version of this paper (Pernkopf and Bilmes, 2008a).

While we have attempted to avoid a proliferation of algorithm names, some name abundance
has unavoidably occurred in this paper. We therefore have attempted to use a simple 2-, 3-, or even
4-tag naming scheme where A-B-C-D is such that “A” (if given) refers to either TAN (1-tree) or 2-
tree, “B” and “C” refer to the structure learning approach, and “D” (if given) refers to the parameter
training method of the final resultant model structure. For the ordering heuristics “B” refers to the
ordering method, “C” refers to the parent selection and internal parameter learning strategy. For
the remaining structure learning heuristics only “B” is present. Thus, TAN-OMI-CRML-CL would
be the OMI procedure for ordering, parent selection evaluated using CR (with ML training used at
that time), and with CL used to train the final model which would be a 1-tree (note moreover that
TAN-OMI-CR-CL is equivalent since ML is the default training method).

6.1 Experimental Setup

Any continuous features were discretized using recursive minimal entropy partitioning (Fayyad and
Irani, 1993) where the codebook is produced using only the training data. This discretization method
uses the class entropy of candidate partitions to determine the bin boundaries. The candidate parti-
tion with the minimal entropy is selected. This is applied recursively on the established partitions
and the minimum description length approach is used as stopping criteria for the recursive parti-
tioning. In Dougherty et al. (1995), an empirical comparison of different discretization methods
has been performed and the best results have been achieved with this entropy-based discretization.
Throughout our experiments, we use exactly the same data partitioning for each training procedure.
We performed simple smoothing, where zero probabilities in the conditional probability tables are
replaced with small values (ε= 0.00001). For discriminative parameter learning, the parameters are

2341



PERNKOPF AND BILMES

initialized to the values obtained by the ML approach (Greiner et al., 2005). The gradient descent
parameter optimization is terminated using cross tuning as suggested in Greiner et al. (2005).

6.2 Data Characteristics

In the following, we introduce several data sets used in the experiments.

6.2.1 UCI DATA

We use 25 data sets from the UCI repository (Merz et al., 1997) and from Kohavi and John (1997).
The same data sets, 5-fold cross-validation, and train/test learning schemes as in Friedman et al.
(1997) are employed. The characteristics of the data sets are summarized in Table 7 in the Ap-
pendix A.

6.2.2 TIMIT-4/6 DATA

This data set is extracted from the TIMIT speech corpus using the dialect speaking region 4 which
consists of 320 utterances from 16 male and 16 female speakers. The speech is sampled at 16
kHz. Speech frames are classified into the following classes, voiced (V), unvoiced (U), silence (S),
mixed sounds (M), voiced closure (VC), and release (R) of plosives. We therefore are performing
frame-by-frame phone classification (contrasted with phone recognition using, say, a hiddenMarkov
model). We perform experiments with only four classes V/U/S/M and all six classes V/U/S/M/VC/R
using 110134 and 121629 samples, respectively. The class distribution of the four class experiment
V/U/S/M is 23.08%, 60.37%, 13.54%, 3.01% and of the six class case V/U/S/M/VC/R is 20.9%,
54.66%, 12.26%, 2.74%, 6.08%, 3.36%. Additionally, we perform classification experiments on
data of male speakers (Ma), female speakers (Fe), and both genders (Ma+Fe). For each gender we
have approximately the same number of samples. The data have been split into 2 mutually exclusive
subsets of D ∈ {S1,S2} where the size of the training data S1 is 70% and of the test data S2 is 30%
of D . The classification experiments have been performed with 8 wavelet-based features combined
with 12 mel-frequency cepstral coefficients (MFCC) features, that is, 20 features. More details
about the features can be found in Pernkopf et al. (2008). We have 6 different classification tasks
for each classifier, that is, Ma+Fe, Ma, Fe × 4 or 6 Classes.

6.2.3 TIMIT-39 DATA

This again is a phone classification test but with a larger number of classes. In accordance with
Halberstadt and Glass (1997) we cluster the 61 phonetic labels into 39 classes, ignoring glottal
stops. For training, 462 speakers from the standard NIST training set have been used. For testing
the remaining 168 speakers from the overall 630 speakers were employed. Each speaker speaks
10 sentences including two sentences which are the same among all speakers (labeled as sa), five
sentences which were read from a list of phonetically balanced sentences (labeled as sx), and 3
randomly selected sentences (labeled as si). In the experiments, we only use the sx and si sentences
since the sa sentences introduce a bias for certain phonemes in a particular context. This means that
we have 3696 and 1344 utterances in the training and test set, respectively. We derive from each
phonetic segment one feature vector which results in 140173 training samples and 50735 testing
samples. The features are derived similarly as proposed in Halberstadt and Glass (1997). First, 12
MFCC + log-energy feature (13 MFCC’s) and their derivatives (13 Derivatives) are calculated for
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Figure 5: Acquired surface data with an embedded crack.

every 10ms of the utterance with a window size of 25ms. A phonetic segment, which can be variable
length, is split at a 3:4:3 ratio into 3 parts. The fixed-length feature vector is composed of: 1) three
averages of the 13 MFCC’s calculated from the 3 portions (39 features); 2) the 13 Derivatives of the
beginning of the first and the end of the third segment part (26 features); and 3) the log duration of
the segment (1 feature). Hence, each phonetic segment is represented by 66 features.

6.2.4 SURFACE INSPECTION DATA (SURFINSP)

This data set was acquired from a surface inspection task. Surface defects with three-dimensional
characteristics on scale-covered steel blocks have to be classified into 3 classes. The 3-dimensional
raw data showing the case of an embedded surface crack is given in Figure 5. The data set consists
of 450 surface segments uniformly distributed into three classes. Each sample (surface segment) is
represented by 40 features. More details on the inspection task and the features used can be found
elsewhere (Pernkopf, 2004).

6.2.5 MNIST DATA

We evaluate our classifiers on the MNIST data set of handwritten digits (LeCun et al., 1998) which
contains 60000 samples for training and 10000 digits for testing. The digits are centered in a 28×28
gray-level image. We re-sample these images at a resolution of 14× 14 pixels. This gives 196
features where the gray-levels are discretized using the procedure from Fayyad and Irani (1993).
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Figure 6: USPS data.

6.2.6 USPS DATA

This data set contains 11000 handwritten digit images (uniformly distributed) collected from zip
codes of mail envelopes. Each digit is represented as a 16× 16 grayscale image, where each pixel
is considered as individual feature. Figure 6 shows a random sample of the data set. We use 8000
digits for training and the remaining images as a test set.

6.3 Conditional Likelihood and Maximum Mutual Information Orderings

In the following, we evaluate the ordering heuristics using 31 different classification scenarios (from
the UCI and the TIMIT-4/6 data sets) comprising differing input features and differing numbers of
classes. We compare our ordering procedure (i.e., OMI, where we maximize the mutual informa-
tion as in Equation 2) with several other possible orderings in an attempt to empirically show that
our aforementioned intuition regarding order (see Section 5.1) is sound in the majority of cases. In
particular, we compare against an ordering produced by minimizing the mutual information (replac-
ing argmax with argmin in Equation 2). Additionally, we also compare against 100 uniformly-at-
random orderings. For the selection of the conditioning variables (see Section 5.2) the CL score is
used in each case. ML parameter estimation is used for all examples in this section.

Figure 7 and Figure 8 show the resulting conditional log likelihoods (CLL) of the model scoring
the training data after the TAN network structures (1-trees in this case) have been determined for
the various data sets. As can be seen, our ordering heuristic performs better than both the random
and the minimum mutual information orderings on 28 of the 31 cases. The random case shows the
mean and ± one standard deviation out of 100 orderings. For Corral, Glass, and Heart there is no
benefit, but the data sets are on the smaller side where it is less unexpected that generative structure
learning would perform better (Ng and Jordan, 2002).

To further verify that our ordering tends to produce better conditional likelihood values on train-
ing data, we also evaluate on random data. For each number of variables (from 10 up to 14) we
generate 1000 random distributions and draw 100000 samples from each one. Using these samples,
we learn generative and discriminative TAN structures by the following heuristics and report the
resulting conditional log likelihood on the training data: (i) order variables by maximizing mutual
information (TAN-OMI-CL), (ii) order variables by minimizing mutual information, (iii) random
ordering of variables and CL parent selection (TAN-RO-CL), (iv) optimal generative 1-tree, that
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Figure 7: Resulting CLL on the UCI data sets for a maximum mutual information (i.e., OMI), a
minimum mutual information, and a random based ordering scheme.

is, TAN-CMI (Friedman et al., 1997), (v) the computationally expensive greedy heuristic using CL
(see Section 4.4.1), what we call TAN-CL. In addition we show CLL results for the NB classifier.

Figure 9 shows the CLL values for various algorithms. The CLL is still high even with the
much less computationally costly OMI-CL procedure. Additionally, the generative 1-tree method
improves likelihood but it does not necessarily produce good conditional likelihood results. We
performed a one-sided paired t-test (Mitchell, 1997) for all different structure learning approaches.
This test indicates that the CLL differences among the methods are significant at a level of 0.05 for
each number of variables. This figure shows that the CLL gets smaller when more attributes are
involved. With increasing the number of variables the random distribution becomes more complex
(i.e., the number of dependencies among variables increases). However, we approximate the true
distribution in any case with a 1-tree.

While we have shown empirically that our ordering heuristic tends to produce models that score
the training data highly in the conditional likelihood sense, a higher conditional likelihood does not
guarantee a higher accuracy, and training data results do not guarantee good generalization. In the
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Figure 8: Resulting CLL on the TIMIT-4/6 data sets for a maximummutual information (i.e., OMI),
a minimum mutual information, and a random based ordering scheme.
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Figure 9: Optimized CLL of TAN structures learned by various algorithms. For each number of
variables (x-axis) we generated 1000 random distributions.

next sections, however, we show that on balance, accuracy on test data using our ordering procedure
is on par with the expensive greedy procedure, but with significantly less computation.

6.4 Synthetic Data

We show the benefit of the structure learning algorithms for the case where the class-dependent data
are sampled from different 1-tree structures. In particular, we randomly determine for each class
a 1-tree. The probabilities for each attribute variable are sampled from an uniform distribution,
whereas the cardinality is set to 10, that is, |Xi| = 10. We use five classes. From the tree for C = 1
we draw 25000 samples. Additionally, we sample 6250 samples for each of the remaining four
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classes from the same structure for confusion. For the remaining classes we draw 6250 samples
from the corresponding random trees. This gives in total 75000 samples for training. The test set
also consists of 75000 samples generated likewise. We perform this experiment for varying number
of attributes, that is, N ∈ {5,10,15,20,25,30}. The recognition results are shown in Figure 10,
whereas the performance of each algorithm is averaged over 20 independent runs with randomly
selected conditional probability distributions and trees. In each run, all algorithms have exactly the
same data available.
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Figure 10: Synthetic data: Recognition performance is averaged over 20 runs.

We compare our OMI-CR heuristic to greedy discriminative structure learning. Additionally, we
provide results for NB and generatively optimized TAN structures using CMI. To give a flavor about
the data, the classification rates achieved with the true model used to generate the data are reported.
This figure indicates that OMI-CR performs slightly worse than the greedy heuristic. However, the
one-sided paired t-test (Mitchell, 1997) indicates that TAN-OMI-CR performs significantly better
than TAN-CMI for more than 5 attributes at a level of 0.05. Generally, discriminative parameter
optimization (i.e., CL) does not help for this data.

6.5 Classification Results and Discussion

Table 1 presents the averaged classification rates over the 25 UCI and 6 TIMIT-4/6 data sets.4 Addi-
tionally, we report the CR on TIMIT-39, SurfInsp, MNIST, and USPS. The individual classification
performance of all classification approaches on the 25 UCI data sets are summarized in Pernkopf

4. The average CR is determined by first weighting the CR of each data set with the number of samples in the test set.
These values are accumulated and normalized by the total amount of samples in all test sets.
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DATA SET UCI TIMIT-4/6 TIMIT-39 SURFINSP MNIST USPS
CLASSIFIER
NB-ML 81.50 84.85 61.70± 0.22 89.11 ± 1.47 83.73 ± 0.37 87.10 ± 0.61
NB-CL 85.18 88.69 70.33 ± 0.20 92.67 ± 0.90 91.70 ± 0.28 93.67 ± 0.44

TAN-CMI-ML 84.82 86.18 65.40 ± 0.21 92.44 ± 0.96 91.28 ± 0.28 91.90 ± 0.50
TAN-CMI-CL 85.47 87.22 66.31 ± 0.21 92.44 ± 0.96 93.80 ± 0.24 94.87 ± 0.40

TAN-RO-CR-ML (MEAN) 85.04 87.43 - 93.13 ± 0.70 - -
TAN-RO-CR-ML (MIN) 85.00 87.57 - 92.67 - -
TAN-RO-CR-ML (MAX) 84.82 87.43 - 92.67 - -
TAN-SUPERPARENT-ML 84.80 87.54 66.53 ± 0.21 92.22 ±0.78 91.80 ± 0.27 90.67 ± 0.53
TAN-SUPERPARENT-CL 85.70 87.76 66.56 ± 0.21 92.44 ± 0.96 93.50 ± 0.25 94.70 ± 0.41
TAN-OMI-CR-ML 85.11 87.52 66.61± 0.21 94.00 ±1.14 92.01 ± 0.27 92.40 ± 0.48
TAN-OMI-CR-CL 85.82 87.54 66.87 ± 0.21 94.00 ±1.14 93.39 ± 0.25 94.90 ± 0.40

TAN-OMI-CRCL-ML 85.16 87.46 - 94.22 ±1.13 - -
TAN-OMI-CRCL-CL 85.78 87.62 - 94.22 ±1.13 - -

TAN-CR-ML 85.38 87.62 66.78 ± 0.21 92.89 ± 0.57 92.58 ± 0.26 92.57 ± 0.48
TAN-CR-CL 86.00 87.48 67.23 ± 0.21 92.89 ± 0.57 93.94 ± 0.24 95.83 ± 0.36

2-TREE-RO-CR-ML (MEAN) - 87.86 - - - -
2-TREE-RO-CR-ML (MIN) - 87.87 - - - -
2-TREE-RO-CR-ML (MAX) - 87.87 - - -
2-TREE-SUPERPARENT-ML 84.77 87.33 64.78 ± 0.21 92.67 ±1.63 90.56 ± 0.29 90.67 ± 0.53
2-TREE-SUPERPARENT-CL 85.90 87.14 67.38 ± 0.21 92.67 ±1.63 92.47 ± 0.26 94.13 ± 0.43
2-TREE-OMI-CR-ML 85.50 88.01 66.94 ± 0.21 94.22 ± 0.82 92.69 ± 0.26 94.03 ± 0.41
2-TREE-OMI-CR-CL 85.81 87.27 67.06 ± 0.21 94.88 ± 0.90 93.09 ± 0.25 94.76 ± 0.41
2-TREE-CR-ML 85.53 87.94 66.71 ± 0.21 94.22 ± 1.07 - -
2-TREE-CR-CL 85.73 86.95 67.36 ± 0.21 94.22 ± 1.07 - -

Table 1: Averaged classification results for 25 UCI and 6 TIMIT-4/6 data sets and classification
results for TIMIT-39, SurfInsp, MNIST, and USPS with standard deviations. Best results
use bold font. ML and CL denote generative and discriminative parameter learning, re-
spectively. The order-based greedy heuristics are OMI-CR (order mutual information-CR)
and RO-CR (random order-CR). CRCL refers to using discriminative parameter learning
during structure learning. The generative structure learning algorithm is abbreviated as
CMI and the greedy discriminative structure learning is TAN-CR and 2-tree-CR.

and Bilmes (2008a), whereas the random order experiment is presented in Table 8 (see Appendix A).
For the TIMIT-4/6 data sets the individual classification performances for various classifier learning
methods can be found in Table 9 (see Appendix B). The random order experiment for these data
sets using a 2-tree is summarized in Appendix B in Table 10.

6.5.1 DISCUSSION: DISCRIMINATIVE VERSUS GENERATIVE PARAMETER LEARNING

Discriminative parameter learning produces mostly a significantly better classification performance
than ML parameter learning on the same classifier structure. Especially, for cases where the struc-
ture of the underlying model is not optimized for classification (Greiner et al., 2005)—the average
improvement of discriminative parameter learning over ML estimation on NB and generative TAN-
CMI structures is large. In particular, for TIMIT-4/6 and TIMIT-39 the discriminatively optimized
NB classifier (i.e., NB-CL) achieves the overall best classification performance. One reason is that
the final step of MFCC features extraction includes a discrete cosine transform, that is, the features
are decorrelated. Hence, the independence assumptions of the NB structure might be a good choice
for these data sets. A second reason is that CL parameter learning for the TAN and 2-tree structures
overfit the data (even with cross tuning)—the NB structure implicitly keeps the number of param-
eters low. Analyzing the results of CL parameter learning over various structures (especially for
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2-trees) reveal that cross tuning is for some cases too restrictive concerning the number of conjugate
gradient iterations—an alternative regularization method is required. CL parameter learning of NB
classifiers is known to be equivalent to logistic regression. It can be shown that the CLL is con-
cave when using logθ ji|h, that is, the global maximum can be found during discriminative parameter
learning. Roos et al. (2005) showed that this also holds for more general network structures, for
example, TAN.

In Section 6.6, we show that the classification performance of a discriminatively structured
model may be superior to discriminatively parameterized models in the case of missing features.

6.5.2 DISCUSSION: DISCRIMINATIVE VERSUS GENERATIVE STRUCTURE LEARNING USING
ML PARAMETER LEARNING

The CR objective function produces the best performing network structures. Evaluation of the CR
measure is computationally expensive as mentioned above. However, due to the ordering of the
variables in the order-based heuristics, we can reduce the number of CR evaluations from O

(

N3
)

to
O
(

N2
)

for TAN structures. Hence, TAN-CR and 2-tree-CR are restricted to rather small data sets.
The order-based heuristic OMI-CR achieve a similar performance at a much lower computational
cost. Discriminative parameter learning during discriminative structure learning using our order-
based heuristics can slightly improve the performance. This is possible only on small data sets due
to the computational burden for the conjugate gradient parameter optimization.

The discriminative SuperParent algorithm performs slightly but not significantly worse com-
pared to the other discriminative structure learning algorithms OMI-CR, OMI-CRCL, and greedy
heuristic using CR on the UCI data set—similarly, the performance of SuperParent on TIMIT-4/6
for learning TAN structures, however, the performance using 2-tree structures is low. In summary,
SuperParent achieves a lower classification rate compared to other discriminative structure learning
algorithms on most of the data sets. The main reason for the degraded performance is an early
termination of the algorithm.

For RO-CRwe summarize the performance over 1000 random orderings using the mean (Mean),
minimum (Min), and maximum (Max) CR (we use only 100 random orders for TIMIT-4/6 though).
Min (Max) reports the classification rate on the test set using the structure which achieves the mini-
mum (maximum) performance over 1000 random orderings (resp. 100 orders for TIMIT-4/6) on the
training data. In some cases, the average over the data sets show that the worst RO-CR structures
scored on the training sets perform better on the test sets than the best structures on the training
sets, presumably due to overfitting. These results do show, however, that choosing from a collection
of arbitrary orders and judging them based on the training set performance is not likely to perform
well on the test set. Our heuristics do improve over these orders.

The TIMIT-39, MNIST, and USPS experiments show that we can perform discriminative struc-
ture learning for relatively large classification problems (∼140000 samples, 66 features, 39 classes,
∼60000 samples, 196 features, 10 classes, and ∼8000 samples, 256 features, 10 classes, resp.). For
these data sets, OMI-CR significantly outperform NB and TAN-CMI.

On MNIST we achieve a classification performance of ∼92.58% with the discriminative TAN
classifier. A number of state-of-the-art algorithms, that is, convolutional net and virtual SVM,
achieve an error rate below 1% (LeCun and Cortes). Due to resampling we use only 196 features
in contrast to the 784 features of the original data set which might explain some of the loss in
classification rate. Another reason why the convolutional neural net and virtual SVM perform better
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CLASSIFIER TAN TAN TAN TAN TAN 2-TREE 2-TREE 2-TREE
STRUCTURE LEARNING RO-CR SUPERPARENT OMI-CR OMI-CRCL CR SUPERPARENT OMI-CR CR
PARAMETER LEARNING ML ML ML ML ML ML ML ML

MAX
NB-ML ⇑0.0300 ⇑0.0232 ⇑0.0242 ⇑0.0203 ⇑0.0154 ⇑0.0103 ⇑0.0316 ⇑0.0317

TAN-CMI-ML ↑0.120 ←0.122 ⇑0.0154 ⇑0.0094 ⇑0.0141 ←0.0705 ⇑0.0271 ⇑0.0159
TAN-RO-CR-ML ←0.197 ↑0.144 ↑0.0945 ⇑0.0446 ←0.131 ↑0.148 ↑0.140

TAN-SUPERPARENT-ML ↑0.136 ↑0.0848 ↑0.0917 ←0.189 ↑0.149 ↑0.139
TAN-OMI-CR-ML ↑0.182 ↑0.190 ←0.194 ↑0.197 ↑0.196
TAN-OMI-CRCL-ML ↑0.197 ←0.182 ↑0.196 ↑0.197

TAN-CR-ML ←0.178 ↑0.194 ↑0.197
2-TREE-SUPERPARENT-ML ↑0.195 ↑0.192
2-TREE-OMI-CR-ML ↑0.195

Table 2: Comparison of different classifiers using the one-sided paired t-test for the 25 UCI data
sets: Each entry of the table gives the significance of the difference of the classification rate
of two classifiers over the data sets. The arrow points to the superior learning algorithm.
We use a double arrow if the difference is significant at the level of 0.05. The order-based
greedy heuristics are OMI-CR (order mutual information-CR) and RO-CR (random order-
CR). CRCL refers to algorithms using discriminative parameter learning during structure
learning. The generative structure learning algorithm is abbreviated as CMI and the naive
greedy discriminative structure learning is TAN-CR and 2-tree-CR.

CLASSIFIER 2-TREE TAN TAN TAN TAN 2-TREE 2-TREE 2-TREE
STRUCTURE LEARN. RO-CR SUPERPARENT OMI-CR OMI-CRCL CR SUPERPARENT OMI-CR CR
PARAMETER LEARN. ML ML ML ML ML ML ML ML

MAX
NB-ML ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001 ⇑<0.0001

TAN-CMI-ML ⇑0.00032 ⇑0.0012 ⇑0.0016 ⇑0.0019 ⇑0.0012 ⇑0.0027 ⇑0.0002 ⇑0.0002
2-TREE-RO-CR-ML ⇐0.0007 ⇐0.0024 ⇐0.0011 ⇐0.0011 ⇐0.0010 ⇑0.0011 ⇑0.0092

TAN-SUPERPARENT-ML ←0.189 ←0.151 ↑0.147 ⇐0.0187 ⇑0.0002 ⇑0.0006
TAN-OMI-CR-ML ←0.078 ↑0.140 ⇐0.0078 ⇑0.0004 ⇑0.0013
TAN-OMI-CRCL-ML ⇑0.038 ←0.054 ⇑0.0002 ⇑0.0007

TAN-CR-ML ⇐0.013 ⇑0.0002 ⇑0.0010
2-TREE-SUPERPARENT-ML ⇑0.0004 ⇑0.0005
2-TREE-OMI-CR-ML ←0.069

Table 3: Comparison of different classifiers using the one-sided paired t-test for the 6 TIMIT-4/6
data sets: Each entry of the table gives the significance of the difference of the classifi-
cation rate of two classifiers over the data sets. The arrow points to the superior learning
algorithm. We use a double arrow if the difference is significant at the level of 0.05. The
order-based greedy heuristics are OMI-CR (order mutual information-CR) and RO-CR
(random order-CR). CRCL refers to algorithms using discriminative parameter learning
during structure learning. The generative structure learning algorithm is abbreviated as
CMI and the naive greedy discriminative structure learning is TAN-CR and 2-tree-CR.

on digit recognition is probably that images are not treated as unstructured feature vectors, that is,
the convolutional neural net has built-in parts that look at particular areas of the image, and the
virtual SVM is trained on augmented data that reflects invariance to small translations and rotations.

For the SurfInsp data the standard deviation of the five-fold cross-validation classification accu-
racy estimate is relatively large. Unfortunately, the size of the data set is limited to 450 samples.

The structure of Bayesian networks is implicitly regularized when we restrict the optimization
over a model structure (e.g., 1-trees) assuming sufficient training data. For 2-trees we noticed that
the data tended to overfit without further regularization. Therefore, we introduce 5-fold cross vali-
dation on the training data to find the optimal classifier structure.

Table 2 and Table 6.5.2 present a summary of the classification results over all structure learning
experiments using ML parameter learning of the UCI and TIMIT-4/6 data sets.
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We compare all pairs of classifiers using the one-sided paired t-test (Mitchell, 1997). The t-test
determines whether the classifiers differ significantly under the assumption that the classification
differences over the data set are independent and identically normally distributed. In these tables,
each entry gives the significance of the difference in classification rate of two classification ap-
proaches. The arrow points to the superior learning algorithm and a double arrow indicates whether
the difference is significant at a level of 0.05.

These tables show that TAN-OMI-CR, TAN-OMI-CRCL-CR, and TAN-CR significantly out-
perform the generative structure learning approach TAN-CMI (similar for 2-trees). However, the
computationally expensive greedy heuristic TAN-CR and 2-tree-CR do not significantly outperform
our discriminative order-based heuristics TAN-OMI-CR and 2-tree-OMI-CR, respectively.

6.5.3 DISCUSSION: COMPUTATIONAL REQUIREMENTS FOR STRUCTURE LEARNING

The running time of the TAN-CMI, TAN-OMI-CR, and TAN-CR structure learning algorithms for
the UCI, TIMIT-4/6, TIMIT-39, and the MNIST data sets is summarized in Table 4. The numbers
represent the percentage of time that is needed for a particular algorithm compared to TAN-CR.
TAN-CMI is roughly 3-10 times faster than TAN-OMI-CR and TAN-CR takes about 10-40 times
longer for establishing the discriminative structure than TAN-OMI-CR.

Data set TAN-CMI TAN-OMI-CR TAN-CR
UCI 0.649% 3.155% 100.00%

TIMIT-4/6 3.56% 11.47% 100.00%
TIMIT-39 0.11% 2.08% 100.00%
MNIST 0.21% 2.23% 100.00%

Table 4: Running time of structure learning algorithms relative to TAN-CR.

6.6 Results with Randomly Missing Input Features

As mentioned in Section 3, generative models can easily deal with missing features simply by
marginalizing out from the model the missing feature. We are particularly interested in a testing
context which has arbitrary sets of missing features for each classification sample. In such a case, it
is not possible to re-train the model for each potential set of missing features without also memoriz-
ing the training set. Due to the local-normalization property of Bayesian networks and the structure
of any model with a parent-less class node, marginalization is as easy as an O(rk+1) operation for a
k-tree, where r is the domain size of each feature.
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Figure 11: Classification performance of different structure learning methods assuming missing
features using Ma+Fe data of TIMIT-4/6.

In Figure 11, we present the classification performance of discriminative and generative struc-
tures assuming missing features using the Ma+Fe data of TIMIT-4/6. The x-axis denotes the number
of missing features. The curves are averaged over 100 classifications of the test data with uniformly
at random selected missing features. We use exactly the same missing features for each classifier.
Variance bars are omitted to improve readability, but indicate that the resulting differences are signif-
icant between NB-ML, TAN-CMI-ML, and discriminatively structured classifiers for a low number
of missing features. Hence, discriminatively structured Bayesian network classifiers outperform
TAN-CMI-ML even in the case of missing features. This demonstrates, at least empirically, that
discriminatively structured generative models do not lose their ability to impute missing features.

Figure 12: Classification performance of NB-ML, NB-CL, and TAN-CR-ML assuming missing
features using Ma+Fe data of TIMIT-4/6. The shaded region corresponds to the standard
deviation over 100 classifications.

In Figure 12, we show for the same data sets and experimental setup that the classification per-
formance of a discriminatively structured model may be superior to discriminatively parameterized
models in the case of missing features. In particular, for more than three missing features TAN-CR-
ML outperforms NB-CL. Similar results can be shown for MNIST in Figure 13.
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Figure 13: Classification performance usingMNIST. The shaded region corresponds to the standard
deviation over 100 classifications: (a) Different structure learning methods, (b) NB-ML,
NB-CL, and TAN-CR-ML.

6.7 Results with SVMs

In Table 6, we compare classification performances between the best performing Bayesian network
classifiers (in Table 1) and SVMs using RBF kernels. SVMs outperform our discriminative Bayesian
network classifier. For TIMIT-4/6 one reason might be that SVMs are applied to the continuous fea-
ture domain. In Table 5 we compare the model complexity (i.e., number of parameters) between
both SVMs and Bayesian network classifiers. This table reveals that the Bayesian network uses
∼108, ∼66, ∼212, and ∼259 times fewer parameters for MNIST, USPS, Ma+Fe-4, and Ma+Fe-
6 than the SVM. This might also explain the loss in classification performance of discriminative
Bayesian networks. Furthermore, Bayesian network classifiers can be directly applied to prob-
lems with more than two classes, whereas SVMs in its traditional formulation are limited to binary
problems—the multiclass problem is decomposed into binary problems. Additionally, for SVMs
we have to select C∗ and σ. A substantial difference is that SVMs determine the number of support
vectors automatically while in the case of Bayesian networks the number of parameters is specified
by the structure. A limited complexity class (e.g., 1-tree) restricts the number of parameters which
might be advantageous. In contrast to SVMs, a Bayesian network might be preferred since it is easy
to work with missing features (see Section 6.6), parameter tying and knowledge-based hierarchical
decomposition is facilitated, and it is easy to work with structured data.

DATA SET TIMIT-4/6 MNIST USPS
CLASSIFIER
NB-CL 88.69

TAN-CR-CL 93.94 ± 0.24 95.83 ± 0.36
SVM 89.38 96.40 ± 0.19 97.86 ± 0.26

PARAMETERS C∗ = 1,σ= 0.05 C∗ = 1,σ= 0.01 C∗ = 1,σ= 0.005

Table 5: Model complexity for best Bayesian network (BN) and SVM.

7. Conclusion

We introduced a simple order-based heuristic for learning discriminative network structure. The
metric for establishing the ordering of N features is based on either the conditional mutual infor-
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DATA SET N NUMBER OF SVS NUMBER OF SVM PARAMETERS NUMBER OF BN PARAMETERS
MNIST 196 17201 3371396 31149
USPS 256 3837 982272 14689

TIMIT-4/6 (MA+FE-4) 20 13146 262920 1239
TIMIT-4/6 (MA+FE-6) 20 24350 487000 1877

Table 6: Classification results for TIMIT-4/6 data sets (averaged), MNIST, and USPS using best
performing Bayesian network classifier (see Table 1) and SVMs.

mation or the classification rate. Given an ordering, we can find a discriminative classifier struc-
ture using O

(

Nk+1) score evaluations (where constant k is the tree-width of the sub-graph over
the attributes). We empirically compare the performance of our algorithms to state-of-the-art dis-
criminative and generative parameter and structure learning algorithms using real data from the
TIMIT speech corpus, the UCI repository, a visual surface inspection task, and from handwrit-
ten digit recognition tasks. The experiments show that the discriminative structures found by our
order-based heuristics achieve on average a significantly better classification performance than the
generative approach. Our obtained classification performance is very similar to the greedy search
using CR. Our order-based heuristics however, are about 10-40 times faster. Additionally, we show
that discriminatively structured Bayesian network classifiers are superior even in the case of missing
features.
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Appendix A. UCI data

DATA SET # FEATURES # CLASSES # SAMPLES TRAIN # SAMPLES TEST
1 AUSTRALIAN 14 2 690 CV-5
2 BREAST 10 2 683 CV-5
3 CHESS 36 2 2130 1066
4 CLEVE 13 2 296 CV-5
5 CORRAL 6 2 128 CV-5
6 CRX 15 2 653 CV-5
7 DIABETES 8 2 768 CV-5
8 FLARE 10 2 1066 CV-5
9 GERMAN 20 2 1000 CV-5
10 GLASS 9 7 214 CV-5
11 GLASS2 9 2 163 CV-5
12 HEART 13 2 270 CV-5
13 HEPATITIS 19 2 80 CV-5
14 IRIS 4 3 150 CV-5
15 LETTER 16 26 15000 5000
16 LYMPHOGRAPHY 18 4 148 CV-5
17 MOFN-3-7-10 10 2 300 1024
18 PIMA 8 2 768 CV-5
19 SHUTTLE-SMALL 9 7 3866 1934
20 VOTE 16 2 435 CV-5
21 SATIMAGE 36 6 4435 2000
22 SEGMENT 19 7 1540 770
23 SOYBEAN-LARGE 35 19 562 CV-5
24 VEHICLE 18 4 846 CV-5
25 WAVEFORM-21 21 3 300 4700

Table 7: 25 UCI data sets
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CLASSIFIER OMI-CR RO-CR
DATA SET MEAN ± STD MEDIAN MIN MAX

AUSTRALIAN 82.04 84.58 ± 0.77 84.62 84.63 83.60
BREAST 97.40 97.19 ± 0.26 97.23 97.39 96.95
CHESS 94.93 94.70 ± 0.76 94.75 95.22 93.90
CLEVE 81.76 81.42 ± 0.97 81.42 82.76 82.76
CORRAL 99.20 95.79 ± 2.55 96.17 96.80 95.20
CRX 84.07 84.21 ± 0.82 84.23 84.07 84.22

DIABETES 74.36 75.23 ± 0.52 75.26 75.53 75.01
FLARE 82.74 82.38 ± 0.50 82.44 81.80 81.98
GERMAN 73.20 72.83 ± 0.87 72.80 71.50 71.50
GLASS 70.70 71.74 ± 1.13 71.81 70.20 73.44
GLASS2 82.20 81.94 ± 0.73 82.14 82.14 82.20
HEART 81.85 82.83 ± 0.85 82.96 82.59 83.33

HEPATITIS 90.67 89.25 ± 1.69 89.00 90.33 90.33
IRIS 93.33 93.58 ± 0.55 93.33 92.67 93.33

LETTER 87.00 86.53 ± 0.60 86.54 86.70 86.50
LYMPHOGRAPHY 88.30 85.83 ± 1.72 85.92 87.12 81.27
MOFN-3-7-10 91.41 90.11 ± 1.01 90.14 89.55 89.75

PIMA 75.26 75.70 ± 0.49 75.65 75.78 76.56
SHUTTLE-SMALL 99.17 99.33 ± 0.13 99.33 99.22 99.17

VOTE 94.29 93.90 ± 0.69 93.84 93.36 94.06
SATIMAGE 88.25 87.47 ± 0.44 87.45 87.05 87.20
SEGMENT 94.42 94.63 ± 0.59 94.68 92.99 95.45

SOYBEAN-LARGE 91.11 92.29 ± 0.78 92.34 92.14 91.74
VEHICLE 67.38 68.18 ± 0.90 68.13 67.42 68.20

WAVEFORM-21 78.02 78.19 ± 0.51 78.21 78.77 77.79
AVERAGE 85.11 85.04 85.06 85.00 84.82

Table 8: Classification results in [%] with RO-CR compared to OMI-CR for the UCI data. Min
(Max) reports the CR on the test set using the structure which achieves the minimum
(maximum) performance over 1000 random orderings on the training data.
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Appendix B. TIMIT-4/6 Data

DATA SET MA+FE MA FE MA+FE MA FE
NUMBER OF CLASSES 4 4 4 6 6 6

CLASSIFIER AVERAGE
NB-ML 87.90 ± 0.18 88.69 ± 0.25 87.67 ± 0.25 81.82 ± 0.20 82.26 ± 0.28 81.93 ± 0.28 84.85
NB-CL 92.12 ± 0.15 92.81 ± 0.20 91.57 ± 0.22 85.41 ± 0.18 86.28 ± 0.26 85.12 ± 0.26 88.69

TAN-CMI-ML 89.83 ± 0.17 90.20 ± 0.23 90.36 ± 0.23 82.23 ± 0.20 83.20 ± 0.28 82.99 ± 0.28 86.18
TAN-CMI-CL 90.96 ± 0.16 91.39 ± 0.22 90.92 ± 0.22 83.06 ± 0.20 84.85 ± 0.27 84.05 ± 0.27 87.22

TAN-SUPERPARENT-ML 91.31 ± 0.15 91.84 ± 0.21 90.71 ± 0.23 84.12 ± 0.19 84.84 ± 0.27 83.51 ± 0.27 87.54
TAN-SUPERPARENT-CL 91.56 ± 0.15 92.29 ± 0.21 90.74 ± 0.22 84.36 ± 0.19 84.84 ± 0.27 83.83 ± 0.27 87.76
TAN-OMI-CR-ML 91.19 ± 0.16 92.15 ± 0.21 90.51 ± 0.23 84.07 ± 0.19 84.68 ± 0.27 83.71 ± 0.27 87.52
TAN-OMI-CR-CL 91.37 ± 0.15 92.28 ± 0.21 90.51 ± 0.23 84.00 ± 0.19 84.49 ± 0.27 83.75 ± 0.27 87.54

TAN-OMI-CRCL-ML 91.09 ± 0.16 91.99 ± 0.21 90.35 ± 0.23 84.05 ± 0.19 84.59 ± 0.27 83.87 ± 0.27 87.46
TAN-OMI-CRCL-CL 91.41 ± 0.15 92.55 ± 0.21 90.54 ± 0.23 83.88 ± 0.19 84.71 ± 0.27 84.08 ± 0.27 87.62

TAN-CR-ML 91.29 ± 0.16 91.81 ± 0.21 90.52 ± 0.23 84.35 ± 0.19 84.80 ± 0.27 83.93 ± 0.27 87.62
TAN-CR-CL 91.29 ± 0.16 92.04 ± 0.21 90.52 ± 0.23 83.69 ± 0.19 84.83 ± 0.27 83.91 ± 0.27 87.48

2-TREE-SUPERPARENT-ML 91.02 ± 0.16 91.84 ± 0.21 90.52 ± 0.23 84.01 ± 0.19 84.22 ± 0.27 83.42 ± 0.27 87.33
2-TREE-SUPERPARENT-CL 90.39 ± 0.16 91.51 ± 0.22 90.62 ± 0.23 83.17 ± 0.20 85.30 ± 0.26 83.96 ± 0.27 87.14
2-TREE-OMI-CR-ML 91.68 ± 0.15 92.28 ± 0.21 91.03 ± 0.22 84.52 ± 0.19 85.43 ± 0.26 84.31 ± 0.27 88.01
2-TREE-OMI-CR-CL 91.28 ± 0.16 91.79 ± 0.21 90.53 ± 0.23 83.46 ± 0.19 84.48 ± 0.27 83.42 ± 0.27 87.27
2-TREE-CR-ML 91.45 ± 0.15 92.22 ± 0.21 91.11 ± 0.22 84.53 ± 0.19 85.36 ± 0.26 84.22 ± 0.27 87.94
2-TREE-CR-CL 91.00 ± 0.16 91.41 ± 0.22 90.52 ± 0.23 82.79 ± 0.20 84.46 ± 0.27 83.19 ± 0.28 86.95

Table 9: Classification results in [%] for 4 and 6 classes with standard deviation. Best results use
bold font. ML and CL denote generative and discriminative parameter learning, respec-
tively. OMI-CR (order mutual information-CR) refers to the order-based greedy heuristic.
OMI-CRCL refers to OMI-CR using discriminative parameter learning during structure
learning. The generative structure learning algorithm is abbreviated as CMI and the greedy
discriminative structure learning is TAN-CR and 2-tree-CR.

CLASSIFIER 2-TREE-OMI-CR 2-TREE-RO-CR
DATA SET NUMBER OF CLASSES MEAN ± STD MEDIAN MIN MAX

MA+FE 4 91.68 91.50 ± 0.10 91.49 91.44 91.46
MA 4 92.28 92.23 ± 0.10 92.23 92.35 92.14
FE 4 91.03 90.95 ± 0.13 90.94 90.77 90.94

MA+FE 6 84.52 84.44 ± 0.13 84.45 84.64 84.49
MA 6 85.43 85.17 ± 0.17 85.18 85.06 85.30
FE 6 84.31 84.04 ± 0.16 84.05 83.96 84.11

AVERAGE 88.01 87.86 87.86 87.87 87.87

Table 10: Classification results in [%] with 2-tree-RO-CR compared to 2-tree-OMI-CR for 4 and 6
classes. Min (Max) reports the CR on the test set using the structure which achieves the
minimum (maximum) performance over 100 random orderings on the training data.
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Abstract
We consider the problem of high-dimensional variable selection: given n noisy observations of
a k-sparse vector β∗ ∈ Rp, estimate the subset of non-zero entries of β∗. A significant body of
work has studied behavior of !1-relaxations when applied to random measurement matrices that
are dense (e.g., Gaussian, Bernoulli). In this paper, we analyze sparsified measurement ensembles,
and consider the trade-off between measurement sparsity, as measured by the fraction γ of non-
zero entries, and the statistical efficiency, as measured by the minimal number of observations
n required for correct variable selection with probability converging to one. Our main result is
to prove that it is possible to let the fraction on non-zero entries γ → 0 at some rate, yielding
measurement matrices with a vanishing fraction of non-zeros per row, while retaining the same
statistical efficiency as dense ensembles. A variety of simulation results confirm the sharpness of
our theoretical predictions.
Keywords: variable selection, sparse random projections, high-dimensional statistics, Lasso, con-
sistency, !1-regularization

1. Introduction

Recent years have witnessed a flurry of research on the recovery of high-dimensional models satis-
fying some type of sparsity constraint. These types of sparse recovery problems arise in a variety
of domains, including variable selection in regression (Tibshirani, 1996), graphical model selec-
tion (Meinshausen and Buhlmann, 2006; Ravikumar et al., 2010), sparse principal components anal-
ysis (Johnstone and Lu, 2009; Paul, 2007), sparse approximation (Tropp, 2006), and compressed
sensing (Candes and Tao, 2005; Donoho, 2006). In all of these settings, the basic problem is to
recover information about a high-dimensional signal β∗ ∈Rp, based on a set of n observations. The
signal β∗ is assumed a priori to be sparse: either exactly k-sparse, or lying within some !q-ball with
q< 1.

A particular instance of high-dimensional sparse recovery involves the linear regression model
Y = Xβ∗+W , where Y ∈ Rn is the observation vector,W ∈ Rn is observation noise, and X ∈ Rn×p

is the measurement matrix. In this context, high-dimensional scaling means that the sample size n
can be of the same order of magnitude, or substantially smaller than the ambient dimension p. A
particularly simple version of this model, studied extensively within the compressed sensing com-

∗. Also in the Department of Statistics.
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munity (Candes and Tao, 2005; Donoho, 2006), is the noiseless version in whichW = 0, so that the
model reduces to the under-determined linear system Y = Xβ∗. Here the model is only interesting
when n& p, so that the linear system is not fully determined. Other work in machine learning and
statistics (e.g., Meinshausen and Buhlmann, 2006; Zhao and Yu, 2006; Wainwright, 2009; Zhou
et al., 2007) has focused on the noisy version of the model, say with W ∼ N(0,σ2Ip) for some
noise variance σ2. The problem of high-dimensional regression can be studied either for determin-
istic designs, for which the measurement matrix X is fixed, or for random designs in which X is
drawn randomly from some ensemble. Past work on random designs has focused on the behavior
of various !1-relaxations when applied to measurement matrices drawn from the standard Gaussian
ensemble (e.g., Donoho, 2006; Candes and Tao, 2005), or more general random ensembles satis-
fying mutual incoherence conditions (Meinshausen and Buhlmann, 2006; Wainwright, 2009). A
measurement matrix X drawn from such a standard random ensemble is dense, in that each row
of X has p non-zero entries with high probability. In various applications of the sparse regression
problem, the measurement matrix is itself a design variable, and dense measurement matrices are
undesirable. For instance, in applications such as sensor networks (Wang et al., 2007), digital imag-
ing (Wakin et al., 2006) or database management (Achlioptas, 2001; Li et al., 2006), it would be
preferable to take measurements of the signal β∗ based on sparse inner products, using measure-
ment matrices X in which each row has a relatively small fraction of non-zero entries. Furthermore,
sparse measurement matrices require significantly less storage space, and have the potential for re-
duced algorithmic complexity for signal recovery, since many algorithms for linear programming
and conic programming more generally (Boyd and Vandenberghe, 2004), can be accelerated by ex-
ploiting problem structure.

In the noiseless instance of the regression problem (with n& p), the standard approach to esti-
mating β∗ is by solving the basis pursuit linear program (Chen et al., 1998). Recent work by Bara-
niuk et al. (2007) has established connections between the success of this method and the behavior
of random projections, as characterized by the Johnson-Lindenstrauss lemma (Johnson and Linden-
strauss, 1984; Dasgupta and Gupta, 2003). Random projections and their applications have been
studied extensively in machine learning and related fields, with applications to dimensionality re-
duction (Dasgupta, 1999; Li et al., 2007), data stream processing (Alon et al., 1996; Indyk, 2006),
databases (Achlioptas, 2001; Li et al., 2006) and compressed sensing (Wang et al., 2007; Baraniuk
et al., 2007). One standard proof of the Johnson-Lindenstrauss lemma is based on random Gaus-
sian matrices. Achlioptas (2001) was the first to apply sparse random projections, with each entry
distributed on {−1,0,1} with probabilities [ 16 ,

2
3 ,
1
6 ], to the Johnson-Lindenstrauss problem setting,

and to provide the same guarantees as dense projections. Unfortunately, his proof technique does
not allow the non-zero mass to be decreased much beyond 1

3 . Other recent work (Li et al., 2006)
provides theoretical and experimental justification for scaling the non-zero mass aggressively to
zero. Stemming from different sources than the random projection literature, another line of recent
work (e.g., Cormode and Muthukrishnan, 2005; Gilbert et al., 2006; Sarvotham et al., 2006; Xu and
Hassibi, 2007) has studied compressed sensing methods based on sparse measurement matrices,
using constructions motivated by group testing and coding theory.

Whereas this past work focuses on the noiseless recovery problem, our primary interest in this
paper is the noisy linear observation model which, as we show, exhibits qualitatively different be-
havior than the noiseless case. At a high level, our primary goal in this paper is not to design sparse
measurement matrices, but rather to gain a theoretical understanding of the trade-off between the
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degree of measurement sparsity, and statistical efficiency. We assess measurement sparsity in terms
of the fraction γ of non-zero entries in any particular row of the measurement matrix, and we define
statistical efficiency in terms of the minimal number of measurements n required to recover the cor-
rect support with probability converging to one. Our interest can be viewed in terms of experimental
design: more precisely we ask, what degree of measurement sparsity can be permitted without in-
creasing the number of observations required for correct variable selection or subset recovery?

To bring sharp focus to the issue, we analyze this question for exact subset recovery using !1-
constrained quadratic programming, also known as the Lasso in the statistics literature (Chen et al.,
1998; Tibshirani, 1996), where past work on dense Gaussian measurement ensembles (Wainwright,
2009) provides a precise characterization of its success/failure. We characterize the density of our
measurement ensembles with a positive parameter γ ∈ (0,1], corresponding to the fraction of non-
zero entries per row. We first show that for all fixed γ ∈ (0,1], the statistical efficiency of the
Lasso remains the same as with dense measurement matrices. We then prove that it is possible
to let γ→ 0 at some rate, as a function of the sample size n, signal length p and signal sparsity
k, yielding measurement matrices with a vanishing fraction of non-zeroes per row while requiring
exactly the same number of observations as dense measurement ensembles. In general, in contrast
to the noiseless setting (Xu and Hassibi, 2007), our theory still requires that the average number
of non-zeroes per column of the measurement matrix (i.e., γn) tend to infinity, however, under the
loss function considered here (exact signed support recovery), we prove that no method can succeed
with probability one if this condition does not hold.

The remainder of this paper is organized as follows. In Section 2, we set up the problem more
precisely, state our main result, and discuss some of its implications. In Section 3, we provide a high-
level outline of the proof with more technical aspects of the argument deferred to the appendices.
We provide some illustrative simulations in Section 4 that illustrate the sharpness of our theoretical
predictions. Work in this paper was presented in part at the International Symposium on Information
Theory in Toronto, Canada (July, 2008). We note that concurrent and complementary work (Wang
et al., 2010) analyzes the information-theoretic limitations of sparse measurement matrices for exact
support recovery.

1.1 Notation

Throughout this paper, we use the following standard asymptotic notation: f (n)=O(g(n)) if f (n)≤
Cg(n) for some constant C < +∞; f (n) = Ω(g(n)) if f (n) ≥ cg(n) for some constant c > 0; and
f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n)). In addition, we use log(x) to denote the
natural logarithm of x.

2. Problem Set-up and Main Result

We begin by setting up the problem, stating our main result, and discussing some of its conse-
quences.

2.1 Observation Model

Define the support set of a signal β ∈ Rp

S(β) := {i ∈ {1, . . . , p} | βi += 0},
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and consider the class of k-sparse signals of length p:

C (p,k,β∗min) :=
{
β ∈ R

p | |S(β)|= k ≤
p
2
,min
i∈S

|βi|≥ β∗min
}
. (1)

Let β∗ ∈ Rp be a fixed but unknown vector in C (p,k,β∗min), and suppose that we make a set
{Y1, . . . ,Yn} of n independent and identically distributed (i.i.d.) observations of the unknown vector
β∗, each of the form

Yi := xTi β∗+Wi, (2)

whereWi ∼ N (0,1) is observation noise, and xi ∈ Rp is a measurement vector. Note that there is
no loss in generality in assuming that the noise variance is one, since the observation model with
signal class C (p,k,β∗min) andWi ∼N (0,1) is equivalent to the observation model with signal class
C (p,k, β

∗
min
σ ) with noise varianceWi ∼N (0,σ2).

It is convenient to use Y =
[
Y1 Y2 . . . Yn

]T to denote the n-vector of measurements, with
similar notation for the noise vectorW ∈ Rn, and

X =





xT1
xT2
...
xTn




=
[
X1 X2 . . . Xp

]
.

to denote the n× p measurement matrix. With this notation, the observation model can be written
compactly as Y = Xβ∗+W .

2.2 Sign Consistency and Statistical Efficiency

Given some estimate β̂, its error relative to the true β∗ can be assessed in various ways, depending
on the underlying application of interest. For applications in compressed sensing, various types of
!r norms (i.e., E‖β̂−β∗‖rr) are well-motivated, whereas for statistical prediction, it is most natural
to study a predictive loss (e.g., ‖X(β̂−β∗)‖22/n). For reasons of scientific interpretation or for model
selection purposes, the object of primary interest is the support S of β∗. In this paper, we consider
a slightly stronger notion of model selection: in particular, our goal is to recover the signed support
of the unknown β∗, as defined by the p-vector S+(β∗) with elements

[S+(β∗)]i :=

{
sign(β∗i ) if β∗i += 0
0 otherwise.

Given some estimate β̂, we study the probability P[S+(β̂) = S+(β∗)] that it correctly specifies the
signed support. In particular, a sequence of estimates β̂n,p,k is sign consistent if

P[S+(β̂n,p,k) = S+(β∗)]→ 1, as n, p,k→ ∞. (3)

The estimator that we analyze is !1-constrained quadratic programming (QP), also known as the
Lasso (Tibshirani, 1996) in the statistics literature. The Lasso generates an estimate β̂ by solving
the regularized QP

β̂ = arg min
β∈Rp

{
1
2n

‖Y −Xβ‖22+ρn‖β‖1
}
, (4)
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where ρn > 0 is a user-defined regularization parameter. A large body of past work has focused on
the model selection behavior of the Lasso for both deterministic and random measurement matrices
(e.g., Tropp, 2006; Zhao and Yu, 2006; Wainwright, 2009).

Tropp (2006) demonstrates that under some technical conditions the Lasso produces an estimate
with support contained in the true support set, while Zhao and Yu (2006) prove the sign consistency
of the Lasso for certain sequences (n,kn, pn) and measurement ensemble covariances. The main
contribution of Wainwright (2009) is to identify the smallest n required for sign consistency of the
Lasso when applied to measurement matrices X drawn randomly from Gaussian ensembles, with the
standard Gaussian ensemble (i.e., each element Xi j ∼N (0,1) i.i.d.) being one special case. Define
the function ncrit(p,k) := 2k log(p− k). The paper (Wainwright, 2009) shows the Lasso undergoes
a phase transition as a function of the control parameter

θ(n, p,k) :=
n

ncrit(p,k)
. (5)

In more detail, for the special case of the standard Gaussian ensemble, for any sequence (n, p,k)
such that θ(n, p,k) > 1+ ε for some ε > 0, the Lasso (with an appropriate choice of regulariza-
tion parameter ρn) is sign consistent with probability converging to one. In contrast, it fails to be
sign consistent with high probability, regardless of the choice of ρn, for any sequences such that
θ(n, p,k)< 1− ε.

The main contribution of this paper is to show that sparse measurement ensembles are statisti-
cally efficient: the same sharp threshold (5) holds for γ-sparsified measurement ensembles, including
a subset for which γ→ 0, so that each row of the measurement matrix has a vanishing fraction of
non-zero entries.

2.3 Statement of Main Result

A measurement matrix X ∈ Rn×p drawn randomly from a Gaussian ensemble is dense, in that each
row has Θ(p) non-zero entries. The main focus of this paper is the observation model (2), using
measurement ensembles that are designed to be sparse. To formalize the notion of sparsity, we let
γ ∈ (0,1] represent a measurement sparsity parameter, corresponding to the (average) fraction of
non-zero entries per row. Our analysis allows the sparsity parameter γ(n, p,k) to be a function of
the triple (n, p,k), but we typically suppress this explicit dependence so as to simplify notation. For
a given choice of γ, we consider measurement matrices X with i.i.d. entries of the form

Xi j
d
=

{
Z ∼N (0,1) with probability γ
0 with probability 1− γ.

(6)

By construction, the expected number of non-zero entries in each row of X is γp. In fact, the analysis
of this paper establishes exactly the same control parameter threshold (5) for γ-sparsified measure-
ment ensembles, for any fixed γ ∈ (0,1), as the completely dense case (γ = 1). In particular, we
state the following result on conditions under which the Lasso applied to sparsified ensembles has
the same sample complexity as when applied to the dense (standard Gaussian) ensemble:

Theorem 1 Suppose that the measurement matrix X ∈ Rn×p is drawn with i.i.d. entries according
to the γ-sparsified distribution (6). Then for any ε> 0, if the sample size satisfies

n > (2+ ε)k log(p− k), (7)
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then the Lasso is sign consistent as (n, p,k)→+∞ so long as

nρ2nγ
log(p− k)

→ ∞, (8)

ρn
β∗min

max
{
1,
√
k
γ

√
log log(p− k)
log(p− k)

}
→ 0, (9)

γ3min
{
k,

log(p− k)
log log(p− k)

}
→ ∞. (10)

Remark 2 (a) Note that the sample complexity (7) is identical to the Lasso threshold proven in past
work (Wainwright, 2009). To gain intuition on the remaining conditions, it is helpful to consider
various special cases of the sparsity parameter γ. If γ is a constant fixed to some value in (0,1],
then it plays no role in the scaling, and condition (10) is always satisfied. Conditions (8) and (9)
are slightly weaker than the corresponding condition from previous work, in that they require that
ρn be slightly larger, and hence that β∗min must approach zero more slowly than the requirement of
this previous work. Depending on the exact behavior of β∗min, choosing ρ2n to decay slightly more
slowly than log p/n is sufficient to guarantee exact recovery with n=Θ(k log(p−k)), meaning that
we recover exactly the same statistical efficiency as the dense case (γ = 1) for all constant mea-
surement sparsities γ ∈ (0,1). At least initially, one might think that reducing γ should increase the
required number of observations, since it effectively reduces the signal-to-noise ratio by a factor of
γ. However, under high-dimensional scaling (p→ +∞), a major effect limiting the Lasso perfor-
mance is the number (p− k) of irrelevant factors, and under the scaling considered here, this effect
is dominant.

(b) However, Theorem 1 also allows for general scalings of the measurement sparsity γ along
with the triplet (n, p,k). More concretely, let us suppose for simplicity that β∗min = Θ(1). Then over
a range of signal sparsities—say k = αp, k = Θ(

√p) or k = Θ(log(p− k)), corresponding respec-
tively to linear sparsity, polynomial sparsity, and exponential sparsity—we can choose a decaying
measurement sparsity, for instance

γ =
[ log log(p− k)
log(p− k)

] 1
6 → 0 (11)

along with the regularization parameter ρ2n =
log(p−k)

n

√
log(p−k)
log log(p−k) while maintaining the same sam-

ple complexity (required number of observations for support recovery) as the Lasso with dense mea-
surement matrices.

(c) Of course, the conditions of Theorem 1 do not allow the measurement sparsity γ to approach
zero arbitrarily quickly. Rather, for any γ guaranteeing exact recovery, condition (8) implies that the
average number of non-zero entries per column of X (namely, γn) must tend to infinity. (Indeed, with
n=Ω(k log(p− k)), our specific choice (11) certainly satisfies this constraint.) A natural question
is whether exact recovery is possible using measurement matrices, either randomly drawn or de-
terministically designed, with the average number of non-zeros per column (namely γn) remaining
bounded. In fact, under the criterion of exactly recovering the signed support (3), as shown by the
following result, if β∗min = O(1), then no method can succeed with probability converging to one
unless γn tends to infinity.
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Proposition 1 If γn[β∗min]2 does not tend to infinity, then no method can recover the signed support
with probability one.

Proof We construct a sub-problem that must be solvable by any method capable of performing
exact signed support recovery. Suppose that β∗1 = β∗min += 0 and that the column X1 has n1 non-zero
entries, say without loss of generality indices i= 1, . . . ,n1. Now consider the problem of recovering
the sign of β∗1. Let us extract the observations i= 1, . . . ,n1 that explicitly involve β∗1, writing

Yi = Xi1β∗1+ ∑
j∈T (i)

Xi jβ∗j +Wi, i= 1, . . . ,n1 (12)

where T (i) denotes the set of indices in row i for which Xi j is non-zero, excluding index 1. Even
assuming that {β∗j , j ∈ T (i)} were perfectly known, this observation model (12) is at best equiv-
alent to observing β∗1 contaminated by constant variance additive Gaussian noise, and our task is
to distinguish whether β∗1 = β∗min or β∗1 = −β∗min. The average Y = 1

n1 ∑
n1
i=1[Yi−∑ j∈T (i)Xi jβ∗j ] is a

sufficient statistic, following the distribution Y ∼ N (β∗min,
1
n1 ). Unless the effective signal-to-noise

ratio, which is of the order n1[β∗min]2, goes to infinity, there will always be a constant probability of
error in distinguishing β∗1 = β∗min from β∗1 = −β∗min. Under the γ-sparsified random ensemble, we
have n1 ≤ (1+o(1))γn with high probability, so that no method can succeed unless γn[β∗min]2 goes
to infinity, as claimed.

Note that the conditions in Theorem 1 imply that nγ[β∗min]2 → +∞. In particular, condition (9) im-
plies that ρ2n = o([β∗min]2), and condition (8) implies that nγρ2n → +∞, which verifies the condition
of Proposition 1.

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We begin with a high-level outline of the proof;
as with previous work on dense Gaussian ensembles (Wainwright, 2009), the key is the notion of
a primal-dual witness for exact signed support recovery. The proof itself involves a number of
additional steps not needed in this past work, in order to gain good control on sparse matrices as
opposed to generic Gaussian matrices (see Appendix D). The proof is divided into a sequence of
separate lemmas, with some of the more technical results deferred to the appendices.

3.1 High-level Overview of Proof

For the purposes of our proof, it is convenient to consider matrices X ∈ Rn×p with i.i.d. entries of
the form

Xi j
d
=

{
Z ∼N (0, 1γ ) with probability γ
0 with probability 1− γ.

So as to obtain an equivalent observation model, we also reset the variance of each noise termWi to
be 1γ . Finally, we can assume without loss of generality that S+(β

∗
S) ="1 ∈ Rk.

Define the sample covariance matrix

Σ̂ :=
1
n
XTX =

1
n

n

∑
i=1

xixTi .
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Of particular importance to our analysis is the k× k sub-matrix Σ̂SS. For future reference, we state
the following claim, proved in Appendix D:

Lemma 1 Under the conditions of Theorem 1, the submatrix Σ̂SS is invertible with probability
greater than 1−O( 1

(p−k)2 ).

The foundation of our proof is the following lemma: it provides sufficient conditions for the
Lasso (4) to recover the signed support set.

Lemma 2 (Primal-dual conditions for support recovery) Suppose that Σ̂SS . 0, and that we can
find a primal vector β̂ ∈ Rp, and a subgradient vector ẑ ∈ Rp that satisfy the zero-subgradient
condition

Σ̂
(
β̂−β∗

)
−
1
n
XTW +ρnẑ = 0, (13)

and the signed-support-recovery conditions

ẑi = sign(β∗i ) for all i ∈ S, (14)
β̂ j = 0 for all j ∈ Sc, (15)
|ẑ j| < 1 for all j ∈ Sc, and (16)

sign(β̂i) = sign(β∗i ) for all i ∈ S. (17)

Then β̂ is the unique optimal solution to the Lasso (4), and recovers the correct signed support.

See Appendix B.1 for the proof of this claim.
On the basis of Lemmas 1 and 2, it suffices to show that under the specified scaling of (n, p,k),

there exists a primal-dual pair (β̂, ẑ) satisfying the conditions of Lemma 2. We establish the exis-
tence of such a pair with the following constructive procedure:

(a) We begin by setting β̂Sc = 0, and ẑS = sign(β∗S).

(b) Next we determine β̂S by solving the linear system

Σ̂SS
(
β̂S−β∗S

)
−
1
n
XTS W +ρn sign(β∗S) = 0.

(c) Finally, we determine ẑSc by solving the linear system:

−ρnẑSc = Σ̂ScS
(
β̂S−β∗S

)
−
1
n
XTScW.

By construction, this procedure satisfies the zero sub-gradient condition (13), as well as auxiliary
conditions (14) and (15); it remains to verify conditions (16) and (17).

In order to complete these final two steps, it is helpful to define for i∈ S and j ∈ Sc the following
random variables:

Va
j := XjT

[1
n
XS(Σ̂SS)−1"1

]
ρn, (18)

Vb
j := XjT

[
In×n−

1
n
XS(Σ̂SS)−1XTS

]W
n
, and (19)

Ui := eTi Σ̂−1SS
[1
n
XTS W −ρn"1

]
, (20)
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where ei ∈ Rk is the unit vector with one in position i, and"1 ∈ Rk is the all-ones vector.
A little bit of algebra (see Appendix B.2 for details) shows that ρnẑ j = Va

j +Vb
j , and that Ui =

β̂i−β∗i . Consequently, if we define the events

E(V ) :=
{
max
j∈Sc

|Va
j +Vb

j |< ρn
}
, (21)

E(U) :=
{
max
i∈S

|Ui|≤ β∗min
}
, (22)

where β∗min was defined previously as the minimum value of |β∗| on its support, then in order to
establish that the Lasso succeeds in recovering the exact signed support, it suffices to show that
P[E(V )∩E(U)]→ 1,

We decompose the proof of this final claim in the following three lemmas. As in the statement
of Theorem 1, suppose that n> (2+ ε)k log(p− k), for some fixed ε> 0.

Lemma 3 (Control of Va) Under the conditions of Theorem 1, there exists a fixed positive value δ
(dependent on ε) such that

P[max
j∈Sc

|Va
j |≥ (1−δ)ρn] → 0.

Lemma 4 (Control of Vb) Under the conditions of Theorem 1, there exists a fixed positive value δ
(dependent on ε)

P[max
j∈Sc

|Vb
j |≥ δρn] → 0.

Lemma 5 (Control ofU) Under the conditions of Theorem 1, we have

P[(E(U))c] = P[max
i∈S

|Ui|> β∗min] → 0.

3.2 Proof of Lemma 3

We assume throughout that Σ̂SS is invertible, an event which occurs with probability 1−o(1) under
the stated assumptions (see Lemma 1). If we define the n-dimensional vector

h := XS(Σ̂SS)−1"1, (23)

then the variable Va
j can be written compactly as

Va
j

ρn
= XTj h =

n

∑
!=1

h!X! j.

Note that each term X! j in this sum is distributed as a mixture variable, taking the value 0 with
probability 1− γ, and distributed as N (0, 1γ ) variable with probability γ. For ! = 1, . . . ,n and each
j, define the random vector H j, with entries

H j
!

d
=

{
h! with probability γ
0 with probability 1− γ.
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For each index != 1, . . . ,n, let Z! j ∼N (0, 1γ ). With these definitions, by construction, we have that

Va
j

ρn
d
=

n

∑
!=1

H j
! Z! j.

To gain some intuition for the behavior of this sum, note that the variables {Z! j,! = 1, . . . ,n} are
independent of the vector H j. (In particular, H j is a function of XS, whereas Z! j is a function of X! j,
with j /∈ S.) Consequently, we may condition onH j without affecting Z, and since Z is Gaussian, we
have (V

a
j
ρn

| H j) ∼ N (0, ‖H
j‖22
γ ). Therefore, if we can obtain good control on the norm ‖H j‖2, then

we can use standard Gaussian tail bounds (see Appendix A) to control the maximummax j∈Sc V a
j /ρn.

The following lemma is proved in Appendix C:
Lemma 6 Under condition (10), then for any fixed δ> 0, we have

P
[
‖H j ‖22 ≤

γk(1+δ)
n

]
≥ 1−O

[
exp(−min{2log(p− k),

n
2k

})
]
.

The primary implication of the above bound is that eachVa
j /ρn variable is (essentially) no larger

than a N (0, kn) variable. We can then use standard techniques for bounding the tails of Gaussian
variables to obtain good control over the random variable max j∈Sc |Va

j |/ρn. In particular, by the
union bound, we have

P[max
j∈Sc

|Va
j |≥ (1−δ)ρn] ≤ (p− k) P[

n

∑
!=1

H j
! Z! j ≥ (1−δ)].

For any δ> 0, define the event T j(δ) := {‖H j ‖22 ≤
kγ(1+δ)

n }. With this definition, we have

P[max
j∈Sc

|Va
j |≥ (1−δ)ρn] ≤ (p− k)

{
P[

n

∑
!=1

H j
! Z! j ≥ (1−δ) | T j(δ)]+P[(T j(δ)c)]

}

≤ (p− k) {2exp(−
n(1−δ)2

2k(1+δ)
)+ c1 exp

(
−min(2log(p− k),

n
2k

)
)
},

where the second inequality uses a standard Gaussian tail bound (see Appendix A), and Lemma 6.
Finally, let us assume the condition n> (2+ ε)k log(p− k) for some fixed ε> 0. Then there exists
a numerical constant c1 such that

P[max
j∈Sc

|Va
j |≥ (1−δ)ρn] ≤ (p− k)

{
2exp

(
−
n(1−δ)2

2k(1+δ)

)
+ c1 exp(−min(2log(p− k),

n
2k

))
}

= (p− k)
{
2exp

(
−
n(1−δ)2

2k(1+δ)

)
+ c1 exp(−2log(p− k))

}

≤ (p− k)
{
2exp

(
− (2+ ε) log(p− k)

(1−δ)2

2(1+δ)

)

+ c1 exp(−2log(p− k))
}
.

Note that the above inequality holds for all values of ε. Since ε > 0 is fixed, we can choose a
fixed value of δ such that (1−δ)2

1+δ > 2
2+ε/2 . With this choice, we then have

P[max
j∈Sc

|Va
j |≥ (1−δ)ρn] ≤ (p− k)

{
2exp

(
−

(2+ ε)
(2+ ε/2)

log(p− k)
)
+ c1 exp(−2log(p− k))

}

≤ (p− k)
{
(2+ c1)exp

(
−

(2+ ε)
(2+ ε/2)

log(p− k)
)}

,
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thereby establishing that P[max j∈Sc |Va
j |≥ (1−δ)ρn]→ 0, as claimed.

3.3 Proof of Lemma 4

Defining the orthogonal projection matrix Π⊥
S := In×n−XS(XTS XS)−1XTS , we then have

P[max
j∈Sc

|Vb
j |≥ δρn] = P[max

j∈Sc

∣∣XTj Π⊥
S (
W
n
)
∣∣≥ δρn]

≤ (p− k) P
[∣∣XTj Π⊥

S (
W
n
)
∣∣≥ δρn

]
. (24)

Now since Π⊥
S is an orthogonal projection matrix, and the column vector Xj, noise vector W and

randomness in Π⊥
S are all independent, we have the bound

P
[∣∣XTj Π⊥

S (W/n)
∣∣≥ δρn

]
≤ P

[∣∣XTj (W/n)
∣∣≥ δρn

]
, (25)

For each ! = 1, . . . ,n and j = 1, . . . , p, let B! j be a Bernoulli variable with parameter γ, and let
Z! j ∼ N (0, 1γ ). In terms of these random variables, we have the representation X! j = B! jZ! j. Note
moreover that the the sum ∑n

!=1B! j is a binomial random variable, and define the event

T :=
{1
n
∣∣
n

∑
!=1

B! j− γn
∣∣≤

1
2
√
k
}
.

From the Hoeffding bound (see Lemma 7), we have P[T c]≤ 2exp(− n
2k ). Using the representation

X! j = B! jZ! j and conditioning on T , we obtain

P
[∣∣XTj W/n

∣∣≥ δρn
]

≤ P
[∣∣1
n

n

∑
!=1

B! jZ! jW!

∣∣≥ δρn | T
]
+P[T c]

≤ P
[∣∣1
n

n(γ+ 1
2
√
k
)

∑
!=1

Z! jW!

∣∣≥ δρn
]
+2exp(−

n
2k

),

where we have assumed without loss of generality that the first n(γ+ 1
2
√
k ) variables in the collection

{B! j}n!=1 are non-zero.

Conditioned on W , the random variable Mj := 1
n ∑

n(γ+ 1
2
√
k
)

!=1 Z! jW! is zero-mean Gaussian with

variance ν(W ;γ) := 1
n2γ ∑

n(γ+ 1
2
√
k
)

!=1 W 2
! . For some δ1 > 0, define the event

T2(δ1) :=
{
ν(W ;γ)≤ (1+δ1)

1
nγ2

(γ+
1
2
√
k
)

}
.

In order to bound the probability of this event, we begin by observing that sinceW! ∼ N(0,1/γ), the
variable n2γ2ν(W ;γ) is chi-squared with d = n(γ+ 1

2
√
k ) degrees of freedom. Consequently, using

χ2-tail bounds (see Appendix A), we have

P[(T2(δ1))
c] ≤ exp

(
−n(γ+

1
2
√
k
)
3δ21
16
)
.
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Now, by conditioning on T2(δ1) and its complement and using tail bounds on Gaussian variates (see
Appendix A), we obtain

P
[∣∣1
n

n(γ+ 1
2
√
k )

∑
!=1

Z! jW!

∣∣≥ δρn
]

≤ P
[∣∣1
n

n(γ+ 1
2
√
k )

∑
!=1

Z! jW!

∣∣≥ δρn | T2(δ1)
]
+P[(T2(δ1))

c]

≤ 2 exp
(
−

nγ2(δ2ρ2n)
2(1+δ1)(γ+ 1

2
√
k )

)
+

exp
(
−n(γ+

1
2
√
k
)
3δ21
16
)
. (26)

Finally, putting together the pieces from Equations (26), (25), and (24) we obtain that
P[max j∈Sc |Vb

j |≥ δρn] is upper bounded by

(p− k)
{
2exp(−

n
2k

)+2 exp
(
−

nγ2(δ2ρ2n)
2(1+δ1)(γ+ 1

2
√
k )

)
+ exp

(
−n(γ+

1
2
√
k
)
3δ21
16
)}

. (27)

The first term in Equation (27) goes to zero since n > (2+ ε)k log(p− k). Condition (10) implies
that γ

√
k→ ∞. In particular, this means that eventually 1 ≤ 2γ

√
k. Once this occurs, we have the

inequality γ2

γ+ 1
2
√
k
> γ

2 , and hence

(p− k)exp
(
−

nγ2(δ2ρ2n)
2(1+δ1)(γ+ 1

2
√
k )

)
≤ (p− k)exp

(
−

nγδ2ρ2n
4(1+δ1)

)

= (p− k)exp
(
− log(p− k)

nγδ2ρ2n
4(1+δ1) log(p− k)

)
.

Recalling that the terms δ and δ1 are fixed constants, condition (10) implies that eventually

(p− k)exp
(
− log(p− k)

nγδ2ρ2n
4(1+δ1) log(p− k)

)
≤ (p− k)exp

(
−3log(p− k)

)
,

showing that the middle term of Equation (27) goes to zero. Finally, using the condition n ≥ (2+
ε)k log(p− k), we obtain

(p− k)exp
(
−n(γ+

1
2
√
k
)
3δ21
16
)

≤ (p− k)exp
(
−n(

1
2
√
k
)
3δ21
16
)

≤ (p− k)exp
(
−
[(2+ ε)

√
k

2
]
log(p− k)

3δ21
16
)
.

This quantity tends to zero, because ε and δ1 are fixed constants and
√
k tends to infinity. We

conclude that the last term in Equation (27) goes to zero, thereby concluding the proof.

3.4 Proof of Lemma 5

We first observe that conditioned on XS, eachUi is Gaussian with mean and variance

mi := E[Ui | XS] = eTi
(1
n
XTS XS

)−1[−ρn"1
]
, and

ψi := var[Ui | XS] =
1
γn
eTi
(1
n
XTS XS

)−1ei,

2372



HIGH-DIMENSIONAL VARIABLE SELECTION

respectively. Let us define the function

T (γ,k, p,θ, t) :=
1
γ

√

max
{ log(t)
θk log(p− k)

,
log[θ log(p− k)]
θ log(p− k)

}
, (28)

as well as the the upper bounds

m∗ := ρn(1+C
√
kT (γ,k, p,1,k)), and ψ∗ :=

1
γn

(1+CT (γ,k, p,1,k)).

Now consider the event

T (m∗,ψ∗) := {max
i∈S

|mi|≤ m∗ and max
i∈S

|ψi|≤ ψ∗}.

Conditioning on T and its complement, we have

P[(E(U))c] = P[
1

β∗min
max
i∈S

Ui|> 1]

≤ P[
1

β∗min
max
i∈S

|Ui|> 1 | T (m∗,ψ∗)]+P[(T (m∗,ψ∗))c]. (29)

In order to upper bound P[(T (m∗,ψ∗))c], we first upper bound the terms P(|mi|> m∗) and
P(|ψi|> ψ∗), and then apply the union bound. Beginning with the mean, we have

∣∣mi
∣∣ := ρn

∣∣eTi
(1
n
XTS XS

)−1"1
∣∣

= ρn
∣∣eTi
[(1
n
XTS XS

)−1− Ik,k
]
"1+ eTi Ik,k"1

∣∣

≤ ρn
∣∣eTi
[(1
n
XTS XS

)−1− Ik,k
}
"1
∣∣+ρn.

Our next step is to upper bound the operator norm of the matrix within curly braces, which we do
by applying Lemma 10 from Section D, with the parameters θ = 1 and t = k. We conclude there
is an universal constantC such that |||( 1nX

T
S XS)−1− Ik,k|||2 ≤CT (γ,k, p,1,k) with probability at least

1−O(k−2). Consequently, if we define m∗ := ρn
[√

kCT (γ,k, p,1,k)
]
+ρn, then we have the bound

P
[
|mi|≥ m∗] = O(1/k2).

A similar argument can be used to bound each term ψi, thereby obtaining

P[
∣∣ψi
∣∣> ψ∗] = O(k−2).

Since there are k versions of each of mi and ψi, the union bound implies that

P[(T (m∗,ψ∗))c]≤ 2kO(k−2) = O(k−1).
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We now turn to the first term of Equation (29). Letting Yi ∼N (0,ψi), and using T as shorthand
for the event T (m∗,ψ∗), we have

P[
1

β∗min
max
i∈S

|Ui|> 1 | T ] = E
{
P
[
max
i∈S

|Ui|> β∗min | XS,T
]}

≤ E
{
P
[
max
i∈S

(
|mi|+ |Yi|

)
> β∗min | XS,T

]}

≤ E
{
P
[
m∗+max

i∈S
|Yi|> β∗min | XS,T

]}

= E
{
P
[ 1
β∗min

max
i∈S

|Yi|> 1−
m∗

β∗min
| XS,T

]}
.

For sufficiently large p and k, we have

T (γ,k, p,1,k) =
1
γ

√

max
{ log(k)
k log(p− k)

,
log[log(p− k)]
log(p− k)

}

≤
1
γ

√
{ log[log(p− k)]

log(p− k)
}
,

using the facts that log(k)k → 0 and log[log(p− k)]→ ∞, so that the maximum is dominated by the
second term. As a result, applying condition (9) yields that m∗

β∗min
→ 0. Letting Y ∗ ∼ N (0,ψ∗), we

have

E
{
P
[ 1
β∗min

max
i∈S

|Yi|>
1
2

| XS,T
]}

≤ E
{
k P[|Y ∗|≥

β∗min
2

| XS,T ]
}

≤ 2k exp
(
−

[β∗min]
2

8ψ∗
)
,

where the last inequality follows from Gaussian tail bounds (see Appendix A). It remains to verify
that this final term converges to zero. Taking logarithms and ignoring constant terms, we have

log(k)(1−
[β∗min]

2

log(k) 8ψ∗ ) = log(k)
(
1−

[β∗min]
2γn

8log(k) (1+CT (γ,k, p,1,k))
)
.

Our goal is to show that that this quantity diverges to −∞. Condition (10) implies that

T (γ,k, p,1,k) =
1
γ

√

max
{ log(k)
k log(p− k)

,
log log(p− k)
log(p− k)

}
→ 0.

Hence, it suffices to show that logk
(
1− [β∗min]

2γn
16logk

)
diverges to −∞. We have

log(k)
(
1−

[β∗min]
2γn

16log(k)
)

= log(k) (1−
[β∗min]

2

ρ2n

γnρ2n
16log(k)

)

= log(k) (1−
[β∗min]

2

ρ2n

γnρ2n
16log(p− k)

log(p− k)
log(k)

).

Condition (9) implies that [β∗min]
2

ρ2n
→ ∞, whereas condition (8) ensures that γnρ2n

log(p−k) → ∞. The signal
class C (p,k,β∗min), as previously defined (1), ensures that k≤

p
2 , so that the third term is greater than

one. Putting together the pieces, we conclude that P[E(U)c] tends to zero.
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4. Experimental Results

In this section, we provide some experimental results to illustrate the claims of Theorem 1. We
consider two different sparsity regimes, namely linear sparsity (k = αp) and polynomial sparsity
(k =√p), and we show simulations in which the fraction γ of non-zero entries in each row of the
measurement matrix X converges to zero. For all experiments, the additive noise standard deviation
is set to σ = 0.25 and we fix the vector β∗ by setting the first k entries are set to one, and the
remaining entries to zero. There is no loss of generality in fixing the support in this way, since the
ensemble of models is invariant under permutations.

Although it is possible to solve the Lasso using a variety of methods, our theory (in particular,
Lemma 2) shows that it suffices to simulate the random variables {Va

j ,Vb
j , j ∈ Sc} and {Ui, i ∈ S},

and then check the equivalent conditions (21) and (22). (These necessary and sufficient conditions
give the same result for support recovery as solving the Lasso; however, they are much faster to
simulate.) In all cases, we plot the success probability P[S(β̂) = S(β∗)] versus the control parameter
θ(n, p,k) = n

2k log(p−k) . Note that Theorem 1 predicts that the Lasso should transition from failure to
success at θ≈ 1.

In Figure 1, the empirical success rate of the Lasso is plotted against the control parameter
θ(n, p,k) = n

2k log(p−k) . Each panel shows three curves, corresponding to the problem sizes p ∈
{512,1024,2048}, and each point on the curve represents the average of 100 trials. For all trials
shown, we set γ= 0.5 log(p−k)√

p−k , which converges to zero at a rate slightly faster than that guaranteed
by Theorem 1. Nonetheless, we still observe the ”stacking” behavior around the predicted threshold
θ∗ = 1.
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Figure 1: Plots of the success probability P[Ŝ= S] versus the control parameter θ(n, p,k)= n
k log(p−k)

for γ-sparsified ensembles, with decaying measurement sparsity γ= .5log(p−k)√
p−k . (a) Poly-

nomial signal sparsity k = O(
√p). (b) Linear signal sparsity k =Θ(p).
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5. Discussion

In this paper, we have studied the problem of recovery the support set of a sparse vector β∗ based on
noisy observations. The main result is to show that it is possible to “sparsify” standard dense mea-
surement matrices, so that they have a vanishing fraction of non-zeroes per row, while retaining the
same sample complexity (number of observations n) required for exact recovery. We also showed
that under the support recovery metric and in the presence of noise, no method can succeed without
the number of non-zeroes per column tending to infinity, so that our results cannot be improved
substantially. Thus, our results show that it is possible to use sparse measurement matrices while
retaining the same guarantees regarding the recovery of the support. Note that our sparsification
scheme is the simplest one, and requires no additional overhead to implement. Although this paper
focused on sparsified Gaussian measurement matrices, it is possible to obtain qualitatively simi-
lar results for sparsified sub-Gaussian ensembles (for instance, the discrete uniform distribution on
{−1,1}).

The approach taken in this paper is to find rates which γ (as a function of n, p, k) can safely tend
towards zero while maintaining the same statistical efficiency as dense random matrices. In various
practical settings (Wakin et al., 2006), it may be preferable to make the measurement ensembles
even sparser at the cost of taking more measurements n, thereby decreasing statistical efficiency
relative to dense random matrices. A natural question is the sample complexity n(γ, p,k) in this
regime as well. Finally, this work has focused only on a randomly sparsified matrices, as opposed
to particular sparse designs (e.g., based on LDPC or expander-type constructions Feldman et al.,
2007; Sarvotham et al., 2006; Xu and Hassibi, 2007). Although our results imply that exact support
recovery with noisy observations is impossible with bounded degree designs, it would be interest-
ing to examine the trade-off between other loss functions (e.g., !2 reconstruction error) and sparse
measurement matrices.
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Appendix A. Standard Concentration Results

In this appendix, we collect some tail bounds used repeatedly throughout this paper.

Lemma 7 (Hoeffding bound—Hoeffding, 1963) Given a binomial variate Z ∼Bin(n,γ), we have
for any δ> 0

P[|Z− γn|≥ δn] ≤ 2exp
(
−2nδ2

)
.

Lemma 8 (χ2-concentration—Johnstone, 2001) Let X ∼ χ2m be a chi-squared variate with m de-
grees of freedom. Then for all 12 > δ≥ 0, we have

P[X−m≥ δm] ≤ exp
(
−
3
16
mδ2

)
.
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We will also find the following standard Gaussian tail bound (e.g., Ledoux and Talagrand, 1991)
useful:

Lemma 9 (Gaussian tail behavior) Let V ∼N (0,σ2) be a zero-mean Gaussian with variance σ2.
Then for all δ> 0, we have

P[|V |> δ] ≤ 2 exp
(
−

δ2

2σ2
)
.

Appendix B. Convex Optimality Conditions

In this section we discuss the optimality conditions that the Lasso must satisfy and some implica-
tions that follow.

B.1 Proof of Lemma 2

Let f (β) := 1
2n‖Y −Xβ‖22+ ρn‖β‖1 denote the objective function of the Lasso (4). By standard

convex optimality conditions (Rockafellar, 1970), a vector β̂ ∈ Rp is a solution to the Lasso if and
only if 0 ∈ Rp is an element of the subdifferential of f (β) at β̂. These conditions lead to

1
n
XT (X β̂−Y )+ρnẑ = 0,

where the dual vector ẑ ∈ Rp is an element of the subdifferential of the !1-norm, given by

∂‖β̂‖1 =
{
z ∈ R

p | zi = sign(β̂i) if β̂i += 0, zi ∈ [−1,1] otherwise
}
.

Now suppose that we are given a pair (β̂, ẑ)∈Rp×Rp that satisfy the assumptions of Lemma 2.
Condition (13) is equivalent to (β̂, ẑ) satisfying the zero subgradient condition. Conditions (14), (16)
and (17) ensure that ẑ is an element of the subdifferential of the !1-norm at β̂. Finally, conditions (15)
and (17) ensure that β̂ correctly specifies the signed support.

It remains to verify that β̂ is the unique optimal solution. By Lagrangian duality, the Lasso
problem (4) (given in penalized form) can be written as an equivalent constrained optimization
problem over the ball ‖β‖1 ≤C(ρn), for some constant C(ρn)<+∞. Equivalently, we can express
this single !1-constraint as a set of 2p linear constraints "vTβ ≤ C, one for each sign vector "v ∈
{−1,+1}p. The vector ẑ can be written as a convex combination ẑ = ∑"vα

∗
"v"v, where the weights

α∗
"v are non-negative and sum to one. By construction of β̂ and ẑ, the weights α∗ form an optimal
Lagrange multiplier vector for the problem. Consequently, any other optimal solution—say β̃—
must also minimize the associated Lagrangian

L(β;α∗) = f (β)+∑
"v
α∗
"v
[
"vTβ−C

]
,

and satisfy the complementary slackness conditions α∗
"v
(
"vT β̃−C

)
= 0 for every"v.

Note that these complementary slackness conditions imply that ẑT β̃ = C. But this can only
happen if β̃ j = 0 for all indices where |ẑ j|< 1. Therefore, any optimal solution β̃ satisfies β̃Sc = 0.
Finally, given that all optimal solutions satisfy βSc = 0, we may consider the restricted optimization
problem subject to this set of constraints. If the Hessian submatrix Σ̂SS is strictly positive definite,
then this sub-problem is strictly convex, so that β̂ must be the unique optimal solution, as claimed.
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B.2 Derivation of {Va
j ,Vb

j ,Ui}

In this appendix, we derive the form of the {Va
j ,Vb

j } and {Ui} variables defined in Equations (18)
through (20). We begin by writing the zero sub-gradient condition in a block-form, and substituting
the relations specified in conditions (14) and (15):

[
Σ̂SS Σ̂SSc
Σ̂ScS Σ̂ScSc

][
β̂S−β∗S
0

]
−
[ 1
nX

T
S W

1
nX

T
ScW

]
+ρn

[
sign(β∗S)
ẑSc

]
= 0.

By solving the top block, we obtain

U := β̂S−β∗S = Σ̂−1SS
{1
n
XTS W −ρn sign(β∗S)

}
.

By back-substituting this relation into the lower block, we can solve explicitly for ẑSc ; doing so
yields that ρnẑSc =Va+Vb, where the (p− k)-vectors are defined in Equations (18) and (19).

Appendix C. Proof of Lemma 6

Let Z ∈ Rn×n denote a n× n matrix, for which the off-diagonal elements Zi j = 0 for all i += j, and
the diagonal elements Zii ∼ Ber(γ) are i.i.d. With this notation, we can write H d

= Zh. Using the
definition (23) of h, we have

‖H ‖22 = ‖Zh‖22

= ‖Z
XS
n
(Σ̂SS)

−1"1‖22

= "1T (Σ̂SS)−1(Z
XS
n
)T (Z

XS
n
)(Σ̂SS)

−1"1

=
γ
n
"1T (Σ̂SS)−1

{ 1
γn

n

∑
i=1

I [Zii = 1] xixTi
}

︸ ︷︷ ︸
(Σ̂SS)

−1"1,

Γ(Z)

where xi is the ith row of the matrix XS. We can apply Lemma 10 from Appendix D with parameters
θ= 1 and t = (p− k) yielding

P
[
|||Σ̂−1SS |||2 ≥ f1(p,k,γ)

]
≤ O

( 1
(p− k)2

)
, (30)

where f1(p,k,γ) := 1+ T (γ,k, p,1, p− k), and the function T (γ,k, p,θ, t) was defined in Equa-
tion (28).

Next we control the spectral norm of the random matrix Γ(Z), conditioned on the total number
∑n
i=1Zii of non-zero entries. In particular, applying Lemma 10 with t = p− k, and θ= z

n , we have

P
[
‖Γ(Z)‖2 ≥

z
nγ
[
1+T (γ,k, p,

z
n
, p− k)

]
|

n

∑
i=1

Zii = z
]

≤
1

(p− k)2
, (31)

as long as k zn → ∞.
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The next step is to deal with the conditioning. Define the event

T (k,γ) :=
{
Z | γ−

1
2
√
k
≤
1
n

n

∑
i=1

Zii ≤ γ+
1
2
√
k
}
.

We need to find an upper bound on ‖Γ(Z)‖2 that will hold with high probability for all Z that satisfy
the above property. One function that suffices is

f2(p,k,γ) :=

(

1+
1

2
√
kγ

) [

1+C
(1
γ

√√√√max

{
1

k(γ− 1
2
√
k )
,
log [(γ+ 1

2
√
k ) log(p− k)]

(γ− 1
2
√
k ) log(p− k)

})]

.

We then have that

P[|||Γ(Z)|||2 ≥ f2(p,k,γ)] ≤ P[|||Γ(Z)|||2 ≥ f2(p,k,γ) | T (k,γ)]+P[(T (k,γ))c]

≤ exp(−2log(p− k))+2exp(−
n
2k

)

≤ 3exp(−min{2log(p− k),
n
2k

}), (32)

where we have used the bound (31), and the Hoeffding bound (see Lemma 7).
Combining the bounds (30) and (32), we conclude that as long as γk→ ∞, then:

P
[
|||Σ̂−1Γ(Z)Σ̂−1|||2 ≥ f 21 f2

]
≤ 4exp(−min{2log(p− k),

n
2k

}).

Since ‖"1‖2 =
√
k, we have

P[‖H‖22 ≥
γk
n
f 21 f2] ≤ 4exp(−min{2log(p− k),

n
2k

}).

To conclude the proof, we must show that both f1(p,k,γ) and f2(p,k,γ) converge to 1 as (p,k,γ)
scale. The term f1(p,k,γ) = 1+T (γ,k, p,1, p− k) converges to one, since the quantity

T (γ,k, p,1, p− k) =
1
γ

√

max
{1
k
,
log[log(p− k)]
log(p− k)

}

converges1 to zero under assumption (10). Next, we need to demonstrate that f2(p,k,γ) converge
to 1 as (p,k,γ) scale. Since assumption (10) ensures that γ

√
k→ ∞, it suffices to study the simpler

function

f3(p,k,γ) := 1+C
(1
γ

√

max
{
1
kγ
,
log [γ log(p− k)]
γ log(p− k)

})
,

which has the same asymptotic behavior as f2(p,k,γ). Observe that f3(p,k,γ) satisfies the sandwich
relation

1 ≤ f3(p,k,γ) ≤ 1+C
(
√

max
{ 1
kγ3

,
log [log(p− k)]
γ3 log(p− k)

})
,

By assumption (10), this upper bound converges to one, showing that f3 and hence f2 converge to
one, as desired. In particular, for any fixed δ> 0, we have f 21 f2 < (1+δ) for p,k sufficiently large,
thereby completing the proof of Lemma 6.

1. In particular, the left-hand side of the expression (10) satisfies γ
[T (γ,k,p,1,p−k)]2 ≤

1
[T (γ,k,p,1,p−k)]2 .
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Appendix D. Singular Values of Sparsified Matrices

Let θ(p,k) ∈ (0,1] and t(p,k) ∈ {1,2,3, . . .} be functions. Let X be an θn× k random matrix with
i.i.d. entries Xi j distributed according to the γ-sparsified ensemble (6). Recall the definition of the
function T (γ,k, p,θ, t) defined in Equation (28), and let t > 0 be arbitrary.

Lemma 10 Suppose that n ≥ (2+ν)k log(p− k) for some ν > 0. If as k and p− k→ ∞, we have
T (γ,k, p,θ, t)−→ 0, then there are universal positive constants Ci such that

P
[
sup

‖u‖2=1

∣∣ 1√
θn

‖Xu‖2−1
∣∣≥C1T (γ,k, p,θ, t)

]
= O(

1
t2
), and (33)

P
[
|‖(

1
θn
XTX)

−1
− Ik×k‖2 ≥C2T (γ,k, p,θ, t)

]
= O(

1
t2
). (34)

Remark 3 (a) Note that Equation (33) implies that the eigenvalues of the matrix 1
θnX

TX are con-
tained in the interval (1−C1T (γ,k, p,θ, t),1+C1T (γ,k, p,θ, t)). Since T (γ,k, p,θ, t) = o(1) by
assumption, we can always find a constant C2 such that the eigenvalues of the inverted matrix
( 1θnX

TX)−1 are contained in the interval (1−C2T (γ,k, p,θ, t),1+C2T (γ,k, p,θ, t)). Consequently,
Equation (34) is a consequence of the assumptions of Lemma 10 and Equation (33).

(b) In addition, observe that Lemma 10 with θ = 1 and t = p− k implies that Σ̂ = 1
nX

T
S XS is

invertible with probability greater than 1−O( 1
(p−k)2 ), there establishing Lemma 1. Other settings

in which this lemma is applied are (θ, t) = (γ, p− k) and (θ, t) = (1,k).

The remainder of this section is devoted to the proof of Lemma 10.

D.1 Bounds on Expected Values

Let X ∈ Rθn×k be a random matrix with i.i.d. entries from the γ-sparsified ensemble

Xi j ∼ (1− γ)δX(0)+ γN (0,
1
γ
).

Note that E[Xi j] = 0 and var(Xi j) = 1 by construction.
We follow the proof technique outlined in the lecture notes (Vershynin, 2006). We first note the

tail bound:

Lemma 11 Let Q1, . . . ,Qd be i.i.d. samples of the γ-sparsified Gaussian ensemble. Given any
vector a ∈ Rd and t > 0, we have P[∑d

i=1 aiQi > t]≤ exp
(
− γt2
2‖a‖22

)
.

To establish this bound, note that each Yi is dominated (stochastically) by the random variable
Z ∼N (0, 1γ ). In particular, for any λ> 0 we have

MQi(λ) = E[exp(λQi)] = (1− γ)+ γE[exp(λZ)]≤ exp(λ2/2γ),

from which the claim follows by optimizing the Chernoff bound.
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Now let us bound the maximum singular value smax(X) of the random matrix X . Letting Sd−1
denote the !2 unit ball in d dimensions, we begin with the variational representation

smax(X) = max
u∈Sk−1

‖Xu‖

= max
v∈Sθn−1

max
u∈Sk−1

vTXu.

For an arbitrary ε∈ (0,1), we can find ε-covers (in !2 norm) of Sθn−1 and Sk−1 withMθn(ε) = (3/ε)θn
andMk(ε) = (3/ε)k points respectively (Matousek, 2002). Denote these covers byCθn(ε) andCk(ε)
respectively. A standard argument shows that for all ε ∈ (0,1), we have

‖X‖2 ≤
1

(1− ε)2
max

uα∈Ck(ε)
max

vβ∈Cθn(ε)
vTβXuα.

Let us analyze the maximum on the RHS: for a fixed pair (u,v) in our covers, we have

uTXv =
k

∑
i=1

θn

∑
j=1

Xi juiv j.

Let us apply Lemma 11 with d = θnk, and weights ai j = uiv j. Note that we have

‖a‖22 = ∑
i, j
a2i j = ∑

i
u2i (∑

j
v2j) = 1,

since each u and v are unit norm. Consequently, for any fixed u,v in the covers, we have

P[uTXv> t] ≤ exp
(
−
γt2

2
)
.

By the union bound, we have

P
[
max

uα∈Ck(ε)
max

vβ∈Cθn(ε)
vTβXuα > t

]
≤ Mk(ε)Mθn(ε)exp

(
−
γt2

2
)

≤ exp
(
(k+θn) log(3/ε)−

γt2

2
)
.

By choosing ε= 1
2 and t =

√
4
γ (k+θn) log6, we can conclude that

smax(X)/
√
θn = ‖X‖2/

√
θn ≤ C

√
1
γ

√
1+

k
θn

,

with probability at least 1− exp(−(k+θn) log6). Note that
k
θn

= O
( 1
(2+ν)θ log(p− k)

)
→ 0,

since log[θ log(p−k)]θ log(p−k) → 0, which implies that θ log(p− k)→ ∞.
Consequently, we can conclude that

‖X‖2/
√
θn ≤ O(1/

√
γ),

w.p. one as θn,k→ ∞. Although this bound is essentially correct for a N (0, 1γ ) ensemble with γ
fixed, it is very crude for the sparsified case with γ→ 0, but will useful in obtaining tighter control
on smax(X) and smin(X) :=minu∈Sk−1 ‖Xu‖ in the sequel.
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D.2 Tightening the Bound

For a given u ∈ Sk−1, consider the random variable ‖Xu‖22 := ∑θn
i=1(Xu)2i . We first claim that each

variate Zi = (Xu)2i is subexponential, or more precisely:

Lemma 12 For any s> 0, we have P[Zi > s]≤ 2exp
(
− γs

2
)
.

Proof We can write (Xu)i = ∑k
j=1Xi ju j where ‖u‖2 = 1. Consequently, Lemma 11 implies that

P[∑k
j=1Xi ju j > δ]≤ exp(− γδ2

2 ). By symmetry, we have

P[Zi > s] = P[|
k

∑
j=1

Xi ju j|>
√
s] ≤ 2exp(−

γs
2
),

from which the claim follows.

Now consider the event

{∣∣‖Xu‖
2
2

θn
−1
∣∣> δ

}
=

{∣∣
θn

∑
i=1

Zi−E[
θn

∑
i=1

Zi]
∣∣> δθn

}
.

Let us apply Theorem 1.4 from Vershynin (2000) with a= 2, b= 8θn/γ2 and d = 2/γ. With these
choices, we have 4b/d = 16θn/γ, which grows at least linearly in θn. Consequently, for any δ> 0
less than 16/γ (we will in fact take δ→ 0), we have

P
[∣∣‖Xu‖

2
2

θn
−1
∣∣> δ

]
≤ 2exp

(
−

δ2(θn)2

256θn/γ2
)
= 2exp

(
−
γ2 δ2θn
256

)
.

Now take an ε-cover of the k-dimensional !2 ball, say with N(ε) = (3/ε)k elements. By the union
bound, we have

P
[

inf
i=1,...,N(ε)

‖Xui‖22
θn

< 1−δ
]

≤ exp
(
−
γ2 δ2θn
256

+ k log(3/ε)
)
.

Now set

δ=

√
2
γ

√
256 f (k, p)k log(3/ε)

θn
,

where f (k, p)≥ 1 is a function to be specified. Doing so yields that the infimum is bounded by 1+δ
with probability 1− exp(−k f (k, p) log(3/ε)). (Note that the choice of f (k, p) influences the rate of
convergence, hence its utility.)

For any element u ∈ Sk−1, we have some ui in the cover, and moreover
∣∣‖Xu‖2−‖Xui‖2

∣∣ =
∣∣{‖Xu‖−‖Xui‖

} {
‖Xu‖+‖Xui‖

}∣∣

≤
∣∣{‖Xu‖−‖Xui‖

}∣∣ (2‖X‖)
≤ (‖X‖ ‖u−ui‖) (2‖X‖) ≤ 2‖X‖2ε.
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From our earlier result, we know that ‖X‖2 = O(θn/γ) with probability 1− exp(log6(k+ θn)).
Putting together the pieces, we have there is a universal constantC2 > 0, independent of ((θn),k,γ),
such that the bound

1
θn

inf
u∈Sk−1

‖Xu‖2 ≥ 1−δ−C3ε/γ = 1−
2
γ

√
32 f (k, p)k log(3/ε)

θn
−
C2
γ
ε,

holds with probability at least

1− exp(−k f (k, p) log(3/ε))− exp(− log6(k+θn)). (35)

Setting ε= 3k/θn yields the bound

1
θn

inf
u∈Sk−1

‖Xu‖2 ≥ 1−
C3
γ

√
f (k, p)

k
θn
log(

θn
k
),

where we have used the fact that k
θn = o

(√
f (k, p) k

θn log(
θn
k )
)
. To understand how to choose the

function f (k, p), let us consider the rate of convergence (35). To establish the claim (33), we need
rates fast enough to dominate a 2 log(t) term in the exponent, which guides our choice of f (k, p).
Recall that we are seeking to prove a scaling of the form n=Θ(k log(p−k)), so that this requirement
(with ε= 3k/θn= 3

θ log(p−k) ) is equivalent to the quantity

k f (k, p) log(3/ε)−2log(t) = k f (k, p) log[θ log(p− k)]−2log(t) (36)

tending to infinity.

D.2.1 CASE 1

If k > log(t)
log[θ log(p−k)] , then we may set f (k, p) = 4. With this choice, the condition (36) is satisfied,

and we have

f (k, p)
k
θn
log(

θn
k
) = 4

log[θ log(p− k)]
θ log(p− k)

→ 0,

where we have used the assumption that T (γ,k, p,θ, t) = o(1).

D.2.2 CASE 2

Otherwise, if k ≤ log(t)
logθ log(p−k) , then we may set

f (k, p) = 4
log(t)

k logθ log(p− k)
≥ 4,

so that condition (36) is satisfied, and we have

f (k, p)
k
θn
log(

θn
k
) ≤ 4

log(t)
k logθ log(p− k)

1
θ log(p− k)

logθ log(p− k) =
4
k

log t
θ log(p− k)

→ 0,

where we have again used the assumption T (γ,k, p,θ, t) = o(1) from Lemma 10.
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Recalling the definition of T (γ,k, p,θ, t) from Equation (28), we can summarize both cases
cleanly as

P

[
1
θn

inf
u∈Sk−1

‖Xu‖2 ≤ 1−CT (γ,k, p,θ, t)
]

= O(1/t2).

For (p,k) sufficiently large, we have CT (γ,k, p,θ, t) < 1, so that we can take square roots. Using
the expansion

√
1+ x= 1+ x

2 +o(x) for x small, we conclude that

1√
θn

inf
u∈Sk−1

‖Xu‖ ≥ 1−
C
2
T (γ,k, p,θ, t)−o(T (γ,k, p,θ, t)),

with probability greater than 1−O(1/t2). For (k, p) sufficiently large, the second term is smaller
than C

4T (γ,k, p,θ, t), so that we conclude that

P

[
1√
θn

inf
u∈Sk−1

‖Xu‖ ≥ 1−
3C
4
T (γ,k, p,θ, t)

]
≥ 1−O(1/t2)

for (k, p) sufficiently large.
This same process can be repeated to bound the maximum singular value, yielding the bound

P

[
1√
θn

sup
u∈Sk−1

‖Xu‖ ≤ 1+
3C
4
T (γ,k, p,θ, t)

]
≥ 1−O(1/t2)

for (k, p) sufficiently large. Combining these two bounds yields the claim of Lemma 10.
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Abstract
We study losses for binary classification and class probability estimation and extend the under-
standing of them from margin losses to general composite losses which are the composition of a
proper loss with a link function. We characterise when margin losses can be proper composite
losses, explicitly show how to determine a symmetric loss in full from half of one of its partial
losses, introduce an intrinsic parametrisation of composite binary losses and give a complete char-
acterisation of the relationship between proper losses and “classification calibrated” losses. We also
consider the question of the “best” surrogate binary loss. We introduce a precise notion of “best”
and show there exist situations where two convex surrogate losses are incommensurable. We pro-
vide a complete explicit characterisation of the convexity of composite binary losses in terms of
the link function and the weight function associated with the proper loss which make up the com-
posite loss. This characterisation suggests new ways of “surrogate tuning” as well as providing
an explicit characterisation of when Bregman divergences on the unit interval are convex in their
second argument. Finally, in an appendix we present some new algorithm-independent results on
the relationship between properness, convexity and robustness to misclassification noise for binary
losses and show that all convex proper losses are non-robust to misclassification noise.
Keywords: surrogate loss, convexity, probability estimation, classification, Fisher consistency,
classification-calibrated, regret bound, proper scoring rule, Bregman divergence, robustness, mis-
classification noise

1. Introduction

A loss function is the means by which a learning algorithm’s performance is judged. A binary loss
function is a loss for a supervised prediction problem where there are two possible labels associated
with the examples. A composite loss is the composition of a proper loss (defined below) and a link
function (also defined below). In this paper we study composite binary losses and develop a number
of new characterisation results. Several of these results can be seen as an extension of the work by
Buja et al. (2005) applied to an analysis of composite losses by Masnadi-Shirazi and Vasconcelos
(2009).

Informally, proper losses are well-calibrated losses for class probability estimation, that is for
the problem of not only predicting a binary classification label, but providing an estimate of the
probability that an example will have a positive label. Link functions are often used to map the out-
puts of a predictor to the interval [0,1] so that they can be interpreted as probabilities. Having such

∗. Also at National ICT Australia.

c©2010 Reid and Williamson.
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probabilities is often important in applications, and there has been considerable interest in under-
standing how to get accurate probability estimates (Platt, 2000; Gneiting and Raftery, 2007; Cohen
and Goldszmidt, 2004) and understanding the implications of requiring loss functions provide good
probability estimates (Bartlett and Tewari, 2007).

Much previous work in the machine learning literature has focussed on margin losses which in-
trinsically treat positive and negative classes symmetrically. However it is now well understood how
important it is to be able to deal with the non-symmetric case (Zellner, 1986; Elkan, 2001; Provost
and Fawcett, 2001; Buja et al., 2005; Bach et al., 2006; Beygelzimer et al., 2008; Christoffersen
and Diebold, 2009). A key goal of the present work is to consider composite losses in the general
(non-symmetric) situation. Since our development is for completely general losses, we automati-
cally cover non-symmetric losses. The generalised notion of classification calibration developed in
§5 is intrinsically non-symmetric.

1.1 Overview and Contributions

We now provide an overview of the paper’s structure, highlighting the novel contributions and how
they relate to existing work. Central to this work are the notions of a loss and its associated condi-
tional and full risk. These are introduced and briefly discussed in §2.

In §3 we introduce losses for Class Probability Estimation (CPE), define some technical prop-
erties of them, and present some structural results originally by Shuford et al. (1966) and Savage
(1971) and recently studied in a machine learning context by Buja et al. (2005) and Masnadi-Shirazi
and Vasconcelos (2009). The most important of these are Theorem 4 which gives a representation
of proper losses in terms of its associated conditional Bayes risk function, and Theorem 1 which
relates a proper loss’s partial losses to its “weight function”—the negative second derivative of the
conditional Bayes risk (see Corollary 3). We use these to provide a novel characterisation of proper
symmetric CPE losses. Specifically, Theorem 9 shows these losses are completely determined by
the behaviour of one of its partial losses on half the unit interval.

Learning algorithms often make real-valued predictions that are not directly interpretable as
probability estimates but require a link function which maps their output to the interval [0,1]. In §4
we define composite losses as the composition of a CPE loss and a link. The new contributions of
this section are Theorem 10 which generalises Theorem 1 to composite losses, and Corollaries 12
and 14 which shows how requiring properness completely determines the link function for compos-
ite and margin losses. We also introduce a natural and intrinsic parametrisation of proper composite
losses that is a generalisation of the weight function and show how it can be used to easily derive
gradients for stochastic descent algorithms.

In §5 we generalise the notion of classification calibrated losses (as studied, for example, by
Bartlett et al., 2006) so it applies to non-symmetric composite losses (i.e., not just margin losses)
and provide a characterisation of it in Theorem 17. We also describe how this new notion of clas-
sification calibrated relates to proper CPE and composite losses via its connection with the weight
function.

The main results of this paper are found in §6: Theorems 24 and 29 characterise when proper
composite losses are convex. These characterisation are in terms of some easily testable constraints
relating the losses’ weight and link functions. The results also characterise when a Bregman diver-
gence on [0,1] is convex in its second argument (§6.3).
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In §7 we study how the above insights can be applied to the problem of choosing a surrogate
loss. Here, a surrogate loss function is a loss function which is not exactly what one wishes to
minimise but is easier to work with algorithmically. This is still a relatively new area of research
and our aim here is to open up a discussion rather than have the final word. To do so we define
a well founded notion of “best” surrogate loss and show that some convex surrogate losses are
incommensurable on some problems. We also consider some other notions of “best” and explicitly
determine the surrogate loss that has the best surrogate regret bound in a certain sense.

Finally, in §8 we draw some more general conclusions. In particular, we argue that the weight
and link function parametrisation of losses provides a convenient way to work with an entire class
of losses that are central to probability estimation and may provide new ways of approaching the
problem of “surrogate tuning” (Nock and Nielsen, 2009b).

Appendix C collects several observations which build upon some of the results in the main
paper but are digressions from its central themes. In it, we present some new algorithm-independent
results on the relationship between properness, convexity and robustness to misclassification noise
for binary losses and show that all convex proper losses are non-robust to misclassification noise.

2. Losses and Risks

We write x∧y :=min(x,y) and !p"= 1 if p is true and !p"= 0 otherwise.1 The generalised function
δ(·) is defined by

∫ b
a δ(x) f (x)dx= f (0) when f is continuous at 0 and a< 0< b. Random variables

are written in sans-serif font: X, Y.
Given a set of labels Y := {−1,1} and a set of prediction values V we will say a loss is any

function2 ! : Y×V→ [0,∞). We interpret such a loss as giving a penalty !(y,v) when predicting the
value v when an observed label is y. We can always write an arbitrary loss in terms of its partial
losses !1 := !(1, ·) and !−1 := !(−1, ·) using

!(y,v) = !y= 1"!1(v)+ !y=−1"!−1(v).

Our definition of a loss function covers all commonly used margin losses (i.e., those which can
be expressed as !(y,v) = φ(yv) for some function φ :R→ [0,∞)) such as the 0-1 loss !(y,v) = !yv<
0", the hinge loss !(y,v) =max(1−yv,0), the logistic loss !(y,v) = log(1+eyv), and the exponential
loss !(y,v) = e−yv commonly used in boosting. It also covers class probability estimation losses
where the predicted values η̂ ∈ V= [0,1] are directly interpreted as probability estimates.3 We will
use η̂ instead of v as an argument to indicate losses for class probability estimation and use the
shorthand CPE losses to distinguish them from general losses. For example, square loss has partial
losses !−1(η̂) = η̂2 and !1(η̂) = (1− η̂)2, the log loss !−1(η̂) = log(1− η̂) and !1(η̂) = log(η̂), and
the family of cost-weighted misclassification losses parametrised by c ∈ (0,1) is given by

!c(−1, η̂) = c!η̂≥ c" and !c(1, η̂) = (1− c)!η̂< c". (1)

1. This is the Iverson bracket notation as recommended by Knuth (1992).
2. Restricting the output of a loss to [0,∞) is equivalent to assuming the loss has a lower bound and then translating its
output.

3. These are known as scoring rules in the statistical literature (Gneiting and Raftery, 2007).
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2.1 Conditional and Full Risks

Suppose we have random examples X with associated labels Y ∈ {−1,1} The joint distribution of
(X,Y) is denoted P and the marginal distribution of X is denotedM. Let the observation conditional
density η(x) := Pr(Y = 1|X= x). Thus one can specify an experiment by either P or (η,M).

If η ∈ [0,1] is the probability of observing the label y = 1 the point-wise risk (or conditional
risk) of the estimate v ∈ V is defined as the η-average of the point-wise loss for v:

L(η,v) := EY∼η[!(Y,v)] = η!1(v)+(1−η)!−1(v).

Here, Y ∼ η is a shorthand for labels being drawn from a Bernoulli distribution with parameter η.
When η : X→ [0,1] is an observation-conditional density, taking the M-average of the point-wise
risk gives the (full) risk of the estimator v, now interpreted as a function v : X→ V:

L(η,v,M) := EX∼M[L(η(X),v(X))].

We sometimes write L(v,P) for L(η,v,M) where (η,M) corresponds to the joint distribution P. We
write !, L and L for the loss, point-wise and full risk throughout this paper. The Bayes risk is the
minimal achievable value of the risk and is denoted

L(η,M) := inf
v∈VX

L(η,v,M) = EX∼M [L(η(X))] ,

where
[0,1] * η +→ L(η) := inf

v∈V
L(η,v)

is the point-wise or conditional Bayes risk.
There has been increasing awareness of the importance of the conditional Bayes risk curve

L(η)—also known as “generalized entropy” (Grünwald and Dawid, 2004)—in the analysis of losses
for probability estimation (Kalnishkan et al., 2004, 2007; Abernethy et al., 2009; Masnadi-Shirazi
and Vasconcelos, 2009). Below we will see how it is effectively the curvature of L that determines
much of the structure of these losses.

3. Losses for Class Probability Estimation

We begin by considering CPE losses, that is, functions ! : {−1,1}× [0,1] → [0,∞) and briefly
summarise a number of important existing structural results for proper losses—a large, natural class
of losses for class probability estimation.

3.1 Proper, Fair, Definite and Regular Losses

There are a few properties of losses for probability estimation that we will require. If η̂ is to be
interpreted as an estimate of the true positive class probability η (i.e., when y= 1) then it is desirable
to require that L(η, η̂) be minimised by η̂= η for all η∈ [0,1]. Losses that satisfy this constraint are
said to be Fisher consistent and are known as proper losses (Buja et al., 2005; Gneiting and Raftery,
2007). That is, a proper loss ! satisfies L(η) = L(η,η) for all η ∈ [0,1]. A strictly proper loss is a
proper loss for which the minimiser of L(η, η̂) over η̂ is unique.

We will say a loss is fair whenever

!−1(0) = !1(1) = 0.
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That is, there is no loss incurred for perfect prediction. The main place fairness is relied upon is in
the integral representation of Theorem 6 where it is used to get rid of some constants of integration.
In order to explicitly construct losses from their associated “weight functions” as shown in Theo-
rem 7, we will require that the loss be definite, that is, its point-wise Bayes risk for deterministic
events (i.e., η= 0 or η= 1) must be bounded from below:

L(0)>−∞ , L(1)>−∞.

Since properness of a loss ensures L(η)= L(η,η)we see that a fair proper loss is necessarily definite
since L(0,0) = !−1(0) = 0 > −∞, and similarly for L(1,1). Conversely, if a proper loss is definite
then the finite values !−1(0) and !1(1) can be subtracted from !−1(·) and !1(·) to make it fair.

Finally, for Theorem 4 to hold at the endpoints of the unit interval, we require a loss to be
regular;4 that is,

lim
η↘0

η!1(η) = lim
η↗1

(1−η)!−1(η) = 0.

Intuitively, this condition ensures that making mistakes on events that never happen should not incur
a penalty. In most of the situations we consider in the remainder of this paper will involve losses
which are proper, fair, definite and regular.

3.2 The Structure of Proper Losses

A key result in the study of proper losses is originally due to Shuford et al. (1966) and Staël von
Holstein (1970) (confer Aczel and Pfanzagl, 1967) though our presentation follows that of Buja
et al. (2005). The following theorem5 characterises proper losses for probability estimation via a
constraint on the relationship between its partial losses.

Theorem 1 (Shuford et al.) Suppose ! : {−1,1}× [0,1]→R is a loss and that its partial losses !1
and !−1 are both differentiable. Then ! is a proper loss if and only if for all η̂ ∈ (0,1)

−!′1(η̂)
1− η̂

=
!′−1(η̂)

η̂
= w(η̂) (2)

for some weight function w : (0,1)→ R+ such that
∫ 1−ε
ε w(c)dc< ∞ for all ε> 0.

The equalities in (2) should be interpreted in the distributional sense.
This simple characterisation of the structure of proper losses has a number of interesting impli-

cations. Observe from (2) that if ! is proper, given !1 we can determine !−1 or vice versa. Also, the
partial derivative of the conditional risk can be seen to be the product of a linear term and the weight
function:

Corollary 2 If ! is a differentiable proper loss then for all η ∈ [0,1]

∂
∂η̂
L(η, η̂) = (1−η)!′−1(η̂)+η!′1(η̂) = (η̂−η)w(η̂). (3)

Another corollary, observed by Buja et al. (2005), is that the weight function is related to the curva-
ture of the conditional Bayes risk L.

4. This is equivalent to the conditions of Savage (1971) and Schervish (1989).
5. This is a restatement of Theorem 1 in Shuford et al. (1966).
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Corollary 3 Let ! be a a twice differentiable6 proper loss with weight function w defined as in
Equation (2). Then for all c ∈ (0,1) its conditional Bayes risk L satisfies

w(c) =−L′′(c).

One immediate consequence of this corollary is that the conditional Bayes risk for a proper loss
is always concave. Along with an extra constraint, this gives another characterisation of proper
losses (Savage, 1971; Reid and Williamson, 2009a).

Theorem 4 (Savage) A loss function ! is proper if and only if its point-wise Bayes risk L(η) is
concave and for each η, η̂ ∈ (0,1)

L(η, η̂) = L(η̂)+(η− η̂)L′(η̂).

Furthermore if ! is regular this characterisation also holds at the endpoints η, η̂ ∈ {0,1}.

This link between loss and concave functions makes it easy to establish a connection, as Buja et al.
(2005) do, between regret ΔL(η, η̂) := L(η, η̂)−L(η) for proper losses and Bregman divergences.
The latter are generalisations of distances and are defined in terms of convex functions. Specifi-
cally, if f : S→ R is a convex function over some convex set S ⊆ Rn then its associated Bregman
divergence7 is

Df (s,s0) := f (s)− f (s0)−〈s− s0,∇ f (s0)〉

for any s,s0 ∈ S, where ∇ f (s0) is the gradient of f at s0. By noting that over S = [0,1] we have
∇ f = f ′, these definitions lead immediately to the following corollary of Theorem 4.

Corollary 5 If ! is a proper loss then its regret is the Bregman divergence associated with f =−L.
That is,

ΔL(η, η̂) = D−L(η, η̂).

Many of the above results can be observed graphically by plotting the conditional risk for a
proper loss as in Figure 1. Here we see the two partial losses on the left and right sides of the
figure are related, for each fixed η̂, by the linear map η +→ L(η, η̂) = (1−η)!−1(η̂)+η!1(η̂). For
each fixed η the properness of ! requires that these convex combinations of the partial losses (each
slice parallel to the left and right faces) are minimised when η̂ = η. Thus, the lines joining the
partial losses are tangent to the conditional Bayes risk curve η +→ L(η) = L(η,η) shown above the
dotted diagonal. Since the conditional Bayes risk curve is the lower envelope of these tangents it
is necessarily concave. The coupling of the partial losses via the tangents to the conditional Bayes
risk curve demonstrates why much of the structure of proper losses is determined by the curvature
of L—that is, by the weight function w.

The relationship between a proper loss and its associated weight function is captured succinctly
by Schervish (1989) via the following representation of proper losses as a weighted integral of
the cost-weighted misclassification losses !c defined in (1). The reader is referred to Reid and
Williamson (2009b) for the details, proof and the history of this result.

6. The restriction to differentiable losses can be removed in most cases if generalised weight functions—that is, possibly
infinite but defining a measure on (0,1)—are permitted. For example, the weight function for the 0-1 loss is w(c) =
δ(c− 1

2 ).
7. A concise summary of Bregman divergences and their properties is given by Banerjee et al. (2005, Appendix A).
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Figure 1: The structure of the conditional risk L(η, η̂) for a proper loss (surface). The loss is log loss
and its partials !−1(η̂) = − log(η̂) and !1(η̂) = − log(1− η̂) shown on the left and right
faces of the box. The conditional Bayes risk is the curve on the surface above the dotted
line η̂ = η. The line connecting points on the partial loss curves shows the conditional
risk for a fixed prediction η̂.

Theorem 6 (Schervish) Let ! : Y× [0,1]→ R be a fair, proper loss. Then for each η̂ ∈ (0,1) and
y ∈ Y

!(y, η̂) =
∫ 1

0
!c(y, η̂)w(c)dc, (4)

where w=−L′′. Conversely, if ! is defined by (4) for some weight function w : (0,1)→ [0,∞) then
it is proper.

Some example losses and their associated weight functions are given in Table 1. Buja et al. (2005)
show that ! is strictly proper if and only if w(c)> 0 in the sense that w has non-zero mass on every
open subset of (0,1). The following theorem from Reid and Williamson (2009a) shows how to
explicitly construct a loss in terms of a weight function.
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w(c) !−1(η̂) !1(η̂) Loss

2δ
( 1
2 − c

)

!η̂> 1
2" !η̂≤ 1

2" 0-1

δ(c− c0) c0!η̂≥ c0" (1− c0)!η̂< c0" !c0 , c0 ∈ [0,1]

1
(1−c)2c

[

2ln(1− η̂)+ η̂
1−η̂

] [

ln 1−η̂η̂ −1
]

—

1 η̂2/2 (1− η̂)2/2 Square

1
(1−c)c − ln(1− η̂) − ln(η̂) Log

1
(1−c)2c2

[

ln((1− η̂)η̂)− 1−2η̂
η̂

] [

ln((1− η̂)η̂)+ 1−2η̂
η̂

]

—

1
[(1−c)c]3/2 2

√

η̂
1−η̂ 2

√

1−η̂
η̂ Boosting

Table 1: Weight functions and associated partial losses.

Theorem 7 (Reid andWilliamson)Given a weight function w : [0,1]→ [0,∞), letW (t)=
∫ t w(c)dc

and W (t) =
∫ t W (c)dc. Then the loss !w defined by

!w(y, η̂) =−W (η̂)− (y− η̂)W (η̂)

is a proper loss. Additionally, if W (0) andW (1) are both finite then

!w(y, η̂)+(W (1)−W (0))y+W (0)

is a fair, proper loss.

Observe that if w and v are weight functions which differ on a set of measure zero then they will
lead to the same loss. A simple corollary to Theorem 6 is that the partial losses are given by

!1(η̂) =
∫ 1

η̂
(1− c)w(c)dc and !−1(η̂) =

∫ η̂

0
cw(c)dc. (5)

A similar8 integral representation of the partial losses can also be found in Shuford et al. (1966,
Theorem 2) and Staël von Holstein (1970).

3.3 Symmetric Losses

We will say a loss is symmetric if !1(η̂) = !−1(1− η̂) for all η̂ ∈ [0,1]. We say a weight function
for a proper loss or the conditional Bayes risk is symmetric if w(c) = w(1− c) or L(c) = L(1− c)
for all c ∈ [0,1]. Perhaps unsurprisingly, an immediate consequence of Theorem 1 is that these two
notions are identical.9

8. The weight function h in Theorem 2 of Shuford et al. (1966) is related to the w here by h(c) = (1− c)w(c).
9. The relationship between a symmetric L and symmetric behaviour of the loss has been previously recognised by
Masnadi-Shirazi and Vasconcelos (2009).
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Corollary 8 A proper loss is symmetric if and only if its weight function is symmetric.

Proof If ! is symmetric, then !′1(η̂) = −!′−1(1− η̂) and so Equation (2) implies w(1− η̂) =
!′−1(1−η̂)
1−η̂ = −!′1(η̂)

1−η̂ = w(η̂). Conversely, the symmetry of w applied to Equation (5) establishes the
symmetry of !.

Requiring a loss to be proper and symmetric constrains the partial losses significantly. Proper-
ness alone completely specifies one partial loss from the other. Now suppose in addition that ! is
symmetric. Combining !1(η̂) = !−1(1− η̂) with (2) implies

!′−1(1− η̂) =
1− η̂
η̂

!′−1(η̂). (6)

This shows that !−1 is completely determined by !−1(η̂) for η̂ ∈ [0, 12 ] (or η̂ ∈ [ 12 ,1]). Thus in order
to specify a symmetric proper loss, one needs to only specify one of the partial losses on one half
of the interval [0,1]. Assuming !−1 is continuous at 12 (or equivalently that w has no atoms at

1
2 ), by

integrating both sides of (6) we can derive an explicit formula for the other half of !−1 in terms of
that which is specified:

!−1(η̂) = !−1(
1
2)+

∫ η̂

1
2

x
1− x

!′−1(1− x)dx, (7)

which works for determining !−1 on either [0, 12 ] or [
1
2 ,1] when !−1 is specified on [ 12 ,1] or [0,

1
2 ]

respectively (recalling the usual convention that
∫ b
a =−

∫ a
b ). We have thus shown:

Theorem 9 If a loss is proper and symmetric, then it is completely determined by specifying one of
the partial losses on half the unit interval (either [0, 12 ] or [

1
2 ,0]) and using (6) and (7).

We demonstrate (7) with four examples. Suppose that !−1(η̂) = 1
1−η̂ for η̂ ∈ [0, 12 ]. Then one

can readily determine the complete partial loss to be

!−1(η̂) =
!η̂≤ 1

2"

1− η̂
+ !η̂> 1

2"

(

2+ log
η̂

1− η̂

)

.

Suppose instead that !−1(η̂) = 1
1−η̂ for η̂ ∈ [ 12 ,1]. In that case we obtain

!−1(η̂) = !η̂≤
1
2
"

(

2+ log
η̂

1− η̂

)

+
!η̂≥ 1

2"

1− η̂
.

Suppose !−1(η̂) = 1
(1−η̂)2 for η̂ ∈ [0, 12 ]. Then one can determine that

!−1(η̂) =
!η̂< 1

2"

(1− η̂)2
+

!η̂≥ 1
2"(4+2(2η̂+ η̂ log η̂− η̂ log(1− η̂)−1))

η̂
.

Finally consider specifying that !−1(η̂) = η̂ for η̂ ∈ [0, 12 ]. In this case we obtain that

!−1(η̂) = !η̂≤ 1
2"η̂+ !η̂≥ 1

2"(1− log2− η̂− log(1− η̂)) .
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4. Composite Losses

General loss functions are often constructed with the aid of a link function. For a particular set of
prediction values V this is any continuous mapping ψ : [0,1]→ V. In this paper, our focus will be
composite losses for binary class probability estimation. These are the composition of a CPE loss
! : {−1,1}× [0,1] → R and the inverse of a link function ψ, an invertible mapping from the unit
interval to some range of values. Unless stated otherwise we will assume ψ : [0,1]→ R. We will
denote a composite loss by

!ψ(y,v) := !(y,ψ−1(v)). (8)

The classical motivation for link functions (McCullagh and Nelder, 1989) is that often in estimating
η one uses a parametric representation of η̂ : X→[0,1] which has a natural scale not matching [0,1].
Traditionally one writes η̂=ψ−1(ĥ) where ψ−1 is the “inverse link” (and ψ is of course the forward
link). The function ĥ : X→R is the hypothesis. Often ĥ= ĥα is parametrised linearly in a parameter
vector α. In such a situation it is computationally convenient if !(y,ψ−1(ĥ)) is convex in ĥ (which
implies it is convex in α when ĥα is linear in α). The idea of a link function is not as well known
as it should be and is thus reinvented—see for example Granger and Machina (2006).

Often one will choose the loss first (tailoring its properties by the weighting given according
to w(c)), and then choose the link somewhat arbitrarily to map the hypotheses appropriately. An
interesting alternative perspective arises in the literature on “elicitability”. Lambert et al. (2008)10
provide a general characterisation of proper scoring rules (i.e., losses) for general properties of
distributions, that is, continuous and locally non-constant functions Γ which assign a real value to
each distribution over a finite sample space. In the binary case, these properties provide another
interpretation of links that is complementary to the usual one that treats the inverse link ψ−1 as a
way of interpreting scores as class probabilities.

To see this, we first identify distributions over {−1,1} with the probability η of observing 1. In
this case properties are continuous, locally non-constant maps Γ : [0,1]→ R. When a link function
ψ is continuous it can therefore be interpreted as a property since its assumed invertibility implies it
is locally non-constant. A property Γ is said to be elicitable whenever there exists a strictly proper
loss ! for it so that the composite loss !Γ satisfies for all η̂ 3= η

LΓ(η, η̂) := EY∼η[!
Γ(Y, η̂)]> LΓ(η,η).

Theorem 1 of Lambert et al. (2008) shows that Γ is elicitable if and only if Γ−1(r) is convex for
all r ∈ range(Γ). This immediately gives us a characterisation of “proper” link functions: those that
are both continuous and have convex level sets in [0,1]—they are the non-decreasing continuous
functions. Thus in Lambert’s perspective, one chooses a “property” first (i.e., the invertible link)
and then chooses the proper loss.

4.1 Proper Composite Losses

We will call a composite loss !ψ (8) a proper composite loss if ! in (8) is a proper loss for class
probability estimation. As in the case for losses for probability estimation, the requirement that a
composite loss be proper imposes some constraints on its partial losses. Many of the results for
proper losses carry over to composite losses with some extra factors to account for the link function.

10. See also Gneiting (2009).
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Theorem 10 Let λ = !ψ be a composite loss with differentiable and strictly monotone link ψ and
suppose the partial losses λ−1(v) and λ1(v) are both differentiable. Then λ is a proper composite
loss if and only if there exists a weight function w : (0,1)→ R+ such that for all η̂ ∈ (0,1)

−λ′1(ψ(η̂))
1− η̂

=
λ′−1(ψ(η̂))

η̂
=

w(η̂)
ψ′(η̂)

=: ρ(η̂), (9)

where equality is interpreted in the distributional sense. Furthermore, ρ(η̂)≥ 0 for all η̂ ∈ (0,1).

Proof This is a direct consequence of Theorem 1 for proper losses for probability estimation and
the chain rule applied to !y(η̂) = λy(ψ(η̂)). Since ψ is assumed to be strictly monotonic we know
ψ′ > 0 and so, since w≥ 0 we have ρ≥ 0.

As we shall see, the ratio ρ(η̂) is a key quantity in the analysis of proper composite losses. For
example, Corollary 2 has natural analogue in terms of ρ that will be of use later. It is obtained by
letting η̂= ψ−1(v) and using the chain rule.

Corollary 11 Suppose !ψ is a proper composite loss with conditional risk denoted Lψ. Then

∂
∂v
Lψ(η,v) = (ψ−1(v)−η)ρ(ψ−1(v)). (10)

Loosely speaking then, ρ is a “co-ordinate free” weight function for composite losses where the link
function ψ is interpreted as a mapping from arbitrary v ∈ V to values which can be interpreted as
probabilities.

Another immediate corollary of Theorem 10 shows how properness is characterised by a partic-
ular relationship between the choice of link function and the choice of partial composite losses.

Corollary 12 Let λ := !ψ be a composite loss with differentiable partial losses λ1 and λ−1. Then
!ψ is proper if and only if the link ψ satisfies

ψ−1(v) =
λ′−1(v)

λ′−1(v)−λ′1(v)
, ∀v ∈ V. (11)

Proof Substituting η̂ = ψ−1(v) into (9) yields −ψ−1(v)λ′1(v) = (1−ψ−1(v))λ′−1(v) and solving
this for ψ−1(v) gives the result.

These results give some insight into the “degrees of freedom” available when specifying proper
composite losses. Theorem 10 shows that the partial losses are completely determined once the
weight function w and ψ (up to an additive constant) is fixed. Corollary 12 shows that for a given
link ψ one can specify one of the partial losses λy but then properness fixes the other partial loss
λ−y. Similarly, given an arbitrary choice of the partial losses, Equation 11 gives the single link
which will guarantee the overall loss is proper.

We see then that Corollary 12 provides us with a way of constructing a reference link for arbi-
trary composite losses specified by their partial losses. The reference link can be seen to satisfy

ψ(η) = argmin
v∈R

Lψ(η,v)
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for η ∈ (0,1) and thus calibrates a given composite loss in the sense of Cohen and Goldszmidt
(2004).

Finally, we make a note of an analogue of Corollary 5 for composite losses. It shows that the
regret for an arbitrary composite loss is related to a Bregman divergence via its link.

Corollary 13 Let !ψ be a proper composite loss with invertible link. Then for all η, η̂ ∈ (0,1),

ΔLψ(η,v) = D−L(η,ψ−1(v)). (12)

This corollary generalises the results due to Zhang (2004b) and Masnadi-Shirazi and Vasconcelos
(2009) who considered only margin losses respectively without and with links.

4.2 Derivatives of Composite Losses

We now briefly consider an application of the parametrisation of proper losses as a weight func-
tion and link. In order to implement Stochastic Gradient Descent (SGD) algorithms one needs to
compute the derivative of the loss with respect to predictions v ∈ R. Letting η̂(v) = ψ−1(v) be the
probability estimate associated with the prediction v, we can use (10) when η ∈ {0,1} to obtain the
update rules for positive and negative examples:

∂
∂v

!ψ1 (v) = (η̂(v)−1)ρ(η̂(v)),

∂
∂v

!ψ−1(v) = η̂(v)ρ(η̂(v)).

Given an arbitrary weight function w (which defines a proper loss via Corollary 2 and Theorem 4)
and link ψ, the above equations show that one could implement SGD directly parametrised in terms
of ρ without needing to explicitly compute the partial losses themselves.

4.3 Margin Losses

The margin associated with a real-valued prediction v ∈ R and label y ∈ {−1,1} is the product
z= yv. Any function φ : R→ R+ can be used as a margin loss by interpreting φ(yv) as the penalty
for predicting v for an instance with label y. Margin losses are inherently symmetric since yv =
(−y)(−v) and so the penalty φ(yv) given for predicting v when the label is y is necessarily the same
as the penalty for predicting−v when the label is−y. Margin losses have attracted a lot of attention
(Bartlett et al., 2000) because of their central role in Support Vector Machines (Cortes and Vapnik,
1995). In this section we explore the relationship between these margin losses and the more general
class of composite losses and, in particular, symmetric composite losses.

Recall that a general composite loss is of the form !ψ(y,v) = !(y,ψ−1(v)) for a loss ! : Y×
[0,1]→ [0,∞) and an invertible link ψ : R→ [0,1]. We would like to understand when margin losses
are suitable for probability estimation tasks. As discussed above, proper losses are a natural class of
losses over [0,1] for probability estimation so a natural question in this vein is the following: given
a margin loss φ can we choose a link ψ so that there exists a proper loss ! such that φ(yv) = !ψ(y,v)?
In this case the proper loss will be !(y, η̂) = φ(yψ(η̂)).

The following corollary of Theorem 10 gives necessary and sufficient conditions on the choice
of link ψ to guarantee when a margin loss φ can be expressed as a proper composite loss.
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Corollary 14 Suppose φ : R→ R is a differentiable margin loss. Then, φ(yv) can be expressed as
a proper composite loss !ψ(y,v) if and only if the link ψ satisfies

ψ−1(v) =
φ′(−v)

φ′(−v)+φ′(v)
.

Proof Margin losses, by definition, have partial losses λy(v) = φ(yv) which means λ′1(v) = φ′(v)
and λ′−1(v) =−φ′(−v). Substituting these into (11) gives the result.

This result provides a way of interpreting predictions v as probabilities η̂= ψ−1(v) in a consis-
tent manner, for a problem defined by a margin loss. Conversely, it also guarantees that using any
other link to interpret predictions as probabilities will be inconsistent.11 Another immediate impli-
cation is that for a margin loss to be considered a proper loss its link function must be symmetric in
the sense that

ψ−1(−v) =
φ′(v)

φ′(v)+φ′(−v)
= 1−

φ′(−v)
φ′(−v)+φ′(v)

= 1−ψ−1(v),

and so, by letting v= ψ(η̂), we have ψ(1− η̂) =−ψ(η̂) and thus ψ( 12) = 0.
Corollary 14 can also be seen as a simplified and generalised version of the argument by

Masnadi-Shirazi and Vasconcelos (2009) that a concave minimal conditional risk function and a
symmetric link completely determines a margin loss.12

We now consider a couple of specific margin losses and show how they can be associated with a
proper loss through the choice of link given in Corollary 14. The exponential loss φ(v) = e−v gives
rise to a proper loss !(y, η̂) = φ(yψ(η̂)) via the link

ψ−1(v) =
−ev

−ev− e−v
=

1
1+ e−2v

which has non-zero denominator. In this case ψ(η̂) = 1
2 log

(

η̂
1−η̂

)

is just the logistic link. Now
consider the family of margin losses parametrised by α ∈ (0,∞)

φα(v) =
log(exp((1− v)α)+1)

α
.

This family of differentiable convex losses approximates the hinge loss as α→ ∞ and was studied
in the multiclass case by Zhang et al. (2009). Since these are all differentiable functions with
φ′α(v) = −eα(1−v)

eα(1−v)+1 , Corollary 14 and a little algebra gives

ψ−1(v) =

[

1+
e2α+ eα(1−v)

e2α+ eα(1+v)

]−1

.

Examining this family of inverse links as α→ 0 gives some insight into why the hinge loss is a
surrogate for classification but not probability estimation. When α≈ 0 an estimate η̂= ψ−1(v)≈ 1

2
for all but very large v ∈ R. That is, in the limit all probability estimates sit infinitesimally to the
right or left of 12 depending on the sign of v.

11. Strictly speaking, if the margin loss has “flat spots”—that is, where φ′(v) = 0—then the choice of link may not be
unique.

12. Shen (2005, Section 4.4) seems to have been the first to view margin losses from this more general perspective.
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5. Classification Calibration and Proper Losses

The notion of properness of a loss designed for class probability estimation is a natural one. If one
is only interested in classification (rather than estimating probabilities) a weaker condition suffices.
In this section we will relate the weaker condition to properness.

5.1 Classification Calibration for CPE Losses

We begin by giving a definition of classification calibration for CPE losses (i.e., over the unit interval
[0,1]) and relate it to composite losses via a link.

Definition 15 We say a CPE loss ! is classification calibrated at c ∈ (0,1) and write ! is CCc if the
associated conditional risk L satisfies

∀η 3= c, L(η)< inf
η̂ : (η̂−c)(η−c)≤0

L(η, η̂). (13)

The expression constraining the infimum ensures that η̂ is on the opposite side of c to η, or η̂= c.
The condition CC1

2
is equivalent to what is called “classification calibrated” by Bartlett et al.

(2006) and “Fisher consistent for classification problems” by Lin (2002) although their definitions
were only for margin losses. One situation where this more general CCc notion is more appropriate
is when the false positive and false negative costs for a classification problem are unequal.

One might suspect that there is a connection between classification calibrated at c and standard
Fisher consistency for class probability estimation losses. The following theorem, which captures
the intuition behind the “probing” reduction (Langford and Zadrozny, 2005), characterises the situ-
ation.

Theorem 16 A CPE loss ! is CCc for all c ∈ (0,1) if and only if ! is strictly proper.

Proof The loss ! is CCc for all c ∈ (0,1) is equivalent to

∀c ∈ (0,1), ∀η 3= c
{

L(η)< infη̂≥c L(η, η̂), η< c
L(η)< infη̂≤c L(η, η̂), η> c

⇔ ∀η ∈ (0,1), ∀c 3= η

{

∀c> η, L(η)< infη̂≥c L(η, η̂)
∀c< η, L(η)< infη̂≤c L(η, η̂)

⇔ ∀η ∈ (0,1),
{

L(η)< infη̂≥c>ηL(η, η̂)
L(η)< infη̂≤c<ηL(η, η̂)

⇔ ∀η ∈ (0,1), L(η)< inf
(η̂>η) or (η̂<η)

L(η, η̂)

⇔ ∀η ∈ (0,1), L(η)< inf
η̂3=η

L(η, η̂)

which means L is strictly proper.

The following theorem is a generalisation of the characterisation of CC1
2
for margin losses via

φ′(0) due to Bartlett et al. (2006).

Theorem 17 Suppose ! is a loss and suppose that !′1 and !′−1 exist everywhere. Then for any
c ∈ (0,1) ! is CCc if and only if

!′−1(c)> 0 and !′1(c)< 0 and c!′1(c)+(1− c)!′−1(c) = 0. (14)
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Proof Since !′1 and !′−1 are assumed to exist everywhere

∂
∂η̂
L(η, η̂) = η!′1(η̂)+(1−η)!′−1(η̂)

exists for all η̂. L is CCc is equivalent to

∂
∂η̂
L(η, η̂)

∣

∣

∣

∣

η̂=c

{

> 0, η< c< η̂
< 0, η̂< c< η

⇔

{

∀η< c, η!′1(c)+(1−η)!′−1(c)> 0
∀η> c, η!′1(c)+(1−η)!′−1(c)< 0

(15)

⇔
c!′1(c)+(1− c)!′−1(c) = 0
and !′−1(c)> 0 and !′1(c)< 0,

(16)

where we have used the fact that (15) with η = 0 and η = 1 respectively substituted implies
!′−1(c)> 0 and !′1(c)< 0.

If ! is proper, then by evaluating (3) at η = 0 and η = 1 we obtain !′1(η̂) = −w(η̂)(1− η̂) and
!′−1(η̂) = w(η̂)η̂. Thus (16) implies −w(c)(1− c) < 0 and w(c)c > 0 which holds if and only if
w(c) 3= 0. We have thus shown the following corollary.

Corollary 18 If ! is proper with weight w, then for any c ∈ (0,1),

w(c) 3= 0 ⇔ ! is CCc.

The simple form of the weight function for the cost-sensitive misclassification loss !c0 (w(c) =
δ(c− c0)) gives the following corollary (confer Bartlett et al., 2006):

Corollary 19 !c0 is CCc if and only if c0 = c.

5.2 Calibration for Composite Losses

The translation of the above results to general proper composite losses with invertible differentiable
link ψ is straight forward. Condition (13) becomes

∀η 3= c, Lψ(η)< inf
v : (ψ−1(v)−c)(η−c)≤0

Lψ(η,ψ−1(v)).

Theorem 16 then immediately gives:

Corollary 20 A composite loss !ψ(·, ·) = !(·,ψ−1(·)) with invertible and differentiable link ψ is
CCc for all c ∈ (0,1) if and only if the associated proper loss ! is strictly proper.

Theorem 17 immediately gives:

Corollary 21 Suppose !ψ is as in Corollary 20 and that the partial losses !1 and !−1 of the asso-
ciated proper loss ! are differentiable. Then for any c ∈ (0,1), !ψ is CCc if and only if (14) holds.

It can be shown that in the special case of margin losses Lφ, which satisfy the conditions of Corollary
14 such that they are proper composite losses, Corollary 21 leads to the condition φ′(0) < 0 which
is the same as obtained by Bartlett et al. (2006).
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6. Convexity of Composite Losses

We have seen that composite losses are defined by the proper loss ! and the link ψ. We have further
seen from (14) that it is natural to parametrise composite losses in terms of w and ψ′, and combine
them as ρ. One may wish to choose a weight function w and determine which links ψ lead to a
convex loss; or choose a link ψ and determine which weight functions w (and hence proper losses)
lead to a convex composite loss. The main result of this section is Theorem 29 answers these
questions by characterising the convexity of composite losses in terms of (w,ψ′) or ρ.

We first establish some convexity results for losses and their conditional and full risks.

Lemma 22 Let ! : Y×V→ [0,∞) denote an arbitrary loss. Then the following are equivalent:

1. v +→ !(y,v) is convex for all y ∈ {−1,1},
2. v +→ L(η,v) is convex for all η ∈ [0,1],
3. v +→ L̂(v,S) := 1

|S| ∑(x,y)∈S !(y,v(x)) is convex for all finite S⊂ X×Y.

Proof 1⇒ 2: By definition, L(η,v) = (1−η)!(−1,v)+η!(1,v)which is just a convex combination
of convex functions and hence convex.

2⇒ 1: Choose η= 0 and η= 1 in the definition of L.
1 ⇒ 3: For a fixed (x,y), the function v +→ !(y,v(x)) is convex since ! is convex. Thus, L̂ is

convex as it is a non-negative weighted sum of convex functions.
3 ⇒ 1: The convexity of L̂ holds for every S so for each y ∈ {−1,1} choose S = {(x,y)} for

some x. In each case v +→ L̂(v,S) = !(y,v(x)) is convex as required.

The following theorem generalises the corollary on page 12 of Buja et al. (2005) to arbitrary com-
posite losses with invertible links. It has less practical value than the previous lemma since, in
general, sums of quasi-convex functions are not necessarily quasi-convex (a function f is quasi-
convex if the set {x : f (x) ≥ α} is convex for all α ∈ R). Thus, assuming properness of the loss !
does not guarantee its empirical risk L̂(·,S) will not have local minima.

Theorem 23 If !ψ(y,v) = !(y,ψ−1(v)) is a composite loss where ! is proper and ψ is invertible and
differentiable then Lψ(η,v) is quasi-convex in v for all η ∈ [0,1].

Proof Since ! is proper we know by Corollary 11 that the conditional Bayes risk satisfies

∂
∂v
Lψ(η,v) = (ψ−1(v)−η)ρ(ψ−1(v)).

Since ψ is invertible and ρ ≥ 0 we see that ∂
∂vL

ψ(η,v) only changes sign at η = ψ−1(v) and so Lψ
is quasi-convex as required.

The following theorem characterises convexity of composite losses with invertible links.

Theorem 24 Let !ψ(y,v) be a composite loss comprising an invertible link ψ with inverse q :=ψ−1

and strictly proper loss with weight function w. Assume q′(·) > 0. Then v +→ !ψ(y,v) is convex for
y ∈ {−1,1} if and only if

−
1
x

≤
w′(x)
w(x)

−
ψ′′(x)
ψ′(x)

≤
1

1− x
, ∀x ∈ (0,1). (17)
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This theorem suggests a very natural parametrisation of composite losses is via (w,ψ′). Observe
that w,ψ′ : [0,1]→ R+. (But also see the comment following Theorem 29.)
Proof We can write the conditional composite loss as

Lψ(η,v) = η!1(q(v))+(1−η)!−1(q(v))

and by substituting q= ψ−1 into (10) we have

∂
∂v
Lψ(η,v) = w(q(v))q′(v)[q(v)−η]. (18)

A necessary and sufficient condition for v +→ !ψ(y,v) = Lψ(y,v) to be convex for y ∈ {−1,1} is that

∂2

∂v2
Lψ(y,v)≥ 0, ∀v ∈ R, ∀y ∈ {−1,1}.

Using (18) the above condition is equivalent to

[w(q(v))q′(v)]′(q(v)− !y= 1")+w(q(v))q′(v)q′(v) ≥ 0, ∀v ∈ R, (19)

where
[w(q(v))q′(v)]′ :=

∂
∂v
w(q(v))q′(v).

Inequality (19) is equivalent to (Buja et al., 2005, Equation 39). By further manipulations, we can
simplify (19) considerably.

Since !y= 1" is either 0 or 1 we equivalently have the two inequalities

[w(q(v))q′(v)]′q(v)+w(q(v))(q′(v))2 ≥ 0, ∀v ∈ R, (y=−1)
[w(q(v))q′(v)]′(q(v)−1)+w(q(v))(q′(v))2 ≥ 0, ∀v ∈ R, (y= 1),

which we shall rewrite as the pair of inequalities

w(q(v))(q′(v))2 ≥ −q(v)[w(q(v))q′(v)]′, ∀v ∈ R, (20)
w(q(v))(q′(v))2 ≥ (1−q(v))[w(q(v))q′(v)]′, ∀v ∈ R. (21)

Observe that if q(·) = 0 (resp. 1−q(·) = 0) then (20) (resp. (21)) is satisfied anyway because of the
assumption on q′ and the fact that w is non-negative. It is thus equivalent to restrict consideration to
v in the set

{x : q(x) 3= 0 and (1−q(x)) 3= 0}= q−1((0,1)) = ψ((0,1)).

Combining (20) and (21) we obtain the equivalent condition

(q′(v))2

1−q(v)
≥

[w(q(v))q′(v)]′

w(q(v))
≥

−(q′(v))2

q(v)
, ∀v ∈ ψ((0,1)), (22)

where we have used the fact that q : R→ [0,1] and is thus sign-definite and consequently −q(·) is
always negative and division by q(v) and 1−q(v) is permissible since as argued we can neglect the
cases when these take on the value zero, and division by w(q(v)) is permissible by the assumption
of strict properness since that implies w(·)> 0. Now

[w(q(·))q′(·)]′ = w′(q(·))q′(·)q′(·)+w(q(·))q′′(·)

2403



REID AND WILLIAMSON

and thus (22) is equivalent to

(q′(v))2

1−q(v)
≥

w′(q(v))(q′(v))2+w(q(v))q′′(v)
w(q(v))

≥
−(q′(v))2

q(v)
, ∀v ∈ ψ((0,1)) (23)

Now divide all sides of (23) by (q′(·))2 (which is permissible by assumption). This gives the equiv-
alent condition

1
1−q(v)

≥
w′(q(v))
w(q(v))

+
q′′(v)
(q′(v))2

≥
−1
q(v)

, ∀v ∈ ψ((0,1)). (24)

Let x= q(v) and so v= q−1(x) = ψ(x). Then (24) is equivalent to

1
1− x

≥
w′(x)
w(x)

+
q′′(ψ(x))
(q′(ψ(x)))2

≥
−1
x
, ∀x ∈ (0,1). (25)

Now 1
q′(ψ(x)) =

1
q′(q−1(x)) = (q−1)′(x) = ψ′(x). Thus (25) is equivalent to

1
1− x

≥
w′(x)
w(x)

+Φψ(x) ≥
−1
x
, ∀x ∈ (0,1), (26)

where
Φψ(x) := q′′ (ψ(x))

(

ψ′(x)
)2
.

All of the above steps are equivalences. We have thus shown that

(26) is true ⇔ v +→ Lψ(y,v) is convex for y ∈ {−1,1}

where the right hand side is equivalent to the assertion in the theorem by Lemma 22.
Finally we simplify Φψ. We first compute q′′ in terms of ψ= q−1. Observe that q′ = (ψ−1)′ =
1

ψ′(ψ−1(·)) . Thus

q′′(·) = (ψ−1)′′(·)

=

(

1
ψ′(ψ−1(·))

)′

=
−1

(ψ′(ψ−1(·)))2
ψ′′(ψ−1(·))

(

ψ−1(·)
)′

=
−1

(ψ′(ψ−1(·)))3
ψ′′(ψ−1(·)).

Thus by substitution

Φψ(·) =
−1

(ψ′(ψ−1(ψ(·))))3
ψ′′(ψ(ψ−1(·)))

(

ψ′(·)
)2

=
−1

(ψ′(·))3
ψ′′(·)

(

ψ′(·)
)2

= −
ψ′′(·)

ψ′(·)
. (27)

Substituting the simpler expression (27) for Φψ into (26) completes the proof.
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Lemma 25 If q is affine then Φψ = 0.

Proof Using (27), this is immediate since in this case ψ′′(·) = 0.

Corollary 26 Composite losses with a linear link (including as a special case the identity link) are
convex if and only if

−
1
x

≤
w′(x)
w(x)

≤
1

1− x
, ∀x ∈ (0,1).

6.1 Canonical Links

Buja et al. (2005) introduced the notion of a canonical link defined by ψ′(v) = w(v). The canonical
link corresponds to the notion of “matching loss” as developed by Helmbold et al. (1999) and
Kivinen and Warmuth (2001). Note that choice of canonical link implies ρ(c) = w(c)/ψ′(c) = 1.

Lemma 27 Suppose ! is a proper loss with weight function w and ψ is the corresponding canonical
link, then

Φψ(x) =−
w′(x)
w(x)

. (28)

Proof Substitute ψ′ = w into (27).

This lemma gives an immediate proof of the following result due to Buja et al. (2005).

Theorem 28 A composite loss comprising a proper loss with weight function w combined with its
canonical link is always convex.

Proof Substitute (28) into (17) to obtain

−
1
x

≤ 0 ≤
1

1− x
, ∀x ∈ (0,1)

which holds for any w.

An alternative view of canonical links is given in Appendix B.

6.2 A Simpler Characterisation of Convex Composite Losses

The following theorem prrovides a simpler characterisation of the convexity of composite losses.
Noting that loss functions can be multiplied by a scalar without affecting what a learning algorithm
will do, it is convenient to normalise them. If w satisfies (17) then so does αw for all α ∈ (0,∞).
Thus without loss of generality we will normalise w such that w( 12) = 1. We chose to normalise
about 12 for two reasons: symmetry and the fact that w can have non-integrable singularities at 0 and
1; see, for example, Buja et al. (2005).

Theorem 29 Consider a proper composite loss !ψ with invertible linkψ and (strictly proper) weight
w normalised such that w( 12) = 1. Then ! is convex if and only if

ψ′(x)
x

! 2ψ′( 12)w(x) !
ψ′(x)
1− x

, ∀x ∈ (0,1), (29)

where ! denotes ≤ for x≥ 1
2 and denotes ≥ for x≤ 1

2 .
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Observe that the condition (29) is equivalent to

1
2ψ′( 12)x

! ρ(x) !
1

2ψ′( 12)(1− x)
, ∀x ∈ (0,1),

which suggests the importance of the function ρ(·).
Proof Observing that w

′(x)
w(x) = (logw)′(x) we let g(x) := logw(x). Observe that g(v) =

∫ v
1
2
g′(x)dx+

g( 12) and g(
1
2) = logw(

1
2) = 0. From Theorem 24, we know that ! is convex iff (17) holds. Using

the newly introduced notation, this is equivalent to

−
1
x
−Φψ(x) ≤ g′(x) ≤

1
1− x

−Φψ(x).

For v≥ 1
2 we thus have

∫ v

1
2

−
1
x
−Φψ(x)dx ≤ g(v) ≤

∫ v

1
2

1
1− x

−Φψ(x)dx.

Similarly, for v≤ 1
2 we have

∫ v

1
2

−
1
x
−Φψ(x)dx ≥ g(v) ≥

∫ v

1
2

1
1− x

−Φψ(x)dx,

and thus

− lnv− ln2−
∫ v

1
2

Φψ(x)dx ! g(v) ! − ln2− ln(1− v)−
∫ v

1
2

Φψ(x)dx.

Since exp(·) is monotone increasing we can apply it to all terms and obtain

1
2v
exp

(

−
∫ v

1
2

Φψ(x)dx
)

! w(v) !
1

2(1− v)
exp

(

−
∫ v

1
2

Φψ(x)dx
)

. (30)

Now ∫ v

1
2

Φψ(x)dv=
∫ v

1
2

−
ψ′′(x)
ψ′(x)

dx=−
∫ v

1
2

(logψ′)′(x)dx=− logψ′(v)+ logψ′( 12)

and so
exp

(

−
∫ v

1
2

Φψ(x)dx
)

=
ψ′(v)
ψ′( 12)

.

Substituting into (30) completes the proof.

If ψ is the identity (i.e., if !ψ is itself proper) we get the simpler constraints

1
2x

! w(x) !
1

2(1− x)
, ∀x ∈ (0,1), (31)

which are illustrated as the shaded region in Figure 2. Observe that the (normalised) weight function
for squared loss is w(c) = 1 which is indeed within the shaded region as one would expect.
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Figure 2: Allowable normalised weight functions to ensure convexity of composite loss functions
with identity link (left) and logistic link (right).

Consider the link ψlogit(c) := log
( c
1−c

)

with corresponding inverse link q(c) = 1
1+e−c . One can

check that ψ′(c) = 1
c(1−c) . Thus the constraints on the weight function w to ensure convexity of the

composite loss are
1

8x2(1− x)
! w(x) !

1
8x(1− x)2

, ∀x ∈ (0,1).

This is shown graphically in Figure 2. One can compute similar regions for any link. Two other
examples are the Complementary Log-Log link ψCLL(x) = log(− log(1− x)) (confer McCullagh
and Nelder, 1989), the “square link” ψsq(x) = x2 and the “cosine link” ψcos(x) = 1− cos(πx). All
of these are illustrated in Figure 3. The reason for considering these last two rather unusual links
is to illustrate the following fact. Observing that the allowable region in Figure 2 precludes weight
functions that approach zero at the endpoints of the interval, and noting that in order to well approx-
imate the behaviour of 0-1 loss (with its weight function being w0−1(c) = δ(c− 1

2)) one would like a
weight function that does indeed approach zero at the end points, it is natural to ask what constraints
are imposed upon a link ψ such that a composite loss with that link and a weight function w(c) such
that

lim
c↘0

w(c) = lim
c↗1

w(c) = 0 (32)

is convex. Inspection of (29) reveals it is necessary that ψ′(x) → 0 as x→ 0 and x→ 1. Such ψ
necessarily have bounded range and thus the inverse link ψ−1 is only defined on a finite interval
and furthermore the gradient of ψ−1 will be arbitrarily large. If one wants inverse links defined on
the whole real line (such as the logistic link) then one can not obtain a convex composite link with
the associated proper loss having a weight function satisfying (32). Thus one can not choose an
effectively usable link to ensure convexity of a proper loss that is arbitrarily “close to” 0-1 loss in
the sense of the corresponding weight functions.
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Figure 3: Allowable normalised weight functions to ensure convexity of loss functions with com-
plementary log-log, square and cosine links.

Corollary 30 If a loss is proper and convex, then it is strictly proper.

The proof of Corollary 30 makes use of the following special case of the Gronwall style Lemma
1.1.1 of Bainov and Simeonov (1992).

Lemma 31 Let b : R→R be continuous for t ≥ α. Let v(t) be differentiable for t ≥ α and suppose
v′(t)≤ b(t)v(t), for t ≥ α and v(α)≤ v0. Then for t ≥ α,

v(t)≤ v0 exp
(∫ t

α
b(s)ds

)

.

Proof (Corollary 30) Observe that the RHS of (17) implies

w′(v)≤
w(v)
1− v

, v≥ 0.

Suppose w(0) = 0. Then v0 = 0 and the setting α= 0 the lemma implies

w(t)≤ v0 exp
(∫ t

0

1
1− s

ds
)

=
v0
1− t

= 0, t ∈ (0,1].

Thus if w(0) = 0 then w(t) = 0 for all t ∈ (0,1). Choosing any other α ∈ (0,1) leads to a similar
conclusion. Thus if w(t) = 0 for some t ∈ [0,1), w(s) = 0 for all s ∈ [t,1]. Hence w(t) > 0 for all
t ∈ [0,1] and hence by the remark immediately following Theorem 6 ! is strictly proper.

6.3 Convexity of Bregman Divergences in their Second Argument

Bregman divergences are always convex in the first argument but only sometimes in their second.
Corollary 5 and Equation 31 together characterise when the Bregman divergence Dφ(η, η̂) defined
on (0,1)× (0,1) is convex in η̂, providing a more direct result that that in Bauschke and Borwein
(2001): Setting φ = −L we immediately obtain that η̂ +→ Dφ(η, η̂) is convex for all η ∈ (0,1) iff
(31) holds, where w(c) = φ′′(c).
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7. Choosing a Surrogate Loss

A surrogate loss function is a loss function which is not exactly what one wishes to minimise but is
easier to work with algorithmically. Convex surrogate losses are often used in place of the 0-1 loss
which is not convex.

Surrogate losses have garnered increasing interest in the machine learning community (Zhang,
2004b; Bartlett et al., 2006; Steinwart, 2007; Steinwart and Christmann, 2008). Some of the ques-
tions considered to date are bounding the regret of a desired loss in terms of a surrogate (“surrogate
regret bounds”—see Reid and Williamson, 2009b and references therein), the relationship between
the decision theoretic perspective and the elicitability perspective (Masnadi-Shirazi and Vascon-
celos, 2009), and efficient algorithms for minimising convex surrogate margin losses (Nock and
Nielsen, 2009b,a).

Typically convex surrogates are used because they lead to convex, and thus tractable, optimisa-
tion problems. To date, work on surrogate losses has focussed on margin losses which necessarily
are symmetric with respect to false positives and false negatives (Buja et al., 2005). In line with the
rest of this paper, our treatment will not be so restricted.

The aim here is put forward some plausible definitions of what it might mean to select a “best”
surrogate from a class of losses—for example, the class of proper, convex composite losses. We
make use of the weight function perspective and the convexity results given in the previous section
to investigate some new definitions for “best” surrogate and put forward some conjectures regarding
them.

7.1 The “Best” Surrogate Loss

There are many choices of surrogate loss one can choose. A natural question is thus “which is
best?”. In order to do this we need to first define how we are evaluating losses as surrogates. To do
this we require notation to describe the set of minimisers of the conditional and full risk associated
with a loss. Given a loss ! : {−1,1}×V→ R its conditional minimisers at η ∈ [0,1] is the set

H(!,η) := {v ∈ V : L(η,v) = L(η)}. (33)

Given a set of hypothesesH ⊆ VX, the (constrained) Bayes optimal risk is

LH := inf
h∈H

L(h,P).

The (full) minimisers overH for P is the set

H(!,P) := {h ∈H : L(h) = LH},

whereH ⊆ VX is some restricted set of functions and L(h) := E(X,Y)∼P[!(Y,h(X))] and the expec-
tation is with respect to P. Given a reference loss !ref, we will say the !ref-surrogate penalty of a
loss ! over the function classH on a problem (η,M) (or equivalently P) is

S!ref(!,η,M) = S!ref(!,P) := inf
h∈H(!,P)

Lref(h),

where it is important to remember that L is with respect to P. That is, S!ref(!,P) is the minimum !ref
risk obtainable by a function inH that minimises the ! risk.
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Given a fixed experiment P, if L is a class of losses then the best surrogate losses in L for the
reference loss !ref are those that minimise the !ref-surrogate penalty. This definition is motivated by
the manner in which surrogate losses are used—one minimizes L(h) over h to obtain the minimiser
h∗ and one hopes that Lref(h∗) is small. Clearly, if the class of losses contains the reference loss
(i.e., !ref ∈ L) then !ref will be a best surrogate loss. Therefore, the question of best surrogate loss
is only interesting when !ref /∈ L. One particular case we will consider is when the reference loss
is the 0-1 loss and the class of surrogates L is the set of convex proper losses. Since 0-1 loss is not
convex the question of which surrogate is best is non-trivial.

It would be nice if one could reason about the “best” surrogate loss using the conditional per-
spective (that is working with L instead of L) and in a manner independent of H. It is simple to
see why this can not be done. Since all the losses we consider are proper, the minimiser over η̂ of
L(η, η̂) is η. Thus any proper loss would lead to the same η̂ ∈ [0,1]. It is only the introduction of
the restricted class of hypothesesH that prevents this reasoning being applied for L: restrictions on
h ∈H prevent h(x) = η(x) for all x ∈ X. We conclude that the problem of best surrogate loss only
makes sense when one both takes expectations over X and restricts the class of hypotheses h to be
drawn from some setH ! [0,1]X.

This reasoning accords with that of Nock and Nielsen (2009b,a) who examined which surrogate
to use and proposed a data-dependent scheme that tunes surrogates for a problem. They explicitly
considered proper losses and said that “minimizing any [lower-bounded, symmetric proper] loss
amounts to the same ultimate goal” and concluded that “the crux of the choice of the [loss] relies
on data-dependent considerations”.

We demonstrate the difficulty of finding a universal best surrogate loss in by constructing a
simple example. One can construct experiments (η1,M) and (η2,M) and proper losses !1 and !2
such that

S!0−1(!1,(η1,M))> S!0−1(!2,(η1,M)) but S!0−1(!1,(η2,M))< S!0−1(!2,(η2,M)).

(The examples we construct have weight functions that “cross-over” each other; the details are in
Appendix A.) However, this does not imply there can not exist a particular convex !∗ that minorizes
all proper losses in this sense. Indeed, we conjecture that, in the sense described above, there is no
best proper, convex surrogate loss.

Conjecture 32 Given a proper, convex loss ! there exists a second proper, convex loss !∗ 3= !, a
hypothesis classH, and an experiment P such that S!0−1(!∗,P)< S!0−1(!,P) for the classH.

To prove the above conjecture it would suffice to show that for a fixed hypothesis class and any
pair of losses one can construct two experiments such that one loss minorises the other loss on one
experiment and vice versa on the other experiment.

Supposing the above conjecture is true, one might then ask for a best surrogate loss for some
reference loss !ref in a minimax sense. Formally, we would like the loss !∗ ∈ L such that the worst-
case penalty for using !∗,

ϒL(!
∗) := sup

P

{

S!ref(!
∗,P)− inf

!∈L
S!ref(!,P)

}

is minimised. That is, ϒL(!∗)≤ ϒL(!) for all ! ∈ L.
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7.2 The “Minimal” Symmetric Convex Proper Loss

Theorem 29 suggests an answer to the question “What is the proper convex loss closest to the 0-1
loss?” A way of making this question precise follows. Since ! is presumed proper, it has a weight
function w. Suppose w.l.o.g. that w( 12) = 1. Suppose the link is the identity. The constraints in (17)
imply that the weight function that is most similar to that for 0-1 loss meets the constraints. Thus
from (31)

wminimal(c) =
1
2

(

1
c
∧

1
1− c

)

(34)

is the weight for the convex proper loss closest to 0-1 loss in this sense. It is the weight function
that forms the lower envelope of the shaded region in the left diagram of Figure 2. Using (5) one
can readily compute the corresponding partial losses explicitly

!minimal−1 (η̂) =
1
2
(

!η̂< 1
2"(−η̂− ln(1− η̂))+ !η̂≥ 1

2"(η̂−1− ln(
1
2))

)

(35)

and
!minimal1 (η̂) =

1
2
(

!η̂< 1
2"(−η̂− log(

1
2))+ !η̂≥ 1

2"(η̂−1− ln η̂)
)

. (36)

Observe that the partial losses are (in part) linear, which is unsurprising as linear functions are on the
boundary of the set convex functions. This loss is also best in another more precise (but ultimately
unsatisfactory) sense, as we shall now show.

Surrogate regret bounds are theoretical bounds on the regret of a desired loss (say 0-1 loss)
in terms of the regret with respect to a surrogate. Reid and Williamson (2009b) have shown the
following (we only quote the simpler symmetric case here):

Theorem 33 Suppose ! is a proper loss with corresponding conditional Bayes risk L which is sym-
metric about 12 : L(

1
2 − c) = L( 12 + c) for c ∈ [0, 12 ]. If the regret for the ! 12 loss ΔL 1

2
(η, η̂) = α, then

the regret ΔL with respect to ! satisfies

ΔL(η, η̂)≥ L( 12)−L( 12 +α). (37)

The bound in the theorem can be inverted to upper bound ΔL 1
2
given an upper bound on ΔL(η, η̂).

Considering all symmetric proper losses normalised such thatw( 12)= 1, the right side of (37) is max-
imised and thus the bound on ΔL 1

2
in terms of ΔL is minimised when L( 12 +α) is maximised (over

all losses normalised as mentioned). But since w=−L′′, that occurs for the pointwise minimiser of
w (subject to w( 12) = 1). Since we are interested in convex losses, the minimising w is given by (34).
In this case the right hand side of (37) can be explicitly determined to be (α2 +

1
4) log(2α+1)− α

2 ,
and the bound can be inverted to obtain the result that if ΔLminimal(η, η̂) = x then

ΔL 1
2
(η, η̂)≤

1
2
exp

(

LambertW
(

(4x−1)
e

)

+1
)

−
1
2

(38)

which is plotted in Figure 4.13
The above argument does not show that the loss given by (35,36) is the best surrogate loss. The

reason is that the above is optimising a bound on the regret, not the actual regret; the argument in

13. The LambertW function is the real-valued solution of x +→W (x)eW (x). It is commonly found in solutions to differen-
tial equations, has no closed form. Its details are not relevant to this discussion except for computing Figure 4.
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Figure 4: Upper bound on the 0-1 regret in terms of ΔLminimal as given by (38).

Appendix A demonstrates there can in general be no universally best surrogate loss (independent
of the underlying distribution). Nevertheless it does suggest it is at least worth considering using
!minimal as a convex proper surrogate binary loss.

We conjecture that !minimal is somehow special in the class of proper convex losses in some way
other than being the pointwise minimiser of weights (and the normalised loss with smallest regret
bound with respect to !0−1), but the exact nature of the specialness still eludes us. Perhaps it is
optimal in some weaker (minimax) sense. The reason for this suggestion is that it is not hard to
show that for reasonable P there existsH such that c +→ Lc(h,P) takes on all possible values within
the constraints

0≤ Lc(h,P)≤max(c,1− c)

which follows immediately from the definition of cost-sensitive misclassification loss. Furthermore
the example in the appendix below seems to require loss functions whose corresponding weight
functions cross over each other and there is no weight function corresponding to a convex proper
loss that crosses over wminimal.

8. Conclusions

Composite losses are widely used. As outlined in §1.1, we have characterised a number of aspects
of them: their relationship to margin losses, the connection between properness and classification
calibration, the constraints symmetry imposes, when composite losses are convex, and natural ways
to parametrise them. We have also considered the question of the “best” surrogate loss.

The parametrisation of a composite loss in terms (w,ψ′) (or ρ) has advantages over using (φ,ψ)
or (L,ψ). As explained by Masnadi-Shirazi and Vasconcelos (2009), the representation in terms of
(φ,ψ) is in general not unique. The representation in terms of L is harder to intuit: whilst indeed the
Bayes risk for squared loss and 0-1 loss are “close” (compare the graph of c +→ c(1−c) with that of
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c +→ c∧ (1− c)), by examining their weight functions they are seen to be very different (w(c) = 1
versus w(c) = 2δ(c− 1

2)). We have also seen that on the basis of Theorem 24, the parametrisation
(w,ψ′) is perhaps the most natural—there is a pleasing symmetry between the loss and the link as
they are in this form both parametrised in terms of non-negative weight functions on [0,1]. Recall
too that the canonical link sets ψ′ equal to w.

The observation suggests an alternate inductive principle known as surrogate tuning, which
seems to have been first suggested by Nock and Nielsen (2009b).14 The idea of surrogate tuning is
simple: noting that the best surrogate depends on the problem, adapt the surrogate you are using to
the problem. In order to do so it is important to have a good parametrisation of the loss. The weight
function perspective does just that, especially given Theorem 29. It would be straight forward to
develop low dimensional parametrisations of w that satisfy the conditions of this theorem which
would thus allow a learning algorithm to explore the space of convex losses. One could (taking due
care with the subsequent multiple hypothesis testing problem) regularly evaluate the 0-1 loss of the
hypotheses so obtained. The observations made in Section 4 regarding stochastic gradient descent
algorithms may be of help in this regard.
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Appendix A. Example Showing Incommensurability of Two Proper Surrogate Losses

We consider X= [0,1] withM being uniform on X, and consider the two problems that are induced
by

η1(x) = x2 and η2(x) =
1
3
+
x
3
.

We use a simple linear hypothesis class

H := {hα(x) := αx : α ∈ [0,1]},

with identity link function and consider the two surrogate proper losses !1 and !2 with weight func-
tions

w1(c) =
1
c
, w2(c) =

1
1− c

.

These weight functions correspond to the two curves that construct the left diagram in Figure 2. The
corresponding conditional losses can be readily calculated to be

L1(η,h) := η(h−1− log(h))+(1−η)h
L2(η,h) := η(1−h)+(1−η)(−h− log(1−h)).

14. Surrogate tuning differs from loss tailoring (Hand, 1994; Hand and Vinciotti, 2003; Buja et al., 2005) which involves
adapting the loss to what you really think is important.
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One can numerically compute the parameters for the constrained Bayes optimal for each problem
and for each surrogate loss:

α∗
1,1 = argmin

α∈[0,1]
L1(η1,hα,M) = 0.66666667

α∗
2,1 = argmin

α∈[0,1]
L2(η1,hα,M) = 0.81779259

α∗
1,2 = argmin

α∈[0,1]
L1(η2,hα,M) = 1.00000000

α∗
2,1 = argmin

α∈[0,1]
L2(η2,hα,M) = 0.77763472.

Furthermore

L0−1(η1,hα∗
1,1
,M) = 0.3580272, L0−1(η1,hα∗

2,1
,M) = 0.3033476,

L0−1(η2,hα∗
1,2
,M) = 0.4166666, L0−1(η2,hα∗

2,2
,M) = 0.4207872.

Thus for problem η1 the surrogate loss L2 has a constrained Bayes optimal hypothesis hα∗
2,1
which

has a lower 0-1 risk than the constrained Bayes optimal hypothesis hα∗
1,1
for the surrogate loss L1.

Thus for problem η1 surrogate L2 is better than surrogate L1. However for problem η2 the situation
is reversed: surrogate L2 is worse than surrogate L1.

Appendix B. An Alternate View of Canonical Links

This appendix contains an alternate approach to understanding canonical links using convex duality.
In doing so we present an improved formulation of a result on the duality of Bregman divergences
that may be of independent interest.

The Legendre-Fenchel (LF) dual φ" of a function φ : R→ R is a function defined by

φ"(s") := sup
s∈R

{〈s,s"〉−φ(s)}.

The LF dual of any function is convex.
When φ(s) is a function of a real argument s and the derivative φ′(s) exists, the Legendre-Fenchel

conjugate φ" is given by the Legendre transform (Rockafellar, 1970; Hiriart-Urruty and Lemaréchal,
2001)

φ"(s) = s · (φ′)−1(s)−φ
(

(φ′)−1(s)
)

. (39)
Thus (writing ∂ f := f ′) f ′ = (∂ f ")−1. Thus with w,W , andW defined as above,

W = (∂(W "
))−1, W−1 = ∂(W "

), W "
=

∫
W−1. (40)

Let w,W ,W be as in Theorem 7. Denote by LW the w-weighted conditional loss parametrised
by W =

∫
w and let ΔLW be the corresponding regret (we can interchange ΔL and D here by (12)

since ψL = id.
Dw(η, η̂) =W (η)−W (η̂)− (η− η̂)W (η̂). (41)

We now further consider Dw as given by (41). It will be convenient to parametrise D byW instead
of w. Note that the standard parametrisation for a Bregman divergence is in terms of the convex
functionW . Thus will write DW , DW and Dw to all represent (41). The following theorem is known
(e.g., Zhang, 2004a) but as will be seen, stating it in terms of DW provides some advantages.
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Theorem 34 Let w, W, W and DW be as above. Then for all x,y ∈ [0,1],

DW (x,y) = DW−1(W (y),W (x)). (42)

Proof Using (39) we have

W "
(u) = u ·W−1(u)−W (W−1(u))

⇒ W (W−1(u)) = u ·W−1(u)−W "
(u). (43)

Equivalently (using (40))
W "

(W (u)) = u ·W (u)−W (u). (44)

Thus substituting and then using (43) we have

DW (x,W−1(v)) = W (x)−W (W−1(v))− (x−W−1(v)) ·W (W−1(v))
= W (x)+W "

(v)− vW−1(v)− (x−W−1(v)) · v
= W (x)+W "

(v)− x · v. (45)

Similarly (this time using (44) we have

DW−1(v,W (x)) = W "
(v)−W "

(W (x))− (v−W (x)) ·W−1(W (x))
= W "

(v)− xW (x)+W (x)− v · x+ xW (x)
= W "

(v)+W (x)− v · x (46)

Comparing (45) and (46) we see that

DW (x,W−1(v)) = DW−1(v,W (x))

Let y=W−1(v). Thus subsitituting v=W (y) leads to (42).

The weight function corresponding to DW−1 is ∂
∂xW

−1(x) = 1
w(W−1(x)) .

Theorem 35 If the inverse link ψ−1 =W−1 (and thus η̂=W−1(ĥ)) then

DW (η, η̂) = DW (η,W−1(ĥ)) =W (η)+W "
(ĥ)−η · ĥ

LW (η, η̂) = LW (η,W−1(ĥ)) =W "
(ĥ)−η · ĥ+η(W (1)+W (0))−W (0)

∂

∂ĥ
LW (η,W−1(ĥ)) = η̂−η

and furthermore DW (η,W−1(ĥ)) and LW (η,W−1(ĥ)) are convex in ĥ.

Proof The first two expressions follow immediately from (45) and (46) by substitution. The deriva-
tive follows from calculation: ∂

∂ĥLW (η,W−1(ĥ)) = ∂
∂ĥ(W

"
(ĥ)−η · ĥ) =W−1(ĥ)−η = η̂−η. The

convexity follows from the fact thatW " is convex (since it is the LF dual of a convex functionW )
and the overall expression is the sum of this and a linear term, and thus convex.

Buja et al. (2005) callW the canonical link. We have already seen (Theorem 27) that the composite
loss constructed using the canonical link is convex.
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Appendix C. Convexity and Robustness

In this appendix we show how the characterisation of the convexity of proper losses (Theorem 29)
allows one to make general algorithm independent statements about the robustness of convex proper
losses to random mis-classification noise.

Long and Servedio (2008) have shown that boosting with convex potential functions (i.e., con-
vex margin losses) is not robust to random class noise.15 That is, they are susceptible to random
class noise. In particular they present a very simple learning task which is “boostable”—can be per-
fectly solved using a linear combination of base classifiers—but for which, in the presence of any
amount of label noise, idealised, early stopping and L1 regularised boosting algorithms will learn a
classifier with only 50% accuracy.

This has led to the recent proposal of boosting algorithms that use non-convex margin losses
and experimental evidence suggests that these are more robust to class noise than their convex
counterparts. Freund (2009) recently described RobustBoost, which uses a parameterised family
of non-convex surrogate losses that approximates the 0-1 loss as the number of boosting iterations
increases. Experiments on a variant of the task proposed by Long and Servedio (2008) show that
RobustBoost is very insensitive to class noise. Masnadi-Shirazi and Vasconcelos (2009) presented
SavageBoost, a boosting algorithm built upon a non-convex margin function. They argued that even
when the margin function is non-convex the conditional risk may still be convex. We elucidate
this via our characterisation of the convexity of composite losses. Although all these results are
suggestive, it is not clear from these results whether the robustness or not is a property of the loss
function, the algorithm or a combination. We study that question by considering robustness in an
algorithm-independent fashion.

For α ∈ (0, 12) and η ∈ [0,1] we will define

ηα := α(1−η)+(1−α)η

as the α-corrupted version of η. This captures the idea that instead of drawing a positive label for
the point x with probability η(x) there is a random class flip with probability α. This might be done
on purpose in order to avoid problems with losses (e.g., log loss) that assign infinite penalty to 0
or 1 valued probability predictions. Since ηα is a convex combination of α and 1−α it follows
that ηα ∈ [α,1−α]. The effect of α-corruption on the conditional risk of a loss can be seen as a
transformation of the loss (Steinwart, 2009).

Lemma 36 If !ψ is any composite loss then its conditional risk satisfies

Lψ(ηα,v) = Lψα(η,v), η ∈ [0,1], v ∈ V,

where !ψα(y,v) = (1−α)!ψ(y,v)+α!ψ(−y,v).

15. We define exactly what we mean by robustness below. The notion that Long and Servedio (2008) examine is akin
to that studied for instance by Kearns (1998). There are many other meanings of “robust” which are different to that
which we consider. The classical notion of robust statistics (Huber, 1981) is motivated by robustness to contamination
of additive observation noise (some heavy-tail noise mixed in with the Gaussian noise often assumed in designing
estimators). There are some results about particular machine learning algorithms being robust in that sense (Schölkopf
et al., 2000). “Robust” is also used to mean robustness with respect to random attribute noise (Trafalis and Gilbert,
2006), robustness to unknown prior class probabilities (Provost and Fawcett, 2001), or a Huber-style robustness to
attribute noise (“outliers”) for classification (Fidler et al., 2006). We only study robustness in the sense of random
label noise.
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Proof By simple algebraic manipulation we have

Lψ(ηα,v) = (1−ηα)!ψ(−1,v)+ηα!ψ(1,v)
= [(1−α)(1−η)+αη]!ψ(−1,v)+ [α(1−η)+(1−α)η]!ψ(1,v)
= (1−η)[(1−α)!ψ(−1,v)+α!ψ(1,v)]+η[α!ψ(−1,v)+(1−α)!ψ(1,v)]
= (1−η)!ψα(−1,v)+η!ψα(1,v)
= Lψα(η,v)

proving the result.

In particular, if ! is strictly proper then !α cannot be proper because the minimiser of L(ηα, ·) is
ηα and so ηα 3= η must also be the minimiser of Lα(η, ·). This suggests that strictly proper losses
are not robust to any class noise.

C.1 Robustness Implies Non-convexity

We now define a general notion of robustness for losses for class probability estimation.

Definition 37 Given an α ∈ [0, 12), we will say a loss ! : {−1,1}× [0,1]→ R is α-robust at η if the
set of minimisers of the conditional risk for η and the set of minimisers of the conditional risk for
ηα have some common points.

That is, a loss is α-robust for a particular η if minimising the noisy conditional risk can potentially
give an estimate that is also a minimiser of the non-noisy conditional risk. Formally, ! is α-robust
at η when

H(!,ηα)∩H(!,η) 3= /0,

where H(!,η) is defined in (33). Due to the equivalence of α-corruption of data and a transformed
loss, another way to think about this type of robustness is the following: under what conditions can
using non-proper losses still lead to the recovery of accurate conditional probability estimates?

Label noise is symmetric about 12 and so the map η +→ ηα preserves the side of 12 on which the
values η and ηα are found. That is, η ≤ 1

2 if and only if ηα ≤ 1
2 for all α ∈ [0, 12). This means that

0-1 misclassification loss or, equivalently, ! 1
2
is α-robust for all η and for all α. For other c, the

range of η for which !c is α-robust is more limited.

Theorem 38 For each c ∈ (0,1), the loss !c is α-robust at η if and only if

η /∈

[

c−α
1−2α

,c
)

for c< 1
2 or η /∈

[

c,
c−α
1−2α

)

for c≥ 1
2 .

Proof By the definition of Lc and !η̂< c" = 1− !η̂≥ c" we have

Lc(η, η̂) = (1−η)c!η̂≥ c"+η(1− c)!η̂< c" = η(1− c)+(c−η)!η̂≥ c".

Since c−η is positive iff c > η we see Lc(η, η̂) is minimised for η < c when η̂ < c and for η ≥ c
when η̂ ≥ c. So H(!c,η) = [0,c) for η < c and H(!c,η) = [c,1] for η ≥ c. Since [0,c) and [c,1]
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are disjoint for all c ∈ [0,1] we see that H(!c,η) and H(!c,ηα) coincide if and only if η,ηα < c or
η,ηα ≥ c and are disjoint otherwise.

We proceed by cases. First, suppose c< 1
2 . For η< c< 1

2 it is easy to show ηα ≥ c iff η≥ c−α
1−2α

and so !c is not α-robust for η ∈ [ c−α1−2α ,c). For c ≤ η we see !c must be α-robust since ηα < c iff
η < c−α

1−2α but
c−α
1−2α < c for c < 1

2 which is a contradiction. Thus, for c <
1
2 we have !c is α-robust

iff η /∈ [ c−α1−2α ,c).
For c > 1

2 the main differences are that
c−α
1−2α > c for c > 1

2 and ηα < η for η > 1
2 . Thus, by a

similar argument as above we see that !c is α-robust iff η /∈ [c, c−α
1−2α).

This theorem allows us to characterise the robustness of arbitrary proper losses by appealing to
the integral representation in (4).

Lemma 39 If ! is a proper loss with weight function w then H(!,η) =
⋂
c : w(c)>0H(!c,η) and so

H(!,η)∩H(!,ηα) =
⋂

c : w(c)>0
H(!c,η)∩H(!c,ηα).

Proof We first show that H(!,η) ⊆
⋂
c : w(c)>0H(!c,η) by contradiction. Assume there is an η̂ ∈

H(!,η) but for which there is some c0 such that w(c0) > 0 and η̂ /∈ H(!c0 ,η). Then there is a
η̂′ ∈ H(!c0 ,η) and η̂′ ∈ H(!c) for all other c for which w(c) > 0 (otherwise H(!,η) = {η̂}). Thus,
Lc0(η, η̂′)< Lc0(η, η̂′) and so

∫ 1
0 Lc(η, η̂′)w(c)dc<

∫ 1
0 Lc(η, η̂)w(c)dc since w(c0)> 0.

Now suppose η̂ ∈
⋂
c : w(c)>0H(!c,η). That is, η̂ is a minimiser of Lc(η, ·) for all c such that

w(c) > 0 and therefore must also be a minimiser of L(η, ·) =
∫ 1
0 Lc(η, ·)w(c)dc and is therefore in

H(!,η), proving the converse.

One consequence of this lemma is that if w(c) > 0 and !c is not α-robust at η then, by definition,
H(!c,η)∩H(!c,ηα) = /0 and so ! cannot be α-robust at η. This means we have established the
following theorem regarding the α-robustness of an arbitrary proper loss in terms of its weight
function.

Theorem 40 If ! is a proper loss with weight function w then it is not α-robust for any

η ∈
⋃

c : w(c)>0

[

c−α
1−2α

,c
)

∪

[

c,
c−α
1−2α

)

.

By Corollary 30 we see that convex proper losses are strictly proper and thus have weight
functions which are non-zero for all c∈ [0,1] and so by Theorem 40 we have the following corollary.

Corollary 41 If a proper loss is convex, then for all α ∈ (0, 12) it is not α-robust at any η ∈ [0,1].

At a high level, this result—“convexity implies non-robustness”—appears to be logically equiv-
alent to Long and Servedio’s result that “robustness implies non-convexity”. However, there are a
few discrepancies that mean they are not directly comparable. The definitions of robustness differ.
We focus on the point-wise minimisation of conditional risk as this is, ideally, what most risk min-
imisation approach try to achieve. However, this means that robustness of ERM with regularisation
or restricted function classes is not directly captured with our definition whereas Long and Servedio
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analyse this latter case directly. In our definition the focus is on probability estimation robustness
while the earlier work is focussed on classification accuracy. Our work could be extended to this
case by analysing H(!,η)∩H(! 1

2
,η).

Additionally, their work restricts attention to the robustness of boosting algorithms that use
convex potential functions whereas our analysis is not tied to any specific algorithm. By restricting
their attention to a specific learning task and class of functions they are able to show a very strong
result: that convex losses for boosting lead to arbitrarily bad performance with arbitrarily little noise.
Also, our focus on proper losses excludes some convex losses (such as the hinge loss) that is covered
by Long and Servedio’s results.

Finally, it is worth noting that there are non-convex loss functions that are strictly proper and so
are not robust in the sense we use here. That is, the converse of Corollary 41 is not true. For example,
any loss with weight function that sits above 0 but outside the shaded region in Figure 2 will be non-
convex and non-robust. This suggests that the arguments made byMasnadi-Shirazi and Vasconcelos
(2009); Freund (2009) for the robustness of non-convex losses need further investigation.

References

J.D. Abernethy, A. Agarwal, P.L. Bartlett, and A. Rakhlin. A stochastic view of optimal regret
through minimax duality. March 2009. URL http://arxiv.org/abs/0903.5328.

J. Aczel and J. Pfanzagl. Remarks on the measurement of subjective probability and information.
Metrika, 11(1):91–105, December 1967.

F.R. Bach, D. Heckerman, and E. Horvitz. Considering cost asymmetry in learning classifiers.
Journal of Machine Learning Research, 7:1713–1741, 2006.

D. Bainov and P. Simeonov. Integral Inequalities and Applications. Kluwer, Dordrecht, 1992.

A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh. Clustering with bregman divergences. The
Journal of Machine Learning Research, 6:1705–1749, 2005.

P.J. Bartlett, B. Schölkopf, D. Schuurmans, and A.J. Smola, editors. Advances in Large-Margin
Classifiers. MIT Press, 2000.

P.L. Bartlett and A. Tewari. Sparseness vs estimating conditional probabilities: Some asymptotic
results. The Journal of Machine Learning Research, 8:775–790, 2007.

P.L. Bartlett, M.I. Jordan, and J.D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, 101(473):138–156, March 2006.

H.H. Bauschke and J.M. Borwein. Joint and separate convexity of the bregman distance. In Dan
Butnariu, Yair Censor, and Simeon Reich, editors, Inherently Parallel Algorithms in Feasibility
and Optimization and their Applications, volume 8 of Studies in Computational Mathematics,
pages 23–36. North-Holland, 2001.

A. Beygelzimer, J. Langford, and B. Zadrozny. Machine learning techniques — reductions be-
tween prediction quality metrics. In Z. Liu and C.H. Xia, editors, Performance Modeling and
Engineering, pages 3–28. Springer US, April 2008. URL http://hunch.net/˜jl/projects/
reductions/tutorial/paper/chapter.pdf.

2419



REID AND WILLIAMSON

A. Buja, W. Stuetzle, and Y. Shen. Loss functions for binary class probability estimation and clas-
sification: Structure and applications. Technical report, University of Pennsylvania, November
2005.

P.F. Christoffersen and F.X. Diebold. Optimal prediction under asymmetric loss. Econometric
Theory, 13(06):808–817, 2009.

I. Cohen and M. Goldszmidt. Properties and benefits of calibrated classifiers. Technical Report
HPL-2004-22(R.1), HP Laboratories, Palo Alto, July 2004.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence, volume 17, pages 973–978, 2001.

S. Fidler, D. Skocaj, and A. Leonardis. Combining reconstructive and discriminative subspace
methods for robust classification and regression by subsampling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(3):337–350, 2006.

Y. Freund. A more robust boosting algorithm. arXiv:0905.2138v1 [stat.ML], May 2009. URL
http://arxiv.org/abs/0905.2138.

T. Gneiting. Evaluating point forecasts. arXiv:0912.0902v1, December 2009.

T. Gneiting and A.E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of
the American Statistical Association, 102(477):359–378, March 2007.

C.W.J. Granger and M.J. Machina. Forecasting and decision theory. In G. Elliot, C.W.J. Granger,
and A. Timmermann, editors, Handbook of Economic Forecasting, volume 1, pages 82–98.
North-Holland, Amsterdam, 2006.

P.D. Grünwald and A.P. Dawid. Game theory, maximum entropy, minimum discrepancy and robust
bayesian decision theory. The Annals of Statistics, 32(4):1367–1433, 2004.

D.J. Hand. Deconstructing statistical questions. Journal of the Royal Statistical Society. Series A
(Statistics in Society), 157(3):317–356, 1994.

D.J. Hand and V. Vinciotti. Local versus global models for classification problems: Fitting models
where it matters. The American Statistician, 57(2):124–131, 2003.

D.P. Helmbold, J. Kivinen, and M.K. Warmuth. Relative loss bounds for single neurons. IEEE
Transactions on Neural Networks, 10:1291–1304, 1999.
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Abstract
In this paper, we propose a general framework for sparse semi-supervised learning, which concerns
using a small portion of unlabeled data and a few labeled data to represent target functions and thus
has the merit of accelerating function evaluations when predicting the output of a new example.
This framework makes use of Fenchel-Legendre conjugates to rewrite a convex insensitive loss
involving a regularization with unlabeled data, and is applicable to a family of semi-supervised
learning methods such as multi-view co-regularized least squares and single-view Laplacian sup-
port vector machines (SVMs). As an instantiation of this framework, we propose sparse multi-view
SVMs which use a squared ε-insensitive loss. The resultant optimization is an inf-sup problem and
the optimal solutions have arguably saddle-point properties. We present a globally optimal iterative
algorithm to optimize the problem. We give the margin bound on the generalization error of the
sparse multi-view SVMs, and derive the empirical Rademacher complexity for the induced func-
tion class. Experiments on artificial and real-world data show their effectiveness. We further give a
sequential training approach to show their possibility and potential for uses in large-scale problems
and provide encouraging experimental results indicating the efficacy of the margin bound and em-
pirical Rademacher complexity on characterizing the roles of unlabeled data for semi-supervised
learning.
Keywords: semi-supervised learning, Fenchel-Legendre conjugate, representer theorem, multi-
view regularization, support vector machine, statistical learning theory

1. Introduction

Semi-supervised learning, considering how to estimate a target function from a few labeled exam-
ples and a large quantity of unlabeled examples, is one of currently active research directions. If the
unlabeled data are properly used, it can get a superior performance over the counterpart supervised
learning approaches. For an overview of semi-supervised learning methods, refer to Chapelle et al.
(2006) and Zhu (2008).

Although semi-supervised learning was largely motivated by different real-world applications
where obtaining labels is expensive or time-consuming, a lot of theoretical outcomes have also been
accomplished. Typical applications of semi-supervised learning include natural image classification
and text classification, where it is inexpensive to collect large numbers of images and texts by
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automatic programs, but needs a high cost to label them manually. Theoretical results on semi-
supervised learning include PAC-analysis (Balcan and Blum, 2005), manifold regularization (Belkin
et al., 2006), and multi-view regularization theories (Sindhwani and Rosenberg, 2008), etc.

Among the methods proposed for semi-supervised learning, a family of them, for example,
Laplacian regularized least squares (RLS), Laplacian support vector machines (SVMs), Co-RLS,
Co-Laplacian RLS, Co-Laplacian SVMs, and manifold co-regularization (Belkin et al., 2006; Sind-
hwani et al., 2005; Sindhwani and Rosenberg, 2008), make use of the following representer theorem
(Kimeldorf and Wahba, 1971) to represent the target function in a reproducing kernel Hilbert space
(RKHS).

Theorem 1 (Representer theorem) Let H be an RKHS with kernel k : X ×X → R. Fix any func-
tion V : Rn → R and any nondecreasing function Ψ : R→ R. Define

J( f ) =V ( f (x1), ..., f (xn))+Ψ(‖ f‖2),

and linear space L = span{k(x1, ·), ...,k(xn, ·)}. Then for any f ∈H we have J( fL)≤ J( f ) with fL
being the projection of f onto L in the following form

fL =
n

∑
i=1

αik(xi, ·).

Thus if J∗ = min f J( f ) exists, this minimum is attained for some f ∈ L . Moreover, if Ψ is strictly
increasing, each minimizer of J( f ) over H must be contained in L .

Generally, in the objective function J( f ) of these semi-supervised learning methods, labeled
examples are used to calculate an empirical loss of the target function and simultaneously unlabeled
examples are used for some regularization purpose. By the representer theorem, the target function
would involve kernel evaluations on all the labeled and unlabeled examples. This is computationally
undesirable, because for semi-supervised learning usually a considerably large number of unlabeled
examples are available. Consequently, sparsity in the number of unlabeled data used to represent
target functions is crucial, which constitutes the focus of this paper.

However, little work has been done on this theme. In particular, there is no unified framework
proposed yet to deal with this sparsity concern. While the sparse Laplacian core vector machines
(Tsang and Kwok, 2007) touched this problem, it has a complicated optimization and is not generic
enough to generalize to other similar semi-supervised learning methods. In contrast with this, the
technique developed in this paper, based on Fenchel-Legendre conjugates, is computationally sim-
ple and widely applicable.

As far as multi-view learning is concerned there has been work that introduces sparsity of the
unlabeled data into the representation of the classifiers (Szedmak and Shawe-Taylor, 2007). This
builds on the ideas developed for two view learning known as the SVM-2K (Farquhar et al., 2006).
The approach adopted is the use of an ε-insensitive loss function for the similarity constraint be-
tween the two functions from two views. Unfortunately the resulting optimization is somewhat
unmanageable and only scales to small-scale data sets despite interesting theoretical bounds that
show the improvement gained using the unlabeled data.

The work by Szedmak and Shawe-Taylor (2007) forms the starting point for the current paper
which aims to develop related methods that are possible to be scaled to very large data sets. Our
approach is to go back to consider l2 loss between the outputs of the classifiers arising from two
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views and shows that this problem can be solved implicitly with variables only indexed by the la-
beled data. To compute the value of this function on new data would still require a non-sparse dual
representation in terms of the unlabeled data. However, we show that through optimizing weights of
the unlabeled data the solution of the l2 problem converges to the solution of an ε-insensitive prob-
lem ensuring that we subsequently obtain sparsity in the unlabeled data. Furthermore, we develop
the generalization analysis of Szedmak and Shawe-Taylor (2007) to this case giving computable
expressions for the corresponding empirical Rademacher complexity.

To show the application of Fenchel-Legendre conjugates, in Section 2 we propose a novel sparse
semi-supervised learning approach: sparse multi-view SVMs, where the conjugate functions play
a central role in reformulating the optimization problem. The dual optimization of a subroutine of
the sparse multi-view SVMs is converted to a quadratic programming problem in Section 3 whose
scale only depends on the number of labeled examples, indicating the advantages of using conjugate
functions. The generalization error of the sparse multi-view SVMs is given in Section 4 in terms
of Rademacher complexity theory, followed by a derivation of empirical Rademacher complexity
of the class of functions induced by this new method in Section 5. Section 6 reports experimental
results of the sparse multi-view SVMs, comparisons with related methods, and the possibility and
potential for large-scale applications through sequential training. Extensions of the use of conju-
gate functions to a general convex loss and other related semi-supervised learning approaches are
discussed in Section 7. Finally, Section 8 concludes this paper.

2. Sparse Multi-view SVMs

Multi-view semi-supervised learning, an important branch of semi-supervised learning, combines
different sets of properties of an example to learn a target function. These different sets of prop-
erties are often referred to as views. Typical applications of multi-view learning are web-page cat-
egorization and content-based multimedia information retrieval. In web-page categorization, each
web-page can be simultaneously described by disparate properties such as main text, inbound and
outbound hyper-links. In content-based multimedia information retrieval, a multimedia segment
can include both audio and video components. For such scenarios learning with multiple views is
usually very beneficial. Even for problems with no natural multiple views, artificially generated
views can still work favorably (Nigam and Ghani, 2000).

A useful assumption for multi-view learning is that features from each view are sufficient to train
a good learner (Blum and Mitchell, 1998; Balcan et al., 2005; Farquhar et al., 2006). Making good
use of this assumption through collaborative training or regularization between views can remove
many false hypotheses from the hypothesis space, and thus facilitates effective learning.

For multi-view learning, an input x consists of multiple components from different views, for
example, x = (x1, . . . ,xm) for an m-view representation. A function f j defined on view j only
depends on x j, that is f j(x) := f j(x j). Suppose we have a set of ! labeled examples {(xi,yi)}!i=1
with yi ∈ {1,−1}, and a set of u unlabeled examples {xi}!+ui=!+1. The objective function of our sparse
multi-view SVMs in the case of two views is given as follows, which can be readily extended to
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more than two views.

min
f1∈H1, f2∈H2

1
2!

!

∑
i=1

[(1− yi f1(xi))++(1− yi f2(xi))+]+

γn(‖ f1‖2+‖ f2‖2)+ γv
!+u

∑
i=1

(| f1(xi)− f2(xi)|− ε)2+, (1)

where nonnegative scalars γn,γv are respectively norm regularization and multi-view regularization
coefficients, and the last term is an ε-insensitive loss between two views with function (·)+ :=
max(0, ·) being the hinge loss. The final classifier for predicting the label of a new example is

fc(x) = sgn
(

f1(x)+ f2(x)
2

)

. (2)

In the rest of this section, we will show that the use of the ε-insensitive loss indeed enforces
sparsity, and Fenchel-Legendre conjugates can be adopted to reformulate the optimization problem.
We also show the saddle-point properties for optimal solutions and give a (globally optimal) iterative
optimization algorithm.

2.1 Sparsity

In order to show the role of the ε-insensitive loss for sparsity pursuit, here we represent f1(x) and
f2(x) in feature spaces as

f1(x) = w)
1 φ1(x)+b1, f2(x) = w)

2 φ2(x)+b2,

where φi(x) (i= 1,2) is the image of x in feature spaces. Problem (1) can be rewritten as

min
w1,w2,ξ1,ξ2,b1,b2

P0 =
1
2!

!

∑
i=1

(ξi1+ξi2)+ γn(‖w1‖2+‖w2‖2)+

γv
!+u

∑
i=1

(|w)
1 φ1(xi)+b1−w)

2 φ2(xi)−b2|− ε)2+

s.t.







yi(w)
1 φ1(xi)+b1)≥ 1−ξi1,

yi(w)
2 φ2(xi)+b2)≥ 1−ξi2,

ξi1, ξ
i
2 ≥ 0, i= 1, . . . ,! ,

where ξ1 := [ξ11, . . . ,ξ
!
1] and ξ2 := [ξ12, . . . ,ξ

!
2].

The Lagrangian is

L= P0−
!

∑
i=1

[λi1(yi(w)
1 φ1(xi)+b1)−1+ξi1)+

λi2(yi(w)
2 φ2(xi)+b2)−1+ξi2)+νi1ξ

i
1+νi2ξ

i
2],

where λi1,λi2,νi1,νi2 ≥ 0 (i= 1, . . . ,!) are Lagrange multipliers.
Suppose w1∗, w2∗ are the optimal solutions. By the KKT conditions, the optimal solutions w1∗

should satisfy ∂L
∂w1∗ = 0. Therefore, we get

w1∗ =−
γv
γn

!+u

∑
i=1

(|w)
1 φ1(xi)+b1−w)

2 φ2(xi)−b2|− ε)+φ̃i+
1
2γn

!

∑
i=1

λi1yiφ1(xi),
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where we suppose the derivative exists everywhere and φ̃i := sgn{w)
1 φ1(xi) + b1 −w)

2 φ2(xi)−
b2}φ1(xi). Now we can assess the sparsity of problem (1). From the above equation, w1∗ is the
linear combination of labeled examples with λi1 > 0, and those unlabeled examples on which the
difference of predictions from two views exceeds ε. In this sense, we can get sparse solutions by
providing a non-zero ε. Similar analysis applies to w2∗. Therefore, function f (x) is sparse in the
number of used unlabeled examples. This analysis on sparsity is also well justified by the represen-
ter theorem.

2.2 Reformulation Using Conjugate Functions

Define ti := [ f1(xi)− f2(xi)]2. Then the ε-insensitive loss term can be written as

fε(t) =
!+u

∑
i=1

(
√
ti− ε)2+, (3)

where vector t := [t1, . . . , t!+u]). We give a theorem affirming the convexity of function fε(t).

Theorem 2 Function fε(t) defined by (3) is convex.

Proof First, we show that fε(ti) := (
√
ti− ε)2+ with a convex domain [0,+∞) is convex. When

ti ∈ (ε2,+∞), the second derivative ∇2 fε(ti) = 1
2εt

−3/2
i ≥ 0. Thus, function fε(ti) is convex for

ti ∈ (ε2,+∞). Moreover, the value of function fε(ti) for ti ∈ (ε2,+∞) is larger than 0 which is the
value of fε(ti) for ti ∈ [0,ε2], and function fε(ti) with domain [0,+∞) is continuous at ε2. Hence,
fε(ti) is convex on the domain [0,+∞).
Then, being a nonnegative weighted sum of convex functions, fε(t) is indeed convex.

Define conjugate vector z= [z1, . . . ,z!+u]) with entries being conjugate variables. The Fenchel-
Legendre conjugate (which is also often called convex conjugate or conjugate function) f ∗ε (z) is

f ∗ε (z) = sup
t∈dom fε

(t)z− fε(t)) = sup
t

!+u

∑
i=1

[ziti− (
√
ti− ε)2+] =

!+u

∑
i=1
sup
ti
[ziti− (

√
ti− ε)2+].

The domain of the conjugate function consists of z ∈ R!+u for which the supremum is finite (i.e.,
bounded above) (Boyd and Vandenberghe, 2004). Define

f ∗ε (zi) = sup
ti
[ziti− (

√
ti− ε)2+]. (4)

Then, f ∗ε (z) = ∑!+u
i=1 f ∗ε (zi). As a pointwise supremum of a family of affine functions, f ∗ε (zi) is

convex. Being a nonnegative weighted sum of convex functions, f ∗ε (z) is also convex. Below we
derive the formulation of f ∗ε (zi).

Theorem 3 Function f ∗ε (zi) defined by (4) has the following form

f ∗ε (zi) =

{

ziε2
1−zi , for 0< zi < 1
0, for zi ≤ 0 .

(5)
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Proof By definition, we have

f ∗ε (zi) =maxti

{

sup
0≤ti≤ε2

ziti, sup
ti>ε2

[ziti− (
√
ti− ε)2]

}

. (6)

The value of function sup0≤ti≤ε2 ziti is simple to characterize. We now characterize the second term
supti>ε2 [ziti− (

√
ti− ε)2] = supti>ε2(ziti− ti− ε2+2ε

√
ti). For 0< zi < 1, we let the first derivative

equal to zero to find the supremum. For zi ≤ 0 or zi ≥ 1 the derivative does not exist and thus we
use function values at end points to find the supremum. As a result, we have

sup
ti>ε2

[ziti− (
√
ti− ε)2] =











ziε2
1−zi , for 0< zi < 1
ziε2, for zi ≤ 0
+∞, for zi ≥ 1 .

According to (6) and further removing the range where f ∗ε (zi) is unbounded above, we reach the
conjugate given in (5).

Now the Fenchel-Legendre conjugate f ∗ε (z) can be represented by ∑!+u
i=1 f ∗ε (zi), which is also

well justified by the following theorem.

Theorem 4 (Boyd and Vandenberghe, 2004) If ϕ(u,v) = ϕ1(u)+ϕ2(v), where ϕ1 and ϕ2 are in-
dependent convex functions (independent means they are functions of different variables) with con-
jugates ϕ∗1 and ϕ∗2, respectively, then

ϕ∗(ω,z) = ϕ∗1(ω)+ϕ∗2(z).

A nice property of the conjugate function is on the conjugate of the conjugate, which is central
to the reformulation of our optimization problem. This property is stated by Lemma 5.

Lemma 5 (Rifkin and Lippert, 2007) If function f is closed, convex, and proper, then the conju-
gate function of the conjugate is itself, that is, f ∗∗ = f , where we have defined function f is closed
if its epigraph is closed, and f is proper if dom f ,= /0 and f >−∞.

It is true that function fε(t) is closed and proper. Moreover, we have proved the convexity of
fε(t) in Theorem 2. Therefore, we can use Lemma 5 to get the following equality

fε(t) = sup
z
(z)t− f ∗ε (z)). (7)

That is
!+u

∑
i=1

(
√
ti− ε)2+ = sup

z
(z)t− f ∗ε (z)) = sup

z

!+u

∑
i=1

[ziti− f ∗ε (zi)].

By (7), we have

!+u

∑
i=1

(| f1(xi)− f2(xi)|− ε)2+ =
!+u

∑
i=1

(
√
ti− ε)2+ = sup

z

!+u

∑
i=1

[ziti− f ∗ε (zi)].
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Therefore, the objective function for sparse multi-view SVMs becomes

min
f1∈H1, f2∈H2

1
2!

!

∑
i=1

[(1− yi f1(xi))++(1− yi f2(xi))+]+

γn(‖ f1‖2+‖ f2‖2)+ γv sup
z

!+u

∑
i=1

{zi[ f1(xi)− f2(xi)]2− f ∗ε (zi)}. (8)

As an application of Theorem 1, the solution to problem (8) has the following form

f1(x) =
!+u

∑
i=1

αi1k1(xi,x), f2(x) =
!+u

∑
i=1

αi2k2(xi,x). (9)

Applying the reproducing properties of kernels, we get

‖ f1‖2 = α)
1 K1α1, ‖ f2‖2 = α)

2 K2α2,

where K1 and K2 are (!+u)× (!+u) Gram matrices from two views V 1 and V 2, respectively, and
vector α1 = (α11, ...,α

!+u
1 )), α2 = (α12, ...,α

!+u
2 )). Moreover, we have

f1 = K1α1, f2 = K2α2,

with f1 := ( f1(x1), ..., f1(x!+u))), f2 := ( f2(x1), ..., f2(x!+u))). Define diagonal matrix
U = diag(z1, . . . ,z!+u) with every element taking values in the range [0,1). Problem (8) can be
reformulated as

min
α1,α2,ξ1,ξ2,b1,b2

sup
z

1
2!

!

∑
i=1

(ξi1+ξi2)+ γn(α)
1 K1α1+α)

2 K2α2)+

γv[(K1α1−K2α2))U(K1α1−K2α2)−
!+u

∑
i=1

f ∗ε (zi)]

s.t.











yi(∑!+u
j=1α

j
1k1(x j,xi)+b1)≥ 1−ξi1,

yi(∑!+u
j=1α

j
2k2(x j,xi)+b2)≥ 1−ξi2,

ξi1, ξ
i
2 ≥ 0, i= 1, . . . ,! .

(10)

2.3 Saddle-Point Property

We present a theorem concerning the convexity and concavity of optimization problem (10).

Theorem 6 The objective function in problem (10) is convex with respect to α1,α2, ξ1, ξ2, b1, and
b2, and concave with respect to z.

Proof First, we show the convexity. The standard form of this optimization problem is

min
α1,α2,ξ1,ξ2,b1,b2

sup
z

1
2!

!

∑
i=1

(ξi1+ξi2)+ γn(α)
1 K1α1+α)

2 K2α2)+

γv[(K1α1−K2α2))U(K1α1−K2α2)−
!+u

∑
i=1

f ∗ε (zi)]

s.t.











−yi(∑!+u
j=1α

j
1k1(x j,xi)+b1)+1−ξi1 ≤ 0,

−yi(∑!+u
j=1α

j
2k2(x j,xi)+b2)+1−ξi2 ≤ 0,

−ξi1, −ξi2 ≤ 0, i= 1, . . . ,! .
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This problem involves one objective function and three sets of inequality constraint functions (on the
left hand side of each inequality). Clearly, the domain of each objective and constraint function is a
convex set. Now it suffices to prove the convexity of this problem by assessing the convexity of these
functions. As all constraint functions are affine, they are convex. Then, we use the second-order
condition, positive semidefinite property of a function’s Hessian or second derivative to judge the
convexity of the objective function (Boyd and Vandenberghe, 2004). According to this condition,
the first two items of the objective function are clear to be convex. The third part can be rewritten as

(K1α1−K2α2))U(K1α1−K2α2) = ‖U1/2 ( K1 −K2
)

(

α1
α2

)

‖2,

which is a convex function ‖ · ‖2 composed with an affine mapping and thus also convex (Boyd
and Vandenberghe, 2004). Being a nonnegative weighted sums of convex functions, the objective
function is therefore convex with respect to α1,α2,ξ1,ξ2,b1,b2.

Then, we show the concavity using (8). As f ∗ε (zi) is convex, zi[ f1(xi)− f2(xi)]2− f ∗ε (zi) is con-
cave with respect to zi. The concavity of ∑!+u

i=1{zi[ f1(xi)− f2(xi)]2− f ∗ε (zi)} follows from the fact
that a nonnegative weighted sum of concave functions is concave (Boyd and Vandenberghe, 2004).
Hence, the objective function in problem (10) is concave with respect to z.

Let θ denote the parameters α1,α2,ξ1,ξ2,b1,b2. We can simply denote the above optimization
problem as

inf
θ
sup
z
f (θ,z) (11)

associated with constraints on the labeled examples, where f (θ,z) is convex with respect to θ, and
concave with respect to z. We give the following theorem on the equivalence of swapping the
infimum and supremum for our optimization problem and include a proof for completeness.

Theorem 7 (Boyd and Vandenberghe, 2004) If f (θ,z) with domain Θ and Z is convex with re-
spect to θ ∈Θ, and concave with respect to z ∈ Z, the following equality holds

inf
θ
sup
z
f (θ,z) = sup

z
inf
θ
f (θ,z)

under some slight assumptions.

Proof The idea is first to represent the left-hand side as a value of a convex function, and then
show that the conjugate of its conjugate is equal to the right-hand side when the same input value is
plugged in Boyd and Vandenberghe (2004).

The left-hand side can be expressed as p(0), where

p(u) = inf
θ
sup
z
[ f (θ,z)+u)z] .

It is not difficult to show that p is a convex function. Being a pointwise supremum of convex
function f (θ,z)+u)z, supz[ f (θ,z)+u)z] is a convex function of (θ,u). Because supz[ f (θ,z)+u)z]
is convex with respect to (θ,u), we have p(u) is convex.

The Fenchel-Legendre conjugate of p(u) is

p∗(v) = sup
u
[u)v− inf

θ
sup
z
( f (θ,z)+u)z)] ,
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which would be +∞ if z ,= v. Therefore,

p∗(v) =
{

− infθ f (θ,v), for v ∈ Z
+∞, otherwise .

The conjugate of p∗(z) is given by

p∗∗(u) = sup
z∈Z

(u)z− p∗(z)) = sup
z∈Z

(u)z+ inf
θ
f (θ,z)) = sup

z
inf
θ
[ f (θ,z)+u)z] .

Suppose 0 ∈ domp(u) and p(u) is closed and proper. Then by Lemma 5 we have p(0) = p∗∗(0)
which completes the proof.

Now we give a theorem showing that the optimal pair θ̃, z̃ is a saddle-point.

Theorem 8 If the following equality holds for function f (θ,z)

inf
θ
sup
z
f (θ,z) = sup

z
inf
θ
f (θ,z) = f (θ̃, z̃) ,

then the optimal pair θ̃, z̃ forms a saddle-point.

Proof From the given equality, we have

inf
θ
sup
z
f (θ,z) = sup

z
f (θ̃,z) = f (θ̃, z̃) ,

and
sup
z
inf
θ
f (θ,z) = inf

θ
f (θ, z̃) = f (θ̃, z̃) ,

Therefore,
f (θ̃,z)≤ f (θ̃, z̃)≤ f (θ, z̃),

which indeed satisfies the definition of a saddle-point. The proof is completed.

2.4 Iterative Optimization Algorithm

To solve the optimization problem supz infθ f (θ,z) which is respectively concave and convex with
respect to z and θ, we give an algorithm with guaranteed convergence by the following theorem.

Theorem 9 Given an initial value z0 for z, solve infθ f (θ,z0) and obtain the global optimal point θ0.
Then we find argmaxz f (θ0,z) to get z1 from which we can get θ1 as a result of optimize infθ f (θ,z1).
Repeat this process until a convergence point (θ̂, ẑ) is reached. Suppose θ̃, z̃ is a saddle point. We
have f (θ̂, ẑ) = f (θ̃, z̃). That is, we got the optimal values of the objective function. If f is strictly
concave and strictly convex with respect to the variables, we further have θ̂= θ̃ and ẑ= z̃.

Proof According to the properties of function f and the algorithm procedure, we know that the
convergence point is a saddle point. Thus, we have

f (θ̃, ẑ)≥ f (θ̂, ẑ)≥ f (θ̂, z̃) .
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By the saddle-point property of (θ̃, z̃), we have

f (θ̃, z̃)≥ f (θ̃, ẑ) ,

and
f (θ̃, z̃)≤ f (θ̂, z̃) .

Therefore, the above inequalities should hold with equalities and we have f (θ̃, z̃) = f (θ̂, ẑ). Fur-
thermore, if f is strictly concave and strictly convex with respect to the variables, it is true that θ̂= θ̃
and ẑ= z̃.

On solving argmaxz f (θ,z) required in Theorem 9, we can maximize the term related to z,
namely z)t− f ∗ε (z) = ∑!+u

i=1 [ziti− f ∗ε (zi)]. For this purpose, we have the following theorem.

Theorem 10
sup

zi∈dom f ∗ε (zi)
[ziti− f ∗ε (zi)] = (

√
ti− ε)2+,

and

arg sup
zi∈dom f ∗ε (zi)

[ziti− f ∗ε (zi)] =

{

1− ε√
ti , for ti > ε2

0, for 0≤ ti ≤ ε2 .

Without loss of generality, we can confine the range of zi to [0,1).

Proof We have

sup
zi∈dom f ∗ε (zi)

[ziti− f ∗ε (zi)] =maxzi
{ sup
0<zi<1

ziti−
ziε2

1− zi
, sup
zi≤0

ziti} .

The first supremum can be solved by setting the derivative with respect to zi to zero. We have

sup
0<zi<1

ziti−
ziε2

1− zi
= (

√
ti− ε)2

where ti > ε2, and the supremum is attained with zi = 1− ε√
ti .

When ti < 0, supzi≤0 ziti is unbounded above. When 0≤ ti ≤ ε2, supzi≤0 ziti = 0 with the supre-
mum attained at zi = 0. Therefore, maxzi{sup0<zi<1 ziti−

ziε2
1−zi ,supzi≤0 ziti} = (

√
ti− ε)2+ with the

supremum attained when zi ∈ [0,1), which completes the proof.

For sparsity pursuit, during each iteration we remove those unlabeled examples whose cor-
responding zi’s are zero. By the representer theorem, this would not influence the value of the
objective function. For Theorem 9, this means that the element of z whose values are zero in the last
iteration will remain zero for the next iteration. When there are no unlabeled examples eligible for
elimination, the iteration will terminate and the convergence point (θ̂, ẑ) is reached.
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3. Dual Optimization

According to the iterative optimization algorithm, when optimizing problem (10), we start from an
initial value z0 and then solve θ0. In this section, we show how to solve this subroutine with fixed z.

Now the optimization problem is equivalent to

min
α1,α2,ξ1,ξ2,b1,b2

F0 =
1
2!

!

∑
i=1

(ξi1+ξi2)+ γn(α
)
1 K1α1+α)

2 K2α2)+

γv(K1α1−K2α2))U(K1α1−K2α2)

s.t.











yi(∑!+u
j=1α

j
1k1(x j,xi)+b1)≥ 1−ξi1,

yi(∑!+u
j=1α

j
2k2(x j,xi)+b2)≥ 1−ξi2,

ξi1, ξ
i
2 ≥ 0, i= 1, . . . ,! .

(12)

3.1 Lagrange Dual Function

We will solve problem (12) through optimizing its dual problem which is simpler to solve. Now we
derive its Lagrange dual function.

Suppose λi1,λi2,νi1,νi2 ≥ 0 (i = 1, . . . ,!) be the Lagrange multipliers associated with the in-
equality constraints. Define λ j = [λ1j , . . . ,λ

!
j]
) and ν j = [ν1j , . . . ,ν

!
j]
) ( j = 1,2). The Lagrangian

L(α1,α2,ξ1,ξ2,b1,b2,λ1,λ2,ν1,ν2) can be written as

L= F0−
!

∑
i=1

[λi1(yi(
!+u

∑
j=1

α j
1k1(x j,xi)+b1)−1+ξi1)+

λi2(yi(
!+u

∑
j=1

α j
2k2(x j,xi)+b2)−1+ξi2)+νi1ξ

i
1+νi2ξ

i
2].

Note that

(K1α1−K2α2))U(K1α1−K2α2)
= α)

1 K1UK1α1−2α)
1 K1UK2α2+α)

2 K2UK2α2.

To obtain the Lagrangian dual function, L has to be minimized with respect to the primal
variables α1,α2,ξ1,ξ2,b1,b2. To eliminate these variables, we compute the corresponding partial
derivatives and set them to 0, obtaining the following conditions

2J1α1−2γvK1UK2α2 = Λ1, (13)
2J2α2−2γvK2UK1α1 = Λ2, (14)

λi1+νi1 =
1
2!

, (15)

λi2+νi2 =
1
2!

, (16)
!

∑
i=1

λi1yi = 0,

!

∑
i=1

λi2yi = 0, (17)
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where

J1 := γnK1+ γvK1UK1,
J2 := γnK2+ γvK2UK2,

Λ1 :=
!

∑
i=1

λi1yiK1(:, i),

Λ2 :=
!

∑
i=1

λi2yiK2(:, i),

with K1(:, i) and K2(:, i) being the ith column of the corresponding Gram matrices.
Substituting (13)∼(17) into L results in the following expression of the Lagrangian dual function

gL(λ1,λ2,ν1,ν2)

gL = γn(α)
1 K1α1+α)

2 K2α2)+ γv(α)
1 K1UK1α1−2α)

1 K1UK2α2+

α)
2 K2UK2α2)−α)

1 Λ1−α)
2 Λ2+

!

∑
i=1

(λi1+λi2)

=
1
2
α)
1 Λ1+

1
2
α)
2 Λ2−α)

1 Λ1−α)
2 Λ2+

!

∑
i=1

(λi1+λi2)

= −
1
2
α)
1 Λ1−

1
2
α)
2 Λ2+

!

∑
i=1

(λi1+λi2). (18)

We obtain the following from (13) and (14)

α1 =
1
2
J−11 (Λ1+2γvK1UK2α2) (19)

α2 =
1
2
J−12 (Λ2+2γvK2UK1α1). (20)

From (13) and (20), we have

(2J1−2γ2vK1UK2J−12 K2UK1)α1 = Λ1+ γvK1UK2J−12 Λ2.

Define M1 = 2J1− 2γ2vK1UK2J−12 K2UK1. Suppose the above linear system is well-posed (if ill-
posed we can employ approximate numerical analysis techniques). We get

α1 =M−1
1 (Λ1+ γvK1UK2J−12 Λ2).

From (14) and (19), we have

(2J2−2γ2vK2UK1J−11 K1UK2)α2 = Λ2+ γvK2UK1J−11 Λ1.

Define M2 = 2J2−2γ2vK2UK1J−11 K1UK2. Thus we get

α2 =M−1
2 (Λ2+ γvK2UK1J−11 Λ1).
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Now with α1 and α2 substituted into (18), the Lagrange dual function gL(λ1,λ2,ν1,ν2) is

gL = inf
α1,α2,ξ1,ξ2,b1,b2

L=−
1
2
α)
1 Λ1−

1
2
α)
2 Λ2+

!

∑
i=1

(λi1+λi2)

= −
1
2
(Λ1+ γvK1UK2J−12 Λ2))M−1

1 Λ1−
1
2
(Λ2+

γvK2UK1J−11 Λ1)
)M−1

2 Λ2+
!

∑
i=1

(λi1+λi2).

3.2 Solving the Dual Problem

The Lagrange dual problem is given by

max
λ1,λ2

gL

s.t.















0≤ λi1 ≤
1
2! , i= 1, . . . ,!

0≤ λi2 ≤
1
2! , i= 1, . . . ,!

∑!
i=1λ

i
1yi = 0,

∑!
i=1λ

i
2yi = 0.

As Lagrange dual functions are always concave (Boyd and Vandenberghe, 2004), we can formulate
the above problem as a convex optimization problem

min
λ1,λ2

−gL

s.t.















0≤ λi1 ≤
1
2! , i= 1, . . . ,!

0≤ λi2 ≤
1
2! , i= 1, . . . ,!

∑!
i=1λ

i
1yi = 0,

∑!
i=1λ

i
2yi = 0.

(21)

Define matrix Y = diag(y1, . . . ,y!). Then, Λ1 = K!1Yλ1 and Λ2 = K!2Yλ2 with K!1 = K1(:,1 : !)
and K!2 = K2(:,1 : !). We have

−gL =
1
2
(Λ1+ γvK1UK2J−12 Λ2)

)M−1
1 Λ1+

1
2
(Λ2+

γvK2UK1J−11 Λ1))M−1
2 Λ2−

!

∑
i=1

(λi1+λi2)

=
1
2
(λ)1 λ

)
2 )

(

A B
C D

)(

λ1
λ2

)

−1)(λ1+λ2),

where

A := YK)
!1M−1

1 K!1Y,
B := γvYK)

!1J−11 K1UK2M−1
2 K!2Y,

C := γvYK)
!2J−12 K2UK1M−1

1 K!1Y,
D := YK)

!2M−1
2 K!2Y,
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and 1= (1, . . . ,1(!))).
SubstitutingM1 andM2 into the expressions of B andC, we can prove that B=C). In addition,

because of the convexity of function−g, we affirm that matrix
(

A B
C D

)

is positive semi-definite.

Hence, the optimization problem in (21) can be rewritten as

min
λ1,λ2

1
2
(λ)1 λ

)
2 )

(

A B
C D

)(

λ1
λ2

)

−1)(λ1+λ2)

s.t.















0. λ1 . 1
2l1,

0. λ2 . 1
2l1,

λ)1 y= 0,
λ)2 y= 0,

where y= (y1, . . . ,y!)). After solving this problem using standard software, we then obtain νi1 and
νi2 by (15) and (16).

We now state the advantages of optimizing this dual problem over optimizing the primal prob-
lem (12):

• Less optimization variables as for typical semi-supervised learning !/ u, and

• Simpler constraint functions.

The solution of bias terms b1 and b2 can be obtained through support vectors. Due to KKT
conditions, the following equalities hold

λi1(yi(
!+u

∑
j=1

α j
1k1(x j,xi)+b1)−1+ξi1) = 0,

λi2(yi(
!+u

∑
j=1

α j
2k2(x j,xi)+b2)−1+ξi2) = 0,

νi1ξ
i
1 = 0,

νi2ξ
i
2 = 0, i= 1, . . . ,!.

For support vectors xi, we have νij > 0 (and thus ξij = 0) and λij > 0 ( j = 1,2). Therefore, we can
resolve the bias terms by averaging yi(∑!+u

j=1α
j
1k1(x j,xi) + b1)− 1 = 0 and yi(∑!+u

j=1α
j
2k2(x j,xi) +

b2)−1= 0 over all support vectors.

3.3 Advantages of Using Conjugate Functions

In this subsection, we show the direct optimization of problem (1) without the use of conjugate
functions is of large scale and time-consuming, which justifies the advantages of using conjugate
functions.
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The primal problem can be rewritten as

min
α1,α2,ξ1,ξ2,b1,b2,δi

D0 =
1
2!

!

∑
i=1

(ξi1+ξi2)+ γn(α
)
1 K1α1+α)

2 K2α2)+ γv
!+u

∑
i=1

δ2i

s.t.



























yi(∑!+u
j=1α

j
1k1(x j,xi)+b1)≥ 1−ξi1, i= 1, . . . ,! ,

yi(∑!+u
j=1α

j
2k2(x j,xi)+b2)≥ 1−ξi2, i= 1, . . . ,! ,

ξi1, ξ
i
2 ≥ 0, i= 1, . . . ,! ,

(∑!+u
j=1α

j
1k1(x j,xi)+b1)− (∑l+u

j=1α
j
2k2(x j,xi)+b2)≥−δi− ε, i= 1, . . . ,!+u ,

(∑!+u
j=1α

j
1k1(x j,xi)+b1)− (∑l+u

j=1α
j
2k2(x j,xi)+b2)≤ δi+ ε, i= 1, . . . ,!+u ,

(22)

where yi ∈ {1,−1}, γn,γv ≥ 0.

We will solve problem (22) through optimizing its dual problem which can be simpler to solve.
Suppose λi1,λi2,νi1,νi2≥ 0 (i= 1, . . . ,!) and µi1,µi2 (i= 1, . . . ,!+u) are the Lagrange multipliers asso-
ciated with the inequality constraints of problem (22). Define δ= [δ1, . . . ,δ!+u]), λ j = [λ1j , . . . ,λ

!
j]
),

ν j = [ν1j , . . . ,ν
!
j]
), and µj = [µ1j , . . . ,µ

!+u
j ]) ( j = 1,2). The Lagrangian

L(α1,α2,ξ1,ξ2,b1,b2,δ,λ1,λ2,ν1,ν2,µ1,µ2) can be written as

L= D0−
!

∑
i=1

[λi1(yi(
!+u

∑
j=1

α j
1k1(x j,xi)+b1)−1+ξi1)+

λi2(yi(
!+u

∑
j=1

α j
2k2(x j,xi)+b2)−1+ξi2)+νi1ξ

i
1+νi2ξ

i
2]−

!+u

∑
i=1

µi1[
!+u

∑
j=1

α j
1k1(x j,xi)+b1−

!+u

∑
j=1

α j
2k2(x j,xi)−b2+δi+ ε]+

!+u

∑
i=1

µi2[
!+u

∑
j=1

α j
1k1(x j,xi)+b1−

!+u

∑
j=1

α j
2k2(x j,xi)−b2−δi− ε].

To obtain the Lagrangian dual function, L has to be minimized with respect to the primal vari-
ables α1,α2,ξ1,ξ2,b1,b2,δ. To eliminate these variables, we compute the corresponding partial
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derivatives and set them to 0, obtaining the following conditions

2γnK1α1 =
!

∑
i=1

λi1yiK1(:, i)+
!+u

∑
i=1

(µi1−µi2)K1(:, i),

2γnK2α2 =
!

∑
i=1

λi2yiK2(:, i)−
!+u

∑
i=1

(µi1−µi2)K2(:, i),

λi1+νi1 =
1
2!

, i= 1, . . . ,!

λi2+νi2 =
1
2!

, i= 1, . . . ,!

−
!

∑
i=1

λi1yi−
!+u

∑
i=1

µi1+
!+u

∑
i=1

µi2 = 0,

−
!

∑
i=1

λi2yi+
!+u

∑
i=1

µi1−
!+u

∑
i=1

µi2 = 0,

2γvδi−µi1−µi2 = 0, i= 1, . . . ,!+u.

Substituting these equations into the Lagrangian as what was done in Section 3.1, it is clear that
finally L is a quadratic function involving λ1,λ2,µ1,µ2. The dual optimization problem would be a
quadratic optimization involving 2!+ 2(!+ u) parameters. Now we see this direct optimization is
indeed of large-scale and time-consuming.

4. Generalization Error

In this section, we analyze the generalization performance of the sparse multi-view SVMs making
use of Rademacher complexity theory and the margin bound.

4.1 Rademacher Complexity Theory

Important background on Rademacher complexity theory (Bartlett and Mendelson, 2002; Shawe-
Taylor and Cristianini, 2004) is introduced below.

Definition 11 For a sample S = {x1, . . . ,x!} generated by a distribution D on a set X and a real-
valued function class F with domain X , the empirical Rademacher complexity of F is the random
variable

R̂!(F ) = Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2
!

!

∑
i=1

σi f (xi)

∥

∥

∥

∥

∥

x1, . . . ,x!

]

,

where σ = {σ1, . . . ,σ!} are independent uniform {±1}-valued (Rademacher) random variables.
The Rademacher complexity of F is

R!(F ) = ES[R̂!(F )] = ESσ

[

sup
f∈F

∣

∣

∣

∣

∣

2
!

!

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

.

Lemma 12 Fix δ ∈ (0,1) and let F be a class of functions mapping from an input space X̃ (X̃ =
X ×Y or X̃ =X ) to [0,1]. Let (x̃i)!i=1 be drawn independently according to a probability distribution
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D . Then with probability at least 1−δ over random draws of samples of size !, every f ∈F satisfies

ED [ f (x̃)] ≤ Ê[ f (x̃)]+R!(F )+

√

ln(2/δ)
2!

≤ Ê[ f (x̃)]+ R̂!(F )+3
√

ln(2/δ)
2!

,

where Ê[ f (x̃)] is the empirical error averaged on the ! examples.

4.2 Margin Bound for Sparse Multi-view SVMs

By (2), the prediction function of the sparse multi-view SVMs is derived from the average of pre-
dictions from two views. Define the soft prediction function as

g(x) =
1
2
( f1(x)+ f2(x)).

We obtain the following margin bound regarding the generalization error of sparse multi-view
SVMs. This bound is widely applicable to multi-view SVMs, for example, Szedmak and Shawe-
Taylor (2007) independently provided a similar bound for the SVM-2K method.

Theorem 13 Fix δ ∈ (0,1) and let F be the class of functions mapping from X̃ = X ×Y to R given
by f̃ (x,y) =−yg(x) where g= 1

2( f1+ f2) ∈ G and f̃ ∈ F . Let S= {(x1,y1), · · · ,(x!,y!)} be drawn
independently according to a probability distribution D . Then with probability at least 1− δ over
samples of size !, every g ∈ G satisfies

PD(y ,= sgn(g(x)))≤ 1
2!

!

∑
i=1

(ξi1+ξi2)+2R̂!(G)+3
√

ln(2/δ)
2!

,

where ξi1 := (1−yi f1(xi))+, ξi2 := (1−yi f2(xi))+. Function yi f1(xi) and yi f2(xi) are called margins.

Proof Let H(·) be the Heaviside function that returns 1 if its argument is greater than 0 and zero
otherwise. We have

PD(y ,= sgn(g(x))) = ED [H(−yg(x))]. (23)

Consider a loss function A : R→ [0,1], given by

A(a) =







1, if a≥ 0;
1+a, if −1≤ a≤ 0;
0, otherwise.

By Lemma 12 and since function A − 1 dominates H− 1, we have (Shawe-Taylor and Cristianini,
2004)

ED [H( f̃ (x,y))−1]≤ ED [A( f̃ (x,y))−1]

≤ Ê[A( f̃ (x,y))−1]+ R̂!((A−1)◦F )+3
√

ln(2/δ)
2!

.
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Therefore,

ED [H( f̃ (x,y))]≤ Ê[A( f̃ (x,y))]+ R̂!((A−1)◦F )+3
√

ln(2/δ)
2!

.

In addition, we have

Ê[A( f̃ (x,y))] ≤
1
!

!

∑
i=1

(1− yig(xi))+

=
1
2!

!

∑
i=1

(1− yi f1(xi)+1− yi f2(xi))+

≤
1
2!

!

∑
i=1

[(1− yi f1(xi))++(1− yi f2(xi))+]

=
1
2!

!

∑
i=1

(ξi1+ξi2),

where ξi1 denotes the amount by which function f1 fails to achieve margin 1 for (xi,yi) and ξi2 applies
similarly to function f2.

Since (A−1)(0) = 0, we can apply the Lipschitz condition (Bartlett and Mendelson, 2002) of
function (A−1) to get

R̂!((A−1)◦F )≤ 2R̂!(F ).

It remains to bound the empirical Rademacher complexity of the class F .
With yi ∈ {1,−1}, we have

R̂!(F ) = Eσ[sup
f∈F

|
2
!

!

∑
i=1

σi f̃ (xi,yi)|]

= Eσ[sup
g∈G

|
2
!

!

∑
i=1

σiyig(xi)|]

= Eσ[sup
g∈G

|
2
!

!

∑
i=1

σig(xi)|]

= R̂!(G). (24)

Finally, combining (23)∼(24) completes the proof.

5. Empirical Rademacher Complexity

Our optimization algorithm iteratively updates z to solve θ. In this section, we first derive the
empirical Rademacher complexity of R̂!(G) for the function class induced after one iteration with
an initially fixed z, and then give its formulation applicable for any number of subsequent itera-
tions including the termination case. This Rademacher complexity is crucial for Theorem 13 when
analyzing the performance of the corresponding classifiers obtained by our iterative optimization
algorithm. Specifically, for the empirical Rademacher complexity we give the following theorem
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Theorem 14 Suppose S = 1
γn
(K1!K−1

1 K)
1!+K2!K

−1
2 K)

2!),Θ= 1
γn
U1/2
u (K1uK−1

1 K)
1u+K2uK

−1
2 K)

2u)U
1/2
u ,

J = 1
γn
U1/2
u (K1uK−1

1 K)
1! −K2uK−1

2 K)
2!), where K1! and K2! are respectively the first ! rows of the

Gram matrices K1 and K2, K1u and K2u are respectively the last u rows of matrix K1 and K2, and
Uu is the diagonal matrix including the last u diagonal elements (initially fixed z!+1, . . . ,z!+u) of U.
Then the empirical Rademacher complexity R̂!(G) is bounded as U√

2! ≤ R̂!(G) ≤ U
! , where U

2 =

tr(S)− γvtr(J)(I+ γvΘ)−1J ) for the first iteration of sparse multi-view SVMs, andU2 = tr(S) for
subsequent iterations.
The remainder of this section before Section 5.4 completes the proof of this theorem, which was
partially inspired by Rosenberg and Bartlett (2007) for analyzing co-regularized least squares.

We use problem (8) to reason about R̂!(G). As a result of fixed z, we can remove f ∗ε (zi) without
loss of generality to resolve f1 and f2. It is true that the loss function L̂ : H 1×H 2 → [0,∞) with
L̂ := 1

2! ∑
!
i=1[(1− yi f1(xi))++(1− yi f2(xi))+] satisfies

L̂(0,0) = 1.

Let Q( f1, f2) denote the objective function in (8) with f ∗ε (zi) removed. Substituting in the trivial
predictors f1 ≡ 0 and f2 ≡ 0 gives the following upper bound

min
f1, f2∈H 1×H 2

Q( f1, f2)≤ Q(0,0) = L̂(0,0) = 1.

Since all terms ofQ( f1, f2) are nonnegative, we conclude that any ( f ∗1 , f ∗2 )minimizingQ( f1, f2)
is contained in

Ĥ = {( f1, f2) : γn(‖ f1‖2+‖ f2‖2)+ γv
!+u

∑
i=!+1

zi[ f1(xi)− f2(xi)]2 ≤ 1}. (25)

Therefore, the final predictor is chosen from the function class

G = {x→
1
2
[ f1(x)+ f2(x)] : ( f1, f2) ∈ Ĥ }.

The complexity R̂!(G) is

R̂!(G) = Eσ

[

sup
( f1, f2)∈Ĥ

∣

∣

∣

∣

∣

1
!

!

∑
i=1

σi( f1(xi)+ f2(xi))

∣

∣

∣

∣

∣

]

. (26)

As it only depends on the values of function f1(·) and f2(·) on the ! labeled examples, by the repro-
ducing kernel property which says the projection of function f onto a closed subspace containing
k(x, ·) has the same value at x as f itself does (Rosenberg and Bartlett, 2007) we can restrict the
function class Ĥ to the span of labeled and unlabeled data and thus write it as

Ĥ = {( f1, f2) : γn(α)
1 K1α1+α)

2 K2α2)+
γv(K1uα1−K2uα2))Uu(K1uα1−K2uα2)≤ 1}

= {( f1, f2) : (α)
1 α

)
2 )N

(

α1
α2

)

≤ 1},

where K1u and K2u are respectively the last u rows of matrix K1 and K2, Uu is the diagonal matrix
including the last u diagonal elements ofU , and

N := γn

(

K1 0
0 K2

)

+ γv

(

K)
1u

−K)
2u

)

Uu(K1u −K2u). (27)
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5.1 Evaluating the Supremum in Euclidean Space

Since ( f1, f2) ∈ Ĥ implies (− f1,− f2) ∈ Ĥ , we can drop the absolute sign in (26). Now we can
write

R̂!(G) =
1
!
Eσ sup

α1,α2∈R !+u
{σ)K1!α1+σ)K2!α2 : (α)

1 α
)
2 )N

(

α1
α2

)

≤ 1}

=
1
!
Eσ sup

α1,α2∈R !+u
{σ)(K1! K2!)

(

α1
α2

)

: (α)
1 α

)
2 )N

(

α1
α2

)

≤ 1}, (28)

where K1!,K2! represent the first ! rows of the Gram matrices K1 and K2, respectively.
For a symmetric positive definite matrix M, it is simple to show that (Rosenberg and Bartlett,

2007)
sup

α:α)Mα≤1
v)α= ‖M−1/2v‖.

Without loss of generality, suppose positive semi-definite matrix N in (28) is positive definite and
thus has full rank. If N does not have full rank, we can use subspace decomposition to rewrite R̂!(G)
to obtain a similar representation. Thus, we can evaluate the supremum as described above to get

R̂!(G) =
1
!
Eσ‖N−1/2

(

K)
1!

K)
2!

)

σ‖.

5.2 Bounding R̂!(G) above and below

We make use of the Kahane-Khintchine inequality (Latala and Oleszkiewicz, 1994), stated here for
convenience, to bound R̂!(G).

Lemma 15 For any vectors a1, · · · ,an in a Hilbert space and independent Rademacher random
variables σ1, · · · ,σn, we have

1
2
E‖

n

∑
i=1

σiai‖2 ≤ (E‖
n

∑
i=1

σiai‖)2 ≤ E‖
n

∑
i=1

σiai‖2.

By Lemma 15 we have
U√
2!

≤ R̂!(G)≤
U
!
, (29)

where

U2 = Eσ‖N−1/2
(

K)
1!

K)
2!

)

σ‖2

= Eσtr[(K1! K2!)N−1
(

K)
1!

K)
2!

)

σσ)]

= tr[(K1! K2!)N−1
(

K)
1!

K)
2!

)

].

Recall that

N = γn

(

K1 0
0 K2

)

+ γv

(

K)
1u

−K)
2u

)

Uu(K1u −K2u).
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Define

Σ= γn

(

K1 0
0 K2

)

, R=

(

K)
1u

−K)
2u

)

U1/2
u .

Using the Sherman-Morrison-Woodbury formula (Golub and Loan, 1996), we expand N−1 as

N−1 = Σ−1− γvΣ−1R(I+ γvR)Σ−1R)−1R)Σ−1.

Define Ω= (K1! K2!). We get

U2 = tr(ΩΣ−1Ω))− γvtr[ΩΣ−1R(I+ γvR)Σ−1R)−1R)Σ−1Ω)].

Define

S = ΩΣ−1Ω) =
1
γn
(K1!K−1

1 K)
1!+K2!K−1

2 K)
2!),

Θ = R)Σ−1R=
1
γn
U1/2
u (K1uK−1

1 K)
1u+K2uK−1

2 K)
2u)U

1/2
u ,

J = R)Σ−1Ω) =
1
γn
U1/2
u (K1uK−1

1 K)
1!−K2uK−1

2 K)
2!). (30)

Putting expressions together, we get

U2 = tr(S)− γvtr(J)(I+ γvΘ)
−1J ). (31)

5.2.1 REGULARIZATION TERM ANALYSIS

From (29) and (31), it is clear to see the roles the regularization parameters γn and γv play in the
empirical Rademacher complexity R̂l(G).

The amount of reduction in the Rademacher complexity brought by γv is

Δ(γv) = γvtr(J)(I+ γvΘ)−1J ).

This term has the property shown by the following lemma given by Rosenberg and Bartlett (2007)
when analyzing co-regularized least squares. Here the meanings of J and Θ are different from
Rosenberg and Bartlett (2007).

Lemma 16 (Rosenberg and Bartlett, 2007) Δ(0)= 0, Δ(γv) is nondecreasing on γv≥ 0, and given
that Θ is positive definite, we have

lim
γv→∞

Δ(γv) = tr(J)Θ−1J ).

5.3 Extending to Iterative Optimization

As our sparse multi-view SVMs employ an iterative optimization procedure for sparsity pursuit, the
former outcome for empirical Rademacher complexity would not apply if we use more than one
iteration to update z. However, we can extend the former analysis to suit this case.
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Recall that zi ∈ [0,1) (i= !+1, . . . ,!+u) andUu = diag(z!+1, . . . ,z!+u). During iterations, it is
possible thatUu becomes a zero matrix or other arbitrary matrix with diagonal elements in the range
[0,1). In any case, the resultant function class can be covered by

Ĥ = {( f1, f2) : γn(‖ f1‖2+‖ f2‖2)≤ 1},

which is obtained by omitting the term containing zi in (25). Following a similar derivation, the
matrix N in (27) would be

N = γn

(

K1 0
0 K2

)

.

Finally, we can obtain a bound on the empirical Rademacher complexity R̂l(G) identical to (29) but
now U2 = tr(S) with S defined in (30). The proof of Theorem 14 is completed.

5.4 Examining R̂l(G)

Here, we examine the role R̂l(G) plays in the margin bound. Since K1! and K2! are the first ! rows
of K1 and K2, the formulation of tr(S) can be simplified as

tr(S) =
1
γn
tr(K1!K−1

1 K)
1!+K2!K−1

2 K)
2!) =

1
γn

!

∑
i=1

(K1(i, i)+K2(i, i)). (32)

Now, we see that for iterative optimization of sparse multi-view SVMs, the empirical Rademacher
complexity R̂l(G) with U2 = tr(S) only depends on the ! labeled examples and the chosen kernel
functions. Consequently, the margin bound does not rely on the unlabeled training sets. In this case
the margin bound is quite straightforward to reason.

If we do not use iterative optimization, the empirical Rademacher complexity R̂l(G)will involve
other two terms Θ and J . By a similar technique as in (32), we can show that Θ only depends
on the unlabeled data and the kernel functions, while J encodes the interaction between labeled
and unlabeled data. As a result, the margin bound relies on both labeled and unlabeled data. For
this case, we will give an evaluation of the margin bound with different sizes of unlabeled sets in
Section 6.4.

6. Experiments

We performed experiments on artificial data and real-world data to evaluate the proposed sparse
multi-view SVMs (SpMvSVMs). For SpMvSVMs with ε > 0, the entries of z were fixed as 1 for
labeled data and initialized as 0.995 for unlabeled data. The termination condition for iterative
optimization is either no unlabeled examples can be removed or the maximum iteration number sur-
passes 50. Comparisons are made with supervised SVMs, and the unsupervised SVM-2K method.
Each accuracy/error reported in this paper is an averaged accuracy/error value over ten random splits
of data into labeled, unlabeled and test data.

Later in this section, we also provide a sequential training strategy for SpMvSVMs, which
shows an accuracy improvement over the gradual adding of unlabeled data while with roughly linear
and sub-linear increases of running time. This indicates the possibility and potential of applying
SpMvSVMs to large-scale data sets. At the end, margin bound evaluation results are reported.
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Figure 1: Examples in the two-moons-two-lines data set.

6.1 Artificial Data

This two-moons-two-lines synthetic data set was generated according to Sindhwani et al. (2005).
Examples in two classes scatter like two moons in one view and two parallel lines in the other. To
link the two views, points on one moon were enforced to associate at random with points on one
line. Each class has 400 examples and a total of 800 examples were generated as shown in Figure 1.
For SpMvSVMs, the numbers of examples in the labeled training set, unlabeled training set and
test set were fixed as four, 596, and 200, respectively. Gaussian kernel with bandwidth 0.35 and
the linear kernel were used for view 1 and view 2, respectively. The parameters γn and γv were
selected from a small grid {10−6,10−4,10−2,1,10,100} by five-fold cross validation on the whole
data set. The chosen values are γn = 10−4 and γv = 1. In this paper, γv is normalized by the number
of labeled and unlabeled examples involved in the multi-view regularization term. For supervised
SVMs, which concatenated features from the two views, we also found the regularization coefficient
from this grid by five-fold cross validation.

To evaluate SpMvSVMs, we varied the size of the unlabeled training set from 20%, 60% to
100% of the total number of unlabeled data, and used different values for the insensitive parameter
ε, which ranged from 0 to 0.2 with an interval 0.01 (when ε is zero, sparsity is not considered).
The test accuracies and transductive accuracies (on the corresponding unlabeled set) are given in
Figure 2(a) and Figure 2(b), respectively. It should be noted that the numbers of data used to
calculate transductive accuracies are different for the three curves in Figure 2(b). The numbers of
removed unlabeled examples for different ε values are shown in Figure 3.

From Figure 2 and Figure 3, we find that with the increase of ε, more and more unlabeled
data are removed, and the remove of a small number of unlabeled data can hardly decrease the
performance of the resultant classifiers, especially when the original size of unlabeled set is large.
Therefore, we can find a good balance between sparsity and accuracy using an appropriate ε. In
addition, more unlabeled data can benefit the performance of the learned classifiers with the same
ε.
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Figure 2: Classification accuracies of SpMvSVMs with different sizes of unlabeled set and ε values
on the artificial data. The accuracies of SVMs are also shown.
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Figure 3: The numbers of unlabeled examples removed by SpMvSVMs for different ε values on
the artificial data.

6.2 Text Classification

We applied the SpMvSVMs to the WebKB text classification task studied in Blum and Mitchell
(1998); Sindhwani et al. (2005); Sun (2008). The data set consists of 1051 two-view web pages
collected from the computer science department web sites at four U.S. universities: Cornell, Uni-
versity of Washington, University of Wisconsin, and University of Texas. The task is to predict
whether a web page is a course home page or not. This problem has an unbalanced class distri-
bution since there are a total of 230 course home pages (positive examples). The first view of the
data is the words appearing on the web page itself, whereas the second view is the underlined words
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Figure 4: Classification accuracies of SpMvSVMs with different sizes of unlabeled set and ε values
on text classification. The accuracies of SVMs are also shown.

in all links pointing to the web page from other pages. We preprocessed each view by remov-
ing stop words, punctuation and numbers and then applied Porter’s stemming to the text (Porter,
1980). In addition, words that occur in five or fewer documents were ignored. This resulted in
2332 and 87-dimensional vectors in the first and second view, respectively. Finally, document vec-
tors were normalized to t f .id f (the product of term frequency and inverse document frequency)
features (Salton and Buckley, 1988).

For SpMvSVMs, the numbers of examples in the labeled training set, unlabeled training set and
test set were fixed as 32, 699, and 320, respectively. In the training set and test set, the numbers
of negative examples are three times of those of positive examples to reflect the overall proportion
of positive and negative examples. The linear kernel was used for both views. The parameters γn
and γv for SpMvSVMs and the regularziation coefficient for SVMs were selected using the same
method as in Section 6.1. The chosen values for SpMvSVMs are γn = 10−6 and γv = 0.01.

To evaluate SpMvSVMs, we also varied the size of the unlabeled training set from 20%, 60% to
100% of the total number of unlabeled data, and used different values for the insensitive parameter
ε ranging from 0 to 0.2 with an interval 0.01. The test accuracies and transductive accuracies are
given in Figure 4(a) and Figure 4(b), respectively. The numbers of removed unlabeled examples for
different ε values are shown in Figure 5.

From Figure 5, we find that with the increase of ε, more and more unlabeled data can be re-
moved. Reflected by Figure 4, the remove of unlabeled data only slightly decrease the performance
of the resultant classifiers, and this decrease is less when more unlabeled data is used. We draw a
same conclusion as before: an appropriate ε can be adopted to keep a good balance between sparsity
and accuracy. We also observe a different phenomenon, that is, using 60% and 100% unlabeled data
result in similar test accuracies as shown in Figure 4(a). This is reasonable because the performance
improvement of any classifier is always bounded no matter how many data are used.

2447



SUN AND SHAWE-TAYLOR

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

350

400

450

500

Epsilon

N
um

be
r o

f R
em

ov
ed

 U
nl

ab
el

ed
 E

xa
m

pl
es

#Unlabeled:20%
#Unlabeled:60%
#Unlabeled:100%

Figure 5: The numbers of unlabeled examples removed by SpMvSVMs for different ε values on
text classification.

6.3 Comparison with SVM-2K, and Sequential Training

The SVM-2K method proposed by Szedmak and Shawe-Taylor (2007) can exploit unlabeled data
for multi-view learning. Similar to SpMvSVMs, it also combines the maximum margin and multi-
view regularization principles. However, it adopts l1 norm for multi-view regularization, and this
regularization only uses unlabeled data. Specifically, the SVM-2K method has the following opti-
mization for classifier parameters w1, w2, b1, and b2 in two views

min
1
2
‖w1‖2+

1
2
‖w2‖2+C1

!

∑
i=1

ξi1+C2
!

∑
i=1

ξi2+Cη
!+u

∑
j=!+1

η j

s.t.















|w)
1 φ1(x j)+b1−w)

2 φ2(x j)−b2|≤ η j+ ε
yi(w)

1 φ1(xi)+b1)≥ 1−ξi1
yi(w)

2 φ2(xi)+b2)≥ 1−ξi2
ξi1 ≥ 0,ξi2 ≥ 0,η j ≥ 0 for all i= 1, . . . ,!,and j = !+1, . . . ,!+u ,

where an ε-insensitive parameter is used to relax the prediction consistency between views. In
this subsection, we carry out an empirical comparison between SVM-2K and our SpMvSVMs for
semi-supervised learning with identical data splits.

Our first comparison takes the ε-insensitive parameter in both SpMvSVMs and SVM-2K as zero
and uses the above two data sets with different sizes of unlabeled training sets, namely, from 20%
to 60% to 100%. For SVM-2K, we adopted the same parameter selection approach as in Szedmak
and Shawe-Taylor (2007) through five-fold cross-validation. That is, the values of C1 and C2 were
fixed to 1 andCη were selected from the range {0.01×2i} (i= 1, . . . ,10). The experimental results
are listed in Table 1, from which we see that both the test accuracies and transductive accuracies of
SpMvSVMs are superior to those counterparts of SVM-2K.

The second comparison considers sequential training of SpMvSVMs and SVM-2K. The pur-
pose is to show the relationship between running time, classification accuracies and the number of
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SVM-2K SpMvSVMs
# Unlabeled Test Acc. Transductive Acc. Test Acc. Transductive Acc.

20% 95.70 97.75 98.65 98.58
60% 98.50 99.19 99.35 99.22
100% 98.35 99.18 99.60 99.55
20% 84.72 84.71 89.28 90.14
60% 85.88 84.79 91.53 91.02
100% 85.84 87.85 91.50 92.90

Table 1: Test and transductive accuracies (%) of SVM-2K and SpMvSVMs with different sizes of
unlabeled training sets on the artificial data (the first three lines) and text classification data
(the last three lines).

gradually added unlabeled examples, and thus evaluate the possibility and potential of applying the
methods to large-scale problems. The text classification data were used where all the unlabeled
training data were divided into ten equal sizes. For sequential training of SpMvSVMs, we adopted
two different ε values 0.1 and 0.2. The procedure is as follows. First, we train SpMvSVMs using the
labeled data and the first portion of unlabeled data. Then, we combine the retained unlabeled data
from the last training with the next portion of unlabeled data together to train SpMvSVMs (with the
original labeled data). We repeat this progress for ten times to complete the whole procedure.

The test accuracies and total numbers of retained unlabeled data after each step are shown in
Figure 6(a) and Figure 6(b). The averaged classifier training time is given in Figure 7. Figure 6(a)
indicates the effectiveness of sequential training, which is reflected by the fact that the test accuracies
have an overall increasing tendency. Figure 6(b) shows that SpMvSVMs obtain sparse solutions in
the sense that the number of retained unlabeled data is small compared to the number of all the
added unlabeled data. Figure 7 shows that when ε = 0.1 the running time is roughly linear with
respect to the gradual adding of unlabeled data, and when ε = 0.2 the relationship is roughly sub-
linear. In fact, the running time can be further reduced if larger ε values rather than the given values
are properly used. In practice, we can also vary the value of ε during the sequential training process.

Though the SVM-2K method was not initially proposed for sparse semi-supervised learning, we
find that with ε> 0 it can reduce the number of unlabeled data used for representing classifiers. For
this reason, we attempted to explore its possibility on sequential training using this data set under
the same setting with the sequential training of SpMvSVMs. However, for different ε values we did
not observe an improvement of test accuracies with the gradual adding of unlabeled data. Actually,
for this data set when ε> 0.05 SVM-2K would not use any unlabeled data at all. This indicates that
the roles of ε for SpMvSVMs and SVM-2K are quantitatively different.

6.4 Margin Bound Evaluation

To evaluate the margin bound in Theorem 13 for SpMvSVMs, we carried out experiments on the text
classification data with a priori fixed regularization values γn = 10−5 and γv = 0.1. This choice of
parameters did not intend to be optimal in terms of test errors, but attempted to show the relationship,
if any, between the generalization bound and the test error. The empirical Rademacher complexity
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Figure 6: Classification accuracies and numbers of retained unlabeled examples for sequential
training of SpMvSVMs. Parameter ε varies in {0.1,0.2}.
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Figure 7: Running time for sequential training of SpMvSVMs. Parameter ε varies in {0.1,0.2}.
We have normalized the running times with 10% unlabeled examples to be 1.

R̂!(G) in the margin bound is replaced by its upper bound U/! with U2 = tr(S)− γvtr(J)(I+
γvΘ)−1J ).

For SpMvSVMs, only one iteration was performed in order to apply the margin bound. In
other words, we learned classifiers only with the initially provided conjugate vector z whose entries
were fixed as 1 for labeled data and 0.995 for unlabeled data. We used the same data split as in
Section 6.2, but varied the size of unlabeled training set from {10%,20%, . . . ,100%} of all the
available unlabeled data. To compute the margin bound, the confidence level in Theorem 13 is fixed
as 95% (δ = 0.05). The test error rate, empirical Rademacher complexity, and margin bound are
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Figure 8: Classification error rates, empirical Rademacher complexity, and the margin bound of
SpMvSVMs with different sizes of unlabeled sets.

shown in Figure 8. The overall decrease of error rates is well explained by the drop of the margin
bound and empirical Rademacher complexity brought by the regularization role of more and more
unlabeled data. Figure 8(b) also indicates that after adding a certain number of unlabeled data,
including more unlabeled data will only improve the performance marginally. This phenomenon is
observed in Figure 8(a) as well.

7. Extensions

In this section, we discuss possible extensions of using conjugate functions for sparse semi-supervised
learning. In particular, the ε-insensitive loss term can be replaced by a somewhat general convex
function. We also briefly discuss two sparse variants for Co-RLS and Laplacian SVMs using the
same approach as sparse multi-view SVMs.

7.1 Arbitrary Convex Loss

In Section 2.2, for each example the ε-insensitive loss used is fε(ti) = (
√
ti−ε)2+ with ti = [ f1(xi)−

f2(xi)]2. This can be relaxed to a general class of user-designed losses that can be defined as a convex
function of ti, for example, using existing convex functions or compositions of convex functions with
some good properties (Boyd and Vandenberghe, 2004).

Provided the ε-insensitive loss conforms the slight assumptions closed, convex, and proper
listed in Lemma 5, the methodology used for sparse multi-view SVMs and the advantages of using
Fenchel-Legendre conjugates apply well to the new optimization problem. This is an important
contribution of this paper, which gives a framework for solving problems involving different ε-
insensitive loss functions. Also, this framework applies to problems with a single view or more than
two views, as long as the objective function is convex with respect to θ (parameters of classifiers or
regressors) as in (11).
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7.2 A Sparse Variant for Co-RLS

The objective function of Co-RLS in the case of two views is given as follows (Sindhwani et al.,
2005; Brefeld et al., 2006)

min
f1∈H1, f2∈H2

1
2!

!

∑
i=1

[( f1(xi)− yi)2+( f2(xi)− yi)2]+

γn(‖ f1‖2+‖ f2‖2)+ γv
!+u

∑
i=1

( f1(xi)− f2(xi))2,

where nonnegative scalars γn,γv are respectively norm regularization and multi-view regularization
coefficients. This optimization problem is indeed convex with respect to expansion coefficients α1
and α2 which have the same meanings as in (9).

Replacing the last term with ∑!+u
i=1 (| f1(xi)− f2(xi)|−ε)2+ results in the sparse Co-RLS algorithm

min
f1∈H1, f2∈H2

1
2!

!

∑
i=1

[( f1(xi)− yi)2+( f2(xi)− yi)2]+

γn(‖ f1‖2+‖ f2‖2)+ γv
!+u

∑
i=1

(| f1(xi)− f2(xi)|− ε)2+.

This ε-insensitive loss is identical to that used in sparse multi-view SVMs, and therefore we can
directly use the technique developed in this paper to solve this optimization.

7.3 A Sparse Variant for Laplacian SVMs

By including a penalty term on the intrinsic manifold smoothness, Belkin et al. (2006) proposed the
Laplacian SVMs as an extension of SVMs by solving the following problem in an RKHS

min
f∈H

1
!

!

∑
i=1

(1− yi f (xi))++ γA‖ f‖2+ γI
!+u

∑
i, j=1

Wi j( f (xi)− f (x j))2, (33)

where H is the RKHS induced by a kernel, γA and γI are respectively ambient and intrinsic regu-
larization coefficients, andWi j ≥ 0 are entries of the weight matrixW of the graph representing the
manifold. The last term can be rewritten as

!+u

∑
i, j=1

Wi j( f (xi)− f (x j))2 = 2

[

!+u

∑
i=1

(
!+u

∑
j=1
Wi j) f 2(xi)−

!+u

∑
i, j=1

Wi j f (xi) f (x j)

]

= 2f)(V −W )f= 2f)Lf,
where f= [ f (x1), . . . , f (x!+u)]), matrixV is diagonal with the ith diagonal entryVii =∑!+u

j=1Wi j, and
L is the positive semi-definite graph Laplacian.

This optimization problem is also convex with respect to expansion coefficient α, slack variable
ξ and bias b if we formulate it as in (12). Replacing the last term in (33) with ∑!+u

i, j=1Wi j(| f (xi)−
f (x j)|− ε)2+ results in the sparse Laplacian SVMs

min
f∈H

1
!

!

∑
i=1

(1− yi f (xi))++ γA‖ f‖2+ γI
!+u

∑
i, j=1

Wi j(| f (xi)− f (x j)|− ε)2+,

This ε-insensitive loss has a similar form with that used in sparse multi-view SVMs, and thus facil-
itates an extension of the technique developed in this paper to solve this optimization.
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8. Conclusion

In this paper, we proposed a sparse semi-supervised learning framework using Fenchel-Legendre
conjugates. It is extendable to a wide range of semi-supervised learning methods. In particular, we
formulated and solved the sparse multi-view SVMs, which incorporate an ε-insensitive multi-view
regularization term. By rewriting this regularization in terms of conjugate functions, we obtained
an inf-sup optimization problem whose globally optimal solutions can be found by our proposed
iterative algorithm. We also showed that the quadratic program involved in each iteration only
depends on the size of the labeled set, which would be very efficient for semi-supervised learning
problems. For sparse multi-view SVMs, we characterized their generalization error in terms of the
margin bound and derived the empirical Rademacher complexity of the considered function class.
The empirical Rademacher complexity has two different forms depending on whether the iterative
algorithm iterates only once or multiple steps.

Experimental results on sparse multi-view SVMs with different ε values showed that it is unnec-
essary to retain all the unlabeled data to represent target functions and using sparse semi-supervised
learning can effectively reach a good balance between classifier performance and the number of
unlabeled examples retained. This would be beneficial to speed up function evaluations during the
classification of new examples. Comparisons with SVM-2K showed the superiority of our proposed
method both on classification accuracies and the possibility and potential to be applied to large-scale
problems when a sequential training strategy is adopted. As in this paper we only concern the possi-
bility and potential for large-scale applications, we employed a moderate data set. It leaves as future
work to apply the approach to much larger data sets. We also performed experiments to validate
the usefulness of the margin bound and empirical Rademacher complexity, which explain well the
regularization role unlabeled data play for multi-view learning.
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Abstract
Sequential algorithms of active learning based on the estimation of the level sets of the empirical
risk are discussed in the paper. Localized Rademacher complexities are used in the algorithms to
estimate the sample sizes needed to achieve the required accuracy of learning in an adaptive way.
Probabilistic bounds on the number of active examples have been proved and several applications
to binary classification problems are considered.
Keywords: active learning, excess risk, Rademacher complexities, capacity function, disagree-
ment coefficient

1. Introduction

Let (S,A) be a measurable space and T ⊂ R. Consider a standard prediction problem in which
(X ,Y ) is a random couple in S×T with unknown distribution P. Here X is a design point whose
distribution will be denoted Π and Y is a response variable with conditional distribution (given X)
PY |X(·|X = x). The response variable Y is to be predicted based on an observation of X . This class
of problems includes many versions of regression and classification. For instance, in the binary
classification, T = {−1,1} and the conditional distribution ofY given X is completely characterized
by the regression function

η(x) := E(Y |X = x).

In the framework of passive learning, a learning algorithm inputs the training data (X1,Y1), . . .
(Xn,Yn) that consists of n independent examples sampled from the distribution P. The goal is to
construct a data dependent prediction rule ĝ : S %→T whose risk with respect to a properly chosen loss
function is “close” to the minimal possible risk. More precisely, given a loss function ! : T×T %→R,
the risk of a prediction rule g : S %→ T is defined as

P(!•g) = E!(Y ;g(X)),

where we used the notation (! • g)(x,y) := !(y;g(x)). For instance, in the binary classification set-
ting, the binary loss !(y,u) := I(y '= u) is usually used. In this case, the risk of a classification rule
g : S %→ {−1,1} is its generalization error:

P(!•g) = P{Y '= g(X)}.

∗. Partially supported by NSF grants MSPA-MCS-0624841, DMS-0906880 and CCF-0808863.

c©2010 Vladimir Koltchinskii.
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Suppose G is a class of prediction rules g : S %→ T. The quantity

EP(!•g) := P(!•g)− inf
g∈G

P(!•g)

is called the excess risk of g. One of the main goals of statistical analysis of learning algorithms is
to understand how the excess risk EP(! • ĝ) of a data dependent decision rule ĝ output by such an
algorithm depends on the sample size n, on the “complexity” of the class G of prediction rules and
on the underlying complexity of the prediction problem itself.

In the recent years, there has been a lot of interest in active learning algorithms. In this frame-
work, the algorithm can modify the design distribution in the process of learning. More precisely,
suppose that the training examples (Xj,Yj) are sampled sequentially. At each iteration (say, iteration
number k), the algorithm requests a design point Xk+1 sampled from a distribution Π̂k that depends
on the training data (X1,Y1), . . . ,(Xk,Yk). Given Xk+1 = x, the response variable (the label) Yk+1 is
sampled from the conditional distribution PY |X(·|X = x). The question is whether there are such
active learning algorithms for which the excess risk after n iterations is provably smaller than for
the passive prediction rules based on the same number n of training examples. It happens that the
answer depends on the type of learning problem. A minimax analysis by Castro et al. (2005) and
Castro and Nowak (2008) shows that such an improvement is possible in classification problems and
in some special classes of regression problems with non-smooth regression function (for instance,
if the regression function is a step function). In such cases, the improvement can be very signif-
icant. In some classification problems, the excess risk of active learning algorithms can converge
to zero with an exponential rate as n→ ∞ (comparing with the rate O(n−1) in the case of passive
learning). Castro and Nowak (2008) studied several examples of binary classification problems in
which the active learning approach is beneficial and suggested nice active learning algorithms in
these problems. However, the drawback of these algorithms is that they are not adaptive in the sense
that they require the prior knowledge of distribution dependent parameters of the problem, such as
noise characteristics in classification. The development of active learning methods that are adaptive
and, at the same time, computationally tractable remains a challenge. There has been a progress
in the design of active learning algorithms that possess some degree of adaptivity, in particular, see
Dasgupta et al. (2007), Balcan et al. (2009), Balcan et al. (2008) and Hanneke (2009a,b). In the
last two interesting papers by Hanneke, some versions of the algorithms of Balcan et al. (2009)
and of Dasgupta et al. (2007) were studied using the technique of Rademacher complexities that
much earlier proved to be very useful in the analysis of passive learning, see Bartlett et al. (2002),
Koltchinskii (2001), Koltchinskii and Panchenko (2000), Bartlett et al. (2005), Koltchinskii (2006,
2008) and references therein. Hanneke showed that incorporating Rademacher complexities in ac-
tive learning algorithms allows one to develop rather general versions of such algorithms that are
adaptive under broad assumptions on the underlying distributions.

In the current paper, we continue this line of research. We consider the following model of
active learning. At each iteration, a learning algorithm has to choose a set Â ⊂ S of “good” design
points and also the number of training examples needed at the current iteration. Both the set Â and
the required number of the examples might depend on the training data that is already available. The
algorithm has an access to an oracle that is asked to provide the required number of examples (X ,Y )
sampled from the conditional distribution P(·|x ∈ Â). Alternatively, it can be described as follows.
The oracle provides training examples (X ,Y ) sampled from an unknown probability distribution
P. At each iteration, the algorithm chooses a set Â of “good” design points and asks the oracle
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whether the next design point Xk is “good”. If it is “good”, the algorithm accepts the point, the
oracle provides it with a label Yk and returns the couple (Xk,Yk). Testing whether the example is
“good” costs the algorithm nothing, but each “good” labeled training example costs $ 1. Thus, only
the number of “good” examples matters for determining the total cost of learning. The question is
how many “good” examples are needed for the excess risk EP(!• ĝ) of the resulting classifier ĝ to
become smaller than δ with a guaranteed probability at least 1−α.

We will develop active learning algorithms that are somewhat akin to what is done by Hanneke
(2009a,b), but they are more closely related to the construction of localized Rademacher complex-
ities used in the definitions of distribution dependent and data dependent excess risk bounds in
empirical risk minimization, see Koltchinskii (2006, 2008). The main idea of this construction is
to characterize the complexity of the problem by the sup-norm of a special Rademacher process
indexed by the level sets of the risk. To be more specific, suppose that we are dealing with a binary
classification problem and that the empirical risk (with respect to the binary loss) is being minimized
over a class G of binary functions. Then what matters is the collection of δ-minimal sets

G(δ) :=
{

g ∈ G : EP(!•g)≤ δ
}

, δ> 0.

These sets can be estimated based on the empirical data and Rademacher complexities of such
estimated sets for small enough values of δ are used to define reasonably tight bounds on the excess
risk. In many learning problems, the δ-minimal sets become small as δ→ 0, for instance, in the
sense that their L2(Π)-diameter is small. It turns out that an important role in the development of
active classification algorithms is played by the sets of the following type

A(δ) :=
{

x ∈ S|∃g1,g2 ∈ G(δ) : g1(x) '= g2(x)
}

.

Such a set is called a disagreement set since it consists of the points for which there are two
classifiers in G(δ) whose predictions at point x disagree with each other. If the δ-minimal sets are
small for small enough values of δ, one can expect that the corresponding disagreement sets are
also small. This is not always the case, but there are natural examples in which indeed the measure
Π(A(δ)) tends to 0 as δ→ 0 (sometimes, even Π(A(δ)) = O(δ)). Note that if the empirical risk
is being minimized over the δ-minimal set G(δ), one can eliminate from the sample all the design
points Xj such that Xj '∈ A(δ) : the minimizers of the empirical risk are not going to change since
the value of the binary loss at such training examples (Xj,Yj) is a constant on the δ-minimal set. So,
only the examples for which Xj belongs to a small disagreement set A(δ) are really needed. This
simple observation opens a possibility of reducing the sample size in the process of active learning,
and this has already been exploited in several algorithms described in the literature: see Dasgupta
et al. (2007), Balcan et al. (2009), Hanneke (2009a,b) and references therein. It is interesting to
mention that some notions similar to the “disagreement sets” were used much earlier in the study
of ratio type empirical processes (for instance, in the work of Alexander in the 80s; see, Giné and
Koltchinskii, 2006 and references therein). Moreover, it was used by Giné and Koltchinskii (2006)
to obtain refined excess risk bounds in binary classification (in the passive learning case). This will
be discussed in some detail in Section 4.

Our approach is based on iterative estimation of the δ-minimal sets for a decreasing sequence
{δ j} of values of δ. It happens that, for larger values of δ, it is possible to construct a rough esti-
mate of the δ-minimal sets based on a relatively small number of training examples. The required
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sample sizes n̄(δ) can be estimated using Rademacher complexities. For smaller values of δ, more
examples are needed, but, at the same time, for the smaller values of δ the disagreement sets are
also small, and these sets again can be estimated based on the training examples that have been al-
ready sampled. Thus, there is a possibility to come up with an active learning strategy that, at each
iteration, computes an estimate Â of the disagreement set and determines the required sample size,
and then samples the required number of design points from the conditional distributionΠ(·|x ∈ Â).
Each of these points Xj = x is provided with a label Yj sampled from the conditional distribution
PY |X(·|X = x). The algorithm stops as soon as δ j becomes smaller than the required accuracy of
learning δ. At this stage, it outputs an estimate of the δ-minimal set G(δ). The number of labeled
examples needed to achieve this goal is roughly

∑
δ j≥δ

n̄(δ j)Π(A(δ j))

(see theorems 7, 8, 9 for more precise formulations). For binary classification problems with a VC-
class G such thatΠ(A(δ)) =O(δ), this leads to the bound on the number of labeled examples of the
order log(1/δ) log log(1/δ).

The need to estimate the whole δ-minimal set in this learning strategy rather than simply mini-
mizing the empirical risk might look like too strong of an assumption. However, in the alternative
general versions of adaptive strategies of active learning due to Hanneke (2009a,b) this is also
needed. Hanneke uses previously suggested agnostic learning methods of Dasgupta et al. (2007)
and of Balcan et al. (2009) in combination with Rademacher complexities that are based on esti-
mated level sets of the empirical risk. So, currently, this seems to be unavoidable in general adaptive
methods and our approach is just based on a more direct use of the δ-minimal sets.

To give a precise description of a version of active learning method considered in this paper and
to study its statistical properties, several facts from the general theory of empirical risk minimiza-
tion will be needed. In particular, in Section 2, we describe a construction of distribution dependent
and data dependent bounds on the excess risk based on localized Rademacher complexities, see
Koltchinskii (2006, 2008). In Section 3, we describe our active learning algorithms. These algo-
rithms are sequential in the sense that the training data is being sampled until the desired accuracy of
learning is achieved. We prove several bounds on the number of active examples needed to achieve
this goal with a specified probability. In sections 2 and 3, it is convenient to study the problem in a
more abstract framework, in which we suppress the labels Yj and write S instead of S×{−1,1}, X
instead of (X ,Y ), f instead of !•g, etc. This allows us to simplify the notations and the description
of the algorithms, and, at the same time, it makes the results a little more general. In principle, it
should be possible to apply these results to more general classes of learning problems than binary
classification (for instance, to special regression models with a non-smooth regression function or
to the problem of estimation of the level sets of an unknown probability density). However, we do
not pursue this possibility here and, instead, we concentrate in Section 4 on the binary classifica-
tion problems, which still remains the most interesting class of learning problems where the active
learning approach leads to faster convergence rates.

2. Empirical Risk Minimization: Bounds on the Excess Risk

Let (S,A) be a measurable space, let P be a probability measure in (S,A) and let X ,X1,X2, . . . be
i.i.d. random variables in (S,A) with common distribution P. Let F be a class of A-measurable
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functions f : S %→ [0,1]. The values of functions f ∈ F will be interpreted as “losses” associated
with some decisions and the integral

P f :=
∫
S
f dP= E f (X)

represents the expected loss, or the (true) risk. The optimization problem

P f −→min, f ∈ F

is interpreted as a “risk minimization” problem and the quantity

EP( f ) := P f − inf
g∈F

Pg

is called the excess risk of f . The δ-minimal set of the true risk is defined as

FP(δ) :=
{

f ∈ F : EP( f )≤ δ

}

, δ≥ 0.

In learning theory problems, the distribution P is usually unknown and the risk P f is to be
estimated by the empirical risk. The empirical measure based on the sample (X1, . . . ,Xn) of size n
is defined as

Pn := n−1
n

∑
j=1

δXj

and the problem of risk minimization is replaced by the “empirical risk minimization”:

Pn f −→min, f ∈ F . (1)

Naturally, this also leads to the definitions of the “excess empirical risk” EPn( f ) and of the δ-
minimal sets of the empirical risk FPn(δ), δ> 0.

Given a solution f̂ of the empirical risk minimization problem (1), a basic question is to pro-
vide reasonably tight upper confidence bounds on the excess risk EP( f̂ ) that depend on complexity
characteristics of the class F . It is also of importance to understand when the δ-minimal sets of the
empirical risk are reasonably good estimates of the δ-minimal sets of the true risk. We will need
below several results of this type that can be found in the papers by Koltchinskii (2006, 2008).

First of all, we will need an upper confidence bound on the size of the empirical process

sup
f ,g∈FP(δ)

|(Pn−P)( f −g)|.

To construct such a bound, we use Talagrand’s famous concentration inequalities. Suppose ρP :
L2(P)×L2(P) %→ [0,+∞) and

ρ2P( f ,g)≥ P( f −g)2− (P( f −g))2, f ,g ∈ L2(P).

Define the diameter of FP(δ) as

D(δ) := DP(δ) := sup
f ,g∈F (δ)

ρP( f ,g).
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It provides a measure of the size of the δ-minimal sets. We will also use the following quantity that
characterizes the accuracy of “empirical approximation” of P by Pn on the δ-minimal sets:

φn(δ) := E sup
f ,g∈F (δ)

|(Pn−P)( f −g)|.

Given a decreasing sequence {δ j} of positive numbers with δ0 := 1 and a sequence {t j} of positive
numbers, define a step functionUn(δ), δ ∈ (0,1] as follows:

Ūn(δ) := 2∑
j≥0

[

φn(δ j)+D(δ j)
√

t j
n
+
t j
n

]

I(δ j+1,δ j](δ).

A version of Talagrand’s concentration inequality with explicit constants due to Bousquet implies
that, for all j ≥ 0 and for all δ ∈ (δ j+1,δ j], with probability at least 1− e−t j

sup
f ,g∈FP(δ)

|(Pn−P)( f −g)|≤ Ūn(δ).

Given ψ : R+ %→ R+, define

ψ"(δ) := sup
σ≥δ

ψ(σ)
σ

and

ψ#(ε) := inf
{

δ> 0 : ψ"(δ)≤ ε

}

.

Let
δn(F ;P) := sup

{

δ ∈ (0,1] : δ≤ Ūn(δ)
}

.

The following bounds were proved by Koltchinskii (2006, 2008).

Theorem 1 For all δ≥ δn(F ;P),

P

{

EP( f̂ )> δ
}

≤ ∑
δ j≥δ

e−t j

and

P

{

sup
f∈F ,EP( f )≥δ

∣

∣

∣

∣

EPn( f )
EP( f )

−1
∣

∣

∣

∣

> Ū "
n(δ)

}

≤ ∑
δ j≥δ

e−t j .

Thus, the quantity δn(F ;P) is a distribution dependent upper bound on the excess risk EP( f̂ )
that holds with a guaranteed probability. Moreover, for all δ ≥ δn(F ;P) and for all f ∈ F with
EP( f ) ≥ δ it is possible to control the size of the ratio EPn ( f )

EP( f ) in terms of the quantity Ū
"
n(δ). This

ratio bound for the excess risk immediately implies the following statement showing that for all the
values of δ above certain threshold the δ-minimal sets of empirical risk provide estimates of the
δ-minimal sets of the true risk.

2462



EXCESS RISK IN ACTIVE LEARNING

Proposition 2 Let δ̄n := Ū #
n

(

1
2

)

. For all δ≥ δ̄n, with probability at least

1− ∑
δ j≥δ

e−t j

the following inclusions hold:

∀σ≥ δ FP(σ)⊂ FPn(3/2σ) and FPn(σ)⊂ FP(2σ).

Data dependent upper confidence bounds on the excess risk can be constructed using localized
sup-norms of Rademacher processes that provide a way to estimate the size of the empirical process.
Given i.i.d. Rademacher random variables {εi} independent of {Xi}, the Rademacher process is
defined as

Rn( f ) := n−1
n

∑
j=1

ε j f (Xj).

We will assume that
ρ2P( f ,g) := P( f −g)2.

Define
φ̂n(δ) := sup

f ,g∈FPn (δ)
|Rn( f −g)|

and
D̂n(δ) := sup

f ,g∈FPn (δ)
ρPn( f ,g).

These quantities are empirical versions of φn(δ) and DP(δ) and they can be used to define an empir-
ical version of the function Ūn :

Ûn(δ) := K̂∑
j≥0

[

φ̂n(ĉδ j)+ D̂n(ĉδ j)
√

t j
n
+
t j
n

]

I(δ j+1,δ j](δ),

where K̂, ĉ are numerical constants. We will also define

Ũn(δ) := K̃∑
j≥0

[

φn(c̃δ j)+D(c̃δ j)
√

t j
n
+
t j
n

]

I(δ j+1,δ j](δ)

with some numerical constants K̃, c̃.
It can be shown (see Koltchinskii, 2006, 2008) that for large enough numerical constants K̂, K̃, ĉ, c̃

and for all δ ≥ δ̄n, Ūn(δ) ≤ Ûn(δ) ≤ Ũn(δ) with a high probability. More precisely, the following
statement holds. Denote

δ̂n := Û #
n

(

1
2

)

, δ̃n := Ũ #
n

(

1
2

)

.

Theorem 3 There exists a choice of numerical constants K̂, K̃, ĉ, c̃ in the definitions of the functions
Ûn,Ũn such that the following holds. For all δ≥ δ̄n, there exists an event E of probability

P(E)≥ 1−3 ∑
δ j≥δ

e−t j
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such that on this event
Ūn(σ)≤ Ûn(σ)≤ Ũn(σ), σ≥ δ.

As a consequence,

P

{

δ̄n ≤ δ̂n ≤ δ̃n

}

≥ 1−3 ∑
δ j≥δ̄n

e−t j .

The proof is based on the following “statistical version” of Talagrand’s concentration inequality
(which, in turn, follows from the usual Talagrand’s concentration inequality for empirical processes
and standard symmetrization and contraction arguments, see Koltchinskii, 2008). Suppose that F
is a class of measurable functions on S uniformly bounded byU > 0. Denote

σ2P(F ) := sup
f∈F

P f 2 and σ2n(F ) := sup
f∈F

Pn f 2.

For a function Y : F %→ R, denote

‖Y‖F := sup
f∈F

|Y ( f )|.

Theorem 4 There exists a numerical constant K > 0 such that for all t ≥ 1 with probability at least
1− e−t the following bounds hold:

∣

∣

∣

∣

‖Rn‖F −E‖Rn‖F
∣

∣

∣

∣

≤ K
[

√

t
n

(

σ2n(F )+U‖Rn‖F
)

+
tU
n

]

,

E‖Rn‖F ≤ K
[

‖Rn‖F +σn(F )

√

t
n
+
tU
n

]

,

σ2P(F )≤ K
(

σ2n(F )+U‖Rn‖F +
tU
n

)

and
σ2n(F )≤ K

(

σ2P(F )+U‖Rn‖F +
tU
n

)

.

Also,

E‖Pn−P‖F ≤ K
[

‖Rn‖F +σn(F )

√

t
n
+
tU
n

]

and
∣

∣

∣

∣

‖Pn−P‖F −E‖Pn−P‖F
∣

∣

∣

∣

≤ K
[

√

t
n

(

σ2n(F )+U‖Rn‖F
)

+
tU
n

]

.

In what follows, it will be of interest to consider sequential learning algorithms in which the
sample size is being gradually increased until the excess risk becomes smaller than a given level
δ. The following quantities are used in the analysis of such algorithms. Let us fix a set M ⊂ N. A
possible choice isM = N, but, usually, we will takeM = {2k : k ≥ 0}. Denote

n̄(δ) := inf
{

n ∈M : δ̄n ≤ δ

}

= inf
{

n ∈M : Ū "
n(δ)≤

1
2

}

,
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n̂(δ) := inf
{

n ∈M : δ̂n ≤ δ

}

= inf
{

n ∈M : Û "
n(δ)≤

1
2

}

and
ñ(δ) := inf

{

n ∈M : δ̃n ≤ δ

}

= inf
{

n ∈M : Ũ "
n(δ)≤

1
2

}

.

If
E‖Pn−P‖F → 0 as n→ ∞,

which is true for so called Glivenko-Cantelli classes of functions with respect to P (see, e.g.,
van der Vaart and Wellner, 1996), then it is easy to see that

δ̄n → 0 and δ̃n → 0 as n→ ∞.

In this case, we have
ñ(δ)<+∞, n̄(δ)<+∞,δ ∈ (0,1].

It is also easy to see that the functions n %→ Ūn(δ) and n %→ Ũn(δ) are nonincreasing (it follows from
the well known reverse supermartingale properties of empirical processes; see, van der Vaart and
Wellner, 1996, Lemma 2.4.5). This implies that, for all n ≥ n̄(δ), δ̄n ≤ δ and, for all n ≥ ñ(δ),
δ̃n ≤ δ. Since Ūn(δ)≤ Ũn(δ), δ ∈ (0,1], it is also clear that

n̄(δ)≤ ñ(δ), δ ∈ (0,1].

The next proposition immediately follows from the definition of n̄(δ) (it is, in fact, just a refor-
mulation of the statements of Proposition 2 and Theorem 3):

Proposition 5 (i) For all n≥ n̄(δ),

P

{

EP( f̂n)> δ
}

≤ ∑
δ j≥δ

e−t j ;

(ii) For all n≥ n̄(δ), with probability at least

1− ∑
δ j≥δ

e−t j

the following inclusions hold:

∀σ≥ δ FP(σ)⊂ FPn(3/2σ) and FPn(σ)⊂ FP(2σ).

(iii) For all n≥ n̄(δ), there exists an event E of probability

P(E)≥ 1−3 ∑
δ j≥δ

e−t j

such that on this event
Ūn(σ)≤ Ûn(σ)≤ Ũn(σ), σ≥ δ.
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We will also need a version of the statements of Proposition 5 that are uniform in n ∈M. To this
end, assume that the numbers t j in the definitions of the functions Ūn,Ûn,Ũn depend also on n.We

will denote these numbers t(n)j . Assume that, for all j, t
(n)
j
n is a nonincreasing function of n. Then the

next statement immediately follows from Theorem 3 and the union bound.

Proposition 6 There exists an event H of probability

P(H)≥ 1− ∑
n∈M
∑
j≥0

e−t
(n)
j

such that on this event, for all n ∈M,
EP( f̂n)≤ δ̄n,

∀δ≥ δ̄n FP(δ)⊂ FPn(3/2δ) and FPn(δ)⊂ FP(2δ).

Moreover, there exists an event E of probability

P(E)≥ 1−3 ∑
n∈M
∑
j≥0

e−t
(n)
j

such that on this event, for all n ∈M,

Ūn(δ)≤ Ûn(δ)≤ Ũn(δ), σ≥ δ̄n

and
δ̄n ≤ δ̂n ≤ δ̃n.

As a consequence, we also have that for all δ ∈ (0,1]

n̄(δ)≤ n̂(δ)≤ ñ(δ).

The simplest choice of the numbers t(n)j , in the case whenM = {2k : k≥ 0} and δ j = 2− j, j≥ 0,
is

t(n)j = 2log(log2 n+1)+2log( j+1)+ log
1
α
+ log(12), j ≥ 0, n ∈M,

where α∈ (0,1).With this choice, all the claims of Proposition 6 hold with a guaranteed probability
at least 1−α.

The main conclusion one can draw from Proposition 6 is that the sample size needed to achieve
the desired “accuracy of learning” δ (i.e., to “learn” a function for which the excess risk is smaller
than δ) can itself be learned from the data. More precisely, the estimator n̂(δ) of the required sample
size can be computed sequentially by increasing the sample size n gradually, computing for each n
the data dependent excess risk bound δ̂n and stopping as soon as δ̂n ≤ δ.With a high probability, the
stopping time n̂(δ) provides a “correct” estimate of the sample size (up to a numerical constant) in
the sense that it is between two distribution dependent estimates (n̄(δ) and ñ(δ)) that are typically
of the same order of magnitude (up to numerical constants). At the same time, the sample size n̂(δ)
is sufficient for estimating the σ-minimal sets of the true risk by the σ-minimal sets of the empirical
risk for all σ ≥ δ (in the sense of the inclusions of Proposition 6). These facts will play a crucial
role in our design of active learning methods in the next section.
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3. Sequential Active Learning

We first describe a simplified (non-adaptive) version of active learning in which it is assumed that
the minimal sample size n̄(δ) needed to achieve the desired “accuracy of learning” of the order δ
is given. As before, suppose that {δk}k≥0 is a nonincreasing sequence of positive numbers with
δ0 = 1. Denote n̄k := n̄(δk), k ≥ 1.
Algorithm 1

F̂0 := F ;
for k = 1,2, . . . ,
Âk :=

{

x : sup f ,g∈F̂k−1 | f (x)−g(x)|> δk
}

;
P̂k := 1

n̄k ∑
n̄k
j=1 IÂk(Xj)δXj ;

F̂k := F̂k−1
⋂
FP̂k(3δk);

end
The set Âk defined at each iteration of the algorithm is viewed as a set of “active examples” (or

“active set”). The examples Xj ∈ Âk are needed to compute the “active empirical measure” P̂k. The
underlying assumption is that there exists a “base algorithm” that computes the δ-minimal set

FQ(δ) :=
{

f : EQ( f ) := Qf − inf f∈F Qf ≤ δ

}

for an arbitrary discrete measureQwith a finite number of atoms. This algorithm is used to compute
the set FP̂k(3δk). In principle, it would be enough only to ensure that, given δ > 0 and measure Q,
the “base algorithm” outputs a set F̄Q(δ) such that

FQ(c1δ)⊂ F̄Q(δ)⊂ FQ(c2δ)

for some numerical constants 0< c1 < c2. However, to simplify the notations, we will assume that
c1 = c2 = 1.

Of course, in reality, Algorithm 1 stops after a finite number of iterations. A possible choice
could be

L := ∑
j≥0

I(δ j ≥ δ),

which can be viewed as the number of iterations needed to achieve the “desired accuracy” of learn-
ing δ ∈ (0,1). In other words, the algorithm stops when δ j becomes smaller than δ. For instance, if
δ j = 2− j, j ≥ 0, then the number of iterations L is of the order log2(1/δ). Let ν(δ) denote the total
number of active examples used by the algorithm in the first L iterations. Then

ν(δ)≤ ∑
δk≥δ

n̄k
∑
j=1

IÂk(Xj).

Denote
A(δ) :=

{

x : sup
f ,g∈F (8δ)

| f (x)−g(x)|> δ
}

and
π(δ) := P(A(δ)).

The following statement will be easily proved by induction.
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Theorem 7 With probability at least

1− ∑
n∈M
∑
j≥0

e−t
(n)
j ,

the following inclusions hold for the classes F̂k output by Algorithm 1: for all k ≥ 0

FP(δk)⊂ F̂k ⊂ FP(8δk). (2)

Also, for all t ≥ 1 and all δ ∈ (0,1], with probability at least

1− ∑
n∈M
∑
j≥0
exp{−t(n)j }− ∑

δ j≥δ

exp{−n̄(δ j)π(δ j−1)t log t}

the following bound holds:
ν(δ)≤ et ∑

δ j≥δ

n̄(δ j)π(δ j−1).

Proof The inclusions (2) obviously hold for k = 0. Assuming that, for all j < k,

FP(δ j)⊂ F̂ j ⊂ FP(8δ j),

we will prove that the same inclusions hold also for k. Let H be the event of probability at least

1− ∑
n∈M
∑
j≥0

e−t
(n)
j

defined in Proposition 6. By the induction assumption,

FP(δk)⊂ FP(δk−1)⊂ F̂k−1

and, by the definition of Âk, we have for all f ,g ∈ F̂k−1,

|Pn̄k( f −g)− P̂k( f −g)|=
∣

∣

∣

∣

n̄−1k
n̄k
∑
i=1

( f −g)(Xi)− n̄−1k ∑
i:Xi∈Âk

( f −g)(Xi)
∣

∣

∣

∣

=

∣

∣

∣

∣

n̄−1k ∑
i:Xi '∈Âk

( f −g)(Xi)
∣

∣

∣

∣

≤ δk.

We can conclude that, for all f ∈ FP(δk),
∣

∣

∣
EPn̄k ( f )−EP̂k( f )

∣

∣

∣
≤ δk.

Also, by the inclusions of Proposition 6 and the definition of n̄k = n̄(δk), we have on the event H
that

FP(δk)⊂ FPn̄k (2δk).

Hence, for all f ∈ FP(δk),
EPn̄k ( f )≤ 2δk and EP̂k( f )≤ 3δk.
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This implies the inclusion
FP(δk)⊂ F̂k−1

⋂
FP̂k(3δk) = F̂k.

On the other hand, since F̂k ⊂ F̂k−1, we have, for all f ∈ F̂k,
∣

∣

∣
EPn̄k ( f )−EP̂k( f )

∣

∣

∣
≤ δk.

Since for all f ∈ F̂k, EP̂k( f )≤ 3δk, we also have EPn̄k ( f )≤ 4δk. Thus, using again the inclusions of
Proposition 6, we get

F̂k ⊂ FPn̄k (4δk)⊂ FP(8δk),

proving the inclusions (2)
To prove the bound on ν(δ), note that on the event H, where the inclusions (2) hold for all k

such that δk ≥ δ, we have
Âk ⊂ A(8δk−1).

Hence, on the event H,
ν(δ)≤ ∑

δk≥δ

νk,

where

νk :=
n̄k
∑
j=1

IA(8δk−1)(Xj).

Clearly, νk is a binomial random variable with parameters n̄k and π(δk−1). Therefore, we have

P{νk ≥ s}≤
(

en̄kπ(δk−1)
s

)s

(see, e.g., Dudley, 1999, p. 16). Taking s := etn̄kπ(δk−1) yields

P

{

νk ≥ etn̄kπ(δk−1)
}

≤ exp{−n̄kπ(δk−1)t log t}.

Applying the union bound, we get

P

{

ν(δ)≥ et ∑
δk≥δ

n̄kπ(δk−1)
}

≤ P(Hc)+ ∑
δk≥δ

exp{−n̄kπ(δk−1)t log t}.

Since
P(Hc)≤ ∑

n∈M
∑
j≥0

e−t
(n)
j ,

the result follows.

The simplest way to make the method data dependent is to replace in Algorithm 1 the sample
sizes n̄k = n̄(δk) by their estimates n̂k := n̂(δk), k ≥ 1 and to redefine P̂k in the iterative procedure
for Âk, P̂k and F̂k as follows:

P̂k :=
1
n̂k

n̂k
∑
j=1

IÂk(Xj)δXj .
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This modification of Algorithm 1 will be called Algorithm 2. The following statement can be
proved quite similarly to Theorem 7 (using Proposition 6).

Recall the definition of the number of iterations L and also that ν(δ) denotes the number of
active examples used by the algorithm in the first L iterations.

Theorem 8 With probability at least

1−3∑
j≥0
∑
n∈M

e−t
(n)
j ,

the following inclusions hold for the classes F̂k output by Algorithm 2: for all k ≥ 0,

FP(δk)⊂ F̂k ⊂ FP(8δk).

Moreover, for all t ≥ 1 and for all δ ∈ (0,1], with probability at least

1−3∑
j≥0
∑
n∈M

exp{−t(n)j }− ∑
δ j≥δ

exp{−ñ(δ j)π(δ j−1)t log t}

the following bound holds:
ν(δ)≤ et ∑

δ j≥δ

ñ(δ j)π(δ j−1).

Note that in this version of the algorithm all the training examples Xj (not only the examples in
the active sets Âk) are used to determine the sample sizes n̂k. So, from this point of view, Algorithm
2 can not be viewed as really “active”. However, it is easy to see that in a more concrete framework
of prediction problems (such as, for instance, the binary classification) one can modify the defini-
tions of the localized Rademacher complexities and of the sample sizes n̂k in such a way that they
depend only on the design points, but not on the response variables (labels). Thus, in the cases when
sampling the design points is “cheap” and only assigning the labels to them is “expensive” (which is
a common motivational assumption in the literature on active learning), the algorithms of this type
make some sense (see Section 4 for more details).

It is more interesting, however, that even in the abstract framework of empirical risk minimiza-
tion it is possible to change the definition of Rademacher complexities and the estimates of the
sample sizes based on them so that only the active examples that belong to the sets Âk are being
used in the computation. We will describe such a data driven algorithm of active learning below.

Let δ j := 2− j, j ≥ 0. As before, we will define iteratively data dependent function classes F̂k
beginning with F̂0 := F that provide estimates of the δ-minimal sets FP(δ) for sufficiently small
values of δ and we set

Âk :=
{

x : sup
f ,g∈F̂k−1

| f (x)−g(x)|> cδk
}

with some constant c> 0.

Define
P̂(k)
n := n−1

n

∑
j=1

IÂk(Xj)δXj

and
R̂(k)
n ( f ) := n−1

n

∑
j=1

ε j f (Xj)IÂk(Xj).
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Denote

Û (k)
n := K̂

[

sup
f ,g∈F̂k−1

∣

∣

∣
R̂(k)
n ( f −g)

∣

∣

∣
+DP̂(k)n

(F̂k−1)

√

t(n)k
n

+
t(n)k
n

]

and define iteratively a nondecreasing data dependent sequence n̂k :

n̂k :=min
{

n ∈M,n≥ n̂k−1 : Û
(k)
n ≤

1
2
δk+1

}

with the initial condition n̂0 := infM.
Note that the following iterative relationships hold for the distribution dependent sample sizes

n̄k := n̄(δk+1) and ñk := ñ(δk+1) :

n̄k =min
{

n ∈M,n≥ n̄k−1 : Ūn(δk)≤
1
2
δk+1

}

, n̄0 := infM

and
ñk =min

{

n ∈M,n≥ ñk−1 : Ũn(δk)≤
1
2
δk+1

}

, ñ0 := infM.

(which easily follows from the definitions of n̄(δ), ñ(δ)).
We will write, for brevity, P̂k := P̂(k)

n̂k . With these definitions and notations, we can define F̂k
iteratively exactly as before:

F̂k := F̂k−1
⋂

FP̂k(3δk).

In short, the algorithm can be described as follows:
Algorithm 3
F̂0 := F ;
for k = 1,2, . . . ,
Âk :=

{

x : sup f ,g∈F̂k−1 | f (x)−g(x)|> cδk
}

;

n̂k :=min
{

n ∈M,n≥ n̂k−1 : Û
(k)
n ≤ 1

2δk+1
}

;
F̂k := F̂k−1

⋂
FP̂k(3δk);

end
As before, we define

A(δ) :=
{

x : sup
f ,g∈F (8δ)

| f (x)−g(x)|> cδ
}

and
π(δ) := P(A(δ)).

The properties of Algorithm 3 are summarized in the following theorem.

Theorem 9 There exist numerical constants c in the definition of the active sets Âk, K̂ in the def-
inition of Û (k)

n and K̃, c̃ in the definition of the function Ũn such that the following holds. With
probability at least

1−3∑
j≥0
∑
n∈M

e−t
(n)
j ,

2471



KOLTCHINSKII

the following inequalities and inclusions hold for all k ≥ 0 :

n̄k ≤ n̂k ≤ ñk,

FP(δk)⊂ F̂k ⊂ FP(8δk).

Moreover, for all t ≥ 1, with probability at least

1−3∑
j≥0
∑
n∈M

exp{−t(n)j }− ∑
δ j≥δ

exp{−ñ(δ j+1)π(δ j−1)t log t}

the following bound holds:
ν(δ)≤ et ∑

δ j≥δ

ñ(δ j+1)π(δ j−1).

Proof There exists an event E of probability at least

1−3 ∑
n∈M
∑
j≥0

e−t
(n)
j

on which the following holds. For all k and for all n ∈M

K̂
[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k
n

+
t(n)k
n

]

≤
1
2
Ũn(δk) (3)

and

K̂
[

sup
f ,g∈FP(δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(δk−1))

√

t(n)k
n

+
t(n)k
n

]

≥ 2Ūn(δk) (4)

with properly chosen constants in the definitions of the functions Ūn,Ũn and constant K̂.At the same
time, on the same event E, for all n ∈M,n≥ n̄(δ) and all σ≥ δ,

FP(σ)⊂ FPn(2σ) and FPn(σ)⊂ FP(2σ). (5)

To construct such an event, first consider the event H of Proposition 6 on which the inclusions (5)
hold. Then define

Ek,n :=
{

K̂
[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k
n

+
t(n)k
n

]

≤
1
2
Ũn(δk)

}

and

E ′
k,n :=

{

K̂
[

sup
f ,g∈FP(δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(δk−1))

√

t(n)k
n

+
t(n)k
n

]

≥ 2Ūn(δk)
}

.

Using the “statistical version” of Talagrand’s concentration inequality (Theorem 4) one can show
that with a proper choice of K̂ and the constants in the definitions of the functions Ūn,Ũn,

P(En,k)≤ 1− e−t
(n)
k , P(E ′

n,k)≥ 1− e−t
(n)
k
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for all k ≥ 0 and for all n ∈M. Define

E :=
⋂

k≥0,n∈M
(En,k∩E ′

n,k)∩H.

Then
P(E)≥ 1−3 ∑

n∈M
∑
j≥0

e−t
(n)
j

and all the desired properties hold on the event E.
We will now show by induction that, on the event E for k = 0,1, . . .

n̄k ≤ n̂k ≤ ñk,

FP(δk)⊂ F̂k ⊂ FP(8δk)

and also for k = 1,2, . . . and for all n ∈M

2Ūn(δk)−
δk+1
2

≤ Û (k)
n ≤

1
2

[

Ũn(δk)+
δk+1
2

]

. (6)

By the definitions, the claims are obviously true for k= 0. Assume that they have been proved up to
k−1. By this induction assumption, we have F̂k−1 ⊂ FP(8δk−1) and, by the definition of the set Âk,

sup
f ,g∈F̂k−1

∣

∣

∣
R̂(k)
n ( f −g)

∣

∣

∣
≤ sup

f ,g∈F̂k−1

∣

∣

∣
Rn( f −g)

∣

∣

∣
+ cδk

and
D2
P̂(k)n

(F̂k−1)≤ D2Pn(F̂k−1)+ c2δ2k .

This implies the following upper bound on Û (k)
n :

Û (k)
n ≤ K̂

[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k
n

+
t(n)k
n

+ cδk+ cδk

√

t(n)k
n

]

.

Applying to the last term the inequality ab≤ (a2+b2)/2 and taking into account the fact that δk ≤ 1,
it is easy to deduce from this that with c satisfying the condition

K̂c+ K̂2c2/2≤ 1/8,

we have

Û (k)
n ≤ K̂

[

sup
f ,g∈FP(8δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(8δk−1))

√

t(n)k
n

+
t(n)k
n

]

+δk+1/4.

Quite similarly, using the inclusion FP(δk−1)⊂ F̂k−1 that also holds under the induction assumption,
one can show that with a proper choice of constant c in the definition of the set Âk

Û (k)
n ≥ K̂

[

sup
f ,g∈FP(δk−1)

∣

∣

∣
Rn( f −g)

∣

∣

∣
+DPn(FP(δk−1))

√

t(n)k
n

+
t(n)k
n

]

−δk+1/2.
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Combining this with bounds (3) and (4) immediately implies (6).
Applying (6) to n= n̂k, we get

2Ūn̂k(δk)−
δk+1
2

≤ Û (k)
n̂k ≤

δk+1
2

,

which yields

Ūn̂k(δk)≤
δk+1
2

.

We also have n̂k ≥ n̂k−1 ≥ n̄k−1 (by the induction assumption). By the definition of n̄k, this implies
that n̂k ≥ n̄k.

On the other hand, denote n̂−k the element of the ordered set M preceding n̂k. We will use
inequality (6) with n= n̂−k . It gives

Û (k)
n̂−k

≤
1
2

[

Ũn̂−k (δk)+
δk+1
2

]

. (7)

If it happened that n̂−k < n̂k−1, then we must have n̂k = n̂k−1, which, by the induction assumption,
implies that n̂k = n̂k−1 ≤ ñk−1 ≤ ñk. If n̂−k ≥ n̂k−1, then the definition of n̂k implies that

Û (k)
n̂−k

>
δk+1
2

,

which together with (7) implies that

Ũn̂−k (δk)>
δk+1
2

.

But, if n̂k > ñk, then n̂−k ≥ ñk, which would imply that

Ũñk(δk)>
δk+1
2

(since for all δ, Ũn(δ) is a nonincreasing function of n). The last inequality contradicts the definition
of ñk implying that n̂k ≤ ñk.

The proof of the inclusions
FP(δk)⊂ F̂k ⊂ FP(8δk)

and the derivation of the bound on ν(δ) repeat the argument of Theorem 7.

Note that in the bounds on ν(δ) of theorems 7, 8 and 9 one can replace functions π(δ), n̄(δ) and
ñ(δ) by arbitrary upper bounds (with the same change in the bounds on the probability).

As soon as π(δ)→ 0 as δ→ 0, the upper bounds on ν(δ) show that, in the case of active learning,
there is a reduction of the number of training examples needed to achieve a desired accuracy of
learning comparing with passive learning. In the next section, we explore in some detail what is
happening in the case of binary classification.
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4. Active Learning in Binary Classification

Let (X ,Y ) be a random couple with values in S×{−1,1} and with distribution P, where (S,A) is an
arbitrary measurable space. In binary classification problems, the first component X is viewed as an
observable instance and the second component Y is an unobservable “label”. The value of Y is to be
predicted based on an observation of X and on the training data (X1,Y1), . . . ,(Xn,Yn) consisting of n
independent copies of (X ,Y ). Measurable functions g : S %→ {−1,1} are called (binary) classifiers.
Let ! : {−1,1}× {−1,1} %→ {0,1} be the binary loss function !(y,u) := I(y '= u), and, as before,
(! • g)(x,y) := !(y,g(x)) be the “loss” of classifier g for the example (x,y) ∈ S× {−1,1}. The
quantity

P(!•g) = P{(x,y) : y '= g(x)}= P{Y '= g(X)}

is called the generalization error, or the risk of g.We still denote η(x) := E(Y |X = x) the regression
function. It is well known that the minimum of the generalization error over the set of all binary
classifiers is attained at the Bayes classifier

g∗(x) = sign(η(x)).

We will assume in what follows that G is a class of binary classifiers such that g∗ ∈ G .
For a binary classifier g, define its excess risk as

EP(!•g) := P(!•g)−P(!•g∗).

The following formula is well known (see, e.g., Devroye et al., 1996, Theorem 2.2).

EP(!•g) =
∫
{g '=g∗}

|η(x)|Π(dx), (8)

where Π is the marginal distribution of X .
A standard approach to learning the Bayes classifier is based on the empirical risk minimization:

ĝ := argming∈GPn(!•g) = argming∈GPn{(x,y) : y '= g(x)}=

argming∈Gn−1
n

∑
j=1

I(Yj '= g(Xj)),

where Pn denotes the empirical distribution based on the training data (X1,Y1), . . . ,(Xn,Yn) (we will
also use the notation Πn for the empirical distribution based on (X1, . . . ,Xn)).

If F := ! •G := {! • g : g ∈ G} denotes the loss class, then we are in the framework of ab-
stract empirical risk minimization of sections 2,3 and general results of these sections can be now
specialized for the classification context.

It is natural to characterize the quality of the classifier ĝ in terms of its excess risk EP(! • ĝ)
and to study how it depends on the complexity of the class G as well as on the complexity of the
classification problem itself. The simplest complexity assumption on the class G is that it is a VC-
class of binary functions of VC-dimension V (in other words, C :=

{

{x : g(x) = +1 : g ∈ G}
}

is a
VC-class of sets of VC-dimension V ). Under this assumption, a well known result, essentially due
to Vapnik and Chervonenkis, is that, for some constant K > 0 and for all t > 0, with probability at
least 1− e−t

EP(!• ĝ)≤ K
[

√

V
n
+

√

t
n

]

.
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In principle, this bound is minimax optimal, but it can be significantly improved for special families
of distributions P under further assumptions on the complexity of the classification problem. For
instance, the following Massart’s low noise assumption is frequently used: for some constant
h ∈ (0,1]

|η(x)|≥ h, x ∈ S.

The parameter h is a characteristic of the level of noise in binary labels Yj. In other words, it is a
simple measure of complexity of a binary classification problem. The following theorem is a version
of the result proved by Massart and Nedelec (2006):

Theorem 10 There exists a constant K > 0 such that, for all t > 0, with probability at least 1−e−t

EP(!• ĝ)≤ K
[

V
nh
log

(nh2

V

)

+
t
nh

]∧[

√

V
n
+

√

t
n

]

.

This upper bound on the excess risk is optimal in a minimax sense (as it was also shown by
Massart and Nedelec, 2006). However, it still can be refined using the following function τ (which
is a local version of Alexander’s capacity function introduced in the 80s and used in the theory of
ratio type empirical processes, see Giné and Koltchinskii, 2006, and references therein). Define

Gδ := {g ∈ G :Π{x : g(x) '= g∗(x)}≤ δ}

and let

τ(δ) :=
Π

{

x|∃g ∈ Gδ : g(x) '= g∗(x)
}

δ
.

Clearly, the set Gδ consists of the classifiers from G that are in a neighborhood of size δ of the Bayes
classifier g∗ and the set

Dδ :=
{

x|∃g ∈ Gδ : g(x) '= g∗(x)
}

consists of all the points x such that there exists a classifier g in the neighborhoodGδ that “disagrees”
with the Bayes classifier at x. The function τ(δ) is always upper bounded by 1

δ . However, if it
happens that the measure Π of the “disagreement set” Dδ is small when δ is small, then τ(δ) might
grow slower than 1

δ as δ→ 0, or even it can be bounded by a constant. If C := {{g=+1} : g ∈ G}
andC∗ := {g∗ =+1}, then

τ(δ) =
Π

(⋃
C∈C ,Π(C1C∗)≤δ(C1C∗)

)

δ
,

so, roughly, τ(δ) shows how many disjoint sets C1C∗ of “size” δ can be “packed” in the union of
all such sets. For instance, if C is a class of convex sets in [0,1]d, Π is the Lebesgue measure in
[0,1]d and C∗ ∈ C ,Π(C∗) > 0, then it can be shown that τ is uniformly bounded by a constant, see
Giné and Koltchinskii (2006). A more detailed analysis of disagreement sets, capacity functions
and their connections to the geometry of the class G can be found in the paper by Friedman (2009).

The following result was proved by Giné and Koltchinskii (2006).
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Theorem 11 There exists a constant K > 0 such that, for all t > 0, with probability at least 1−e−t

EP(!• ĝ)≤ K
[

V
nh
logτ

( V
nh2

)

+
t
nh

]∧[

√

V
n
+

√

t
n

]

.

Clearly, this result implies the theorem of Massart and Nedelec (since τ(δ) ≤ 1
δ ). The proof

is based on applying subtle bounds for empirical processes (see Giné and Koltchinskii, 2006) to
compute the excess risk bound δ̄n of Section 2. Then, the general result of Theorem 1 (see also
Proposition 2) can be used to bound the excess risk.

The case when τ(δ) is uniformly bounded from above by a constant τ0 is of special interest. In
this case, with probability at least 1− e−t ,

EP(!• ĝ)≤ K
[

V
nh
logτ0+

t
nh

]

,

so the main term of the bound is of the order O( Vnh) and it does not contain logarithmic factors
depending on n and h. It will be convenient for our purposes to phrase this result in a slightly
different form. Namely, given δ ∈ (0,1) and α ∈ (0,1), denote

n(δ,α) := inf
{

n : P{EP(ĝn)≥ δ}≤ α

}

.

Then
n(δ,α)≤ K

([

V
δh
logτ0+

log(1/α)
δh

]∧[

V
δ2

+
log(1/α)

δ2

])

.

The quantity n(δ,α) shows how many training examples are needed to make the excess risk of the
classifier ĝ smaller than δ with a guaranteed probability of at least 1−α. It characterizes the sample
complexity of passive learning. In the case of empirical risk minimization over a VC-class with a
bounded capacity function τ, the sample complexity is of the order O(Vh

1
δ).

The role of the capacity function is rather modest in the case of passive learning since it only
allows one to refine the excess risk and the sample complexity bounds by making the logarithmic
factors more precise. However, the capacity function τ happened to be of crucial importance in
the analysis of active learning methods of binary classification. This function was rediscovered in
active learning literature and its supremum is being used there under the name of disagreement
coefficient, see, for example, Hanneke (2009a,b) and references therein.

We will describe an active learning algorithm that is a specialized version of more abstract
Algorithm 3 of Section 3. As before, we denote δ j := 2− j, j≥ 0 and choose a setM ⊂N of natural
numbers as well as nonnegative real numbers t(n)k , n ∈M,k ≥ 0.

Given a class G of binary classifiers, denote

GP(δ) :=
{

g : EP(!•g)≤ δ

}

, δ> 0.

These sets will be called δ-minimal sets of the true risk. Clearly, if F = ! •G , then under the
notations of Section 2

FP(δ) =

{

!•g : g ∈ GP(δ)

}

.
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In principle, one can directly use Algorithm 3 for the class F . However, we will modify it slightly
in order to adapt it to the binary classification framework.

We will define iteratively data dependent function classes Ĝk that provide estimates of the δ-
minimal sets GP(δ). and also a nondecreasing data dependent sequence of estimated sample sizes
n̂k. It will be assumed that we have an access to an algorithm that, given a discrete measure Q on
S×{−1,1} and δ> 0, computes the δ-minimal set GQ(δ) of Q.

Several definitions and notations will be needed. Note that for the binary loss !, for all binary
classifiers g1,g2 and for all δ ∈ (0,1), the condition |!(y,g1(x))− !(y,g2(x))| ≥ δ is equivalent to
the condition g1(x) '= g2(x). This leads to the following definition of sets Âk (that are subsets of S,
not of S×{−1,1}). Assuming that Ĝk−1 has been already defined, let

Âk :=
{

x : ∃g1,g2 ∈ Ĝk−1,g1(x) '= g2(x)
}

be the set of all the points where at least two classifiers in Ĝk−1 disagree with each other. This set
will be used as a set of active design points at the k-th iteration.

Next define active empirical distributions based on the unlabeled examples {Xj} and on the
labeled examples {(Xj,Yj)} :

Π̂(k)
n := n−1

n

∑
j=1

IÂk(Xj)δXj

and
P̂(k)
n := n−1

n

∑
j=1

IÂk(Xj)δ(Xj,Yj)

For simplicity, we will also use the notation P̂k := P̂(k)
n̂k . Let

D̂(k)
n :=

1
2

sup
g1,g2∈Ĝk−1

(

Π̂(k)
n (g1−g2)2

)1/2

be the L2(Π̂
(k)
n )-diameter of the class Ĝk−1. Note that, if we literally followed the definitions of

Section 3, we would have to define the diameter as

sup
g1,g2∈Ĝk−1

(

P̂(k)
n (!•g1− !•g2)2

)1/2
.

However, it is easy to check that for all (x,y) ∈ S×{−1,1} and all binary classifiers g1,g2

(!•g1)(x,y)− (!•g2)(x,y) =
1
2
y(g2(x)−g1(x)),

which justifies the new definition. This simple identity also implies that the function φn(δ), defined
in Section 2 and used in the construction of the excess risk bounds, can be upper bounded as follows:

φn(δ)≤ 2E sup
f1, f2∈F (δ)

|Rn( f1− f2)|= 2E sup
g1,g2∈G(δ)

|Rn(!•g1− !•g2)|=

E sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε jYj(g2(Xj)−g1(Xj))
∣

∣

∣

∣

,
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where at the beginning we used the symmetrization inequality (see, e.g., van der Vaart and Well-
ner, 1996). Note that, conditionally on (X1,Y1), . . . ,(Xn,Yn), the distribution of the random vector
(ε1Y1, . . . ,εnYn) is the same as the distribution of (ε1, . . . ,εn). Because of this,

φn(δ)≤ E sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε jYj(g2(Xj)−g1(Xj))
∣

∣

∣

∣

=

EE

(

sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε jYj(g2(Xj)−g1(Xj))
∣

∣

∣

∣

∣

∣

∣

∣

(X1,Y1), . . . ,(Xn,Yn)
)

=

EE

(

sup
g1,g2∈G(δ)

∣

∣

∣

∣

n−1
n

∑
j=1

ε j(g2(Xj)−g1(Xj))
∣

∣

∣

∣

∣

∣

∣

∣

(X1,Y1), . . . ,(Xn,Yn)
)

=

E sup
g1,g2∈G(δ)

|Rn(g1−g2)|.

This simple observation allows one to replace the Rademacher complexities for the loss class F =
!•G by the Rademacher complexities for the class G itself (and the proofs of the excess risk bounds
and other results cited in Section 2 go through with no changes). Of course, the same applies to all
the constructions and the results of Section 3.

Because of this, we now define the Rademacher complexity based only on the “active” examples
as

R̂(k)
n := sup

g1,g2∈Ĝk−1

∣

∣

∣

∣

n−1
n

∑
j=1

ε j(g1−g2)(Xj)IÂk(Xj)
∣

∣

∣

∣

.

Finally, denote

Û (k)
n := K̂

[

R̂(k)
n + D̂(k)

n

√

t(n)k
n

+
t(n)k
n

]

.

With these definitions and notations, we can now introduce the following modification of Algo-
rithm 3 of Section 3.
Algorithm 4
Ĝ0 := G ;
for k = 1,2, . . . ,
Âk :=

{

x : ∃g1,g2 ∈ Ĝk−1,g1(x) '= g2(x)
}

;

n̂k :=min
{

n ∈M,n≥ n̂k−1 : Û
(k)
n ≤ 1

2δk+1
}

;
Ĝk := Ĝk−1

⋂
GP̂k(3δk);

end

Remark 12 One can also use in Algorithm 4 the Rademacher complexities defined as follows:

R̂(k)
n := sup

g1,g2∈Ĝk−1

∣

∣

∣

∣

n−1
n

∑
j=1

ε j(g1−g2)(Xj)
∣

∣

∣

∣

.

In this case, not only the active design points, but all the design points Xj are used to compute the
Rademacher complexities and to estimate the sample sizes n̂k. Note, however, that the labels Yj are
not involved in this computation, so, the algorithm still can be viewed as “active”. The resulting
algorithm is a modification of Algorithm 3 from Section 3.
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In the case when G is a VC-class of VC-dimension V, we will choose M := {2k : k ≥ 0}. We
will also define

t(n)k := log(1/α)+2log(k+1)+2log(log2 n+1)+ log(24). (9)

This leads to the following result that is a corollary of Theorem 9.

Corollary 13 Let δ ∈ (0,1). Suppose that Massart’s low noise assumption holds with some h ∈
(0,1). Suppose that

τ0 := sup
u∈(0,1]

τ(u)<+∞.

Then there exists an event of probability at least 1−α such that the following inclusions hold for
the classes Ĝk output by Algorithm 4: for all k ≥ 0,

GP(δk)⊂ Ĝk ⊂ GP(8δk). (10)

Also with probability at least 1−α, the following bound on the number ν(δ) of active training
examples used by Algorithm 4 in the first L =

[

log2(1/δ)
]

iterations holds with some numerical
constant C > 0 :

ν(δ)≤C
τ0 log(1/δ)

h2

[

V logτ0+ log(1/α)+ log log(1/δ)+ log log(1/h)
]

.

In particular, it means that with probability at least 1−α

GP(δ/2)⊂ ĜL ⊂ GP(16δ).

Proof We only sketch the proof here, the missing details are not very complicated. The result
follows from Theorem 9, more precisely, from its modified version that takes into account the slight
changes we made in the definition of the Rademacher complexities. The inclusions (10) follow
from this theorem in a straightforward way. To prove the bound on ν(δ), one has first to bound
the quantity δ̃n. This computation was essentially done by Giné and Koltchinskii (2006) (it actually
leads to the bound of Theorem 11). Namely, with some constantC1,

δ̄n ≤C1
[

V
nh
logτ

( V
nh2

)

+
log(1/α)+ log logn

nh

]∧[

√

V
n
+

√

log(1/α)+ log logn
n

]

.

As a result, the following upper bound on ñ(σ),σ≥ δ holds with some constant K1 :

ñ(σ)≤ K1
([

V
σh
logτ0+

log(1/α)+ log log2(1/δ)+ log log(1/h)
σh

]∧

[

V
σ2

+
log(1/α)+ log log2(1/δ)

σ2

])

.

Note that, under Massart’s low noise assumption, formula (8) for the excess risk implies that for
all binary classifiers g

E(!•g)≥ hΠ{x : g(x) '= g∗(x)}.
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Hence
F (σ)⊂

{

!•g : g ∈ Gσ/h

}

.

For the sets A(σ) used in Theorems 9, this implies the following:

A(σ) =
{

(x,y) : sup
f1, f2∈F (8σ)

| f1(x,y)− f2(x,y)|> cσ
}

⊂

{

(x,y) : sup
g1,g2∈G(8σ/h)

|(!•g1)(x,y)− (!•g2)(x,y)|> cσ
}

=

{

x : ∃g1,g2 ∈G(8σ/h) : g1(x) '= g2(x)
}

×{−1,1}=
{

x : ∃g ∈G(8σ/h) : g(x) '= g∗(x)
}

×{−1,1}

(we used the assumption that g∗ ∈ G and, hence, g∗ ∈ G(8σ/h)). This implies, by the definitions of
the functions π and τ, that

π(σ) = P(A(σ))≤Π
({

x : ∃g ∈ G(8σ/h) : g(x) '= g∗(x)
})

≤
8σ
h
τ(8σ/h).

Using the definition of τ0, we conclude that for all σ ≥ δ π(σ) ≤ 8τ0
h σ. It remains to substitute the

bounds on ñ(σ) and π(σ) into the bound on ν(δ) of Theorem 9

ν(δ)≤ et ∑
δ j≥δ

ñ(δ j+1)π(δ j−1),

say, with t = e. This gives

ν(δ)≤ e2 ∑
δ j≥δ

K1
([

V
δ j+1h

logτ0+
log(1/α)+ log log2(1/δ)+ log log(1/h)

δ j+1h

]

8τ0
h
δ j−1,

which is bounded from above by

C
τ0 log(1/δ)

h2

[

V logτ0+ log(1/α)+ log log(1/δ)+ log log(1/h)
]

.

with a properly chosen numerical constant C. Also, it easily follows from the probability estimates
of Theorem 9 that the above bound on ν(δ) holds with probability at least 1−α.

Finally, we discuss the properties of Algorithm 4 under Tsybakov’s low noise assumption.
Namely, we assume that for some γ> 0, for some constant B and for all t > 0

Π{x : |η(x)|≤ t}≤ Btγ.

It is well known that under this assumption the following bound on the excess risk holds for an
arbitrary classifier g :

EP(!•g)≥ cΠκ({g '= g∗}),

where κ = 1+γ
γ and c is a constant that depends on B,κ. We will assume in this case that G is

not necessarily a VC-class, but it can be more massive. For instance, denote N(G ;L2(Πn);ε) the
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minimal number of L2(Πn)-balls of radius ε needed to cover G and suppose that these covering
numbers satisfy the condition:

logN(G ;L2(Πn);ε)≤
(

A
ε

)2ρ
, ε> 0.

for some ρ ∈ (0,1] and some constant A> 0. Then, the following upper bound on the excess risk of
an empirical risk minimizer ĝ holds with probability at least 1− e−t :

EP(!• ĝ)≤ K
((

1
n

)−κ/(2κ+ρ−1)
+

(

t
n

)κ/(2κ−1))

,

where K is a constant depending on κ,ρ,A,B. The bounds of this type were first proved by Tsybakov
(2004) (see also Koltchinskii, 2006, 2008). It easily follows from this bound that in order to achieve
the excess risk of order δ one needs O

(

δ−2+(1−ρ)/κ
)

training examples.

We will now consider Algorithm 4 with M := {2k : k ≥ 0}, and with the real numbers t(n)k
defined by (9).

This leads to the following result that is also a corollary of Theorem 9.

Corollary 14 Let δ ∈ (0,1). Suppose that Tsybakov’s low noise assumption holds with some γ> 0
and B> 0. Let κ := 1+γ

γ . Suppose that

τ0 := sup
u∈(0,1]

τ(u)<+∞.

Then there exists an event of probability at least 1−α such that the following inclusions hold for
the classes Ĝk output by Algorithm 4: for all k with δk ≥ δ,

GP(δk)⊂ Ĝk ⊂ GP(8δk).

Also with probability at least 1−α, the following bound on the number ν(δ) of active training
examples used by Algorithm 4 holds with some constant C > 0 depending on κ,ρ,A,B :

ν(δ)≤Cτ0
[

δ−2+(2−ρ)/κ+δ−2+2/κ(log(1/α)+ log log(1/δ))
]

.

The proof is similar to that of Corollary 13. In this case, the improvement comparing with
passive learning is by a factor δ1/κ.

Remark 15 Alternatively, one can assume that the active learning algorithm stops as soon as the
specified number of active examples, say, n has been achieved. If L̂ denotes the number of iterations
needed to achieve this target, then 8δL̂ is an upper bound on the excess risk of the classifiers from
the set ĜL̂. Under the assumptions of Corollary 13, inverting the bound on ν(δ) easily gives that δL̂
is upper bounded by

exp
{

−β
nh2

C2τ0

}

,

where
β :=

1
V logτ0∨ log(1/α)∨ log(nh2/C2τ0)∨ log log(1/h)
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with some numerical constant C2. Thus, the excess risk of such classifiers tends to zero exponentially
fast as n→ ∞. This is the form in which the excess risk bounds in active learning are usually stated
in the literature (see, e.g., Hanneke, 2009a,b). In fact, this is a refinement of the bounds of Hanneke
that were proved for somewhat different active learning algorithms (see Hanneke, 2009b, Theorems
4, 5). Similarly, under the conditions of Corollary 14, the bound on δL̂ becomes

(

τ0
n

)κ/(2κ+ρ−2)∨(

τ0(log(1/α)+ log logn)
n

)κ/(2κ−2)
.

(compare with Theorem 6 by Hanneke, 2009b).

Remark 16 Although we concentrated in this section only on binary classification problems, the
active learning algorithms described in Section 3 can be also used in the context of multiclass
classification and some other problems (e.g., estimation of non-smooth regression function and
estimation of level sets of a probability density). Recall that in the framework of prediction with a
general loss function ! described in the Introduction,

F := !•G :=
{

!•g : g ∈ G
}

.

Following an idea of Beygelzimer et al. (2009), one can now replace the disagreement set Âk for the
class F̂k−1 = !• Ĝk−1 involved in Algorithm 3 by a larger set

Â+
k :=

{

(x,y) : ∃g1,g2 ∈ Ĝk−1 sup
y′∈T

|!(y′,g1(x))− !(y′,g2(x))|> cδk
}

=

{

x : ∃g1,g2 ∈ Ĝk−1 sup
y∈T

|!(y,g1(x))− !(y,g2(x))|> cδk
}

×T.

This leads to the following modification of Algorithm 3:

Algorithm 5
Ĝ0 := G ;
for k = 1,2, . . . ,

Â+
k :=

{

x : ∃g1,g2 ∈ Ĝk−1 supy∈T |!(y,g1(x))− !(y,g2(x))|> cδk
}

×T.

n̂k :=min
{

n ∈M,n≥ n̂k−1 : Û
(k)
n ≤ 1

2δk+1
}

;
Ĝk := Ĝk−1

⋂
GP̂k(3δk);

end

The Rademacher complexities of classes F̂k = ! • Ĝk (the quantities Û
(k)
n ) as well as active

empirical measures P̂k involved in this algorithm are now based on active sets Â+
k . Clearly, only the

labels of active examples are used in this version of the algorithm. If now we define

π(δ) :=Π
({

x : ∃g1,g2 ∈ GP(8δ) sup
y∈T

|!(y,g1(x))− !(y,g2(x))|> cδ
})

,

it is very easy to check that the statement of Theorem 9 still holds for such a modification of the
algorithm. At the same time, it is not clear at this point whether a modified definition of disagree-
ment coefficient in the paper by Beygelzimer et al. (2009) can be used to analyze the properties of
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active learning algorithms of this type and whether it is possible to extend such an analysis beyond
classification and similar problems.
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Abstract
Different aspects of the curse of dimensionality are known to present serious challenges to various
machine-learning methods and tasks. This paper explores a new aspect of the dimensionality curse,
referred to as hubness, that affects the distribution of k-occurrences: the number of times a point
appears among the k nearest neighbors of other points in a data set. Through theoretical and empir-
ical analysis involving synthetic and real data sets we show that under commonly used assumptions
this distribution becomes considerably skewed as dimensionality increases, causing the emergence
of hubs, that is, points with very high k-occurrences which effectively represent “popular” nearest
neighbors. We examine the origins of this phenomenon, showing that it is an inherent property
of data distributions in high-dimensional vector space, discuss its interaction with dimensionality
reduction, and explore its influence on a wide range of machine-learning tasks directly or indi-
rectly based on measuring distances, belonging to supervised, semi-supervised, and unsupervised
learning families.
Keywords: nearest neighbors, curse of dimensionality, classification, semi-supervised learning,
clustering

1. Introduction

The curse of dimensionality, a term originally introduced by Bellman (1961), is nowadays com-
monly used in many fields to refer to challenges posed by high dimensionality of data space. In the
field of machine learning, affected methods and tasks include Bayesian modeling (Bishop, 2006),
nearest-neighbor prediction (Hastie et al., 2009) and search (Korn et al., 2001), neural networks
(Bishop, 1996), and many others. One aspect of the dimensionality curse is distance concentration,
which denotes the tendency of distances between all pairs of points in high-dimensional data to
become almost equal. Distance concentration and the meaningfulness of nearest neighbors in high

∗. A preliminary version of this paper appeared in the Proceedings of the 26th International Conference on Machine
Learning (Radovanović et al., 2009).
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dimensions has been thoroughly explored (Beyer et al., 1999; Hinneburg et al., 2000; Aggarwal
et al., 2001; François et al., 2007). The effect of the phenomenon on machine learning was demon-
strated, for example, in studies of the behavior of kernels in the context of support vector machines,
lazy learning, and radial basis function networks (Evangelista et al., 2006; François, 2007).

There exists another aspect of the curse of dimensionality that is related to nearest neigh-
bors (NNs), which we will refer to as hubness. Let D ⊂ Rd be a set of d-dimensional points
and Nk(x) the number of k-occurrences of each point x ∈ D, that is, the number of times x occurs
among the k nearest neighbors of all other points in D, according to some distance measure. Under
widely applicable conditions, as dimensionality increases, the distribution of Nk becomes consider-
ably skewed to the right, resulting in the emergence of hubs, that is, points which appear in many
more k-NN lists than other points, effectively making them “popular” nearest neighbors. Unlike
distance concentration, hubness and its influence on machine learning have not been explored in
depth. In this paper we study the causes and implications of this aspect of the dimensionality curse.

As will be described in Section 4, the phenomena of distance concentration and hubness are
related, but distinct. Traditionally, distance concentration is studied through asymptotic behavior
of norms, that is, distances to the origin, with increasing dimensionality. The obtained results
trivially extend to reference points other than the origin, and to pairwise distances between all
points. However, the asymptotic tendencies of distances of all points to different reference points
do not necessarily occur at the same speed, which will be shown for normally distributed data by our
main theoretical result outlined in Section 4.2, and given with full details in Section 5.1. The main
consequence of the analysis, which is further discussed in Section 5.2 and supported by theoretical
results by Newman et al. (1983) and Newman and Rinott (1985), is that the hubness phenomenon is
an inherent property of data distributions in high-dimensional space under widely used assumptions,
and not an artefact of a finite sample or specific properties of a particular data set.

The above result is relevant to machine learning because many families of ML algorithms,
regardless of whether they are supervised, semi-supervised, or unsupervised, directly or indirectly
make use of distances between data points (and, with them, k-NN graphs) in the process of building
a model. Moreover, the hubness phenomenon recently started to be observed in application fields
like music retrieval (Aucouturier and Pachet, 2007), speech recognition (Doddington et al., 1998),
and fingerprint identification (Hicklin et al., 2005), where it is described as a problematic situation,
but little or no insight is offered into the origins of the phenomenon. In this paper we present
a unifying view of the hubness phenomenon through theoretical analysis of data distributions, and
empirical investigation including numerous synthetic and real data sets, explaining the origins of the
phenomenon and the mechanism through which hubs emerge, discussing the role of antihubs (points
which appear in very few, if any, k-NN lists of other points), and studying the effects on common
supervised, semi-supervised, and unsupervised machine-learning algorithms.

After discussing related work in the next section, we make the following contributions. First,
we demonstrate the emergence of hubness on synthetic and real data in Section 3. The following
section provides a comprehensive explanation of the origins of the phenomenon, through empirical
and theoretical analysis of artificial data distributions, as well as observations on a large collection
of real data sets, linking hubness with the intrinsic dimensionality of data. Section 5 presents the
details of our main theoretical result which describes the mechanism through which hubs emerge as
dimensionality increases, and provides discussion and further illustration of the behavior of nearest-
neighbor relations in high dimensions, connecting our findings with existing theoretical results.
The role of dimensionality reduction is discussed in Section 6, adding further support to the previ-
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ously established link between intrinsic dimensionality and hubness, and demonstrating that dimen-
sionality reduction may not constitute an easy mitigation of the phenomenon. Section 7 explores
the impact of hubness on common supervised, semi-supervised, and unsupervised machine-learning
algorithms, showing that the information provided by hubness can be used to significantly affect the
success of the generated models. Finally, Section 8 concludes the paper, and provides guidelines
for future work.

2. Related Work

The hubness phenomenon has been recently observed in several application areas involving sound
and image data (Aucouturier and Pachet, 2007; Doddington et al., 1998; Hicklin et al., 2005). Also,
Jebara et al. (2009) briefly mention hubness in the context of graph construction for semi-supervised
learning. In addition, there have been attempts to avoid the influence of hubs in 1-NN time-series
classification, apparently without clear awareness about the existence of the phenomenon (Islam
et al., 2008), and to account for possible skewness of the distribution of N1 in reverse nearest-
neighbor search (Singh et al., 2003),1 where Nk(x) denotes the number of times point x occurs
among the k nearest neighbors of all other points in the data set. None of the mentioned papers,
however, successfully analyze the causes of hubness or generalize it to other applications. One
recent work that makes the connection between hubness and dimensionality is the thesis by Beren-
zweig (2007), who observed the hubness phenomenon in the application area of music retrieval and
identified high dimensionality as a cause, but did not provide practical or theoretical support that
would explain the mechanism through which high dimensionality causes hubness in music data.

The distribution of N1 has been explicitly studied in the applied probability community (New-
man et al., 1983; Maloney, 1983; Newman and Rinott, 1985; Yao and Simons, 1996), and by math-
ematical psychologists (Tversky et al., 1983; Tversky and Hutchinson, 1986). In the vast majority
of studied settings (for example, Poisson process, d-dimensional torus), coupled with Euclidean
distance, it was shown that the distribution of N1 converges to the Poisson distribution with mean 1,
as the number of points n and dimensionality d go to infinity. Moreover, from the results by Yao
and Simons (1996) it immediately follows that, in the Poisson process case, the distribution of Nk
converges to the Poisson distribution with mean k, for any k ≥ 1. All these results imply that no
hubness is to be expected within the settings in question. On the other hand, in the case of continu-
ous distributions with i.i.d. components, for the following specific order of limits it was shown that
limn→∞ limd→∞Var(N1) = ∞, while limn→∞ limd→∞N1 = 0, in distribution (Newman et al., 1983,
p. 730, Theorem 7), with a more general result provided by Newman and Rinott (1985). Accord-
ing to the interpretation by Tversky et al. (1983), this suggests that if the number of dimensions is
large relative to the number of points one may expect a small proportion of points to become hubs.
However, the importance of this finding was downplayed to a certain extent (Tversky et al., 1983;
Newman and Rinott, 1985), citing empirically observed slow convergence (Maloney, 1983), with
the attention of the authors shifting more towards similarity measurements obtained directly from
psychological and cognitive experiments (Tversky et al., 1983; Tversky and Hutchinson, 1986) that
do not involve vector-space data. In Section 5.2 we will discuss the above results in more detail, as
well as their relations with our theoretical and empirical findings.

It is worth noting that in ε-neighborhood graphs, that is, graphs where two points are connected
if the distance between them is less than a given limit ε, the hubness phenomenon does not occur.

1. Reverse nearest-neighbor queries retrieve data points that have the query point q as their nearest neighbor.
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Settings involving randomly generated points forming ε-neighborhood graphs are typically referred
to as random geometric graphs, and are discussed in detail by Penrose (2003).

Concentration of distances, a phenomenon related to hubness, was studied for general distance
measures (Beyer et al., 1999; Durrant and Kabán, 2009) and specifically for Minkowski and frac-
tional distances (Demartines, 1994; Hinneburg et al., 2000; Aggarwal et al., 2001; François et al.,
2007; François, 2007; Hsu and Chen, 2009). Concentration of cosine similarity was explored by
Nanopoulos et al. (2009).

In our recent work (Radovanović et al., 2009), we performed an empirical analysis of hubness,
its causes, and effects on techniques for classification, clustering, and information retrieval. In this
paper we extend our findings with additional theoretical and empirical insight, offering a unified
view of the origins and mechanics of the phenomenon, and its significance to various machine-
learning applications.

3. The Hubness Phenomenon

In Section 1 we gave a simple set-based deterministic definition ofNk. To complement this definition
and introduceNk into a probabilistic setting that will also be considered in this paper, let x,x1, . . . ,xn,
be n+ 1 random vectors drawn from the same continuous probability distribution with support
S ⊆Rd , d ∈ {1,2, . . .}, and let dist be a distance function defined on Rd (not necessarily a metric).
Let functions pi,k, where i,k ∈ {1,2, . . . ,n}, be defined as

pi,k(x) =
{
1, if x is among the k nearest neighbors of xi, according to dist,
0, otherwise.

In this setting, we define Nk(x) = ∑n
i=1 pi,k(x), that is, Nk(x) is the random number of vectors from

Rd that have x included in their list of k nearest neighbors. In this section we will empirically
demonstrate the emergence of hubness through increasing skewness of the distribution of Nk on
synthetic (Section 3.1) and real data (Section 3.2), relating the increase of skewness with the di-
mensionality of data sets, and motivating the subsequent study into the origins of the phenomenon
in Section 4.

3.1 A Motivating Example

We start with an illustrative experiment which demonstrates the changes in the distribution of Nk
with varying dimensionality. Let us consider a random data set consisting of 10000 d-dimensional
points, whose components are independently drawn from the uniform distribution in range [0,1], and
the following distance functions: Euclidean (l2), fractional l0.5 (proposed for high-dimensional data
by Aggarwal et al., 2001), and cosine. Figure 1(a–c) shows the empirically observed distributions
of Nk, with k= 5, for (a) d = 3, (b) d = 20, and (c) d = 100. In the same way, Figure 1(d–f) depicts
the empirically observed Nk for points randomly drawn from the i.i.d. normal distribution.

For d = 3 the empirical distributions of N5 for the three distance functions (Figure 1(a, d)) are
consistent with the binomial distribution. This is expected by considering k-occurrences as node in-
degrees in the k-nearest neighbor digraph. For randomly distributed points in low dimensions, the
degree distributions of the digraphs closely resemble the degree distribution of the Erdős-Rényi (ER)
random graph model, which is is binomial and Poisson in the limit (Erdős and Rényi, 1959).

As dimensionality increases, the observed distributions of N5 depart from the random graph
model and become more skewed to the right (Figure 1(b, c), and Figure 1(e, f) for l2 and l0.5).
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Figure 1: Empirical distribution of N5 for Euclidean, l0.5, and cosine distances on (a–c) i.i.d. uni-
form, and (d–f) i.i.d. normal random data sets with n= 10000 points and dimensionality
(a, d) d = 3, (b, e) d = 20, and (c, f) d = 100 (log-log plot).

We verified this by being able to fit major right portions (that is, tails) of the observed distributions
with the log-normal distribution, which is highly skewed.2 We made similar observations with
various k values (generally focusing on the common case k( n, where n is the number of points
in a data set), distance measures (lp-norm distances for both p ≥ 1 and 0 < p < 1, Bray-Curtis,
normalized Euclidean, and Canberra), and data distributions. In virtually all these cases, skewness
exists and produces hubs, that is, points with high k-occurrences. One exception visible in Figure 1
is the combination of cosine distance and normally distributed data. In most practical settings,
however, such situations are not expected, and a thorough discussion of the necessary conditions for
hubness to occur in high dimensions will be given in Section 5.2.

3.2 Hubness in Real Data

To illustrate the hubness phenomenon on real data, let us consider the empirical distribution of Nk
(k= 10) for three real data sets, given in Figure 2. As in the previous section, a considerable increase
in the skewness of the distributions can be observed with increasing dimensionality.

In all, we examined 50 real data sets from well known sources, belonging to three categories:
UCI multidimensional data, gene expression microarray data, and textual data in the bag-of-words

2. Fits were supported by the χ2 goodness-of-fit test at 0.05 significance level, where bins represent the number of
observations of individual Nk values. These empirical distributions were compared with the expected output of a
(discretized) log-normal distribution, making sure that counts in the bins do not fall below 5 by pooling the rightmost
bins together.
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Figure 2: Empirical distribution of N10 for three real data sets of different dimensionalities.

representation,3 listed in Table 1. The table includes columns that describe data-set sources (2nd col-
umn), basic statistics (data transformation (3rd column): whether standardization was applied, or for
textual data the used bag-of-words document representation; the number of points (n, 4th column);
dimensionality (d, 5th column); the number of classes (7th column)), and the distance measure used
(Euclidean or cosine, 8th column). We took care to ensure that the choice of distance measure and
preprocessing (transformation) corresponds to a realistic scenario for the particular data set.

To characterize the asymmetry of Nk we use the standardized third moment of the distribution
of k-occurrences,

SNk =
E(Nk−µNk)3

σ3Nk
,

where µNk and σNk are the mean and standard deviation of Nk, respectively. The corresponding (9th)
column of Table 1, which shows the empirical SN10 values for the real data sets, indicates that the
distributions of N10 for most examined data sets are skewed to the right.4 The value of k is fixed
at 10, but analogous observations can be made with other values of k.

It can be observed that some SNk values in Table 1 are quite high, indicating strong hubness in the
corresponding data sets.5 Moreover, computing the Spearman correlation between d and SNk over
all 50 data sets reveals it to be strong (0.62), signifying that the relationship between dimensionality
and hubness extends from synthetic to real data in general. On the other hand, careful scrutiny of the
charts in Figure 2 and SNk values in Table 1 reveals that for real data the impact of dimensionality
on hubness may not be as strong as could be expected after viewing hubness on synthetic data in
Figure 1. Explanations for this observation will be given in the next section.

3. We used the movie review polarity data set v2.0 initially introduced by Pang and Lee (2004), while the computers and
sports data sets were first used by Radovanović and Ivanović (2006). Preprocessing of all text data sets (except dexter,
which is already preprocessed) involved stop-word removal and stemming using the Porter stemmer. Documents
were transformed into the bag-of-words representation with word weights being either term frequencies (tf), or term
frequencies multiplied by inverse document frequencies (tf-idf), with the choice based on independent experiments
involving several classifiers. All term frequency vectors were normalized to average document length.

4. If SNk = 0 there is no skewness, positive (negative) values signify skewness to the right (left).
5. For comparison, sample skewness values for i.i.d. uniform data and Euclidean distance, shown in Figure 1(a–c), are
0.121, 1.541, and 5.445 for dimensionalities 3, 20, and 100, respectively. The values for i.i.d. normal data from
Figure 1(d–f) are 0.118, 2.055, and 19.210.
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Name Src. Trans. n d dmle Cls. Dist. SN10 SSN10 Clu. CN10dm CN10cm B̃N10 CN10BN10 CAV

abalone UCI stan 4177 8 5.39 29 l2 0.277 0.235 62 −0.047 −0.526 0.804 0.934 0.806
arcene UCI stan 100 10000 22.85 2 l2 0.634 2.639 2 −0.559 −0.684 0.367 0.810 0.455
arrhythmia UCI stan 452 279 21.63 16 l2 1.984 6.769 8 −0.867 −0.892 0.479 0.898 0.524
breast-w UCI stan 699 9 5.97 2 l2 1.020 0.667 7 −0.062 −0.240 0.052 0.021 0.048
diabetes UCI stan 768 8 6.00 2 l2 0.555 0.486 15 −0.479 −0.727 0.322 0.494 0.337
dorothea UCI none 800 100000 201.11 2 cos 2.355 1.016 19 −0.632 −0.672 0.108 0.236 0.092
echocardiogram UCI stan 131 7 4.92 2 l2 0.735 0.438 5 −0.722 −0.811 0.372 0.623 0.337
ecoli UCI stan 336 7 4.13 8 l2 0.116 0.208 8 −0.396 −0.792 0.223 0.245 0.193
gisette UCI none 6000 5000 149.35 2 cos 1.967 4.671 76 −0.667 −0.854 0.045 0.367 0.241
glass UCI stan 214 9 4.37 7 l2 0.154 0.853 11 −0.430 −0.622 0.414 0.542 0.462
haberman UCI stan 306 3 2.89 2 l2 0.087 −0.316 11 −0.330 −0.573 0.348 0.305 0.360
ionosphere UCI stan 351 34 13.57 2 l2 1.717 2.051 18 −0.639 −0.832 0.185 0.464 0.259
iris UCI stan 150 4 2.96 3 l2 0.126 −0.068 4 −0.275 −0.681 0.087 0.127 0.147
isolet1 UCI stan 1560 617 13.72 26 l2 1.125 6.483 38 −0.306 −0.760 0.283 0.463 0.352
mfeat-factors UCI stan 2000 216 8.47 10 l2 0.826 5.493 44 −0.113 −0.688 0.063 0.001 0.145
mfeat-fourier UCI stan 2000 76 11.48 10 l2 1.277 4.001 44 −0.350 −0.596 0.272 0.436 0.415
mfeat-karhunen UCI stan 2000 64 11.82 10 l2 1.250 8.671 40 −0.436 −0.788 0.098 0.325 0.205
mfeat-morph UCI stan 2000 6 3.22 10 l2 −0.153 0.010 44 −0.039 −0.424 0.324 0.306 0.397
mfeat-pixel UCI stan 2000 240 11.83 10 l2 1.035 3.125 44 −0.210 −0.738 0.049 0.085 0.107
mfeat-zernike UCI stan 2000 47 7.66 10 l2 0.933 3.389 44 −0.185 −0.657 0.235 0.252 0.400
musk1 UCI stan 476 166 6.74 2 l2 1.327 3.845 17 −0.376 −0.752 0.237 0.621 0.474
optdigits UCI stan 5620 64 9.62 10 l2 1.095 3.789 74 −0.223 −0.601 0.044 0.097 0.168
ozone-eighthr UCI stan 2534 72 12.92 2 l2 2.251 4.443 49 −0.216 −0.655 0.086 0.300 0.138
ozone-onehr UCI stan 2536 72 12.92 2 l2 2.260 5.798 49 −0.215 −0.651 0.046 0.238 0.070
page-blocks UCI stan 5473 10 3.73 5 l2 −0.014 0.470 72 −0.063 −0.289 0.049 −0.046 0.068
parkinsons UCI stan 195 22 4.36 2 l2 0.729 1.964 8 −0.414 −0.649 0.166 0.321 0.256
pendigits UCI stan 10992 16 5.93 10 l2 0.435 0.982 104 −0.062 −0.513 0.014 −0.030 0.156
segment UCI stan 2310 19 3.93 7 l2 0.313 1.111 48 −0.077 −0.453 0.089 0.074 0.332
sonar UCI stan 208 60 9.67 2 l2 1.354 3.053 8 −0.550 −0.771 0.286 0.632 0.461
spambase UCI stan 4601 57 11.45 2 l2 1.916 2.292 49 −0.376 −0.448 0.139 0.401 0.271
spectf UCI stan 267 44 13.83 2 l2 1.895 2.098 11 −0.616 −0.729 0.300 0.595 0.366
spectrometer UCI stan 531 100 8.04 10 l2 0.591 3.123 17 −0.269 −0.670 0.200 0.225 0.242
vehicle UCI stan 846 18 5.61 4 l2 0.603 1.625 25 −0.162 −0.643 0.358 0.435 0.586
vowel UCI stan 990 10 2.39 11 l2 0.766 0.935 27 −0.252 −0.605 0.313 0.691 0.598
wdbc UCI stan 569 30 8.26 2 l2 0.815 3.101 16 −0.449 −0.708 0.065 0.170 0.129
wine UCI stan 178 13 6.69 3 l2 0.630 1.319 3 −0.589 −0.874 0.076 0.182 0.084
wpbc UCI stan 198 33 8.69 2 l2 0.863 2.603 6 −0.688 −0.878 0.340 0.675 0.360
yeast UCI stan 1484 8 5.42 10 l2 0.228 0.105 34 −0.421 −0.715 0.527 0.650 0.570
AMLALL KR none 72 7129 31.92 2 l2 1.166 1.578 2 −0.868 −0.927 0.171 0.635 0.098
colonTumor KR none 62 2000 11.22 2 l2 1.055 1.869 3 −0.815 −0.781 0.305 0.779 0.359
DLBCL KR none 47 4026 16.11 2 l2 1.007 1.531 2 −0.942 −0.947 0.338 0.895 0.375
lungCancer KR none 181 12533 59.66 2 l2 1.248 3.073 6 −0.537 −0.673 0.052 0.262 0.136
MLL KR none 72 12582 28.42 3 l2 0.697 1.802 2 −0.794 −0.924 0.211 0.533 0.148
ovarian-61902 KR none 253 15154 9.58 2 l2 0.760 3.771 10 −0.559 −0.773 0.164 0.467 0.399
computers dmoz tf 697 1168 190.33 2 cos 2.061 2.267 26 −0.566 −0.731 0.312 0.699 0.415
dexter UCI none 300 20000 160.78 2 cos 3.977 4.639 13 −0.760 −0.781 0.301 0.688 0.423
mini-newsgroups UCI tf-idf 1999 7827 3226.43 20 cos 1.980 1.765 44 −0.422 −0.704 0.524 0.701 0.526
movie-reviews PaBo tf 2000 11885 54.95 2 cos 8.796 7.247 44 −0.604 −0.739 0.398 0.790 0.481
reuters-transcribed UCI tf-idf 201 3029 234.68 10 cos 1.165 1.693 3 −0.781 −0.763 0.642 0.871 0.595
sports dmoz tf 752 1185 250.24 2 cos 1.629 2.543 27 −0.584 −0.736 0.260 0.604 0.373

Table 1: Real data sets. Data sources are the University of California, Irvine (UCI) Machine Learn-
ing Repository, Kent Ridge (KR) Bio-Medical Data Set Repository, dmoz Open Directory,
and www.cs.cornell.edu/People/pabo/movie-review-data/ (PaBo).
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4. The Origins of Hubness

This section moves on to exploring the causes of hubness and the mechanisms through which hubs
emerge. Section 4.1 investigates the relationship between the position of a point in data space
and hubness. Next, Section 4.2 explains the mechanism through which hubs emerge as points in
high-dimensional space that become closer to other points than their low-dimensional counterparts,
outlining our main theoretical result. The emergence of hubness in real data is studied in Section 4.3,
while Section 4.4 discusses hubs and their opposites—antihubs—and the relationships between
hubs, antihubs, and different notions of outliers.

4.1 The Position of Hubs

Let us consider again the i.i.d. uniform and i.i.d. normal random data examined in the previous
section. We will demonstrate that the position of a point in data space has a significant effect on its
k-occurrences value, by observing the sample mean of the data distribution as a point of reference.
Figure 3 plots, for each point x, its N5(x) against its Euclidean distance from the empirical data
mean, for d = 3, 20, 100. As dimensionality increases, stronger correlation emerges, implying
that points closer to the mean tend to become hubs. We made analogous observations with other
values of k, and combinations of data distributions and distance measures for which hubness occurs.
It is important to note that proximity to one global data-set mean correlates with hubness in high
dimensions when the underlying data distribution is unimodal. For multimodal data distributions,
for example those obtained through a mixture of unimodal distributions, hubs tend to appear close
to the means of individual component distributions of the mixture. In the discussion that follows
in Section 4.2 we will assume a unimodal data distribution, and defer the analysis of multimodal
distributions until Section 4.3, which studies real data.

4.2 Mechanisms Behind Hubness

Although one may expect that some random points are closer to the data-set mean than others, in
order to explain the mechanism behind hub formation we need to (1) understand the geometrical
and distributional setting in which some points tend to be closer to the mean than others, and then
(2) understand why such points become hubs in higher dimensions.6

Hubness appears to be related to the phenomenon of distance concentration, which is usually
expressed as the ratio between some measure of spread (for example, standard deviation) and some
measure of magnitude (for example, the mean) of distances of all points in a data set to some ar-
bitrary reference point (Aggarwal et al., 2001; François et al., 2007). If this ratio converges to 0
as dimensionality goes to infinity, it is said that the distances concentrate. Based on existing the-
oretical results discussing distance concentration (Beyer et al., 1999; Aggarwal et al., 2001), high-
dimensional points are approximately lying on a hypersphere centered at the data-set mean. More-
over, the results by Demartines (1994) and François et al. (2007) specify that the distribution of
distances to the data-set mean has a non-negligible variance for any finite d.7 Hence, the existence
of a non-negligible number of points closer to the data-set mean is expected in high dimensions.

6. We will assume that random points originate from a unimodal data distribution. In the multimodal case, it can be said
that the observations which follow are applicable around one of the “peaks” in the pdf of the data distribution.

7. These results apply to lp-norm distances, but our numerical simulations suggest that other distance functions men-
tioned in Section 3.1 behave similarly. Moreover, any point can be used as a reference instead of the data mean, but
we observe the data mean since it plays a special role with respect to hubness.
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Figure 3: Scatter plots and Spearman correlation of N5(x) against the Euclidean distance of point x
to the sample data-set mean for (a–c) i.i.d. uniform and (d–f) i.i.d. normal random data
sets with (a, d) d = 3, (b, e) d = 20, and (c, f) d = 100.

To illustrate the above discussion, Figure 4 depicts, for i.i.d. normal data, the distribution of
Euclidean distances of all points to the true data mean (the origin) for several d values. By definition,
the distribution of distances is actually the Chi distribution with d degrees of freedom (as the square
root of the sum of squares of i.i.d. normal variables, Johnson et al., 1994).8 In this setting, distance
concentration refers to the fact that the standard deviation of distance distributions is asymptotically
constant with respect to increasing d, while the means of the distance distributions asymptotically
behave like

√
d (a direct consequence of the results by François et al., 2007, discussed further in

Section 5.1). On the other hand, for lp-norm distances with p> 2, the standard deviation would tend
to 0 (François et al., 2007). However, for any finite d, existing variation in the values of random
coordinates causes some points to become closer to the distribution mean than others. This happens
despite the fact that all distance values, in general, may be increasing together with d.

To understand why points closer to the data mean become hubs in high dimensions, let us
consider the following example. We observe, within the i.i.d. normal setting, two points drawn
from the data, but at specific positions with respect to the origin: point bd which is at the expected
distance from the origin, and point ad which is two standard deviations closer. In light of the
above, the distances of ad and bd from the origin change with increasing d, and it could be said that
different ad-s (and bd-s) occupy analogous positions in the data spaces, with respect to changing d.
The distances of ad (and bd) to all other points, again following directly from the definition (Oberto
and Pennecchi, 2006), are distributed according to noncentral Chi distributions with d degrees of

8. For this reason, in Figure 4 we plot the known pdf, not the empirically obtained distribution.

2495
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Figure 4: Probability density function of observing a point at distance r from the mean of a multi-
variate d-dimensional normal distribution, for d = 1, 3, 20, 100.
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Figure 5: (a) Distribution of distances to other points from i.i.d. normal random data for a point at
the expected distance from the origin (dashed line), and a point two standard deviations
closer (full line). (b) Difference between the means of the two distributions, with respect
to increasing d.

freedom and noncentrality parameter λ equaling the distance of ad (bd) to the origin. Figure 5(a)
plots the probability density functions of these distributions for several values of d. It can be seen
that, as d increases, the distance distributions for ad and bd move away from each other. This
tendency is depicted more clearly in Figure 5(b) which plots the difference between the means of
the two distributions with respect to d.

It is known, and expected, for points that are closer to the mean of the data distribution to be
closer, on average, to all other points, for any value of d. However, the above analysis indicates
that this tendency is amplified by high dimensionality, making points that reside in the proximity
of the data mean become closer (in relative terms) to all other points than their low-dimensional
analogues are. This tendency causes high-dimensional points that are closer to the mean to have
increased inclusion probability into k-NN lists of other points, even for small values of k. We will
discuss this relationship further in Section 5.2.

In terms of the notion of node centrality typically used in network analysis (Scott, 2000), the
above discussion indicates that high dimensionality amplifies what we will call the spatial centrality
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of a point (by increasing its proximity to other points), which, in turn, affects the degree centrality
of the corresponding node in the k-NN graph (by increasing its degree, that is, Nk). Other notions
of node centrality, and the structure of the k-NN graph in general, will be studied in more detail
in Section 5.2.1. The rest of this section will focus on describing the mechanism of the observed
spatial centrality amplification.

In the preceding discussion we selected two points from i.i.d. normal data with specific distances
from the origin expressed in terms of expected distance and deviation from it, and tracked the
analogues of the two points for increasing values of dimensionality d. Generally, we can express the
distances of the two points to the origin in terms of “offsets” from the expected distance measured
by standard deviation, which in the case of i.i.d. normal random data would be λd,1 = µχ(d) +
c1σχ(d) and λd,2 = µχ(d) +c2σχ(d), where λd,1 and λd,2 are the distances of the first and second point
to the origin, µχ(d) and σχ(d) are the mean and standard deviation of the Chi distribution with d
degrees of freedom, and c1 and c2 are selected constants (the offsets). In the preceding example
involving points ad and bd , we set c1 =−2 and c2 = 0, respectively. However, analogous behavior
can be observed with arbitrary two points whose distance to the data mean is below the expected
distance, that is, for c1,c2 ≤ 0. We describe this behavior by introducing the following notation:
Δµd(λd,1,λd,2) = |µχ(d,λd,2)−µχ(d,λd,1)|, where µχ(d,λd,i) is the mean of the noncentral Chi distribution
with d degrees of freedom and noncentrality parameter λd,i (i ∈ {1,2}). In the following theorem,
which we prove in Section 5.1, we show that Δµd(λd,1,λd,2) increases with increasing values of d.

Theorem 1 Let λd,1 = µχ(d)+c1σχ(d) and λd,2 = µχ(d)+c2σχ(d), where d ∈N+, c1,c2 ≤ 0, c1 < c2,
and µχ(d) and σχ(d) are the mean and standard deviation of the Chi distribution with d degrees of
freedom, respectively. Define

Δµd(λd,1,λd,2) = µχ(d,λd,2)−µχ(d,λd,1) ,

where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of freedom and non-
centrality parameter λd,i (i ∈ {1,2}).

There exists d0 ∈N such that for every d > d0,

Δµd(λd,1,λd,2)> 0 ,

and
Δµd+2(λd+2,1,λd+2,2)> Δµd(λd,1,λd,2) . (1)

The main statement of the theorem is given by Equation 1, which expresses the tendency of the
difference between the means of the two distance distributions to increase with increasing dimen-
sionality d. It is important to note that this tendency is obtained through analysis of distributions of
data and distances, implying that the behavior is an inherent property of data distributions in high-
dimensional space, rather than an artefact of other factors, such as finite sample size, etc. Through
simulation involving randomly generated points we verified the behavior for i.i.d. normal data by
replicating very closely the chart shown in Figure 5(b). Furthermore, simulations suggest that the
same behavior emerges in i.i.d. uniform data,9 as well as numerous other unimodal random data
distributions, producing charts of the same shape as in Figure 5(b). Real data, on the other hand,

9. The uniform cube setting will be discussed in more detail in Section 5.2, in the context of results from related work
(Newman and Rinott, 1985).

2497
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tends to be clustered, and can be viewed as originating from a mixture of distributions resulting in a
multimodal distribution of data. In this case, the behavior described by Theorem 1, and illustrated
in Figure 5(b), is manifested primarily on the individual component distributions of the mixture,
that is, on clusters of data points. The next section takes a closer look at the hubness phenomenon
in real data sets.

4.3 Hubness in Real Data

Results describing the origins of hubness given in the previous sections were obtained by examining
data sets that follow specific distributions and generated as i.i.d. samples from these distributions.
To extend these results to real data, we need to take into account two additional factors: (1) real
data sets usually contain dependent attributes, and (2) real data sets are usually clustered, that is,
points are organized into groups produced by a mixture of distributions instead of originating from
a single (unimodal) distribution.

To examine the first factor (dependent attributes), we adopt the approach of François et al. (2007)
used in the context of distance concentration. For each data set we randomly permute the elements
within every attribute. This way, attributes preserve their individual distributions, but the dependen-
cies between them are lost and the intrinsic dimensionality of data sets increases, becoming equal
to their embedding dimensionality d (François et al., 2007). In Table 1 (10th column) we give the
empirical skewness, denoted as SSNk , of the shuffled data. For the vast majority of high-dimensional
data sets, SSNk is considerably higher than SNk , indicating that hubness actually depends on the in-
trinsic rather than embedding dimensionality. This provides an explanation for the apparent weaker
influence of d on hubness in real data than in synthetic data sets, which was observed in Section 3.2.

To examine the second factor (many groups), for every data set we measured: (i) the Spearman
correlation, denoted asCN10dm (12th column), of the observed Nk and distance from the data-set mean,
and (ii) the correlation, denoted as CN10cm (13th column), of the observed Nk and distance to the
closest group mean. Groups are determined with K-means clustering, where the number of clusters
for each data set, given in column 11 of Table 1, was determined by exhaustive search of values
between 2 and ,

√
n-, to maximize CN10cm .10 In most cases, CN10cm is considerably stronger than CN10dm .

Consequently, in real data, hubs tend to be closer than other points to their respective cluster centers
(which we verified by examining the individual scatter plots).

To further support the above findings, we include the 6th column (dmle) to Table 1, corresponding
to intrinsic dimensionality measured by the maximum likelihood estimator (Levina and Bickel,
2005). Next, we compute Spearman correlations between various measurements from Table 1 over
all 50 examined data sets, given in Table 2. The observed skewness of Nk, besides being strongly
correlated with d, is even more strongly correlated with the intrinsic dimensionality dmle. Moreover,
intrinsic dimensionality positively affects the correlations between Nk and the distance to the data-
set mean / closest cluster mean, implying that in higher (intrinsic) dimensions the positions of hubs
become increasingly localized to the proximity of centers.

Section 6, which discusses the interaction of hubness with dimensionality reduction, will pro-
vide even more support to the observation that hubness depends on intrinsic, rather than embedding
dimensionality.

10. We report averages of CN10cm over 10 runs of K-means clustering with different random seeding, in order to reduce the
effects of chance.
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d dmle SN10 CN10dm CN10cm B̃N10 CN10BN10
dmle 0.87
SN10 0.62 0.80
CN10dm −0.52 −0.60 −0.42
CN10cm −0.43 −0.48 −0.31 0.82
B̃N10 −0.05 0.03 −0.08 −0.32 −0.18
CN10BN10 0.32 0.39 0.29 −0.61 −0.46 0.82
CAV 0.03 0.03 0.03 −0.14 −0.05 0.85 0.76

Table 2: Spearman correlations over 50 real data sets.
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Figure 6: Correlation between low Nk and outlier score (k = 20).

4.4 Hubs and Outliers

The non-negligible variance of the distribution of distances to the data mean described in Sec-
tion 4.2 has an additional “side”: we also expect points farther from the mean and, therefore, with
much lower observed Nk than the rest.11 Such points correspond to the bottom-right parts of Fig-
ure 3(b, c, e, f), and will be referred to as antihubs. Since antihubs are far away from all other points,
in high dimensions they can be regarded as distance-based outliers (Tan et al., 2005).

To further support the connection between antihubs and distance-based outliers, let us consider
a common outlier score of a point as the distance from its kth nearest neighbor (Tan et al., 2005).
Low Nk values and high outlier scores are correlated as exemplified in Figure 6(a, b) (in their lower-
right parts) for two data sets from Table 1.

Next, let us recall the i.i.d. normal random data setting, and the probability density function
corresponding to observing a point at a specified distance from the mean, plotted in Figure 4. An
analogous chart for real data is given in Figure 7, which shows the empirical distributions of dis-
tances from the closest cluster mean for three real data sets, as described in Section 4.3. In both
figures it can be seen that in low dimensions the probability of observing a point near a center is quite
high, while as dimensionality increases it becomes close to zero. If we now consider a probabilistic
definition of an outlier as a point with a low probability of occurrence (Tan et al., 2005), in high

11. Assuming the presence of hubs, the existence of points with low Nk is implied by the constant-sum property of Nk:
for any data set D, ∑x∈DNk(x) = k|D| (Aucouturier and Pachet, 2007).
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Figure 7: Probability density function of observing a point at distance r from the closest cluster
mean for three real data sets.

dimensions hubs actually are outliers, as points closer to the distribution (or cluster) mean than the
majority of other points. Therefore, somewhat counterintuitively, it can be said that hubs are points
that reside in low-density regions of the high-dimensional data space, and are at the same time close
to many other points. On the other hand, distance-based outliers correspond to probabilistic out-
liers that are farther away from the center(s). It follows that the definitions of distance-based and
probabilistic outliers significantly diverge from one another in high dimensions, with distance-based
outliers only partially corresponding to probabilistic outliers. To prevent confusion in the rest of the
paper, we shall continue to refer to “hubs” and “outliers” in the distance-based sense. Outliers will
be analyzed further in Section 7.3.2.

5. Proofs and Discussion

This section is predominantly devoted to the theoretical aspects of the behavior of distances in
high-dimensional space and the hubness phenomenon. Section 5.1 provides a step-by-step proof of
Theorem 1 which was introduced in Section 4.2, while Section 5.2 discusses additional aspects of
the phenomenon in the context of the geometry of high-dimensional spaces and the properties of
data distributions which occupy them.

5.1 Proof of Theorem 1

In this section we analyze the behavior of distances that provides the mechanism for the formation
of hubs, introduced in Section 4.2, culminating with the proof of Theorem 1. Section 5.1.1 reviews
distance concentration results by François et al. (2007), while Section 5.1.2 discusses distance dis-
tributions in i.i.d. normal random data and extended interpretations of the results by François et al.
(2007) in this setting. The notion of asymptotic equivalence that will be used in the proof of The-
orem 1 is the subject of Section 5.1.3. The expectation of the noncentral Chi distribution, which
is a key feature in the analysis of distance distributions in i.i.d. normal random data, is defined in
Section 5.1.4, together with the generalized Laguerre function on which it relies. Properties of the
generalized Laguerre function that will be used in the proof of Theorem 1 are presented in Sec-
tion 5.1.5. Finally, the proof of Theorem 1 is given in Section 5.1.6.
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5.1.1 DISTANCE CONCENTRATION RESULTS

We begin by reviewing the main results of François et al. (2007) regarding distance concentration.
Let Xd = (X1,X2, . . . ,Xd) be a random d-dimensional variable with i.i.d. components: Xi ∼ F , and
let ‖Xd‖ denote its Euclidean norm. For random variables |Xi|2, let µ|F |2 and σ2|F |2 signify their
mean and variance, respectively. François et al. (2007) prove the following two lemmas.12

Lemma 2 (François et al., 2007, Equation 17, adapted)

lim
d→∞

E(‖Xd‖)√
d

= µ|F |2 .

Lemma 3 (François et al., 2007, Equation 21, adapted)

lim
d→∞

Var(‖Xd‖) =
σ2|F |2

4µ|F |2
.

The above lemmas imply that, for i.i.d. random data, the expectation of the distribution of Eu-
clidean distances to the origin (Euclidean norms) asymptotically behaves like

√
d, while the stan-

dard deviation is asymptotically constant. From now on, we will denote the mean and variance of
random variables that are distributed according to some distribution F by µF and σ2F , respectively.

5.1.2 DISTANCES IN I.I.D. NORMAL DATA

We now observe more closely the behavior of distances in i.i.d. normal random data. Let Zd =
(Z1,Z2, . . . ,Zd) be a random d-dimensional vector whose components independently follow the
standard normal distribution: Zi ∼N (0;1), for every i ∈ {1,2, . . . ,d}. Then, by definition, random
variable ‖Zd‖ follows the Chi distribution with d degrees of freedom: ‖Zd‖ ∼ χ(d). In other words,
χ(d) is the distribution of Euclidean distances of vectors drawn from Zd to the origin. If one were
to fix another reference vector xd instead of the origin, the distribution of distances of vectors drawn
from Zd to xd would be completely determined by ‖xd‖ since, again by definition, random variable
‖Zd − xd‖ follows the noncentral Chi distribution with d degrees of freedom and noncentrality
parameter λ= ‖xd‖: ‖Zd−xd‖ ∼ χ(d,‖xd‖).

In light of the above, let us observe two points, xd,1 and xd,2, drawn from Zd , and express their
distances from the origin in terms of offsets from the expected distance, with the offsets described
using standard deviations: ‖xd,1‖ = µχ(d) + c1σχ(d) and ‖xd,2‖ = µχ(d) + c2σχ(d), where c1,c2 ≤ 0.
We will assume c1 < c2, that is, xd,1 is closer to the data distribution mean (the origin) than xd,2. By
treating c1 and c2 as constants, and varying d, we observe analogues of two points in spaces of dif-
ferent dimensionalities (roughly speaking, points xd,1 have identical “probability” of occurrence at
the specified distance from the origin for every d, and the same holds for xd,2). Let λd,1 = ‖xd,1‖
and λd,2 = ‖xd,2‖. Then, the distributions of distances of points xd,1 and xd,2 to all points from the
data distribution Zd (that is, the distributions of random variables ‖Zd−xd,1‖ and ‖Zd−xd,2‖) are
noncentral Chi distributions χ(d,λd,1) and χ(d,λd,2), respectively. We study the behavior of these
two distributions with increasing values of d.

Lemmas 2 and 3, taking F to be the standard normal distribution N (0;1), and translating the
space so that xd,1 or xd,2 become the origin, imply that both µχ(d,λd,1) and µχ(d,λd,2) asymptotically

12. François et al. (2007) provide a more general result for lp norms with arbitrary p> 0.
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behave like
√
d as d→∞, while σ2χ(d,λd,1) and σ

2
χ(d,λd,2) are both asymptotically constant.

13 However,
for xd,1 and xd,2 placed at different distances form the origin (λd,1 0= λd,2, that is, c1 0= c2), these
asymptotic tendencies do not occur at the same speed. In particular, we will show that as d increases,
the difference between µχ(d,λd,1) and µχ(d,λd,2) actually increases. If we take xd,1 to be closer to the
origin than xd,2 (c1 < c2), this means that xd,1 becomes closer to all other points from the data
distribution Zd than xd,2, simply by virtue of increasing dimensionality, since for different values
of d we place the two points at analogous positions in the data space with regards to the distance
from the origin.

5.1.3 ASYMPTOTIC EQUIVALENCE

Before describing our main theoretical result, we present several definitions and lemmas, beginning
with the notion of asymptotic equivalence that will be relied upon.

Definition 4 Two real-valued functions f (x) and g(x) are asymptotically equal, f (x)≈ g(x), iff for
every ε> 0 there exists x0 ∈R such that for every x> x0, | f (x)−g(x)|< ε.

Equivalently, f (x)≈ g(x) iff limx→∞ | f (x)−g(x)|= 0. Note that the≈ relation is different from
the divisive notion of asymptotic equivalence, where f (x)∼ g(x) iff limx→∞ f (x)/g(x) = 1.

The following two lemmas describe approximations that will be used in the proof of Theorem 1,
based on the ≈ relation.

Lemma 5 For any constant c ∈R, let f (d) =
√
d+ c , and g(d) =

√
d . Then, f (d)≈ g(d) .

Proof

lim
d→∞

∣∣∣
√
d+ c−

√
d
∣∣∣= lim

d→∞

∣∣∣∣∣

(√
d+ c−

√
d
)√

d+ c+
√
d

√
d+ c+

√
d

∣∣∣∣∣= lim
d→∞

∣∣∣∣
c

√
d+ c+

√
d

∣∣∣∣= 0 .

Lemma 6 µχ(d) ≈
√
d, and σχ(d) ≈ 1/

√
2 .

Proof Observe the expression for the mean of the χ(d) distribution,

µχ(d) =
√
2
Γ
( d+1
2
)

Γ
(d
2
) .

The equality xΓ(x) = Γ(x+1) and the convexity of logΓ(x) yield (Haagerup, 1982, p. 237):

Γ

(
d+1
2

)2
≤ Γ

(
d
2

)
Γ

(
d+2
2

)
=
d
2
Γ

(
d
2

)2
,

13. More precisely, the lemmas can be applied only for points x′d,i that have equal values of all components, since
after translation data components need to be i.i.d. Because of the symmetry of the Gaussian distribution, the same
expectations and variances of distance distributions are obtained, for every d, with any xd,i that has the same norm as
x′d,i, thereby producing identical asymptotic results.
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and

Γ

(
d+1
2

)2
=
d−1
2

Γ

(
d−1
2

)
Γ

(
d+1
2

)
≥
d−1
2

Γ

(
d
2

)2
,

from which we have
√
d−1≤

√
2
Γ
(d+1
2
)

Γ
( d
2
) ≤

√
d .

From Lemma 5 it now follows that µχ(d) ≈
√
d .

Regarding the standard deviation of the χ(d) distribution, from Lemma 3, taking F to be the
standard normal distribution, we obtain

lim
d→∞

σ2χ(d) =
σ2χ2(1)
4µχ2(1)

=
1
2
,

since the square of a standard normal random variable follows the chi-square distribution with one
degree of freedom, χ2(1), whose mean and variance are known: µχ2(1) = 1, σ2χ2(1) = 2. It now di-
rectly follows that σχ(d) ≈ 1/

√
2 .

5.1.4 EXPECTATION OF THE NONCENTRAL CHI DISTRIBUTION

The central notion in Theorem 1 is the noncentral Chi distribution. To express the expectation of
the noncentral Chi distribution, the following two definitions are needed, introducing the Kummer
confluent hypergeometric function 1F1, and the generalized Laguerre function.

Definition 7 (Itô, 1993, p. 1799, Appendix A, Table 19.I)
For a,b,z ∈R, the Kummer confluent hypergeometric function 1F1(a;b;z) is given by

1F1(a;b;z) =
∞

∑
k=0

(a)k
(b)k

·
zk

Γ(k+1)
,

where (·)k is the Pochhammer symbol, (x)k = Γ(x+k)
Γ(x) .

Definition 8 (Itô, 1993, p. 1811, Appendix A, Table 20.VI)
For ν,α,z ∈R, the generalized Laguerre function L(α)ν (z) is given by

L(α)ν (z) =
Γ(ν+α+1)
Γ(ν+1)

· 1
F1(−ν;α+1;z)
Γ(α+1)

.

The expectation of the noncentral Chi distribution with d degrees of freedom and noncentrality
parameter λ, denoted by µχ(d,λ), can now be expressed via the generalized Laguerre function (Oberto
and Pennecchi, 2006):

µχ(d,λ) =
√
π
2
L(d/2−1)1/2

(
−
λ2

2

)
. (2)
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5.1.5 PROPERTIES OF THE GENERALIZED LAGUERRE FUNCTION

The proof of Theorem 1 will rely on several properties of the generalized Laguerre function. In this
section we will review two known properties and prove several additional ones as lemmas.

An important property of the generalized Laguerre function is its infinite differentiability in z,
with the result of differentiation again being a generalized Laguerre function:

∂
∂z
L(α)ν (z) =−L(α+1)ν−1 (z) . (3)

Another useful property is the following recurrence relation:

L(α)ν (z) = L(α)ν−1(z)+L(α−1)ν (z) . (4)

Lemma 9 For α> 0 and z< 0:
(a) L(α)−1/2(z) is a positive monotonically increasing function in z, while

(b) L(α)1/2(z) is a positive monotonically decreasing concave function in z.

Proof (a) From Definition 8,

L(α)−1/2(z) =
Γ(α+1/2)
Γ(1/2)

· 1
F1(1/2;α+1;z)

Γ(α+1)
.

Since α> 0 all three terms involving the Gamma function are positive. We transform the remaining
term using the equality (Itô, 1993, p. 1799, Appendix A, Table 19.I):

1F1(a;b;z) = ez1F1(b−a;b;−z) , (5)

which holds arbitrary a,b,z ∈R, obtaining

1F1(1/2;α+1;z) = ez1F1(α+1/2;α+1;−z) .

From Definition 7 it now directly follows that L(α)−1/2(z) is positive for α> 0 and z< 0.

To show that L(α)−1/2(z) is monotonically increasing in z, from Equation 3 and Definition 8
we have

∂
∂z
L(α)−1/2(z) =−L(α+1)−3/2 (z) =−

Γ(α+1/2)
Γ(−1/2)

· 1
F1(3/2;α+2;z)

Γ(α+2)
.

For α> 0 and z< 0, from Equation 5 it follows that 1F1(3/2;α+2;z)> 0. Since Γ(−1/2)< 0 and
all remaining terms are positive, it follows that −L(α+1)−3/2 (z) > 0. Thus, L(α)−1/2(z) is monotonically
increasing in z.

(b) Proofs that L(α)1/2(z) is positive and monotonically decreasing are very similar to the proofs in

part (a), and will be omitted. To address concavity, we observe the second derivative of L(α)1/2(z):

∂2

∂z
L(α)1/2(z) = L(α+2)−3/2 (z) =

Γ(α+3/2)
Γ(−1/2)

· 1
F1(3/2;α+3;z)

Γ(α+3)
.

Similarly to part (a), from Equation 5, Definition 7, and basic properties of the gamma function it
follows that L(α+2)−3/2 (z)< 0 for α> 0 and z< 0. Thus, L(α)1/2(z) is concave in z.
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Lemma 10 For α> 0 and z< 0, L(α+1)1/2 (z)≈ L(α)1/2(z) .

Proof From the recurrence relation in Equation 4 we obtain

L(α+1)1/2 (z) = L(α+1)−1/2 (z)+L(α)1/2(z) .

Therefore, to prove the lemma it needs to be shown that for z< 0,

lim
α→∞

L(α)−1/2(z) = 0 . (6)

From Definition 8 and Equation 5 we have

L(α)−1/2(z) =
e−z

Γ(1/2)
·
Γ(α+1/2)
Γ(α+1)

· 1F1(α+1/2;α+1;−z) .

From the asymptotic expansion by Fujikoshi (2007, p. 16, adapted),

1F1
(
1
2
n;
1
2
(n+b);x

)
= ex

(
1+O(n−1)

)
, (7)

where n is large and x ≥ 0, it follows that limα→∞ 1F1(α+ 1/2;α+ 1;−z) < ∞ . Thus, to prove
Equation 6 and the lemma it remains to be shown that

lim
α→∞

Γ(α+1/2)
Γ(α+1)

= 0 . (8)

As in the proof of Lemma 6, from the inequalities derived by Haagerup (1982) we have

√
β−1≤

√
2
Γ
(
β+1
2

)

Γ
(
β
2

) ≤
√
β ,

where β> 1. Applying inversion and substituting β with 2α+1 yields the desired limit.

Lemma 11 For α> 1/2 and z< 0:
(a) limz→−∞L

(α)
−3/2(z) = 0, and

(b) limα→∞L
(α)
−3/2(z) = 0.

Proof (a) From Definition 8 we have

L(α)−3/2(z) =
Γ(α−1/2)
Γ(−1/2)

· 1
F1(3/2;α+1;z)

Γ(α+1)
. (9)

The following property (Abramowitz and Stegun, 1964, p. 504, Equation 13.1.5),

1F1 (a;b;z) =
Γ(b)

Γ(b−a)
(−z)a

(
1+O(|z|−1)

)
(z< 0),
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when substituted into Equation 9, taking a= 3/2 and b= α+1, yields

L(α)−3/2(z) =
1

Γ(−1/2)
(−z)−3/2

(
1+O(|z|−1)

)
. (10)

From Equation 10 the desired limit directly follows.
(b) The proof of part (b) is analogous to the proof of Lemma 10, that is, Equation 6. From

Definition 8 and Equation 5, after applying the expansion by Fujikoshi (2007) given in Equation 7,
it remains to be shown that

lim
α→∞

Γ(α−1/2)
Γ(α+1)

= 0 . (11)

Since Γ(α− 1/2) < Γ(α+ 1/2) for every α ≥ 2, the desired limit in Equation 11 follows directly
from Equation 8.

5.1.6 THE MAIN RESULT

This section restates and proves our main theoretical result.

Theorem 1 Let λd,1 = µχ(d)+c1σχ(d) and λd,2 = µχ(d)+c2σχ(d), where d ∈N+, c1,c2 ≤ 0, c1 < c2,
and µχ(d) and σχ(d) are the mean and standard deviation of the Chi distribution with d degrees of
freedom, respectively. Define

Δµd(λd,1,λd,2) = µχ(d,λd,2)−µχ(d,λd,1) ,

where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of freedom and non-
centrality parameter λd,i (i ∈ {1,2}).

There exists d0 ∈N such that for every d > d0,

Δµd(λd,1,λd,2)> 0 , (12)

and
Δµd+2(λd+2,1,λd+2,2)> Δµd(λd,1,λd,2) . (13)

Proof To prove Equation 12, we observe that for d > 2,

Δµd(λd,1,λd,2) = µχ(d,λd,2)−µχ(d,λd,1)

=

√
π
2
L(

d
2−1)
1/2

(

−
λ2d,2
2

)

−
√
π
2
L(

d
2−1)
1/2

(

−
λ2d,1
2

)

> 0 ,

where the last inequality holds for d > 2 because λd,1 < λd,2, and L
(d/2−1)
1/2 (z) is a monotonically

decreasing function in z< 0 for d/2−1> 0 (Lemma 9).
In order to prove Equation 13, we will use approximate values of noncentrality parameters λd,1

and λd,2. Let λ̂d,1=
√
d+c1/

√
2, and λ̂d,2=

√
d+c2/

√
2. From Lemma 6 it follows that λ̂d,1≈ λd,1

and λ̂d,2 ≈ λd,2. Thus, by proving that there exists d2 ∈N such that for every d > d2,

Δµd+2(̂λd+2,1, λ̂d+2,2)> Δµd (̂λd,1, λ̂d,2) , (14)
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we prove that there exists d1 ∈ N such that for every d > d1 Equation 13 holds. The existence of
such d1, when approximations are used as function arguments, is ensured by the fact that L

(α)
1/2(z) is

a monotonically decreasing concave function in z (Lemma 9), and by the transition from α to α+1
having an insignificant impact on the value of the Laguerre function for large enough α (Lemma 10).
Once Equation 14 is proven, Equations 12 and 13 will hold for every d > d0, where d0=max(2,d1).

To prove Equation 14, from Equation 2 it follows we need to show that

L(d/2)1/2

(
−
1
2

(√
d+2+ c2/

√
2
)2)

−L(d/2)1/2

(
−
1
2

(√
d+2+ c1/

√
2
)2)

> L(d/2−1)1/2

(
−
1
2

(√
d+ c2/

√
2
)2)

−L(d/2−1)1/2

(
−
1
2

(√
d+ c1/

√
2
)2)

. (15)

We observe the second derivative of L(α)1/2(z):

∂2

∂z
L(α)1/2(z) = L(α+2)−3/2 (z) .

Since L(α+2)−3/2 (z) tends to 0 as z→−∞, and tends to 0 also as α→ ∞ (Lemma 11), it follows that the
two Laguerre functions on the left side of Equation 15 can be approximated by a linear function with
an arbitrary degree of accuracy for large enough d. More precisely, since L(α)1/2(z) is monotonically
decreasing in z (Lemma 9) there exist a,b ∈ R, a > 0, such that the left side of Equation 15, for
large enough d, can be replaced by

−a
(
−
1
2

(√
d+2+ c2/

√
2
)2)

+b −
(
−a

(
−
1
2

(√
d+2+ c1/

√
2
)2)

+b
)

=
a
2

(√
d+2+ c2/

√
2
)2

−
a
2

(√
d+2+ c1/

√
2
)2

. (16)

From Lemma 10 it follows that the same linear approximation can be used for the right side of
Equation 15, replacing it by

a
2

(√
d+ c2/

√
2
)2

−
a
2

(√
d+ c1/

√
2
)2

. (17)

After substituting the left and right side of Equation 15 with Equations 16 and 17, respectively, it
remains to be shown that

a
2

(√
d+2+ c2/

√
2
)2

−
a
2

(√
d+2+ c1/

√
2
)2

>
a
2

(√
d+ c2/

√
2
)2

−
a
2

(√
d+ c1/

√
2
)2

. (18)

Multiplying both sides by
√
2/a, moving the right side to the left, and applying algebraic simplifi-

cation reduces Equation 18 to
(
c2− c1

)(√
d+2−

√
d
)
> 0,

which holds for c1 < c2, thus concluding the proof.
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5.2 Discussion

This section will discuss several additional considerations and related work regarding the geometry
of high-dimensional spaces and the behavior of data distributions within them. First, let us consider
the geometric upper limit to the number of points that point x can be a nearest neighbor of, in
Euclidean space. In one dimension, this number is 2, in two dimensions it is 5, while in 3 dimensions
it equals 11 (Tversky and Hutchinson, 1986). Generally, for Euclidean space of dimensionality d
this number is equal to the kissing number, which is the maximal number of hyperspheres that can
be placed to touch a given hypersphere without overlapping, with all hyperspheres being of the
same size.14 Exact kissing numbers for arbitrary d are generally not known, however there exist
bounds which imply that they progress exponentially with d (Odlyzko and Sloane, 1979; Zeger and
Gersho, 1994). Furthermore, when considering k nearest neighbors for k > 1, the bounds become
even larger. Therefore, only for very low values of d geometrical constraints of vector space prevent
hubness. On the other hand, for higher values of d hubness may or may not occur, and the geometric
bounds, besides providing “room” for hubness (even for values of k as low as 1) do not contribute
much in fully characterizing the hubness phenomenon. Therefore, in high dimensions the behavior
of data distributions needed to be studied.

We focus the rest of the discussion around the following important result,15 drawing parallels
with our results and analysis, and extending existing interpretations.

Theorem 12 (Newman and Rinott, 1985, p. 803, Theorem 3, adapted)
Let x(i) = (x(i)1 , . . . ,x(i)d ), i = 0, . . . ,n be a sample of n+ 1 i.i.d. points from distribution F(X),

X = (X1, . . . ,Xd) ∈ Rd. Assume that F is of the form F(X) =∏d
k=1F (Xk), that is, the coordinates

X1, . . . ,Xd are i.i.d. Let the distance measure be of the form D(x(i),x( j)) =∑d
k=1 g(x

(i)
k ,x( j)k ). Let Nn,d

1
denote the number of points among {x(1), . . . ,x(n)} whose nearest neighbor is x(0).

Suppose 0< Var(g(X ,Y ))< ∞ and set

β= Correlation(g(X ,Y ),g(X ,Z)) , (19)

where X ,Y,Z are i.i.d. with common distribution F (the marginal distribution of Xk).
(a) If β= 0 then

lim
n→∞

lim
d→∞

Nn,d
1 = Poisson(λ= 1) in distribution (20)

and
lim
n→∞

lim
d→∞

Var(Nn,d
1 ) = 1 . (21)

(b) If β> 0 then
lim
n→∞

lim
d→∞

Nn,d
1 = 0 in distribution (22)

while
lim
n→∞

lim
d→∞

Var(Nn,d
1 ) = ∞ . (23)

14. If ties are disallowed, it may be necessary to subtract 1 from the kissing number to obtain the maximum of N1.
15. A theorem that is effectively a special case of this result was proven previously (Newman et al., 1983, Theorem 7)

for continuous distributions with finite kurtosis and Euclidean distance.
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What is exceptional in this theorem are Equations 22 and 23. According to the interpretation by
Tversky et al. (1983), they suggest that if the number of dimensions is large relative to the number
of points, one may expect to have a large proportion of points with N1 equaling 0, and a small
proportion of points with high N1 values, that is, hubs.16 Trivially, Equation 23 also holds for Nk
with k > 1, since for any point x, Nk(x)≥ N1(x).

The setting involving i.i.d. normal random data and Euclidean distance, used in our Theorem 1
(and, generally, any i.i.d. random data distribution with Euclidean distance), fulfills the conditions
of Theorem 12 for Equations 22 and 23 to be applied, since the correlation parameter β > 0. This
correlation exists because, for example, if we view vector component variable Xj ( j ∈ {1,2, . . . ,d})
and the distribution of data points within it, if a random point drawn from Xj is closer to the mean
of Xj it is more likely to be close to other random points drawn from Xj, and vice versa, producing
the case β > 0.17 Therefore, Equations 22 and 23 from Theorem 12 directly apply to the setting
studied in Theorem 1, providing asymptotic evidence for hubness. However, since the proof of
Equations 22 and 23 in Theorem 12 relies on applying the central limit theorem to the (normalized)
distributions of pairwise distances between vectors x(i) and x( j) (0≤ i 0= j≤ n) as d→∞ (obtaining
limit distance distributions which are Gaussian), the results of Theorem 12 are inherently asymptotic
in nature. Theorem 1, on the other hand, describes the behavior of distances in finite dimensionali-
ties,18 providing the means to characterize the behavior of Nk in high, but finite-dimensional space.
What remains to be done is to formally connect Theorem 1 with the skewness of Nk in finite dimen-
sionalities, for example by observing point x with a fixed position relative to the data distribution
mean (the origin) across dimensionalities, in terms of being at distance µχ(d) + cσχ(d) from the ori-
gin, and expressing how the probability of x to be the nearest neighbor (or among the k nearest
neighbors) of a randomly drawn point changes with increasing dimensionality.19 We address this
investigation as a point of future work.

Returning to Theorem 12 and the value of β from Equation 19, as previously discussed, β > 0
signifies that the position of a vector component value makes a difference when computing dis-
tances between vectors, causing some component values to be more “special” than others. Another
contribution of Theorem 1 is that it illustrates how the individual differences in component values
combine to make positions of whole vectors more special (by being closer to the data center). On
the other hand, if β= 0 no point can have a special position with respect to all others. In this case,
Equations 20 and 21 hold, which imply there is no hubness. This setting is relevant, for example, to
points being generated by a Poisson process which spreads the vectors uniformly overRd , where all
positions within the space (both at component-level and globally) become basically equivalent. Al-
though it does not directly fit into the framework of Theorem 12, the same principle can be used to
explain the absence of hubness for normally distributed data and cosine distance from Section 3.1:
in this setting no vector is more spatially central than any other. Equations 20 and 21, which im-
ply no hubness, hold for many more “centerless” settings, including random graphs, settings with
exchangeable distances, and d-dimensional toruses (Newman and Rinott, 1985).

16. Reversing the order of limits, which corresponds to having a large number of points relative to the number of dimen-
sions, produces the same asymptotic behavior as in Equations 20 and 21, that is, no hubness, in all studied settings.

17. Similarly to Section 4.2, this argument holds for unimodal distributions of component variables; for multimodal
distributions the driving force behind nonzero β is the proximity to a peak in the probability density function.

18. Although the statement of Theorem 1 relies on dimensionality being greater than some d0 which is finite, but can be
arbitrarily high, empirical evidence suggests that actual d0 values are low, often equaling 0.

19. For c< 0 we expect this probability to increase since x is closer to the data distribution mean, and becomes closer to
other points as dimensionality increases.
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Figure 8: (a) Out-link, and (b) in-link densities of groups of hubs with increasing size; (c) ratio of
the number of in-links originating from points within the group and in-links originating
from outside points, for i.i.d. uniform random data with dimensionality d = 3, 20, 100.

The following two subsections will address several additional issues concerning the interpreta-
tion of Theorem 12.

5.2.1 NEAREST-NEIGHBOR GRAPH STRUCTURE

The interpretation of Theorem 12 by Tversky et al. (1983) may be understood in the sense that, with
increasing dimensionality, very few exceptional points become hubs, while all others are relegated
to antihubs. In this section we will empirically examine the structural change of the k-NN graph as
the number of dimensions increases. We will also discuss and consolidate different notions node
centrality in the k-NN graph, and their dependence on the (intrinsic) dimensionality of data.

First, as in Section 3.1, we consider n = 10000 i.i.d. uniform random data points of different
dimensionality. Let us observe hubs, that is, points with highest N5, collected in groups of pro-
gressively increasing size: 5,10,15, . . . ,10000. In analogy with the notion of network density from
social network analysis (Scott, 2000), we define group out-link density as the proportion of the num-
ber of arcs that originate and end in nodes from the group, and the total number of arcs that originate
from nodes in the group. Conversely, we define group in-link density as the proportion of the num-
ber of arcs that originate and end in nodes from the group, and the total number of arcs that end in
nodes from the group. Figure 8(a, b) shows the out-link and in-link densities of groups of strongest
hubs in i.i.d. uniform random data (similar tendencies can be observed with other synthetic data
distributions). It can be seen in Figure 8(a) that hubs are more cohesive in high dimensions, with
more of their out-links leading to other hubs. On the other hand, Figure 8(b) suggests that hubs also
receive more in-links from non-hub points in high dimensions than in low dimensions. Moreover,
Figure 8(c), which plots the ratio of the number of in-links that originate within the group, and the
number of in-links which originate outside, shows that hubs receive a larger proportion of in-links
from non-hub points in high dimensions than in low dimensions. We have reported our findings for
k = 5, however similar results are obtained with other values of k.

Overall, it can be said that in high dimensions hubs receive more in-links than in low dimen-
sions from both hubs and non-hubs, and that the range of influence of hubs gradually widens as
dimensionality increases. We can therefore conclude that the transition of hubness from low to high
dimensionalities is “smooth,” both in the sense of the change in the overall distribution of Nk, and
the change in the degree of influence of data points, as expressed by the above analysis of links.
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So far, we have viewed hubs primarily through their exhibited high values of Nk, that is, high
degree centrality in the k-NN directed graph. However, (scale-free) network analysis literature
often attributes other properties to hubs (Albert and Barabási, 2002), viewing them as nodes that are
important for preserving network structure due to their central positions within the graph, indicated,
for example, by their betweenness centrality (Scott, 2000). On the other hand, as discussed by Li
et al. (2005), in both synthetic and real-world networks high-degree nodes do not necessarily need
to correspond to nodes that are central in the graph, that is, high-degree nodes can be concentrated
at the periphery of the network and bear little structural significance. For this reason, we computed
the betweenness centrality of nodes in k-NN graphs of synthetic and real data sets studied in this
paper, and calculated its Spearman correlation with node degree, denoting the measure byCNkBC. For
i.i.d. uniform data (k = 5), when d = 3 the measured correlation is CN5BC = 0.311, when d = 20 the
correlation is CN5BC = 0.539, and finally when d = 100 the correlation rises to CN5BC = 0.647.20 This
suggests that with increasing dimensionality the centrality of nodes increases not only in the sense
of higher node degree or spatial centrality of vectors (as discussed in Section 4.2), but also in the
structural graph-based sense. We support this observation further by computing, over the 50 real
data sets listed in Table 1, the correlation betweenCN10BC and SN10 , finding it to be significant: 0.548.21
This indicates that real data sets which exhibit strong skewness in the distribution of N10 also tend
to have strong correlation between N10 and betweenness centrality of nodes, giving hubs a broader
significance for the structure of the k-NN graphs.

5.2.2 RATE OF CONVERGENCE AND THE ROLE OF BOUNDARIES

On several occasions, the authors of Theorem 12 have somewhat downplayed the significance of
equations 22 and 23 (Tversky et al., 1983; Newman and Rinott, 1985), citing empirically observed
slow convergence (Maloney, 1983), even to the extent of not observing significant differences be-
tween hubness in the Poisson process and i.i.d. uniform cube settings. However, results in the
preceding sections of this paper suggest that this convergence is fast enough to produce notable
hubness in high-dimensional data. In order to directly illustrate the difference between a setting
which provides no possibility for spatial centrality of points, and one that does, we will observe the
Poisson process vs. the i.i.d. unit cube setting. We will be focusing on the location of the nearest
neighbor of a point from the cube, that is, on determining whether it stays within the boundaries of
the cube as dimensionality increases.

Lemma 13 Let points be spread inRd according to a Poisson process with constant intensity λ> 1.
Observe a unit hypercube C ⊂Rd, and an arbitrary point x= (x1,x2, . . . ,xd) ∈C, generated by the
Poisson process. Let pλ,d denote the probability that the nearest neighbor of x, with respect to
Euclidean distance, is not situated in C. Then,

lim
d→∞

pλ,d = 1 .

Proof Out of the 3d−1 unit hypercubes that surroundC, let us observe only the 2d hypercubes that
differ fromC only in one coordinate. We will restrict the set of considered points to these 2d cubes,
and prove that the probability that the nearest neighbor of x comes from one of the 2d cubes, p̂λ,d ,
converges to 1 as d→ ∞. From this, the convergence of pλ,d directly follows, since pλ,d ≥ p̂λ,d .

20. Betweenness centrality is computed on directed k-NN graphs. We obtained similar correlations when undirected
graphs were used.

21. When betweenness centrality is computed on undirected graphs, the correlation is even stronger: 0.585.
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Figure 9: Probability that the nearest neighbor of a point from the unit hypercube originates from
one of the adjacent hypercubes, for Poisson processes with λ = 100, 1000, and 10000
expected points per hypercube, obtained through simulation and averaged over 10 runs.

Let p̂λ,d(i) denote the probability that the nearest neighbor of x comes from one of the two hy-
percubes which differ from C only in the ith coordinate, i ∈ {1,2, . . . ,d}. For a given coordi-
nate i and point x, let the 1-dimensional nearest neighbor of xi denote the closest yi value of all
other points y from the Poisson process, observed when all coordinates except i are disregarded.
Conversely, for a given coordinate i and point x, let the (d− 1)-dimensional nearest neighbor of
(x1, . . . ,xi−1,xi+1, . . . ,xd) denote the closest point (y1, . . . ,yi−1,yi+1, . . . ,yd), obtained when coordi-
nate i is disregarded.

Observing the ith coordinate only, the probability for the 1-dimensional nearest neighbor of xi
to come from one of the surrounding unit intervals is p̂λ,1. Although small, p̂λ,1 > 0. Assuming
this event has occurred, let y ∈ Rd be the point whose component yi is the 1-dimensional nearest
neighbor of xi that is not within the unit interval containing xi. Let rλ denote the probability that
the remaining coordinates of y, (y1, . . . ,yi−1,yi+1, . . . ,yd), constitute a (d− 1)-dimensional nearest
neighbor of (x1, . . . ,xi−1,xi+1, . . . ,xd), within the confines ofC. It can be observed that rλ is strictly
greater than 0, inversely proportional to λ (roughly equaling 1/(λ−1)), and independent of d. Thus,
p̂λ,d(i)≥ p̂λ,1 · rλ > 0.

Let q̂λ,d = 1− p̂λ,d , the probability that the nearest neighbor of x comes from C (recall the
restriction of the location of the nearest neighbor to C and its immediately surrounding 2d hyper-
cubes). In light of the above, q̂λ,d =∏d

i=1 q̂λ,d(i) =∏d
i=1(1− p̂λ,d(i)). Since each p̂λ,d(i) is bounded

from below by a constant strictly greater than 0 (which depends only on λ), each q̂λ,d(i) is bounded
from above by a constant strictly smaller than 1. It follows that limd→∞ q̂λ,d = 0, and therefore
limd→∞ p̂λ,d = 1.

To illustrate the rate of convergence in Lemma 13, Figure 9 plots the empirically observed
probabilities that the nearest neighbor of a point from a unit hypercube originates in one of the 2d
immediately adjacent unit hypercubes (p̂λ,d). It can be seen that the probability that the nearest
neighbor comes from outside of the cube quickly becomes close to 1 as dimensionality increases.
Please note that due to feasibility of simulation the plots in Figure 9 represent the empirical lower
bounds (that is, the empirical estimates of p̂λ,d) of the true probabilities from Lemma 13 (pλ,d) by
considering only the 2d immediately adjacent hypercubes.
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The above indicates that when boundaries are introduced in high dimensions, the setting com-
pletely changes, in the sense that new nearest neighbors need to be located inside the boundaries.
Under such circumstances, points which are closer to the center have a better chance of becoming
nearest neighbors, with the mechanism described in previous sections. Another implication of the
above observations, stemming from Figure 9, is that the number of dimensions does not need to be
very large compared to the number of points for the setting to change. As for boundaries, they can
be viewed as a dual notion to spatial centrality discussed earlier. With Poisson processes and cubes
this duality is rather straightforward, however for continuous distributions in general there exist no
boundaries in a strict mathematical sense. Nevertheless, since data sets contain a finite number of
points, it can be said that “practical” boundaries exist in this case as well.

6. Hubness and Dimensionality Reduction

In this section we elaborate further on the interplay of skewness of Nk and intrinsic dimensionality
by considering dimensionality-reduction (DR) techniques. The main question motivating the dis-
cussion in this section is whether dimensionality reduction can alleviate the issue of the skewness
of k-occurrences altogether. We leave a more detailed and general investigation of the interaction
between hubness and dimensionality reduction as a point of future work.

We examined the following methods: principal component analysis—PCA (Jolliffe, 2002), in-
dependent component analysis—ICA (Hyvärinen and Oja, 2000), stochastic neighbor embedding—
SNE (Hinton and Roweis, 2003), isomap (Tenenbaum et al., 2000), and diffusion maps (Lafon and
Lee, 2006; Nadler et al., 2006). Figure 10 depicts the relationship between the percentage of the
original number of features maintained by the DR methods and SNk , for several high-dimensional
real data sets (musk1, mfeat-factors, and spectrometer; see Table 1) and i.i.d. uniform random data
(with Euclidean distance, k = 10, and the same number of neighbors used for isomap and diffusion
maps). For PCA, ICA, SNE, and the real data sets, looking from right to left, SNk stays relatively
constant until a small percentage of features is left, after which it suddenly drops (Figure 10(a–c)).
It can be said that this is the point where the intrinsic dimensionality of data sets is reached, and fur-
ther reduction of dimensionality may incur loss of valuable information. Such behavior is in contrast
with the case of i.i.d. uniform random data (full black line in Figure 10(a–c)), where SNk steadily
and steeply reduces with the decreasing number of randomly selected features (dimensionality re-
duction is not meaningful in this case), because intrinsic and embedded dimensionalities are equal.
Since PCA is equivalent to metric multidimensional scaling (MDS) when Euclidean distances are
used (Tenenbaum et al., 2000), and SNE is a variant of MDS which favors the preservation of dis-
tances between nearby points, we can roughly regard the notion of intrinsic dimensionality used in
this paper as the minimal number of features needed to account for all pairwise distances within
a data set. Although ICA does not attempt to explicitly preserve pairwise distances, combinations
of independent components produce skewness of Nk which behaves in a way that is similar to the
skewness observed with PCA and SNE.

On the other hand, isomap and diffusion maps replace the original distances with distances
derived from a neighborhood graph. It can be observed in Figure 10(d, e) that such replacement
generally reduces SNk , but in most cases does not alleviate it completely. With the decreasing number
of features, however, SNk of real data sets in Figure 10(d, e) still behaves in a manner more similar
to SNk of real data sets for PCA, ICA, and SNE (Figure 10(a–c)) than i.i.d. random data (dash-dot
black line in Figure 10(d, e)).
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RADOVANOVIĆ, NANOPOULOS AND IVANOVIĆ
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Figure 10: Skewness of N10 in relation to the percentage of the original number of features
maintained by dimensionality reduction, for real and i.i.d. uniform random data and
(a) principal component analysis—PCA, (b) independent component analysis—ICA,
(c) stochastic neighbor embedding—SNE, (d) isomap, and (e) diffusion maps.

The above observations signify that, if distances are not explicitly altered (as with isomap and
diffusion maps DRmethods), that is, if one cares about preserving the original distances, dimension-
ality reduction may not have a significant effect on hubness when the number of features is above
the intrinsic dimensionality. This observation is useful in most practical cases because if dimension-
ality is reduced below intrinsic dimensionality, loss of information can occur. If one still chooses to
apply aggressive dimensionality reduction and let the resulting number of features fall below intrin-
sic dimensionality, it can be expected of pairwise distances and nearest-neighbor relations between
points in the data set to be altered, and hubness to be reduced or even lost. Whether these effects
should be actively avoided or sought really depends on the application domain and task at hand, that
is, whether and to what degree the original pairwise distances represent valuable information, and
how useful are the new distances and neighborhoods after dimensionality reduction.

7. The Impact of Hubness on Machine Learning

The impact of hubness on machine-learning applications has not been thoroughly investigated so far.
In this section we examine a wide range of commonly used machine-learning methods for super-
vised (Section 7.1), semi-supervised (Section 7.2), and unsupervised learning (Section 7.3), that
either directly or indirectly use distances in the process of building a model. Our main objective is
to demonstrate that hubs (as well as their opposites, antihubs) can have a significant effect on these
methods. The presented results highlight the need to take hubs into account in a way equivalent to
other factors, such as the existence of outliers, the role of which has been well studied.
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7.1 Supervised Learning

To investigate possible implications of hubness on supervised learning, we first study the interaction
of k-occurrences with information provided by labels (Section 7.1.1). We then move on to examine
the effects of hubness on several well-known classification algorithms in Section 7.1.2.

7.1.1 “GOOD” AND “BAD” k-OCCURRENCES

When labels are present, k-occurrences can be distinguished based on whether labels of neighbors
match. We define the number of “bad” k-occurrences of x, BNk(x), as the number of points from
data set D for which x is among the first k NNs, and the labels of x and the points in question
do not match. Conversely, GNk(x), the number of “good” k-occurrences of x, is the number of
such points where labels do match. Naturally, for every x ∈ D, Nk(x) = BNk(x)+GNk(x).

To account for labels, Table 1 includes B̃N10 (14th column), the sum of all observed “bad”
k-occurrences of a data set normalized by ∑xN10(x) = 10n. This measure is intended to express the
total amount of “bad” k-occurrences within a data set. Also, to express the amount of information
that “regular” k-occurrences contain about “bad” k-occurrences in a particular data set, CN10BN10 (15th
column) denotes the Spearman correlation between BN10 and N10 vectors. The motivation behind
this measure is to express the degree to which BNk and Nk follow a similar distribution.

“Bad” hubs, that is, points with high BNk, are of particular interest to supervised learning be-
cause they carry more information about the location of the decision boundaries than other points,
and affect classification algorithms in different ways (as will be described in Section 7.1.2). To
understand the origins of “bad” hubs in real data, we rely on the notion of the cluster assumption
from semi-supervised learning (Chapelle et al., 2006), which roughly states that most pairs of points
in a high density region (cluster) should be of the same class. To measure the degree to which the
cluster assumption is violated in a particular data set, we simply define the cluster assumption vi-
olation (CAV) coefficient as follows. Let a be the number of pairs of points which are in different
classes but in the same cluster, and b the number of pairs of points which are in the same class and
cluster. Then, we define

CAV=
a

a+b
,

which gives a number in the [0,1] range, higher if there is more violation. To reduce the sensitivity
of CAV to the number of clusters (too low and it will be overly pessimistic, too high and it will
be overly optimistic), we choose the number of clusters to be 3 times the number of classes of a
particular data set. Clustering is performed with K-means.

For all examined real data sets, we computed the Spearman correlation between the total amount
of “bad” k-occurrences, B̃N10, and CAV (16th column of Table 1) and found it strong (0.85, see Ta-
ble 2). Another significant correlation (0.39) is observed betweenCN10BN10 and intrinsic dimensionality.
In contrast, B̃N10 and CAV are not correlated with intrinsic dimensionality nor with the skewness of
N10. The latter fact indicates that high dimensionality and skewness of Nk are not sufficient to induce
“bad” hubs. Instead, based on the former fact, we can argue that there are two, mostly independent,
forces at work: violation of the cluster assumption on one hand, and high intrinsic dimensionality on
the other. “Bad” hubs originate from putting the two together; that is, the consequences of violating
the cluster assumption can be more severe in high dimensions than in low dimensions, not in terms
of the total amount of “bad” k-occurrences, but in terms of their distribution, since strong regular
hubs are now more prone to “pick up” bad k-occurrences than non-hub points. This is supported by
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the positive correlation betweenCN10BN10 and intrinsic dimensionality, meaning that in high dimensions
BNk tends to follow a more similar distribution to Nk than in low dimensions.

7.1.2 INFLUENCE ON CLASSIFICATION ALGORITHMS

We now examine how skewness of Nk and the existence of (“bad”) hubs affects well-known clas-
sification techniques, focusing on the k-nearest neighbor classifier (k-NN), support vector ma-
chines (SVM), and AdaBoost. We demonstrate our findings on a selection of data sets from Table 1
which have relatively high (intrinsic) dimensionality, and a non-negligible amount of “badness”
(B̃Nk) and cluster assumption violation (CAV). Generally, the examined classification algorithms
(including semi-supervised learning from Section 7.2) exhibit similar behavior on other data sets
from Table 1 with the aforementioned properties, and also with various different values of k (in the
general range 1–50, as we focused on values of k which are significantly smaller than the number
of points in a data set).

k-nearest neighbor classifier. The k-nearest neighbor classifier is negatively affected by the
presence of “bad” hubs, because they provide erroneous class information to many other points. To
validate this assumption, we devised a simple weighting scheme. For each point x, we compute its
standardized “bad” hubness score:

hB(x,k) =
BNk(x)−µBNk

σBNk

,

where µBNk and σBNk are the mean and standard deviation of BNk, respectively. During majority
voting in the k-NN classification phase, when point x participates in the k-NN list of the point being
classified, the vote of x is weighted by

wk(x) = exp(−hB(x,k)),

thus lowering the influence of “bad” hubs on the classification decision. Figure 11 compares the
resulting accuracy of k-NN classifier with and without this weighting scheme for six data sets from
Table 1. Leave-one-out cross-validation is performed, with Euclidean distance being used for de-
termining nearest neighbors. The k value for Nk is naturally set to the k value used by the k-NN
classifier, and hB(x,k) is recomputed for the training set of each fold. The reduced accuracy of the
unweighted scheme signifies the negative influence of “bad” hubs.

Although “bad” hubs tend to carry more information about the location of class boundaries
than other points, the “model” created by the k-NN classifier places the emphasis on describing
non-borderline regions of the space occupied by each class. For this reason, it can be said that
“bad” hubs are truly bad for k-NN classification, creating the need to penalize their influence on
the classification decision. On the other hand, for classifiers that explicitly model the borders be-
tween classes, such as support vector machines, “bad” hubs can represent points which contribute
information to the model in a positive way, as will be discussed next.

Support vector machines. We consider SVMs with the RBF (Gaussian) kernel of the form:

K(x,y) = exp
(
−γ‖x−y‖2

)
,

where γ is a data-dependent constant. K(x,y) is a smooth monotone function of Euclidean distance
between points. Therefore, Nk values in the kernel space are exactly the same as in the original
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Figure 11: Accuracy of k-NN classifier with and without the weighting scheme.

space.22 To examine the influence of “bad” hubs on SVMs, Figure 12 illustrates 10-fold cross-
validation accuracy results of SVM trained using sequential minimal optimization (Platt, 1999;
Keerthi et al., 2001), when points are progressively removed from the training sets: (i) by decreas-
ing BNk (k = 5), and (ii) at random. Accuracy drops with removal by BNk, indicating that bad
hubs are important for support vector machines. The difference in SVM accuracy between ran-
dom removal and removal by BNk becomes consistently significant at some stage of progressive
removal, as denoted by the dashed vertical lines in the plots, according to the paired t-test at 0.05
significance level.23

The reason behind the above observation is that for high-dimensional data, points with high BNk
can comprise good support vectors. Table 3 exemplifies this point by listing the normalized average
ranks of support vectors in the 10-fold cross-validation models with regards to decreasing BNk. The
ranks are in the range [0,1], with the value 0.5 expected from a random set of points. Lower values
of the ranks indicate that the support vectors, on average, tend to have high BNk. The table also
lists the values of the γ parameter of the RBF kernel, as determined by independent experiments
involving 9-fold cross-validation.

AdaBoost. Boosting algorithms take into account the “importance” of points in the training set
for classification by weak learners, usually by assigning and updating weights of individual points—
the higher the weight, the more attention is to be paid to the point by subsequently trained weak
learners. We consider the AdaBoost.MH algorithm (Schapire and Singer, 1999) in conjunction with

22. Centering the kernel matrix changes the Nk of points in the kernel space, but we observed that the overall distribution
(that is, its skewness) does not become radically different. Therefore, the following arguments still hold for centered
kernels, providing Nk is computed in the kernel space.

23. Since random removal was performed in 20 runs, fold-wise accuracies for statistical testing were obtained in this
case by averaging over the runs.
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Figure 12: Accuracy of SVM with RBF kernel and points being removed from the training sets by
decreasing BN5, and at random (averaged over 20 runs).

Data set γ SV rank Data set γ SV rank
mfeat-factors 0.005 0.218 segment 0.3 0.272
mfeat-fourier 0.02 0.381 spectrometer 0.005 0.383
optdigits 0.02 0.189 vehicle 0.07 0.464

Table 3: Normalized average support vector ranks with regards to decreasing BN5.

CART trees (Breiman et al., 1984) with the maximal depth of three.24 We define for each point x its
standardized hubness score:

h(x,k) = Nk(x)−µNk
σNk

, (24)

where µNk , σNk are the mean and standard deviation of Nk, respectively. We set the initial weight of
each point x in the training set to

wk(x) =
1

1+ |h(x,k)| ,

normalized by the sum over all points, for an empirically determined value of k. The motivation
behind the weighting scheme is to assign less importance to both hubs and outliers than other points
(this is why we take the absolute value of h(x,k)).

Figure 13 illustrates on six classification problems from Table 1 how the weighting scheme helps
AdaBoost achieve better generalization in fewer iterations. The data sets were split into training,

24. More precisely, we use the binary “Real AdaBoost” algorithm and the one-vs-all scheme to handle multi-class prob-
lems, which is equivalent to the original AdaBoost.MH (Friedman et al., 2000).
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validation, and test sets with size ratio 2:1:1, parameter k was chosen based on classification ac-
curacy on the validation sets, and accuracies on the test sets are reported. While it is known that
AdaBoost is sensitive to outliers (Rätsch et al., 2001), improved accuracy suggests that hubs should
be regarded in an analogous manner, that is, both hubs and antihubs are intrinsically more difficult
to classify correctly, and the attention of the weak learners should initially be focused on “regu-
lar” points. The discussion from Section 4.4, about hubs corresponding to probabilistic outliers in
high-dimensional data, offers an explanation for the observed good performance of the weighting
scheme, as both hubs and antihubs can be regarded as (probabilistic) outliers.

To provide further support, Figure 14 depicts binned accuracies of unweighted AdaBoost trained
in one fifth of the iterations shown in Figure 13, for points sorted by decreasing Nk. It illustrates
how in earlier phases of ensemble training the generalization power with hubs and/or antihubs is
worse than with regular points. Moreover, for the considered data sets it is actually the hubs that
appear to cause more problems for AdaBoost than antihubs (that is, distance-based outliers).

7.2 Semi-Supervised Learning

Semi-supervised learning algorithms make use of data distribution information provided by unla-
beled examples during the process of building a classifier model. An important family of approaches
are graph-based methods, which represent data as nodes of a graph, the edges of which are weighted
by pairwise distances of incident nodes (Chapelle et al., 2006).

We consider the well-known algorithm by Zhu et al. (2003), whose strategy involves computing
a real-valued function f on graph nodes, and assign labels to nodes based on its values. Function f ,
which exhibits harmonic properties, is obtained by optimizing a quadratic energy function that
involves graph edge weights, with the probability distribution on the space of functions f formed
using Gaussian fields. For data points x,y ∈ Rd we consider edge weights assigned by the radial
basis function (RBF) of the following form:

W (x,y) = exp
(
−
‖x−y‖2

σ2

)
,

where σ is a data-dependent constant. Therefore, large edge weights are assigned between nodes
that are close to one another with respect to Euclidean distance.

Taking into account the properties of hubs and antihubs discussed in previous sections, for high-
dimensional data sets it can be expected of hubs to be closer to many other points than “regular”
points are, and thus carry larger edge weights and be more influential in the process of determining
the optimal function f . Conversely, antihubs are positioned farther away from other points, and
are expected to bear less influence on the computation of f . Therefore, following an approach that
resembles active learning, selecting the initial labeled point set from hubs could be more beneficial
in terms of classification accuracy than arbitrarily selecting the initial points to be labeled. On the
other extreme, picking the initial labeled point set from the ranks of antihubs could be expected to
have a detrimental effect on accuracy.

To validate the above hypothesis, we evaluated the accuracy of the harmonic function algorithm
by Zhu et al. (2003) on multiple high-dimensional data sets from Table 1, for labeled set sizes
ranging from 1% to 10% of the original data set size, with the test set consisting of all remaining
unlabeled points. Because the setting is semi-supervised, we compute the Nk scores of points based
on complete data sets, instead of only training sets which was the case in Section 7.1.2. Based on
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Figure 13: Accuracy of AdaBoost with and without the weighting scheme: (a) k = 20, (b) k = 15,
(c) k = 10, (d) k = 20, (e) k = 20, (f) k = 40.
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Figure 14: Binned accuracy of AdaBoost by decreasing Nk, at one fifth of the iterations shown in
Figure 13.
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Figure 15: Accuracy of the semi-supervised algorithm by Zhu et al. (2003) with respect to the initial
labeled set size as a percentage of the original data set size. Labeled points are selected
in the order of decreasing N5 (hubs first), increasing N5 (antihubs first), and in random
order. Sigma values of the RBF are: (a) σ = 2.9, (b) σ = 2, (c) σ = 2.1, (d) σ = 0.9,
(e) σ= 1.8, and (f) σ= 0.7.

the Nk scores (k= 5), Figure 15 plots classification accuracies for labeled points selected in the order
of decreasing N5 (we choose to take hub labels first), in the order of increasing N5 (antihub labels
are taken first), and in random order (where we report accuracies averaged over 10 runs).25 It can be
seen that when the number of labeled points is low in comparison to the size of the data sets, taking
hub labels first generally produces better classification accuracy. On the other hand, when assigning
initial labels to antihubs, accuracy becomes significantly worse, with a much larger labeled set size
required for the accuracy to reach that of randomly selected labeled points.

7.3 Unsupervised Learning

This section will discuss the interaction of the hubness phenomenon with unsupervised learning,
specifically the tasks of clustering (Section 7.3.1) and outlier detection (Section 7.3.2).

7.3.1 CLUSTERING

The main objectives of (distance-based) clustering algorithms are to minimize intra-cluster distance
and maximize inter-cluster distance. The skewness of k-occurrences in high-dimensional data influ-
ences both objectives.

25. We determined the σ values of the RBF function in a separate experiment involving 10 runs of random selection of
points for the labeled set, the size of which is 10% of the original data set.
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Intra-cluster distance may be increased due to points with low k-occurrences. As discussed
in Section 4.4, such points are far from all the rest, acting as distance-based outliers. Distance-
based outliers and their influence on clustering are well-studied subjects (Tan et al., 2005): outliers
do not cluster well because they have high intra-cluster distance, thus they are often discovered
and eliminated beforehand. The existence of outliers is attributed to various reasons (for example,
erroneous measurements). Nevertheless, the skewness of Nk suggests that in high-dimensional data
outliers are also expected due to inherent properties of vector space. Section 7.3.2 will provide
further discussion on this point.

Inter-cluster distance, on the other hand, may be reduced due to points with high k-occurrences,
that is, hubs. Like outliers, hubs do not cluster well, but for a different reason: they have low
inter-cluster distance, because they are close to many points, thus also to points from other clusters.
In contrast to outliers, the influence of hubs on clustering has not attracted significant attention.

To examine the influence of both outliers and hubs, we used the popular silhouette coeffi-
cients (SC) (Tan et al., 2005). For the ith point, let ai be the average distance to all points in its cluster
(ai corresponds to intra-cluster distance), and bi the minimum average distance to points from other
clusters (bi corresponds to inter-cluster distance). The SC of the ith point is (bi− ai)/max(ai,bi),
ranging between −1 and 1 (higher values are preferred). The SC of a set of points is obtained by
averaging the silhouette coefficients of the individual points.

We examined several clustering algorithms, and report results for the spectral algorithm of Meilă
and Shi (2001) and Euclidean distance, with similar results obtained for classical K-means, as well
as the spectral clustering algorithm by Ng et al. (2002) in conjunction with K-means and the algo-
rithm by Meilă and Shi (2001). For a given data set, we set the number of clusters, K, to the number
of classes (specified in Table 1). We select as hubs those points x with h(x,k) > 2, that is, Nk(x)
more than two standard deviations higher than the mean (note that h(x,k), defined by Equation 24,
ignores labels). Let nh be the number of hubs selected. Next, we select as outliers the nh points
with the lowest k-occurrences. Finally, we randomly select nh points from the remaining points (we
report averages for 100 different selections). To compare hubs and antihubs against random points,
we measure the relative SC of hubs (antihubs): the mean SC of hubs (antihubs) divided by the mean
SC of random points. For several data sets from Table 1, Figure 16 depicts with bars the relative
silhouette coefficients.26 As expected, outliers have relative SC lower than one, meaning that they
cluster worse than random points. Notably, the same holds for hubs, too.27

To gain further insight, Figure 16 plots with lines (referring to the right vertical axes) the relative
mean values of ai and bi for hubs and outliers (dividing with those of randomly selected points).
Outliers have high relative ai values, indicating higher intra-cluster distance. Hubs, in contrast,
have low relative bi values, indicating reduced inter-cluster distance. In conclusion, when clustering
high-dimensional data, hubs should receive analogous attention as outliers.

7.3.2 OUTLIER DETECTION

This section will briefly discuss possible implications of high dimensionality on distance-based out-
lier detection, in light of the findings concerning the hubness phenomenon presented in previous
sections. Section 4.4 already discussed the correspondence of antihubs with distance-based outliers

26. Data sets were selected due to their high (intrinsic) dimensionality—similar observations can be made with other
high-dimensional data sets from Table 1.

27. The statistical significance of differences between the SC of hubs and randomly selected points has been verified with
the paired t-test at 0.05 significance level.
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Figure 16: Relative silhouette coefficients for hubs (gray filled bars) and outliers (empty bars). Rel-
ative values for a and b coefficients are also plotted (referring to the right vertical axes).

in high dimensions, and demonstrated on real data the negative correlation between Nk and a com-
monly used outlier score—distance to the kth nearest neighbor. On the other hand, a prevailing
view of the effect of high dimensionality on distance-based outlier detection is that, due to distance
concentration, every point seems to be an equally good outlier, thus hindering outlier-detection al-
gorithms (Aggarwal and Yu, 2001). Based on the observations regarding hubness and the behavior
of distances discussed earlier, we believe that the true problem actually lies in the opposite extreme:
high dimensionality induces antihubs that can represent “artificial” outliers. This is because, from
the point of view of common distance-based outlier scoring schemes, antihubs may appear to be
stronger outliers in high dimensions than in low dimensions, only due to the effects of increasing
dimensionality of data.

To illustrate the above discussion, Figure 17(a) plots for i.i.d. uniform random data the highest
and lowest outlier score (distance to the kth NN, k = 5) with respect to increasing d (n = 10000
points, averages over 10 runs are reported). In accordance with the asymptotic behavior of all pair-
wise distances discussed in previous sections, both scores increase with d. However, as Figure 17(b)
shows, the difference between the two scores also increases. This implies that a point could be con-
sidered a distance-based outlier only because of high dimensionality, since outliers are not expected
for any other reason in i.i.d. uniform data (we already demonstrated that such a point would most
likely be an antihub). As a consequence, outlier-detection methods based on measuring distances
between points may need to be adjusted to account for the (intrinsic) dimensionality of data, in order
to prevent dimensionality-induced false positives.

8. Conclusion

In this paper we explored an aspect of the curse of dimensionality that is manifested through the
phenomenon of hubness—the tendency of high-dimensional data sets to contain hubs, in the sense
of popular nearest neighbors of other points. To the best of our knowledge, hubs and the effects they
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Figure 17: (a) Highest and lowest distance to the 5th nearest neighbor in i.i.d. uniform random data,
with respect to increasing d. (b) The difference between the two distances.

have on machine-learning techniques have not been thoroughly studied subjects. Through theoret-
ical and empirical analysis involving synthetic and real data sets we demonstrated the emergence
of the phenomenon and explained its origins, showing that it is an inherent property of data dis-
tributions in high-dimensional vector space that depends on the intrinsic, rather than embedding
dimensionality of data. We also discussed the interaction of hubness with dimensionality reduction.
Moreover, we explored the impact of hubness on a wide range of machine-learning tasks that di-
rectly or indirectly make use of distances between points, belonging to supervised, semi-supervised,
and unsupervised learning families, demonstrating the need to take hubness into account in an equiv-
alent degree to other factors, like the existence of outliers.

Besides application areas that involve audio and image data (Aucouturier and Pachet, 2007;
Doddington et al., 1998; Berenzweig, 2007; Hicklin et al., 2005), identifying hubness within data
and methods from other fields can be considered an important aspect of future work, as well as de-
signing application-specific methods to mitigate or take advantage of the phenomenon. We already
established the existence of hubness and its dependence on data dimensionality on collaborative
filtering data with commonly used variants of cosine distance (Nanopoulos et al., 2009), time-series
data sets in the context of k-NN classification involving dynamic time warping (DTW) distance
(Radovanović et al., 2010b), text data within several variations of the classical vector space model
for information retrieval (Radovanović et al., 2010a), and audio data for music information retrieval
using spectral similarity measures (Karydis et al., 2010). In the immediate future we plan to perform
a more detailed investigation of hubness in the fields of outlier detection and image mining. An-
other application area that could directly benefit from an investigation into hubness are reverse k-NN
queries (which retrieve data points that have the query point q as one of their k nearest neighbors,
Tao et al., 2007).

One concern we elected not to include into the scope of this paper is the efficiency of com-
puting Nk. It would be interesting to explore the interaction between approximate k-NN graphs
(Chen et al., 2009) and hubness, in both directions: to what degree do approximate k-NN graphs
preserve hubness information, and can hubness information be used to enhance the computation of
approximate k-NN graphs for high-dimensional data (in terms of both speed and accuracy).

Possible directions for future work within different aspects of machine learning include a more
formal and theoretical study of the interplay between hubness and various distance-based machine-
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learning models, possibly leading to approaches that account for the phenomenon at a deeper level.
Supervised learning methods may deserve special attention, as it was also observed in another study
(Caruana et al., 2008) that the k-NN classifier and boosted decision trees can experience problems in
high dimensions. Further directions of research may involve determining whether the phenomenon
is applicable to probabilistic models, (unboosted) decision trees, and other techniques not explicitly
based on distances between points; and also to algorithms that operate within general metric spaces.
Since we determined that for K-means clustering of high-dimensional data hubs tend to be close
to cluster centers, it would be interesting to explore whether this can be used to improve iterative
clustering algorithms, like K-means or self-organizing maps (Kohonen, 2001). Nearest-neighbor
clustering (Bubeck and von Luxburg, 2009) of high-dimensional data may also directly benefit from
hubness information. Topics that could also be worth further study are the interplay of hubness with
learned metrics (Weinberger and Saul, 2009) and dimensionality reduction, including supervised
(Vlassis et al., 2002; Geng et al., 2005), semi-supervised (Zhang et al., 2007), and unsupervised
approaches (van der Maaten et al., 2009; Kumar, 2009). Finally, as we determined high correlation
between intrinsic dimensionality and the skewness of Nk, it would be interesting to see whether
some measure of skewness of the distribution of Nk can be used for estimation of the intrinsic
dimensionality of a data set.
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Abstract
WEKA is a popular machine learning workbench with a development life of nearly two decades.
This article provides an overview of the factors that we believe to be important to its success.
Rather than focussing on the software’s functionality, we review aspects of project management
and historical development decisions that likely had an impact on the uptake of the project.
Keywords: machine learning software, open source software

1. Introduction

We present a brief account of the WEKA 3 software, which is distributed under the GNU General
Public License, followed by some lessons learned over the period spanning its development and
maintenance. We also include a brief historical mention of its predecessors.

WEKA contains implementations of algorithms for classification, clustering, and association
rule mining, along with graphical user interfaces and visualization utilities for data exploration and
algorithm evaluation. This article shares some background on software design and management
decisions, in the hope that it may prove useful to others involved in the development of open-source
machine learning software. Hall et al. (2009) give an overview of the system; more comprehensive
sources of information are Witten and Frank’s book Data Mining (2005) and the user manuals
included in the software distribution.1 Online sources, including the WEKA Wiki pages2 and the
API, provide the most complete coverage. The wekalist mailing list is a forum for discussion of
WEKA-related queries, with nearly 3000 subscribers.

2. What is WEKA?

WEKA is a machine learning workbench that supports many activities of machine learning practi-
tioners.

1. Available from http://www.cs.waikato.ac.nz/ml/weka.
2. Available at http://weka.wikispaces.com/.
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2.1 Basic Functionality

Here is a summary of WEKA’s main features.

• Data preprocessing. As well as a native file format (ARFF), WEKA supports various other
formats (for instance CSV, Matlab ASCII files), and database connectivity through JDBC.
Data can be filtered by a large number of methods (over 75), ranging from removing particular
attributes to advanced operations such as principal component analysis.

• Classification. One of WEKA’s drawing cards is the more than 100 classification methods it
contains. Classifiers are divided into “Bayesian” methods (Naive Bayes, Bayesian nets, etc.),
lazy methods (nearest neighbor and variants), rule-based methods (decision tables, OneR,
RIPPER), tree learners (C4.5, Naive Bayes trees, M5), function-based learners (linear regres-
sion, SVMs, Gaussian processes), and miscellaneous methods. Furthermore, WEKA includes
meta-classifiers like bagging, boosting, stacking; multiple instance classifiers; and interfaces
for classifiers implemented in Groovy and Jython.

• Clustering. Unsupervised learning is supported by several clustering schemes, including EM-
based mixture models, k-means, and various hierarchical clustering algorithms. Though not
as many methods are available as for classification, most of the classic algorithms are in-
cluded.

• Attribute selection. The set of attributes used is essential for classification performance. Var-
ious selection criteria and search methods are available.

• Data visualization. Data can be inspected visually by plotting attribute values against the
class, or against other attribute values. Classifier output can be compared to training data
in order to detect outliers and observe classifier characteristics and decision boundaries. For
specific methods there are specialized tools for visualization, such as a tree viewer for any
method that produces classification trees, a Bayes network viewer with automatic layout, and
a dendrogram viewer for hierarchical clustering.

WEKA also includes support for association rule mining, comparing classifiers, data set generation,
facilities for annotated documentation generation for source code, distribution estimation, and data
conversion.

2.2 Graphical User Interfaces

WEKA’s functionality can be accessed through various graphical user interfaces, principally the
Explorer, and Experimenter interfaces shown in Figure 1, but also the Knowledge Flow interface.
The most popular interface, the Explorer, allows quick exploration of data and supports all the main
items mentioned above—data loading and filtering, classification, clustering, attribute selection and
various forms of visualization—in an interactive fashion.

The Experimenter is a tool for setting up machine learning experiments that evaluate classifica-
tion and regression methods. It allows easy comparison of performance, and can tabulate summaries
in ways that are easy to incorporate into publications. Experiments can be set up to run in parallel
over different computers in a network so that multiple repetitions of cross validation (the default
method of performance analysis) can be distributed over multiple machines.
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Figure 1: The Explorer and Experimenter interfaces.

The Knowledge Flow interface is a Java Beans application that allows the same kind of data ex-
ploration, processing and visualization as the Explorer (along with some extras), but in a workflow-
oriented system. The user can define a workflow specifying how data is loaded, preprocessed,
evaluated and visualized, which can be repeated multiple times. This makes it easy to optimize the
workflow by tweaking parameters of algorithms, or to apply it to other data sources. In the Explorer,
on the other hand, the individual steps must be invoked manually, one at a time. This is a rather
tedious process, and is prone to errors such as omitting preprocessing steps.

WEKA also includes some specialized graphical interfaces, such as a Bayes network editor that
focuses on Bayes network learning and inference, an SQL viewer for interaction with databases,
and an ARFF data file viewer and editor.

All functionality and some more specialized functions can be accessed from a command line
interface, so WEKA can be used without a windowing system.

2.3 Extending WEKA

One of WEKA’s major strengths is that it is easily extended with customized or new classifiers,
clusterers, attribute selection methods, and other components. For instance, all that is needed
to add a new classifier is a class that derives from the Classifier class and implements the
buildClassifier method for learning, and a classifyInstance method for testing/predicting
the value for a data point. The code fragment in Figure 2 shows a minimal implementation of a
classifier that returns the mean or mode of the class in the training set (double values are used to
store indices of nominal attribute values).

Any new class is picked up by the graphical user interfaces through Java introspection: no
further coding is needed to deploy it from WEKA’s graphical user interfaces. This makes it easy to
evaluate how new algorithms perform compared to any of the existing ones, which explainsWEKA’s
popularity among machine learning researchers.

Besides being easy to extend, WEKA includes a wide range of support for adding functionality
to basic implementations. For instance, a classifier can have various optional settings by implement-
ing a pre-defined interface for option handling. Each option can be documented using a tool-tip text
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package weka . c l a s s i f i e r s . misc ;

impo r t weka . c l a s s i f i e r s . C l a s s i f i e r ;
impo r t weka . co r e . ∗ ;

p u b l i c c l a s s NewC l a s s i f i e r e x t e n d s C l a s s i f i e r {
doub le m fMean ;

p u b l i c vo id b u i l d C l a s s i f i e r ( I n s t a n c e s d a t a ) t h rows Excep t i on {
m fMean = d a t a . meanOrMode ( d a t a . c l a s s I n d e x ( ) ) ;

}

p u b l i c doub l e c l a s s i f y I n s t a n c e ( I n s t a n c e i n s t a n c e ) t h rows Excep t i on {
r e t u r n m fMean ;

}

}

Figure 2: Classifier code example.

method, which is picked up by the help dialogs of the graphical user interfaces. Classes typically
implement methods described in papers, and this provenance metadata can be captured in a method
that is used to generate documentation. Some methods only apply to certain kinds of data, such
as numeric class values or discrete attribute values. A ‘capabilities’ mechanism allows classes to
identify what kind of data is acceptable by any method, and the graphical user interfaces incorporate
this by making methods available only if they are able to process the data at hand.

There are many projects that build on top WEKA, about fifty of which are listed on the WEKA
Wiki.

3. Origins

The Machine Learning project at Waikato was launched in 1993 with a successful grant application
to the New Zealand Foundation for Research, Science, and Technology. The underlying intention
behind the request was not so much to further a specific agenda in machine learning research as to
create a research culture in a small and obscure computer science department that brought different
people together. Machine learning was selected because of prior expertise and its potential appli-
cability to agriculture, New Zealand’s core industry; the grant was justified in terms of applications
research rather than the development of new learning techniques.

This gave the research team a license to incorporate and reimplement existing methods, and
work soon began on a workbench, written in C, that was intended to provide a common interface to
a growing collection of machine learning algorithms. It contained some learning algorithms writ-
ten mostly in C, data I/O and pre-processing tools, also written in C, and graphical user interfaces
written in TCL/TK. The number of learning algorithms was limited and they came from differ-
ent sources; wrapper shell scripts were employed to bind them into the framework. The acronym
WEKA for “Waikato Environment for Knowledge Analysis” was coined, and the system gradually
became known in the international ML community, along with another machine learning library in
C++ from the University of Stanford called MLC++, developed by Kohavi et al. (1997).3

3. MLC++ is now distributed by Silicon Graphics at http://www.sgi.com/Technology/mlc.
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Because of dependencies on other libraries, mainly related to the graphical user interfaces, the
software became increasingly unwieldy and hard to maintain. In 1997 work began on reimplement-
ing WEKA from scratch in Java into what we now term WEKA 3. One of the authors, Eibe Frank,
had earlier decided to adopt Java to implement algorithm prototypes, abandoning C++ because Java
development was rapid and debugging was dramatically simplified. This positive experience, the
promise of platform independence through virtual machine technology, and the fact that, as part
of the research code, classes for reading WEKA’s standard ARFF file format into appropriate data
structures already existed, led to the decision to re-write WEKA in Java.

Many of the classes in today’s code archive (including, for example, J48, the WEKA implemen-
tation of Quinlan’s C4.5) date from mid-1997. Rapid early development was stimulated by the need
to teach a course on machine learning at the University of Calgary during a Fall 1997 sabbatical
visit by Witten, along with several students, including Frank. The Java version was called JAWS
for “Java Weka system” to avoid confusion with WEKA itself, and after some debate was changed
to WEKA in March 1999. The first paper written using this system was Frank and Witten (1998),
written in late 1997. By the end of 1998 WEKA included packages for classifiers, association rule
learners, filters, and evaluation, as well as a core package. Several methods that were relatively
advanced for the day, such as bagging, were in place, as well as old chestnuts like instance-based
learning and Naive Bayes. Attribute selection was added soon afterwards, in 1999.

Work began on the first edition of the Data Mining book in 1997, based on earlier notes for
Witten’s courses at the University of Waikato, and a proposal was submitted to Morgan Kaufmann
late that year. It finally appeared in 1999 (though for reasons that are not clear to us the official
publication date is 2000). WEKA was seen as an important adjunct to the book, and the original
title, Practical machine learning, was changed to Data Mining: Practical machine learning tools
and techniques with Java to reflect this. The term “data mining” was prepended primarily for
marketing reasons. The WEKA software described in that edition was command-line oriented and
the book makes no mention of a graphical user interface, for which design began in 1999. By
the time the second edition appeared in 2005 the interactive versions of WEKA—the Explorer,
Experimenter, and Knowledge Flow interface—were mature and well-tested pieces of software.

4. How Did WEKA Become Widely Adopted?

The size of the mailing list, the volume of downloads, and the number of academic papers citing
WEKA-based results show that the software is widely deployed. It is used in the machine learn-
ing and data mining community as an educational tool for teaching both applications and technical
internals of machine learning algorithms, and as a research tool for developing and empirically com-
paring new techniques. It is applied increasingly widely in other academic fields, and in commercial
settings. We are often asked what is the secret of WEKA’s success, and here we speculate on rea-
sons for the software’s broad uptake. An obvious one is that it is free and open-source software.
However, there are several other factors, many of which are exposed by the above brief historical
review.

4.1 Portability

Pre-Java versions of WEKA were limited to UNIX operating systems and distributions were made
available for Linux, Solaris, and SGI. The present popularity of the software owes much to the
existence of Java Virtual Machines for all important platforms, along with the fact that all code
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necessary to compile and run WEKA is included in the distribution. The lack of dependency on
externally-maintained libraries makes maintenance of the code base much easier.

The decision to rewrite WEKA from scratch in Java may seem obvious in hindsight, but was a
large step into the unknown at the time. For one thing, portability seemed less important in the days
when everyone we knew was using Unix! More importantly, in 1997 no-one could forsee that Java
would turn out to be such a suitable platform. Just-in-time compilation was unknown (Sun’s Java
1.2, which included a just-in-time compiler, was introduced in December 1998). Fully-interpreted
execution suffered a substantial performance hit compared to C++. And deficiencies in early Java
technology still affect the WEKA code today: the original design of the basic data structures was
clean, object-oriented, and elegant, but the performance penalty incurred by extensive use of objects
led to a less generic array-based representation, where all data is stored in arrays of doubles. Many
of the design characteristics of WEKA that seem inelegant are due to pragmatic decisions based on
the Java technology available at the time.

Later versions of the Java Virtual Machine virtually eliminated the performance gap from C++
through just-in-time compilation and adaptive optimization. Although there still persists a percep-
tion that execution of Java code is too slow for scientific computing, this is not our experience and
does not appear to be shared by the WEKA community.

4.2 Graphical User Interface

Early releases of the WEKA 3 software were command-line driven and did not include graphical
user interfaces. Although many experienced users still shun them, the graphical interfaces undoubt-
edly contributed to the popularity of WEKA. The introduction of the Explorer in particular has
made the software more accessible to users who want to employ machine learning in practice. It
has allowed many universities (including our own) to offer courses in applied machine learning and
data mining, and has certainly contributed to WEKA’s popularity for commercial and industrial use.
Again, while obvious in hindsight, the development of graphical user interfaces was a significant
risk, because valuable programming effort had to be diverted from the main job of implementing
learning algorithms into relatively superficial areas of presentation and interaction.

The WEKA 3 graphical user interface development benefited from the fact that the core sys-
tem was already up and running, and relatively mature—as evidenced by the first edition of Data
Mining—before any work began on interactive interfaces. The early WEKA project probably suf-
fered from attempting to develop interactive interfaces (in TCL/TK) at the same time as the basic
algorithms and data structures were being commissioned, a mistake that was avoided in the later
system.

4.3 The Data Mining Book

The first stable release of the WEKA 3 software coincided with the publication of the first edition
of Data Mining by Witten and Frank, which contained a chapter describing it, both interactively
via the command-line and programmatically via the API and extension of superclasses. There has
been a symbiotic relationship between the software and the book: users of the software are likely
to consult the book and readers of the book are likely to try out the software. The combination
of a book explaining the core algorithms in a corresponding piece of free software is particularly
suitable for education. It seems likely that the feedback loop between the readership of the book
and the users of the software has bolstered the size of both populations. The early existence of a
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companion book, unusual for open source software, is particularly valuable for machine learning
because the techniques involved are quite simple and easy to explain, but by no means obvious.

4.4 Extensibility

WEKA can be used both for educational purposes and as a research platform. New algorithms
can easily be incorporated and compared to existing ones on a collection of data sets. As noted
earlier, only two methods from the Classifier superclass need be implemented to come up with
a classifier that takes advantage of all the infrastructure in WEKA, including I/O, evaluation, and
so-called “meta” algorithms.

4.5 Documentation

In recent years there has been a dramatic growth in the volume ofWEKA-related online documentation—
notably as part of the WEKA Wiki. This, in conjunction with the information in the mailing list
archives, provides a wealth of information for all users. The existence of a steadily increasing,
knowledgeable and enthusiastic user community, and the combined knowledge they share, has
played a significant role in the success of the software.

4.6 Comprehensiveness

Perhaps the foremost reason for the adoption of WEKA 3 by the research community has been
the inclusion of faithful reimplementations of classic benchmark methods, in particular the C4.5
decision tree learner (Quinlan, 1992), but also other algorithms such as the RIPPER rule learner
(Cohen, 1995). The original implementations of these algorithms were already very successful
software projects in themselves. Bringing them together in a common framework has been a strong
drawing card.

4.7 Support

“Given sufficient funding, anyone could have done that!” is a refrain often heard from sceptics.
We were lucky to receive an initial research grant for applied machine learning research from a
New Zealand funding agency that approved of our aspirations to investigate the application of this
technology in agricultural domains. Yet it is hard to reconcile the practical need to win academic
credit for research publications with the production of usable software, particularly when there is a
constantly growing pressure to commercialize. We continued to apply for, and receive, follow-on
funding from the same source, but—particularly as time went on—this compelled us to channel
much of our research in the direction of target applications rather than basic research in machine
learning.

5. Maintaining the Project

A software project can only become and remain successful if it is consistently maintained to a high
standard. It has been our experience that this requires a group of people who are continually involved
in the management and development of the software for an extended period of time, spanning several
years. The core development team of WEKA has always been small and close-knit: having a small
team helps maintain code quality and overall coherence.
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Development of the software would not have been possible without financial support from the
New Zealand government in the form of successive research grants by the Foundation for Research,
Science and Technology, which have been awarded over a significant period of time—from 1993
to 2007. Over the years, work on the project has been done by a couple of academic staff, who
were involved in the longer term and fitted it in with their teaching and research duties, and a
succession of one (or one and a half) full-time equivalent research programmers. A fair amount
of work was undertaken by students on casual contracts or as part of their studies. The community
also contributed many algorithm implementations that are included in theWEKA distribution, along
with some patches for the basic framework.

The project has always had a policy of maintaining close control of what became part of the
software. Only a handful of developers have ever had write access to the source code repository.
The drawback of this policy is reduced functionality; the advantages are improved code quality,
ease of maintenance, and greater coherence for both developer and end user. When new algorithm
implementations were considered for inclusion, we generally insisted on a backing publication de-
scribing the new method. In a few cases we have rejected submitted code, despite publication, when
our experiments revealed that the method did not appear to improve on what was already present in
WEKA.

The research contract that sponsored WEKA development required some measure of commer-
cialization, and a few commercial licenses to parts of the WEKA code base owned by the University
of Waikato have been sold. It eventually became clear that the succession of research contracts had
a finite life span, and support by a commercial organization was necessary to keep WEKA healthy.
Since 2007, Pentaho Corporation, a company that provides open-source business intelligence soft-
ware and support, has contributed substantially to the maintenance of WEKA by hiring one of the
chief developers and providing online help. As part of the requirement to commercialize the soft-
ware, it has been necessary to maintain a branch in the source code repository that only contains
code owned by the University of Waikato, an onerous but necessary facet of project maintenance.

6. Concluding Remarks

Obviously, in almost two decades of project development, many mistakes were made—but most
were quickly corrected. One, mentioned above, regards the premature design of interactive inter-
faces, where WEKA 3 benefited from a strategic error made in the early WEKA project. Below
are two instances of how adoption might have been strengthened had the project been managed
differently.

One of the most challenging aspects of managing open source software development is to decide
what to include in the software. Although careful control of contributions has substantial benefits, it
limits community involvement (Bacon, 2009). A package-based architecture (such as that adopted
by the R Development Team, 2009) provides a better platform for more widespread ownership and
development. Under such a scheme, packages maintained by their developers can be loaded into
the system on demand, opening it up to greater diversity and flexibility. A recent development in
WEKA is the inclusion of package management, so that packages can easily be added to a given
installation.4 The project would probably have benefited by moving in this direction earlier.

We have learned that mailing lists for open source software are easier to maintain if the users
are researchers rather than teachers. WEKA’s widespread role in education has led to a repetitive

4. Currently in the development version only.
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and distracting deluge of basic questions. Requests from students all over the world for assistance
with their assignments and projects present a significant (and growing) problem; moreover, students
often depart from proper mailing-list etiquette. It would have been better to identify the clientele
for WEKA as a teaching tool, and offer a one-stop-shop for software, documentation and help that
is distinct from the support infrastructure used by researchers.

All in all, WEKA has been a resounding success which we believe has significantly advanced
the application of machine learning techniques in today’s world. One of the most satisfying aspects
of participating in the project is that the software has been incorporated into, and spawned, many
other open-source projects.
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Abstract

We consider regularized stochastic learning and online optimization problems, where the objective
function is the sum of two convex terms: one is the loss function of the learning task, and the other
is a simple regularization term such as !1-norm for promoting sparsity. We develop extensions of
Nesterov’s dual averaging method, that can exploit the regularization structure in an online setting.
At each iteration of these methods, the learning variables are adjusted by solving a simple mini-
mization problem that involves the running average of all past subgradients of the loss function and
the whole regularization term, not just its subgradient. In the case of !1-regularization, our method
is particularly effective in obtaining sparse solutions. We show that these methods achieve the op-
timal convergence rates or regret bounds that are standard in the literature on stochastic and online
convex optimization. For stochastic learning problems in which the loss functions have Lipschitz
continuous gradients, we also present an accelerated version of the dual averaging method.

Keywords: stochastic learning, online optimization, !1-regularization, structural convex optimiza-
tion, dual averaging methods, accelerated gradient methods

1. Introduction

In machine learning, online algorithms operate by repetitively drawing random examples, one at a
time, and adjusting the learning variables using simple calculations that are usually based on the
single example only. The low computational complexity (per iteration) of online algorithms is often
associated with their slow convergence and low accuracy in solving the underlying optimization
problems. As argued by Bottou and Bousquet (2008), the combined low complexity and low accu-
racy, together with other tradeoffs in statistical learning theory, still make online algorithms favorite
choices for solving large-scale learning problems. Nevertheless, traditional online algorithms, such
as stochastic gradient descent, have limited capability of exploiting problem structure in solving
regularized learning problems. As a result, their low accuracy often makes it hard to obtain the
desired regularization effects, for example, sparsity under !1-regularization.

In this paper, we develop a new class of online algorithms, the regularized dual averaging
(RDA) methods, that can exploit the regularization structure more effectively in an online setting.
In this section, we describe the two types of problems that we consider, and explain the motivation
of our work.

c©2010 Lin Xiao.
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1.1 Regularized Stochastic Learning

The regularized stochastic learning problems we consider are of the following form:

minimize
w

{

φ(w)! Ez f (w,z)+Ψ(w)
}

(1)

where w ∈ Rn is the optimization variable (often called weights in learning problems), z = (x,y) is
an input-output pair of data drawn from an (unknown) underlying distribution, f (w,z) is the loss
function of using w and x to predict y, and Ψ(w) is a regularization term. We assume Ψ(w) is
a closed convex function (Rockafellar, 1970, Section 7), and its effective domain, domΨ = {w ∈
Rn |Ψ(w)<+∞}, is closed. We also assume that f (w,z) is convex in w for each z, and it is subdif-
ferentiable (a subgradient always exists) on domΨ. Examples of the loss function f (w,z) include:

• Least-squares: x ∈ Rn, y ∈ R, and f (w,(x,y)) = (y−wTx)2.

• Hinge loss: x ∈ Rn, y ∈ {+1,−1}, and f (w,(x,y)) =max{0,1− y(wTx)}.

• Logistic regression: x ∈ Rn, y∈{+1,−1}, and f (w,(x,y)) = log
(

1+ exp
(

−y(wTx)
))

.

Examples of the regularization term Ψ(w) include:

• !1-regularization: Ψ(w) = λ‖w‖1 with λ > 0. With !1-regularization, we hope to get a rela-
tively sparse solution, that is, with many entries of the weight vector w being zeroes.

• !2-regularization: Ψ(w) = (σ/2)‖w‖22, with σ > 0. When !2-regularization is used with the
hinge loss function, we have the standard setup of support vector machines.

• Convex constraints: Ψ(w) is the indicator function of a closed convex set C , that is,

Ψ(w) = IC (w)!
{

0, if w ∈ C ,
+∞, otherwise.

We can also consider mixed regularizations such as Ψ(w) = λ‖w‖1+(σ/2)‖w‖22. These examples
cover a wide range of practical problems in machine learning.

A common approach for solving stochastic learning problems is to approximate the expected
loss function φ(w) by using a finite set of independent observations z1, . . . ,zT , and solve the follow-
ing problem to minimize the empirical loss:

minimize
w

1
T

T

∑
t=1

f (w,zt)+Ψ(w). (2)

By our assumptions, this is a convex optimization problem. Depending on the structure of particular
problems, they can be solved efficiently by interior-point methods (e.g., Ferris and Munson, 2003;
Koh et al., 2007), quasi-Newton methods (e.g., Andrew and Gao, 2007), or accelerated first-order
methods (Nesterov, 2007; Tseng, 2008; Beck and Teboulle, 2009). However, this batch optimization
approach may not scale well for very large problems: even with first-order methods, evaluating one
single gradient of the objective function in (2) requires going through the whole data set.

In this paper, we consider online algorithms that process samples sequentially as they become
available. More specifically, we draw a sequence of i.i.d. samples z1,z2,z3, . . ., and use them to
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calculate a sequencew1,w2,w3, . . .. Suppose at time t, we have the most up-to-date weight vectorwt .
Whenever zt is available, we can evaluate the loss f (wt ,zt), and also a subgradient gt ∈ ∂ f (wt ,zt)
(here ∂ f (w,z) denotes the subdifferential of f (w,z)with respect to w). Then we compute wt+1 based
on these information.

The most widely used online algorithm is the stochastic gradient descent (SGD) method. Con-
sider the general case Ψ(w) = IC (w)+ψ(w), where IC (w) is a “hard” set constraint and ψ(w) is a
“soft” regularization. The SGD method takes the form

wt+1 =ΠC

(

wt −αt (gt +ξt)
)

, (3)

where αt is an appropriate stepsize, ξt is a subgradient of ψ at wt , and ΠC (·) denotes Euclidean
projection onto the set C . The SGD method belongs to the general scheme of stochastic approxima-
tion, which can be traced back to Robbins and Monro (1951) and Kiefer and Wolfowitz (1952). In
general we are also allowed to use all previous information to compute wt+1, and even second-order
derivatives if the loss functions are smooth.

In a stochastic online setting, each weight vector wt is a random variable that depends on
{z1, . . . ,zt−1}, and so is the objective value φ(wt). Assume an optimal solution w" to the prob-
lem (1) exists, and let φ" = φ(w"). The goal of online algorithms is to generate a sequence {wt}∞t=1
such that

lim
t→∞

Eφ(wt) = φ",

and hopefully with reasonable convergence rate. This is the case for the SGD method (3) if we
choose the stepsize αt = c/

√
t, where c is a positive constant. The corresponding convergence

rate is O(1/
√
t), which is indeed best possible for subgradient schemes with a black-box model,

even in the case of deterministic optimization (Nemirovsky and Yudin, 1983). Despite such slow
convergence and the associated low accuracy in the solutions (compared with batch optimization
using, for example, interior-point methods), the SGD method has been very popular in the machine
learning community due to its capability of scaling with very large data sets and good generalization
performances observed in practice (e.g., Bottou and LeCun, 2004; Zhang, 2004; Shalev-Shwartz
et al., 2007).

Nevertheless, a main drawback of the SGD method is its lack of capability in exploiting prob-
lem structure, especially for problems with explicit regularization. More specifically, the SGD
method (3) treats the soft regularization ψ(w) as a general convex function, and only uses its sub-
gradient in computing the next weight vector. In this case, we can simply lump ψ(w) into f (w,zt)
and treat them as a single loss function. Although in theory the algorithm converges to an optimal
solution (in expectation) as t goes to infinity, in practice it is usually stopped far before that. Even
in the case of convergence in expectation, we still face (possibly big) variations in the solution due
to the stochastic nature of the algorithm. Therefore, the regularization effect we hope to have by
solving the problem (1) may be elusive for any particular solution generated by (3) based on finite
random samples.

An important example and main motivation for this paper is !1-regularized stochastic learn-
ing, where Ψ(w) = λ‖w‖1. In the case of batch learning, the empirical minimization problem (2)
can be solved to very high precision, for example, by interior-point methods. Therefore simply
rounding the weights with very small magnitudes toward zero is usually enough to produce desired
sparsity. As a result, !1-regularization has been very effective in obtaining sparse solutions using
the batch optimization approach in statistical learning (e.g., Tibshirani, 1996) and signal processing

2545



XIAO

(e.g., Chen et al., 1998). In contrast, the SGD method (3) hardly generates any sparse solution,
and its inherent low accuracy makes the simple rounding approach very unreliable. Several prin-
cipled soft-thresholding or truncation methods have been developed to address this problem (e.g.,
Langford et al., 2009; Duchi and Singer, 2009), but the levels of sparsity in their solutions are still
unsatisfactory compared with the corresponding batch solutions.

In this paper, we develop regularized dual averaging (RDA) methods that can exploit the struc-
ture of (1) more effectively in a stochastic online setting. More specifically, each iteration of the
RDA methods takes the form

wt+1 = argmin
w

{

1
t

t

∑
τ=1

〈gτ,w〉+Ψ(w)+
βt
t
h(w)

}

, (4)

where h(w) is an auxiliary strongly convex function, and {βt}t≥1 is a nonnegative and nondecreas-
ing input sequence, which determines the convergence properties of the algorithm. Essentially, at
each iteration, this method minimizes the sum of three terms: a linear function obtained by aver-
aging all previous subgradients (the dual average), the original regularization function Ψ(w), and
an additional strongly convex regularization term (βt/t)h(w). The RDA method is an extension of
the simple dual averaging scheme of Nesterov (2009), which is equivalent to letting Ψ(w) be the
indicator function of a closed convex set.

For the RDA method to be practically efficient, we assume that the functionsΨ(w) and h(w) are
simple, meaning that we are able to find a closed-form solution for the minimization problem in (4).
Then the computational effort per iteration is onlyO(n), the same as the SGDmethod. This assump-
tion indeed holds in many cases. For example, if we letΨ(w) = λ‖w‖1 and h(w) = (1/2)‖w‖22, then
wt+1 has an entry-wise closed-from solution. This solution uses a much more aggressive truncation
threshold than previous methods, thus results in significantly improved sparsity (see discussions in
Section 5).

In terms of iteration complexity, we show that if βt =Θ(
√
t), that is, with order exactly

√
t, then

the RDA method (4) has the standard convergence rate

Eφ(w̄t)−φ" ≤ O
(

G√
t

)

,

where w̄t = (1/t)∑tτ=1wτ is the primal average, and G is a uniform upper bound on the norms of
the subgradients gt . If the regularization term Ψ(w) is strongly convex, then setting βt ≤ O(ln t)
gives a faster convergence rate O(ln t/t).

For stochastic optimization problems in which the loss functions f (w,z) are all differentiable
and have Lipschitz continuous gradients, we also develop an accelerated version of the RDAmethod
that has the convergence rate

Eφ(wt)−φ" ≤ O(1)
(

L
t2

+
Q√
t

)

,

where L is the Lipschitz constant of the gradients, and Q2 is an upper bound on the variances of
the stochastic gradients. In addition to convergence in expectation, we show that the same orders of
convergence rates hold with high probability.
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1.2 Regularized Online Optimization

In online optimization, we use an online algorithm to generate a sequence of decisions wt , one at
a time, for t = 1,2,3, . . .. At each time t, a previously unknown cost function ft is revealed, and
we encounter a loss ft(wt). We assume that the cost functions ft are convex for all t ≥ 1. The
goal of the online algorithm is to ensure that the total cost up to each time t, ∑tτ=1 fτ(wτ), is not
much larger than minw∑tτ=1 fτ(w), the smallest total cost of any fixed decision w from hindsight.
The difference between these two cost is called the regret of the online algorithm. Applications of
online optimization include online prediction of time series and sequential investment (e.g., Cesa-
Bianchi and Lugosi, 2006).

In regularized online optimization, we add a convex regularization term Ψ(w) to each cost
function. The regret with respect to any fixed decision w ∈ domΨ is

Rt(w)!
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)
)

−
t

∑
τ=1

(

fτ(w)+Ψ(w)
)

. (5)

As in the stochastic setting, the online algorithm can query a subgradient gt ∈ ∂ ft(wt) at each step,
and possibly use all previous information, to compute the next decision wt+1. It turns out that the
simple subgradient method (3) is well suited for online optimization: with a stepsize αt =Θ(1/

√
t),

it has a regret Rt(w) ≤ O(
√
t) for all w ∈ domΨ (Zinkevich, 2003). This regret bound cannot be

improved in general for convex cost functions. However, if the cost functions are strongly convex,
say with convexity parameter σ, then the same algorithm with stepsize αt = 1/(σt) gives an O(ln t)
regret bound (e.g., Hazan et al., 2006; Bartlett et al., 2008).

Similar to the discussions on regularized stochastic learning, the online subgradient method (3)
in general lacks the capability of exploiting the regularization structure. In this paper, we show that
the same RDA method (4) can effectively exploit such structure in an online setting, and ensure
the O(

√
t) regret bound with βt = Θ(

√
t). For strongly convex regularizations, setting βt = O(ln t)

yields the improved regret bound O(ln t).
Since there is no specifications on the probability distribution of the sequence of functions, nor

assumptions like mutual independence, online optimization can be considered as a more general
framework than stochastic learning. In this paper, we will first establish regret bounds of the RDA
method for solving online optimization problems, then use them to derive convergence rates for
solving stochastic learning problems.

1.3 Outline of Contents

The methods we develop apply to more general settings than Rn with Euclidean geometry. In
Section 1.4, we introduce the necessary notations and definitions associated with a general finite-
dimensional real vector space.

In Section 2, we present the generic RDA method for solving both the stochastic learning and
online optimization problems, and give several concrete examples of the method.

In Section 3, we present the precise regret bounds of the RDA method for solving regularized
online optimization problems.

In Section 4, we derive convergence rates of the RDA method for solving regularized stochastic
learning problems. In addition to the rates of convergence in expectation, we also give associated
high probability bounds.
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In Section 5, we explain the connections of the RDAmethod to several related work, and analyze
its capability of generating better sparse solutions than other methods.

In Section 6, we give an enhanced version of the !1-RDA method, and present computational
experiments on the MNIST handwritten data set (LeCun et al., 1998). Our experiments show that
the RDA method is capable of generate sparse solutions that are comparable to those obtained by
batch learning using interior-point methods.

In Section 7, we discuss the RDA methods in the context of structural convex optimization and
their connections to incremental subgradient methods. As an extension, we develop an accelerated
version of the RDA method for stochastic optimization problems with smooth loss functions. We
also discuss in detail the p-norm based RDA methods.

Appendices A-D contain technical proofs of our main results.

1.4 Notations and Generalities

Let E be a finite-dimensional real vector space, endowed with a norm ‖ · ‖. This norm defines a
systems of balls: B(w,r) = {u ∈E |‖u−w‖ ≤ r}. Let E∗ be the vector space of all linear functions
on E , and let 〈s,w〉 denote the value of s ∈ E∗ at w ∈ E . The dual space E∗ is endowed with the
dual norm ‖s‖∗ =max‖w‖≤1〈s,w〉.

A function h : E → R∪ {+∞} is called strongly convex with respect to the norm ‖ · ‖ if there
exists a constant σ> 0 such that

h(αw+(1−α)u)≤ αh(w)+(1−α)h(u)−
σ
2
α(1−α)‖w−u‖2, ∀w,u ∈ domh.

The constant σ is called the convexity parameter, or the modulus of strong convexity. Let rintC
denote the relative interior of a convex set C (Rockafellar, 1970, Section 6). If h is strongly convex
with modulus σ, then for any w ∈ domh and u ∈ rint(domh),

h(w)≥ h(u)+ 〈s,w−u〉+
σ
2
‖w−u‖2, ∀s ∈ ∂h(u).

See, for example, Goebel and Rockafellar (2008) and Juditsky and Nemirovski (2008).
In the special case of the coordinate vector space E = Rn, we have E = E∗, and the standard

inner product 〈s,w〉 = sTw = ∑n
i=1 s(i)w(i), where w(i) denotes the i-th coordinate of w. For the

standard Euclidean norm, ‖w‖= ‖w‖2 =
√

〈w,w〉 and ‖s‖∗ = ‖s‖2. For any w0 ∈ Rn, the function
h(w) = (σ/2)‖w−w0‖22 is strongly convex with modulus σ.

For another example, consider the !1-norm ‖w‖ = ‖w‖1 = ∑n
i=1 |w(i)| and its associated dual

norm ‖w‖∗ = ‖w‖∞ = max1≤i≤n |w(i)|. Let Sn be the standard simplex in Rn, that is,
Sn =

{

w ∈ Rn+ | ∑n
i=1w(i) = 1

}

. Then the negative entropy function

h(w) =
n

∑
i=1

w(i) lnw(i) + lnn, (6)

with domh= Sn, is strongly convex with respect to ‖ ·‖1 with modulus 1 (see, e.g., Nesterov, 2005,
Lemma 3). In this case, the unique minimizer of h is w0 = (1/n, . . . ,1/n).

For a closed proper convex function Ψ, we use ArgminwΨ(w) to denote the (convex) set of
minimizing solutions. If a convex function h has a unique minimizer, for example, when h is
strongly convex, then we use argminw h(w) to denote that single point.
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Algorithm 1 Regularized dual averaging (RDA) method
input:
• an auxiliary function h(w) that is strongly convex on domΨ and also satisfies

argmin
w

h(w) ∈ Argmin
w

Ψ(w). (7)

• a nonnegative and nondecreasing sequence {βt}t≥1.

initialize: set w1 = argminw h(w) and ḡ0 = 0.
for t = 1,2,3, . . . do
1. Given the function ft , compute a subgradient gt ∈∂ ft(wt).
2. Update the average subgradient:

ḡt =
t−1
t

ḡt−1+
1
t
gt .

3. Compute the next weight vector:

wt+1 = argmin
w

{

〈ḡt ,w〉+Ψ(w)+
βt
t
h(w)

}

. (8)

end for

2. Regularized Dual Averaging Method

In this section, we present the generic RDA method (Algorithm 1) for solving regularized stochastic
learning and online optimization problems, and give several concrete examples. To unify notation,
we use ft(w) to denote the cost function at each step t. For stochastic learning problems, we simply
let ft(w) = f (w,zt).

At the input to the RDA method, we need an auxiliary function h that is strongly convex on
domΨ. The condition (7) requires that its unique minimizer must also minimize the regularization
function Ψ. This can be done, for example, by first choosing a starting point w0 ∈ ArgminwΨ(w)
and an arbitrary strongly convex function h′(w), then letting

h(w) = h′(w)−h′(w0)−〈∇h′(w0),w−w0〉.

In other words, h(w) is the Bregman divergence from w0 induced by h′(w). If h′ is not differentiable,
but subdifferentiable at w0, we can replace ∇h′(w0) with a subgradient. The input sequence {βt}t≥1
determines the convergence rate, or regret bound, of the algorithm.

There are three steps in each iteration of the RDA method. Step 1 is to compute a subgradient
of ft at wt , which is standard for all subgradient or gradient based methods. Step 2 is the online
version of computing the average subgradient:

ḡt =
1
t

t

∑
τ=1

gτ.

The name dual averaging comes from the fact that the subgradients live in the dual space E∗.

2549



XIAO

Step 3 is most interesting and worth further explanation. In particular, the efficiency in com-
puting wt+1 determines how useful the method is in practice. For this reason, we assume the reg-
ularization functions Ψ(w) and h(w) are simple. This means the minimization problem in (8) can
be solved with little effort, especially if we are able to find a closed-form solution for wt+1. At first
sight, this assumption seems to be quite restrictive. However, the examples below show that this
indeed is the case for many important learning problems in practice.

2.1 RDA Methods with General Convex Regularization

For a general convex regularization Ψ, we can choose any positive sequence {βt}t≥1 that is order
exactly

√
t, to obtain anO(1/

√
t) convergence rate for stochastic learning, or anO(

√
t) regret bound

for online optimization. We will state the formal convergence theorems in Sections 3 and 4. Here,
we give several concrete examples. To be more specific, we choose a parameter γ > 0 and use the
sequence

βt = γ
√
t, t = 1,2,3, . . . .

• Nesterov’s dual averaging method. Let Ψ(w) be the indicator function of a closed convex
set C . This recovers the simple dual averaging scheme in Nesterov (2009). If we choose
h(w) = (1/2)‖w‖22, then the Equation (8) yields

wt+1 =ΠC

(

−
√
t
γ
ḡt
)

=ΠC

(

−
1
γ
√
t

t

∑
τ=1

gτ

)

. (9)

When C = {w ∈ Rn |‖w‖1 ≤ δ} for some δ > 0, we have “hard” !1-regularization. In this
case, although there is no closed-form solution for wt+1, efficient algorithms for projection
onto the !1-ball can be found, for example, in Duchi et al. (2008).

• “Soft” !1-regularization. Let Ψ(w) = λ‖w‖1 for some λ> 0, and h(w) = (1/2)‖w‖22. In this
case, wt+1 has a closed-form solution (see Appendix A for the derivation):

w(i)
t+1 =











0 if
∣

∣

∣
ḡ(i)t
∣

∣

∣
≤ λ,

−
√
t
γ

(

ḡ(i)t −λ sgn
(

ḡ(i)t
)

)

otherwise,
i= 1, . . . ,n. (10)

Here sgn(·) is the sign or signum function, that is, sgn(ω) equals 1 if ω > 0, −1 if ω < 0,
and 0 if ω = 0. Whenever a component of ḡt is less than λ in magnitude, the corresponding
component of wt+1 is set to zero. Further extensions of the !1-RDA method, and associated
computational experiments, are given in Section 6.

• Exponentiated dual averaging method. Let Ψ(w) be the indicator function of the standard
simplex Sn, and h(w) be the negative entropy function defined in (6). In this case,

w(i)
t+1 =

1
Zt+1

exp
(

−
√
t
γ
ḡ(i)t
)

, i= 1, . . . ,n,

where Zt+1 is a normalization parameter such that ∑n
i=1w

(i)
t+1 = 1. This is the dual averaging

version of the exponentiated gradient algorithm (Kivinen andWarmuth, 1997); see also Tseng
and Bertsekas (1993) and Juditsky et al. (2005). We note that this example is also covered by
Nesterov’s dual averaging method.
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We discuss in detail the special case of p-norm RDA method in Section 7.2. Several other exam-
ples, including !∞-norm and a hybrid !1/!2-norm (Berhu) regularization, also admit closed-form
solutions for wt+1. Their solutions are similar in form to those obtained in the context of the FOBOS
algorithm in Duchi and Singer (2009).

2.2 RDA Methods with Strongly Convex Regularization

If the regularization term Ψ(w) is strongly convex, we can use any nonnegative and nondecreas-
ing sequence {βt}t≥1 that grows no faster than O(ln t), to obtain an O(ln t/t) convergence rate for
stochastic learning, or an O(ln t) regret bound for online optimization. For simplicity, in the fol-
lowing examples, we use the zero sequence βt = 0 for all t ≥ 1. In this case, we do not need the
auxiliary function h(w), and the Equation (8) becomes

wt+1 = argmin
w

{

〈ḡt ,w〉+Ψ(w)
}

.

• !22-regularization. Let Ψ(w) = (σ/2)‖w‖22 for some σ> 0. In this case,

wt+1 =−
1
σ
ḡt =−

1
σt

t

∑
τ=1

gτ.

• Mixed !1/!22-regularization. Let Ψ(w) = λ‖w‖1+(σ/2)‖w‖22 with λ > 0 and σ > 0. In this
case, we have

w(i)
t+1 =











0 if |ḡ(i)t |≤ λ,

−
1
σ

(

ḡ(i)t −λ sgn
(

ḡ(i)t
)

)

otherwise,
i= 1, . . . ,n.

• Kullback-Leibler (KL) divergence regularization. Let Ψ(w) = σDKL(w‖p), where the given
probability distribution p ∈ rintSn, and

DKL(w‖p)!
n

∑
i=1

w(i) ln

(

w(i)

p(i)

)

.

Here DKL(w‖p) is strongly convex with respect to ‖w‖1 with modulus 1. In this case,

w(i)
t+1 =

1
Zt+1

p(i) exp
(

−
1
σ
ḡ(i)t
)

,

where Zt+1 is a normalization parameter such that ∑n
i=1w

(i)
t+1 = 1. KL divergence regulariza-

tion has the pseudo-sparsity effect, meaning that most elements in w can be replaced by ele-
ments in the constant vector p without significantly increasing the loss function (e.g., Bradley
and Bagnell, 2009).
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3. Regret Bounds for Online Optimization

In this section, we give the precise regret bounds of the RDA method for solving regularized online
optimization problems. The convergence rates for stochastic learning problems can be established
based on these regret bounds, and will be given in the next section. For clarity, we gather here the
general assumptions used throughout this paper:

• The regularization term Ψ(w) is a closed proper convex function, and domΨ is closed. The
symbol σ is dedicated to the convexity parameter ofΨ. Without loss of generality, we assume
minwΨ(w) = 0.

• For each t ≥ 1, the function ft(w) is convex and subdifferentiable on domΨ.

• The function h(w) is strongly convex on domΨ, and subdifferentiable on rint(domΨ). With-
out loss of generality, assume h(w) has convexity parameter 1 and minw h(w) = 0.

We will not repeat these general assumptions when stating our formal results later.
To facilitate regret analysis, we first give a few definitions. For any constant D > 0, we define

the set
FD !

{

w ∈ domΨ
∣

∣ h(w)≤ D2
}

,

and let
ΓD = sup

w∈FD
inf

g∈∂Ψ(w)
‖g‖∗. (11)

We use the convention infg∈ /0 ‖g‖∗ = +∞, where /0 denotes the empty set. As a result, if Ψ is not
subdifferentiable everywhere on FD, that is, if ∂Ψ(w) = /0 at some w ∈ FD, then we have ΓD =+∞.
Note that ΓD is not a Lipschitz-type constant which would be required to be an upper bound on all
the subgradients; instead, we only require that at least one subgradient is bounded in norm by ΓD at
every point in the set FD.

We assume that the sequence of subgradients {gt}t≥1 generated by Algorithm 1 is bounded, that
is, there exist a constant G such that

‖gt‖∗ ≤ G, ∀ t ≥ 1. (12)

This is true, for example, if domΨ is compact and each ft has Lipschitz-continuous gradient on
domΨ. We require that the input sequence {βt}t≥1 be chosen such that

max{σ, β1}> 0, (13)

where σ is the convexity parameter of Ψ(w). For convenience, we let β0 = max{σ,β1} and define
the sequence of regret bounds

Δt ! βtD2+
G2

2

t−1

∑
τ=0

1
στ+βτ

+
2(β0−β1)G2

(β1+σ)2
, t = 1,2,3, . . . , (14)

whereD is the constant used in the definition of FD. We could always set β1≥σ, so that β0= β1 and
therefore the term 2(β0−β1)G2/(β1+σ)2 vanishes in the definition (14). However, when σ > 0,
we would like to keep the flexibility of setting βt = 0 for all t ≥ 1, as we did in Section 2.2.
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Theorem 1 Let the sequences {wt}t≥1 and {gt}t≥1 be generated by Algorithm 1, and assume (12)
and (13) hold. Then for any t ≥ 1 and any w ∈ FD, we have:

(a) The regret defined in (5) is bounded by Δt , that is,

Rt(w)≤ Δt . (15)

(b) The primal variables are bounded as

‖wt+1−w‖2 ≤
2

σt+βt

(

Δt −Rt(w)
)

. (16)

(c) If w is an interior point, that is, B(w,r)⊂ FD for some r > 0, then

‖ḡt‖∗ ≤ ΓD−
1
2
σr+

1
rt
(

Δt −Rt(w)
)

. (17)

In Theorem 1, the bounds on ‖wt+1−w‖2 and ‖ḡt‖∗ depend on the regret Rt(w). More pre-
cisely, they depend on Δt −Rt(w), which is the slack of the regret bound in (15). A smaller slack
is equivalent to a larger regret Rt(w), which means w is a better fixed solution for the online opti-
mization problem (the best one gives the largest regret); correspondingly, the inequality (16) gives
a tighter bound on ‖wt+1−w‖2. In (17), the left-hand side ‖ḡt‖∗ does not depend on any particular
interior point w to compare with, but the right-hand side depends on both Rt(w) and how far w is
from the boundary of FD. The tightest bound on ‖ḡt‖∗ can be obtained by taking the infimum of
the right-hand side over all w ∈ intFD. We further elaborate on part (c) through the following two
examples:

• Consider the case when Ψ is the indicator function of a closed convex set C . In this case,
σ = 0 and ∂Ψ(w) is the normal cone to C at w (Rockafellar, 1970, Section 23). By the
definition (11), we have ΓD = 0 because the zero vector is a subgradient at every w ∈ C , even
though the normal cones can be unbounded at the boundary of C . In this case, if B(w,r)⊂FD
for some r > 0, then (17) simplifies to

‖ḡt‖∗ ≤
1
rt
(

Δt −Rt(w)
)

.

• Consider the function Ψ(w) = σDKL(w|| p) with domΨ = Sn (assuming p ∈ rintSn). In this
case, domΨ, and hence FD, have empty interior. Therefore the bound in part (c) does not
apply. In fact, the quantity ΓD can be unbounded anyway. In particular, the subdifferentials
ofΨ at the relative boundary of Sn are all empty. In the relative interior of Sn, the subgradients
(actually gradients) of Ψ always exist, but can become unbounded for points approaching the
relative boundary. Nevertheless, the bounds in parts (a) and (b) still hold.

The proof of Theorem 1 is given in Appendix B. In the rest of this section, we discuss more
concrete regret bounds depending on whether or not Ψ is strongly convex.
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3.1 Regret Bound with General Convex Regularization

For a general convex regularization term Ψ, any nonnegative and nondecreasing sequence βt =
Θ(

√
t) gives an O(

√
t) regret bound. Here we give detailed analysis for the sequence used in

Section 2.1. More specifically, we choose a constant γ> 0 and let

βt = γ
√
t, ∀ t ≥ 1. (18)

We have the following corollary of Theorem 1.

Corollary 2 Let the sequences {wt}t≥1 and {gt}t≥1 be generated by Algorithm 1 using {βt}t≥1
defined in (18), and assume (12) holds. Then for any t ≥ 1 and any w ∈ FD:

(a) The regret is bounded as

Rt(w)≤
(

γD2+
G2

γ

)√
t.

(b) The primal variables are bounded as

1
2
‖wt+1−w‖2 ≤ D2+

G2

γ2
−

1
γ
√
t
Rt(w).

(c) If w is an interior point, that is, B(w,r)⊂ FD for some r > 0, then

‖ḡt‖∗ ≤ ΓD+

(

γD2+
G2

γ

)

1
r
√
t
−
1
rt
Rt(w).

Proof To simplify regret analysis, let γ ≥ σ. Therefore β0 = β1 = γ. Then Δt defined in (14)
becomes

Δt = γ
√
tD2+

G2

2γ

(

1+
t−1

∑
τ=1

1√
τ

)

.

Next using the inequality
t−1

∑
τ=1

1√
τ
≤ 1+

∫ t

1

1√
τ
dτ= 2

√
t−1,

we get

Δt ≤ γ
√
tD2+

G2

2γ
(

1+
(

2
√
t−1

))

=

(

γD2+
G2

γ

)√
t.

Combining the above inequality and the conclusions of Theorem 1 proves the corollary.

The regret bound in Corollary 2 is essentially the same as the online gradient descent method of
Zinkevich (2003), which has the form (3), with the stepsize αt = 1/(γ

√
t). The main advantage of

the RDA method is its capability of exploiting the regularization structure, as shown in Section 2.
The parameters D and G are not used explicitly in the algorithm. However, we need good estimates
of them for choosing a reasonable value for γ. The best γ that minimizes the expression γD2+G2/γ
is

γ" =
G
D
,
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which leads to the simplified regret bound

Rt(w)≤ 2GD
√
t.

If the total number of online iterations T is known in advance, then using a constant stepsize in the
classical gradient method (3), say

αt =
1
γ"

√

2
T

=
D
G

√

2
T
, ∀ t = 1, . . . ,T, (19)

gives a slightly improved bound RT (w)≤
√
2GD

√
T (see, e.g., Nemirovski et al., 2009).

The bound in part (b) does not converge to zero. This result is still interesting because there is
no special caution taken in the RDA method, more specifically in (8), to ensure the boundedness
of the sequence wt . In the case Ψ(w) = 0, as pointed out by Nesterov (2009), this may even look
surprising since we are minimizing over E the sum of a linear function and a regularization term
(γ/

√
t)h(w) that eventually goes to zero.
Part (c) gives a bound on the norm of the dual average. If Ψ(w) is the indicator function of a

closed convex set, then ΓD = 0 and part (c) shows that ḡt actually converges to zero if there exist an
interior w in FD such that Rt(w) ≥ 0. However, a properly scaled version of ḡt , −(

√
t/γ)ḡt , tracks

the optimal solution; see the examples in Section 2.1.

3.2 Regret Bounds with Strongly Convex Regularization

If the regularization function Ψ(w) is strongly convex, that is, with a convexity parameter σ > 0,
then any nonnegative, nondecreasing sequence that satisfies βt ≤ O(ln t) will give an O(ln t) regret
bound. If {βt}t≥1 is not the all zero sequence, we can simply choose the auxiliary function h(w) =
(1/σ)Ψ(w). Here are several possibilities:

• Positive constant sequences. For simplicity, let βt = σ for t ≥ 0. In this case,

Δt = σD2+
G2

2σ

t−1

∑
τ=0

1
τ+1

≤ σD2+
G2

2σ
(1+ ln t).

• Logarithmic sequences. Let βt = σ(1+ ln t) for t ≥ 1. In this case, β0 = β1 = σ and

Δt = σ(1+ ln t)D2+
G2

2σ

(

1+
t−1

∑
τ=1

1
τ+1+ lnτ

)

≤
(

σD2+
G2

2σ

)

(1+ ln t).

• The zero sequence. Let βt = 0 for t ≥ 1. In this case, β0 = σ and

Δt =
G2

2σ

(

1+
t−1

∑
τ=1

1
τ

)

+
2G2

σ
≤
G2

2σ
(6+ ln t). (20)

Notice that in this last case, the regret bound does not depend on D.
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WhenΨ is strongly convex, we also conclude that, given two different points u and v, the regrets
Rt(u) and Rt(v) cannot be nonnegative simultaneously if t is large enough. To see this, we notice
that if Rt(u) and Rt(v) are nonnegative simultaneously for some t, then part (b) of Theorem 1 implies

‖wt+1−u‖2 ≤ O
(

ln t
t

)

, and ‖wt+1− v‖2 ≤ O
(

ln t
t

)

,

which again implies

‖u− v‖2 ≤ (‖wt+1−u‖+‖wt+1− v‖)2 ≤ O
(

ln t
t

)

.

Therefore, if the event Rt(u)≥ 0 and Rt(v)≥ 0 happens for infinitely many t, we must have u= v.
If u 0= v, then eventually at least one of the regrets associated with them will become negative.
However, it is possible to construct sequences of functions ft such that the points with nonnegative
regrets do not converge to a fixed point.

4. Convergence Rates for Stochastic Learning

In this section, we give convergence rates of the RDA method when it is used to solve the regular-
ized stochastic learning problem (1), and also the related high probability bounds. These rates and
bounds are established not for the individual wt’s generated by the RDA method, but rather for the
primal average

w̄t =
1
t

t

∑
τ=1

wτ, t ≥ 1.

4.1 Rate of Convergence in Expectation

Theorem 3 Assume there exists an optimal solution w" to the problem (1) that satisfies h(w")≤D2
for some D > 0, and let φ" = φ(w"). Let the sequences {wt}t≥1 and {gt}t≥1 be generated by
Algorithm 1, and assume (12) holds. Then for any t ≥ 1, we have:

(a) The expected cost associated with the random variable w̄t is bounded as

Eφ(w̄t)−φ" ≤
1
t
Δt .

(b) The primal variables are bounded as

E‖wt+1−w"‖2 ≤
2

σt+βt
Δt .

(c) If w" is an interior point, that is, B(w",r)⊂ FD for some r > 0, then

E‖ḡt‖∗ ≤ ΓD−
1
2
σr+

1
rt
Δt .
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Proof First, we substitute all fτ(·) by f (·,zτ) in the definition of the regret

Rt(w") =
t

∑
τ=1

(

f (wτ,zτ)+Ψ(wτ)
)

−
t

∑
τ=1

(

f (w",zτ)+Ψ(w")
)

.

Let z[t] denote the collection of i.i.d. random variables (z1, . . . ,zt). All the expectations in Theorem 3
are taken with respect to z[t], that is, the symbol E can be written more explicitly as Ez[t]. We note
that the random variable wτ, where 1 ≤ τ ≤ t, is a function of (z1, . . . ,zτ−1), and is independent of
(zτ, . . . ,zt). Therefore

Ez[t]
(

f (wτ,zτ)+Ψ(wτ)
)

= Ez[τ−1]
(

Ezτ f (wτ,zτ)+Ψ(wτ)
)

= Ez[τ−1]φ(wτ) = Ez[t]φ(wτ),

and
Ez[t]

(

f (w",zτ)+Ψ(w")
)

= Ezτ f (w",zτ)+Ψ(w") = φ(w") = φ".

Since φ" = φ(w") =minwφ(w), we have

Ez[t]Rt(w") =
t

∑
τ=1
Ez[t]φ(wτ)− tφ" ≥ 0. (21)

By convexity of φ, we have

φ(w̄t) = φ

(

1
t

t

∑
τ=1

wτ

)

≤
1
t

t

∑
τ=1

φ(wτ)

Taking expectation with respect to z[t] and subtracting φ", we have

Ez[t]φ(w̄t)−φ" ≤
1
t

(

t

∑
τ=1
Ez[t]φ(w̄τ)− tφ"

)

=
1
t
Ez[t]Rt(w").

Then part (a) follows from that of Theorem 1, which states that Rt(w") ≤ Δt for all realizations
of z[t]. Similarly, parts (b) and (c) follow from those of Theorem 1 and (21).

Specific convergence rates can be obtained in parallel with the regret bounds discussed in Sec-
tions 3.1 and 3.2. We only need to divide every regret bound by t to obtain the corresponding rate
of convergence in expectation. More specifically, using appropriate sequences {βt}t≥1, we have
Eφ(w̄t) converging to φ" with rate O(1/

√
t) for general convex regularization, and O(ln t/t) for

strongly convex regularization.
The bound in part (b) applies to both the case σ = 0 and the case σ > 0. For the latter, we can

derive a slightly different and more specific bound. When Ψ has convexity parameter σ > 0, so is
the function φ. Therefore,

φ(wt)≥ φ(w")+ 〈s,wt−w"〉+
σ
2
‖wt −w"‖2, ∀s ∈ ∂φ(w").

Since w" is the minimizer of φ, we must have 0 ∈ ∂φ(w") (Rockafellar, 1970, Section 27). Setting
s= 0 in the above inequality and rearranging terms, we have

‖wt −w"‖2 ≤
2
σ
(φ(wt)−φ") .
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Taking expectation of both sides of the above inequality leads to

E‖wt −w"‖2 ≤
2
σ
(Eφ(wt)−φ")≤

2
σt
Δt , (22)

where in the last step we used part (a) of Theorem 3. This bound directly relate wt to Δt .
Next we take a closer look at the quantity E‖w̄t −w"‖2. By convexity of ‖ ·‖2, we have

E‖w̄t −w"‖2 ≤
1
t

t

∑
τ=1
E‖wτ−w"‖2 (23)

If σ= 0, then it is simply bounded by a constant because each E‖wτ−w"‖2 for 1≤ τ≤ t is bounded
by a constant. When σ> 0, the optimal solution w" is unique, and we have:

Corollary 4 If Ψ is strongly convex with convexity parameter σ> 0 and βt = O(ln t), then

E‖w̄t −w"‖2 ≤ O
(

(ln t)2

t

)

.

Proof For the ease of presentation, we consider the case βt = 0 for all t ≥ 1. Substituting the bound
on Δt in (20) into the inequality (22) gives

E‖wt −w"‖2 ≤
(6+ ln t)G2

tσ2
, ∀ t ≥ 1.

Then by (23),

E‖w̄t −w"‖2 ≤
1
t

t

∑
τ=1

(

6
τ
+
lnτ
τ

)

G2

σ2
≤
1
t

(

6(1+ ln t)+
1
2
(ln t)2

)

G2

σ2
.

In other words, E‖w̄t −w"‖2 converges to zero with rate O((ln t)2/t). This can be shown for any
βt = O(ln t); see Section 3.2 for other choices of βt .

As a further note, the conclusions in Theorem 3 still hold if the assumption (12) is weakened to

E‖gt‖2∗ ≤ G2, ∀ t ≥ 1. (24)

However, we need (12) in order to prove the high probability bounds presented next.

4.2 High Probability Bounds

For stochastic learning problems, in addition to the rates of convergence in expectation, it is often
desirable to obtain confidence level bounds for approximate solutions. For this purpose, we start
from part (a) of Theorem 3, which states Eφ(wt)−φ" ≤ (1/t)Δt . By Markov’s inequality, we have
for any ε> 0,

Prob
(

φ(w̄t)−φ" > ε
)

≤
Δt
ε t
. (25)

This bound holds even with the weakened assumption (24). However, it is possible to have much
tighter bounds under more restrictive assumptions. To this end, we have the following result.
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Theorem 5 Assume there exist constants D and G such that h(w") ≤ D2, and h(wt) ≤ D2 and
‖gt‖∗ ≤ G for all t ≥ 1. Then for any δ ∈ (0,1), we have, with probability at least 1−δ,

φ(w̄t)−φ" ≤
Δt
t
+
8GD

√

ln(1/δ)√
t

, ∀ t ≥ 1. (26)

Theorem 5 is proved in Appendix C.
From our results in Section 3.1, with the input sequence βt = γ

√
t for all t ≥ 1, we have Δt =

O(
√
t) regardless of σ = 0 or σ > 0. Therefore, φ(w̄t)− φ" = O(1/

√
t) with high probability. To

simplify further discussion, let γ = G/D, hence Δt ≤ 2GD
√
t (see Section 3.1). In this case, if

δ≤ 1/e≈ 0.368, then with probability at least 1−δ,

φ(w̄t)−φ" ≤
10GD

√

ln(1/δ)√
t

.

Letting ε= 10GD
√

ln(1/δ)/
√
t, then the above bound is equivalent to

Prob(φ(w̄t)−φ" > ε)≤ exp
(

−
ε2t

(10GD)2

)

,

which is much tighter than the one in (25). It follows that for any chosen accuracy ε and 0< δ≤ 1/e,
the sample size

t ≥
(10GD)2 ln(1/δ)

ε2

guarantees that, with probability at least 1−δ, w̄t is an ε-optimal solution of the original stochastic
optimization problem (1).

When Ψ is strongly convex (σ > 0), our results in Section 3.2 show that we can obtain regret
bounds Δt =O(ln t) using βt =O(ln t). However, the high probability bound in Theorem 5 does not
improve: we still have φ(w̄t)− φ" = O(1/

√
t), not O(ln t/t). The reason is that the concentration

inequality (Azuma, 1967) used in proving Theorem 5 cannot take advantage of the strong-convexity
property. By using a refined concentration inequality due to Freedman (1975), Kakade and Tewari
(2009, Theorem 2) showed that for strongly convex stochastic learning problems, with probability
at least 1−4δ ln t,

φ(w̄t)−φ" ≤
Rt(w")

t
+4

√

Rt(w")

t

√

G2 ln(1/δ)
σ

+max
{

16G2

σ
,6B

}

ln(1/δ)
t

.

In our context, the constant B is an upper bound on f (w,z)+Φ(w) for w ∈ FD. Using the regret
bound R(w")≤ Δt , this gives

φ(w̄t)−φ" ≤
Δt
t
+O

(

√

Δt ln(1/δ)
t

+
ln(1/δ)

t

)

.

Here the constants hidden in theO-notation are determined byG, σ andD. Plugging in Δt =O(ln t),
we have φ(w̄t)− φ" = O(ln t/t) with high probability. The additional penalty of getting the high
probability bound, compared with the rate of convergence in expectation, is only O(

√
ln t/t).
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5. Related Work

As we pointed out in Section 2.1, if Ψ is the indicator function of a convex set C , then the RDA
method recovers the simple dual averaging scheme in Nesterov (2009). This special case also
belongs to a more general primal-dual algorithmic framework developed by Shalev-Shwartz and
Singer (2006), which can be expressed equivalently in our notation:

wt+1 = argmin
w∈C

{

1
γ
√
t

〈 t

∑
τ=1

d tτ ,w
〉

+h(w)
}

,

where (d t1, . . . ,d tt ) is the set of dual variables that can be chosen at time t. The simple dual averaging
scheme (9) is in fact the passive extreme of their framework in which the dual variables are simply
chosen as the subgradients and do not change over time, that is,

d tτ = gτ, ∀τ≤ t, ∀ t ≥ 1. (27)

However, with the addition of a general regularization termΨ(w) as in (4), the convergence analysis
and O(

√
t) regret bound of the RDA method do not follow directly as corollaries of either Nesterov

(2009) or Shalev-Shwartz and Singer (2006). Our analysis in Appendix B extends the framework
of Nesterov (2009).

Shalev-Shwartz and Kakade (2009) extended the primal-dual framework of Shalev-Shwartz and
Singer (2006) to strongly convex functions and obtained O(ln t) regret bound. In the context of this
paper, their algorithm takes the form

wt+1 = argmin
w∈C

{

1
σt

〈 t

∑
τ=1

d tτ ,w
〉

+h(w)
}

,

where σ is the convexity parameter of Ψ, and h(w) = (1/σ)Ψ(w). The passive extreme of this
method, with the dual variables chosen in (27), is equivalent to a special case of the RDA method
with βt = 0 for all t ≥ 1.

Other than improving the iteration complexity, the idea of treating the regularization explicitly
in each step of a subgradient-based method (instead of lumping it together with the loss function
and taking their subgradients) is mainly motivated by practical considerations, such as obtaining
sparse solutions. In the case of !1-regularization, this leads to soft-thresholding type of algorithms,
in both batch learning (e.g., Figueiredo et al., 2007; Wright et al., 2009; Bredies and Lorenz, 2008;
Beck and Teboulle, 2009) and the online setting (e.g., Langford et al., 2009; Duchi and Singer,
2009; Shalev-Shwartz and Tewari, 2009). Most of these algorithms can be viewed as extensions of
classical gradient methods (including mirror-descent methods) in which the new iterate is obtained
by stepping from the current iterate along a single subgradient, and then followed by a truncation.
Other types of algorithms include an interior-point based stochastic approximation scheme by Car-
bonetto et al. (2009), and Balakrishnan and Madigan (2008), where a modified shrinkage algorithm
is developed based on sequential quadratic approximations of the loss function.

The main point of this paper, is to show that dual-averaging based methods can be more effective
in exploiting the regularization structure, especially in a stochastic or online setting. To demonstrate
this point, we compare the RDA method with the FOBOS method studied in Duchi and Singer
(2009). In an online setting, each iteration of the FOBOS method consists of the following two
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steps:

wt+ 1
2
= wt −αtgt ,

wt+1 = argmin
w

{

1
2

∥

∥

∥
w−wt+ 1

2

∥

∥

∥

2

2
+αtΨ(w)

}

.

For convergence with optimal rates, the stepsize αt is set to be Θ(1/
√
t) for general convex reg-

ularizations and Θ(1/t) if Ψ is strongly convex. This method is based on a technique known as
forward-backward splitting, which was first proposed by Lions and Mercier (1979) and later an-
alyzed by Chen and Rockafellar (1997) and Tseng (2000). For easy comparison with the RDA
method, we rewrite the FOBOS method in an equivalent form

wt+1 = argmin
w

{

〈gt ,w〉+Ψ(w)+
1
2αt

‖w−wt‖22

}

. (28)

Compared with this form of the FOBOS method, the RDAmethod (8) uses the average subgradient ḡt
instead of the current subgradient gt ; it uses a global proximal function, say h(w) = (1/2)‖w‖22,
instead of its local Bregman divergence (1/2)‖w−wt‖22; moreover, the coefficient for the proximal
function is βt/t =Θ(1/

√
t) instead of 1/αt =Θ(

√
t) for general convex regularization, andO(ln t/t)

instead ofΘ(t) for strongly convex regularization. Although these two methods have the same order
of iteration complexity, the differences list above contribute to quite different properties of their
solutions.

These differences can be better understood in the special case of !1-regularization, that is, when
Ψ(w) = λ‖w‖1. In this case, the FOBOS method is equivalent to a special case of the Truncated
Gradient (TG) method of Langford et al. (2009). The TG method truncates the solutions obtained
by the standard SGD method every K steps; more specifically,

w(i)
t+1 =

{

trnc
(

w(i)
t −αtg

(i)
t ,λTGt ,θ

)

if mod(t,K) = 0,

w(i)
t −αtg

(i)
t otherwise,

(29)

where λTGt = αtλK, mod(t,K) is the remainder on division of t by K, and

trnc(ω,λTGt ,θ) =







0 if |ω|≤ λTGt ,
ω−λTGt sgn(ω) if λTGt < |ω|≤ θ,
ω if |ω|> θ.

WhenK= 1 and θ=+∞, the TGmethod is the same as the FOBOS method (28) with !1-regularization.
Now comparing the truncation threshold λTGt and the threshold λ used in the !1-RDA method (10):
with αt = Θ(1/

√
t), we have λTGt = Θ(1/

√
t)λ. This Θ(1/

√
t) discount factor is also common for

other previous work that use soft-thresholding, including Shalev-Shwartz and Tewari (2009). It is
clear that the RDA method uses a much more aggressive truncation threshold, thus is able to gener-
ate significantly more sparse solutions. This is confirmed by our computational experiments in the
next section.

Most recently, Duchi et al. (2010) developed a family of subgradient methods that can adaptively
modifying the proximal function (squared Mahalanobis norms) at each iteration, in order to better
incorporate learned knowledge about geometry of the data. Their methods include extensions for
both the mirror-descent type of algorithms like (28) and the RDA methods studied in this paper.
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Algorithm 2 Enhanced !1-RDA method
Input: γ> 0, ρ≥ 0
Initialize: w1 = 0, ḡ0 = 0.
for t = 1,2,3, . . . do
1. Given the function ft , compute subgradient gt ∈ ∂ ft(wt).
2. Compute the dual average

ḡt =
t−1
t

ḡt−1+
1
t
gt .

3. Let λRDAt = λ+ γρ/
√
t, and compute wt+1 entry-wise:

w(i)
t+1 =











0 if
∣

∣

∣
ḡ(i)t
∣

∣

∣
≤ λRDAt ,

−
√
t
γ

(

ḡ(i)t −λRDAt sgn
(

ḡ(i)t
)

)

otherwise,
i= 1, . . . ,n. (30)

end for

6. Computational Experiments with !1-Regularization

In this section, we provide computational experiments of the !1-RDA method on the MNIST data
set of handwritten digits (LeCun et al., 1998). Our purpose here is mainly to illustrate the basic
characteristics of the !1-RDA method, rather than comprehensive performance evaluation on a wide
range of data sets. First, we describe a variant of the !1-RDA method that is capable of getting
enhanced sparsity in the solution.

6.1 Enhanced !1-RDA Method

The enhanced !1-RDA method shown in Algorithm 2 is a special case of Algorithm 1. It is derived
by setting Ψ(w) = λ‖w‖1, βt = γ

√
t, and replacing h(w) with a parameterized version

hρ(w) =
1
2
‖w‖22+ρ‖w‖1, (31)

where ρ≥ 0 is a sparsity-enhancing parameter. Note that hρ(w) is strongly convex with modulus 1
for any ρ ≥ 0. Hence the convergence rate of this algorithm is the same as if we choose h(w) =
(1/2)‖w‖22. In this case, the Equation (8) becomes

wt+1 = argmin
w

{

〈ḡt ,w〉+λ‖w‖1+
γ√
t

(

1
2
‖w‖22+ρ‖w‖1

)}

= argmin
w

{

〈ḡt ,w〉+λRDAt ‖w‖1+
γ

2
√
t
‖w‖22

}

,

where λRDAt = λ+γρ/
√
t. The above minimization problem has a closed-form solution given in (30)

(see Appendix A for the derivation). By letting ρ > 0, the effective truncation threshold λRDAt is
larger than λ, especially in the initial phase of the online process. For problems without explicit !1-
regularization in the objective function, that is, when λ= 0, this still gives a diminishing truncation
threshold γρ/

√
t.
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Figure 1: Sample images from the MNIST data set, with gray-scale from 0 to 255.

We can also restrict !1-regularization on part of the optimization variables only. For example,
in support vector machines or logistic regression, we usually want the bias terms to be free of
regularization. In this case, we can simply replace λRDAt by 0 for the corresponding coordinates
in (30).

6.2 Experiments on the MNIST Data Set

Each image in the MNIST data set is represented by a 28× 28 gray-scale pixel-map, for a total of
784 features. Each of the 10 digits has roughly 6,000 training examples and 1,000 testing examples.
Some of the samples are shown in Figure 1. From the perspective of using stochastic and online
algorithms, the number of features and size of the data set are considered very small. Nevertheless,
we choose this data set because the computational results are easy to visualize. No preprocessing of
the data is employed.

We use !1-regularized logistic regression to do binary classification on each of the 45 pairs
of digits. More specifically, let z = (x,y) where x ∈ R784 represents a gray-scale image and y ∈
{+1,−1} is the binary label, and let w = (w̃,b) where w̃ ∈ R784 and b is the bias. Then the loss
function and regularization term in (1) are

f (w,z) = log
(

1+ exp
(

−y(w̃T x+b)
))

, Ψ(w) = λ‖w̃‖1.

Note that we do not apply regularization on the bias term b. In the experiments, we compare the
(enhanced) !1-RDA method (Algorithm 2) with the SGD method

w(i)
t+1 = w(i)

t −αt
(

g(i)t +λsgn(w(i)
t )
)

, i= 1, . . . ,n,

and the TG method (29) with θ= ∞. These three online algorithms have similar convergence rates
and the same order of computational cost per iteration. We also compare them with the batch
optimization approach, more specifically solving the empirical minimization problem (2) using an
efficient interior-point method (IPM) of Koh et al. (2007).

Each pair of digits have about 12,000 training examples and 2,000 testing examples. We use
online algorithms to go through the (randomly permuted) data only once, therefore the algorithms
stop at T = 12,000. We vary the regularization parameter λ from 0.01 to 10. As a reference, the
maximum λ for the batch optimization case (Koh et al., 2007) is mostly in the range of 30−50 (be-
yond which the optimal weights are all zeros). In the !1-RDAmethod, we use γ= 5,000, and set ρ to
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λ= 0.01 λ= 0.03 λ= 0.1 λ= 0.3 λ= 1 λ= 3 λ= 10

SGD

TG

RDA

IPM

SGD

TG

RDA

wT

wT

wT

w"

w̄T

w̄T

w̄T

Figure 2: Sparsity patterns of wT and w̄T for classifying the digits 6 and 7 when varying the pa-
rameter λ from 0.01 to 10 in !1-regularized logistic regression. The background gray
represents the value zero, bright spots represent positive values and dark spots represent
negative values. Each column corresponds to a value of λ labeled at the top. The top
three rows are the weights wT (without averaging) from the last iteration of the three
online algorithms; the middle row shows optimal solutions of the batch optimization
problem solved by interior-point method (IPM); the bottom three rows show the averaged
weights w̄T in the three online algorithms. Both the TG and RDA methods were run with
parameters for enhanced !1-regularization, that is, K = 10 for TG and γρ= 25 for RDA.
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Left: K = 1 for TG, ρ= 0 for RDA Right: K = 10 for TG, γρ= 25 for RDA

Figure 3: Number of non-zeros (NNZs) in wt for the three online algorithms (classifying the pair 6
and 7). The left column shows SGD, TG with K = 1, and RDA with ρ = 0; the right
column shows SGD, TG with K = 10, and RDA with γρ= 25. The same curves for SGD
are plotted in both columns for clear comparison. The two rows correspond to λ = 0.1
and λ= 10, respectively.

be either 0 for basic regularization, or 0.005 (effectively γρ= 25) for enhanced regularization effect.
These parameters are chosen by cross-validation. For the SGD and TG methods, we use a constant
stepsize α= (1/γ)

√

2/T for comparable convergence rate; see (19) and related discussions. In the
TG method, the period K is set to be either 1 for basic regularization (same as FOBOS), or 10 for
periodic enhanced regularization effect.

Figure 2 shows the sparsity patterns of the solutions wT and w̄T for classifying the digits 6 and 7.
The algorithmic parameters used are: K = 10 for the TG method, and γρ= 25 for the RDA method.
It is clear that the RDA method gives more sparse solutions than both SGD and TG methods. The
sparsity pattern obtained by the RDA method is very similar to the batch optimization results solved
by IPM, especially for larger λ.
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Figure 4: Tradeoffs between testing error rates and NNZs in solutions when varying λ from 0.01
to 10 (for classifying 6 and 7). The left column shows SGD, TG with K = 1, RDA with
ρ= 0, and IPM. The right column shows SGD, TG with K = 10, RDA with γρ= 25, and
IPM. The same curves for SGD and IPM are plotted in both columns for clear comparison.
The top two rows shows the testing error rates and NNZs of the final weights wT , and the
bottom two rows are for the averaged weights w̄T . All horizontal axes have logarithmic
scale. For vertical axes, only the two plots in the first row have logarithmic scale.
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Figure 5: Testing error rates and NNZs in solutions for the RDA method when varying the param-
eter γ from 1,000 to 10,000, and setting ρ such that γρ= 25. The three rows show results
for λ = 0.1, 1, and 10, respectively. The corresponding batch optimization results found
by IPM are shown as a horizontal line in each plot.

To have a better understanding of the behaviors of the algorithms, we plot the number of non-
zeros (NNZs) in wt in Figure 3. Only the RDAmethod and TG with K = 1 give explicit zero weights
using soft-thresholding at every step. In order to count the NNZs in all other cases, we have to set
a small threshold for rounding the weights to zero. Considering that the magnitudes of the largest
weights in Figure 2 are mostly on the order of 10−3, we set 10−5 as the threshold and verified that
rounding elements less than 10−5 to zero does not affect the testing errors. Note that we do not
truncate the weights for RDA and TG with K = 1 further, even if some of their components are
below 10−5. It can be seen that the RDA method maintains a much more sparse wt than the other
online algorithms. While the TG method generates more sparse solutions than the SGD method
when λ is large, the NNZs in wt oscillates with a very big range. The oscillation becomes more
severe with K = 10. In contrast, the RDA method demonstrates a much more smooth behavior
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λ=0.1

λ=1

λ=10

IPM 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 6: Sparsity patterns of wT by varying the parameter γ in the RDA method from 1,000 to
10,000 (for classifying the pair 6 and 7). The first column shows results of batch op-
timization using IPM, and the other 10 columns show results of RDA method using γ
labeled at the top.

of the NNZs. For the RDA method, the effect of enhanced regularization using γρ = 25 is more
pronounced for relatively small λ.

Next we illustrate the tradeoffs between sparsity and testing error rates. Figure 4 shows that
the solutions obtained by the RDA method match the batch optimization results very well. Since
the performance of the online algorithms vary when the training data are given in different random
sequences (permutations), we run them on 100 randomly permuted sequences of the same training
set, and plot the means and standard deviations shown as error bars. For the SGD and TG methods,
the testing error rates of wT vary a lot for different random sequences. In contrast, the RDA method
demonstrates very robust performance (small standard deviations) for wT , even though the theorems
only give convergence bound for the averaged weight w̄T . For large values of λ, the averaged
weights w̄T obtained by SGD and TG methods actually have much smaller error rates than those of
RDA and batch optimization. This can be explained by the limitation of the SGD and TG methods
in obtaining sparse solutions: these lower error rates are obtained with much more nonzero features
than used by the RDA and batch optimization methods.

Figure 5 shows the results of choosing different values for the parameter γ in the RDA method.
We see that smaller values of γ, which corresponds to faster learning rates, lead to more sparse wT
and higher testing error rates; larger values of γ result in less sparse wT with lower testing error
rates. But interestingly, the effects on the averaged solution w̄T is almost opposite: smaller values
of γ lead to less sparse w̄T (in this case, we count the NNZs using the rounding threshold 10−5).
For large regularization parameter λ, smaller values of γ also give lower testing error rates. Figure 6
shows the sparsity patterns of wT when varying γ from 1,000 to 10,000. We see that smaller values
of γ give more sparse wT , which are also more scattered like the batch optimization solution by IPM.

Figure 7 shows summary of classification results for all the 45 pairs of digits. For clarity, we only
show results of the !1-RDA method and batch optimization using IPM. We see that the solutions
obtained by the !1-RDA method demonstrate very similar tradeoffs between sparsity and testing
error rates as rendered by the batch optimization solutions.

Finally, we note that one of the main reasons for regularization in machine learning is to prevent
overfitting, meaning that appropriate amount of regularization may actually reduce the testing error
rate. In order to investigate the possibility of overfitting, we also conducted experiments by subsam-
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Figure 7: Binary classification for all 45 pairs of digits. The images in the lower-left triangular
area show sparsity patterns of wT with λ = 1, obtained by the !1-RDA method with γ =
5000 and ρ= 0.005. The plots in the upper-right triangular area show tradeoffs between
sparsity and testing error rates, by varying λ from 0.1 to 10. The solid circles and solid
squares show error rates and NNZs in wT , respectively, using IPM for batch optimization.
The hollow circles and hollow squares show error rates and NNZs of wT , respectively,
using the !1-RDA method. The vertical bars centered at hollow circles and squares show
standard deviations by running on 100 different random permutations of the same training
data. The scales of the error rates (in percentages) are marked on the left vertical axes,
and the scales of the NNZs are marked on the right-most vertical axes.
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Figure 8: Tradeoffs between testing error rates and NNZs in solutions when varying λ from 0.01
to 10 (for classifying 3 and 8). In order to investigate overfitting, we used 1/10 subsam-
pling of the training data. The error bars show standard deviations of using 10 sets of
subsamples. For the three online algorithms, we averaged results on 10 random permuta-
tions for each of the 10 subsets. The left column shows SGD, TG with K = 1, RDA with
ρ= 0, and IPM. The right column shows SGD, TG with K = 10, RDA with γρ= 25, and
IPM. The same curves for SGD and IPM are plotted in both columns for clear compari-
son.
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pling the training set. More specifically, we randomly partition the training sets in 10 subsets, and
use each subset for training but still test on the whole testing set. The same algorithmic parameters γ
and ρ are used as before. Figure 8 shows the results of classifying the more difficult pair 3 and 8.
We see that overfitting does occur for batch optimization using IPM. Online algorithms, thanks for
their low accuracy in solving the optimization problems, are mostly immune from overfitting.

7. Discussions and Extensions

This paper is inspired by several work in the emerging area of structural convex optimization (Nes-
terov, 2008). The key idea is that by exploiting problem structure that are beyond the conventional
black-box model (where only function values and gradient information are allowed), much more
efficient first-order methods can be developed for solving structural convex optimization problems.
Consider the following problem with two separate parts in the objective function:

minimize
w

f (w)+Ψ(w) (32)

where the function f is convex and differentiable on domΨ, its gradient ∇ f (w) is Lipschitz-
continuous with constant L, and the function Ψ is a closed proper convex function. Since Ψ in
general can be non-differentiable, the best convergence rate for gradient-type methods that are based
on the black-box model is O(1/

√
t) (Nemirovsky and Yudin, 1983). However, if the function Ψ is

simple, meaning that we are able to find closed-form solution for the auxiliary optimization problem

minimize
w

{

f (u)+ 〈∇ f (u),w−u〉+
L
2
‖w−u‖22+Ψ(w)

}

, (33)

then it is possible to develop accelerated gradient methods that have the convergence rate O(1/t2)
(Nesterov, 1983, 2004; Tseng, 2008; Beck and Teboulle, 2009). Accelerated first-order meth-
ods have also been developed for solving large-scale conic optimization problems (Auslender and
Teboulle, 2006; Lan et al., 2009; Lu, 2009).

The story is a bit different for stochastic optimization. In this case, the convergence rate
O(1/

√
t) cannot be improved in general for convex loss functions with a black-box model. When

the loss function f (w,z) have better properties such as differentiability, higher orders of smooth-
ness, and strong convexity, it is tempting to expect that better convergence rates can be achieved.
Although these better properties of f (w,z) are inherited by the expected function ϕ(w)! Ez f (w,z),
almost none of them can really help (Nesterov and Vial, 2008, Section 4). One exception is when
the objective function is strongly convex. In this case, the convergence rate for stochastic optimiza-
tion problems can be improved to O(ln t/t) (e.g., Nesterov and Vial, 2008), or even O(1/t) (e.g.,
Polyak and Juditsky, 1992; Nemirovski et al., 2009). For online convex optimization problems,
the regret bound can be improved to O(ln t) (Hazan et al., 2006; Bartlett et al., 2008). But these
are still far short of the best complexity result for deterministic optimization with strong convexity
assumptions; see, for example, Nesterov (2004, Chapter 2) and Nesterov (2007).

We discuss further the case with a stronger smoothness assumption on the stochastic objective
functions. In particular, let f (w,z) be differentiable with respect to w for each z, and the gradient,
denoted g(w,z), be Lipschitz continuous. In other words, there exists a constant L such that for any
fixed z,

‖g(v,z)−g(w,z)‖∗ ≤ L‖v−w‖, ∀v,w ∈ domΨ. (34)
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Let ϕ(w) = Ez f (w,z). Then ϕ is differentiable and ∇ϕ(w) = Ezg(w,z) (e.g., Rockafellar and Wets,
1982). By Jensen’s inequality, ∇ϕ(w) is also Lipschitz continuous with the same constant L. For
the regularization function Ψ, we assume there is a constant GΨ such that

|Ψ(v)−Ψ(w)|≤ GΨ‖v−w‖, ∀v,w ∈ domΨ.

In a black-box model, for any query point w, we are only allowed to query a stochastic gradient
g(w,z) and a subgradient of Ψ(w). We assume the stochastic gradients have bounded variance;
more specifically, let there be a constant Q such that

Ez‖g(w,z)−∇ϕ(w)‖2∗ ≤ Q2, ∀w ∈ domΨ. (35)

Under these assumptions and the black-box model, the optimal convergence rate for solving the
problem (1), according to the complexity theory of Nemirovsky and Yudin (1983), is

Eφ(wt)−φ" ≤ O(1)
(

L
t2

+
GΨ+Q√

t

)

.

Lan (2010) developed an accelerated mirror-descent stochastic approximation method to achieve
this rate. The stochastic nature of the algorithm dictates that the term O(1)(Q/

√
t) is inevitable in

the convergence bound. However, by using structural optimization techniques similar to (33), it is
possible to eliminate the term O(1)(GΨ/

√
t) and achieve

Eφ(wt)−φ" ≤ O(1)
(

L
t2

+
Q√
t

)

. (36)

Such a result was obtained by Hu et al. (2009). Their algorithm can be viewed as an accelerated
version of the FOBOS method (28). In each iteration of their method, the regularization term Ψ(w)
is discounted by a factor of Θ(t−3/2). In terms of obtaining the desired regularization effects (see
discussions in Section 5), this is even worse than theΘ(t−1/2) discount factor in the FOBOS method.
For the case of !1-regularization, this means using an even smaller truncation threshold Θ(t−3/2)λ.
Next, we give an accelerated version of the RDA method, which achieves the same improved con-
vergence rate (36), but also maintains the desired property of using the undiscounted regularization
at each iteration.

7.1 Accelerated RDA Method for Stochastic Optimization

Nesterov (2005) developed an accelerated version of the dual averaging method for solving smooth
convex optimization problems, where the uniform average of all past gradients is replaced by an
weighted average that emphasizes more recent gradients. Several variations (Nesterov, 2007; Tseng,
2008) were also developed for minimizing composite objective functions of the form (32). They all
have a convergence rate O(L/t2).

Algorithm 3 is our extension of Nesterov’s method for solving stochastic optimization problems
of the form (1). At the input, it needs a strongly convex function h and two positive sequences
{αt}t≥1 and {βt}t≥0. At each iteration t ≥ 1, it computes three primal vectors ut , vt , wt , and a
dual vector g̃t . Among them, ut is the point for querying a stochastic gradient, g̃t is an weighted
average of all past stochastic gradients, vt is the solution of an auxiliary minimization problem that
involves g̃t and the regularization term Ψ(w), and wt is the output vector. The computational effort
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Algorithm 3 Accelerated RDA method
Input:
• a strongly convex function h(w) with modulus 1 on domΨ.
• two positive sequences {αt}t≥1 and {βt}t≥0.

Initialize: set w0 = v0 = argminw h(w), A0 = 0, and g̃0 = 0.
for t = 1,2,3, . . . do
1. Calculate the coefficients

At = At−1+αt , θt =
αt
At

.

2. Compute the query point
ut = (1−θt)wt−1+θtvt−1.

3. Query stochastic gradient gt = g(ut ,zt), and update the weighted average g̃t :

g̃t = (1−θt)g̃t−1+θtgt .

4. Solve for the exploration point

vt = argmin
w

{

〈g̃t ,w〉+Ψ(w)+
L+βt
At

h(w)
}

5. Compute wt by interpolation

wt = (1−θt)wt−1+θtvt .

end for

per iteration is on the same order as Algorithm 1. The additional costs are mainly the two vector
interpolations (convex combinations) for computing ut and wt . The following theorem gives an
estimate of its convergence rate.

Theorem 6 Assume the conditions (34) and (35) hold, and the problem (1) has an optimal solu-
tion w" with optimal value φ". In Algorithm 3, if the sequence {αt}t≥1 and its accumulative sums
At = At−1+αt satisfy the condition α2t ≤ At for all t ≥ 1, then

Eφ(wt)−φ" ≤
L
At
h(w")+

1
At

(

βth(w")+Q2
t

∑
τ=1

α2τ
2βτ−1

)

.

The proof of this theorem is given in Appendix D.
If we choose the two input sequences as

αt = 1, ∀ t ≥ 1,
βt = γ

√
t+1, ∀ t ≥ 0,

then At = t, θt = 1/t, and g̃t = ḡt is the uniform average of all past gradients. In this case, the
minimization problem in Step 4 is very similar to that in Step 3 of Algorithm 1. Let D2 be an upper
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bound on h(w") and set γ= Q/D. Then we have

Eφ(wt)−φ" ≤
LD2

t
+
2QD√
t
.

To achieve the optimal convergence rate stated in (36), we choose

αt =
t
2
, ∀ t ≥ 1, (37)

βt = γ
(t+1)3/2

2
, ∀ t ≥ 0. (38)

In this case,

At =
t

∑
τ=1

ατ =
t(t+1)
4

, θt =
αt
At

=
2

t+1
, ∀ t ≥ 1.

It is easy to verify that the condition α2t ≤ At is satisfied. The following corollary is proved in
Appendix D.1.

Corollary 7 Assume the conditions (34) and (35) hold, and h(w")≤D2. If the two input sequences
in Algorithm 3 are chosen as in (37) and (38) with γ= Q/D, then

Eφ(wt)−φ" ≤
4LD2

t2
+
4QD√
t
.

We can also give high probability bound under more restrictive assumptions. Instead of requir-
ing the deterministic condition ‖g(w,z)−∇ϕ(w)‖2∗ ≤ Q2 for all z and all w ∈ domΨ, we adopt a
weaker condition used in Nemirovski et al. (2009) and Lan (2010):

E
[

exp
(

‖g(w,z)−∇ϕ(w)‖2∗
Q2

)]

≤ exp(1), ∀w ∈ domΨ. (39)

It is not hard to see that this implies (35) by using Jensen’s inequality.

Theorem 8 Suppose domΨ is compact, say h(w) ≤ D2 for all w ∈ domΨ, and let the assump-
tions (34) and (39) hold. If the two input sequences in Algorithm 3 are chosen as in (37) and (38)
with γ= Q/D, then for any δ ∈ (0,1), with probability at least 1−δ,

φ(wt)−φ" ≤
4LD2

t2
+
4QD√
t
+
QD√
t

(

ln(2/δ)+2
√

ln(2/δ)
)

Compared with the bound on expectation, the additional penalty in the high probability bound de-
pends only on Q, not L. This theorem is proved in Appendix D.2.

In the special case of deterministic optimization, that is, when Q= 0, we have γ=Q/D= 0 and
βt = 0 for all t ≥ 0. Then Algorithm 3 reduces to a variant of Nesterov’s method given in Tseng
(2008, Section 4), which has convergence rate φ(wt)−φ" ≤ 4LD2/t2.

For stochastic optimization problems, the above theoretical bounds show that the algorithm can
be very effective when Q is much smaller than LD. One way to make this happen is to use a mini-
batch approach. More specifically, at each iteration of Algorithm 3, let gt itself be the average of
the stochastic gradients at a small batch of samples computed at ut . We leave the empirical studies
of Algorithm 3 and other accelerated schemes for future investigation.
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7.2 The p-Norm RDA Methods

The p-norm RDA methods are special cases of Algorithm 1 in which the auxiliary functions h (not
the regularization functions Ψ) are squared p-norms. They offer more flexibility than 2-norm based
RDA methods in adapting to the geometry of the learning problems.

Recall that for p ≥ 1, the p-norm of w ∈ Rn is defined as ‖w‖p =
(

∑n
i=1 |w(i)|p

)1/p. If p and q
satisfy the equality 1/p+1/q= 1, then the norms ‖w‖p and ‖g‖q are dual to each other. Moreover,
the pair of functions (1/2)‖w‖2p and (1/2)‖g‖2q are conjugate functions of each other. As a result,
their gradient mappings are a pair of inverse mappings. More formally, let p ∈ (1,2] and q =
p/(p−1), and define the mapping ϑ : E → E∗ with

ϑi(w) = ∇i

(

1
2
‖w‖2p

)

=
sgn
(

w(i))
∣

∣w(i)
∣

∣

p−1

‖w‖p−2p
, i= 1, . . . ,n,

and the inverse mapping ϑ−1 : E∗ → E with

ϑ−1
i (g) = ∇i

(

1
2
‖g‖2q

)

=
sgn
(

g(i)
)
∣

∣g(i)
∣

∣

q−1

‖g‖q−2q
, i= 1, . . . ,n.

These mappings are often called link functions in machine learning (e.g., Gentile, 2003).
Again we focus on the !1-RDA case with Ψ(w) = λ‖w‖1. For any p ∈ (1,2], the function

(1/2)‖w‖2p is strongly convex with respect to ‖ ·‖p with the convexity parameter p−1 (e.g., Juditsky
and Nemirovski, 2008). In order to have an auxiliary strongly convex function h with convexity
parameter 1, we define

h(w) =
1

2(p−1)
‖w‖2p.

Using βt = γ
√
t for some γ> 0,, the Equation (8) in Algorithm 1 becomes

wt+1 = argmin
w

{

〈ḡt ,w〉+λ‖w‖1+
γ√
t

1
2(p−1)

‖w‖2p
}

.

The optimality condition of the above minimization problem (Rockafellar, 1970, Section 27) states
that there exists a subgradient s ∈ ∂‖wt+1‖1 such that

ḡt +λs+
γ

(p−1)
√
t
ϑ(wt+1) = 0.

Following similar arguments as in Appendix A, we find that it has a closed-form solution

wt+1 = ϑ−1 (ĝt) ,

where the elements of ĝt are given as

ĝ(i)t =











0 if
∣

∣

∣
ḡ(i)t
∣

∣

∣
≤ λ,

−
(p−1)

√
t

γ

(

ḡ(i)t −λsgn
(

ḡ(i)t
)

)

otherwise,
i= 1, . . . ,n.

When p = q = 2, ϑ and ϑ−1 are identity maps and the solution is the same as (10). If p is close
to 1 (q 3 2), the map ϑ−1 penalizes small entries of the truncated vector ĝt to be even smaller.
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As an interesting property of the map ϑ−1, we always have ‖wt+1‖p = ‖ĝt‖q (e.g., Gentile, 2003,
Lemma 1).

In terms of regret bound or convergence rate, our results in Sections 3 and 4 apply directly.
More specifically, for stochastic learning problems, let D2p = (1/2(p− 1))‖w"‖2p, and Gq be an
upper bound on ‖gt‖q for all t ≥ 1. Then by Corollary 2 and Theorem 3,

Eφ(w̄t)−φ" ≤

(

γD2p+
G2q
γ

)

1√
t
.

The optimal choice of γ is γ" = Gq/Dp, which results in

Eφ(w̄t)−φ" ≤

√

2
p−1

Gq‖w"‖p√
t

=
√

2(q−1)
Gq‖w"‖p√

t
.

In order to gain further insight, we transform the convergence bound in terms of !∞ and !1 norms.
Let G∞ be an upper bound on ‖gt‖∞, that is,

∣

∣

∣
g(i)t
∣

∣

∣
≤ G∞, ∀ i= 1, . . . ,n, ∀ t ≥ 1.

Then ‖gt‖q ≤ G∞n1/q. If we choose q = lnn (assuming n ≥ e2 so that q ≥ 2), then ‖gt‖q ≤
G∞n1/ lnn = G∞e. Next we substitute G∞e for Gq and use the fact ‖w"‖p ≤ ‖w"‖1, then

Eφ(w̄t)−φ" ≤
√

2(lnn−1)
eG∞‖w"‖1√

t
= O

(√
lnnG∞‖w"‖1√

t

)

.

For 2-norm based RDA method, we have ‖gt‖2 ≤ G∞
√
n, thus

Eφ(w̄t)−φ" ≤
√
2nG∞‖w"‖2√

t
.

Therefore, for learning problems in which the features are dense (i.e., G2 close to G∞
√
n) and

w" is indeed very sparse (i.e., ‖w"‖2 close to ‖w"‖1), using the p-norm RDA method, with p =
lnn/(lnn−1), can lead to faster convergence.

The above analysis of convergence rates matches that for the p-norm based SMIDAS (Stochas-
tic MIrror Descent Algorithm made Sparse) algorithm developed in Shalev-Shwartz and Tewari
(2009). However, like other algorithms of the mirror-descent type, including TG (Langford et al.,
2009) and FOBOS (Duchi and Singer, 2009), SMIDAS uses a truncation threshold Θ(1/

√
t)λ in ob-

taining sparse solutions. In contrast, the p-norm based RDA method uses a much more aggressive
threshold λ. This is their major difference.

The accelerated RDA method (Algorithm 3) also works in the p-norm setting.

7.3 Connection with Incremental Subgradient Methods

As an intermediate model between deterministic and stochastic optimization problems, consider the
problem

minimize
w

m

∑
k=1

fk(w)+Ψ(w), (40)
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which can be considered as a special case of (1) where the random variable z has a uniform distribu-
tion on a finite support; more specifically, fk(w) = (1/m) f (w,zk) for k = 1, . . . ,m. The unregular-
ized version, that is, with Ψ(w) = 0, has been addressed by incremental subgradient methods (e.g.,
Tseng, 1998; Nedić and Bertsekas, 2001). At each iteration of such methods, a step is taken along
the negative subgradient of a single function fk, which is chosen either in a round-robin manner or
randomly with uniform distribution. The randomized version is equivalent to the SGD method. The
RDA methods are well suited for solving the regularized version (40).

Randomized incremental subgradient methods with Markov jumps have also been developed
for solving (40) with Ψ(w) = 0 (Johansson et al., 2009; Ram et al., 2009). In such methods, the
functions fk are picked randomly but not independently: they follow the transition probabilities of
a Markov chain that has the uniform distribution. It would be very interesting to investigate the
convergence of the RDA methods when the random examples are drawn according to a Markovian
chain. This is particularly attractive for online learning problems where the assumption of i.i.d.
samples does not hold.
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Appendix A. Closed-form Solution for !1-RDA Method

For RDA method with !1-regularization, we set Ψ(w) = λ‖w‖1 and use h(w) = (1/2)‖w‖22, or use
hρ(w) in (31) for enhanced regularization effect. In such cases, the minimization problem in step 3
of Algorithm 1 can be decomposed into n independent scalar minimization problems, each of the
form

minimize
ω∈R

ηtω+λt |ω|+
γt
2
ω2,

where the coefficients λt > 0, γt > 0, and ηt can be arbitrary. This is an unconstrained nonsmooth
optimization problem. Its optimality condition (Rockafellar, 1970, Section 27) states that ω" is an
optimal solution if and only if there exists ξ ∈ ∂|ω"| such that

ηt +λtξ+ γtω
" = 0. (41)

The subdifferential of |ω| is

∂|ω|=







{ξ ∈ R | −1≤ ξ≤ 1} if ω= 0,
{1} if ω> 0,
{−1} if ω< 0.

We discuss the solution to (41) in three different cases:
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• If |ηt | ≤ λt , then ω" = 0 and ξ = −ηt/λt ∈ ∂|0| satisfy (41). We also show that there is no
solution other than ω" = 0. If ω> 0, then ξ= 1, and

ηt +λt + γtω> ηt +λt ≥ 0.

Similarly, if ω< 0, then ξ=−1, and

ηt −λt + γtω< ηt −λt ≤ 0.

In either cases when ω 0= 0, the optimality condition (41) cannot be satisfied.

• If ηt > λt > 0, we must have ω" < 0 and ξ=−1. More specifically,

ω" =−
1
γt
(ηt −λt).

• If ηt <−λt < 0, we must have ω" > 0 and ξ= 1. More specifically,

ω" =−
1
γt
(ηt +λt).

The above discussions can be summarized as

ω" =







0 if |ηt |≤ λt ,

−
1
γt

(

ηt −λt sgn(ηt)
)

otherwise.

This is the closed-form solution for each component of wt+1 in the !1-RDA method.

Appendix B. Regret Analysis of RDA Method

In this Appendix, we prove Theorem 1. First, let st denote the sum of the subgradients obtained up
to time t in the RDA method, that is,

st =
t

∑
τ=1

gτ = tḡt , (42)

with the initialization s0 = 0. Then the Equation (8) in Algorithm 1 is equivalent to

wt+1 = argmin
w

{

〈st ,w〉+ tΨ(w)+βth(w)
}

. (43)

This extends the simple dual averaging scheme of Nesterov (2009), where Ψ(w) reduces to the
indicator function of a closed convex set. Compared with the analysis in Nesterov (2009), the
assumption (7), Lemma 11 and Lemma 12 (below) are new essentials that make the proof work. We
also provide refined bounds on the primal and dual variables that relate to the regret with respect to
an arbitrary comparison point; see part (b) and (c) of Theorem 1. It seems that the weighted dual
averaging scheme of Nesterov (2009) cannot be extended when Ψ is a nontrivial regularization
function.
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B.1 Conjugate Functions and Their Properties

Let w0 be the unique minimizer of h(w). By the assumption (7), we have

w0 = argmin
w

h(w) ∈ Argmin
w

Ψ(w).

Let {βt}t≥1 be the input sequence to Algorithm 1, which is nonnegative and nondecreasing. In
accordance with the assumption (13), we let

β0 =max{σ, β1}> 0, (44)

where σ be the convexity parameter of Ψ(w). For each t ≥ 0, we define two conjugate-type func-
tions:

Ut(s) = max
w∈FD

{

〈s,w−w0〉− tΨ(w)
}

, (45)

Vt(s) =maxw
{

〈s,w−w0〉− tΨ(w)−βth(w)
}

, (46)

where FD =
{

w ∈ domΨ |h(w) ≤ D2}. The maximum in (45) is always achieved because FD is
a nonempty compact set (which always contains w0). Because of (44), we have σt+βt ≥ β0 > 0
for all t ≥ 0, which means the functions tΨ(w)+ βth(w) are all strongly convex. Therefore, the
maximum in (46) is always achieved, and the maximizer is unique. As a result, we have domUt =
domVt = E∗ for all t ≥ 0. Moreover, by the assumption Ψ(w0) = h(w0) = 0, both of the functions
are nonnegative.

The lemma below is similar to Lemma 2 of Nesterov (2009), but with our new definitions ofUt
and Vt . We include the proof for completeness.

Lemma 9 For any s ∈ E∗ and t ≥ 0, we have

Ut(s)≤Vt(s)+βtD2.

Proof Starting with the definition ofUt(s) and using FD = {w ∈ domΨ |h(w)≤ D2},

Ut(s) = max
w∈FD

{〈s,w−w0〉− tΨ(w)}

=max
w
min
β≥0

{

〈s,w−w0〉− tΨ(w)+β(D2−h(w))
}

≤min
β≥0

max
w

{

〈s,w−w0〉− tΨ(w)+β(D2−h(w))
}

≤max
w

{

〈s,w−w0〉− tΨ(w)+βt(D2−h(w))
}

=Vt(s)+βtD2.

For the second equality and the first inequality above, we used standard duality arguments and the
max-min inequality; see, for example, Boyd and Vandenberghe (2004, Section 5.4.1).

Let πt(s) denote the unique maximizer in the definition of Vt(s); in other words,

πt(s) = argmax
w

{

〈s,w−w0〉− tΨ(w)−βth(w)
}

= argmin
w

{

〈−s,w〉+ tΨ(w)+βth(w)
}

.
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Comparing with the Equation (43), we have

wt+1 = πt(−st), ∀ t ≥ 0.

Lemma 10 The function Vt is convex and differentiable. Its gradient is given by

∇Vt(s) = πt(s)−w0 (47)

Moreover, the gradient is Lipschitz continuous with constant 1/(σt+βt); that is

‖∇Vt(s1)−∇Vt(s2)‖ ≤
1

σt+βt
‖s1− s2‖∗, ∀s1,s2 ∈ E∗.

Proof Because the function tΨ(w)+βth(w) is a strongly convex with convexity parameter σt+βt ,
this lemma follows from classical results in convex analysis; see, for example, Hiriart-Urruty and
Lemaréchal (2001, Chapter E, Theorem 4.2.1), or Nesterov (2005, Theorem 1).

A direct consequence of Lemma 10 is the following inequality:

Vt(s+g)≤Vt(s)+ 〈g,∇Vt(s)〉+
1

2(σt+βt)
‖g‖2∗, ∀s,g ∈ E∗. (48)

For a proof, see, for example, Nesterov (2004, Theorem 2.1.5).

Lemma 11 For each t ≥ 1, we have

Vt(−st)+Ψ(wt+1)≤Vt−1(−st)+(βt−1−βt)h(wt+1).

Proof We start with the definition of Vt−1(−st):

Vt−1(−st) =maxw {〈−st ,w−w0〉− (t−1)Ψ(w)−βt−1h(w)}

≥ 〈−st ,wt+1−w0〉− (t−1)Ψ(wt+1)−βt−1h(wt+1)
=
{

〈−st ,wt+1−w0〉− tΨ(wt+1)−βth(wt+1)
}

+Ψ(wt+1)+(βt −βt−1)h(wt+1).

Comparing with (43) and (46), we recognize that the expression in the last braces above is precisely
Vt(−st). Making the substitution and rearranging terms give the desired result.

Since by assumption h(wt+1)≥ 0 and the sequence {βt}t≥1 is nondecreasing, we have

Vt(−st)+Ψ(wt+1)≤Vt−1(−st), ∀ t ≥ 2. (49)

For t = 1, Lemma (11) gives

V1(−s1)+Ψ(w2)≤V0(−s1)+(β0−β1)h(w2). (50)

Since it may happen that β0 > β1, we need the following upper bound on h(w2).
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Lemma 12 Assume max{σ, β1}> 0, and let h(w) = (1/σ)Ψ(w) if σ> 0. Then

h(w2)≤
2‖g1‖2∗
(β1+σ)2

. (51)

Proof For t = 1, we have w1 =w0,Ψ(w1) =Ψ(w0) = 0, h(w1) = h(w0) = 0, and ḡ1 = g1. Since w2
is the minimizer in (43) for t = 1, we have

〈g1,w2〉+Ψ(w2)+β1h(w2)≤ 〈g1,w1〉+Ψ(w1)+β1h(w1) = 〈g1,w1〉.

Therefore,
Ψ(w2)+β1h(w2)≤ 〈g1,w1−w2〉 ≤ ‖g1‖∗‖w2−w1‖.

On the other hand, by strong convexity of Ψ(w) and h(w), we have

Ψ(w2)+β1h(w2)≥
σ+β1
2

‖w2−w1‖2.

Combining the last two inequalities together, we have

Ψ(w2)+β1h(w2)≤
2‖g1‖2∗
σ+β1

.

By assumption, if σ= 0, we must have β1 > 0. In this case, since Ψ(w2)≥ 0, we have

β1h(w2)≤Ψ(w2)+β1h(w2)≤
2‖g1‖2∗
β1

=⇒ h(w2)≤
2‖g1‖2∗
β21

=
2‖g1‖2∗
(σ+β1)2

.

If σ> 0, we have Ψ(w) = σh(w) by assumption, and therefore

Ψ(w2)+β1h(w2) = (σ+β1)h(w2)≤
2‖g1‖2∗
σ+β1

,

which also results in (51).

B.2 Bounding the Regret

To measure the quality of the solutions w1, . . . ,wt , we define the following gap sequence:

δt = max
w∈FD

{

t

∑
τ=1

(

〈gτ,wτ−w〉+Ψ(wτ)
)

− tΨ(w)

}

, t = 1,2,3, . . . . (52)

The gap δt is an upper bound on the regret Rt(w) for all w ∈ FD. To see this, we use the assumption
w ∈ FD and convexity of ft(w) in the following:

δt ≥
t

∑
τ=1

(

〈gτ,wτ−w〉+Ψ(wτ)
)

− tΨ(w)

≥
t

∑
τ=1

(

fτ(wτ)− fτ(w)+Ψ(wτ)
)

− tΨ(w)

=
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)
)

−
t

∑
τ=1

(

fτ(w)+Ψ(w)
)

= Rt(w). (53)
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We can also derive an upper bound on δt . For this purpose, we add and subtract the sum∑tτ=1〈gτ,w0〉
in the definition (52), which leads to

δt =
t

∑
τ=1

(

〈gτ,wτ−w0〉+Ψ(wτ)
)

+max
w∈FD

{

〈st ,w0−w〉− tΨ(w)
}

. (54)

We observe that the maximization term in (54) is in factUt(−st). Therefore, by applying Lemma 9,
we have

δt ≤
t

∑
τ=1

(

〈gτ,wτ−w0〉+Ψ(wτ)
)

+Vt(−st)+βtD2. (55)

Next, we show that Δt defined in (14) is an upper bound for the right-hand side of the inequal-
ity (55). For any τ≥ 2, we have

Vτ(−sτ)+Ψ(wτ+1)≤Vτ−1(−sτ)
=Vτ−1(−sτ−1−gτ)

≤Vτ−1(−sτ−1)+ 〈−gτ,∇Vτ−1(−sτ−1)〉+
‖gτ‖2∗

2(σ(τ−1)+βτ−1)

=Vτ−1(−sτ−1)+ 〈−gτ,wτ−w0〉+
‖gτ‖2∗

2(σ(τ−1)+βτ−1)
,

where the four steps above used (49), (42), (48), and (47), respectively. Therefore,

〈gτ,wτ−w0〉+Ψ(wτ+1)≤Vτ−1(−sτ−1)−Vτ(−sτ)+
‖gτ‖2∗

2(σ(τ−1)+βτ−1)
, ∀τ≥ 2.

For τ= 1, we have a similar inequality

〈g1,w1−w0〉+Ψ(w2)≤V0(−s0)−V1(−s1)+
‖g1‖2∗
2β0

+(β0−β1)h(w2),

where the additional term (β0−β1)h(w2) comes from using (50). Summing the above inequalities
for τ= 1, . . . , t, and noting that V0(−s0) =V0(0) = 0, we arrive at

t

∑
τ=1

(

〈gτ,wτ−w0〉+Ψ(wτ+1)
)

+Vt(−st)≤ (β0−β1)h(w2)+
1
2

t

∑
τ=1

‖gτ‖2∗
σ(τ−1)+βτ−1

.

Using w1 = w0 ∈ ArgminwΨ(w), we have Ψ(wt+1) ≥ Ψ(w0) = Ψ(w1). Therefore, adding the
nonpositive quantity Ψ(w1)−Ψ(wt+1) to the left-hand side of the above inequality yields

t

∑
τ=1

(

〈gτ,wτ−w0〉+Ψ(wτ)
)

+Vt(−st)≤ (β0−β1)h(w2)+
1
2

t

∑
τ=1

‖gτ‖2∗
σ(τ−1)+βτ−1

. (56)

Combining the inequalities (53), (55) and (56), and using Lemma 12,

Rt(w)≤ δt ≤ βtD2+
1
2

t

∑
τ=1

‖gτ‖2∗
σ(τ−1)+βτ−1

+
2(β0−β1)‖g1‖2∗

(β1+σ)2
.

Finally using the assumption (12) and the definition of Δt in (14), we conclude

Rt(w)≤ δt ≤ Δt .

This proves the regret bound (15).

2582



REGULARIZED DUAL AVERAGING METHODS

B.3 Bounding the Primal Variable

We start with the optimality condition for the minimization problem in (43): there exist subgradients
bt+1 ∈ ∂Ψ(wt+1) and dt+1 ∈ ∂h(wt+1) such that

〈st + tbt+1+βtdt+1, w−wt+1〉 ≥ 0, ∀w ∈ domΨ. (57)

By the strong convexity of h and Ψ, we have for any w ∈ domΨ,

Ψ(w)≥Ψ(wt+1)+ 〈bt+1,w−wt+1〉+
σ
2
‖wt+1−w‖2, (58)

h(w)≥ h(wt+1)+ 〈dt+1,w−wt+1〉+
1
2
‖wt+1−w‖2. (59)

We multiply both sides of the inequality (58) by t, multiply both sides of the inequality (59) by βt ,
and then add them together. This gives

1
2
(σt+βt)‖wt+1−w‖2 ≤βth(w)−βth(wt+1)−〈tbt+1+βtdt+1,w−wt+1〉

+ tΨ(w)− tΨ(wt+1).

Using the optimality condition (57), we have

1
2
(σt+βt)‖wt+1−w‖2 ≤ βth(w)−βth(wt+1)+ 〈st ,w−wt+1〉+ tΨ(w)− tΨ(wt+1)

= βth(w)+
{

〈−st ,wt+1−w0〉− tΨ(wt+1)−βth(wt+1)
}

+ tΨ(w)+ 〈st ,w−w0〉.

Using (43), we recognize that the collection in the braces is precisely Vt(−st). Therefore

1
2
(σt+βt)‖wt+1−w‖2 ≤ βth(w)+Vt(−st)+ tΨ(w)+ 〈st ,w−w0〉. (60)

Now we expand the last term 〈st ,w−w0〉 using the definition of st :

〈st ,w−w0〉=
t

∑
τ=1

〈gτ,w−w0〉=
t

∑
τ=1

〈gτ,wτ−w0〉+
t

∑
τ=1

〈gτ,w−wτ〉.

By further adding and subtracting ∑tτ=1Ψ(wτ), the right-hand side of (60) becomes

βth(w)+
{

Vt(−st)+
t

∑
τ=1

(

〈gτ,wτ−w0〉+Ψ(wτ)
)

}

+
t

∑
τ=1

〈gτ,w−wτ〉+ tΨ(w)−
t

∑
τ=1

Ψ(wτ).

We recognize that the expression in the braces above is exactly the left-hand side in (56). Further-
more, by convexity of fτ for τ≥ 1,

t

∑
τ=1

〈gτ,w−wτ〉+ tΨ(w)−
t

∑
τ=1

Ψ(wτ)≤
t

∑
τ=1

(

fτ(w)− fτ(wτ)
)

+ tΨ(w)−
t

∑
τ=1

Ψ(wτ)

=
t

∑
τ=1

(

fτ(w)+Ψ(w)
)

−
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)
)

=−Rt(w).
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Putting everything together, and using (56), we have

1
2
(σt+βt)‖wt+1−w‖2 ≤ βth(w)+(β0−β1)h(w2)+

1
2

t

∑
τ=1

‖gτ‖2∗
σ(τ−1)+βτ−1

−Rt(w).

Finally, using w ∈ FD, Lemma 12 and the assumption (12), we conclude

1
2
(σt+βt)‖wt+1−w‖2 ≤ Δt −Rt(w),

which is the same as (16).

B.4 Bounding the Dual Average

First notice that (54) still holds if we replace w0 with an arbitrary, fixed w ∈ FD, that is,

δt =
t

∑
τ=1

(

〈gτ,wτ−w〉+Ψ(wτ)
)

+max
u∈FD

{

〈st ,w−u〉− tΨ(u)
}

.

By convexity of fτ for τ≥ 1, we have

δt ≥
t

∑
τ=1

(

fτ(wτ)− fτ(w)+Ψ(wτ)
)

+max
u∈FD

{

〈st ,w−u〉− tΨ(u)
}

=
t

∑
τ=1

(

fτ(wτ)+Ψ(wτ)− fτ(w)−Ψ(w)
)

+max
u∈FD

{

〈st ,w−u〉− t
(

Ψ(u)−Ψ(w)
)}

= Rt(w)+max
u∈FD

{

〈st ,w−u〉− t
(

Ψ(u)−Ψ(w)
)}

. (61)

Let d(u) denote a subgradient of Ψ at u with minimum norm, that is,

d(u) = argmin
g∈∂Ψ(u)

‖g‖∗. (62)

Since Ψ has convexity parameter σ, we have

Ψ(w)−Ψ(u)≥ 〈d(u),w−u〉+
σ
2
‖w−u‖2.

Therefore,

δt ≥ Rt(w)+max
u∈FD

{

〈st ,w−u〉+ t〈d(u),w−u〉+
σt
2
‖w−u‖2

}

≥ Rt(w)+ max
u∈B(w,r)

{

〈st ,w−u〉+ t〈d(u),w−u〉+
σt
2
‖w−u‖2

}

,

where in the last inequality, we used the assumption B(w,r) ⊂ FD for some r > 0. Let u" be the
maximizer of 〈st ,w−u〉 within the set B(w,r), that is,

u" = argmax
u∈B(w,r)

{

〈st ,w−u〉
}

.
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Then ‖w−u"‖= r and
〈st ,w−u"〉= ‖w−u"‖‖st‖∗ = r‖st‖∗.

So we can continue with the inequality:

δt ≥ Rt(w)+ 〈st ,w−u"〉+ t〈d(u"),w−u"〉+
σt
2
‖w−u"‖2

= Rt(w)+ r‖st‖∗+ t〈d(u"),w−u"〉+
1
2
σtr2

≥ Rt(w)+ r‖st‖∗ − t‖d(u")‖∗‖w−u"‖+
1
2
σtr2

≥ Rt(w)+ r‖st‖∗ − rtΓD+
1
2
σtr2

where in the last inequality, we used ‖d(u")‖∗ ≤ ΓD, which is due to (62) and (11). Therefore

‖st‖∗ ≤ tΓD−
1
2
σtr+

1
r
(

δt −Rt(w)
)

.

Finally, we have (17) by noting δt ≤ Δt and st = tḡ.

Appendix C. Proof of High Probability Bounds

In this Appendix, we prove Theorem 5. First let ϕ(w) = Ez f (w,z), then by definition φ(w) =
ϕ(w)+Ψ(w). Let ĝt be the conditional expectation of gt given wt , that is,

ĝt = E[gt |wt ] = E
[

gt |z[t−1]
]

.

Since gt ∈ ∂ f (wt ,zt), we have ĝt ∈ ∂ϕ(wt) (e.g., Rockafellar and Wets, 1982). By the definition
of δt in (52), for any w" ∈ FD,

δt ≥
t

∑
τ=1

(

〈gτ,wτ−w"〉+Ψ(wτ)
)

− tΨ(w")

=
t

∑
τ=1

(

〈ĝτ,wτ−w"〉+Ψ(wτ)
)

− tΨ(w")+
t

∑
τ=1

〈gτ− ĝτ,wτ−w"〉

≥
t

∑
τ=1

(

ϕ(wτ)−ϕ(w")+Ψ(wτ)
)

− tΨ(w")+
t

∑
τ=1

〈gτ− ĝτ,wτ−w"〉

=
t

∑
τ=1

(

φ(wτ)−φ(w")
)

+
t

∑
τ=1

〈gτ− ĝτ,wτ−w"〉. (63)

where in the second inequality above we used convexity of ϕ. Now define the random variables

ξτ = 〈gτ− ĝτ,w"−wτ〉, ∀τ≥ 1.

Combining (63) and the result δt ≤ Δt leads to

t

∑
τ=1

(

φ(wτ)−φ(w")
)

≤ Δt +
t

∑
τ=1

ξτ. (64)
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Since wt is a deterministic function of z[t−1] and ĝt = E[gt |wt ], we have

E
[

ξτ
∣

∣z[τ−1]
]

= 0.

Therefore the sum ∑tτ=1 ξτ is a martingale. By the assumptions h(wτ)≤D2 and ‖gτ‖∗ ≤ L for all wτ,
we have

‖w−wτ‖ ≤ ‖w−w0‖+‖wτ−w0‖ ≤ (2h(w))1/2+(2h(wτ))1/2 ≤ 2
√
2D,

and ‖gτ−Gτ‖∗ ≤ ‖gτ‖∗+‖Gτ‖∗ ≤ 2L. Therefore,

|ξτ|≤ ‖gτ−Gτ‖∗‖w−wτ‖ ≤ 4
√
2LD

So the sequence of random variables {ξτ}tτ=1 form a bounded martingale difference. Now by
Hoeffding-Azuma inequality (Azuma, 1967), we have

Prob

(

t

∑
τ=1

ξτ ≥Θ

)

≤ exp
(

−Θ2

2t(4
√
2LD)2

)

= exp
(

−
Θ2

64L2D2t

)

, ∀Θ> 0.

Let Ω=Θ/(8LD
√
t), we have

Prob

(

t

∑
τ=1

ξτ ≥ 8LD
√
tΩ

)

≤ exp(−Ω2).

Now combining with (64) yields

Prob
(

φ(w̄t)−φ" ≥
Δt
t
+
8LDΩ√

t

)

≤ exp(−Ω2).

Setting δ= exp(−Ω2) gives the desired result (26).

Appendix D. Convergence Analysis of Accelerated RDA Method

In this appendix, we prove Theorem 6. We will need the following lemma.

Lemma 13 Let ψ be a closed proper convex function, and h be strongly convex on domψ with
convexity parameter σh. If

v= argmin
w

{

ψ(w)+h(w)
}

, (65)

then
ψ(w)+h(w)≥ ψ(v)+h(v)+

σh
2
‖w− v‖2, ∀w ∈ domψ.

Proof By the optimality condition for (65), there exist b ∈ ∂ψ(v) and d ∈ ∂h(v) such that

〈b+d,w− v〉 ≥ 0, ∀w ∈ domψ.

Since ψ is convex and h is strongly convex, we have

ψ(w)≥ ψ(v)+ 〈b,w− v〉,

h(w)≥ h(v)+ 〈d,w− v〉+
σh
2
‖w− v‖2.
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The lemma is proved by combining the three inequalities above.

In Lemma 13, we do not assume differentiability of either ψ or h. Similar results assuming differ-
entiability have appeared in, for example, Chen and Teboulle (1993) and Tseng (2008), where the
term (σh/2)‖w− v‖2 was replaced by the Bregman divergence induced by h.

Our proof combines several techniques appeared separately in Nesterov (2005), Tseng (2008),
Lan (2010), and Nemirovski et al. (2009). First, let ϕ(w) = Ez f (w,z). For every t ≥ 1, define the
following two functions:

!t(w) = ϕ(ut)+ 〈∇ϕ(ut),w−ut〉+Ψ(w),
!̂t(w) = ϕ(ut)+ 〈gt ,w−ut〉+Ψ(w).

Note that !t(w) is a lower bound of φ(w) for all t ≥ 1. Let qt = gt −∇ϕ(ut), then

!̂t(w) = !t(w)+ 〈qt ,w−ut〉.

For each t ≥ 1, we also define the function

ψt(w) =
t

∑
τ=1

ατ!̂τ(w).

For convenience, let ψ0(w) = 0. Then step 4 in Algorithm 3 is equivalent to

vt = argmin
w

{

ψt(w)+(L+βt)h(w)
}

. (66)

Since ∇ϕ is Lipschitz continuous with a constant L (see discussions following (34)), we have

ϕ(wt)≤ ϕ(ut)+ 〈∇ϕ(ut),wt−ut〉+
L
2
‖wt −ut‖2.

Adding Ψ(wt) to both sides of the above inequality yields

φ(wt)≤ !t(wt)+
L
2
‖wt −ut‖2

= !t
(

(1−θt)wt−1+θtvt
)

+
L
2
∥

∥(1−θt)wt−1+θtvt −ut
∥

∥

2

≤ (1−θt)!t(wt−1)+θt!t(vt)+
L
2
∥

∥θtvt −θtvt−1
∥

∥

2

= (1−θt)!t(wt−1)+θt !̂t(vt)−θt〈qt ,vt −ut〉+θ2t
L
2
∥

∥vt − vt−1
∥

∥

2

= (1−θt)!t(wt−1)+
1
At

(

αt !̂t(vt)+
α2t
At
L
2
∥

∥vt − vt−1
∥

∥

2
)

−θt〈qt ,vt−ut〉

≤ (1−θt)φ(wt−1)+
1
At

(

αt !̂t(vt)+
L
2
∥

∥vt − vt−1
∥

∥

2
)

−θt〈qt ,vt −ut〉.

In the second inequality above, we used convexity of !t and ut = (1−θt)wt−1+θtvt−1, and in the
last inequality above, we used !t(w)≤ φ(w) and the assumption α2t ≤ At . Multiplying both sides of
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the above inequality by At and noticing At(1−θt) = At −αt = At−1, we have

Atφ(wt)≤ At−1φ(wt−1)+αt !̂t(vt)+
L
2
∥

∥vt − vt−1
∥

∥

2−αt〈qt ,vt−ut〉

= At−1φ(wt−1)+αt !̂t(vt)+
L+βt−1
2

∥

∥vt − vt−1
∥

∥

2−
βt−1
2
∥

∥vt − vt−1
∥

∥

2

−αt〈qt ,vt− vt−1〉−αt〈qt ,vt−1−ut〉

≤ At−1φ(wt−1)+αt !̂t(vt)+
L+βt−1
2

∥

∥vt − vt−1
∥

∥

2−
βt−1
2
∥

∥vt − vt−1
∥

∥

2

+αt‖qt‖∗‖vt − vt−1‖−αt〈qt ,vt−1−ut〉.

Now using the inequality

bc−
a
2
c2 ≤

b2

2a
, ∀a> 0,

with a= βt−1, b= αt‖qt‖∗, and c= ‖vt − vt−1‖, we have

Atφ(wt)≤ At−1φ(wt−1)+αt !̂t(vt)+
L+βt−1
2

∥

∥vt − vt−1
∥

∥

2
+
α2t ‖qt‖2∗
2βt−1

−αt〈qt ,vt−1−ut〉.

By (66), vt−1 is the minimizer of ψt−1(v)+(L+βt−1)h(v). Then by Lemma 13, we have

ψt−1(vt)+(L+βt−1)h(vt)≥ ψt−1(vt−1)+(L+βt−1)h(vt−1)+
L+βt−1
2

∥

∥vt − vt−1
∥

∥

2
,

therefore,

Atφ(wt)−ψt(vt)− (L+βt−1)h(vt)≤ At−1φ(wt−1)−ψt−1(vt−1)− (L+βt−1)h(vt−1)

+
α2t ‖qt‖2∗
2βt−1

−αt〈qt ,vt−1−ut〉.

Since βt ≥ βt−1 and h(vt)≥ 0, we can replace the βt−1 on the left-hand side with βt :

Atφ(wt)−ψt(vt)− (L+βt)h(vt)≤ At−1φ(wt−1)−ψt−1(vt−1)− (L+βt−1)h(vt−1)

+
α2t ‖qt‖2∗
2βt−1

−αt〈qt ,vt−1−ut〉.

Summing the above inequality from τ= 1 to t results in

Atφ(wt)≤ ψt(vt)+(L+βt)h(vt)+A0φ(w0)−ψ0(v0)− (L+β0)h(v0)

+
t

∑
τ=1

α2τ‖qτ‖2∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ− vτ−1〉.

2588



REGULARIZED DUAL AVERAGING METHODS

Using A0 = 0, ψ0(v0) = 0, h(v0) = 0, and (66), we have

Atφ(wt)≤ ψt(w")+(L+βt)h(w")+
t

∑
τ=1

α2τ‖qτ‖2∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ− vτ−1〉

=
t

∑
τ=1

ατ!̂τ(w")+(L+βt)h(w")+
t

∑
τ=1

α2τ‖qτ‖2∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ− vτ−1〉

=
t

∑
τ=1

ατ
(

!τ(w")+ 〈qτ,w"−uτ〉
)

+(L+βt)h(w")+
t

∑
τ=1

α2τ‖qτ‖2∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,uτ− vτ−1〉

=
t

∑
τ=1

ατ!τ(w")+(L+βt)h(w")+
t

∑
τ=1

α2τ‖qτ‖2∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,w"− vτ−1〉.

Next, by !τ(w")≤ φ(w") for all τ≥ 1 and At = ∑tτ=1ατ, we have

Atφ(wt)≤ Atφ(w")+(L+βt)h(w")+
t

∑
τ=1

α2τ‖qτ‖2∗
2βτ−1

+
t

∑
τ=1

ατ〈qτ,w"− vτ−1〉. (67)

Since E
[

qτ|z[τ− 1]
]

= 0 and qτ is independent of vτ−1, we have E
[

〈qτ,w" − vτ−1〉|z[τ− 1]
]

= 0.
Together with the assumption E‖qτ‖2∗ ≤ Q2 for all τ≥ 1, we conclude

Eφ(wt)−φ(w")≤
L+βt
At

h(w")+
1
At

(

Q2

2

t

∑
τ=1

α2τ
βτ−1

)

.

By rearranging terms on the right-hand side, this finishes the proof for Theorem 6.

D.1 Proof of Corollary 7

Using the two input sequences given in (37) and (38), we have

t

∑
τ=1

α2τ
2βτ−1

=
1
4γ

t

∑
τ=1

τ1/2 ≤
1
4γ

∫ t+1

0
τ1/2dτ=

(t+1)3/2

6γ
. (68)

Plugging them into the conclusion of Theorem 6 gives

Eφ(wt)−φ" ≤
4L

t(t+1)
h(w")+

(t+1)1/2

t

(

2γh(w")+
2Q2

3γ

)

.

Next we use the assumption h(w")≤ D2 and let γ= Q/D. Then

Eφ(wt)−φ" ≤
4LD2

t(t+1)
+

(t+1)1/2

t
8QD
3

≤
4LD
t2

+
4QD√
t
.
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D.2 Proof of Theorem 8

We start with the inequality (67). We will first show high probability bounds for the two summations
on the right-hand side of (67) that involve the stochastic quantities qτ, and then combine them to
prove Theorem 8. We need the following result on large-deviation bound for martingales, which
can be viewed as an extension to the Hoeffding-Azuma inequality.

Lemma 14 (Lan et al., 2008, Lemma 6) Let z1,z2, . . . be a sequence of i.i.d. random variables and
let z[t] denote the collection [z1, . . . ,zt ]. If ξt = ξt(z[t]) are deterministic Borel functions of z[t] such
that the conditional expectations E

[

ξt |z[t−1]
]

= 0 almost surely and

E
[

exp(ξ2t /ν2t ) |z[t−1]
]

≤ exp(1) (69)

almost surely, where νt > 0 are deterministic. Then for all t ≥ 1,

Prob

(

t

∑
τ=1

ξτ >Ω

√

t

∑
τ=1

ν2τ

)

≤ exp
(

−
Ω2

3

)

, ∀Ω≥ 0.

Lemma 15 Let ξt = αt〈qt ,w"− vt−1〉. Then for all t ≥ 1 and any Ω> 0,

Prob

(

t

∑
τ=1

ξτ >ΩQD
√

2
3
(t+1)3

)

≤ exp(−Ω2/3).

Proof Since E
[

qt |z[t−1]
]

= 0 and qt is independent of w" and vt−1, we have

E
[

ξt
∣

∣z[t−1]
]

= E
[

αt〈qt ,w"− vt−1〉
∣

∣z[t−1]
]

= 0.

Therefore, ∑tτ=1 ξτ is a martingale. By the assumption (1/2)‖w‖2 ≤ h(w)≤ D2 for all w ∈ domΨ,
we have ‖w‖ ≤

√
2D for all w ∈ domΨ, and therefore

|ξt |≤ αt‖qt‖∗‖w"− vt−1‖ ≤ αt‖qt‖∗
(

‖w"‖+‖vt−1‖
)

≤ αt‖qt‖∗2
√
2D.

Using the assumption E
[

exp
(

‖qt‖2∗/Q2
)]

≤ exp(1), we have

E
[

exp
(

ξ2t
(8α2t Q2D2)2

)
∣

∣

∣

∣

z[t−1]
]

≤ E
[

exp

(

(αt‖qt‖∗2
√
2D)2

8α2t Q2D2

)

∣

∣

∣

∣

z[t−1]
]

≤ exp(1).

Therefore the condition (69) holds with ν2t = 8α2t Q2D2. We bound ∑tτ=1ν2τ as follows:
t

∑
τ=1

ν2τ ≤ 8Q2D2
t

∑
τ=1

α2τ = 2Q2D2
t

∑
τ=1

τ2 ≤ 2Q2D2
∫ t+1

0
τ2dτ=

2Q2D2

3
(t+1)3.

Then applying Lemma 14 gives the desired result.

Lemma 16 For all t ≥ 1 and any Λ> 0,

Prob

(

t

∑
τ=1

α2τ
2βτ−1

‖qτ‖2∗ > (1+Λ)
Q2

6γ
(t+1)3/2

)

≤ exp(−Λ).
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Proof For any given t ≥ 1, let

Θt =
t

∑
τ=1

α2τ
2βτ−1

,

and
ητ =

α2τ
2βτ−1

1
Θt

, τ= 1, . . . , t.

Therefore ∑tτ=1ητ = 1. By convexity of the function exp(·),

exp

(

t

∑
τ=1

ητ
‖qτ‖2∗
Q2

)

≤
t

∑
τ=1

ητ exp
(

‖qτ‖2∗
Q2

)

.

Taking expectation and using the assumption (39),

Eexp
(

t

∑
τ=1

ητ
‖qτ‖2∗
Q2

)

≤
t

∑
τ=1

ητEexp
(

‖qτ‖2∗
Q2

)

≤
t

∑
τ=1

ητ exp(1) = exp(1).

By Markov’s inequality,

Prob

(

exp

(

t

∑
τ=1

ητ
‖qτ‖2∗
Q2

)

> exp(1+Λ)

)

≤
exp(1)

exp(1+Λ)
= exp(−Λ),

which is the same as

Prob

(

t

∑
τ=1

α2τ
2βτ−1

‖qτ‖2∗ > (1+Λ)ΘtQ2
)

≤ exp(−Λ).

Then using the upper bound on Θt derived in (68) gives the desired result.

Combining Lemma 15, Lemma 16, and the inequality (67), we have

Prob

(

At(φ(wt)−φ")> (L+βt)h(w")+(1+Λ)
Q2

6γ
(t+1)3/2+ΩQD

√

2
3
(t+1)3/2

)

≤ exp(−Λ)+ exp
(

−
Ω2

3

)

.

Plugging in At = t(t+1)/4, βt = (γ/2)(t+1)3/2, and letting γ= Q/D, Ω=
√
3Λ, we get

Prob

(

φ(wt)−φ" >
4LD2

t(t+1)
+

(

8QD
3

+
2ΛQD
3

+
√
2ΛQD

)

(t+1)1/2

t

)

≤ 2exp(−Λ).

Then using the fact
√

(t+1)/t ≤
√
2≤ 3/2 for all t ≥ 1 results in

Prob

(

φ(wt)−φ" >
4LD2

t2
+
4QD√
t
+

(Λ+2
√
Λ)QD√
t

)

≤ 2exp(−Λ).

Finally, let δ= 2exp(−Λ), hence Λ= ln(2/δ). Then with probability at least 1−δ,

φ(wt)−φ" ≤
4LD2

t2
+
4QD√
t
+
QD√
t

(

ln(2/δ)+2
√

ln(2/δ)
)

.

This finishes the proof of Theorem 8.
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Abstract
Maximum likelihood estimators are often of limited practical use due to the intensive computation
they require. We propose a family of alternative estimators that maximize a stochastic variation of
the composite likelihood function. Each of the estimators resolve the computation-accuracy trade-
off differently, and taken together they span a continuous spectrum of computation-accuracy trade-
off resolutions. We prove the consistency of the estimators, provide formulas for their asymptotic
variance, statistical robustness, and computational complexity. We discuss experimental results
in the context of Boltzmann machines and conditional random fields. The theoretical and exper-
imental studies demonstrate the effectiveness of the estimators when the computational resources
are insufficient. They also demonstrate that in some cases reduced computational complexity is
associated with robustness thereby increasing statistical accuracy.
Keywords: Markov random fields, composite likelihood, maximum likelihood estimation

1. Introduction

Maximum likelihood estimation is by far the most popular point estimation technique in machine
learning and statistics. Assuming that the data consists of n, m-dimensional vectors

D= (X (1), . . . ,X (n)), X (i) ∈ R
m, (1)

and is sampled iid from a parametric distribution pθ0 with θ0 ∈ Θ ⊂ Rr, a maximum likelihood
estimator (MLE) θ̂mln is a maximizer of the log-likelihood function

!n(θ ;D) =
n

∑
i=1
log pθ(X (i)), (2)

θ̂mln = argmax
θ∈Θ

!n(θ ;D).

The use of the MLE is motivated by its consistency,1 that is, θ̂mln → θ0 as n→∞ with probability
1 (Ferguson, 1996). The consistency property ensures that as the number n of samples grows, the
estimator will converge to the true parameter θ0 governing the data generation process.

An even stronger motivation for the use of the MLE is that it has an asymptotically normal
distribution with mean vector θ0 and variance matrix (nI(θ0))−1. More formally, we have the

1. The consistency θ̂mln → θ0 with probability 1 is sometimes called strong consistency in order to differentiate it from
the weaker notion of consistency in probability P(|θ̂mln −θ0|< ε)→ 0.

c©2010 Joshua V. Dillon and Guy Lebanon.
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following convergence in distribution as n→ ∞ (Ferguson, 1996)
√
n(θ̂mln −θ0)! N(0, I−1(θ0)), (3)

where I(θ) is the r× r Fisher information matrix

I(θ) = E pθ{∇ log pθ(X)(∇ log pθ(X))
(}

with∇ f representing the r×1 gradient vector of f (θ)with respect to θ. The convergence (3) is espe-
cially striking since according to the Cramer-Rao lower bound, the asymptotic variance (nI(θ0))−1
of the MLE is the smallest possible variance for any estimator. Since it achieves the lowest pos-
sible asymptotic variance, the MLE (and other estimators which share this property) is said to be
asymptotically efficient.

The consistency and asymptotic efficiency of the MLE motivate its use in many circumstances.
Unfortunately, in some situations the maximization or even evaluation of the log-likelihood (2) and
its derivatives is impossible due to computational considerations. For instance this is the situation
in many high dimensional exponential family distributions, including Markov random fields whose
graphical structure contains cycles. This has lead to the proposal of alternative estimators under
the premise that a loss of asymptotic efficiency is acceptable—in return for reduced computational
complexity.

In contrast to asymptotic efficiency, we view consistency as a less negotiable property and prefer
to avoid inconsistent estimators if at all possible. This common viewpoint in statistics is somewhat
at odds with recent advances in the machine learning literature promoting non-consistent estimators,
for example using variational techniques (Jordan et al., 1999). Nevertheless, we feel that there is a
consensus regarding the benefits of having consistent estimators over non-consistent ones.

In this paper, we propose a family of estimators, for use in situations where the computation of
theMLE is intractable. In contrast to many previously proposed approximate estimators, our estima-
tors are statistically consistent and admit a precise quantification of both computational complexity
and statistical accuracy through their asymptotic variance. Due to the continuous parameteriza-
tion of the estimator family, we obtain an effective framework for achieving a predefined problem-
specific balance between computational tractability and statistical accuracy. We also demonstrate
that in some cases reduced computational complexity may in fact act as a regularizer, increasing
robustness and therefore accomplishing both reduced computation and increased accuracy. This
“win-win” situation conflicts with the conventional wisdom stating that moving from the MLE to
pseudo likelihood and other related estimators result in a computational win but a statistical loss.
Nevertheless we show that this occurs in some practical situations.

For the sake of concreteness, we focus on the case of estimating the parameters associated with
Markov random fields. In this case, we provide a detailed discussion of the accuracy-complexity
tradeoff. We include experiments on both simulated and real world data for several models in-
cluding the Boltzmann machine, conditional random fields, and the Boltzmann linear chain model.
Appendix B outlines a road-map of figures and the corresponding exposition.

2. Related Work

There is a large body of work dedicated to tractable learning techniques. Two popular categories
are Markov chain Monte Carlo (MCMC) and variational methods. MCMC is a general purpose
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technique for approximating expectations and can be used to approximate the normalization term
and other intractable portions of the log-likelihood and its gradient (Casella and Robert, 2004).
Variational methods are techniques for conducting inference and learning based on tractable bounds
(Jordan et al., 1999). A similar approach would be to conduct maximum likelihood estimation for a
simpler model that is tractable.

Despite the substantial work on MCMC and variational methods, there are little practical results
concerning the convergence and approximation rate of the resulting parameter estimators. Varia-
tional techniques are sometimes inconsistent and it is hard to analyze their asymptotic statistical
behavior. In the case of MCMC, a number of asymptotic results exist (Casella and Robert, 2004),
but since MCMC plays a role inside each gradient descent or EM iteration it is hard to analyze the
asymptotic behavior of the resulting parameter estimates. An advantage of our framework is that we
are able to directly characterize the asymptotic behavior of the estimator and relate it to the amount
of computational savings.

Our work draws on the composite likelihood method for parameter estimation proposed by
Lindsay (1988) which in turn generalized the pseudo likelihood of Besag (1974). A selection of
more recent studies on pseudo and composite likelihood are Arnold and Strauss (1991), Liang and
Yu (2003), Varin and Vidoni (2005), Sutton and McCallum (2007) and Hjort and Varin (2008).
Most of the recent studies in this area examine the behavior of the pseudo or composite likelihood
in a particular modeling situation. We believe that the present paper is the first to systematically
examine statistical and computational tradeoffs in a general quantitative framework. Possible ex-
ceptions include the experimental study of texture generation by Zhu and Liu (2002), the work of
Xing et al. (2003) which focused on inference rather than parameter estimation, and the examination
of generalization performance of small- and large- scale learning systems by Bottou and Bousquet
(2008). The work of Liang and Jordan (2008) is also interesting in that the authors employ com-
posite likelihood m-estimators and asymptotic arguments to compare the risk of discriminative and
generative models. However, our work differs in theme and technique—we explore the tradeoff
between computation and accuracy by way of a fundamentally different estimator.

Composite likelihood techniques, and consequently our work, can be thought of as local con-
trastive objectives (i.e., pseudo likelihood, contrastive divergence). Vickrey et al. (2010) present a
non-local alternative in which the objective is not restricted to using the training label, but rather
any assignment.

3. Stochastic Composite Likelihood

In many cases, the absence of a closed form expression for the normalization term prevents the
computation of the log-likelihood (2) and its derivatives thereby severely limiting the use of the
MLE. A popular example is Markov random fields, wherein the computation of the normalization
term is often intractable (see Section 6 for more details). In this paper we propose alternative
estimators based on the maximization of a stochastic variation of the composite likelihood.

We denote multiple samples using superscripts and individual dimensions using subscripts.
Thus X (r)

j refers to the j-dimension of the r sample. Following standard convention we refer to
random variables (RV) using uppercase letters and their corresponding values using lowercase let-
ters. We also use the standard notations for extracting a subset of the dimensions of a random
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variable

XS
def
= {Xi : i ∈ S}, X− j

def
= {Xi : i )= j}. (4)

We start by reviewing the pseudo log-likelihood function (Besag, 1974) associated with the data
D (1),

p!n(θ ;D)
def
=

n

∑
i=1

m

∑
j=1
log pθ(X

(i)
j |X (i)

− j). (5)

The maximum pseudo likelihood estimator (MPLE) θ̂mpln is consistent, that is, θ̂mpln → θ0 with prob-
ability 1, but possesses considerably higher asymptotic variance than the MLE’s (nI(θ0))−1. Its
main advantage is that it does not require the computation of the normalization term as it cancels
out in the probability ratio defining conditional distributions

pθ(Xj|X− j) = pθ(Xj|{Xk : k )= j}) =
pθ(X)

∑x j pθ(X1, . . . ,Xj−1,Xj = x j,Xj+1, . . . ,Xm)
.

The MLE and MPLE represent two different ways of resolving the tradeoff between asymptotic
variance and computational complexity. The MLE has low asymptotic variance but high computa-
tional complexity while the MPLE has higher asymptotic variance but low computational complex-
ity. It is desirable to obtain additional estimators realizing alternative resolutions of the accuracy
complexity tradeoff. To this end we define the stochastic composite likelihood whose maximization
provides a family of consistent estimators with statistical accuracy and computational complexity
spanning the entire accuracy-complexity spectrum.

Stochastic composite likelihood generalizes the likelihood and pseudo likelihood functions by
constructing an objective function that is a stochastic sum of likelihood objects. We start by defining
the notion of m-pairs and likelihood objects and then proceed to stochastic composite likelihood.

Definition 1 An m-pair (A,B) is a pair of sets A,B ⊂ {1, . . . ,m} satisfying A )= /0 = A∩B. The
likelihood object associated with an m-pair (A,B) and X is Sθ(A,B)

def
= log pθ(XA|XB) where XS is

defined in (4). The composite log-likelihood function (Lindsay, 1988) is a collection of likelihood
objects defined by a finite sequence of m-pairs (A1,B1), . . . ,(Ak,Bk)

c!n(θ ;D)
def
=

n

∑
i=1

k

∑
j=1
log pθ(X

(i)
Aj |X

(i)
Bj ). (6)

There is a certain lack of flexibility associated with the composite likelihood framework as each
likelihood object is either selected or not for the entire sample X (1), . . . ,X (n). There is no allowance
for some objects to be selected more frequently than others. For example, available computational
resources may allow the computation of the log-likelihood for 20% of the samples, and the pseudo
likelihood for the remaining 80%. In the case of composite likelihood if we select the full likelihood
component (or the pseudo likelihood or any other likelihood object) then this component is applied
to all samples indiscriminately.

In SCL, different likelihood objects Sθ(Aj,Bj) may be selected for different samples with the
possibility of some likelihood objects being selected for only a small fraction of the data samples.
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The selection may be non-coordinated, in which case each component is selected or not indepen-
dently of the other components. Or it may be coordinated in which case the selection of one com-
ponent depends on the selection of the other ones. For example, we may wish to avoid selecting a
pseudo likelihood component for a certain sample X (i) if the full likelihood component was already
selected for it.

Another important advantage of stochastic selection is that the discrete parameterization of (6)
defined by the sequence (A1,B1), . . . ,(Ak,Bk) is less convenient for theoretical analysis. Each com-
ponent is either selected or not, turning the problem of optimally selecting components into a hard
combinatorial problem. The stochastic composite likelihood, which is defined below, enjoys contin-
uous parameterization leading to more convenient optimization techniques and convergence analy-
sis.

Definition 2 Consider a finite sequence of m-pairs (A1,B1), . . . ,(Ak,Bk), a data set D= (X (1), . . . ,

X (n)), β∈Rk
+, and n iid, length k, binary random vectors Z(1), . . . ,Z(n)

i.i.d.∼ P(Z)with λ j
def
= E(Zj)> 0.

The stochastic composite log-likelihood (SCL) is

sc!n(θ ;D,Z)
def
=
1
n

n

∑
i=1

mθ(X (i),Z(i)), where

mθ(X ,Z)
def
=

k

∑
j=1

β jZ j log pθ(XAj |XBj), (7)

where, for brevity, we typically omit D,Z in favor of sc!n(θ).

In other words, the SCL is a stochastic extension of (6) where for each sample X (i), i= 1, . . . ,n, the
likelihood objects S(A1,B1), . . . ,S(Ak,Bk) are either selected or not, depending on the values of the
binary random variables Z(i)1 , . . . ,Z(i)k and weighted by the constants β1, . . . ,βk. Note that Z

(i)
j may

in general depend on Z(i)r but not on Z(l)r or on X (i).
When we focus on examining different models for P(Z) we sometimes parameterize it, for

example by λ, that is, Pλ(Z). This reuse of λ (it is also used in Definition 2) is a notational abuse.
We accept it, however, as in most of the cases that we consider λ1, . . . ,λk from Definition 2 either
form the parameter vector for P(Z) or are part of it. Often we refer to a particular λ as a “policy” in
order to emphasize its role as a “knob” in selecting particular m-pairs.

Some illustrative examples follow.

Independence. Factorizing Pλ(Z1, . . . ,Zk) =∏ j Pλ j(Zj) leads to Z
(i)
j ∼ Ber(λ j) with complete in-

dependence among the indicator variables. For each sample X (i), each likelihood object
S(Aj,Bj) is selected or not independently with probability λ j.

Multinomial. A multinomial model Z ∼Mult(1,λ) implies that for each sample Z(i) a multivari-
ate Bernoulli experiment is conducted with precisely one likelihood object being selected
depending on the selection probabilities λ1, . . . ,λk.

Product of Multinomials. A product of multinomials is formed by a partition of the dimensions to
l disjoint subsets {1, . . . ,m}=C1∪ · · ·Cl where ZCi ∼Mult(1,(λ j : j ∈Ci)), that is,

P(Z) =
c

∏
i=1

Pi ({Zj : j ∈Ci}) , where Pi is Mult(1,(λ j : j ∈Cl)).
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Loglinear Models. The distribution P(Z) follows a hierarchical loglinear model (Bishop et al.,
1975). This case subsumes the other cases above.

In analogy to the MLE and the MPLE, the maximum SCL estimator (MSCLE) θ̂msln estimates
θ0 by maximizing the SCL function. In contrast to the log-likelihood and pseudo log-likelihood
functions, the SCL function and its maximizer are random variables that depend on the indica-
tor variables Z(1), . . . ,Z(n) in addition to the data D. As such, its behavior should be summarized
by examining the limit n→ ∞. Doing so eliminates the dependency on particular realizations of
Z(1), . . . ,Z(n) in favor of the the expected frequencies λ j = EP(Z)Zj which are non-random con-
stants.

The statistical accuracy and computational complexity of the SCL estimator are continuous
functions of the parameters (β,λ) (component weights and selection probabilities respectively)
which vary continuously throughout their domain (λ,β) ∈ Λ×Rk

+. Choosing appropriate values
of (λ,β) retrieves the special cases of MLE, MPLE, maximum composite likelihood with each se-
lection being associated with a distinct statistical accuracy and computational complexity. The SCL
framework allows selections of many more values of (λ,β) realizing a wide continuous spectrum of
estimators, each resolving the accuracy-complexity tradeoff differently.

We include below a demonstration of the SCL framework in a simple low dimensional case. In
the following sections we discuss in detail the statistical behavior of the MSCLE and its computa-
tional complexity. We conclude the paper with several experimental studies.

3.1 Boltzmann Machine Example

Before proceeding we illustrate the SCL framework using a simple example involving a Boltzmann
machine (Hinton and Sejnowski, 1983). Section 8.1 describes the specifics of this model. We con-
sider in detail three SCL policies: full likelihood (FL), pseudo likelihood (PL), and a stochastic
combination of first and second order pseudo likelihood with the first order components p(Xi|X−i)
selected with probability λ and the second order components p(Xi,Xj|X{i, j}c) selected with proba-
bility 1−λ.

Denoting the number of (binary) graph vertices, or nodes, by m, and the number of examples by
n, the computational complexity of the FL function measured in FLOP2 counts is O

((m
2
)

(2m+ n)
)

(for the log-likelihood) and O
((m
2
)22m+ n

(m
2
))

for the log-likelihood gradient.3 The exponential
growth in m prevents such computations for large graphs.

The k-order PL function offers a practical alternative to FL (1-order PL corresponds to the tradi-
tional pseudo likelihood and 2-order PL its analog, p(X{i, j}|X{i, j}c)). The complexity of computing
the corresponding SCL function isO

((m
2
)

(
(m
k
)

2k+n)
)

for the objective function andO
((m
2
)2(m

k
)

2k+
n
(m
2
))

for its gradient. The slower complexity growth of the k-order PL (polynomial in m instead
of exponential) is offset by its reduced statistical accuracy, which we measure using the normalized
asymptotic variance

eff(θ̂n) =
det(Asymp Var(θ̂n))
det(Asymp Var(θ̂mln ))

(8)

2. FLOP is the number of FLoating point OPerations.
3. With memoization the complexity of the gradient can be reduced to O

((m
2
)

2m+n
(m
2
))

(at the cost of exponential 2m
storage). Note that this is only a polynomial improvement to an exponential complexity hence we lose no insight by
making naive assumptions.
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which is bounded from below by 1 (due to Cramer Rao lower bound) and its deviation from 1
reflects its inefficiency relative to the MLE.

The MLE thus achieves the best accuracy but it is computationally intractable. The first order
and second order PL have higher asymptotic variance but are easier to compute. The SCL frame-
work enables adding many more estimators filling in the gaps between ML, 1-order PL, 2-order PL,
etc.

We illustrate three SCL functions in the context of a simple Boltzmann machine (five binary
nodes, fourteen samples X (1), . . . ,X (14), θtrue = (−1,−1,−1,−1,−1,1,1,1,1,1)) in Figure 1. The
top box refers to the full likelihood policy, that is, maximum likelihood. For each of the fourteen
samples, the FL component is computed and their aggregation forms the SCL function which in
this case equals the log-likelihood. The selection of the FL component for each sample is illustrated
using a diamond box. The values under the boxes reflect the FLOP counts needed to compute the
components and the total complexity associated with computing the entire SCL or log-likelihood is
listed on the right. As mentioned above, the normalized asymptotic variance (8) is 1.

The pseudo likelihood function (5) is illustrated in the second box where each row correspond to
one of the five PL components. As each of the five PL component is selected for each of the samples
we have diamond boxes covering the entire 5× 14 array. The shade of the diamond boxes reflects
the complexity required to compute them enabling an easy comparison to the FL components in the
top of the figure (note how the FL boxes are much darker than the PL boxes). The numbers at the
bottom of each column reflect the FLOP marginal count for each of the fourteen samples and the
numbers to the right of the rows reflect the FLOP marginal count for each of the PL components.
In this case the FLOP count is less than half the FLOP count of the FL in top box (this reduction in
complexity obtained by replacing FL with PL will increase dramatically for graphs with more than
5 nodes) but the asymptotic variance is 83% higher.4

The third SCL policy reflects a stochastic combination of first and second order pseudo likeli-
hood components. Each first order component is selected with probability λ and each second order
component is selected with probability 1−λ. The result is a collection of 5 1-order PL components
and 10 2-order components with only some of them selected for each of the fourteen samples. Again
diamond boxes correspond to selected components which are shaded according to their FLOP com-
plexity. The per-component FLOP marginals and per example FLOP marginals are listed as the
bottom row and right-most column. The total complexity is somewhere between FL and PL and the
asymptotic variance is reduced from the PL’s 183% to 148%.

Additional insight may be gained at this point by considering Figure 3 which plots several SCL
estimators as points in the plane whose x and y coordinates correspond to normalized asymptotic
variance and computational complexity respectively. We turn at this point to considering the statis-
tical properties of the SCL estimators.

4. Consistency and Asymptotic Variance of θ̂msln

A nice property of the SCL framework is enabling mathematical characterization of the statistical
properties of the estimator θ̂msln . In this section we examine the conditions for consistency of the
MSCLE and its asymptotic distribution and in the next section we consider robustness. The propo-
sitions below constitute novel generalizations of some well-known results in classical statistics.
Proofs may be found in Appendix A. For simplicity, we assume that X is discrete and pθ(x)> 0.

4. The asymptotic variance of SCL functions is computed using formulas derived in the next section.
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X (1) X (2) X (3) X (4) X (5) X (6) X (7) X (8) X (9) X (10)X (11)X (12)X (13)X (14) Total

FL

X1, , . . . ,X5 - - - - - - - - - - - - - - 4620
Complexity 330 330 330 330 330 330 330 330 330 330 330 330 330 330 4620
Rel. Efficiency 1.00

PL
X1|X−1 - - - - - - - - - - - - - - 308
X2|X−2 - - - - - - - - - - - - - - 308
X3|X−3 - - - - - - - - - - - - - - 308
X4|X−4 - - - - - - - - - - - - - - 308
X5|X−5 - - - - - - - - - - - - - - 308
Complexity 110 110 110 110 110 110 110 110 110 110 110 110 110 110 1540
Rel. Efficiency 1.83

0.
7P
L+
0.
3P
L2

X1|X−1 - - - - - - - - 176
X2|X−2 - - - - - - - - - - 220
X3|X−3 - - - - - - - - - - 220
X4|X−4 - - - - - - - 154
X5|X−5 - - - - - - - - - 198
X{1,2}|X{1,2}c - - - - 164
X{1,3}|X{1,3}c - - - - - 205
X{1,4}|X{1,4}c - - - - 164
X{1,5}|X{1,5}c - - - - 164
X{2,3}|X{2,3}c - - - - - 205
X{2,4}|X{2,4}c - - - - - - - 287
X{2,5}|X{2,5}c - - - - 164
X{3,4}|X{3,4}c - - 82
X{3,5}|X{3,5}c - - - - 164
X{4,5}|X{4,5}c - - - - - 205
Complexity 208 107 208 167 230 230 293 271 148 230 274 252 66 88 2772
Rel. Efficiency 1.48

Figure 1: Sample runs of three different SCL policies for 14 examples X (1), . . . ,X (14) drawn from a
5 binary node Boltzmann machine (θtrue = (−1,−1,−1,−1,−1,1,1,1,1,1)). The poli-
cies are full likelihood (FL, top), pseudo likelihood (PL, middle), and a stochastic combi-
nation of first and second order pseudo likelihood with the first order components selected
with probability 0.7 and the second order components with probability 0.3 (bottom).

The sample runs for the policies are illustrated by placing a diamond box in table entries
corresponding to selected likelihood objects (rows corresponding to likelihood objects
and columns to X (1), . . . ,X (14)). The FLOP counts of each likelihood object determines
the shade of the diamond boxes while the total FLOP counts per example and per like-
lihood objects are displayed as table marginals (bottom row and right column for each
policy). We also display the total FLOP count and the normalized asymptotic variance
(8).

Even in the simple case of 5 nodes, FL is the most complex policy with PL requiring a
third of the FL computation. 0.7PL+0.3PL2 is somewhere in between. The situation is
reversed for the estimation accuracy-FL achieves the lowest possible normalized asymp-
totic variance of 1, PL is almost twice that, and 0.7PL+0.3PL2 somewhere in the middle.
The SCL framework spans the accuracy-complexity spectrum. Choosing the right λ value
obtains an estimator that suits available computational resources and required accuracy.
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Definition 3 A sequence of m-pairs (A1,B1), . . . ,(Ak,Bk) is m-pair identifiable, or simply identifi-
able, of pθ if the map {pθ(XAj |XBj) : j = 1, . . . ,k} .→ pθ(X) is injective. In other words, there exists
only a single collection of conditionals {pθ(XAj |XBj) : j= 1, . . . ,k} that does not contradict the joint
pθ(X).

Proposition 1 Let Θ ⊂ Rr be an open set, pθ(x) > 0 and continuous and smooth in θ, and
(A1,B1), . . . ,(Ak,Bk) be a sequence of m-pairs for which {(Aj,Bj) : ∀ j such that λ j > 0} ensures
identifiability. Then the sequence of SCL maximizers is strongly consistent, that is,

P
(

lim
n→∞

θ̂n = θ0
)

= 1.

The above proposition indicates that to guarantee consistency, the sequence of m-pairs needs to
satisfy Definition 3. It can be shown that a selection equivalent to the pseudo likelihood function,
that is,

S = {(A1,B1), . . . ,(Am,Bm)} where Ai = {i},Bi = {1, . . . ,m}\Ai (9)

ensures identifiability and consequently the consistency of the MSCLE estimator. Furthermore,
every selection ofm-pairs that subsumes S in (9) similarly guarantees identifiability and consistency.

The proposition below establishes the asymptotic normality of the MSCLE θ̂n. The asymptotic
variance enables the comparison of SCL functions with different parameterizations (λ,β).

Proposition 2 Making the assumptions of Proposition 1 as well as convexity ofΘ⊂Rr we have the
following convergence in distribution

√
n(θ̂msln −θ0)! N (0,ϒΣϒ)

where

ϒ−1 =
k

∑
j=1

β jλ jVarθ0(∇Sθ0(Aj,Bj)),

Σ= Varθ0

(

k

∑
j=1

β jλ j∇Sθ0(Aj,Bj)

)

.

The notation Varθ0(Y ) represents the covariance matrix of the random vector Y under pθ0 while the
notations p→ ,! in the proof below denote convergences in probability and in distribution (Fergu-
son, 1996). ∇ represents the gradient vector with respect to θ.

When θ is a vector the asymptotic variance is a matrix. To facilitate comparison between dif-
ferent estimators we follow the convention of using the determinant, and in some cases the trace, to
measure the statistical accuracy. See Chapter 4 of Serfling (1980) for some heuristic arguments for
doing so. Figures 1,2,3 provide the asymptotic variance for some SCL estimators and describe how
it can be used to gain insight into which estimator to use.

The fact that
√
n(θ̂n−θ0) converges in distribution to a Gaussian with zero mean (for the MLE

and similarly for SCL estimators as we show above) implies that the estimator’s asymptotic behav-
ior, up to n−1/2 order, is determined exclusively by the asymptotic variance. That means that the
estimator is essentially unbiased up to that order. Higher order statistical analysis (obtained using
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Taylor series with more terms) show that the bias decays in the faster rate of n−1 (Cox and Snell,
1968). We thus follow the statistical convention of conducting first order asymptotic analysis and
concentrate on the estimator’s asymptotic variance.

The statistical accuracy of the SCL estimator depends on β (weight parameters) and λ (selection
parameter). It is thus desirable to use the results in this section in determining what values of β,λ to
use. Directly using the asymptotic variance is not possible in practice as it depends on the unknown
quantity θ0. However, it is possible to estimate the asymptotic variance using the training data. We
describe this in Section 7.

5. Robustness of θ̂msln

We observed in our experiments (see Section 8) that the SCL estimator sometimes performed better
on a held-out test set than did the maximum likelihood estimator. This phenomenon seems to be
in contradiction to the fact that the asymptotic variance of the MLE is lower than that of the SCL
maximizer. This is explained by the fact that in some cases the true model generating the data
does not lie within the parametric family {pθ : θ ∈ Θ} under consideration. For example, many
graphical models (HMM, CRF, LDA, etc.) make conditional independence assumptions that are
often violated in practice. In such cases the SCL estimator acts as a regularizer achieving better
test set performance than the non-regularized MLE. We provide below a theoretical account of this
phenomenon using the language of m-estimators and statistical robustness. Our notation follows the
one in van der Vaart (1998).

We assume that the model generating the data is outside the model family P(X) )∈ {pθ : θ ∈ Θ}
and we extend the notation of mθ(X ,Z) in (7) with,

ψθ(X ,Z)
def
= ∇mθ(X ,Z),

ψ̇θ(X ,Z)
def
= ∇2mθ(X ,Z), and

Ψn(θ)
def
=
1
n

n

∑
i=1

ψθ(X (i),Z(i)),

noting that ψ̇θ(X ,Z) is a matrix of second order derivatives.
Proposition 3 below generalizes the consistency result by asserting that θ̂n → θ0 where θ0 is the

point on {pθ : θ ∈Θ} that is closest to the true model P, as defined by

θ0 = argmax
θ∈Θ

M(θ) where M(θ)
def
= −

k

∑
j=1

β jλ jD(P(XAj |XBj)||pθ(XAj |XBj)),

or equivalently, θ0 satisfies

EP(X)EP(Z)ψθ0(X ,Z) = 0.

When the SCL function reverts to the log-likelihood function, θ0 becomes the KL projection of the
true model P onto the parametric family {pθ : θ ∈ Θ}.

Proposition 3 Assuming the conditions in Proposition 1 as well as supθ:‖θ−θ0‖≥εM(θ)<M(θ0) for
all ε> 0 we have θ̂msln → θ0 as n→ ∞ with probability 1.
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The added condition maintains that θ0 is a well separated maximum point ofM. In other words
it asserts that only values close to θ0 may yield a value of M that is close to the maximum M(θ0).
This condition is satisfied in the case of most exponential family models.

Proposition 4 Assuming the conditions of Proposition 2 as well as EP(X)EP(Z)‖ψθ0(X ,Z)‖2 < ∞,
EP(X)EP(Z)ψ̇θ0(X) exists and is non-singular, |Ψ̈i j| = |∂2ψθ(x)/∂θiθ j| < g(x) for all i, j and θ in a
neighborhood of θ0 for some integrable g, we have

√
n(θ̂n−θ0) =−(EP(X)EP(Z)ψ̇θ0)

−1 1√
n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP(1) (10)

or equivalently

θ̂n = θ0− (EP(X)EP(Z)ψ̇θ0)
−1 1
n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP

(

1√
n

)

. (11)

Above, fn = oP(gn) means fn/gn converges to 0 with probability 1.

Corollary 1 Assuming the conditions specified in Proposition 4 we have
√
n(θ̂n−θ0)! N(0,(EP(X)EP(Z)ψ̇θ0)

−1(EP(X)EP(Z)ψθ0ψ
(
θ0)(EP(X)EP(Z)ψ̇θ0)

−1). (12)

Equation (11) means that asymptotically, θ̂n behaves as θ0 plus the average of iid RVs. As
mentioned in van der Vaart (1998) this fact may be used to obtain a convenient expression for the
asymptotic influence function, which measures the effect of adding a new observation to an existing
large data set. Neglecting the remainder in (10) we have

I (x,z) def
= θ̂n(X (1), . . . ,X (n−1),x,Z(1), . . . ,Z(n−1),z)− θ̂n−1(X (1), . . . ,X (n−1),Z(1), . . . ,Z(n−1))

≈−(EP(X)EP(Z)ψ̇θ0)
−1

(

1
n

n−1

∑
i=1

ψθ0(X
(i),Z(i))+

1
n
ψθ0(w,z)−

1
n−1

n−1

∑
i=1

ψθ0(X
(i),Z(i))

)

=−(EP(X)EP(Z)ψ̇θ0)
−1 1
n
ψθ0(w,z)+(EP(X)EP(Z)ψ̇θ0)

−1 1
n(n−1)

n−1

∑
i=1

ψθ0(X
(i),Z(i))

=−
1
n
(EP(X)EP(Z)ψ̇θ0)

−1ψθ0(w,z)+oP
(

1
n

)

. (13)

Corollary 1 and Equation (13) measure the statistical behavior of the estimator when the true
distribution is outside the model family. In these cases it is possible that a computationally effi-
cient SCL maximizer will result in higher statistical accuracy as well. This “win-win” situation
of improving in both accuracy and complexity over the MLE is confirmed by our experiments in
Section 8.

We finally note that the above analysis is not limited to misspecified models. For example, the
influence function may be used to detect the robustness of θ̂n to outliers or rare events (it is desirable
to be robust to such occurrences even if the model is not misspecified).
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6. Stochastic Composite Likelihood for Markov Random Fields

Markov random fields (MRF) are some of the more popular statistical models for complex high
dimensional data. Approaches based on pseudo likelihood and composite likelihood are naturally
well-suited in this case due to the cancellation of the normalization term in the probability ratios
defining conditional distributions. More specifically, a MRF with respect to a graph G = (V,E),
V = {1, . . . ,m} with a clique set C is given by the following exponential family model

pθ(x) = exp

(

∑
C∈C

θC fC(xC)− logZ(θ)

)

,

Z(θ) =∑
x
exp

(

∑
C∈C

θc fC(xC)

)

. (14)

The primary bottlenecks in obtaining the maximum likelihood are the computations logZ(θ) and
∇ logZ(θ). Their computational complexity is exponential in the graph’s treewidth and for many
cyclic graphs, such as the Ising model or the Boltzmann machine, it is exponential in |V |= m.

In contrast, the conditional distributions that form the composite likelihood of (14) are given by
(note the cancellation of Z(θ))

pθ(xA|xB) =

∑
x′(A∪B)c

exp
(

∑C∈C θC fC((xA,xB,x′(A∪B)c)C)
)

∑
x′(A∪B)c

∑
x′′A
exp

(

∑
C∈C

θC fC((x′′A,xB,x′(A∪B)c)C)
) . (15)

whose computation is substantially faster. Specifically, The computation of (15) depends on the size
of the sets A and (A∪B)c and their intersections with the cliques in C . In general, selecting small
|Aj| and Bj = (Aj)c leads to efficient computation of the composite likelihood and its gradient. For
example, in the case of |Aj| = l, |Bj| = m− l with l 4 m we have that k ≤ m!/(l!(m− l)!) and the
complexity of computing the c!(θ) function and its gradient may be shown to require time that is at
most exponential in l and polynomial in m.

7. Automatic Selection of β

As Proposition 2 indicates, the weight vector β and selection probabilities λ play an important role
in the statistical accuracy of the estimator through its asymptotic variance. The computational com-
plexity, on the other hand, is determined by λ independently of β. Conceptually, we are interested in
resolving the accuracy-complexity tradeoff jointly for both β,λ before estimating θ by maximizing
the SCL function. However, since the computational complexity depends only on λ we propose the
following simplified problem: Select λ based on available computational resources, and then given
λ, select the β (and θ) that will achieve optimal statistical accuracy.

Selecting β that minimizes the asymptotic variance is somewhat ambiguous as ϒΣϒ in Proposi-
tion 2 is an r× r positive semidefinite matrix. A common solution is to consider the determinant as
a one dimensional measure of the size of the variance matrix,5 and minimize

J(β) = logdet(ϒΣϒ) = logdetΣ+2logdetϒ. (16)

5. See Chapter 4 of Serfling (1980) for a heuristic discussion motivating this measure.
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A major complication with selecting β based on the optimization of (16) is that it depends on
the true parameter value θ0 which is not known at training time. This may be resolved, however,
by noting that (16) is composed of covariance matrices under θ0 which may be estimated using
empirical covariances over the training set. To facilitate fast computation of the optimal β we also
propose to replace the determinant in (16) with the product of the diagonal elements. Such an
approximation is motivated by Hadamard’s inequality (which states that for symmetric matrices
det(M)≤∏i Mii) and by Geršgorin’s circle theorem (see below). This approximation works well in
practice as we observe in the experiments section. We also note that the procedure described below
involves only simple statistics that may be computed on the fly and does not contribute significant
additional computation (nor do they require significant memory).

More specifically, we denote K(i j) = Covθ0(∇Sθ0(Ai,Bi),∇Sθ0(Aj,Bj)) with entries K
(i j)
st , and

approximate the logdet terms in (16) using

logdetϒ=− logdet
k

∑
j=1

β jλ jK( j j) ≈−
r

∑
l=1
log

k

∑
j=1

β jλ jK
( j j)
ll

logdetΣ= logdetVarθ0

(

k

∑
j=1

β jλ j∇Sθ0(Aj,Bj)

)

= logdet
k

∑
i=1

k

∑
j=1

βiλiβ jλ jK(i j)

≈
r

∑
l=1
log

k

∑
i=1

k

∑
j=1

βiλiβ jλ jK
(i j)
ll .

We denote (assuming A is a n× n matrix) for i ∈ {1, . . . ,n}, Ri(A) = ∑ j )=i
∣

∣Ai j
∣

∣ and let
D(Aii,Ri(A)) (Di where unambiguous) be the closed disc centered at Aii with radius Ri(A). Such a
disc is called a Geršgorin disc. The result below states that for matrices that are close to diagonal,
the eigenvalues are close to the diagonal elements making our approximation accurate.

Theorem 1 (Geršgorin’s circle theorem, for example, Horn and Johnson, 1990) Every eigen-
value of A lies within at least one of the Geršgorin discs D(Aii,Ri(A)). Furthermore, if the union of
k discs is disjoint from the union of the remaining n−k discs, then the former union contains exactly
k and the latter n− k eigenvalues of A.

Algorithm 1 solves for θ,β jointly using alternating optimization. The second optimization
problem J(β; ·) is done using the approximation above and may be computed with minimal addi-
tional computation. The components of this objective are typically freely available when sc! is
minimized with Newton-type methods. In practice we found that such an approach leads to a selec-
tion of β that is close to optimal, despite loose convergence criteria for the minimization of the sc!
objective (see Sec. 8.3 and Figures 14, 20 for results).

8. Experiments

We demonstrate the asymptotic properties of θ̂msln and explore the complexity-accuracy tradeoff for
three different models-Boltzmann machine, linear Boltzmann MRF and conditional random fields.
In terms of data sets, we consider synthetic data as well as data sets from sentiment prediction and
text chunking domains.

In Appendix B we list all figures by subject. The basic road-map is to explore SCL for a theoret-
ical Boltzmann machine and then to explore two data sets using both generative and discriminative
models. We also demonstrate the effectiveness of the β heuristic for these experiments.
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Algorithm 1 Calculate θ̂msl

Require: {Xi}i∈I and λ, β(0)
1: t ← 1
2: while t <MAXITS do
3: θ(t) ← argminsc!(θ;{Xi}i∈I,λ,β(t−1))
4: if converged then
5: return θ
6: end if
7: β(t) ← argminJ(β;{K(i j)}(i, j)∈J,λ,θ)
8: t ← t+1
9: end while
10: return false

8.1 Toy Example: Boltzmann Machines

We illustrate the improvement in asymptotic variance of the MSCLE associated with adding higher
order Boltzmann machine likelihood components with increasingly higher probability. The Boltz-
mann machine can be parameterized as,

pθ(x) = exp

(

∑
i< j

θi jxix j− logψ(θ)

)

, x ∈ {0,1}m.

To be able to accurately compute the asymptotic variance we use m = 5 with θ being a
(5
2
)

dimen-
sional vector with half the components +1 and half −1. Since the asymptotic variance of θ̂msln is a
matrix we summarize its size using either its trace or determinant.

Figure 2 displays the asymptotic variance, relative to the minimal variance of the MLE, for the
cases of full likelihood (FL), pseudo likelihood (|Aj| = 1) PL1, stochastic combination of pseudo
likelihood and 2nd order pseudo likelihood (|Aj| = 2) components λPL2+(1−λ)PL1, stochastic
combination of 2nd order pseudo likelihood and 3rd order pseudo likelihood (|Aj|= 3) components
λPL3+(1−λ)PL2, and stochastic combination of 3rd order pseudo likelihood and 4th order pseudo
likelihood (|Aj|= 4) components λPL4+(1−λ)PL3.

The graph demonstrates the computation-accuracy tradeoff as follows: (a) pseudo likelihood is
the fastest but also the least accurate, (b) full likelihood is the slowest but the most accurate, (c)
adding higher order components reduces the asymptotic variance but also requires more computa-
tion, (d) the variance reduces with the increase in the selection probability λ of the higher order
component, and (e) adding 4th order components brings the variance very close the lower limit and
with each successive improvement becoming smaller and smaller according to a law of diminishing
returns.

Figure 3 displays the asymptotic accuracy and complexity for different SCL policies for m= 9
binary valued vertices of a Boltzmann machine. We explore three polices in which we denote pseudo
likelihood components of size, or order, k. These policies include: λ1β1PL1+ λ2(1− β1)PL2,
λ1β1PL1+λ2(1−β1)PL3, λ1β1PL2+λ2(1−β1)PL3 (for multiple values of λ1,λ2,β1). By taking
different linear combinations of various sized pseudo likelihood components, we span a continuous
spectrum of accuracy-complexity resolutions. The lower part of the diagram is the boundary of the
achievable region (the optimal but unachievable place is the bottom left corner). SCL policies that
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Figure 2: Asymptotic variance matrix, as measured by trace (left) and determinant (right), as a
function of the selection probabilities for different stochastic versions of the SCL func-
tion.

lie to the right and top of that boundary may be improved by selecting a policy below and to the left
of it.

8.2 Local Sentiment Prediction

Our first real world data set experiment involves local sentiment prediction using a conditional MRF
model. The data set consisted of 249 movie review documents having an average of 30.5 sentences
each with an average of 12.3 words from a 12633 word vocabulary. Each sentence was manually
labeled as one of five sentimental designations: very negative, negative, objective, positive, or very
positive. As described in Mao and Lebanon (2007) (where more information may be found) we
considered the task of predicting the local sentiment flow within these documents using regularized
conditional random fields (CRFs) (see Figure 4 for a graphical diagram of the model in the case of
four sentences).

As is common practice, we curtail overfitting through a L2 regularizer, exp{−(2nσ2)−1||θ||22},
which is strong when σ2 is small and weak when σ2 is large. We consider σ2 a hyper-parameter and
select it through cross-validation, unless noted otherwise.

Figure 5 shows the contour plots of train and test log-likelihood as a function of the SCL param-
eters: weight β and selection probability λ. The likelihood components were mixtures of full and
pseudo (|Aj|= 1) likelihood (rows 1,3) and pseudo and 2nd order pseudo (|Aj|= 2) likelihood (rows
2,4). Aj identifies a set of labels corresponding to adjacent sentences over which the probabilistic
query is evaluated. Results were averaged over 100 cross validation iterations with 50% train-test
split. We used BFGS quasi-Newton method for maximizing the regularized SCL functions. The
figure demonstrates how the train log-likelihood increases with increasing the weight and selection
probability of full likelihood in rows 1,3 and of 2nd order pseudo likelihood in rows 2,4. This
increase in train log-likelihood is also correlated with an increase in computational complexity as
higher order likelihood components require more computation. Note however, that the test set be-
havior in the third and fourth rows shows an improvement in prediction accuracy associated with
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Figure 3: Computation-accuracy diagram for three SCL families:λ1β1PL1 + λ2(1 − β1)PL2,
λ1β1PL1+λ2(1−β1)PL3, λ1β1PL2+λ2(1−β1)PL3 (for multiple values of λ1,λ2,β1)
for the Boltzmann machine with 9 binary nodes. The pure policies PL1 and PL2 are in-
dicated by black circles and the computational complexity of the full likelihood indicated
by a dashed line (corresponding normalized asymptotic variance is 1). The PL3 pure pol-
icy is beyond the scale of the diagram. As the graph size increases, the computational cost
increases dramatically, in particular for the full likelihood policy and to a lesser extent for
the pseudo likelihood policy.

decreasing the influence of full likelihood in favor of pseudo likelihood. The fact that this happens
for (relatively) weak regularization, σ2 = 10, and indicates that lower order pseudo likelihood has a
regularization effect which improves prediction accuracy when the model is not regularized enough.
We have encountered this phenomenon in other experiments as well and we will discuss it further
in the following subsections.

Figure 6 displays the complexity and negative log-likelihoods (left:train, right:test) of differ-
ent SCL estimators, sweeping through λ and β, as points in a two dimensional space. The shaded
area near the origin is unachievable as no SCL estimator can achieve high accuracy and low com-
putation at the same time. The optimal location in this 2D plane is the curved boundary of the
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Figure 4: Graphical representation of a four token conditional random field (CRF). A, B are weight
matrices and represent state-to-state transitions and state-to-observation outputs. Shad-
ing indicates the variable is conditioned upon while no shading indicates the variable is
generated by the model.

achievable region with the exact position on that boundary depending on the required solution of
the computation-accuracy tradeoff.

8.3 Text Chunking

This experiment consists of using sequential MRFs to divide sentences into “text chunks,” that is,
syntactically correlated sub-sequences, such as noun and verb phrases. Chunking is a crucial step
towards full parsing. For example,6 the sentence:

He reckons the current account deficit will narrow to only # 1.8 billion in September.

could be divided as:

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] [NP only #
1.8 billion ] [PP in ] [NP September ].

where NP, VP, and PP indicate noun phrase, verb phrase, and prepositional phrase.
We used the publicly available CoNLL-2000 shared task data set. It consists of labeled partitions

of a subset of the Wall Street Journal (WSJ) corpus. Our training sets consisted of sampling 100
sentences without replacement from the the CoNLL-2000 training set (211,727 tokens from WSJ
Sections 15-18). The test set was the same as the CoNLL-2000 testing partition (47,377 tokens
from WSJ Section 20). Each of the possible 21,589 tokens, that is, words, numbers, punctuation,
etc., are tagged by one of 11 chunk types and an O label indicating the token is not part of any
chunk. Chunk labels are prepended with flags indicating that the token begins (B-) or is inside (I-)
the phrase. Figure 7 lists all labels and respective frequencies. In addition to labeled tokens, the
data set contains a part-of-speech (POS) column. These tags were automatically generated by the
Brill tagger and must be incorporated into any model/feature set accordingly.

In the following, we explore this task using various SCL selection policies on two related, but
fundamentally different sequential MRFs: Boltzmann chain MRFs and CRFs.

8.3.1 BOLTZMANN CHAIN MRF

Boltzmann chains are a generative MRF that are closely related to hidden Markov models (HMM).
See MacKay (1996) for a discussion on the relationship between Boltzmann chain MRFs and

6. Taken from the CoNLL-2000 shared task, http://www.cnts.ua.ac.be/conll2000/chunking/.
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Figure 5: Train (left column) and test (right column) neg. log-likelihood contours for maximum
SCL estimators for the CRF model. L2 regularization, exp{−(2nσ2)−1||θ||22}, parame-
ters are σ2 = 1 (rows 1,2) and σ2 = 10 (rows 3,4). Rows 1,3 are stochastic mixtures of
full (FL) and pseudo (PL1) log-likelihood components while rows 2,4 are PL1 and 2nd
order pseudo (PL2). Note that weaker regularization resulted in higher accuracy at lower
computation.
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Figure 6: Scatter plot representing complexity and negative log-likelihood (left:train, right:test) of
SCL functions for CRFs with L2 regularization parameter σ2 = 1/2. The points represent
different stochastic combinations of full and pseudo likelihood components. The shaded
region represents impossible accuracy/complexity demands. Since the boundary of the
obtainable region is empirical, the optimal beta always lies on this boundary. By varying
λ,β we are able to smoothly span complexity (wall seconds) and accuracy.
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HMMs. We consider SCL components of the form p(X2,Y2|Y1,Y3), p(X2,X3,Y2,Y3|Y1,Y4) which
we refer to as first and second order pseudo likelihood (with higher order components generalizing
in a straightforward manner).

y0 y1

x1

y2

x2

y3
Ai j

x3

Bjk

y4

x4

Figure 8: Graphical representation of a four token Boltzmann chain. A, B are weight matrices and
represent preference in particular state-to-state transitions and state-to-feature emissions.
Only the start state is conditioned upon while all others are generative.

The nature of the Boltzmann chain constrains our feature set to only encode the particular token
present at each position, or time index. In doing so we avoid having to model additional depen-
dencies across time steps and dramatically reduce computational complexity. Although SCL is
precisely motivated by high treewidth graphs, we wish to include the full likelihood for demonstra-
tive purposes—in practice, this is often not possible. Although POS tags are available we do not
include them in these features since the dependence they share on neighboring tokens and other
POS tags is unclear. For these reasons our time-sliced feature vector, xi, has only a single-entry one
and cardinality matching the size of the vocabulary (21,589 tokens).

As in Section 8.2, we control overfitting through a L2 regularizer, exp{−(2nσ2)−1||θ||22}, which
is strong when σ2 is small and weak when σ2 is large. Here again we choose σ2 via cross-validation
unless otherwise noted. More often though, we show results for several representative σ2 to demon-
strate the roles of λ and β in θ̂msln .

Figures 9 and 10 depict train and test negative log-likelihood, that is, perplexity, for the SCL
estimator θ̂msl100 with a pseudo/full likelihood selection policy (PL1/FL). As is our convention, weight
β and selection probability λ correspond to the higher order component, in this case full likelihood.
The lower order pseudo likelihood component is always selected and has weight 1−β. As expected
the test set perplexity dominates the train-set perplexity. As was the situation in Sec. 8.2, we note
that the lower order component serves to regularize the full likelihood, as evident by the abnormally
large σ2.

We next demonstrate the effect of using a 1st order/2nd order pseudo likelihood selection policy
(PL1/PL2). Recall, our notion of pseudo likelihood never entails conditioning on x, although in
principle it could. Figures 11 and 12 show how the policy responds to varying both λ and β.
Figure 13 depicts the empirical tradeoff between accuracy and complexity. Figure 14 highlights the
effectiveness of the β heuristic. See captions for additional comments.

8.3.2 CRFS

Conditional random fields are the discriminative counterpart of Boltzmann chains (cf. Figures 4 and
8). Since x is not jointly modeled with y, we are free to include features with non-independence
across time steps without significantly increasing the computational complexity. Here our notion of
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Figure 9: Train set (top) and test set (bottom) negative log-likelihood (perplexity) for the Boltz-
mann chain MRF with pseudo/full likelihood selection policy (PL1/FL). The x-axis, β,
corresponds to relative weight placed on FL and and the y-axis, λ, corresponds to the
probability of selecting FL. PL1 is selected with probability 1 and weight 1− β. Con-
tours and labels are fixed across columns. Results averaged over several cross-validation
folds, that is, resampling both the train set and the PL1/FL policy. Columns from left to
right correspond to weaker regularization, σ2 = {500,2500,5000}. The best achievable
test set perplexity is about 190.

Unsurprisingly the test set perplexity dominates the train set perplexity at each σ2 (col-
umn). For a desired level of accuracy (contour) there exists a computationally favorable
regularizer. Hence θ̂msln acts as both a regularizer and mechanism for controlling accuracy
and complexity.

pseudo likelihood is more traditional, for example, p(Y2|Y1,Y,3,X2) and p(Y2,Y3|Y1,Y,4,X2,X3) are
valid 1st and 2nd order pseudo likelihood components.

We employ a subset of the features outlined in Sha and Pereira (2003) which proved competitive
for the CoNLL-2000 shared task. Our feature vector was based on seven feature categories, resulting
in a total of 273,571 binary features (i.e., ∑i fi(xt) = 7). The feature categories consisted of word
unigrams, POS unigrams, word bigrams (forward and backward), and POS bigrams (forward and
backward) as well as a stopword indicator (and its complement) as defined by Lewis et al. (2004).
The set of possible feature/label pairs is much larger than our set—we use only those features
supported by the CoNLL-2000 data set, that is, those which occur at least once. Thus we modeled
297,041 feature/label pairs and 847 transitions for a total of 297,888 parameters. As before, we use
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Figure 10: Train set and test set perplexities for the Boltzmann chain MRF with PL1/FL selection
policy (see above layout description). The x-axis is again β and the y-axis perplexity.
Lighter shading indicates FL is selected with increasing frequency. Note that as the
regularizer is weakened the range in perplexity spanned by λ increases and the lower
bound decreases. This indicates that the approximating power of θ̂msln increases when
unencumbered by the regularizer and highlights its secondary role as a regularizer.

the L2 regularizer, exp{−(2σ2)−1||θ||22}, which is strong when σ2 is small and weak when σ2 is
large.

We demonstrate learning on two selection policies: pseudo/full likelihood (Figures 15 and 16)
and 1st/2nd order pseudo likelihood (Figures 17 and 18). In both selection polices we note a sig-
nificant difference from the Boltzmann chain, β has less impact on both train and test perplexity.
Intuitively, this seems reasonable as the component likelihood range and variance are constrained by
the conditional nature of CRFs. Figure 19 demonstrates the empirical accuracy/complexity tradeoff
and Figure 20 depicts the effectiveness of the β heuristic. See captions for further comments.

8.4 Complexity/Regularization Win-Win

It is interesting to contrast the test log-likelihood behavior in the case of mild and stronger L2
regularization. In the case of weaker or no regularization, the test log-likelihood shows different
behavior than the train log-likelihood. Adding a lower order component such as pseudo likelihood
acts as a regularizer that prevents overfitting. Thus, in cases that are prone to overfitting reducing
higher order likelihood components improves both performance as well as complexity. This repre-
sents a win-win situation in contrast to the classical view where the MLE has the lowest variance
and adding lower order components reduces complexity but increases the variance.
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Figure 11: Train set (top) and test set (bottom) perplexity for the Boltzmann chain MRF with
1st/2nd order pseudo likelihood selection policy (PL1/PL2). The x-axis corresponds
to PL2 weight and the y-axis the probability of its selection. PL1 is selected with
probability 1 and weight 1− β. Columns from left to right correspond to σ2 =
{5000,10000,15000}. See Figure 9 for more details. The best achievable test set per-
plexity is about 189.5.

In comparing these results to PL1/FL, we note that the test set contours exhibit less per-
plexity for larger areas. In particular, perplexity is lower at smaller λ values, meaning a
computational saving over PL1/FL at a given level of accuracy.

In Figure 5 we note this phenomenon when comparing σ2 = 1 to σ2 = 10 across the selection
policies PL1/FL and PL1/PL2. That is, the weaker regularization and more restrictive selection
policy, that is, PL1/PL2, is able to achieve comparable test set perplexity.

For the text chunking experiments, we observe a striking win-win when using the Boltzmann
chain MRF, Figures 9 and 11. Notice that as regularization is decreased (comparing from left to
right), the contours are pulled closer to the x-axis. This means that we are achieving the same
perplexity at reduced levels of computational complexity. The CRF however, only exhibits the
win-win to a minor extent. We delve deeper into why this is might be the case in the following
section.

8.5 λ, σ2 Interplay

Throughout these experiments we fixed σ2 and either swept over (λ,β) or used the heuristic to
evaluate (λ,β(λ)). Motivated by the sometimes weak win-win (cf. Section 8.4) we now consider
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Figure 12: Train (top) and test (bottom) perplexities for the Boltzmann chain MRF with PL1/PL2
selection policy (x-axis:PL2 weight, y-axis:perplexity; see above and previous).

PL1/PL2 outperforms PL1/FL (Fig. 10) test perplexity despite PL1/FL including FL as a
special case (i.e., (λ,β) = (1,1)). We speculate that the regularizer’s indirect connection
to the training samples precludes it from preventing certain types of overfitting. See
Sec. 8.4 for more discussion.

how the optimal σ2 changes as a function of λ. In Figure 21 we used the β heuristic to evaluate
train and test perplexity over a (λ,σ2) grid. We used CRFs and the text chunking task as outlined in
Section 8.3.2.

For the PL1/FL policy, we observe that for small enough λ the optimal σ2, that is, the σ2 with
smallest test perplexity, has considerable range. At some point there are enough samples of the
higher-order component to stabilize the choice of regularizer, noting that it is still weaker than the
optimal full likelihood regularizer. Conversely, the PL1/PL2 regularizer has an essentially constant
optimal regularizer which is relatively much weaker.

As a result, we believe that the lack of win-win for the chunking CRF follows from two effects.
In the case of the PL1/FL policy the contour plots are misleading since there is no single σ2 that
performs well across all λ ∈ [0,1]. For the PL1/PL2 there is simply little change in regularization
necessary across λ.

9. Discussion

The proposed estimator family facilitates computationally efficient estimation in complex graphical
models. In particular, different (β,λ) parameterizations of the stochastic composite likelihood en-
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Figure 13: Accuracy and complexity tradeoff for the Boltzmann chain MRF with PL1/FL (left) and
PL1/PL2 (right) selection policies. Each point represents the negative log-likelihood
(perplexity) and the number of flops required to evaluate the composite likelihood and
its gradient under a particular instantiation of the selection policy. The shaded region
is the convex hull of the points and represents empirically unobtainable combinations
of computational complexity and accuracy. Particularly interesting is the difference
between policies and against the discriminative CRF, cf. Figure 19.

ables the resolution of the complexity-accuracy tradeoff in a domain and problem specific manner.
The framework is generally suited for Markov random fields, including conditional graphical mod-
els and is theoretically motivated. When the model is prone to overfit, stochastically mixing lower
order components with higher order ones acts as a regularizer and results in a win-win situation of
improving test-set accuracy and reducing computational complexity at the same time.

It is interesting to note that the SCL framework may be generalized to random m-estimators
beyond likelihood objects. That is, instead of a fixed m-function we may consider a linear combi-
nation of stochastic objects (appearing or not with some probability). Such estimators go beyond
traditional m-estimator but may be analyzed using techniques similar to the ones developed in this
paper. Although not a random m-estimator, the work of Dillon et al. (2010) borrows SCL concepts
to facilitate budgeted semi-supervised learning. This too would benefit from a random m-estimator
interpretation and indeed many machine learning tasks may fit nicely into such a framework.

The SCL framework may be useful for a wide variety of intractable graphical models. Besides
the examples presented here, it may be particularly suited for large scale models from statistical
physics, exponential random graph models, and models from computational biology. A particularly
nice feature is that the above computation may be trivially parallelized thus leading to effective
computation on large clusters and cloud computing.
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Figure 14: Demonstration of the effectiveness of the β heuristic, that is, using θ̂msl as a plug-in
estimate for θ0 to periodically re-estimate β during gradient descent. Results are for
the Boltzmann chain with PL1/FL (top) and PL1/PL2 (bottom) selection policies. The
x-axis is the value at the heuristically found β and the y-axis the value at the optimal β.
The optimal β was found by evaluating over a β grid and choosing that with the smallest
train set perplexity. The first column depicts the best performing β against the heuristic
β. The second and third columns depict the training and testing perplexities (resp.) at
the best performing β and heuristically found β. For all three columns, we assess the
effectiveness of the heuristic by its nearness to the diagonal (dashed line).

For the PL1/PL2 policy the heuristic closely matched the optimal (all bottom row points
are on diagonal). The heuristic out-performed the optimal on the test set and had slightly
higher perplexity on the training set. It is a positive result, albeit somewhat surprising,
and is attributable to either coarseness in the grid or improved generalization by account-
ing for variability in θ̂msl .
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Figure 15: Train set (top) and test set (bottom) perplexity for the CRF with pseudo/full likelihood
selection policy (PL1/FL). The x-axis corresponds to FL weight and the y-axis the prob-
ability of its selection. PL1 is selected with probability 1 and weight 1−β. Columns
from left to right correspond to σ2 = {100,1000,5000}. See Figure 9 for more details.
The best achievable test set perplexity is about 5.5.

Although we cannot directly compare CRFs to its generative counterpart, we observe
some strikingly different trends. It is immediately clear that the CRF is less sensitive
to the relative weighting of components than is the Boltzmann chain. This is partially
attributable to a smaller range of the objective—the CRF is already conditional hence
the per-component perplexity range is reduced.

Appendix A. Proofs

The proofs below generalize the classical consistency and asymptotic efficiency of the MLE (Fer-
guson, 1996) and the corresponding results for m-estimators (van der Vaart, 1998). They follow
similar lines as the proofs in Ferguson (1996) and van der Vaart (1998), with the necessary modifi-
cations due to the stochasticity of the SCL function. We assume below that pθ(X)> 0 and that X is
a discrete and finite RV.

The following lemma generalizes Shannon’s inequality (Cover and Thomas, 2005) for the KL
divergence. We will use it to prove consistency of the SCL estimator.
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Figure 16: Train (top) and test (bottom) perplexities for a CRF with PL1/FL selection policy (x-
axis:FL weight, y-axis:perplexity; see above and Fig. 10).

Perhaps more evidently here than above, we note that the significance of a particular
β is less than that of the Boltzmann chain. However, for large enough σ2, the optimal
β )= 1. This indicates the dual role of PL1 as a regularizer. Moreover, the left panel calls
attention to the interplay between β, λ, and σ2. See Sec. 8.5 for more discussion.

Lemma 1 Let (A1,B1), . . . ,(Ak,Bk) be a sequence of m-pairs that ensures identifiability of pθ,θ∈Θ
and α1, . . . ,αk positive constants. Then

k

∑
j=1

αk D(pθ(XAj |XBj) || pθ′(XAj |XBj))≥ 0

where equality holds iff θ= θ′.

Proof The inequality follows from applying Jensen’s inequality for each conditional KL divergence

−D(pθ(XAj |XBj) || pθ′(XAj |XBj)) = E pθ log
pθ′(XAj |XBj)
pθ(XAj |XBj)

≤ logEpθ
pθ′(XAj |XBj)
pθ(XAj |XBj)

= log1= 0.

For equality to hold we need each term to be 0 which follows only if pθ(XAj |XBj) ≡ pθ′(XAj |XBj)
for all j which, assuming identifiability, holds iff θ= θ′.
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Figure 17: Train set (top) and test set (bottom) perplexity for a CRF with 1st/2nd order pseudo
likelihood selection policy (PL1/PL2). The x-axis, β, represents the relative weight
placed on PL2 and the y-axis, λ, the probability of selecting PL2. PL1 is selected with
probability 1. Columns from left to right correspond to weaker regularization, σ2 =
{10000,20000,40000}. See Figure 15 for more details.

Proposition 5 Let Θ ⊂ Rr be an open set, pθ(x) > 0 and continuous and smooth in θ, and
(A1,B1), . . . ,(Ak,Bk) be a sequence of m-pairs for which {(Aj,Bj) : ∀ j such that λ j > 0} ensures
identifiability. Then the sequence of SCL maximizers is strongly consistent, that is,

P
(

lim
n→∞

θ̂n = θ0
)

= 1.

Proof The SCL function, modified slightly by a linear combination with a term that is constant in
θ is

sc!′(θ) =
1
n

n

∑
i=1

k

∑
j=1

β j
(

Zi j log pθ(X
(i)
Aj |X

(i)
Bj )−λ j log pθ0(X

(i)
Aj |X

(i)
Bj )

)

.

By the strong law of large numbers, the above expression converges as n→ ∞ to its expectation

µ(θ) =−
k

∑
j=1

β jλ j D(pθ0(XAj |XBj) || pθ(XAj |XBj)).

If we restrict ourselves to the compact set S= {θ : c1 ≤ ‖θ−θ0‖ ≤ c2} then

sup
θ∈S
sup
Z

∣

∣

∣

k

∑
j=1

Zjβ j log pθ(XAj |XBj)−λ jβ j log pθ0(XAj |XBj)
∣

∣

∣
< K(x)< ∞
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Figure 18: Train (top) and test (bottom) perplexities for a CRF with PL1/PL2 selection policy (x-
axis:PL2 weight, y-axis:perplexity; see above and Fig. 10).

Although increasing λ only brings minor improvement to both the training and testing
perplexities, it is worth noting that the test perplexity meets that of the PL1/FL. Still
though, the overall lack of resolution here suggests that smaller values of λ would better
span a range of perplexities and at reduced computational cost.

where K(x) is a function satisfying EK(X) < ∞. As a result, the conditions for the uniform strong
law of large numbers (Ferguson, 1996) hold on S leading to

P
{

lim
n→∞

sup
θ∈S

|scl′(θ)−µ(θ)|= 0
}

= 1. (17)

By Proposition 1, µ(θ) is non-positive and is zero iff θ= θ0. Since the function µ(θ) is contin-
uous it attains its negative supremum on the compact S: supθ∈S µ(θ)< 0. Combining this fact with
(17) we have that there exists N such that for all n > N the SCL maximizers on S achieves strictly
negative values of sc!′(θ) with probability 1. However, since sc!′(θ) can be made to achieve values
arbitrarily close to zero under θ = θ0, we have that θ̂msln )∈ S for n > N. Since c1,c2 were chosen
arbitrarily θ̂msln → θ0 with probability 1.

Proposition 6 Making the assumptions of Proposition 1 as well as convexity ofΘ⊂Rr we have the
following convergence in distribution

√
n(θ̂msln −θ0)! N (0,ϒΣϒ)
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Figure 19: Accuracy and complexity tradeoff for the CRF with PL1/FL (left) and PL1/PL2 (right)
selection policies. Each point represents the negative log-likelihood (perplexity) and
the number of flops required to evaluate the composite likelihood and its gradient under
a particular instance of the selection policy. The shaded region is the convex hull of
the points and represents empirically unobtainable combinations of computational com-
plexity and accuracy. σ2. Particularly interesting is the difference between policies and
against the generative Boltzmann chain, cf. Figure 13.

where

ϒ−1 =
k

∑
j=1

β jλ jVarθ0(∇Sθ0(Aj,Bj))

Σ= Varθ0

(

k

∑
j=1

β jλ j∇Sθ0(Aj,Bj)

)

.

The notation Varθ0(Y ) represents the covariance matrix of the random vector Y under pθ0 while
the notations p→ ,! in the proof below denote convergences in probability and in distribution (Fer-
guson, 1996).
Proof By the mean value theorem and convexity of Θ there exists η ∈ (0,1) for which θ′ = θ0+
η(θ̂msln −θ0) and

∇sc!n(θ̂msln ) = ∇sc!n(θ0)+∇2sc!n(θ′)(θ̂msln −θ0)

where ∇ f (θ) and ∇2 f (θ) are the r×1 gradient vector and r× r matrix of second order derivatives
of f (θ). Since θ̂n maximizes the SCL, ∇sc!n(θ̂msln ) = 0 and

√
n(θ̂msln −θ0) =−

√
n(∇2sc!n(θ′))−1∇sc!n(θ0). (18)
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Figure 20: Demonstration of the effectiveness of the β heuristic. Results are for the CRF with
PL1/FL (top) and PL1/PL2 (bottom) selection policies. The x-axis is the value at the
heuristically found β and the y-axis the value at the optimal β. The first column depicts
the best performing β against the heuristic β. The second and third columns depict the
training and testing perplexities (resp.) at the best performing β and heuristically found
β. For all three columns, we assess the effectiveness of the heuristic by its nearness to
the diagonal (dashed line). See Fig. 14 for more details.

The optimal and heuristic βmatch train and test perplexities for both policies. The actual
β value however does not seem to match as well as the Boltzmann chain. However, if
we note the flatness of the β grid (cf. Fig. 16 and 18) this result is unsurprising and can
be disregarded as an indication of the heuristic’s performance.

By Proposition 1 we have θ̂msln
p→ θ0 which implies that θ′

p→ θ0 as well. Furthermore, by the law
of large numbers and the fact that ifWn

p→W then g(Wn)
p→ g(W ) for continuous g,

(∇2sc!n(θ′))−1
p→ (∇2sc!n(θ0))−1 (19)

p→

(

k

∑
j=1

β jλ jEθ0∇
2Sθ0(Aj,Bj)

)−1

=−

(

k

∑
j=1

β jλ jVarθ0(∇Sθ0(Aj,Bj))

)−1

.
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Figure 21: Optimal regularization parameter as a function of (λ, β̂(λ)) for PL1/FL (left) and
PL1/PL2 (center) CRF selection policies. In the left figure, PL1/FL, λ represents the
probability of including FL into the objective. A few FL samples add uncertainty to
the objective thus a weaker regularizer is preferable. As more FL samples are incorpo-
rated, this effect diminishes but still acts to regularize since the full likelihood (only)
best regularization is σ2 = 500 (red triangle). The center figure, PL1/PL2, exhibits only
a minor change as λ (the probability of incorporating PL2) is increased. It is however,
best served by a much weaker regularizer than PL2 alone (red triangle).

The right figure depicts the test-set perplexity as a function of λ using the optimal σ2
(small λ values were clipped as their performance is quite poor). Note that the perplexity
is lowest when both components are always selected (λ= 1) and that the PL1/FL policy
outperforms the PL1/PL2 policy as expected.

For the remaining term in (18) we have

√
n∇sc!n(θ0) =

k

∑
j=1

β j
√
n
1
n

n

∑
i=1
Wi j

where the random vectors Wi j = Zi j∇ log pθ(X
(i)
Aj |X

(i)
Bj ) have expectation 0 and variance matrix

Varθ0(Wi j) = λ jVarθ0(∇Sθ0(Aj,Bj)). By the central limit theorem

√
n
1
n

n

∑
i=1
Wi j ! N (0,λ jVarθ0(∇Sθ0(Aj,Bj))) .

The sum
√
n∇sc!n(θ0) = ∑k

j=1β j
√
n 1n ∑

n
i=1Wi j is asymptotically Gaussian as well with mean zero

since it converges to a sum of Gaussian distributions with mean zero. Since in the general case
the random variables

√
n 1n ∑

n
i=1Wi j, j = 1, . . . ,k are correlated, the asymptotic variance matrix of√

n∇sc!n(θ0) needs to account for cross covariance terms leading to

√
n∇sc!n(θ0)! N

(

0,Varθ0

(

k

∑
j=1

β jλ j∇Sθ0(Aj,Bj)

))

. (20)

We finish the proof by combining (18), (19) and (20) using Slutsky’s theorem.
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Recall our notation for the case that the true model P )∈ {pθ : θ ∈ Θ}.

ψθ(X ,Z)
def
= ∇mθ(X ,Z)

ψ̇θ(X ,Z)
def
= ∇2mθ(X ,Z) (matrix of second order derivatives)

Ψn(θ)
def
=
1
n

n

∑
i=1

ψθ(X (i),Z(i)).

Proposition 7 Assuming the conditions in Proposition 1 as well as supθ:‖θ−θ0‖≥εM(θ)<M(θ0) for
all ε> 0 we have θ̂msln → θ0 as n→ ∞ with probability 1.

Proof We assert

P
{

lim
n→∞

sup
θ∈S

|scl′(θ)−µ(θ)|= 0
}

= 1. (21)

on the compact set S = {θ : c1 ≤ ‖θ− θ0‖ ≤ c2} as in the proof of Proposition 1. We proceed
similarly along the lines of Proposition 1, with the necessary modification due to the fact that the
true model is outside the parametric family.

Since the function µ(θ) is continuous it attains its negative supremum on the compact
S: supθ∈S µ(θ) < µ(θ0) ≥ 0. Combining this fact with (21) we have that there exists N such that
for all n> N the SCL maximizers on S achieves strictly negative values of sc!′(θ) with probability
1.

However, since sc!′(θ) can be made to achieve values arbitrarily close to µ(θ0) as θ̂n → θ0, we
have that θ̂msln )∈ S for n> N. Since c1,c2 were chosen arbitrarily θ̂msln → θ0 with probability 1.

Proposition 8 Assuming the conditions of Proposition 2 as well as EP(X)EP(Z)‖ψθ0(X ,Z)‖2 < ∞,
EP(X)EP(Z)ψ̇θ0(X) exists and is non-singular, |Ψ̈i j| = |∂2ψθ(x)/∂θiθ j| < g(x) for all i, j and θ in a
neighborhood of θ0 for some integrable g, we have

√
n(θ̂n−θ0) =−(EP(X)EP(Z)ψ̇θ0)

−1 1√
n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP(1)

or equivalently

θ̂n = θ0− (EP(X)EP(Z)ψ̇θ0)
−1 1
n

n

∑
i=1

ψθ0(X
(i),Z(i))+oP

(

1√
n

)

.

Proof By Taylor’s theorem there exists a random vector θ̃n on the line segment between θ0 and θ̂n
for which

0=Ψn(θ̂n) =Ψn(θ0)+ Ψ̇n(θ0)(θ̂n−θ0)+
1
2
(θ̂n−θ0)

(Ψ̈n(θ̃n)(θ̂n−θ0).

which we re-arrange as

√
nΨ̇n(θ0)(θ̂n−θ0)+

√
n
1
2
(θ̂n−θ0)

(Ψ̈n(θ̃n)(θ̂n−θ0) =−
√
nΨn(θ̂n) (22)

=−
√
nΨn(θ0)+oP(1)
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where the second equality follows from the fact that θ̂n
p→ θ0 and continuous functions preserves

converges in probability.
Since Ψ̇n(θ0) converges by the law of large numbers to EP(X)EP(Z)ψ̇θ(X ,Z) and Ψ̈n(θ̃n) con-

verges to a matrix of bounded values in the neighborhood of θ0 (for large n), the lhs of (22) is

√
n
(

EP(X)EP(Z)ψ̇θ(X ,Z)+oP(1)+
1
2
(θ̂n−θ0)OP(1)

)

(θ̂n−θ0)

=
√
n(EP(X)EP(Z)ψ̇θ(X ,Z)+oP(1))(θ̂n−θ0)

since θ̂n−θ0 = oP(1) and oP(1)Op(1) = oP(1) (the notation OP(1) denotes stochastically bounded
and it applies to Ψ̈n(θ̃n) as described above). Putting it together we have

√
n(EP(X)EP(Z)ψ̇θ(X ,Z)+oP(1))(θ̂n−θ0) =−

√
nΨn(θ0)+oP(1).

Since the matrix EP(X)EP(Z)ψ̇θ(X ,Z)+ oP(1) converges to a non-singular matrix, multiplying the
equation above by its inverse finishes the proof.

Corollary 2 Assuming the conditions specified in Proposition 4 we have
√
n(θ̂n−θ0)! N(0,(EP(X)EP(Z)ψ̇θ0)

−1(EP(X)EP(Z)ψθ0ψ
(
θ0)(EP(X)EP(Z)ψ̇θ0)

−1).

Proof Equation (12) follows from (10) by noticing that due to the central limit theorem Ψn(θ0) (as
it is an average of n iid RVs with expectation 0)

√
n ·
1
n

n

∑
i=1

ψθ0(X
(i),Z(i))! N(0,EP(X)EP(Z)ψθ0ψ

(
θ0).

Substituting this in the right hand side of (10) and accounting for the modified variance due to the
matrix inverse results in (12).

Appendix B. List of Figures

The following lists figures by subject.

B.1 Case Study

• Boltzmann Machines
Figure 1 Tabular comparison of policies for computation and accuracy
Figure 2 Theoretical analysis of asymptotic variance for trace and determinant
Figure 3 Computation/accuracy tradeoff

B.2 Experimental Study

• Labeling sentiment with CRFs
Figure 4 CRF graphical model
Figure 5 PL1/FL & PL1/PL2 for different σ2 as a function of β×λ
Figure 6 Computation/accuracy tradeoff with empirical unachievable region
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• Chunking CoNLL-2000
Figure 7 CoNLL-2000 data set label counts

. . . generatively (Boltzmann Chains)
Figure 8 Boltzmann Chain graphical model
Figure 13 Computation/accuracy tradeoff with empirical unachievable region
Figure 9 PL1/FL train & test results as a function of β×λ
Figure 10 PL1/FL train & test results as a function of β
Figure 11 PL1/PL2 train & test results as a function of β×λ
Figure 12 PL1/PL2 train & test results as a function of β

. . . discriminatively (CRFs)
Figure 4 CRF graphical model
Figure 19 Computation/accuracy tradeoff with empirical unachievable region
Figure 15 PL1/FL train & test results as a function of β×λ
Figure 16 PL1/FL train & test results as a function of β
Figure 17 PL1/PL2 train & test results as a function of β×λ
Figure 18 PL1/PL2 train & test results as a function of β

• β heuristic
Figure 14 for Boltzmann Chains
Figure 20 for CRFs
Figure 21 Optimal regularizing parameter as a function of λ
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Abstract
The problem of characterizing learnability is the most basic question of statistical learning theory. A fun-
damental and long-standing answer, at least for the case of supervised classification and regression, is that
learnability is equivalent to uniform convergence of the empirical risk to the population risk, and that if a
problem is learnable, it is learnable via empirical risk minimization. In this paper, we consider the General
Learning Setting (introduced by Vapnik), which includes most statistical learning problems as special cases.
We show that in this setting, there are non-trivial learning problems where uniform convergence does not
hold, empirical risk minimization fails, and yet they are learnable using alternative mechanisms. Instead of
uniform convergence, we identify stability as the key necessary and sufficient condition for learnability. More-
over, we show that the conditions for learnability in the general setting are significantly more complex than in
supervised classification and regression.
Keywords: statistical learning theory, learnability, uniform convergence, stability, stochastic convex opti-
mization

1. Introduction
We consider the General Setting of Learning introduced by Vapnik (1995) where we would like to minimize
a population risk functional (stochastic objective)

F(h) = EZ∼D [ f (h;Z)] (1)

over some hypothesis class H , where the distribution D of Z is unknown, based on i.i.d. sample z1, . . . ,zm
drawn from D (and full knowledge of f and H ). This General Setting subsumes supervised classification
and regression, certain unsupervised learning problems, density estimation and more. For example, in super-
vised learning z = (x,y) is an instance-label pair, h is a predictor, and f (h;(x,y)) = loss(h(x),y) is the loss
functional. See Section 2 for formal definitions and further examples.

In the context of this general setting, we are concerned with the question of statistical “learnability”. That
is, when can Equation (1) be minimized to within arbitrary precision based only on a finite sample z1, . . . ,zm,
as m → ∞? We are not concerned here with computational aspects of this problem, that is, whether this
approximate minimization can be carried out efficiently, but only whether it is statistically possible to do so
based only on the sample z1, . . . ,zm.

c©2010 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro and Karthik Sridharan.
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For supervised classification and regression problems, it is well known that a problem is learnable if and
only if the empirical risks

FS(h) = 1
m

m

∑
i=1

f (h,zi)

for all h ∈ H converge uniformly to the population risk (Blumer et al., 1989; Alon et al., 1997). If uniform
convergence holds, then the empirical risk minimizer (ERM) is consistent, that is, the population risk of the
ERM converges to the optimal population risk, and the problem is learnable using the ERM. We therefore
have:

• A necessary and sufficient condition for learnability, namely uniform convergence of the empirical
risks. Furthermore, this can be shown to be equivalent to a combinatorial condition: having finite
VC-dimension in the case of classification, and having finite fat-shattering dimensions in the case of
regression.

• A complete understanding of how to learn: since learnability is equivalent to learnability by ERM, we
can focus our attention solely on empirical risk minimizers.

The situation, for supervised classification and regression, can be depicted as follows:

Finite Dim.
Uniform

Convergence
Learnable
with ERM Learnable

Other than uniform convergence, certain notions of stability have also been suggested as an explicit
condition for learnability. Intuitively, stability notions focus on particular algorithms, or learning rules, and
measure their sensitivity to perturbations in the training set. In particular, it is known that stability of the
ERM is sufficient for learnability. In Mukherjee et al. (2006), it is argued that stability is also a necessary
for learnability. However, that argument relied on the assumption that uniform convergence is equivalent
to learnability. Therefore, stability was shown to characterize learnability only in situations where uniform
convergence characterizes learnability anyway.

The equivalence of uniform convergence and learnability was formally established only in the supervised
classification and regression setting. In the more general setting, the “rightward” implications in the diagram
above still hold: finite fat-shattering dimensions, uniform convergence, as well as ERM stability, are indeed
sufficient conditions for learnability using the ERM. As for the reverse implication, Vapnik showed that a
notion of “non-trivial” or “strict” learnability with the ERM is indeed equivalent to uniform convergence of
the empirical risks. This notion was meant to exclude certain “trivial” learning problems, which are learn-
able without uniform convergence (see Section 3.1). Even in such problems, learnability is still possible by
empirical risk minimization. Thus, it would seem that in the General Learning Setting, as in supervised clas-
sification and regression, a problem is learnable if and only if it is learnable by empirical risk minimization.

In this paper we show that the situation in the General Learning Setting is actually much more complex.
In particular, in Section 4.1 we show an example of a learning problem in the General Learning Setting,
which is learnable (using an online algorithm and an online-to-batch conversion), but which is not learnable
using empirical risk minimization. To the best of our knowledge this is the first example shown of this type.

Furthermore, in Section 4.2 we show a modified example which is learnable using empirical risk mini-
mization, but for which the empirical risks of the hypotheses do not converge uniformly to their expectations,
not even locally for hypotheses very close to the true hypothesis. We argue that unlike the examples discussed
in Section 3.1, this example is far from being “trivial”. We use this example to discuss how Vapnik’s notion
of “strict” learnability with the ERM is too strict, and precludes cases which are far from trivial and in which
learnability with empirical risk minimization is not equivalent to uniform convergence.

Having shown that learnability does not imply learnability with the ERM, and learnability with the ERM
does not imply uniform convergence (unlike supervised classification and regression), we proceed in Sec-
tion 5 to characterize learnability in the General Learning Setting, unveiling stability as a key notion.
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In particular, we show that for learnable problems, even when they are not learnable with ERM, they are
always learnable with some learning rule which is “asymptotically ERM” and (AERM - see precise definition
in Section 2). Moreover, such an AERM must be stable (under a suitable notion of stability). Namely, we
have the following characterization of learnability in the General Learning Setting:

Exists Stable
AERM

Learnable
with AERM Learnable

Note that this characterization holds even for learnable problems with no uniform convergence. In this sense,
stability emerges as a strictly more powerful notion than uniform convergence for characterizing learnability.

Other than this, we also discuss several related results, which above all imply that the conditions for
learnability in the General Learning Setting are substantially different and more complex than in supervised
classification and regression.

Our results point not to a specific learning rule (such as an ERM), but rather to a class of learning rules
(AERM learning rules) as possible candidates for learning. In Section 6, we explore how our results can be
strengthened if we allow randomized learning rules. In particular, randomization allows us to pinpoint not a
general class of learning rules, but rather a specific (though highly impractical) learning rule, which learns if
and only if the problem is learnable.

Throughout most of the paper we discuss learning rates (as a function of the sample size), but do not pay
much attention to the confidence at which the learning rule succeeds (i.e., the dependence of the sample size
on the allowed probability of failure). This issue is addressed Section 7, and again we show that in the General
Learning Setting, things can behave rather differently than in supervised classification and regression.

In summary, this paper opens a door to the complexity of learnability in the General Learning Setting,
and provides some understanding of the situation, including highlighting the important role of stability. Many
gaps in our understanding remain, and we hope that future progress will close some of these gaps, as well as
connect the theoretical insights gained to machine learning as used in practice.

This paper is partially based on the results obtained in Shalev-Shwartz et al. (2009a) and Shalev-Shwartz
et al. (2009b).

2. The General Learning Setting: Formal Definition and Notation
In this paper we focus on the General Learning Setting, which was introduced by Vapnik (1995) as a unifying
framework for the problem of statistical learning from empirical data.

The General Learning Setting deals with learning problems. Formally, a learning problem is specified
by a hypothesis class H , an instance set Z (with a sigma-algebra), and an objective function (e.g., “loss” or
“cost”) f :H ×Z → R. Throughout this paper we assume the function is bounded by some constant B, that
is | f (h;z)|≤ B for all h ∈H and z ∈ Z.

Given a distribution D on Z, the quality of each hypothesis h ∈H is measured by its risk F(h), which is
defined as Ez∼D [ f (h;z)]. While H , Z and f (h;z) are known to the learner, we assume that D is unknown.
Ideally, we would like to pick h ∈H whose risk is as close as possible to infh∈H F(h). Since the underlying
distribution D is unknown, we cannot do this directly, but instead need to rely on a finite empirical training
sample S= {z1, . . . ,zm}. On this sample, we apply a learning rule to pick a hypothesis . Formally, a learning
rule is a mapping A : ∪∞m=1Zm → H from sequences of instances in Z to hypotheses. We refer to sequences
S= {z1, . . . ,zm} as “sample sets”, but it is important to remember that the order and multiplicity of instances
may be significant. A learning rule that does not depend on the order of the instances in the training sample
is said to be symmetric. We will generally consider samples S∼Dm of m i.i.d. draws from D .

This framework is sufficiently general to include a large portion of the statistical learning and optimization
problems we are aware of, such as:
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• Binary Classification: Let Z = X × {0,1}, let H be a set of functions h : X (→ {0,1}, and let
f (h;(x,y)) = 11{h(x) )=y}. Here, f (·) is simply the 0− 1 loss function, measuring whether the binary
hypothesis h(·) misclassified the example (x,y).

• Regression: Let Z = X ×Y where X and Y are bounded subsets of Rn and R respectively, let H
be a set of bounded functions h : X n (→ R, and let f (h;(x,y)) = (h(x)− y)2. Here, f (·) is simply the
squared loss function.

• Large Margin Classification in a Reproducing Kernel Hilbert Space (RKHS): Let Z = X ×{0,1},
where X is a bounded subset of an RKHS, let H be another bounded subset of the RKHS, and let
f (h;(x,y)) =max{0,1− y〈x,h〉}. Here, f (·) is the well known hinge loss function, and our goal is to
perform margin-based linear classification in the RKHS.

• K-Means Clustering in Euclidean Space: Let Z = Rn, let H be all subsets of Rn of size k, and let
f (h;z) =minc∈h ‖c− z‖2. Here, each h represents a set of k centroids, and f (·)measures the Euclidean
distance squared between an instance z and its nearest centroid, according to the hypothesis h.

• Density Estimation: Let Z be a subset ofRn, letH be a set of bounded probability densities on Z, and
let f (h;z) = − log(h(z)). Here, f (·) is simply the negative log-likelihood of an instance z according
to the hypothesis density h. Note that to ensure boundedness of f (·), we need to assume that h(z) is
lower bounded by a positive constant for all z ∈ Z.

• Stochastic Convex Optimization in Hilbert Spaces: Let Z be an arbitrary measurable set, let H
be a closed, convex and bounded subset of a Hilbert space, and let f (h;z) be Lipschitz-continuous
and convex w.r.t. its first argument. Here, we want to approximately minimize the objective function
Ez∼D [ f (h;z)], where the distribution over Z is unknown, based on an empirical sample z1, . . . ,zm.

Our overall goal in this setting is to pick a hypothesis h ∈ H with approximately minimal possible risk,
based on a finite sample. Generally, we expect the approximation to get better with the sample size. Learning
rules which allow us to choose such hypotheses are said to be consistent. Formally, we say a rule A is
consistent with rate εcons(m) under distribution D if for all m,

ES∼Dm [F(A(S))−F∗]≤ εcons(m), (2)

where we denote F∗ = infh∈H F(h) (here and whenever talking about a “rate” ε(m), we require it to be
monotone decreasing with εcons(m)

m→∞−→ 0).
However, since D is unknown, we cannot choose a learning rule based on D . Instead, we will ask for a

stronger requirement, namely that the rule is consistent with rate εcons(m) under all distributions D over Z.
This leads to the following central definition:

Definition 1 A learning problem is learnable, if there exist a learning rule A and a monotonically decreasing
sequence εcons(m), such that εcons(m)

m→∞−→ 0, and

∀D, ES∼Dm [F(A(S))−F∗]≤ εcons(m).

A learning rule A for which this holds is denoted as a universally consistent learning rule.

This definition of learnability, requiring a uniform rate for all distributions, is the relevant notion for
studying learnability of a hypothesis class. It is a direct generalization of agnostic PAC-learnability (Kearns
et al., 1992) to Vapnik”s General Setting of Learning as studied by Haussler (1992) and others.

A possible approach to learning is to minimize the empirical risk FS(h) over a sample S, defined as

FS(h) =
1
m ∑z∈S

f (h;z).
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Z,z Instance domain and a specific instance.
H ,h Hypothesis class and a specific hypothesis.
f (h,z) Loss of hypothesis h on instance z
B suph,z | f (h;z)|
D Underlying distribution on instance domain Z
S Empirical sample z1, . . . ,zm, sampled i.i.d. from D
m Size of empirical sample S
A(S) Learning rule A applied on empirical sample S
εcons(m) Rate of consistency for a learning rule
F(h) Risk of hypothesis h, Ez∼D [ f (h;z)]
F∗ infh∈H F(h)
FS(h) Empirical risk of hypothesis h on sample S, 1m ∑z∈S f (h;z)
ĥS An ERM hypothesis, FS(ĥS) = infh∈H FS(h)
εerm(m) Rate of AERM for a learning rule
εstable(m) Rate of stability for a learning rule
εgen(m) Rate of generalization for a learning rule

Table 1: Table of Notation

We say that a rule A is an ERM (Empirical Risk Minimizer) if it minimizes the empirical risk

FS(A(S)) = FS(ĥS) = inf
h∈H

FS(h).

where we use FS(ĥS) = infh∈H FS(h) to refer to the minimal empirical risk. But since there might be several
hypotheses minimizing the empirical risk, ĥS does not refer to a specific hypotheses and there might be many
rules which are all ERM.

We say that a rule A is an AERM (Asymptotic Empirical Risk Minimizer) with rate εerm(m) under distri-
bution D if:

ES∼Dm
[

FS(A(S))−FS(ĥS)
]

≤ εerm(m)

A learning rule is universally an AERM with rate εerm(m), if it is an AERM with rate εerm(m) under all
distributions D over Z. A learning rule is an always AERM with rate εerm(m), if for any sample S of size m,
it holds that FS(A(S))−FS(ĥS)≤ εerm(m).

We say a rule A generalizes with rate εgen(m) under distribution D if for all m,

ES∼Dm [|F(A(S))−FS(A(S))|]≤ εgen(m).

A rule universally generalizes with rate εgen(m) if it generalizes with rate εgen(m) under all distributions D
over Z.

We note that other authors sometimes define “consistent”, and thus also “learnable” as a combination of
our notions of “consistent” and “generalizing”.

In the above definitions, we choose to use convergence in expectation, and defined the rates as rates on
the expectation. Since the objective f is bounded, convergence in expectation is equivalent to convergence in
probability. Furthermore, using Markov’s inequality we can translate a rate of the form E [|X |] ≤ ε(m) to a
“low confidence” guarantee P [|X |> ε(m)/δ]≤ δ. See Section 7 for a further discussion on this issue.

3. Background: Characterization of Learnability
Before presenting our results, we begin with a review of the known connections between learnability, stability,
and uniform convergence, highlighting the issues which will be of importance later on.
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3.1 Learnability and Uniform Convergence

As discussed in the introduction, a central notion for characterizing learnability is uniform convergence.
Formally, we say that uniform convergence holds for a learning problem, if the empirical risks of hypotheses
in the hypothesis class converges to their population risk uniformly, with a distribution-independent rate:

sup
D

ES∼Dm

[

sup
h∈H

|F(h)−FS(h)|
]

m→∞−→ 0.

It is straightforward to show that if uniform convergence holds, then a problem can be learned with the ERM
learning rule.

For binary classification problems (where Z = X ×{0,1}, each hypothesis is a mapping from X to {0,1},
and f (h;(x,y)) = 11{h(x) )=y}), Vapnik and Chervonenkis (1971) showed that the finiteness of a simple com-
binatorial measure known as the VC-dimension implies uniform convergence. Furthermore, it can be shown
that binary classification problems with infinite VC-dimension are not learnable in a distribution-independent
sense. This establishes the condition of having finite VC-dimension, and thus also uniform convergence, as a
necessary and sufficient condition for learnability.

Such a characterization can also be extended to regression, such as regression with squared loss, where
h is now a real-valued function, and f (h;(x,y)) = (h(x)− y)2. The property of having finite fat-shattering
dimension at all finite scales now replaces the property of having finite VC-dimension, but the basic equiva-
lence still holds: a problem is learnable if and only if uniform convergence holds (Alon et al., 1997, see also
Anthony and Bartlet, 1999, Chapter 19). These results are usually based on clever reductions to binary clas-
sification. However, the General Learning Setting that we consider is much more general than classification
and regression, and includes setting where a reduction to binary classification is impossible.

To justify the necessity of uniform convergence even in the General Learning Setting, Vapnik attempted
to show that in this setting, learnability with the ERM learning rule is equivalent to uniform convergence
(Vapnik, 1998). Vapnik noted that this result does not hold, due to “trivial” situations. In particular, consider
the case where we take an arbitrary learning problem (with hypothesis class H ), and add to H a single
hypothesis h̃ such that f (h̃,z) < infh∈H f (h,z) for all z ∈ Z (see figure 1 below). This learning problem
is now trivially learnable, with the ERM learning rule which always picks h̃. Note that no assumptions
whatsoever are made on H - in particular, it can be arbitrarily complex, with no uniform convergence or any
other particular property. Note also that such a phenomenon is not possible in the binary classification setting,
where f (h;(x,y)) = 11{h(x) )=y}, since on any (x,y) we will have hypotheses with f (h;(x,y)) = f (h̃;(x,y))
and thus if H is very complex (has infinite VC dimension) then on every training set there will be many
hypotheses with zero empirical error.

To exclude such “trivial” cases, Vapnik introduced a stronger notion of consistency, termed as “strict
consistency”, which in our notation is defined as

∀c ∈ R, inf
h:F(h)≥c

FS(h)
m→∞−→ inf

h:F(h)≥c
F(h) ,

where the convergence is in probability. The intuition is that we require the empirical risk of the ERM to
converge to the lowest possible risk, even after discarding all the “good” hypotheses whose risk is smaller
than some threshold. Vapnik then showed that such strict consistency of the ERM is in fact equivalent to
(one-sided) uniform convergence, of the form

sup
h∈H

(F(h)−FS(h))
m→∞−→ 0

in probability. Note that this equivalence holds for every distribution separately, and does not rely on universal
consistency of the ERM.

These results seem to imply that up to “trivial” situations, a uniform convergence property indeed char-
acterizes learnability, at least using the ERM learning rule. However, as we will see later on, the situation is
in fact not that simple.
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f(h̃; z)

Figure 1: An example of a “trivial” learning situation. Each line represents some h∈H , and shows the value
of f (h,z) for all z ∈ Z. The hypothesis h̃ dominates any other hypothesis (e.g., f (h̃;z) < f (h;z)
uniformly for all z), and thus the problem is learnable without uniform convergence or any other
property of H .

3.2 Learnability and Stability

Instead of focusing on the hypothesis class, and ensuring uniform convergence of the empirical risks of
hypothesis in this class, an alternative approach is to directly control the variance of the learning rule. Here, it
is not the complexity of the hypothesis class which matters, but rather the way that the learning rule explores
this hypothesis class. This alternative approach leads to the notion of stability in learning. It is important to
note that stability is a property of a learning rule, not of the hypothesis class.

In the context of modern learning theory,1 the use of stability can be traced back at least to the work
of Rogers and Wagner (1978), which noted that the sensitivity of a learning algorithm with regard to small
changes in the sample controls the variance of the leave-one-out estimate. The authors used this observation
to obtain generalization bounds (w.r.t. the leave-one-out estimate) for the k-nearest neighbor algorithm. It
is interesting to note that a uniform convergence approach for analyzing this algorithm simply cannot work,
because the “hypothesis class” in this case has unbounded complexity. These results were later extended
to other “local” learning algorithms (see Devroye et al., 1996 and references therein). In addition, practi-
cal methods have been developed to introduce stability into learning algorithms, in particular the Bagging
technique introduced by Breiman (1996).

Over the last decade, stability was studied as a generic condition for learnability. Kearns and Ron (1999)
showed that an algorithm operating on a hypothesis class with finite VC dimension is also stable (under a
certain definition of stability). Bousquet and Elisseeff (2002) introduced a strong notion of stability (denoted
as uniform stability) and showed that it is a sufficient condition for learnability, satisfied by popular learning
algorithms such as regularized linear classifiers and regressors in Hilbert spaces (including several variants
of SVM). Kutin and Niyogi (2002) introduced several weaker variants of stability, and showed how they are
sufficient to obtain generalization bounds for algorithms stable in their sense.

The papers above mainly considered stability as a sufficient condition for learnability. A more recent
line of work (Rakhlin et al., 2005; Mukherjee et al., 2006) studied stability as a necessary condition for
learnability. However, the line of argument is specific to settings where uniform convergence holds and is

1. In a more general mathematical context, stability has been around for much longer. The necessity of stability for so-called inverse
problems to be well posed was first recognized by Hadamard (1902). The idea of regularization (that is, introducing stability into
ill-posed inverse problems) became widely known through the works of Tikhonov (1943) and Phillips (1962). We return to the
notion of regularization later on.
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necessary for learning. With this assumption, it is possible to show that the ERM algorithm is stable, and thus
stability is also a necessary condition for learning. However, as we will see later on in our paper, uniform
convergence is in fact not necessary for learning in the General Learning Setting, and stability plays there a
key role which has nothing to do with uniform convergence.

Finally, it is important to note that the results cited above make use of many different definitions of
stability, which unfortunately are not always comparable. All of them measure stability as the amount of
change in the algorithm’s output as a function of small changes to the sample on which the algorithm is
run. However, “amount of change to the output” and “small changes to the sample” can be defined in many
different ways. “Amount of change to the output” can mean change in risk, change in loss with respect
to particular examples, or supremum of change in loss over all examples. “Small changes to the sample”
usually mean either deleting one example or replacing it with another one (and even here, one can talk about
removing/replacing one instance at random, or in some arbitrary manner). Finally, this measure of change
can be measured with respect to any arbitrary sample, in expectation over samples drawn from the underlying
distribution; or in high probability over samples. For further discussion of this issue, see Appendix A.

4. Gaps Between Learnability, Uniform Convergence and ERM
In this section, we study a special case of the General Learning Setting, where there is a real gap between
learnability and uniform convergence, in the sense that there are non-trivial problems where no uniform
convergence holds (not even in a local sense), but they are still learnable. Moreover, some of these problems
are learnable with an ERM (again, without any uniform convergence), and some are not learnable with an
ERM, but rather with a different mechanism. We also discuss why this peculiar behavior does not formally
contradict Vapnik’s results on the equivalence of strict consistency of the ERM and uniform convergence,
as well as the important role that regularization seems to play here, but in a different way than in standard
theory.

4.1 Learnability without Uniform Convergence : Stochastic Convex Optimization

A stochastic convex optimization problem is a special case of the General Learning Setting discussed above,
with the added constraints that the objective function f (h;z) is Lipschitz-continuous and convex in h for
every z, and that H is closed, convex and bounded. We will focus here on problems where H is a subset of
a Hilbert space. A special case is the familiar linear prediction setting, where z = (x,y) is an instance-label
pair, each hypothesis h belongs to a subset H of a Hilbert space, and f (h;x,y) = !(〈h,φ(x)〉,y) for some
feature mapping φ and a loss function ! : R×Y → R, which is convex w.r.t. its first argument.

The situation in which the stochastic dependence on h is linear, as in the preceding example, is fairly
well understood. When the domain H and the mapping φ are bounded, we have uniform convergence, in the
sense that |F(h)−FS(h)| is uniformly bounded over all h ∈ H (see Sridharan et al., 2008). This uniform
convergence of FS(h) to F(h) justifies choosing the empirical minimizer ĥS = argminhFS(h), and guarantees
that the expected value of F(ĥS) converges to the optimal value F∗ = infhF(h).

Even if the dependence on h is not linear, it is still possible to establish uniform convergence (using
covering number arguments) provided that H is finite dimensional. Unfortunately, when we turn to infinite
dimensional hypothesis spaces, uniform convergence might not hold and the problem might not be learnable
with empirical minimization. Surprisingly, it turns out that this does not imply that the problem is unlearnable.
We will show that using a regularization mechanism, it is possible to devise a learning algorithm for any
stochastic convex optimization problem, even when uniform convergence does not hold. This mechanism is
fundamentally related to the idea of stability, and will be a good starting point for our more general treatment
of stability and learnability in the next section of the paper.

We now turn to discuss our first concrete example. Consider the convex stochastic optimization problem
given by

f (3)(h;(x,α)) = ‖α∗ (h−x)‖ =
√

∑
i
α2[i](h[i]−x[i])2 , (3)
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where for now we letH to be the d-dimensional unit sphereH =
{

h ∈ Rd : ‖h‖ ≤ 1
}

, we let z= (x,α) with
α ∈ [0,1]d and x ∈H , and we define u∗v to be an element-wise product. We will first consider a sequence of
problems, where d = 2m for any sample size m, and establish that we cannot expect a convergence rate which
is independent of the dimensionality d. We then formalize this example in infinite dimensions.

One can think of the problem in Equation (3) as that of finding the “center” of an unknown distribution
over x ∈ Rd , where we also have stochastic per-coordinate “confidence” measures α[i]. We will actually
focus on the case where some coordinates are missing, namely that α[i] = 0.

Consider the following distribution over (x,α): x= 0 with probability one, and α is uniform over {0,1}d .
That is, α[i] are i.i.d. uniform Bernoulli. For a random sample (x1,α1), . . . ,(xm,αm) if d > 2m then we have
that with probability greater than 1− e−1 > 0.63, there exists a coordinate j ∈ 1 . . .d such that all confidence
vectors αi in the sample are zero on the coordinate j, that is αi[ j] = 0 for all i = 1..m. Let e j ∈ H be the
standard basis vector corresponding to this coordinate. Then

F(3)
S (e j) =

1
m

m

∑
i=1

∥

∥αi ∗ (e j−0)
∥

∥ =
1
m

m

∑
i=1

|αi[ j]| = 0,

where F(3)
S (·) denotes the empirical risk w.r.t. the function f (3)(·). On the other hand, letting F(3)(·) denote

the actual risk w.r.t. f (3)(·), we have

F(3)(e j) = Ex,α
[
∥

∥α∗ (e j−0)
∥

∥

]

= Ex,α [|α[ j]|] = 1/2.

Therefore, for any m, we can construct a convex Lipschitz-continuous objective in a high enough dimension
such that with probability at least 0.63 over the sample, suph

∣

∣

∣
F(3)(h)−F(3)

S (h)
∣

∣

∣
≥ 1/2. Furthermore, since

f (·; ·) is non-negative, we have that e j is an empirical minimizer, but its expected value F(3)(e j) = 1/2 is far
from the optimal expected value minhF(3)(h) = F(3)(0) = 0.

To formalize the example in a sample-size independent way, take H to be the unit sphere of an infinite-
dimensional Hilbert space with orthonormal basis e1,e2, . . ., where for v ∈ H , we refer to its coordinates
v[ j] =

〈

v,e j
〉

w.r.t this basis. The confidences α are now a mapping of each coordinate to [0,1]. That is, an
infinite sequence of reals in [0,1]. The element-wise product operation α ∗ v is defined with respect to this
basis and the objective function f (3)(·) of Equation (3) is well defined in this infinite-dimensional space.

We again take a distribution over z = (x,α) where x = 0 and α is an infinite i.i.d. sequence of uniform
Bernoulli random variables (that is, a Bernoulli process with each αi uniform over {0,1} and independent of
all other α j). Now, for any finite sample there is almost surely a coordinate j with αi[ j] = 0 for all i, and so
we a.s. have an empirical minimizer F(3)

S (e j) = 0 with F(3)(e j) = 1/2> 0= F(3)(0).
As a result, we see that the empirical values F(3)

S (h) do not converge uniformly to their expectations, and
empirical minimization is not guaranteed to solve the problem. Moreover, it is possible to construct a sharper
counterexample, in which the unique empirical minimizer ĥS is far from having optimal expected value. To
do so, we augment f (3)(·) by a small term which ensures its empirical minimizer is unique, and far from the
origin. Consider:

f (4)(h;(x,α)) = f (3)(h;(x,α))+ ε∑
i
2−i(h[i]−1)2 (4)

where ε= 0.01. The objective is still convex and (1+ ε)-Lipschitz. Furthermore, since the additional term is
strictly convex, we have that f (4)(h;z) is strictly convex w.r.t. h and so the empirical minimizer is unique.

Consider the same distribution over z: x = 0 while α[i] are i.i.d. uniform zero or one. The empirical
minimizer is the minimizer of F(4)

S (h) subject to the constraints ‖h‖ ≤ 1. Identifying the solution to this
constrained optimization problem is tricky, but fortunately not necessary. It is enough to show that the
optimum of the unconstrained optimization problem h∗UC = argminF

(4)
S (h) (without constraining h ∈H ) has

norm ‖h∗UC‖ ≥ 1. Notice that in the unconstrained problem, whenever αi[ j] = 0 for all i = 1..n, only the
second term of f (4) depends on h[ j] and we have h∗UC[ j] = 1. Since this happens a.s. for some coordinate j,
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we can conclude that the solution to the constrained optimization problem lies on the boundary of H , that is
∥

∥ĥS
∥

∥= 1. But for such a solution we have

F(4)(ĥS)≥ Eα

[

√

∑
i
α[i]ĥ2S[i]

]

≥ Eα

[

∑
i
α[i]ĥ2S[i]

]

=∑
i
ĥ2S[i]Eα [α[i]] =

1
2
∥

∥ĥS
∥

∥

2
=
1
2
,

while F∗ ≤ F(0) = ε.
In conclusion, no matter how big the sample size is, the unique empirical minimizer ĥS of the stochastic

convex optimization problem in Equation (4) is a.s. much worse than the population optimum, F(ĥS)≥ 1
2 >

ε≥ F∗, and certainly does not converge to it.

4.2 Learnability via Stability

At this point, we have seen an example in the stochastic convex optimization framework where uniform
convergence does not hold, and the ERM algorithm fails. Surprisingly, we will now show that such problems
are in fact learnable using an alternative mechanism which has nothing to do with uniform convergence.

Given a stochastic convex optimization problem with an objective function f (h;z), consider a regularized
version of it: instead of minimizing the expected risk Ez [ f (h;z)] over h ∈H , we will try to minimize

Ez

[

f (h;z)+ λ
2
‖h‖2

]

for some λ > 0. Notice that this is simply a stochastic convex optimization problem w.r.t. the objective
function f (h;z)+ λ

2 ‖h‖
2. We will show that this regularized problem is learnable using the ERM algorithm

(namely, by attempting to minimize 1
m ∑i f (h;zi)+

λ
2 ‖h‖

2), by showing that the ERM algorithm is stable. By
taking λ→ 0 at an appropriate rate as the sample size increases, we are able to solve the original stochastic
problem optimization problem, w.r.t. f (h;z).

The key characteristic of the regularized objective function we need is that it is λ-strongly convex. For-
mally, we say that a real function g(·) over a domainH in a Hilbert space is λ-strongly convex (where λ≥ 0),
if the function g(·)− λ

2‖ ·‖
2 is convex. In this case, it is easy to verify that if h minimizes g then

∀h′, g(h′)−g(h)≥ λ
2‖h

′ −h‖2 .

When λ = 0, strong convexity corresponds to standard convexity. In particular, it is immediate from the
definition that f (h;z)+ λ

2 ‖h‖
2 is λ-strongly convex w.r.t. h (assuming f (h;z) is convex).

The arguments above are formalized in the following two theorems:

Theorem 2 Consider a stochastic convex optimization problem such that f (h;z) is λ-strongly convex and
L-Lipschitz with respect to h ∈ H . Let z1, . . . ,zm be an i.i.d. sample and let ĥS be the empirical minimizer.
Then, with probability at least 1−δ over the sample we have

F(ĥS)−F∗ ≤
4L2

δλm
.

Theorem 3 Let f : H ×Z → R be such that H is bounded by B and f (h,z) is convex and L-Lipschitz with
respect to h. Let z1, . . . ,zm be an i.i.d. sample and let ĥλ be the minimizer of

ĥλ = min
h∈H

(

1
m

m

∑
i=1

f (h,zi)+ λ
2 ‖h‖

2
)

(5)

with λ=
√

16L2
δB2m . Then, with probability at least 1−δ we have

F(ĥλ)−F∗ ≤ 4
√

L2B2
δm

(

1+
8
δm

)

.
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Proof [Proof of Theorem 2] To prove the theorem, we use a stability argument. Denote

F(i)
S (h) = 1

m

(

f (h,z′i)+∑
j )=i

f (h,z j)
)

.

the empirical average with zi replaced by an independently and identically drawn z′i, and consider its mini-
mizer:

ĥ(i)S = argmin
h∈H

F(i)
S (h).

We first use strong convexity and Lipschitz-continuity to establish that empirical minimization is stable in the
following sense:

∀z ∈ Z,
∣

∣

∣
f (ĥS,z)− f (ĥ(i)S ,z)

∣

∣

∣
≤ 4L2

λm . (6)

We have that

FS(ĥ(i)S )−FS(ĥS)

=
f (ĥ(i)S ,zi)− f (ĥS,zi)

m
+
∑ j )=i

(

f (ĥ(i)S ,z j)− f (ĥS,z j)
)

m

=
f (ĥ(i)S ,zi)− f (ĥS,zi)

m
+
f (ĥS,z′i)− f (ĥ(i)S ,z′i)

m
+
(

F(i)
S (ĥ(i)S )−F(i)

S (ĥS)
)

≤
| f (ĥ(i)S ,zi)− f (ĥS,zi)|

m
+

| f (ĥS,z′i)− f (ĥ(i)S ,z′i)|
m

≤
2L
m

∥

∥

∥
ĥ(i)S − ĥS

∥

∥

∥
(7)

where the first inequality follows from the fact that ĥ(i)S is the minimizer of F(i)
S (h) and for the second inequal-

ity we use Lipschitz continuity. But from strong convexity of FS(h) and the fact that ĥS minimizes FS(h) we
also have that

FS(ĥ(i)S )≥ FS(ĥS)+ λ
2

∥

∥

∥
ĥ(i)S − ĥS

∥

∥

∥

2
. (8)

Combining Equation (8) with Equation (7) we get
∥

∥

∥
ĥ(i)S − ĥS

∥

∥

∥
≤ 4L/(λm) and combining this with Lipschitz

continuity of f we obtain that Equation (6) holds. Later on in this paper, we show that a stable ERM is
sufficient for learnability. More formally, Equation (6) implies that the ERM is uniform-RO stability (Defini-
tion 4) with rate εstable(m) = 4L2/(λm) and therefore Theorem 8 implies that the ERM is consistent with rate
≤ εstable(m), namely

ES∼Dm
[

F(ĥS)−F∗]≤ 4L2
λm .

Since the random variable in the expectation is non-negative, the theorem follows by Markov’s inequality.

We now turn to the proof of Theorem 3.
Proof [Proof of Theorem 3] Let r(h;z) = λ

2‖h‖
2+ f (h;z) and let R(h) = Ez [r(h,z)]. Note that ĥλ is the

empirical minimizer for the stochastic optimization problem defined by r(h;z).
We apply Theorem 2 to r(h;z), to this end note that since f is L-Lipschitz and ∀h ∈H , ‖h‖ ≤ B we see

that r is in fact L+λB-Lipschitz. Applying Theorem 2, we see that

λ
2
∥

∥ĥλ
∥

∥

2
+F(ĥλ) = R(ĥλ)≤ infh R(h)+

4(L+λB)2

δλm
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Now note that infhR(h)≤ infhF(h)+ λ
2B

2 = F∗+ λ
2B

2, and so we get that

F(ĥλ)≤ F∗+
λ
2
B2+

4(L+λB)2

δλm

≤ F∗+
λ
2
B2+

8L2

δλm
+
8λB2

δm

Plugging in the value of λ given in the theorem statement we see that

F(ĥλ)≤ F∗+4
√

L2B2
δm

+
32
δm

√

L2B2
δm

This gives us the required bound.

From the above theorem, we see that regularization is essential for convex stochastic optimization. It
is important to note that even for the strongly convex optimization problem in Theorem 2, where the ERM
algorithm does work, it is not due to uniform convergence. To see this, consider augmenting the objective
function f (3)(·) from Equation (3) with a strongly convex term:

f (9)(h;x,α) = f (3)(h;x,α)+ λ
2
‖h‖2 . (9)

The modified objective f (9)(·; ·) is λ-strongly convex and (1+ λ)-Lipschitz over H = {h : ‖h‖ ≤ 1} and
thus satisfies the conditions of Theorem 2. Now, consider the same distribution over z = (x,α) used earlier:
x= 0 and α is an i.i.d. sequence of uniform zero/one Bernoulli variables. Recall that almost surely we have
a coordinate j that is never “observed”, namely such that ∀iαi[ j] = 0. Consider a vector te j of magnitude
0 < t ≤ 1 in the direction of this coordinate. We have that F(9)

S (te j) = λ
2 t
2 (where F(9)

S (·) is the empirical
risk w.r.t. f (9)(·)) but F(9)(te j) = 1

2 t +
λ
2 t
2. Hence, letting F(9)(·) denote the risk w.r.t. f (9)(·), we have

that F(9)(te j)−F(9)
S (te j) = t/2. In particular, we can set t = 1 and establish suph∈H (F(9)(h)−F(9)

S (h))≥ 1
2

regardless of the sample size.
We see then that the empirical averages F(9)

S (h) do not converge uniformly to their expectations. More-
over, the example above shows that there is no uniform convergence even in a local sense, namely over all
hypotheses whose risk is close enough to F∗, or those close enough to the minimizer of f (9)(h;x,α).

Finally, we note that the learning algorithm we have discussed here is mainly for pedagogical reasons. A
different generic algorithm for stochastic convex optimization is already known in the literature, by combining
Zinkevich’s algorithm (Zinkevich, 2003) for online convex optimization, with an online-to-batch conversion
(e.g., Cesa-Bianchi et al., 2004). While different than our algorithm, Shalev-Shwartz (2007) showed that
Zinkevich’s online learning algorithm can be viewed as approximate coordinate ascent optimization of the
dual of the regularized problem Equation (5). Thus, this algorithm still uses the same mechanisms of regular-
ization and stability. Also, we note that the algorithm also enjoys bounds which depend only logarithmically
on 1/δ, while the bounds we have obtained above depend linearly on 1/δ. However, we suspect that the
dependence on δ in Theorem 2 can be improved to log(1/δ). For instance, such bounds has been obtained
whenever the objective function is a generalized linear function of h (Sridharan et al., 2008).

4.3 How to Interpret Regularization: Uniform Convergence vs Stability

The technique of regularizing the objective function by adding a “bias” term is old and well known. In
particular, adding ‖h‖2 is the so-called Tikhonov Regularization technique, which has been known for more
than half a century (see Tikhonov, 1943). However, the role of regularization in our case is very different
than in familiar settings such as !2 regularization in SVMs and !1 regularization in LASSO. In those settings
regularization serves to constrain our domain to a low-complexity domain (e.g., low-norm predictors), where
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we rely on uniform convergence. In fact, almost all learning guarantees that we are aware of can be expressed
in terms of some sort of uniform convergence.

In our case, constraining the norm of h does not ensure uniform convergence. Consider the example
f (3)(·) we have seen earlier. Even over a restricted domain Hr = {h : ‖h‖ ≤ r}, for arbitrarily small r >
0, the empirical averages FS(h) do not uniformly converge to F(h). Furthermore, consider replacing the
regularization term λ‖h‖2 with a constraint on the norm of ‖h‖, namely, solving the problem

h̃r = arg min
‖h‖≤r

FS(h)

We cannot solve the stochastic optimization problem by setting r in a distribution-independent way (i.e.,
without knowing the solution...). To see this, note that when x = 0 a.s. we must have r → 0 to ensure
F(h̃r)→ F∗. However, if x = e1 a.s., we must set r→ 1. No constraint will work for all distributions over
Z = (X ,α)! This sharply contrasts with traditional uses of regularization, where learning guarantees are
typically stated in terms of a constraint on the norm rather than in terms of a parameter such as λ, and adding
a regularization term of the form λ

2 ‖h‖
2 is viewed as a proxy for bounding the norm ‖h‖.

4.4 Contradiction to Vapnik?

In Section 3.1, we discussed how Vapnik showed that uniform convergence is in fact necessary for learnability
with the ERM. At first glance, this might seem confusing in light of the examples presented above, where we
have problems learnable with the ERM without uniform convergence whatsoever.

The solution for this apparent paradox is that our examples are not “strictly consistent” in Vapnik’s sense.
Recall that in order to exclude “trivial” cases, Vapnik defined strict consistency of empirical minimization as
(in our notation):

∀c ∈ R, inf
h:F(h)≥c

FS(h)−→ inf
h:F(h)≥c

F(h) , (10)

where the convergence is in probability. This condition indeed ensures that F(ĥS)
P→ F∗. Vapnik’s Key

Theorem on Learning Theory (Vapnik, 1998, Theorem 3.1) then states that strict consistency of empirical
minimization is equivalent to one-sided2 uniform convergence. In the example presented above, even though
Theorem 2 establishes F(9)(ĥS)

P→ F∗, the consistency isn’t “strict” by the definition above. To see this, for
any c > 0, consider the vector te j (where ∀iαi[ j] = 0) with t = 2c. We have F(9)(te j) = 1

2 t +
λ
2 t
2 > c but

F(9)
S (te j) = λ

2 t
2 = 2λc2. Focusing on λ= 1

2 we get:

inf
F(9)(h)≥c

F(9)
S (h)≤ c2

almost surely for any sample size m, violating the strict consistency requirement Equation (10).
We emphasize that stochastic convex optimization is far from “trivial” in that there is no dominating

hypothesis that will always be selected. Although for convenience of analysis we took x= 0, one should think
of situations in which x is stochastic with an unknown distribution. This shows that uniform convergence is a
sufficient, but not at all necessary, condition for consistency of empirical minimization in non-trivial settings.

5. Learnability in the General Learning Setting: the role of Stability
In the previous section, we have shown that in the General Learning Setting, it is possible for problems
to be learnable without uniform convergence, in sharp contrast to previously considered settings. The key
underlying mechanism which allowed us to learn is stability. In this section, we study the connection between
learnability and stability in greater depth, and show that stability can in fact characterize learnability. Also,
we will see how various “common knowledge facts”, which we usually take for granted and are based on a

2. “One-sided” meaning requiring only sup(F(h)−FS(h))−→ 0, rather then sup |F(h)−FS(h)|−→ 0.
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“uniform convergence equivalent to learnability” assumption, do not hold in the General Learning Setting,
and things can be much more delicate.

We will refer to settings where learnability is equivalent to uniform convergence as “supervised classifica-
tion” settings. While supervised classification does not encompass all settings where this equivalence holds,
most equivalence results refer to it either explicitly or implicitly (by reduction to a classification problem).

5.1 Stability : Definitions

We start by giving the exact definition of the stability notions that we will use. As discussed earlier, there are
many possible stability measures, some of which can be used to obtain results of a similar flavor to the ones
below. The definition we use seems to be the most convenient for the goal of characterizing learnability in the
General Learning Setting. In Appendix A, we provide a few illustrating examples to the subtle differences
that can arise from slight variations in the stability measure.

Our two stability notions are based on replacing one of the training sample instances. For a sample S of
size m, let S(i) = {z1, ...,zi−1,z′i,zi+1, ...,zm} be a sample obtained by replacing the i-th observation of S with
some different instance z′i. When not discussed explicitly, the nature of how z′i is obtained should be obvious
from context.

Definition 4 A rule A is uniform-RO stable3 with rate εstable(m), if for all possible S(i) and any z′ ∈ Z,

1
m

m

∑
i=1

∣

∣

∣
f (A(S(i));z′)− f (A(S);z′)

∣

∣

∣
≤ εstable(m).

Definition 5 A rule A is average-RO stable with rate εstable(m) under distributions D if
∣

∣

∣

∣

∣

1
m

m

∑
i=1

ES∼Dm,(z′1,...,z′m)∼Dm

[

f (A(S(i));z′i)− f (A(S);z′i)
]

∣

∣

∣

∣

∣

≤ εstable(m).

Note that this definition corresponds to assuming that the expected empirical risk of the learning rule con-
verges to the expected risk - see Lemma 11.

We say that a rule is universally stable with rate εstable(m), if the stability property holds with rate εstable(m)
for all distributions.

Claim 6 Uniform-RO stability with rate εstable(m) implies average-RO stability with rate εstable(m).

5.2 Characterizing Learnability : Main Results

Our overall goal is to characterize learnable problems (namely, problems for which there exists a universally
consistent learning rule, as in Equation (2)). That means finding some condition which is both necessary and
sufficient for learnability. In the uniform convergence setting, such a condition is the stability of the ERM
(under any of several possible stability measures, including both variants of RO-stability defined above). This
is still sufficient for learnability in the General Learning Setting, but far from being necessary, as we have
seen in Section 4.

The most important result in this section is a condition which is necessary and sufficient for learnability
in the General Learning Setting:

Theorem 7 A learning problem is learnable if and only if there exists a uniform-RO stable, universally
AERM learning rule.

In particular, if there exists a εcons(m)-universally consistent rule, then there exists a rule that is εstable(m)-
uniform-RO stable and universally εerm(m)-AERM where:

εerm(m) = 3εcons(m1/4)+ 8B√
m ,

εstable(m) = 2B√
m .

3. RO is short for “replace-one”.
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In the opposite direction, if a learning rule is εstable(m)-uniform-RO stable and universally εerm(m)-
AERM, then it is universally consistent with rate

εcons(m)≤ εstable(m)+ εerm(m)

Thus, while we have seen in Section 4 that the ERM rule might fail for learning problems which are in
fact learnable, there is always an AERM rule which will work. In other words, when designing learning
rules, we might need to look beyond empirical risk minimization, but not beyond AERM learning rules. On
the downside, we must choose our AERM carefully, since not any AERM will work. This contrasts with
supervised classification, where any AERM will work if the problem is learnable at all.

How do we go about proving this assertion? The easier part is showing sufficiency. Namely, that a stable
AERMmust be consistent (and generalizing). In fact, this holds both separately for any particular distribution
Ds, and uniformly over all distributions:

Theorem 8 If a rule is an AERM with rate εerm(m) and average-RO stable (or uniform-RO stable) with rate
εstable(m) under D , then it is consistent and generalizes under D with rates

εcons(m)≤ εstable(m)+ εerm(m)
εgen(m)≤ εstable(m)+2εerm(m)+ 2B√

m

The second part of Theorem 7 follows as a direct corollary. We note that close variants of Theorem 8 has
already appeared in previous literature (e.g., Mukherjee et al., 2006 and Rakhlin et al., 2005).

The harder part is showing that a uniform-RO stable AERM is necessary for learnability. This is done in
several steps.

First, we show that consistent AERMs have to be average-RO stable:

Theorem 9 For an AERM, the following are equivalent:
• Universal average-RO stability.
• Universal consistency.
• Universal generalization.

The exact conversion rate of Theorem 9 is specified in the corresponding proof (Section 5.3), and are all
polynomial. In particular, an εcons-universal consistent εerm-AERM is average-RO stable with rate

εstable(m)≤ εerm(m)+3εcons(m1/4)+ 4B√
m .

Next, we show that if we seek universally consistent and generalizing learning rules, then we must con-
sider only AERMs:

Theorem 10 If a rule A is universally consistent with rate εcons(m) and generalizing with rate εgen(m), then
it is universally an AERM with rate

εerm(m)≤ εgen(m)+3εcons(m1/4)+
4B√
m

Now, recall that learnability is defined as the existence of some universally consistent learning rule. Such
a rule might not be generalizing, stable or even an AERM (see example 2 below). However, it turns out that if
a universally consistent learning rule exist, then there is another learning rule for the same problem, which is
generalizing (Lemma 20). Thus, by Theorems 9-10, this rule must also be average-RO stable AERM. In fact,
by another application of Lemma 20, such an AERM must also be uniform-RO stable, leading to Theorem 7.

5.3 Detailed Results and Proofs

We first establish that for AERMs, average-RO stability and generalization are equivalent.
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5.3.1 EQUIVALENCE OF STABILITY AND GENERALIZATION

It will be convenient to work with a weaker version of generalization as an intermediate step: We say a rule
A on-average generalizes with rate εoag(m) under distribution D if for all m,

|ES∼Dm [F(A(S))−FS(A(S))]|≤ εoag(m). (11)

It is straightforward to see that generalization implies on-average generalization with the same rate. We show
that for AERMs, the converse is also true, and also that on-average generalization is equivalent to average-RO
stability. This establishes the equivalence between generalization and average-RO stability (for AERMs).

Lemma 11 (on-average generalization⇔ average-RO stability) If A is on-average generalizing with rate
εoag(m) then it is average-RO stable with rate εoag(m). If A is average-RO stable with rate εstable(m) then it
is on-average generalizing with rate εstable(m).

Proof For any i, zi and z′i are both drawn i.i.d. from D , we have that

ES∼Dm [ f (A(S);zi)] = ES∼Dm,z′i∼D

[

f (A(S(i));z′i)
]

.

Hence,

ES∼Dm [FS(A(S))] = ES∼Dm

[

1
m

m

∑
i=1

f (A(S);zi)
]

=
1
m

m

∑
i=1

ES∼Dm [ f (A(S);zi)]

=
1
m

m

∑
i=1

ES∼Dm,z′i∼D

[

f (A(S(i));z′i)
]

Also note that F(A(S)) = Ez′i∼D [ f (A(S);z′i)] = 1
m ∑

m
i=1Ez′i∼D [ f (A(S);z′i)]. Hence we can conclude that

ES∼Dm [F(A(S))−FS(A(S))] =
1
m

m

∑
i=1

ES∼Dm,(z′1,...,z′m)∼Dm

[

f (A(S);z′i)− f (A(S(i));z′i)
]

Hence we have the required result.

For the next result, we will need the following two short utility lemmas.

Utility Lemma 12 For i.i.d. Xi, |Xi|≤ B and X = 1
m ∑

m
i=1Xi we have E [|X−E [X ]|]≤ B/

√
m.

Proof E [|X−E [X ]|]≤
√

E

[

|X−E [X ]|2
]

≤
√

Var[X ] =
√

Var[Xi]/m≤ B/
√
m.

Utility Lemma 13 Let X ,Y be random variables s.t. X ≤ Y almost surely. Then E [|X |]≤ |E [X ]|+2E [|Y |].

Proof
E [|X |] = E [|(Y −X)−Y |]≤ E [Y −X ]+E [|Y |]≤ |E [X ]|+2 |E [Y ]| .
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Lemma 14 (AERM + on-average generalization⇒ generalization) If A is an AERM with rate εerm(m)
and on-average generalizes with rate εoag(m) underD , thenA generalizes with rate εoag(m)+2εerm(m)+ 2B√

m
under D .

Proof Recall that F∗ = infh∈H F(h). For an arbitrarily small ν > 0, let hν be a fixed hypothesis such that
F(hν)≤ F∗+ν. Using respective optimalities of ĥS and F∗ we can bound:

FS(A(S))−F(A(S))
= FS(A(S))−FS(ĥS)+FS(ĥS)−FS(hν)+FS(hν)−F(hν)+F(hν)−F(A(S))
≤ FS(A(S))−FS(ĥS)+FS(hν)−F(hν)+ν= Yν

Where the final equality defines a new random variable Yν. By Lemma 12 and the AERM guarantee we have
E [|Yν|]≤ εerm(m)+B/

√
m+ν. From Lemma 13 we can conclude that

E [|FS(A(S))−F(A(S))|]≤ |E [FS(A(S))−F(A(S))]|+2E [|Yν|]≤ εoag(m)+2εerm(m)+ 2B√
m +ν.

Notice that the l.h.s. is a fixed quantity which does not depend on ν. Therefore, we can take ν in the r.h.s. to
zero, and the result follows.

Combining Lemma 11 and Lemma 14, we have now established the stability↔generalization parts
of Theorem 8 and Theorem 9 (in fact, even a slightly stronger converse than in Theorem 9, as it does not
require universality).

5.3.2 A SUFFICIENT CONDITION FOR CONSISTENCY

It is fairly straightforward to see that generalization (or even on-average generalization) of an AERM implies
its consistency:

Lemma 15 (AERM+generalization⇒consistency) If A is AERM with rate εerm(m) and it on-average gen-
eralizes with rate εoag(m) under D then it is consistent with rate εoag(m)+ εerm(m) under D .

Proof For any ν> 0, let hν be a hypothesis such that F(hν)≤ F∗+ν. We have

E [F(A(S))−F∗] = E [F(A(S))−FS(hν)+ν]

= E [F(A(S))−FS(A(S))]+E [FS(A(S))−FS(hν)]+ν

≤ E [F(A(S))−FS(A(S))]+E
[

FS(A(S))−FS(ĥS)
]

+ν

≤ εoag(m)+ εerm(m)+ν.

Since this upper bound holds for any ν, we can take ν to zero, and the result follows.

Combined with the results of Lemma 11, this completes the proof of Theorem 8 and the stability →
consistency and generalization→ consistency parts of Theorem 9.

5.3.3 CONVERSE DIRECTION

Lemma 11 already provides a converse result, establishing that stability is necessary for generalization. How-
ever, as it will turn out, in order to establish that stability is also necessary for universal consistency, we must
prove that universal consistency of an AERM implies universal generalization. The assumption of universal
consistency for the AERM is crucial here: mere consistency of an AERM with respect to a specific distri-
bution does not imply generalization nor stability with respect to that distribution. The following example
briefly illustrates this point.
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Example 1 There exists a learning problem and a distribution on the instance space, such that the ERM
(or any AERM) is consistent with rate εcons(m) = 0, but does not generalize and is not average-RO stable
(namely, εgen(m),εstable(m) =Ω(1)).

Proof Let the instance space be [0,1], the hypothesis space consist of all finite subsets of [0,1], and define
the objective function as f (h,z) = 11{z/∈h}). Consider any continuous distribution on the instance space. Since
the underlying distribution D is continuous, we have F(h) = 1 for any hypothesis h. Therefore, any learning
rule (including any AERM) will be consistent with F(A(S)) = 1. On the other hand, the ERM here always
achieves FS(ĥS) = 0, so any AERM cannot generalize, or even on-average-generalize (by Lemma 14), hence
cannot be average-RO stable (by Lemma 11).

The main tool we use to prove our desired converse result is the following lemma. It is here that we cru-
cially use the universal consistency assumption (i.e., consistency with respect to any distribution). Intuitively,
it states that if a problem is learnable at all, then although the ERM rule might fail, its empirical risk is a
consistent estimator of the minimal achievable risk.

Lemma 16 (Main Converse Lemma) If a problem is learnable, namely there exists a universally consistent
rule A with rate εcons(m), then under any distribution,

E
[
∣

∣FS(ĥS)−F∗∣
∣

]

≤ εemp(m) where (12)

εemp(m) = 2εcons(m′)+ 2B√
m + 2Bm′2

m

for any m′ such that 2≤ m′ ≤ m/2.

Proof Let I = {I1, . . . , Im′} be a random sample ofm′ indexes in the range 1..mwhere each Ii is independently
uniformly distributed, and I is independent of S. Let S′ = {zIi}m

′
i=1, that is, a sample of size m′ drawn from

the uniform distribution over samples in S (with replacements). We first bound the probability that I has no
repeated indexes (“duplicates”):

P [I has duplicates]≤ ∑m
′

i=1(i−1)
m

≤
m′2

2m
(13)

Conditioned on not having duplicates in I, the sample S′ is actually distributed according to Dm′ , that is,
can be viewed as a sample from the original distribution. We therefore have by universal consistency:

E
[
∣

∣F(A(S′))−F∗∣
∣

∣

∣ no dups
]

≤ εcons(m′) (14)

But viewed as a sample drawn from the uniform distribution over instances in S, we also have:

ES′
[
∣

∣FS(A(S′))−FS(ĥS)
∣

∣

]

≤ εcons(m′) (15)

Conditioned on having no duplications in I, the set of those samples in S not chosen by I (i.e., S \ S′) is
independent of S′, and |S\S′|= m−m′, and so by Lemma 12:

ES
[
∣

∣F(A(S′))−FS\S′(A(S′))
∣

∣

]

≤
B√

m−m′ (16)

Finally, if there are no duplicates, then for any hypothesis, and in particular for A(S′) we have:

∣

∣FS(A(S′))−FS\S′(A(S′))
∣

∣≤
2Bm′

m
(17)

Combining Equation (14),Equation (15),Equation (16) and Equation (17), accounting for a maximal dis-
crepancy of B when we do have duplicates, and assuming 2≤ m′ ≤ m/2, we get the desired bound.
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Equipped with Lemma 16, we are now ready to show that universal consistency of an AERM implies
universal generalization and that any universally consistent and generalizing rule must be an AERM. What
we show is actually a bit stronger: that if a problem is learnable, and so Lemma 16 holds, then for any
distribution D separately, consistency of an AERM under D implies generalization under D and also any
consistent and generalizing rule under D must be an AERM.

Lemma 17 (learnable+AERM+consistent⇒generalizing) If Equation (12) in Lemma 16 holds with rate
εemp(m), and A is an εerm-AERM and εcons-consistent under D , then it is generalizing under D with rate
εemp(m)+ εerm(m)+ εcons(m).

Proof

E [|FS(A(S))−F(A(S))|]≤ E
[
∣

∣FS(A(S))−FS(ĥS)
∣

∣

]

+E [|F∗ −F(A(S))|]+E
[
∣

∣FS(ĥS)−F∗∣
∣

]

≤ εerm(m)+ εcons(m)+ εemp(m) .

Lemma 18 (learnable+consistent+generalizing⇒AERM) If Equation (12) in Lemma 16 holds with rate
εemp(m), and A is εcons-consistent and εgen-generalizing under D , then it is AERM under D with rate
εemp(m)+ εgen(m)+ εcons(m).

Proof

E
[
∣

∣FS(A(S))−FS(ĥS)
∣

∣

]

≤ E [|FS(A(S))−F(A(S))|]+E [|F(A(S))−F∗|]+E
[
∣

∣F∗ −FS(ĥS)
∣

∣

]

≤ εgen(m)+ εcons(m)+ εemp(m) .

Lemma 17 establishes that universal consistency of an AERM implies universal generalization, and thus
completes the proof of Theorem 9. Lemma 18 establishes Theorem 10. To get the rates in Section 5.2, we
use m′ = m1/4 in Lemma 16.

Lemma 15, Lemma 17 and Lemma 18 together establish an interesting relationship:

Corollary 19 For a (universally) learnable problem, for any distribution D and learning rule A, any two of
the following imply the third :

• A is an AERM under D .
• A is consistent under D .
• A generalizes under D .

Note, however, that any one property by itself is possible, even universally:

• In Section 4.1, we have discussed an example where the ERM learning rule is neither consistent nor
generalizing, despite the problem being learnable.

• In the next subsection (Example 2) we demonstrate a universally consistent learning rule which is
neither generalizing nor an AERM.

• A rule returning a fixed hypothesis always generalizes, but of course need not be consistent nor an
AERM.
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In contrast, for learnable supervised classification problems, it is not possible for a learning rule to be just
universally consistent, without being an AERM and without generalization. Nor is it possible for a learning
rule to be a universal AERM for a learnable problem, without being generalizing and consistent.

Corollary 19 can also provide a certificate of non-learnability. In other words, for the problem in Example
1 we show a specific distribution for which there is a consistent AERM that does not generalize. We can
conclude that there is no universally consistent learning rule for the problem, otherwise the corollary is
violated.

5.3.4 EXISTENCE OF A STABLE RULE

Theorem 9 and Theorem 10, which we just completed proving, already establish that for AERMs, universal
consistency is equivalent to universal average-RO stability. Existence of a universally average-RO stable
AERM is thus sufficient for learnability. In order to prove that it is also necessary, it is enough to show that
existence of a universally consistent learning rule implies existence of a universally consistent AERM. This
AERM must then be average-RO stable by Theorem 9.

We actually show how to transform a consistent rule to a consistent and generalizing rule (Lemma 20
below). If this rule is universally consistent, then by Lemma 18 we can then conclude it must be an AERM,
and by Lemma 11 it must be average-RO stable.

Lemma 20 For any rule A there exists a rule A′, such that:
• A′ universally generalizes with rate 3B√

m .
• For any D , if A is εcons-consistent under D then A′ is εcons(6

√
m7) consistent under D .

• A′ is uniformly-RO-stable with rate 2B√
m .

Proof For a sample S of sizem, let S′ be a sub-sample consisting of some 6
√
m7 observation in S. To simplify

the presentation, assume that 6
√
m7 is an integer. Define A′(S) = A(S′). That is, A′ applies A to only

√
m of

the observation in S.
A′ generalizes: We can decompose:

FS(A(S′))−F(A(S′)) = 1√
m (FS′(A(S

′))−F(A(S′)))+(1− 1√
m )(FS\S′(A(S

′))−F(A(S′)))

The first term can be bounded by 2B/
√
m. As for the second term, S\S′ is statistically independent of S′ and

so we can use Lemma 12 to bound its expected magnitude to obtain:

E
[
∣

∣FS(A(S′))−F(A(S′))
∣

∣

]

≤ 2B√
m +(1− 1√

m )
B√

m−
√
m
≤ 3B√

m

A′ is consistent: If A is consistent, then:

E

[

F(A′(S))− inf
h∈H

F(h)
]

= E

[

F(A(S′))− inf
h∈H

F(h)
]

≤ εcons(
√
m)

A′ is uniformly-RO-stable: Since A′ only uses the first
√
m samples of S, for any i>

√
m we have A′(S(i)) =

A′(S) and so:

1
m

m

∑
i=1

∣

∣

∣
f (A′(S(i));z′)− f (A′(S);z′)

∣

∣

∣
=
1
m

√
m

∑
i=1

∣

∣

∣
f (A′(S(i));z′)− f (A′(S);z′)

∣

∣

∣
≤
2B√
m

Proof of Converse in Theorem 7 If there exists a universally consistent rule with rate εcons(m), by Lemma 20
there exists A′ which is εcons(

√
m)- universally consistent, 2B√

m -generalizing and
2B√
m -uniformly-RO-stable.
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Further by Lemma 18 and Lemma 16 (with m′ = m1/4), we can conclude that A′ is εerm-universally AERM
where,

εerm(m)≤ 3εcons(m1/4)+
8B√
m
.

Hence we get the specified rate for the converse direction. To see that if there exists a rule that is a universal
AERM and stable it is consistent, we simply use Lemma 15.

As a final note, the following example shows that while learnability is equivalent to the existence of stable
and consistent AERM’s (Theorem 7 and Theorem 9), there might still exist other learning rules, which are
neither stable, nor generalize, nor AERM’s. In this sense, our results characterize learnability, but do not
characterize all learning rules which “work”.

Example 2 There exists a learning problem with a universally consistent learning rule, which is not average-
RO stable, generalizing nor an AERM.

Proof Let the instance space be [0,1]. Let the hypothesis space consist of all finite subsets of [0,1], and the
objective function be the indicator function f (h,z) = 11{z∈h}. Consider the following learning rule: given a
sample S ⊆ [0,1], the learning rule checks if there are any two identical instances in the sample. If so, the
learning rule returns the empty set /0. Otherwise, it returns the sample.

Consider any continuous distribution on [0,1]. In that case, the probability of having two identical in-
stances is 0. Therefore, the learning rule always returns a countable non-empty set A(S), with FS(A(S)) = 1,
while FS( /0) = 0 (so it is not an AERM) and F(A(S)) = 0 (so it does not generalize). Also, f (A(S),zi) = 1
while f (A(S(i)),zi) = 0 with probability 1, so it is not average-RO stable either.

However, the learning rule is universally consistent. If the underlying distribution is continuous on [0,1],
then the returned hypothesis is S, which is countable hence , F(S) = 0= infhF(h). For discrete distributions,
let M1 denote the proportion of instances in the sample which appear exactly once, and let M0 be the proba-
bility mass of instances which did not appear in the sample. Using (McAllester and Schapire, 2000, Theorem
3), we have that for any δ, it holds with probability at least 1−δ over a sample of size m that

|M0−M1|≤ O
(

log(m/δ)√
m

)

,

uniformly for any discrete distribution. If this occurs, then either M1 < 1, or M0 ≥ 1−O(log(m/δ)/
√
m).

But in the first event, we get duplicate instances in the sample, so the returned hypothesis is the optimal /0,
and in the second case, the returned hypothesis is the sample, which has a total probability mass of at most
O(log(m/δ)/

√
m), and therefore F(A(S)) ≤ O(log(m/δ)/

√
m). As a result, regardless of the underlying

distribution, with probability of at least 1−δ over the sample,

F(A(S))≤ O
(

log(m/δ)√
m

)

.

Since the r.h.s. converges to 0 with m for any δ, it is easy to see that the learning rule is universally consistent.

6. Randomization, Convexification, and a Generic Learning Algorithm
The strongest result we were able to obtain for characterizing learnability so far is Theorem 7, which stated
that a problem is learnable if and only if there exists a universally uniform-RO stable AERM. In fact, this
result was obtained under the assumption that the learning rule A is deterministic: given a fixed sample S, A
returns a single specific hypothesis h. However, we might relax this assumption and also consider randomized
learning rules: given any fixed S, A(S) returns a distribution over the hypothesis class H .

With this relaxation, we will see that we can obtain a stronger version of Theorem 7, and even provide a
generic learning algorithm (at least for computationally unbounded learners) which successfully learns any
learnable problem.
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6.1 Stronger Results with Randomized Learning Rules

For simplicity, we will override the notations f (A(S),z), F(A(S)) and FS(A(S)) to mean Eh∼A(S) [ f (h,z)],
Eh∼A(S) [F(h)] and Eh∼A(S) [FS(h)]. In other words, A returns a distribution over H and f (A(S),z) for some
fixed S,z is the expected loss of a random hypothesis picked according to that distribution, with respect to
z. Similarly, F(A(S)) for some fixed S is the expected generalization error, and FS(A(S)) is the expected
empirical risk on the fixed sample S. With this slight abuse of notation, all our previous definitions hold.
For instance, we still define a learning rule A to be consistent with rate εcons(m) if ES∼Dm [F(A(S))−F∗]≤
εcons(m), only now we actually mean

ES∼Dm
[

Eh∼A(S) [F(h)−F∗]
]

≤ εcons(m).

The definitions for AERM, generalization etc. also hold with this subtle change in meaning.
An alternative way to view randomization is as a method to linearize the learning problem. In other words,

randomization implicitly replaces the arbitrary hypothesis class H by the space of probability distributions
over H ,

M =

{

α :H → [0,1] s.t.
∫
α[h] = 1

}

,

and replaces the arbitrary function f (h;z) by a linear function in its first argument

f (α;z) = Eh∼α [ f (h,z)] =
∫
f (h;z)α[h] .

Linearity of the loss and convexity of M are the key mechanism which allows us to obtain our stronger
results. Moreover, if the learning problem is already convex (i.e., f is convex and H is covex), we can
achieve the same results using a deterministic learning rule, as the following claim demonstrates:

Claim 21 Assume that the hypothesis class H is convex subset of a vector space, such that Eh∼A(S) [h]
is a well-defined element of H for any S. Moreover, assume that f (h;z) is convex in h. Then from any
(possibly randomized) learning rule A, it is possible to construct a deterministic learning rule A′, such that
f (A′(S),z) ≤ f (A(S),z) for any S,z. As a result, it also holds that FS(A′(S)) ≤ FS(A(S)) and F(A′(S)) ≤
F(A(S)).

Proof Given a sample S, define A′(S;z) as the single hypothesis Eh∼A(S) [h]. The proof of the theorem is
immediate by Jensen’s inequality: since f () is convex in its first argument,

f (A′(S);z) = f (Eh∼A(S) [h],z)≤ Eh∼A(S) [ f (h,z)],

where the r.h.s. is in fact f (A(S),z) by the abuse of notation we have defined previously.

Although linearization is the real mechanism at play here, we find it more convenient to display our results
and proofs in the language of randomized learning rules.

Allowing randomization allows us to obtain results with respect to the following very strong notion of
stability:4

Definition 22 A rule A is strongly-uniform-RO stable with rate εstable(m) if for all samples S of m points,
for all i, and any z′,z′i ∈ Z, it holds that

∣

∣

∣
f (A(S(i));z′)− f (A(S);z′)

∣

∣

∣
≤ εstable(m).

The strengthening of Theorem 7 that we will prove here is the following:

4. This definition of stability is very similar to the so-called “uniform stability”, discussed in Bousquet and Elisseeff (2002), although
Bousquet and Elisseeff (2002) consider deterministic learning rules. See Appendix A for more details.
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Theorem 23 A learning problem is learnable if and only if there exists a (possibly randomized) learning rule
which is an always AERM and strongly-uniform-RO stable.

Compared to Theorem 7, we have replaced universal AERM by the stronger notion of an always AERM,
and uniform-RO stability by strongly-uniform-RO stability. This makes the result strong enough to formulate
a generic learning algorithm, as we will see later on.

The theorem is an immediate consequence of Theorem 7 and the following lemma:

Lemma 24 For any deterministic learning rule A, there exists a randomized learning rule A′ such that:

• For any D , if A is εcons-consistent under D then A′ is εcons(6
√
m7) consistent under D .

• A′ universally generalizes with rate 4B/
√
m.

• If A is uniform-RO stable with rate εstable(m), then A′ is strongly-uniform-RO stable with rate
εstable(6

√
m7).

• If A is universally εcons-consistent, then A′ is an always AERM with rate 2εcons(6
√
m7).

Moreover, A′ is a symmetric learning rule (it does not depend on the order of elements in the sample on which
it is applied).

Proof Consider the learning rule A′ which given a sample S, returns a uniform distribution over A(S′), where
S′ ranges over all subsets of S of size 6

√
m7.

The fact that A′ is symmetric is trivial. We now prove the other assertions in the lemma.
A′ is consistent: First note that F(A′(S)) = ES′ [F(A(S′))], and so:

ES
[
∣

∣F(A′(S))−F∗∣
∣

]

≤ ES,S′
[
∣

∣F(A(S′))−F∗∣
∣

]

= E[S′]
[

ES|[S′]
[
∣

∣F(A(S′))−F∗∣
∣

]]

where [S′] designates a choice of indices for S′. This decomposition of the random choice of S′ (e.g., first
deciding on the indices and only then sampling S) allows us think of [S′] and S as statistically independent.
Given a fixed choice of indices [S′], S′ is simply an i.i.d. sample of size 6

√
m7. Therefore, if A is consistent,

|F(A(S′))−F∗|≤ εcons(6
√
m7), this holds for any possible fixed [S′], and therefore

E[S′]
[

ES|[S′]
[
∣

∣F(A(S′))−F∗∣
∣

]]

= E[S′]
[

εcons(6
√
m7)

]

≤ εcons(6
√
m7).

A′ generalizes: For convenience, let b(S,S′) = |FS(A(S′))−F(A(S′))|. Using similar arguments and notation
as above:

ES
[
∣

∣FS(A′(S))−F(A′(S))
∣

∣

]

≤ E[S′]
[

ES|[S′]
[

b(S,S′)
]]

≤ E[S′]

[

ES|[S′]

[

6
√
m7
m

b(S′,S′)
]

+ ES|[S′]

[(

1−
6
√
m7
m

)

b(S\S′,S′)
]]

≤ E[S′]

[

6
√
m7
m

2B+
(

1−
6
√
m7
m

)

B
√

m−6
√
m7+1

]

,

where the last line follows from Lemma 12 and the fact that b(S,S′)≤ 2B for any S,S′. It is not hard to show
that the expression above is at most 4B/

√
m, assuming m≥ 1.

A′ is strongly-uniform-RO stable: For any sample S, any i and replacement instance zi, and any instance z′,
we have that

∣

∣

∣
f (A′(S(i));z′)− f (A′(S);z′)

∣

∣

∣
≤ ES′

[
∣

∣

∣
f (A(S′(i));z′)− f (A(S′);z′)

∣

∣

∣

]

,
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where we take S′(i) in the expectation to mean S′ if i /∈ [S′]. Notice that if i /∈ [S′], then f (A(S′(i));zi)−
f (A(S′);zi) is trivially 0. Thus, we can upper bound the expression above by

ES′
[

∣

∣ f (A(S′i);z′)− f (A(S′);z′)
∣

∣

∣

∣

∣
i ∈ [S′]

]

.

Since S′ is chosen uniformly over all 6
√
m7-subsets of S, all permutations of [S′] are equally happen to occur,

and therefore the above is equal to

ES′

[

1
6
√
m7 ∑j∈S′

∣

∣

∣
f (A(S′( j));z′)− f (A(S′);z′)

∣

∣

∣

]

≤ ES′
[

εstable(6
√
m7)

]

= εstable(6
√
m7).

A′ is an always AERM: For any fixed sample S, we note that

|FS(A′(S))−FS(ĥS)| = ES′
[

FS(A(S′))−FS(ĥS)
]

= ES′∼U(S)6
√
m7
[

FS(A(S′))−FS(ĥS) | no dups
]

,

where U(S)6
√
m7 signifies the distribution of i.i.d. samples of size 6

√
m7, picked uniformly at random (with

replacement) from 6
√
m7, and ’no dups’ signifies the event that no element in S was picked twice. By the law

of total expectation, this is at most

ES′∼U(S)6
√
m7
[

FS(A(S′))−FS(ĥS)
]

P [no dups]
.

Since the learning rule A is universally consistent, it is in particular consistent with respect to the distribution
U(S), and therefore the expectation in the expression above is at most εcons(6

√
m7). As to P [no dups], an

analysis identical to the one performed in the proof of Lemma 16 (see Equation (13)) implies that it is at least
1− (6

√
m7)2/m≥ 1/2. Overall, we get that FS(A′(S))−FS(ĥS)≤ 2εcons(6

√
m7), so in particular

ES′∼U(S)6
√
m7
[

FS(A(S′))−FS(ĥS)
]

P [no dups]
≤ 2εcons(6

√
m7),

from which the claim follows.

6.2 A Generic Learning Algorithm

Recall that a symmetric learning rule A is such that A(S) = A(S′) whenever S,S′ are identical samples up
to permutation. When we deal with randomized learning rules, we assume that the distribution of A(S) is
identical to the distribution of A(S′). Also, let H̄ denote the set of all distributions on H . An element h̄ ∈ H̄
will be thought of as a possible outcome of a randomized learning rule.

Consider the following learning rule: given a sample size m, find a minimizer over all symmetric5 func-
tions A : Zm → H̄ of

sup
S∈Zm

(

FS(A(S))−FS(ĥS)
)

+ sup
S∈Zm,z′

∣

∣

∣
f (A(S);z′)− f (A(S(i));z′)

∣

∣

∣
, (18)

with i being an arbitrary fixed element in {1, . . . ,m}. Once such a function A is found, return Am(S).

5. The algorithm would still work, with slight modifications, if we minimize over all functions - symmetric or not. However, the search
space would be larger.
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Theorem 25 If a learning problem is learnable (namely, there exist a universally consistent learning rule
with rate εcons(m)), the learning algorithm described above is universally consistent with rate

4εcons(6
√
m7)+

8B√
m
.

Proof By Lemma 24, if a learning problem is learnable, there exists a (possibly randomized) symmetric
learning rule A′, which is an always AERM and strongly-uniform-RO stable. More specifically, we have that

sup
S∈Zm

(

FS(A′(S))−FS(ĥS)
)

≤ 2εcons(6
√
m7),

as well as
sup

S∈Zm,z′

∣

∣

∣
f (A′(S);z′)− f (A′(S(i));z′)

∣

∣

∣
≤
4B√
m
.

In particular, there exists some symmetric A : Zm → H̄ , for which the expression in Equation (18) is at most

2εcons(6
√
m7)+

4B√
m
.

Therefore, by definition, the A found satisfies

sup
S∈Zm

(

FS(Am(S))−FS(ĥS)
)

≤ 2εcons(6
√
m7)+

4B√
m
, (19)

as well as
sup
S∈Zm

∣

∣

∣
f (Am(S);z′)− f (Am(S(i));z′)

∣

∣

∣
≤ 2εcons(6

√
m7)+

4B√
m
. (20)

In Theorem 9, we have seen that a universally average-RO stable AERM learning rule has to be universally
consistent. The inequalities above essentially say that A is in fact both strongly-uniform-RO stable (and in
particular, universally average-RO stable) and an AERM, and thus is a universally consistent learning rule.
Formally speaking, this is not entirely accurate, because A is defined only with respect to samples of size
m, and hence is not formally a learning rule which can be applied to samples of any size. However, the
analysis we have done earlier in fact carries through also for learning rules A which are defined just on a
specific sample size m. In particular, the analysis of Lemma 11 and Lemma 15 hold verbatim for A (with
trivial modifications due to the fact that A is randomized), and together imply that since Equation (19) and
Equation (20) hold, then

E [F(A(S))−F∗]≤ 4εcons(6
√
m7)+

8B√
m
.

Therefore, our learning algorithm is consistent with rate 4εcons(6
√
m7)+ 8B√

m .

The main drawback of the algorithm we described is that it is completely infeasible: in practice, we cannot
hope to efficiently perform minimization of Equation (18) over all functions from Zm to H̄ . Nevertheless,
we believe it is conceptually important for three reasons: First, it hints that generic methods to develop
learning algorithms might be possible in the General Learning Setting (similar to the more specific supervised
classification setting); Second, it shows that stability might play a crucial role in the way such methods will
work; And third, that stability might act in a similar manner to regularization. Indeed, Equation (18) can be
seen as a “regularized ERM” in the space of learning rules (i.e., functions from samples to hypotheses): if we
take just the first term in Equation (18), supS∈Zm

(

FS(A(S))−FS(ĥS)
)

, then its minimizer is trivially the ERM
learning rule. If we take just the second term in Equation (18), supS∈Zm,z

∣

∣

∣
f (A(S);z′)− f (A(S(i));z′)

∣

∣

∣
, then

its minimizers are trivial learning rules which return the same hypothesis irrespective of the training sample.
Minimizing a sum of both terms forces us to choose a learning rule which is an “almost”-ERM but also stable
- a learning rule which must exist if the problem is learnable at all, as Theorem 23 proves.

In any case, using these results and intuitions to design a generic, practicalmethod to learn in the General
Learning Setting - remains a very interesting open problem.
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7. High Confidence Learnability
So far, we have presented all our results in terms of expectation: namely, the rate at which the expected risk
converges to the lowest possible risk. By Markov’s inequality, we can always convert these bounds to bounds
which hold with probability 1− δ over the sample, and the bounds depend linearly on 1/δ. However, in
supervised classification, if we have learnability at all, then we have learnability at rates which are logarithmic
in 1/δ. Can such results be attained in the General Learning Setting?

Fortunately, there is a generic method already known in the literature (“Boosting the Confidence”, see
Schapire, 1989) which allows us to convert any learning algorithm with linear dependence on δ to an al-
gorithm with logarithmic dependence on 1/δ, at a certain price in terms of the sample complexity. This
technique is reviewed below.

Moreover, we show that such conversions can in fact be necessary: we give a learning problem which is
learnable with an ERM algorithm, and the ERM is stable, but the dependence on the confidence parameter δ
cannot be better than linear. This shows that both learnability and stability (under our definitions) of the ERM
learning rule are not sufficient to ensure logarithmic dependence on 1/δ. Also, this gives a nice illustration
to the fundamental differences between the General Learning Setting and supervised classification, where in
the latter case learnability implies logarithmic dependence on 1/δ.

Theorem 26 Let A be a universally consistent learning rule with rate εcons(m), namely that

ES∼Dm [F(A(S))−F∗]≤ εcons(m). (21)

Then there exists another universally consistent learning rule A′ such that with probability at least 1−δ over
a sample S of size m,

F(A′(S))−F∗ ≤ eεcons
(

m
log(2/δ)+1

)

+2B
√

log(2/δ)+ log(log(2/δ))
2m

Proof Applying Markov’s inequality on Equation (21), we have with probability at least 1− 1/e over a
sample S of size m that

F(A(S))−F∗ ≤ eεcons(m). (22)

Now, define the learning rule A′ as follows: given a sample of size m, split it randomly into a+ 1 parts
S1, . . . ,Sa+1 of size m/(a+ 1) each (where a is a constant to be determined later). Apply A separately
on S1, . . . ,Sa, to create a hypotheses A(S1), . . . ,A(Sa). Now, return the hypothesis A(St) which minimizes
FSa+1(A(St)) (namely, the hypothesis with lowest empirical risk on Sa+1), where ties are broken arbitrarily.
By Equation (22), we have for any St separately that with probability at least 1−1/e,

F(A(St))−F∗ ≤ eεcons
(

m
a+1

)

.

Since F(A(S1)), . . . ,F(A(Sa)) are independent random variables, we have that with probability at least 1−
(1/e)a, there exists at least one St such that

F(A(St))−F∗ ≤ eεcons
(

m
a+1

)

.

Assume w.l.o.g. that this holds for S1. Using Hoeffding’s inequality and a union bound, it also holds with
probability at least 1−δ1 over S that

FSa+1(A(S1))−F(A(S1))≤ B
√

log(2a/δ1)
2m

,

and also

F(A(St))−FSa+1(A(St))≤ B
√

log(2a/δ1)
2m
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simultaneously for every t = 2, . . . ,a. If this happens, it means that we will pick a hypothesis whose risk is
at most 2B

√

log(2a/δ1)/2m larger than F(A(S1)). Overall, we have that with probability at least 1− δ1−
(1/e)a,

F(A′(S))−F∗ ≤ eεcons
(

m
a+1

)

+2B
√

log(2a/δ1)
2m

.

Picking a= log(2/δ) and δ1 = δ/2, we get that with probability at least 1−δ,

F(A′(S))−F∗ ≤ eεcons
(

m
log(2/δ)+1

)

+2B
√

log(4/δ)+ log(log(4/δ))
2m

as required.

After we have seen how to convert a low-confidence learning rule (linear in δ) to a high-confidence
learning rule (logarithmic in δ), we show that such conversions might actually be necessary, in sharp contrast
to supervised classification.

Example 3 There exists a learning problem where any ERM algorithm is universally consistent and average-
RO stable with rates Θ(1/

√
m), but for any ERM algorithm,

P
[

F(ĥS)−F∗ = 1
]

=Θ

(

1√
m

)

. (23)

The Θ(·) notation hides only absolute constants.

This example implies that no high-confidence bound is possible, at least without foregoing polynomial
dependence on m. To see this, note that a high-confidence result corresponds to P

[

F(ĥS)−F∗]> ε) decreas-
ing exponentially in m for any fixed ε > 0, while in the case above we only have convergence at the rate of
1/
√
m.

Proof Consider the instance space X ×Y ×Z = [0,1]× {−1,+1}× {−1,+1}, with any joint distribution
such that p(y,z|x) for any x is uniform on {−1,+1}2, and the marginal distribution on X is continuous.

Consider the hypothesis class H = G ∪B , where G consists of the constant function 1 and the constant
function −1 over [0,1], and B consists of all functions h : [0,1] (→ {−1,0,+1}, such that each h(·) equals 0
on all but a non-empty finite subset of [0,1], and is uniformly either +1 or −1 on this finite subset.

Finally, define the objective function as

f (h,(x,y,z)) =
(

1(h ∈ G)y+
1(h ∈ B)z
2|h|

)

h(x)+1(h(x) = 0),

where |h|= |{x ∈ [0,1] : h(x) )= 0}| (namely, the number of points in [0,1] on which the function h(·) is not
zero). For h ∈ G , where the number of such points is infinite, we take |h|= ∞.

First, notice that for any h ∈ G , F(h) = 0, and for any h ∈ B, F(h) = 1. Thus, we can think of G as the
set of “good” hypotheses, and B as the set of ‘bad” hypotheses. Our goal is to show that any ERM will pick
a hypothesis from B with probability Θ(1/

√
m).

We need to do a bit of case-by-case analysis. Let (x1,y1,z1), . . . ,(xm,ym,zm) be the sample. If ∑mi=1 yi )= 0,
then using hypotheses in G, it is possible to achieve an empirical risk of

−

∣

∣

∣

∣

∣

m

∑
i=1

yi

∣

∣

∣

∣

∣

≤−1,

while using hypotheses in B, it is only possible to achieve an empirical risk of

∑mi=1 zih(xi)
2|h| +

m

∑
i=1
1(h(xi) = 0)≥−

1
2
.
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Figure 2: Implications of various properties of learning problems. Consistency refers to univeral consistency
and stability refers to universal uniform-RO stability.

Thus, with probability 1−Θ(1/
√
m) (the probability that ∑mi=1 yi )= 0 in the sample), any ERM algorithm will

pick ĥS ∈ G.
If ∑mi=1 yi = 0, then any h ∈ G achieves an empirical objective value of 0. On the other hand, unless

∑mi=1 zi = 0, we can choose some h ∈ B, which is non-zero on all points in the sample, and achieves an
empirical risk smaller than 0. The probability that ∑mi=1 yi = 0 and ∑mi=1 zi )= 0 is Θ(1/

√
m)(1−Θ(1/

√
m)),

or Θ(1/
√
m).

So we have that any ERM picks ĥS ∈G with probability 1−Θ(1/
√
m), and some ĥS ∈ B with probability

Θ(1/
√
m), from which the consistency rate and Equation (23) in the theorem statement follows. Finally,

note that replacing a single instance in the training set will lead to the ERM picking a different hypothe-
sis, only if ∑mi=1 yi = 0 before or after the replacement. The probability for getting a training set where this
happens isO(1/

√
m), and from this it is easy to see that the ERM is average-RO stable with rateO(1/

√
m).

8. Discussion and Conclusions
In the familiar setting of supervised classification problems, the question of learnability is reduced to that
of uniform convergence of empirical risks to their expectations. Therefore, for the purposes of establishing
learnability, there is no need to look beyond the ERM.

In this paper, we showed that in the General Learning Setting, which includes more general problems, this
equivalence does not hold, and the situation is substantially more complex. ERM might work without any
uniform convergence, and learnability might be possible only with a non-ERM algorithm. We are therefore in
need of a new understanding of the question of learnability, that applies more broadly than just to supervised
classification.

In studying learnability in the General Setting, Vapnik (1995) focuses solely on empirical risk minimiza-
tion, which we have seen to be insufficient for understanding learnability. Furthermore, for empirical risk
minimization, Vapnik establishes uniform convergence as a necessary and sufficient condition not for ERM
consistency, but rather for strict consistency of the ERM. We have seen that even in rather non-trivial prob-
lems, where the ERM is consistent and generalizes, strict consistency does not hold. This perhaps gives an
indication that strict consistency might be too strict.

On the other hand, we have seen that stability is both a sufficient and necessary condition for learning,
even in the General Learning Setting where uniform convergence fails to characterize learnability. A previous
stability-based characterization (Mukherjee et al., 2006) relied on uniform convergence and thus applied only
to restricted setting. Extending the characterization beyond these settings is particularly interesting, since
for supervised classification the question of learnability is already essentially solved. This also allows us to
frame stability as the core condition guaranteeing learnability, with uniform convergence only a sufficient,
but not necessary, condition for stability (see Figure 2).

In studying the question of learnability and its relation to stability, we encountered several differences be-
tween this more general setting, and settings such as supervised classification where learnability is equivalent
to uniform convergence. We summarize some of these distinctions:
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• Perhaps the most important distinction is that in the General Setting learnability might be possible
only with a non-ERM. In this paper we establish that if a problem is learnable, although it might not
be learnable with an ERM, it must be learnable with some AERM. And so, in the General Setting we
must look beyond empirical risk minimization, but not beyond asymptotic empirical risk minimization.

• In supervised classification, if one AERM is universally consistent then all AERMs are universally
consistent. In the General Setting we must choose the AERM carefully.

• In supervised classification, a universally consistent rule must also generalize and be AERM. In the
General Setting, a universally consistent rule need not generalize nor be an AERM, as example 2
demonstrates. However, Theorem 10 establishes that, even in the General Setting, if a rule is universally
consistent and generalizing then it must be an AERM. This gives us another reason to not look beyond
asymptotic empirical risk minimization, even in the General Setting.
The above distinctions can also be seen through Corollary 19, which is concerned with the relationship
between AERM, consistency and generalization in learnable problems. In the General Setting, any
two conditions imply the other, but it is possible for any one condition to exist without the others. In
supervised classification, if a problem is learnable then generalization always holds (for any rule), and
so universal consistency and AERM imply each other.

• In supervised classification, ERM inconsistency for some distribution is enough to establish non-
learnability. Establishing non-learnability in the General Setting is trickier, since one must consider
all AERMs. We show how Corollary 19 can provide a certificate for non-learnability, in the form of a
rule that is consistent and an AERM for some specific distribution, but does not generalize (Example
1).

• In supervised classification, any learnable problem is learnable with an ERM, and the ERM “works”
with high-confidence (namely, F(ĥS)−F∗ can be bounded with probability 1− δ by an expression
with logarithmic dependence on 1/δ). In Section 7 we have seen that in the General Learning Setting,
even if the ERM is universally consistent, high-confidence bounds for the ERM might be impossible
to obtain.

We have begun exploring the issue of learnability in the General Setting, and uncovered important re-
lationships between learnability and stability. But many problems are left open, some of which are listed
below.

First, is it possible to come up with well-known machine learning applications, where learnability is
achievable despite uniform convergence failing to hold?

In Section 6.2, we have managed to obtain a completely generic learning algorithm: an algorithm which
in principle allows us to learn any learnable problem. However, the algorithm suffers from the severe draw-
back that in general, it requires unbounded computational power. Can we derive an efficient algorithm, or
characterize classes of learning problems where our algorithm, or some other generic learning algorithm us-
ing the notion of stability, can be executed efficiently? For instance, can we always learn using a regularized
ERM learning rule?

On a related vein, it would be interesting to develop learning algorithms (perhaps for specific settings
rather than generic learning problems) which directly use stability in order to learn. Convex regularization is
one such mechanism, as discussed in Section 4. Are there other mechanisms, which use the notion of stability
in a different way?

Another issue is that even the existence of uniform-RO stable AERM (or strongly-uniform-RO stable,
always-AERM allowing for convexity/randomization) is not as elegant and simple as having finite VC dimen-
sion or fat-shattering dimension. It would be very interesting to derive equivalent but more “combinatorial”
conditions for learnability.

Yet another open question: We showed that existence of an uniform-RO stable AERM is necessary and
sufficient for learnability (Theorem 7). However, it is possible that learnability is an equivalent to the ex-
istence of an AERM with a stronger notion of stability, without resorting to convexity/randomization as we
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have done in Section 6.2. This might perhaps lead to generic learning algorithms which performminimization
over a search space more feasible than the one our algorithm (in Section 6.2) uses.

Finally, we do not know whether it is enough to consider symmetric learning rules: that is, learning rules
which do not depend on the order of the instances in the training sample. Intuitively, this should be true, since
the instances were sampled i.i.d. Can our characterization of learnability (e.g., existence of a uniform-RO
stable AERM learning rule) be strengthened to existence of symmetric uniform-RO stable AERM learning
rule, without allowing convexity/randomization?
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Appendix A. Alternative Notions of Stability
In this appendix, we discuss how our definition of stability compares to previous definitions in the literature,
as well as demonstrate how subtleties involved in the precise choice of the definition can have a significant
effect on the results which can be obtained.

A.1 Previous Definitions in the Literature

The existing literature on stability in learning, briefly surveyed in Section 3.2, uses many different stability
measures. All of them measure the amount of change in the algorithm’s output as a function of small changes
to the sample on which the algorithm is run. However, they differ in how “output”, “amount of change to
the output”, and “small changes to the sample” are defined. In Section 5, we used three stability measures.
Roughly speaking, one measure (average-RO stability) is the expected change in the objective value on a
particular instance, after that instance is replaced with a different instance. The second measure and third
measure (uniform-RO stability and strongly-uniform-RO stability respectively) basically deal with the maxi-
mal possible change in the objective value with respect to a particular instance, by replacing a single instance
in the training set. However, instead of measuring the objective value on a specific instance, we could have
measured the change in the risk of the returned hypothesis, or any other distance measure between hypothe-
ses. Instead of replacing an instance, we could have talked about adding or removing one instance from the
sample, either in expectation or in some arbitrary manner. Such variations are common in the literature.

To relate our stability definitions to the ones in the literature, we note that our definitions of uniform-RO
stability and strongly-uniform-RO stability are somewhat similar to uniform stability (Bousquet and Elisse-
eff, 2002), which in our notation is defined as supS,zmaxi | f (A(S;z))− f (A(S\i);z)|, where S\i is the training
sample S with instance zi removed. Compared to uniform-RO stability, here we measure maximal change
over any particular instance, rather than average change over all instances in the training sample. Also,
we deal with removing an instance rather than replacing it. Strongly-uniform-RO stability is more simi-
lar, with the only formal difference being removal vs. replacement of an instance. However, the results
for uniform stability mostly assume deterministic learning rules, while in this paper we have used strongly-
uniform-RO stability solely in the context of randomized learning rules. For deterministic learning rules,
the differences outlined above are sufficient to make uniform stability a strictly stronger requirement than
uniform-RO stability, since it is easy to come up with learning problems and (non-symmetric) learning rules
which are uniform-RO stable but not uniformly stable. Moreover, we show in this paper that uniform-RO
stable AERM’s characterize learnability, while it is well known that uniformly stable AERM’s are not neces-
sary for learnability (see Kutin and Niyogi, 2002). For the same reason, our notion of strongly-uniform-RO
stability is apparently too strong to characterize learnability when we deal with deterministic learning rules,
as opposed to randomized learning rules.
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Our definition of average-RO stable is similar to “average stability” defined in Rakhlin et al. (2005), which
in our notation is defined as ES∼Dm,z′1

[

f (A(S(i));z1)− f (A(S);z1)
]

. Compared to average-RO stability, the
main difference is that the change in the objective value is measured with respect to z1 rather than an average
over zi for all i, and stems from the assumption there that the learning algorithm is symmetric. Notice that in
this paper we do not make such an assumption.

For an elaborate study on other stability notions and their relationships, see Kutin and Niyogi (2002).
Unfortunately, many of the stability notions in the literature are incomparable, and even slight changes in

the definition radically affect their behavior. We go into this in much more detail in the following subsections.

A.2 LOO Stability vs. RO Stability

The stability definitions we have used in this paper are all based on the idea of replacing one instance in the
training sample by another instance (e.g., “RO” or “replace-one” stability). An alternative set of definitions
can be obtained based on removing one instance in the training sample (e.g., “LOO” or “leave-one-out”
stability). In fact, these were the definitions used in our preliminary paper (Shalev-Shwartz et al., 2009b).
Despite seeming like a small change, it turns out there is a considerable discrepancy in terms of the obtainable
results, compared to RO stability. In this subsection, we wish to discuss these discrepancies, as well as show
how small changes to the stability definition can materially affect its strength.

Specifically, we consider the following four LOO stability measures, each slightly weaker than the pre-
vious one. The first and last are similar to our notion of uniform-RO stability and average-RO stability
respectively. However, we emphasize that RO stability and LOO stability are in general incomparable no-
tions, as we shall see later on. Also, we note that some of these definitions appeared in previous literature.
For instance, the notion of “all-i-LOO” below has been studied by several authors under different names
(Bousquet and Elisseeff, 2002; Mukherjee et al., 2006; Rakhlin et al., 2005). The notation S\i below refer to
a training sample S with instance zi removed.

Definition 27 A rule A is uniform-LOO stable with rate εstable(m) if for all samples S of m points and for
all i:

∣

∣

∣
f (A(S\i);zi)− f (A(S);zi)

∣

∣

∣
≤ εstable(m).

Definition 28 A rule A is all-i-LOO stable with rate εstable(m) under distribution D if for all i:

ES∼Dm

[
∣

∣

∣
f (A(S\i);zi)− f (A(S);zi)

∣

∣

∣

]

≤ εstable(m).

Definition 29 A rule A is LOO stable with rate εstable(m) under distribution D if

1
m

m

∑
i=1

ES∼Dm

[
∣

∣

∣
f (A(S\i);zi)− f (A(S);zi)

∣

∣

∣

]

≤ εstable(m).

Definition 30 A rule A is on-average-LOO stable with rate εstable(m) under distribution D if
∣

∣

∣

∣

∣

1
m

m

∑
i=1

ES∼Dm

[

f (A(S\i);zi)− f (A(S);zi)
]

∣

∣

∣

∣

∣

≤ εstable(m).

While some of the definitions above might look rather similar, we show below that each one is strictly
stronger than the other. Example 6 is interesting in its own right, since it presents a learning problem and
an AERM that is universally consistent, but not LOO stable. While this is possible in the General Learning
Setting, in supervised classification every such AERM has to be LOO stable (this is essentially proven in
Mukherjee et al., 2006).

Example 4 There exists a learning problem with a universally consistent and all-i-LOO stable learning rule,
but there is no universally consistent and uniform LOO stable learning rule.
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Proof This example is taken from Kutin and Niyogi (2002). Consider the hypothesis space {0,1}, the
instance space {0,1}, and the objective function f (h,z) = |h− z|.

It is straightforward to verify that an ERM is a universally consistent learning rule. It is also universally
all-i-LOO stable, because removing an instance can change the hypothesis only if the original sample had an
equal number of 0’s and 1’s (plus or minus one), which happens with probability at most O(1/

√
m) where m

is the sample size. However, it is not hard to see that the only uniform LOO stable learning rule, at least for
large enough sample sizes, is a constant rule which always returns the same hypothesis h regardless of the
sample. Such a learning rule is obviously not universally consistent.

Example 5 There exists a learning problem with a universally consistent and LOO-stable AERM, which is
not symmetric and is not all-i-LOO stable.

Proof Let the instance space be [0,1], the hypothesis space [0,1]∪ 2, and the objective function f (h,z) =
11{h=z}. Consider the following learning rule A: given a sample, check if the value z1 appears more than once
in the sample. If no, return z1, otherwise return 2.

Since FS(2) = 0, and z1 returns only if this value constitutes 1/m of the sample, the rule above is an
AERM with rate εerm(m) = 1/m. To see universal consistency, let P [z1] = p. With probability (1− p)m−2,
z1 /∈ {z2, . . . ,zm}, and the returned hypothesis is z1, with F(z1) = p. Otherwise, the returned hypothesis is 2,
with F(2) = 0. Hence ES [F(A(S))] ≤ p(1− p)m−2, which can be easily verified to be at most 1/(m− 1),
so the learning rule is consistent with rate εcons(m)≤ 1/(m−1). To see LOO-stability, notice that our learn-
ing hypothesis can change by deleting zi, i > 1, only if zi is the only instance in z2, . . . ,zm equal to z1. So
εstable(m) ≤ 2/m (in fact, LOO-stability holds even without the expectation). However, this learning rule is
not all-i-LOO-stable. For instance, for any continuous distribution, | f (A(S\1),z1)− f (A(S),z1)| = 1 with
probability 1, so it obviously cannot be all-i-LOO-stable with respect to i= 1.

Example 6 There exists a learning problem with a universally consistent (and on-average-LOO stable)
AERM, which is not LOO stable.

Proof Let the instance space, hypothesis space and objective function be as in Example 4. Consider the
following learning rule, based on a sample S = (z1, . . . ,zm): if ∑i 11{zi=1}/m > 1/2+

√

log(4)/2m, return 1.
If ∑i 11{zi=1}/m< 1/2−

√

log(4)/2m, return 0. Otherwise, return Parity(S) = (z1+ . . .zm) mod 2.
This learning rule is an AERM, with εerm(m) =

√

2log(4)/m. Since we have only two hypotheses,
we have uniform convergence of FS(·) to F(·) for any hypothesis. Therefore, our learning rule universally
generalizes (with rate εgen(m) =

√

log(4/δ)/2m), and by Theorem 9, this implies that the learning rule is
also universally consistent and on-average-LOO stable.

However, the learning rule is not LOO stable. Consider the uniform distribution on the instance space.
By Hoeffding’s inequality, |∑i 11{zi=1}/m−1/2|≤

√

log(4)/2m with probability at least 1/2 for any sample
size m. In that case, the returned hypothesis is the parity function (even when we remove an instance from
the sample, assuming m≥ 3). When this happens, it is not hard to see that for any i,

f (A(S),zi)− f (A(S\i),zi) = 11{zi=1}(−1)
Parity(S).
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This implies that

E

[

1
m

m

∑
i=1

∣

∣

∣

(

f (A(S\i);zi)− f (A(S);zi)
)
∣

∣

∣

]

(24)

≥
1
2
E

[

1
m

m

∑
i=1

11{zi=1}

∣

∣

∣

∣

∣

√

log(4)
2m

≥
∣

∣

∣

m

∑
i=1

11{zi=1}
m

−
1
2

∣

∣

∣

]

≥
1
2

(

1
2
−
√

log(4)
2m

)

−→
1
4

,

which does not converge to zero with the sample size m. Therefore, the learning rule is not LOO stable.

Note that the proof implies that on-average-LOO stability cannot be replaced even by something between
on-average-LOO stability and LOO stability. For instance, a natural candidate would be

ES∼Dm

[
∣

∣

∣

∣

∣

1
m

m

∑
i=1

(

f (A(S\i);zi)− f (A(S);zi)
)

∣

∣

∣

∣

∣

]

, (25)

where the absolute value is now over the entire sum, but inside the expectation. In the example used in the
proof, Equation (25) is still lower bounded by Equation (24), which does not converge to zero with the sample
size.

After showing that the hierarchy of definitions above is indeed strict, we turn to the question of what
can be characterized in terms of LOO stability. In Shalev-Shwartz et al. (2009b), we show a version of
Theorem 7, which asserts that a problem is learnable if and only if there is an on-average-LOO stable AERM.
However, on-average-LOO stability is qualitatively much weaker than the notion of uniform-RO stability
used in Theorem 7 (see Definition 4). Rather, we would expect to prove a version of the theorem with the
notion of uniform-LOO stability or at least LOO stability, which are more analogous to uniform-RO stability.
However, the proof of Theorem 7 does not work for these stability definitions (technically, this is because the
proof relies on the sample size remaining constant, which is true for replacement stability, but not when we
remove an instance as in LOO stability). We do not know if one can prove a version of Theorem 7 with an
LOO stability notion stronger than on-average-LOO stability.

On the plus side, LOO stability allows us to prove the following interesting result, specific to ERM
learning rules.

Theorem 31 For an ERM the following are equivalent:
• Universal LOO stability.
• Universal consistency.
• Universal generalization.

In particular, the theorem implies that LOO stability is a necessary property for consistent ERM learning
rules. This parallels Theorem 9, which dealt with AERM’s in general, and used RO stability. As before, we
do not know how to obtain something akin to Theorem 9 with RO stability.
Proof Lemma 15 and Lemma 17 from Section 5.3.3 already tell us that for ERM’s, universal consistency
is equivalent to universal generalization. Moreover, Lemma 14 implies that for ERM’s, generalization is
equivalent to on-average generalization (see Equation (11) for the exact definition). Thus, is left to prove
that for ERM’s, generalization implies LOO stability, and LOO stability implies on-average generalization.
stability.
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First, suppose the ERM learning rule is generalizing with rate εgen(m). Note that f (ĥS\i ;zi)− f (ĥS;zi) is
always nonnegative. Therefore the LOO stability of the ERM can be upper bounded as follows:

1
m

m

∑
i=1

E
[

| f (ĥS\i ;zi)− f (ĥS;zi)|
]

=
1
m

m

∑
i=1

E
[

f (ĥS\i ;zi)− f (ĥS;zi)
]

=
1
m

m

∑
i=1

E
[

F(ĥS\i)
]

−E

[

1
m

m

∑
i=1

f (ĥS;zi)
]

≤
1
m

m

∑
i=1

E
[

FS\i(ĥS\i)+ εgen(m−1)
]

−E
[

FS(ĥS)
]

= εgen(m−1)+E

[

1
m

m

∑
i=1

FS\i(ĥS\i)−FS(ĥS)
]

≤ εgen(m−1).

For the opposite direction, suppose the ERM learning rule is LOO stable with rate εstable(m). Notice that
we can get any sample of size m−1 by picking a sample S of size m and discarding any instance i. Therefore,
the on-average generalization rate of the ERM for samples of size m−1 is equal to the following:

∣

∣E
[

F(ĥS\i)−FS\i(ĥS\i)
]
∣

∣

=

∣

∣

∣

∣

∣

1
m

m

∑
i=1

E
[

F(ĥS\i)−FS\i(ĥS\i)
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
m

m

∑
i=1

E
[

f (ĥS\i ;zi)
]

−
1
m

m

∑
i=1

E
[

FS\i(ĥS\i)
]

∣

∣

∣

∣

∣

Now, note that for the ERM’s of S and S\i we have
∣

∣FS\i(ĥS\i)−FS(ĥS)
∣

∣≤ 2B
m . Therefore, we can upper bound

the above by
∣

∣

∣

∣

∣

1
m

m

∑
i=1

E
[

f (ĥS\i ;zi)
]

−E
[

FS(ĥS)
]

∣

∣

∣

∣

∣

+
2B
m

=

∣

∣

∣

∣

∣

1
m

m

∑
i=1

E
[

f (ĥS\i ;zi)− f (ĥS, ;zi)
]

∣

∣

∣

∣

∣

≤ εstable(m)

using the assumption that the learning rule is εstable(m)-stable.
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Abstract
An algorithm is presented for topology selection in graphical models of autoregressive Gaussian
time series. The graph topology of the model represents the sparsity pattern of the inverse spectrum
of the time series and characterizes conditional independence relations between the variables. The
method proposed in the paper is based on an !1-type nonsmooth regularization of the conditional
maximum likelihood estimation problem. We show that this reduces to a convex optimization prob-
lem and describe a large-scale algorithm that solves the dual problem via the gradient projection
method. Results of experiments with randomly generated and real data sets are also included.
Keywords: graphical models, time series, topology selection, convex optimization

1. Introduction

We consider graphical models of autoregressive (AR) Gaussian processes

x(t) =−
p

∑
k=1

Akx(t− k)+w(t), w(t)∼N (0,Σ) (1)

where x(t) ∈ Rn, and w(t) ∈ Rn is Gaussian white noise. A graphical model of the time series is an
undirected graph with n nodes, one for each component xi(t), and an edge connecting nodes i and
j if the components xi(t) and x j(t) are conditionally dependent, given the other components of the
time series. The conditional independence property has a simple characterization (which holds for
general Gaussian stationary processes) in terms of the spectrum of the process: xi(t) and x j(t) are
independent, conditional on the other n−2 components of x(t), if and only if

(S(ω)−1)i j = 0

for all ω, where S(ω) is the spectral density matrix (Brillinger, 1981, Chapter 8; Dahlhaus, 2000).
This characterization allows us to include the conditional independence relations in an estimation
problem by placing sparsity constraints on the inverse spectral density matrix.

In Songsiri et al. (2009) a convex optimization method was discussed for estimating the model
parameters Ak, Σ from data, given the graph of conditional independence relations. The method is
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based on solving the convex optimization problem

minimize − logdetX00+ tr(CX)

subject to Yk =
p−k
∑
i=0

Xi,i+k, k = 0,1, . . . , p,

(Yk)i j = 0, (i, j) ∈ V , k = 0,1, . . . , p,
X % 0.

(2)

Here C is the sample covariance matrix and V is the set of conditionally independent pairs of
variables. The optimization variables are X ∈ Sn(p+1) (the symmetric matrices of order n(p+ 1)),
Y0 ∈ Sn, and Yk ∈ Rn×n, k = 1,2, . . . , p. Xi j denotes the n× n subblock of X in position i, j, where
the indices i and j run from 0 to p. It was shown that if the sample covariance matrix C is block-
Toeplitz, then problem (2) is equivalent to the conditional maximum likelihood (ML) estimation
problem, and the ML estimates for Ak and Σ are easily obtained from the optimal solution X . IfC is
not block-Toeplitz, the problem is a relaxation and in general not equivalent to the conditional ML
problem. However in practice, the relaxation often happens to be exact (Songsiri et al., 2009). This
will be discussed in more detail in §2.3.

In this paper we consider the more general problem of estimating the model parameters and the
topology of the graphical model. The topology selection problem can be solved by enumerating all
topologies, solving theML estimation problem for each topology, and ranking them via information-
theoretic criteria such as the Akaike or Bayes information criteria (Eichler, 2006; Songsiri et al.,
2009). However this combinatorial approach is clearly limited to small graphs. The goal of this
paper is to present an efficient alternative based on convex optimization.

Topology selection for graphical models of time series is of interest in many applications (see
Dahlhaus et al., 1997; Eichler et al., 2003; Salvador et al., 2005; Gather et al., 2002; Timmer et al.,
2000; Feiler et al., 2005; Friedman et al., 2008). A common approach is to formulate hypothesis
testing problems to decide about the presence or absence of edges. Dahlhaus (2000) derives a
statistical test for the existence of an edge in the graph, based on the maximum of a nonparametric
estimate of the normalized inverse spectrum (see also Dahlhaus et al., 1997; Eichler et al., 2003;
Salvador et al., 2005; Gather et al., 2002; Timmer et al., 2000; Feiler et al., 2005; Fried and Didelez,
2003). Eichler (2008) presents a more general approach by introducing a hypothesis test based on
the norm of some suitable function of the spectral density matrix. A related problem was studied by
Bach and Jordan (2004). They use an efficient search procedure to learn the graph structure from
sample estimates of the joint spectral density matrix.

If p= 0, the problem (2) reduces to

minimize − logdetX+ tr(CX)
subject to Xi j = 0, (i, j) ∈ V

(3)

with variable X ∈ Sn. (Throughout the paper we take the set of positive definite matrices as the do-
main of the function logdetX , so (3) includes an implicit constraint X ' 0.) Problem (3) is known
as the covariance selection problem, that is, the problem of computing the ML estimate of the in-
verse covariance matrix X = Σ−1 of a multivariate Gaussian variableN (0,Σ), subject to conditional
independence constraints (which, for a normal distribution, correspond to zeros in the inverse co-
variance); see Dempster (1972) and Lauritzen (1996, §5.2). Recently, new heuristic methods for
topology selection in large Gaussian graphical models have been developed. These methods are
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based on augmenting the ML objective with an !1-norm regularization term, that is, on solving

minimize − logdetX+ tr(CX)+ γ∑i j |Xi j| (4)

(see Dahl et al., 2005; Meinshausen and Bühlmann, 2006; Banerjee et al., 2008; Ravikumar et al.,
2008; Friedman et al., 2008; Lu, 2009, 2010). The optimization problem (4) is convex but has
n(n+1)/2 variables (the elements of X) and is nondifferentiable, so it can be challenging to solve
when n is large. Several large-scale methods have been proposed. Banerjee et al. (2008) apply a
block coordinate descent method to the dual problem. Each step of this method reduces to solv-
ing a quadratic program with box constraints. They also apply Nesterov’s optimal gradient method
(Nesterov, 2005) to a smooth approximation of (4). Friedman et al. (2008) observe that the dual
of the subproblems in the coordinate descent algorithm can be regarded as a lasso-type problem
and solved with a method called graphical lasso. Scheinberg and Rish (2009) consider a coordinate
ascent method applied to the primal problem. A method based on column-wise updates is given by
Rothman et al. (2008). A related problem is explored in Yuan and Lin (2007) where the authors
make a connection between (4) and more general determinant maximization problems (Vanden-
berghe et al., 1998), and solve the problem using interior-point methods. Lu (2009) observes that
the dual of (4) is a smooth problem and applies Nesterov’s method (Nesterov, 2005) directly to the
dual. The algorithm is further extended by Lu (2010) and compared with a projected spectral gra-
dient method. Another closely related paper is Duchi et al. (2008) in which the gradient projection
method is applied to the dual problem.

The main purpose of this paper is to develop an efficient method for topology selection in
AR models, based on augmenting the estimation problem (2) with a convex regularization term,
similar to the !1-norm regularization used in (4). We also discuss first-order methods for solving the
resulting large-scale and nondifferentiable convex optimization problem.

The paper is organized as follows. In Section 2 we review the definition of conditional indepen-
dence in time series and summarize the results from Songsiri et al. (2009). In Section 3 we set up
the topology selection problem as a regularized ML problem and discuss its properties. Examples
and applications are presented in Sections 4 and 5. We conclude in Section 6 with a discussion of
gradient projection algorithms for solving large instances of the regularized ML estimation problem.

1.1 Notation

Sn is the set of real symmetric matrices of order n. Sn+ and Sn++ are the sets of symmetric positive
semidefinite, respectively, positive definite, matrices of order n. Rm×n is the set of m×n-matrices.
Mn,p is the set of matrices

X =
[

X0 X1 · · · Xp
]

with X0 ∈ Sn and X1, . . . ,Xp ∈ Rn×n. The standard trace inner product 〈X ,Y 〉= tr(XTY ) is used for
the three vector spaces Sn, Rm×n,Mn,p. For a symmetric matrix X , the inequalities X % 0 and X ' 0
mean X is positive semidefinite, resp., positive definite. Row and column indices of submatrices
in a block matrix start at 0. If X is a matrix with (block) entries Xi j, then Xi: j,k:l will denote the
submatrix formed by rows i through j and columns k through l:

Xi: j,k:l =











Xik Xi,k+1 · · · Xil
Xi+1,k Xi+1,k+1 · · · Xi+1,l
...

...
...

Xjk Xj,k+1 · · · Xj,l











.
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The linear mapping T :Mn,p → Sn(p+1) constructs a symmetric block Toeplitz matrix from its
first block row: if X =

[

X0 X1 · · · Xp
]

∈Mn,p, then

T(X) =











X0 X1 · · · Xp
XT1 X0 · · · Xp−1
...

... . . . ...
XTp XTp−1 · · · X0











. (5)

The adjoint of T is a mapping D : Sn(p+1) →Mn,p defined as follows. If S ∈ Sn(p+1) is partitioned as

S=











S00 S01 · · · S0p
ST01 S11 · · · S1p
...

...
...

ST0p ST1p · · · Spp











,

then D(S) =
[

D0(S) D1(S) · · · Dp(S)
]

where

D0(S) =
p

∑
i=0

Sii, Dk(S) = 2
p−k

∑
i=0

Si,i+k, k = 1, . . . , p. (6)

A symmetric sparsity pattern of a sparse matrix X of order nwill be associated with the positions
V ⊆ {1, . . . ,n}× {1, . . . ,n} of its zero entries. We assume (i, i) ,∈ V for i = 1, . . . ,n, that is, the
diagonal entries are not included among the zeros. PV (X) denotes the projection of a matrix X ∈ Sn
or X ∈ Rn×n on the complement of the sparsity pattern V :

PV (X)i j =
{

Xi j (i, j) ∈ V
0 otherwise. (7)

The same notation is used for PV as a mapping from Rn×n →Rn×n and as a mapping from Sn → Sn.
In both cases, PV is self-adjoint. If X is an r× s block matrix with i, j block Xi j, and each block
is square of order n, then PV (X) denotes the r× s block matrix with i, j block PV (X)i j = PV (Xi j).
Similarly, PV (X) with X ∈Mn,p denotes

[

PV (X0) PV (X1) · · · PV (Xp)
]

.

The subscript V in PV is omitted if the sparsity pattern is clear from the context.

2. Graphical Models of Autoregressive Gaussian Processes

In this section we describe the conditional independence property for Gaussian time series, review
the maximum likelihood estimation of AR models, and provide a convex formulation for the esti-
mation problem with conditional independence constraints.

2.1 Conditional Independence

Let x(t) be an n-dimensional stationary zero-mean Gaussian process with spectrum S(ω):

S(ω) =
∞

∑
k=−∞

Rke−jkω
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where Rk = Ex(t+ k)x(t)T and j=
√
−1. We assume that S(ω) is invertible for all ω. Two compo-

nents xi(t) and x j(t) of x(t) are conditionally independent (i.e., conditional on the other components
of x(t)) if

(S(ω)−1)i j = 0

for all ω (Brillinger, 1981; Dahlhaus, 2000). If we denote by V the set of index pairs i, j of con-
ditionally independent variables, then we can use the projection operator P = PV defined in (7) to
express the conditional independence relations as

P(S(ω)−1) = 0. (8)

In a graphical model of the process, the index set V is the set of missing edges in the graph.
To apply this result to AR processes (1) we need to express the inverse spectrum in terms of the

model parameters. The notation will simplify if we first normalize the input covariance and use the
model

B0x(t) =−
p

∑
k=1

Bkx(t− k)+ v(t), v(t)∼N (0, I), (9)

where B0 ∈ Sn++ and Bk ∈ Rn×n, k = 1, . . . , p. If Σ is nonsingular, the two models are equivalent,
and related as B0 = Σ−1/2, Bk = Σ−1/2Ak for k ≥ 1. The inverse spectrum S(ω) of the process (9) is
a trigonometric matrix polynomial

S(ω)−1 = Y0+
1
2

p

∑
k=1

(e−jkωYk+ ejkωYTk ) (10)

where Y0 = ∑
p
l=0B

T
l Bl , and Yk = 2∑p−k

l=0 B
T
l Bk+l for k = 1, . . . , p. If we define B =

[

B0 B1 · · · Bp
]

,
we can use the operator D defined in (6) to express Yk as

[

Y0 Y1 · · · Yp
]

= D(BTB).

The expression (10) shows that (S(ω)−1)i j is identically zero if and only if the i, j and j, i entries of
Yk are zero for k = 0, . . . , p. The conditional independence condition (8) is therefore equivalent to a
quadratic equation in the model parameters Bk:

P
(

D(BTB)
)

= 0. (11)

(Recall from the Notation section that if Y is a block matrix with square submatrices Yk of order n,
then P(Y ) denotes the block matrix with submatrices P(Yk).)

2.2 Conditional Maximum Likelihood Estimation

We now consider the problem of estimating the model parameters B from an observed sequence
x̃(1), x̃(2), . . . , x̃(N) of the AR process, subject to known conditional independence constraints (11).
In Songsiri et al. (2009) the estimation problem was formulated as the optimization problem

minimize −2logdetB0+ tr(CBTB)
subject to P(D(BTB)) = 0. (12)
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The matrix C ∈ Sn(p+1)+ is a sample estimate of the covariance matrix, that is, its blocks Ci j, i ≤ j,
are estimates of the covariances Rj−i = Ex(t+ j− i)x(t)T , calculated from the observed sequence.
Two choices ofC are common. The first choice is the non-windowed estimate

C =
1

N− p
HHT , H =











x̃(p+1) x̃(p+2) · · · x̃(N)
x̃(p) x̃(p+1) · · · x̃(N−1)
...

...
...

x̃(1) x̃(2) · · · x̃(N− p)











. (13)

With this choice the estimation problem (12) can be interpreted as a maximum likelihood problem.
Indeed, from (9), the conditional density of a sequence x(t1), x(t1+1), . . . x(t2), given x(t1− p), . . . ,
x(t1−1), is given by

(

detB0
(2π)n/2

)t2−t1+1
exp

(

−
1
2

t2
∑
t=t1
x(t)TBTBx(t)

)

,

where x(t) denotes the n(p+ 1)-vector x(t) = (x(t),x(t − 1), . . . ,x(t − p)). From this it can be
shown that the cost function in (12) withC defined as in (13), is essentially the negative conditional
log-likelihood function of the observed sequence x̃(p+ 1), x̃(p+ 2), . . . , x̃(N), given x̃(1), . . . ,
x̃(p). We therefore refer to (12) as the conditional maximum likelihood problem. For AR processes,
the conditional ML formulation is substantially simpler and more often used than the exact ML
formulation. Moreover, when the data length N is sufficiently large compared to p, the difference
between the exact and conditional ML formulations is small.

The second choice forC is the windowed estimate

C =
1
N
HHT , (14)

where

H =











x̃(1) x̃(2) · · · x̃(p+1) · · · x̃(N) 0 · · · 0
0 x̃(1) · · · x̃(p) · · · x̃(N−1) x̃(N) · · · 0
...

... . . . ...
...

... . . . ...
0 0 · · · x̃(1) · · · x̃(N− p) x̃(N− p+1) · · · x̃(N)











.

The windowed estimate C is block-Toeplitz, and this guarantees several useful properties of the
resulting model B (for example, stability; see Songsiri et al., 2009). In practice, the differences
between the windowed and non-windowed estimates are small when N 0 p.

We will assume that C is positive definite. If n is small compared to N, this is a reasonable
assumption but not guaranteed to be true. (As a counterexample, assume x̃(1), . . . , x̃(n) are the
first n unit vectors and the remainder of the sequence is zero. The matrix C in (14) then has rank
n+ p.) If C is not positive definite, it may be necessary to add a small multiple of the identity. This
is equivalent to a quadratic regularization term proportional to ‖B‖2F in the objective of (12).

When there are no sparsity constraints in (12), the solution can be found by setting the gradient
of the cost function equal to zero, which gives











C00 C01 · · · C0p
C10 C11 · · · C1p
...

... . . . ...
Cp0 Cp1 · · · Cpp





















B0
BT1
...
BTp











=











B−1
0
0
...
0











.
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Written in terms of the original variables Σ= B−2
0 , Ak = B−1

0 Bk, this gives










C00 C01 · · · C0p
C10 C11 · · · C1p
...

... . . . ...
Cp0 Cp1 · · · Cpp





















I
AT1
...
ATp











=











Σ
0
...
0











, (15)

with unknowns Σ= B−2
0 , Ak = B−1

0 Bk. The bottom p equations form a set of linear equations from
which A1, . . . , Ap can be determined. Plugging in the solution in the first equation gives Σ. Later in
the paper we will refer to the solution as the least-squares estimate because the bottom p equations
can be interpreted as normal equations for the least-squares problem

minimize tr(ACAT )

with variable A =
[

I A1 · · · Ap
]

. This method is also known as the covariance method if C
is the non-windowed sample covariance (13), and as the correlation method if C is the windowed
sample covariance (14) (see Stoica and Moses, 1997).

2.3 Convex Formulation

The optimization problem (12) is non-convex because of the quadratic equality constraint. A convex
relaxation is

minimize − logdetX00+ tr(CX)
subject to P(D(X)) = 0

X % 0
(16)

with variable X ∈ Sn(p+1). The relaxation is exact, that is, the two problems (16) and (12) are
equivalent, if the optimal solution X of (16) has rank n. In that case, the solution B of (16) can be
calculated by factoring X as X = BTB.

A condition for exactness of the relaxation follows from the dual problem of (16), which is

maximize logdetW +n

subject to
[

W 0
0 0

]

2C+T(P(Z)), (17)

with variables W ∈ Sn and Z ∈Mn,p (for the derivation, see Songsiri et al., 2009). The variable
Z is the Lagrange multiplier associated with the equality constraint in (16); the slack matrix in
the inequality in (17) is the multiplier associated with the primal inequality X % 0. To find the
relation between primal and dual solutions, we first note that the primal and dual problems are
strictly feasible: X = I is strictly feasible in the primal problem (16), since by assumption V does
not contain any diagonal entries; in the dual problem Z = 0 and a sufficiently small positive definite
W are strictly feasible, because C ' 0 by assumption. From convex duality, strict primal and dual
feasibility imply that the primal and dual problems are solvable, and that their optimal solutions are
related by the optimality conditions

X−1
00 =W, tr

(

X
(

C+T(P(Z))−
[

W 0
0 0

]))

= 0 (18)
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(Boyd and Vandenberghe, 2004, Chapter 5). The second condition is known as complementary
slackness between the optimal X and the dual variable associated with the inequality X % 0. From
these optimality conditions, it can be shown that the relaxation is exact when the trailing principal
submatrix of order np in the matrix C+T(P(Z)) ∈ Sn(p+1) is positive definite at the optimum, that
is,

(C+T(P(Z)))1:p,1:p ' 0. (19)

Under this condition, the rank of

C+T(P(Z))−
[

W 0
0 0

]

is at least np. Since X has order n(p+ 1), the two conditions in (18) imply that the optimal X has
rank n.

In general it is difficult to guarantee a priori that the condition (19) holds at optimum. However,
when C is block-Toeplitz, then (19) can be shown to hold for all dual feasible Z. This follows from
the following easily established property of block-Toeplitz matrices: if V ∈ Sn(p+1) is a symmetric
block-Toeplitz matrix with n×n blocks Vi j, and

V =

[

V00 V0,1:p
V1:p,0 V1:p,1:p

]

%
[

W 0
0 0

]

for someW ' 0, thenV is positive definite (see Songsiri et al., 2009, §3.3.3). We therefore conclude
that for positive definite block-ToeplitzC (for example, the windowed sample covariance (14) or the
true covariance), the problems (12) and (16) are equivalent. For general non-block-Toeplitz C (for
example, the non-windowed sample covariance (13)), we cannot guarantee that (19) holds at the
optimum. However, we can note that the non-windowed sample covariance approaches a block-
Toeplitz matrix as N → ∞. It is therefore not surprising that even for the non-windowed estimate,
the relaxation is often exact, as was observed in the experimental results in Songsiri et al. (2009).

3. Topology Selection Via Nonsmooth Regularization

In the previous section we have described a convex formulation of the (conditional) ML estimation
problem with given conditional independence constraints, that is, a given graph topology. In many
applications the topology is not known, and needs to be discovered from the data. Information
theoretic model selection criteria such as the Akaike, second-order Akaike, or Bayes information
criteria can be used for this purpose. They require enumerating all possible topologies, solving
the ML problem for each topology, and ranking the ML estimates according to their information
criterion score. These scores are defined as

AIC=−2L+2k, AICc =−2L+
2Nk

N− k−1
, BIC=−2L+ k logN (20)

where L is the log-likelihood of the ML estimate, N is the sample size, and k is the effective number
of parameters. In our application, L is given by

L =
N− p
2

(logdetX00− tr(CX))
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where X is the optimal solution of (16), and we use for k the total number of parameters in the
estimation problem,

k =
n(n+1)
2

− |V |+ p(n2−2|V |),

where |V | is the number of conditionally independent pairs of variables. This topology selection
method based on information-theoretic criteria is feasible if the number of possible topologies is
not too large, but quickly becomes intractable even for small values of n. In this section and the
next we describe a more scalable approach based on a convex optimization problem that extends the
!1-norm heuristic (4) for sparse covariance selection.

3.1 Regularized ML Problem

In analogy with the convex heuristic for covariance selection (4), we can formulate a regularized
ML problem by adding a nonsmooth !1-type penalty:

minimize − logdetX00+ tr(CX)+ γh(D(X))
subject to X % 0, (21)

where γ > 0 is a weighting parameter. The penalty h :Mn,p → R is a convex function, chosen to
encourage a sparse solution X with a common, symmetric sparsity pattern for the p+ 1 blocks of
D(X). We will use the penalty function

h∞(Y ) =∑
j>i
max

{

∣

∣(Y0)i j
∣

∣ , max
k=1,...,p

∣

∣(Yk)i j
∣

∣ , max
k=1,...,p

∣

∣(Yk) ji
∣

∣

}

(22)

that is, a sum of the !∞-norms of vectors of i, j and j, i-entries of the coefficients Yk. In the examples
(Section 4) we will also discuss penalty functions defined as sums of !α-norms, with α= 1,2.

Regularization with a convex sum-of-norms penalty is a popular technique for achieving sparsity
of groups of variables. Examples from statistics are the composite absolute penalties (CAP) (Zhao
et al., 2009) and the group lasso (Yuan and Lin, 2006; Kim et al., 2006). When p = 0 and X ∈ Sn
in (21) the penalty term reduces to ∑i> j |Xi j| and we obtain problem (4), studied in Banerjee et al.
(2008), Lu (2009) and Friedman et al. (2008), with the minor difference that we do not penalize the
diagonal entries of X .

We now derive the dual problem of (21) which will be important in Section 6. To simplify the
derivation we introduce a variable Y = D(X) and write the problem as

minimize − logdetX00+ tr(CX)+ γh∞(Y )
subject to Y = D(X)

X % 0.

If we use a multiplier Z ∈Mn,p for the equality constraint Y = D(X) and a multiplier U ∈ Sn(p+1)
for the inequality X % 0, the Lagrangian of the problem is

L(X ,Y,Z,U) =− logdetX00+ tr(CX)+ γh∞(Y )− tr(UX)+ tr(ZT (D(X)−Y )) (23)
=− logdetX00+ tr((C+T(Z)−U)X)+ γh∞(Y )− tr(ZTY ).
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(Recall that the mappings T and D defined in (5) and (6) are adjoints, that is, tr(ZT D(X)) =
tr(T(Z)X).) The dual function is the infimum of the Lagrangian over X and Y . We first mini-
mize over Y . The nonlinear penalty term does not depend on the diagonal entries of the blocks Yk.
The minimization over the diagonal entries of Yk is therefore unbounded below unless

diag(Zk) = 0, k = 0,1, . . . , p. (24)

The minimization over the off-diagonal part of the blocks Yk decomposes into independent mini-
mizations of the functions

−
p

∑
k=0

((Zk)i j(Yk)i j+(Zk) ji(Yk) ji)+ γmax
{

|(Y0)i j|, max
k=1,...,p

|(Yk)i j|, max
k=1,...,p

|(Yk) ji|
}

for each element i, j with i> j. This expression is unbounded below unless

2|(Z0)i j|+
p

∑
k=1

(|(Zk)i j|+ |(Zk) ji|)≤ γ, i ,= j, (25)

and, if this condition holds, the infimum over Y is zero. The result of the partial minimization of the
Lagrangian over Y can be summarized as

inf
Y
L(X ,Y,Z,U) =

{

− logdetX00+ tr((C+T(Z)−U)X) (24), (25)
−∞ otherwise.

Next, we carry out the minimization over X . The terms in X00 are bounded below if and only
if (C+T(Z)−U)00 ' 0, and if this holds, they are minimized by X00 = (C+T(Z)−U)−100 . The
Lagrangian is linear in the other blocks Xi j, and therefore bounded below (and identically zero) only
if (C+T(Z)−U)i j = 0 for blocks (i, j) ,= (0,0). This gives a third set of dual feasibility conditions:

(C+T(Z)−U)00 ' 0, (C+T(Z)−U)i j = 0, (i, j) ,= 0, (26)

and an expression for the dual function

g(Z,U) = inf
X ,Y

L(X ,Y,Z,U) =

{

logdet(C+T(Z)−U)00+n (24), (25), (26)
−∞ otherwise.

The dual problem is to maximize g(Z,U) subject toU % 0. If we add a variableW =C00+Z0−
U00 and eliminate the slack variableU , we can express the dual problem as

maximize logdetW +n

subject to
[

W 0
0 0

]

2C+T(Z)
p
∑
k=0

(|(Zk)i j|+ |(Zk) ji|)≤ γ, i ,= j

diag(Zk) = 0, k = 0, . . . , p.

(27)

The variables areW ∈ Sn and Z ∈Mn,p. When p= 0, the problem reduces to

maximize logdet(C+Z)+n
subject to |Zi j|≤ γ/2, i ,= j

diag(Z) = 0,
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Except for the equality constraint, this is the problem considered in Lu (2009) and Duchi et al.
(2008).

If a sum of !α-norms

hα(Y ) =∑
j>i

(

p

∑
k=0

(|(Yk)i j|α+ |(Yk) ji|α)

)1/α

(28)

is used as penalty function in (21), the second constraint in the corresponding dual problem (27) is
replaced by

(

p

∑
k=0

(

|(Zk)i j|β+ |(Zk) ji|β
)

)1/β

≤ γ, i ,= j

with β= α/(α−1).

3.2 Optimality Conditions

The primal problem (21) is always strictly feasible (X = I is strictly feasible). The dual problem (21)
is strictly feasible if C ' 0 (we can take Z = 0 and W positive definite and sufficiently small). It
follows that the primal and dual problems are solvable, have equal optimal values, and that their
solutions are characterized by the following set of necessary and sufficient optimality (or KKT)
conditions.

Primal feasibility. X and Y satisfy

X % 0, X00 ' 0, Y = D(X).

Dual feasibility. W and Z satisfy

W ' 0, C+T(Z)%
[

W 0
0 0

]

,

p

∑
k=0

(|(Zk)i j|+ |(Zk) ji|)≤ γ, i ,= j, diag(Zk) = 0, k = 0,1, . . . p.

Zero duality gap. The Lagrangian evaluated at the primal and dual optimal solutions is equal to
the primal objective at the optimal X , Y , and equal to the dual objective evaluated at the
optimalW , Z. From (23), we have equality between the Lagrangian and the primal objective
if tr(UX) = 0. Therefore the complementary slackness condition

tr
(

X
(

C+T(Z)−
[

W 0
0 0

]))

= 0 (29)

holds at the optimum. Equality between the Lagrangian and the dual objective requires that
the primal optimal X , Y minimize the Lagrangian evaluated at the dual optimal W , Z. Re-
viewing the derivation of the dual problem, we see that X00 minimizes the Lagrangian if

X−1
00 =W. (30)
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To express the conditions from the minimization over Y , we define

ti j =max
{

|(Y0)i j|, max
k=1,...,p

|(Yk)i j|, max
k=1,...,p

|(Yk) ji|
}

.

Then we see that Y minimizes the Lagrangian if for all i ,= j, we either have
p

∑
k=0

(|(Zk)i j|+ |(Zk) ji|)< γ,

or we have ∑p
k=0(|(Zk)i j|+ |(Zk) ji|) = γ and

(Zk)i j = 0, |(Yk)i j|≤ ti j or (Zk)i j < 0, (Yk)i j =−ti j or (Zk)i j > 0, (Yk)i j = ti j

for k = 0, . . . , p.

The conditions (29)–(30) show that the optimal X has rank n under the same conditions as for the
problem with given sparsity pattern (16). If

(C+T(Z))1:p,1:p ' 0

then the optimal X has rank n, and this is always the case if C is block-Toeplitz. Under these
conditions, the optimization problem (21) is equivalent to a regularized (conditional) ML estimation
problem for the model parameters B:

minimize −2logdetB0+ tr(CBTB)+ γh∞(D(BTB)).

4. Examples with Randomly Generated Data

Our interest in the regularized ML formulation (21) is motivated by the fact that the resulting AR
model typically has a sparse inverse spectrum S(ω)−1. Since the regularized problem is convex,
it is interesting as an efficient heuristic for topology selection. In this section we illustrate several
aspects of this approach using experiments with randomly generated data. In Section 5 we will
apply the method to real data sets. Numerical algorithms for solving the regularized problem (21)
are discussed in Section 6.

4.1 Method

We first explain in greater detail how we will use the results of the regularized ML problem for
model selection.

4.1.1 CHOICE OF REGULARIZATION PARAMETER γ

The sparsity in the inverse spectrum of the solution of the regularized ML problem is controlled by
the weighting coefficient γ. As γ varies, the sparsity pattern varies from dense (γ small) to diagonal
(γ large). Several authors have discussed the choice of γ in the context of covariance selection
(i.e., heuristics based on solving problem (4) or closely related problems). A common approach
is to select γ via cross-validation; see, for example, Friedman et al. (2008), Huang et al. (2006)
and Banerjee et al. (2008). Meinshausen and Bühlmann (2006) give explicit formulas for γ based
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Figure 1: Method for approximating the trade-off curve between two convex objectives.

on a statistical analysis of the probability of errors in the topology (see also Yuan and Lin, 2007;
Banerjee et al., 2008). Asadi et al. (2009) consider γ as a random variable and use a maximum a
posteriori probability (MAP) estimation to choose γ and the covariance matrix.

In the examples of this section we will use the following method for selecting γ. We first
compute the entire trade-off curve between the two terms in the objective of (21), that is, between
the log-likelihood and the penalty function h∞(D(X)). The trade-off curve can be computed by
solving (21) for a number of different values of γ (see below). We collect the topologies of the
solutions along the trade-off curve, and solve the ML problem (16) for each of these topologies. We
then rank the models using the Bayes information criterion (BIC), as discussed at the beginning of
Section 3, and select the model with the lowest score. In this approach, the convex heuristic is used
as a preprocessing step to reduce the number of topologies that are examined using the BIC, and to
filter out topologies that are unlikely to be competitive.

4.1.2 TRACING TRADE-OFF CURVES

The trade-off curves are computed by solving (21) for a sequence of values of γ. To obtain an
accurate estimate of the curve with only a small number of values γ we use a method which is
illustrated in Figure 1 for a generic trade-off between two convex cost functions f1 and f2. We first
solve the scalarized problem

minimize f1(x)+ γ f2(x) (31)

for two positive values γ1, γ2 near the opposite ends of the trade-off curve. This gives the points
labeled 1 and 2 on the trade-off curve. The values of γ1 and γ2 also define the slopes of straight
lines that support the trade-off curve at points 1 and 2. Since the trade-off curve is convex, we can
conclude that the curve between 1 and 2 lies somewhere in the shaded triangular region. As γ3,
we choose the value that corresponds to the slope of the straight line between 1 and 2. Solving
problem (31) with γ = γ3 gives point 3 on the trade-off curve and a straight line that supports the
curve at point 3. The trade-off curve between points 1 and 2 is now known to lie in the union of the
two shaded triangles. Next, we solve the problem (31) for a value γ4 corresponding to the slope of
the straight line between points 1 and 3, and a value γ5 corresponding to the slope of the straight line
between 3 and 2. In this example, we obtain fairly accurate upper and lower bounds of the actual
trade-off curve after solving five scalarized problems (31).
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4.1.3 THRESHOLDING

With a proper value of γ, the regularized ML problem (21) has a sparse solution Y , resulting in
a sparse inverse spectrum S(ω)−1. When solved with a limited accuracy, the entries of Y are not
exactly zero. We will use the following method to determine the topology from the computed
solution.

We calculate the inverse spectrum S(ω)−1 and normalize it by scaling its rows and columns so
that the diagonal is one:

R(ω) = diag(S(ω)−1)−1/2S(ω)−1diag(S(ω)−1)−1/2.

The normalized inverse spectrum R(ω) is known as the partial coherence (Brillinger, 1981; Dahlhaus,
2000). Its entries are between 0 and 1 in magnitude, and measure the conditional dependence be-
tween the corresponding variables, after removing the linear effects from the other variables. In the
static case (p = 0), R(ω) reduces to the normalized concentration matrix. To estimate the graph
topology we compare the L∞-norms of the entries of R(ω),

ρi j = sup
ω

|R(ω)i j|

with a given threshold. This thresholding step is similar to thresholding in other sparse methods, for
example the thresholded lasso and Dantzig estimators in Lounici (2008).

To simplify the interpretation we will use the same threshold value (10−1) in all the experiments,
that is, we remove edge (i, j) from the graph if ρi j ≤ 10−1.

4.2 Experiment 1

In the first series of experiments we generate AR models with sparse inverse spectra by setting
B0 = I and randomly choosing sparse lower triangular matrices Bk with entries ±0.5. The random
trials are continued until a stable AR model is found. The AR process is then used to generate N
samples of the time series. The model dimensions are n= 20 and p= 2.

4.2.1 TOPOLOGY SELECTION

We first illustrate the basic topology selection method outlined above using the correct model order
(p= 2). The sample size is N = 512.

Figure 2 shows the trade-off curve between the penalty h∞(D(X)) and the log-likelihood L(X).
We calculate the inverse spectra (10) for the computed points on the trade-off curve, and apply a
threshold to them (as explained above, by setting entries with ρi j ≤ 10−1 to zero). The resulting
topologies are shown in Figure 3. The patterns range from quite dense (small γ) to very sparse
(large γ). The sparsity of the densest solution (γ = 10−5) is identical to the sparsity of the least-
squares estimate (i.e., the solution of the equations (15) with C given in (13) or, equivalently, the
ML solution of (12) without the sparsity constraints). For each of the nine sparsity patterns, we
solve the ML problem subject to sparsity constraints (16). We rank the nine solutions using the
AICc and BIC scores defined in (20). Figure 4 shows the two scores and the negative log-likelihood
as functions of γ. The models that minimize the AICc/BIC scores turn out to be the same in this
example (the models for γ= 0.15) and the corresponding topology is shown in Figure 5 (left). Only
seven entries are misclassified (six entries are misclassified as zeros; one as nonzero). The sparsity
pattern in the middle is the topology estimated by thresholding the partial coherence spectrum of
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Figure 2: Trade-off curve between the log-likelihood L(X) and h∞(D(X)).
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Figure 3: Topologies of solutions along the tradeoff curve in Figure 2 (ordered from right to left on
the tradeoff curve).
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Figure 4: AICc and BIC scores, and maximized log-likelihood for solutions on the trade-off curve
in Figure 2.

the least-squares solution with the correct model order (p= 2). This pattern is computed by solving
the ML problem (12) without constraints, and then thresholding the partial coherence (using the
same threshold value 0.1 as in the other experiments). The difference between the two patterns
clearly shows the benefits of the nonsmooth regularization for estimating a sparse topology. The
sparsity pattern on the right of Figure 5 is obtained from the covariance selection method with !1-
norm regularization (i.e., by setting p= 0 in the regularized ML problem (21)) and thresholding the
partial coherence. Ignoring the model dynamics substantially increased the error in the topology
selection.

4.2.2 COMPARISON WITH OTHER TYPES OF REGULARIZATION

To compare the quality of the sparse models with the models obtained from other estimation meth-
ods we evaluate the Kullback-Leibler (KL) divergence (Bach and Jordan, 2004) between the true
and the estimated spectra as a function of the sample size N for the following six methods.

1. ML estimation without conditional independence constraints (or least-squares estimate). This
is the solution of (12) without the constraints, and it can be computed by solving the normal
equations (15).

2. ML estimation with conditional independence constraints determined by thresholding the
partial coherence matrix of the least-squares estimate (solution 1).

3. ML estimation with Tikhonov regularization and without conditional independence constraints.
Tikhonov regularization (also known as ridge regression or !2-regularization) is widely used
in statistics and estimation (Hastie et al., 2009, §3.4). A Tikhonov-regularized ML estimate

2686



TOPOLOGY SELECTION IN GRAPHICAL MODELS OF AUTOREGRESSIVE PROCESSES

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

Figure 5: Left. The sparsity pattern from the regularized ML problem with γ = 0.15. Middle. The
sparsity pattern estimated from the least-squares solution. Right. The sparsity pattern
from the regularized ML problem for a static model (p = 0). The blue squares are the
correctly identified nonzero entries (true positives). The red circles are the entries that are
misclassified as nonzero (false positives). The black crosses are entries that are misclas-
sified as zeros (false negatives).

is the solution of
minimize −2logdetB0+ tr(CBTB)+ γ‖B‖2F .

The solution can be computed from the normal equations (15) withC replaced byC+γI. The
solution of this problem can therefore also be viewed as a ML estimate using a perturbed sam-
ple covariance matrixC+ γI. In the experiment, the value of γ is determined by performing a
five-fold cross-validation (Hastie et al., 2009, §7.10).

4. ML estimation with conditional independence constraints determined by thresholding the
inverse spectral density for the Tikhonov estimate (solution 3).

5. Regularized ML estimation with h∞-penalty. This is the solution of problem (21) with penalty
function (22).

6. ML estimation with conditional independence constraints determined by thresholding the
inverse spectral density for the h∞-regularized ML estimate (solution 5).

The total number of variables in this example is n(n+ 1)/2+ pn2 = 1010 variables. We show the
results in Figure 6 in two different settings: with small sample sizes (N < 1010) and with moderate
to large sample sizes (N ≥ 1010). We can note that for small sample sizes N the constrained ML
estimates (models 2,4,6) are not better than the unconstrained estimates (models 1,3,5), and much
worse in the case of the Tikhonov-regularized estimates. This can be explained by large errors in the
estimated topology. For larger N the constrained estimates are consistently better than the uncon-
strained models, and for very large N the three constrained ML estimates give the same accuracy.
For small and moderate N we also see that model 6 (ML estimate for the topology selected via
nonsmooth regularization) is much more accurate than the other methods.
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Figure 6: KL divergence between estimated AR models and the true model (n = 20, p = 2) ver-
sus the number of samples N. We compare six methods: (1) least-squares estimate, (2)
constrained ML estimate with topology estimated by thresholding solution 1, (3) ML esti-
mate with Tikhonov regularization, (4) constrained ML estimate with topology estimated
by thresholding solution 3, (5) regularized ML estimate with h∞-penalty, (6) constrained
ML estimate with topology estimated by thresholding solution 5.
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4.2.3 ERRORS IN TOPOLOGY AS A FUNCTION OF SAMPLE SIZE

In the last figure (Figure 7) we examine how fast the error in the topology selection decreases
with increasing sample length N for three topology selection methods: LS estimation followed
by thresholding, ML estimation with Tikhonov regularization followed by thresholding, and ML
estimation with nonsmooth regularization followed by thresholding. For each sample size N we
show the errors averaged over 50 sample sequences (i.e., 50 different sample covariance matrices
C). “False positives” refers to entries that are incorrectly classified as nonzeros (i.e., incorrectly
added edges in the graphical model). “False negatives” are entries that are incorrectly classified
as zeros (i.e., incorrectly deleted edges). The top graphs in Figure 7 show the fraction of false
positives and false negatives versus the sample size. The bottom graphs show the total fraction of
misclassified entries. We compare the three methods listed above. As can be seen, the total error in
the estimated topology is reduced in the regularized estimates, and the errors decrease more rapidly
when we regularize with the sum-of-norms penalty h∞.

4.3 Experiment 2

In the second experiment we compare different penalty functions h for the regularized ML prob-
lem (21): the ‘sum-of-!∞-norms’ penalty h∞ defined in (22), the ‘sum-of-!2-norms’ penalty h2 de-
fined in (28) with α = 2, and the ‘sum-of-!1-norms’ penalty h1 defined in (28) with α = 1. These
penalty functions all yield models with a sparse inverse spectrum

S(ω)−1 = Y0+
1
2

p

∑
k=1

(e−jkωYk+ ejkωYTk ),

but have different degrees of sparsity for the entries (Yk)i j within each group i, j.
The data are generated by randomly choosing sparse coefficients Yk of an inverse spectrum (10).

For each (i, j) of nonzero locations in S(ω)−1, we select random values (Yk)i j with about the same
magnitude for all k. If necessary, a multiple of the identity matrix is added to Y0 to guarantee
the positiveness of the spectrum. An AR realization of the spectrum is then computed by spectral
factorization and used to generate sample time series. The model dimensions are n= 5, p= 7.

Figure 8 shows typical values for the estimated coefficients (Yk)i j. The three penalty functions
all give the same topology, but a different sparsity with the same group i, j of coefficients. The
sparsity within each group is largest for the h1-penalty and smallest for the h∞-penalty.

Table 1 shows the results of topology selection with the three penalties, for sample size N = 512
and averaged over 50 sample sequences. The h∞-penalty gives the models with the smallest KL
divergence and smallest error in topology. This is to be expected, given the distribution of the
nonzero coefficients (Yk)i j in the AR models that were used to generate the data. The results also
agree with a comparison of different norms in a composite penalty function (Zhao et al., 2009).
In general the best choice of norm will depend on how the coefficients are distributed within each
group.

5. Applications

This section presents two examples of real data sets to demonstrate how topology selection can
facilitate studies of relationship in multivariate time series.
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Figure 7: Top left. Fraction of incorrectly added edges in the estimated graph (number of upper
triangular nonzeros in the estimated pattern that are incorrect, divided by the number
of upper triangular zeros in the correct pattern). Top right. Fraction of incorrectly re-
moved edges in the estimated graph (number of upper triangular zeros in the estimated
pattern that are incorrect, divided by the number of upper triangular nonzeros in the cor-
rect pattern). Bottom. The combined classification error computed as the sum of the
false positives and false negatives divided by the number of upper triangular entries in the
pattern.

5.1 Functional Magnetic Resonance Imaging (fMRI) Data

In this section we apply the topology selection method to a functional magnetic resonance imaging
(fMRI) time series. We use the StarPlus fMRI data set1 (Mitchell et al., 2004), which was analyzed

1. StarPlus data can be found at www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/.
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Figure 8: Nonzero coefficients |(Yk)i j| for regularizedML estimates with penalty hα, for α= 1,2,∞.

Dimensions KL divergence Error in topology (%)
h1 h2 h∞ h1 h2 h∞

n= 20, p= 2 0.24 0.22 0.21 11.8 11.9 11.6
n= 20, p= 4 0.33 0.24 0.19 1.65 1.19 0.51
n= 30, p= 2 0.40 0.35 0.30 9.95 8.83 7.96
n= 30, p= 4 0.59 0.46 0.40 5.18 3.97 3.53

Table 1: Accuracy of topology selection methods with penalty hα for α= 1,2,∞. The table shows
the average KL divergence with respect to the true model and the average percentage error
in the estimated topology (defined as the sum of the false positives and false negatives di-
vided by the number of upper triangular entries in the pattern), averaged over 50 instances.

using covariance selection in Scheinberg and Rish (2009). The data consists of 80 time series (runs)
of brain image scans. In half of the 80 runs the input stimulus shown to the subject is a picture; in
the other half it is a sentence. Each run contains 16 images, resulting in 640 images for each input.
Mitchell et al. (2004) suggest a region of interest (ROI) of 1718 voxels. To reduce the dimension
we took averages over groups of voxels in the ROI and considered four reduced graphs with n= 7,
50, 100, and 190 nodes, respectively.

We fit two different AR models, one for each input. The AR model orders selected by the BIC
are shown in Table 2. As the problem size (n) becomes larger, the BIC tends to pick a static model
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Input n= 7 n= 50 n= 100 n= 190
Picture p= 1 p= 1 p= 0 p= 0
Sentence p= 1 p= 1 p= 0 p= 0

Table 2: AR model orders for the fMRI data set.

Input Static models (p= 0) Time series models (p= 1)
!1 Tikhonov LS !1 Tikhonov LS

Picture 991 4116 4203 0 13467 13465
Sentence 922 4021 4131 0 13240 13238

Table 3: Relative BIC scores of six models fitted to two fMRI time series of size n = 50. The
‘static’ models are Gaussian graphical models (i.e., AR models of order p = 0), the time
series models are AR models of order p = 1. The models are constrained ML estimates
with topologies estimated using three different methods: Regularized ML estimate with
hα-penalty, Tikhonov-regularized ML estimate, and the least-squares estimate. The BIC
scores are relative to the score of the best model (time series models of regularized ML
estimate with hα-penalty).
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Figure 9: Density of the graphical models of fMRI data for ‘picture’ stimulus (left) and for ‘sen-
tence’ stimulus (right). The density is computed as the number of nonzero entries in the
estimated inverse spectrum divided by n2.

(p= 0). Table 3 shows the BIC scores of different models for the experiment with size n= 50.
The topologies selected by the BIC are the regularized ML estimates with h∞-penalty. Figure 9

shows the sparsity of the estimated graphs from the least-squares, Tikhonov-regularized ML, and
h∞-regularized ML methods. The plots show that the h∞-regularization produces much sparser
graphs than the other two methods.

To get an idea of the accuracy of the estimated network structure, we validated the result with
a simple classification experiment. For each input we keep one fMRI run as a test problem and use
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model order n= 7 n= 50 n= 100 n= 190
p= 0 0.21 0.16 0.11 0.06
p= 1 0.20 0.16 0.16 0.11

Table 4: Classification error of fMRI data versus model size. The error is the number of runs for
which the stimulus input is correctly identified divided by the total number of runs (40).

the 39 remaining runs to estimate a sparse AR model. The two models are then used to guess the
inputs shown to the subject during the test run. The classification algorithm computes the likelihood
of each input, based on the two models, and selects the input with the highest likelihood. We repeat
this for each of the 40 choices of test run. Table 4 shows the classification error versus the number
of nodes in the graph. We see that the classification is quite successful and achieves an error in the
range 6–20%. The error tends to be smaller if we use less averaging (larger n). We also note that for
each n, the AR model of order p chosen in Table 2 also performs slightly better in the classification
experiment.

5.2 International Stock Market Data

We consider a multivariate time series of 17 stock market indices: the S&P 5000 composite in-
dex (U.S.), Toronto stock exchange 300 index (Canada), the All ordinary composite stock index
(Australia), the Nikkei 225 stock index (Japan), the Hang Seng stock composite index (Hong
Kong), the FTSE 100 share index (United Kingdom), the Frankfurt DAX 30 composite index
(German), the CAC 40 stock composite index (France), MIBTEL index (Italy), the Zurich Swiss
Market composite index (Switzerland), the Amsterdam exchange index (Netherlands), the Austrian
traded index (Austria), IBEX 35 (Spain), BEL 20 (Belgium), the OMX Helsinki 25 index (Fin-
land), the Portugese stock index (Portugal), the Irish stock exchange index (Ireland). The data
were stock index closing prices recorded from June 3, 1997 to June 30, 1999 and obtained from
www.globalfinancialdata.com. The data were converted to US dollars. Missing data due to
national holidays were replaced by the most recent values. For each market we use as variable the
return between trading day k−1 and k, defined as

rk = 100log(πk/πk−1),

where πk is the closing price on day k. This results in 17-dimensional time series of length 540.
Similar time series for a smaller number of markets were analyzed in Bessler and Yang (2003) and
Abdelwahab et al. (2008).

We solve the h∞-regularized ML problem with model orders ranging from p = 0 to p = 3,
and for each value collect the topologies along the trade-off curve, as in the previous examples.
The AICc and BIC criteria were then used to select a model. Both criteria selected a model of order
p= 1 and the same sparsity pattern (corresponding to a value γ= 0.34). Figure 10 (right) shows ρi j,
the maximum magnitude of the partial coherence of the model, and compares it with a thresholded
nonparametric estimate obtained with Welch’s method (Proakis, 2001) and the constrained ML
model with topology obtained by thresholding the least-squares estimate. We note that the graph
topologies suggested by the nonparametric and least-squares estimates are much denser than the
regularized ML estimate.
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Figure 10: The maximum magnitude ρi j of the partial coherence for three models of the stock ex-
change data. Left: Thresholded nonparametric sample estimate using Welch’s method.
Middle: Constrained ML estimate with topology determined from the LS solution.
Right: Constrained ML estimate with topology determined from the h∞-regularized ML
estimate.

Figure 11 shows the graphical model estimated by the h∞-regularized ML problem. The thick-
ness of the edges is proportional to ρi j. We recognize many connections that can be explained from
geographic proximity or economic ties between the countries. For example, we see strong connec-
tions between the U.S. and Canada, between Australia, Japan, and Hong Kong, between Hong Kong
and U.K., between the southern European countries, et cetera. Overall the graphical model seems
plausible, and the experiment suggests that the topology selection method is quite effective.

6. First-order Optimization Algorithms

In the preceding sections we have considered four convex optimization problems. The constrained
ML estimation problem (16) and its dual (17) have differentiable objectives and linear equality and
matrix inequality constraints. The regularized ML problem (21) also includes a nondifferentiable
term in the objective, and its dual (27) has a differentiable objective but constraints that involve
nondifferentiable functions. These optimization problems can be solved by interior-point methods,
for example, the path-following methods developed for convex determinant maximization problems
(Toh, 1999; Vandenberghe et al., 1998). In practice, however, the problems are often too large
for interior-point methods because they involve matrix variables (X or Z) of high dimension. In
this section we therefore investigate less expensive first-order algorithms applied to a reformulation
of the dual problems (17) and (27). The dual approach avoids several difficulties that arise in
first-order methods applied to the primal problems: the complicated constraints in the constrained
ML problem (16), the fact that its objective, which is also the first term in the objective of the
regularized ML problem (21), is not strictly convex, the nondifferentiability of the penalty term
in (21), and, most important, the fact the solution X has low rank and therefore lies on the boundary
of the feasible set. (For the regularized ML problem (21), these difficulties could be addressed as
in the covariance selection method of Banerjee et al. (2008), by applying Nesterov’s fast gradient
method to an approximation of the primal problem with a smoothed objective and a closed bounded
constraint set (Nesterov, 2005). In our limited experience, with a fixed and conservative choice of
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ρi j

Figure 11: A graphical model of stock market data. The strength of connections is represented by
the width of the blue links, which is proportional to ρi j = supω |R(ω)i j| if it is greater
than 0.15.

the smoothing and bounding parameters, this algorithm was slower than the dual gradient projection
method described in this section, so we will not pursue it here.)

6.1 Reformulated Dual Problems

To reformulate the dual problems we eliminate the variable W in (17) and (27). Let V = C+
T(P(Z)), respectively, V =C+T(Z). The inequality

V −
[

W 0
0 0

]

=

[

V00−W VT
1:p,0

V1:p,0 V1:p,1:p

]

% 0,

is equivalent to

V1:p,1:p % 0, range(V1:p,0)⊆ range(V1:p,1:p), V00−VT
1:p,0V

†
1:p,1:pV1:p,0 %W, (32)

where V †1:p,1:p is the pseudo-inverse of V1:p,1:p. If V % 0, then the matrix W with maximum deter-
minant that satisfies (32) is equal to V00−VT

1:p,0V
†
1:p,1:pV1:p,0, the Schur complement of V1:p,1:p in V .

This observation allows us to eliminate W from (17) and (27). Problem (17) can be written as an
unconstrained problem

maximize −φ(C+T(P(Z))), (33)
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and problem (27) as a problem with simple constraints

maximize −φ(C+T(Z))

subject to
p
∑
k=0

(|(Zk)i j|+ |(Zk) ji|)≤ γ, i ,= j

diag(Zk) = 0, k = 0, . . . , p.

(34)

Here φ : Sn(p+1) → R is defined as

φ(V ) =− logdet
(

V00−VT
1:p,0V

†
1:p,1:pV1:p,0

)

−n,

with domain domφ= {V ∈ Sn(p+1)+ |V00−VT
1:p,0V

†
1:p,1:pV1:p,0 ' 0}. This function is convex, since it

can be expressed as

φ(V ) = inf
{

− logdetW
∣

∣

∣

∣

[

W 0
0 0

]

2V
}

−n,

and convexity of this expression follows from results in convex analysis (Boyd and Vandenberghe,
2004, §3.2.5). It is also a smooth function on the interior of its domain and its gradient at a positive
definite V can be expressed as

∇φ(V ) =−V−1+

[

0 0
0 V−1

1:p,1:p

]

. (35)

This can be seen, for example, from the identity detV = detV1:p,1:p det(V00−VT
1:p,0V

−1
1:p,1:pV1:p,0),

which gives φ(V ) = − logdetV + logdetV1:p,1:p− n, and the fact that the gradient of logdetX is
X−1.

IfV =C+T(P(Z))' 0 at the optimum of (33) then the primal optimal solution can be computed
from Z via the expressions

X =V−1−
[

0 0
0 V−1

1:p,1:p

]

=

[

−I
V−1
1:p,1:pV1:p,0

]

W−1
[

−I
V−1
1:p,1:pV1:p,0

]T

(36)

where V =C+T(P(Z)) andW = V00−VT
1:p,0V

−1
1:p,1:pV1:p,0. The expression for X follows from the

optimality condition (18) and the identities

V =

[

V00−VT
1:p,0V

−1
1:p,1:pV1:p,0 0
0 0

]

+

[

VT
1:p,0V

−1
1:p,1:p
I

]

V1:p,1:p
[

VT
1:p,0V

−1
1:p,1:p
I

]T

,

V−1 =

[

0 0
0 V−1

1:p,1:p

]

+

[

−I
V−1
1:p,1:pV1:p,0

]

(V00−VT
1:p,0V−1

1:p,1:pV1:p,0)
−1

[

−I
V−1
1:p,1:pV1:p,0

]T

. (37)

The formula for V−1 also provides an alternative form of the gradient (35).
Similarly, if C+T(Z) ' 0 at the optimum of (34) then the primal optimal X can be computed

from (36) with V =C+T(Z).
The reformulated dual problems are interesting because they can often be solved by gradient

algorithms for unconstrained optimization or gradient projection algorithms for problems with sim-
ple constraints. To explain this, we again distinguish between Toeplitz and non-Toeplitz C. If C is

2696



TOPOLOGY SELECTION IN GRAPHICAL MODELS OF AUTOREGRESSIVE PROCESSES

block-Toeplitz, then it can be shown that the functions φ(C+T(P(Z))) and φ(C+T(Z)) are closed
convex functions (i.e., with closed sublevel sets) and that their domains are open. Consider the
function φ restricted to the set of block-Toeplitz matrices, that is, φ(T(R)), where R ∈Mn,p. By
definition, R is in the domain of φ(T(R)) if T(R)% 0 and there exists a positive definiteW with

T(R)%
[

W 0
0 0

]

.

From the property of block-Toeplitz matrices mentioned in Section 2.3, this implies T(R) ' 0. In
other words, the domain of φ(T(R)) is the open set {R | T(R) ' 0}. By a similar argument, if a
sequence of matrices R in the domain of φ(T(R)) converges to a point R̄ in the boundary of the
domain, then the Schur complement of T(R̄)1:p,1:p in T(R̄) must be singular, and hence φ(T(R))→
∞. For a continuous function with an open domain this is equivalent to closedness (Boyd and
Vandenberghe, 2004, p.639).

IfC is not block-Toeplitz, then the functions φ(C+T(P(Z))) and φ(C+T(Z)) are not necessarily
closed, and their domains not necessarily open. One implication is that it is possible that the optimal
solution of (33) or (34) is at a point in the boundary of the domain of the cost function, that is, a
point whereC+T(P(Z)) orC+T(Z) are singular. However in practice,C is usually approximately
block-Toeplitz and one can expect that the functions are often closed. Moreover, in order to apply
unconstrained minimization algorithms it is sufficient that the algorithm is started at a point Z(0)
for which the sublevel set {Z | φ(C+T(P(Z))) ≤ φ(C+T(P(Z(0))))} is closed. This condition is
considerably weaker than the requirement that all sublevel sets are closed.

6.2 Gradient Projection Algorithms

We now present some details on first-order algorithms for the reformulated dual problems. We focus
on the constrained problem (34) since the unconstrained problem (33) can be handled as a special
case. We first describe a version of the classical gradient projection with a backtracking line search
(Polyak, 1987; Bertsekas, 1999). To simplify the notation we will use a generic problem format

minimize f (x)
subject to x ∈ C

where f :Rn →R is convex and continuously differentiable with an open domain, and C is a closed
convex set. We assume that a feasible point x(0) is known and that the sublevel set

S = {x ∈ dom f ∩C | f (x)≤ f (x(0))}

is closed and bounded. The closedness assumption is satisfied if f is a closed function. (See the
previous paragraph on the validity of this assumption for problems (33) and (34).) We assume that
projections on C are inexpensive and we denote the projection operator by P :

P (y) = argmin
x∈C

‖x− y‖2.

The gradient map associated with f and C is defined as

Gt(x) =
1
t
(x−P (x− t∇ f (x)))

for t > 0. For an unconstrained problem, the gradient map is Gt(x) = ∇ f (x), independent of t.
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6.2.1 BASIC GRADIENT PROJECTION

The basic gradient projection method starts at x(0) and continues the iteration

x(k) = P
(

x(k−1)− tk∇ f (x(k−1))
)

= x(k−1)− tkGtk(x
(k−1)) (38)

until a stopping criterion is satisfied. A classical convergence result states that x(k) converges to an
optimal solution if tk is fixed and equal to 1/L, where L is a constant that satisfies

‖∇ f (u)−∇ f (v)‖2 ≤ L‖u− v‖2 ∀u,v ∈ S , (39)

(Polyak, 1987, §7.2.1). Although our assumptions (S is closed and bounded, and dom f is open)
imply that the Lipschitz condition (39) holds for some constant L > 0, its value is not known in
practice, so the fixed step size rule tk = 1/L cannot be used. We therefore determine tk using a
backtracking search (Beck and Teboulle, 2009). The step size search algorithm in iteration k starts
at a value tk := t̄k where

t̄k =min
{

sT s
sT y

, tmax
}

, (40)

where
s= x(k−1)− x(k−2), y= ∇ f (x(k−1))−∇ f (x(k−2)),

and tmax is a positive constant. (In the first iteration we initialize the step size as t1 = tmax.) The
search then repeats the update tk := βtk (where β ∈ (0,1) is an algorithm parameter) until x(k−1)−
tkGtk(x(k−1)) ∈ dom f and

f (x(k−1)− tkGtk(x
(k−1)))≤ f (x(k−1))− tk∇ f (x(k−1))TGtk(x

(k−1))+
tk
2
‖Gtk(x

(k−1))‖22. (41)

The resulting step size tk is used in the update to x(k) in (38). Note that the trial points

x(k−1)− tkGtk(x
(k−1)) = P

(

x(k−1)− tk∇ f (x(k−1))
)

generated during the step size search are not necessarily on a straight line. The trajectory is some-
times referred to as the projection arc (Bertsekas, 1999, §2.3).

The step length ‖s‖22/sT y is known as the Barzilai-Borwein step size and forms the basis of
spectral gradient methods (Barzilai and Borwein, 1988; Birgin et al., 2003; Figueiredo et al., 2007;
Wright et al., 2009). It can be motivated by the easily established fact that ‖s‖22/sT y ≥ 1/L if f
satisfies (39), so it is a readily computed upper bound for 1/L.

6.2.2 VARIATIONS

The basic gradient projection method can be varied in several ways, some of which will be compared
in the numerical experiments below. To avoid computing a projection for each trial step size tk in
the step size search, we can replace the gradient update with

x(k) = x(k−1)− tkGt̄k(x
(k−1)) (42)
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where t̄k is held fixed at the value (40) and tk is determined by a backtracking search: we take tk := t̄k
and then backtrack (tk := βtk) until x(k−1)− tkGt̄k(x(k−1)) ∈ dom f and

f (x(k−1)− tkGt̄k(x
(k−1)))≤ f (x(k−1))− tk∇ f (x(k−1))TGt̄k(x

(k−1))+
tk
2
‖Gt̄k(x

(k−1))‖22. (43)

In this method the trial points during the step size selection follow a straight line, and each step only
requires a function evaluation.

Many alternatives to the step size rules (38) and (42) are available in the literature, for example,
the Armijo rule (Bertsekas, 1999, §2.3), and conditions that allow non-monotone convergence (Bir-
gin et al., 2000; Lu and Zhang, 2009). In our experiments these variations gave similar results as
the step size rules outlined above.

Another attractive class of gradient projection algorithms are the optimal first-order methods
originated by Nesterov (Nesterov, 2004; Tseng, 2008; Beck and Teboulle, 2009). For functions
whose gradient is Lipschitz continuous on C , these algorithms have a better complexity than the
classical gradient projection method (at most O(

√

1/ε) iterations are needed to reach an accuracy
ε, as opposed to O(1/ε) for the gradient projection method). These theoretical complexity results
are valid if a constant step size tk = 1/L is used where L is the Lipschitz constant for the gradient, or
if the step sizes form an nonincreasing sequence (tk+1≤ tk) determined by a backtracking line search
(Beck and Teboulle, 2009; Tseng, 2008). The assumption that the gradient is Lipschitz continuous
on C does not hold for the problem considered here, and it is not clear if the convergence analysis
can be extended to the case when the gradient is Lipschitz continuous only on the initial sublevel set.
Nevertheless, an implementation with a backtracking line search worked well in our experiments
(see next section).

6.2.3 IMPLEMENTATION DETAILS

The most important steps in the gradient projection algorithms applied to (33) are the evaluations of
the gradient of the objective function and the projections on the set defined by the constraints. We
now explain these two steps and the stopping criterion in more detail.

The gradient (35) of φ at a point V can be evaluated from a Cholesky factorization V = LTL
with L lower triangular. If we partition L as

L=

[

L00 0
L1:p,0 L1:p,1:p

]

then

∇φ(V ) =
[

I
−L−11:p,1:pL1:p,0

]

L−100 L
−T
00

[

I
−L−11:p,1:pL1:p,0

]T

.

The projection P (U) of a matrix U ∈Mp,n on the set defined by the constraints in (34) can be
efficiently computed as follows. Clearly, the diagonal entries of P (U)k are zero for k = 0, . . . , p. To
find the off-diagonal entries we can solve an independent problem

minimize 2((Z0)i j− (U0)i j)2+
p
∑
k=1

(

((Zk)i j− (Uk)i j)2+((Zk) ji− (Uk) ji)2
)

subject to
p
∑
k=0

(|(Zk)i j|+ |(Zk) ji|)≤ γ
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Figure 12: Convergence of gradient projection algorithms. Left: Relative error ( f (Z(k))− f ")/| f "|
versus the number of iterations. Right: Duality gap versus the number of iterations.

for each i, j with j > i. This is the problem of projecting a vector on the !1-norm ball. The solution
is easily derived from duality and can be calculated by applying to the entries (Uk)i j the shrinkage
operation familiar in sparse optimization (see, for example, Tibshirani, 1996).

The following stopping criterion will be used in the experiments. At each iteration, we compute
X in (36) from the current iterate Z. This matrix X is primal feasible, as can be seen from the
identity (37) and the fact that C+T(Z) ' 0. By taking the Schur complement of (C+T(Z))1:p,1:p
we also find a dual feasibleW in (27). The duality gap between this primal feasible X and the dual
feasible Z,W is

η = − logdetX00+ tr(CX)+ γh(D(X))− logdetW −n
= tr(CX)−n+ γh(D(X))
= tr((C+T(Z))X)−n− tr(X T(Z))+ γh(D(X))
= − tr(X T(Z))+ γh(D(X)).

We terminate when the duality gap is below a given tolerance.

6.3 Numerical Example

We generate AR models as in the experiment described in Section 4.2. In the first experiment, the
model dimensions are n = 300, p = 2, N = 2n(p+ 1). The true inverse spectrum has 10428 non-
zero entries in the upper triangular part (a density of about 12%). The penalty parameter γ is set at
γ= 0.1. The variable Z in the reformulated dual problem (34) is a matrix inM300,2, so the problem
has n(n+ 1)/2+ pn2 = 225150 optimization variables. We start the gradient projection algorithm
at a strictly feasible Z(0) = 0, and terminate when the duality gap is below 10−2 (the optimal value
is on the order of hundreds).

Figure 12 shows the relative error ( f (Z(k))− f ")/| f "| where f (Z) = φ(C+T(P(Z))) and f "
is the optimal value. It also shows the duality gap η(k) versus the iteration number for a typical
instance. ‘GP with arc search’ refers to the gradient projection method (38) with step size rule (41).
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Figure 13: Average CPU times (averaged over 10 runs) of the gradient projection algorithm versus
the problem size. The algorithm stops when the duality gap is less than 10−1. The red
squares correspond to ‘GP with line search’ and the blue squares correspond to ‘GP with
arc search’.

‘GP with line search’ refers to the gradient projection method (42) with step size rule (43). The
step size searches required at most 15 backtracking steps to find an acceptable step size. As can be
seen, a solution with a moderate accuracy (relative error in the range 10−4–10−3) is obtained after a
number of iterations that is only a fraction of the problem size. The convergence of the ‘arc search’
method is slightly faster, but it should be kept in mind that this method is more expensive than the
‘line search’.

The ‘Exact FISTA’ method is the gradient projection algorithm with backtracking line search
from Beck and Teboulle (2009) using monotonically decreasing step sizes (tk ≤ tk−1, as required
by the theory in Beck and Teboulle 2009). As can be seen the convergence was not faster than the
classical gradient projection method. A heuristic modification in which the step sizes are not forced
to be nonincreasing, but at each iteration the line searche is initialized at the Barzilai and Borwein
steplength (40), was often about five times faster. This algorithm is referred to as ‘Modified FISTA’
in the figure.

Figure 13 shows the CPU time versus problem size on a 3GHz Intel Pentium(R) 4 processor
with 2.94 GB of RAM, for the ‘GP with arc search’ and ‘GP with line search’ algorithms. The test
problems are generated as in the previous experiment, with p = 2 and varying n. The algorithms
stop when it achieves a duality gap less than ε= 0.1. This yields a solution with a moderate accuracy
(relative gap in the range 10−4–10−3). The plot shows that the times needed to solving the regu-
larized ML estimation using both algorithms are fairly comparable with a slight advantage for ‘GP
with arc search’ when n is large. Although the backtracking steps in the arc search method are more
expensive, the gradient projection method with this step size selection required fewer iterations in
most cases.
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7. Conclusion

We have presented a convex optimization method for topology selection in graphical models of
autoregressive Gaussian processes. The method is based on augmenting the maximum likelihood
estimation problem with an !1-type penalty function, chosen to promote sparsity in the inverse spec-
trum. By tracing the trade-off curve between the log-likelihood and the penalty function, we obtain
a small set of sparse graph topologies, that can then be ranked according to information-theoretic
criteria such as the AIC or BIC. This procedure avoids the combinatorial complexity of enumerating
all possible topologies, and produces accurate results for smaller sample sizes than methods based
on empirical or least-squares estimates. To solve the large, nonsmooth convex optimization prob-
lems that result from this formulation, we have investigated a gradient projection method applied to
a reformulated dual problem. Experiments with randomly generated examples, and an analysis of
an fMRI time series and a time series of international stock market indices were included to confirm
the effectiveness of this approach.
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Abstract
We present a polynomial update time algorithm for the inductive inference of a large class of
context-free languages using the paradigm of positive data and a membership oracle. We achieve
this result by moving to a novel representation, called Contextual Binary Feature Grammars
(CBFGs), which are capable of representing richly structured context-free languages as well as
some context sensitive languages. These representations explicitly model the lattice structure of
the distribution of a set of substrings and can be inferred using a generalisation of distributional
learning. This formalism is an attempt to bridge the gap between simple learnable classes and
the sorts of highly expressive representations necessary for linguistic representation: it allows the
learnability of a large class of context-free languages, that includes all regular languages and those
context-free languages that satisfy two simple constraints. The formalism and the algorithm seem
well suited to natural language and in particular to the modeling of first language acquisition. Pre-
liminary experimental results confirm the effectiveness of this approach.
Keywords: grammatical inference, context-free language, positive data only, membership queries

1. Introduction

In natural language processing, many applications require the learning of powerful grammatical
models. One of the central concerns of generative linguistics is the definition of an adequate for-
malism that needs to satisfy two different objectives. On the one hand, such a formalism must be
expressive enough to describe natural languages. On the other hand, it has to be sufficiently con-
strained to be learnable from the sort of linguistic data available to the child learner (Chomsky,
1986). In this context, there are two possible research strategies. One is to take a descriptively
adequate formalism such as Tree Adjoining Grammars (Joshi and Schabes, 1997) or some other
mildly context sensitive grammatical formalism and try to construct learning algorithms for that
class. However, such a strategy is unlikely to be successful because classes that are so powerful
are difficult to handle from a machine learning point of view. The other approach, which we adopt
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in this paper, consists in switching to a formalism that is in some sense intrinsically learnable, and
seeing whether we can represent linguistically interesting formal languages in that representation.

Grammatical inference is the machine learning domain which aims at studying learnability of
formal languages. While many learnability results have been obtained for regular languages (An-
gluin, 1987; Carrasco and Oncina, 1994), this class is not sufficient to correctly represent natural
languages. The next class of languages to consider is the class of context-free languages (CFL).
Unfortunately, there exists no learnability results for the whole class. This may be explained by
the fact that this class relies on syntactic properties instead of intrinsic properties of the language
like the notion of residuals for regular languages (Denis et al., 2004). Thus, most of the approaches
proposed in the literature are either based on heuristics (Nakamura and Matsumoto, 2005; Langley
and Stromsten, 2000) or are theoretically well founded but concern very restricted subclasses of
context-free languages (Eyraud et al., 2007; Yokomori, 2003; Higuera and Oncina, 2002). Some of
these approaches are built from the idea of distributional learning,1 normally attributed to Harris
(1954). The basic principle—as we reinterpret it in our work—is to look at the set of contexts that
a substring can occur in. The distribution of a substring is the linguistic way of referring to this
set of contexts. This idea has formed the basis of many heuristic algorithms for learning context-
free grammars (see Adriaans, 2002 for instance). However, a recent approach by Clark and Eyraud
(2007), has presented an accurate formalisation of distributional learning. From this formulation,
a provably correct algorithm for context-free grammatical inference was given in the identification
in the limit framework, albeit for a very limited subclass of languages, the substitutable languages.
From a more general point of view, the central insight is that it is not necessary to find the non-
terminals of the context-free grammar (CFG): it is enough to be able to represent the congruence
classes of a sufficiently large set of substrings of the language and to be able to compute how they
combine. This result was extended to a PAC-learning result under a number of different assumptions
(Clark, 2006) for a larger class of languages, and also to a family of classes of learnable languages
(Yoshinaka, 2008).

Despite their theoretical bases, these results are still too limited to form the basis for models for
natural language. There are two significant limitations to this work: first it uses a very crude measure
for determining the syntactic congruence, and secondly the number of congruence classes required
will in real cases be prohibitively large. If each non-terminal corresponds to a single congruence
class (the NTS languages Boasson and Senizergues, 1985), then the problem may be tractable.
However in general the contexts of different non-terminals overlap enormously: for instance the
contexts of adjective phrases and noun phrases in English both contain contexts of the form (“it
is”, “.”). Problems of lexical ambiguity also cause trouble. Thus for a CFG it may be the case that
the number of congruence classes corresponding to each non-terminal may be exponentially large
(in the size of the grammar). But the situation in natural language is even worse: the CFG itself
may have an exponentially large number of non-terminals to start off with! Conventional CFGs are
simply not sufficiently expressive to be cognitively plausible representations of natural language:
to write a CFG requires a multiplication of the numbers of non-terminals to handle phenomena
like subject verb agreement, gender features, displaced constituents, etc. This requires the use of a
formalism like GPSG (Generalised Phrase Structure Grammar) (Gazdar et al., 1985) to write a meta-
grammar—a compact way of specifying a very large CFG with richly structured non-terminals.

1. Note here that the word distributional does not refer to stochastic distributions, but to the occurrence of strings into
contexts. The distribution of a string corresponds to all the possible contexts in which the string can appear.
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Thus we cannot hope to learn natural languages by learning one congruence class at a time: it is
vital to use a more structured representation.

This is the objective of the approach introduced in this article: for the first time, we can bridge
the gap between theoretically well founded grammatical inference methods and the sorts of struc-
tured representations required for modeling natural languages.

In this paper, we present a family of representations for highly structured context-free languages
and show how they can be learned. This is a paper in learning, but superficially it may appear to be a
paper about grammatical representations: much of the work is done by switching to a more tractable
formalism, a move which is familiar to many in machine learning. From a machine learning point
of view, it is a commonplace that switching to a better representation—for example, through a
non-linear map into some feature space—may make a hard problem very easy.

The contributions of this paper are as follows: we present in Section 3 a rich grammatical for-
malism, which we call Contextual Binary Feature Grammars (CBFG). This grammar formalism is
defined using a set of contexts which play the role of features with a strict semantics attached to
these features. Though not completely original, since it is closely related to a number of other for-
malisms such as Range Concatenation Grammars (Boullier, 2000), it is of independent interest. We
consider then the case when the contextual features assigned to a string correspond to the contexts
that the string can occur in, in the language defined by the grammar. When this property holds, we
call it an exact CBFG. The crucial point here is that for languages that can be defined by an exact
CBFG, the underlying structure of the representation relies on intrinsic properties of the language
easily observable on samples by looking at context sets.

The learning algorithm is defined in Section 4. We provide some conditions, both on the context
sets and the learning set, to ensure the learnability of languages that can be represented by CBFG.
We prove that this algorithm can identify in the limit this restricted class of CBFGs from positive
data and a membership oracle.

Some experiments are provided in Section 5: these experiments are intended to demonstrate
that even quite naive algorithms based on this are efficient and effective at learning context-free
languages.

Section 6 contains a theoretical study on the expressiveness of CBFG representations. We inves-
tigate the links with the classical Chomsky hierarchy, some well known grammatical representations
used in natural language processing. An important result about the expressive power of the class of
CBFG is obtained: it contains all the context-free languages and some non context-free languages.
This makes this representation a good candidate for representing natural languages. However ex-
act CBFG do not include all context-free languages but do include some non context-free ones,
thus they are orthogonal with the classic Chomsky hierarchy and can represent a large class of
languages. This expressiveness is strengthened by the fact that exact CBFG contains most of the
existing learnable classes of languages.

2. Basic Definitions and Notations

We begin by some standard notations and definitions used all along the paper.
We consider a finite alphabet Σ as a finite non-empty set of symbols also called letters. A string

(also called word) u over Σ is a finite sequence of letters u = u1 · · ·un. Let |u| denote the length of
u. The set of all strings over Σ is denoted by Σ∗, corresponding to the free monoid generated by Σ.
λ denotes the empty string and Σ+ = Σ∗\{λ}. A language L is any subset L⊆ Σ∗.
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We will write the concatenation of u and v as uv, and similarly for sets of strings. u ∈ Σ∗ is a
substring of v ∈ Σ∗ if there are strings l,r ∈ Σ∗ such that v = lur. Define Sub(u) to be the set of
non-empty substrings of u. For a set of strings S define Sub(S) =

⋃
u∈S Sub(u).

A context is an element of Σ∗ ×Σ∗. For a string u and a context f = (l,r) we write f &u= lur;
the insertion or wrapping operation. We extend this to sets of strings and contexts in the natural
way. We define by Con(w) = {(l,r)|∃u ∈ Σ+ : lur = w}, that is, the set of all contexts of a word w.
Similarly, for a set of strings, we define: Con(S) =

⋃
w∈SCon(w).

We give now a formal definition of the set of contexts since it represents a notion often used in
the paper.

Definition 1 The set of contexts, or context distribution, of a string u in a language L is, CL(u) =
{(l,r) ∈ Σ∗ ×Σ∗|lur ∈ L}. We will often drop the subscript where there is no ambiguity.

Definition 2 Two strings u and v are syntactically congruent with respect to a language L, denoted
u≡L v, if and only if CL(u) =CL(v).

The equivalence classes under this relation are the congruence classes of the language.
After these basic definitions and notations, we recall here the definition of a context-free gram-

mar which is a class which is close to the language class studied in this paper.

Definition 3 A context-free grammar (CFG) is a quadruple G = (Σ,V,P,S). Σ is a finite alphabet
of terminal symbols, V is a set of non terminals s.t. Σ∩V = /0, P ⊆ V × (V ∪Σ)+ is a finite set of
productions, S ∈V is the start symbol.

We denote a production of P: N→ α with N ∈V and α ∈ (V ∪Σ)+. We will write uNv⇒G uαv
if there is a production N→ α in G. ∗

⇒G denotes the reflexive transitive closure of ⇒G.
The language defined by a CFG G is L(G) = {w ∈ Σ∗|S ∗

⇒G w}. In the following, we will
consider the CFG are represented in the Chomsky normal form (CNF), that is, with right hand side
of production rules composed of exactly two non terminals or with exactly one terminal symbol.

In general we will assume that λ is not a member of any language.

3. Contextual Binary Feature Grammars (CBFG)

Distributional learning, in our view, involves explicitly modeling the distribution of the substrings
of the language—we would like to modelCL(w). Clearly a crucial element of this distribution is the
empty context (λ,λ): (λ,λ) ∈CL(w) if and only if w ∈ L. Our goal is to construct a representation
that allows us to recursively compute a representation of the distribution of a string w, CL(w), from
the (representations of) the distributions of its substrings.

The representation by contextual binary feature grammars relies on the inclusion relation be-
tween sets of contexts of language L. In order to introduce this formalism, we propose, for a start, to
present some preliminary results on context inclusion. These results will lead us to define a relevant
representation for modeling these inclusion dependencies by the notion of contextual binary feature
grammars.

3.1 Preliminary Results about Context Inclusion

The objective of this section is to give some information about contexts that will help to give an
intuition about the representation. The basic insight behind CBFGs is that there is a relation between
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the contexts of a string w and the contexts of its substrings. This is given by the following trivial
lemma:
Lemma 4 For any language L and for any strings u,u′,v,v′ if C(u) =C(u′) and C(v) =C(v′), then
C(uv) =C(u′v′).
Proof We write out the proof completely as the ideas will be used later on. Suppose we have
u,v,u′,v′ that satisfy the conditions. If (l,r) ∈C(uv), then (l,vr) ∈C(u) and thus (l,vr) ∈C(u′). As
a consequence, (lu′,r) ∈C(v) and then (lu′,r) ∈C(v′) which implies that (l,r) ∈C(u′v′). Symmet-
rically, by using the same arguments, we can show that (l,r) ∈C(u′v′) implies (l,r) inC(uv). Thus
C(uv) =C(u′v′).

This establishes that the syntactic monoid Σ∗/ ≡L is well-defined; from a learnability point of
view this means that if we want to compute the contexts of a string w we can look for a split into
two strings uv where u is congruent to u′ and v is congruent to v′; if we can do this and we know
how u′ and v′ combine, then we know that the contexts of uv will be exactly the contexts of u′v′.
There is also a slightly stronger result:

Lemma 5 For any language L and for any strings u,u′,v,v′ if C(u)⊆C(u′) and C(v)⊆C(v′), then
C(uv)⊆C(u′v′).

Proof See proof of Lemma 4.

C(u) ⊆ C(u′) means that we can replace any occurrence in a sentence of u with a u′, without
affecting the grammaticality, but not necessarily vice versa. Note that none of these strings need to
correspond to non-terminals: this is valid for any fragment of a sentence.

We will give a simplified example from English syntax: the pronoun “it” can occur everywhere
that the pronoun “him” can, but not vice versa.2 Thus given a sentence “I gave him away”, we can
substitute “him” for ”it”, to get the grammatical sentence “I gave it away”, but we cannot reverse
the process. For example, given the sentence “it is raining”, we cannot substitute “him” for “it”, as
we will get the ungrammatical sentence “him is raining”. Thus we observeC(him)!C(it).

Looking at Lemma 5 we can also say that, if we have some finite set of strings K, where we
know the contexts, then:

Corollary 6 For any language L and for any set of strings K, we have:

C(w)⊇
⋃

u′,v′:
u′v′=w

⋃

u∈K:
C(u)⊆C(u′)

⋃

v∈K:
C(v)⊆C(v′)

C(uv).

This is the basis of our representation: a word w is characterised by its set of contexts. We
can compute the representation of w, from the representation of its parts u′,v′, by looking at all of
the other matching strings u and v where we understand how they combine (with subset inclusion).
Rather than representing just the congruence classes, we will represent the lattice structure of the
set of contexts using subset inclusion; sometimes called Dobrušin-domination (Marcus, 1967).

The key relationships are given by context set inclusion. Contextual binary feature grammars
allow a proper definition of the combination of context inclusion.

2. This example does not account for a number of syntactic and semantic phenomena, particularly the distribution of
reflexive anaphors.
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3.2 Contextual Binary Feature Grammars

The formalism of contextual binary feature grammars has some resemblance with Generalized
Phrase Structure Grammar (GPSG) (Gazdar et al., 1985), and most importantly the class of Range
Concatenation Grammars (RCG) (Boullier, 2000); these relationships will be detailed in Section 6.
As we will see later, note that our formalism defines a class orthogonal to the class of context-free
grammars, indeed the use of subsets inclusion allows to model non context-free languages.

Definition 7 A Contextual Binary Feature Grammar (CBFG) G is a tuple 〈F,P,PL,Σ〉:

• F is a finite set of contexts, (i.e., F ⊂ Σ∗ ×Σ∗) called features, where we write E = 2F for the
power set of F defining the categories of the grammar, and where (λ,λ) ∈ F.

• P⊆ E×E×E is a finite set of productions that we write x→ yz where x,y,z ∈ E,

• PL ⊆ E×Σ is a set of lexical rules, written x→ a,

• Σ denotes the alphabet.

Given a CBFG G we can recursively define a function fG from Σ∗ → E as follows:

fG(λ) = /0,

fG(w) =
⋃

(c→w)∈PL

c iff |w|= 1,

fG(w) =
⋃

u,v:uv=w

⋃

x→yz∈P:
y⊆ fG(u)∧
z⊆ fG(v)

x iff |w|> 1.

Given a CBFG G and a string w it is possible to compute fG(w) in time O(|F||P||w|3) using
standard dynamic programming techniques. A straightforward modification of the Cocke-Kasami-
Younger algorithm for parsing Context-Free Grammars will suffice.

Thus a CBFG, G, defines for every string u a set of contexts fG(u): this will be a representation
of the context distribution. fG(u) will be a subset of F : we will want fG(u) to approximateCL(u)∩
F . The natural way to define the membership of a string w in L(G) is to have the context (λ,λ) ∈
fG(w).

Definition 8 The language defined by a CBFG G is the set of all strings that are assigned the empty
context: L(G) = {u|(λ,λ) ∈ fG(u)}.

We give here more explanation about the function fG. A rule x→ yz is applied to analyse a string
w if there is a split or cut of the string w into two strings u and v such that uv= w s.t. y⊆ fG(u) and
z⊆ fG(v)—recall that y and z are sets of features.

One way of viewing a production x→ yz is as an implication: if two strings u and v are such
that they have the features y and z, then their concatenation will have the features x. As features
correspond to contexts, intuitively, the relation given by the production rule is linked with Lemma 5:
x is included in the set of features of w = uv. From this relationship, for any (l,r) ∈ x we have
lwr ∈ L(G).

2712



USING CONTEXTUAL REPRESENTATIONS

The complete computation of fG is then justified by Corollary 6: fG(w) defines all the possible
contextual features associated by G to w with all the possible cuts uv = w (i.e., all the possible
derivations).

Note the relation between the third clause above and Corollary 6. In general we will apply more
than one production at each step of the analysis.

We will discuss the relation between this class and the class of CFGs in some detail in Section 6.
For the moment, we will just make the following points. First, the representation is quite close to
that of a CFG where the non-terminals correspond to sets of contexts (subsets of F). There are,
however, crucial differences: the very fact that they are represented by sets means that the non-
terminals are no longer atomic symbols but rather structures; the formalism can combine different
rules together at each step. Secondly, the function fG can combine different parsing paths. It is not
the case that every feature assigned to w must come from the same split of w into u and v. Rather
some features could come from one split, and some from another: these two sets of features can be
combined in a single derivation even though they come from different splits (which correspond to
different derivation trees in CFG). It is this property that takes the class of languages out of the class
of context-free languages. In the special case where all of the productions involve only singleton
sets then this will reduce to a CFG—the non-terminals will correspond to the individual features,
and fG(w) will correspond to the set of non-terminals that can derive the string w.

Clearly by the definition of L(G) we are forcing a correspondence between the occurrence of
the context (λ,λ) inCL(w) and the occurrence of the feature (λ,λ) in fG(w). But ideally we can also
require that fG defines exactly the possible features that can be associated to a given string according
to the underlying language. Indeed, we are interested in cases where there is a correspondence
between the language theoretic interpretation of a context, and the occurrence of that context as a
feature in the grammar: in this case the features will be observable which will lead to learnability.

This is formalised via the following definitions.

Definition 9 Given a finite set of contexts F = {(l1,r1), . . . ,(ln,rn)} and a language L we can
define the context feature function FL : Σ∗ → 2F which is just the function u 3→ {(l,r) ∈ F |lur ∈
L}=CL(u)∩F.

Using this definition, we now need a correspondence between the language theoretic context
feature function FL and the representation in our CBFG, fG.

Definition 10 A CBFG G is exact if for all u ∈ Σ∗, fG(u) = FL(G)(u).

Example. Let L= {anbn|n> 0}. Let 〈F,(λ,λ),P,PL,Σ〉 a CBFG s.t.

F = {(λ,λ),(a,λ),(aab,λ),(λ,b),(λ,abb)}.

The lexical productions in PL are:

{(λ,b),(λ,abb)}→ a,and

{(a,λ),(aab,λ)}→ b.

Note that these lexical productions are of the form x→ a, where x is a subset of F , that is to say, a
set of features. The rule {(λ,b),(λ,abb)}→ a therefore says that the letter a will be assigned both
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of the features/contexts (λ,b) and (λ,abb). Since this is the only lexical rule for a, we will have that
fG(a) = {(λ,b),(λ,abb)}. The productions in P, denoted by x→ yz, where x,y,z are again sets of
contexts, are defined as:

{(λ,λ)}→ {(λ,b)}{(aab,λ)},

{(λ,λ)}→ {(λ,abb)}{(a,λ)},

{(λ,b)}→ {(λ,abb)}{(λ,λ)},and

{(a,λ)}→ {(λ,λ)}{(aab,λ)}.

In each of these rules, in this trivial case, the sets of contexts are singleton sets. In general, these
productions may involve sets that have more than one element. This defines an exact CBFG for
L. Indeed, the grammar assigns only (λ,λ) to the elements of the language; for all elements w of
{anbn+1 : n> 1} we have fG(w) = {(a,λ)}= FL(w) and for all all elements w of {an+1bn : n> 1},
fG(w) = {(λ,b)}= FL(w); The lexical rules assign correct contexts to each letter.

Exact CBFGs are a more limited formalism than CBFGs themselves; without any limits on
the interpretation of the features, we can define a class of formalisms that is equal to the class of
Conjunctive Grammars (see Section 6.2.3). However, exactness is an important property because
it allows to associate the intrinsic structure of a language to the structure of the representation.
Contexts are easily observable from a sample and moreover it is only when the features correspond
to the contexts that distributional learning algorithms can infer the structure of the language.

3.3 A Parsing Example

To clarify the relationship with CFG parsing, we will give a simple worked example. Consider the
CBFG G= 〈{(λ,λ),(aab,λ),(λ,b),(λ,abb),(a,λ)}, P,PL,{a,b}〉 with

PL = { {(λ,b),(λ,abb)}→ a,
{(a,λ),(aab,λ)}→ b }.

and P= { {(λ,λ)}→ {(λ,b)}{(aab,λ)},
{(λ,λ)}→ {(λ,abb)}{(a,λ)},
{(λ,b)}→ {(λ,abb)}{(λ,λ)},
{(a,λ)}→ {(λ,λ)}{(aab,λ)} }.

If we want to parse a string w the usual way is to have a bottom-up approach. This means that
we recursively compute the fG function on the substrings of w in order to check whether (λ,λ)
belongs to fG(w).

For example, suppose w= aabb. Figure 1 graphically gives the main steps of the computation of
fG(aabb). Basically there are two ways to split aabb that allow the derivation of the empty context:
aab|b and a|abb. The first one corresponds to the top part of the figure while the second one is
drawn at the bottom. We can see for instance that the empty context belongs to fG(ab) thanks to the
rule {(λ,λ)}→ {(λ,abb)}{(a,λ)}: {(λ,abb)}⊆ fG(a) and {(a,λ)}⊆ fG(b). But for symmetrical
reasons the result can also be obtained using the rule {(λ,λ)}→ {(λ,b)}{(aab,λ)}.

As we trivially have fG(aa) = fG(bb) = /0, since no right-hand side contains the concatenation
of the same two features, an induction proof can be written to show that (λ,λ) ∈ fG(w) ⇔ w ∈
{anbn : n> 0}.

This is a simple example that illustrates the parsing of a string given a CBFG. This example does
not fully express the power of CBFG since no element of the right hand side of a rule is composed
of more than one context. A more complex example, corresponding to a context-sensitive language,
will be presented in Section 6.1.3.
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Figure 1: The two derivations to obtain (λ,λ) in fG(aabb) in the grammar G.

We stop here the presentation of the CBFG formalism and we present our learning algorithm in
the next section. However, if the reader wishes to become more familiar with CBFGs a study on
their expressiveness is provided in Section 6.

4. Learning Algorithm

We have carefully defined the representation so that the inference algorithm will be almost trivial.
Given a set of strings, and a set of contexts, we can simply write down a CBFG that will approximate
a particular language.

4.1 Building CBFGs from Sets of Strings and Contexts

Definition 11 Let L be a language, F be a finite set of contexts such that (λ,λ) ∈ F, K a finite set of
strings, PL = {FL(u)→ u|u ∈ K∧ |u|= 1} and P= {FL(uv)→ FL(u)FL(v)|u,v, uv ∈ K}. We define
G0(K,L,F) as the CBFG 〈F,P, PL,Σ〉.

Often K will be closed under substrings: that is, Sub(K) = K. This grammar is a CBFG, since
K and F are finite, and so P and PL are too by construction. In general it will not be exact.
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We will call K here the basis for the language. The set of productions is defined merely by
observation: we take the set of all productions that we observe as the concatenation of elements of
the small set K.

Let us explain the construction in more detail. PL is the set of lexical productions—analogous to
rules of the form N→ a in a CFG in Chomsky normal form. These rules just assign to the terminal
symbols their observed distribution—this will obviously be correct in that fG(a) = FL(a). P is the
interesting set of productions: these allow us to predict the features of a string uv from the features
of its part u and v. To construct P we take all triples of strings u,v,uv that are in our finite set K. We
observe that u has the contexts FL(u) and v has the set of contexts FL(v): our rule then states that
we can combine any string that has all of the contexts in FL(u) together with any string that has the
contexts in FL(v) and the result will have all of the contexts in FL(uv).

We will now look at a simple example. Let L = {anbn | n > 0}, F , the set of features is
{(λ,λ),(a,λ),(λ,b)} and K, the basis, is {a,b,ab,aa,aab}. For each of the elements of K we
can compute the set of features that it has:

• FL(a) is just {(λ,b)}—this is the only one of the three contexts in F such that f &a ∈ L,

• FL(b) = {(a,λ)},

• FL(aa) = /0,

• FL(ab) = {(λ,λ)},

• FL(aab) = {(λ,b)}.

G0 will therefore have the following lexical productions PL = {(λ,b)}→ a, {(a,λ)}→ b. We
can now consider the productions in P. Looking at K we will see that there are only four possible
triples of strings of the form uv,u,v: these are (aa,a,a), (ab,a,b), (aab,aa,b) and (aab,a,ab). Each
of these will give rise to an element of P:

• The rule given by ab= a◦b: {(λ,λ)}→ {(λ,b)}{(a,λ)},

• aa= a◦a gives /0 → {(λ,b)}{(λ,b)},

• aab= aa◦b gives {(λ,b)}→ /0{(a,λ)},

• aab= a◦ab gives {(λ,b)}→ {(λ,b)}{(λ,λ)}.

Given K,F and an oracle for L we can thus simply write down a CBFG. However, in this
case, the language L(G0) is not the same as L; moreover, the resulting grammar is not exact.
Applying the rules for the recursive computation of fG, we can see that fG0(aab) = {(λ,b)} and
fG0(abb) = fG0(aabb) = {(λ,b),(λ,λ)} but FL(G0)(abb) = {(a,λ),(λ,b),(λ,λ)} and thus G0 is not
exact. The problem here is caused by the fact that the production {(λ,b)}→ /0{(a,λ)} allows any
string to occur in the place specified by the /0: indeed since /0⊆ fG0(aab) and {(a,λ)}⊆ fG0(b) the
rule holds for aabb and thus {(λ,b)}⊆ fG0(aabb). This is actually caused by the fact that there are
no contexts in F that correspond to the string aa in K.

Fixing L for the moment, clearly the language defined depends on two factors: the set of strings
K and the set of features F . Given K and F , and access to a membership oracle, we can write down
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a CBFG with almost no computation, but we still have the problem of finding suitable K and F—it
might be that searching for exactly the right combination of K and F is intractably hard. It turns out
that it is also very easy to find suitable sets.

In the next section we will establish two important lemmas that show that the search for K and
F is fundamentally tractable: first, that as K increases the language defined by G0(K,L,F) will
increase, and secondly that as F increases the language will decrease.

Let us consider one example that illustrates these properties. Consider the language L = {anb |
n≥ 0}∪{bam | m≥ 0}∪{a}.

First, let K = {a,b,ab} and F = {(λ,λ)}; then, by the definition of G0, we have the following
productions:

• {(λ,λ)}→ a,

• {(λ,λ)}→ b,

• {(λ,λ)}→ {(λ,λ)}{(λ,λ)}.

It is easy to see that L(G0) = Σ+.
Now, suppose that F = {(λ,λ),(λ,b)} with K unchanged; then, by construction G0 will have

the following productions:

• {(λ,λ),(λ,b)}→ a,

• {(λ,λ)}→ b,

• {(λ,λ)}→ {(λ,λ),(λ,b)}{(λ,λ)}.

The language defined by G0 contains anb and also an since {(λ,λ)}⊂ {(λ,λ),(λ,b)} allowing the
third production to accept strings ending with an a. Thus, the language has been reduced such that
L(G0) = {anb | n≥ 0}∪{am | m≥ 0}.

We continue by leaving F = {(λ,λ),(λ,b)} and we enlarge K such that K = {a,b,ab,ba}. The
productions in G0 are:

• {(λ,λ),(λ,b)}→ a,

• {(λ,λ)}→ b,

• {(λ,λ)}→ {(λ,λ),(λ,b)}{(λ,λ)}; the rule given by ab= a◦b,

• {(λ,λ)}→ {(λ,λ)}{(λ,λ),(λ,b)}; the rule given by ba= b◦a.

The addition of the last rule allows the grammar to recognize ban and it can be easily shown
that by a combination of the last two productions anbam belongs to the language defined by the
grammar. Then, L(G0) has been increased such that L(G0) = {anbak | n,k ≥ 0}∪{am | m≥ 0}.

In this example, the addition of (λ,b),(a,λ) and (λ,a) to F and the addition of aab and baa to
K will then define the correct language. In fact this illustrates one principle of our approach: in the
infinite data limit, the construction G0 will define the correct language. In the following lemma we
abuse notation and use G0 for when we have infinite K, and F : in this lemma we let K be the set of
all non-empty strings and we let F be the set of all possible contexts (Σ∗ ×Σ∗). Recall that in this
case for every string wCL(w) = FL(w).
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Lemma 12 For any language L, let G = G0(Σ+,L,Σ∗ ×Σ∗). Then for all w ∈ Σ+ fG(w) =CL(w)
and therefore L(G) = L.

Proof By induction on the length of w. If |w| = 1, and w = a then there is a lexical production
CL(a) → a and by the definition of fG(a) = CL(a). Suppose this is true for all w with |w| ≤ k.
Let w be some string of length k+ 1. Consider any split of w into u,v such that w = uv. fG(w)
is the union over all these splits of a function. We will show that every such split will give the
same result of CL(w). By inductive hypothesis fG(u) = CL(u), fG(v) = CL(v). Since u,v,w are in
K = Σ+ we will also have an element of P of the form CL(w) → CL(u)CL(v), so we know that
fG(w) ⊇ FL(w). We now show that fG will not predict any extra contexts. Consider every pro-
duction in P, FL(u′v′)→ FL(u′)FL(v′), that applies to u,v, that is, with FL(u′)⊆ fG(u) =CL(u) and
FL(v′)⊆ fG(v) =CL(v). Lemma 5 shows that in this case FL(u′v′)⊆ FL(w) and thus we deduce that
fG(w)⊆ FL(w), which establishes the lemma.

Informally if we take K to be every string and F to be every context, then we can accurately
define any language. Of course, we are just interested in those cases where this can be defined
finitely and we have a CBFG, in which case L will be decidable, but this infinite limit is a good
check that the construction is sound.

4.2 Monotonicity Lemmas

We now prove two lemmas that show that the size of the language, and more particularly the features
predicted will increase or decrease monotonically as a function of the basis K, and the feature set F ,
respectively. In fact, they give also a framework for approaching a target language from K and F .

Lemma 13 Suppose we have two CBFGs defined by G=G0(K,L,F) and G′ =G0(K,L,F ′) where
F ⊆ F ′. Then for all u, fG(u)⊇ fG′(u)∩F.

Proof Let G′ have a set of productions P′,P′L, and G have a set of productions P,PL. Clearly if
x→ yz ∈ P′ then x∩F → (y∩F)(z∩F) is in P by the definition of G0, and likewise for PL,P′L. By
induction on |u| we can show that any feature in fG′(u)∩F will be in fG(u). The base case is trivial
since F ′L(a)∩F = FL(a); if it is true for all strings up to length k, then if f ∈ fG′(u)∩F; there must
be a production in F ′ with f on the head. By the inductive hypothesis, the right hand sides of the
corresponding production in P will be triggered, and so f must be in fG(u).

Corollary 14 Suppose we have two CBFGs defined by G = G0(K,L,F) and G′ = G0(K,L,F ′)
where F ⊆ F ′; then L(G)⊇ L(G′).

Proof It is sufficient to remark that if u ∈ L(G′) then (λ,λ) ∈ fG′(u)⊆ fG(u) and thus u ∈ L(G).

Conversely, we can show that as we increase K, the language and the map fG will increase. This
is addressed by the next lemma.

Lemma 15 Suppose we have two CBFGs defined by G=G0(K,L,F) and G′ =G0(K′,L,F) where
K ⊆ K′. Then for all u, fG0(K,L,F)(u)⊆ fG0(K′,L,F)(u).
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Proof Clearly the sets of productions of G0(K,L,F) will be a subset of the set of productions of
G0(K′,L,F), and so anything that can be derived by the first can be derived by the second, again by
induction on the length of the string.

A simple result is that when K contains all of the substrings of a word, then G0(K,L,F) will
generate all of the correct features for this word.

Lemma 16 For any string w, if Sub(w)⊂ K, and let G= G0(K,L,F), then FL(w)⊆ fG(w).

Proof By recursion on the size of w. Let G=G0(K,L,F) = 〈F,P,PL,Σ〉. First, notice that if w is of
length 1 then we have FL(w)→ w in PL and thus the lemma holds. Then suppose that |w|= k ≥ 2.
Let u and v in Σ+ be such that w = uv. As Sub(w) ⊂ K we have u,v in K. Therefore the rule
FL(w)→ FL(u)FL(v) belongs to P. As |u| < |w| and |v| < |w|, by recursion we get FL(u) ⊆ fG(u)
and FL(v)⊆ fG(v). Thus the rule can be applied and then FL(w)⊆ fG(w).

In particular if w ∈ L, and Sub(w)⊆ K, then w ∈ L(G). This means that we can easily increase
the language defined by G just by adding Sub(w) to K. In general we do not need to add every
element of Sub(w)—it is enough to have one binary bracketing.

To establish learnability, we need to prove that for a target language L, if we have a sufficiently
large F then L(G0(K,L,F)) will be contained within L and that if we have a sufficiently large K,
then L(G0(K,L,F)) will contain L.

4.3 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for any K if we have enough features then the language defined
will be included within the target language L. We formalise the idea of having enough features in
the following way:

Definition 17 For a language L and a string u, a set of features F is fiducial on u if for all v ∈ Σ∗,
FL(u)⊆ FL(v) implies CL(u)⊆CL(v).

Note that if F is fiducial on u and F ⊂ F ′ then F ′ is fiducial on u. Therefore we can naturally
extend this to sets of strings.

Definition 18 For a language L and a set of strings K, a set of features F is fiducial on K if for all
u ∈ K, F is fiducial on u.

Clearly, for any string w, CL(w) will be fiducial on w; but this is vacuous—we are interested
in cases where there is a finite set of contexts which is fiducial for w, but where CL(w) is infinite.
If u and v are both in K then having the same features means they are syntactically congruent.
However if two strings, neither of which are in K, have the same features this does not mean they
are necessarily congruent (for instance if FL(v) = FL(v′) = /0). For non finite state languages, the set
of congruence classes will be infinite, and thus we cannot have a finite fiducial set for the set of all
strings in Sub(L), but we can have a feature set that is correct for a finite subset of strings, or more
generally for an infinite set of strings, if they fall into a finite number of congruence classes.
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Let us consider our running example L= {anbn|n> 0}. Take the string ab. CL(ab) is infinite and
contains contexts of the form (λ,λ),(a,b),(aa,bb) and so on. Consider a set with just one of these
contexts, say F = {(a,b)}. This set is clearly fiducial for ab, since the only strings that will have this
context are those that are congruent to ab. Consider now the string aab; clearly {(λ,b)} is fiducial
for aab, even though the string a, which is not congruent to aab also occurs in this context. Indeed,
this does not violate fiduciality sinceCL(a)⊃CL(aab). However, looking at string a, {(λ,b)} is not
fiducial, since aab has this context but does not include all the contexts of a such as, for example,
(λ,abb).

In these trivial examples, a context set of cardinality one is sufficient to be fiducial, but this is
not the case in general. Consider the finite language L = {ab,ac,db,ec,dx,ey}, and the string a. It
has two contexts (λ,b) and (λ,c) neither of which is fiducial for a on its own. However, the set of
both contexts is: {(λ,b),(λ,c)} is fiducial for a.

We now define the finite context property, which is one of the two conditions that languages
must satisfy to be learnable in this model; this condition is a purely language theoretic property.

Definition 19 A language L has the Finite Context Property (FCP) if every string has a finite fidu-
cial feature set.

Clearly if L has the FCP, then any finite set of substrings, K, has a finite fiducial feature set
which will be the union of the finite fiducial feature sets for each element of K. If u 9∈ Sub(L) then
any set of features is fiducial sinceCL(u) = /0.

We note here that all regular languages have the FCP. We refer the reader to the Section 6.1.1
about CBFG and regular languages where the Lemma 35 and the associated construction proves
this claim.

We can now state the most important lemma: this lemma links up the definition of the feature
map in a CBFG, with the fiducial set of features to show that only correct features will be assigned
to substrings by the grammar. It states that the features assigned by the grammar will correspond to
the language theoretic interpretation of them as contexts.

Lemma 20 For any language L, given a set of strings K and a set of features F, let G=G0(K,L,F).
If F is fiducial on K, then for all w ∈ Σ∗ fG(w)⊆ FL(w).

Proof We proceed by induction on length of the string. Base case: strings of length 1. fG(w) will
be the set of observed contexts of w, and since we have observed these contexts, they must be in the
language. Inductive step: let w a string of length k.

Take a feature f on fG(w); by definition this must come from some production x→ yz and a split
u,v of w. The production must be from some elements of K, u′,v′ and u′v′ such that y= FL(u′),z=
FL(v′) and x= FL(u′v′). If the production applies this means that FL(u′) = y⊆ fG(u)⊆ FL(u) (by in-
ductive hypothesis), and similarly FL(v′)⊆ FL(v). By fiduciality of F this means that C(u′)⊆C(u)
and C(v′) ⊆ C(v). So by Lemma 5 C(u′v′) ⊆ C(uv). Since f ∈ C(u′v′) then f ∈ C(uv) = C(w).
Therefore, since f ∈ F and C(w)∩F = FL(w), f ∈ FL(w), and therefore fG(w)⊆ FL(w).

Corollary 21 If F is fiducial on K then L(G0(K,F,L))⊆ L.

Therefore for any finite set K from an FCP language, we can find a set of features so that the
language defined by those features on K is not too big.
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4.4 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently large K the language
defined by G0 will include the target language. We will start by formalising the idea that a set K is
large enough, by defining the idea of a kernel.

Definition 22 A finite set K ⊆ Σ∗ is a kernel for a language L, if for any set of features F,
L(G0(K,F,L))⊇ L.

Consider again the language L = {anbn|n ≥ 0}. The set K = {a,b,ab} is not a kernel, since
if we have a large enough set of features, then the language defined will only be {ab} which is a
proper subset of L. However K = {a,b,ab,aab,abb,aabb} is a kernel: no matter how large a set of
features we have the language defined will always include L. Consider a language L′ = L∪ {b16}.
In this case, a kernel for L′ must include, as well as a kernel for L, some set of substrings of b16: it
is enough to have b16,b8,b4,bb,b.

To prove that a set is a kernel, it suffices to show that if we consider all the possible features for
building the grammar, we will contain the target language; any smaller set of features defines then
a larger language. In our case, we can take the infinite set of all contexts and define productions
based on the congruence classes. If F is the set of all contexts then we have FL(u) =CL(u), thus the
productions will be exactly of the form C(uv)→C(u)C(v). This is a slight abuse of notation since
feature sets are normally finite.

Lemma 23 Let F = Σ∗ ×Σ∗; if L(G0(K,L,F))⊇ L then K is a kernel.

Proof By monotonicity of F : any finite feature set will be a subset of F .

Not all context-free languages will have a finite kernel. For example L= {a+}∪{anbm|n< m}
is clearly context-free, but does not have a finite kernel. Assume that the set K contains all strings
of length less than or equal to k. Assume w.l.o.g. that the fiducial set of features for K includes all
features (λ,bi), where i ≤ k+ 1. Consider the rules of the form FL(ak)→ FL(a j)FL(ak− j); we can
see that no matter how large k is, the derived CBFG will undergenerate as ak is not congruent to
ak−1.

Definition 24 A context-free grammar GT = 〈V,S,P,Σ〉 has the Finite Kernel Property (FKP) iff
for every non-terminal N ∈ V there is a finite set of strings K(N) such that a ∈ K(N) if a ∈ Σ and
N→ a∈ P and such that for all k ∈K(N),N ∗

⇒ k and where for every string w∈ Σ∗ such that N ∗
⇒w

there is a string k ∈ K(N) such that C(k) ⊆C(w). A CFL L has the FKP, if there is a grammar in
CNF for it with the FKP.

Notice that all regular languages have the FKP since they have a finite number of congruence
classes.

Lemma 25 Any context-free language with the FKP has a finite kernel.

Proof Let GT = 〈V,S,P,Σ〉 be such a CNF CFG with the FKP. Define

K(GT ) =
⋃

N∈V

(

K(N)∪
⋃

X→MN∈P
K(M)K(N)

)

.
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We claim that K(GT ) is a kernel. Assume that F = Σ∗ × Σ∗ and let G be such that G =
G0(K(GT ),L(GT ),F) = 〈F,(λ,λ),P,PL,Σ〉.

We will show, by induction on the length of derivation of w in GT , that for all N,w if N ∗
⇒ w

then there is a k in K(N) such that fG(w) ⊇ C(k). If length of derivation is 1, then this is true
since |w| = 1 and thus w ∈ K(N): therefore C(w)→ w ∈ PL. Suppose it is true for all derivations
of length less than j. Take a derivation of length j; say N ∗

⇒ w. There must be a production in
GT of the form N → PQ, where P⇒∗ u and Q⇒∗ v, and w = uv. By inductive hypothesis; we
have fG(u) ⊇ C(ku) and fG(v) ⊇ C(kv). By construction kukv ∈ K(GT ) and then there will be a
rule C(kukv)→C(ku)C(kv) in P. Therefore fG(uv)⊇C(kukv). Since N ∗

⇒ kukv there must be some
kuv ∈ K(N) such thatC(kuv)⊆C(kukv). Therefore fG(w)⊇C(kukv)⊇C(kuv).

Now we can see that if w ∈ L, then S ∗
⇒ w, then there is a k ∈ K(S) such that fG(w)⊇C(k) and

S ∗
⇒ k, therefore (λ,λ) ∈ fG(w) since (λ,λ) ∈C(k), thus w ∈ L(G) and therefore K is a kernel.

4.5 Learning Algorithm

Before we present the algorithm, we will discuss the learning model that we use. The class of
languages that we will learn is suprafinite and thus we cannot get a positive data only identifica-
tion in the limit result (Gold, 1967). Ultimately we are interested in a more realistic probabilistic
learning paradigm, but for mathematical convenience it is appropriate to establish the basic results
in a symbolic paradigm. The ultimate goal is to model natural languages, where negative data, or
equivalence queries are generally not available or are computationally impossible. Accordingly, we
have decided to use the model of positive data together with membership queries: an oracle can tell
the learner whether a string is in the language or not (Angluin, 1988). The presented algorithm runs
in time polynomial in the size of the sample S: since the strings are of variable length, this size must
be the sum of the lengths of the strings in S, ‖S‖=∑w∈S |w|. We should note that this is not a strong
enough result: Pitt (1989) showed that any algorithm can be made polynomial, by only processing a
small prefix of the data. It is hard to tighten the model sufficiently: the suggestion of de la Higuera
(1997) for a polynomial characteristic set is inapplicable for representations, such as the ones in this
paper, that are powerful enough to define languages whose shortest strings are exponentially long.
Accordingly we do not require in this model a polynomial dependence on the size of the represen-
tation. We note that the situation is unsatisfactory, but we do not intend to propose a solution in this
paper. We merely point out that the algorithm is genuinely polynomial and processes all of the data
in the sample without “delaying tricks” of the type discussed by Pitt.

Definition 26 A class of languages L is identifiable in the limit (IIL) from positive data and a
membership oracle with polynomial time and queries iff there exist two polynomials p(),q() and an
algorithm A such that:

• Given an infinite presentation of positive examples S, where Sn is the first n examples of the
presentation,

1. A returns a representation G= A(Sn) in time p(‖Sn‖).
2. A asks at most q(‖Sn‖) queries to build A(Sn).

• For each language L ∈ L, for each presentation S of L, there exists an index n such that for
all N ≥ n: A(SN) = A(Sn) and L(A(Sn)) = L.
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K

F

K0

Overgeneral

Correct

Undergeneral

Wrong

Figure 2: The relationship between K and F : The diagonal line is the line of fiduciality: above this
line means that F is fiducial on K. K0 is a kernel for the language.

Before we present the algorithm we hope that it is intuitively obvious how the approach will
work. Figure 2 diagrammatically shows the relationship between K and F . When we have a large
enough K, we will be to the right of the vertical line; when we have enough features for that K we
will be above the diagonal line. Thus the basis of the algorithm is to move to the right, until we have
enough data, and then to move up vertically, increasing the feature set until we have a fiducial set.

We can now define our learning algorithm in Algorithm 1. Informally, D is the list of all strings
that have been seen so far and Gn is the current grammar obtained with the first n strings of D. The
algorithm uses two tests: one test is just to determine if the current hypothesis undergeneralises. This
is trivial, since we have a positive presentation of the data, and so eventually we will be presented
with a string in L\L(Gn). In this case we need to increase K; we accordingly increase K to the set
of all substrings that we have observed so far. The second test is a bit more delicate. We want to
detect if our algorithm overgeneralises. This requires us to search through a polynomially bounded
set of strings looking for a string that is in L(Gn)\L. An obvious candidate set isCon(D)&Sub(D);
but though we conjecture that this is adequate, we have not yet been able to prove that is correct, as
it might be that the overgenerated string does not lie inCon(L)&Sub(L).

Here we use a slightly stricter criterion: we try to detect whether F is fiducial for K: we search
through a polynomially bounded set of strings, Sub(D), to find a violation of the fiduciality condi-
tion. If we find such a violation, then we know that F is not fiducial for K, and so we increase F to
the set of all contexts that we have seen so far,Con(D).

In Algorithm 1, G0(K,O,F) denotes the same construction as G0(K,L,F), except that we use
membership queries with the oracle O to compute FL for each element in K. We give the identifi-
cation in the limit version of the algorithm, that is, that admits an infinite positive presentation of
strings in input.
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Algorithm 1: CBFG learning algorithm IIL
Data: A sequence of strings S= {w1,w2 . . . ,}, membership oracle O
Result: A sequence of CBFGs G1,G2, . . .
K← /0 ; D← /0 ; F ← {(λ,λ)} ; G= G0(K,O,F) ;
for wi do

D← D∪{wi}; C←Con(D); S← Sub(D);
if ∃w ∈ D\L(G) then

K← S ; F ←C ;
end
else if ∃v ∈ S,u ∈ K, f ∈C such that FL(u)⊆ FL(v) and f &u ∈ L but f & v 9∈ L then

F ←C ;
end
G= G0(K,O,F) ;
Output Gi = G ;

end

Theorem 27 Algorithm 1 runs in polynomial time in the size of the sample, and makes a polynomial
number of calls to the membership oracle.

Proof The value of D will just be the set of observed strings; Sub(D) andCon(D) are both polyno-
mially bounded by the size of the sample, and therefore so are |K| and |F|. Therefore the number of
calls to the oracle is clearly polynomial, as it is bouned by |K||F|. ComputingG0 is also polynomial,
since |P|≤ |K|2, and all strings involved are in Sub(D).

4.6 Identification in the Limit Result

In the following, we consider the class of context-free languages having the FCP and the FKP,
represented by CBFG. Kn denotes the value of K at the nth loop, and similarly for F , D.

Definition 28 LCFG is the class of all context-free languages that satisfy the FCP and the FKP.

In what follows we assume that L is an element of this class, and that w1, . . . ,wn, . . . is a infinite
presentation of the language. The proof is straightforward and merely requires an analysis of a few
cases. We will proceed as follows: there are 4 states that the model can be in, that correspond to the
four regions of the diagram in Figure 2.

1. K is a kernel and F is fiducial for K; in this case the model has converged to the correct
answer. This is the region labeled correct in Figure 2.

2. K is a kernel and F is not fiducial for K: then L ⊆ L(G), and at some later point, we will
increase F to a fiducial set, and we will be in state 1: this is the region labeled overgeneral.

3. K is not a kernel and F is fiducial. Either L(G) = L, in which case we have converged to a
correct answer or, if not, we will define a proper subset of the target language. In the later
case we will change hypothesis at some later point, increase K to a kernel, and move to state
2 or state 1. This is the area labeled undergeneral.
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4. K is not a kernel and F is not fiducial: in this case at some point we will move to states 1 or
2. This is the area labeled wrong.

We will start by making some basic statements about properties of the algorithm:

Lemma 29 If there is some n, such that Fn is fiducial for Kn and L(Gn) = L, then the algorithm will
not change its hypothesis: that is, for all n> N, Kn = KN ,Fn = FN and therefore Gn = GN.

Proof If L(Gn) is correct, then the first condition of the loop will never be met; if Fn is fiducial for
Kn, then the second condition will never be satisfied.

Lemma 30 If there is some N such that KN is a kernel, then for all n> N, Kn = KN.

Proof Immediate by definition of a kernel, and of the algorithm.

We now prove that if F is not fiducial then the algorithm will be able to detect this.

Lemma 31 If there is some n such that Fn is not fiducial for Kn, then there is some index n′ ≥ n at
which Fn will be increased.

Proof If Fn is not fiducial, then by definition there is some u ∈ K, v ∈ Σ+ such that FL(u)⊆ FL(v),
but there is an f ∈ CL(u) that is not in CL(v). By construction FL(u) is always non-empty, and so
is FL(v). Thus v ∈ Sub(L). Note f & u ∈ L, so f ∈Con(L). Let n′ be the smallest index such that
v ∈ Sub(Dn) and f ∈ Con(Dn): at this point, either Fn will have changed, or not, in which case it
will be increased at this point.

We now prove that we will always get a fiducial feature set.

Lemma 32 For any n, there is some n′ such that Fn′ is fiducial for Kn.

Proof If Fn is fiducial then n′ = n satisfies the condition. Assume otherwise. Let F be a finite set
of contexts that is fiducial for Kn. We can assume that F ⊆Con(L). Let n1 be the first index such
that Con(Dn1) contains F . At this point we are not sure that Fn1 = Con(Dn1) since the conditions
for changing the set of contexts may not be reached. Anyhow, if it is the case then Fn1 is fiducial,
then n1 = n′ satisfies the condition. If not, then by the preceding lemma, there must be some point
n2 at which we will increase the set of contexts of the current grammar; Fn2 =Con(n2) must con-
tain F sinceCon(Dn1)⊂Con(Dn2), and is therefore fiducial, and so n2 = n′ satisfies the condition.

Lemma 33 For every positive presentation of an L ∈ LCFG, there is some n such that either the
algorithm has converged to a correct grammar or Kn is a kernel.
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Proof Let m be the smallest number such that Sub(Dm) is a kernel. Recall that any superset of a
kernel is a kernel, and that all CFL with the FKP have a finite kernel (Lemma 25), and that such a
kernel is a subset of Sub(L), so such an m must exist.

Consider the grammar Gm; there are three possibilities:
1. L(Gm) = L, and Fm is fiducial, in which case the grammar has converged.
2. L(Gm) is a proper subset of L and Fm is fiducial. Let m′ be the first point at which wm′ is in
L\L(Gm); at this point Km′ will be increased to include Sub(Dm) and it will therefore be a kernel.
3. Fm is not fiducial: in this case by Lemma 32; there is some n at which Fn is fiducial for Km. Either
Kn = Km in which case this reduces to Case 2; or Kn is larger than Km in which case it must be a
kernel, since it will include Sub(Dm) which is a kernel.

We now can prove the main result of the paper:

Theorem 34 Algorithm 1 identifies in the limit the class of context-free languages with the finite
context property and the finite kernel property.

Proof By Lemma 33 there is some point at which it converges or has a kernel. If Kn is a kernel then
by Lemma 32, there is some point n′ at which we have a fiducial feature set. Therefore L(Gn′) = L,
and the algorithm has converged.

4.7 Examples

We will now give a worked example of the algorithm.
Suppose L= {anbn|n> 0}.
G0 will be the empty grammar, with K = /0,F = {(λ,λ)} and an empty set of productions.

L(G0) = /0.

1. Suppose w1 = ab. D= {ab}. This is not in L(G0) so we set

• K = Sub(D) = {a,b,ab}.

• F =Con(D) = {(λ,λ),(a,λ),(λ,b)}.

This gives us one production: FL(ab) → FL(a)FL(b) which corresponds to {(λ,λ)} →
{(λ,b)}{(a,λ)}, and the lexical productions {(λ,b)}→ a,{(a,λ)}→ b. The language de-
fined is thus L(G1) = {ab}.

2. Suppose w2 = aabb. D= {ab,aabb}. This is not in L(G1) so we set

• K = Sub(D) = {a,b,ab,aa,bb,aab,abb,aabb}.

• F =Con(D) = {(λ,λ),(a,λ),(λ,b),(aa,λ),(a,b),(λ,bb),(aab,λ),(aa,b),
(a,bb),(λ,abb)}.

We then have the following productions:
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• FL(ab)→ FL(a),FL(b) which is

{(λ,λ),(a,b)}→ {(a,bb),(λ,abb),(λ,b)},{(aa,b),(aab,λ),(a,λ)}.

• FL(aab)→ FL(a),FL(ab) which is

{(a,bb),(λ,b)}→ {(a,bb),(λ,abb),(λ,b)},{(λ,λ),(a,b)}.

• FL(aab)→ FL(aa),FL(b) which is

{(a,bb),(λ,b)}→ {(λ,bb)},{(aa,b),(aab,λ),(a,λ)}.

• FL(bb)→ FL(b),FL(b) which is

{(aa,λ)}→ {(aa,b),(aab,λ),(a,λ)},{(aa,b),(aab,λ),(a,λ)}.

• FL(aa)→ FL(a),FL(a) which is

{(λ,bb)}→ {(a,bb),(λ,abb),(λ,b)},{(a,bb),(λ,abb),(λ,b)}.

• FL(aabb)→ FL(a),FL(abb) which is

{(λ,λ),(a,b)}→ {(a,bb),(λ,abb),(λ,b)},{(aa,b),(a,λ)}.

• FL(aabb)→ FL(aa),FL(bb) which is

{(λ,λ),(a,b)}→ {(λ,bb)},{(aa,λ)}.

• FL(aabb)→ FL(aab),FL(b) which is

{(λ,λ),(a,b)}→ {(a,bb),(λ,b)},{(aa,b),(aab,λ),(a,λ)}.

• FL(abb)→ FL(a),FL(bb) which is

{(aa,b),(a,λ)}→ {(a,bb),(λ,abb),(λ,b)},{(aa,λ)}.

• FL(abb)→ FL(ab),FL(b) which is

{(aa,b),(a,λ)}→ {(λ,λ),(a,b)},{(aa,b),(aab,λ),(a,λ)}.

and the two lexical productions:

• FL(a)→ a which is {(a,bb),(λ,abb),(λ,b)}→ a
• FL(b)→ b which is {(aa,b),(aab,λ),(a,λ)}→ b.

K is now a kernel and L(G) = L, but F is not fiducial for K, since (λ,bb) is not fiducial for aa
(consider aaab).

3. Suppose w3 = aaabbb. Now |Con(D3)| = 21; there are now several elements of Con(D3)
that are similar. For example (λ,λ),(a,b) and (aa,bb) are identical but as it is harmless for
the resulting grammar, it does not mind. Now we will detect that F is not fiducial: we will
find v = aaab, u = aa and f = (λ,abbb); FL(aa) = {(λ,bb)} = FL(aaab), but f & aaab =
aaababbb which is not in L. We will therefore increase F to be Con(D3), and then the
algorithm will have converged. The final grammar will have 10 productions and 2 lexical
productions; |K|= 8 and |F |= 21.
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5. Practical Behavior of the Algorithm

In this section, we propose to study the behavior of our algorithm from a practical point of view. We
focus more specifically on two important issues. The first one deals with the learning ability of the
algorithm when the conditions for the theoretical learning result are not reached. Indeed, although
the identification in the limit paradigm proves that with sufficient data it is possible to obtain exact
convergence, it says nothing about the convergence when fewer learning examples are available:
does the output get closer and closer to the target until it reaches it or does it stay far from the
expected solution until receives enough data? The second question concerns the learning behavior
of the algorithm: does it tend to over-generalise or to under-generalise?

For our experimental setup, we need to select appropriate data sets. In grammatical inference
little has been done concerning benchmarking. The main available corpora are those of the on line
competitions organised by the International Colloquium on Grammatical Inference. Three different
competitions have recently taken place: the Abbadingo One (Lang et al., 1998) which was about
regular languages, the Omphalos competition on context-free languages (Starkie et al., 2004) and
the Tenjino competition (Starkie et al., 2006) dealing with transducers learning. Note that some of
these data sets correspond to extremely hard learning problems since their main objective was to
push the state of the art (some problems of the Abbadingo One competition are still unsolved more
than ten years after its official end!)

However, these data sets can not be directly used for evaluating our algorithm because the
solutions or the target models are not available. Our algorithm needs an oracle and thus we need a
way to give answers to membership queries. In order to overcome this drawback, we chose to build
synthetically some data sets following the experimental setup proposed by these competitions. More
precisely, we decided to randomly generate target context-free grammars following what has been
done for the Omphalos competition. Each grammar is then used either to generate training and test
sets or as an oracle for answering membership queries.

In the following paragraphs we describe first the generation of the target context-free gram-
mars, then the experimental setup with learning and test data sets used and finally the results and
conclusions that can be drawn.

5.1 Generation of Target Context-free Grammars

To generate the target grammars we follow the process used for the Omphalos competition (Starkie
et al., 2004). We built 30 different grammars randomly according the following principles. For
each grammar, we first fix the number of non-terminals and terminals which are randomly chosen
between 4 and 7 for the non-terminals (including the start symbol) and between 2 and 4 for terminal
symbols. Then we randomly generate 20 context-free rules in Chomsky normal form such that
every non-terminal appears at least once in the left hand side of a grammar rule. In order to avoid
the presence of useless rules, we apply two simple procedures: if a non-terminal can not generate
any terminal string, a new terminal rule generating one terminal symbol is created for this non-
terminal; if a non-terminal can not be reached from the start symbol, we erase it from the grammar
(i.e., we remove all the rules containing this non-terminal). From these grammars without useless
rules, we force them to generate non finite languages by checking that the start symbol is used at
least once in a right hand side of a grammar rule (in average this symbol appears in a right hand side
of a rule more than 3 times per grammar).
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The main difference with the Omphalos generation process is that we do not especially need
non-regular languages. Indeed, one of the aim of these experiments is to give an idea on the behavior
of the algorithm when its theoretical assumptions are not likely to be valid. From this standpoint,
all randomly generated non-finite languages are good candidates as learning targets. However, with
a similar principle used for the Omphalos competition, we checked that some of the generated
grammars can not be easily solved by methods for regular languages. Although we can not decide
if these grammars define non regular context-free languages, it ensures us that the target models are
at least not too simple.

5.2 Experimental Setup

For each target grammar we generate a learning and a test sample following the Omphalos com-
petition requirements. We build the learning sample by first creating a structurally complete set of
strings for each grammar. This set is built such that for each rule of the target grammar, at least one
string of the set can be derived using this rule (Parekh and Honavar, 1996). This would guarantee
that the complete learning set would have the minimal amount of information for finding the struc-
ture of the grammar. We then complete this learning set by randomly generating new strings from
the grammar in order to have a total of 50 examples. We chose arbitrarily this value for two reasons:
first it is sufficient to ensure that each sample strictly contains a structurally complete set for each
target grammar and secondly we are likely to be far from the guarantees of the identification in the
limit framework.

The construction of the test set needs particular attention. Since the learning phase uses a mem-
bership oracle, when the hypothesis is being constructed, some new strings may be built and queried
for the oracle by picking a substring and a context from the learning sample. Thus, even if the test set
does not contain any string of the learning sample, the construction G0 may consider some strings
present in the test set. In order to avoid this drawback, that is, to guarantee that no string of the test
could be seen during the construction of the CBFG, each test string has a length of at least 3 times
the maximal length of the strings in the learning set, which is by construction the maximal size of
the strings queried. According to this procedure, we randomly generate a test set of 1000 strings
over the alphabet of terminal symbols used to define the target grammar (1000 examples is twice
the size of the small test sets of the Omphalos competition). The test sequences are then labeled
positive or negative depending on their membership to the language defined by the grammar. We
repeat this process until we have the desired number of strings. The ratio between strings in the
language and strings outside the language is fixed to be between 40% and 60%.

In order to study the behavior of our algorithm, we define the following setup. For each target
context-free grammar, we construct a CBFG by applying the construction G0(K,O,F) with K =
Sub(S) and F =Con(S) where S is a set of strings drawn from the learning set and using the target
grammar as the oracle O for the membership queries. We generate different sets S by drawing an
increasing number of learning examples (from 2 to 50) from the learning sample of the considered
grammar. Then, we evaluate the learned CBFG on the test sample by measuring the accuracy of
correct classification. We present the results averaged on the 30 test sets of the different target
context-free grammars.
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5.3 Results and Discussion

Figure 3 shows the averaged accuracy over the different target grammars according to the number
of strings in the learning sample. We can note that a high correct classification rate (nearly 90%) is
reached with 20 examples and with only 5 examples an accuracy of 75% is obtained. These results
indicate that a relevant hypothesis can be found even with few examples. The standard deviations
represented by vertical bars show a good stability of the results from learning sets of 20 strings.
This confirms that our algorithm is able to learn partly correct representations even when learning
sets may not have a kernel or a fiducial learning set and thus are far from the identification in the
limit assumptions.
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Figure 3: Evolution of the average percentage of correct classification according to the number of
learning examples.

The analysis of the behavior of the algorithm in terms of false positive and false negative rates
is shown in Table 1. The proportion of false negatives (i.e., positive strings classified as negative) is
higher than the proportion of false positives (i.e., negative strings classified as positive), whatever
the size of the learning sample is. Thus the output of the algorithm tends more to under-generalise
than the converse. As it is generally admitted that over-generalisation is the main trouble when
learning from positive examples, this tendency confirms that the algorithm behaves well. However,
it is difficult to draw firm conclusions without a natural distribution over negative examples.
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Number of strings in S false positive false negative
02 07.2 % ± 12.3 36.4 % ± 7.0
05 04.5 % ± 4.7 28.4 % ± 9.1
10 03.8 % ± 2.9 22.4 % ± 8.4
15 03.9 % ± 2.6 14.1 % ± 6.6
20 04.1 % ± 3.0 09.4 % ± 6.1
30 04.2 % ± 2.8 07.9 % ± 5.5
40 03.9 % ± 2.6 05.6 % ± 4.7
50 04.4 % ± 1.6 04.8 % ± 3.9

Table 1: Average percentage of false positive and false negative rates obtained over the test samples.

The preceding results show that despite its simplicity the algorithm behaved nicely during these
experiments, in particular concerning over-generalisation. We focus now on the amount of queries
needed by the algorithm for building the CBFG. The growth of the number of requested queries
according to the average size of the learning sample is shown in Figure 4 (recall that here the size
of the sample means the sum of the string lengths of the sample). While a very worst case analysis
of the grammar construction used by G0 would lead to a complexity in O(|S|5), we can observe
that the number of queries seems to be quadratic, at least in the case of the grammars we consider
here. However, the volume of queries used is large, which can be explained by the simplicity of the
algorithm. From a practical standpoint, it is clear that much work has to be done in order to try to
minimise the number of queries needed by selecting the most informative examples, but this point
is out of the scope of the paper.

Finally, we can note that these experiments suffer of the lack of comparison with other ap-
proaches. This is due to the fact that, as far as we know, no other algorithm uses a positive learning
sample and a membership oracle only. Indeed, since the work of Angluin about the Minimum
Adequate Teacher (Angluin, 1988) all algorithms using membership queries are designed with the
additional help of equivalence queries. The point of view adopted in this paper is rather theoretical
since our aim was to show the relevance of CBFG representations for language learning. However,
a perspective of our work is to try to avoid the use of the oracle (by using statistical or simulation
methods) which will allow us to compare more easily our approach with other methods.

6. Expressiveness of CBFG

In this section, we compare the expressiveness of CBFG with other well known representations. As
noted earlier, we are primarily interested in the class of exact CBFGs—these are CBFGs where the
presence of a contextual feature in the representation corresponds exactly to the language theoretic
interpretation of the context. The class of unrestricted CBFG is significantly larger, but less relevant.

The algorithm presented in this paper cannot learn the entire class of exact CBFGs, but we
conjecture that there are more powerful algorithms that can; see Clark (2009) for some steps in this
direction.
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Figure 4: Growth of the number of membership queries versus the average of the total size of the
learning sample (using log log scale).

6.1 Exact CBFGs and the Chomsky Hierarchy

We start by examining the class of languages defined by exact CBFGs. We will show that this class

• includes all regular languages

• does not include all context free languages

• includes some non-context-free languages.

This class is thus orthogonal to the Chomsky hierarchy.

6.1.1 REGULAR LANGUAGES

Any regular language can be defined by an exact CBFG. We will show a way of constructing an
exact CBFG for any regular language. Suppose we have a regular language L: we consider the left
and right residual languages:

u−1L= {w|uw ∈ L},

Lu−1 = {w|wu ∈ L}.
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For any u ∈ Σ∗, let lmin(u) be the lexicographically shortest element such that l−1
minL = u−1L.

The number of such lmin is finite by the Myhill-Nerode theorem, we denote by Lmin this set, that is,
{lmin(u)|u ∈ Σ∗}. We define symmetrically Rmin for the right residuals (Lr−1

min = Lu−1).
We define the set of contexts as:

F(L) = Lmin×Rmin.

F(L) is clearly finite by construction.

 q0

q1a
q2b

a

b
a,b

Figure 5: Example of a DFA. The left residuals are defined by λ−1L, a−1L, b−1L are the right ones
by Lλ−1, Lb−1, Lab−1 (note here that La−1 = Lλ−1).

If we consider the regular language defined by the deterministic finite automata of Figure 5, we
obtain Lmin = {λ,a,b} and Rmin = {λ,b,ab} and thus

F(L) = {(λ,λ),(a,λ),(b,λ),(λ,b),(a,b),(b,b),(λ,ab),

(a,ab),(b,ab)}.

By considering this set of features, we can prove the following lemma:

Lemma 35 For any strings u,v such that FL(u)⊃ FL(v) then CL(u)⊃CL(v).

Proof Suppose FL(u) ⊃ FL(v) and let (l,r) be a context in CL(v). Let l′ be the lexicographically
shortest element of {u : u−1L = l−1L} and r′ the lexicographically shortest element of {u : Lu−1 =
Lr−1}. By construction we have (l′,r′) ∈ F(L) and l′vr′ ∈ L, as vr′ ∈ l′−1L = l−1L. FL(v) is con-
tained in FL(u) therefore we have l′ur′ ∈ L. l′−1L = l−1L implies lur′ ∈ L. As r′ is congruent to r,
lur ∈ L.

This lemma means that the set of features F is sufficient to represent context inclusion.
Note that the number of congruence classes of a regular language is finite. Each congruence

class is represented by a set of contexts FL(u). Let KL be finite set of strings formed by taking the
lexicographically shortest string from each congruence class. The final grammar can be obtained by
combining elements of KL. For every pair of strings u,v ∈ KL, we define a rule

FL(uv)→ FL(u)FL(v)

and we add lexical productions of the form FL(a)→ a, a ∈ Σ.
The following lemma shows the correctness and the exactness of the grammar.
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Lemma 36 For all w ∈ Σ∗, fG(w) = FL(w).

Proof (Sketch) The proof is in two steps: fG(w)⊆ FL(w) and FL(w)⊆ fG(w). Each step is made by
induction on the length of w and uses the rules created to build the grammar, the derivation process
of a CBFG and the fiduciality for the second step.

First, we show ∀w ∈ Σ∗, fg(w) ⊆ FL(w) by induction on the length of w. For |w| = 1, the
inclusion is trivial since all the lexical rules FL(a)→ a are included in the grammar. Suppose that
a string w, |w|= n > 1, is parsed by the CBFG G, then there exists a cut of w in uv = w and a rule
z→ xy in G such that x⊆ fG(u) and y⊆ fG(v). By induction hypothesis, x⊆ FL(u) and y⊆ FL(v).
By construction of the grammar, there exists two strings u′,v′ ∈ KL such that u, resp. v, belongs
to same congruence class than u′, resp. v′ and the rule FL(u′v′) → FL(u′)FL(v′) belongs to the
productions of the grammar. By induction hypothesis, x ⊆ FL(u) = FL(u′) and y ⊆ FL(v) = FL(v′)
and thus fG(w)⊆ FL(w).
Second, we prove that ∀w∈ Σ∗,FL(w)⊆ fG(w) by induction on the length of w. The key point relies
on the fact that when a string w is parsed by a CBFG G, there exists a cut of w into uv = w (u, v
∈ Σ∗) and a rule z→ xy in G such that x ⊆ fG(u) and y ⊆ fG(v). The rule z→ xy is also obtained
from a substring from the set used to build the grammar using the FL function. By the inductive
hypothesis we obtain inclusion between fG and FL on u and v.

For the language of Figure 5, the following set is sufficient to build an exact CBFG:
{a,b,aa,ab,ba,aab,bb,bba} (this corresponds to all the substrings of aab and bba). We have:

FL(a) = F(L)\{(λ,λ),(a,λ)}→ a,

FL(b) = F(L)→ b,

FL(aa) = FL(a)→ FL(a)FL(a),

FL(ab) = F(L)→ FL(a)FL(b) = FL(a)F(L),

FL(ba) = F(L)→ FL(b)FL(a) = F(L)FL(a),

FL(bb) = F(L)→ FL(b)FL(b) = F(L)F(L),

FL(aab) = FL(bba) = FL(ab) = FL(ba).

The approach presented here gives a canonical form for representing a regular language by an
exact CBFG. Moreover, this is is complete in the sense that every context of every substring will be
represented by some element of F : this CBFG will completely model the relation between contexts
and substrings.

6.1.2 EXACT CBFGS DO NOT INCLUDE ALL CFLS

First, it is clear that the class of exact CBFGs includes some non-regular context-free languages:
the grammar defined in Section 3.3 is an exact CBFG for the context-free and non regular language
{anbn|n> 0}, showing the class of exact CBFG has some elements properly in the class of CFGs.

We give now a context-free language L that can not be defined by an exact CBFG:

L= {anb|n> 0}∪{ancm|m> n> 0}.
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Suppose that there exists an exact CBFG that recognizes it and let N be the length of the biggest
feature (i.e., the longest left part of the feature). For any sufficiently large k > N, the sequences ck
and ck+1 share the same features: FL(ck) = FL(ck+1). Since the CBFG is exact we have FL(b) ⊆
FL(ck). Thus any derivation of ak+1b could be a derivation of ak+1ck which does not belong to the
language.

However, this restriction does not mean that the class of exact CBFG is too restrictive for model-
ing natural languages. Indeed, the example we have given is highly unnatural and such phenomena
appear not to occur in attested natural languages.

6.1.3 CBFG AND NON CONTEXT-FREE LANGUAGES

CBFGs are more powerful than CFGs in two respects. First, CBFGs can compactly represent lan-
guages like the finite language of all n! permutations of an n-letter alphabet, that have no concise
representation as a CFG (Asveld, 2006). Secondly, as we now show, there are some exact CBFGs
that are not context-free. In particular, we define a language closely related to the MIX language
(consisting of strings with an equal number of a’s, b’s and c’s in any order) which is known to be
non context-free, and indeed is conjectured to be outside the class of indexed grammars (Boullier,
2003).

Let M = {{a,b,c}+}, the set of all strings of length at least one that can be built on the alphabet
{a,b,c}. We consider now the language

L= Labc∪Lab∪Lac∪{a′a,b′b,c′c,dd′,ee′, f f ′} :

Lab = {wd|w ∈M, |w|a = |w|b},

Lac = {we|w ∈M, |w|a = |w|c},

Labc = {w f |w ∈M, |w|a = |w|b = |w|c}.

In order to define a CBFG recognizing L, we have to select features (contexts) that can represent
exactly the intrinsic components of the languages composing L. We propose to use the following
set of features for each sublanguage:

• For Lab: (λ,d) and (λ,ad),(λ,bd).

• For Lac: (λ,e) and (λ,ae),(λ,ce).

• For Labc: (λ, f ′).

• For the letters a′,b′,c′,a,b,c we add: (λ,a),(λ,b),(λ,c),(a′,λ),(b′,λ),(c′,λ).

• For the letters d,e, f ,d′,e′, f ′ we add; (λ,d′),(λ,e′),(λ, f ′),(d,λ),(e,λ),( f ,λ).

Here, Lab will be represented by (λ,d), but we will use (λ,ad),(λ,bd) to define the internal deriva-
tions of elements of Lab. The same idea holds for Lac with (λ,e) and (λ,ae),(λ,ce).

For the lexical rules and in order to have an exact CBFG, note the special case for a,b,c:

{(λ,bd),(λ,ce),(a′,λ)}→ a,

{(λ,ad),(b′,λ)}→ b,
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{(λ,ae),(c′,λ)}→ c.

For the nine other letters, each one is defined with only one context, for example using the rule
{(λ,d′)}→ d.

For the production rules, the most important one is: (λ,λ)→ {(λ,d),(λ,e)},{(λ, f ′)}.
Indeed, this rule, with the presence of two contexts in one of categories, means that an element

of the language has to be derived so that it has a prefix u such that fG(u) ⊇ {(λ,d),(λ,e)}. This
means u is both an element of Lab and Lac. This rule represents the language Labc since {(λ, f ′)}
can only represent the letter f .

The other parts of the language will be defined by the following rules:

(λ,λ)→ {(λ,d)},{(λ,d′)},

(λ,λ)→ {(λ,e)},{(λ,e′)},

(λ,λ)→ {(λ,a)},{(λ,bd),(λ,ce),(a′,λ)},

(λ,λ)→ {(λ,b)},{(λ,ad),(b′,λ)},

(λ,λ)→ {(λ,c)},{(λ,ae),(c′,λ)},

(λ,λ)→ {(λ,d′)},{(d,λ)},

(λ,λ)→ {(λ,e′)},{(e,λ)},

(λ,λ)→ {(λ, f ′)},{( f ,λ)}.

This set of rules is incomplete, since for representing Lab, the grammar must contain the rules
ensuring to have the same number of a’s and b’s, and similarly for Lac. To lighten the presentation
here, the complete grammar is presented in Appendix.

We claim this is an exact CBFG for a context-sensitive language. L is not context-free since
if we intersect L with the regular language Σ∗d, we get an instance of the non context-free MIX
language (with d appended). The exactness comes from the fact that we chose the contexts in
order to ensure that strings belonging to a sublanguage can not belong to another one and that the
derivation of a substring will provide all the possible correct features with the help of the union of
all the possible derivations.

Note that the MIX language on its own is not definable by an exact CBFG: it is only when other
parts of the language can distributionally define the appropriate partial structures that we can get
context sensitive languages. Far from being a limitation of this formalism (a bug), we argue this is
a feature: it is only in rather exceptional circumstances that we will get properly context sensitive
languages. This formalism thus potentially accounts not just for the existence of non context-free
natural languages but also for their rarity.

6.2 Inexact CBFGs

We are less interested in the class of all CBFGs: these are CBFGs where the contexts are just
arbitrary features and there is no relation between fG(u) andCL(u) except for the presence of (λ,λ).
However, it is important to understand the language theoretic power of this class as this upper
bounds the hypothesis class of the algorithm, and is easier to analyse.
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6.2.1 CONTEXT-FREE GRAMMARS

First, we note that this class contains all context-free languages. Given a context-free language,
that does not include the empty string, we can take a CFG in Chomsky normal form and convert
it directly into a CBFG. Let V be the set of non-terminals of such a CFG. We pick an arbitrary set
of distinct contexts to represent the elements of V , subject only to the constraint that S corresponds
to (λ,λ). Let C(N) be the context corresponding to the non-terminal N. For every production rule
in the CFG of the form N → PQ, we add a CBFG production {C(N)} → {C(P)},{C(Q)}. For
every production in the CFG of the form N → a, we add a CBFG production to PL of the form
{C(N)}→ a. It is easy to see that this will define the same language.

6.2.2 RANGE CONCATENATION GRAMMARS

While CBFG formalism has some relationship to a context-free grammar, and some to a semi-
Thue system (also known as a string rewriting system), it is not formally identical to either of
these. One exact equivalence is to a restricted subset of Range Concatenation Grammars; a very
powerful formalism (Boullier, 2000). We include the following relationship, but suggest that the
reader unfamiliar with RCGs proceeds to the discussion of the relationship with the more familiar
class of context-free grammars.

Lemma 37 For every CBFG G, there is a non-erasing positive range concatenation grammar of
arity one, in 2-var form that defines the same language.

Proof SupposeG= 〈F,P,PL,Σ〉. Define a RCG with a set of predicates equal to F and the following
clauses, and the two variables U,V . For each production x→ yz in P, for each f ∈ x, where y =
{g1, . . .gi}, z= {h1, . . .h j} add clauses

f (UV )→ g1(U), . . .gi(U),h1(V ), . . .h j(V ).

For each lexical production { f1 . . . fk}→ a add clauses

fi(a)→ ε.

It is straightforward to verify that f (w) > ε iff f ∈ fG(w).

6.2.3 CONJUNCTIVE GRAMMAR

A tighter correspondence is to the class of Conjunctive Grammars (Okhotin, 2001), invented inde-
pendently of RCGs.

Definition 38 A conjunctive grammar is defined as a quadruple 〈Σ,N,P,S〉, in which: Σ is the al-
phabet; N is the set of non terminal symbols; P is the set of rules, each of the form A→ α1&...&αm,
where A ∈V and ∀i< m, αi ∈ (V ∪Σ)∗; S ∈ N is the start symbol.

In this formalism, a string w is derived from A ∈V iff there exists a rule A→ α1&...&αm in P and
for all i< m, αi derives w.

We claim that for every every language L generated by a conjunctive grammar there is a CBFG
representing L# (where the special character # is not included in the original alphabet).
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Suppose we have a conjunctive grammar G = 〈Σ,N,P,S〉 in binary normal form (as defined in
Okhotin, 2003). We construct the equivalent CBFG G′ = 〈F,P′,PL,Σ〉 as followed:

• For every letter a we add a context (la,ra) to F such that laara ∈ L;

• For every rules X → a in P, we create a rule {(la,ra)}→ a in PL.

• For every non terminal X ∈ N, for every rule X → P1Q1& . . .&PnQn we add distinct contexts
{(lPiQi ,rPiQi)} to F, such that for all i it exists ui, lPiQiuirPiQi ∈ L and PiQi

∗
⇒G ui;

• Let FX , j = {(lPiQi ,rPiQi) : ∀i} the set of contexts corresponding to the jth rule applicable to X .
For all (lPiQi ,rPiQi) ∈ FX , j, we add to P′ the rules (lPiQi ,rPiQi)→ FPi,kFQi,l (∀k, l).

• We add a new context (w,λ) to F such that S ∗
⇒G w and (w,λ)→ # to PL;

• For all j, we add to P′ the rule (λ,λ)→ FS, j{(w,λ)}.

It can be shown that this construction gives an equivalent CBFG.

7. Discussion and Conclusion

One of the main objective of our approach is to provide a framework that helps to bridge the gap
between theoretical methods of grammatical inference and the structured representations required
in linguistics. We provide a conclusion and a discussion of our work according to these two stand-
points.

7.1 Grammatical Inference

In this paper, we have presented a new formalism the Contextual Binary Feature Grammars and
shown its relevance for representing a large class of languages. We have proposed a learning algo-
rithm using only membership queries and shown that this algorithm can identify in the limit the class
of context-free languages satisfying the FCP and FKP assumptions. First of all, we should establish
how large the class of languages with the FCP and the FKP is: it includes all finite languages and all
regular languages, since the set of congruence classes is finite for finite state languages. It similarly
includes the context-free substitutable languages (Clark and Eyraud, 2007), since every string in a
substitutable language belongs to only one syntactic congruence class. As already stated it does
not include all CFLs since not all CFLs have the FCP and/or the FKP. However it does include
languages like the Dyck languages of arbitrary order, Lukacevic language and most other classic
simple examples. As a special case consider the equivalence relation between contexts f ∼=L f ′ iff
∀u we have that f &u ∈ L iff f ′ &u ∈ L. The class of CFLs where the context distribution of every
string is a finite union of equivalence classes of contexts clearly has both the FKP and the FCP.

If we now focus on the algorithm proposed: it is relatively simple but has two main drawbacks.
First, the algorithm is not conservative since once we have found the correct language, the represen-
tation may change—if the feature set found is not fiducial—until the fiduciality is reached. Second,
the CBFG output by the algorithm may not be consistent with some answers provided by the ora-
cle. Indeed, when the algorithm checks the fiduciality of the feature set F , the membership of new
strings is tested. These strings do not appear in the list of learning examples given to the oracle but
are built from all the possible contexts and substrings that can be extracted from this list. Then, it is
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possible that, among these new strings, some of them belong to the target language but are not rec-
ognized by the current grammar. In this case, the output grammar is nevertheless not modified. We
can imagine a procedure that changes the grammar by adding these new positive strings for building
the CBFG, however this could lead to having to deal with an exponential number of strings. Thus,
a more reasonable procedure is to wait for these strings in the positive data presentation. One pro-
posal for future work, from these two remarks, is a new learning algorithm that overcomes these
drawbacks.

One important point is whether this result can be extended to a result which also bounds the
number of samples as a polynomial function of the size of the representation. A preliminary result in
this direction is presented in Clark (2010), which presents a polynomial result using the Minimally
Adequate Teacher model of Angluin (1987). It seems likely that it will be possible to extend that
result, which uses only context-free grammars, to the class of CBFGs.

Our approach to context-free grammatical inference is based on a generalisation of distributional
learning, following the work of Clark and Eyraud (2007). The current state of the art in context-free
inductive inference from flat unstructured examples only has been rather limited. When learning
from stochastic data or using a membership oracle, it is possible to have powerful results, if we
allow exponential computation (see for example Horning, 1969). The main contribution of this
paper is to show that efficient learning is possible, with an appropriate representation. We currently
rely on using a membership oracle, but under suitable assumptions about distributions, it should
be possible to get a PAC-learning result for this class along the lines of Clark (2006), placing some
bounds on the number of features required. Another interesting and important issue is the adaptation
of this approach to stochastic languages.

We have focused on context-free grammatical inference, however, we have shown that our rep-
resentation is also relevant for modeling non context-free languages. Then, another perspective of
this work is to study learnability results for larger classes of languages. This would allow us to com-
pare with other formalisms such as External Contextual Grammars (Boullier, 2001; Mitrana, 2005)
and other learning methods dealing with non context-free languages (Oates et al., 2006; Yoshinaka,
2009).

7.2 Linguistics

The field of grammatical inference has close relations to the study of language acquisition. Attempts
to model natural languages with context-free grammars require additional machinery: natural lan-
guage categories such as noun phrases contain many overlapping subclasses with features such as
case, number, gender and similarly for verbal categories. Modelling this requires either an expo-
nential explosion of the number of non-terminals employed or a switch to a richer set of features.
Our formalism can be seen as a first step to integrate such features.

While we have implemented the algorithm described here, and verified that it works in accor-
dance with theory on small artificial examples, there are a number of modifications that would need
to be made before it can be applied to real grammar induction on natural language. First, the algo-
rithm is very naive; in practice a more refined algorithm could select both the kernel and the feature
set in a more sophisticated way. Secondly, considering features that correspond to individual con-
texts may be too narrow a definition for natural language given the well known problems of data
sparseness and it will be necessary to switch to features corresponding to sets of contexts, which
may overlap. Thus for example one might have features that correspond to sets of contexts of the
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form F(u,v) = {(lu,vr)|l,r ∈ Σ∗}. This would take this approach closer to methods that have been
shown to be effective in unsupervised learning in NLP (Klein and Manning, 2004) where typically
|u|= |v|= 1. In any event, we think such modifications will be necessary for the acquisition of non
context-free languages. Finally, at the moment the algorithm has polynomial update time, but in the
worst case, there are deterministic finite state automata such that the size of the smallest kernel will
be exponential in the number of states. There are, however, natural algorithms for generalising the
productions by removing features from the right hand sides of the rules; this would have the effect
of accelerating the convergence of the algorithm, and removing or weakening the requirement for
the Finite Kernel Property.
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Appendix A.

We give here an explicit exact CBFG for the following non context-free language

L= Labc∪Lab∪Lac∪{a′a,b′b,c′c,dd′,ee′, f f ′}

defined on the alphabet Σ= {a,b,c,d,e, f ,a′,b′,c′,d′,e′, f ′} and such that:

Lab = {wd|w ∈ {a,b,c}+, |w|a = |w|b},

Lac = {we|w ∈ {a,b,c}+, |w|a = |w|c},

Labc = {w f |w ∈ {a,b,c}+, |w|a = |w|b = |w|c}.

Here is the list of productions of the grammar.

{(λ,λ)}→ {(λ,d),(λ,e)},{(λ, f ′)},

{(λ,λ)}→ {(λ,d)},{(λ,d′)},

{(λ,λ)}→ {(λ,e)},{(λ,e′)},

{(λ,λ)}→ {(λ,a)},{(λ,bd),(λ,ce),(a′,λ)},

{(λ,λ)}→ {(λ,b)},{(λ,ad),(b′,λ)},

{(λ,λ)}→ {(λ,c)},{(λ,ae),(c′,λ)},

{(λ,λ)}→ {(λ,d′)},{(d,λ)},
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{(λ,λ)}→ {(λ,e′)},{(e,λ)},

{(λ,λ)}→ {(λ, f ′)},{( f ,λ)},

{(λ,d)}→ {(λ,d)},{(λ,d)},

{(λ,d)}→ {(λ,ad)},{(λ,bd)},

{(λ,d)}→ {(λ,bd)},{(λ,ad)},

{(λ,d)}→ {(λ,d)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,d)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,d)},

{(λ,ad)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,ad)},

{(λ,ad)}→ {(λ,ad)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,ad)}→ {(λ,ad),(b′,λ)},{(λ,d)},

{(λ,ad)}→ {(λ,d)},{(λ,ad),(b′,λ)},

{(λ,bd)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,bd)},

{(λ,bd)}→ {(λ,bd)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,bd)}→ {(λ,bd),(λ,ce),(a′,λ)},{(λ,d)},

{(λ,bd)}→ {(λ,d)},{(λ,bd),(λ,ce),(a′,λ)},

{(λ,e)}→ {(λ,e)},{(λ,e)},

{(λ,e)}→ {(λ,ae)},{(λ,ce)},

{(λ,e)}→ {(λ,ce)},{(λ,ae)},

{(λ,e)}→ {(λ,e)},{(λ,ad),(b′,λ)},

{(λ,e)}→ {(λ,ad),(b′,λ)},{(λ,e)},

{(λ,ae)}→ {(λ,ad),(b′,λ)},{(λ,ae)},

{(λ,ae)}→ {(λ,ae)},{(λ,ad),(b′,λ)},

{(λ,ae)}→ {(λ,ad),(λ,ae),(c′,λ)},{(λ,e)},

{(λ,ae)}→ {(λ,e)},{(λ,ad),(λ,ae),(c′,λ)},

{(λ,ce)}→ {(λ,ad),(b′,λ)},{(λ,ce)},

{(λ,ce)}→ {(λ,ce)},{(λ,ad),(b′,λ)},

{(λ,ce)}→ {(λ,bd),(λ,ce),(a′,λ)},{(λ,e)},
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{(λ,ce)}→ {(λ,e)},{(λ,bd),(λ,ce),(a′,λ)},

{(λ,bd),(λ,ce),(a′,λ)}→ a,

{(λ,ad),(b′,λ)}→ b,

{(λ,ae),(c′,λ)}→ c,

{(λ,d′)}→ d,

{(λ,e′)}→ e,

{(λ, f ′)}→ f ,

{(λ,a)}→ a′,

{(λ,b)}→ b′,

{(λ,c)}→ c′,

{(d,λ)}→ d′,

{(e,λ)}→ e′,

{( f ,λ)}→ f ′.
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Abstract
Continuous-time Bayesian networks is a natural structured representation language for multi-
component stochastic processes that evolve continuously over time. Despite the compact represen-
tation provided by this language, inference in such models is intractable even in relatively simple
structured networks. We introduce a mean field variational approximation in which we use a prod-
uct of inhomogeneous Markov processes to approximate a joint distribution over trajectories. This
variational approach leads to a globally consistent distribution, which can be efficiently queried.
Additionally, it provides a lower bound on the probability of observations, thus making it attractive
for learning tasks. Here we describe the theoretical foundations for the approximation, an efficient
implementation that exploits the wide range of highly optimized ordinary differential equations
(ODE) solvers, experimentally explore characterizations of processes for which this approximation
is suitable, and show applications to a large-scale real-world inference problem.
Keywords: continuous time Markov processes, continuous time Bayesian networks, variational
approximations, mean field approximation

1. Introduction

Many real-life processes can be naturally thought of as evolving continuously in time. Examples
cover a diverse range, starting with classical and modern physics, but also including robotics (Ng
et al., 2005), computer networks (Simma et al., 2008), social networks (Fan and Shelton, 2009),
gene expression (Lipshtat et al., 2005), biological evolution (El-Hay et al., 2006), and ecological
systems (Opper and Sanguinetti, 2007). A joint characteristic of all above examples is that they
are complex systems composed of multiple components (e.g., many servers in a server farm and
multiple residues in a protein sequence). To realistically model such processes and use them in
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making sensible predictions we need to learn how to reason about systems that are composed of
multiple components and evolve continuously in time.

Generally, when an evolving system is modeled with sufficient detail, its evolution in time is
Markovian; meaning that its future state it determined by its present state—whether in a deter-
ministic or random sense—independently of its past states. A traditional approach to modeling a
multi-component Markovian process is to discretize the entire time interval into regular time slices
of fixed length and represent its evolution using a Dynamic Bayesian network, which compactly
represents probabilistic transitions between consecutive time slices (Dean and Kanazawa, 1989;
Murphy, 2002; Koller and Friedman, 2009). However, as thoroughly explained in Nodelman et al.
(2003), discretization of a time interval often leads either to modeling inaccuracies or to an unnec-
essary computational overhead. Therefore, in recent years there is a growing interest in modeling
and reasoning about multi-component stochastic processes in continuous time (Nodelman et al.,
2002; Ng et al., 2005; Rajaram et al., 2005; Gopalratnam et al., 2005; Opper and Sanguinetti, 2007;
Archambeau et al., 2007; Simma et al., 2008).

In this paper we focus on continuous-time Markov processes having a discrete product state
space S = S1 × S2 × · · ·× SD, where D is the number of components and the size of each Si is
finite. The dynamics of such processes that are also time-homogeneous can be determined by a
single rate matrix whose entries encode transition rates among states. However, as the size of the
state space is exponential in the number of components so does the size of the transition matrix.
Continuous-time Bayesian networks (CTBNs) provide an elegant and compact representation lan-
guage for multi-component processes that have a sparse pattern of interactions (Nodelman et al.,
2002). Such patterns are encoded in CTBNs using a directed graph whose nodes represent com-
ponents and edges represent direct influences among them. The instantaneous dynamics of each
component depends only on the state of its parents in the graph, allowing a representation whose
size scales linearly with the number of components and exponentially only with the indegree of the
nodes of the graph.

Inference in multi-component temporal models is a notoriously hard problem (Koller and Fried-
man, 2009). Similar to the situation in discrete time processes, inference in CTBNs is exponential
in the number of components, even with sparse interactions (Nodelman et al., 2002). Thus, we
have to resort to approximate inference methods. The recent literature has adapted several strategies
from discrete graphical models to CTBNs in a manner that attempts to exploit the continuous-time
representation, thereby avoiding the drawbacks of discretizing the model.

One class of approximations includes sampling-based approaches, where Fan and Shelton (2008)
introduce a likelihood-weighted sampling scheme, and more recently El-Hay et al. (2008) introduce
a Gibbs-sampling procedure. The complexity of the Gibbs sampling procedure has been shown
to naturally adapt to the rate of each individual component. Additionally it yields more accurate
answers with the investment of additional computation. However, it is hard to bound the required
time in advance, tune the stopping criteria, or estimate the error of the approximation.

An alternative class of approximations is based on variational principles. Recently, Nodelman
et al. (2005b) and Saria et al. (2007) introduced an Expectation Propagation approach, which can be
roughly described as a local message passing scheme, where each message describes the dynamics
of a single component over an interval. This message passing procedure can be efficient. Moreover
it can automatically refine the number of intervals according to the complexity of the underlying
system. Nonetheless, it does suffer from several caveats. On the formal level, the approximation
has no convergence guarantees. Second, upon convergence, the computed marginals do not neces-
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sarily form a globally consistent distribution. Third, it is restricted to approximations in the form
of piecewise-homogeneous messages on each interval. Thus, the refinement of the number of in-
tervals depends on the fit of such homogeneous approximations to the target process. Finally, the
approximation of Nodelman et al does not provide a provable approximation on the likelihood of
the observation—a crucial component in learning procedures.

Here, we develop an alternative variational approximation, which provides a different trade-
off. We use the strategy of structured variational approximations in graphical models (Jordan et al.,
1999), and specifically the variational approach of Opper and Sanguinetti (2007) for approximate
inference in latent Markov Jump Processes, a related class of models (see below for more elaborate
comparison). The resulting procedure approximates the posterior distribution of the CTBN as a
product of independent components, each of which is an inhomogeneous continuous-time Markov
process. We introduce a novel representation that is both natural and allows numerically stable com-
putations. By using this representation, we derive an iterative variational procedure that employs
passing information between neighboring components as well as solving a small set of differential
equations (ODEs) in each iteration. The latter allows us to employ highly optimized standard ODE
solvers in the implementation. Such solvers use an adaptive step size, which as we show is more
efficient than any fixed time interval approximation.

We finally describe how to extend the proposed procedure to branching processes and particu-
larly to models of molecular evolution, which describe historical dynamics of biological sequences
that employ many interacting components. Our experiments on this domain demonstrate that our
procedure provides a good approximation both for the likelihood of the evidence and for the ex-
pected sufficient statistics. In particular, the approximation provides a lower-bound on the likeli-
hood, and thus is attractive for use in learning.

The paper is organized as follows: In Section 2 we review continuous-time models and inference
problems in such models. Section 3 introduces a general variational principle for inference using a
novel parameterization. In Section 4 we apply this principle to a family of factored representations
and show how to find an optimal approximation within this family. Section 5 discusses related work.
Section 6 gives an initial evaluation. Section 7 presents branching process and further experiments,
and Section 8 discusses our results.

2. Foundations

CTBNs are based on the framework of continuous-time Markov processes (CTMPs). In this section
we begin by briefly describing CTMPs. See, for example, Gardiner (2004) and Chung (1960) for
a thorough introduction. Next we review the semantics of CTBNs. We then discuss inference
problems in CTBNs and the challenges they pose.

2.1 Continuous Time Markov Processes

A continuous-time stochastic process with state space S is an uncountable collection of S-valued
random variables {X (t) : t ≥ 0} where X (t) describes the state of the system at time t. Systems with
multiple components are described by state spaces that are Cartesian products of spaces, Si, each
representing the state of a single component. In this paper we consider a D-component stochastic
process X (t) = (X (t)

1 , . . . ,X (t)
D ) with state space S = S1× S2× . . .× SD, where each Si is finite. The

states in S are denoted by vectors, x= (x1, . . . ,xD).
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A continuous-time Markov process is a continuous-time stochastic process in which the joint
distribution of every finite subset of random variables X (t0),X (t1), . . . ,X (tK), where t0 < t1 < · · ·< tK ,
satisfies the conditional independence property, also known as the Markov property:

Pr(X (tK) = xK |X (tK−1) = xK−1, . . . ,X (t0) = x0) = Pr(X (tK) = xK |X (tK−1) = xK−1).

In simple terms, the knowledge of the state of the system at a certain time make its states at later
times independent of its states at former times. In that case the distribution of the process is fully
determined by the conditional probabilities of random variable pairs Pr(X (t+s) = y|X (s) = x), namely,
by the probability that the process is in state y at time t+ s given that is was in state x at time s, for
all 0≤ s< t and x,y ∈ S. A CTMP is called time homogeneous if these conditional probabilities do
not depend on s but only on the length of the time interval t, thus, the distribution of the process is
determined by the Markov transition functions,

px,y(t)≡ Pr(X (t+s) = y|X (s) = x), for all x,y ∈ S and t ≥ 0,

which for every fixed t can be viewed as the entries of a stochastic matrix indexed by states x and y.
Under mild assumptions on the Markov transition functions px,y(t), these functions are differ-

entiable. Their derivatives at t = 0,

qx,y = lim
t→0+

px,y(t)−11x=y
t

,

are the entries of the rate matrix Q, where 11 is the indicator function. This rate matrix describes the
infinitesimal transition probabilities,

px,y(h) = 11x=y+qx,yh+o(h), (1)

where o(·) means decay to zero faster than its argument, that is limh↓0
o(h)
h = 0. Note that the off-

diagonal entries of Q are non-negative, whereas each of its rows sums up to zero, namely,

qx,x =−∑
y+=x

qx,y.

The derivative of the Markov transition function for t other than 0 satisfies the so-called forward, or
master equation,

d
dt
px,y(t) =∑

z
qz,ypx,z(t). (2)

A similar characterization for the time-dependent probability distribution, p(t), whose entries are
defined by

px(t) = Pr(X (t) = x), x ∈ S,

is obtained by multiplying the Markov transition function by entries of the initial distribution p(0)
and marginalizing, resulting in

d
dt
p= pQ. (3)

The solution of this ODE is
p(t) = p(0)exp(tQ),
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Figure 1: An example of a CTMP trajectory: The process starts at state x1 = s0, transitions to
x2 = s2 at t1, to x3 = s1 at t2, and finally to x4 = s2 at t3.

where exp(tQ) is a matrix exponential, defined for any square matrix A by the Taylor series,

exp(A) = I+
∞

∑
k=1

Ak

k!
.

Applying this solution to the initial condition px′(0) = 11x=x′ , we can express the Markov transition
function px,y(t) using the rate matrix Q as

px,y(t) = [exp(tQ)]x,y. (4)

Although a CTMP is an uncountable collection of random variables (the state of the system at
every time t), a trajectory σ of {X (t)}t≥0 over a time interval [0,T ] can be characterized by a finite
number of transitions K, a sequence of states (x0,x1, . . . ,xK) and a sequence of transition times
(t0 = 0, t1, . . . , tK , tK+1 = T ). We denote by σ(t) the state at time t, that is, σ(t) = xk for tk ≤ t < tk+1.
Figure 1 illustrates such a trajectory.

2.2 Multi-component Representation - Continuous-Time Bayesian Networks

Equation (4) indicates that the distribution of a homogeneous Markov process is fully determined
by an initial distribution and a single rate matrix Q. However, since the number of states in a D-
component Markov Process is exponential in D, an explicit representation of this transition matrix
is often infeasible. Continuous-time Bayesian networks are a compact representation of Markov
processes that satisfy two assumptions. First it is assumed that only one component can change at a
time, thus transition rates involving simultaneous changes of two or more components are zero. Sec-
ond, the transition rate of each component i depends only on the state of some subset of components
denoted Pai ⊆ {1, . . . ,D}\{i} and on its own state. This dependency is represented using a directed
graph, where the nodes are indexed by {1, . . . ,D} and the parent nodes of i are Pai (Nodelman et al.,
2002). With each component i we then associate a conditional rate matrix Qi|Pai

·|ui for each state ui of

Pai. The off-diagonal entries qi|Paixi,yi|ui represent the rate at which Xi transitions from state xi to state

yi given that its parents are in state ui. The diagonal entries are q
i|Pai
xi,xi|ui = −∑yi +=xi q

i|Pai
xi,yi|ui , ensuring

that each row in each conditional rate matrix sums up to zero. The dynamics of X (t) are defined by
a rate matrix Q with entries qx,y, which combines the conditional rate matrices as follows:

qx,y =











qi|Paixi,yi|ui δ(x,y) = {i}

∑i q
i|Pai
xi,xi|ui x= y

0 otherwise,
(5)
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where δ(x,y) = { j|x j += y j} denotes the set of components in which x differs from y.
To have another perspective on CTBN’s, we may consider a discrete-time approximation of

the process. Let h be a sampling interval. The subset of random variables {Xtk : k ≥ 0}, where
tk = kh, is a discrete-time Markov process over a D-dimensional state-space. Dynamic Bayesian
networks (DBNs) provide a compact modeling language for such processes, namely the conditional
distribution of a DBN Ph(X (tk+1)|X (tk)) is factorized into a product of conditional distributions of
X (tk+1)
i given the state of a subset of X (tk)∪X (tk+1). When h is sufficiently small, the CTBN can be
approximated by a DBN whose parameters depend on the rate matrix Q of the CTBN ,

Ph(X (tk+1) = y|X (tk) = x) =
D

∏
i=1
Ph(X

(tk+1)
i = yi|X

(tk)
i = xi,U (tk) = ui), (6)

where
Ph(X

(tk+1)
i = yi|X

(tk)
i = xi,U (tk) = ui) = 11xi=yi +qi|Paixi,yi|uih. (7)

Each such term is the local conditional probability that X (tk+1)
i = yi given the state of Xi and Ui at

time tk. These are valid conditional distributions, because they are non-negative and are normalized,
that is

∑
yi∈Si

(

11xi=yi +qi|Paixi,yi|uih
)

= 1

for every xi and ui. Note that in this discretized process, transition probabilities involving changes
in more than one component are o(h), as in the CTBN. Moreover, using Equations (1) and (5) we
observe that

Pr(X (tk+1) = y|X (tk) = x) = Ph(X (tk+1) = y|X (tk) = x)+o(h).

(See Appendix A for detailed derivations). Therefore, the CTBN and the approximating DBN are
asymptotically equivalent as h→ 0.

Example 1 An example of a multi-component process is the dynamic Ising model, which corre-
sponds to a CTBN in which every component can be in one of two states, −1 or +1, and each
component prefers to be in the same state as its neighbor. These models are governed by two
parameters: a coupling parameter β (it is the inverse temperature in physical models, which deter-
mines the strength of the coupling between two neighboring components), and a rate parameter τ,
which determines the propensity of each component to change its state. Low values of β correspond
to weak coupling (high temperature). More formally, we define the conditional rate matrices as

qi|Paixi,yi|ui = τ
(

1+ e−2yiβ∑ j∈Pai x j
)−1

where x j ∈ {−1,1}. This model is derived by plugging the Ising grid to Continuous-Time Markov
Networks, which are the undirected counterparts of CTBNs (El-Hay et al., 2006).

Consider a two component Ising model whose structure and corresponding DBN are shown in
Figure 2. This system is symmetric, that is, the conditional rate matrices are identical for i ∈ {1,2}.
As an example, for a specific choice of β and τ we have:

Q
i|Pai
·|−1 =

- +
- −1 1
+ 10 −10

Q
i|Pai
·|+1 =

- +
- −10 10
+ 1 −1
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(a) (b)

Figure 2: Two representations of a two binary component dynamic process. (a) The associated
CTBN. (b) The DBN corresponding to the CTBN in (a). The models are equivalent when
h→ 0.

The local conditional distributions of the DBN can be directly inferred from Equation (7). For
example

Ph(X
(tk+1)
1 = 1|X (tk)

1 =−1,X (tk)
2 = 1) = 10h.

Here, in both components the conditional rates are higher for transitions into states that are identical
to the state of their parent. Therefore, the two components have a disposition of being in the same
state. To support this intuition, we examine the amalgamated rate matrix:

Q =

- - -+ +- ++
- - −2 1 1 0
-+ 10 −20 0 10
+- 10 0 −20 10
++ 0 1 1 −2.

Clearly, transition rates into states in which both components have the same value is higher. Higher
transitions rate imply higher transition probabilities, for example:

p-+ ,--(h) = 10h+o(h),
p-- ,-+(h) = h+o(h).

Thus the probability of transitions into a coherent state is much higher than into an incoherent state.

2.3 Inference in Continuous-time Markov Processes

Our setting is as follows: we receive evidence of the states of several or all components within a
time interval [0,T ]. The two possible types of evidence that may be given are continuous evidence,
where we know the state of a subsetU ⊆ X continuously over some sub-interval [t1, t2]⊆ [0,T ], and
point evidence of the state of U at some point t ∈ [0,T ]. For convenience we restrict our treatment
to a time interval [0,T ] with full end-point evidence X (0) = e0 and X (T ) = eT . We shall discuss the
more general case in Section 5.

Given a continuous-time Bayesian network and evidence of the above type we would like to
evaluate the likelihood of the evidence, Pr(e0,eT ;Q) and to compute pointwise posterior proba-
bilities of various events (e.g., Pr(U (t) = u|e0,eT ) for some U ⊆ X). Another class of queries are
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conditional expectations of statistics that involve entire trajectories of the process. Two important
examples for queries are the sufficient statistics required for learning. These statistics are the amount
of time in which Xi is in state xi and Pai are in state ui, and the number of transitions that Xi un-
derwent from xi to yi while its parents were in state ui (Nodelman et al., 2003). We denote these
statistics by T ixi|ui and M

i
xi,yi|ui respectively. For example, in the trajectory of the univariate process

in Figure 1, we have Ts2 = t2− t1+ t4− t3 andMs0,s2 = 1.
Exact calculation of these values is usually a computationally intractable task. For instance,

calculation of marginals requires first calculating the pointwise distribution over X using a forward-
backward like calculation:

Pr(X (t) = x|e0,eT ) =
pe0,x(t) px,eT (T − t)

pe0,eT (T )
, (8)

and then marginalizing

Pr(U (t) = u|e0,eT ) =∑
x\u
Pr(X (t) = x|e0,eT ),

where px,y(t) = [exp(tQ)]x,y, and the size of Q is exponential in the number of components. More-
over, calculating expected residence times and expected number of transitions involves integration
over the time interval of these quantities (Nodelman et al., 2005a):

E [Tx] =
1

pe0,eT (T )

∫ T

0
pe0,x(t) px,eT (T − t)dt,

E [Mx,y] =
1

pe0,eT (T )

∫ T

0
pe0,x(t)qx,y py,eT (T − t)dt .

These make this approach infeasible beyond a modest number of components, hence we have to
resort to approximations.

3. Variational Principle for Continuous-Time Markov Processes

Variational approximations to structured models aim to approximate a complex distribution by a
simpler one, which allows efficient inference. This problem can be viewed as an optimization
problem: given a specific model and evidence, find the “best” approximation within a given class of
simpler distributions. In this setting the inference is posed as a constrained optimization problem,
where the constraints ensure that the parameters correspond to valid distributions consistent with
the evidence. Specifically, the optimization problem is constructed by defining a lower bound to
the log-likelihood of the evidence, where the gap between the bound and the true likelihood is
the divergence of between the approximation and the true posterior. While the resulting problem
is generally intractable, it enables us to derive approximate algorithms by approximating either
the functional or the constrains that define the set of valid distributions. In this section we define
the lower-bound functional in terms of a general continuous-time Markov process (that is, without
assuming any network structure). Here we aim at defining a lower bound on lnPQ(eT |e0) as well as
to approximating the posterior probability PQ(· | e0,eT ), where PQ is the distribution of the Markov
process whose instantaneous rate-matrix is Q. We start by examining the structure of the posterior
and introducing an appropriate parameterization.
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Recall that the distribution of a time-homogeneous Markov process is characterized by the con-
ditional transition probabilities px,y(t), which in turn is fully redetermined by the constant rate
matrix Q. It is not hard to see that whenever the prior distribution of a stochastic process is that of a
homogeneous Markov process with rate matrix Q, then the posterior PQ(·|e0,eT ) is also a Markov
process, albeit generally not a homogeneous one. The distribution of a continuous-time Markov
processes that is not homogeneous in time is determined by conditional transition probabilities,
px,y(s,s+ t), which depend explicitly on both initial and final times. These transition probabilities
can be expressed by means of a time-dependent matrix-valued function, R(t), which describes in-
stantaneous transition rates. The connection between the time-dependent rate matrix R(t) and the
transition probabilities, px,y(s,s+ t) is established by the master equation,

d
dt
px,y(s,s+ t) =∑

z
rz,y(s+ t)px,z(s,s+ t),

where rz,y(t) are the entries of R(t). This equation is a generalization of Equation (2) for inhomoge-
neous processes. As in the homogeneous case, it leads to a master equation for the time-dependent
probability distribution,

d
dt
px(t) =∑

y
ry,x(t)py(t),

thereby generalizing Equation (3).
By the above discussion, it follows that the posterior process can be represented by a time-

dependent rate matrix R(t). More precisely, writing the posterior transition probability using basic
properties of conditional probabilities and the definition of the Markov transition function gives

PQ(X (t+h) = y|X (t) = x,X (T ) = eT ) =
px,y(h)py,eT (T − t+h)

px,eT (T − t)
.

Taking the limit h→ 0 we obtain the instantaneous transition rate of the posterior process

rx,y(t) = lim
h→0

PQ(X (t+h) = y|X (t) = x,X (T ) = eT )
h

= qx,y ·
py,eT (T − t)
px,eT (T − t)

. (9)

This representation, although natural, proves problematic in the framework of deterministic ev-
idence because as t approaches T the transition rate into the observed state tends to infinity. In par-
ticular, when x += eT and y= eT , the posterior transition rate is qx,eT ·

peT ,eT (T−t)
px,eT (T−t)

. This term diverges
as t → T , because the numerator approaches 1 while the denominator approaches 0. We therefore
consider an alternative parameterization for this inhomogeneous process that is more suitable for
variational approximations.

3.1 Marginal Density Representation

Let Pr be the distribution of a Markov process, generally not time homogeneous. We define a family
of functions:

µx(t) = Pr(X (t) = x),

γx,y(t) = lim
h↓0

Pr(X (t) = x,X (t+h) = y)
h

, x += y.
(10)
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The function µx(t) is the marginal probability that X (t) = x. The function γx,y(t) is the probability
density that X transitions from state x to y at time t. Note that this parameter is not a transition rate,
but rather a product of a point-wise probability with the point-wise transition rate of the distribution,
that is, the entries of the time-dependent rate matrix of an equivalent process can be defined by

rx,y(t) =

{

γx,y(t)
µx(t) µx(t)> 0,
0 µx(t) = 0.

(11)

Hence, unlike the (inhomogeneous) rate matrix at time t, γx,y(t) takes into account the probability
of being in state x and not only the rate of transitions.

We aim to use the family of functions µ and γ as a representation of the posterior process.
To do so, we need to characterize the set of constraints that these functions satisfy. We begin by
constraining the marginals µx(t) to be valid distributions that is, 0 ≤ µx(t) ≤ 1 and ∑x µx(t) = 1.
A similar constraint on the pairwise distributions implies that γx,y(t) ≥ 0 for x += y. Next, we infer
additional constraints from consistency properties between distributions over pairs of variables and
their uni-variate marginals. Specifically, Equation (10) implies that for x += y

Pr(X (t) = x,X (t+h) = y) = γx,y(t)h+o(h). (12)

Plugging this identity into the consistency constraint

µx(t) = Pr(X (t) = x) =∑
y
Pr(X (t) = x,X (t+h) = y),

defining
γx,x(t) =−∑

y+=x
γx,y(t)

and rearranging, we obtain

Pr(X (t) = x,X (t+h) = y) = 11x=yµx(t)+ γx,y(t)h+o(h), (13)

which unlike (12) is valid for all x,y. Marginalizing (13) with respect to the second variable,

Pr(X (t+h) = x) =∑
y
Pr(X (t) = y,X (t+h) = x),

we obtain a forward update rule for the uni-variate marginals

µx(t+h) = µx(t)+h∑
y
γy,x(t)+o(h).

Rearranging terms and taking the limit h→ 0 gives a differential equation for µx(t),

d
dt
µx(t) =∑

y
γy,x(t).

Finally, whenever µx(t) = 0 we have Pr(X (t) = x,X (t+h) = y) = 0, implying in that case that γx,y(t) =
0. Based on these observations we define:
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Definition 1 A family η = {µx(t),γx,y(t) : 0 ≤ t ≤ T} of functions is a Markov-consistent density
set if the following constraints are fulfilled:

µx(t) ≥ 0, ∑
x
µx(0) = 1,

γx,y(t) ≥ 0 ∀y += x,
γx,x(t) = −∑

y+=x
γx,y(t),

d
dt
µx(t) = ∑

y
γy,x(t),

and γx,y(t) = 0 whenever µx(t) = 0. We denote byM the set of all Markov-consistent densities.

Using standard arguments we can show that there exists a correspondence between (generally
inhomogeneous) Markov processes and density sets η. Specifically, given η, we construct a process
by defining an inhomogeneous rate matrix R(t) whose entries are defined in Equation (11) and
prove the following:

Lemma 2 Let η= {µx(t),γx,y(t) : 0≤ t ≤ T}. If η∈M , then there exists a continuous-time Markov
process Pr for which µx and γx,y satisfy (10) for every t in the right-open interval [0,T).

Proof See appendix B

The converse is also true: for every integrable inhomogeneous rate matrix R(t) the corresponding
marginal density set is defined by d

dt µx(t) = ∑y ry,x(t)µy(t) and γx,y(t) = µx(t)rx,y(t). The processes
we are interested in, however, have additional structure, as they correspond to the posterior distri-
bution of a time-homogeneous process with end-point evidence. In that case, multiplying Equation
(9) by µx(t) gives

γx,y(t) = µx(t) ·qx,y ·
py,eT (T − t)
px,eT (T − t)

. (14)

Plugging in Equation (8) we obtain

γx,y(t) =
pe0,x(t) ·qx,y · py,eT (T − t)

pe0,eT (T )
,

which is zero when y += eT and t = T . This additional structure implies that we should only con-
sider a subset of M . Specifically the representation η corresponding to the posterior distribution
PQ(·|e0,eT ) satisfies µx(0) = 11x=e0 , µx(T ) = 11x=eT , γx,y(0) = 0 for all x += e0 and γx,y(T ) = 0 for all
y += eT . We denote by Me ⊂M the subset that contains Markov-consistent density sets satisfying
these constraints. This analysis suggests that for every homogeneous rate matrix and point evi-
dence e there is a member inMe that corresponds to the posterior process. Thus, from now on we
restrict our attention to density sets fromMe.

3.2 Variational Principle

The marginal density representation allows us to state the variational principle for continuous pro-
cesses, which closely tracks similar principles for discrete processes. Specifically, we define a
functional of functions that are constrained to be density sets from Me. The maximum over this
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set is the log-likelihood of the evidence and is attained for a density set that represents the poste-
rior distribution. This formulation will serve as a basis for the mean-field approximation, which is
introduced in the next section.

Define a free energy functional,

F (η;Q) = E(η;Q)+H (η),

which, as we will see, measures the quality of η as an approximation of PQ(·|e). (For succinctness,
we will assume that the evidence e is clear from the context.) The two terms in the functional are
the average energy,

E(η;Q) =
∫ T

0
∑
x

[

µx(t)qx,x+∑
y+=x

γx,y(t) lnqx,y

]

dt,

and the entropy,

H (η) =
∫ T

0
∑
x
∑
y+=x

γx,y(t)[1+ lnµx(t)− lnγx,y(t)]dt.

The following theorem establishes the relation of this functional to the Kullback-Leibler (KL)
divergence and the likelihood of the evidence, and thus allows us to cast the variational inference
into an optimization problem.

Theorem 3 Let Q be a rate matrix, e= (e0,eT ) be states of X, and η ∈Me. Then

F (η;Q) = lnPQ(eT |e0)− ID(Pη||PQ(·|e))

where Pη is the distribution corresponding to η and ID(Pη||PQ(·|e)) is the KL divergence between
the two processes.

We conclude from the non-negativity of the KL divergence that the energy functional F (η;Q) is
a lower bound of the log-likelihood of the evidence. The closer the approximation to the target
posterior, the tighter the bound. Moreover, since the KL divergence is zero if and only if the two
distributions are equal almost everywhere, finding the maximizer of this free energy is equivalent
to finding the posterior distribution from which answers to different queries can be efficiently com-
puted.

3.3 Proof of Theorem 3

We begin by examining properties of distributions of inhomogeneous Markov processes. Let X (t) be
an inhomogeneous Markov process with rate matrix R(t). As in the homogeneous case, a trajectory
σ of {X (t)}t≥0 over a time interval [0,T ] can be characterized by a finite number of transitions K, a
sequence of states (x0,x1, . . . ,xK) and a sequence of transition times (t0 = 0, t1, . . . , tK , tK+1 = T ).
We denote by Σ the set of all trajectories of X [0,T ]. The distribution over Σ can be character-
ized by a collection of random variables that consists of the number of transitions κ, a sequence
of states (χ0, . . . ,χκ) and transition times (τ1, . . . ,τκ). Note that the number of random variables
that characterize the trajectory is by itself a random variable. The density fR of a trajectory
σ = {K,x0, . . . ,xK , t1, . . . , tK} is the derivative of the joint distribution with respect to transition
times, that is,

fR(σ) =
∂K

∂t1 · · ·∂tK
PR(κ= K,χ0 = x0, . . . ,χK = xK ,τ1 ≤ t1, . . . ,τK ≤ tK),
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which is given by

fR(σ) = px0(0) ·
K−1

∏
k=0

[

e
∫ tk+1
tk rxk ,xk (t)dtrxk,xk+1(tk+1)

]

· e
∫ tK+1
tK rxK ,xK (t)dt .

For example, in case R(t) =Q is a homogeneous rate matrix this equation reduces to

fQ(σ) = px0(0) ·
K−1

∏
k=0

[

eqxk ,xk (tk+1−tk)qxk,xk+1
]

· eqxK ,xK (tK+1−tK).

The expectation of a random variable ψ(σ) is an infinite sum (because one has to account for all
possible numbers of transitions) of finite dimensional integrals,

E fQ [ψ]≡
∫
Σ
fR(σ)ψ(σ)dσ≡

∞

∑
K=0
∑
x0
· · ·∑

xK

∫ T

0

∫ tK

0
· · ·

∫ t2

0
fR(σ)ψ(σ)dt1 · · ·dtK .

The KL-divergence between two densities that correspond to two inhomogeneous Markov pro-
cesses with rate matrices R(t) and S(t) is

ID( fR|| fS) =
∫
Σ
fR(σ) ln

fR(σ)
fS(σ)

dσ . (15)

We will use the convention 0ln0= 0 and assume the support of fS is contained in the support of fR.
That is fR(σ) = 0 whenever fS(σ) = 0. The KL-divergence satisfies ID( fR|| fS) ≥ 0 and is exactly
zero if and only if fR = fS almost everywhere (Kullback and Leibler, 1951).

Let η ∈ Me be a marginal density set consistent with e. As we have seen, this density set
corresponds to a Markov process with rate matrix R(t) whose entries are defined by Equation (11),
hence we identify fη ≡ fR.

Given evidence e on some event we denote fQ(σ,e)≡ fQ(σ) ·11σ|=e, and note that

PQ(e) =
∫
{σ:σ|=e}

fQ(σ)dσ=
∫
Σ
fQ(σ,e)dσ ,

where σ |= e is a predicate which is true if σ is consistent with the evidence. The density function
of the posterior distribution PQ(·|e) satisfies fS(σ) = fQ(σ,e)

PQ(e) where S(t) is the time-dependent rate
matrix that corresponds to the posterior process.

Manipulating (15), we get

ID( fη|| fS) =
∫
Σ
fη(σ) ln fη(σ)dσ−

∫
Σ
fη(σ) ln fS(σ)dσ≡ E fη [ln fη(σ)]−E fη [ln fS(σ)] .

Replacing ln fS(σ) by ln fQ(σ,e)− lnPQ(e) and applying simple arithmetic operations gives

lnPQ(e) = E fη [ln fQ(σ,e)]−E fη [ln fη(σ)]+ ID( fη|| fS).

The crux of the proof is in showing that the expectations in the right-hand side satisfy

E fη [ln fQ(σ,e)] = E(η;Q),
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and
−E fη [ln fη(σ)] =H (η),

implying that F (η;Q) is a lower bound on the log-probability of evidence with equality if and only
if fη = fQ almost everywhere.

To prove these identities for the energy and entropy, we treat trajectories as functions σ :R →R
where R is the set of real numbers by denoting σ(t) ≡ X (t)(σ)—the state of the system at time t.
Using this notation we introduce two lemmas that allow us to replace integration over a set of
trajectories by a one dimensional integral, which is defined over a time variable. The first result
handles expectations of functions that depend on specific states:

Lemma 4 Let ψ : S×R → R be a function, then

E fη

[∫ T

0
ψ(σ(t), t)dt

]

=
∫ T

0
∑
x
µx(t)ψ(x, t)dt.

Proof See Appendix C.1

As an example, by setting ψ(x′, t) = 11x′=x we obtain that the expected residence time in state x is
E fη [Tx] =

∫ T
0 µx(t)dt. The second result handles expectations of functions that depend on transitions

between states:

Lemma 5 Let ψ(x,y, t) be a function from S×S×R to R that is continuous with respect to t and
satisfies ψ(x,x, t) = 0, ∀x,∀t then

E fη

[

Kσ

∑
k=1

ψ(xσk−1,x
σ
k , t

σ
k )

]

=
∫ T

0
∑
x
∑
y+=x

γx,y(t)ψ(x,y, t)dt,

where the superscript σ stresses that Kσ, xσk and t
σ
k are associated with a specific trajectory σ.

Proof See Appendix C.2

Continuing the example of the previous lemma, here by settingψ(x′,y′, t) = 11x′=x11y′=y11x +=y the sums
within the left hand expectation become the number of transitions in a trajectory σ. Thus, we obtain
that the expected number of transitions from x to y is E f [Mx,y] =

∫ T
0 γx,y(t)dt.

We now use these lemmas to compute the expectations involved in the energy functional. Sup-
pose e= {e0,eT} is a pair of point evidence and η∈Me. Applying these lemmas with ψ(x, t) = qx,x
and ψ(x,y, t) = 11x +=y · lnqx,y gives

E fη [ln fQ(σ,e)] =
∫ T

0
∑
x

[

µx(t)qx,x(t)+∑
y+=x

γx,y(t) lnqx,y(t)

]

dt .

Similarly, setting ψ(x, t) = rx,x(t) and ψ(x,y, t) = 11x +=y · lnrx,y(t), where R(t) is defined in Equation
(11), we obtain

−E fη [ln fη(σ,e)] =−
∫ T

0
∑
x

[

µx(t)
γx,x(t)
µx(t)

+∑
y+=x

γx,y(t) ln
γx,y(t)
µx(t)

]

dt =H (η) .
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4. Factored Approximation

The variational principle we discussed is based on a representation that is as complex as the original
process—the number of functions γx,y(t) we consider is equal to the size of the original rate ma-
trix Q. To get a tractable inference procedure we make additional simplifying assumptions on the
approximating distribution.

Given a D-component process we consider approximations that factor into products of indepen-
dent processes. More precisely, we defineM i

e to be the continuous Markov-consistent density sets
over the component Xi, that are consistent with the evidence on Xi at times 0 and T . Given a collec-
tion of density sets η1, . . . ,ηD for the different components, the product density set η=η1× · · ·×ηD

is defined as

µx(t) = ∏
i
µixi(t),

γx,y(t) =











γixi,yi(t)µ
\i
x (t) δ(x,y) = {i}

∑i γ
i
xi,xi(t)µ

\i
x (t) x= y

0 otherwise

where µ\ix (t) =∏ j +=i µ
j
x j(t) is the joint distribution at time t of all the components other than the i’th

(it is not hard to see that if ηi ∈M i
e for all i, then η ∈Me). We define the set M F

e to contain all
factored density sets. From now on we assume that η= η1× · · ·×ηD ∈M F

e .
Assuming that Q is defined by a CTBN, and that η is a factored density set, we can rewrite

E(η;Q) =∑
i

∫ T

0
∑
xi

[

µixi(t)Eµ\i(t)
[

qxi,xi|Ui

]

+ ∑
xi,yi +=xi

γixi,yi(t)Eµ\i(t)
[

lnqxi,yi|Ui

]

]

dt

(see derivations in Appendix D). Similarly, the entropy term factors as

H (η) =∑
i
H (ηi) .

Note that terms such as Eµ\i(t)
[

qxi,xi|Ui

]

involve only µj(t) for j ∈ Pai, because Eµ\i(t) [ f (Ui)] =
∑ui µui(t) f (ui). Therefore, this decomposition involves only local terms that either include the i’th
component, or include the i’th component and its parents in the CTBN defining Q.

To make the factored nature of the approximation explicit in the notation, we write henceforth,

F (η;Q) = F̃ (η1, . . . ,ηD;Q).

4.1 Fixed Point Characterization

The factored form of the functional and the independence between the different ηi allows optimiza-
tion by block ascent, optimizing the functional with respect to each parameter set in turn. To do so,
we should solve the following optimization problem:

Fixing i, and given η1, . . . ,ηi−1,ηi+1, . . . ,ηD, inM 1
e , . . .M

i−1
e ,M i+1

e , . . . ,M D
e , respec-

tively, find
arg max

ηi∈M i
e

F̃ (η1, . . . ,ηD;Q) .
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If for all i, we have a µi ∈M i
e , which is a solution to this optimization problem with respect to

each component, then we have a (local) stationary point of the energy functional withinM F
e .

To solve this optimization problem, we define a Lagrangian, which includes the constraints in
the form of Definition 1. These constraints are to be enforced in a continuous fashion, and so the
Lagrange multipliers λixi(t) are continuous functions of t as well. The Lagrangian is a functional of
the functions µixi(t), γ

i
xi,yi(t) and λ

i
xi(t), and takes the following form

L = F̃ (η;Q)−
D

∑
i=1

∫ T

0
λixi(t)

(

d
dt
µixi(t)−∑

yi
γixi,yi(t)

)

dt .

A necessary condition for the optimality of a density set η is the existence of λ such that (η,λ) is a
stationary point of the Lagrangian. A stationary point of a functional satisfies the Euler-Lagrange
equations, namely the functional derivatives with respect to µ, γ and λ vanish (see Appendix E
for a brief review). The detailed derivation of the resulting equations is in Appendix F. Writing
these equations in explicit form, we get a fixed point characterization of the solution in term of the
following set of ODEs:

d
dt
µixi(t) = ∑

yi +=xi

(

γiyi,xi(t)− γixi,yi(t)
)

,

d
dt
ρixi(t) =−ρixi(t)

(

q ixi,xi(t)+ψixi(t)
)

− ∑
yi +=xi

ρiyi(t)q̃
i
xi,yi(t)

(16)

along with the following algebraic constraint

ρixi(t)γ
i
xi,yi(t) = µixi(t)q̃

i
xi,yi(t)ρ

i
yi(t), xi += yi (17)

where ρi are the exponents of the Lagrange multipliers λi. In these equations we use the following
shorthand notations for the average rates

q ixi,xi(t) = Eµ\i(t)
[

qi|Paixi,xi|Ui

]

,

q ixi,xi|x j(t) = Eµ\i(t)
[

qi|Paixi,xi|Ui
| x j

]

,

where µ\i(t) is the product distribution of µ1(t), . . . ,µi−1(t),µi+1(t), . . . ,µD(t). Similarly, we have
the following shorthand notations for the geometrically-averaged rates,

q̃ixi,yi(t) = exp
{

Eµ\i(t)
[

lnqi|Paixi,yi|Ui

]}

,

q̃ixi,yi|x j(t) = exp
{

Eµ\i(t)
[

lnqi|Paixi,yi|Ui
| x j

]}

.

The last auxiliary term is

ψixi(t) = ∑
j∈Childreni

∑
x j

[

µjx j(t)q
j
x j,x j|xi(t)+ ∑

x j +=y j
γ jx j,y j(t) ln q̃

j
x j,y j|xi(t)

]

.

To uniquely solve the two differential Equations (16) for µixi(t) and ρ
i
xi(t) we need to set boundary

conditions. The boundary condition for µixi is defined explicitly inM
F
e as

µixi(0) = 11xi=ei,0 . (18)
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The boundary condition at T is slightly more involved. The constraints inM F
e imply that µixi(T ) =

11xi=ei,T . As stated in Section 3.1, we have that γiei,T ,xi(T ) = 0 when xi += ei,T . Plugging these values
into (17), and assuming that all elements ofQi|Pai are non-zero we get that ρxi(T ) = 0 for all xi += ei,T
(It might be possible to use a weaker condition that Q is irreducible). In addition, we notice that
ρei,T (T ) += 0, for otherwise the whole system of equations for ρ will collapse to 0. Finally, notice
that the solution of (16,17) for µi and γi is insensitive to the multiplication of ρi by a constant. Thus,
we can arbitrarily set ρei,T (T ) = 1, and get the boundary condition

ρixi(T ) = 11xi=ei,T . (19)

Putting it all together we obtain a characterization of stationary points of the functional as stated in
the following theorem:

Theorem 6 ηi ∈M i
e is a stationary point (e.g., local maxima) of F̃ (η1, . . . ,ηD;Q) subject to the

constraints of Definition 1 if and only if it satisfies (16–19).

Proof see Appendix F

It is straightforward to extend this result to show that at a maximumwith respect to all the component
densities, this fixed-point characterization must hold for all components simultaneously.

Example 2 Consider the case of a single component, for which our procedure should be exact, as
no simplifying assumptions are made on the density set. In that case, the averaged rates q i and the
geometrically-averaged rates q̃i both reduce to the unaveraged rates q, and ψ≡ 0. Thus, the system
of equations to be solved is

d
dt
µx(t) = ∑

y+=x
(γy,x(t)− γx,y(t)) ,

d
dt
ρx(t) =−∑

y
qx,yρy(t),

along with the algebraic equation

ρx(t)γx,y(t) = µx(t)qx,yρy(t), y += x.

These equations have a simple intuitive interpretation. First, the backward propagation rule for
ρx implies that

ρx(t) = Pr(eT |X (t) = x).

To prove this identity, we recall the notation px,y(h) ≡ Pr(X (t+h) = y|X (t) = x) and write the dis-
cretized propagation rule

Pr(eT |X (t) = x) =∑
y
px,y(h) ·Pr(eT |X (t+h) = y) .

Using the definition of q (Equation 1), rearranging, dividing by h and taking the limit h→ 0 gives

d
dt
Pr(eT |X (t) = x) =−∑

y
qx,y ·Pr(eT |X (t) = y),
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which is identical to the differential equation for ρ. Second, dividing the above algebraic equation
by ρx(t) whenever it is greater than zero we obtain

γx,y(t) = µx(t)qx,y
ρy(t)
ρx(t)

. (20)

Thus, we reconstructed Equation (14).
This analysis suggest that this system of ODEs is similar to forward-backward propagation,

except that unlike classical forward propagation, here the forward propagation already takes into
account the backward messages to directly compute the posterior. Given this interpretation, it is
clear that integrating ρx(t) from T to 0 followed by integrating µx(t) from 0 to T computes the exact
posterior of the processes.

This interpretation of ρx(t) also allows us to understand the role of γx,y(t). Equation (20) sug-
gests that the instantaneous rate combines the original rate with the relative likelihood of the evi-
dence at T given y and x. If y is much more likely to lead to the final state, then the rates are biased
toward y. Conversely, if y is unlikely to lead to the evidence the rate of transitions to it are lower.
This observation also explains why the forward propagation of µx will reach the observed µx(T )
even though we did not impose it explicitly.

Example 3 Let us return to the two-component Ising chain in Example 1 with initial state X (0)
1 =−1

and X (0)
2 = 1, and a reversed state at the final time, X (T )

1 = 1 and X (T )
2 =−1. For a large value of β,

this evidence is unlikely as at both end points the components are in a undesired configurations. The
exact posterior is one that assigns higher probabilities to trajectories where one of the components
switches relatively fast to match the other, and then toward the end of the interval, they separate
to match the evidence. Since the model is symmetric, these trajectories are either ones in which
both components are most of the time in state −1, or ones where both are most of the time in
state 1 (Figure 3(a)). Due to symmetry, the marginal probability of each component is around
0.5 throughout most of the interval. The variational approximation cannot capture the dependency
between the two components, and thus converges to one of two local maxima, corresponding to the
two potential subsets of trajectories (Figure 3(b)). Examining the value of ρi, we see that close to
the end of the interval they bias the instantaneous rates significantly. For example, as t approaches 1,
ρ11(t)/ρ1−1(t) approaches infinity and so does the instantaneous rate γ1−1,1(t)/µ1−1(t), thereby forcing
X1 to switch to state 1 (Figure 3(c)).

This example also allows to examine the implications of modeling the posterior by inhomoge-
neous Markov processes. In principle, we might have used as an approximation Markov processes
with homogeneous rates, and conditioned on the evidence. To examine whether our approximation
behaves in this manner, we notice that in the single component case we have

qx,y =
ρx(t)γx,y(t)
ρy(t)µx(t)

,

which should be constant.
Consider the analogous quantity in the multi-component case: q̃ixi,yi(t), the geometric average

of the rate of Xi, given the probability of parents state. Not surprisingly, this is exactly a mean field
approximation, where the influence of interacting components is approximated by their average
influence. Since the distribution of the parents (in the two-component system, the other component)
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(a) (b)

(c) (d)

Figure 3: Numerical results for the two-component Ising chain described in Example 3 where the
first component starts in state−1 and ends at time T = 1 in state 1. The second component
has the opposite behavior. (a) Two likely trajectories depicting the two modes of the
model. (b) Exact (solid) and approximate (dashed/dotted) marginals µi1(t). (c) The log
ratio logρi1(t)/ρi−1(t). (d) The expected rates q̃11,−1(t) and q̃1−1,1(t) of component X1 of the
Ising chain in Example 1. We can notice that the averaged rates are highly non-constant,
and so cannot be approximated well with a constant rate matrix.

changes in time, these rates change continuously, especially near the end of the time interval. This
suggests that a piecewise homogeneous approximation cannot capture the dynamics without a loss
in accuracy. As expected in a dynamic process, we can see in Figure 3(d) that the inhomogeneous
transition rates are very erratic. In particular, the rates of X1 spike at the transition point selected
by the mean field approximation. This can be interpreted as putting most of the weight of the
distribution on trajectories which transition from state -1 to 1 at that point.

4.2 Optimization Procedure

If Q is irreducible, then ρixi and µ
i
xi are non-zero throughout the open interval (0,T ). As a result,

we can solve (17) to express γixi,yi as a function of µ
i and ρi, thus eliminating it from (16) to get

evolution equations solely in terms of µi and ρi. Abstracting the details, we obtain a set of ODEs of
the form

d
dt
ρi(t) = α(ρi(t),µ\i(t)) ρi(T ) = given,

d
dt
µi(t) = β(µi(t),ρi(t),µ\i(t)) µi(0) = given.
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where α and β are defined by the right-hand side of the differential equations (16). Since the evo-
lution of ρi does not depend on µi, we can integrate backward from time T to solve for ρi. Then,
integrating forward from time 0, we compute µi. After performing a single iteration of backward-
forward integration, we obtain a solution that satisfies the fixed-point equation (16) for the i’th com-
ponent (this is not surprising once we have identified our procedure to be a variation of a standard
forward-backward algorithm for a single component). Such a solution will be a local maximum
of the functional w.r.t. to ηi (reaching a local minimum or a saddle point requires very specific
initialization points).

This suggests that we can use the standard procedure of asynchronous updates, where we update
each component in a round-robin fashion. Since each of these single-component updates converges
in one backward-forward step, and since it reaches a local maximum, each step improves the value
of the free energy over the previous one. As the free energy functional is bounded by the probability
of the evidence, this procedure will always converge, and the rate of the free energy increase can be
used to test for convergence.

Potentially, there can be many scheduling possibilities. In our implementation the update
scheduling is simply random. A better choice would be to update the component which would
maximally increase the value of the functional in that iteration. This idea is similar to the schedul-
ing of Elidan et al. (2006), who approximate the change in the beliefs by bounding the residuals of
the messages, which give an approximation of the benefit of updating each component.

Another issue is the initialization of this procedure. Since the iteration on the i’th component
depends on µ\i, we need to initialize µ by some legal assignment. To do so, we create a fictional rate
matrix Q̃i for each component and initialize µi to be the posterior of the process given the evidence
ei,0 and ei,T . As a reasonable initial guess, we choose at random one of the conditional rates Qi|ui

using some random assignment ui to determine the fictional rate matrix.
The general optimization procedure is summarized in the following algorithm:
For each i, initialize µi using some legal marginal function.
while not converged do

1. Pick a component i ∈ {1, . . . ,D}.

2. Update ρi(t) by solving the ρi backward differential equation in (16).

3. Update µi(t) and γi(t) by solving the µi forward differential equation in (16) and
using the algebraic equation in (17).

end
Algorithm 1: Mean field approximation in continuous-time Bayesian networks

4.3 Exploiting Continuous-Time Representation

The continuous-time update equations allow us to use standard ODE methods with an adaptive
step size (here we use the Runge-Kutta-Fehlberg (4,5) method). At the price of some overhead,
these procedures automatically tune the trade-off between error and time granularity. Moreover,
this overhead is usually negligible compared to the saving in computation time, because adaptive
integration can be more efficient than any fixed step size integration by an order of magnitude (Press
et al., 2007).

2764



MEAN FIELD APPROXIMATION FOR CONTINUOUS-TIME BAYESIAN NETWORKS

To further save computations, we note that while standard integration methods involve only
initial boundary conditions at t = 0, the solution of µi is also known at t = T . Therefore, we stop
the adaptive integration when µi(t) ≈ µi(T ) and t is close enough to T . This modification reduces
the number of computed points significantly because the derivative of µi tends to grow near the
boundary, resulting in a smaller step size.

The adaptive solver selects different time points for the evaluation of each component. There-
fore, updates of ηi require access to marginal density sets of neighboring components at time points
that differ from their evaluation points. To allow efficient interpolation, we use a piecewise linear
approximation of η whose boundary points are determined by the evaluation points that are chosen
by the adaptive integrator.

5. Perspectives and Related Work

Variational approximations for different types of continuous-time processes have been recently
proposed. Examples include systems with discrete hidden components (Opper and Sanguinetti,
2007); continuous-state processes (Archambeau et al., 2007); hybrid models involving both discrete
and continuous-time components (Sanguinetti et al., 2009; Opper and Sanguinetti, 2010); and spa-
tiotemporal processes (Ruttor and Opper, 2010; Dewar et al., 2010). All these models assume noisy
observations in a finite number of time points. In this work we focus on structured discrete-state
processes with noiseless evidence.

Our approach is motivated by results of Opper and Sanguinetti (2007) who developed a varia-
tional principle for a related model. Their model is similar to an HMM, in which the hidden chain
is a continuous-time Markov process and there are (noisy) observations at discrete points along the
process. They describe a variational principle and discuss the form of the functional when the ap-
proximation is a product of independent processes. There are two main differences between the
setting of Opper and Sanguinetti and ours. First, we show how to exploit the structure of the target
CTBN to reduce the complexity of the approximation. These simplifications imply that the update
of the i’th process depends only on its Markov blanket in the CTBN, allowing us to develop effi-
cient approximations for large models. Second, and more importantly, the structure of the evidence
in our setting is quite different, as we assume deterministic evidence at the end of intervals. This
setting typically leads to a posterior Markov process in which the instantaneous rates used by Opper
and Sanguinetti diverge toward the end point—the rates of transition into the observed state go to
infinity, leading to numerical problems at the end points. We circumvent this problem by using the
marginal density representation which is much more stable numerically.

Taking the general perspective of Wainwright and Jordan (2008), the representation of the dis-
tribution uses the natural sufficient statistics. In the case of a continuous-time Markov process, the
sufficient statistics are Tx, the time spent in state x, andMx,y, the number of transitions from state x to
y. In a discrete-time model, we can capture the statistics for every random variable. In a continuous-
time model, however, we need to consider the time derivative of the statistics. Indeed, as shown in
Section 3.3 we have

d
dt
E [Tx(t)] = µx(t) and

d
dt
E [Mx,y(t)] = γx,y(t).

Thus, our marginal density sets η provide what we consider a natural formulation for variational
approaches to continuous-time Markov processes.
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Our presentation focused on evidence at two ends of an interval. Our formulation easily extends
to deal with more elaborate types of evidence: (1) If we do not observe the initial state of the i’th
component, we can set µix(0) to be the prior probability of X (0) = x. Similarly, if we do not observe Xi
at time T , we set ρix(T ) = 1 as initial data for the backward step. (2) In a CTBN where one (or more)
components are fully observed throughout some interval, we simply set µi for these components to
be a distribution that assigns all the probability mass to the observed trajectory. Similarly, if we
observe different components at different times, we may update each component on a different time
interval. Consequently, maintaining for each component a marginal distribution µi throughout the
interval of interest, we can update the other ones using their evidence patterns.

6. Evaluation on Ising Chains

To gain better insight into the quality of our procedure, we performed numerical tests on models
that challenge the approximation. Specifically, we use Ising chains with the parameterization in-
troduced in Example 1, where we explore regimes defined by the degree of coupling between the
components (the parameter β) and the rate of transitions (the parameter τ). We evaluate the error
in two ways. The first is by the difference between the true log-likelihood and our estimate. The
second is by the average relative error in the estimate of different expected sufficient statistics de-
fined by ∑ j |θ̂ j−θ j|/θ j, where θ j is exact value of the j’th expected sufficient statistics and θ̂ j is
the approximation. To obtain a stable estimate the average is taken over all θ j > 0.05max j′ θ j′ .

Applying our procedure on an Ising chain with 8 components, for which we can still perform
exact inference, we evaluated the relative error for different choices of β and τ. The evidence in
this experiment is e0 = {+,+,+,+,+,+,−,−}, T = 0.64 and eT = {−,−,−,+,+,+,+,+}. As
shown in Figure 4(a), the error is larger when τ and β are large. In the case of a weak coupling
(small β), the posterior is almost factored, and our approximation is accurate. In models with few
transitions (small τ), most of the mass of the posterior is concentrated on a few canonical “types” of
trajectories that can be captured by the approximation (as in Example 3). At high transition rates,
the components tend to transition often, and in a coordinated manner, which leads to a posterior that
is hard to approximate by a product distribution. Moreover, the resulting free energy landscape is
rough with many local maxima. Examining the error in likelihood estimates (Figure 4(b),(c)) we
see a similar trend.

Next, we examine the run time of our approximation when using fairly standard ODE solver
with few optimizations and tunings. The run time is dominated by the time needed to perform
the backward-forward integration when updating a single component, and by the number of such
updates until convergence. Examining the run time for different choices of β and τ (Figure 5), we
see that the run time of our procedure scales linearly with the number of components in the chain.
The differences among the different curves suggest that the runtime is affected by the choice of
parameters, which in turn affect the smoothness of the posterior density sets.

7. Evaluation on Branching Processes

The above-mentioned experimental results indicate that our approximation is accurate when rea-
soning about weakly-coupled components, or about time intervals involving few transitions (low
transition rates). Unfortunately, in many domains we face strongly-coupled components. For exam-
ple, we are interested in modeling the evolution of biological sequences (DNA, RNA, and proteins).
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Figure 4: (a) Relative error as a function of the coupling parameter β (x-axis) and transition rates τ
(y-axis) for an 8-component Ising chain. (b) Comparison of true vs. estimated likelihood
as a function of the rate parameter τ. (c) Comparison of true vs. likelihood as a function
of the coupling parameter β.

Figure 5: Evaluation of the run time of the approximation versus the run time of exact inference as
a function of the number of components.

In such systems, we have a phylogenetic tree that represents the branching process that leads to
current day sequences (see Figure 6).

It is common in sequence evolution to model this process as a continuous-time Markov pro-
cess over a tree (Felsenstein, 2004). More precisely, the evolution along each branch is a stan-
dard continuous-time Markov process, and branching is modeled by a replication, after which each
replica evolves independently along its sub-branch. Common applications are forced to assume that
each character in the sequence evolves independently of the other.

In some situations, assuming an independent evolution of each character is highly unreasonable.
Consider the evolution of an RNA sequence that folds onto itself to form a functional structure,
as in Figure 7(a). This folding is mediated by complementary base-pairing (A-U, C-G, etc) that
stabilizes the structure. During evolution, we expect to see compensatory mutations. That is, if a
A changes into C then its based-paired U will change into a G soon thereafter. To capture such
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Figure 6: An example of a phylogenetic tree. Branch lengths denote time intervals between events.
The interval used for the comparison with non-branching processes is highlighted.

Figure 7: (a) Structure of an RNA molecule. The 3 dimensional structure dictates the dependencies
between the different positions. (b) The form of the energy function for encoding RNA
folding, superimposed on a fragment of a folded structure; each gray box denotes a term
that involves four nucleotides.

coordinated changes, we need to consider the joint evolution of the different characters. In the case
of RNA structure, the stability of the structure is determined by stacking potentials that measure the
stability of two adjacent pairs of interacting nucleotides. Thus, if we consider a factor network to
represent the energy of a fold, it will have structure as shown in Figure 7(b). We can convert this
factor graph into a CTBN using procedures that consider the energy function as a fitness criteria
in evolution (El-Hay et al., 2006; Yu and Thorne, 2006). Unfortunately, inference in such models
suffers from computational blowup, and so the few studies that deal with it explicitly resort to
sampling procedures (Yu and Thorne, 2006).
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Figure 8: Structure of the branching process. (a) The discretized CTBN underlying the process
in an intersection. (b) Illustration of the ODE updates on a directed tree, updating ρi(t)
backwards using (21) and µi(t) forwards using (22).

7.1 Representation

To consider phylogenetic trees, we should take a common approach in evolutionary analysis, in
which inference of the tree topology and branch lengths is performed separately from inference
of sequence dynamics. Thus, we need to extend our framework to deal with branching processes,
where the branching points are fixed and known. In a linear-time model, we view the process as a
map from [0,T ] into random variables X (t). In the case of a tree, we view the process as a map from a
point t= 〈b, t〉 on a tree T (defined by branch b and the time t within it) into a random variable X (t).
Similarly, we generalize the definition of the Markov-consistent density set η to include functions
on trees. We define continuity of functions on trees in the obvious manner.

To gain intuition on this process we return to the discrete case, where our branching process
can be viewed as a branching of the Dynamic Bayesian Network from one branch to two separate
branches at the vertex, as in Figure 8(a).

7.2 Inference on Trees

The variational approximation on trees is thus similar to the one on intervals. Within each branch,
we deal with the same update formulas as in linear time. We denote by µixi(b, t) and ρ

i
xi(b, t) the

messages computed on branch b at time t. The only changes occur at vertices, where we cannot use
the Euler-Lagrange equations (Appendix E), therefore we must derive the propagation equations
using a different method.

The following proposition establishes the update equations for the parameters µi(t) and ρi(t) at
the vertices, as depicted in Figure 8(b):
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Figure 9: Comparison of exact vs. approximate inference along the highlighted path from C to D
in the tree of Figure 6 with and without additional evidence at other leaves. In the latter
case the problem is equivalent to inference on a linear segment. Exact marginals are
shown in solid lines, whereas approximate marginals are in dashed lines. The horizontal
gray lines indicate branch points along the path. Notice that evidence at the leaves result
in discontinuities of the derivatives at such points. The two panels show two different
components.

Proposition 7 Given a vertex T with an incoming branch b1 and two outgoing branches b2,b3. The
following are the correct updates for our parameters µixi(t) and ρ

i
xi(t):

ρixi(b1,T ) = ρixi(b2,0)ρ
i
xi(b3,0), (21)

µixi(bk,0) = µixi(b1,T ) k = 2,3. (22)

Proof See Appendix G

Using Proposition 7 we can set the updates of the different parameters in the branching process
according to (21–22). In the backward propagation of ρi, the value at the end of b1 is the product
of the values at the start of the two outgoing branches. This is the natural operation when we recall
the interpretation of ρi as the probability of the downstream evidence given the current state (which
is its exact meaning in a single component process): the downstream evidence of b2 is independent
of the downstream evidence of b3, given the state of the process at the vertex 〈b1,T 〉. The forward
propagation of µi simply uses the value at the end of the incoming branch as initial value for the
outgoing branches.

When switching to trees, we essentially increase the amount of evidence about intermediate
states. Consider for example the tree of Figure 6 with an Ising chain model (as in the previous
subsection). We can view the span from C to D as an interval with evidence at its end. When
we add evidence at the tip of other branches we gain more information about intermediate points
betweenC andD. Even though this evidence can represent evolution from these intermediate points,
they do change our information state about them. To evaluate the impact of these changes on our
approximation, we considered the tree of Figure 6, and compared it to inference in the backbone
between C and D (Figure 4). Comparing the true marginal to the approximate one along the main
backbone (see Figure 9) we see a major difference in the quality of the approximation. The evidence
in the tree leads to a much tighter approximation of the marginal distribution. A more systematic
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comparison (Figure 10) demonstrates that the additional evidence reduces the magnitude of the error
throughout the parameter space.

Figure 10: (a) Evaluation of the relative error in expected sufficient statistics for an Ising chain in
branching-time; compare to Figure 4(a). (b),(c) Evaluation of the estimated likelihood
on a tree w.r.t. the rate τ and coupling β; compare to Figure 4(b),(c).

Figure 11: Evaluation of the run time vs. accuracy trade-off for several choices of parameters for
mean field and Gibbs sampling on the branching process of Figure 6.

Similarly to mean-field, the Gibbs sampling procedure for CTBNs (El-Hay et al., 2008) can
also be extended to deal with branching processes. Comparing our method to the Gibbs sampling
procedure we see (Figure 11) that the faster mean field approach dominates the Gibbs procedure
over short run times. However, as opposed to mean field, the Gibbs procedure is asymptotically
unbiased, and with longer run times it ultimately prevails. This evaluation also shows that the
adaptive integration procedure in our methods strikes a better trade-off than using a fixed time
granularity integration.
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Figure 12: Comparison of estimates of expected sufficient statistics in the evolution of 18 interact-
ing nucleotides, using a realistic model of RNA evolution. Each point is an expected
value of: (a) residence time in a specific state of a component and its parents; (b)
number of transition between two states. The x-axis is the estimate by the variational
procedure, whereas the y-axis is the estimate by Gibbs sampling.

As a more demanding test, we applied our inference procedure to a model similar to the one
introduced by Yu and Thorne (2006) for a stem of 18 interacting RNA nucleotides in 8 species in
the phylogeny of Figure 6. In this model the transition rate between two sequences that differ in
a single nucleotide depends on difference between their folding energy. Specifically, the transition
rate from sequence x to sequence y is given by

qx,y = 1.6
(

1+ eEfold(y)−Efold(x)
)−1

, |δ(x,y)|= 1,

where Efold is the folding energy of the sequence. This equation implies that transition rates are
increasing monotonically with the reduction of the folding energy. Hence, this model tends to evolve
into low energy states. The folding energy in turn is a sum of local stacking energies, involving
quadruples of nucleotides as described by the factors in Figure 7. Denoting the subset of positions
contained in each quadruple by Dk, the energy is

Efold(x) =∑
k
Ekfold(x|Dk),

where x|Dk is the subset of nucleotides that belong factor k. This model is equivalent to a CTBN in
which the parents of each components are the other components that share the same factors. This
property follows from the fact that for any pair x and y, where δ(x,y) = {i}, the difference between
the energies of these two sequences depends only on the factors that contain i.

We compared our estimate of the expected sufficient statistics of this model to these obtained
by the Gibbs sampling procedure. The Gibbs sampling estimates were chosen by running the pro-
cedure with an increasing computation time until there was no significant change in the results. The
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final estimates was obtained using 5000 burn-in rounds, 10000 number of samples and 100 rounds
between two consecutive samples. The results, shown in Figure 12, demonstrate that over all the two
approximate inference procedures are in good agreement about the value of the expected sufficient
statistics.

8. Discussion

In this paper we formulate a general variational principle for continuous-time Markov processes (by
reformulating and extending the one proposed by Opper and Sanguinetti, 2007), and use it to derive
an efficient procedure for inference in CTBNs. In this mean field approximation, we use a product
of independent inhomogeneous processes to approximate the multi-component posterior.

Our procedure enjoys the same benefits encountered in discrete-time mean field procedure (Jor-
dan et al., 1999): it provides a lower-bound on the likelihood of the evidence and its run time scales
linearly with the number of components. Using asynchronous updates it is guaranteed to converge,
and the approximation represents a consistent joint distribution. It also suffers from expected short-
comings: the functional has multiple local maxima, it cannot capture complex interactions in the
posterior (Example 3). By using a time-inhomogeneous representation our approximation does cap-
ture complex patterns in the temporal progression of the marginal distribution of each component.
Importantly, the continuous-time parameterization enables straightforward implementation using
standard ODE integration packages that automatically tune the trade-off between time granularity
and approximation quality. We show how it is extended to perform inference on phylogenetic trees,
where the posterior distribution is directly affected by several evidence points, and show that it
provides fairly accurate answers in the context of a real application (Figure 12).

A key development is the introduction of marginal density sets. Using this representation we
reformulate and extend the variational principle proposed by Opper and Sanguinetti (2007) , which
incorporates a different inhomogeneous representation. This modification allows handling direct
evidence of the state of the process, as in the case of CTBNs, while keeping the representation of
the approximation bounded. The extension of this principle to CTBNs follows by exploiting their
networks structure. This adaptation of continuously inhomogeneous representations to CTBNs in-
creases the flexibility of the approximation relative to the piecewise homogeneous representation of
Saria et al. (2007) and, somewhat surprisingly, also significantly simplifies the resulting formula-
tion.

The proposed representation is natural in the sense that its functions are the time-derivatives of
the expected sufficient statistics that we are willing to evaluate. Hence, once finding the optimal
value of the lower bound, calculating these expectations is straightforward. This representation is
analogous to mean parameters which have proved powerful in variational approximations of expo-
nential families over finite random variable sets (Wainwright and Jordan, 2008).

We believe that even in cases where evidence is indirect and noisy, the marginal density rep-
resentation should comprise smoother functions than posterior rates. Intuitively, in the presence of
a noisy observation the posterior probability of some state x can be very small. In such cases, the
posterior transition rate form x into a state that better explains the observation might tend to a large
quantity. This reasoning suggests that marginal density representations should be better handled by
adaptive numerical integration algorithms. An interesting direction would be to test this conjecture
empirically.
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A possible extension is using our variational procedure to generate the initial distribution for
the Gibbs sampling procedure and thus skip the initial burn-in phase and produce accurate samples.
Another attractive aspect of this new variational approximation is its potential use for learning model
parameters from data. It can be easily combined with the EM procedure for CTBNs (Nodelman
et al., 2005a) to obtain a Variational-EM procedure for CTBNs, which monotonically increases the
likelihood by alternating between steps that improve the approximation η (the updates discussed
here) and steps that improve the model parameters θ (an M-step Nodelman et al., 2005a). Finally,
marginal density sets are a particularly suitable representation for adapting richer representations
such as Bethe, Kikuchi and convex approximations to non-homogeneous versions (El-Hay et al.,
2010). Further work in that direction should allow bridging the gap in the wealth of inference
techniques between finite domain models and continuous-time models.
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Appendix A. The Relation Between CTBNs and DBNs

In this section we show that the DBN construction of Equations (6-7) is such that as h approaches
0, the distribution Ph approaches Pr. To show this, it suffice to show that

lim
h→0

Ph(X (tk+1) = y|X (tk) = x)−11x=y
h

= qx,y .

We ensured this condition holds component-wise, and now need to show that this leads to global
consistency.

Plugging Equation (7) into Equation (6), the transition probability of the DBN is

Ph(X (tk+1) = y|X (tk) = x) =∏
i

(

11xi=yi +qi|Paixi,yi|ui ·h
)

.

Since we consider the limit as h approaches 0, any term that involves hd with d > 1 is irrelevant.
And thus, we can limit our attention to the constant terms and terms linear in h. Expanding the
product gives

Ph(X (tk+1) = y|X (tk) = x) =∏
i
11xi=yi +∑

i
qi|Paixi,yi|ui ·h∏

j +=i
11x j=y j +o(h) .

Now, ∏i 11xi=yi = 11x=y. Moreover, it is easy to verify that

qx,y =∑
i
qi|Paixi,yi|ui∏

j +=i
11x j=y j .

Thus,
Ph(X (tk+1) = y|X (tk) = x) = 11x=y+qx,yh+o(h),

proving the required condition.
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Appendix B. Marginal Density Sets and Markov Processes - Proof of Lemma 2

Proof Given η, we define the inhomogeneous rate matrix R(t) as in Equation (11). R(t) is a valid
rate matrix because its off-diagonals are non-negative as they are the quotient of two non-negative
functions, and because applying the requirement on γx,x(t) in Definition 1

rx,x(t) =
γx,x(t)
µx(t)

=−
∑y+=x γx,y(t)

µx(t)
=−∑

y+=x
rx,y(t) ,

we see that R(t)’s diagonals are negative and the rows sum to 0. We can use these rates with the
initial value µx(0) to construct the Markov process Pη from the forward master equation

d
dt
Pη(X (t) = x) =∑

y
Pη(X (t) = y)ry,x(t) ,

and
Pη(X (0)) = µ(0) .

To conclude the proof we show that Pη and the marginal density set satisfy (10). First, from
Definition 1 it follows that µ(t) is the solution to the master equation of Pη(X (t)), because the initial
values match at t = 0 and the time-derivatives of the two functions are identical. Thus

Pη(X (t) = x) = µx(t) .

Next, the equivalence of the joint probability densities can be proved:

lim
h→0

Pr(X (t) = x,X (t+h) = y)
h

= lim
h→0

µx(t)Pr(X (t+h) = y|Pr(X (t) = x)
h

= lim
h→0

µx(t)rx,y(t)h
h

= µx(t)rx,y(t) .

From the definition of rx,y(t) and the fact that γx,y(t) = 0 whenever µx(t) = 0, it follows that
µx(t)rx,y(t) is exactly γx,y(t)

Appendix C. Expectations in Inhomogeneous Processes

This section includes the proofs of the lemmas used in the proof of the variational lower bound
theorem.

C.1 Expectations of Functions of States - Proof of Lemma 4

Proof Changing the order of integration we obtain

E fη

[∫ T

0
ψ(σ(t), t)dt

]

≡
∫
Σ
fη(σ)

∫ T

0
ψ(σ(t), t)dtdσ =

∫ T

0

∫
Σ
fη(σ) ·ψ(σ(t), t)dσdt .
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For each t ∈ T we decompose the inner integral according to possible states at that time:∫
Σ
fη(σ) ·ψ(σ(t), t)dσ = ∑

x

∫
Σ
fη(σ) ·11σ(t)=x ·ψ(x, t)dσ

= ∑
x
ψ(x, t)

∫
Σ
fη(σ) ·11σ(t)=x dσ

= ∑
x
ψ(x, t)µx(t) .

C.2 Expectations of Functions of Transitions - Proof of Lemma 5

Proof Given a trajectory σ there exists a small enough h> 0 such that for every transition and for
every t ∈ (tk−h, tk) we have σ(t) = xk−1 and σ(t+h) = xk. In that case we can rewrite the sum in
the expectation term as

Kσ

∑
k=1

ψ(xσk−1,x
σ
k , t

σ
k ) =

Kσ

∑
k=1

1
h

∫ tk

tk−h
ψ(σ(t),σ(t+h), t)dt+

o(h)
h

=
1
h

∫ T−h

0
ψ(σ(t),σ(t+h), t)dt+

o(h)
h

,

where the first equality follows from continuity and the second one from the requirement that
ψ(x,x, t) = 0. Taking the limit h→ 0 and using this requirement again gives

Kσ

∑
k=1

ψ(xσk−1,x
σ
k , t

σ
k ) =

d
ds

[∫ T

0
ψ(σ(t),σ(t+ s), t)dt

]

s=0
.

Taking expectation we obtain
∫
Σ
f (σ)

d
ds

[∫ T

0
ψ(σ(t),σ(t+ s), t)dt

]

s=0
dσ

=
∫
Σ
f (σ)

d
ds

[∫ T

0
∑
x
∑
y+=x

ψ(x,y, t)11σ(t)=x11σ(t+s)=y dt
]

s=0

dσ

=
d
ds

[∫ T

0
∑
x
∑
y+=x

ψ(x,y, t)
∫
Σ
f (σ)11σ(t)=x11σ(t+s)=ydσ dt

]

s=0

.

The inner integral in the last term is a joint probability∫
Σ
f (σ)11σ(t)=x11σ(t+s)=ydσ= Pr(X (t) = x,X (t+s) = y) .

Switching the order of integration and differentiation and using

d
ds
Pr(X (t) = x,X (t+s) = y)

∣

∣

∣

∣

s=0
= γxy(t), x += y,

gives the desired result.
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Appendix D. Proof of the Factored Representation of the Energy Functional

Proof We begin with the definition of the average energy

E(η;Q) =
∫ T

0
∑
x

[

µx(t)qx,x+∑
y+=x

γx,y(t) lnqx,y

]

dt

=
∫ T

0
∑
x

[

µx(t)qx,x+∑
i
∑
yi +=xi

γixi,yi(t)µ
\i(t) lnqx,y

]

dt .

where the equality stems from the observation that the only states y that may have γx,y(t) > 0, are
those with δ(x,y) ≤ 1 (all the rest are 0). Thus, the enumeration over all possible states collapses
into an enumeration over all components i and all states yi += xi. Due to the fact that we are only
considering transitions in single components, we may replace the global joint density γx,y with
γixi,yi ·µ

\i(t), as per definition.
Using (5), we can decompose the transition rates qx,x and qx,y to get

E(η;Q) = ∑
i

∫ T

0
∑
x

[

µx(t)qxi,xi|ui + ∑
yi +=xi

γixi,yi(t)µ
\i(t) lnqxi,yi|ui

]

dt

= ∑
i

∫ T

0
∑
xi

[

µixi(t)∑
x\i
µ\ix\i(t)qxi,xi|ui + ∑

yi +=xi
γixi,yi(t)µ

\i
x\i(t) lnqxi,yi|ui

]

dt .

To get to the last equality we use the factorization of µ(t) as a product of µi(t) with µ\i(t) and the
reordering of the summation. Next we simply write the previous sum as an expectation over X \ i

E(η;Q) = ∑
i

∫ T

0
∑
xi
µixi(t)Eµ\i(t)

[

qxi,xi|Ui

]

+∑
i

∫ T

0
∑
yi +=xi

γixi,yi(t)Eµ\i(t)
[

lnqxi,yi|Ui

]

dt ,

which concludes the proof.
Turning to the entropy-like term we have:

H (η) =
∫ T

0
∑
x
∑
y+=x

γx,y(t)[1+ lnµx(t)− lnγx,y(t)]dt

= ∑
i

∫ T

0
∑
x
∑
yi +=xi

µ\i(t)γxi,yi(t)[1+∑
i
lnµixi(t)− lnγxi,yi(t)−∑

j +=i
lnµxj(t)]dt

= ∑
i

∫ T

0
∑
xi
∑
yi +=xi

γxi,yi(t)[1+ lnµixi(t)− lnγxi,yi(t)]dt

= ∑
i
H (ηi) ,

where, the first equality is definition of H . The second one follows from the definition of the fac-
tored density set. The third one is obtained by algebraic manipulation and the last one is again the
definition of H .
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Appendix E. Euler-Lagrange Equations

The problem of finding the fixed points of functionals whose arguments are continuous functions
comes from the field ofCalculus of variations. We briefly review the usage Euler-Lagrange equation
for solving optimization problems over functionals. Additional information can be found in Gelfand
and Fomin (1963).

A functional is a mapping from a vector space to its underlying field. In our case the functional
is the Lagrangian introduced in Section 4, which is an integral over real-valued functions, and the
underlying field is the real numbers.

Given a functional over a normed space of continuously differentiable real functions of the form

I[y] =
∫ b

a
f (t,y(t),y′(t))dt

where y′(t) is the time-derivative of the function y(t), we would like to find a function y(t) that
minimizes (or in our case maximizes) the functional subject to y(a) = ya and y(b) = yb. In the
simplest case, when there are no additional constraints, a necessary condition for y to be a local
optimum is that y is a stationary point. Roughly, a stationary point is a function y, where I[y] is
insensitive to small variations in y. That is, given a function h(t) where h(a) = 0 and h(b) = 0, the
change of the functional I[y+h]− I[y] is small relative to the norm of h. For y(t) to be a stationary
point, it must satisfy the Euler-Lagrange equations (Gelfand and Fomin, 1963)

∂
∂y
f (t,y(t),y′(t))−

d
dt

(

∂
∂y′

f (t,y(t),y′(t))
)

= 0 . (23)

In this paper we have additional constraints describing the time derivative of µ. The general-
ization of the Euler-Lagrange equations to that case is straightforward. Denoting the subsidiary
constraints by g(t,y(t),y′(t)) = 0 , we simply replace f (t,y,y′) by f (t,y,y′)−λ(t)g(t,y,y′) in Equa-
tion 23.

An example for the use of this equation is in the following proof.

Appendix F. Stationary Points of the Lagrangian - Proof of Theorem 6

Proof For convenience, we begin by rewriting the Lagrangian in explicit form: L =
∫ T
0 f (y(t),y′(t))dt

where y(t) = 〈µ(t),γ(t),λ(t)〉 is a concatenation of the parameters and Lagrange multiplier and

f (y(t),y′(t)) =
D

∑
i=1
∑
xi

[

µixi(t)Eµ\i(t)
[

qxi,xi|Ui

]

+ ∑
yi +=xi

γixi,yi(t)Eµ\i(t)
[

lnqxi,yi|Ui

]

+ ∑
yi +=xi

γxiyi
[

1+ lnµixi(t)− lnγ
i
xiyi(t)

]

−λixi(t)

(

d
dt
µixi(t)−∑

yi
γixiyi(t)

)]

.

The Euler-Lagrange equations of the Lagrangian define its stationary points w.r.t. the parameters of
each component µi(t), γi(t) and λi(t).

First, we take the partial derivatives of f w.r.t to µixi(t) as well as
d
dt µ

i
xi(t) and plug them into

Equation 23. We start by handling the energy terms. These terms involve expectations in the form
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Eµ\ j(t) [g(U j)] =∑u j µu j(t)g(u j). The parameter µ
i
xi(t) appears in these terms only when i is a parent

of j and u j is consistent with xi. In that case ∂
∂µixi

µu j = µuj/µixi . Thus,

∂
∂µixi

Eµ\ j(t) [g(U j)] = Eµ\ j(t) [g(U j) | xi] ·δ j∈Childreni

Recalling the definitions of the averaged rates

q ixi,xi|x j(t) = Eµ\i(t)
[

qi|Paixi,xi|Ui
| x j

]

and
q̃ixi,yi|x j(t) = exp

{

Eµ\i(t)
[

lnqi|Paixi,yi|Ui
| x j

]}

we obtain
∂
∂µix j

Eµ\ j(t)
[

q jx j,x j|U j

]

= δ j∈Childreniq
j
x j,x j|xi(t)

and
∂
∂µix j

Eµ\ j(t)
[

lnq jx j,x j|U j

]

= δ j∈Childreni ln q̃
j
x j,x j|xi(t).

Therefore the derivative of the sum over j += i of the energy terms is

ψixi(t)≡ ∑
j∈Childreni

∑
x j

[

µjx j(t)q
j
x j,x j|xi(t)+ ∑

x j +=y j
γ jx j,y j(t) ln q̃

j
x j,y j|xi(t)

]

.

Additionally, the derivative of the energy term for j = i is q ixi,xi(t) ≡ Eµ\i(t)
[

qxi,xi|Ui

]

. Next, the
derivative of the entropy term is γixi,xi(t)/µ

i
xi(t). Finally, the derivative of f with respect to

d
dt µ

i
xi(t)

is −λixi(t). Plugging in these derivatives into Equation (23) we obtain

q ixi,xi(t)+ψixi(t)−
γixi,xi
µixi(t)

+
d
dt
λixi(t) = 0 . (24)

Next, the derivative w.r.t. γixi,yi(t) gives us

lnµixi(t)+ ln q̃
i
xi,yi(t)− lnγ

i
xi,yi(t)+λiyi(t)−λixi(t) = 0 . (25)

Denoting ρixi(t) = exp{λ
i
xi(t)}, Equation (25) becomes

γixi,yi(t) = µixi(t)q̃
i
xi,yi(t)

ρiyi(t)
ρixi(t)

,

which is the algebraic equation of γ. Using this result and the definition of γixi,xi we have

γixi,xi(t) =− ∑
yi +=xi

γixi,yi(t) =−µixi(t)∑
xi,yi

q̃ixi,yi(t)
ρiyi(t)
ρixi(t)

.

Plugging this equality into (24) and using the identity d
dtρ

i
xi(t) =

d
dtλ

i
xi(t)ρ

i
xi(t) gives

d
dt
ρixi(t) =−ρixi(t)

(

q ixi,xi(t)+ψixi(t)
)

− ∑
yi +=xi

q̃ixi,yiρ
i
yi(t) .

Thus the stationary point of the Lagrangian matches the updates of (16–17).
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Appendix G. Proof of Proposition 7

Proof We denote the time at the vertex t0 = (b1,T ), the time just before as t1 = (b1,T −h) and the
times just after it on each branch t2 = (b2,h) and t3 = (b3,h), as in Figure 13.

Figure 13: Branching process with discretization points of Lemma 7.

The marginals µixi(b1, t) are continuous, as they are derived from the forward differential equa-
tion. To derive the propagation formula for the ρixi(t) requires additional care. The ρ

i
xi(t) have been

derived from the constraints on the time-derivative of µixi(t). In a vertex this constraint is threefold,
as we now have the constraints on b1

µixi(t0)−µixi(t1)
h

=∑
yi
γixi,yi(t1)

and those on the other branches bk for k = 2,3

µixi(tk)−µixi(t0)
h

=∑
yi
γixi,yi(t0) .

The integrand of the Lagrangian corresponding to point t0 is

L|t0 = F̃ (η;Q)|t0 +λ0(t1)

(

µixi(t0)−µixi(t1)
h

−∑
yi
γixi,yi(t1)

)

− ∑
k=2,3

λk(t0)

(

µixi(tk)−µixi(t0)
h

−∑
yi
γixi,yi(t0)

)

,

as this is the only integrand which involves µxi(t0), the derivative of the Lagrangian collapses into

∂
∂µixi(t0)

L =
∂

∂µixi(t0)
L|t0

=
λ0(t1)
h

−

(

λ2(t0)
h

+
λ3(t0)
h

)

+
∂

∂µixi(t0)
F̃ (η;Q)|t0 = 0 .

Rearranging the previous equation and multiplying by h, we get

λ0(t1) = λ2(t0)+λ3(t0)+
∂

∂µixi(t0)
F̃ (η;Q)|t0h .
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Looking at (24) we can see that as t0 is not a leaf, and thus µixi(t0) > 0 and the derivative of the
functional cannot diverge. Therefore, as h→ 0 this term vanishes and we are left with

λ0(t1) = λ2(t0)+λ3(t0)

which after taking exponents gives (21).
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Abstract
This work deals with four classical prediction settings, namely full information, bandit, label effi-
cient and bandit label efficient as well as four different notions of regret: pseudo-regret, expected re-
gret, high probability regret and tracking the best expert regret. We introduce a new forecaster, INF
(Implicitly Normalized Forecaster) based on an arbitrary function ψ for which we propose a unified
analysis of its pseudo-regret in the four games we consider. In particular, for ψ(x) = exp(ηx)+ γ

K ,
INF reduces to the classical exponentially weighted average forecaster and our analysis of the
pseudo-regret recovers known results while for the expected regret we slightly tighten the bounds.
On the other hand with ψ(x) =

( η
−x

)q
+ γ

K , which defines a new forecaster, we are able to remove
the extraneous logarithmic factor in the pseudo-regret bounds for bandits games, and thus fill in a
long open gap in the characterization of the minimax rate for the pseudo-regret in the bandit game.
We also provide high probability bounds depending on the cumulative reward of the optimal action.

Finally, we consider the stochastic bandit game, and prove that an appropriate modification of
the upper confidence bound policy UCB1 (Auer et al., 2002a) achieves the distribution-free optimal
rate while still having a distribution-dependent rate logarithmic in the number of plays.
Keywords: Bandits (adversarial and stochastic), regret bound, minimax rate, label efficient, upper
confidence bound (UCB) policy, online learning, prediction with limited feedback.

1. Introduction

This section starts by defining the prediction tasks, the different regret notions that we will consider,
and the different adversaries of the forecaster. We will then recap existing lower and upper regret
bounds for the different settings, and give an overview of our contributions.

1.1 The Four Prediction Tasks

We consider a general prediction game where at each stage, a forecaster (or decision maker) chooses
one action (or arm), and receives a reward from it. Then the forecaster receives a feedback about
the rewards which he can use to make his choice at the next stage. His goal is to maximize his
cumulative gain. In the simplest version, after choosing an arm the forecaster observes the rewards

∗. Also at Willow, CNRS/ENS/INRIA—UMR 8548.

c©2010 Jean-Yves Audibert and Sébastien Bubeck.
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Parameters: the number of arms (or actions) K and the number of rounds n with
n≥ K ≥ 2.

For each round t = 1,2, . . . ,n

(1) The forecaster chooses an arm It ∈ {1, . . . ,K}, possibly with the help of an
external randomization.

(2) Simultaneously the adversary chooses a gain vector gt = (g1,t , . . . ,gK,t) ∈
[0,1]K (see Section 8 for loss games or signed games).

(3) The forecaster receives the gain gIt ,t (without systematically observing it). He
observes

– the reward vector (g1,t , . . . ,gK,t) in the full information game,
– the reward vector (g1,t , . . . ,gK,t) if he asks for it with the global constraint
that he is not allowed to ask it more than m times for some fixed integer
number 1≤ m≤ n. This prediction game is the label efficient game,

– only gIt ,t in the bandit game,
– only his obtained reward gIt ,t if he asks for it with the global constraint
that he is not allowed to ask it more than m times for some fixed integer
number 1 ≤ m ≤ n. This prediction game is the label efficient bandit
game.

Goal : The forecaster tries to maximize his cumulative gain ∑nt=1 gIt ,t .

Figure 1: The four prediction tasks considered in this work.

for all arms, this is the so called full information game. In the label efficient game, originally
proposed by Helmbold and Panizza (1997), after choosing its action at a stage, the forecaster decides
whether to ask for the rewards of the different actions at this stage, knowing that he is allowed to do
it a limited number of times. Another classical setting is the bandit game where the forecaster only
observes the reward of the arm he has chosen. In its original version (Robbins, 1952), this game
was considered in a stochastic setting, that is, the nature draws the rewards from a fixed product-
distribution. Later it was considered in an adversarial framework (Auer et al., 1995), where there
is an adversary choosing the rewards on the arms. A combination of the two previous settings is
the label efficient bandit game (György and Ottucsák, 2006), in which the only observed rewards
are the ones obtained and asked by the forecaster, with again a limitation on the number of possible
queries. These four games are described more precisely in Figure 1. Their Hannan consistency has
been considered in Allenberg et al. (2006) in the case of unbounded losses. Here we will focus on
regret upper bounds and minimax policies for bounded losses.

1.2 Regret and Pseudo-regret

A natural way to assess the performance of a forecaster is to compute his regret with respect to the
best action in hindsight (see Section 7 for a more general regret in which we compare to the best
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switching strategy having a fixed number of action-switches):

Rn = max
1≤i≤K

n

∑
t=1

(
gi,t −gIt ,t

)
.

A lot of attention has been drawn by the characterization of the minimax expected regret in the dif-
ferent games we have described. More precisely for a given game, let us write sup for the supremum
over all allowed adversaries and inf for the infimum over all forecaster strategies for this game. We
are interested in the quantity:

infsupERn,

where the expectation is with respect to the possible randomization of the forecaster and the adver-
sary. Another related quantity which can be easier to handle is the pseudo-regret:

Rn = max
1≤i≤K

E

n

∑
t=1

(
gi,t −gIt ,t

)
.

Note that, by Jensen’s inequality, the pseudo-regret is always smaller than the expected regret. In
Appendix D we discuss cases where the converse inequality holds (up to an additional term).

1.3 The Different Adversaries

The simplest adversary is the deterministic one. It is characterized by a fixed matrix of nK rewards
corresponding to (gi,t)1≤i≤K,1≤t≤n. Another adversary is the “stochastic” one, in which the reward
vectors are independent and have the same distribution.1 This adversary is characterized by a dis-
tribution on [0,1]K , corresponding to the common distribution of gt , t = 1, . . . ,n. A more general
adversary is the fully oblivious one, in which the reward vectors are independent. Here the adver-
sary is characterized by n distributions on [0,1]K corresponding to the distributions of g1, . . . ,gn.
Deterministic and stochastic adversaries are fully oblivious adversaries.

An even more general adversary is the oblivious one, in which the only constraint on the ad-
versary is that the reward vectors are independent of the past decisions of the forecaster. The most
general adversary is the one who may choose the reward vector gt as a function of the past decisions
I1, . . . , It−1 (non-oblivious adversary).

1.4 Known Regret Bounds

Table 1 recaps existing lower and upper bounds on the minimax pseudo-regret and the minimax
expected regret for general adversaries (i.e., possibly non-oblivious ones). For the first three lines,
we refer the reader to the book (Cesa-Bianchi and Lugosi, 2006) and references within, particularly
Cesa-Bianchi et al. (1997) and Cesa-Bianchi (1999) for the full information game, Cesa-Bianchi
et al. (2005) for the label efficient game, Auer et al. (2002b) for the bandit game and György and
Ottucsák (2006) for the label efficient bandit game. The lower bounds in the last line do not appear
in the existing litterature, but we prove them in this paper. Apart from the full information game,
the upper bounds are usually proved on the pseudo-regret. The upper bounds on the expected regret
are obtained by using high probability bounds on the regret. The parameters of the algorithm in the

1. The term “stochastic” can be a bit misleading since the assumption is not just stochasticity but rather an i.i.d. as-
sumption.
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infsupRn infsupERn
Lower bound Upper bound Lower bound Upper bound

Full information game
√
n logK

√
n logK

√
n logK

√
n logK

Label efficient game n
√

logK
m n

√
logK
m n

√
logK
m n

√
logn
m

Bandit game
√
nK

√
nK logK

√
nK

√
nK logn

Bandit label efficient game n
√

K
m n

√
K logK
m n

√
K
m n

√
K logn
m

Table 1: Existing bounds (apart from the lower bounds in the last line which are proved in this
paper) on the pseudo-regret and expected regret. Except for the full information game,
there are logarithmic gaps between lower and upper bounds.

latter bounds usually depend on the confidence level δ that we want to obtain. Thus to derive bounds
on the expected regret we can not integrate the deviations but rather we have to take δ of order 1/n,
which leads to the gaps involving log(n). Table 1 exhibits several logarithmic gaps between upper
and lower bounds on the minimax rate, namely:

•
√
log(K) gap for the minimax pseudo-regret in the bandit game as well as the label efficient

bandit game.

•
√
log(n) gap for the minimax expected regret in the bandit game as well as the label efficient

bandit game.

•
√
log(n)/ log(K) gap for the minimax expected regret in the label efficient game,

1.5 Contributions of This Work

We reduce the above gaps by improving the upper bounds as shown by Table 2. Different proof
techniques are used and new forecasting strategies are proposed. The most original contribution is
the introduction of a new forecaster, INF (Implicitly Normalized Forecaster), for which we propose
a unified analysis of its regret in the four games we consider. The analysis is original (it avoids
the traditional but scope-limiting argument based on the simplification of a sum of logarithms of
ratios), and allows to fill in the long open gap in the bandit problems with oblivious adversaries (and
with general adversaries for the pseudo-regret notion). The analysis also applies to exponentially
weighted average forecasters. It allows to prove a regret bound of order

√
nKS log(nK/S) when the

forecaster’s strategy is compared to a strategy allowed to switch S times between arms, while the
best known bound was

√
nKS log(nK) (Auer, 2002), and achieved for a different policy.

An “orthogonal” contribution is to propose a tuning of the parameters of the forecasting policies
such that the high probability regret bounds holds for any confidence level (instead of holding just
for a single confidence level as in previous works). Bounds on the expected regret that are deduced
from these PAC (“probably approximately correct”) regret bounds are better than previous bounds
by a logarithmic factor in the games with limited information (see columns on infsupERn in Tables
1 and 2). The arguments to obtain these bounds are not fundamentally new and rely essentially on
a careful use of deviation inequalities for supermartingales. They can be used either in the standard
analysis of exponentially weighted average forecasters or in the more general context of INF.
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infsupRn infsupERn High probability
bound on Rn

Label efficient game n
√

logK
m n

√
log(Kδ−1)

m
Bandit game with fully oblivious adversary

√
nK

√
nK

√
nK log(δ−1)

Bandit game with oblivious adversary
√
nK

√
nK

√
nK
logK log(Kδ

−1)

Bandit game with general adversary
√
nK

√
nKlogK

√
nK
logK log(Kδ

−1)

L.E. bandit with deterministic adversary n
√

K
m n

√
K
m n

√
K
m log(δ

−1)

L.E. bandit with oblivious adversary n
√

K
m n

√
K
m n

√
K

m logK log(Kδ
−1)

L.E. bandit with general adversary n
√

K
m n

√
K logK
m n

√
K

m logK log(Kδ
−1)

Table 2: New regret upper bounds proposed in this work. The high probability bounds are for a
policy of the forecaster that does not depend on the confidence level δ (unlike previously
known high probability bounds).

Another “orthogonal” contribution is the proposal of a new biased estimate of the rewards in
bandit games, which allows to achieve high probability regret bounds depending on the performance
of the optimal arm: in this new bound, the factor n is replaced by Gmax =maxi=1,...,n∑n

t=1 gi,t . If the
forecaster draws It according to the distribution pt = (p1,t , . . . , pK,t), then the new biased estimate
of gi,t is vi,t = − 1IIt=i

β log
(
1− βgi,t

pi,t

)
. This estimate should be compared to vi,t = gi,t

1IIt=i
pi,t , for which

bounds in terms of Gmax exists in expectations as shown in (Auer et al., 2002b, Section 3), and to
vi,t = gi,t

1IIt=i
pi,t + β

pi,t for some β > 0 for which high probability bounds exist but they are expressed
with the n factor, and not Gmax (see Section 6 of Auer et al., 2002b, and Section 6.8 of Cesa-Bianchi
and Lugosi, 2006).

We also propose a unified proof to obtain the lower bounds in Table 1. The contribution of
this proof is two-fold. First it gives the first lower bound for the label efficient bandit game. Sec-
ondly in the case of the label efficient (full information) game it is a simpler proof than the one
proposed in Cesa-Bianchi et al. (2005). Indeed in the latter proof, the authors use Birgé’s version
of Fano’s lemma to prove the lower bound for deterministic forecasters. Then the extension to non-
deterministic forecasters is done by a generalization of this information lemma and a decomposition
of general forecasters into a convex combination of deterministic forecasters. The benefit from this
proof technique is to be able to deal with the case K = 2 and K = 3 while the basic version of Fano’s
lemma does not give any information in this case. Here we propose to use Pinsker’s inequality for
the case K = 2 and K = 3. This allows us to use the basic version of Fano’s lemma and to extend
the result to non-deterministic forecasters with a simple application of Fubini’s Theorem.

The last contribution of this work is also independent of the previous ones and concerns the
stochastic bandit game (that is the bandit game with “stochastic” adversary). We prove that a mod-
ification of UCB1, Auer et al. (2002a), attains the optimal distribution-free rate

√
nK as well as the

logarithmic distribution-dependent rate. The key idea, compared to previous works, is to reduce
exploration of sufficiently drawn arms.
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1.6 Outline

In Section 2, we describe a new class of forecasters, called INF, for prediction games. Then we
present a new forecaster inside this class, called Poly INF, for which we propose a general theorem
bounding its regret. A more general statement on the regret of any INF can be found in Appendix A.
Exponentially weighted average forecasters are a special case of INF as shown in Section 3. In Sec-
tion 4, we prove that our forecasters and analysis recover the known results for the full information
game.

Section 5 contains the core contributions of the paper, namely all the regret bounds for the lim-
ited feedback games. The interest of Poly INF appears in the bandit games where it satisfies a regret
bound without a logarithmic factor, unlike exponentially weighted average forecasters. Section 6
provides high probability bounds in the bandit games that depends on the cumulative reward of the
optimal arm: the factor n is replaced by max1≤i≤K∑n

t=1 gi,t . In Section 7, we consider a stronger
notion of regret, when we compare ourselves to a strategy allowed to switch between arms a fixed
number of times. Section 8 shows how to generalize our results when one considers losses rather
than gains, or signed games.

Section 9 considers a framework fundamentally different from the previous sections, namely
the stochastic multi-armed bandit problem. There we propose a new forecaster, MOSS, for which
we prove an optimal distribution-free rate as well as a logarithmic distribution-dependent rate.

Appendix A contains a general regret upper bound for INF and two useful technical lemmas.
Appendix B contains the unified proof of the lower bounds. Appendix C contains the proofs that
have not been detailed in the main body of the paper. Finally, Appendix D gathers the different
results we have obtained regarding the relation between the expected regret and the pseudo-regret.

2. The Implicitly Normalized Forecaster

In this section, we define a new class of randomized policies for the general prediction game. Let
us consider a continuously differentiable function ψ : R∗

− → R∗
+ satisfying

ψ′ > 0, lim
x→−∞

ψ(x)< 1/K, lim
x→0

ψ(x)≥ 1. (1)

Lemma 1 There exists a continuously differentiable function C : RK
+ → R satisfying for any x =

(x1, . . . ,xK) ∈ RK
+,

max
1≤i≤K

xi <C(x)≤ max
1≤i≤K

xi−ψ−1 (1/K) , (2)

and
K

∑
i=1

ψ(xi−C(x)) = 1. (3)

Proof Consider a fixed x= (x1, . . . ,xK). The decreasing function φ : c *→ ∑K
i=1ψ(xi− c) satisfies

lim
c→ max

1≤i≤K
xi
φ(c)> 1 and lim

c→+∞
φ(c)< 1.

From the intermediate value theorem, there is a unique C(x) satisfying φ(C(x)) = 1. From the im-
plicit function theorem, the mapping x *→C(x) is continuously differentiable.
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INF (Implicitly Normalized Forecaster):

Parameters:

• the continuously differentiable function ψ : R∗
− → R∗

+ satisfying (1)

• the estimates vi,t of gi,t based on the (drawn arms and) observed rewards at time
t (and before time t)

Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1,2, . . . ,

(1) Draw an arm It from the probability distribution pt .

(2) Use the observed reward(s) to build the estimate vt = (v1,t , . . . ,vK,t) of
(g1,t , . . . ,gK,t) and let: Vt = ∑ts=1 vs = (V1,t , . . . ,VK,t).

(3) Compute the normalization constant Ct =C(Vt).

(4) Compute the new probability distribution pt+1 = (p1,t+1, . . . , pK,t+1) where

pi,t+1 = ψ(Vi,t −Ct).

Figure 2: The proposed policy for the general prediction game.

The implicitly normalized forecaster (INF) is defined in Figure 2. Equality (3) makes the fourth
step in Figure 2 legitimate. From (2), C(Vt) is roughly equal to max1≤i≤KVi,t . Recall that Vi,t is an
estimate of the cumulative gain at time t for arm i. This means that INF chooses the probability
assigned to arm i as a function of the (estimated) regret. Note that, in spirit, it is similar to the
traditional weighted average forecaster, see for example Section 2.1 of Cesa-Bianchi and Lugosi
(2006), where the probabilities are proportional to a function of the difference between the (esti-
mated) cumulative reward of arm i and the cumulative reward of the policy, which should be, for a
well-performing policy, of orderC(Vt).

The interesting feature of the implicit normalization is the following argument, which allows to
recover the results concerning the exponentially weighted average forecasters, and more interest-
ingly to propose a policy having a regret of order

√
nK in the bandit game with oblivious adversary.

First note that ∑n
t=1∑

K
i=1 pi,tvi,t roughly evaluates the cumulative reward ∑n

t=1 gIt ,t of the policy. In
fact, it is exactly the cumulative gain in the bandit game when vi,t = gi,t

1IIt=i
pi,t , and its expectation is

exactly the expected cumulative reward in the full information game when vi,t = gi,t . The argument
starts with an Abel transformation and consequently is “orthogonal” to the usual argument given in
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the beginning of Section C.2. Letting V0 = 0 ∈ RK . We have

n

∑
t=1

gIt ,t ≈
n

∑
t=1

K

∑
i=1

pi,tvi,t

=
n

∑
t=1

K

∑
i=1

pi,t(Vi,t −Vi,t−1)

=
K

∑
i=1

pi,n+1Vi,n+
K

∑
i=1

n

∑
t=1

Vi,t(pi,t − pi,t+1)

=
K

∑
i=1

pi,n+1
(
ψ−1(pi,n+1)+Cn

)
+

K

∑
i=1

n

∑
t=1

(ψ−1(pi,t+1)+Ct)(pi,t− pi,t+1)

=Cn+
K

∑
i=1

pi,n+1ψ−1(pi,n+1)+
K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t− pi,t+1),

where the remarkable simplification in the last step is closely linked to our specific class of ran-
domized algorithms. The equality is interesting since, from (2), Cn approximates the maximum
estimated cumulative reward max1≤i≤KVi,n, which should be close to the cumulative reward of the
optimal arm max1≤i≤K Gi,n, where Gi,n = ∑n

t=1 gi,t . Since the last term in the right-hand side is

K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t− pi,t+1)≈
K

∑
i=1

n

∑
t=1

∫ pi,t+1

pi,t
ψ−1(u)du=

K

∑
i=1

∫ pi,n+1

1/K
ψ−1(u)du, (4)

we obtain

max
1≤i≤K

Gi,n−
n

∑
t=1

gIt ,t !−
K

∑
i=1

pi,n+1ψ−1(pi,n+1)+
K

∑
i=1

∫ pi,n+1

1/K
ψ−1(u)du. (5)

The right-hand side is easy to study: it depends only on the final probability vector and has simple
upper bounds for adequate choices of ψ. For instance, for ψ(x) = exp(ηx) + γ

K with η > 0 and
γ ∈ [0,1), which corresponds to exponentially weighted average forecasters as we will explain in
Section 3, the right-hand side is smaller than 1−γη log

( K
1−γ

)
+γCn. For ψ(x) =

( η
−x

)q
+ γ

K with η> 0,
q> 1 and γ ∈ [0,1), which will appear to be a fruitful choice, it is smaller than q

q−1ηK
1/q+γCn. For

sake of simplicity, we have been hiding the residual terms of (4) coming from the Taylor expansions
of the primitive function of ψ−1. However, these terms when added together (nK terms!) are not
that small, and in fact constrain the choice of the parameters γ and η if one wishes to get the tightest
bound.

The rigorous formulation of (5) is given in Theorem 27, which has been put in Appendix A for
lack of readability. We propose here its specialization to the function ψ(x) =

( η
−x

)q
+ γ

K with η> 0,
q> 1 and γ ∈ [0,1). This function obviously satisfies conditions (1). We will refer to the associated
forecasting strategy as “Poly INF”. Here the (normalizing) functionC has no closed form expression
(this is a consequence of Abel’s impossibility theorem). Actually this remark holds in general, hence
the name of the general policy. However this does not lead to a major computational issue since, in
the interval given by (2), C(x) is the unique solution of φ(c) = 1, where φ : c *→ ∑K

i=1ψ(xi− c) is
a decreasing function. We will prove that Poly INF forecaster generates nicer probability updates
than the exponentially weighted average forecasteras as, for bandits games (label efficient or not), it
allows to remove the extraneous logK factor in the pseudo-regret bounds and some regret bounds.
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Theorem 2 (General regret bound for Poly INF) Let ψ(x) =
( η
−x

)q
+ γ

K with q > 1, η > 0 and
γ ∈ [0,1). Let (vi,t)1≤i≤K, 1≤t≤n be a sequence of nonnegative real numbers,

Bt = max
1≤i≤K

vi,t , and B=max
t
Bt .

If γ= 0 then INF satisfies:
(
max
1≤i≤K

n

∑
t=1

vi,t
)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK1/q+

q
2η
exp

(
2
q+1
η

B
) n

∑
t=1

B2t , (6)

and (
max
1≤i≤K

n

∑
t=1

vi,t
)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK1/q+

qB
η
exp

(
8qB
η

) n

∑
t=1

K

∑
i=1

pi,tvi,t . (7)

For γ> 0, if we have vi,t = ct
pi,t 1Ii=It for some random variable ct taking values in [0,c] with 0< c<

qη
( γ
(q−1)K

)(q−1)/q, then

(1− γ)

(
max
1≤i≤K

n

∑
t=1

vi,t
)
− (1+ γζ)

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK

1
q , (8)

where
ζ=

1
(q−1)K

((q−1)cKµ(1+µ)
2γη

)q
,

with

µ= exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1−
c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

In all this work, the parameters η, q and γ will be chosen such that ζ and µ act as numerical
constants. To derive concrete bounds from the above theorem, most of the work lies in relating the
left-hand side with the different notions of regret we consider. This task is trivial for the pseudo-
regret. To derive high probability regret bounds, deviation inequalities for supermartingales are
used on top of (6) and (8) (which hold with probability one). Finally, the expected regret bounds are
obtained by integration of the high probability bounds.

As long as numerical constants do not matter, one can use (7) to recover the bounds obtained
from (6). The advantage of (7) over (6) is that it allows to get regret bounds where the factor n is
replaced by Gmax =maxi=1,...,nGi,n.

3. Exponentially Weighted Average Forecasters

The normalization by division that weighted average forecasters perform is different from the nor-
malization by shift of the real axis that INF performs. Nonetheless, we can recover exactly the
exponentially weighted average forecasters because of the special relation of the exponential with
the addition and the multiplication.

Let ψ(x) = exp(ηx)+ γ
K with η> 0 and γ ∈ [0,1). Then conditions (1) are clearly satisfied and

(3) is equivalent to exp(−ηC(x)) = 1−γ
∑Ki=1 exp(ηxi)

, which implies

pi,t+1 = (1− γ)
exp(ηVi,t)

∑K
j=1 exp(ηVi,t)

+
γ
K
.
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In other words, for the full information case (label efficient or not), we recover the exponentially
weighted average forecaster (with γ= 0) while for the bandit game we recover EXP3. For the label
efficient bandit game, it does not give us the GREEN policy proposed in Allenberg et al. (2006)
but rather the straightforward modification of the exponentially weighted average forecaster to this
game (György and Ottucsák, 2006). Theorem 3 below gives a unified view on this algorithm for
these four games. In the following, we will refer to this algorithm as the “exponentially weighted
average forecaster” whatever the game is.

Theorem 3 (Regret bound for the exponentially weighted average forecaster)
Letψ(x)= exp(ηx)+ γ

K with η> 0 and γ∈ [0,1). Let (vi,t)1≤i≤K, 1≤t≤n be a sequence of nonnegative
real numbers,

Bt = max
1≤i≤K

vi,t , and B= max
1≤t≤n

Bt .

Consider the increasing function Θ : u *→ eu−1−u
u2 equal to 1/2 by continuity at zero. If γ = 0 then

INF satisfies: (
max
1≤i≤K

n

∑
t=1

vi,t
)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
logK
η

+
η
8

n

∑
t=1

B2t , (9)

and (
max
1≤i≤K

n

∑
t=1

vi,t
)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
logK
η

+ηBΘ(ηB)
n

∑
t=1

K

∑
i=1

pi,tvi,t . (10)

If we have
γ≥ KηΘ(ηB)max

i,t
pi,tvi,t , (11)

then INF satisfies:

(1− γ)

(
max
1≤i≤K

n

∑
t=1

vi,t
)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤ (1− γ)
logK
η

. (12)

We have the same discussion about (9) and (10) than about (6) and (7): Inequality (10) allows to
prove bounds where the factor n is replaced by Gmax =maxi=1,...,nGi,n, but at the price of worsened
numerical constants, when compared to (9). We illustrate this point in Theorem 4, where (13) and
(14) respectively comes from (9) and (10) .

The above theorem relies on the standard argument based on the cancellation of terms in a sum
of logarithms of ratios (see Section C.2). For sake of comparison, we have applied our general result
for INF forecasters, that is Theorem 27 (see Appendix A). This leads to the same result with wors-
ened constants. Precisely, η8 becomes

η
2 exp(2ηB) in (9) while Θ(ηB) becomes

exp(2Bη)[1+exp(2Bη)]
2

in (11). This seems to be the price for having a theorem applying to a large class of forecasters.

4. The Full Information (FI) Game

The purpose of this section is to illustrate the general regret bounds given in Theorems 2 and 3 in the
simplest case, when we set vi,t = gi,t , which is possible since the rewards for all arms are observed
in the full information setting. The next theorem is given explicitly to show an easy application of
Inequalities (9) and (10).
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Theorem 4 (Exponentially weighted average forecaster in the FI game) Letψ(x)= exp(ηx)with
η> 0. Let vi,t = gi,t . Then in the full information game, INF satisfies

max
1≤i≤K

n

∑
i=1

gi,t −
n

∑
t=1

K

∑
i=1

pi,tgi,t ≤
logK
η

+
ηn
8
. (13)

and

max
1≤i≤K

n

∑
i=1

gi,t −
n

∑
t=1

K

∑
i=1

pi,tgi,t ≤
logK
η

+ηΘ(η)
n

∑
t=1

K

∑
i=1

pi,tgi,t . (14)

In particular with η=
√

8logK
n , we get ERn ≤

√ n
2 logK, and there exists η> 0 such that

ERn ≤
√
2EGmax logK.

Proof It comes from (9) and (10) since we have B ≤ 1 and ∑n
t=1B2t ≤ n. The only nontrivial

result is the last inequality. It obviously holds for any η when EGmax = 0, and is achieved for
η = log

(
1+

√
2(logK)/EGmax

)
, when EGmax > 0. Indeed, by taking the expectation in (14), we

get

E

n

∑
t=1

K

∑
i=1

pi,tgi,t ≥
ηEGmax− logK
exp(η)−1

= log

(

1+
√
2logK
EGmax

)√
(EGmax)3
2 logK

−
√

EGmax logK
2

≥ EGmax−2
√

EGmax logK
2

,

where we use log(1+ x)≥ x− x2
2 for any x≥ 0 in the last inequality.

Now we consider a new algorithm for the FI game, that is INF with ψ(x) =
( η
−x

)q and vi,t = gi,t .

Theorem 5 (Poly INF in the FI game) Let ψ(x) =
( η
−x

)q with η > 0 and q > 1. Let vi,t = gi,t .
Then in the full information game, INF satisfies:

max
1≤i≤K

n

∑
i=1

gi,t −
n

∑
t=1

K

∑
i=1

pi,tgi,t ≤
q

q−1
ηK1/q+ exp

(4q
η

) qn
2η

. (15)

In particular with q= 3logK and η= 1.8
√
n logK we get

ERn ≤ 7
√
n logK.

Proof It comes from (6), q+1≤ 2q and ∑n
t=1B2t ≤ n.

Remark 6 By using the Hoeffding-Azuma inequality (see, e.g., Lemma A.7 of Cesa-Bianchi and
Lugosi, 2006), one can derive high probability bounds from (13) and (15): for instance, from (15),
for any δ> 0, with probability at least 1−δ, Poly INF satisfies:

Rn ≤
q

q−1
ηK1/q+ exp

(4q
η

) qn
2η

+

√
n log(δ−1)

2
.
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5. The Limited Feedback Games

This section provides regret bounds for three limited feedback games: the label efficient game, the
bandit game, and the mixed game, that is the label efficient bandit game.

5.1 Label Efficient Game (LE)

The variants of the LE game consider that the number of queried reward vectors is constrained either
strictly or just in expectation. This section considers successively these two cases.

5.1.1 CONSTRAINT ON THE EXPECTED NUMBER OF QUERIED REWARD VECTORS

As in Section 4, the purpose of this section is to show how to use INF in order to recover known
minimax bounds (up to constant factors) in a slight modification of the LE game: the simple LE
game, in which the requirement is that the expected number of queried reward vectors should be
less or equal to m.

Let us consider the following policy. At each round, we draw a Bernoulli random variable Zt ,
with parameter ε = m/n, to decide whether we ask for the gains or not. Note that we do not fulfill
exactly the requirement of the LE game as we might ask a bit more than m reward vectors, but we
fulfill the one of the simple LE game. We do so in order to avoid technical details and focus on
the main argument of the proof. The exact LE game will be addressed in Section 5.1.2, where, in
addition, we will prove bounds on the expected regret ERn instead of just the pseudo-regret Rn.

In this section, the estimate of gi,t is vi,t =
gi,t
ε Zt , which is observable since the rewards at time t

for all arms are observed when Zt = 1.

Theorem 7 (Exponentially weighted average forecaster in the simple LE game) Let ψ(x) =

exp(ηx) with η =
√
8m logK
n . Let vi,t =

gi,t
ε Zt with ε =

m
n . Then in the simple LE game, INF satis-

fies

Rn ≤ n
√
logK
2m

.

Proof The first inequality comes from (9). Since we have Bt ≤ Zt/ε and vi,t = gi,t
ε Zt , we obtain

(
max
1≤i≤K

n

∑
t=1

gi,t
Zt
ε

)
−

n

∑
t=1

K

∑
i=1

pi,tgi,t
Zt
ε
≤
logK
η

+
η
8ε2

n

∑
t=1

Zt ,

hence, by taking the expectation of both sides,

Rn =
(
max
1≤i≤K

E

n

∑
t=1

gi,t
Zt
ε

)
−E

n

∑
t=1

K

∑
i=1

pi,tgi,t
Zt
ε
≤
logK
η

+
nη
8ε

=
logK
η

+
n2η
8m

.

Straightforward computations conclude the proof.

A similar result can be proved for the INF forecaster with ψ(x) =
( η
−x

)q, η > 0 and q of order
logK. We do not state it since we will prove a stronger result in the next section.
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5.1.2 HARD CONSTRAINT ON THE NUMBER OF QUERIED REWARD VECTORS

The goal of this section is to push the idea that by using high probability bounds as an intermediate
step, one can control the expected regret ERn = Emax1≤i≤K∑n

t=1
(
gi,t − gIt ,t

)
instead of just the

pseudo-regret Rn = max1≤i≤KE∑n
t=1

(
gi,t − gIt ,t

)
. Most previous works have obtained results for

Rn. These results are interesting for oblivious opponents, that is when the adversary’s choices of the
rewards do not depend on the past draws and obtained rewards, since in this case Proposition 33 in
Appendix D shows that one can extend bounds on the pseudo-regret Rn to the expected regret ERn.
For non-oblivious opponents, upper bounds on Rn are rather weak statements and high probability
bounds on Rn or bounds on ERn are desirable. In Auer (2002) and Cesa-Bianchi and Lugosi (2006),
high probability bounds on Rn have been given. Unfortunately, the policies proposed there are
depending on the confidence level of the bound. As a consequence, the resulting best bound on ERn,
obtained by choosing the policies with confidence level parameter of order 1/n, has an extraneous
logn term. Specifically, from Theorem 6.2 of Cesa-Bianchi and Lugosi (2006), one can immediately
derive ERn≤ 8n

√
log(4K)+log(n)

m +1. The theorems of this section essentially show that the logn term
can be removed.

As in Section 5.1.1, we still use a draw of a Bernoulli random variable Zt to decide whether we
ask for the gains or not. The difference is that, if ∑t−1s=1Zs ≥m, we do not ask for the gains (as we are
not allowed to do so). To avoid that this last constraint interferes in the analysis, the parameter of
the Bernoulli random variable is set to ε= 3m

4n and the probability of the event ∑
n
t=1Zt > m is upper

bounded. The estimate of gi,t remains vi,t =
gi,t
ε Zt .

Theorem 8 (Exponentially weighted average forecaster in the LE game) Let ψ(x) = exp(ηx)
with η =

√
m logK
n . Let vi,t =

gi,t
ε Zt with ε =

3m
4n . Then in the LE game, for any δ > 0, with prob-

ability at least 1−δ, INF satisfies:

Rn ≤ n
√
27log(2Kδ−1)

m
,

and

ERn ≤ n
√
27log(6K)

m
.

Theorem 9 (Poly INF in the LE game) Letψ(x)=
( η
−x

)q with q= 3log(2K) and η= 2n
√

log(2K)
m .

Let vi,t =
gi,t
ε Zt with ε=

3m
4n . Then in the LE game, for any δ> 0, with probability at least 1−δ, INF

satisfies:

Rn ≤
(
8−

√
27
)
n
√
log(2K)

m
+n

√
27log(2Kδ−1)

m
,

and

ERn ≤ 8n
√
log(6K)

m
.

5.2 Bandit Game

This section is cut into two parts. In the first one, from Theorem 2 and Theorem 3, we derive
upper bounds on the pseudo-regret Rn =max1≤i≤KE∑n

t=1
(
gi,t−gIt ,t

)
. To bound the expected regret
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ERn = Emax1≤i≤K∑n
t=1

(
gi,t −gIt ,t

)
, we will then use high probability bounds on top of the use of

these theorems. Since this makes the proofs more intricate, we have chosen to provide the less
general results, but easier to obtain, in Section 5.2.1 and the more general ones in Section 5.2.2.

The main results here are that, by using the INF with a polynomial function ψ, we obtain
an upper bound of order

√
nK for Rn, which imply a bound of order

√
nK on ERn for oblivious

adversaries (Proposition 33 in Appendix D). In the general case (containing the non-oblivious
opponent), we show an upper bound of order

√
nK logK on ERn. We conjecture that this bound

cannot be improved, that is the opponent may take advantage of the past to make the player pay a
regret with the extra logarithmic factor (see Remark 14).

5.2.1 BOUNDS ON THE PSEUDO-REGRET

In this section, the estimate of gi,t is vi,t =
gi,t
pi,t 1IIt=i, which is observable since the reward gIt ,t is

revealed at time t.

Theorem 10 (Exponentially weighted average forecaster in the bandit game) Let ψ(x) =
exp(ηx)+ γ

K with 1> γ≥ 4ηK
5 > 0. Let vi,t = gi,t

pi,t 1IIt=i. Then in the bandit game, INF satisfies:

Rn ≤
logK
η

+ γ max
1≤i≤K

EGi,n.

In particular, for γ=min
(
1
2 ,
√

4K logK
5n

)
and η=

√
5logK
4nK , we have

Rn ≤
√
16
5
nK logK.

Proof One simply needs to note that for 5γ≥ 4Kη, (11) is satisfied (since B= K/γ), and thus (12)
can be rewritten into

(1− γ)

(
max
1≤i≤K

n

∑
t=1

gi,t
pi,t
1IIt=i

)
−

n

∑
t=1

gIt ,t ≤ (1− γ)
logK
η

.

By taking the expectation, we get

Rn ≤ (1− γ)
logK
η

+ γ max
1≤i≤K

EGi,n.

For the numerical application, since Rn ≤ n, the bound is trivial
√

(4K logK)/(5n)< 1
2 . Otherwise,

it is a direct application of the general bound.

Theorem 11 (Poly INF in the bandit game) Consider ψ(x) =
( η
−x

)q
+ γ

K with γ=min
(
1
2 ,
√

3K
n

)
,

η=
√
5n and q= 2. Let vi,t =

gi,t
pi,t 1IIt=i. Then in the bandit game, INF satisfies:

Rn ≤ 8
√
nK.
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Proof The bound is trivial when 1
2 ≤

√
3K
n . So we consider hereafter that γ =

√
3K
n < 1

2 . By
taking the expectation in (8) and letting Ḡmax = max1≤i≤KEGi,n, we obtain that for γ > (q−
1)K(qη)q/(1−q) > 0 (condition coming from the condition on c for (8)),

(1− γ)Ḡmax− (1+ γζ)E
n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q ,

with
ζ=

1
(q−1)K

((q−1)Kµ(1+µ)
2γη

)q
,

and

µ= exp

{
2(q+1)

η

(
K
γ

)(q−1)/q
(

1−
1
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

We thus have

Rn ≤ γ(1+ζ)Ḡmax+
q

q−1
ηK

1
q ≤ γ(1+ζ)n+

q
q−1

ηK
1
q .

The desired inequality is trivial when
√
K/n ≥ 1/8. So we now consider that

√
K/n < 1/8. For

γ=
√
3K/n, η=

√
5n and q= 2, the condition on γ is satisfied (since

√
K/n< 1/8), and we have

1
η(

K
γ )

(q−1)/q ≤ 0.121, hence µ≤ 2.3, ζ≤ 1 and Rn ≤ 8
√
nK.

We have arbitrarily chosen q= 2 to provide an explicit upper bound. More generally, it is easy
to check from the proof of Theorem 11 that for any real number q > 1, we obtain the convergence
rate

√
nK, provided that γ and η are respectively taken of order

√
K/n and

√
nK/K1/q.

5.2.2 HIGH PROBABILITY BOUNDS AND BOUNDS ON THE EXPECTED REGRET

Theorems 10 and 11 provide upper bounds on Rn =max1≤i≤KE∑n
t=1

(
gi,t−gIt ,t

)
. To bound ERn =

Emax1≤i≤K∑n
t=1

(
gi,t − gIt ,t

)
, we will use high probability bounds. First we need to modify the

estimates of gi,t by considering vi,t = gi,t
pi,t 1IIt=i+

β
pi,t with 0< β≤ 1, as was proposed in Auer (2002),2

or vi,t =− 1IIt=i
β log

(
1− βgi,t

pi,t

)
as we propose here.

Theorem 12 (Exponentially weighted average forecaster in the bandit game)
Consider ψ(x) = exp(ηx) + γ

K with γ = min
(
2
3 ,2

√
K log(3K)

n

)
and η = 2

√
log(3K)
Kn . Let vi,t =

− 1IIt=i
β log

(
1− βgi,t

pi,t

)
with β=

√
log(3K)
2Kn . Then in the bandit game, against any adversary (possibly a

non-oblivious one), for any δ> 0, with probability at least 1−δ, INF satisfies:

Rn ≤ 3
√
nK log(3K)+

√
2nK

log(3K)
log(Kδ−1),

and also ERn ≤ (3+
√
2)
√
nK log(3K).

2. The technical reason for this modification, which may appear surprising as it introduces a bias in the estimate of gi,t ,
is that it allows to have high probability upper bounds with the correct rate on the difference ∑nt=1 gi,t −∑nt=1 vi,t . A
second reason for this modification (but useless for this particular section) is that it allows to track the best expert
(see Section 7).
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This theorem is similar to Theorem 6.10 of Cesa-Bianchi and Lugosi (2006). The main dif-
ference here is that the high probability bound holds for any confidence level, and not only for a
confidence level depending on the algorithm. As a consequence, our algorithm, unlike the one pro-
posed in previous works, satisfies both a high probability bound and an expected regret bound of
order

√
nK log(K).

Theorem 13 (Poly INF in the bandit game) Let ψ(x) =
( η
−x

)q
+ γ

K with η= 2
√
n, q= 2 and γ=

min
(
1
2 ,3

√
K
n

)
. Consider vi,t = − 1IIt=i

β log
(
1− βgi,t

pi,t

)
with β = 1√

2Kn . Then in the bandit game,
against a deterministic adversary, for any δ> 0, with probability at least 1−δ, INF satisfies:

Rn ≤ 9
√
nK+

√
2nK log(δ−1). (16)

Against an oblivious adversary, it satisfies

ERn ≤ 10
√
nK. (17)

Moreover in the general case (containing the non-oblivious opponent), with the following parame-
ters q= 2, γ=min

(
1
2 ,3

√
K log(3K)

n

)
, η= 2

√
n

log(3K) and β=
√

log(3K)
2nK , it satisfies with probability

at least 1−δ,

Rn ≤ 9
√
nK log(3K)+

√
2nK

log(3K)
log(δ−1),

and
ERn ≤ 9

√
nK log(3K).

Remark 14 We conjecture that the order
√
nK logK of the bound on ERn cannot be improved in

the general case containing the non-oblivious opponent. Here is the main argument to support our
conjecture. Consider an adversary choosing all rewards to be equal to one until time n/2 (say n
is even to simplify). Then, let k̂ denote the arm for which the estimate Vi,n/2 = ∑1≤t≤n/2 vi,t of the
cumulative reward of arm i is the smallest. After time n/2, all rewards are chosen to be equal to zero
except for arm k̂ for which the rewards are still chosen to be equal to 1. Since we believe that with
high probability, max1≤i≤KVi,n/2−min j∈{1,...,K}Vj,n/2 ≥ κ

√
nK logK for some small enough κ> 0,

it seems that the INF algorithm achieving a bound of order
√
nK on ERn in the oblivious setting

will suffer an expected regret of order at least
√
nK logK. While this does not prove the conjecture

as one can design other algorithms, it makes the conjecture likely to hold.

5.3 Label Efficient Bandit Game (LE Bandit)

The following theorems concern the simple LE bandit game, in which the requirement is that the
expected number of queried rewards should be less or equal to m. We consider the following policy.
At each round, we draw a Bernoulli random variable Zt , with parameter ε=m/n, to decide whether
the gain of the chosen arm is revealed or not. Note that this policy does not fulfil exactly the
requirement of the LE bandit game as we might ask a bit more than m rewards, but, as was argued
in Section 5.1.2, it can be modified in order to fulfil the hard constraint of the game. The theoretical
guarantees are then the same (up to numerical constant factors).

2800



REGRET BOUNDS UNDER PARTIAL MONITORING

Theorem 15 (Exponentially weighted average forecaster in the simple LE bandit game) Let
ψ(x) = exp(ηx) + γ

K with γ = min
(
1
2 ,
√

4K logK
5m

)
and η = 1

n

√
5m logK
4K . Let vi,t = gi,t

1IIt=i
pi,t

Zt
ε with

ε= m
n . Then in the simple LE bandit game, INF satisfies:

Rn ≤ n
√
16K logK
5m

.

Proof One simply needs to note that for 5γ≥ 4Kη
ε , (11) is satisfied, and thus by taking the expecta-

tion in (12), we get

Rn ≤ (1− γ)
logK
η

+ γE max
1≤i≤K

Vi,n ≤ (1− γ)
logK
η

+ γn.

We thus have
Rn ≤

n
m

(
(1− γ)

logK
η/ε

+ γm
)
.

The numerical application for the term in parenthesis is then exactly the same as the one proposed
in the proof of Theorem 10 (with n and η respectively replaced by m and η/ε).

Theorem 16 (Poly INF in the simple LE bandit game) Let ψ(x) =
( η
−x

)q
+ γ

K with γ =

min
(
1
2 ,
√

3K
m

)
, η = n

√
5
m and q = 2. Let vi,t = gi,t

1IIt=i
pi,t

Zt
ε with ε = m

n . Then in the simple LE
bandit game, INF satisfies:

Rn ≤ 8n
√
K
m
.

Proof By taking the expectation in (8) and letting Ḡmax = max1≤i≤KEGi,n, we obtain that for
γ> (q−1)K(qηε)q/(1−q) > 0 (condition coming from the condition on c for (8)),

(1− γ)Ḡmax− (1+ γζ)E
n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q ,

with
ζ=

1
(q−1)K

((q−1)Kµ(1+µ)
2γηε

)q
,

and

µ= exp

{
2(q+1)
ηε

(
K
γ

)(q−1)/q
(

1−
1
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

We thus have

Rn ≤
n
m

(
γ(1+ζ)m+

q
q−1

(ηε)K
1
q

)
.

The numerical application for the term in parenthesis is exactly the same than the one proposed in
the proof of Theorem 11 (with n and η respectively replaced by m and ηε).

Both previous theorems only consider the pseudo-regret. By estimating gi,t differently, we ob-
tain the following result for the regret.
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Theorem 17 (Poly INF in the simple LE bandit game) Let ψ(x) =
( η
−x

)q
+ γ

K with η = 2n/
√
m,

q = 2 and γ = min
(
1
2 ,3

√
K
m

)
. Consider vi,t = − 1IIt=iZt

β log
(
1− βgi,t

εpi,t

)
with β = 1

n
√ m

2K . Then in the
simple LE bandit game, against a deterministic adversary, for any δ > 0, with probability at least
1−δ, INF satisfies:

Rn ≤ 10.7n
√
K
m
+3.1n

√
K
m
log(δ−1).

Against an oblivious adversary, it satisfies

ERn ≤ 13
√
nK.

Moreover in the general case (containing the non-oblivious opponent), with the following param-
eters q = 2, γ = min

(
1
2 ,3

√
K log(3K)

m

)
, η = 2n/

√
m log(3K) and β = 1

n

√
m log(3K)
2K , it satisfies with

probability at least 1−δ,

Rn ≤ 10n
√
K log(3K)

m
+3.5n

√
K

m log(3K)
log(δ−1),

and

ERn ≤ 13n
√
log(3K)

m
.

A similar result can be obtained for Exp INF, at the price of an additional logarithmic term in K
against oblivious (deterministic or not) adversaries. We omit the details.

6. Regret Bounds Scaling with the Optimal Arm Rewards

In this section, we provide regret bounds for bandit games depending on the performance of the
optimal arm: in these bounds, the factor n is essentially replaced by

Gmax = max
i=1,...,n

Gi,n,

where Gi,n = ∑n
t=1 gi,t . Such a bound has been proved on the expected regret for deterministic

adversaries in the seminal work of Auer et al. (2002b). Here, by using a new biased estimate of gi,t ,
that is

vi,t =− 1IIt=i
β log

(
1− βgi,t

pi,t

)
, we obtain a bound holding with high probability and we also consider

its extension to any adversary.
The bounds presented here are especially interesting when Gmax , n: this typically occurs in

online advertizing where the different arms are the ads that can be put on the website and where
the probability that a user clicks on an ad banner (and thus induces a reward to the webpage owner)
is very low. For deterministic adversaries, as in the bandit game, the logK factor appearing in the
exponentially weighted average forecaster regret bound disappears in the Poly INF regret bound as
follows.
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Theorem 18 Let G0 be a real number such that G0 ≥ 81K. Let ψ(x) =
( η
−x

)q
+ γ

K with η= 2
√
G0,

q = 2 and γ = 3
√

K
G0 . Let vi,t = − 1IIt=i

β log
(
1− βgi,t

pi,t

)
with β = 1√

2KG0
. Then in the bandit game,

against a deterministic adversary, for any δ> 0, with probability at least 1−δ, INF satisfies:

Rn ≤ 4.5

√

K
G2max
G0

+4
√
KG0+

√
2KG0 log(δ−1). (18)

For fully oblivious adversaries, for any δ> 0, with probability at least 1−δ, INF satisfies:

Rn ≤ 4.5

√

K
G2max
G0

+4
√
KG0+

√
2KG0 log(2δ−1)+

√
8log(2Kδ−1)Gmax. (19)

For the choiceG0= n, the high probability upper bounds are of the order of
√
nK+

√
nK log(δ−1).

The interest of the theorem is to provide a policy which, for small Gmax, leads to smaller regret
bounds, as long as G0 is taken much smaller than n and but not much smaller than Gmax. For deter-
ministic adversaries, Gmax is nonrandom, and provided that we know its order, one has interest of
taking G0 of this order. Precisely, we have the following corollary for deterministic adversaries.

Corollary 19 Let ψ(x) =
( η
−x

)q
+ γ

K with η= 2
√
Gmax, q= 2 and γ=min

(
1
2 ,3

√
K

Gmax

)
. Consider

vi,t = − 1IIt=i
β log

(
1− βgi,t

pi,t

)
with β = 1√

2KGmax
. Then in the bandit game, against a deterministic

adversary, for any δ> 0, with probability at least 1−δ, INF satisfies:

Rn ≤ 9
√
KGmax+

√
2KGmax log(δ−1), (20)

and
ERn ≤ 10

√
KGmax. (21)

For more general adversaries than fully oblivious ones, we have the following result in which
the logK factor reappears.

Theorem 20 Let G0 ≥ 81K log(3K). Let ψ(x) =
( η
−x

)q
+ γ

K with q = 2, γ = 3
√

K log(3K)
G0 and η =

2
√

G0
log(3K) . Let vi,t = − 1IIt=i

β log
(
1− βgi,t

pi,t

)
with β =

√
log(3K)
2KG0 . Then in the bandit game, against

any adversary (possibly a non-oblivious one), for any δ > 0, with probability at least 1− δ, INF
satisfies:

Rn ≤
9
2

√
G2max
G0

K log(3K)+4

√
KG0
log(3K)

+

√
2KG0
log(3K)

log(Kδ−1).

This last result concerning Poly INF is similar to the following one concerning the exponentially
weighted average forecaster: the advantage of Poly INF only appears when it allows to remove the
logK factor.

Theorem 21 Let G0> 4K log(3K). Letψ(x)= exp(ηx)+ γ
K with γ= 2

√
K log(3K)

G0 and η= 2
√

log(3K)
KG0 .

Let vi,t = − 1IIt=i
β log

(
1− βgi,t

pi,t

)
with β =

√
log(3K)
2KG0 . Then in the bandit game, against any adversary

(possibly a non-oblivious one), for any δ> 0, with probability at least 1−δ, INF satisfies:

Rn ≤
5
2

√
G2max
G0

K log(3K)+
1
2
√
KG0 log(3K)+

√
2KG0
log(3K)

log(Kδ−1).
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7. Tracking the Best Expert in the Bandit Game

In the previous sections, the cumulative gain of the forecaster was compared to the cumulative gain
of the best single expert. Here, it will be compared to more flexible strategies that are allowed to
switch actions. We will use

vi,t = gi,t
1IIt=i
pi,t

+
β
pi,t

,

with 0 < β ≤ 1. The β term introduces a bias in the estimate of gi,t , that constrains the differences
max1≤i≤KVi,t −min1≤ j≤KVj,t to be relatively small. This is the key property in order to track the
best switching strategy, provided that the number of switches is not too large. A switching strategy
is defined by a vector (i1, . . . , in) ∈ {1, . . . ,K}n. Its size is defined by

S(i1, . . . , in) =
n−1

∑
t=1
1Iit+1 -=it ,

and its cumulative gain is

G(i1,...,in) =
n

∑
t=1

git ,t .

The regret of a forecaster with respect to the best switching strategy with S switches is then given
by:

RSn = max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in)−
n

∑
t=1

gIt ,t .

Theorem 22 (INF for tracking the best expert in the bandit game)
Let s = S log

( 3nK
S
)
+ 2logK with the natural convention S log(3nK/S) = 0 for S = 0. Let vi,t =

gi,t
1IIt=i
pi,t + β

pi,t with β = 3
√ s

nK . Let ψ(x) = exp(ηx)+ γ
K with γ = min

(
1
2 ,
√

Ks
2n

)
and η = 1

5
√ s

nK .
Then in the bandit game, for any 0 ≤ S ≤ n−1, for any δ > 0, with probability at least 1− δ, INF
satisfies:

RSn ≤ 7
√
nKs+

√
nK
s
log(δ−1),

and
ERSn ≤ 7

√
nKs.

Note that for S = 0, we have RSn = Rn, and we recover an expected regret bound of order√
nK logK similar to the one of Theorem 12.

Remark 23 Up to constant factors, the same bounds as the ones of Theorem 22 can be obtained
(via a tedious proof not requiring new arguments than the ones presented in this work) for the INF
forecaster using ψ(x) = c1

K

(√
snK
−x

)c3s
+ c2

√ s
nK , with s = S log

( enK
S
)
+ log(2K) and appropriate

constants c1, c2 and c3.
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8. Gains vs Losses, Unsigned Games vs Signed Games

To simplify, we have considered so far that the rewards were in [0,1]. Here is a trivial argument
which shows how to transfer our analysis to loss games (i.e., games with only non-positive rewards),
and more generally to signed games (i.e., games in which the rewards can be positive and negative).
If the rewards, denoted now g′i,t , are in some interval [a,b] potentially containing zero, we set gi,t =
g′i,t−a
b−a ∈ [0,1]. Then we can apply our analysis to:

max
i∈{1,...,K}

n

∑
t=1

gi,t −
n

∑
t=1

gIt ,t =
1

b−a

(

max
i∈{1,...,K}

n

∑
t=1

g′i,t −
n

∑
t=1

g′It ,t

)

.

A less straightforward analysis can be done by looking at the INF algorithm directly applied to
the observed rewards (and not to the renormalized rewards). In this case, as it was already noted in
Remark 6.5 of Cesa-Bianchi and Lugosi (2006), the behavior of the algorithm may be very different
for loss and gain games. However it can be proved that our analysis still holds up to constant
factors (one has to go over the proofs and make appropriate modifications since for simplicity, we
have presented the general results concerning INF under the assumptions that the estimates vi,t are
nonnegative). In Section 6, we provide regret bounds scaling with the cumulative reward of the
optimal arm. For this kind of results, renormalizing will not lead to regret bounds scaling with the
cumulative reward before renormalization of the optimal arm, and consequently, the study of INF
directly applied to the observed rewards is necessary. In particular, obtaining low regret bounds
when the optimal arm has small cumulative loss would require appropriate modifications in the
proof.

9. Stochastic Bandit Game

By considering the deterministic case when the rewards are gi,t = 1 if i = 1 and gi,t = 0 otherwise,
it can be proved that the INF policies considered in Theorem 10 and Theorem 11 have a pseudo-
regret lower bounded by

√
nK. In this simple setting, and more generally in most of the stochastic

multi-armed bandit problems, one would like to suffer a much smaller regret.
We recall that in the stochastic bandit considered in this section, the rewards gi,1, . . . ,gi,n are

independent and drawn from a fixed distribution νi on [0,1] for each arm i, and the reward vectors
g1, . . . ,gn are independent.3 The suboptimality of an arm i is then measured by Δi =max1≤ j≤K µj−
µi where µi is the mean of νi. We provide now a strategy achieving a

√
nK regret in the worst case,

and a much smaller regret as soon as the Δi of the suboptimal arms are much larger than
√
K/n.

Let µ̂i,s be the empirical mean of arm i after s draws of this arm. Let Ti(t) denote the number
of times we have drawn arm i on the first t rounds. In this section, we propose a policy, called
MOSS (Minimax Optimal Strategy in the Stochastic case), inspired by the UCB1 policy (Auer
et al., 2002a). As in UCB1, each arm has an index measuring its performance, and at each round,
we choose the arm having the highest index. The only difference with UCB1 is to use log

( n
Ks
)

instead of log(t) at time t (see Figure 3). As a consequence, an arm that has been drawn more than
n/K times has an index equal to the empirical mean of the rewards obtained from the arm, and when

3. Note that we do not assume independence of g1,t , . . . ,gK,t for each t. This assumption is usually made in the literature,
but is often useless. In our work, assuming it would just have improved Proposition 36 by a constant factor, and would
not have improved the constant in Theorem 24.
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it has been drawn close to n/K times, the logarithmic term is much smaller than the one of UCB1,
implying less exploration of this already intensively drawn arm.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an arm i, define its index Bi,s by

Bi,s = µ̂i,s+

√
max

(
log( n

Ks ) ,0
)

s
.

for s≥ 1 and Bi,0 =+∞.

At time t, draw an arm maximizing Bi,Ti(t−1).

Figure 3: The proposed policy for the stochastic bandit game.

Theorem 24 Introduce Δ= min
i∈{1,...,K}:Δi>0

Δi. MOSS satisfies

Rn ≤
23K
Δ
log

(
max

(
110nΔ2

K
,104

))
, (22)

and
ERn ≤ 25

√
nK. (23)

Besides, if there exists a unique arm with Δi = 0, we also have

ERn ≤
23K
Δ
log

(
max

(
140nΔ2

K
,104

))
. (24)

The distribution-dependent bounds Inequalities (22) and (24) show the desired logarithmic de-
pendence in n, while the distribution-free regret bound (23) has the minimax rate

√
nK.

Remark 25 The uniqueness of the optimal arm is really needed to have the logarithmic (in n) bound
on the expected regret. This can be easily seen by considering a two-armed bandit in which both
reward distributions are identical (and non degenerated). In this case, the pseudo-regret is equal to
zero while the expected regret is of order

√
n. This reveals a fundamental difference between the

expected regret and the pseudo-regret.

Remark 26 A careful tuning of the constants in front and inside the logarithmic term of Bi,s and of
the thresholds used in the proof leads to smaller numerical constants in the previous theorem, and in
particular to supERn ≤ 6

√
nK. However, it makes the proof more intricate. So we will only prove

(23).
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Appendix A. The General Regret Upper Bound of INF

Theorem 27 (INF regret upper bound) For any nonnegative real numbers vi,t ,where i∈ {1, . . . ,K}
and t ∈N∗, we still use vt = (v1,t , . . . ,vK,t) andVt =∑ts=1 vt , with the conventionV0= 0∈RK

+. Define
[Vt−1,Vt ] = {λVt−1+(1−λ)Vt : λ ∈ [0,1]}. Let

Bt = max
1≤i≤K

vi,t ,

ρ= max
1≤t≤n

max
v,w∈[Vt−1,Vt ], 1≤i≤K

ψ′(vi−C(v))
ψ′(wi−C(w))

,

and

At =min

(

B2t
K

∑
i=1

ψ′ ◦ψ−1(pi,t),(1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v2i,t

)

.

Then the INF forecaster based on ψ satisfies:

max
1≤i≤K

Vi,n ≤ Cn ≤
n

∑
t=1

K

∑
i=1

pi,tvi,t −
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1
ψ−1(u)du

)
+
ρ2

2

n

∑
t=1

At . (25)

Proof Let us setC0 =C(V0). The proof is divided into four steps.
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First step: Rewriting ∑n
t=1∑

K
i=1 pi,tvi,t .

We start with a simple Abel transformation:

n

∑
t=1

K

∑
i=1

pi,tvi,t =
n

∑
t=1

K

∑
i=1

pi,t(Vi,t −Vi,t−1)

=
K

∑
i=1

pi,n+1Vi,n+
K

∑
i=1

n

∑
t=1

Vi,t(pi,t − pi,t+1)

=
K

∑
i=1

pi,n+1
(
ψ−1(pi,n+1)+Cn

)
+

K

∑
i=1

n

∑
t=1

(ψ−1(pi,t+1)+Ct)(pi,t− pi,t+1)

=Cn+
K

∑
i=1

pi,n+1ψ−1(pi,n+1)+
K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t− pi,t+1)

where the last step comes from the fact that ∑K
i=1 pi,t = 1.

Second step: A Taylor-Lagrange expansion.

For x ∈ [0,1] we define f (x) =
∫ x
0 ψ

−1(u)du. Remark that f ′(x) = ψ−1(x) and f ′′(x) =
1/ψ′(ψ−1(x)). Then by the Taylor-Lagrange formula, we know that for any i, there exists p̃i,t+1 ∈
[pi,t , pi,t+1] (with the convention [a,b] = [b,a] when a> b) such that

f (pi,t) = f (pi,t+1)+(pi,t− pi,t+1) f ′(pi,t+1)+
(pi,t − pi,t+1)2

2
f ′′( p̃i,t+1),

or, in other words:

(pi,t − pi,t+1)ψ−1(pi,t+1) =
∫ pi,t

pi,t+1
ψ−1(u)du−

(pi,t − pi,t+1)2

2ψ′(ψ−1( p̃i,t+1))
.

Now by summing over t the first term on the right-hand side becomes
∫ 1/K
pi,n+1ψ

−1(u)du. More-
over, since x → ψ(x − C(x)) is continuous, there exists W (i,t) ∈ [Vt ,Vt+1] ⊂ RK such that
ψ
(
W (i,t)
i −C(W (i,t))

)
= p̃i,t+1. Thus we have

K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t− pi,t+1) =
K

∑
i=1

∫ 1/K

pi,n+1
ψ−1(u)du−

K

∑
i=1

n

∑
t=1

(pi,t − pi,t+1)2

2ψ′
(
W (i,t)
i −C(W (i,t))

) .

From the equality obtained in the first step, it gives

Cn−
n

∑
t=1

K

∑
i=1

pi,tvi,t =−
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1
ψ−1(u)du

)

+
K

∑
i=1

n

∑
t=1

(pi,t − pi,t+1)2

2ψ′
(
W (i,t)
i −C(W (i,t))

) .
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Third step: The mean value theorem to compute (pi,t+1− pi,t)2.

It is now convenient to consider the functions fi and hi defined for any x ∈ RK
+ by

fi(x) = ψ(xi−C(x)) and hi(x) = ψ′(xi−C(x)).

We are going to bound pi,t+1− pi,t = fi(Vt)− fi(Vt−1) by using the mean value theorem. To do so
we need to compute the gradient of fi. First, we have

∂ fi
∂x j

(x) =
(
1Ii= j−

∂C
∂x j

(x)
)
hi(x).

Now, by definition ofC, we have ∑K
k=1 fk(x) = 1 and thus ∑K

k=1
∂ fk
∂x j (x) = 0, which implies

∂C
∂x j

(x) =
h j(x)

∑K
k=1 hk(x)

and
∂ fi
∂x j

(x) =
(
1Ii= j−

h j(x)
∑K
k=1 hk(x)

)
hi(x).

Now the mean value theorem says that there exists V (i,t) ∈ [Vt−1,Vt ] such that

fi(Vt)− fi(Vt−1) =
K

∑
j=1

v j,t
∂ fi
∂x j

(V (i,t)).

Thus we have

(pi,t − pi,t+1)2 =

(
K

∑
j=1

v j,t

(

1Ii= j−
h j(V (i,t))

∑K
k=1 hk(V (i,t))

)

hi(V (i,t))

)2

= hi(V (i,t))2
(

vi,t −
∑K
j=1 v j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

)2

.

Fourth step: An almost variance term.

We introduce ρ=maxv,w∈[Vt−1,Vt ], 1≤t≤n, 1≤i≤K
hi(v)
hi(w) . Thus we have

K

∑
i=1

n

∑
t=1

(pi,t − pi,t+1)2

2ψ′
(
W (i,t)
i −C(W (i,t))

) =
K

∑
i=1

n

∑
t=1

hi(V (i,t))2

2hi(W (i,t))

(

vi,t −
∑K
j=1 v j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

)2

≤
ρ2

2

n

∑
t=1

K

∑
i=1

hi(Vt−1)

(

vi,t −
∑K
j=1 v j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

)2

.

Now we need to control the term
(
vi,t −

∑Kj=1 v j,t h j(V (i,t))

∑Kk=1 hk(V (i,t))

)2
. Remark that since the function ψ is

increasing we know that hi(x)≥ 0,∀x. Now since we have 0≤ vi,t ≤ Bt , we can simply bound this
last term by B2t . A different bound can be obtained by using (a−b)2 ≤ a2+b2 when a and b have

2809



AUDIBERT AND BUBECK

the same sign:
(

vi,t −
∑K
j=1 v j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

)2

≤ v2i,t +

(
∑K
j=1 v j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

)2

≤ v2i,t +
∑K
j=1 v2j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

≤ v2i,t +ρ2
∑K
j=1 v2j,th j(Vt−1)
∑K
k=1 hk(Vt−1)

,

where the first inequality comes from the fact that both terms are nonnegative and the second in-
equality comes from Jensen’s inequality. As a consequence, we have

K

∑
i=1

hi(Vt−1)

(

vi,t −
∑K
j=1 v j,th j(V (i,t))

∑K
k=1 hk(V (i,t))

)2

≤
K

∑
i=1

hi(Vt−1)v2i,t+ρ2
K

∑
j=1

h j(Vt−1)v2j,t

≤ (1+ρ2)
K

∑
i=1

hi(Vt−1)v2i,t .

We have so far proved

Cn −
n

∑
t=1

K

∑
i=1

pi,tvi,t ≤ −
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1
ψ−1(u)du

)
+

ρ2

2

n

∑
t=1

At .

The announced result is then obtained by using Inequality (2).

To apply successfully Theorem 27 (page 2807), we need to have tight upper bounds on ρ. The
two following lemmas provide such bounds.

Lemma 28 (A simple bound on the quantity ρ of Theorem 27) Let ψ be a convex function satis-
fying (1) and assume that there exists B> 0 such that ∀i, j, t |vi,t − v j,t |≤ B. Then:

ρ= max
1≤t≤n

max
v,w∈[Vt−1,Vt ], 1≤i≤K

ψ′(vi−C(v))
ψ′(wi−C(w))

≤ sup
x∈(−∞,ψ−1(1)]

exp
(
B
ψ′′

ψ′ (x)
)
.

Proof Let hi(x) = ψ′(xi−C(x)),mi(x) = ψ′′(xi−C(x)). For α ∈ [0,1] we note

ϕ(α) = log{hi(Vt−1+α(Vt−Vt−1))} .

Remark that we should rather note this function ϕi,t(α) but for sake of simplicity we omit this
dependency. With these notations we have ρ = maxα,β∈[0,1]; 1≤t≤n, 1≤i≤K exp(ϕ(α)−ϕ(β)). By the
mean value theorem for any α,β∈ [0,1] there exists ξ∈ [0,1] such that ϕ(α)−ϕ(β) = (α−β)ϕ′(ξ).
Now with the calculus done in the third step of the proof of Theorem 27 and using the notations
hi := hi(Vt−1+ξ(Vt−Vt−1)), mi := mi(Vt−1+ξ(Vt −Vt−1)) we obtain

ϕ′(ξ) =
K

∑
j=1

(Vj,t −Vj,t−1)
(
1Ii= j−

h j
∑K
k=1 hk

)
mi
hi

=
K

∑
j=1

(vi,t − v j,t)h j
∑K
k=1 hk

mi
hi
.
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Thus we get

|ϕ′(ξ)|≤ max
1≤i, j≤K

|vi,t − v j,t | sup
v∈[Vt−1,Vt ]

ψ′′

ψ′ (vi−C(v)) .

Moreover, using that x→ ψ(x−C(x)) is continuous we know that there exists p̃i,t+1 ∈ [pi,t , pi,t+1]
such that p̃i,t+1 = ψ(vi−C(v)) and thus vi−C(v) = ψ−1( p̃i,t+1). This concludes the proof.

Lemma 29 (An other bound on the quantity ρ of Theorem 27) Letψ be a function satisfying (1)
and assume that there exists c > 0 such that 0 ≤ vi,t ≤ c

pi,t 1Ii=It . We also assume that ψ
′/ψ is a

nondecreasing function and that there exists a> 1 such that ψ
(
x+ c

ψ(x)

)
≤ aψ(x). Then:

ρ≤ sup
x∈(−∞,ψ−1(1)]

exp
(
ac

ψ′′

ψ×ψ′ (x)
)
.

Proof We extract from the previous proof that ρ≤maxξ∈[0,1]; 1≤t≤n, 1≤i≤K exp(|ϕ′(ξ)|) where

ϕ′(ξ) =
K

∑
j=1

(vi,t − v j,t)h j
∑K
k=1 hk

mi
hi
.

Note that, since the functions ψ and ψ′/ψ are nondecreasing, the function ψ is convex, hence ψ′′ ≥ 0
and mi ≥ 0 . Now using our assumption on vi,t and since pi,t = fi(Vt−1), if i -= It we have:

|ϕ′(ξ)|≤
c hIt
fIt (Vt−1)

∑K
k=1 hk

mi
hi

≤ c
fIt (Vt−1+ξ(Vt −Vt−1))

fIt (Vt−1)
×

hIt
fIt (Vt−1+ξ(Vt−Vt−1))

×
mi
hi

×
1

hIt +hi
.

Noticing that for any x,y in R∗
−,

ψ′
ψ (x)×ψ′′

ψ′ (y)
ψ′(x)+ψ′(y) ≤ ψ′′(y)

ψ′(y)ψ(y) , we obtain

|ϕ′(ξ)|≤ c
fIt (Vt−1+ξ(Vt−Vt−1))

fIt (Vt−1)
mi

hi× fi(Vt−1+ξ(Vt−Vt−1))
.

On the other hand if i= It then
|ϕ′(ξ)|≤

c
fi(Vt−1)

mi
hi
.

To finish we only have to prove that fIt (Vt−1+ξ(Vt−Vt−1))≤ a fIt (Vt−1). Since ψ is increasing
it is enough to prove that fIt (Vt)≤ a fIt (Vt−1) which is equivalent to

ψ(VIt ,t−1+ vIt ,t −Ct)≤ aψ(VIt ,t−1−Ct−1).

Since 0≤ vi,t ≤ c
pi,t 1Ii=It andC is an increasing function in each of its argument it is enough to prove

ψ

(
VIt ,t−1−Ct−1+

c
ψ(VIt ,t−1−Ct−1)

)
≤ aψ(VIt ,t−1−Ct−1)

which is true by hypothesis on ψ.
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Appendix B. Lower Bounds

In this section we propose a simple unified proof to derive lower bounds on the pseudo-regret in the
four problems that we consider.

Theorem 30 Let m≥ K. Let sup represents the supremum taken over all oblivious adversaries and
inf the infimum taken over all forecasters, then the following holds true in the label efficient game:4

infsupRn ≥ 0.03n
√
log(K)
m

.

and in the label efficient bandit game we have:

infsupRn ≥ 0.04n
√
K
m
.

Proof First step: Definitions.

We consider a set ofK oblivious adversaries. The ith adversary selects its gain vectors as follows:
For any t ∈ {1, . . . ,n},gi,t ∼ Ber

(1+ε
2
)
and for j -= i, g j,t ∼ Ber

(1−ε
2
)
. We note Ei when we integrate

with respect to the reward generation process of the ith adversary. We focus on the label efficient
versions of the full information and bandits games since by taking m= n we recover the traditional
games.

Until the fifth step we consider a deterministic forecaster, that is he does not have access to an
external randomization. Let qn = (q1,n, . . . ,qK,n) be the empirical distribution of plays over the arms
defined by:

qi,n =
∑n
t=1 1IIt=i
n

.

Let Jn be drawn according to qn. We note Pi the law of Jn when the forecaster plays against the
ith adversary. Remark that we have Pi(Jn = j) = Ei

1
n ∑

n
t=1 1IIt= j, hence, against the ith adversary we

have:
Rn = Ei

n

∑
t=1

(gi,t −gIt ,t) = εn∑
j -=i

Pi(Jn = j) = εn(1−Pi(Jn = i)),

which implies (since a maximum is larger than a mean)

supRn ≥ εn

(

1−
1
K

K

∑
i=1

Pi(Jn = i)

)

. (26)

Second step: Information inequality.

Let P0 (respectively PK+1) be the law of Jn against the adversary drawing all its losses from
the Bernoulli of parameter 1−ε2 (respectively 1−ε

2 + ε
K ), we call it the 0

th adversary (respectively the
(K+1)th adversary). Now we use either Pinsker’s inequality which gives:

Pi(Jn = i)≤ P0(Jn = i)+
√
1
2
KL(P0,Pi),

4. Slightly better numerical constants can be obtained with a more careful optimization in step four of the proof.
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and thus (thanks to the concavity of the square root)

1
K

K

∑
i=1

Pi(Jn = i)≤
1
K
+

√
1
2K

K

∑
i=1
KL(P0,Pi); (27)

or Fano’s lemma:
1
K

K

∑
i=1

Pi(Jn = i)≤
log2+ 1

K ∑
K
i=1KL(Pi,PK+1)

log(K−1)
. (28)

We will use (28) for the full information games when K > 3 and (27) the bandits games and the full
information games with K ∈ {2,3}.

Third step: Computation of KL(P0,Pi) and KL(Pi,PK+1) with the chain rule for Kullback-Leibler
divergence.

Remark that since the forecaster is deterministic, the sequence of observed rewards (up to time
n) Wn (Wn ∈ {0,1}mK for the full information label efficient game and Wn ∈ {0,1}m for the label
efficient bandit game) uniquely determines the empirical distribution of plays qn, and in particular
the law of Jn conditionally toWn is the same for any adversary. Thus, if for i ∈ {0, . . . ,K+ 1} we
note Pni the law ofWn when the forecaster plays against the ith adversary, then one can easily prove
that

KL(P0,Pi)≤ KL(Pn0,Pni ), and KL(Pi,PK+1)≤ KL(Pni ,PnK+1).

Now we use the Chain rule for Kullback-Leibler divergence iteratively to introduce the laws Pti of
the observed rewardsWt up to time t. We also note Zt = 1 if some rewards are revealed at the end
of round t and Zt = 0 otherwise. With these notations we have in the full information games, for
K > 3,

KL(Pni ,PnK+1)

= KL(P1i ,P1K+1)+
n

∑
t=2
∑
wt−1

P
t−1
i (wt−1)KL(Pti(.|wt−1),PtK+1(.|wt−1))

= KL(P1i ,P1K+1)

+
n

∑
t=2

{

∑
wt−1:Zt=1

P
t−1
i (wt−1)

[
KL

(
1+ ε
2

,
1− ε
2

+
ε
K

)
+(K−1)KL

(
1− ε
2

,
1− ε
2

+
ε
K

)]}

=

[
KL

(
1+ ε
2

,
1− ε
2

+
ε
K

)
+(K−1)KL

(
1− ε
2

,
1− ε
2

+
ε
K

)]
Ei

n

∑
t=1

Zt

≤ m
[
KL

(
1+ ε
2

,
1− ε
2

+
ε
K

)
+(K−1)KL

(
1− ε
2

,
1− ε
2

+
ε
K

)]
.

Summing and plugging this into (28) we obtain for the full information games:

1
K

K

∑
i=1

Pi(Jn = i)≤
log2+mKL

( 1+ε
2 , 1−ε2 + ε

K
)
+m(K−1)KL

(1−ε
2 , 1−ε2 + ε

K
)

log(K−1)
. (29)
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In the bandits games we have:

KL(Pn0,Pni )

= KL(P10,P1i )+
n

∑
t=2
∑
wt−1

P
t−1
0 (wt−1)KL(Pt0(.|wt−1),Pti(.|wt−1))

= KL(P10,P1i )+
n

∑
t=2

∑
wt−1:Zt=1,It=i

P
t−1
0 (wt−1)KL

(
1− ε
2

,
1+ ε
2

)

= KL
(
1− ε
2

,
1+ ε
2

)
E0

n

∑
t=1
1IZt=1,It=i.

Summing and plugging this into (27) we obtain for the bandits games:

1
K

K

∑
i=1

Pi(Jn = i)≤
1
K
+

√
m
2K
KL

(
1− ε
2

,
1+ ε
2

)
. (30)

Note that with the same reasoning we obtain for the full information games:

1
K

K

∑
i=1

Pi(Jn = i)≤
1
K
+

√
m
2
KL

(
1− ε
2

,
1+ ε
2

)
. (31)

Fourth step: Conclusion for deterministic forecasters.

To conclude the proof for deterministic forecaster one needs to plug in (29) (for the full infor-
mation games with K > 3) or (31) (for the full information games with K ∈ {2,3}) or (30) (for the
bandits games) in (26) along with straightforward computations and the following simple formula:

KL(p,q)≤
(p−q)2

q(1−q)
.

Fifth step: Fubini’s theorem to handle non-deterministic forecasters.

Now let us consider a randomized forecaster. Denote by Ereward,i the expectation with respect
to the reward generation process of the ith adversary, Erand the expectation with respect to the
randomization of the forecaster and Ei the expectation with respect to both processes. Then one
has (thanks to Fubini’s Theorem),

1
K

K

∑
i=1

Ei

n

∑
t=1

(gi,t −gIt ,t) = Erand
1
K

K

∑
i=1

Ereward,i

n

∑
t=1

(gi,t −gIt ,t).

Now remark that if we fix the realization of the forecaster’s randomization then the results of the
previous steps apply and in particular we can lower bound 1

K ∑
K
i=1Ereward,i∑

n
t=1(gi,t−gIt ,t) as before.

Appendix C. Proofs

This section gathers the proofs that have not been provided so far.
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C.1 Proof of Theorem 2 (page 2793)

The proof relies on combining Theorem 27 (page 2807) with Lemma 28 (page 2810) for γ= 0, and
with Lemma 29 (page 2811) for γ> 0.

We make use of Theorem 27 and start with straightforward computations to bound the first sum
in (25). We have ψ−1(x) =−η(x− γ/K)−1/q which admits as a primitive

∫
ψ−1(u)du= −η

1−1/q(u−
γ/K)1−1/q. Thus one immediately gets

∫ 1/K

pi,n+1
(−ψ−1)(u)du≤

η
1−1/q

1
K1−1/q

−η(pi,n+1− γ/K)1−1/q

and
pi,n+1(−ψ−1)(pi,n+1) =−

γ
K
ψ−1(pi,n+1)+η(pi,n+1− γ/K)1−1/q.

Summing over i proves that

−
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1
ψ−1(u)du

)
≤

q
q−1

ηK1/q−
γ
K

K

∑
i=1

ψ−1(pi,n+1).

With the notations of Theorem 27, we need now to bound ρ and At . First we deal with the case γ= 0.
Lemma 28 (page 2810) implies ρ≤ exp(B(q+1)/η) since we have ψ′′

ψ′ (x) = q+1
−x = q+1

η ψ(x)1/q. The
proof of (6) is concluded by ψ′ = q

ηψ
(q+1)/q, and

At ≤ B2t
K

∑
i=1

ψ′ ◦ψ−1(pi,t) = B2t
K

∑
i=1

q
η
p(q+1)/qi,t ≤

q
η
B2t .

For (7), the term At is controlled differently:

At ≤ (1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v2i,t =
q
η
(1+ρ2)

K

∑
i=1

p(q+1)/qi,t v2i,t ≤
qB
η
(1+ρ2)

K

∑
i=1

pi,tvi,t .

Now we have already seen that ρ ≤ exp(B(q+ 1)/η), hence ρ2(1+ ρ2) ≤ 2exp(8Bq/η), which
leads to (7).

The case γ > 0 is more intricate. This is why we restrict ourselves to a specific form for the
estimates vi,t , see the assumption in Theorem 2. We start by using Lemma 29 (page 2811) to prove
that ρ ≤ µ. First we have ψ′′

ψ′ =
q+1
η (ψ− γ/K)1/q ≤ q+1

η ψ1/q. Besides, for any a ≥ b ≥ d we have
a
b ≤

a−d
b−d and thus for any x< 0, we have

ψ
(
x+ c

ψ(x)
)

ψ(x)
≤
ψ
(
x+ c

ψ(x)
)
− γ

K

ψ(x)− γ
K

=

(
1−

c
−xψ(x)

)−q
≤

(

1−
c
qη

(
(q−1)K

γ

)(q−1)/q
)−q

.

Thus Lemma 29 gives us

ρ2 ≤ exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1−
c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

= µ.
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Next we use ψ′ = q
η(ψ− γ/K)(q+1)/q and the form of vi,t to get

At ≤ (1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v2i,t ≤
q(1+µ)

η

K

∑
i=1

p(q+1)/qi,t v2i,t =
q(1+µ)

η
p(1−q)/qIt ,t c2t .

Let ζ′ = qcµ(1+µ)
2η . From Theorem 27, we get

Cn−
n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK1/q+ γCn+

ρ2

2

n

∑
t=1

At −
γ
K

n

∑
t=1

K

∑
i=1

vi,t

≤
q

q−1
ηK1/q+ γCn+

n

∑
t=1

ct
(
ζ′p(1−q)/qIt ,t −

γ
KpIt ,t

)

≤
q

q−1
ηK1/q+ γCn+max

u>0

(
ζ′u(1−q)/q−

γ
Ku

) n

∑
t=1

ct

=
q

q−1
ηK1/q+ γCn+

γ
(q−1)K

(
(q−1)ζ′K

qγ

)q n

∑
t=1

ct

=
q

q−1
ηK1/q+ γCn+ γζ

n

∑
t=1

K

∑
i=1

pi,tvi,t .

The proof of (8) is concluded by using Inequality (2).

C.2 Proof of Theorem 3 (page 2794)

We have

n

∑
t=1

K

∑
i=1
pi,tvi,t =

n

∑
t=1

Ek∼pt vk,t

=
1− γ
η

n

∑
t=1

(
logEi∼qt exp(ηvi,t)− log

[
exp

(
−

η
1− γ

Ek∼pt vk,t
)
Ei∼qt exp(ηvi,t)

])

=
1− γ
η

(
S−

n

∑
t=1
log(Dt)

)
,

where

S=
n

∑
t=1
logEi∼qt exp(ηvi,t)

=
n

∑
t=1
log

(
∑K
i=1 exp(ηVi,t)

∑K
i=1 exp(ηVi,t−1)

)
= log

(
∑K
i=1 exp(ηVi,n)

K

)
≥ η max

1≤i≤K
Vi,n− logK

and
Dt = exp

(
−

η
1− γ

Ek∼pt vk,t
)
Ei∼qt exp(ηvi,t)

When γ = 0, since 0 ≤ vi,t ≤ Bt , by applying Hoeffding’s inequality, we get log(Dt) ≤ η2B2t
8 , hence

Inequality (9). For γ = 0, we can also use Lemma 35 and obtain log(Dt) ≤ η2BΘ(ηB)Ei∼pt vi,t ,
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hence Inequality (10). For γ satisfying (11), we have

Dt ≤ exp
(
−

η
1− γ

Ek∼pt vk,t
)
Ei∼qt

(
1+ηvi,t +Θ(ηB)η2v2i,t

)
(32)

= exp
(
−

η
1− γ

Ek∼pt vk,t
)(

1+
η
1− γ

Ei∼pt vi,t −η
γ∑K

i=1 vi,t
K(1− γ)

+Θ(ηB)η2Ei∼qt v
2
i,t

)

≤ exp
(
−

η
1− γ

Ek∼pt vk,t
)(

1+
η
1− γ

Ei∼pt vi,t
)

(33)

≤ 1.

To get (32), we used that Θ is an increasing function and that ηvi,t ≤ ηB. To get (33), we noticed
that it is trivial when maxi,t pi,tvi,t = 0, and that otherwise, we have

γ∑K
i=1 vi,t

K(1− γ)
≥

γ∑K
i=1 pi,tv2i,t

K(1− γ)maxi,t pi,tvi,t
≥

γ
Kmaxi,t pi,tvi,t

Ei∼qt v
2
i,t ≥ ηΘ(ηB)Ei∼qt v

2
i,t ,

where the last inequality uses (11). We have thus proved
n

∑
t=1

K

∑
i=1

pi,tvi,t ≥
1− γ
η

logEi∼p1 exp(ηVi,n)≥ (1− γ)

(
max
1≤i≤K

Vi,n−
logK
η

)
,

hence the announced result.

C.3 Recovering Theorem 3 from Theorem 27

We start with straightforward computations to bound the first sum in (25). We have ψ−1(x) =
1
η log(x−γ/K) which admits as a primitive

∫
ψ−1(u)du= 1

η [(u− γ/K) log(u− γ/K)−u]. Thus one
immediately gets

−
∫ 1/K

pi,n+1
ψ−1(u)du− pi,n+1ψ−1(pi,n+1)

=
1
η

(
1
K
−
1− γ
K

log
(
1− γ
K

)
− pi,n+1−

γ
K
log

(
pi,n+1−

γ
K

))
.

Summing over i proves that

−
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1
ψ−1(u)du

)
=
1− γ
η

log
(

K
1− γ

)
−
γ
K

K

∑
i=1

ψ−1(pi,n+1).

With the notations of Theorem 27, we need now to bound ρ and At . For the former, we use Lemma
28 (page 2810) which directly shows ρ≤ exp(ηB). For the latter we distinguish two cases. If γ= 0
we use

At ≤ B2t
K

∑
i=1

ψ′ ◦ψ−1(pi,t) = ηB2t ,

which concludes the proof of the weakened version of (9) with η
8 replaced by

η
2 exp(2ηB). On the

other hand if γ> 0 we use

At ≤ (1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v2i,t ≤ (1+ρ2)η
K

∑
i=1

pi,tv2i,t .
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From Theorem 27, when the weakened version of (11) holds, that is when

γ≥ K
ηexp(2Bη) [1+ exp(2Bη)]

2
max
i,t

pi,tvi,t ,

we have

Cn−
n

∑
t=1

K

∑
i=1

pi,tvi,t

≤
1− γ
η

log
(

K
1− γ

)
−
γ
K

K

∑
i=1

(
n

∑
t=1

vi,t −Cn

)

+
ηexp(2Bη) [1+ exp(2Bη)]

2

n

∑
t=1

K

∑
i=1

pi,tv2i,t

≤
1− γ
η

log
(

K
1− γ

)
+ γCn,

hence

(1− γ)

(
Cn+

log(1− γ)
η

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤ (1− γ)
logK
η

.

This gives the desired result since we have

Cn+
log(1− γ)

η
=
1
η
log

( K

∑
j=1
exp(ηVi,n)

)
≥ max
1≤i≤K

Vi,n.

C.4 Proof of Theorem 8 (page 2797)

We will use the following version of Bernstein’s inequality for martingales.

Theorem 31 Let F1 ⊂ · · · ⊂ Fn be a filtration, and X1, . . . ,Xn random variables such that |Xt | ≤ b
for some b> 0, Xt is Ft -measurable, E(Xt |Ft−1) = 0 and E(X2t |Ft−1)≤ v for some v> 0. Then, for
any t > 0, we have

P

( n

∑
t=1

Xt ≥ t
)
≤ exp

(
−

t2

2nv+2bt/3

)
, (34)

and for any δ> 0, with probability at least 1−δ, we have
n

∑
t=1

Xt ≤
√
2nv log(δ−1)+

b log(δ−1)
3

.

Proof of Theorem 31 Both inequalities come from Result (1.6) of Freedman (1975). The first in-
equality then uses (1+ x) log(1+ x)− x ≥ x2

2+2x/3 , while the other uses Inequality (45) of Audibert
et al. (2009). This last inequality allows to remove the

√
2 factor appearing in Lemma A.8 of Cesa-

Bianchi and Lugosi (2006).

We start the proof of Theorem 8 by noting that, since Rn ≤ n, the result is trivial for δ ≤
2K exp(−m/27) so that we assume hereafter that δ≥ 2K exp(−m/27), or equivalently log(2Kδ−1)

m ≤
1
27 . We consider the event E on which we simultaneously have

n

∑
t=1

Zt ≤ m, (35)
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−
n

∑
t=1

gIt ,t ≤−
n

∑
t=1

K

∑
k=1

pk,tgk,t +
√
n log(4δ−1)

2
, (36)

and

max
1≤i≤K

n

∑
t=1

(
gi,t −

η
8ε

−
K

∑
k=1

pk,tgk,t
)(

1−
Zt
ε

)
≤ 2

√
n log(2Kδ−1)

ε
+
log(2Kδ−1)

2ε
. (37)

Let us first prove that this event holds with probability at least 1−δ. From (34), we have

P

( n

∑
t=1

Zt > m
)
≤ exp

(
−

m2/16
3m/2+m/6

)
≤ exp

(
−
m
27

)
≤
δ
4

So (35) holds with probability at least 1−δ/4. From the concentration of martingales with bounded
differences (Hoeffding, 1963; Azuma, 1967), (36) holds with probability at least 1− δ/4. For
η/(8ε) ≤

√
2− 1 (which is true for our particular η), we can apply Theorem 31 with b =

√
2/ε

and v = 2/ε to the random variables
(
gi,t − η

8ε −∑K
k=1 pk,tgk,t

)(
1− Zt

ε

)
. We get that for a fixed

i ∈ {1, . . . ,K}, with probability at least 1−δ/(2K), we have
n

∑
t=1

(
gi,t −

η
8ε

−
K

∑
k=1

pk,tgk,t
)(

1−
Zt
ε

)
≤ 2

√
n log(2Kδ−1)

ε
+
log(2Kδ−1)

2ε
.

From a union bound, we get that (37) holds with probability at least 1− δ/2. Using again a union
bound, we thus have proved that the event E holds with probability at least 1−δ.

Now, on the event E , by combining (36) and (37), we obtain

Rn = max
1≤i≤K

n

∑
t=1

gi,t −
n

∑
t=1

gIt ,t ≤
√
n log(4δ−1)

2
+ max
1≤i≤K

n

∑
t=1

gi,t −
n

∑
t=1

K

∑
k=1

pk,tgk,t

≤
√
n log(4δ−1)

2
+ max
1≤i≤K

n

∑
t=1

gi,t
Zt
ε
−

n

∑
t=1

K

∑
k=1

pk,tgk,t
Zt
ε

+
n

∑
t=1

η
8ε

(
1−

Zt
ε

)
+2

√
n log(2Kδ−1)

ε
+
log(2Kδ−1)

2ε

Since we have ∑n
t=1Zt ≤ m, the rewards received by the forecaster are equal to the rewards which

would receive the forecaster that uses Zt to decide whether he asks for the gains or not, whatever
∑t−1s=1Zs is. This enables us to use (9) (which holds with probability one). We obtain

Rn ≤
√
n log(4δ−1)

2
+
logK
η

+
nη
8ε

+2
√
n log(2Kδ−1)

ε
+
log(2Kδ−1)

2ε

≤
√
n log(4δ−1)

2
+
logK
η

+
n2η
6m

+4n
√
log(2Kδ−1)

3m
+
2n log(2Kδ−1)

3m
.

From the inequalities m≤ n, K ≥ 2 and log(2Kδ−1)
m ≤ 1

27 , this implies

Rn ≤
10n
3

√
log(2Kδ−1)

m
+
logK
η

+
ηn2

6m
.

The first inequality of the theorem is then obtained by plugging η=
√
m logK
n . The second inequality

is derived by integrating the deviations using the standard formula EW ≤
∫ 1
0
1
δP(W > log(δ−1))dδ.
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C.5 Proof of Theorem 9 (page 2797)

The proof goes exactly like for Theorem 8. We just use (6) instead of (9).

C.6 Proof of Theorem 12 (page 2799)

The bound is trivial for 9K log(3K) ≥ n. So we consider hereafter that γ = 2
√

K log(3K)
n < 2

3 . The
result is then a direct consequence of Theorem 21 with G0 = n. The inequality on ERn comes by
integrating the deviations.

C.7 Proof of Theorem 13 (page 2800)

First note that (16) holds for 9
√
nK ≥ n since we trivially have Rn ≤ n. For 9

√
nK < n, we apply

(18) with G0 = n > 81K, and obtain Rn ≤ 8.5
√
nK+

√
2nK log(δ−1). This implies (16) and also

(17) by using Proposition 33.
For the last assertions, we proceed similarly. They trivially hold for 9

√
nK log(3K) ≥ n. For

n> 9
√
nK log(3K), we apply Theorem 20 with G0 = n, and obtain

Rn ≤
9
2
√
nK log(3K)+4

√
nK

log(3K)
+

√
2nK

log(3K)
log(Kδ−1).

By using 1√
log(3K)

≤ 1
log(6)

√
log(3K), this independently implies

Rn ≤ 9
√
nK log(3K)+

√
2nK

log(3K)
log(δ−1),

and by integration,
ERn ≤ 9

√
nK log(3K),

hence the desired inequalities.

C.8 Proof of Theorem 17 (page 2802)

The proof follows the scheme described in Section 5.1.2. In particular let

ν=
γε
βK

+
1

log
(
1− βK

γε

) .

Then we have

−
K

∑
i=1

pi,tvi,t = Zt
pIt ,t
β
log

(
1−

βgIt ,t
εpIt ,t

)

≥ Zt
(
−
gIt ,t
ε

+
νgIt ,t
ε
log

(
1−

βgIt ,t
εpIt ,t

))

≥ −gIt ,t
Zt
ε
−
νβ
ε

K

∑
i=1

vi,t .
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Moreover with a simple application of Theorem 31 we have that with probability at least 1−δ,

−
n

∑
t=1

gIt ,t ≤−
n

∑
t=1

gIt ,t
Zt
ε
+

√
2n logδ−1

ε
+
logδ−1

3ε
.

Now note that the sequence Wt = exp
(
βGi,t − βVi,t

)
, t = 1, . . . ,n, is a supermartingale over the

filtration generated by (gt , It ,Zt), t = 1, . . . ,n. Indeed, we have for any t ∈ {1, . . . ,n},

EIt∼pt ,Zt exp(−βvi,t) = 1− ε+ ε

(
1−

βgi,t
ε

)
= 1−βgi,t ≤ exp(−βgi,t).

Thus, with probability at least 1−δ, we have against deterministic adversaries

max
1≤i≤K

Vi,n ≥ Gmax−
logδ−1

β
,

and against general adversaries

max
1≤i≤K

Vi,n ≥ Gmax−
log(Kδ−1)

β
.

Now we apply (8) of Theorem 2. Let c = − γ
βK log

(
1− βK

γε

)
. If c < qη

( γ
(q−1)K

)(q−1)/q then we
have

(1− γ)

(
max
1≤i≤K

Vi,n
)
− (1+ γζ)

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK

1
q ,

where
ζ=

1
(q−1)K

((q−1)cKµ(1+µ)
2γη

)q
,

with

µ= exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1−
c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

Thus, in the case of a deterministic adversaries, we obtain

Gmax−
n

∑
t=1

gIt ,t

≤
(
γ(1+ζ)+

νβK
ε

)
n+

q
q−1

ηK
1
q +

log(2δ−1)
β

+n
√
2log(2δ−1)

m
+n

log(2δ−1)
3m

=
n
m

((
γ(1+ζ)+νβ′K

)
m+

q
q−1

η′K
1
q +

log(2δ−1)
β′

)
+n

√
2log(2δ−1)

m
+n

log(2δ−1)
3m

, (38)

where β′ = β/ε and η′ = ηε. One can see that the term into parenthesis in (38) is exactly the same
than the right hand side of (43), up to the relabelling of β and η into β′ and η′. This allows us
to use the same numerical application as in Section C.9 (up to the additional terms outside of the
parenthesis in (43)). One can apply the same technique in the case of a general adversary.
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C.9 Proof of Theorem 18, Corollary 19 and Theorem 20 (page 2803)

Consider parameters q > 1, 0 < γ < 1, η > 0 and β > 0 such that βK < γ and such that the real
number c = − γ

βK log
(
1− βK

γ

)
satisfies c < qη

( γ
(q−1)K

)(q−1)/q. From (8) of Theorem 2, since we

have vi,t = ct
pi,t 1IIt=i with ct =− pi,t

β log
(
1− βgi,t

pi,t

)
≤− γ

βK log
(
1− βK

γ

)
= c, we have

(1− γ)

(
max
1≤i≤K

Vi,n
)
+
1+ γζ
β

n

∑
t=1

pIt ,t log
(
1−

βgIt ,t
pIt ,t

)
≤

q
q−1

ηK
1
q , (39)

where
ζ=

1
(q−1)K

((q−1)cKµ(1+µ)
2γη

)q
,

with

µ= exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1−
c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

Let
ν=

γ
βK

+
1

log(1−βK/γ)
.

The function x *→ 1
x +

1
log(1−x) is increasing on (0,+∞). So we have

1
log(1−βgIt ,t/pIt ,t)

+
pIt ,t
βgIt ,t

≤ ν,

hence
pIt ,t
β
log

(
1−

βgIt ,t
pIt ,t

)
≥−gIt ,t +νgIt ,t log

(
1−

βgIt ,t
pIt ,t

)
≥−gIt ,t −νβ

K

∑
i=1

vi,t . (40)

Inequality (39) thus implies

(1− γ)

(
max
1≤i≤K

Vi,n
)
− (1+ γζ)

n

∑
t=1

gIt ,t − (1+ γζ)νβ
K

∑
i=1
Vi,n ≤

q
q−1

ηK
1
q ,

which leads to
(
1− γ− (1+ γζ)νβK

)(
max
1≤i≤K

Vi,n
)
− (1+ γζ)

n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q , (41)

We now provide a high probability lower bound of the left-hand side. The technical tool (es-
sentially deviation inequalities for supermartingales) comes from Section 6.8 of Cesa-Bianchi and
Lugosi (2006).

For any t ∈ {1, . . . ,n}, we have

EIt∼pt exp(−βvi,t) = EIt∼pt exp
{
log

(
1−

βgi,t
pi,t

)
1IIt=i

}
= 1−βgi,t ≤ exp(−βgi,t).

This implies that the sequenceWt = exp
(
βGi,t −βVi,t

)
, t = 1, . . . ,n, forms a supermartingale over

the filtration generated by (gt , It), t = 1, . . . ,n. Indeed, we have

E
(
exp(Wt)|(gs, Is),s= 1, . . . , t−1

)
= Egt |(gs,Is),s=1,...,t−1EIt∼pt exp(Wt)≤ exp(Wt−1).
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So, we have Eexp(Wn) ≤ Eexp(W1) ≤ 1, which implies that with probability at least 1− δ, Vi,n ≥
Gi,n− log(δ−1)

β with probability at least 1−δ. So, for any fixed k ∈ {1, . . . ,K}, we have

max
1≤i≤K

Vi,n ≥ Gk,n−
log(δ−1)

β
. (42)

Combining (41) and (42), we obtain that for any δ > 0 and any fixed k ∈ {1, . . . ,K}, with
probability at least 1−δ, we have

(
1− γ− (1+ γζ)νβK

)
Gk,n− (1+ γζ)

n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q +

log(δ−1)
β

,

hence

Gk,n−
n

∑
t=1

gIt ,t ≤
(
γ(1+ζ)+νβK

)
Gk,n+

q
q−1

ηK
1
q +

log(δ−1)
β

. (43)

Now, for G0 ≥ 81K, let us take

q= 2, γ= 3
√

K
G0

, β=
1√
2KG0

, and η= 2
√
G0.

Then we have c≈ 1.14, ν≈ 0.522, µ≤ 2.09, ζ≤ 0.377, and

Gk,n−
n

∑
t=1

gIt ,t ≤ 4.5

√

K
G2max
G0

+4
√
KG0+

√
2KG0 log(δ−1). (44)

For deterministic adversaries, the arm achieving a cumulative reward equal to Gmax is deterministic
(it does not depend on the randomization of the forecaster). So, we may take k equal to this fixed
arm, and obtain (18).

To prove the inequality for a fully oblivious adversary, let us take k ∈ argmaxi∈{1,...,K}EGi,n.
From (44) which holds with probability at least 1− δ, it suffices to prove that with probability
at least 1− δ, we have Gk,n ≥ Gmax−

√
8log(Kδ−1)Gmax. Let λ > 0. Since the reward vectors

g1, . . . ,gn are independent, and from the inequality exp(λx) ≤ 1+ [exp(λ)− 1]x for any x ∈ [0,1]
(by convexity of the exponential function), for any j -= k, from Lemma 35, we have

Eexp(λGj,n) =
n

∏
t=1

Eexp(λg j,t)≤
n

∏
t=1
exp

[(
exp(λ)−1

)
Eg j,t

]
= exp

[(
exp(λ)−1

)
EGj,n

]
,

and

Eexp(−λGk,n) =
n

∏
t=1

Eexp(−λgk,t)

≤
n

∏
t=1

E

(
1−λgk,t +

1
2
λ2g2k,t

)

≤
n

∏
t=1

(
1−λ

(
1−

λ
2

)
Egk,t

)

≤
n

∏
t=1
exp

[
−λ

(
1−

λ
2

)
Egk,t

]
= exp

[
−λ

(
1−

λ
2

)
EGk,n

]
.
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This implies respectively that for any j -= k, with probability at least 1−δ,

Gj,n ≤ EGj,n+λΘ(λ)EGj,n+
log(δ−1)

λ
,

and with probability at least 1−δ,

EGk,n ≤ Gk,n+
λ
2
EGk,n+

log(δ−1)
λ

.

By optimizing the free parameter λ (using Lemma 32 below), and from a union bound, with proba-
bility at least 1−δ, we simultaneously have

Gj,n ≤ EGj,n+
√
2EGj,n log(Kδ−1)+

log(Kδ−1)
3

,

and
EGk,n ≤ Gk,n+

√
2EGk,n log(Kδ−1).

Since we have EGk,n ≥ EGj,n, we get consecutively Gk,n ≥ EGj,n−
√
2EGj,n log(Kδ−1), and after

computations, Gk,n ≥ Gj,n−
√
8Gj,n log(Kδ−1) for any j -= k. With probability at least 1− δ, we

thus have Gk,n ≥ Gmax−
√
8log(Kδ−1)Gmax, which concludes the proof of (19).

To prove Corollary 19, first note that (20) holds for 9
√
KGmax ≥ Gmax since we trivially have

Rn ≤ Gmax. For 9
√
KGmax < Gmax, we may apply Theorem 18 with G0 = Gmax since Gmax > 81K,

and obtain Rn ≤ 8.5
√
KGmax+

√
2KGmax log(δ−1). This implies (20) and (21).

Lemma 32 Let Θ(λ) = exp(λ)−1−λ
λ2 . For any A> 0, infλ>0

{
λΘ(λ)+ A2

2λ
}
≤ A+A2/6.

Proof Considering λ = log(1+A), we have infλ>0
{
λΘ(λ) + A2

2λ
}
≤ log(1+A)Θ[log(1+A)] +

A2
2 log(1+A) =A+ A2

6 − 1+A+ A2
6

log(1+A)Φ(A)whereΦ(A)" log(1+A)−
A+ A2

2

1+A+ A2
6
. SinceΦ(0) = 0 andΦ′(A) =

A4
36(1+A)(1+A+A2/6)2 ≥ 0, we get Φ(A)≥ 0, hence the result.

To prove Theorem 20, we replace (42), which holds with probability at least 1−δ, by

max
1≤i≤K

Vi,n ≥ Gmax−
log(δ−1)

β
,

which, by a union bound, holds with probability at least 1−Kδ. (It is this union bound that makes
the logK factor appears in the bound.) This leads to the following modified version of (43): with
probability 1−Kδ,

Gmax−
n

∑
t=1

gIt ,t ≤
(
γ(1+ζ)+νβK

)
Gmax+

q
q−1

ηK
1
q +

log(δ−1)
β

.

Now, for G0 ≥ 81K log(3K), let us take q= 2,

γ= 3

√
K log(3K)

G0
, β=

√
log(3K)
2KG0

, and η= 2

√
G0

log(3K)
.
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Then we have c≈ 1.14, ν≈ 0.522, µ≤ 2.09, ζ≤ 0.377, and

Gmax−
n

∑
t=1

gIt ,t ≤ 4.5

√
G2max
G0

K log(3K)+4

√
KG0
log(3K)

+

√
2KG0
log(3K)

log(δ−1).

This inequality holds with probability at least 1−Kδ. This implies the result of Theorem 20.

C.10 Proof of Theorem 21 (page 2803)

Consider parameters q> 1, 0< γ< 1, η> 0 and β> 0 such that βK < γ. Introduce c=− γ
βK log

(
1−

βK
γ

)
. We have maxi,t pi,tvi,t ≤ c. So (11) holds as soon as

γ≥ KηcΘ
(
−
η
β
log

(
1−

βK
γ

))
. (45)

From (12) and as in the proof of Theorem 13, by using (40) with ν= γ
βK + 1

log(1−βK/γ) , we obtain

(1− γ)

(
max
1≤i≤K

Vi,n
)
−

n

∑
t=1

gIt ,t −νβ
K

∑
i=1
Vi,n ≤ (1− γ)

logK
η

,

hence
(1− γ−νβK)

(
max
1≤i≤K

Vi,t
)
−

n

∑
t=1

gIt ,t ≤ (1− γ)
logK
η

.

From the same argument as in the proof of Theorem 18, for any i∈ {1, . . . ,K}, we haveEexp
(
βGi,n−

βVi,n
)
≤ 1, and for any δ> 0, Vi,n ≥ Gi,n− log(δ−1)

β holds with probability at least 1−δ. By a union
bound, we get that with probability at least 1−Kδ,

max
1≤i≤K

Vi,n ≥ Gmax−
log(δ−1)

β
.

With probability at least 1−δ, we thus have

Gmax−
n

∑
t=1

gIt ,t ≤ (γ+νβK)Gmax+
log(Kδ−1)

β
+
logK
η

.

This inequality holds for any parameters q> 1, 0< γ< 1, η> 0 and β> 0 such that the inequality
βK < γ and (45) hold. We choose

γ= 2

√
K log(3K)

G0
, β=

√
log(3K)
2KG0

, and η= 2

√
log(3K)
KG0

,

which gives c≈ 1.23, ν≈ 0.536, and

Gmax−
n

∑
t=1

gIt ,t ≤
5
2

√
G2max
G0

K log(3K)+

√
2KG0
log(3K)

log(Kδ−1)+
1
2
√
KG0 log(3K).
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C.11 Proof of Theorem 22 (page 2804)

Consider parameters 0 < γ < 1, η > 0 and β > 0. We have maxi,t pi,tvi,t ≤ 1+ βK
γ and maxi,t vi,t ≤

(1+β)Kγ . So (11) holds as soon as

γ≥ Kη
(
1+

βK
γ

)
Θ

(
η(1+β)K

γ

)
. (46)

Then, from (12), we have

(1− γ)

(
max
1≤i≤K

Vi,n
)
−

n

∑
t=1

gIt ,t −βnK ≤ (1− γ)
logK
η

.

Let ξt = max1≤i≤KVi,t −min1≤ j≤KVj,t and ξ = max1≤t≤n ξt . Consider a fixed switching strat-
egy (i1, . . . , in) ∈ {1, . . . ,K}n, and let V(i1,...,in) = ∑n

t=1 vit ,t . One can easily check that max1≤i≤K
Vi,n ≥

V(i1,...,in)−ξS(i1, . . . , in), and consequently

max
1≤i≤K

Vi,n ≥ max
(i1,...,in):S(i1,...,in)≤S

V(i1,...,in)−ξS.

Since exp(−x)≤ 1− x+ x2/2 for x≤ 0, we have for any t ∈ {1, . . . ,n} and any i ∈ {1, . . . ,K}

EIt∼pt exp
(
−2βgi,t

1IIt=i
pi,t

)
≤ EIt∼pt

(
1−2βgi,t

1IIt=i
pi,t

+2β2g2i,t
1IIt=i
p2i,t

)

= 1−2βgi,t +2β2
g2i,t
pi,t

≤ 1−2β
(
gi,t −

β
pi,t

)

≤ exp
(
−2β

(
gi,t −

β
pi,t

))
,

hence

EIt∼pt exp
(
2β(gi,t − vi,t)

)
≤ 1.

For a fixed (i1, . . . , in), by using this inequality n times corresponding to the n time steps and their
associated actions, this implies Eexp

(
2β(G(i1,...,in)−V(i1,...,in))

)
≤ 1, hence with probability at least

1−δ,

G(i1,...,in)−V(i1,...,in) ≤
log(δ−1)
2β

.

Let M = ∑S
j=0

(n−1
j
)
K(K−1) j be the number of switching strategies of size not larger than S. By a

union bound, we get that with probability at least 1−δ,

max
(i1,...,in):S(i1,...,in)≤S

V(i1,...,in) ≥ max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in)−
log(Mδ−1)

2β
.
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By putting the previous inequalities together, we obtain that with probability at least 1−δ,

(1− γ) max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in)−
n

∑
t=1

gIt ,t ≤ βnK+(1− γ)
logK
η

+ξS+
log(Mδ−1)

2β
,

hence

RSn = max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in)−
n

∑
t=1

gIt ,t ≤ (γ+βK)n+
logK
η

+ξS+
log(Mδ−1)

2β
.

We now upper bound M and ξ. We have

M =
S

∑
j=0

(
n−1
j

)
K(K−1) j ≤ KS+1

S

∑
j=0

(
n−1
j

)
≤ KS+1

(
en
S

)S
=
exp(s)
2

,

where the second inequality comes from Sauer’s lemma. Let

ρ̃= exp
(
(1+β)

Kη
γ

)1+Kβ
1− γ

.

By contradiction, we now prove

ξ≤ ρ̃−
1
η
log

(
β
ρ̃
−
γ
K

)
. (47)

To this end, we start by bounding Ct −Ct−1. By the mean value theorem, with the notations of the
third step of the proof of Theorem 27, there existsW ∈ [Vt−1,Vt ] such that

Ct −Ct−1 =C(Vt)−C(Vt−1)

=
K

∑
i=1

∂C
∂xi

(W )(Vi,t−Vi,t−1)

=
K

∑
i=1

hi(W )

∑K
j=1 h j(W )

gi,t1IIt=i+β
fi(Vi,t−1)

=
1

∑K
j=1η( f j(W )− γ/K)

K

∑
i=1

ηhi(W )
gi,t1IIt=i+β

hi(Vi,t−1)+ηγ/K

≤
1

1− γ

K

∑
i=1

hi(W )
1IIt=i+β
hi(Vt−1)

≤
ρ
1− γ

K

∑
i=1

(1IIt=i+β) = ρ
1+Kβ
1− γ

.

From Lemma 28 (page 2810), we have ρ ≤ exp
(
(1 + β)Kηγ

)
, hence Ct − Ct−1 ≤

exp
(
(1+β)Kηγ

)
1+Kβ
1−γ = ρ̃. If (47) does not hold, then from Lemma 1, we have

max
1≤t≤n

(
Ct − min

1≤ j≤K
Vj,t

)
> ρ̃−ψ−1(β/ρ̃).

Besides we have C0−min1≤ j≤KVj,0 =−ψ−1(1/K)≤ ρ̃−ψ−1(β/ρ̃), since Kβ≤ ρ̃. So there exist
T ∈ {1, . . . ,n} and ! ∈ {1, . . . ,K} such that CT−1−V!,T−1 ≤ ρ̃−ψ−1(β/ρ̃) and CT −V!,T > ρ̃−
ψ−1(β/ρ̃). In particular, we have ψ(V!,T −CT + ρ̃)< β

ρ̃ , hence

V!,T −V!,T−1 ≥
β
p!,T

=
β

ψ(V!,T−1−CT−1)
≥

β
ψ(V!,T −CT + ρ̃)

≥ ρ̃≥CT −CT−1,
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which contradicts the inequality CT−1−V!,T−1 <CT −V!,T . This ends the proof of (47). We have
thus proved that for any 0< γ< 1, η> 0 and β> 0 such that (46) holds, we have

RSn ≤ (γ+βK)n+
logK
η

+S
{
ρ̃−

1
η
log

(
β
ρ̃
−
γ
K

)}
+
log(Kδ−1)

2β
+
S log(Ken/S)

2β
,

with ρ̃= 1+Kβ
1−γ exp

(
(1+β)Kηγ

)
. For the numerical application, we first notice that the bound trivially

holds for 7
√
Ks≥

√
n. For 7

√
Ks<

√
n, with s= S log

( enK
S
)
+2logK, we choose

γ=

√
Ks
2n

, β= 3
√

s
nK

, and η=
1
5

√
s
nK

.

We then use γ≤ 1
7
√
2 , βK ≤ 3

7 , β≤ 3
14 to deduce ρ̃≤ 2.25, and ρ̃S ≤ 0.05

√
nKs. We check (46) by

the upper bound Kη
γ

(
1+ βK

γ

)
Θ
(η(1+β)K

γ

)
≤ 0.84< 1. We also use− log

(β
ρ̃−

γ
K
)
≤ 1

2 log
(
3nK/s

)
≤

1
2 log

(
3nK/S

)
. We thus have

RSn ≤
(
3+

1√
2
+0.05+

5
2
+
1
6

)√
nKs+

log(δ−1)
2β

≤ 6.5
√
nKs+

log(δ−1)
6

√
nK
s

The last inequality follows by integrating the deviations.

C.12 Proof of Theorem 24 (page 2806)

This proof requires some new arguments compared to the one for UCB1. First, we need to decouple
the arm, while not being too loose. This is achieved by introducing appropriate stopping times. The
decoupled upper bound on the pseudo-regret is (51). Secondly, we use peeling arguments to tightly
control the terms in the right-hand side of (51).

We may assume µ1 ≥ . . .≥ µK . Using the trivial equality ∑K
i=1ETi(n) = n, we have

Rn = max
1≤i≤K

E

n

∑
t=1

(
gi,t −gIt ,t

)

= n
(
max
1≤i≤K

Egi,t
)
−

n

∑
t=1

EgIt ,t

= n
(
max
1≤i≤K

µi
)
−

n

∑
t=1

EµIt

= n
(
max
1≤i≤K

µi
)
−E

n

∑
t=1

µIt

=

( K

∑
i=1

ETi(n)
)(

max
1≤i≤K

µi
)
−E

K

∑
i=1

µiTi(n) =
K

∑
i=1

ΔiETi(n).

First step: Decoupling the arms

For an arm k0, we trivially have ∑K
k=1ΔkTk(n) ≤ nΔk0 +∑K

k=k0+1ΔkTk(n). Let ΔK+1 = +∞,
zk = µ1− Δk

2 for k0 < k ≤ K+ 1 and zk0 = +∞. Let Z = min1≤s≤n B1,s andWj,k = 1IZ∈[z j+1,z j)(Δk−
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Δk0)Tk(n). By using E∑
k0
k=1Tk(n) = n−E∑K

k=k0+1Tk(n), we get

Rn = E

K

∑
k=1

ΔkTk(n)≤ nΔk0 +E

K

∑
k=k0+1

(Δk−Δk0)Tk(n).

We have
K

∑
k=k0+1

(Δk−Δk0)Tk(n) =
K

∑
k=k0+1

K

∑
j=k0

Wj,k =
K

∑
j=k0

j

∑
k=k0+1

Wj,k+
K

∑
j=k0

K

∑
k= j+1

Wj,k. (48)

An Abel transformation takes care of the first sum of (48):

K

∑
j=k0

j

∑
k=k0+1

Wj,k ≤
K

∑
j=k0

1IZ∈[z j+1,z j)n(Δ j−Δk0) = n
K

∑
j=k0+1

1IZ<z j(Δ j−Δ j−1). (49)

To bound the second sum of (48), we introduce the stopping times τk =min{t :Bk,t < zk} and remark
that, by definition of MOSS, we have {Z ≥ zk}⊂ {Tk(n)≤ τk}, since once we have pulled τk times
arm k its index will always be lower than the index of arm 1. This implies

K

∑
j=k0

K

∑
k= j+1

Wj,k =
K

∑
k=k0+1

k−1

∑
j=k0

Wj,k =
K

∑
k=k0+1

1IZ≥zkΔkTk(n)≤
K

∑
k=k0+1

τkΔk. (50)

Combining (48), (49) and (50) and taking the expectation, we get

Rn ≤ nΔk0 +
K

∑
k=k0+1

ΔkEτk+n
K

∑
k=k0+1

P(Z < zk)(Δk−Δk−1). (51)

Let δ0=
√

75K
n and set k0 such that Δk0 ≤ δ0<Δk0+1. If k0=K, we trivially have Rn≤ nδ0≤

√
75nK

so that (22) holds trivially. In the following, we thus consider k0 < K.

Second step: Bounding Eτk for k0+1≤ k ≤ K.

Let log+(x) =max(log(x),0). For !0 ∈ N, we have

Eτk− !0 =
+∞

∑
!=0

P(τk > !)− !0 (52)

≤
+∞

∑
!=!0

P(τk > !) =
+∞

∑
!=!0

P(∀t ≤ !,Bk,t > zk)

≤
+∞

∑
!=!0

P

(

µ̂k,!−µk ≥
Δk
2
−
√
log+ (n/K!)

!

)

.

Now let us take !0 = 37log
( n
KΔ

2
k
)
/Δ2k4 with 3x4 the smallest integer larger than x. For !≥ !0, since

k > k0, we have

log+
( n
K!

)
≤ log+

(
n
K!0

)
≤ log+

(
nΔ2k
7K

)
≤

!0Δ2k
7

≤
!Δ2k
7

,
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hence Δk
2 −

√
log+(n/(K!))

! ≥ cΔk, with c = 1
2 −

1√
7 . Therefore, by using Hoeffding’s inequality and

(52), we get

Eτk− !0 ≤
+∞

∑
!=!0

P(µ̂k,!−µk ≥ cΔk)

≤
+∞

∑
!=!0

exp
(
−2!(cΔk)2

)
=
exp

(
−2!0(cΔk)2

)

1− exp(−2(cΔk)2)
≤
exp(−14c2 log(75))
1− exp

(
−2c2Δ2k

) ,

where the last inequality uses !0Δ2k ≥ 7log(75). Plugging the value of !0, we obtain

ΔkEτk ≤ Δk

(

1+
7log

( n
KΔ

2
k
)

Δ2k

)

+
Δk exp(−14c2 log(75))
1− exp

(
−2c2Δ2k

)

≤ 1+7
log

( n
KΔ

2
k
)

Δk
+
exp(−14c2 log(75))
2c2(1− c2)Δk

,

where the last step uses that, since 1− exp(−x)≥ x− x2/2 for any x≥ 0, we have

1
1− exp

(
−2c2Δ2k

) ≤
1

2c2Δ2k−2c4Δ4k
≤

1
2c2Δ2k(1− c2)

Third step: Bounding n∑K
k=k0+1P(Z < zk)(Δk−Δk−1).

Let Xt denote the reward obtained by arm 1 when it is drawn for the t-th time. The random
variables X1,X2, . . . are i.i.d. so that we have the maximal inequality (Hoeffding, 1963, Inequality
(2.17)): for any x> 0 and m≥ 1,

P

(
∃s ∈ {1, . . . ,m},

s

∑
t=1

(µ1−Xt)> x
)
≤ exp

(
−
2x2

m

)
.

Since zk = µ1−Δk/2 and since u *→ P(Z < µ1−u/2) is a nonincreasing function, we have

K

∑
k=k0+1

P(Z < zk)(Δk−Δk−1)≤ Δk0+1P(Z < zk0+1)+
∫ 1

Δk0+1
P

(
Z < µ1−

u
2

)
du. (53)

We will now concentrate on upper bounding P
(
Z < µ1− u

2
)
for a fixed u ∈ [δ0,1]. Let f (u) =

8log
(√ n

K u
)
/u2. We have

P

(
Z < µ1−

1
2
u
)

= P

(

∃1≤ s≤ n :
s

∑
t=1

(µ1−Xt)>
√
s log+

( n
Ks

)
+
su
2

)

≤ P

(

∃1≤ s≤ f (u) :
s

∑
t=1

(µ1−Xt)>
√
s log+

( n
Ks

))

+ P

(

∃ f (u)< s≤ n :
s

∑
t=1

(µ1−Xt)>
su
2

)

.
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For the first term, we use a peeling argument with a geometric grid of the form 1
2!+1 f (u) ≤ s ≤

1
2! f (u). The numerical constant in δ0 ensures that f (u)≤ n/K, which implies that for any s≤ f (u),
log+

( n
Ks
)
= log

( n
Ks
)
. We have

P

(

∃1≤ s≤ f (u) :
s

∑
t=1

(µ1−Xt)>
√
s log

( n
Ks

))

≤
+∞

∑
!=0

P

(

∃
1
2!+1

f (u)≤ s≤
1
2!
f (u) :

s

∑
t=1

(µ1−Xt)>

√
f (u)
2!+1

log
(

n2!
K f (u)

))

≤
+∞

∑
!=0
exp



−2
f (u) 1

2!+1 log
(

n2!
K f (u)

)

f (u) 12!



=
+∞

∑
!=0

K f (u)
n

1
2!

=
16K
nu2

log
(√

n
K
u
)
.

For the second term we also use a peeling argument but with a geometric grid of the form 2! f (u)≤
s≤ 2!+1 f (u):

P

(
∃s ∈ 3 f (u)4, . . . ,n} :

s

∑
t=1

(µ1−Xt)>
su
2

)

≤
+∞

∑
!=0

P

(

∃2! f (u)≤ s≤ 2!+1 f (u) :
s

∑
t=1

(µ1−Xt)> 2!−1 f (u)u

)

≤
+∞

∑
!=0
exp

(

−2
(
2!−1 f (u)u

)2

f (u)2!+1

)

=
+∞

∑
!=0
exp

(
−2! f (u)u2/4

)

≤
+∞

∑
!=0
exp

(
−(!+1) f (u)u2/4

)
=

1
exp( f (u)u2/4)−1

=
1

nu2/K−1
.

Putting together the last three computations, we obtain

P

(
Z < µ1−

1
2
u
)
≤
16K
nu2

log
(√

n
K
u
)
+

1
nu2/K−1

.
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Plugging this into (53) gives

K

∑
k=k0+1

P(Z < zk)(Δk−Δk−1)

≤
16K
nΔk0+1

log
(√

n
K
Δk0+1

)
+

Δk0+1
nΔ2k0+1/K−1

+

[

−
16K
nu

log
(
e
√
n
K
u
)
+

√
K
4n
log

(√ n
K u−1√ n
K u+1

)]1

Δk0+1

≤
16K
nΔk0+1

log

(
enΔ2k0+1

K

)

+
Δk0+1

nΔ2k0+1/K−1
+

√
K
4n
log

(√ n
KΔk0+1+1√ n
KΔk0+1−1

)

≤
16K
nΔk0+1

log

(
enΔ2k0+1

K

)

+

(
75
74

+

√
75√

75−1

)
K

nΔk0+1

where the penultimate inequality uses Δk0+1 ≥
√

75K
n and log(1+ x)≤ x for any x≥ 0.

Gathering the results of the three steps, we get

Rn ≤ nΔk0 +
K

∑
k=k0+1

(
1+7

log
( n
KΔ

2
k
)

Δk
+
exp(−14c2 log(75))
2c2(1− c2)Δk

)

+
16K
Δk0+1

log
(enΔ2k0+1

K

)
+

(
75
74

+

√
75√

75−1

)
K

Δk0+1

≤ nΔk0 +K+(16+7)K
log

(
n
KΔ

2
k0+1

)

Δk0+1
+(16+16)

K
Δk0+1

≤ nδ01IΔ≤δ0 +23K
log

(
n
KΔ

2
k0+1

)

Δk0+1
+
33K
Δk0+1

≤ 23K
log

( n
K max(Δ,δ0)

2)

max(Δ,δ0)
+

108K
max(Δ,δ0)

≤ 23K
log

(110n
K max(Δ,δ0)2

)

max(Δ,δ0)
,

which implies (22) and also Rn ≤ 24
√
nK. Since Proposition 34 implies ERn−Rn ≤

√
nK, we have

proved (23). For (24), Proposition 36 implies

ERn−Rn ≤min
(
K
Δ
,

√
nK
2

)
≤

K
√
75

2max(Δ,δ0)
,

which implies

ERn ≤ 23K
log

(133n
K max(Δ,δ0)2

)

max(Δ,δ0)
.
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Appendix D. Pseudo-regret vs Expected Regret

The first two propositions hold for the four prediction games considered in this work and defined in
Figure 1.

Proposition 33 For deterministic adversaries, we have ERn = Rn. For oblivious adversaries, we
have

ERn ≤ sup
deterministic adversaries

Rn.

In particular, this means that the worst oblivious adversary for a forecaster cannot lead to a larger
regret than the worst deterministic adversary.
Proof The first assertion is trivial. For the second one, let Eadv be the expectation with respect to
the eventual randomization of the adversary and Efor be the expectation with respect to the random-
ization of the forecaster. For oblivious adversaries, we have ERn = EadvEforRn, hence

ERn ≤ sup
deterministic adversaries

EforRn = sup
deterministic adversaries

Rn.

While the previous proposition is useful for upper bounding the regret of a forecaster against the
worst oblivious adversary, it does not say anything about the difference between the expected regret
and the pseudo-regret for a given adversary. The next proposition gives an upper bound on this dif-
ference for fully oblivious adversaries, which are (oblivious) adversaries generating independently
the reward vectors.

Proposition 34 For fully oblivious adversaries, we have

ERn−Rn ≤
√
n logK
2

,

and

ERn−Rn ≤

√

2log(K)max
i

E

n

∑
t=1

gi,t +
logK
3

.

Proof The proof is similar to the one of the upper bound on the expected supremum of a finite
number of subgaussian random variables. We use the following lemma.

Lemma 35 Let λ> 0 and W a random variable taking its values in [0,1]. We have

Eexp(λW )≤ exp
[(
exp(λ)−1

)
EW

]
.

Proof By convexity of the exponential function, we have exp(λx) ≤ 1+
(
exp(λ)− 1

)
x for any

x ∈ [0,1]. So we have Eexp(λW )≤ 1+
(
exp(λ)−1

)
EW, hence Lemma 35.
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Let λ> 0, then by Jensen’s inequality and Lemma 35, we have

Emax
i

n

∑
t=1

gi,t ≤ E
1
λ
log

K

∑
i=1
exp

(

λ
n

∑
t=1

gi,t

)

≤
1
λ
log

K

∑
i=1

E

n

∏
t=1
exp(λgi,t)

=
1
λ
log

K

∑
i=1

n

∏
t=1

Eexp(λgi,t)

≤
1
λ
log

K

∑
i=1

n

∏
t=1
exp

(
[exp(λ)−1]Egi,t

)

≤
logK
λ

+
exp(λ)−1

λ
max
i

E

n

∑
t=1

gi,t .

This implies

ERn−Rn ≤ inf
λ>0

(
logK
λ

+λΘ(λ)max
i

E

n

∑
t=1

gi,t
)
,

where Θ(λ) = exp(λ)−1−λ
λ2 . By using Lemma 32, one obtains the second inequality of the theorem.

Instead of using a variant of Bernstein’s argument to control Eexp(λgi,t), one can use Hoeffding’s
inequality. This leads to the first inequality by taking λ=

√
2logK
n .

We can strengthen the previous result on the difference between the expected regret and the
pseudo-regret when we consider the stochastic bandit game, in which the rewards coming from a
given arm form an i.i.d. sequence. In particular, when there is a unique optimal arm, the following
theorem states that the difference is exponentially small with n (instead of being of order

√
n).

Proposition 36 For a given δ≥ 0, let I =
{
i ∈ {1, . . . ,K} : Δi ≤ δ

}
be the set of arms “δ-close” to

the optimal ones, and J = {1, . . . ,K} \ I the remaining set of arms. In the stochastic bandit game,
we have

ERn−Rn ≤
√
n log |I|
2

+∑
i∈J

1
Δi
exp

(
−
nΔ2i
2

)
,

and also

ERn−Rn ≤
√
n log |I|
2

+∑
i∈J

{
8σ2i +4Δi/3

Δi
exp

(
−

nΔ2i
8σ2i +4Δi/3

)

+
8σ2i∗ +4Δi/3

Δi
exp

(
−

nΔ2i
8σ2i∗ +4Δi/3

)}

,

where for any j ∈ {1, . . . ,K}, σ2j denotes the variance of the reward distribution of arm j.
In particular when there exists a unique arm i∗ such that Δi∗ = 0, we have

ERn−Rn ≤ ∑
i-=i∗

1
Δi
exp

(
−
nΔ2i
2

)
.
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Note that the assumption on the uniqueness of the optimal arm in the last statement is necessary
as we already discussed in Remark 25.
Proof LetW (1)

n = maxi∈I∑n
t=1 gi,t −∑n

t=1 gi∗,t andW
(2)
n = max j∈{1,...,K}∑n

t=1 g j,t −maxi∈I∑n
t=1 gi,t .

We have ERn−Rn = EW (1)
n +EW (2)

n . From the same argument as in the proof of Proposition 34,
we have

EW (1)
n ≤

√
n log |I|
2

.

Besides, we have

EW (2)
n =

∫ +∞

0
P(W (2)

n > u)du

≤∑
j∈J

∫ +∞

0
P

(
n

∑
t=1

g j,t −max
i∈I

n

∑
t=1

gi,t > u

)

du

≤∑
j∈J

∫ +∞

0
P(Gj,n−Gi∗,n > u)du

=∑
i∈J

∫ +∞

0
P(Gi,n−EGi,n+EGi∗,n−Gi∗,n > u+nΔi)du

≤∑
i∈J

∫ +∞

0

{
P

(
Gi,n−EGi,n >

u+nΔi
2

)
+P

(
EGi∗,n−Gi∗,n >

u+nΔi
2

)}
du.

This last integrand is upper bounded by 2exp
(
− (u+nΔi)2

2n

)
from Hoeffding’s inequality, and by

exp
(
− (u+nΔi)2
8nσ2i+4(u+nΔi)/3

)
+ exp

(
− (u+nΔi)2
8nσ2i∗+4(u+nΔi)/3

)
from Bernstein’s inequality. To control the two

corresponding integrals, we note that for a nondecreasing convex function χ going to infinity at+∞,
we have ∫ +∞

x
exp(−χ(u))du≤

∫ +∞

x

χ′(u)
χ′(x)

exp(−χ(u))du=
exp(−χ(x))

χ′(x)
.

We apply this inequality to the functions r *→ r2
2n and r *→

r2
8nσ2i+4r/3

to obtain respectively

EW (2)
n ≤ 2∑

i∈J

∫ +∞

nΔi
exp

(
−
u2

2n

)
du≤∑

i∈J

1
Δi
exp

(
−
nΔ2i
2

)
,

and
∫ +∞

nΔi
exp

(
−

u2

8nσ2i +4u/3

)
du≤

(8σ2i +4Δi/3)2

Δi(16σ2i +4Δi/3)
exp

(
−

nΔ2i
8σ2i +4Δi/3

)

≤
8σ2i +4Δi/3

Δi
exp

(
−

nΔ2i
8σ2i +4Δi/3

)
,

hence

EW (2)
n ≤∑

i∈J

{
8σ2i +

4Δi
3

Δi
exp

(
−

nΔ2i
8σ2i +4Δi/3

)
+
8σ2i∗ +

4Δi
3

Δi
exp

(
−

nΔ2i
8σ2i∗ +4Δi/3

)}

.
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Abstract
Information theoretic measures form a fundamental class of measures for comparing clusterings,
and have recently received increasing interest. Nevertheless, a number of questions concerning
their properties and inter-relationships remain unresolved. In this paper, we perform an organized
study of information theoretic measures for clustering comparison, including several existing pop-
ular measures in the literature, as well as some newly proposed ones. We discuss and prove their
important properties, such as the metric property and the normalization property. We then high-
light to the clustering community the importance of correcting information theoretic measures for
chance, especially when the data size is small compared to the number of clusters present therein.
Of the available information theoretic based measures, we advocate the normalized information
distance (NID) as a general measure of choice, for it possesses concurrently several important
properties, such as being both a metric and a normalized measure, admitting an exact analytical
adjusted-for-chance form, and using the nominal [0,1] range better than other normalized variants.
Keywords: clustering comparison, information theory, adjustment for chance, normalized infor-
mation distance

1. Introduction

Clustering comparison measures play an important role in cluster analysis. Most often, such mea-
sures are used for external validation, that is, assessing the goodness of clustering solutions accord-
ing to a “ground truth” clustering. Recent advances in cluster analysis have driven new algorithms,
in which the clustering comparison measures are used actively in searching for good clustering so-
lutions. One such example occurs in the context of ensemble (consensus) clustering, whose aim is
to unify a set of clusterings, already obtained by some algorithms, into a single high quality one
(Singh et al., 2009; Strehl and Ghosh, 2002; Charikar et al., 2003). A possible approach is to choose
the clustering which shares the most information with all the other clusterings, such as in Strehl
and Ghosh (2002). A measure is therefore needed to quantify the amount of information shared
between clusterings, more specifically in this case, between the “centroid” clustering and all the
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†. Also in the Victoria Research Laboratory, National ICT Australia (NICTA).
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other clusterings. Another example is in model selection by stability assessment (Ben-David et al.,
2006; Shamir and Tishby, 2008). A possible realization of this scheme is to measure the average
pairwise distances between all the clusterings obtained under some sort of perturbations (Vinh and
Epps, 2009), hence requiring a clustering comparison measure.

Numerous measures for comparing clusterings have been proposed. Besides the class of pair-
counting based and set-matching based measures, information theoretic measures form another
fundamental class. In the clustering literature, such measures have been employed because of their
strong mathematical foundation, and ability to detect non-linear similarities. For the particular pur-
pose of clustering comparison, this class of measures has been popularized through the works of
Strehl and Ghosh (2002) and Meilă (2005), and since then has been employed in various subse-
quent research (Fern and Brodley, 2003; He et al., 2008; Asur et al., 2007; Tumer and Agogino,
2008). In this context, the pioneering works of Meilă (2003, 2005, 2007) have shown a number of
desirable theoretical properties of one of these measures—the variation of information (VI)—such
as its metric property and its alignment with the lattice of partitions. Although having received con-
siderable interest, in our opinion, the application of information theoretic measures for comparing
clustering has been somewhat scattered. Apart from the VI which possesses a fairly comprehen-
sive characterization, less is known about the mutual information and various forms of the so-called
normalized mutual information (Strehl and Ghosh, 2002). The main technical contributions of this
paper can be summarized as being three-fold:

1. We first review and make a coherent categorization of information theoretic similarity and
distance measures for clustering comparison. We then discuss and prove their two important prop-
erties, namely the normalization and the metric properties. We show that among the prospective
measures, the normalized information distance (NID) and the normalized variation of information
(NVI) satisfy both these desirable properties.

2. We draw the attention of the clustering community towards the necessity of correcting infor-
mation theoretic measures for chance in certain situations, derive analytical forms for the proposed
adjusted-for-chance measures, and investigate their properties. Preliminary results regarding cor-
recting information theoretic measures for chance have previously appeared in Vinh, Epps, and Bai-
ley (2009). In this paper, we further analyze the large sample properties of the adjusted measures,
and give a recommendation as to when adjustment is mostly needed.

3. Of the available information theoretic measures, we advocate the normalized information
distance (NID) as a general purpose measure for comparing clusterings, which has the advantage
of being both a metric and a normalized measure, admitting an exact analytical adjusted-for-chance
form, and using better the nominal [0,1] range. For ease of reading, we present the proofs of all
results herein in the Appendix.

2. A Brief Review of Measures for Comparing Clusterings

Let S be a set of N data items, then a (partitional) clustering U on S is a way of partitioning S into
non-overlap subsets {U1,U2, . . . ,UR}, where ∪Ri=1Ui = S and Ui ∩Uj = /0 for i %= j. The informa-
tion on the overlap between two clusterings U = {U1,U2, . . . ,UR} and V = {V1,V2, . . . ,VC} can be
summarized in form of a R×C contingency table M = [ni j]i=1...Rj=1...C as illustrated in Table 1, where ni j
denotes the number of objects that are common to clustersUi and Vj.

Pair counting based measures are built upon counting pairs of items on which two clusterings
agree or disagree. Specifically, the

(N
2
)

item pairs in S can be classified into one of the 4 types—N11:
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U\V V1 V2 . . . VC Sums
U1 n11 n12 . . . n1C a1
U2 n21 n22 . . . n2C a2
...

...
... . . . ...

...
UR nR1 nR2 . . . nRC aR
Sums b1 b2 . . . bC ∑i j ni j = N

Table 1: The Contingency Table, ni j = |Ui∩Vj|

the number of pairs that are in the same cluster in both U and V; N00: the number of pairs that are
in different clusters in both U and V; N01: the number of pairs that are in the same cluster in U but
in different clusters in V; and N10: the number of pairs that are in different clusters in U but in the
same cluster in V—that can be calculated using the ni j’s (Hubert and Arabie, 1985). Intuitively, N11
and N00 can be used as indicators of agreement between U and V, while N01 and N10 can be used
as disagreement indicators. A well known index of this class is the Rand index (RI, Rand 1971),
defined straightforwardly as RI(U,V) = (N00+N11)/

(N
2
)

, which lies in the nominal range of [0,1].
In practice however, the RI often lies within the narrower range of [0.5,1]. Also, its baseline value
can be high and does not take on a constant value. For these reasons, the RI has been mostly used
in it adjusted form, known as the adjusted Rand index (ARI, Hubert and Arabie 1985):

ARI(U,V) = 2(N00N11−N01N10)
(N00+N01)(N01+N11)+(N00+N10)(N10+N11)

.

The ARI is bounded above by 1, and equals 0 when the RI equals its expected value (under the gen-
eralized hypergeometric distribution assumption for randomness). Besides the ARI, there are many
other, possibly less popular, measures in this class. Albatineh et al. (2006) made a comprehensive
list of 22 different indices of this type, a number which is large enough to make the task of choosing
an appropriate measure difficult and confusing. Their work, and subsequent extension of Warrens
(2008), showed that after correction for chance, some of these measures become equivalent. De-
spite the existence of numerous measures, the ARI remains the most well-known and widely used
(Steinley, 2004). Therefore, in this work, we take it as the representative of this class for comparison
with other measures. Although the ARI has been mainly used in its similarity form, it can be easily
shown that its distance version, that is, 1−ARI, is not a proper metric.

Set matching based measures, as their name suggests, are based on finding matches between
clusters in the two clusterings. A popular measure is the classification error rate which is often
employed in supervised learning. Several other indices are discussed in Meilă (2007), all suffering
from two major problems which have long been known in the clustering comparing literature (Dom,
2001; Steinley, 2004; Meilă, 2007) namely: (i) the number of clusters in the two clusterings may
be different, making this approach problematic, since there are some clusters which are put outside
consideration; and (ii) even when the numbers of clusters are the same, the unmatched part of each
matched cluster pair is still put outside consideration. Due to the problems with this class of indices,
we shall not consider them further in this paper.

Information theoretic based measures are built upon fundamental concepts from information
theory (Cover and Thomas, 1991). Given two clusterings U and V, their entropies, joint entropy,
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conditional entropies and mutual information (MI) are defined naturally via the marginal and joint
distributions of data items in U and V respectively as:

H(U) = −
R

∑
i=1

ai
N
log

ai
N
,

H(U,V) = −
R

∑
i=1

C

∑
j=1

ni j
N
log

ni j
N

,

H(U|V) = −
R

∑
i=1

C

∑
j=1

ni j
N
log

ni j/N
bj/N

,

I(U,V) =
R

∑
i=1

C

∑
j=1

ni j
N
log

ni j/N
aib j/N2

.

The MI measures the information that U and V share: it tells us how much knowing one of these
clusterings reduces our uncertainty about the other. From a communication theory point of view, the
above-defined quantities can be interpreted as follows. Suppose we need to transmit all the cluster
labels in U on a communication channel, then H(U) can be interpreted as the average amount of
information, for example, in bits, needed to encode the cluster label of each data point according to
U. Now suppose that V is made available to the receiver, then H(U|V) denotes the average number
of bits needed to transmit each label in U if V is already known. We are interested in how seeing
how much H(U|V) is smaller than H(U), that is, how much the knowledge of V helps us to reduce
the number of bits needed to encode U. This can be quantified in terms of the mutual information
H(U)−H(U|V) = I(U,V). The knowledge of V thus helps us to reduce the number of bits needed
to encode each cluster label in U by an amount of I(U,V) bits. In the reverse direction we also have
I(U,V) = H(V)−H(V|U). Clearly, the higher the MI, the more useful the information in V helps
us to predict the cluster labels in U and vice-versa.

Before closing this section, we list several generally desirable properties of a clustering com-
parison measure. This list is not meant to be exhaustive, and particular applications might require
other specific properties.

• Metric property: the metric property requires that a distance measure satisfy the properties
of a true metric, namely positive definiteness, symmetry and triangle inequality. As the most
basic benefit, the metric property conforms to our intuition of distance (Meilă, 2007). Further-
more, it is important if one would like to study, either the structure of, or design algorithms
for the complex space of clusterings, as many nice theoretical results already exist for metric
spaces.

• Normalization: the normalization property requires that the range of a similarity or distance
measure lies within a fixed range, for example, [-1,1] or [0,1]. Normalization facilitates
interpretation and comparison across different conditions (Strehl and Ghosh, 2002; Luo et al.,
2009), where unbounded measures might have different ranges. Also, normalization has been
shown to improve the sensitiveness of certain measures, such as the MI, with respect to the
difference in cluster distribution in the two clusterings (Wu et al., 2009). The fact that all of the
22 different pair counting based measures discussed in Albatineh et al. (2006) are normalized,
further stresses the particular interest of the clustering community in this property.
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• Constant baseline property: for a similarity measure, its expected value between pairs of
independent clusterings, for example, clusterings sampled independently at random, should
be a constant. Ideally this baseline value should be zero, indicating no similarity. The Rand
index is an example of a similarity index which does not satisfy this rather intuitive property,
the reason why it has been mainly used in its adjusted form.

3. Information Theoretic Based Measures - Variants and Properties

Name Expression Range Related sources
Mutual Information (MI) I(U,V) [0,min{H(U),H(V)}] Banerjee et al. (2005)
Normalized MI (NMI)

NMI joint I(U,V)
H(U,V) [0,1] Yao (2003)

NMImax I(U,V)
max{H(U),H(V)} [0,1] Kvalseth (1987)

NMIsum 2I(U,V)
H(U)+H(V) [0,1] Kvalseth (1987)

NMIsqrt I(U,V)√
H(U)H(V)

[0,1] Strehl and Ghosh (2002)

NMImin I(U,V)
min{H(U),H(V)} [0,1] Kvalseth (1987)

Liu et al. (2008)
Adjusted-for-Chance MI (see Section 4)

AMImax† I(U,V)−E{I(U,V)}
max{H(U),H(V)}−E{I(U,V)} [0,1]∗

AMIsum† I(U,V)−E{I(U,V)}
1
2 [H(U)+H(V)]−E{I(U,V)} [0,1]∗

AMIsqrt† I(U,V)−E{I(U,V)}√
H(U)H(V)−E{I(U,V)}

[0,1]∗

AMImin† I(U,V)−E{I(U,V)}
min{H(U),H(V)}−E{I(U,V)} [0,1]∗

∗These measures are normalized in a stochastic sense, being equal to 1 if the (unadjusted) measures equal
their value as expected by chance agreement. †Our proposed measures.

Table 2: Information theoretic-based similarity measures

Similarity measures: the mutual information (MI), a non-negative quantity, can be employed as
the most basic similarity measure. Based on the observation that the MI is upper-bounded by the
following quantities:

I(U,V)≤min{H(U),H(V)}≤
√

H(U)H(V)≤ 1
2
(H(U)+H(V))≤max{H(U),H(V)}≤ H(U,V), (1)

we can derive several normalized versions of the mutual information (NMI) as listed in Table 2.
All the normalized variants are bounded in [0,1], equaling 1 when the two clusterings are identical,
and 0 when they are independent, that is, sharing no information about each other. In the latter case,
the contingency table takes the form of the so-called “independence table” where ni j = |Ui||Vj|/N
for all i, j. The MI and some of its normalized versions have been used in the clustering litera-
ture as similarity measures between objects in general (see, for example, Yao, 2003 and references
therein). For the particular purpose of clustering comparison, Banerjee et al. (2005) employed the
unnormalized MI. Strehl and Ghosh (2002) on the other hand made use of the NMIsqrt normalized
version, which has also been used in several follow-up works in the context of ensemble clustering
(Fern and Brodley, 2003; He et al., 2008; Asur et al., 2007; Tumer and Agogino, 2008).
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Name Expression Range Metric Related sources
Unnormalized distance measures

Djoint H(U,V)− I(U,V) [0,logN] !
Yao (2003)

(Variation of Information ) Meilă (2005)
Dmax max{H(U),H(V)}− I(U,V) [0,logN] !

Dsum(≡ 1/2Djoint)
1
2 [H(U)+H(V)]− I(U,V) [0,logN] !

Dsqrt
√

H(U)H(V)− I(U,V) [0,logN] ✗

Dmin min{H(U),H(V)}− I(U,V) [0,logN] ✗

Normalized distance measures
d joint (Normalized VI) 1− I(U,V)

H(U,V) [0,1] ! Kraskov et al. (2005)
dmax (Normalized 1− I(U,V)

max{H(U),H(V)} [0,1] ! Kraskov et al. (2005)Information Distance)
dsum 1− 2I(U,V)

H(U)+H(V) [0,1] ✗

dsqrt 1− I(U,V)√
{H(U),H(V)}

[0,1] ✗

dmin 1− I(U,V)
min{H(U),H(V)} [0,1] ✗

Adjusted-for-Chance distance measures (see Section 4)
Admax† 1−AMImax [0,1]∗ ✗

Adsum† 1−AMIsum [0,1]∗ ✗

Adsqrt† 1−AMIsqrt [0,1]∗ ✗

Admin† 1−AMImin [0,1]∗ ✗
∗These measures are normalized in a stochastic sense, being equal to 0 if the (unadjusted) measures equal
their value as expected by chance agreement. †Our proposed measures. D denotes an unnormalized
distance measure, d denotes a normalized distance measure

Table 3: Information theoretic-based distance measures

Distance measures: based on the five upper bounds for I(U,V) given in (1), we can define five
distance measures, namely Djoint ,Dmax,Dsum,Dsqrt and Dmin, as detailed in Table 3. However, it can
be seen that Djoint = 2Dsum,1 and these two measures have been known in the clustering literature
as the variation of information—VI (Meilă, 2005). The fact that Djoint (and hence Dsum) is a true
metric is a well known result (Meilă, 2005). In addition, we also present the following new results
(see Appendix for proof):

Theorem 1 Dmax is a metric.

Theorem 2 Dmin and Dsqrt are not metrics.

The negative result given in Theorem 2 is indeed helpful in narrowing our search scope for a rea-
sonable distance measure. So far, Dmax and Djoint (Dsum) are potential candidates. These distance
measures do not have a fixed upper bound however, and we are therefore seeking some normalized
variants. By dividing each distance measure by its corresponding upper bound we can define five
normalized variants as detailed in Table 3, which are actually the unit-complements of the corre-
sponding NMI variants, for example, d joint = 1−NMI joint . We now state the following properties
of the normalized distance measures:

Theorem 3 The normalized variation of information, d joint , is a metric

Theorem 4 The normalized information distance, dmax, is a metric

1. 2Dsum(U,V) =H(U)+H(V)−2I(U,V) = [H(U)+H(V)−I(U,V)]−I(U,V) =H(U,V)−I(U,V) =Djoint(U,V).
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Theorem 5 The normalized distance measures dmin, dsum and dsqrt , are not metrics.

The proofs for Theorem 3 and 4 was presented in an unofficially extended version of Kraskov et al.
(2005).2 Unfortunately, their proof for Theorem 4 was erroneous.3 Since these are two interesting
results, we give our shortened proof for Theorem 3 and a corrected proof for Theorem 4 in the
Appendix. The negative results in Theorem 5 are again useful in narrowing our scope looking for a
good candidate. From our discussion so far, we can now identify two promising candidates: d joint
and dmax. Since the variation of information—Djoint—is the unnormalized version of d joint , we shall
name d joint the normalized variation of information (NVI). dmax has not been named in the literature,
therefore we name it after its well known analogue in Kolmogorov complexity theory (Li et al.,
2004), the normalized information distance (NID). Both the NVI and NID have the remarkable
property of being both a metric and a normalized measure. We note that Meilă (2007) proposed
normalized variants for the VI, such as: V (U,V) = 1

logNVI(U,V) or: VK∗(U,V) = 1
2logK∗VI(U,V)

when the number of clusters in bothU andV is bounded by the same constantK∗ <
√
N. The bounds

of logN and 2logK∗ are not as strict asH(U,V) however,4 thus the useful range of these normalized
VI variants is narrower than that of d joint . The joint entropy H(U,V) provides a stricter upper
bound, enabling d joint to better exploit the [0,1] range, while still retaining the metric property. It is
noted that since max{H(U),H(V)} is yet a tighter upper bound for MI(U,V) than H(U,V), dmax is
generally more preferable to d joint since it can even better use the nominal range of [0,1]. A subtle
point regarding normalization by quantities such as max{H(U),H(V)} and H(U,V), as has been
brought to our attention by the Editor, is their potential side effects on the normalization process.
For validation purpose for example, if U is the ground-truth, and V is the clustering obtained by
some algorithm, then the normalization also depends on V. Thus, while random quantities such as
max{H(U),H(V)} and H(U,V) provide tighter bounds, their effect on the normalization process is
not as clear as looser, fixed bounds such as logN and 2logK∗.

4. Adjustment for Chance

In this section we inspect the proposed information theoretic measures with respect to the third
desirable property, that is, the constant baseline property. We shall first point out that, just like the
well-known Rand index, the baseline value of information theoretic measures does not take on a
constant value, and thus adjustment for chance will be needed in certain situations. Let us consider
the following two motivating examples:

1) Example 1 - Distance to a “true” clustering: given a ground-truth clustering U with Ktrue
clusters, we need to assess the goodness of two clusteringsVwithC clusters, andV′ withC′ clusters.
If C = C′ then the situation would be quite simple. Since the setting is the same for both V and
V′, we expect the comparison to be “fair” under any particular measure. However if C %= C′, the
situation becomes more complicated. We set up an experiment as follows: consider a set of N
data points, let the number of clusters K vary from 2 to Kmax and suppose that the true clustering
has Ktrue = [Kmax/2] clusters. Now for each value of K, generate 10,000 random clusterings and
calculate the average MI, NMImax, VI, RI and ARI between those clusterings to a fixed, random

2. Available online at http://arxiv.org/abs/q-bio/0311039v2.
3. In their case 1, D′(Z,Y ) is in fact not equal to H(Z|Y )/H(Y ).
4. If N ≤ RC then H(U,V) ≤ logN, with the equality attained only when cells of the contingency table contain only
either 1 or 0. If N > RC then H(U,V)≤ log(RC)≤ log(K∗K∗) = 2logK∗.
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clustering chosen as the “true” clustering. The results for two combinations of (N,Ktrue) are given
in Fig. 1(a,b). It can be observed that the unadjusted measures such as the RI, MI and NMI (VI)
monotonically increase (decreases) as K increases. Thus even by selecting totally at random, a 7-
cluster solution would have a greater chance to outperform a 3-cluster solution, although there isn’t
any difference in the clustering generation methodology. A corrected-for-chance measure, such as
the ARI, on the other hand, has a baseline value always close to zero, and appears not to be biased
in favor of any particular value of K. The same issue is observed with all other variants of the NMI
(data not shown). Thus for this example, an adjusted-for-chance version of the MI is desirable.
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Figure 1: (a,b) Average distance between sets of random clusterings to a “true” clustering (c,d)
Average pairwise distance in a set of random clusterings. Error bars denote standard
deviation.

2) Example 2 - Determining the number of clusters via consensus (ensemble) clustering: in an
era where a huge number of clustering algorithms exist, the consensus clustering idea (Monti et al.,
2003; Strehl and Ghosh, 2002; Yu et al., 2007) has recently received increasing interest. Consensus
clustering is not just another clustering algorithm: it rather provides a framework for unifying the
knowledge obtained from other algorithms. Given a data set, consensus clustering employs one or
several clustering algorithms to generate a set of clustering solutions on either the original data set or
its perturbed versions. From these clustering solutions, consensus clustering aims to choose a robust
and high quality representative clustering. Although the main objective of consensus clustering is
to discover a high quality cluster structure, closer inspection of the set of clusterings obtained can
often give valuable information about the appropriate number of clusters present. More specifically,
we have empirically observed the following: in regard to the set of clusterings obtained, when the
specified number of clusters coincides with the true number of clusters, this set has a tendency to be
less diverse. This is an indication of the robustness of the obtained cluster structure. To quantify this
diversity we have recently developed a novel index (Vinh and Epps, 2009), namely the consensus
index (CI), which is built upon a suitable clustering similarity measure. Given a value of K, suppose
we have generated a set of B clustering solutionsUK = {U1,U2, . . . ,UB}, each with K clusters. We
define the consensus index of UK as:

CI(UK) =
∑i< jAM(Ui,U j)

B(B−1)/2
where the agreement measure AM is a suitable clustering similarity index. Thus, the CI quantifies
the average pairwise agreement in UK . The optimal number of clusters K∗ is chosen as which
that maximizes CI, that is, K∗ = argmaxK=2...Kmax CI(UK). In this setting, a normalized measure is
preferable for its equalized range at different values of K. We performed an experiment as follows:
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givenN data points, randomly assign each data point into one of theK clusters with equal probability
and check to ensure that the final clustering contains exactly K clusters. For each K, repeat this 200
times to create 200 random clusterings, then calculate the average values of the MI, VI, NMImax,
RI and ARI between all 19,900 clustering pairs. Typical experimental results are presented in Fig.
1(c,d). It can be observed that for a given data set, the average MI, NMI and RI (VI) values between
random clusterings tend to increase (decrease) as the number of clusters increases, while the average
value of the ARI is always close to zero. When the ratio of N/K is large, the average value for NMI
is reasonably close to zero, but grows as N/K becomes smaller. This is clearly an unwanted effect,
since a consensus index built upon the MI, NMI and VI would be biased in favour of a larger number
of clusters. Thus in this situation, an adjusted-for-chance version of the MI is again important.

4.1 The Proposed Adjusted Measures

To correct the measures for randomness it is necessary to specify a model according to which ran-
dom partitions are generated. Such a common model is the “permutation model” (Lancaster, 1969,
p. 214), in which clusterings are generated randomly subject to having a fixed number of clusters
and points in each clusters. Using this model, which was also adopted by Hubert and Arabie (1985)
for the ARI, we have previously shown (Vinh et al., 2009) that the expected mutual information
between two clusterings U and V is:

E{I(U,V)}=
R
∑
i=1

C
∑
j=1

min(ai,b j)

∑
ni j=max(ai+b j−N,0)

ni j
N
log(

N.ni j
aib j

)
ai!b j!(N−ai)!(N−b j)!

N!ni j!(ai−ni j)!(b j−ni j)!(N−ai−b j+ni j)!
. (2)

As suggested by Hubert and Arabie (1985), the general form of a similarity index corrected for
chance is given by:

Adjusted Index=
Index− Expected Index

Max Index−Expected Index
, (3)

which is upper-bounded by 1 and equals 0 when the index equals its expected value. Having calcu-
lated the expectation of the MI, we propose the adjusted form, which we call the adjusted mutual
information (AMI), for the normalized mutual information according to (3). For example, taking
the NMImax we have:

AMImax(U,V) =
NMImax(U,V)−E{NMImax(U,V)}

1−E{NMImax(U,V)}
=

I(U,V)−E{I(U,V)}
max{H(U),H(V)}−E{I(U,V)} .

Similarly, other adjusted similarity measures are listed in Table 2. It can be seen that the adjusted-
for-chance forms of the MI are all normalized in a stochastic sense. Specifically, the AMI equals
1 when the two clusterings are identical, and 0 when the MI between the two clusterings equals its
expected value. The adjusted forms for the distance measures, listed in Table 2, are again the unit-
complements of the corresponding adjusted similaritymeasures, for example, Admax = 1−AMImax,
and are also normalized in a stochastic sense. Following the naming scheme that we have adopted
throughout in this paper, we name Admax the adjusted information distance. It is noted that at this
stage, we have not been able to derive an analytical solution for the adjusted form for the normalized
variation of information (d joint) measure. The derivation of the expected value for this measure
appears to be more involved observing that I(U,V) is present in both the numerator and denominator
(H(U,V) = H(U)+H(V)− I(U,V)). We repeat the experiments described in examples 1 and 2,
this time with the adjusted version of the NMImax. Now it can be seen from Fig. 2 that just like the
ARI, the AMImax baseline values are close to zero. It is noted that in these experiments, we did not
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Figure 2: (a,b) Average distance between sets of random clusterings to a “true” clustering (c,d)
Average pairwise distance in a set of random clusterings. Error bars denote standard
deviation.

require the marginals of the contingency table to be fixed as per the assumption of the generalized
hypergeometric model of randomness. Nevertheless, the adjusted measures still exhibit the desired
behavior.

4.2 Properties of the Adjusted Measures

While admitting a constant baseline, the proposed adjusted-for-chance measures are, unfortunately,
not proper metrics:

Theorem 6 The adjusted measures Admax,Adsum,Adsqrt and Admin are not metrics.

There is thus a trade-off between the metric property and correction for chance, and the user should
decide which property is of higher priority. Fortunately, during our experiments with the AMI, we
have observed that when the data contain a fairly large number of items as compared to the number
of clusters, for example, N/K ≥ 100, then the expected mutual information is fairly close to zero, as
can be seen in Fig. 1, suggesting scenarios where adjustment for chance is not of utmost necessity.
The following results formalize this observation:

Theorem 7 Some upper bounds for the expected mutual information between two random clus-
terings U and V (on a data set of N data items, with R and C clusters respectively), under the
hypergeometric distribution model of randomness are given by the followings:

E{I(U,V)}≤
R

∑
i=1

C

∑
j=1

aib j
N2

log
(

N(ai−1)(b j−1)
(N−1)aib j

+
N
aib j

)

≤ log
(

N+RC−R−C
N−1

)

. (4)

These bounds shed light on the large sample property of the adjusted measures. The following result
trivially follows:

Corollary 1 Given R and C fixed, limN→∞E{I(U,V)} = 0, and thus the adjusted measures tend
toward the normalized measures.

Also, these bounds give useful information on whether adjustment for chance is needed. For
example, on a data set of 100 data items and two clusterings U and V, each having 10 clusters with
sizes of [10,10,10,10,10,10,10,10,10,10] and [2,4,6,8,10,10,12,14,16,18] respectively, the ex-
pected MI and its upper bounds according to (2) and (4) are E{I(U,V)} = 0.4618 < 0.5584 <
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0.5978. As the maximum MI value is only log(10) = 2.3, correction for chance is needed since the
baseline is high. However, if the data size increases ten-fold to 1000 items, keeping the same num-
ber of clusters and cluster distribution, the two upper bounds are 0.0764 and 0.0780 respectively,
which can be considered small enough for many applications, therefore adjustment for chance might
be omitted.

4.3 An Example Application

As per our analysis, adjustment for chance for information theoretic measures is mostly needed
when the number of data items is relatively small compared to the number of clusters. One such
prominent example is in microarray data analysis, where biological samples are clustered using gene
expression data. Due to the high cost of preparing and collecting microarray data, each class, for
example, of tumor, might contain only as few as several samples. In this section we demonstrate the
use of the consensus index to estimate the number of clusters in microarray data. Eight synthetic
and real microarray data sets are drawn from Monti et al. (2003), as detailed in Table 4 (see the
original publication for preprocessing issues). A quick check upon the (higher) upper bound of the
expected MI on these data sets suggests that correction for chance will be needed, for example, on
the Leukemia data set, as K(= R = C) grows from 2 to 10, this upper bound grows from 0.03 to
1.16.

Simulated Data #Classes #Samples #Genes Real data #Classes #Samples #Genes
Gaussian3 3 60 600 Leukemia 3 38 999
Gaussian5 5 500 2 Novartis 4 103 1000
Simulated4 4 40 600 Lung cancer 4+ 197 1000
Simulated6 6-7 60 600 Normal tissues 13 90 1277

Table 4: Microarray data sets summary, source: Monti et al. (2003)

In Vinh and Epps (2009) we have shown that the CI, coupled with sub-sampling as the pertur-
bation method, gives useful information on the appropriate number of clusters in microarray data.
Herein, we experimented with random projection as the perturbation scheme. More specifically, the
original data set was projected on a random set of 80% of the genes, and the K-means clustering
algorithm was run with random initialization on the projected data set. For each value of K, 100
of such clustering solutions were created and the CI’s for 6 measures, namely RI, ARI, MI, VI,
NMImax and AMImax were calculated. Ideally we expect to see a strong global peak at the true num-
ber of cluster Ktrue. From Fig. 3(a) it can be observed that the unadjusted MI has a strong bias with
respect to the number of clusters, increasing monotonically as K increases. Similar behavior was
observed with all other data sets and therefore MI is not an appropriate measure for this purpose.
For ease of presentation, we have excluded the MI from Fig. 3(b-h). The effect of adjustment for
chance can be clearly observed in Fig. 3(c,d,e,h). Agreement by chance inflates the CI score of the
unadjusted measures (RI, NMI, VI) in such cases, and can lead to incorrect estimation. The CI of
the adjusted measures (ARI, AMI) correctly estimates the number of clusters in all synthetic data
sets with high confidence, whereas on real data sets it gives correct estimations on the Leukemia and
Normal tissues data set. The CI suggests only 3 clusters on the Novartis while the assumed number
of clusters is 4. The Lung cancer data set is an example where human experts are not yet confident
on the true number of clusters present (4+ clusters), while the CI gives a local peak at 6 clusters.
These results are concordant with our previous finding (Vinh and Epps, 2009). The fact that the CI
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(b) Gaussian5, N=500 data points
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(c) Simulated4, N=40 data points
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(d) Simulated6, N=60 data points
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(e) Leukemia, N=38 data points
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(f) Norvatis multi−tissue, N=103 data points
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(g) Lung cancer, N=197 data points
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Figure 3: Consensus Index on microarray data sets.

showing global or local peaks at or near the presumably true number of clusters as attributed by the
respective authors calls for further investigation on both the biological side (re-verifying the number
of clusters), and the CI side (the behaviour of the index with respect to the structure of the data set,
for example, the data set might contain a hierarchy of clusters and thus the CI may exhibit local
peaks corresponding to such structures).

5. Related Work

Meilă (2005) considered clustering comparison measures with respect to their alignment with the
lattice of partitions. In addition to the metric property, she considered three more properties namely
additivity with respect to refinement, additivity with respect to the join and convex additivity, and
showed that the VI satisfies all these properties. Unfortunately, none of the normalized or adjusted
variants of the MI is fully aligned with the lattice of partitions in the above sense. Beside enhancing
intuitiveness, these properties could possibly improve the efficiency of algorithms, for example,
search algorithms, in the space of clusterings, though there seems not to be yet an experimental
study to support such claim, calling for interesting further investigation. Nevertheless, we note that
for a particular application, not always every desired property is concurrently needed at once. For
example, when performing search in the space of clusterings, normalization might not be necessary,
and the VI, which aligns better with the lattice of partitions, might be a more appropriate choice.
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Wu et al. (2009) considered clustering comparison measures with respect to their sensitivity with
class distribution. They showed that real life data can possess highly skewed class distributions,
whereas some algorithms, such as K-means, tend to create balanced clusters. A good measure
should therefore be sensitive to the difference in class distribution. To demonstrate this property,
they used the example in Table 5, with a ground-truth clustering U having class sizes of [30, 2, 6,
10, 2], and two clustering solutions: V having cluster sizes of [10, 10, 10, 10, 10]; and V′ having
cluster sizes of [29, 2, 6, 11, 2]. It is easily seen that V′ closely reflects the class structure in U,
and thus should be judged closer to U than V. The authors showed that the unnormalized MI is a
“defective measure”, in that it judges MI(U,V)>MI(U,V′), and suggested using the “normalized
VI” (dsum). It can be shown that among the normalized and adjusted variants of the MI considered
in this paper, only the NMImin,Dmin,dmin and Admin are defective measures in the above sense.

I U1 U2 U3 U4 U5 II U1 U2 U3 U4 U5
V1 10 0 0 0 0 V ′

1 27 0 0 2 0
V2 10 0 0 0 0 V ′

2 0 2 0 0 0
V3 10 0 0 0 0 V ′

3 0 0 6 0 0
V4 0 0 0 10 0 V ′

4 3 0 0 8 0
V5 0 2 6 0 2 V ′

5 0 0 0 0 2

Table 5: Two clustering results

6. Conclusion

This paper has presented an organized study of information theoretic measures for clustering com-
parison. We have shown that the normalized information distance (NID) and normalized variation
of information (NVI) satisfy both the normalization and the metric properties. Between the two,
the NID is preferable since the tighter upper bound of the MI used for normalization allows it to
better use the [0,1] range. We highlighted the importance of correcting these measures for chance
agreement, especially when the number of data points is relatively small compared with the number
of clusters, for example, in the case of microarray data analysis. One of the theoretical advantages
of the NID over the popular adjusted Rand index is that it can be used in the non-adjusted form
(when N/K is large), thus enjoying the property of being a true metric in the space of clusterings.
We therefore advocate the NID as a “general purpose” measure for clustering validation, compar-
ison and algorithm design, for it possesses concurrently several useful and important properties.
Nevertheless, we note that for a particular application scenario, not always every desired property
is needed concurrently, and therefore the user should prioritize the most important property. Our
research systematically organizes and complements the current literature to help readers make more
informed decisions.
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Appendix A. Proofs

Proof (Theorem 1) We only prove the triangle inequality as other parts are trivial. We first show
that

H(X |Y )≤ H(X |Z)+H(Z|Y ) (5)

holds true, sinceH(X |Y )≤H(X ,Z|Y )=H(X |Z,Y )+H(Z|Y )≤H(X |Z)+H(Z|Y ) (the last inequal-
ity holds since conditioning always decreases entropy). We now prove the main theorem. Without
loss of generality, assume that H(Y )≤H(X), and therefore H(X |Y )≥H(Y |X). The proof uses (5):

• Case 1: H(Z)≤ H(Y )

Dmax(X ,Y ) = H(X |Y )≤ H(X |Z)+H(Z|Y )≤ H(X |Z)+H(Y |Z) = Dmax(X ,Z)+Dmax(Y,Z)

• Case 2: H(Y )< H(Z)≤ H(X)

Dmax(X ,Y ) = H(X |Y )≤ H(X |Z)+H(Z|Y ) = Dmax(X ,Z)+Dmax(Y,Z)

• Case 3: H(X)< H(Z)

Dmax(X ,Y ) = H(X |Y )≤ H(X |Z)+H(Z|Y )≤ H(Z|X)+H(Z|Y ) = Dmax(X ,Z)+Dmax(Y,Z)

Proof (Theorem 3)We prove the triangle inequality. Without loss of generality, assume thatH(X)≥
H(Y ), therefore H(X |Y )≥H(Y |X) and NID(X ,Y ) =H(X |Y )/H(X). The proof uses inequality (5)
and simple algebra manipulations:

• Case 1: H(Z)≤ H(Y )≤ H(X)

NID(X ,Y ) =
H(X |Y )
H(X)

≤
H(X |Z)+H(Z|Y )

H(X)
≤
H(X |Z)+H(Y |Z)

H(X)
≤
H(X |Z)
H(X)

+
H(Y |Z)
H(Y )

• Case 2: H(Y )≤ H(Z)≤ H(X)

NID(X ,Y ) =
H(X |Y )
H(X)

≤
H(X |Z)
H(X)

+
H(Z|Y )
H(X)

≤
H(X |Z)
H(X)

+
H(Z|Y )
H(Z)

=NID(X ,Z)+NID(Z,Y )

• Case 3: H(Z)> H(X)

NID(X ,Y ) =
H(X |Y )
H(X)

<
H(X |Z)+H(Z|Y )

H(X)

If the r.h.s ≤ 1 then adding H(Z)−H(X) > 0 to both its nominator and denominator will
increase it:

r.h.s≤
H(X |Z)+H(Z|Y )+H(Z)−H(X)

H(X)+H(Z)−H(X)
=
H(Z|X)
H(Z)

+
H(Z|Y )
H(Z)

= NID(X ,Z)+NID(Z,Y ),
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therefore the triangle inequality holds. Otherwise if the r.h.s> 1 then adding H(Z)−H(X)>
0 to both its nominator and denominator as above will decrease it, but it will still be larger
than 1. Therefore we also have:

NID(X ,Y )≤ 1<
H(X |Z)+H(Z|Y )+H(Z)−H(X)

H(X)+H(Z)−H(X)
= NID(X ,Z)+NID(Z,Y ).

Proof (Theorem 4) Again only the triangle inequality proof is of interest. It is sufficient to prove
the following inequality:

H(X |Y )
H(X ,Y )

≤
H(X |Z)
H(X ,Z)

+
H(Z|Y )
H(Z,Y )

,

then swap X and Y to obtain another analogous inequality and add them together we have the
triangle inequality. The proof uses inequality (5) and simple algebra manipulations:

H(X |Y )
H(X ,Y )

=
H(X |Y )

H(Y )+H(X |Y )
≤

H(X |Z)+H(Z|Y )
H(Y )+H(X |Z)+H(Z|Y )

=
H(X |Z)+H(Z|Y )
H(X |Z)+H(Y,Z)

= . . .

=
H(X |Z)

H(X |Z)+H(Y,Z)
+

H(Z|Y )
H(X |Z)+H(Y,Z)

≤
H(X |Z)

H(X |Z)+H(Z)
+
H(Z|Y )
H(Y,Z)

=
H(X |Z)
H(X ,Z)

+
H(Z|Y )
H(Z,Y )

.

Proof (Theorems 2 and 5) It is sufficient to point out a single counter example where the triangle
inequality is violated. Let X and Y be two independent random binary variables with probability
P(X = 1) = P(X = 0) = P(Y = 1) = P(Y = 0) = 1/2, then Z = [X ;Y ] is also a random variable
with four discrete values. It is straightforward to verify that the triangle inequality is violated for
all the mentioned distance measures, for example, Dmin(X ,Y ) = 1<Dmin(X ,Z)+Dmin(Y,Z) = 0.

Proof (Theorem 6) For N = 5, a counter example for the triangle inequality is the following three
clusterings: U= {U3U1U1U1U2},V= {V2V2V3V1V2},X= {X2X1X1X1X2}.

Similarly, for N = 5+ d (d ∈ N+), a counter example for the triangle inequality is the fol-
lowing three clusterings: U = {U3U1U1U1U2U6U7 . . .U5+d}, V = {V2V2V3V1V2V6V7 . . .V5+d}, X =
{X2X1X1X1X2X6X7 . . .X5+d}.

Proof (Theorem 7) The following facts from the generalized hypergeometric distribution will be
useful:

E(ni j) = ∑
ni j
ni jP (M|ni j,a,b) =

ai,b j
N

, (6)

E(n2i j) = ∑
ni j
n2i jP (M|ni j,a,b) =

ai(ai−1)b j(b j−1)
N(N−1)

+
aib j
N

,

where P{M|ni j,a,b} =
( N
ni j)(

N−ni j
ai−ni j

)( N−ai
b j−ni j

)

(Nai)(
N
b j)

is the probability of encountering a contingency table M

having fixed marginals a,b and the (i, j)− th entry being ni j under the generalized hypergeometric

2851



VINH, EPPS AND BAILEY

model of randomness. Note that for the sake of notational simplicity we have dropped the lower
and upper values of ni j which runs from max((ai+b j−N),0) to min(ai,b j) in the sums. From (6)
we have:

E(ni j) =∑
ni j
ni jP (M|ni j,a,b) =

aib j
N ∑

ni j

ni jN
aib j

P (M|ni j,a,b) =
aib j
N

,

therefore: ∑ni j
ni jN
aib j P (M|ni j,a,b) = 1. Let Q (ni j) =

ni jN
aib j P (M|ni j,a,b), then we can think of Q (ni j)

as a discrete probability distribution on ni j. Applying Jensen’s inequality (E( f (x)) ≤ f (E(x)) for
f concave) to the concave logarithm function yields:

∑
ni j

ni j
N
log(

N.ni j
aib j

)P (M|ni j,a,b) =∑
ni j

aib j
N2

log(
N.ni j
aib j

)Q (ni j)≤
aib j
N2

log
(

EQ (
N.ni j
aib j

)

)

. (7)

Now, let us calculate EQ (N.ni jaib j ):

EQ (
N.ni j
aib j

) = ∑
ni j

N.ni j
aib j

Q (ni j) =∑
ni j

N.ni j
aib j

ni jN
aib j

P (M|ni j,a,b) =
N2

a2i b2j
∑
ni j
n2i jP (M|ni j,a,b)

=
N2

a2i b2j

(

ai(ai−1)b j(b j−1)
N(N−1)

+
aib j
N

)

=
N(ai−1)(b j−1)

(N−1)aib j
+

N
aib j

.

Substituting this expression into (7) yields:

∑
ni j

ni j
N
log(

N.ni j
aib j

)P (M|ni j,a,b)≤
aib j
N2

log
(

N(ai−1)(b j−1)
(N−1)aib j

+
N
aib j

)

.

Finally:

E{I(U,V)}=
R

∑
i=1

C

∑
j=1
∑
ni j

ni j
N
log(

N.ni j
aib j

)P(M|ni j,a,b)≤
R

∑
i=1

C

∑
j=1

aib j
N2

log
(

N(ai−1)(b j−1)
(N−1)aib j

+
N
aib j

)

.

(8)
Note that ∑i j aib j/N2 = 1, continue applying Jensen’s inequality on (8) yields:

E{I(U,V)}≤ log
(

R

∑
i=1

C

∑
j=1

aib j
N2

(
N(ai−1)(b j−1)

(N−1)aib j
+

N
aib j

)

)

= log
(

N+RC−R−C
N−1

)
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Abstract
We show how a preselection of hidden variables can be used to efficiently train generative models
with binary hidden variables. The approach is based on Expectation Maximization (EM) and uses
an efficiently computable approximation to the sufficient statistics of a given model. The com-
putational cost to compute the sufficient statistics is strongly reduced by selecting, for each data
point, the relevant hidden causes. The approximation is applicable to a wide range of generative
models and provides an interpretation of the benefits of preselection in terms of a variational EM
approximation. To empirically show that the method maximizes the data likelihood, it is applied
to different types of generative models including: a version of non-negative matrix factorization
(NMF), a model for non-linear component extraction (MCA), and a linear generative model similar
to sparse coding. The derived algorithms are applied to both artificial and realistic data, and are
compared to other models in the literature. We find that the training scheme can reduce computa-
tional costs by orders of magnitude and allows for a reliable extraction of hidden causes.
Keywords: maximum likelihood, deterministic approximations, variational EM, generative mod-
els, component extraction, multiple-cause models

1. Introduction

In many applications of artificial and biological systems, data interpretation is challenging because
of noise, the complexity of the input and because of its ambiguity. Optimal inference based on
probabilistic generative models is in general intractable in such situations because it involves the
evaluation of all potential interpretations of the input. To approximate optimal inference, a fast
initial stage of processing has therefore long since been suggested. In applications to visual data,
a first processing stage can select candidate objects or components that are potential causes of the
given input (see, e.g., Yuille and Kersten, 2006). Based on these candidates the meaning of a data
point is subsequently inferred in a second recurrent stage. The strategy of candidate preselection
has indeed been suggested and applied in different contexts (e.g., Körner et al., 1999; Lee and
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Mumford, 2003; Yuille and Kersten, 2006; Westphal and Würtz, 2009) and prominent systems
of feed-forward processing (such as Riesenhuber and Poggio, 1999, and van Rullen and Thorpe,
2001) are sometimes interpreted as sophisticated preprocessing stages for a subsequent recurrent
stage. The general idea of candidate preselection followed by recurrent recognition will in this
paper be formulated in terms of a variational approximation that allows for an efficient training of
probabilistic generative models.

In Section 2 the approximation scheme will be introduced as an approximation to Expectation
Maximization (EM). In Section 3 we systematically derive it as a variational EM approach. In
Section 4 the training scheme is applied to a number of different generative models and a number of
different data types. Section 5 discusses the features of the novel approach and the obtained results.

2. Expectation Maximization and Expectation Truncation

Our approach is based on Expectation Maximization (EM; Dempster et al., 1977) which is used to
maximize the data likelihood under a given generative model:

Θ∗ = argmaxΘ{L(Θ)} with L(Θ) = log
(

p(!y(1), . . . ,!y(N) |Θ)
)

, (1)

where Θ are the parameters of a given generative model and where the N data points, {!y(n)}n=1,...,N ,
will be taken to be generated independently from a stationary process.

To find the parameters Θ∗ at least approximately, we use the EM approach as it was formalized,
for example, by Neal and Hinton (1998) and introduce the free-energy function F (q,Θ) which is a
function of Θ and an unknown distribution q(!s(1), . . . ,!s(N)) over the hidden variables. F (q,Θ) can
be shown to be a lower bound of the likelihood evaluated at the same parameter values. For our
purposes we assume independently generated data vectors!y(n) and use (without loss of generality)
a distribution q which is factored over the data points, q(!s(1), . . . ,!s(N)) = ∏n q(n)(!s(n);Θold). Note
that we take q to be parameterized by Θold. The free-energy can thus be written as:

F (q,Θ) =
N

∑
n=1

[

∑
!s
q(n)(!s ;Θold)

[

log
(

p(!y(n) |!s,Θ)
)

+ log(p(!s |Θ))
]
]

+H(q) , (2)

where H(q) = −∑n∑!s q(n)(!s ;Θold) log(q(n)(!s ;Θold)) is a function (the Shannon entropy) that is
independent of Θ. The sum over all states of!s becomes an integral if the values of!s are continuous.
In the EM scheme F (q,Θ) is maximized alternately with respect to q in the E-step (while Θ is
kept fixed) and with respect to Θ in the M-step (while q is kept fixed). It can be shown that the
EM iterations increase the likelihood or keep it constant. In practical applications EM is found to
increase the likelihood to (at least local) likelihood maxima.

The free-energy function (2) can be used to derive update rules for the parameters Θ of a given
model. Such a derivation can in some cases be challenging but one usually arrives at expressions in
which the new set of parameters Θ is a function of the old set Θold and the data {!y(n)}n=1,...,N . The
update rules derived contain what is often referred to as the sufficient statistics of the model, that is,
they contain expressions of the form

〈g(!s)〉q(n) = ∑
!s
q(n)(!s ;Θold)g(!s) , (3)

where g(!s) is a function of the hidden variables. The functions g(!s) are often relatively simple, for
example, g(!s) = si or g(!s) = sis j, but can for some models be more elaborate and may also include
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parameter dependencies. For an exact E-step in the EM scheme the functions q(n)(!s;Θold) are given
by

q(n)(!s ;Θold) = p(!s |!y(n),Θold) =
p(!s,!y(n) |Θold)

∑
!s ′
p(!s ′,!y(n) |Θold)

, (4)

where p(!s,!y(n) |Θold) = p(!s |Θold) p(!y(n) |!s,Θold) with the latter distributions being defined by the
used generative model. To train models with multiple causes, the computation of the exact sufficient
statistics is usually avoided because it involves summing or integrating over a large space of hidden
states in (3) and (4). To reduce computational costs, training schemes therefore use approximations
to these intractable sums (or integrals) or approximations to the exact posterior p(!s |!y(n),Θold).
The approximation method discussed in this paper will be introduced as an approximation to the
sufficient statistics.

Let us consider the sufficient statistics of a function g given by the combination of (3) and (4):

〈g(!s)〉q(n) =
∑
!s
p(!s,!y(n) |Θold) g(!s)

∑
!s ′
p(!s ′,!y(n) |Θold)

. (5)

Again, we have to sum over a very large space of hidden states. Let us for instance assume that
we have already found the optimal or approximately optimal parameters Θold ≈ Θ∗, that is, let us
assume that any given input vector is well represented by a distribution over hidden states. A given
!y(n) is in this case usually well represented by a distribution over just a small set of hidden vectors.
For the sums in (5) this means that just some summands contribute significantly while the others
are negligible. Thus, if we could find the right summands for a given!y(n), we could expect a good
approximation of 〈g(!s)〉q(n) in (5) without having to sum over the entire state space of!s.

More formally, if K n denotes the set of all states that contain significant contributions to the
sums in (5), it applies:

〈g(!s)〉q(n) ≈
∑

!s∈K n

p(!s,!y(n) |Θold) g(!s)

∑
!s ′∈K n

p(!s ′,!y(n) |Θold)
. (6)

A potential subset containing the relevant summands could be found by exploiting specific data
properties. If the data was generated by few hidden units on average, for instance, most data points
are well approximated by only considering combinations of few active causes. A subset for the
approximation in (6) for binary causes s j could thus be given by K = {!s | ∑ j s j ≤ γ}, where γ is
the maximal number of active causes. Such a choice can significantly reduce the number of states
that have to be evaluated. Depending on γ the combinatorics can still be considerable, however, and
still, just a few of the summands might contribute.

To further constrain the state space, let us suppose that we can in some way find functions
Sh : D → that give estimates of how likely it is for the hidden causes h = 1, . . . ,H to have
contributed to the generation of a specific input!y(n). If we had such functions, we could approximate
the sufficient statistics (5) by neglecting all causes that are unlikely to have contributed. In other
words, we could just sum over a subset K n ⊆ K that contains the combinations of all hidden
variables that are likely to have caused the input !y(n). To define such a set K n more formally,
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consider the h = 1, . . . ,H values Sh(!y(n)) for a given data point !y(n). To select H ′ candidates, we
define the index set I to contain those latent indices h with the H ′ largest values Sh(!y(n)). The set
K n is then given by:

K n = {!s | ∑ j s j ≤ γ and (∀i -∈ I : si = 0)}. (7)

Equation 6 represents a good approximation if the contributions of the states not in K n are indeed
negligible compared to the contributions of the states in K n. Much depends, of course, on the func-
tions Sh. From these functions, which we will term selection functions, we demand the following
properties: (A) they have to be efficiently computable and (B) they have to give high values for
hidden variables that actually are responsible for a given!y(n). Note that for the selection functions
it is merely important to select candidates that can potentially explain the input. Neither are their
exact values used in (6) nor is it disadvantageous for the accuracy of the approximation if some
candidates are selected that turn out to contribute very little. We will see examples of such selection
functions for different generative models in Section 4. Before let us summarize the approximation
discussed above in the form of the pseudo-code given in Algorithm 1. As the approximation scheme
resides on a truncation of the sums in the expectation value computations in (5), we will refer to it
as Expectation Truncation (ET).

Algorithm 1: Expectation Truncation - Pseudo Code

Choose approximation parameters H ′ and γ (γ≤ H ′ ≤ H) and randomly initialize the1
parameters of the generative model.
while parameters have not converged do2

for all data points n= 1, . . . ,N do3

Compute the selection function value Sh for each h= 1, . . . ,H and determine the4
index set I of the H ′ hidden variables with the H ′ highest values for Sh.
Compute the set of binary vectors K n = {!s | ∑ j s j ≤ γ and (∀i -∈ I : si = 0)}5

Compute the approximate sufficient statistics (6).6

Update the parameters in the M-step using the approximate sufficient statistics.7

The two parameters H ′ and γ control the size of K n. H ′ determines how many candidates are
selected and γ fixes the maximal number of non-zero hidden units sh. For instance, if we choose
H ′ = 4 and γ = 2, the summation over !s considers four candidates of which either none, one, or

two are simultaneously active (compare Figure 2). The size of K n is thus given by ∑γ
γ ′=0

(

H ′

γ ′

)

.

The approximation’s accuracy increases with increasing values of H ′ and γ but its computational
demand increases as well. For the highest possible values, H ′ = γ = H, we drop, for any selection
function Sh, back to the case of the exact sufficient statistics (5).

Note that while the approximation scheme presumably results in good approximations for many
data points it can be expected to give poor results for data points generated by more than γ hidden
causes (i.e., for data points not in K ). To avoid learning from such data points with inappropri-
ately estimated sufficient statistics let us again assume that we have already found close to optimal
parameters Θ∗. In such a situation and for any data point !y(n) generated by less or equal γ hidden

2858



EXPECTATION TRUNCATION

causes we get:
p(!y(n) |Θ∗) = ∑

!s
p(!s,!y(n) |Θ∗) ≈ ∑

!s∈K n

p(!s,!y(n) |Θ∗) , (8)

where we have assumed appropriate selection functions and relatively low noise levels. In the same
situation but for data points!y(n) which were generated by more than γ hidden causes we obtain:

p(!y(n) |Θ∗) = ∑
!s
p(!s,!y(n) |Θ∗) ≈ ∑

!s-∈K n

p(!s,!y(n) |Θ∗) ⇒ ∑
!s∈K n

p(!s,!y(n) |Θ∗)≈ 0 . (9)

The values of the sums ∑!s∈K n p(!s,!y
(n) |Θ∗) for the different data points can thus serve as indicators

for finding data points that were presumably generated by less than γ causes. For learning we aim
to include only those data points that are approximated well. We therefore define a set M of the
Ncut ≤ N data points with largest sums. In the beginning of learning, the estimation of such data
points is too imprecise, however. We therefore start by taking all data points into account Ncut = N
and decrease Ncut to values close to N≤γ within the last third of the iterations. N≤γ is hereby
the expected number of data points generated by less or equal γ causes. For a given generative
model, this number can usually be computed tractably. The number of data points generated by
≤ γ causes can, for a given data set, be smaller than N≤γ because of finitely many data points.
It can therefore be beneficial to finally use an Ncut slightly smaller than N≤γ. This potentially
avoids the consideration of data points that are not well approximated. In numerical experiments
in Section 4 we will therefore use final values of Ncut = 0.9N≤γ although Ncut = N≤γ gives similar
results especially for large N.

Considering Algorithm 1 what is still left to specify are concrete expressions for the selection
functions Sh and expressions for parameter update rules (M-step equations). These equations do,
however, depend on the particular generative model the method is applied to. We will therefore
discuss selection functions and update rules individually for the different generative models we
investigate in Section 4. Given selection functions and update rules, Algorithm 1 describes an ap-
proximation scheme applicable to generative models with binary hidden variables. The scheme has
been introduced and defined as an approximation to the sufficient statistics (5). In the next section it
will be systematically derived as a variational EM approach. The assumptions used for the approx-
imation will thus become explicit, allowing a generalization of the scheme and a specification of its
potential limitations. The computational complexity of the method will be discussed in Appendix C.

3. Expectation Truncation and Variational EM

In this section we will show that Expectation Truncation corresponds to a variational EM approxi-
mation. The approximation, as introduced in Section 2, consists of two parts: (A) an approximation
to the sufficient statistics in Equation 6, and (B) a selection of data points that are well approximated
by Equation 6. Both of these parts can be formulated as variational EM steps. For the derivation
we will start with (B), that is, with the selection of data points. The selection will take the form of
a classification of data points into two classes: one class that contains the data points that can be
well approximated, and another class that contains the remaining points. The corresponding varia-
tional step will be referred to as the first variational step (Section 3.1). The step (A) corresponding
to approximation (6) will only be the second variational step (Section 3.2). Both steps combine
to form the approximation scheme of Expectation Truncation. The scheme is compactly summa-
rized in Section 3.3, and the basic procedural steps are listed in Algorithm 2 which represents a
generalization of Algorithm 1.
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Extracted basis functionsW

Truncated
data, c=1

Truncated
data, c=0

generates generates

n ∈M n -∈M

Original dataTruncated generative model c=1

{!y(n)}n=1,...,N

Truncated generative model c=0

data point

p̃(!s |c= 1,π) =
{ 1

κ̃ p(!s |π) if!s ∈K
0 if!s -∈K

p̃(!s |c= 0,π) =
{

0 if!s ∈K
1
1−κ̃ p(!s |π) if!s -∈K

{!y(n)}n-∈M{!y(n)}n∈M

classification

p(!y |!s,W, σ) = N (!y;W!s,σ21)p(!y |!s,W, σ) = N (!y;W!s,σ21)

p(!s |π) = ∏hBernoulli(sh; π) p(!s |π) = ∏hBernoulli(sh; π)

Figure 1: First variational approximation: data classification. The figure shows Expectation Trun-
cation (without preselection) for a concrete generative model. In this example, the gen-
erative model generates data by linearly superimposing basis functions in the form of
horizontal and vertical bars. Data generated by the original model contains up to ten
bars chosen with a Bernoulli prior (example data points are shown in the center). Data
generated by the truncated generative model with c = 1 contains up to two bars (we set
K = {!s | ∑ j s j ≤ γ} with γ= 2). Data generated by the truncated generative model with
c= 0 contains at least three bars. If we train the truncated generative model with c= 1 on
data from which data points with∑ j s j > γwere removed, we can expect to approximately
recover the true generating basis functionsW of the original model.

3.1 First Variational Approximation: Data Classification

As in Section 2, let us consider a generative model with a set of hidden variables denoted by!s, a set
of observed variables denoted by !y, and a set of parameters denoted by Θ. Let us denote the prior
distribution of the model by the (not further specified) function p(!s |Θ), and the noise distribution
by the (not further specified) function p(!y |!s,Θ). To distinguish this generative model from models
introduced later, it will from now on be referred to as the original generative model.

We will formalize the classification of data points by introducing two new generative models
defined based on the original model. The two models will correspond to two classes of data points:
one class of those points that can be well approximated, and one class of points that can not. Let K
be a subset of the space of all possible values of !s. Given such a set, we define the two generative
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models by introducing two new prior distributions that are based on the original prior:

p(!s |c= 1,Θ) =
{ 1

κ̃ p(!s |Θ) if!s ∈K
0 if!s -∈K

and p(!s |c= 0,Θ) =
{

0 if!s ∈K
1
1−κ̃ p(!s |Θ) if!s -∈K

(10)

where κ̃ = ∑!s∈K p(!s |Θ). We take the noise distribution p(!y |!s,Θ) of the new models to be identical
to the original noise distribution. We will refer to the new generative models as truncated models
because their prior distributions are truncated to be zero outside of specific subsets. Note that the
generation of data according to the truncated model with c = 1 corresponds to generating data ac-
cording to the original model while only accepting data points generated by !s ∈ K . Analogously,
generating data according to the truncated model with c= 0 is equivalent to generating data accord-
ing to the original model while accepting only data points generated by!s -∈ K . Figure 1 shows the
truncated generative models and data they generate for a concrete example (a model that linearly
combines bar-like generative fields; compare Section 4.1). For the example, K is the set of binary
states!s with less or equal γ non-zero entries. In general, K can be any subset, however.

Let us now mix the two truncated models in Equation 10 by introducing c ∈ {0,1} as additional
hidden variable and by drawing c= 1 with probability κ. The prior distribution of this mixed model
is thus given by:

p(c |κ) = κc (1−κ)1−c , (11)

p(!s |c,Θ) =
( c
κ̃
δ(!s ∈K ) +

1− c
1− κ̃

δ(!s -∈K )
)

p(!s |Θ) . (12)

where we have introduced δ(!s ∈ K ) = 1 if !s ∈ K and zero otherwise, and δ(!s -∈ K ) = 1 if !s -∈ K
and zero otherwise. We will refer to this model as the mixed generative model. Note that the mixed
model is identical to the original generative model if we choose κ = κ̃ = ∑!s∈K p(!s |Θ) as mixing
proportion. The mixed model thus contains the original model as a special case.

Now, consider a set of N data points {!y(n)}n=1,...,N generated according to the original generative
model. Let us maximize the likelihood of the data under the mixed model (11) and (12). If we use
EM for optimization (compare Section 2), we obtain the free-energy

F̃ (q,Θ,κ) = ∑
n
∑
c
q(n)(c ;Θold) log

(

p(!y(n) |c,Θ)
)

+ log(κ)∑
n
q(n)(c= 1;Θold)+ log(1−κ)∑

n
q(n)(c= 0;Θold)+H(q) , (13)

where H(q) is the entropy w.r.t. q(n)(c;Θold) (summed over all n and c). The free-energy (13) can be
optimized iteratively by maximizing q in the E-step and (Θ,κ) in the M-step. For the E-step, choos-
ing the exact posterior, q(n)(c ;Θold) = p(c |!y(n),Θold), represents the optimal choice. Unfortunately,
it is computationally intractable in general because

p(c= 1 |!y(n),Θold) = ∑!s∈K p(!y(n),!s |Θ)
∑!s p(!y(n),!s |Θ)

(14)

requires a summation over the entire state space of!s (similarly for c= 0). We thus choose a varia-
tional approximation to the true posterior by setting q(n)(c ;Θold) to zero or one. This approximation
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reduces the free-energy (13) to:

F̃ (q,Θ) =

≈L1(Θ)
︷ ︸︸ ︷

∑
n∈M

log
(

p(!y(n) |c= 1,Θ)
)

+

≈L0(Θ)
︷ ︸︸ ︷

∑
n -∈M

log
(

p(!y(n) |c= 0,Θ)
)

+ log(κ)|M |+ log(1−κ)(N− |M |)+H(q) . (15)

whereM = {n |q(n)(c = 1;Θold) = 1}. Note that κ can be optimized independently of Θ because
the first two summands in (15) only depend on Θ. As we also know its final optimal value (κ= κ̃),
we will treat the mixing proportion as implicitly known. κ can thus be omitted as a parameter of the
free-energy (15) and will not play a role for our further considerations.

For the data setM note that the best choice for q(n)(c ;Θold) under the constraint q(n)(c ;Θold)∈
{0,1} is given by the assignment q(n)(c = 1;Θold) = 1 if !y(n) was generated by class c = 1 (and
zero otherwise). This would amount to settingM to

M opt = {n |!y(n) generated by class c= 1} . (16)

In general this best choice can not be computed exactly. We can, however, derive tractable ap-
proximations toM opt. Choosing a setM is equivalent to choosing a distribution q(n)(c ;Θold) with
binary values (as an approximation to Equation 14). Any choice ofM thus represents a variational
approximation. In Appendix A.2 it is shown that one such approximation is obtained via sorting
according to the denominator values in Equation 6. The selection of Ncut data points obtained in
this way is thus equivalent to a variational E-step.

An interesting aspect of Equation 15 is that the first two summands take the form of two log-
likelihoods. The first summand is the likelihood L1(Θ) of the truncated generative model with c= 1,
and the second is the likelihood L0(Θ) of the model with c= 0. IfM =M opt, both likelihoods are
evaluated on the set of data points they can generate (see Figure 1). Considering these properties of
Equation 15 the question arises how the maximum of F̃ (q,Θ) and the maxima of L1(Θ) and L0(Θ)
are related. It could, for instance, be asked if all three functions have a maximum for the same
parameter values. From the structure of the equation this can not be concluded, and, indeed, the
question must be answered negatively because it can be shown that in general the maxima do not
coincide. However, under assumptions that are usually fulfilled at least approximately, we can show
that any global maximum of F̃ (q,Θ) is an approximate global maximum of L1(Θ) and of L0(Θ).
A necessary condition for an approximate global maximum of L(Θ) (the likelihood of the original
model) is thus a global likelihood maximum of L1(Θ) (or of L0(Θ)). The technical derivation of
this observation is given in Appendix A.1.

Note that, intuitively, it makes sense that the maximization of the likelihood L1(Θ) results in
parameters that can approximately maximize L(Θ). To see this consider the example of Figure 1.
If the truncated generative model with c = 1 is optimized on the truncated data class c = 1, the
displayed generative fieldsW are learned. These parameter values can be expected to also result in
close to maximum likelihood values for the generative model with c = 0 on data class c = 0, and
also correspond to approximately optimal likelihood values of the original generative model on the
original data. The approximation improves with increasingly many data points. For this example,
all parameters to approximately maximize L(Θ) can be recovered based on the necessary condition
of maximizing L1(Θ). The example of Figure 1 also demonstrates that the first variational step
already significantly reduces computational costs. The truncated model with c= 1 only requires the
evaluation of 56 states per data point instead of 210 = 1024 evaluations for the original model.
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3.2 Second Variational Approximation: Preselection

Starting point for the second variational approximation will be the likelihood L1(Θ) of the truncated
generative model c = 1. We have seen in the previous section (and Appendix A.1) that a global
maximum in L1(Θ) is a necessary condition for an approximate global maximum of the likelihood
L(Θ) of the original model. To find the maximum of L1(Θ) we optimize the lower bound F1(q,Θ)
given by:

F1(q,Θ) =

Q1(q,Θ)
︷ ︸︸ ︷

∑
n∈M

∑
!s∈K

q(n)(!s ;Θold) log
(

p(!y(n) |!s,Θ)
1
κ̃
p(!s |Θ)

)

+ H(q) , (17)

with ∑!s∈K q(n)(!s ;Θold) = 1. F1(q,Θ) is derived by a variational approximation, this time w.r.t. the
hidden variables!s. The free-energy equals the likelihood L1(Θ) after each E-step if the distributions
q(n)(!s ;Θold) are given by:

q(n)(!s ;Θold) = p(!s |!y(n),c= 1,Θold) =
p(!s |!y(n),Θold)

∑!s ′∈K p(!s ′ |!y(n),Θold)
δ(!s ∈K ). (18)

M-step rules can be derived by setting the derivatives of F1(q,Θ) w.r.t. all parameters to zero. As
the entropy term in (17) is independent of Θ if q is held fixed, we obtain

d
dΘ

F1(q,Θ) =
d
dΘ

Q1(q,Θ) = 0 (19)

as necessary condition. The derivative d
dΘ hereby stands for derivatives w.r.t. all the individual

parameters.
Based on condition (19) we can now introduce candidate preselection as a variational approxi-

mation. As described in Section 2, preselection amounts to selecting, for a given!y(n), a subset K n
of the state space. Section 2 gives an example of how to define the set K and how to construct
subsets K n using selection functions. Figure 2 shows a concrete example of how a set K n is con-
structed using selection function values Sh(!y(n)). In Section 4 and Appendix B different instances
of selection functions can be found. More generally, we here require from the sets K n that for all
data points generated by!s ∈K , they finally contain most of the posterior mass in K . If this applies,
we obtain an approximation to the posterior q(n) in (18) given by:

q̃(n)(!s ;Θold) =
p(!s |!y(n),Θold)

∑!s ′∈K n p(!s ′ |!y(n),Θold)
δ(!s ∈K n) =

p(!s,!y(n) |Θold)
∑!s ′∈K n p(!s ′,!y(n) |Θold)

δ(!s ∈K n). (20)

Note that q̃(n)(!s ;Θold) sums to one in K as K n ⊆K . It thus fulfils the condition on q(n) required for
(17). If preselection finds, at least finally, appropriate sets K n, we obtain with (20) the necessary
condition: d

dΘQ1(q̃,Θ)≈
d
dΘQ1(q,Θ) = 0. Parameter update rules derived from

d
dΘQ1(q̃,Θ) = 0

can therefore be expected to (at least approximately) optimize the free-energy (15) and thus L1(Θ).
The update rules derived will contain expectation values (the sufficient statistics) of the form 〈g(!s)〉q̃(n) .
If we use (20) for these expectations we obtain:

〈g(!s)〉q̃(n) = ∑
!s
q̃(n)(!s ;Θold)g(!s) =

∑
!s∈K n

p(!s,!y(n) |Θold) g(!s)

∑
!s ′∈K n

p(!s ′,!y(n) |Θold)
,
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q̃(n)(!s ;Θold)
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!y(n)

selection of
H ′=4 candidates

computation of
selection functions

comparison

W (!s,W )

states!s∈K n
sh= 0 for all other h

Figure 2: Second variational approximation: preselection. The figure illustrates how the variational
approximation q̃(n)(!s ;Θold) in Equation 20 is computed. The selection of hidden states
!s ∈Kn and the computation of q̃(n)(!s ;Θold) are shown for the example of Figure 1 close
to the optimal parametersW . Given the data point !y(n) a selection function value Sh for
each hidden variable h is computed. The H ′ largest values are selected (H ′ = 4 for this
example). The approximation q̃(n)(!s ;Θold) is then computed based on the combinatorics
of these H ′ candidates (with ∑ j s j ≤ γ= 2). For the displayed data point and parameters
all values of q̃(n)(!s ;Θold) except for one lie close to zero. For visualization purposes these
values have been increase in the figure.

that is, precisely expression (6) in Section 2. Expectation Truncation, introduced as an approx-
imation to Equation 5, can thus been derived as a variational approximation. Importantly, this
approximation is tractable if K n is small. The computational gain of preselection compared to
an approximation without preselection is reflected by the reduced size of K n compared to K (see
Figure 2 for an example and Appendix C for a detailed complexity analysis).

3.3 Summary and Numerical Controls

We have seen that the approximation procedure introduced in Section 2 can be derived as a vari-
ational EM approach. This approach consists of two variational approximation steps: First, an
approximation that assigns the data points to two classes (Section 3.1). Second, a variational step
that approximates the posterior (18) by an approximate posterior (20) defined through preselection
(Section 3.2). Although the derivation of ET as a variational approach requires in parts rather tech-
nical steps, the final result is intuitive (see Figure 1 and Figure 2) and can be stated very compactly.
Algorithm 2 summarizes all required steps of the approximation scheme.

Note that also with preselection, the ET approximation still requires a summation over K ,
namely ∑!s∈K p(!s |Θ). This sum has to be computed to determine Ncut, Ncut = N∑!s∈K p(!s |Θ),
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Algorithm 2: Expectation Truncation

Preselection: select a state space volume K n for each data point!y(n)

Data classification: find a data setM that approximatesM opt in Equation 16

E-step: compute q̃(n)(!s ;Θold) =
p(!s,!y(n) |Θold)

∑!s∈K n p(!s,!y(n) |Θold)
for all!y(n) and!s ∈K n

M-step: find parameters Θ such that
d
dΘ ∑

n∈M
∑

!s∈K n

q̃(n)(!s ;Θold) log
(

p(!y(n) |!s,Θ)
p(!s |Θ)

∑!s ′∈K p(!s ′ |Θ)

)

= 0

and it appears in the M-step equation (Algorithm 2). Because of symmetries in the usual priors for
generative models, this sum can, however, be computed without summing over all !s explicitly (an
example is given in the next section). Even if symmetries can not be exploited, note that the sum
over !s ∈ K has to be computed at most once per EM iteration and not once per data point and per
EM iteration (as it is the case for the sums over K n).

Algorithm 2 summarizes ET as a variational approximation and represents a generalization of
Algorithm 1. Algorithm 1 in Section 2 contains, for example, one specific way of how to select
an appropriate set K and appropriate sets K n: we defined K based on sparseness and selected
K n using selection functions Sh. In the variational derivation of ET we, however, only specified
the properties required from K and K n. In general, K does not have to be defined based on a
sparseness assumption and there are potentially alternative ways to define the sets K n. Importantly,
the variational derivation of ET allows for a comparison with other variational approaches. We
can thus observe that ET is qualitatively different from the standard variational approach. Concrete
instances of variational EM usually approximate the exact posteriors by fully or partly factored
distributions over the hidden variables (compare Jordan et al., 1999; Jaakkola, 2000; MacKay, 2003;
Bishop, 2006). Such approximations become the more severe the stronger dependencies between
the hidden variables in the posterior are. In the derivation of the ET approximation, no independence
assumption for the posterior has been used. Strong dependencies are therefore not expected to
negatively affect the approximation quality of ET. On the other hand, the ET approximations can
get more severe if the approximate classification of data points becomes imprecise (first variational
step), if the preselection step does not include the relevant candidates (second variational step), or
if too few data points are used.

ET has in common with all variational EM approaches that there is no guarantee for the like-
lihood to finally increase to values close to the global optimum. This can in general be due to the
approximations being too severe or due to many local optima in the likelihood landscape. Varia-
tional approximations therefore have to be verified numerically. In the following section, ET will
be evaluated based on different generative models and different data sets. During likelihood max-
imization we will monitor different values relevant for the approximation. We will thus control if
the likelihood is indeed increased during learning and, given ground-truth, if it approaches values
close to the global likelihood maximum. Ground-truth data will also allow us to quantify how well
the generating parameters are recovered by the derived algorithm. Furthermore, we will monitor
values that give evidence about the quality of the specific approximations used by ET. We will thus
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monitor the quality of the data point classification (first variational approximation) and the quality
of the approximation by preselection (second variational approximation). For the first approxima-
tion we compare the obtained classification with ground-truth of all data points. For the second
approximation, we will monitor the differences between the exact posterior p(!s |!y(n),Θ) and the
approximate posterior q̃(n)(!s; Θ) in (20). If we evaluate the differences between these distributions
using the Kullback-Leibler divergence, we obtain:

DKL(q̃(n), p) = − log(Q(n)) with Q(n) =
∑!s∈K n p(!s,!y

(n) |Θ)

∑!s ′ p(!s ′,!y(n) |Θ)
. (21)

The preselection approximation has a high quality if for the data points inM the valuesDKL(q̃(n), p)
are close to zero. For data points not inM the differences between the distributions should be large.
For practical reasons, we have introduced the quality values Q(n) in (21). The values Q(n) measure
the percentage of the posterior probability mass concentrated in K n. In terms of these values the
approximation quality is high if Q(n) is close to one for data points inM , and close to zero for data
points not inM .

4. Training Generative Models

The approximation scheme defined and discussed in the previous sections is so far independent of
the specific choice of a generative model except for the assumption of binary hidden variables. To
demonstrate the applicability of the method and to investigate its properties, in this section we will
apply it to a number of different generative models. The investigated models are all multiple-cause
models that require tractable approximations. The three major classes investigated here are non-
negative matrix factorization (NMF; Section 4.1), maximal causes analysis (MCA; Section 4.2),
and a sparse-coding-like model termed LinCA (Section 4.3). For all these models we will assume
independent hidden variables distributed according to a Bernoulli prior:

p(!s |π) =
H

∏
h=1

p(sh |π), p(sh |π) = πsh (1−π)1−sh , (22)

where π ∈ [0,1] parameterizes the sparseness of the distribution. For binary hidden variables the
Bernoulli prior represents the most straightforward choice (compare, e.g., Berkes et al., 2009; Lücke
and Sahani, 2008). Given the prior (22) the expected number of data points generated by less or
equal γ causes is given by:

N≤γ = N ∑
!s, |!s|≤γ

p(!s |π) = N
γ

∑
γ ′=0

(

H
γ ′

)

πγ
′
(1−π)H−γ ′ . (23)

N≤γ is required to find the set of Ncut data pointsM considered for a parameter update, and Equa-
tion 23 shows that this number is tractably computable. For all generative models we will use ET
as described in Section 2 and Algorithm 1. That is, we will use a set K that constrains the number
of simultaneously active causes, and use selection functions Sh to obtain sets K n.

4.1 Non-negative Matrix Factorization (NMF)

The first generative model considered uses prior (22) and combines the generative fields
!Wh = (W1h, . . . ,WDh)T of all latents with sh = 1 linearly. We use a Gaussian noise model such
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that the probability of a data vector!y given!s is defined by:

p(!y |!s,Θ) =
D

∏
d=1

p(yd |Wd(!s,W ),σ), p(yd |w,σ) = N (yd ;w,σ2) (24)

with Wd(!s,W ) =∑
h
Wdhsh , (25)

withW ∈ D×H . N (yd ;w,σ2) is a scalar Gaussian density function with mean w and variance σ2.
The introduction ofW will turn out to be convenient for the analytical treatment below. Note that
we otherwise could have written p(!y |!s,Θ) = N (!y;W!s,σ21).

We then use (24) to compute the update equation (the M-step) for the weight matrix W as
described in Section 2. The update equation is gained from the necessary condition for an optimum
of the free-energy in (2). TheW -update is consequently a function of the sufficient statistics 〈!s〉Tq(n)
and

〈

!s!sT
〉

q(n) . Following Section 2, these expectation values are approximated by using (6) instead
of the exact sufficient statistics (5), that is, we use a subset of cause combinations as selected by the
truncation approach. Furthermore, we sum only over the Ncut data points inM as explained at the
end of Section 2. The update equation is then given by:

W =

(

∑
n∈M

!y(n) 〈!s〉Tq(n)

) (

∑
n′∈M

〈

!s!sT
〉

q(n′)

)−1

. (26)

Note that the equation can consistently be gained from the necessary condition for a free-energy
optimum in Equation 19 (see M-step of Algorithm 2).

Equations 24 to 26 are valid irrespective of the sign of the entries of the generative fields and
the input data. Generative models corresponding to the class of non-negative Matrix Factorization
(NMF) methods are based on a linear combination of generative fields but rely on non-negative data
points and generative fields. In Equation 26, non-negativity can be ensured for the generative fields
by clamping small appearing weights at zero.

A more direct way to ensure non-negativity for the parameters of the model defined by (22)
and (24) is to rely on convergence proofs similar to those used for classical NMF (Lee and Seung,
2001), that is, to ensure non-negativity by deriving a multiplicative update rule for the generative
fields. For the EM algorithm used as a basis for ET, it can be shown that the parameter-free update
rule

!Wh ← !Wh1
〈!ysh〉ET

∑h′ !Wh′ 〈sh′ sh〉ET
(27)

provides monotonic convergence towards the M-step solution of the generative fields, where we
have introduced the ET-averaging

〈 f (!y,sh)〉ET := ∑
n∈M

∑
!s∈K n

p(!s|!y(n),W ) f (!y(n),sh) = ∑
n∈M

〈

f (!y(n),sh)
〉

q(n)
.

Equation 27 corresponds to a partial M-step of ET-NMF (‘Expectation-Truncation-NMF’). In sim-
ulations, it is therefore applied iteratively with 20 partial M-steps after each E-step.

For the introduced generative model, Equation 27 converges towards the M-step solutions of the
EM algorithm under non-negativity constraints. The update rule can be understood as a diagonally
rescaled gradient descent derived from the EM algorithm, with a rescaling factor that is “optimally
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chosen to ensure convergence” (Lee and Seung, 2001). A thorough derivation of the update Equa-
tion 27 and its relation to the classical NMF algorithm known from the literature can be found in
Appendix D.

The E-step of ET-NMF is based on the truncated expectation values (6) to calculate the averaged
quantities in theW update equations according to

〈!ysh〉ET = ∑
n∈M

!y(n) 〈sh〉q(n) and 〈sh′ sh〉ET = ∑
n∈M

〈sh′ sh〉q(n)

so that the sufficient statistics of the ET-NMF model that have to be computed for the M-step will be
given by the first and second order moments 〈sh〉q(n) and 〈sh′ sh〉q(n) of the (approximate) posterior.

For our generatively formulated version of NMF with M-step equations (26) or (27) we can
now apply ET as described in Section 2. We ran the ET-NMF algorithm with both M-step versions
(26) and (27) and observed, at least for the data used, a qualitatively and quantitatively comparable
behavior. Note that the probability density p(!y |Θ) of the model is invariant under the exchange of
any two generative fields (or basis functions), !Wh → !Wh′ , because of symmetric priors. By the def-
inition of the truncated generative models (Section 3), it can instantly be seen that their probability
densities p(!y |c= 1,Θ) and p(!y |c= 0,Θ) are also invariant under these transformations (the same
will apply for the other models considered).

As indicated, the sufficient statistics for ET-NMF are given by the first and second order mo-
ments, 〈sh〉q(n) and 〈sh′ sh〉q(n) , of the exact posterior; to find approximations to these intractable ex-
pectation values we first have to find appropriate selection functions Sh. A natural starting point for
finding such functions is to consider the joint probability p(sh = 1,!y(n) |Θ) =∑!s(sh=1) p(!s,!y

(n) |Θ).
If we knew that the joint probability was small for a given h, we would know that the sum over all!s
in (6) which contains!s with sh = 1 is small as well. Furthermore, note that for a given data point the
joint represents the part of p(sh = 1 |!y(n),Θ) which depends on h, p(sh = 1 |!y(n),Θ) = p(sh=1,!y(n) |Θ)

p(!y(n) |Θ) .
p(sh = 1 |!y(n),Θ), on the other hand, directly reports the probability of unit h to have contributed
to the data point. It could thus be regarded as the optimal selection function. Unfortunately, neither
p(sh = 1,!y(n) |Θ) nor p(sh = 1 |!y(n),Θ) are computationally tractable and, thus, neither function
fulfils one of the properties demanded from a selection function. Therefore, we will compute an
upper bound of p(sh = 1,!y(n) |Θ) which is tractable and still serves well in selecting a subset of
hidden units that can explain a given!y(n). Let us for this purpose consider the data point dependent
weight matrix defined by: W ub

dh :=W ub
dh (!y

(n),W ) = max{y(n)d ,Wdh} and !W ub
h :=

(

W ub
1h , . . . ,W

ub
Dh
)T ,

where ‘ub’ refers to ‘upper bound’. This formal definition of W ub allows for a compact notation
of an upper bound of p(sh = 1,!y(n) |Θ). Because of the non-negativity of the entries in W and
the mono-modality of the Gaussian distribution w.r.t. the mean, we can show (see Appendix B for
details):

p(sh = 1,!y(n) |Θ) = ∑
!s(sh=1)

p(!y(n) |Wd(!s,W ),σ) p(!s |π) ≤ π p(!y(n) |!W ub
h ,σ) =: Sh(!y(n)) . (28)

The upper bound Sh is tractable (also compare Appendix C) because we have removed the summa-
tion over the!s. The price we pay is that the selection function Sh can be a relatively coarse estimate
in some cases. Importantly, however, we know that if Sh is sufficiently small, then the contribu-
tion of all joint probabilities p(!s,!y(n) |Θ) with sh = 1 can be neglected. The E-step given by the
approximation of the sufficient statistics in Section 2 with (28) as selection function together with
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the M-step in (27) or (26) represents the learning algorithm for the NMF generative model defined
by (22), (24) and (25) with non-negativity constraint.

In addition we add after each M-step a small parameter noise to the basis vectorsW (iid Gaus-
sian, standard deviation 0.05) and we use a standard relaxation scheme in order to avoid local optima
of the potentially multi-modal likelihood landscape. Annealing (see, e.g., Ueda and Nakano, 1998;
Sahani, 1999) amounts to the replacements: (1/σ2)→ (β/σ2), π→ πβ and (1−π)→ (1−π)β. The
constant β is an inverse ‘temperature’, β = 1/T , where T is decreased from a high value T init to a
value T final equal or close to one.

4.1.1 EXPERIMENTS - ARTIFICIAL DATA

Let us consider data as displayed in Figure 3A. That is, we consider hidden causes in the form of
horizontal and vertical bars (five pixels each) on a 5×5 grid. Each bar appears with probability 2

10
such that there are on average two bars per data point. We use N = 500 data points. The grey-value
of a bar is taken to be 10, background pixels are zero. The bars superimpose linearly (pixel values in
regions of overlap are 20) and are subject to Gaussian noise with standard deviation σ= 2.0. Data
as in Figure 3A are well-suited to study the functioning of the approximation scheme because we
know the underlying generating process and have ground-truth for each data point. We will later use
this knowledge to illustrate the influence of each data point on the update of the model parameters.
For this reason data points such as displayed in Figure 3A or versions without noise are frequently
used in the recent literature (see, e.g., Hinton et al., 1995; Hoyer, 2002; Spratling, 2006).

The model which is applied to the data uses H = 10 hidden units and D = 25 observed units.
The entries ofW are initialized by drawing iid from a Gaussian distribution with a mean of 4 and
a standard deviation of 43 . The standard deviation of the generative model is set to σ = 2.0 and the
value of π is set to 2

10 . Small deviations from these values did not have significantly negative effects
on the algorithms performance in extracting data components. Figure 4B shows the cooling sched-
ule for annealing. We linearly decrease T from T init = 13 to T final = 1 during 100 EM-iterations
(including ten initial iterations at T init and twenty final iterations at T final). Figure 3B shows a
typical time-course of the parameters W if trained as described above. As approximation param-
eters we used H ′ = 5 and γ = 3. Although approximate EM schemes do in general not guarantee
the increase of the data likelihood, we find that the learning algorithm increases the likelihood to
values close to the one for the generating parameters (dashed horizontal line in Figure 4A). This
behavior is reflected by the convergence of the model parameters to values close to the generating
ones (compare Figure 3). In most trials the parameters converged to approximately optimal values
relatively early but in some trials they converged relatively late during learning (compare likelihood
values in Figure 4A). We ran 50 trials with 50 different sets of data points generated as described
above. The algorithm extracted all bars in all of the trials (see Appendix E for measurement de-
tails). To quantify the quality of parameter reconstruction we computed, for each trial, the mean
absolute error (MAE) between the obtained generative fields, !Wh, and the corresponding generating
causes: MAE = 1

HD ∑hd |Wdh−W gen
dh′ | where W

gen
dh′ denotes the cause represented by !Wh (compare

Appendix E). For all trials the MAE was smaller than 0.24 with a mean of 0.20 (note that pixels of
bars were set to 10.0 and background to zero).

In a second series of measurements we used the model with the same parameters and the same
data as above except that the generating noise variance was set to zero. In 50 trials on this non-noisy
data the algorithm extracted all bars in 46 of the trials (92% reliability) and extracted nine of the ten
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Figure 3: A 14 data points of the linear bars test with Gaussian noise. B Time course of the gen-
erative fieldsW of the NMF-like generative model if Expectation Truncation is used for
learning.

single bars in the four remaining cases. All successful trials had a MAE of below 0.20 with a mean
MAE of 0.05. Parameter recovery was more precise than in the previous trial series because of the
non-noisy data. A higher initial temperature or a longer cooling increased reliability to values close
to 100% for this data. E.g., when we used T init = 15 and stretched the cooling schedule in Figure 4B
to 200 iterations, the algorithm found all bars in all of 50 trials. Likewise, increasing the number of
data points increased reliability (> 94% reliability for N > 1000 data points with T = 13 and 100
iterations cooling).

High reliability (i.e., a high probability to extract all causes) in this linear bars test has also been
observed for other learning algorithms (see, e.g., algorithms investigated in Spratling, 2006). Note,
however, that the standard bars benchmark test (Földiák, 1990) uses non-linearly overlapping bars
(we will come to the standard version of the bars test in the next section). For the presented NMF
algorithms we have (as is usual in the literature) only inferred the parametersW . In our generative
setting it is in principle also possible to learn the model parameters σ and π (compare Lücke and
Sahani, 2008). However, for comparison with other approaches and for brevity, we focused onW .

To investigate the quality of the ET approximation more directly, the values Q(n) (Equation 21)
were computed for 40 data points during learning. Figure 4C shows time courses of Q(n) during a
trial on the noisy linear bars test using the parameters given above. The data points were randomly
selected but it was made sure that twenty of them were generated by less or equal γ causes (bright
green lines) and the other twenty by more than γ causes (dark red lines). As can be observed, the
approximation quality of the twenty data points generated by ≤ γ causes quickly increases whereas
the approximation for the other twenty data points approaches zero. From the used approximation
this could have been expected as we have restricted the summation in (6) to hidden states with less
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Figure 4: A Data likelihood during ten trials using the same set of N = 500 data points but dif-
ferent random initializations. The likelihood value that results from using the generating
parameters is marked by the dashed horizontal line. B Cooling schedule during learning.
C Approximation qualities Q(n) of 40 data points during learning. Twenty of the data
points were generated by ≤ γ causes (bright green lines) and the other twenty by more
than γ causes (dark red lines). D Sorted values of the sums Z̃ = ∑!s∈Kn p(!s,!y

(n) |Θ) at the
end of learning. Bright green bars were used to mark the data points generated by ≤ γ
causes, dark red bars to mark data points generated by more than γ causes. The Ncut data
points left of the black vertical line were used in the final M-steps.

or equal γ = 3 active causes. For other trials, the values Q(n) show the same qualitative behavior.
However, the exact time-courses can differ quantitatively from trial to trial.

Note that the poorly approximated data points do finally not negatively affect the parameter
updates because they are not taken into account for the M-step. This is illustrated in Figure 4D
which shows the logarithms of the sum Z̃ = ∑!s∈K n p(!s,!y

(n) |Θ) at the end of learning and for each
of the N = 500 data points used (divided by a common factor zo). Bright green bars display the
values of all data points generated by less or equal γ causes, dark red bars display the values of all
other data points. The data points are ordered descendingly. According to the approximation used
(see Section 2 resp. Equation 23), we only consider the Ncut data points left of the black bar, that
is, we finally only use data points with quality values Q(n) close to one. The relation of the quality
values to the KL-divergence in (21) directly shows that the ET approximation for these data points
is virtually optimal in this case.
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4.1.2 EXPERIMENTS - MORE REALISTIC DATA

As a second example, we applied the learning algorithm to gray-valued images of the postal digits
database MNIST (http://yann.lecun.com/exdb/mnist/). This data is frequently used in the NMF
literature, which makes it well suited as a means for comparison of our algorithm to standard NMF
approaches. Note that we do not have ground-truth about the hidden components in this case.

t = 0 t = 5 t = 10

...

t = 50 t = 120

Figure 5: Resulting basis vectors !Wh for the MNIST database. The probabilistic version of NMF
trained with ET converges to a parts-based decomposition.

Figure 5 shows the application of the algorithm using H = 12 hidden variables and approxi-
mation parameters for ET set to H ′ = 10 and γ = 5. The prior parameter was set to π = 0.3 such
that three to four of the 12 latent variables do explain a data point on average. The noise parameter
σ in (24) was set to σ = 0.73 after screening through values between zero and one. The dimen-
sionality of each data point is D= 28×28 and we used a subset of N = 1000 data points, some of
which are shown in Figure 6A. We linearly decreased the temperature as in Figure 4B but used a
slightly longer learning time (120 iterations) to provide more time for convergence. In Figure 5 the
time course of W displayed as basis vector sets is shown. As can be observed, the parameters W
converge to basis vectors that represent digit parts.

To assess the quality of the basis vectors and for comparison with standard NMF, we show
average reconstructions of probabilistic NMF and standard NMF in Figure 6. In Figure 6B it can
be observed that already for the small subset of 12 basis vectors in Figure 5 the reconstructions
match the inputs in Figure 6A relatively well. Despite the constraint to binary hidden variables in
our generative version of NMF, the resulting reconstructions are very similar to those of standard
NMF as shown in Figure 6C. For these data, the overall average reconstruction error, 1

ND ∑n ||!y(n)−
∑h !Wh 〈sh〉q(n) ||2, of the generative version is less than 5% larger than the reconstruction error of
standard NMF.

4.2 Maximal Causes Analysis (MCA)

The second generative model we consider was suggested to extract the hidden causes from data
whose components combine non-linearly. It uses a maximum rule in the place where NMF, sparse
coding (Olshausen and Field, 1996), independent component analysis (ICA; Comon, 1994) and
many other methods assume a linear superposition of hidden components:

p(!y |!s,W ) =
D

∏
d=1

p(yd |Wd(!s,W ),σ), p(yd |w) = N (yd ;w,σ2) (29)

with Wd(!s,W ) =max
h

{shWdh} ,
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A Digit data used for testing the ET-version of NMF

B ET-NMF average reconstruction

C Standard NMF reconstruction

Figure 6: Reconstruction of data points representing hand-written digits. A Subset of the N = 1000
data points used for the application of probabilistic and standard NMF to the MNIST data
base. B Average reconstruction of the digit data in A on the basis of the basis vectors in
Figure 5. C Reconstruction of the digit data in A using standard NMF with the same
number of basis vectors.
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where we have used a Gaussian noise model with w as a place-hoder for Wd(!s,W ) (note the dif-
ference to Poisson noise used by Lücke and Sahani, 2008). For the activities of the binary hidden
variables sh we use the same prior as for the NMF model in Section 4.1 (see Equation 22). As in the
previous model, the weight matrixW ∈ D×H parameterizes the influence of the hidden causes on
the distribution of!y. The functionWd(!s,W ) in (29) gives the effective weight on yd , resulting from
a particular instance of the state vector!s. An update rule for the weight matrixW of this model was
derived in Lücke and Sahani (2008) and is given by:

Wdh =

∑
n∈M

〈

A
ρ
dh(!s,W )

〉

q(n) y
(n)
d

∑
n∈M

〈

A
ρ
dh(!s,W )

〉

q(n)
, where

A
ρ
dh(!s,W ) =

(
∂

∂Wdh
W ρ

d(!s,W )

)

(30)

W ρ
d(!s,W ) =

(
H

∑
h=1

(shWdh)
ρ

) 1
ρ

. (31)

The parameter ρ controls the nonlinearity and is increased to large values during learning. Again,
the entries inW are non-negative. To derive a selection function we can therefore apply the same
arguments as for NMF and thus arrive at the very same functions Sh as given in Equation 28. The
selection function (28), M-step equations (30) and (31), and the E-step approximation described in
Section 2 represent a full learning algorithm for the extraction of non-linearly combining compo-
nents, which will be referred to as MCAET.

4.2.1 EXPERIMENTS - ARTIFICIAL DATA

To study the properties of MCAET let us first apply it to data with ground-truth. A well-suited
type of data for the algorithm is the so-called bars test introduced by Földiák (1990). The bars
test has become a standard benchmark for component extraction algorithms (see, e.g., Saund, 1995;
Dayan and Zemel, 1995; Hochreiter and Schmidhuber, 1999; Charles et al., 2002; Lücke and von der
Malsburg, 2004; Spratling, 2006; Butko and Triesch, 2007; Lücke and Sahani, 2008) and thus allows
for quantitative comparison with other systems. To generate data according to the bars test we use
the same parameter settings as for the artificial data in Figure 3A, that is, D= 5×5, bars pixel value
10 and other pixels zero, Gaussian generating noise with standard deviation 2.0, and the probability
for each bar to occur is 2

10 . In contrast to the data used in the experiment of Figure 3, however, the
standard form of the bars test uses a non-linear superposition of the causes (overlapping bar regions
have pixel values 10 instead of 20 for NMF). Figure 7A shows a random selection of 12 of the
N = 500 data points used.

We apply MCAET to the data using the same model parameters and the same approximation
parameters (H ′ = 5 and γ = 3) as for the linear bars test in Section 4.1.1. Annealing for MCAET
amounts to the same replacements as for NMF: (1/σ2)→ (β/σ2), π→ πβ and (1−π)→ (1−π)β.
Additionally, ρ in (30) and (31) is increased from a relatively small value at T init to a large value at
T final by making ρ temperature dependent: ρ= 1

1−β =
T

T−1 . As cooling schedule we use the same
one as in Section 4.1.1 (see Figure 4B) but with T final = 1.05 to avoid a singularity for ρ. For MCA
we found it beneficial to add to the set K n (Equation 7), the set of all vectors with just one non-zero
entry: K n = K n ∪ {!s | ∑i si = 1}. Making K n larger can in general only increase the accuracy of
the approximation. At the same time, using K n instead of K n does not change the scaling behavior
with H of the algorithm (see Appendix C for a discussion).
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Figure 7: A Example data of a bars test with D= 5×5 and additive Gaussian noise. B Time course
ofW for the MCAmodel trained with ET.C Likelihood values for ten trials with the same
set of training patterns and different initial conditions for each trial. D Time course of the
quality values of 40 data points during one trial. Values are plotted for twenty randomly
selected data points generated by less or equal γ causes (bright green lines) and twenty
randomly selected data points generated by greater than γ causes (dark red lines).

Figure 7B shows a typical time course of W during learning. Figure 7C shows time courses
of the data likelihood for ten different runs using the same data set. The behavior of the likeli-
hood values results from the specific form of annealing which includes the annealed nonlinearity
in Equation 31. In Figure 7D typical time courses for the quality values Q(n) (Equation 21) for 40
data points are shown. For the 20 data points which were generated by ≤ γ causes (bright green
lines) the quality values increased to one. For the data points generated by > γ causes (dark red
lines) the quality values finally decreased to zero. As for NMF, only the data points which were
well approximated were finally taken into account for learning.

To probe the reliability of MCAET, we ran 50 trials of the bars test with the bars test parameters
as given above. In each trial we used a new set of N = 500 data points. In 46 of the 50 trials
MCAET extracted all bars (92% reliability), and in four of the trials 9 of 10 bars were extracted.
Reconstruction of the generating parameters was high with a maximal MAE of 0.35 and a mean
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MAE of 0.29 (bars had value 10). We observed that the convergence to local optima in 8% of
the trials was mainly due to effects of finite sample size. When we ran 100 trials using the same
parameters but N = 2000 data points instead of N = 500, the algorithm extracted all bars in all trials.

For comparison with other methods, we ran additional trials using the same parameters for bars
generation but with Gaussian noise for data pixels set to variance zero. This version of the bars
test is presumably the one most commonly used in the literature (e.g., Saund, 1995; Dayan and
Zemel, 1995; Hochreiter and Schmidhuber, 1999; Lücke and Sahani, 2008). In 41 of the 50 trials
MCAET extracted all bars (82% reliability) and found 9 of 10 bars in the other nine trials. Again,
reconstruction of the generating parameters in the successful trials was high with a maximal MAE
of 0.14 and a mean MAE of 0.05. Also for the non-noisy bars test, reliability of the algorithm
increased when we increased the sample size. For instance, we obtained reliabilities of more than
90% for N larger than about 2000. With N = 10000 and slower cooling (same cooling schedule
as in Figure 4B but stretched to 200 iterations), the algorithm found all bars in all of the 50 trials.
Achieving close to 100% reliability is thus more difficult for non-noisy bars.1

In earlier work, generative modelling approaches to the bars test merely achieved relatively low
reliability values. For instance, the model of Saund (1995) achieved 27% reliability, and the model
of Dayan and Zemel (1995) (although trained without overlapping bars) achieved 69%. Approaches
such as PCA or ICA that assume linear superposition have been reported to fail in this task (see
Hochreiter and Schmidhuber, 1999). Other objective function approaches and different types of
neural network approaches (e.g., Charles et al., 2002; Lücke and von der Malsburg, 2004; Spratling,
2006, and references therein) have been more successful in terms of reliability. They do, however,
often use hidden assumptions and constraints which make an objective comparison difficult (see,
e.g., Spratling, 2006, or Lücke and Sahani, 2008, for discussions). The more recently suggested
approach of MCA (Lücke and Sahani, 2008) represents a fully generatively interpretable approach
which achieves high reliability values. The unrestricted version of MCA3 extracts all bars in 90%
of the trials with noisy bars (with Poisson noise) and in 81% of the cases for the noiseless bars.
MCAET slightly improves on these results with 92% vs. 90% for noisy bars and 82% vs. 81% in the
non-noisy case (experiments with N = 500). If more data points are used, MCAET shows close to
100% reliability (50 of 50 trials successful, see above).

Other than the standard bars test, there has recently been an increasing interest in bars with more
pronounced overlap. We therefore used a version of the bars test as suggested by Lücke (2004). For
this data, bars of the same orientation can overlap (two neighboring vertical bars are not disjoint but
overlap). For the test we adopted the same parameter setting for such input as used by Spratling
(2006) and Lücke and Sahani (2008), that is, N = 400 example patterns, 16 bars, D = 9× 9, bars
appear with probability 2

16 , and number of hidden units is H = 32. Bars are two pixels wide such
that parallel neighboring bars have a one pixel wide region of overlap. Figure 8A shows some
examples of the data points used. We applied MCAET to the data using the same parameters as for
the standard bars test except of a higher initial temperature (T = 23) and longer cooling time (the
cooling schedule in Figure 4B was stretched by a factor four to 400 iterations). In 21 of the 25 trials
the system extracted all bars (see Figure 8B). In four trials 15 of the 16 bars were represented. The
average number of extracted bars was thus 15.84. In all the successful trials, reconstruction of the
generating parameters was high with a maximal MAE of 0.05 and a mean MAE of 0.04 (bars have

1. Note that alternatively to using N = 10000 and 200 iterations, we could, for non-noisy data, simply add Gaussian
pixel noise. This would take us back to the noisy-bars test and we would obtain close to 100% reliability with
N = 1000 data points.
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A

B

Figure 8: A Selection of 14 data points of a bars test with increased overlap. B Typical parameters
W after learning if twice as many hidden units as bars are used. The supernumerous units
are used to represent composite patterns.

value 10). As for the standard bars test we found that convergence to local optima was caused by
effects of the finite sample size. When we repeated the experiment with the same generating and
model parameters but with N = 800 instead of N = 400 data points, the algorithm extracted all bars
in all of 50 trials (mean number of bars extracted equal to 16.0). In work by Spratling (2006) state-
of-the-art systems were quantitatively compared using the mean number of extracted bars. From the
evaluated systems only few achieved values close or equal to the optimal value of 16 for N = 400.
From the systems with high values, many required additional constraints on the parameters (e.g.,
constrained forms of NMF) that had to be set by hand (see Spratling, 2006; Lücke and Sahani, 2008,
for discussions).

In general, the component extraction performance of MCAET on the different bars test tasks is
similar to the performance of MCA3 suggested by Lücke and Sahani, 2008. In terms of computa-
tional cost, MCAET represents a substantial improvement, however (even compared to R-MCA2, a
constrained form of MCA; see Lücke and Sahani, 2008). This allows for applications with large H
as demonstrated, for example, in the following section.

4.2.2 EXPERIMENTS - MORE REALISTIC DATA

As an example for an application to more realistic data, we applied MCAET to visual data in the
form of image patches. We used the same image, Figure 9A, as in work by Lücke and Sahani (2008)
to allow for a comparison. We randomly selected N = 40000 patches of 10×10 pixels as data points
(see Figure 9D for ten examples). The data points were globally scaled to lie in the interval [0,10].
However, just very few pixels had values close to 10 after scaling. The mean pixel value was 1.6
and thus smaller than for the bars test. We therefore used a smaller assumed Gaussian noise for the
model (standard deviation σ = 1.0 instead of σ = 2.0) and started cooling at a lower temperature
of T init = 4.0. Also the small noise term on the model parameters was scaled down (0.01 instead
of 0.05). During learning, we cooled for 400 iterations (cooling schedule of Figure 4B stretched
by a factor four) and allowed for additional 400 iterations at T final to guarantee full convergence
(although changes after iteration 400 were small).

Figures 9B and 9C show the resulting parameters W after applying MCAET with H = 50 and
H = 100 hidden units, respectively. For the approximations we again used H ′ = 5 and γ = 3.
As can be observed, the extracted generative fields represent typical components of the training
patches (compare Figure 9B-D). Data generated according to the MCA generative model using the
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Original imageA

E Generated patchesD Training patches

B LearnedW for H = 50

C LearnedW for H = 100

Figure 9: Application to visual data. A The 250-by-250 pixel image used as basis for the experi-
ment. The image is taken from the van Hateren database of natural images (brightened for
visualization). B Parameters !Wh = (Wh1, . . . ,WhD)T of the MCA generative model with
H = 50 trained by ET with H ′ = 5 and γ = 3. C Parameters !Wh of MCA with H = 100
(H ′ = 5 and γ = 3). D A selection of 10 typical training patches. E Ten examples of
patches generated according to the MCA generative model using the generative fields
in C. To reduce the apparent noise level, the patches were generated with a smaller σ than
for training.

extracted generative fields thus resemble the structure of the training patches (Figure 9E). Note that
the components of the data (e.g., images of grass blades and stems) superimpose non-linearly which
motivated the application of MCA.

Due to impractically long computation times, no previous version of MCA could be applied to
numbers of hidden units much larger than 50. The maximum achievable so far, was the application
of the constrained MCA version (R-MCA2) with H = 50 to N = 5000 patches of 10× 10 pixels.
As shown in the examples of Figure 9, Expectation Truncation allows for larger scale applications
of unconstrained MCA with H = 100 and beyond. Compared to MCA3 the number of states that
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have to be evaluated by MCAET for H = 100 is reduced by more than three orders of magnitude
(see Section 5.2 and Appendix C for discussions).

4.3 Linear Components Analysis (LinCA)

As third and final example let us discuss a generative model whose components can be negative as
well as positive. Consider, therefore, the model given by (22), (24) and (25) without the restriction
to non-negative weights. For small π in (22) such a generative model is reminiscent of sparse
coding (SC; Olshausen and Field, 1996): its hidden variables are sparsely active, its basis functions
are combined linearly, and its observed variables are, given the latents, independently drawn from
standard Gaussian distributions. Instead of defining explicit prior and noise distributions, SC-like
models are often, more informally, written in the form:

!y =
H

∑
h=1

sh !Wh + σ!η = W!s + σ!η , (32)

where the entries of !η are independently and identically drawn from a Gaussian distribution with
zero mean and unit variance.

The model (32) with binary factors sh distributed according to the Bernoulli prior (22) can be
trained with Expectation Truncation. As M-step we can directly use Equation 26. However, in
contrast to the previous generative models, we can not use Equation 28 as a selection function be-
cause it was derived assuming non-negative entriesWdh. To find appropriate selection functions, let
us first consider a special case: let us assume the number of observed and hidden variables to be
identical, H = D, and let us assume zero observation noise (σ = 0 in Equation 32; also compare
Teh et al., 2003). For continuous factors sh with non-Gaussian priors this special case represents
the standard version of ICA (see, e.g., Comon, 1994; Hyvärinen et al., 2009). ICA is deterministic
in the sense that for any given data point !y(n) the generating hidden vector !s(n) is known exactly.
If W is invertible, the generating hidden vector is given by !s(n) =W−1!y(n) (as can directly be de-
duced from Equation 32 with σ = 0). ICA is most frequently applied to (PCA-)whitened data
(compare, e.g., Bishop, 2006; Hyvärinen et al., 2009), in which case W is an orthogonal matrix
(W−1 =WT ). For ICA on whitened data, the generating hidden units of a data point !y(n) are thus
given by !s(n) =WT!y(n). In other words, the conditional distribution p(!y |!s,Θ) and thus the poste-
rior p(!s |!y(n),Θ) become equal to the delta function δ(!s−WT!y(n)). For σ > 0 in Equation 32, the
conditional distribution p(!y |!s,Θ) is, in hidden space, a Gaussian function with meanWT!y(n), and
the posterior is proportional to the product of this function with the prior. A multiplication with a
sparse prior has the effect of moving the Gaussian function closer to those axes h with large values
!WT
h !y(n). The scalar products !WT

h !y(n) can thus serve to select those hidden dimensions which span
the space most posterior mass lies near to.

Knowing where most posterior mass is concentrated is the crucial prerequisite for finding se-
lection functions for ET. In the binary case of model (32) with Bernoulli prior (22), selecting the
hidden dimensions corresponds to selecting the hidden variables which are most likely to have non-
zero entries. In analogy to the ICA case, we thus use the scalar product to define selection functions:

Sh(!y(n)) =
!WT
h !y(n)

|!Wh| |!y(n)|
, with |!v|=

√

∑D
i=1(vi)2 and !WT

h = (W1h, . . . ,WDh). (33)

We use normalized scalar products because we are not constrained to an orthogonal matrixW and
want to prevent the lengths of |!Wh| from having a strong influence on the selections. Note, however,
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that if the matrixW is orthogonal, the selection is equivalent to one based on non-normalized scalar
products. The normalization by |!y(n)| does not affect the selection because!y(n) is independent of h.

Selection functions (33), M-step equation (26), and the ET approximation of the E-step represent
a learning algorithm that will be referred to as Linear Components Analysis (LinCA).

4.3.1 EXPERIMENTS - ARTIFICIAL DATA

To study the LinCA learning algorithm it is first applied to artificial bars data. We use the same
linear bars test setup as for the noisy bars test in Section 4.1.1 (compare Figure 3A) but invert five
of the ten bars to negative values. Figure 10A shows 12 examples of the N = 500 data points used.
The observed variables (or ‘pixels’) of positive bars have value 10.0, observed variables of negative
bars have value−10.0, and all other observed variables have value zero. Consequently, we initialize
the parametersW with positive and negative values by drawing iid from a Gaussian with zero mean
and standard deviation 2.0. All other parameters (for initialization, approximation, annealing, and
data generation) are chosen as in Section 4.1.1 for the NMF model. Figure 10B shows a typical
time course of the parametersW for noisy data points. As can be observed, the parameters converge
to the true generating causes relatively early. Figure 10C shows the likelihood values of ten trials
with the same set of N = 500 data points. In most trials, likelihoods converged quickly to values
close to the likelihood values of the generating parameters (dashed horizontal line). In some trials
convergence took longer, however. Figure 10D shows the quality values Q(n) (Equation 21) during
a typical trial. After an initially relatively low approximation quality, the quality values of the data
points generated by less or equal γ causes (bright green lines) quickly increase. As previously, only
these data points are finally used for learning. Data points generated by greater than γ causes (dark
red lines) are finally discarded.

To measure the reliability of the system, we ran 50 trials with 50 different data sets of N = 500
data points. In all trials all bars were extracted. Parameter reconstruction in all the trials was high
with all MAE smaller than 0.28 and a mean MAE of 0.21. For bars without noise we extract all
bars in 49 trials (98%) and nine of ten bars in one trial. Due to the non-noisy data, parameter
reconstruction was higher than for noisy data. The MAE of all successful trials was smaller than
0.09 and the mean MAE was 0.04. The reliability for non-noisy data increased to still higher
reliability values when we cooled longer. If the cooling schedule in Figure 4B was stretched to
200 iterations, all bars were found in all of 100 trials. Alternatively, reliability increased when we
increased the sample size: all bars were found in 100 of 100 trials if N = 1000 data points were
used.

4.3.2 EXPERIMENTS - MORE REALISTIC DATA

As an example of more realistic data, we applied LinCA to sound waveforms. Sound waves have
positive and negative parts and their components superimpose linearly, which is consistent with the
assumptions of the LinCA model. As data we used short sound intervals obtained from recordings
of ten different male voices uttering the sentence: “Don’t ask me to carry an oily rag like that”.
Data was taken from the TIMIT database with voices sampled at 16kHz. To only learn from the
spoken text, we cut off the silent initial part and the silent final part of each recorded sentence.
Furthermore, we multiplied each voice recording by a different factor such that each recording
filled the interval [−5,5] (maximal absolute amplitude of each recording 5.0). This compensated
for different sound levels of the different speakers and made the data range comparable to those of
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Figure 10: A Example data of a bars test with components of positive and negative values,D= 5×5,
and additive Gaussian noise. B Time course ofW for the LinCA model trained with ET.
C Likelihood values for ten trials with the same set of training patterns and different
initial conditions for each trial. D Time course of the quality values of 40 data points
during one trial. Values are plotted for twenty randomly selected data points generated
by less or equal γ causes (bright green lines) and twenty randomly selected data points
generated by greater than γ causes (dark red lines).

previous experiments. After the multiplication only few data values lay close to −5 or 5. As in
Section 4.2.2 we therefore assumed a lower data noise than for the bars data (σ= 0.5 in this case).
As data points we used all possible segments of 12.5ms length. This amounts to N = 389510 data
points with D= 200 observed variables.

We applied LinCA withH = 200 hidden units to the data and used a prior parameter of π= 0.01
(on average πH = 2.0 causes per data point as in previous experiments). The approximation param-
eters for ET we set to γ= 4 and H ′ = 10 (as in Section 4.2, we found it beneficial to use K n, which
increases robustness of learning without changing the complexity; compare Appendix C). During
training we annealed according to the cooling schedule in Figure 4B stretched by a factor two to 200
iterations. The initial temperature was set to T init = 5.0 and the final temperature to T final = 1.0. An
additional 200 iterations at T final = 1 were used to guarantee full parameter convergence (although
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c

b

a

Figure 11: Parameters W after training LinCA on acoustic data. Data points were 12.5ms long
intervals of voice recordings. For visualization, the H = 200 generative fields were
individually scaled. Fields a-c are examples of different types of generative fields.

2882



EXPECTATION TRUNCATION

changes after 200 iterations were small; compare Section 4.2.2). Figure 11 shows the learnt param-
eters W after a typical run. Many of the generative fields (or basis functions) !Wh are localized in
time and frequency space (e.g., field a). Others are only localized in frequency space (e.g., field b).
Still others resemble amplitude modulated waveforms (e.g., field c) or represent combinations of
low and very high frequencies. We thus recover generative field properties similar to those obtained
by other approaches (compare Teh et al., 2003, or Köster and Hyvärinen, 2007). Note, however,
that we applied the algorithm to the data without preprocessing such as whitening. As for the pre-
vious experiments, no preprocessing except for data scaling was used. This is unlike SC or ICA
approaches that usually require specifically preprocessed data. We also ran LinCA on a subset of
the N = 389510 data points. Results with, for example, N = 100000 showed no significant differ-
ences. Similarly, a run of LinCA with H = 400 and πH = 2.0 showed comparable results (although
we observed a tendency towards more generative fields with low absolute amplitudes in this case).

The experiments on acoustic data show that LinCA can be trained with ET also for large-scale
applications. As the number of preselected candidatesH ′ can be much smaller than the total number
of hidden units, ET scales very favorably with H (see discussion in Section 5.2 and Appendix C).
For the experiment of Figure 11, ET evaluates just a couple of hundreds of hidden states per data
point instead of 2200 required for an exact E-step. Without preselection (i.e., H ′ = H) and same
γ, the number of hidden states per data point is still larger than 200× 106 (compare Appendix C),
which would by far exceed currently available computational resources.

5. Discussion

We have studied an approximation to EM to train multiple-cause generative models with binary
hidden variables. Training in the scheme is based on a candidate preselection to reduce the compu-
tational cost of intractable exact EM learning.

5.1 Properties of Expectation Truncation

The approximation scheme introduced in Section 2 and systematically derived in Section 3 is an
example of a deterministic approximation to EM. In contrast to exact EM, there is no guarantee that
the data likelihood under a given generative model is always increased or remains unchanged. In
numerical experiments on a number of different generative models, we recovered, however, very
close to optimal parameters for different types of data. This reflects the property of the approxima-
tion to become increasingly optimal the more it approaches the likelihood optimum. To quantify
the approximation quality, we have, in different applications, monitored quality values, Q(n), for a
selection of data points (see Section 4.1.1, Section 4.2.1, and Section 4.3.1). The quality values are
themselves measures for the KL-divergence between the exact posterior (given a data point n) and
its approximation (compare Section 3). The values for Q(n) as monitored during the experiments
show that the KL-divergence for those data points, which are finally taken into account for learning,
becomes virtually zero. Further away from the optimum, the approximation of ET is usually poorer
than close to the optimum. However, when measured, also the initial iteration steps did increase the
data likelihood in numerical experiments.
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5.2 Applicability and Complexity

For the ET approximation to work, different requirements for the generative model and the data
have to be fulfilled. These requirements have been made explicit in Section 3. For practical reasons,
hidden variables with a small number of discrete values are the most salient requirement. In our
formulation and in the experiments, we have used binary values, but ET can be applied without
modifications to hidden variables with more than two discrete states. For hidden variables with
continuous values the E-step can, however, not be evaluated directly (compare Equation 6 or Al-
gorithm 2). Thus, generative models with latents of continuous values cannot be trained by the
presented method. By combining ET with other approximation schemes, it could, however, be gen-
eralized to latents with continuous values. For this note that the derivation of ET in Section 3 in
large parts does not rely on the assumption of discrete latents. Indeed, the derivations would still
hold when all sums over!s in Section 3 were replaced by integrals over the corresponding states. We
are then, however, left with integrals over!s (see Algorithm 2) that have to be evaluated. By applying
approximation methods to these integrals over relatively small state spaces, learning algorithms for
generative models with latents of continuous values could be derived.

As shown in Section 4, ET can be applied directly to data that can be generated well by com-
binations of binary causes. In numerical experiments we have seen examples of its application to
NMF, to non-linear component superpositions (MCA), and to a form of sparse coding (LinCA).
But also the applicability of ET to generative models with binary hidden variables is not without
limits. From the inspection of the methods’ functioning (compare Section 3) it becomes clear that
it is based on the following assumption: for a sufficiently large number of data points the posterior
probability mass has to be concentrated in a relatively small subset of the latents’ state space. In
other words, a large number of data points must be well-explicable by considering few configura-
tions of the potential latent states. If this assumption is not fulfilled, good approximations can only
be achieved by considering sums over large sets of states. We could still apply ET but the required
approximation parameters would result in computational costs comparable to the ones for exact EM.
Models with large numbers of hidden variables would thus not be computationally tractable in such
cases. Even if the probability mass of most posteriors is finally concentrated within small regions of
the state space, the applicability of ET may still be limited as it additionally requires a mechanism
to locate these regions. For the generative models discussed in Section 4, the tractable selection
functions (28) and (33) perform well in this respect, and successfully maximize the likelihood and
recover close to optimal parameter values. However, for more complicated models the definition of
tractable selection functions (or more generally of sets K n) may be challenging and can limit the
applicability of ET. Again, the summation over more states would reduce the problem. For instance,
by choosing K n = K (no second variational step) ET could be applied without a preselection pro-
cess. However, without this crucial reduction of states, the application scale would be much more
limited. In summary, applicability of ET for models with binary latents is thus not a question of
principal nature but a question about the trade-off between computational cost and approximation
quality.

Note that the space of models ET can be applied to is much larger than the space of models
with sparsely active binary latents. ET only requires that, on average, few states can represent
a data point well. These states do not have to be sparse nor do the hidden variables have to be
independent. Examples are, for instance, the generative models discussed in Section 4 but with
priors that fix the number of active causes (e.g., always five causes active). The requirements for ET
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can still be satisfied in such situations. In preliminary numerical experiments using such non-sparse
and dependent priors, ET still efficiently increased the likelihood to approximately optimal values.

In general, a reduction of the computational cost using ET is paid for by a reduction of the
approximation’s quality. Hereby, ET benefits from the fact that the reduction in quality is very
limited compared to a vast reduction in required computations (compare Section 4). For the data
considered, the computational cost can be reduced by many orders of magnitude with only mini-
mal losses for the approximation’s accuracy. For a given set of data, a good approximation setting
for ET usually arises naturally. The Bernoulli prior (22), for instance, results in many data points
requiring the consideration of at most πH components for good approximations. The overall com-
putational complexity of ET thus depends on the complexity of the data and the generative model
used. More specifically, it depends on how the subsets K n in (6) are selected. For the generative
models and data considered in this paper, a detailed discussion of ET’s computational complexity
can be found in Appendix C. The crucial advantage of preselection is that the computational cost is
split up into essentially two parts (see Equation 38). Importantly, only the preselection part depends
hereby on the total number of hidden variables H. The second and computationally more intensive
part becomes independent of the total number of latents, depending only on the number of selected
candidates. The preselection part is computationally much less costly: for the examples considered
here, its complexity scales just linearly with H (also compare Figure 13). ET thus becomes espe-
cially efficient for large numbers of hidden variables. An example is the application of MCAET to
the data of Section 4.2.2. Another example is the application of LinCA to the data of Section 4.3.2.
In the latter case ET computes approximations by evaluating less than 1000 states for H = 200
instead of 2200 required for an exact E-step.

5.3 Relations to Other Approximation Schemes

A central role for optimal learning and inference in probabilistic models is played by the poste-
rior probability p(!s |!y(n),Θ). Computing expectation values w.r.t. to the posterior or computing the
posterior directly is usually intractable for multiple-cause models. Approximation schemes find
computationally tractable approximations to expectation values w.r.t. p(!s |!y(n),Θ) or they approxi-
mate the posterior directly. Many examples of such approximations can be found in the literature,
and they usually fall into two major classes: sampling methods and deterministic approaches.

Sampling methods are in a sense more general because they usually rely on fewer assumptions
than deterministic approaches. Furthermore, there are no principled limits to most of them. In gen-
eral, the approximations obtained recover the exact solutions in the limit of infinite computational
resources. However, sampling methods can be computationally very demanding and may limit ap-
plications to relatively small scale problems. In contrast to sampling, deterministic approaches are
based on analytical approximations to the posterior or its expectations computed w.r.t. it. By defini-
tion, they do in general not find the exact solutions and often rely on particular assumptions about
the model they are applied to. However, if these assumptions are fulfilled, they are often computa-
tionally much less demanding. For these reasons, deterministic and sampling approaches are often
regarded as complementary (see, e.g., MacKay, 2003, or Bishop, 2006, for discussions).

Major and frequently applied examples of deterministic approaches are variational EM ap-
proaches (e.g., Jordan et al., 1999; Jaakkola, 2000; MacKay, 2003; Bishop, 2006) and expectation
propagation (EP) approaches (e.g., Minka, 2001; Bishop, 2006). The method of Expectation Trun-
cation discussed in this paper is an example of a variational EM approach. Although introduced
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as an approximation to expectation values (see Equation 6), we have shown in Section 3 that ET
can be derived from variational approximations to exact posterior distributions. Thus, much of the
typical properties of variational approaches and their differences to other approximation methods
(discussed, e.g., by MacKay, 2003; Bishop, 2006) such as expectation propagation carry over to
ET. A crucial difference between ET and standard variational EM is that ET does not use factor-
izing distributions to approximate the exact posterior. Instead ET uses two variational steps: one
that takes the form of a data point selection, and a second that is based on a preselection of hidden
variables (see Section 3 for more details). A consequence, for example, for the data discussed in
this paper, was that we finally only learned from data points whose KL-divergence between exact
and approximated posterior was virtually zero. In numerical simulations this resulted in a virtually
optimal parameter recovery. At the same time, the preselection of relevant hidden variables per data
point allowed a massive reduction of the computational cost.

Expectation Truncation was motivated by earlier approaches which were developed in the con-
text of non-linear component extraction models (Lücke and Sahani, 2008; Lücke et al., 2009). For
efficient learning truncated sums were used to optimize the model parameters (also see Lücke and
Sahani, 2007). Optimization was partly performed under additional constraints to correct for impre-
cise approximations. Furthermore, the approach was developed for specific non-linear generative
models and no explicit data point selection was used. As a consequence no clean relation to vari-
ational EM could be derived (but see discussion in Lücke and Sahani, 2008). Most significantly,
however, no candidate preselection was used. This could result in impractically long computation
times already for relatively small numbers of hidden variables. With the ET framework developed
in this paper we can interpret the earlier approaches as approximations to special cases of ET. The
approximations for MCA3 (Lücke and Sahani, 2008) can thus be regarded as ET approximation
without the second variational step, that is, without selecting subsets K n of K (no preselection).
Without preselection, the computational cost of learning algorithms can scale unfavorably with the
number of hidden units H (cubically in the case of MCA3; compare cases H ′ = H in Appendix C).
Data point selection in MCA3 can be seen as implicitly accomplished by an E-step that considers
more terms in the denominator than in the numerator. Likewise, the approximation for occlusive
components analysis (OCA; Lücke et al., 2009) can be seen as ET without preselection (instead
of implicit data point selection more terms of the truncated sums were used here). Note that in-
stead of omitting the second variational approximation, another special case of ET is obtained if the
first variational step is omitted (no data point classification). This amounts to setting K equal to the
whole state space (the sums overK in Algorithm 2 equal one in this case). Efficient approximations
can still be obtained if proper subsets K n are selected. On different generative models preliminary
experiments showed results similar to the ones reported in Section 4. Depending on the model, the
approximations can be much less efficient or much less accurate, however.

An extreme case for selecting subsets K n is to select them to contain just one element,
K n = {!s(n)}. In this case the approximated expectation value of a function g in (6) becomes equal to
the functions value at!s(n): 〈g(!s)〉q(n) = g(!s(n)). This choice relates ET to energy models (compare,
e.g., Teh et al., 2003, or Hyvärinen et al., 2009) and maximum a posteriori (MAP) approximations
as, for example, used in the original sparse coding model (Olshausen and Field, 1996). Indeed,
if we set K to be the entire state space and choose K n = {!s(n)} with !s(n) being the MAP esti-
mate of the posterior, we obtain an update rule for basis functionsW proportional to ∑n!y(n) (!s(n))T
(compare Equation 26). That is, a learning rule for W as used in sparse coding can be obtained
(compare Olshausen and Field, 1996, or Olshausen, 2002). If instead of a MAP estimate the scalar
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product!s(n) = !WT
h !y(n) is used to select!s(n), ET for linear generative models can be related to ICA

approaches (also compare Section 4.3). Note that MAP estimate and scalar product play the role of
the selection functions Sh in the case of SC and ICA, respectively.

More generally, MAP estimates or scalar products can be starting points to derive less basic
selection functions for a generative model. Regarding a MAP estimate, it is likely that a significant
amount of posterior mass is located in the vicinity of the MAP state. If the posterior is additionally
known to be monomodal, K n can be chosen as a region around the MAP estimate. For multi-modal
posteriors, generalizations of MAP estimates could be used (see, e.g., Fromer and Globerson, 2009,
and references therein). Alternatively, selection functions can be derived by considering the limit of
no observation noise for a given model. For data with relatively low amounts of noise, most of the
posterior mass will be located close to the estimated state for zero noise (compare the ICA case).

In numerical experiments we have compared the tractable selection functions (28) and (33) with
the respective optimal selection function given by S opth (!y(n)) = p(sh = 1 |!y(n),Θ) (see Section 4.1).
For low numbers of hidden variables, p(sh = 1 |!y(n),Θ) can still be computed. Numerical experi-
ments using the tractable selection functions, experiments using the optimal selection function, and
experiments using exact EM hereby resulted in virtually identical final parameter values close to the
optimum. We observed some differences in the convergence behavior. However, these differences
were small compared, for example, to differences in using different annealing schemes or annealing
parameters.

5.4 Results on Different Data Sets

In numerical experiments we have applied ET to three types of generative models: NMF, MCA,
and LinCA. The experiments were aimed at demonstrating the method itself. However, as a by-
product, we obtained some results that are closely related to recent developments in component
extraction algorithms: The application of the probabilistic NMF algorithm to the MNIST data base
showed that, for this data, potentially only very little is gained by considering continuous hidden
units instead of binary ones. As could be observed by comparing reconstruction errors obtained
for standard vs. probabilistic NMF, continuous hidden variables improved reconstructions by less
than 5%. Regarding MCA, we showed that the algorithm derived with ET is competitive to the
best performing systems in standard benchmarks. We applied the algorithm to the standard bars
test with 10 bars and to a more recent benchmark with 16 bars and larger overlap. In both cases the
algorithm extracted all causes with close to 100% reliability (50 successful trials out of 50) provided
that we used sufficiently many data points. For fewer data points the algorithm was still competitive
but reliability was lower. Applications of the algorithm to image patches and acoustic data showed
robust applicability to large scale problems.

For all experiments in the paper we have used deterministic annealing (e.g., Ueda and Nakano,
1998; Sahani, 1999) to avoid the convergence to local optima (compare Section 4). The initial
temperature for annealing can be chosen by observing that for a given model and application a
critical temperature exists above which all generative fields converge to the same average field (no
differentiation to different components). The initial temperature is then chosen to lie below this
critical temperature. Note that for Gaussian noise, the annealing temperature changes the standard
deviation σ. It is thus closely connected to the noise parameter. For many types of data, component
extraction is robust to different values of σ. For instance, for the noiseless bars tests in Section 4.1,
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Section 4.2, or Section 4.3, σ = 2.0 was used while the ground-truth would be σ = 0.0. For some
data/model combinations the dependency on σ can be more sensitive, however.

In addition to the data and models discussed in Section 4 we also ran experiments on models
with Poisson instead of Gaussian noise, used other types of data including, for example, sound
spectrograms instead of sound waveforms, and used data and models in different combinations
with different priors. The obtained results were all comparable to the ones reported for the other
experiments: the likelihood (when computationally tractable) usually increased to close to optimal
values, the generating parameters in successful trials were well recovered, and the reliability to
recover the generating causes was high.

In general, the derivation of new learning algorithms based on ET is straightforward. If the data
is well-explicable by combinations of binary hidden causes, a generative model should be chosen
that appropriately reflects the data generation process. Once the parameter update rules for such a
model are derived, the E-step can be computed with ET. This involves the definition of selection
functions, the choice of an appropriate constraint for K n (compare Equation 7), and the choice of
approximation parameters. Depending on the data, a preselection function can take the form of an
upper-bound on the joint probability as shown, for example, for NMF in Section 4.1, or it can take
the form of a scalar product as for LinCA in Section 4.3. More generally, any discriminative method
represents a potential choice for a selection function.

5.5 Conclusion

Motivated by earlier work that discusses the benefits of a candidate preselection (e.g., Körner et al.,
1999; Lee and Mumford, 2003; Yuille and Kersten, 2006), we have defined and studied a novel
approximation scheme for probabilistic generative models. This scheme is formulated as a deter-
ministic variational EM approximation to maximize the data likelihood under a given generative
model. The formulation in terms of a grounded probabilistic approach allowed us to quantify the
gain in efficiency that is achievable by preselection. To study the approximation scheme empiri-
cally, it has been applied to different types of generative models with different combination rules.
In standard benchmarks on artificial data we found that the derived algorithms increased the likeli-
hood to values very close to the optimum, extracted hidden causes with high reliability, and reduced
the computational cost potentially by orders of magnitude. We reported quantitative results on data
with ground-truth and, where standard benchmarks were available, showed that the derived learning
algorithms are competitive with the best performing systems so far. Applications to more realistic
data demonstrated robustness and applicability to larger scale problems.

In conclusion, the contribution of the novel method is thus two-fold: (1) it relates the intuitive
and frequently discussed benefits of preselection to the grounded framework of an EM-based ap-
proximation, and (2) it defines an approximation scheme that allows to efficiently train standard and
novel types of generative models.
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Appendix A. ET as Variational EM: Detailed Derivations

In Appendix A.1 we discuss the consistency of maximum likelihood parameters of original and
truncated generative models. Appendix A.2 discusses details about the classification of data points.

A.1 Necessary Conditions for Global Likelihood Maxima

In Section 3.1 we have seen that F̃(q,Θ) in (15) is a lower bound of the likelihood L(Θ) in (1).
If the used variational distributions q(n)(c ;Θ) are good approximations to the exact posteriors
p(c |!y(n),Θ) in (14), then L(Θ) ≈ F̃(q,Θ) after each E-step. Because of the variational approxi-
mation in Section 3.1 the equality F̃(q,Θ) = L(Θ) holds ifM is equal toM opt (16) and if the true
posterior values in (14) are equal to zero or one for all n. Although the latter condition is fulfilled
only in boundary cases, we will, in this section, assume the equality to hold (while keeping in mind
that it is almost always an approximation). If the equality holds, F̃(q,Θ) in (15) is in its global
maximum equal to the likelihood L(Θ).

Let us, further, assume that there exist parameters Θ∗ such that the original generative model re-
produces the underlying distribution of the data points, p(!y) = p(!y |Θ∗). From Section 3.1 we then
know that the mixed model with prior (11) and (12) and κ= κ̃ also reproduces the original distribu-
tion for these parameters. Using the mixed model, the data points {!y(n)}n=1,...,N can thus be taken
to have been generated by the truncated generative models. That is, the data set can be subdivided
into the two disjoint sets {!y(n)}n∈M opt and {!y(n)}n -∈M opt . If p(!y |Θ∗) is the underlying distribution of
the whole data set, then p(!y |c = 1,Θ∗) and p(!y |c = 0,Θ∗) are the underlying distributions of the
two disjoint parts (compare Figure 1).

We can approximately recover the distribution p(!y |Θ∗) by (globally) maximizing the data like-
lihood under the mixed generative model on {!y(n)}n=1,...,N . Furthermore, we can recover the dis-
tributions p(!y |c = 1,Θ∗) and p(!y |c = 0,Θ∗) by (globally) maximizing the data likelihoods of the
truncated generative models on {!y(n)}n∈M opt and {!y(n)}n -∈M opt , respectively. Let us denote the pa-
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data points
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distributions

p(!y(n) |c= 1, Θ∗)p(!y(n) |Θ∗) p(!y(n) |c= 0, Θ∗)
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p(!y(n) |Θ†) p(!y(n) |c= 1,Θ†1) p(!y(n) |c= 0, Θ†0)
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recovery

generation

{!y(n)}n=1,...,N

Figure 12: Recovery of the generating distributions through the original and the truncated gen-
erative models. The original distributions can be recovered from the data sets if the
corresponding likelihoods are maximized.

rameters recovered by maximizing L(Θ) byΘ†, and the parameters recovered by maximizing L1(Θ)
and L0(Θ) by Θ†1 and Θ†0, respectively (compare Figure 12). In general, Θ†, Θ†1, and Θ†0 are dif-
ferent. If the variational approximationM =M opt is exact, we know, however, that in the limit of
infinitely many data points (and by still assuming p(!y) = p(!y |Θ∗)) applies:

p(!y |Θ∗) = p(!y |Θ†), p(!y |c=1,Θ∗) = p(!y |c=1,Θ†1), and p(!y |c=0,Θ∗) = p(!y |c=0,Θ†0). (34)

The equalities hold because for N → ∞ and p(!y) = p(!y |Θ∗) it follows from L(Θ∗) = L(Θ†) that
DKL(p(!y |Θ∗), p(!y |Θ†)) = 0. As the Kullback-Leibler divergence between two distributions q and
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p is zero if and only if the distributions are identical, (34) has to hold. Note, however, that the
recovered parameters can still be different fromΘ∗. For instance, if there exist transformations T of
Θ∗ that do not change the distribution, then any Θ obtained from Θ∗ through such a transformation,
Θ = T (Θ∗), is a likelihood maximum as well. Such multiple global maxima are the norm rather
than the exception. Global maxima of models such as sparse coding (Olshausen and Field, 1996) or
independent component analysis (e.g., Comon, 1994) remain global maxima under the exchange of
any two basis functions or the negation of any of them.

Let all transformations T that map the global maxima of L(Θ) onto itself define a set that we
will refer to as the transformation set. We say that the set of global maxima is invariant under the
transformation set. For any two global maximaΘ∗ and Θ† of L(Θ), there now exists a member T of
the transformation set such that Θ∗ = T (Θ†). Let us now demand that all global maxima of L1(Θ)
and L0(Θ) are also invariant under the transformation set. Although this will usually be the case,
for example, for the exchange of any two basis functions, it is important to state this requirement
explicitly as it is not fulfilled in general. If this property is fulfilled, however, we can infer:

Θ† is maximum likelihood solution on L(Θ)
⇒ There exists T such that Θ† = T (Θ∗) with Θ∗ being the generating parameters.
⇒ p(!y |c= 1,Θ∗) is the actual generating distribution of {!y(n)}n∈M opt

⇒ Θ∗ is maximum likelihood solution of L1(Θ)
⇒ p(!y |c= 1,Θ∗) = p(!y |c= 1,T (Θ∗)) = p(!y |c= 1,Θ†)
⇒ Θ† is maximum likelihood solution of L1(Θ).

Analogously,Θ† is also a maximum likelihood solution of L0(Θ) if it is a maximum likelihood solu-
tion of L(Θ). For the free-energy (15) this means that at a global maximum of L(Θ) both L1(Θ) and
L0(Θ) also have a global maximum (under the stated assumptions). A global maximum, for exam-
ple, in L1(Θ) is thus a necessary condition for a global maximum in L(Θ). We have not shown that
a maximum in L1(Θ) is a sufficient condition for a maximum in L(Θ). Theoretically, L1(Θ) might,
for instance, not depend on all parameters, or it might have additional global maxima. Finally, note
again that the necessary condition only holds under the introduced assumptions. While, for exam-
ple, the assumption on invariance under transformations T can exactly be fulfilled (depending on
the generative model), the assumptions that the true data distribution can exactly be matched or that
the variational approximation in Section 3.1 is exact are in practice almost never fulfilled. The same
applies for the assumption of infinitely many data points. All these assumptions can, however, be
fulfilled approximately. By (globally) maximizing L1(Θ) we can thus expect to recover parameters
that maximize L(Θ) approximately.

A.2 Details of Data Classification

Starting point for choosing M is the set M opt in Equation 16. Setting M =M opt would represent
the best choice but without ground-truth information, M opt can not be computed exactly. We can,
however, try to approximate M opt. To do so, first note that we can compute an expectation value
for the size of M opt. It is given by N(K ) = N ∑!s∈K p(!s |Θ). We can now find an approximation
to M opt by computing the values q(n)(c = 1;Θold) for all data points, sort them, and take the data
points with the N(K ) highest values. This would represent a good approximation to M opt but
it seems that we have gained very little, since we still have to compute the intractable posteriors
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q(n)(c= 1;Θold) = p(c= 1 |!y(n),Θold) for all n data points. Note, however, that with this procedure,
the absolute values of q(n)(c = 1; Θold) are not used for the approximation anymore. All that is
required is a pairwise comparison of the data points based on their values q(n)(c= 1;Θold).

To derive a tractable approximation of the pairwise comparison, consider two data points, !y(n)
and!y(n′), that are neighbors after a sorting according to q(n)(c= 1;Θold). For arbitrarily many data
points and for non-zero noise, the differences between the two data points become arbitrarily small.
In particular, it applies for neighboring data points that the difference between the denominators
of q(n)(c= 1;Θold) become arbitrarily small: ∑!s p(!y(n),!s |Θ)≈ ∑!s p(!y(n

′),!s |Θ). The same applies
for differences between the numerators. However, as the numerators contain just small sums over
!s, their values for neighboring data points can be expected to vary more strongly than those of the
denominators. We can thus replace the comparison between q(n)(c = 1;Θold) by a comparison of
their numerators ∑!s∈K p(!y(n),!s |Θ). This is an approximation to the pairwise comparison required
for exact sorting. In the limit of infinitely many data points this procedure can be expected to result
in setsM that represent good approximations toM opt.

If we now take preselection into account (compare Section 3.2), the comparison for sorting can
be reduced further. For this note that the posterior in (14) is approximated by q(n)(c = 1;Θold) ≈
∑!s∈K n p(!y

(n),!s |Θ)
∑!s p(!y(n),!s |Θ)

. Following the same arguments as above, an approximation of the sorting by com-
paring the values q(n)(c= 1;Θold) is given by sorting based on the values ∑!s∈K n p(!y

(n),!s |Θ) for all
n. This shows that the selection of Ncut data points as introduced in Section 2 (Equations 8 and 9)
corresponds to defining a setM as an approximation toM opt.

Appendix B. Selection Function for NMF and MCA

We show that p(sh = 1,!y(n) |Θ) is bounded by Sh(!y(n)) in (28) from above. This implies that
p(sh = 1 |!y(n),Θ) is bounded by Sh(!y(n))

p(!y(n) |Θ) from above. As p(!y(n) |Θ) is independent of h, candi-
date selection based on the one bound is equivalent to selection based on the other bound. Now,
consider the set δh := {d ∈ {1, . . . ,D}|y(n)d <Wdh} and note that if y

(n)
d <Wdh and sh = 1 then

p(y(n)d |Wdh,σ) < p(y(n)d |Wd(!s,W ),σ). This is because Wd(!s,W ) can only be larger than Wdh for
non-negativeW and therefore the mono-modal Gaussian distribution p(y(n)d |Wd(!s,W ),σ) is further
away from the maximum value. p(y(n)d |w,σ) with w = y(n)d is on the other hand larger or equal to
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p(y(n)d |w′,σ) for any other value w′. It follows:

p(sh = 1,!y(n) |Θ) = ∑
!s

sh = 1

p(!y(n) |!s,Θ) p(!s |π)

= ∑
!s

sh = 1

(
D

∏
d=1

p(y(n)d |Wd(!s,W ),σ)

)

p(!s |π)

= ∑
!s

sh = 1

(

∏
d∈δh

p(y(n)d |Wd(!s,W ),σ)

)(

∏
d -∈δh

p(y(n)d |Wd(!s,W ),σ)

)

p(!s |π)

≤

(

∏
d∈δh

p(y(n)d |Wdh,σ)

)(

∏
d -∈δh

p(y(n)d |y(n)d ,σ)

)

∑
!s

sh = 1

p(!s |π)

=

(

∏
d∈δh

p(y(n)d |W ub
dh ,σ)

)(

∏
d -∈δh

p(y(n)d |W ub
dh ,σ)

)

π

= π p(!y(n) |!W ub
h ,σ) =: Sh(!y(n)) ,

whereW ub
dh =max{y(n)d ,Wdh} as in Equation 28.

Appendix C. Computational Complexity

The computational cost of an E-step in the ET approximation scheme results from the computation
of the selection functions Sh (Section 2 and Section 4) and the computation of the approximate suffi-
cient statistics (6). For the sufficient statistics we have to compute the joint probabilities p(!s,!y(n) |Θ)
for different arguments. For the generative models of NMF, MCA and LinCA (Section 4.1, Sec-
tion 4.2, and Section 4.3, respectively) the joint probabilities take the form:

p(!s,!y(n) |Θ) =

(
D

∏
d=1

p(y(n)d |Wd(!s,W ),σ)

) (
H

∏
h=1

p(sh |π)

)

. (35)

For the first factor we have to compute D terms. Each term involves the computation ofWd(!s,W )
which is equal to ∑hWdhsh in the cases of NMF and LinCA, and equal to maxh{Wdhsh} in the
case of MCA. In either caseWd(!s,W ) can be computed with a cost proportional to the number of
non-zero entries in a given vector !s, γ ′ = |!s|. The first factor in (35) is thus computable in times
proportional to Dγ ′. The computational cost of the second factor can be neglected because just two
terms (occurring γ ′ and (H− γ ′) times) have to be computed.

The complexity of the selection functions, Sh, used for NMF and MCA results from comput-
ing D times the conditional probabilities p

(

y(n)d |W ub
dh ,σ

)

. The functions Sh have to be computed H
times, which amounts to a computational cost proportional to DH (per data point). The selection
functions used for the LinCA generative model (33) have the same computational cost. After pre-
selection, the selection function values are used to determine the H ′ hidden units with the largest
values, a computation that can be executed in times proportional to

(

H + H ′ log(H)
)

(see, e.g., Lam
and Ting, 2000, for references).
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In the approximate sufficient statistics (6) we sum over |K n| different state vectors !s. If K n is

given as in Equation 7, it contains ∑γ
γ ′=0

(

H ′

γ ′

)

different states with
(

H ′

γ ′

)

counting the states

with γ ′ non-zero entries. The denominator in (6) can therefore be computed in times proportional
to DC (H ′,γ), where

C (H ′,γ) :=
γ

∑
γ ′=0

(

H ′

γ ′

)

γ ′ .

For NMF, MCA, and LinCA the numerator can in both cases also be computed in times proportional
to DC (H ′,γ) due to the special forms of the sufficient statistics. For NMF and LinCA the sufficient
statistics 〈si〉q(n) and

〈

si s j
〉

q(n) do not require the computation of additional terms. For MCA the
terms Aρ

di(!s,W ) (see Equation 30) are of the form:

A
ρ
di(!s,W ) = (siWdi)

ρ−1 (∑
h
(shWdh)

ρ)
1−ρ
ρ . (36)

The last term in (36) can be computed together withWd(!s,W ). Further, the computation of the D
terms p(!s,!y(n) |Θ)Adi(!s,W ) in the denominator is required just γ ′ times for a given!s. The numera-
tor, like the denominator, is thus computable in times proportional to Dγ ′.

Selection functions and sufficient statistics have to be computed for each data point (see Algo-
rithm 1), which results in a computational time proportional to:

α1NDH + α2N (H + H ′ log(H)) + α3NDC (H ′,γ) , (37)

where α1, α2, and α3 are constants that describe potentially different weightings of the three terms.
Note that if the size of K n is increased by adding unit vectors, K n = K n∪ {!s | ∑i si = 1} (as was
done for MCA and LinCA) the scaling behavior (37) remains unchanged (also note thatK n remains
a subset ofK as defined in Section 3.2). The usage ofK n instead ofK n adds another (H−H ′)≤H
terms to C (H ′,γ) and consequently a cost of α4ND(H−H ′) ≤ α4NDH to the whole expression.
With a change of factor α1, the additional cost thus gets absorbed into the first term in (37).

Considering expression (37) note that in our applications, D is always much larger than log(H).
We can therefore neglect the second term such that the computational cost is approximately:2

CET (H ′,γ)(N,D,H) := α1NDH + α3NDC (H ′,γ) . (38)

The constants α1 and α3 depend on the generative model and the specific implementation of the
algorithm. The principle scaling behavior remains the same, however. In Figure 13 we have plotted
the scaling behavior for ET with α1 = α3 = 1

2 . The different graphs show the H dependence of
CET (H ′,γ)(N,D,H) for different values of H ′ and γ, D = 100 and N = 1000. Note that different
choices of D and N would just globally shift the curves in the double-log plot. The steepest curve
in Figure 13 is the one for ET(H,H), that is, if we choose H ′ = H and γ ′ = H. In this case we
drop back to the exact sufficient statistics with exponential computational cost. Note that for this

2. Note that ET also involves partial sorting of the data points once after each E-step. In a typical experiment (and in all
of the experiments discussed in the paper), log(N) is much smaller than DH. The computational cost of discarding
data points can therefore be neglected.
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Figure 13: Scaling behavior of ET with (7) for different settings of the parameters H ′ and γ. The
plots show the function (38) and its dependence on H.

and for all other plots with H ′ = H, we set the first term in (38) to zero because no preselection
is required. The three dashed grey lines describe the computational costs of ET(H,1), ET(H,2),
and ET(H,3). They resemble straight lines because for large H their scaling is proportional to
H, H2, and H3, respectively. Note that these three approximations are further examples for ET
without preselection (H ′ = H). Their scaling behavior relative to the scaling with other parameters
can therefore serve as a comparison for the computational gain of candidate preselection. The
three solid black lines describe the computational time required for the parameter settings ET(5,3),
ET(7,5), and ET(9,7). These curves are flat initially because the first term in (13) (the preselection
term) is small compared to the second term which is independent ofH. For largeH, the preselection
term becomes increasingly dominant, however. The three black dashed lines describe the scaling
with H for ET( H10 ,3), ET(

H
10 ,4), and ET(

H
10 ,

H
10 −2). The computational cost of ET(

H
10 ,3) is orders

of magnitude smaller than the cost for ET(H,3) but finally scales with the same slope. ET( H10 ,4) is
computational less expensive than ET(H,3) for H ≤ 1000 but will finally become computationally
more intensive. If the parameters H ′ and γ ′ are both scaled up with H as for ET( H10 ,

H
10 − 2), we

finally get a scaling behavior similar to that of an exact E-step. Note, however, that even in this case
the computational cost remains smaller than that of ET(H,3) for values of H smaller that about
H = 180.

As discussed earlier, the computational gain achievable by ET depends on the data and the
generative model used. If the data contains sufficiently many data points that are well represented
by few active causes, the computational gain is potentially very substantial. For instance for the data
used in this paper it was sufficient to use small values for H ′ and γ. Compared to systems without
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preselection or an exact E-step, the gain amounts to several orders of magnitude (as, e.g., discussed
for H = 100 in Section 4.2.2, or for H = 200 in Section 4.3.2).

Note that there are usually secondary effects that make learning slower if H increases. E.g., a
large numbers of hidden variables usually requires large sets of data points to avoid overfitting. We
also observed that longer cooling times are often beneficial for large values ofD and/orH. However,
ET scales essentially linearly with the number of data points, and the cooling schedule usually has
to be increased merely by a factor of 2− 8. The secondary effects do, therefore, only play a role
because ET has reduced the potentially exponential cost to a scaling which is close to linear in H.

Appendix D. Classical NMF vs. ET-NMF

The classical NMF belongs to the class of non-negative matrix factorization (NMF) methods, which
makes use of non-negative data points, generative fields and sources. In this appendix, we first
summarize the classical NMF and then derive the probabilistic version (ET-NMF) using Expectation
Truncation.

D.1 Classical NMF

The standard NMF was proposed originally in Lee and Seung (1999) as a parameter-free method for
the factorization of data into non-negative generative fields (or ‘basis vectors’) and source activities.
Starting with generative fields !Wh = (W1h, . . . ,WDh)T for each source (or cause) sh contained in the
rows of a matrix W ∈ D×H , N data points !y(n) contained in the columns of a matrix Y ∈ D×N ,
and the corresponding source activity vectors!s(n) for each data point contained in the columns of a
matrix S ∈ H×N , the NMF factorization tries to find an approximation

Y ≈WS resp., in vector form !y(n) ≈W!s(n) (39)

with non-negative entries for Y , W and S, meaning that the generative fields !Wh are combined
linearly using the source activations s(n)h to approximate the data vectors!y(n).

Different cost functions E(W,S) have been proposed for this factorization; here we will consider
an Euclidean cost function which we will compare in the next section to a Gaussian-based gener-
ative version of NMF used for Expectation Truncation (ET-NMF). To factorize (39), we therefore
minimize

E(W,S) = ||Y −WS||2 (40)
with respect toW and S. Introducing

〈 f (!y,sh)〉 :=
1
N

N

∑
n=1

f (!y(n),s(n)h )

for a more compact notation and using the vectorial form of (40), the task is to minimize

E(W,S) =
〈

||!y−W!s||2
〉

, (41)

that is, the average Euclidean reconstruction error over all data points!y(n).
In Lee and Seung (2001), it could be shown that the following parameter-free multiplicative

update rules converge to local minima of the cost function (41),

s(n)h ← s(n)h
(!Wh)T!y(n)

(!Wh)T (∑h′ !Wh′s
(n)
h′ )

and !Wh ← !Wh1
〈!ysh〉

∑h′ !Wh′ 〈sh′ sh〉
, (42)
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(the multiplication 1 and division in the second equation of (42) are applied component-wise on
vectors). At start, the generative fields and the source activities are initialized randomly with positive
values, and then the two equations (42) are applied in alternation until convergence.

The update rules (42) conserve non-negativity and, interestingly, provide a good compromise
between speed and ease of implementation. This can be seen by considering directly the gradient
descent update equations derived for !Wh from the minimization of Equation 41,

!Wh ← !Wh+!α1 (〈!ysh〉−∑
h′
!Wh′ 〈sh′ sh〉) , (43)

with a stepsize vector!α, and modifying an argument from Lee and Seung (2001), diagonally rescal-
ing the variables using a stepsize

!α=
!Wh

∑h′ !Wh′ 〈sh′ sh〉
. (44)

Inserting (44) into (43) yields the second, multiplicative update rule from (42), so that in conjunction
with the convergence proof of the multiplicative NMF equations from Lee and Seung (2001) we can
interprete NMF as a gradient-descent optimization of (41) with!α from (44) being a good choice of
the gradient descent stepsize for the update of the generative fields !Wh.

D.2 ET-NMF

For the generative version of NMF, the choice of the source activities occurs according to the
Bernoulli prior (22) from Section 4. As for the classical NMF, we combine the generative fields
!Wh linearly with the source activities sh usingW (!s,W ) :=W!s, with the difference that the activities
are now binary and constitute the hidden variables of the system (remark that now we write sh in-
stead of s(n)h ). In addition, we use a Gaussian noise model such that the probability of a data vector
!y given!s is defined by p(!y |!s,Θ) given by Equation 24 from Section 4.1.

At this point we apply the Expectation Maximization formalism introduced in Section 2. From
the data likelihood of the generative model resp. the free energy (2) we then get for theW -relevant
terms (‘+...’ denotes terms that do not depend onW ) an expression similar to Equation 41,

E(W ) =
〈

||!y−W!s||2
〉

ET
+ ... , (45)

so that again the average Euclidean reconstruction error should be minimized. The difference is
that now the averaging 〈...〉 runs not only over all data points, but also over all possible source
combinations!s used to generate each data point. Here we wrote 〈...〉ET, to express that in addition,
we use the Expectation Truncation formalism for the computation of averages. That is, the averaging
runs over the subset of data vectors n∈M and the set of source vectors!s∈K n gained by the source
preselection and sparseness assumptions:

〈 f (!y,sh)〉ET := ∑
n∈M

∑
!s∈K n

p(!s|!y(n),Θ) f (!y(n),sh) = ∑
n∈M

〈

f (!y(n),sh)
〉

q(n)
. (46)

From here on, all following steps can be considered in analogy to the classical NMF, by replac-
ing 〈...〉 → 〈...〉ET. The task of ET-NMF is therefore to minimize (45) with respect toW , using the
preselected causes and all possible source activation vectors!s generated by those causes.
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It can be easily seen now that the gradient-descent minimization of W and a diagonal rescaling
of the stepsize according to

!α=
!Wh

∑h′ !Wh′ 〈sh′sh〉ET
can also be done in analogy to the classical NMF, leading to the multiplicative update equation for
the generative fields of ET-NMF,

!Wh ← !Wh1
〈!ysh〉ET

∑h′ !Wh′ 〈sh′ sh〉ET
. (47)

The multiplicative, parameter-free equation 47 therefore leads to a near-to-optimal decrease of the
ET-NMF model resp. the energy function (45) for positive data points, positive generative fields and
Bernoulli-prior-distributed source activations. Since the convergence proof of the original NMF as
presented by Lee and Seung (2001) considers convergence ofW and S separately, it is straightfor-
ward to apply it to the ET-NMF by considering the selected source activations !s ∈ K n in (46) as
given, and applying the classical NMF to an expanded data set which incorporates the given acti-
vation vectors together with the data vectors and the probabilities as occurrence frequencies. For a
fixed set of!s ’s, (47) can then be applied until convergence.

The differences and similarities between the classical NMF and ET-NMF can then be shortly
stated as follows. The classical NMF uses data points in fixed association with their corresponding
continuous activation vectors and minimizes the Euclidean cost function (41) for both the source
activations and the generative fields, the latter according to the multiplicative update rule (42). ET-
NMF explores a subset of allowed binary source activations for each data point and minimizes in its
M-step the Euclidean cost function (45) for the generative fields only, according to the multiplicative
update rule (47). The E-step of ET-NMF is based on the truncated expectation values (6) to calculate
the averaged quantities in theW update equations according to

〈!ysh〉ET = ∑
n∈M

!y(n) 〈sh〉q(n) and 〈sh′ sh〉ET = ∑
n∈M

〈sh′ sh〉q(n) (48)

so that the sufficient statistics of the ET-NMF model that have to be computed for the M-step will
be given by the first and second order moments 〈sh〉q(n) and 〈sh′ sh〉q(n) of the approximate posterior.
The full Expectation Truncation formalism then comprises the calculation of the expectation val-
ues 〈sh〉q(n) and 〈sh′ sh〉q(n) (needed for (48)), and afterwards the adjustment of the generative fields
according to (47).

Appendix E. Details of Measurements

For the measurements in Section 4, we here give details about the procedure we used to determine
if a cause is represented by the parameters of a hidden variable.

Let !ycauseh′ denote a data point showing cause h′ without noise (e.g., one noiseless bar). Let
further!sh denote a hidden state with just one non-zero entry at position h. To determine if cause h′
is represented, we compute the approximate posterior probabilities p̃(!sh |!ycauseh′ ,Θ) for each vector
!sh using the approximation provided by ET. The hidden unit h with the highest posterior value
p̃(!sh |!ycauseh′ ,Θ) is taken as the unit representing cause h′. We only take all causes to be represented
if the mapping from the causes to the representing latents is injective. Additionally, we demand
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that the mean average error (MAE) between the generating cause parameters !ycauseh′ and the model
parameters !Wh of the representing unit is smaller than 1.0 for each cause. For the data used in this
paper, the threshold discounted any generative fields !Wh with significant traces of more than one
cause.
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J. Lücke and C. von der Malsburg. Rapid processing and unsupervised learning in a model of the
cortical macrocolumn. Neural Computation, 16:501 – 533, 2004.
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Abstract
We introduce new Perceptron-based algorithms for the online multitask binary classification prob-
lem. Under suitable regularity conditions, our algorithms are shown to improve on their baselines
by a factor proportional to the number of tasks. We achieve these improvements using various types
of regularization that bias our algorithms towards specific notions of task relatedness. More specif-
ically, similarity among tasks is either measured in terms of the geometric closeness of the task
reference vectors or as a function of the dimension of their spanned subspace. In addition to adapt-
ing to the online setting a mix of known techniques, such as the multitask kernels of Evgeniou et al.,
our analysis also introduces a matrix-based multitask extension of the p-norm Perceptron, which
is used to implement spectral co-regularization. Experiments on real-world data sets complement
and support our theoretical findings.
Keywords: mistake bounds, perceptron algorithm, multitask learning, spectral regularization

1. Introduction

In this work we study online supervised learning algorithms that process multiple data streams at
the same time. More specifically, we consider the multitask classification learning problem where
observed data describe different learning tasks.

Incremental multitask learning systems, which simultaneously process data from multiple
streams, are widespread. For instance, in financial applications a trading platform chooses invest-
ments and allocates assets using information coming from multiple market newsfeeds. When the
learning tasks are unrelated, running different instances of the same underlying algorithm, one for
each task, is a sound and reasonable policy. However, in many circumstances data sources share
similar traits and are therefore related in some way. Unsurprisingly, this latter situation is quite com-
mon in real-world applications. In these cases the learning algorithm should be able to capitalize on
data relatedness.

In multitask classification an online linear classifier (such as the Perceptron algorithm) learns
from examples associated with K > 1 different binary classification tasks. Our goal is to design
online interacting algorithms that perform better than independent learners whenever the tasks are
related. We formalize task relatedness in different ways, and derive precise formalizations of the

c©2010 Giovanni Cavallanti, Nicolò Cesa-Bianchi and Claudio Gentile.
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advantage resulting from such interaction. Our investigation considers two variants of the online
multitask protocol: (1) at each time step the learner acts on a single adversarially chosen task; (2)
all tasks are simultaneously processed at each time step. Each setup allows for different approaches
to the multitask problem and caters for different real-world scenarios. For instance, one of the
advantages of the first approach is that, in most cases, the cost of running multitask algorithms has
a mild dependence on the number K of tasks. The multitask classifiers we study here manage to
improve, under certain assumptions, the cumulative regret achieved by a natural baseline algorithm
through the information acquired and shared across different tasks.

Our analysis builds on ideas that have been developed in the context of statistical learning where
the starting point is a regularized empirical loss functional or Tikhonov functional. In that frame-
work the objective includes a co-regularization term in the form of a squared norm in some Hilbert
space of functions that favors those solutions (i.e., predictive functions for the K tasks) that lie
“close” to each other. In this respect, we study two main strategies. The first approach followed
here is to learn K linear functions parameterized by u" = (u"1 , . . . ,u"K )∈RKd through the minimiza-
tion of an objective functional involving the sum of a loss term plus the regularization term u"Au,
where A is a positive definite matrix enforcing certain relations among tasks. Following Evgeniou
et al. (2005), the K different learning problems are reduced to a single problem by choosing a suit-
able embedding of the input instances into a common Reproducing Kernel Hilbert Space (RKHS).
This reduction allows us to solve a multitask learning problem by running any kernel-based single-
task learning algorithm with a “multitask kernel” that accounts for the co-regularization term in the
corresponding objective functional. We build on this reduction to analyze the performance of the
Perceptron algorithm and some of its variants when run with a multitask kernel.

As described above, we also consider a different learning setup that prescribes the whole set of
K learning tasks to be worked on at the same time. Once again we adopt a regularization approach,
this time by adding a bias towards those solutions that lie on the same low dimensional subspace.
To devise an algorithm for this model, we leverage on the well-established theory of potential-based
online learners. We first define a natural extension of the p-norm Perceptron algorithm to a certain
class of matrix norms, and then provide a mistake bound analysis for the multitask learning problem
depending on spectral relations among different tasks. Our analysis shows a factor K improvement
over the algorithm that runs K independent Perceptrons and predicts using their combined margin
(see Section 1.1). The above is possible as long as the the example vectors observed at each time
step are unrelated, while the sequences of multitask data are well predicted by a set of highly related
linear classifiers.

1.1 Main Contributions

The contribution of this paper to the current literature is twofold. First, we provide theoretical guar-
antees in the form of mistake bounds for various algorithms operating within the online multitask
protocol. Second, we present various experiments showing that these algorithms perform well on
real problems.

Our theoretical results span across the two previously mentioned settings. In the adversarially
chosen task setting, we extend the ideas introduced by Evgeniou et al. (2005) to the online learning
setup, and present upper bounds which depend on task relatedness. On one hand, we show that
whenever the reference vectors associated with different tasks are related, we achieve an improve-
ment of a factor up to K over the baseline approach where K online classifiers are run in parallel and
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tasks are processed in isolation. On the other hand, when tasks are unrelated our bounds become not
much worse than the one achieved by separately running K classifiers. In this context, the notion
of relatedness among tasks follows from the specific choice of a matrix parameter that essentially
defines the so-called multitask kernel. We also provide some new insight on the role played by this
kernel when used as a plug-in black-box by the Perceptron or other Perceptron-like algorithms.

In the simultaneous task setting, we introduce and analyze a matrix-based multitask extension
of the p-norm Perceptron algorithm (Grove et al., 2001; Gentile, 2003) which allows us to obtain a
factor K improvement in a different learning setting, where the baseline, which is still the algorithm
that maintains K independent classifiers, is supposed to output K predictions per trial.

On the experimental side, we give evidence that our multitask algorithms provide a significant
advantage over common baselines. In particular, we show that on a text categorization problem,
where each task requires detecting the topic of a newsitem, a large multitask performance increase
is attainable whenever the target topics are related. Additional experiments on a spam data set
confirm the potential advantage of the p-norm Perceptron algorithm in a real-world setting.

This work is organized as follows. In Section 2 we introduce notation and formally define the
adversarially chosen task protocol. The multitask Perceptron algorithm is presented in Section 3
where we also discuss the role of the multitask feature map and show (Section 4) that it can be
used to turn online classifiers into multitask classifiers. We detail the matrix-based approach to the
simultaneous multitask learning framework in Section 5. Section 6 is devoted to the theoretical
analysis of a general potential-based algorithm for this setup. We conclude the paper with a number
of experiments establishing the empirical effectiveness of our algorithms (Section 7).

1.2 Related Work

The problem of learning from multiple tasks has been the subject of a number of recently published
papers. In Evgeniou et al. (2005) a batch multitask learning problem is defined as a regularized
optimization problem and the notion of multitask kernel is introduced. More specifically, they con-
sider a regularized functional that encodes multitask relations over tasks, thus biasing the solution
of the problem towards functions that lie close to each other. Argyriou et al. (2007, 2008) build
on this formalization to simultaneously learn a multitask classifier and the underlying spectral de-
pendencies among tasks. A similar model but under cluster-based assumptions is investigated in
Jacob et al. (2009). A different approach is discussed in Ando and Zhang (2005) where a structural
risk minimization method is presented and multitask relations are established by enforcing predic-
tive functions for the different tasks to belong to the same hypothesis set. Complexity results for
multitask learning under statistical assumptions are also given in Maurer (2006).

In the context of online learning, multitask problems have been studied in Abernethy et al.
(2007) within the learning with expert advice model. In this model the forecaster has access to a
fixed set of experts and is expected to make predictions for K different tasks. Regret bounds are
given under the assumption that the set of best experts for the K tasks is small, as a way to formalize
task similarity. Whereas these studies consider a multitask protocol in which a single task is acted
upon at each time step (what we call in this paper the adversarially chosen task protocol), the work
of Lugosi et al. (2009) investigates the problem where an action for each task must be chosen at
every step. The relatedness among tasks is captured by imposing restrictions on the joint action
chosen at each step.
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Online linear multitask algorithms for the simultaneous task setting have been studied in Dekel
et al. (2007), where the separate learning tasks are collectively dealt with through a common mul-
titask loss. Their approach, however, is fundamentally different from the one considered here. In
fact, using a common loss function has more the effect of prioritizing certain tasks over the others,
whereas our regularized approach hopes to benefit from the information provided by each task to
speed up the learning process for the other ones. Nonetheless, it is not difficult to extend our anal-
ysis to consider a more sophisticated notion of multitask loss (see Remark 12 in Section 6.2), thus
effectively obtaining a shared loss regularized multitask algorithm.

Online matrix approaches to the multitask and the related multiview learning problems were
considered in various works. Matrix versions of the EG algorithm and the Winnow algorithm (re-
lated to specific instances of the quasi-additive algorithms) have been proposed and analyzed in
Tsuda et al. (2005), Warmuth (2007), and Warmuth and Kuzmin (2006). When dealing with the
trace norm regularizer, their algorithms could be generalized to our simultaneous multitask frame-
work to obtain mistake bounds comparable to ours. However, unlike those papers, we do not have
learning rate tuning issues and, in addition, we directly handle general nonsquare task matrices.

Finally, Agarwal et al. (2008) consider multitask problems in the restricted expert setting, where
task relatedness is enforced by a group norm regularization. Their results are essentially incompa-
rable to ours.

2. The Adversarially Chosen Task Protocol: Preliminaries

The adversarially chosen task protocol works as follows. Let K be the number of binary classifi-
cation tasks indexed by 1, . . . ,K. Learning takes place in a sequential fashion: At each time step
t = 1,2, . . . the learner receives a task index it ∈ {1, . . . ,K} and observes an instance vector xt ∈ Rd

which plays the role of side information for the task index it . Based on the pair
(
xt , it

)
it outputs a

binary prediction ŷt ∈ {−1,1} and then receives the correct label yt ∈ {−1,1} for task index it . So,
within this scheme, the learner works at each step on a single chosen task among the K tasks and
operates under the assumption that instances from different tasks are vectors of the same dimension.
No assumptions are made on the mechanism generating the sequences

(
x1,y1

)
,
(
x2,y2

)
, . . . of task

examples. Moreover, similarly to Abernethy et al. (2007), the sequence of task indices i1, i2, . . . is
also generated in an adversarial manner. To simplify notation we introduce a “compound” descrip-
tion for the pair

(
xt , it

)
and denote by φt ∈ RdK the vector

φ"t
def
=

(
0, . . . ,0︸ ︷︷ ︸

(it −1)d times

x"t 0, . . . ,0︸ ︷︷ ︸
(K− it)d times

)
. (1)

Within this protocol (studied in Sections 3 and 4) we use φt or
(
xt , it

)
interchangeably when referring

to a multitask instance. In the following we assume instance vectors are of (Euclidean) unit norm,
that is, ‖xt‖= 1, so that ‖φt‖= 1.

We measure the learner’s performance with respect to that of a (compound) reference predictor
that is allowed to use a different linear classifier, chosen in hindsight, for each one of the K tasks.
To remain consistent with the notation used for multitask instances, we introduce the “compound”
reference task vector u" =

(
u"1 , . . . ,u"K

)
and define the hinge loss for the compound vector u as

!t(u)
def
= max

{
0,1− yt u"φt

}
=max

{
0,1− yt u"it xt

}
.
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It is understood that the compound vectors are of dimension Kd. Our goal is then to compare the
learner’s mistakes count to the cumulative hinge loss

∑
t
!t(u) (2)

suffered by the compound reference task vector u. This of course amounts to summing over time
steps t the losses incurred by reference task vectors uit with respect to instance vectors xit .

In this respect, we aim at designing algorithms that make fewer mistakes than K independent
learners when the tasks are related, and do not perform much worse than those when the tasks are
completely unrelated. For instance, if we use Euclidean distance to measure task relatedness, we
say that the K tasks are related if there exist reference task vectors u1, . . . ,uK ∈ Rd having small
pairwise distances

∥∥ui−u j
∥∥, and achieving a small cumulative hinge loss in the sense of (2). More

general notions of relatedness are investigated in the next sections.
Finally, we find it convenient at this point to introduce some matrix notation. We use Id to

refer to the d× d identity matrix but drop the subscript whenever it is clear from context. Given
a matrix M ∈ Rm×n we denote by Mi, j the entry that lies in the i-th row, j-th column. Moreover,
given two matrices M ∈ Rm×n and N ∈ Rm×r we denote by [M,N] the m× (n+ r) matrix obtained
by the horizontal concatenation ofM and N. The Kronecker or direct product between two matrices
M ∈Rm×n and N ∈Rq×r is the block matrixM⊗N of dimension mq×nr whose block on row i and
column j is the q× r matrix Mi, jN.

3. The Multitask Perceptron Algorithm

We first introduce a simple multitask version of the Perceptron algorithm for the protocol described
in the previous section. This algorithm keeps a weight vector for each task and updates all weight
vectors at each mistake using the Perceptron rule with different learning rates. More precisely, let
wi,t be the weight vector associated with task i at time t. If we are forced (by the adversary) to
predict on task it , and our prediction happens to be wrong, we update wit ,t−1 through the standard
additive rule wit ,t = wit ,t−1+ηyt xt (where η > 0 is a constant learning rate) but, at the same time,
we perform a “half-update” on the remaining K−1 Perceptrons, that is, we set wj,t =wj,t−1+

η
2 yt xt

for each j (= it . This rule is based on the simple observation that, in the presence of related tasks,
any update step that is good for one Perceptron should also be good for the others. Clearly, this rule
keeps the weight vectors wj,t , j = 1, . . . ,K, always close to each other.

The above algorithm is a special case of the multitask Perceptron algorithm described below.
This more general algorithm updates each weight vector wj,t through learning rates defined by a
K ×K interaction matrix A. It is A that encodes our beliefs about the learning tasks: different
choices of the interaction matrix result in different geometrical assumptions on the tasks.

The pseudocode for the multitask Perceptron algorithm using a generic interaction matrix A
is given in Figure 1. At the beginning of each time step, the counter s stores the mistakes made
so far plus 1. The weights of the K Perceptrons are maintained in a compound vector w"

s =(
w"
1,s, . . . ,w"

K,s
)
, with wj,s ∈ Rd for all j. The algorithm predicts yt through the sign ŷt of the it-

th Perceptron’s margin w"
s−1φt = w"

it ,s−1xt . Then, if the prediction and the true label disagree, the
compound vector update rule is ws = ws−1+

(
A⊗ Id

)−1
φt . Since

(
A⊗ Id

)−1
= A−1⊗ Id , the above

update is equivalent to the K task updates

wj,s = wj,s−1+ yt A−1
j,it xt j = 1, . . . ,K .
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Parameters: Positive definite K×K interaction matrix A.
Initialization: w0 = 0 ∈ RKd , s= 1.
At each time t = 1,2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K} and the corresponding
instance vector xt ∈ Rd : ||xt ||= 1;

2. Build the associated multitask instance φt ∈ RKd ;

3. Predict label yt ∈ {−1,+1} with ŷt = SGN
(
w"
s−1φt

)
;

4. Get label yt ∈ {−1,+1};

5. If ŷt (= yt then update:

ws = ws−1+ yt
(
A⊗ Id

)−1
φt , s← s+1 .

Figure 1: The multitask Perceptron algorithm.

The algorithm is mistake-driven, hence ws−1 is updated (and s is increased) only when ŷt (= yt . In
the following we use A⊗ as a shorthand for A⊗ Id .

We now show that the algorithm in Figure 1 has the potential to make fewer mistakes than K
independent learners when the tasks are related, and does not perform much worse than that when
the tasks are completely unrelated. The bound dependence on the task relatedness is encoded as a
quadratic form involving the compound reference task vector u and the interaction matrix A.

We specify the online multitask problem by the sequence (φ1,y1),(φ2,y2), . . . ∈ RdK×{−1,1}
of multitask examples.

Theorem 1 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1,
run with an interaction matrix A on any finite multitask sequence of examples (φ1,y1),(φ2,y2), . . . ∈
RKd×{−1,1} satisfies, for all u ∈ RKd,

m≤ ∑
t∈M

!t(u)+ max
i=1,...,K

(A−1)i,i
(
u"A⊗ u

)
+

√
max

i=1,...,K
(A−1)i,i

(
u"A⊗ u

)
∑
t∈M

!t(u)

whereM is the set of mistaken trial indices.

Theorem 1 is readily proven by using the fact that the multitask Perceptron is a specific instance
of the kernel Perceptron algorithm, for example, Freund and Schapire (1999), using the so-called
linear multitask kernel introduced in Evgeniou et al. (2005) (see also Herbster et al., 2005). This
kernel is defined as follows: for any positive definite K×K interaction matrix A introduce the Kd-
dimensional RKHS H = RKd with the inner product 〈u,v〉H = u"A⊗v. Then define the kernel
feature map ψ : Rd×{1, . . . ,K}→H such that ψ(xt , it) = A−1

⊗ φt . The kernel used by the multitask
Perceptron is thus defined by

K
(
(xs, is),(xt , it)

)
=

〈
ψ(xs, is),ψ(xt , it)

〉
H
= φ"s A

−1
⊗ φt . (3)
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Remark 2 Although the multitask kernel is appealing because it makes the definition of the mul-
titask Perceptron simple and intuitive, one easily sees that the RKHS formalism is not neces-
sary here since the kernel is actually linear. In fact, by re-defining the feature mapping as ψ :
Rd×{1, . . . ,K}→ RKd, where RKd is now endowed with the usual Euclidean product, and by let-
ting ψ(xt , it) = A−1/2

⊗ φt , one gets an equivalent formulation of the multitask Perceptron based on
A−1/2
⊗ rather than A−1

⊗ . In the rest of the paper we occasionally adopt this alternative linear kernel
formulation, in particular whenever it makes the definition of the algorithm and its analysis simpler.

Proof [Theorem 1] We use the following version of the kernel Perceptron bound (see, e.g., Cesa-
Bianchi et al., 2005),

m≤∑
t
!t(h)+‖h‖2H

(
max
t

‖ψ(xt , it)‖2H
)
+‖h‖H

√(
max
t

‖ψ(xt , it)‖2H
)
∑
t
!t(h)

where h is any function in the RKHS H induced by the kernel. The proof is readily concluded by
observing that, for the kernel (3) we have

‖u‖2H = u"A⊗ u and ‖ψ(xt , it)‖2H = φ"t A
−1
⊗ φt = (A−1)it ,it

since φt singles out the it’s block of matrix A−1
⊗ .

In the next three subsections we investigate the role of the quadratic form u"A⊗ u and specialize
Theorem 1 to different interaction matrices.

3.1 Pairwise Distance Interaction Matrix

The first choice of Awe consider is the following simple update step (corresponding to the multitask
Perceptron example we made at the beginning of this section).

wj,s = wj,s−1+

{ 2
K+1 yt xt if j = it ,
1

K+1 yt xt otherwise.

As it can be easily verified, this choice is given by

A=





K −1 . . . −1
−1 K . . . −1
. . . . . . . . . . . .
−1 . . . . . . K



 (4)

with

A−1 =
1

K+1





2 1 . . . 1
1 2 . . . 1
. . . . . . . . . . . .
1 . . . . . . 2



 .

We have the following result.
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Corollary 3 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1, run
with the interaction matrix (4) on any finite multitask sequence of examples (φ1,y1),(φ2,y2), . . . ∈
RKd×{−1,1} satisfies, for all u ∈ RKd,

m≤ ∑
t∈M

!t(u)+
2
(
u"A⊗ u

)

K+1
+

√√√√2
(
u"A⊗ u

)

K+1 ∑
t∈M

!t(u)

where

u"A⊗ u=
K

∑
i=1

‖ui‖2+ ∑
1≤i< j≤K

∥∥ui−u j
∥∥2 .

In other words, running the Perceptron algorithm of Figure 1 with the interaction matrix (4) amounts
to using the Euclidean distance to measure task relatedness. Alternatively, we can say that the
regularization term of the regularized target functional favors task vectors u1, . . . ,uK ∈ Rd having
small pairwise distances

∥∥ui−u j
∥∥.

Note that when all tasks are equal, that is when u1 = · · ·= uK , the bound of Corollary 3 becomes
the standard Perceptron mistake bound (see, e.g., Cesa-Bianchi et al., 2005). In the general case of
distinct ui we have

2
(
u"A⊗ u

)

K+1
=

2K
K+1

K

∑
i=1

‖ui‖2−
4

K+1 ∑
1≤i< j≤K

u"i u j .

The sum of squares ∑K
i=1 ‖ui‖

2 is the mistake bound one can prove when learning K independent
Perceptrons (under linear separability assumptions). On the other hand, highly correlated reference
task vectors (i.e., large inner products u"i u j) imply a large negative second term in the right-hand
side of the above expression.

3.2 A More General Interaction Matrix

In this section we slightly generalize the analysis of the previous section and consider an update rule
of the form

wj,s = wj,s−1+

{ b+K
(1+b)K yt xt if j = it ,

b
(1+b)K yt xt otherwise

where b is a nonnegative parameter. The corresponding interaction matrix is given by

A=
1
K





a −b . . . −b
−b a . . . −b
. . . . . . . . . . . .
−b . . . . . . a



 (5)

with a = K+ b(K− 1). It is immediate to see that the previous case (4) is recovered by choosing
b= K. The inverse of (5) is

A−1 =
1

(1+b)K





b+K b . . . b
b b+K . . . b
. . . . . . . . . . . .
b . . . . . . b+K



 .
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When (5) is used in the multitask Perceptron algorithm, Theorem 1 can be specialized to the fol-
lowing result.

Corollary 4 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1, run
with the interaction matrix (5) on any finite multitask sequence of examples (φ1,y1),(φ2,y2), . . . ∈
RKd×{−1,1} satisfies, for all u ∈ RKd,

m≤ ∑
t∈M

!t(u)+
(b+K)
(1+b)K

(
u"A⊗u

)
+

√
(b+K)
(1+b)K

(
u"A⊗u

)
∑
t∈M

!t(u)

where

u"A⊗u=
K

∑
i=1

‖ui‖2+bK VAR[u]

being VAR[u] = 1
K ∑

K
i=1 ‖ui−u‖2 the “variance”, of the task vectors, and u the centroid 1

K
(
u1+

· · ·+uK
)
.

It is interesting to investigate how the above bound depends on the trade-off parameter b. The
optimal value of b (requiring prior knowledge about the distribution of u1, . . . ,uK) is

b=max




0,

√

(K−1)
‖u‖2

VAR[u]
−1




 .

Thus b grows large as the reference task vectors ui get close to their centroid u (i.e., as all ui get
close to each other). Substituting this choice of b gives

(b+K)
(1+b)K

(
u"A⊗u

)
=





‖u1‖2+ · · ·+‖uK‖2 if b= 0,
(
‖u‖+

√
K−1

√
VAR[u]

)2
otherwise.

When the variance VAR[u] is large (compared to the squared centroid norm ‖u‖2), then the optimal
tuning of b is zero and the interaction matrix becomes the identity matrix, which amounts to running
K independent Perceptron algorithms. On the other hand, when the optimal tuning of b is nonzero
we learn K reference vectors, achieving a mistake bound equal to that of learning a single vector
whose length is ‖u‖ plus

√
K−1 times the standard deviation

√
VAR[u].

At the other extreme, if the variance VAR[u] is zero (namely, when all tasks coincide) then the
optimal b grows unbounded, and the quadratic term (b+K)

(1+b)K
(
u"A⊗u

)
tends to the average square

norm 1
K ∑

K
i=1 ‖ui‖

2. In this case the multitask algorithm becomes essentially equivalent to an al-
gorithm that, before learning starts, chooses one task at random and keeps referring all instance
vectors xt to that task (somehow implementing the fact that now the information conveyed by it can
be disregarded).

3.3 Encoding Prior Knowledge

We could also pick the interaction matrix A so as to encode prior knowledge about tasks. For
instance, suppose we know that only certain pairs of tasks are potentially related. We represent this
knowledge in a standard way through an undirected graph G = (V,E), where two vertices i and j
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are connected by an edge if and only if we believe task i and task j are related. A natural choice for
A is then A= I+L, where the K×K matrix L is the Laplacian of G, defined as

Li, j =






di if i= j,
−1 if (i, j) ∈ E,
0 otherwise.

Here we denoted by di the degree (number of incoming edges) of node i. If we now follow the proof
of Theorem 1, which holds for any positive definite matrix A, we obtain the following result.

Corollary 5 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1, run
with the interaction matrix I+L on any finite multitask sequence of examples (φ1,y1),(φ2,y2), . . . ∈
RKd×{−1,1} satisfies, for all u ∈ RKd,

m≤ ∑
t∈M

!t(u)+ cG u"
(
I+L

)
⊗u+

√
cG u"

(
I+L

)
⊗u ∑

t∈M
!t(u)

where

u"
(
I+L

)
⊗u=

K

∑
i=1

‖ui‖2+ ∑
(i, j)∈E

∥∥ui−u j
∥∥2 (6)

and cG = maxi=1,...,K∑K
j=1

v2j,i
1+λ j . Here 0 = λ1 < λ2 ≤ · · · ≤ λK are the eigenvalues of the positive

semidefinite matrix L, and v j,i denotes the i-th component1 of the eigenvector v j of L associated with
eigenvalue λ j.

Proof Following the proof of Theorem 1, we just need to bound

max
i=1,...,K

A−1
i,i = max

i=1,...,K
(I+L)−1i,i .

If v1, . . . ,vK are the eigenvectors of L, then

(I+L)−1 =
K

∑
j=1

v j v"j
1+λ j

which concludes the proof.

Ideally, we would like to have cG = O
( 1
K
)
. Clearly enough, if G is the clique on K vertices we

expect to exactly recover the bound of Theorem 1. In fact, we can easily verify that the eigenvector
v1 associated with the zero eigenvalue λ1 is

(
K−1/2, . . . ,K−1/2). Moreover, it is well known that

all the remaining eigenvalues are equal to K—see, for example, Hogben (2006). Therefore cG =
1
K +

(
1− 1

K
) 1
K+1 =

2
K+1 . In the case of more general graphs G, we can bound cG in terms of the

smallest nonzero eigenvalue λ2,

cG ≤
1
K
+

(
1−

1
K

)
1

1+λ2
.

The value of λ2, known as the algebraic connectivity of G, is 0 only when the graph is disconnected.
λ2 is known for certain families of graphs. For instance, if G is a complete bipartite graph (i.e., if

1. Note that the orthonormality of the eigenvectors implies v21,i+ · · ·+ v2K,i = 1 for all i.
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tasks can be divided in two disjoint subsets T1 and T2 such that every task in T1 is related to every task
in T2 and for both i= 1,2 no two tasks in Ti are related), then it is known that λ2 =min

{
|T1|, |T2|

}
.

The advantage of using a graph G with significantly fewer edges than the clique is that the sum
of pairwise distances in (6) will contain less than

(K
2
)
terms. On the other hand, this reduction has

to be contrasted to a larger coefficient cG in front of u"
(
I+L

)
⊗u. This coefficient, in general, is

related to the total number of edges in the graph (observe that the trace of L is exactly twice this
total number). The role of prior knowledge is thus to avoid the insertion in A of edges connecting
tasks that are hardly related, thus preventing the presence of large terms in the sum u"

(
I+L

)
⊗u.

4. Turning Perceptron-like Algorithms Into Multitask Classifiers

We now show how to obtain multitask versions of well-known classifiers by using the multitask
kernel mapping detailed in Section 3.

4.1 The Multitask p-norm Perceptron Algorithm

We first consider the p-norm Perceptron algorithm of Grove et al. (2001) and Gentile (2003). As
before, when the tasks are all equal we want to recover the bound of the single-task algorithm, and
when the task vectors are different we want the mistake bound to increase according to a function
that penalizes task diversity according to their p-norm distance.

The algorithm resembles the Perceptron algorithm and maintains its state in the compound pri-
mal weight vector vs ∈ RKd where s stores the mistakes made so for (plus one). What sets the
multitask p-norm Perceptron aside from the algorithm of Section 3 is that the prediction at time
t is computed, for an arbitrary positive definite interaction matrix A, as SGN

(
w"
s−1A

−1
⊗ φt

)
where

the dual weight vector ws−1 is a (one-to-one) transformation of the weight vector vs−1, specifically
ws−1 = ∇1

2 ‖vs−1‖
2
p, with p ≥ 2. If a mistake occurs at time t, vs−1 ∈ RKd is updated using the

multitask Perceptron rule, vs = vs−1+ ytA−1
⊗ φt . We are now ready to state the mistake bound for

the the multitask p-norm Perceptron algorithm. In this respect we focus on a specific choices of p
and A.

Theorem 6 The number of mistakes m made by the p-norm multitask Perceptron, run with the
pairwise distance matrix (4) and p = 2lnmax{K,d}, on any finite multitask sequence of examples
(φ1,y1),(φ2,y2), . . . ∈ RKd×{−1,1} satisfies, for all u ∈ RKd,

m≤ ∑
t∈M

!t(u)+H+
√
2H ∑

t∈M
!t(u)

where

H =
8e2 lnmax{K,d}

(K+1)2
X2∞

(
K

∑
i=1

∥∥∥ui+∑
j (=i

(
ui−u j

)∥∥∥
1

)2

and X∞ =maxt∈M ‖xt‖∞.

Proof Let vm be the primal weight vector after any number m of mistakes. By Taylor-expanding
1
2 ‖vs‖

2
p around vs−1 for each s= 1, . . . ,m, and using the fact yt w"

s−1A
−1
⊗ φt ≤ 0 whenever a mistake

occurs at step t, we get
1
2
‖vm‖2p ≤

m

∑
s=1

D(vs‖vs−1) (7)
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where D(vs‖vs−1) = 1
2

(
‖vs‖2p−‖vs−1‖2p

)
−yt w"

s−1A
−1
⊗ φt is the so-called Bregman divergence, that

is, the error term in the first-order Taylor expansion of 12 ‖·‖
2
p around vector vs−1, at vector vs.

Fix any u ∈ RKd . Using the convex inequality for norms u"v≤ ‖u‖q ‖v‖p where q= p/(p−1)
is the dual coefficient of p (so that ‖·‖q is the dual norm of ‖·‖p), and the fact that

u"A⊗vs = u"A⊗vs−1+ ytu"φt ≥ u"A⊗vs−1+1− !t(u),

one then obtains
‖vm‖p ≥

u"A⊗vm
‖A⊗u‖q

≥
m−∑t∈M !t(u)

‖A⊗u‖q
. (8)

Combining (7) with (8) and solving for m gives

m≤ ∑
t∈M

!t(u)+‖A⊗u‖q

√

2
m

∑
s=1

D(vs‖vs−1) . (9)

Following the analysis contained in, for example, Cesa-Bianchi and Lugosi (2006), one can show
that the Bregman term can be bounded as follows, for ts = t,

D(vs‖vs−1)≤
p−1
2

∥∥A−1
⊗ φt

∥∥2
p =

p−1
2

‖xt‖2p
∥∥∥A−1

↓it

∥∥∥
2

p

where A−1
↓it is the it-th column of A

−1.
We now focus our analysis on the choice p = 2lnmax{K,d} which gives mistake bounds in

the dual norms ‖u‖1 and ‖xt‖∞, and on the pairwise distance matrix (4). It is well known that for
p = 2lnd the mistake bound of the single-task p-norm Perceptron is essentially equivalent to the
one of the zero-threshold Winnow algorithm of Littlestone (1989). We now see that this property is
preserved in the multitask extension. We have ‖xt‖2p ≤ e‖xt‖2∞ and

∥∥∥A−1
↓it

∥∥∥
2

p
≤ e

∥∥∥A−1
↓it

∥∥∥
2

∞
= e

(
A−1
it ,it

)2
=

4e
(K+1)2

.

As for the dual norm ‖A⊗u‖q, we get

‖A⊗u‖2q ≤ ‖A⊗u‖21 =

(
K

∑
i=1

∥∥∥ui+∑
j (=i

(
ui−u j

)∥∥∥
1

)2

.

Substituting into (9) gives the desired result.

The rightmost factor in the expression forH in the statement of Theorem 6 reveals the way similarity
among tasks is quantified in this case. To gain some intuition, assume the task vectors ui are all
sparse (few nonzero coefficients). Then H is small when the task vectors ui have a common pattern
of sparsity; that is, when the nonzero coordinates tend to be the same for each task vector. In the
extreme case when all task vectors are equal (and not necessarily sparse), H becomes

(
K

K+1

)2 (
8e2 lnmax{K,d}

)(
max
t=1,...,n

‖xt‖∞
)2

‖u1‖21 . (10)

If K ≤ d this bound is equivalent (apart from constant factors) to the mistake bound for the single-
task zero-threshold Winnow algorithm of Littlestone (1989).

2912



LINEAR ALGORITHMS FOR ONLINE MULTITASK CLASSIFICATION

Parameters: Positive definite K×K interaction matrix A.
Initialization: S0 = /0, v0 = 0 ∈ RKd , s= 1.
At each time t = 1,2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K} and the corresponding
instance vector xt ∈ Rd : ||xt ||= 1;

2. Build the associated multitask instance φt ∈ RKd

and compute φ̃t =
(
A⊗ Id

)−1/2
φt ;

3. Predict label yt ∈ {−1,+1} with ŷt = SGN
(
w"
s−1φ̃t

)
,

where ws−1 =
(
I+Ss−1S"s−1+ φ̃t φ̃

"
t

)−1
vs−1;

4. Get label yt ∈ {−1,1};

5. If ŷt (= yt then update:

vs = vs−1+ yt φ̃t , Ss =
[
Ss−1, φ̃t

]
, s← s+1 .

Figure 2: The second-order multitask Perceptron algorithm.

Remark 7 Note that for p = 2 our p-norm variant of the multitask Perceptron algorithm does not
reduce to the multitask Perceptron of Figure 1. In order to obtain the latter as a special case of the
former, we could use the fact that the multitask Perceptron algorithm is equivalent to the standard
2-norm Perceptron run on “multitask instances” A−1/2

⊗ φt—see Remark 2. One then obtains a proper
p-norm generalization of the multitask Perceptron algorithm by running the standard p-norm Per-
ceptron on such multitask instances. Unfortunately, this alternative route apparently prevents us
from obtaining a bound as good as the one proven in Theorem 6. For example, when p is chosen
as in Theorem 6 and all task vectors are equal, then multitask instances of the form A−1/2

⊗ φt yield a
bound K times worse than (10), which is obtained with instances of the form A−1

⊗ φt .

Finally, we should mention that an alternative definition of the p-norm Perceptron for a related
problem of predicting a labelled graph has been recently proposed in Herbster and Lever (2009).

4.2 The Multitask Second-order Perceptron Algorithm

We now turn to the second-order kernel Perceptron algorithm of Cesa-Bianchi et al. (2005). The
algorithm, described in Figure 2, maintains in its internal state a matrix S (initialized to the empty
matrix /0) and a multitask Perceptron weight vector v (initialized to the zero vector). Just like in
Figure 1, we use the subscript s to denote the current number of mistakes plus one. The algorithm
computes a tentative (inverse) matrix

(
I+Ss−1S"s−1+ φ̃t φ̃

"
t

)−1
.
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Such a matrix is combined with the current Perceptron vector vs−1 to predict the label yt . If the pre-
diction ŷt and the label yt disagree both vs−1 and Ss−1 get updated (no update takes place otherwise).
In particular, the new matrix Ss is augmented by padding with the current vector φ̃t . Since supports
are shared, the computational cost of an update is not significantly larger than that for learning a
single-task (see Subsection 4.2.1).

Theorem 8 The number of mistakes m made by the multitask Second Order Perceptron algo-
rithm in Figure 2, run with an interaction matrix A on any finite multitask sequence of examples
(φ1,y1),(φ2,y2), . . . ∈ RKd×{−1,1} satisfies, for all u ∈ RKd,

m≤ ∑
t∈M

!t(u)+

√√√√
(

u"A⊗ u+ ∑
t∈M

(
u"it xt

)2
)

m

∑
j=1
ln(1+λ j)

whereM is the sequence of mistaken trial indices and λ1, . . . ,λm are the eigenvalues of the matrix
whose (s, t) entry is x"s A−1

is,it xt , with s, t ∈M .

Proof From the mistake bound for the kernel second-order Perceptron algorithm (Cesa-Bianchi
et al., 2005) we have, for all h in H ,

m≤ ∑
t∈M

!t(h)+

√√√√
(

‖h‖2H + ∑
t∈M

h(φt)2
)

m

∑
i=1
ln(1+λi)

where λ1, . . . ,λm are the eigenvalues of the kernel Gram matrix including only time steps in M .
Making the role of A⊗ explicit in the previous expression yields

‖u‖2H = u"A⊗u

and
〈
u,ψ(xt , it)

〉2
H
=

(
u"A⊗A−1

⊗ φt
)2

=
(
u"it xt

)2
.

Finally, the kernel Gram matrix has elements K
(
ψ(xs, is),ψ(xt , it)

)
= φ"s A

−1
⊗ φt = x"s A−1

is,it xt , where
s, t ∈M . This concludes the proof.

Again, this bound should be compared to the one obtained when learning K independent tasks.
As in the Perceptron algorithm, we have the complexity term u"A⊗u. In this case, however, the
interaction matrix A also plays a role in the scale of the eigenvalues of the resulting multitask
Gram matrix. Roughly speaking, when the tasks are close and A is the pairwise distance matrix, we
essentially gain a factor

√
K from the fact that u"A⊗u is close to K times the complexity of the single

task (according to the arguments in Section 3). On the other hand, the trace of the multitask Gram
matrix

[
φ"s A

−1
⊗ φt

]
s,t∈M = [x"s A−1

is,it xt
]
s,t∈M is about the same as the trace of the single task matrix,

since the K times larger dimension of the multitask matrix is offset by the factor 1/K delivered
by A−1

⊗ in
[
φ"s A

−1
⊗ φt

]
s,t∈M when compared to the single task Gram matrix

[
x"s xt

]
s,t∈M . So, in a

sense, the spectral quantity ∑m
j=1 ln(1+λ j) is similar to the corresponding quantity for the single

task case. Putting together, unlike the first-order Perceptron, the gain factor achieved by a multitask
second-order perceptron over the K independent tasks bound is about

√
K.
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4.2.1 IMPLEMENTING THE MULTITASK SECOND-ORDER PERCEPTRON IN DUAL FORM

It is easy to see that the second-order multitask Perceptron can be run in dual form by maintaining
K classifiers that share the same set of support vectors. This allows an efficient implementation that
does not impose any significant overhead with respect to the corresponding single-task version.

Specifically, given some interaction matrix A the margin at time t is computed as (see Cesa-
Bianchi et al., 2005, Theorem 3.3)

w"
s−1φ̃t = v"s−1

(
I+Ss−1S"s−1+ φ̃t φ̃

"
t

)−1
φ̃t

= y"s
(
I+S"s Ss

)−1
S"s φ̃t (11)

where ys is the s-dimensional vector whose first s−1 components are the labels yi where the algo-
rithm has made a mistake up to time t−1, and the last component is 0.

Note that replacing I+ S"s Ss with I+ S"s−1Ss−1 in (11) does not change the sign of the predic-
tion. The margin at time t can then be computed by calculating the scalar product between S"s φ̃t
and y"s

(
I+S"s−1Ss−1

)−1. Now, each entry of the vector S"s φ̃t is of the form A−1
j,it x

"
j xt , and thus com-

puting S"s φ̃t requires O(s) inner products so that, overall, the prediction step requires O(s) scalar
multiplications and O(s) inner products (independent of the number of tasks K).

On the other hand, the update step involves the computation of the vector y"s
(
I+S"s Ss

)−1. For
the matrix update we can write

I+S"s Ss =

[
I+S"s−1Ss−1 S"s−1φ̃t
φ̃
"
t Ss−1 1+ φ̃

"
t φ̃t

]

.

Using standard facts about the inverse of partitioned matrices (see, e.g., Horn and Johnson, 1985,
Ch. 0), one can see that the inverse of matrix I + S"s Ss can be computed from the inverse of
I+ S"s−1Ss−1 with O(s) extra inner products (again, independent of K) and O(s2) additional scalar
multiplications.

5. The Simultaneous Multitask Protocol: Preliminaries

The multitask kernel-based regularization approach adopted in the previous sections is not the only
way to design algorithms for the multiple tasks scenario. As a different strategy, we now aim at mea-
suring tasks relatedness as a function of the dimension of the space spanned by the task reference
vectors. In matrix terms, this may be rephrased by saying that we hope to speed up the learning pro-
cess, or reduce the number of mistakes, whenever the matrix of reference vectors is spectrally sparse.
For reasons that will be clear in a moment, and in order to make the above a valid and reasonable
goal for a multitask algorithm, we now investigate the problem of simultaneously producing multiple
predictions after observing the corresponding (multiple) instance vectors. We therefore extend the
traditional online classification protocol to a fully simultaneous multitask environment where at each
time step t the learner observes exactly K instance vectors xi,t ∈ Rd , i= 1, . . . ,K. The learner then
outputs K predictions ŷi,t ∈ {−1,+1} and obtains the associated labels yi,t ∈ {−1,+1}, i= 1, . . . ,K.
We still assume that the K example sequences are adversarially generated and that ‖xi,t‖ = 1. We
call this setting the simultaneous multitask setting.
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Once again the underlying rationale here is that one should be able to improve the performance
over the baseline by leveraging the additional information conveyed through multiple instance vec-
tors made available all at once, provided that the tasks to learn share common characteristics. Theo-
retically, this amounts to postulating the existence of K vectors u1, . . . ,uK such that each ui is a good
linear classifier for the corresponding sequence (xi,1,yi,1),(xi,2,yi,2), . . . of examples. As before, the
natural baseline is the algorithm that simultaneously run K independent Perceptron algorithms, each
one observing its own sequence of examples and acting in a way that is oblivious to the instances
given as input to and the labels observed by its peers. Of course, we now assume that this baseline
outputs K predictions per trial. The expected performance of this algorithm is simply K times the
one of a single Perceptron algorithm. An additional difference that sets the protocol and the algo-
rithms discussed here apart from the ones considered in the previous sections is that the cumulative
count of mistakes is not only over time but also over tasks; that is, at each time step more the one
mistake might occur since K > 1 predictions are output.

In the next section we show that simultaneous multitask learning algorithms can be designed
in such a way that the cumulative number of mistakes is, in certain relevant cases, provably better
than the K independent Perceptron algorithm. The cases where our algorithms outperform the latter
are exactly those when the overall information provided by the different example sequences are
related, that is, when the reference vectors associated with different tasks are “similar”, while the
instance vectors received during each time step are unrelated (and thus overall more informative).
These notions of similarity and unrelatedness among reference and instance vectors will be formally
defined later on.

5.1 Notation and Definitions

We denote by 〈M,N〉 = TR
(
M"N

)
, for M,N ∈ Rd×K the Frobenious matrix inner product. Let

r=min{d,K} and define the function σ :Rd×K →Rr such that σ(M) =
(
σ1(M), . . . ,σr(M)

)
, where

σ1(M)≥ · · ·≥ σr(M)≥ 0 are the singular values of a matrixM ∈Rd×K . In the following, we simply
write σi instead of σi(M) whenever the matrix argument is clear from the context.

Following Horn and Johnson (1991) we say that a function f : Rr → R is a symmetric gauge
function if it is an absolute norm on Rr and is invariant under permutation of the components of
its argument. We consider matrix norms of the form ‖·‖ : Rd×K → R such that ‖·‖ = f ◦σ where
f is symmetric gauge function. A matrix norm is said unitarily (orthogonally, indeed, since we
only consider matrices with real entries) invariant if ‖UAV‖ = ‖A‖ for any matrix A and for any
unitary (orthogonal) matrices U and V for which UAV is defined. It is well known that a matrix
norm is unitarily invariant if and only if it is a symmetric gauge function of the singular values of
its argument.

One important class of unitarily invariant norms is given by the Schatten p-norms, ‖U‖sp
def
=

‖σ(U)‖p, where the right-hand expression involves a vector norm. Note that the Schatten 2-norm is
the Frobenius norm, while for p= 1 the Schatten p-norm becomes the trace norm ‖U‖s1 = ‖σ(U)‖1,
which is a good proxy for the rank ofU , ‖σ(U)‖0.

Let M be a matrix of size d×K. We denote by VEC(M) the vector of size Kd obtained by
stacking the columns of M one underneath the other. Important relationships can be established
among the Kronecker product, the VEC operator and the trace operator. In particular, we have

VEC(MNO) = (O"⊗M)VEC(N) (12)
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for anyM,N,O for which MNO is defined, and

VEC(M)"VEC(N) = TR(M"N) (13)

for any M,N of the same order. We denote by TK2 the K2×K2 commutation matrix such that
TK2VEC(M) = VEC(M"). We recall that TK2 also satisfies TK2(M⊗N) = (M⊗N)TK2 for anyM,N ∈
Rd×K .

We rely on the notation introduced by Magnus and Neudecker (1999) to derive calculus rules
for functions defined over matrices. Given a differentiable function F : Rm×p → Rn×q, we define
the Jacobian of F at M as the matrix ∇F(M) ∈ Rnq×mp

∇F(X) =
∂VEC

(
F(M)

)

∂VEC(M)"
. (14)

It is easy to see that (14) generalizes the well-known definition of Jacobian for vector valued func-
tions of vector variables. The following rules, which hold for any matrixM ∈ RK×K , can be seen as
extensions of standard vector derivation formulas

∇TR(Mp) = pVEC(Mp−1)" p= 1,2, . . . (15)
∇M"M = (IK2 +TK2)(IK⊗M") . (16)

6. The Potential-based Simultaneous Multitask Classifier

As discussed in Section 5, a reasonable way to quantify the similarity among reference vectors, as
well as the unrelatedness among example vectors, is to arrange such vectors into matrices, and then
deal with special properties of these matrices. In order to focus on this concept, we lay out vectors
as columns of d×K matrices and extend the dual norm analysis of Subsection 4.1 to matrices. The
idea is to design a classifier which is able to perform much better than the K independent Perceptron
baseline discussed in Section 5 whenever the set of reference vectors ui ∈Rd (arranged into a d×K
reference matrixU), have some matrix-specific, for example, spectral, properties.

Our potential-based matrix algorithm for classification shown in Figure 3 generalizes the classi-
cal potential-based algorithms operating on vectors to simultaneous multitask problems with matrix
examples. This family of potential-based algorithms has been introduced in the learning literature
by Kivinen and Warmuth (2001) and Grove et al. (2001), and by Nemirovski and Yudin (1978)
and Beck and Teboulle (2003) in the context of nonsmooth optimization. The algorithm maintains
a d×K matrix W . Initially, W0 is the zero matrix. If s− 1 updates have been made in the first
t−1 time steps, then the K predictions at time t are SGN

(
w"
i,s−1xi,t

)
, i= 1, . . . ,K, where the vector

wi,s−1 ∈ Rd is the i-th column of the the d×K matrixWs and xi,t ∈ Rd is the instance vector asso-
ciated with the i-th task at time t. An update is performed if at least one mistake occurs. When the
s-th update occurs at time t thenWs is computed as

Ws = ∇
1
2
‖Vs‖2

where, in turn, the columns of the d×K matrix Vs are updated using the Perceptron rule,2 vi,s =
vi,s−1+ yi,t xi,t {ŷi,t (=yi,t} which, as in the basic Perceptron algorithm, is mistake driven. In other

2. Here and throughout this section, {ŷi,t (=yi,t} denotes the indicator function which is 1 if the label associated with the
i-th task is wrongly predicted at time t, and 0 otherwise.

2917



CAVALLANTI, CESA-BIANCHI AND GENTILE

Parameters: Unitarily invariant norm ‖·‖.
Initialization: V0 = [v0,0, . . . ,vK,0] = 0,W0 = [w0,0, . . . ,wK,0] = ∇1

2 ‖V0‖
2, s= 1.

At each time t = 1,2, . . . do the following:

1. Get multitask instance vectors x1,t , . . . ,xK,t ∈ Rd ;

2. Predict labels yi,t ∈ {−1,+1} with ŷi,t = SGN(w"
i,s−1xi,t), i= 1, . . . ,K;

3. Get labels yi,t ∈ {−1,1}, i= 1, . . . ,K;

4. If ŷi,t (= yi,t for some i then update:

vi,s = vi,s−1+ yi,txi,t {ŷi,t (=yi,t} i= 1, . . . ,K

Ws = ∇
1
2
‖Vs‖2

s← s+1 .

Figure 3: The potential-based matrix algorithm for the simultaneous multitask setting.

words, the i-th column in Vs−1 is updated if and only if the label associated with the i-th task was
wrongly predicted. We say that Ws is the dual matrix weight associated with the primal matrix
weight Vs. So far we left the mapping from Vs to Ws partially unspecified since we did not say
anything other than it is the gradient of some unitarily invariant (squared) norm.

6.1 Analysis of Potential-based Matrix Classifiers

We now develop a general analysis of potential-based matrix algorithms for (simultaneous) multi-
task classification. Then, in Section 6.2 we specialize it to Schatten p-norms. The analysis proceeds
along the lines of the standard proof for potential-based algorithms. Before turning to the details,
we introduce a few shorthands. Let i,t = {ŷi,t (=yi,t}, and t be the K-dimensional vector whose i-th
component is i,t . Also, ei denotes the i-th vector of the standard basis for RK . Finally, we define
the matrixMt =∑K

i=1 i,t yi,txi,te"i whose i-th column is the example vector yi,txi,t if the label yi,t was
wrongly predicted at time t, or the null vector otherwise. It is easy to see that, by using this notation,
the update of the primal weight matrix V can be written as Vs =Vs−1+Mt .

Let M be the set of trial indices where at least one mistake occurred over the K tasks, and set
m= |M |. We start by Taylor-expanding 1

2 ‖Vs‖
2 around Vs−1 for each s= 1, . . . ,m and obtain

1
2
‖Vm‖2 ≤

m

∑
s=1

D(Vs‖Vs−1) (17)
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whereD(Vs‖Vs−1) = 1
2
(
‖Vs‖2−‖Vs−1‖2

)
−〈Ws−1,Mt〉 is the matrix Bregman divergence associated

with ∇1
2 ‖·‖

2. The upper bound in (17) follows from

〈Ws−1,Mt〉= TR(W"
s−1Mt) =

K

∑
i=1

i,t yi,tw"
s−1xi,t ≤ 0

the last inequality holding because i,t is 1 if only if a mistake in the prediction for the i-th task
occurs at time t.

Fix any d×K comparison matrix U and denote by ‖·‖∗ the matrix dual norm. By the convex
inequality for matrix norms we have ‖Vm‖‖U‖∗ ≥ 〈Vm,U〉, where ‖U‖∗ = f ∗

(
σ(U)

)
and f ∗ is the

Legendre dual of function f—see Lewis (1995, Theorem 2.4). From 〈U,Vs〉= 〈U,Vs−1〉+ 〈U,Mt〉.
we obtain

‖Vm‖ ≥
〈U,Vm〉
‖U‖∗

≥ ∑t∈M ‖ t‖1−∑t∈M !t (U)

‖U‖∗
where

!t (U)
def
=

K

∑
i=1

i,t
[
1− yi,t u"i xi,t

]
+ =

K

∑
i=1

i,t !t(ui)

and ‖ t‖1 counts the number of mistaken tasks at time t. Solving for µ= ∑t∈M ‖ t‖1 gives

µ≤ ∑
t∈M

!t (U)+‖U‖∗

√

2
m

∑
s=1

D(Vs‖Vs−1) . (18)

Equation (18) is our general starting point for analyzing potential-based matrix multitask algorithms.
In particular, the analysis reduces to bounding from above the Bregman term for the specific matrix
norm under consideration.

6.2 Specialization to Schatten p-norms

In this section we focus on Schatten p-norms, therefore measuring similarity (or dissimilarity) in
terms of spectral properties. This amounts to saying that a set of reference vectors are similar if they
span a low dimensional subspace. Along the same lines, we say that a set of K example vectors are
dissimilar if their spanned subspace has dimension close to K. The rank of a matrix whose columns
are either the reference vectors or the example vectors exactly provides this information. Here we
use certain functions of the singular values of a matrix as proxies for its rank. It is easy to see that
this leads to a kind of regularization that is precisely enforced through the use of unitarily-invariant
norms. In fact, unitarily-invariant matrix norms control the distribution of the singular values ofU ,
thus acting as spectral co-regularizers for the reference vectors—see, for example, Argyriou et al.
(2008) for recent developments on this subject. In different terms, by relying only on the singular
values (or on the magnitudes of principal components), unitarily invariant norms are a natural way
to determine and measure the most informative directions for a given set of vectors.

For these reasons we now specialize the potential-based matrix classifier of Figure 3 to the
Schatten 2p-norm and set ‖V‖= ‖V‖s2p = ‖σ(V )‖2p , where V is a generic d×K matrix, and p is a
positive integer (thus 2p is an even number ≥ 2). Note that, in general,

‖V‖2s2p = TR
(
(V"V )p

)1/p
.
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We are now ready to state our main result of this section. The proof, along with surrounding
comments, can be found in the appendix.

Theorem 9 The overall number of mistakes µ made by the 2p-norm matrix multitask Perceptron
(with p positive integer) run on finite sequences of examples (xi,1,y1,t),(xi,2, ,yi,2), · · · ∈ Rd×K ×
{−1,+1}, for i= 1, . . . ,K, satisfies, for all U ∈ Rd×K,

µ≤ ∑
t∈M

!t (U)+(2p−1)
(
Ms2p ‖U‖s2q

)2
+Ms2p ‖U‖s2q

√
(2p−1) ∑

t∈M
!t (U)

where

Ms2p =max
t∈M

‖Mt‖s2p√
‖ t‖1

and ‖U‖s2q is the Schatten 2q-norm of U, with 2q= 2p
2p−1 .

Remark 10 In order to verify that in certain cases the bound of Theorem 9 provides a significant
improvement over the K independent Perceptron baseline, we focus on the linearly separable case;
that is, when the sequences (xi,1,yi,1),(xi,2,yi,2), . . . are such that there exists a matrix U ∈ Rd×K

whose columns ui achieve a margin of at least 1 on each example: yi,tu"i xi,t ≥ 1 for all t = 1,2, . . .
and for all i= 1, . . . ,K. In this case the bound of Theorem 9 reduces to

µ≤ (2p−1)
(
Ms2p ‖U‖s2q

)2
. (19)

It is easy to see that for p = q = 1 the 2p-norm matrix multitask Perceptron decomposes into K
independent Perceptrons, which is our baseline. On the other hand, similarly to the vector case,
a trace norm/spectral norm bound can be established when the parameter p is properly chosen.
Note first that for basic properties of norms ‖U‖s2q ≤ ‖U‖s1 and ‖M‖s2p ≤ r1/(2p) ‖M‖s∞ , with r =
min{d,K}. It now suffices to set p= 3lnr4 in order to rewrite (19) as

µ≤ (2lnr+1)e
(
Ms∞ ‖U‖s1

)2

where U is now penalized with the trace norm and Mt is measured with the spectral norm ‖·‖s∞ . If
the columns of U span a subspace of dimension 5 K, and the matrices of mistaken examples Mt
tend to have K nonzero singular values of roughly the same magnitude, then ‖U‖s1 ≈ ‖U‖s2 while
M2

s∞ ≈M
2
s2/K. Hence this choice of p may lead to a factor K improvement over the bound achieved

by the independent Perceptron baseline. See also Remark 11 below. Note that in Theorem 9 (and in
the above argument) what matters the most is the quantification in terms of the spectral properties
of U via ‖U‖s2q . The fact that p has to be a positive integer is not a big limitation here, since
2q= 2p

2p−1 can be made arbitrarily close to 1 anyway.

Remark 11 The bound of Theorem 9 is not in closed form, since the terms ‖ t‖1 occur in both the
left-hand side (via µ) and in the right-hand side (via Ms2p ). These terms play an essential role to
assess the potential advantage of the 2p-norm matrix multitask Perceptron. In order to illustrate the
influence of ‖ t‖1 on the bound, let us consider the two extreme cases ‖ t‖1 = 1 for all t ∈M , and
‖ t‖1 = K for all t ∈M . In the former case, the right-hand side of (19) becomes (2p− 1)‖U‖2s2q
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(since Ms2p = 1), which is always worse than the baseline case p = q = 1. In the latter case, the
bound becomes

(2p−1)

(
maxt∈M ‖Mt‖2s2p

)
‖U‖2s2q

K
which, according to the discussion in the previous remark, opens up the possibility for the factor K
improvement. This is precisely the reason why the spectral regularization is not advantageous in
the adversarially chosen task framework described in Section 2. Since the K instance-label pairs
are the information obtained for each task at any given time step, it appears reasonable that a
multitask approach has a chance to improve when such information is abundant, as is the case
when ‖ t‖1 = K, and, at the same time, the tasks to be learned are sufficiently similar. For example,
in the extreme case when the K tasks do actually coincide, it is as if we had to learn a single task,
but received K independent pieces of information per time step, rather than just one.

Remark 12 The 2p-norm matrix multitask Perceptron algorithm updates the primal vector associ-
ated with a given task whenever an example for that task is wrongly predicted. Specifically, at time t
the mistake-driven update rule for the i-th task vector is defined as vi,s = vi,s−1+ yi,t xi,t {ŷi,t (=yi,t}. It
is now straightforward to generalize the above update mechanism to the shared loss framework of
Dekel et al. (2007), where the sharing is performed via a norm applied to the vector of task losses.
Let !t(W ) be the vector whose entries are the hinge losses incurred by the K columns of W and
pick any vector norm ‖·‖ . The goal is to bound the cumulative shared loss ∑t ‖!t(W )‖. To do so,
introduce an additional parameter C > 0 and write the update as vi,s = vi,s−1+ yi,t xi,t τi,t , where
the vector τt = [τ1,t , . . . ,τK,t ]" is such that τt = argmaxτ:‖τ‖∗≤C τ

"!t(Ws−1) and ‖·‖∗ is the dual of
‖·‖ . Since each entry of τt is dependent on all the K hinge losses suffered by the 2p-norm matrix
multitask Perceptron algorithm at time t, the update now acts so as to favor certain tasks over the
others according to the shared loss induced by ‖·‖ . By adapting our proof to the analysis given in
Dekel et al. (2007), it is not hard to show that

T

∑
t=1

‖!t(Wt−1)‖ ≤
T

∑
t=1

‖!t(U)‖+
‖U‖2S2q
2C

+
TM2

s2p
2

where, in analogy with our previous definitions,

Ms2p = max
t=1,...,T

‖Mt‖s2p√
‖τt‖∗

and Mt =
K

∑
i=1

τi,t yi,t xi,t e"i .

Observe that Ms2p depends on C through τt , thus preventing an easy optimization over C. More-
over, since the upper bound depends on dual Schatten 2p-norms, the discussions in Remark 10 and
Remark 11 still apply, with the caveat that in order to haveM2

s∞ ≈M
2
s2/K it must be τ1,t ≈ · · ·≈ τK,t .

6.2.1 IMPLEMENTATION IN DUAL FORM

As for the algorithms in previous sections, the 2p-norm matrix multitask Perceptron algorithm can
also be implemented in dual variables. Setting Xt = [x1,t , . . . ,xK,t ], it suffices to observe that the
predictions ŷi,t = SGN

(
w"
i,s−1xi,t

)
of the 2p-norm matrix Perceptron reduces to computing the sign

of the diagonal entries of the matrix (V"
s−1Vs−1)p−1V"

s−1Xt—recall the expression for ∇G calculated
in the proof of Theorem 9. Since matrix Vs is updated additively, it is clear that both V"

s−1Vs−1
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and V"
s−1Xt do depend on instance vectors xi,t only through inner products. This allows us to turn

our 2p-norm matrix multitask Perceptron into a kernel-based algorithm, and repeat the analysis
given here using a standard RKHS formalism—see Warmuth (2009) for a more general treatment
of kernelizable matrix learning algorithms.

7. Experiments

We evaluated our multitask algorithms on several real-world data sets. Since we are more interested
in the multitask kernel for sequential learning problems rather than the nature of the underlying
classifiers, we restricted the experiments for the adversarially chosen task model to the multitask
Perceptron algorithm of Section 3. In particular, we compare the performance of the multitask
Perceptron algorithm with parameter b > 0 to that of the same algorithm run with b = 0, which is
our multitask baseline. Recall from Subsection 3.2 that b = 0 amounts to running an independent
standard Perceptron on each task. We also evaluated the 2p-norm matrix multitask Perceptron
algorithm under a similar experimental setting, reporting the achieved performance for different
values of the parameter p. Finally, we provide experimental evidence of the effectiveness of the
2p-norm matrix multitask Perceptron algorithm when applied to a learning problem which requires
the simultaneous processing of a significant number of tasks.

In our initial experiments, we empirically evaluated the multitask kernel using a collection of
data sets derived from the first 160,000 newswire stories in the Reuters Corpus Volume 1 (RCV1, for
details see NIST, 2004). Since RCV1 is a hierarchical multiclass and multilabel data set, we could
not use it right away. In fact, in order to evaluate the performance of our multitask algorithms in the
presence of increasing levels of correlation among target tasks, we derived from RCV1 a collection
of data sets where each example is associated with one task among a set of predefined tasks. We
generated eight multitask data sets (D1 through D8) in such a way that tasks in different data sets
have different levels of correlation, from almost uncorrelated (D1) to completely overlapped (D8).
The number of tasks in each of the eight data sets was set to four.

Roughly speaking, we hand-crafted tasks by clustering categories from the original data set. We
started from non intersecting sets of categories, which represent nonrelated tasks, and from there we
progressively enlarged the intersection areas, thus obtaining tasks which get closer and closer. The
whole process involved several steps. We first defined tasks as sets of RCV1 categories (RCV1 is a
multilabel data set where labels are sets of hierarchically organized categories). In order to obtain
the four tasks in D1, we first chose four subsets of categories from the initial set of all categories
in the RCV1 taxonomy in such a way that each subset is both made up of hierarchically related
categories and contains at least 15% of positive examples. More precisely, each of the four tasks in
D1 is made up of second-level and third-level categories from one of the four main RCV1 sub-trees
(CORPORATE/INDUSTRIAL, ECONOMICS, GOVERNMENT/SOCIAL, MARKETS). Since categories
in different tasks belong to different sub-trees in the RCV1 taxonomy, and each task is composed
by categories from the same sub-tree, the resulting four tasks in D1 describe very different but
consistent topics. Tasks in D2-D8 are generated as follows. First, task one is kept the same in all
the eight data sets. As for the other three tasks, we progressively added categories from the first
task and dropped some from their own set of categories. We repeated this process seven times.
During the first three times (corresponding to data sets D2, D3, and D4) we augmented task two to
four with topics from task one; during the last four times (corresponding to data sets D5-D8) we
progressively dropped their own initial categories. The whole process is illustrated in Figure 4. As a
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(a) (b)

(c) (d)

Figure 4: A sample of the task generation process given a taxonomy of 13 categories with three
main sub-hierarchies. Tasks are marked as T1, T2 and T3. (a) Uncorrelated tasks are
initially defined as sets of categories from different sub-hierarchies. (b and c) Partially
overlapped tasks are obtained by first augmenting T2 and T3 with the addition of cate-
gories from T1 (category c6 first, then categories c4 and c5), then (d) by shrinking both
T2 and T3 with the removal of their initial nodes (these are categories c9 and c13). The
shrinking step is repeated until T1, T2 and T3 do coincide.

result of the above construction, as we go from D1 to D8, tasks two, three, and four get both closer
to each other and to task one. The last set of four tasks (corresponding to data set D8) is made up of
four occurrences of the first task, that is, tasks are completely overlapped in D8.

Once the eight sets of four tasks have been chosen, we generated labels for the corresponding
multitask examples as follows. We went through the whole RCV1 data set (whose news example
are sorted in chronological order), and gathered examples four by four, where the first example is
associated with the first task, the second with the second task, and so on. A multitask example,
defined as a set of four (instance, binary label) pairs, was then derived by replacing, for each of
the four RCV1 examples, the original RCV1 categories with −1 if the intersection between the
associated task and the categories was empty (i.e., if the example did not belong to any of the
RCV1 categories which are part of that task), +1 otherwise. Since we used 160,000 multilabel
and multiclass examples, this process ended up with eight multitask data sets of 40,000 (multitask)
examples each.
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Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10,000 0.159 0.198 0.215 0.212 0.208 0.203 0.195 0.175

10,001-20,000 0.116 0.158 0.167 0.170 0.167 0.164 0.152 0.134
20,001-30,000 0.104 0.141 0.158 0.155 0.150 0.147 0.138 0.122
30,001-40,000 0.085 0.118 0.125 0.125 0.119 0.113 0.105 0.091

Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10,000 0.395 0.482 0.508 0.499 0.489 0.492 0.461 0.410

10,001-20,000 0.297 0.394 0.428 0.427 0.410 0.394 0.371 0.322
20,001-30,000 0.274 0.374 0.399 0.389 0.375 0.368 0.332 0.291
30,001-40,000 0.231 0.323 0.339 0.337 0.323 0.315 0.287 0.249

Table 1: Online training error rates made by the baseline b = 0 on consecutive sequences of mul-
titask examples after a single pass on the data sets D1-D8. The task it is chosen either
randomly (top) or adversarially (bottom).

We note that the tasks considered here are not linearly separable and, as result of the above
construction, different tasks in each data set may have different degrees of nonseparability. This
explains why the baseline error rates for data sets D1-D8 are different—see Tables 1 and 2.

Figure 5 shows the fraction of wrongly predicted examples during the online training of the
multitask Perceptron algorithm with interaction matrix (5), when the task it is chosen either ran-
domly3 (left) or in an adversarial manner (right). The latter means that it is selected so as the
resulting signed margin is smallest over the four tasks. This implies that in the first case each task
is invoked on average 10,000 times. Nothing can be said in hindsight about the task choices for the
adversarial criterion, since this choice is heavily dependent on the online behavior of the classifiers
and the noise in the tasks at hand. In both cases we show to what extent the incurred cumulative
training error for different values of parameter b exceeds the one achieved by the multitask baseline
b = 0, depicted here as a straight horizontal line (a negative value means that the chosen value of
b achieves an error lower than b = 0). Recall that b = 0 amounts to running four independent Per-
ceptron algorithms, while b= 4 corresponds to running the multitask Perceptron algorithm with the
interaction matrix (4). The actual fractions of training error mistakes achieved by the baseline b= 0
are reported in Table 1. In order to illustrate how the generalization capabilities of our algorithms
progress over time, four pairs of plots are reported, each one showing, from top to bottom, the frac-
tion of mistakes occurred in the example subsequences 1-10,000, 10,001-20,000, 20,001-30,000,
and 30,001-40,000, respectively.

Figure 5 confirms that multitask algorithms get more and more competitive as tasks get closer
(since tasks are uncorrelated in D1 and totally overlapped in D8). Unsurprisingly, this advantage is
higher as we increase the value of b. In fact, Figure 5 clearly shows that the delta errors from b= 0
decrease faster, when going from D1 to D8, as we increase b. This amounts to saying that the more
we bias our algorithm towards a possible correlation the more we benefit from an actual correlation
among tasks. Moreover, it is worth observing that the (rather conservative) choice b= 1 obtains an

3. In this case the results are averaged over 3 runs. The observed results were within a 0.002 interval of the plotted
values in all 3 runs.
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Figure 5: Online behavior of the multitask Perceptron algorithm. We report the extent to which
during a single pass over the entire data set the fraction of training mistakes made by
the multitask Perceptron algorithm (with b= 1,4,8,16) exceeds the one achieved by the
baseline b= 0, represented here as an horizontal line. On the x-axis are the multitask data
sets whose tasks have different levels of correlations, from low (D1) to high (D8). Task
indices are randomly chosen in the left plots and adversarially selected in the right ones.
The pair of plots on top reports the online training behavior on the first 10,000 (multitask)
examples, the second from top refers to the second 10,000 examples, and so on.
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Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10,000 0.154 0.198 0.207 0.206 0.202 0.196 0.185 0.166

10,001-20,000 0.104 0.141 0.159 0.157 0.152 0.149 0.135 0.120
20,001-30,000 0.095 0.126 0.139 0.138 0.131 0.127 0.115 0.099
30,001-40,000 0.085 0.125 0.132 0.135 0.132 0.124 0.117 0.101

Table 2: Fractions of training errors made by the baseline p= 1 on consecutive sequences of mul-
titask examples after a single pass on the data sets D1-D8.

Parameters Training Error Test Error StdDev
P=1 19.0% 13.4% 1.7%
P=2 16.7% 10.9% 1.3%
P=3 16.4% 10.6% 1.6%
P=4 16.6% 9.7% 1.5%
P=5 17.1% 10.2% 1.9%

Table 3: Training errors recorded after a single pass over the spam data set, along with the cor-
responding test errors. The values are averaged over 40 repetitions of a 10-fold cross-
validation scheme. The standard deviation for the test error is reported in parentheses. The
standard deviation for the training error is negligible and is therefore omitted.

overall better performance than the multitask baseline b= 0, with a higher cumulative error only on
the first data set.

We then evaluated the 2p-norm matrix multitask Perceptron algorithm on the same data set. In
this case, we dropped the task choice mechanism since the algorithm is designed to receive all the
four instance vectors and to output four predicted labels at each time step. We limited our exper-
iments to the first 10,000 multitask examples. This allows us to make the results achieved by the
2p-norm matrix multitask Perceptron algorithm somehow comparable (i.t.o. total number of binary
labels received) with the ones achieved by the multitask Perceptron algorithm under the random task
selection model (the four plots on the left in Figure 5). In Figure 6 we report the (differential) frac-
tions of online training mistakes made by the algorithm on the subsequences 1-2,500, 2,501-5,000,
5,001-7,500 and 7,501-10,000, of multitask examples. The actual fractions of online training error
mistakes achieved by the baseline p= 1 are showed in Table 2. As expected, the more the tasks get
closer to each other the less is the number of wrongly predicted labels output by the 2p-norm matrix
multitask Perceptron algorithm and the larger is the gap from the baseline. In particular, it can be
observed that even in D1 the performance of the 2p-norm matrix multitask Perceptron algorithm is
no worse than the one achieved by the baseline. In fact, while our construction tends to guarantee
that tasks get closer as we move from D1 to D8 (recall how the tasks are defined in terms of subsets
of RCV1 categories), we do not really know in advance how dissimilar the tasks in D1 are, and the
performance of the 2p-norm matrix multitask Perceptron algorithm reveals that they are indeed not
so dissimilar.

As a further assessment, we evaluated the empirical performance of the p-norm matrix mul-
titask algorithm on the ECML/PKDD 2006 Discovery Challenge spam data set (for details, see
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Figure 6: Online behavior of the 2p-norm matrix multitask Perceptron algorithm. Again, we report
the extent to which during a single pass over the entire data set the fraction training
mistakes made by the 2p-norm matrix multitask Perceptron algorithm (with p= 2,3,4,5)
exceeds the one achieved by the baseline p = 1, represented here as an horizontal line.
On the x-axis are the multitask data sets whose tasks have different levels of correlations,
from low (D1) to high (D8). The top plot reports the online training behavior on the first
2,500 (multitask) examples, the second from top refers to the second 2,500 examples,
and so on.
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ECML/PKDD, 2006). The data set includes 15 sub-data sets, each one containing 400 spam/ham
emails for 15 different users. Email messages are encoded by a standard bag-of-words vector rep-
resentation. Naturally enough, we associated each user with a different task. The experiments were
run using a 10-fold cross-validation scheme. Each run consists of a single training epoch followed
by a test phase. Since these data are not ordered chronologically as those in RCV1, we repeated
the 10-fold cross-validation process 40 times, preceding each repetition with independent shuffles
of the 15 data sets. Table 3 shows that the 2p-norm matrix multitask algorithm exploits underlying
latent relations and manages to achieve a significant decrease in both the training and test errors.
In particular, the best performance is achieved when p is set to 4, which results in a test error of
9.7%, an improvement of more than 25% relative to the baseline p = 1, or nearly a 4.0% decrease
in absolute terms. Whereas these are average values, the advantage of the 2p-norm matrix multitask
algorithm is still significant even when the standard deviation is factored in. Moreover, in most
runs, the deviation from the average tended to be the on the same side for both p= 1 and p> 1. In
other words, if on a given fold the p-norm matrix multitask Perceptron algorithm with p> 1 made
a larger number of mistakes than its average, the same held true for the baseline. We stress that the
theoretical improvement of a factor K (in this case K = 15), is within reach only if the tasks are
linearly separable and overlapped. In practice we should and could not expect these conditions to
be generally met to their full extent. In particular, while we cannot state how exactly the different
spam classification tasks are spectrally related (since the task are not synthetically generated), it is
apparent that such relations do actually hold to a certain extent. In fact, by considering the specifics
of the learning problem, it is intuitively reasonable that the target spam/ham discriminant functions,
though changing from user to user, still share a significant number of common traits.

8. Conclusions and Open Problems

We have studied the problem of sequential multitask learning using two different approaches to
formalize the notion of task relatedness: via the Euclidean distance between task vectors, or via a
unitarily invariant norm applied to the matrix of task vectors. These two approaches naturally cor-
respond to two different online multitask protocols: one where a single task is selected at each time
step, and one where the learner operates simultaneously on all tasks at each time step. We believe
that both these protocols have their own merits, each one having its array of possible practical appli-
cations. Moreover, while the Schatten-p norm regularization assumption does not make sense in the
adversarially chosen task protocol, it is not difficult to adapt the multitask kernel-based algorithm
of Section 3 to the fully simultaneous protocol and derive a mistake bound analysis in the lines of
the one given in Section 6.

In our worst-case sequential prediction scenario, the best we can hope for i.t.o. prediction per-
formance is a factor K improvement over the baseline running K independent classification algo-
rithms, this is what we essentially achieved in our analysis. We have complemented our theoretical
findings with experiments on real-world data sets showing that our algorithms are efficient and can
effectively take advantage of latent task relatedness.

We conclude by mentioning a few directions along which our results could be extended.

1. In Section 3.2 it might be interesting to devise methods for dynamically adapting the b pa-
rameter as new data are revealed.
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2. In Section 3.3 we have shown a simple adaptation to the case when the graph of tasks (i.e.,
interaction matrix A) is known ahead of time. Is it possible to achieve meaningful bounds
when the graph is hidden, and can only be progressively inferred through the choices of it?

3. Our multitask regularization techniques rely on the fact that different tasks need to be em-
bedded, either naturally or through some sensible preprocessing, in the same d-dimensional
space. It would be interesting to devise a multitask algorithm that does not impose such a
constraint.

4. Finally, we believe it would also be interesting to prove lower bounds on the number of
mistakes as a function of task relatedness.
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Appendix A.

The following trace inequality, which can be seen as a kind of Holder’s inequality applied to non-
square matrices, is our main technical tool in the proof of Theorem 9.

Lemma 13 Let A, B be positive semidefinite matrices, of size d× d and K×K respectively, with
the same nonzero eigenvalues. Let X be an arbitrary real matrix of size d×K. Then, for any pair
on nonnegative exponents l,g≥ 0, we have

TR(X"AlXBg)≤
(
TR(X"X)p

)1/p(
TR A(l+g)q)1/q

where 1/p+1/q= 1, p≥ 1.

Proof We first consider the case l ≤ g. By the Cauchy-Schwartz and Holder’s inequalities applied
to traces (Magnus and Neudecker, 1999, Chapter 11) we have

TR(X"AlXBg) = TR
(
B(g−l)/2X"AlXB(g+l)/2) (20)

≤ TR
(
X"A2lXBg−l

)1/2
TR

(
X"XBg+l

)1/2

≤ TR
(
X"A2lXBg−l

)1/2Tp
(
X"X

)1/2Tq
(
Bg+l

)1/2

where we used the shorthand Tr(Z) = (TRZr)1/r. In the case when l > g we can simply swap the
matrices X"Al and XBg and reduce to the previous case.

We now recursively apply the above argument to the left-hand side of (20). Recalling that
Tq(A) = Tq(B) and Tp(X"X) = Tp(XX"), after n steps we obtain

TR
(
X"AlXBg

)
≤

(
TR(X"Al

′
XBg

′
)
)1/2nTp

(
X"X

)∑ni=1(1/2)iTq
(
Bg+l

)∑ni=1(1/2)i
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for some pair of exponents l′,g′ ≥ 0 such that l′+g′ = l+g. Since for any such pair l′,g′, we have
TR(X"Al′XAg′)< ∞, we can take the limit as n→ ∞. Recalling that ∑∞

i=1(1/2)i = 1 completes the
proof.

We are now ready to prove Theorem 9.
Proof [Theorem 9] We set

G(V ) =
1
2
‖V‖2s2p =

1
2
TR

(
(V"V )p

)1/p
.

Since G(V ) is twice4 continuously differentiable, by the mean-value theorem we can write

D(Vs‖Vs−1) =
1
2
(VECMt)

"HG(ξ)VEC(Mt) (21)

where HG denotes the Hessian matrix of (matrix) function G and ξ is some matrix on the line
connecting Vs−1 to Vs. We start by computing the first derivative,

∇G(V ) =
1
2
∇TR

(
(V"V )p

)1/p
=
1
2p

TR
(
(V"V )p

)1/p−1
∇TR

(
(V"V )p

)
. (22)

Then, by applying the chain rule to ∇
(
TR(V"V )p

)
and using (15) and (16) we obtain

∇TR
(
(V"V )p

)
= pVEC

(
(V"V )p−1

)"
(IK2 +TK2)(IK⊗V")

= pVEC
(
(V"V )p−1

)"
(IK⊗V")

+ p
(
TK2VEC

(
(V"V )p−1

))"
(IK⊗V")

(since V"V and TK2 are symmetric)
= 2p

(
(IK⊗V )VEC(V"V )p−1

)"

= 2pVEC
(
V (V"V )p−1

)" (23)

the last equation following from (12). We now substitute (23) back into (22) and obtain

∇G(V ) = c(V )VEC(D)"

where we set for brevity D = VBp−1 and c(V ) = TR(Bp)1/p−1 with B = V"V . Taking the second
derivative HG = ∇2G gives

HG(V ) = VEC (D)∇c(V )+ c(V )∇D .

Recalling the definition of c(V ) and using (15) it is easy to see that VEC (D)∇c(V ) is the Kd×Kd
matrix

(1− p)TR
(
Bp

)1/p−2
VEC(D)VEC(D)". (24)

Since p ≥ 1 this matrix is negative semidefinite, and we can disregard it when bounding from the
above the quadratic form (21). Thus we continue by considering only the second term c(V )∇(D)
of the Hessian matrix. We have

∇D=
(
Bp−1⊗ Id

)
+(IK⊗V )∇Bp−1

4. In fact G is C∞ everywhere but (possibly) in zero, since TR
(
(V"V )p

)
is just a polynomial function of the entries of

V . Moreover TR
(
(V"V )p

)
= 0 if and only if V is the zero matrix.
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where

∇(Bp−1) =

(
p−2

∑
!=0

B!⊗Bp−2−!

)

(IK2 +TK2)
(
IK⊗V"

)
.

Putting together

(21) ≤
c(V )
2

VEC(Mt)
"(Bp−1⊗ Id)VEC(Mt)

+
c(V )
2

VEC(Mt)
"(IK⊗V )Σ×

×(IK2 +TK2)
(
IK⊗V"

)
VEC(Mt) (25)

where we used the shorthand Σ=∑
p−2
!=0 B

!⊗Bp−2−!. We now bound the two terms in the right-hand
side of (25). Using again (12) combined with (13) we can write

c(V )
2

VEC(Mt)
"(Bp−1⊗ Id)VEC(Mt) =

c(V )
2

TR(M"
t XtBp−1)≤

1
2
TR

(
(M"

t Mt)
p)1/p

independent ofV . The majorization follows fromHolder’s inequality applied to the positive semidef-
inite matrices M"

t Mt and Bp−1 (Magnus and Neudecker, 1999, Chapter 11). Moreover, it is easy to
see that the symmetric matrices Σ and TK2 commute, thereby sharing the same eigenspace, in fact

TK2Σ=
p−2

∑
!=0

TK2
(
B!⊗Bp−2−!

)
=

p−2

∑
!=0

(
Bp−2−!⊗B!

)
TK2 = Σ TK2 .

Hence, Σ(IK2 +TK2)! 2Σ, and we can bound from above the second term in (25) by

c(V )VEC(Mt)
"
p−2

∑
!=0

B!⊗Ap−1−!VEC(Mt) (26)

where we set A = VV". Again, (12) and (13) allow us to rewrite this quadratic form as the sum of
traces

c(V )
p−2

∑
!=0

TR(M"
t Ap−1−!MtB!) .

Since A and B have the same nonzero eigenvalues, we can apply Lemma 13 to each term and put
together as in (25). After simplifying we get

(21)≤
1
2
(2p−1)TR

(
(M"

t Mt)
p)1/p=

1
2
(2p−1)||Mt ||2s2p .

Substituting back into (18), and recalling that ‖U‖∗ = ‖U‖s2q in the case of Schatten norms, yields

µ ≤ ∑
t∈M

!t (U)+‖U‖s2q

√
(2p−1) ∑

t∈M
‖Mt‖2s2p

≤ ∑
t∈M

!t (U)+‖U‖s2q

√√√√
(2p−1)max

t∈M

‖Mt‖2s2p
‖ t‖1

µ .
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Solving the inequality for µ, and overapproximating via
√
a+b≤

√
a+

√
b we now obtain

µ≤ ∑
t∈M

!t (U)+(2p−1)
(
Ms2p ‖U‖s2q

)2
+Ms2p ‖U‖s2q

√
(2p−1) ∑

t∈M
!t (U)

thereby concluding the proof.

The core of the above analysis is an upper bound on the second-order term of the Taylor expansion
of the Schatten p-norm around Vs−1. Our proof of this bound is based on a direct matrix analysis.
A more general bound has independently been derived in Juditsky and Nemirovski (2009, Proposi-
tion 3.1) and used in Kakade et al. (2009), where the unitarily invariant norms of our analysis are
replaced by general convex functions.
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Abstract
To handle problems created by large data sets, we propose a method that uses a decision tree to
decompose a given data space and train SVMs on the decomposed regions. Although there are other
means of decomposing a data space, we show that the decision tree has several merits for large-scale
SVM training. First, it can classify some data points by its own means, thereby reducing the cost
of SVM training for the remaining data points. Second, it is efficient in determining the parameter
values that maximize the validation accuracy, which helps maintain good test accuracy. Third, the
tree decomposition method can derive a generalization error bound for the classifier. For data sets
whose size can be handled by current non-linear, or kernel-based, SVM training techniques, the
proposed method can speed up the training by a factor of thousands, and still achieve comparable
test accuracy.
Keywords: binary tree, generalization error ı̈bound, margin-based theory, pattern classification,
tree decomposition, support vector machine, VC theory

1. Introduction

Support vector machines (SVMs) have proven very effective for solving pattern classification prob-
lems (Cortes and Vapnik, 1995; Vapnik, 1995). Because of the growing trend to apply them to
various domains of interest, including bioinformatics, computer vision, data mining and knowledge
discovery, the size of training data sets continues to grow at a rapid rate. At the same time, there is
an ongoing effort to speed up the SVM training. One approach, called the numerical technique in
this paper, seeks efficient solutions to SVM optimization problems.

Well-known numerical methods for solving dual optimization problems include sequential min-
imal optimization (SMO) (Platt, 1998) and SVMlight (Joachims, 1998). Both methods break a large
problem into a series of small problems in order to reduce the amount of memory required for
computation. SMO, in particular, has proven superior to similar methods, such as the projected
conjugated gradient “chunking” algorithm (Burges, 1998) and Osuna’s algorithm (Osuna et al.,
1997). For solving dual problems, there are now many new and faster methods, including LASVM
(Bordes et al., 2005), maximum-gain working set selection (Glasmachers and Igle, 2006), SVMperf

(Joachims, 2006), LaRank (Bordes et al., 2007), Pegasos (Shalev-Shwartz et al., 2007), bundle
methods (Smola et al., 2007), and LIBLINEAR (Fan et al., 2008).
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A new direction that has attracted increasing interest in recent years uses the stochastic gradient
descent (SGD) technique to solve large-scale SVM problems. The advantage of SGD is that it
implements an online learning process that converges to an optimal solution in one examination of
the training samples. The above-mentioned LASVM, LaRank and Pegasos algorithms apply SGD
to dual optimization problems. There are also algorithms that apply SGD to primal optimization
problems, for example, NORMA (Kivinen et al., 2004) and SGD-QN (Bordes et al., 2009).

In addition to the methods for solving dual or primal problems, a number of approaches for
solving large SVMs have been proposed, including core vector machines (Tsang et al., 2005) and
OCAS (Franc and Sonnenburg, 2008). Readers may refer to a useful paper by Menon (2009) for
more details of the numerical methods.

Another type of approach, called data-reduction in this paper, reduces a large training data set
to one or several small data sets. If only one reduced set is obtained, we call the method single-set
reduction (SSR); and if multiple reduced sets are obtained, we call the methodmultiple-set reduction
(MSR). In the latter case, SVM training is conducted on each of the reduced sets and all the SVMs
are combined into a final classifier.

We review MSR methods first. Perhaps the simplest MSR method is bagging (Breiman, 1996).
It employs a number of down-sampled data sets to train SVMs, which jointly classify a test object
based on majority vote. The boosting method (Schapire, 1990; Schapire and Singer, 2000) trains
SVMs in a sequential manner, and the training of a particular SVM is dependent on the training
and performance of previously trained SVMs. The divide-and-combine strategy (Rida et al., 1999)
decomposes an input space into possibly overlapping regions, assigns each region a local predic-
tor, and combines the local predictors to derive a global solution to the prediction problem. The
Bayesian committee machine (Tresp, 2000) partitions a large data set into smaller ones, and the
SVMs trained on the reduced sets jointly define the posteriori probabilities of the classes into which
test objects are categorized. The method proposed by Collobert et al. (2002) divides a set of input
samples into smaller subsets, assigns each subset a local expert, and forms a loop to re-assign sam-
ples to local experts according to how well the experts perform. The cascade SVM method (Graf
et al., 2004) also splits a large data set into smaller sets and extracts support vectors (SVs) from each
of them. The resulting SVs are combined and filtered in a cascade of SVMs. A few passes through
the cascade ensures that the optimal solution is found.

On the SSR side of the data-reduction approach, the squashing method (Pavlov et al., 2000) uses
a likelihood-based squashing technique to obtain a reduced data set, and then trains linear SVMs
on that set. The sparse greedy approximation method (Smola and Schölkopf, 2000) constructs a
compressed representation of the design matrix involved in the QP problem; while information
vector machines (Lawrence et al., 2003) use a sparse Gaussian process to select training samples
using criteria based on information-theoretic principles. Clustering-based SVM (Yu et al., 2003)
applies a hierarchical clustering algorithm to obtain a reduced data set, which is used to train SVMs.
The concept boundary detection (CBD) method (Panda et al., 2006) prepares nearest-neighbor lists
as training samples, and uses a special down-sampling technique to extract the data points that lie
close to class boundaries. This method can find a single set of near-boundary points for all class
pairs. In contrast, many other methods that use SVMs to analyze training samples have to find
different reduced sets for different class pairs, since SVMs can only work on one class pair at a
time. For more details of data-reduction methods proposed up to 2001, readers may refer to Tresp
(2001).
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Finally, we remark that the numerical and data reduction approaches, instead of competing,
can actually complement each other’s functions. The data reduction approach must train SVMs on
reduced data sets, so having an efficient numerical method to perform the task would certainly be
useful. The numerical approach, on the other hand, could benefit by using an efficient data reduction
method to reduce its computational burden.

In this paper, we propose a method that decomposes a large data set into a number of smaller
ones and trains SVMs on each of them. This approach can reduce the total training time because
the time complexity of training an SVM is in the order of n2, where n is the number of training
samples (Platt, 1998; Joachims, 1998) . If each smaller problem deals with σ samples, then the
complexity of solving all the problems is in the order of (n/σ)×σ2 = nσ, which is much smaller
than n2 if n is significantly higher than σ. Decomposing a large problem into smaller problems has
the added benefit of reducing the number of SVs in each of the resultant SVMs. Since a test sample
is classified by only one of these SVMs, the decomposition strategy reduces the time required for
the testing process in which the number of SVs dominates the complexity of the computation. One
additional benefit of the decomposition approach is the ease of using multi-core/parallel/distributed
computing for further speedup, since the SVM problems associated with the decomposed regions
can be parallelized idealistically.

The proposed method can be categorized as an MSR method. However, it differs from other
MSR methods in that it uses a decision tree to obtain multiple reduced data sets, whereas other
methods use non-supervised clustering (Rida et al., 1999), random sampling (Breiman, 1996), or
random partition (Tresp, 2000; Collobert et al., 2002; Graf et al., 2004). We thus call our method a
decision-tree support vector machine (DTSVM) and the resultant classifier a DTSVM classifier.

A decision tree decomposes a data space recursively into smaller regions. In terms of the ways
the regions are formed, a decision tree can be classified into three types: axis-parallel, oblique and
Voronoi types. In the axis-parallel type, the regions are bounded by hyperplanes represented as
xi = c, where xi is a feature and c is a real number (Breiman et al., 1984; Quinlan, 1986). In the
oblique type, the regions are bounded by hyperplanes represented as ∑αixi = c, where αi are real
numbers (Murthy et al., 1994; Bennett and Blue, 1998; Wu et al., 1999; Bennett et al., 2000). In the
Voronoi type, the regions are formed as Voronoi cells by way of various clustering techniques (for
a survey, see Dattatreya and Kanal, 1985).

In this paper, we take an axis-parallel decision tree as our decomposition scheme because of its
speed in both the training and testing phases. The other two types of decision trees can certainly be
used as decomposition schemes, but their computational cost is significantly higher than that of the
axis-parallel type. Without conducting a tradeoff study, it is rather difficult to determine whether
the additional cost would yield a noteworthy benefit; therefore, we have decided not to adopt them
at this stage.

A number of studies have attempted to combine decision trees and SVMs. Some of the methods
were designed to improve the classification accuracy (e.g., Bennett and Blue, 1998; Wu et al., 1999;
Bennett et al., 2000; Ramaswamy, 2006; Tibshirani and Hastie, 2007); while others were designed
to speed up the SVM testing process (e.g., Platt et al., 2000; Sahbi and Geman, 2006; Sun et al.,
2007). To the best of our knowledge, using a decision tree to speed up the training of multiclass
SVMs has not been proposed previously.

Using a decision tree as a decomposition scheme can yield following benefits when dealing with
large-scale SVM problems. First, the decision tree may decompose the data space so that certain
decomposed regions become homogeneous; that is, they contain samples of the same labels. Then,
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in the testing phase, when a data point flows to a homogeneous region, we simply classify it in
terms of the common label of that region. This alleviates the burden of SVM training, which is
only conducted in heterogeneous regions. In fact, our experiments revealed that, for certain data
sets, more than 90% of the training samples reside in homogeneous regions; thus, the decision tree
method saves an enormous amount of time when training SVMs. Random partition, on the other
hand, cannot produce such an effect, since random pooling of a set of samples can hardly create a
homogeneous data set due to the independent sampling operation.

Another benefit of using the decision tree is the convenience it provides when searching for all
the relevant parameter values to maximize the solution’s validation accuracy, which in turn helps
maintain good test accuracy rates. The goal of the DTSVM method is to attain comparable vali-
dation accuracy while consuming less time than training SVMs on full data sets. To achieve our
objective, we found that it is important to control the size σ of the tree-decomposed regions as well
as the SVM-parameter values. For some data sets, σ could be set at 1,500; but for other data sets,
it had to be set at a larger value. Thus, in the DTSVM method, σ is an additional parameter to
the usual SVM-parameters. Other MSR methods do not attempt to search for the optimal size of
decomposed regions. Such searches are particularly easy under the DTSVM method because a de-
cision tree is constructed in a recursive manner; hence, obtaining a tree with a larger size of σ does
not require the reconstruction of a decision tree corresponding to that size of σ.

Using a decision tree also reduces the cost of searching for the optimal values of SVM-parameters.
Searching for these values is important, but it takes a tremendous amount of time, especially when
training non-linear SVMs. To the best of our knowledge, no data-reduction method has attempted
to reduce the cost of this operation. Our strategy involves training SVMs with all combinations
of SVM-parameter values, but only for decomposed regions with an initial σ-level. The optimal
values of the SVM-parameters obtained at this level are not necessarily the same as those obtained
at higher levels. However, we observe that the best values for a higher level are usually among the
top-ranked values for the initial level. Therefore, when we want to train SVMs for a higher σ-level,
we only train them with the top-ranked values obtained for the initial level. Given the n2-complexity
of SVM training, restricting the full search of SVM-parameter values to regions with the initial σ-
level certainly reduces the SVM training time. In fact, our experiments showed that such savings
were possible even when the optimal σ-level was higher than that of the full size data set.

Although the decision tree method may not be the only way to achieve the above benefits for
large-scale SVM problems, its effect can be understood in theory and a generalization error bound
can be derived for the DTSVM classifier. The bound is the sum of two terms: the first term domi-
nates in magnitude and is associated with SVM training; and the second term is associated with tree
training. Our experimental results show that the numerical value of the dominant term is as small
as, or of the same order of magnitude as, its counterpart in the generalization error bound for SVM
training conducted on the whole data set. This finding constitutes indirect evidence of the efficacy
of tree decomposition for large-scale SVM problems.

Finally, we remark that it is possible to have multiple decompositions of the same data space
with multiple trees. These trees can be obtained by using a randomized, rather than the optimal,
split point at each tree node (Dietterich, 2000). By so doing, we train SVMs on all the decomposed
regions and classify the test data based on a majority vote strategy. We have actually studied the
effect of such multiple decompositions. In terms of test accuracy, multiple decompositions are
not as effective as searching for the optimal σ-level of decomposed regions in a single decision
tree. In fact, under the latter search scheme, introducing multiple decompositions does not lead to
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any significant improvement. Therefore, to avoid unnecessary complications, we only consider the
decomposition of a data space by a single tree in this paper.

In the experimental study, we divided each data set into training, validation and test compo-
nents. We then used the training component to build DTSVM classifiers, the validation component
to determine the optimal parameters, and the test component to measure the test accuracy. We
adopted two types of SVM training: one-against-one (1A1) (Knerr et al., 1990) and one-against-
others (1AO) (Bottou et al., 1994) . Furthermore, we built non-linear SVMs on the data sets. When
evaluating the DTSVM method, we found it could train DTSVM classifiers that achieved compara-
ble test accuracy rates to those of SVM classifiers. For seven medium-size data sets, in which the
largest number of sample was 494K and the largest number of feature was 62K, DTSVM achieved
speedup factors between 4 and 3,691 for 1A1 training, and between 29 and 5,775 for 1AO training.
Moreover, DTSVM achieved much higher speedup factors than several data reduction methods and
numerical methods. To demonstrate that DTSVM can train classifiers efficiently for larger data sets,
we applied it to four large-size data sets in which the largest number of samples was 4.9M and the
largest number of features was 16.6M. For all the data sets, DTSVM could complete 1A1 training
and 1AO training within 18.25 hours. Note that the training time included the time required to build
a decision tree, the time to train SVMs on all the leaves, and the time to search for the optimal
parameters.

The remainder of this paper is organized as follows. In Section 2, we describe the DTSVM
method. Section 3 details the experimental results. In Section 4, we provide theoretical results for
the DTSVM method. Section 5 contains some concluding remarks.

2. The DTSVMMethod

In this section, we describe the decision tree that we use as the decomposition scheme, and discuss
the training process for the DTSVMmethod. An implementation of the DTSVMmethod is available
at

http://ocrwks11.iis.sinica.edu.tw/dar/Download/WebPages/DTSVM.htm

2.1 The Decision Tree

For the decomposition scheme, we adopt CART (Breiman et al., 1984) or a binary C4.5 scheme
(Quinlan, 1986) that allows two child nodes to grow from each node that is not a leaf. Using a C4.5
scheme that allows multiple child nodes is feasible; however, we do not consider it in this paper,
since a binary C4.5 performs the job rather well for us.

To grow a binary tree, we follow a recursive process, whereby each training sample flowing to a
node is sent to its left-hand or right-hand child node. At a given node E, a certain feature fE of the
training samples flowing to E is compared with a certain value vE so that all samples with fE < vE
are sent to the left-hand child node, and the remaining samples are sent to the right-hand child node.
The values of fE and vE are determined as follows. First, the split point v f of each feature f is
calculated by

v f = argmax
v

IR( f ,v),

where
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IR( f ,v) = I(S)−
|S f<v|
|S|

I(S f<v)−
|S f≥v|
|S|

I(S f≥v),

S is the set of all samples flowing to E; S f<v consists of the elements of Swith f < v; S f≥v= S\S f<v;
|X | is the size of any data set X ; and I(X) is the impurity of X . The impurity function used in our
experiments is the entropy measure, defined as

I(S) =−∑
y
p(Sy) log p(Sy),

where p(Sy) is the proportion of S’s samples whose label is y. Then,

fE = argmax
f

IR( f ,v f ),

and vE is taken as the split point of fE .
We stop splitting a node E when one of the following conditions is satisfied: (i) the number of

samples that flow to E is smaller than a ceiling size σ; or (ii) when IR( f ,v) = 0 for all f and v at
E. The value of σ in the first condition is determined in a data-driven fashion, which we describe
in Section 2.2. The second condition occurs mainly in the following cases. (a) All the samples that
flow to E are homogeneous; or (b) a subset of them is homogeneous and the remaining samples,
although carrying different labels, are identical to some members of the homogeneous subset. There
are other possible cases for the second condition, but their occurrence is extremely rare. If we want
to split E in these cases, we can choose the following split point to minimize the difference between
|S f<v| and |S f≥v|, that is,

v f = argmin
v

∣

∣

∣

∣S f<v
∣

∣−
∣

∣S f≥v
∣

∣

∣

∣ .

After growing a tree, we train an SVM on each of its leaves, using samples that flow to each
leaf as training data (Figure 1). The values of the SVM parameters are also determined in a data-
driven fashion. A tree and all SVMs associated with its leaves constitute a DTSVM classifier, as
shown in Figure 1. In the training phase, all the SVMs in a DTSVM classifier are trained with
the same parameter values. We explain how the optimal values are obtained in Section 2.2. In the
validation/testing process, we first input a given validation/test object x to the tree. If x reaches a
leaf that contains homogeneous samples, we classify x as the label of those samples; otherwise, we
classify it with the SVM associated with that leaf.

2.2 The DTSVM Training Process

Given a training and validation component, we build a DTSVM classifier on the training component
and determine its optimal parameter values with the help of the validation component. The param-
eters associated with a DTSVM classifier are: (i) σ, the ceiling size of the decision tree; and (ii) the
SVM parameters. Their optimal values are determined in the following manner.

We begin by training a binary tree with an initial ceiling size σ0, and then train SVMs on the
leaves with SVM-parameters θ∈Θ, whereΘ is the set of all possible SVM-parameter values whose
effects we want to evaluate. Note that we express θ in boldface to indicate that it may consist of
more than one parameter. Let v(σ0,θ) be the validation accuracy of the resultant DTSVM classifier.
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Figure 1: The architecture of a DTSVM classifier: a tree and all its leaves (L1 to L6) are produced
and SVMs are trained on the leaves.

Next, we want to construct DTSVM classifiers with larger ceiling sizes, but we only train their
associated SVMs with k top-ranked θ. To do this, we rank θ in descending order of v(σ0,θ). Let Θk
be the set that consists of k top-ranked θ.

More specifically, we implement the following sub-process, denoted as SubProcess(θ), for each
θ ∈Θk.

1. Set t = 0 and get the binary tree with the ceiling size σ0.

2. Increase t by 1 and set σt = 4×σt−1. Modify the tree with ceiling size σt−1 to obtain a tree
with ceiling size σt . This is done by moving from the root towards the leaves and retaining
each node whose parent’s size is greater than σt . Then, train SVMs on the leaves with SVM-
parameters θ. Let v(σt ,θ) be the validation accuracy of the resultant DTSVM classifier.

3. If v(σt ,θ)−v(σt−1,θ)≥ 0.5% and σt is less than the size of the training component, proceed
to step 2.

4. Let σ(θ) = σt−1 if v(σt ,θ)− v(σt−1,θ) < 0.5% or σ(θ) = σt if σt is greater than or equal to
the size of the training component.

When we have completed SubProcess(θ) for all θ ∈Θk, we define

θopt = argmax
θ∈Θk

v(σ(θ),θ) and σopt = σ(θopt).

We then output the DTSVM classifier with the SVM-parameter θopt and the ceiling size σopt .
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Figure 2: The test accuracy rates obtained by DTSVM on the seven data sets when σ0 = 1,500 and
k = 1, 3, 5, 7 and 9.

Note that, in each SubProcess(θ), we set σt as quadruple the size (rather than double the size)
of σt−1 for two reasons. First, quadrupling the size produces more significant differences between
v(σt ,θ) and v(σt−1,θ), especially when t is small. This means that if a SubProcess terminates at a
small t, there is less risk of a low validation accuracy rate. Second, quadrupling the size enables the
training process to progress at a faster pace. This means that if a SubProcess terminates at a large t,
it moves more rapidly towards that end of the process.

The initial ceiling size σ0 (=1,500) and the number k (=5) of the top-ranked parameters are set
heuristically. To observe how these settings impact the test accuracy, we first fix σ0 at 1,500 and
vary k from 1 to 9 at a step size of 2; we then plot the test accuracy rates obtained by DTSVM on
the seven data sets whose details are shown in Table 1. Figure 2 shows that any value of k is good
for all the data sets except “Letter”, while k = 5 or 7 is particularly good for “Letter”. Moreover,
setting the right value of k improves the test accuracy of “Letter” significantly. Next, we fix k at 5
and vary σ0 from 500 to 3,000 with a step size of 500. As shown in Figure 3, varying the value of
σ0 does not affect the test accuracy of any data set significantly.

3. Experimental Results

In this section, we describe the data sets used in the experiments and the methods that we compared.
We then present and discuss the experimental results.
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Figure 3: The test accuracy rates obtained by DTSVM on the seven data sets when k = 5, and σ0 =
500, 1,000, 1,500, 2,000, 2,500 and 3,000.

3.1 The Data Sets

In the experiments, we divided the data sets into two groups. The first group was used to evaluate
the efficiency of DTSVM and some alternative methods in terms of speeding up SVM training. The
second group was used to verify that the DTSVM method could handle much larger data sets, for
which most of the alternative methods required an excessive amount of time to complete the training
process. The first group comprised seven medium-size data sets, ranging from 10K to 494K in size,
as shown in Table 1. Most of the data sets have less than 50 features, but the “News20” has 62,060
features. The second group comprised four large-size data sets, ranging from 240K to 4,898K in
size, as shown in the Table 2. The “Webspam” data set is not very large in terms of the number of
samples (240K), but the number of features is more than 16M; thus, we consider it a large-size data
set. All the data sets were obtained from UPI repository (Newman et al., 1998), with the following
two exceptions: “PPI”, which was used in a protein-protein interaction study (Tseng et al., 2010),
and “Webspam”, which was obtained from

http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
Note that the actual “Poker” data set in the repository contains 1 million samples; however, we only
used its training component in our experiments.

We randomly divided each data set into six parts of approximately equal size, and used four
parts as the training component, one part as the validation component, and the remaining part as the
test component. The DTSVM classifiers were trained on the training and validation components,
as described in Section 2.2. On completion of the training process, we applied the output DTSVM
classifier to the corresponding test data set to obtain the test accuracy rate. All the data sets, divided
into training, validation and test components, are available on the following website.
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Data set No. of Labels No. of Samples No. of Features
Pen Hand Written (PHW) 10 10,992 16

Letter 26 20,000 16
Shuttle 7 58,000 9
Poker 10 25,010 10

Census Income (CI) 2 45,222 14
News20 20 19,927 62,060

KDD CUP 10% (KDD-10%) 5 494,021 41

Table 1: The medium-size data sets used in our experiments.

Data set No. of Labels No. of Samples No. of Features
Forest 7 581,012 54
PPI 2 1,249,814 14

KDD-full 5 4,898,431 41
Webspam 2 240,000 16,609,143

Table 2: The large-size data sets used in our experiments.

http://ocrwks11.iis.sinica.edu.tw/dar/Download/DataSets/DTSVM/datasets.htm
In each data set, we normalized all the feature values to a real number between 0 and 1. We did

this by transforming each value v of feature f into (v− fmin)/( fmax− fmin), where fmax and fmin are
the maximum and minimum values of f respectively.

We only studied non-linear SVMs in our experiments. Moreover, we used the RBF kernel
function to measure the similarity between vectors. As a result, we had two SVM parameters: the
penalty factor C, whose values were taken from Φ = {10a : a = −1,0, . . . ,5}; and the γ parameter
in the RBF function, whose values were taken fromΨ= {10b : b=−4,−3, . . . ,4}. Thus, the set of
all SVM parameter values was Θ=Φ×Ψ, which comprised 63 pairs of values for (C,γ).

SVM training is implemented under the 1A1 and 1AO approaches. When the 1A1 approach is
used, there are n(n− 1)/2 classifiers, where n is the number of labels. Each classifier assigns one
of two possible labels to a given validation/test sample. We use all the classifiers to classify a given
validation/test sample x, based on a majority vote. Note that a more efficient technique (Platt et al.,
2000) that only requires n classifiers can be used in the validation/testing procedure. However, we
adopt Knerr et al.’s (1990) technique, which requires n(n− 1)/2 classifiers, because we are only
interested in the relative, rather than the absolute, performance of the methods compared in our
experiments. When the 1AO approach is used, there are n decision functions, each of which is
associated with a label. We assign x the label associated with the decision function that yields the
highest functional value.

3.2 Methods Compared

The following methods are compared in our experiments.
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CART. CART (Breiman et al., 1984) is similar to the decomposition scheme used in DTSVM,
but it differs in terms of the stop and classification criteria. In the training phase, CART stops
splitting a node when IR( f ,v) = 0 for all features f and their values v. In the testing phase, it
classifies a test sample x by the label shared by the majority of samples residing at the leaf to which
x flows. Although CART is not designed for speeding up SVMs, it serves here as a benchmark for
DTSVM. If CART performs as well as DTSVM in every respect, then there is no need for DTSVM,
since CART runs much faster than DTSVM in both the training and testing phases.

RDSVM. RDSVM (randomized SVM) is an alternative to DTSVM that differs from DTSVM in
the way it decomposes a data space. In the training phase, when a size σ is given, DTSVM randomly
assigns a training sample to one of d subsets, where d is the smallest integer that is greater than or
equal to n/σ and n is the number of training samples. RDSVM uses the same procedure as DTSVM
to search for the optimal parameters. In the testing phase, RDSVM randomly assigns a test sample
to a subset and classifies it according to the SVM associated with that subset.

Bagging. When implementing bagging (Breiman, 1996), we created a number of SVMs for
each θ ∈ Θ. Each SVM was trained on 1,500 training samples chosen at random. For each θ, the
training was conducted sequentially. We stopped at the first m so that the validation accuracy rate
of m SVMs did not exceed that of m−1 SVMs by more than 0.5%.

CBD. The training process of CBD (Panda et al., 2006) comprises two steps: finding a reduced
set, and training an SVM on that set for each θ ∈ Θ. The first part involves finding the k-nearest
neighbors of each training sample and deriving the reduced data set via a down-sampling technique.
Following Panda et al. (2006), we set k at 100. When searching for the 100 nearest neighbors of
each training sample x, we keep the current list of 100 nearest neighbors of x. For another training
sample z, let d(x,z) be the distance between x and z. We need to compare this distance with d(x,w),
where w is on the current list and has the largest distance with x. Since the squared distance is the
sum of the squared feature differences, we can speed up the comparison by computing the partial
sum of d2(x,z). When this partial sum exceeds d2(x,w), we stop the comparison and exclude z
from the current list of x.

LIBSVM. LIBSVM (Fan et al., 2005) is now the most widely used software for training and
testing SVMs. We take it as the baseline in our experiments; thus, the speedup factor is 1 by
assumption. If a compared method is faster in training than LIBSVM, it has a speedup factor above
1.

LASVM. LASVM (Bordes et al., 2005) is a method that solves a dual optimization problem by
way of a stochastic gradient descent method that converges to an optimal solution in one examina-
tion of the training samples.

LIBLINEAR. LIBLINEAR (Fan et al., 2008) is a fast version of training and testing linear
SVMs. Its training speed is comparable to, or even faster than, that of Pegasos (Shalev-Shwartz
et al., 2007) and SVMperf (Joachims, 2006). Since LIBLINEAR is not a method for speeding up
non-linear SVMs, we only include it in our experiments for large-size data sets, for which bagging,
CBD, LIBSVM and LASVM take too long to complete the training process. When we train linear
SVMs, the values of the penalty factor C are taken from Φ= {10a : a=−1,0, . . . ,5}, which com-
prises 7 real numbers. Furthermore, we require the discriminant function of the classifier to include
a bias term.

Among the above methods, DTSVM, RTSVM, bagging and CBD are data reduction methods,
while LIBSVM, LASVM and LIBLIEAR are numerical methods.
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3.3 Results on Medium-Size Data Sets

The results of applying seven methods, CART, DTSVM, RDSVM, bagging, CBD, LIBSVM and
LASVM, to the seven medium-size data sets are shown in Figures 4-8 for 1A1 training, and in
Figures 9-13 for 1AO training. In all SVM training sessions, except for LASVM, we used the
LIBSVM software (Fan et al., 2005). We adopted all default options of the software, except the
parameter values, which we specified in Section 3.1.

Figure 4 and Figure 9 show the training times of the seven methods. The training time of each
method comprises the time required to obtain reduced data sets if it is a data reduction method, the
time to train all SVMs and the time to search for optimal parameters; however, the time required
to input or output data is not included. The computation for all the medium-size data sets was
performed on an Intel Xeon CPU 3.2 GHz with a 2GB RAM, while that for all the large-size data
sets was performed on a Quad-Core Intel Xeon X5365 3.0GHz CPU and 32GB RAM.

Figure 5 and Figure 10 show the speedup factors of all the methods except LIBSVM, where the
speedup factor of a method M is computed as LIBSVM’s training time divided by M ’s training
time.

Figure 6 and Figure 11 show the test accuracy rates of the four compared methods. Note that
the DTSVM test accuracy is that of the DTSVM classifier with the ceiling size σopt and SVM-
parameters θopt . When classifying a test sample with SVMs, the most time-consuming part is
computing a decision function, whose complexity can be measured in terms of how many SVs are
encountered in the classification. Therefore, we use the “number of encountered support vectors”
(NESV) as a measure of the time-complexity of the test process. NESV is defined as the number
of SVs contained in the decision function used to classify a test sample. When a DTSVM or an
RDSVM classifier is used, the NESV is associated with the leaf that the test sample flows to. Thus,
in the two cases, NESV is the average number of SVs encountered by a test sample.

Figure 7 and Figure 12 list the NESVs of the four methods; while Figure 8 and Figure 13 show
the NESV ratios of all the methods except LIBSVM and CART, where the NESV ratio of a method
M is computed as LIBSVM’s NESV divided byM ’s NESV.

We now summarize the results shown in Figures 4 to 13.

1. There is no doubt that CART was extremely fast in training, but its test accuracy was poor,
except on the “Shuttle” and “KDD-10%” data sets, where its accuracy matched the best of all
the other methods.

2. In terms of training time, DTSVM outperformed all the other methods, except CART; and
in terms of test accuracy and NESV, DSTVM outperformed or performed comparably to all
the other methods. It also achieved very large speedup factors and NESV ratios on “Shuttle”,
“Poker”, “CI” and “KDD-10%”.

3. RDSVM, being an alternative approach to DTSVM, achieved comparable test accuracy to
DTSVM. However, it performed worse in terms of training time on “Shuttle”, “Poker” and
“KDD-10%”. It also performed worse in terms of NESV on “Shuttle”, “Poker”, “CI” and
“KDD-10%”.

4. CBD achieved speedup factors above 1 and NESV ratios above 1 on most data sets; however,
its scores were overall not as high as those of DTSVM. In addition CBD lagged behind
DTSVM in terms of test accuracy on “Letter” and “News20”.
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Figure 4: Training times of the seven compared methods, expressed in seconds. Training type =
1A1. CART, DTSVM and RDSVM outperformed the other methods.

Figure 5: Speedup factors of all the methods except LIBSVM. Training type = 1A1. CART,
DTSVM and RDSVM outperformed the other methods.
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Figure 6: Test accuracy rates of all the methods. Training type = 1A1. CART performed poorly on
several data sets; while CBD and Bagging lagged behind DTSVM on some data sets.

Figure 7: The NESVs of all the methods except CART. Training type = 1A1. DTSVM outper-
formed all the other methods.
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Figure 8: The NESV ratios of all the methods except CART and LISBSM. Training type = 1A1.
DTSVM outperformed all the other methods.

Figure 9: Training times of all the methods, expressed in seconds. Training type = 1AO. CART,
DTSVM and RDSVM outperformed the other methods.
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Figure 10: Speedup factors of all the methods except LIBSVM. Training type = 1AO. CART,
DTSVM and RDSVM outperformed the other methods.

Figure 11: Test accuracy rates of all the methods. Training type = 1AO. CART performed poorly
on several data sets; while CBD and Bagging lagged behind DTSVM on some data sets.
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Figure 12: The NESVs of all the methods except CART. Training type = 1AO. DTSVM outper-
formed all the other methods.

Figure 13: The NESV ratios of all the methods except CART and LIBSVM. Training type = 1AO.
DTSVM outperformed all the other methods.
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PHW Letter Shuttle Poker CI News20 KDD-10%
1A1 DTSVM 7,694 183,450 181 88,935 8,975 207,290 1,638

LIBSVM 8,073 183,450 1,134 140,990 10,451 210,560 2,287
1AO DTSVM 1,775 16,200 195 42,775 8,975 39,122 1,580

LIBSVM 1,210 16,201 266 39,024 10,451 42,628 1,566

Table 3: The total number of SVs produced by DTSVM and LIBSVM on medium-size data sets.
The two methods produced about the same numbers of SVs, even though DTSVM has
much smaller NESVs than LIBSVM.

5. Bagging achieved speedup factors below 1 and NESV ratios below 1 on several data sets. It
also lagged behind DTSVM in terms of test accuracy on “Letter” and “News20”.

6. LASVM, being an alternative numerical method to LIBSVM, achieved speedup factors slightly
above 1 on most data sets, but its scores were much lower than those of DTSVM. LASVM
also achieved NESV ratios above 1 on most data sets, although they were generally not as
high as those of DTSVM. An unexpected result occurred in the 1AO training on “KDD-
10%”, where LASVM obtained very high NESVs compared to LIBSVM, resulting in a low
NESV ratio (0.1). We double checked the process to confirm that the above result was correct.

Finally, we provide some additional information about DTSVM. In Table 3, we show the total
number of support vectors (TNSV) produced by DTSVM and LIBSVM on all medium-size data
sets. TNSV expresses the space-complexity of a training process, whereas NESV expresses the
time-complexity of a test process. For DTSVM, the NESV is smaller than the TNSV in most cases,
because a test sample usually encounters only some, rather than all, SVs. For LIBSVM, NESV is
always the same as TNSV. Note that DTSVM achieved much smaller NESVs on many data sets,
but it produced about the same TNSV on all the data sets.

Table 4 shows the DTSVM testing times, as well as the LIBSVM and CART testing times for
comparison. As expected from the NESV results, DTSVM’s testing time is shorter than that of
LIBSVM on all the data sets. We further divide DTSVM’s testing time into the time spent on the
decision-tree component (DTC) and that spent on local SVMs (lSVMs). In Table 4, the times are
separated by a semi-colon. Clearly, the DTC testing time takes an extremely small proportion of
DTSVM’s testing time. In fact, it is so small that it cannot be measured accurately by the timing
mechanism. CART’s testing time, on the other hand, is higher than that of the DTC because CART-
trees usually grow to deeper levels than DTC-trees.

3.4 Results on Large-Size Data Sets

The results of applying four methods, CART, DTSVM, RDSVM and LIBLINEAR, to the four large-
size data sets are shown in Figures 14-16 for 1A1 training, and in Figures 17-19 for 1AO training.
Once again, we used the LIBSVM software for all SVM training sessions of DTSVM and RDSVM.

We summarize the results on large-size data sets as follows.

1. Even though DTSVM was not as fast as CART and LIBLINEAR in training, it achieved
consistently high test accuracy rates on all the four data sets. It outperformed LIBLINEAR

2952



TREE DECOMPOSITION FOR LARGE-SCALE SVM PROBLEMS

PHW Letter Shuttle Poker CI News20 KDD-10%
CART 0.063 0.125 0.360 0.157 0.204 0.093 2.187
DTSVM 0.047 3.844 0.000 0.406 0.219 38.141 0.063

1A1 0; 0.047 0; 3.844 0; 0.000 0; 0.406 0; 0.219 0; 38.141 0; 0.063
LIBSVM 0.265 4.078 0.187 7.406 8.453 39.062 7.344
DTSVM 0.062 7.344 0.000 1.125 0.219 126 0.063

1AO 0; 0.062 0; 7.344 0; 0.000 0; 1.125 0; 0.219 0; 126 0; 0.063
LIBSVM 0.328 7.328 0.250 17.313 8.453 138.000 19.875

Table 4: The testing time required by CART, DTSVM and LIBSVM on medium-size data sets. The
time required by DTSVM is lower than that required by LIBSVM. The DTC testing time
takes a very small proportion of DTSVM’s testing time. CART’s testing time is higher
than that of DTC.

Figure 14: Training times of the four methods, expressed in seconds. Training type = 1A1. CART
and LIBLINEAR outperformed the other methods.

and RDSVM on “Forest” and “PPI”, and surpassed CART on “PPI” by a significant margin.
Moreover, DTSVM achieved much lower NESVs than RDSVM on all the data sets.

2. Recall that RDSVM achieved equally good test accuracy rates on all the medium-size data
sets. However, on the large-size data sets, it achieved much lower accuracy rates on “Forest”
and “PPI”, and it yielded much higher NESVs on all the data sets. The results show that
RDSVM is not a good substitute for DTSVM in solving large-scale SVM problems.

3. The results also show that, despite their efficiency in training, CART and LIBLINEAR are
not good substitutes for DTSVM in solving large-scale problems. LIBLINEAR achieved the
best test accuracy rate on “Webspam”, presumably because a linear model fits this data set
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Figure 15: Test Accuracy of the four methods. Training type = 1A1. DTSVM outperformed, or
performed comparably to, the other methods. CART performed rather well compared to
LIBLINEAR.

Figure 16: The NESVs of DTSVM and RDSVM. Training type = 1A1. DTSVM achieved much
lower NESVs than RDSVM.

rather well. However, to verify this assumption, we need to compare the test accuracy rates of
linear and non-linear models. DTSVM offers us an opportunity to make such a comparison.

We also show the total number of SVs produced by DTSVM in Table 5, while the testing times
required by DTSVM and CART are shown in Table 6. DTSVM’s testing time is further divided into
the amount of time required by the DTC and that required by lSVMs. Once again, it is clear that
DTC’s testing time only takes a very small proportion of DTSVM’s testing time. CART’s testing
time is higher than that of DTC because CART-trees usually grow to deeper levels than DTC-trees.
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Figure 17: Training times of the four methods, expressed in seconds. Training type = 1AO. CART
and LIBLINEAR outperformed the other methods.

Figure 18: Test Accuracy of the four methods. Training type = 1AO. DTSVM outperformed, or
performed as well as, the other methods.

3.5 Further Discussion

To gain insight into why DTSVM is so effective, we show in Table 7 the σopt derived by DTSVM
on medium-size data sets, along with the proportion of training samples that flow to homogeneous
leaves. Note that a single table suffices to show all the results because 1A1 training and 1AO training
employ the same decision trees and DTSVM yields the same σopt value for both approaches.

First, we observe that DTSVM required a low ceiling size of 1,500 on all the data sets, except
“Letter” and “News20.” This explains why DTSVM generally achieved good speedup factors and
NESV ratios. Furthermore, the proportion of training samples that flowed to homogeneous leaves
under DTSVM was very high in “Shuttle” and “KDD-10%”. Since no SVM classifier is involved
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Figure 19: The NESVs of DTSVM and RDSVM. Training type = 1AO. DTSVM achieved much
lower NESVs than RDSVM.

Forest PPI KDD-full Webspam
DTSVM 1A1 140,008 594,687 2,752 8,116

1AO 114,958 594,687 2,781 8,116

Table 5: The total number of SVs produced by DTSVM on large-size data sets.

Forest PPI KDD-full Webspam
CART 0.109 0.563 0.281 151.860

1A1 2.485 38.453 1.094 127.000
DTSVM 0.047; 2.438 0.235; 38.218 0.25; 0.844 75; 52.000

1AO 3.859 38.453 1.485 127.000
0.047; 3.812 0.235; 38.218 0.25; 1.235 75; 52.000

Table 6: The testing time required by CART and DTSVM on large-size data sets. DTC’s testing
time only takes a very small proportion of DTSVM’s testing time. CART’s testing time is
higher than that of DTC.

PHW Letter Shuttle Poker CI News20 KDD-10%
σopt 1,500 24,000 1,500 1,500 1,500 24,000 1,500

Proportion 0% 0% 98.42% 0% 15.76% 0% 97.35%

Table 7: The σopt obtained by DTSVM on the medium-size data sets and the proportion of training
samples that flow to homogeneous leaves.
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PHW Letter Shuttle Poker CI News20 KDD-10%
1A1 DTSVM 1,500 24,000 1,500 1,500 1,500 24,000 1,500

RDSVM 1,500 24,000 1,500 24,000 6,000 24,000 1,500
1AO DTSVM 1,500 24,000 1,500 1,500 1,500 24,000 1,500

RDSVM 1,500 24,000 1,500 24,000 24,000 24,000 1,500

Table 8: The σopt values derived by DTSVM and RDSVM on the medium-size data sets.

Data Set Training Mode 1,500 6,000 24,000
Letter 1A1 633 45 90

1AO 2,730 178 373
News20 1A1 1,631 665 757

1AO 7,056 2,952 3,365

Table 9: The DTSVM training times required for different ceiling sizes.

Data Set Training Mode 1,500 6,000 24,000
Letter 1A1 95.35% 96.61% 97.60%

1AO 95.71% 96.91% 97.66%
News20 1A1 67.02% 76.92% 83.22%

1AO 70.82% 79.06% 84.34%

Table 10: The DTSVM test accuracy rates that correspond to different ceiling sizes.

in any homogeneous leaves, DTSVM achieved very high speedup factors and NESV ratios on these
two data sets. The same fact also explains why DTSVM achieved such low NESVs, which even fell
below 1 on “Shuttle”. Note that this phenomenon occurs because decision trees group neighboring
samples into the same leaf. RDSVM, on the other hand, does not produce the same effect because
the probability that all samples will carry the same label in the same randomly decomposed region
is extremely small.

The lack of homogeneous leaves is not the only reason for RDSVM’s poor performance in
training. Table 8 shows the σopt values derived by DTSVM and RDSVM. The results explain why
RDSVM achieved much smaller speedup factors and NESV ratios on “CI” and “Poker”.

Next, we examine the DTSVM results for the “Letter” and “News20” data sets in which the
optimal sizes The σopt exceeded the size of the training component. Thus, the output DTSVM
classifier was trained on the full training component. Even so, DTSVM still achieved speedup
factors above 1 because it only trained lSVMs for all the parameter values on leaves with a ceiling
size of 1,500, which took much less time than training them on the full training component. The
amount of time spent on higher ceiling sizes did not increase at a faster rate, because DTSVM only
trained a small number of lSVMs. Moreover, the lSVMs were trained with top-ranked parameters,
which tended to require less time than those trained with bottom-ranked parameters.
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Forest PPI KDD-full Webspam
σopt 1,500 1,500 1,500 1,500

Proportion 5.55% 1.64% 42.05% 80.63%

Table 11: The σopt values obtained by DTSVM on the large-size data sets and the proportion of
training samples that flowed to homogeneous leaves.

Forest PPI KDD-full Webspam
1A1 DTSVM 1,500 1,500 1,500 1,500

RDSVM 96,000 1,500 1,500 96,000
1AO DTSVM 1,500 1,500 1,500 1,500

RDSVM 1,536,000 1,500 1,500 96,000

Table 12: The σopt values obtained by DTSVM and RDSVM on the large-size data sets.

Table 9 shows the training times required for different ceiling sizes. We observe that DTSVM
spent most of its time on the leaves with the lowest ceiling size. In addition, Table 10 shows the test
accuracy rates corresponding to different ceiling sizes, assuming that the training was terminated at
those sizes. The results demonstrate the benefit of searching for the σopt because, if we terminated
the training at ceiling size 1,500 or 6,000, we would obtain significantly lower test accuracy rates.

Thus far, we have only discussed the DTSVM results for medium-size data sets. For complete-
ness, Table 11 shows the σopt values obtained by DTSVM on the large-size data sets, along with the
proportion of training samples that flowed to homogeneous leaves. In Table 12, we show the σopt
values obtained by DTSVM and RDSVM. The results explain why RDSVM required much longer
training times and more NESVs for “Forest”, “PPI” and “Webspam”.

Since DTSVM’s σopt = 1,500 for all four data sets, we do not have any tables for the large-size
data sets correspond to Tables 9 and 10 for the medium-size data sets.

4. Generalization Error Bounds for the DTSVM Classifier

To provide a generalization error bound of DTSVM, we start with the following framework. Let Rd
be the d-dimensional Euclidean space. We assume that a set of training examples Xn =
{(x1,y1), . . . ,(xn,yn)} is given, where (xk,yk)∈Rd×{−1,1} for k= 1, . . . ,n. The DTSVMmethod
produces a classifier h(x,π, f), in which π is a binary tree comprised of L leaves, f = ( f1, . . . , fL),
and fi is related to the lSVM trained on leaf i of π for i = 1, . . . ,L. The binary tree π produces a
partition function that maps an input in Rd to {1, . . . , L}, and let π(x) be the leaf that x flows to.
On the other hand, the lSVM trained on leave i, i = 1, . . . ,L is expressed as fi ◦Φ, where Φ maps
an input in Rd to a Hilbert space H, and fi is a linear function from H to R. Note that for a linear
function g :H→ R, there exists some w ∈H such that

g(z) = 〈w,z〉

for all z ∈H, and we define ‖g‖= 〈w,w〉1/2 .
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Note that if π(x) = i, then h(x,π, f) = sign( fi(Φ(x)). Let us define the function fπ : Rd →
{−1,1} by

f π(x) = fπ(x)(Φ(x)).

It follows that h(x,π, f) = sign(fπ(x)).
Sometimes, Φ is only defined implicitly. That is, instead of specifying the functional form of

Φ, only the inner product of Φ(u) and Φ(v) is specified as

〈Φ(u),Φ(v)〉= k(u,v),

where u,v ∈ Rd , and k(·, ·) is a kernel function. In the remainder of this section, we assume that
the function Φ is given and fixed.

Next, we define several notations used in this section. N is the set of natural numbers; R+ is
the set of positive real numbers; PL(Rd) is the class of all functions from Rd to {1, . . . ,L}; R (H)
is the class of all functions from H to R; and L(H) is the class of all linear functions from H to R.
Moreover, if T is a set, we define TL = {(t1, . . . , tL) : ti ∈ T for i = 1, . . . ,L}; that is, TL comprises
all the L-tuples of T ’s elements.

To provide a bound for the generalization error of h(x,π, f), we need the standard notions of
shatter coefficients, margins and covering numbers, which are defined below. Further details can be
found in Vapnik (1995) and Cristianini and Shawe-Taylor (2000). First, we define the notion of the
shatter coefficient, which we use to measure the complexity of the partition functions corresponding
to binary decision trees. Informally, the nth shatter coefficient of a classG ⊆PL(Rd) is the maximum
number of ways in which n points can be partitioned into L parts by functions in G . Formally, we
have the following definition.

Definition 1 Let G ⊆ PL(Rd). For any n ∈ N, the nth shatter coefficient of G is

V (G ,n) = max
S⊆Rd ,|S|=n

|{πS : π ∈ G}|,

where πS is the function obtained by restricting π to the domain S.

Next, we extend the standard notion of the margin to a collection of margins, one for each part
of a partition, in the following way.

Definition 2 Let f= ( f1, . . . , fL)∈ (R (H))L, π∈ PL(Rd), Xn⊆Rd×{−1,1}, and γ= (γ1, . . . ,γL)∈
(R+)L. We say that fπ has margin γ on Xn, or mg(fπ,Xn)≥ γ, if

y · fπ(x)≡ y · fi(Φ(x))≥ γi

for any i ∈ {1, . . . ,L} and any (x,y) ∈ Xn with π(x) = i.

In addition, we adopt the following notion of a covering number proposed by Alon et al. (1997).
We use it to measure the complexity of the classifiers corresponding to lSVMs. Informally, a cover-
ing of a class F ⊆ R (H) of functions with respect to a set D of n inputs is a collection of functions
in R (H) such that any function f ∈ F is covered by some function g in the collection, in the sense
that their values are within some distance η on all the inputs in D. The goal is to find the small-
est such collection for any set D of n inputs in some domain E. Formally, we define the covering
number as follows.
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Definition 3 Let η ∈ R+ and F ⊆ R (H). For a subset D ⊆ H, let C (F ,D,η) be the smallest
collection of functions from D to R such that, for each f ∈ F , we have g ∈ C (F ,D,η) with | f (z)−
g(z)| ≤ η for each z ∈ D. For E ⊆ H and n ∈ N, we define the covering number of F with respect
to E, n and η as

N(F ,E,n,η) = max
D⊆E,|D|=n

|C (F ,D,η)|.

4.1 Hard Margin Bounds

We have a set Xn of n training examples drawn independently and at random according to the
distributionD . Moreover, we have a learned classifier sign(fπ), with π ∈ PL(Rd) and f ∈ (R (H))L,
which classifies all the training examples correctly with a large margin. Our objective is to bound the
generalization error of the classifier sign(fπ), which is defined as the probability that sign(fπ(x)) .=
y, with (x,y) sampled according to D . The following lemma gives such a bound, which generalizes
a known result for SVMs (cf. Cristianini and Shawe-Taylor, 2000).

Lemma 4 Let G ⊆ PL(Rd), γ = (γ1, . . . ,γL) ∈ (R+)L, and F = F1× · · ·×FL, where Fi ⊆ R (H)
for 1≤ i≤ L. In addition, let D be a probability distribution on Rd×{−1,1}, and let n be a large
enough integer. Suppose a set of n samples Xn are drawn independently and at random according
to D , and consider any classifier sign(fπ), with π ∈ G and f ∈ F , such that mg(fπ,Xn) ≥ γ. Then,
with probability 1−δ, the generalization error of mg(fπ) will be at most

2
n

[

L

∑
i=1
logN(Fi,E,2n,γi/2)+ logV (G ,2n)+ log(2/δ)

]

,

where E = {Φ(x) : (x,y) ∈ supp(D)} and supp(D) is the support of D .

We provide the proof in Appendix A, as it is rather lengthy and closely follows the standard
approach and that of Cristianini and Shawe-Taylor (2000). The idea is to show that the functions
fπ, with π ∈ G and f ∈ F , can be “well covered” by a small number of functions, so that a union
bound can be applied to provide an upper bound on the probability that our classifier has a large
generalization error.

Before proceeding further, we explain the meaning of Lemma 4. Suppose for some G and
F = F1× · · ·×FL, we can build a classifier sign(fπ) with π ∈ G and f ∈ F that has a large margin
and zero training error. Then, Lemma 4 gives us an upper bound on the generalization error of
sign(fπ) in terms of the complexity of G and Fi, where we measure the complexity of G by its
shatter coefficientV (G ,2n) and the complexity of each Fi by its covering number N(Fi,E,2n,γi/2).
To obtain a small generalization error, we need to have a G with a small V (G ,2n) and an Fi with
a small N(Fi,E,2n,γi/2). However, this does not suggest that we can simply choose any G and Fi
with small V (G ,2n) and N(Fi,E,2n,γi/2) for any classification task. This is because we may not
be able to build a classifier from G and Fi to classify every training example correctly with a large
margin. For example, if we do not choose G properly (say, by using a random partition), the training
examples in some parts of the partition may not be separated by SVMs with a large margin. Our
main contribution is the discovery that decision trees are good partition functions when combined
with SVMs, since they allow a large margin and only require a short training time for lSVMs.

Lemma 4 states a general result for any G and any Fi for 1≤ i≤ L. We now consider our choice
of G and Fi, which correspond to decision trees and SVMs respectively. For β ∈ R+, we define
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L(H,β) as the class of all linear functions f ∈ L(H) with ‖ f‖ ≤ β. A bound can be obtained for the
covering number of L(H,β) with respect to E, n and η, provided that E is a bounded subset of H
(see, for example, Bartlett and Shawe-Taylor, 1998). This shows that, although there is an infinite
number of functions in L(H,β), they can be covered by a small number of functions in R (H) with
respect to any set of n points in E. As a result, the complexity of the class L(H,β) is low when
measured by its covering number.

Lemma 5 Let α,β,η ∈R+ and let n ∈N. Consider any E ⊆H with ‖z‖ ≤ ρ for every z ∈ E. Then,
there is a constant c such that

logN(L(H,β),E,n,η)≤ c
ρ2β2

η2
log2 n.

We also define BL(Rd) as the class of partition functions associated with binary trees containing
L leaves that partition the space Rd into L axis-aligned parts, as described in Section 2. Clearly,
BL(Rd)⊆ PL(Rd). The following lemma provides a bound on the nth shatter coefficient of BL(Rd).

Lemma 6 Let d,n,L ∈ N. Then

V (BL(Rd),n)≤ L log(dnL2).

Proof Consider any n-element subset S ⊆ Rd . We need to cut S into L parts. Initially, there is only
one part in S. We perform the cut operation iteratively in the following way. Each time, we choose
one part from at most L−1 existing parts of S and cut it into two parts. To do this, we pick one of
the d dimensions and at most one of the n− 1 cutting hyperplanes on that dimension. Thus, there
are at most (L−1)d(n−1)≤ dnL ways to perform one cut operation. To obtain L parts, we repeat
the cut operation L-1 times; hence, the number of possible partitions is at most (dnL)L−1 ≤ (dnL)L.
Finally, there are L! ways to order the L parts of each partition, yielding the following result:

V (BL(Rd),n)≤ (dnL)L · (L!)≤ (dnL2)L.

From the above three lemmas, we immediately derive the following theorem.

Theorem 7 Let ρ ∈R+, βi ∈R+ for 1≤ i≤ L, γ= (γ1, . . . ,γL) ∈ (R+)L, and F = L(H,β1)× · · ·×
L(H,βL). In addition, let D be a probability distribution on Rd × {−1,1} such that ‖Φ(x)‖ ≤ ρ
for every (x,y) ∈ supp(D), and let n be a large enough integer. Suppose a set Xn of n samples
are drawn independently and at random according to D , and consider any classifier sign(fπ), with
π ∈ BL(Rd) and f ∈ F , such that mg(fπ,Xn) ≥ γ. Then, with probability 1− δ, the generalization
error of sign(fπ) will be at most

c
n

(

L

∑
i=1

ρ2β2i
γ2i

log2 n+L log(dnL2)+ log(1/δ)

)

,

for some constant c.
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From Theorem 7, we conclude that if a classifier partitions the training data set into a small
number of parts (i.e., L is sufficiently small), and it classifies each training sample with a large
margin (i.e., γi is large for each i), then the classifier is likely to have a small generalization error.
However, this theorem does not indicate how to find a good value for L because, in general, it is
hard to know how L affects the margins and the generalization error bound. Instead of being led by
any analytical result, the DTSVM learning algorithm takes a data driven approach to find a good L.

Note that the bound in Theorem 7 has a similar form to the generalization error bound of the
perceptron decision trees proposed by Bennett et al. (2000). The main difference is that in their
bound, γi is the margin at the ith internal node and the sum is over all the internal nodes. We remark
that it is hard to tell which one of these two bounds is better because, in general, we do not know
their actual values for different learning tasks.

4.2 Soft Margin Bounds

Note that Theorem 7 works in the case where the training data Xn can be separated with a mar-
gin vector γ. If the data is non-separable or noisy, we need to consider the notion of a soft
margin (Cristianini and Shawe-Taylor, 2000). Suppose we have π ∈ PL(Rd), which partitions
Xn into L parts: X1n , . . . ,X

(L)
n , where X (i)

n ≡ {(x,y) ∈ Xn : π(x) = i}, and let us denote X (i)
n =

{(xi,1,yi,1), . . . ,(xi,ni ,yi,ni)} for some ni ∈ N, for 1 ≤ i ≤ L. In addition, suppose we have f =
( f1, . . . , fL) ∈ L(H,β1)× · · ·×L(H,βL), where βi ∈ R+ for 1 ≤ i ≤ L. Then, we can define the
margin slack vector of fi as follows.

Definition 8 Let γ= (γ1, . . . ,γL) ∈ (R+)L. For 1≤ i≤ L and 1≤ j ≤ ni, let

ξi, j =max(0,γi− yi, j · fi(Φ(xi, j))).

The definition reflects how far the elements of X (i)
n are from having a margin γi. Therefore, for

1≤ i≤ L, we call the vector ξi = (ξi,1, . . . ,ξi,ni) the margin slack vector of fi with respect to π and
γi over Xn.

To find a bound for the generalization error of sign(fπ) in the case of such a soft margin, we
follow the approach of Shawe-Taylor and Cristianini (1999, 2002), which works for the case of
L= 1. The idea is to map points of H to a higher dimensional space Ĥ so that, for each i, the image
of X (i)

n can be separated by some function f̂i with the desired margin. Theorem 7 can then be applied.
To find each f̂i, we present the following lemma, which is a simple extension of Shawe-Taylor &
Cristianini’s approach. For completeness, we provide the proof in Appendix B.

Lemma 9 Suppose that ‖Φ(x)‖ ≤ ρ for any (x,y) ∈ supp(D). Then, there exists a space Ĥ, a
mapping τρ : H→ Ĥ, and a sequence f̂ = ( f̂1, . . . , f̂L) of L functions such that the following four
facts hold.

1. For any (x,y) ∈ supp(D), ‖τρ(Φ(x))‖ ≤
√
2ρ.

2. For 1≤ i≤ L, f̂i ∈ L(Ĥ, β̂i) with β̂i ≤
√

β2i +‖ξi‖2/ρ2.

3. For 1≤ i≤ L, any (xi, j,yi, j) ∈ X (i)
n will be classified correctly with a margin

yi, j · f̂i(τρ(Φ(xi, j)))≥ γi.
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4. For 1≤ i≤ L and for any (x,y) /∈ Xn, f̂i(τρ(Φ(x))) = fi(Φ(x)).

According to this lemma, we define

Ψ= τρ ◦Φ, and

f̂π(x) = f̂π(x)(Ψ(x)).

Then, we know that f̂π has a margin (γ1, . . . ,γL) on Xn. Moreover, for (x,y) ∈ supp(D), we have

‖Ψ(x)‖ ≤ ‖τρ(Φ(x))‖ ≤
√
2ρ.

Now we can apply Theorem 7, with the space H replaced by Ĥ and the mapping Φ replaced by Ψ,
to obtain a bound on the generalization error of sign(f̂π), but with the quantity ρ2β2/γ2 replaced by

2ρ2(β2i +‖ξi‖2/ρ2)
γ2i

=
2(ρ2β2i +‖ξi‖2)

γ2i
.

Finally, to bound the generalization error of sign(fπ), by Lemma 9, we know that for any (x,y) /∈
Xn, sign(fπ(x)) = sign(f̂π(x)); therefore, sign(fπ) and sign(f̂π) have the same generalization error
for inputs that do not fall within Xn. However, it is possible that the elements of Xn misclassified by
sign(fπ) take a nontrivial measure in D, which results in sign(fπ) having a larger generalization error
over D than sign(f̂π). As suggested by Shawe-Taylor and Cristianini (2002), this can be handled
by modifying sign(fπ) on the misclassified elements in Xn. We call this new function the Xn-filtered
version of sign(fπ). Then, we have the following theorem.

Theorem 10 Let ρ∈R+, βi ∈R+ for 1≤ i≤ L, γ= (γ1, . . . ,γL)∈ (R+)L, and F =L(H,β1)× · · ·×
L(H,βL). In addition, let D be a probability distribution on Rd × {−1,1} such that ‖Φ(x)‖ ≤ ρ
for every (x,y) ∈ supp(D), and let n be a large enough integer. Suppose a set of n samples, Xn,
are drawn independently and at random according to D; and consider any π ∈ B(Rd) and f =
( f1, . . . , fL) ∈ F , such that for i≤ i≤ L, fi has a margin slack vector ξi with respect to π and γi over
Xn. Then, with probability 1− δ, the generalization error of the Xn-filtered version of sign(fπ) will
be at most

c
n

(

L

∑
i=1

(

ρ2β2i +‖ξi‖2

γ2i

)

log2 n+L log(dnL2)+ log(1/δ)

)

,

for some constant c.

Theorem 10 shows that if we can build a classifier with a small L and a small ‖ξi‖ for every
i, then the first two terms inside the parentheses of the bound will be small, and the classifier is
likely to have a small generalization error. As with Theorem 7, this does not suggest a way to
choose the number L. Instead, the learning algorithm in Section 2 finds a good L in a data-driven
manner. To facilitate a better understanding of the bound, we provide numerical values for the two
terms derived by DTSVM classifiers. We also compare the numerical values with related quantities
derived by global SVM (gSVM) classifiers, that is, SVM classifiers built on the full training data
set.
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Data Set 1A1 1AO
T1 T2 T1 T2

PHW 1,699 55 5,769 55
Shuttle 1,152,495 110 2,756,183 110
CI 202,354 481 202,354 481
Poker 12,253 139 48,893 139

KDD-10% 1,297,678 287 64,238 287

Table 13: The values of two leading terms T1 and T2 that appear in the generalization error bound
for DTSVM classifiers. Training types = 1A1 and 1AO.

4.3 A Numerical Investigation

Note that in Theorem 10, βi and γi are interdependent quantities for 1 ≤ i ≤ L, so we can fix one
of them and try to optimize the other. In the formulation of the SVM optimization problem, the
objective is to minimize βi under the constraint that γi = 1 for 1≤ i≤ L. Under this convention, the
bound in Theorem 10 becomes

c
n

(

L

∑
i=1

(

ρ2β2i +‖ξi‖
2) log2 n+L log(dnL2)+ log(1/δ)

)

. (1)

Recall that a DTSVM classifier is associated with a tree with L leaves and each leaf is associated
with an lSVM. If the tree has only one leaf (i.e., L= 1), then the DTSVM classifier will be reduced
to a gSVM classifier, which has the following generalization error bound

c
n
((

ρ2β2+‖ξ‖2
)

log2 n+ log(1/δ)
)

(2)

(cf. Cristianini and Shawe-Taylor, 2000).
Let us compare the terms that appear in parentheses in (1) and (2). The second term L log(dnL2)

in (1) is the shatter coefficient of the partition function π associated with a binary tree. We claim that
the value of (1) achieved by DTSVM is dominated by the first term, which is the sum of L quantities
associated with L leaves of a binary tree, as opposed to the single quantity in (2). Moreover, the
first term in (1) achieved by DTSVM is comparable to the corresponding quantity in (2) achieved
by gSVM. The following results confirm the above two claims.

To validate the first claim, we compare the two leading terms in parentheses in (1). The first
term is T1 = ∑L

i=1(ρ
2β2i +‖ξi‖2) log2 n and the second term is T2 = L log(dnL2). The results, shown

in Table 13, confirm the claim that T1 far exceeds T2 and (1) is dominated by T1. Note that we
compute T1 under the following assumptions. (i) When the data set contains more than two labels,
T1 is taken as the average of the quantities over all classifiers. (ii) The value of ρ is always 1 when
RBF kernels are involved. (iii) The value of ‖ξi‖2 is obtained from the solution to the quadratic
programming optimization problem. Further details can be found in Cristianini and Shawe-Taylor
(2000), Section 6.1.2.

To validate the second claim, we compare R= ∑L
i=1(ρ

2β2i +‖ξi‖2) and S= ρ2β2+‖ξ‖2, which
are derived, respectively, from the first terms in the generalization error bounds for DTSVM and
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Data Set 1A1 1AO
S R R/L S R R/L

PHW 74 133 17 326 450 56
Shuttle 114,786 75,630 5,402 593,967 180,990 12,928
CI 16,422 13,599 257 16,422 13,599 257
Poker 370 874 49 2,328 3,486 194

KDD-10% 100,227 70,796 2,212 5,089 3,505 110

Table 14: The values of S and R, which appear in the generalization error bound for gSVM and
DTSVM classifiers respectively, and the values of R/L. Training types = 1A1 and 1AO.

gSVM classifiers (i.e., in (1) and (2)) with the common factor log2 n removed from them. To ensure
a meaningful comparison between R and S, both classifiers have to take the same (C,γ) values, which
we specify as the optimal values for gSVM. As a result, we had to train new DTSVM classifiers for
some data sets, using the same decomposition schemes (i.e., the same binary trees and same ceiling
sizes) as the old classifiers, but different (C,γ) values.

Table 14 shows the values of S, R and R/L, derived from five data sets. The “Letter” and
“News20” data sets are not included in the table because the DTSVM classifier using the designated
values of (C,γ) would be the same as the gSVM on those data sets. It is clear that the values of R
are as small as (less than 150), or of the same order of magnitude as, those of the corresponding S.
In fact, S can be viewed as the slack-to-margin ratio and R as the sum of such ratios. The results
show that each lSVM generates smaller slack-to-margin ratios than the corresponding gSVM, while
the sum of lSVM ratios is comparable to the corresponding gSVM ratio. This explains why the test
accuracy rates of DTSVM classifiers are comparable to those of gSVM classifiers.

5. Conclusion

We have proposed a method that uses a binary tree to decompose a given data space and trains an
lSVM on each of the decomposed regions. The resultant DTSVM classifier can be constructed in a
much shorter time than the gSVM classifier, and still achieve comparable accuracy rates to the latter.
We also provide a generalization error bound for the DTSVM classifier. Using some data sets to
compute the theoretical bounds for gSVM and DTSVM classifiers, we find that DTSVM classifiers
generate comparable error bounds to those generated by gSVM classifiers. This finding explains
why DTSVM classifiers can achieve more or less the same accuracy rates as gSVM classifiers.

Appendix A. Proof of Lemma 4

Let G ⊆ PL(Rd), γ = (γ1, . . . ,γL) ∈ (R+)L, and Fi ⊆ R (H) for i = 1, . . . ,L. The samples in Xn are
drawn independently and at random according to the distribution D .

Our goal is to find an upper bound for the probability of the following event.
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• A1: there exist π ∈ G and f = ( f1, . . . , fL) ∈ F1 × · · ·× FL such that mg(fπ,Xn) ≥ γ and
err(fπ,D)> ε, where err(fπ,D) is the probability that sign(fπ(x)) .= y with (x,y) being sam-
pled according to D .

Note that err(fπ,D) is the generalization error of sign(fπ(x)). We relate event A1 to another
event A2 in which an additional set of n independent samples, X̂n, are drawn at random according to
D and the empirical error of sign(fπ(x)) over X̂n is considered.

• A2: there exist π ∈ G and f = ( f1, . . . , fL) ∈ F1 × · · ·× FL such that mg(fπ,Xn) ≥ γ and
err(fπ, X̂n)> ε/2, where err(fπ, X̂n) = |{(x,y) ∈ X̂n : sign(fπ(x)) .= y}|/n.

Following a standard argument (Vapnik, 1995), one can relate the probability of A1 with that of
A2. More precisely, we have

Pr
Xn,X̂n

[A2]≥ Pr
Xn,X̂n

[A2∧A1] = Pr
Xn
[A1] · Pr

Xn,X̂n
[A2|A1] ,

and by Chebyshev’s inequality, one can show that

Pr
Xn,X̂n

[A2|A1] = 1− Pr
Xn,X̂n

[¬A2|A1]≥ 1−1/(nε2)≥ 1/2,

for a large enough n. Consequently, we have

Pr
Xn
[A1]≤

(

1/ Pr
Xn,X̂n

[A2|A1]
)

· Pr
Xn,X̂n

[A2]≤ 2 · Pr
Xn,X̂n

[A2] .

To find a bound for PrXn,X̂n [A2], let us consider the following event, A3, where a set of 2n samples,
X2n, are drawn independently and at random according to D , and X2n is further divided randomly
into two disjoint parts of equal size: W1 andW2.

• A3: there exist π ∈ G and f = ( f1, . . . , fL) ∈ F1 × · · ·× FL such that mg(fπ,W1) ≥ γ and
err(fπ,W2)> ε/2.

We observe that the distribution of (Xn, X̂n) is identical to that of (W1,W2) over random X2n;
consequently we have

Pr
X2n,W1,W2

[A3] = Pr
Xn,X̂n

[A2].

The next step is to find a bound for PrX2n,W1,W2 [A3].
Let G(X2n) be the family of functions of G restricted to the domain {x : (x,y) ∈ X2n}; and for

π ∈ G(X2n), let

Bπγ/2(X2n) = C
(

F1,Φ(X
(1)
2n ),γ1/2

)

× · · ·×C
(

FL,Φ(X
(L)
2n ),γL/2

)

,

where Φ(X (i)
2n ) = {Φ(x) : (x,y) ∈ X2n,π(x) = i}. For g= (g1, . . . ,gL) ∈ Bπγ/2(X2n), let g

π(x) = gi(x)
for x ∈Φ(X (i)

2n ) for 1≤ i≤ L. Then, for π ∈G(X2n) and f= ( f1, . . . , fn) ∈ F1× · · ·×FL, there exists
g= (g1, . . . ,gL) ∈ Bπγ/2(X2n) such that for any (x,y) ∈ Xn, if π(x) = i, then

| fi(Φ(x))−gi(Φ(x))|≤ γi/2.
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For such fπ and gπ, mg(fπ,W1)≥ γ implies thatmg(gπ,W1)≥ γ/2; and err(fπ,W2)≥ ε/2 implies that
errγ/2(gπ,W2)≥ ε/2, where errγ/2(gπ,W2) is the proportion of (x,y) inW2 for which gi(x)< γi/2 if
π(x) = i. Therefore, the probability of the event A3 cannot exceed that of the following event A4.

• A4: there exist π∈G(X2n) and g∈ Bπγ/2(X2n) such thatmg(g
π,W1)≥ γ/2 and errγ/2(gπ,W2)≥

ε/2.

To bound the probability of A4, let us first consider any fixed X2n, π, and g, and consider an event,
denoted as A4(X2n,π,g), over the random division of X2n intoW1 andW2, such thatmg(gπ,W1)≥ γ/2
and errγ/2(gπ,W2)≥ ε/2. Note that for the event A4(X2n,π,g) to occur, there are at most 2n−(ε/2)n
elements of X2n which can be separated by gπ with margin γ/2, and these elements must contain all
the n elements ofW1. This implies that

Pr
W1,W2

[A4(X2n,π,g)]≤
(2n−(ε/2)n

n
)

(2n
n
) ≤

( n
2n

)(ε/2)n
= 2−εn/2.

Next, let us fix any X2n and consider an event, denoted as A4(X2n), over the random division of X2n
intoW1 andW2, such that the event A4(X2n,π,g) occurs for some π ∈ G(X2n) and g ∈ Bπγ/2(X2n). By
a simple union bound, we have

Pr
W1,W2

[A4(X2n)]≤ ∑
π∈G(X2n)

∑
g∈Bπγ/2(X2n)

2−εn/2 = |G(X2n)| · |Bπγ/2(X2n)| ·2
−εn/2.

Since |X2n|= 2n, we have |G(X2n)|≤V (G ,2n). Moreover,
∣

∣

∣
Bπγ/2(X2n)

∣

∣

∣
= ∏

1≤i≤L

∣

∣

∣
C
(

Fi,X
(i)
2n ,γi/2

)
∣

∣

∣

≤ ∏
1≤i≤L

N
(

Fi,E, |X
(i)
2n |,γi/2

)

≤ ∏
1≤i≤L

N(Fi,E,2n,γi/2),

where E = {Φ(x) : (x,y) ∈ supp(D)}. Therefore, we have

Pr
W1,W2

[A4(X2n)]≤V (G ,2n) ·

(

∏
1≤i≤L

N(Fi,E,2n,γi/2)

)

·2−εn/2.

Note that by randomizing the selection of X2n, the expected value of PrW1,W2 [A4(X2n)] is just the
probability of A4, over the random selection of X2n and its random division intoW1 andW2, from a
simple probability fact.1 As a result, we have

Pr
X2n,W1,W2

[A4] = E
X2n

[

Pr
W1,W2

[A4(X2n)]
]

≤ V (G ,2n) ·

(

∏
1≤i≤L

N(Fi,E,2n,γi/2)

)

·2−εn/2.

1. Suppose A is an event over a joint distribution (X,W). Let A(X) denote the event A conditioned on X = X . Then,
Pr(X ,W )∈(X,W)[A] = ∑Z PrX∈X[X = Z] ·PrW∈W[A(Z)] = EX∈X[PrW∈W[A(X)]].
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Finally, by combining all the bounds derived so far, we obtain

Pr
Xn
[A1]≤ 2 · Pr

X2n,W1,W2
[A4]≤ 2 ·V (G ,2n) ·

(

∏
1≤i≤L

N(Fi,E,2n,γi/2)

)

·2−εn/2,

which is at most d if

ε=
2
n

(

logV (G ,2n)+ ∑
1≤i≤L

logN(Fi,E,2n,γi/2)+ log(2/δ)

)

.

This proves the lemma.

Appendix B. Proof of Lemma 9

We begin by describing the space Ĥ and the mapping τρ :H→ Ĥ. Consider the inner product space

I (H) = { f ∈ R (H) : f (x) .= 0 for a finite number of x ∈H},

where the inner product of f and g in I (H) is defined as 〈 f ,g〉= ∑z f (z)g(z). Let

Ĥ=H× I (H).

Define the function τρ :H→ Ĥ by
τρ(z) = (z,ρ ·δz),

where δz is the function defined by

δz(z′) =
{

1 if z= z′,
0 otherwise.

Then, the first item of the lemma holds, since for (x,y) ∈ supp(D), ‖Φ(x)‖ ≤ ρ; thus,

‖τρ(Φ(x))‖2 = ‖Φ(x)‖2+‖ρδΦ(x)‖2 ≤ 2ρ2.

Next, we prove the existence of f̂ = ( f̂1, . . . , f̂L). Since I (H) is an inner product space, each
of its elements defines a linear function on I (H). Hence, for ( f ,g) ∈ L(H)× I (H), the function
( f ,g) : Ĥ→ R, defined by

( f ,g)(z,h) = f (z)+ 〈g,h〉 ,

for (z,h) ∈ Ĥ, is a linear function. Now, for 1≤ i≤ L, we can define f̂i : Ĥ→ R by

f̂i = ( fi,gi/ρ),

where gi ∈ I (H) is defined by

gi =
ni
∑
j=1

ξi, j · yi, j ·δΦ(xi, j).

Since fi ∈ L(H,βi), there exists wi ∈H with ‖wi‖ ≤ βi such that fi(z) = 〈wi,z〉. It follows that for
ẑ ∈ Ĥ,

f̂i(ẑ) = 〈ŵi, ẑ〉 ,
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where ŵi = (wi,gi/ρ), and

‖ŵi‖2 = ‖wi‖2+
ni
∑
j=1

|ξi, j|2/ρ2 ≤ β2i +‖ξi‖
2/ρ2.

Therefore, f̂i ∈ L(Ĥ, β̂i), where β̂i =
√

β2i +‖ξi‖2/ρ2, and the second item of the lemma holds.

Furthermore, for any (xi, j,yi, j) ∈ X (i)
n , we have

yi, j · f̂i(τρ(Φ(xi, j))) = yi, j · fi(Φ(xi, j))+ yi, j · (ξi, j · yi, j)
= yi, j · fi(Φ(xi, j))+ξi, j
≥ γi,

by the definition of ξi, j. Thus, the third item of the lemma also holds.
Finally, for 1≤ i≤ L and for any (x,y) /∈ Xn, we have

f̂i(τρ(Φ(x))) = fi(Φ(x))+
ni
∑
j=1

ξi, j · yi, j ·δΦ(xi, j)(Φ(x)) = fi(Φ(x)).

Thus, the fourth item of the lemma holds as well. This concludes the proof of Lemma 9.
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Abstract
A common setting for novelty detection assumes that labeled examples from the nominal class

are available, but that labeled examples of novelties are unavailable. The standard (inductive) ap-
proach is to declare novelties where the nominal density is low, which reduces the problem to
density level set estimation. In this paper, we consider the setting where an unlabeled and pos-
sibly contaminated sample is also available at learning time. We argue that novelty detection in
this semi-supervised setting is naturally solved by a general reduction to a binary classification
problem. In particular, a detector with a desired false positive rate can be achieved through a re-
duction to Neyman-Pearson classification. Unlike the inductive approach, semi-supervised novelty
detection (SSND) yields detectors that are optimal (e.g., statistically consistent) regardless of the
distribution on novelties. Therefore, in novelty detection, unlabeled data have a substantial impact
on the theoretical properties of the decision rule. We validate the practical utility of SSND with an
extensive experimental study.

We also show that SSND provides distribution-free, learning-theoretic solutions to two well
known problems in hypothesis testing. First, our results provide a general solution to the general
two-sample problem, that is, the problem of determining whether two random samples arise from
the same distribution. Second, a specialization of SSND coincides with the standard p-value ap-
proach to multiple testing under the so-called random effects model. Unlike standard rejection
regions based on thresholded p-values, the general SSND framework allows for adaptation to arbi-
trary alternative distributions in multiple dimensions.
Keywords: semi-supervised learning, novelty detection, Neyman-Pearson classification, learning
reduction, two-sample problem, multiple testing

1. Introduction

Several recent works in the machine learning literature have addressed the issue of novelty detec-
tion. The basic task is to build a decision rule that distinguishes nominal from novel patterns. The
learner is given a random sample x1, . . . ,xm ∈ X of nominal patterns, obtained, for example, from a

∗. A preliminary version of this work appeared at AISTATS (Scott and Blanchard, 2009).
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controlled experiment or an expert. Labeled examples of novelties, however, are not available. The
standard approach has been to estimate a level set of the nominal density (Schölkopf et al., 2001;
Steinwart et al., 2005; Scott and Nowak, 2006; Vert and Vert, 2006; El-Yaniv and Nisenson, 2007;
Hero, 2007), and to declare test points outside the estimated level set to be novelties. We refer to
this approach as inductive novelty detection.

In this paper we incorporate unlabeled data into novelty detection, and argue that this frame-
work offers substantial advantages over the inductive approach. In particular, we assume that in
addition to the nominal data, we also have access to an unlabeled sample xm+1, . . . ,xm+n consisting
potentially of both nominal and novel data. We assume that each xi, i = m+ 1, . . . ,m+ n is paired
with an unobserved label yi ∈ {0,1} indicating its status as nominal (yi = 0) or novel (yi = 1), and
that (xm+1,ym+1), . . . ,(xm+n,ym+n) are realizations of the random pair (X ,Y ) with joint distribution
PXY . The marginal distribution of an unlabeled pattern X is the contamination model

X ∼ PX = (1−π)P0+πP1,

where Py, y = 0,1, is the conditional distribution of X |Y = y, and π = PXY (Y = 1) is the a priori
probability of a novelty. Similarly, we assume x1, . . . ,xm are realizations of P0. We assume no
knowledge of PX , P0, P1, or π, although in Section 6 (where we want to estimate the proportion π)
we do impose a natural condition on P1 that ensures identifiability of π .

We take as our objective to build a decision rule with a small false negative rate subject to a fixed
constraint α on the false positive rate. Our emphasis here is on semi-supervised novelty detection
(SSND), where the goal is to construct a general detector that could classify an arbitrary test point.
This general detector can of course be applied in the transductive setting, where the goal is to predict
the labels ym+1, . . . ,ym+n associated with the unlabeled data. Our results extend in a natural way to
this setting.

Our basic contribution is to develop a general solution to SSND by a surrogate problem related
to Neyman-Pearson (NP) classification, which is the problem of binary classification subject to a
user-specified constraint α on the false positive rate. In particular, we argue that SSND can be
addressed by applying a NP classification algorithm, treating the nominal and unlabeled samples
as the two classes. Even though a sample from P1 is not available, we argue that our approach
can effectively adapt to any novelty distribution P1, in contrast to the inductive approach which is
only optimal in certain extremely unlikely scenarios. That is, by solving the surrogate problem, we
obtain a classifier f such that, up to a tolerance that shrinks as sample sizes increase, P1( f (X) = 0)
is minimal, while P0( f (X) = 1)≤ α.

Our learning reduction allows us to import existing statistical performance guarantees for Neyman-
Pearson classification (Cannon et al., 2002; Scott and Nowak, 2005) and thereby deduce generaliza-
tion error bounds, consistency, and rates of convergence for novelty detection. In addition to these
theoretical properties, the reduction to NP classification has practical advantages, in that it allows
essentially any algorithm for NP classification to be applied to SSND.

SSND is particularly suited to situations where the novelties occupy regions where the nominal
density is high. If a single novelty lies in a region of high nominal density, it will appear nominal.
However, if many such novelties are present, the unlabeled data will be more concentrated than
one would expect from just the nominal component, and the presence of novelties can be detected.
SSND may also be thought of as semi-supervised classification in the setting where labels from one
class are difficult to obtain (see discussion of LPUE below). We emphasize that we do not assume
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that novelties are rare, that is, that π is very small, as in anomaly detection. However, SSND is
applicable to anomaly detection provided n is sufficiently large.

We also discuss estimation of π and the special case of π= 0, which is not treated in our initial
analysis. We present a hybrid approach that automatically reverts to the inductive approach when
π = 0, while preserving the benefits of the NP reduction when π > 0. In addition, we describe
a distribution-free one-sided confidence interval for π, consistent estimation of π, and testing for
π= 0, which amounts to a general version of the two-sample problem in statistics. We also discuss
connections to multiple testing, where we show that SSND generalizes a standard approach to mul-
tiple testing, based on thresholding p-values, under the common “random effects” model. Whereas
the p-value approach is optimal only under strong assumptions on the alternative distribution, SSND
can optimally adapt to arbitrary alternatives.

The paper is structured as follows. After reviewing related work in the next section, we present
the general learning reduction to NP classification in Section 3, and apply this reduction in Section
4 to deduce statistical performance guarantees for SSND. Section 5 presents our hybrid approach,
while Section 6 applies learning-theoretic principles to inference on π. Connections to multiple
testing are developed in Section 7. Experiments are presented in Section 8, while conclusions are
discussed in the final section. Shorter proofs are presented in the main text, and longer proofs appear
in the first appendix.

2. Related Work

Inductive novelty detection: Described in the introduction, this problem is also known as one-class
classification (Schölkopf et al., 2001) or learning from only positive (or only negative) examples.
The standard approach has been to assume that novelties are outliers with respect to the nominal
distribution, and to build a novelty detector by estimating a level set of the nominal density (Scott
and Nowak, 2006; Vert and Vert, 2006; El-Yaniv and Nisenson, 2007; Hero, 2007). As we discuss
below, density level set estimation is equivalent to assuming that novelties are uniformly distributed
on the support of P0. Therefore these methods can perform arbitrarily poorly (when P1 is far from
uniform, and still has significant overlap with P0). In Steinwart et al. (2005), inductive novelty
detection is reduced to classification of P0 against P1 , wherein P1 can be arbitrary. However an
i.i.d. sample from P1 is assumed to be available in addition to the nominal data. In contrast, the
semi-supervised approach optimally adapts to P1, where only an unlabeled contaminated sample is
available besides the nominal data. In addition, we address estimation and testing of the proportion
of novelties.

Classification with unlabeled data: In transductive and semi-supervised classification, labeled
training data {(xi,yi)}mi=1 from both classes are given. The setting proposed here is a special case
where training data from only one class are available. In two-class problems, unlabeled data typ-
ically have at best a slight effect on constants, finite sample bounds, and rates (Rigollet, 2007;
Lafferty and Wasserman, 2008; Ben-David et al., 2008; Singh et al., 2009), and are not needed for
consistency. In contrast, we argue that for novelty detection, unlabeled data are essential for these
desirable theoretical properties to hold.

Learning from positive and unlabeled examples: Classification of an unlabeled sample given
data from one class has been addressed previously, but with certain key differences from our work.
This body of work is often termed learning from “positive” and unlabeled examples (LPUE), al-
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though in our context we tend to think of nominal examples as negative. Terminology aside, a
number of algorithms have been developed, which we now relate to the present work.

One class of algorithms proceeds roughly as follows: First, identify unlabeled points for which
it seems highly likely that yi = 1. Second, learn a classifier from the known positive examples and
the supposed negative examples. Use it on the unlabeled data to update the group of candidates for
the negative class and repeat until a stable labeling is reached. Several such algorithms are reviewed
in Zhang and Lee (2005) and Zhang and Zuo (2008), but they tend to be heuristic in nature and
sensitive to the initial choice of negative examples.

A theoretical analysis of LPUE is provided by Denis (1998); Denis et al. (2005) from the view-
point of probably approximately correct (PAC) learnable classes. In PAC learnability, the objective
is to find specific classes of classifiers such that the optimal classifier in that class can be approx-
imated arbitrarily well, and where the number of samples required is polynomial in the inverse of
the error tolerance. While some ideas are common with the present work (such as classifying the
nominal sample against the contaminated sample as a proxy for the ultimate goal), our point of view
is relatively different and based on statistical learning theory. In particular, our input space can be
non-discrete and we assume the distributions P0 and P1 can overlap, which leads us to use the NP
classification setting and study universal consistency properties.

Several other approaches have been developed which, either explicitly or implicitly, rely on a
reduction to a classification problem. Steinberg and Cardell (1992) and Ward et al. (2009) propose
frameworks based on logistic regression, but both assume that π is known. Elkan and Noto (2008)
assume a particular sampling scheme where m and n are related in such a way that π can be readily
estimated. Unfortunately, this sampling assumption is not valid in many applications of interest.
All three of these works derive their algorithms by a consideration of posterior probabilities, and
consequently they require that π is known or can be estimated. In contrast, our approach adopts the
(non-Bayesian) Neyman-Pearson criterion and in no way depends on the ability to know or estimate
π.

The idea of reducing LPUE to a binary classification problem has also been treated by Zhang
and Lee (2005), Liu et al. (2002), Lee and Liu (2003) and Liu et al. (2003). Most notably, Liu et al.
(2002) provide sample complexity bounds for VC classes for the learning rule that minimizes the
number of false negatives while controlling the proportion of false positives at a certain level. Our
approach extends theirs in several respects. First, Liu et al. (2002) does not consider approximation
error or consistency, nor do the bounds established there imply consistency. In contrast, we present a
general reduction that is not specific to any particular learning algorithm, and can be used to deduce
consistency or rates of convergence. Our work also makes several contributions not addressed
previously in the LPUE literature, including our results relating to the case π= 0, to the estimation
of π, and to multiple testing.

We also note recent work by Smola et al. (2009) described as relative novelty detection. This
work is presented as an extension of standard one-class classification to a setting where a reference
measure (indicating regions where novelties are more likely) is known through a sample. In practice,
the authors take this sample to be a contaminated sample consisting of both nominal and novel
measurements, so the setting is the same as ours. The emphasis in this work is primarily on a
new kernel method, whereas our work features a general learning reduction and learning theoretic
analysis.

Multiple testing: The multiple testing problem is also concerned with the simultaneous detection
of many potentially abnormal measurements (viewed as rejected null hypotheses). In Section 7, we
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discuss in detail the relation of our contamination model to the random effects model, a standard
model in multiple testing. We show how SSND is, in several respects, a generalization of that
model, and includes several different extensions proposed in the recent multiple testing literature.
The SSND model, and the results presented in this paper, are thus relevant to multiple testing as
well, and suggest an interesting point of view to this domain. In particular, through a reduction to
classification, we introduce broad connections to statistical learning theory.

3. The Fundamental Reduction

To begin, we first consider the population version of the problem, where the distributions are known
completely. Recall that PX = (1−π)P0+πP1 is the distribution of unlabeled test points. Adopting
a hypothesis testing perspective, we argue that the optimal tests for H0 : X ∼ P0 vs. H1 : X ∼ P1 are
identical to the optimal tests for H0 : X ∼ P0 vs. HX : X ∼ PX . The former are the tests we would
like to have, and the latter are tests we can estimate by treating the nominal and unlabeled samples
as labeled training data for a binary classification problem.

To offer some intuition, we first assume that Py has density hy, y = 0,1. According to the
Neyman-Pearson Lemma (Lehmann, 1986), the optimal test with size (false positive rate) α for
H0 :X ∼P0 vs. H1 :X ∼P1 is given by thresholding the likelihood ratio h1(x)/h0(x) at an appropriate
value. Similarly, letting hX = (1−π)h0+πh1 denote the density of PX , the optimal tests for H0 :
X ∼ P0 vs. HX : X ∼ PX are given by thresholding hX(x)/h0(x). Now notice

hX(x)
h0(x)

= (1−π)+π
h1(x)
h0(x)

.

Thus, the likelihood ratios are related by a simple monotone transformation, provided π > 0. Fur-
thermore, the two problems have the same null hypothesis. Therefore, by the theory of uniformly
most powerful tests (Lehmann, 1986), the optimal test of size α for one problem is also optimal,
with the same size α, for the other problem. In other words, we can discriminate P0 from P1 by
discriminating between the nominal and unlabeled distributions. Note the above argument does not
require knowledge of π other than π> 0.

The hypothesis testing perspective also sheds light on the inductive approach. In particular,
estimating the nominal level set {x : h0(x)≥ λ} is equivalent to thresholding 1/h0(x) at 1/λ. Thus,
the density level set is an optimal decision rule provided h1 is constant on the support of h0. This
assumption that P1 is uniform on the support of P0 is therefore implicitly adopted by a majority of
works on novelty detection.

We now drop the requirement that P0 and P1 have densities. Let f : Rd → {0,1} denote a
classifier. For y= 0,1, let

Ry( f ) := Py( f (X) )= y)

denote the false positive rate (FPR) and false negative rate (FNR) of f , respectively. For greater
generality, suppose we restrict our attention to some fixed set of classifiers F (possibly the set of all
classifiers). The optimal FNR for a classifier of the class F with FPR ≤ α, 0≤ α≤ 1, is

R∗
1,α(F ) := inf

f∈F
R1( f ) (1)

s.t. R0( f )≤ α .
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Similarly, introduce

RX( f ) := PX( f (X) = 0)
= πR1( f )+(1−π)(1−R0( f ))

and let

R∗
X ,α(F ) := inf

f∈F
RX( f ) (2)

s.t. R0( f )≤ α.

In this paper we will always assume the following property (involving F ,P0 and P1) holds:

(A) For any α ∈ (0,1) , there exists f ∗ ∈ F such that R0( f ∗) = α and R1( f ∗) = R∗
1,α(F ) .

Remark. This assumption is in particular satisfied if the class F is such that for any f ∈ F

with R0( f )< α, we can find another classifier f ′ ∈ F with R0( f ′) = α and f ′ ≥ f (so that R1( f ′)≤
R1( f )). When P0 is absolutely continuous with respect to Lebesque measure, this property can be
easily verified for many common classifier sets, for example linear classifiers, decision trees or
radial basis function classifiers.

Even without any assumptions on the distribution, it is possible to ensure that (A) is satisfied
provided one extends the class F to a larger class containing randomized classifiers obtained by
convex combination of classifiers of the original class. This construction is standard in the receiver
operating characteristic (ROC) literature. Some basic results on this topic are recalled in Appendix
B in relation to the above assumption.

By the following result, the optimal classifiers for problems (1) and (2) are the same. Further-
more, one direction of this equivalence also holds in an approximate sense. In particular, approx-
imate solutions to X ∼ P0 vs. X ∼ PX translate to approximate solutions for X ∼ P0 vs. X ∼ P1.
The following theorem constitutes our main learning reduction in the sense of Beygelzimer et al.
(2005):

Theorem 1 Assume property (A) is satisfied. Consider any α, 0≤ α≤ 1 , and assume π> 0 . Then
for any f ∈ F the two following statements are equivalent:

(i) RX( f ) = R∗
X ,α(F ) and R0( f )≤ α.

(ii) R1( f ) = R∗
1,α(F ) and R0( f ) = α.

More generally, let L1,α( f ,F ) = R1( f )−R∗
1,α(F ) and LX ,α( f ,F ) = RX( f )−R∗

X ,α(F ) denote
the excess losses (regrets) for the two problems, and assume π> 0. If R0( f )≤ α+ ε for ε≥ 0, then

L1,α( f ,F )≤ π−1(LX ,α( f ,F )+(1−π)ε) .

Proof . For any classifier f , we have the relation RX( f ) = (1−π)(1−R0( f ))+πR1( f ) . We start
with proving (ii) ⇒ (i). Consider f ∈ F such that R1( f ) = R∗

1,α(F ) and R0( f ) = α , but assume
RX( f )> R∗

X(F ) . Let f ′ ∈ F such that RX( f ′)< RX( f ) and R0( f ′)≤ α . Then since π> 0 ,

R1( f ′) = π−1
(
RX( f ′)− (1−π)(1−R0( f ′))

)

< π−1 (RX( f )− (1−π)(1−α))

= R1( f ) ,
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contradicting minimality of R1( f ) .
To establish the converse implication, consider f ∈ F such that RX( f ) = R∗

X ,α(F ) and R0( f )≤
α , but assume R1( f )> R∗

1,α(F ) or R0( f )< α . Let f ′ be such that R0( f ′) = α and R1( f ′) = R∗
1(F ) ,

whose existence is ensured by assumption (A). Then

RX( f ′) = (1−π)(1−α)+πR1( f ′)
< (1−π)(1−R0( f ))+πR1( f )
= RX( f ),

contradicting minimality of RX( f ). To prove the final statement, first note that we established
R∗
X ,α(F ) = πR∗

1,α(F )+(1−π)(1−α), by the first part of the theorem. By subtraction we have

L1,α( f ,F ) = π−1(LX ,α( f ,F )+(1−π)(R0( f )−α))

≤ π−1(LX ,α( f ,F )+(1−π)ε).

Theorem 1 suggests that we may estimate the solution to (1) by solving a surrogate binary
classification problem, treating x1, . . . ,xm as one class and xm+1, . . . ,xm+n as the other.

In the rest of the paper, we explore the consequences of this reduction from a theoretical as well
as practical perspective. In the next section, we illustrate on the theoretical side, in the case of an
empirical risk minimization (ERM) type algorithm, how a finite sample bound for NP classification
translates to a finite sample bound for SSND and leads to desirable properties such as consistency.
On the other hand, algorithms we can analyze (such as ERM) often do not have the best performance
on actual data, and may be computationally infeasible (a situation that is not specific to SSND).
Thus in the experimental Section 8 we implement a different method, namely simple but effective
schemes based on kernel density estimates. It is important to observe that Theorem 1 still applies to
these methods since it just compares two objective functions and is agnostic to the method used.

4. Statistical Performance Guarantees

We now illustrate how Theorem 1 leads to performance guarantees for SSND. We consider the case
of a fixed set of classifiers F having finite VC-dimension (Vapnik, 1998), and the NP classification
algorithm

f̂τ = arg min
f∈F

R̂X( f )

s.t. R̂0( f )≤ α+ τ ,

based on (constrained) empirical risk minimization, where

R̂X( f ) =
1
n

m+n

∑
i=m+1

1{ f (xi) )=1}, R̂0( f ) =
1
m

m

∑
i=1
1{ f (xi) )=0}.

This rule was analyzed in Cannon et al. (2002) and Scott and Nowak (2005). Define the precision
of a classifier f for class i as Qi( f ) = PXY (Y = i| f (X) = i) (the higher the precision, the better the
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performance). Then we have the following result bounding the difference of the quantities Ri and
Qi to their optimal values over F :

Theorem 2 Assume x1, . . . ,xm and xm+1, . . . ,xm+n are i.i.d. realizations of P0 and PX , respectively,
and that the two samples are independent of each other. Assume π> 0. Let F be a set of classifiers
of VC-dimension V . Assume property (A) is satisfied and denote by f ∗ an optimal classifier in F
with respect to the criterion in (1). Fixing δ > 0, define εk =

√
V logk−logδ

k . There exist absolute
constants c,c′ such that, if we choose τ= cεn , the following bounds hold with probability 1−δ :

R0( f̂τ)−α ≤ c′εn ; (3)
R1( f̂τ)−R1( f ∗) ≤ c′π−1(εn+ εm) ; (4)

Qi( f ∗)−Qi( f̂τ) ≤
c′

P( f ∗(X) = i)
(εn+ εm) , i= 0,1 . (5)

The proof is given in Appendix A. The primary technical ingredients in the proof are Theorem
3 of Scott and Nowak (2005) and the learning reduction of Theorem 1 above. The above theorem
shows that the procedure is consistent inside the class F for all criteria considered, that is, these
quantities decrease (resp. increase) asymptotically to their value at f ∗ . This is in contrast to the
statistical learning bounds previously obtained (Liu et al., 2002, Thm. 2), which do not imply
consistency.

Following Scott and Nowak (2005), by extending suitably the argument and the method in the
spirit of structural risk minimization over a sequence of classes Fk having the universal approxima-
tion property, we can conclude that this method is universally consistent (that is, relevant quantities
converge to their value at f ∗ , where f ∗ is the solution of (1) over the set of all possible classi-
fiers). Therefore, although technically simple, the reduction result of Theorem 1 allows us to deduce
stronger results than the existing ones concerning this problem. This can be paralleled with the re-
sult that inductive novelty detection can be reduced to classification against uniform data (Steinwart
et al., 2005), which made the statistical learning study of that problem significantly simpler.

It is interesting to note that the multiplicative constant in front of the rate of convergence of
the precision criteria is PX( f ∗(X) = i)−1 rather than π−1 for R1 . In particular PX( f ∗(X) = 0) ≥
(1− π)(1−α) , so that the convergence rate for class 0 precision is not significantly affected as
π→ 0 . Similarly PX( f ∗(X) = 1)≥ (1−π)α , so the convergence rate for class 1 precision depends
more crucially on the (known) α than on π .

For completeness, we briefly discuss the optimality of Qi( f ∗) in (5) in the sense of the criterion
Qi itself. Under an additional minor condition, it is possible to show (the details are given at the end
of Appendix B) that under the constraint R0( f )≤ α , the best attainable precision for class 0 in the
set F is attained by f = f ∗ . Therefore, in (5) (i = 0), we are really comparing the precision of f̂τ
against the best possible class 0 precision given the FPR constraint. On the other hand, it does not
make sense to consider the best attainable class 1 precision under an upper constraint on R0 , since
we can have both R0 → 0 and Q1 → 1 by only rejecting a vanishingly small proportion of very sure
novelties. But it can easily be seen that f ∗ realizes the best attainable class 1 precision under the
equality constraint R0( f ) = α .

We emphasize that the above result is but one of many possible theorems that could be deduced
from the learning reduction; other results from Neyman-Pearson classification could also be applied.
We also remark that, although the previous theorem corresponds to the semi-supervised setting, an
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analogous transductive result is easily obtained by incorporating an additional uniform deviation
bound relating the empirical error rates on the unlabeled data to the true error rates.

5. The Case π= 0 and a Hybrid Method

The preceding reduction of SSND to NP classification is only justified when π > 0. Aside from
the analysis breaking down, this can be seen as follows. The unlabeled sample is a draw from
PX = (1−π)P0+πP1. When π = 0, the unlabeled sample is a draw from P0. Therefore it contains
no information about P1. Were we to solve the surrogate NP problem, we would be attempting to
classify between two identical distributions, and the best we could do would be random guessing.
This is confirmed in Table 2 (case π = 0) where the AUC values for SSND are near one half. Our
goal in this section is to develop a learning reduction, and a parallel result to Theorem 1 in Section
3, but which handles the case π= 0 more sensibly.

When π= 0, we have no information about P1 in either sample. Therefore, the only way to get
any traction on the problem is to make some assumption about P1. The inductive method makes
such an assumption (as noted previously in the paper), namely, that P1 is uniform on the support of
P0. Since uniformity is the standard assumption without any additional prior knowledge, we aim to
develop a method that performs at least as well as the inductive method when π= 0.

Therefore we ask the following question: Can we devise a method which, having no knowledge
of π, shares the properties of the learning reduction of Section 3 when π > 0, and the inductive
approach otherwise? Our answer to the question is “yes” under fairly general conditions.

The intuition behind our approach is the following. The inductive approach to novelty detection
performs density level set estimation. Furthermore, as we saw in Section 3, density level sets are
optimal decision regions for testing the nominal distribution against a uniform distribution. There-
fore, level set estimation can be achieved by generating an artificial uniform sample and performing
weighted binary classification against the nominal data (this idea has been developed in more detail
by Steinwart et al., 2005). Our approach is to sprinkle a vanishingly small proportion of uniformly
distributed data among the unlabeled data, and then implement SSND using NP classification on
this modified data. When π= 0, the uniform points will influence the final decision rule to perform
level set estimation. When π > 0, the uniform points will be swamped by the actual novelties, and
the optimal detector will be estimated.

To formalize this approach, let 0 < pn < 1 be a sequence tending to zero. Assume that S is a
compact set which is known to contain the support of P0 (obtained, e.g., through support estimation
or through a priori information on the problem), and let P2 be the uniform distribution on S. Consider
the following procedure: Let k ∼ binom(n, pn). Draw k independent realizations from P2, and
redefine xm+1, . . . ,xm+k to be these values. (In practice, the uniform data would simply be appended
to the unlabeled data, so that information is not erased. The present procedure, however, is slightly
simpler to analyze.)

The idea now is to apply the SSND learning reduction from before to this modified unlabeled
data. Toward this end, we introduce the following notations. For simplicity, we do not explicitly
indicate the underlying class F . We refer to any data point that was drawn from either P1 or P2
as an operative novelty. The proportion of operative novelties in the modified unlabeled sample is
π̃ := π(1− pn)+ pn. The distribution of operative novelties is P̃1 := π(1−pn)

π̃ P1+ pn
π̃ P2, and the overall

distribution of the modified unlabeled data is P̃X := π̃P̃1+(1− π̃)P0. Let R2,R∗
2,α, R̃1, R̃∗

1,α, R̃X , and
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R̃∗
X ,α be defined in terms of P2, P̃1, and P̃X , respectively, in analogy to the definitions in Section 3.
Also denote L2,α( f ) = R2( f )−R∗

2,α, L̃1,α( f ) = R̃1( f )− R̃∗
1,α, and L̃X ,α = R̃X( f )− R̃∗

X ,α.
By applying Theorem 1 to the modified data, we immediately conclude that if R0( f ) ≤ α+ ε,

then
L̃1,α( f )≤

1
π̃
(L̃X ,α( f )+(1− π̃)ε) =

1
π̃
(L̃X ,α( f )+(1−π)(1− pn)ε). (6)

By previously cited results on Neyman-Pearson classification, the quantities on the right-hand side
can be made arbitrarily small as m and n grow. The following result translates this bound to the kind
of guarantee we are seeking.

Theorem 3 Assume (A) holds. Let f be a classifier with R0( f )≤ α+ ε. If π= 0, then

L2,α( f )≤ p−1n (L̃X ,α( f )+(1− pn)ε).

If π> 0, then
L1,α( f )≤

1
π(1− pn)

(L̃X ,α( f )+(1−π)(1− pn)ε+ pn).

To interpret the first statement, note that L2,α( f ) is the inductive regret. The bound implies that
L2,α( f )→ 0 as long as both ε = R0( f )−α and L̃X ,α( f ) tend to zero faster than pn. This suggests
taking pn to be a sequence tending to zero slowly. The second statement is similar to the earlier
result in Theorem 1, but with additional factors of pn. These factors suggest choosing pn tending to
zero rapidly, in contrast to the first statement, so in practice some balance should be struck.
Proof If π = 0, then L̃1,α = L2,α and the first statement follows trivially from (6). To prove the
second statement, denote βn := π(1−pn)

π̃ , and observe that

R̃∗
1,α = inf

R0( f )≤α
R̃1( f )

= inf
R0( f )≤α

[βnR1( f )+(1−βn)R2( f )]

≤ βnR∗
1,α+(1−βn).

Therefore

L̃1,α( f ) = R̃1( f )− R̃∗
1,α

≥ βnR1( f )+(1−βn)R2( f )−βnR∗
1,α− (1−βn)

≥ βn(R1( f )−R∗
1,α)− (1−βn)

= βnL1,α( f )− (1−βn)

and we conclude, still using (6),

L1,α( f ) ≤
1
βn
L̃1,α+

1−βn
βn

≤
1

π(1− pn)
(L̃X ,α( f )+(1−π)(1− pn)ε+ pn).
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Like Theorem 1, Theorem 3 is quite general, and has both theoretical and practical implications.
Theoretically, it could be combined with specific, analyzable algorithms for Neyman-Pearson clas-
sification to yield novelty detectors with performance guarantees, as was illustrated in Section 4. We
do not develop this theoretical direction here. Practically, any algorithm for Neyman-Pearson clas-
sification that generally works well in practice can be applied in the hybrid framework to produce
novelty detectors that perform well for values of π that are zero or very near zero. We implement
this idea in the experimental section below.

We also remark that this hybrid procedure could be applied with any prior distribution on nov-
elties besides uniform. In addition, the hybrid approach could also be practically useful when n is
small, assuming the artificial points are appended to the unlabeled sample.

6. Estimating π and Testing for π= 0

In the previous sections, our main goal was to find a good classifier function for the purpose of
novelty detection. Besides the detector itself, it is often relevant to the user to have an estimate
or bound on the proportion π of novelties in the contaminated distribution PX . Estimation of π
allows for estimating and optimizing the misclassification rate on the unlabeled data, which is often
of interest in the LPUE literature (see Sec. 2). Estimation of π is also useful for estimating the
precision (as defined in Section 4); this topic will be revisited in the next section in the context of
multiple testing.

It may also be useful to test whether there are novelties at all; in other words, since the learnt
detector f̂ is allowed a certain proportion of false positives, it is important to assess whether the
reported novelties are a statistically significant indication of the presence of true novelties, or if they
are likely to be all false positives. We focus on these issues in the present section.

It should first be noted that without additional assumptions, π is not an identifiable parameter in
our model. To see this, consider the idealized case where we have an infinite amount of nominal and
contaminated data, so that we have perfect knowledge of P0 and PX . Assuming the decomposition
PX = (1− π)P0 + πP1 holds, note that any alternate decomposition of the form PX = (1− π−
γ)P0+(π+ γ)P′

1 , with P′
1 = (π+ γ)−1(πP1+ γP0) , and γ ∈ [0,1−π] , is equally valid. Because the

most important feature of the model is that we have no direct knowledge of P1 , we cannot decide
which representation is the “correct” one; we could not even exclude a priori the case where π= 1
and P1 = PX (while producing the exact same observed data) . The previous results established
in Theorems 1-3 are valid for whatever underlying representation is assumed to be correct. For
the estimation of the proportion of novelties, however, it makes sense to define π as the minimal
proportion of novelties that can explain the difference between P0 and PX . First we introduce the
following definition:

Definition 4 Assume P0 , P1 are probability distributions on the measure space (X ,S) . We call
P1 a proper novelty distribution with respect to P0 if there exists no decomposition of the form
P1 = (1− γ)Q+ γP0 where Q is some probability distribution and 0< γ≤ 1 .

This defines a proper novelty distribution P1 as one that cannot be confounded with P0; it cannot be
represented as a (nontrivial) mixture of P0 with another distribution.

The next result establishes a canonical decomposition of the contaminated distribution into a
mixture of nominal data and proper novelties. As a consequence the proportion π∗ of proper nov-
elties, and therefore the proper novelty distribution P1 itself, are well-defined (that is, identifiable)
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given the knowledge of the nominal and contaminated distributions (except for the special case
P0 = PX , where of course the novelty distribution is not defined).

Proposition 5 Assume P0 , PX are probability distributions on the measure space (X ,S). If PX )=
P0, there is a unique π∗ ∈ (0,1] and P1 such that the decomposition PX = (1−π∗)P0+π∗P1 holds,
and such that P1 is a proper novelty distribution with respect to P0 . If we additionally define π∗ = 0
when PX = P0, then in all cases,

π∗ :=min{α ∈ [0,1] : ∃Q probability distribution: PX = (1−α)P0+αQ} . (7)

The proof is given in Appendix A. For the rest of this section we assume for simplicity of
notation that π and P1 are the proportion and distribution of proper novelties of PX with respect to
P0 . The results to come are also informative for improper novelty distributions, in the following
sense: if P1 is not a proper novelty distribution and the decomposition PX = (1−π)P0+πP1 holds,
then (7) entails that π> π∗. It follows that a lower bound on π∗ (either deterministic or valid with a
certain confidence), as will be derived in the coming sections, is always also a valid lower confidence
bound on π when non-proper novelties are considered. A lower bound is effectively the best we can
hope for π if P1 is not assumed to be proper.

6.1 Population Case

We now want to relate the estimation of π to quantities previously introduced and problem (1). We
first treat the population case and optimal novelty detection over the set of all possible classifiers.

Theorem 6 For any classifier f , we have the inequality

π≥ 1−
RX( f )
1−R0( f )

.

Optimizing this bound over a set of classifiers F under the FPR constraint R0( f ) ≤ α yields for
any 0≤ α< 1:

π≥ 1−
R∗
X ,α(F )

1−α
. (8)

Furthermore, if F is the set of all deterministic classifiers,

π= 1− inf
α∈[0,1)

R∗
X ,α(F )

1−α
. (9)

Proof . For the first part, just write for any classifier f

1−RX( f ) = PX( f (X) = 1)
= (1−π)P0( f (X) = 1)+πP1( f (X) = 1)
≤ (1−π)R0( f )+π ,

resulting in the first inequality in the theorem. Under the constraint R0( f )≤ α , this inequality then
yields

π≥ 1−
RX( f )
1−R0( f )

≥ 1−
RX( f )
1−α

;
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optimizing the bound under the constraint yields the second inequality.
We establish in Lemma 13 in Appendix A that for any ε> 0 there exists a classifier fε such that

R0( fε)< 1 and R1( fε)/(1−R0( fε))≤ ε . Put αε = R0( fε) ; we then have

R∗
X ,αε(F )≤ RX( fε) = (1−π)(1−αε)+πR1( fε) ,

implying

π≥ 1− inf
α∈[0,1)

R∗
X ,α(F )

1−α
≥ 1−

R∗
X ,αε(F )

1−αε
≥ π

(
1−

R1( fε)
1−R0( fε)

)
≥ π(1− ε) ,

which establishes the last claim of the theorem.

6.2 Distribution-free Lower Confidence Bounds on π

In the last part of Theorem 6, if we assume that the function α -→ R∗
X ,α(F )/(1−α) is nonincreasing

(a common regularity assumption; see Appendix B for a discussion of how this condition can always
be ensured by considering possibly randomized classifiers), then α -→ R∗

X ,α(F ) is left differentiable
at α= 1 and (8) is optimized by taking α→ 1, that is,

π≥ 1+
dR∗

X ,α(F )

dα

∣∣∣
α=1−

, (10)

while (9) entails that the above inequality is an equality if F contains all deterministic classifiers.
This suggests obtaining a lower bound on π by estimating the slope of R∗

X ,α(F ) at its right endpoint.
The following result adopts this approach while accounting for the uncertainty inherent in empirical
performance measures.

Theorem 7 Consider a classifier set F for which we assume a uniform error bound of the following
form is available: for any distribution Q on X , with probability at least 1−δ over the draw of an
i.i.d. sample of size n according to Q , we have

∀ f ∈ F

∣∣∣Q( f (X) = 1)− Q̂( f (X) = 1)
∣∣∣≤ εn(F ,δ) , (11)

where Q̂ denotes the empirical distribution built on the sample.
Then the following quantity is a lower bound on π with probability at least (1− δ)2 ≥ 1− 2δ

(over the draw of the nominal and unlabeled samples) :

π̂−(F ,δ) := 1− inf
f∈F

R̂X( f )+ εn(F ,δ)

(1− R̂0( f )− εm(F ,δ))+
, (12)

where the ratio is formally defined to be 1 whenever the denominator is 0 .

Note that if we define f̂α = arg min f∈F R̂X( f ) under the constraint R̂0( f ) ≤ α , this can be
rewritten

π̂−(F ,δ) = 1− inf
α∈[0,1]

R̂X( f̂α)+ εn(F ,δ)

(1− R̂0( f̂α)− εm(F ,δ))+
.
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There are two balancing forces at play here. From the population version (10) (valid under a mild
regularity assumption), we know that we would like to have α as close as possible to 1 for estimating
the derivative of R∗

X ,α(F ) at α= 1. This is balanced by the estimation error which makes estimations
close to α= 1 unreliable because of the denominator. Taking the infimum along the curve takes in
a sense the best available bias-estimation tradeoff.
Proof . To simplify notation we denote εn(F ,δ) simply by εn. As in the proof of the previous result,
write for any classifier f :

PX( f (X) = 1)≤ (1−π)P0( f (X) = 1)+π ,

from which we deduce after applying the uniform bound

1− R̂X( f )− εn = P̂X( f (X) = 1)− εn
≤ (1−π)(R̂0( f )+ εm)+π ,

which can be solved whenever 1− R̂0( f )− εm > 0 .

The following result shows that π̂−(F ,δ) , when suitably applied using a sequence of classifier
sets F1,F2, . . . that have a universal approximation property, yields a strongly universally consistent
estimate of the proportion π of proper novelties. The proof is given in Appendix A and relies on
Theorem 7 in conjunction with the Borel-Cantelli lemma.

Theorem 8 Consider a sequence F1,F2, . . . of classifier sets having the following universal ap-
proximation property: for any measurable function f ∗ : X → {0,1} , and any distribution Q , we
have

liminf
k→∞

inf
f∈Fk

Q( f (X) )= f ∗(X)) = 0 .

Suppose also that each class Fk has finite VC-dimension Vk, so that for each Fk we have a uniform
confidence bound of the form (11) for εn(Fk,δ) = 3

√
Vk log(n+1)−logδ/2

n . Define

π̂−(δ) = sup
k
π̂−

(
Fk,δk−2

)
.

If δ= (mn)−2, then π̂− converges to π almost surely as min(m,n)→ ∞.

6.3 There are No Distribution-free Upper Bounds on π

The lower confidence bounds π̂−(F ,δ) and π̂−(δ) are distribution-free in the sense that they hold
regardless of P0,P1 and π. We now argue that distribution-free upper confidence bounds do not
generally exist.

We define a distribution-free upper confidence bound π̂+(δ) to be a function of the observed
data such that, for any P0, any proper novelty distribution P1, and any novelty proportion π≤ 1, we
have π̂+(δ)≥ π with probability 1−δ over the draw of the two samples.

We will show that such a universal upper bound does not exist unless it is trivial. The reason
is that the novel distribution can be arbitrarily hard to distinguish from the nominal distribution.
It is possible to detect with some certainty that there is a non-zero proportion of novelties in the
contaminated data (see Corollary 11 below), but we can never be sure that there are no novelties.
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This situation is similar to the philosophy of significance testing: one can never accept the null
hypothesis, but only have insufficient evidence to reject it.

We will say that the nominal distribution P0 is weakly diffuse if for any γ > 0 there exists a set
A such that 0< P0(A)< γ . We say an upper confidence bound π̂+(δ) is non-trivial if there exists a
weakly diffuse nominal distribution P0, a proper novelty distribution P1, a novelty proportion π< 1,
and a constant δ> 0 such that

P(π̂+(δ)< 1)> δ ,

where the probability is over the joint draw of nominal and contaminated samples. This assumption
demands that there is at least a specific setting where the upper bound π̂+(δ) is significantly different
from the trivial bound 1, meaning that it is bounded away from 1 with larger probability than its
allowed probability of error δ .

Theorem 9 There exists no distribution-free, non-trivial upper confidence bound on π .

The proof appears in Appendix A. The non-triviality assumption is quite weak and relatively
intuitive. The only not directly intuitive assumption is that P0 should be weakly diffuse, which is
satisfied for all distributions having a continuous part. This assumption effectively excludes finite
state spaces, which is an important condition: if X is finite, it is actually possible to obtain a non-
trivial upper confidence bound on π.

The following corollary establishes that for any finite sample size, any estimator of π (and
in particular the universally consistent estimator considered in the previous section) can have an
average error bounded from below by a constant independent of the sample size.

Corollary 10 Assume X is an infinite set and let m,n be fixed. For any estimator π̂ of π, based on
a joint sample of size (m,n), and any fixed real p> 0:

sup
P∈P (m,n)

E
[
|π̂−π|p

]
≥ c(p)> 0,

where P (m,n) denotes the set of all generating distributions of (m,n)-samples following the SSND
model (that is, of the form P= P⊗m

0 ⊗P⊗n
X for arbitrary P0,PX), and c(p) is a constant independent

of (m,n).

This result essentially precludes the existence of universal convergence rates in the estimation of π.
In other words, to achieve some prescribed rate of convergence, some assumptions on the generating
distributions must be made. This parallels the estimation of the Bayes risk in classification (Devroye,
1982).

6.4 Testing for π= 0

The lower confidence bound on π can also be used as a test for π= 0, that is, a test for whether there
are any novelties in the test data:

Corollary 11 Let F be a set of classifiers. If π̂−(F ,δ)> 0, then we may conclude, with confidence
1−δ, that the unlabeled sample contains novelties.
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It is worth noting that testing this hypothesis is equivalent to testing if P0 and PX are the same
distribution, which is the classical two-sample problem in an arbitrary input space. This problem
has recently generated attention in the machine learning community (Gretton et al., 2007), and the
approach proposed here, using arbitrary classifiers, seems to be new. Our confidence bound could
of course also be used to test the more general hypothesis π≤ π0 for a prescribed π0, 0≤ π0 < 1 .

Note that, by definition of π̂−(F ,δ), testing the hypothesis π = 0 using the above lower confi-
dence bound for π is equivalent to searching the classifier space F for a classifier f such that the
proportions of predictions of 0 and 1 by f differ on the two samples in a statistically significant
manner. Namely, for a classifier f belonging to a class F for which we have a uniform bound of
the form (11), we have the lower bound PX( f (X) = 1) ≥ P̂X( f (X) = 1)− εn and the upper bound
P0( f (X) = 1) ≤ P̂0( f (X) = 1) + εm (both bounds valid simultaneously with probability at least
1− δ). If the difference of the bounds is positive we conclude that we must have PX )= P0, hence
π > 0 . This difference is precisely what appears in the numerator of π̂−(F ,δ) in (12) . Further-
more, if this numerator is positive then so is the denominator, since it is always larger. In the end,
π̂−(F ,δ)> 0 is equivalent to

sup
f∈F

(
(P̂X( f (X) = 1)− εn)− (P̂0( f (X) = 1)+ εm)

)
> 0 .

7. Relationship Between SSND and Multiple Testing

In this section, we show how SSND offers powerful generalizations of the standard p-value ap-
proach to multiple testing under the widely used “random effects” model, as considered for example
by Efron et al. (2001).

7.1 Multiple Testing Under the Random Effects Model

In the multiple testing framework, a finite family (H1, . . . ,HK) of null hypotheses to test is fixed;
from the observation of some data X , a decision D(Hi,X) ∈ {0,1} must be taken for each hypothe-
sis, namely whether (given the data) hypothesis Hi is deemed to be false (D(Hi,X) = 1, hypothesis
rejected) or true (D(Hi,X) = 0 , hypothesis not rejected). A typical application domain is that of
microarray data analysis, where each null hypothesis Hi corresponds to the absence of a difference
in expression levels of gene i in a comparison between two experimental situations. A rejected null
hypothesis then indicates such a differential expression for a specific gene, and is called a discovery
(since differentially expressed genes are those of interest). However, the number of null hypotheses
to test is very large, for example K 0 4.104 in the gene expression analysis, and the probability of
rejecting by chance a null hypothesis must be strictly controlled.

In the standard setting for multiple testing, it is assumed that a testing statistic Zi(X) ∈ R has
been fixed for each null hypothesis Hi , and that its marginal distribution is known when Hi is true.
This statistic can then be normalized (by suitable monotone transform) to take the form of a p-
value. A p-value is a function pi(X) of the data such that, if the corresponding null hypothesis
Hi is true, then pi(X) has a uniform marginal distribution on [0,1] . In this setting, it is expected
that the rejection decisions D(Hi,X) are taken based on the observed p-values (p1(X), . . . , pK(X))
rather than on the raw data. In fact, in most cases it is assumed that the decisions take the form
D(Hi,X) = 1{pi(X)≤T̂} , where T̂ is a data-dependent threshold. Further, simplifying distributional
assumptions on the family of p-values are often posited. A common distribution model called
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random effects abstracts the p-values from the original data X and assumes that the veracity of
hypothesis Hi is governed by an underlying latent variable hi as follows:

• the variables hi ∈ {0,1} , 1≤ i≤ K are i.i.d. Bernoulli with parameter π

• the variables pi are independent, and conditionally to (h1, . . . ,hK) have distribution

pi ∼

{
Uniform[0,1] , if hi = 0
P1 , if hi = 1 .

Under the random effects model, the p-values thus follow a mixture distribution (1−π)U [0,1]+
πP1 on the interval [0,1] and can be seen as a contaminated sample, while the variables hi play the
role of the unknown labels. It should now be clear that the above model is in fact a specification of
the SSND model, with the following additional assumptions:

1. The observation space is the interval [0,1];

2. The nominal distribution P0 is known to be exactly uniform on [0,1] (equivalently, the nominal
distribution is uniform and the nominal sample has infinite size);

3. The class of novelty detectors considered is the set of intervals of the form [0, t], t ∈ [0,1] .

Therefore, the results developed in this paper can apply to the more restricted setting of multiple
testing under the random effects model as well. In particular, the estimator π̂−(F ,δ) developed in
Section 6, when specified under the above additional conditions, recovers the methodology of non-
asymptotic estimation of 1−π which was developed by Genovese and Wasserman (2004), Section
3, and our notion of proper novelty distribution recovers their notion of purity in that setting (and
has somewhat more generality, since they assumed P1 to have a density).

There are several interesting benefits in considering for the purpose of multiple testing the more
general SSND model developed here. First, it can be unrealistic in practice to assume that the dis-
tribution of the p-values is known exactly under each one of the null hypotheses. Instead, only
assuming the knowledge of a reference sample under controlled experimental conditions as in the
SSND model is often more realistic. This problem was recently motivated by problems in genomics
(Ghosh and Chinnaiyan, 2009) and proteomics (Ghosh, 2009), where in the latter reference asymp-
totic analysis was also presented.

Secondly, the restriction to decision sets of the form {pi ≤ t} can also be questionable. For
a single test, decision regions of this form are optimal (in the Neyman-Pearson sense) only if the
likelihood ratio of the alternative to the null is decreasing, which amounts to assuming that the
alternative distribution P1 has a decreasing density. This assumption has been criticized in some
recent work. A simple example of a situation where this assumption fails is in the framework of z
or t-tests, that is, the null distribution of the statistic (before rescaling into p-values) is a standard
Gaussian or a Student t-distribution, and the corresponding p-value function is the usual one- or
two-sided p-value. If the alternative distribution P1 is a mixture of Gaussians (resp. of noncentral
t distributions), optimal rejection regions for the original statistic are in general a finite union of
disjoint intervals and do not correspond to level sets of the p-values. In order to counter this type
of problem, Sun and Cai (2007) suggest to estimate from the data the alternate density and the
proportion of true null hypotheses, and use these estimates directly in a plug-in likelihood ratio
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based test. Chi (2007) develops a procedure based on growing rejection intervals around a finite
number of fixed control points in [0,1] . In both cases, an asymptotic theory is developed. Both of
these procedures are more flexible than using only rejection intervals of the form [0, t] and aim at
adaptivity with respect to the alternative distribution P1.

Finally, the remaining restriction that effective observations (the p-values) belong to the unit
interval was also put into question by Chi (2008), who considered a setting of multidimensional
p-values belonging to [0,1]d . The distribution was still assumed to be uniform under the corre-
sponding null hypothesis, although this seems an even less realistic assumption than in dimension
one. In this framework, the use of a reference “nominal” sample under the null distribution seems
even more relevant.

The framework developed in the present paper allows to cover at once these different types of
extensions rather naturally by just considering a richer class F of candidate classifiers (or equiva-
lently in this setting, rejection regions), and provides a non-asymptotical analysis of their behavior
using classical learning theoretical tools such as VC inequalities. Furthermore, such non-asymptotic
inequalities can also give rise to adaptive and consistent model selection for the set of classifiers us-
ing the structural risk minimization principle, a topic that was not addressed previously for the
extensions mentioned above.

7.2 SSND with Controlled FDR

One remaining important difference between the SSND setting studied here and that of multiple
testing is that our main optimization problem (1) is under a false positive rate constraint R0( f )≤ α ,
while most recent work on multiple testing generally imposes a constraint on the false discovery
rate (FDR) instead. If we denote

Pos( f ) = P̂X( f (X) = 1) = 1− R̂X( f ) =
1
n

n

∑
i=1
1{ f (xm+i)=1}

the proportion of reported novelties, and

FP( f ) = P̂XY ( f (X) = 1,Y = 0) =
1
n

n

∑
i=1
1{ f (xm+i)=1,ym+i=0}

the (unavailable to the user) proportion of false discoveries on the contaminated sample, then the
false discovery proportion (FDP) is defined as FDP( f ) = FP( f )/Pos( f ) (taken to be zero if the
denominator vanishes), and the FDR is defined as FDR( f ) = E[FDP( f )] . Some classical variations
of this quantity are the positive FDR, pFDR( f ) = E[FDP( f )|Pos( f ) > 0] and the marginal FDR,
mFDR( f ) = E[FP( f )]/E[Pos( f )] . Under the mixture contamination model, it can be checked that
pFDR( f ) = mFDR( f ) = PXY (Y = 0| f (X) = 1) (Storey, 2003), hence also equal to one minus the
precision for class 1 (as defined earlier in Section 4). The following result states explicit empirical
bounds on these quantities:

Proposition 12 Consider a classifier set F for which we assume a uniform error bound of the
following form is available: for any distribution Q on X × {0,1} , with probability at least 1− δ
over the draw of an i.i.d. sample of size n according to Q , both

∀ f ∈ F

∣∣∣Q( f (X) = 1)− Q̂( f (X) = 1)
∣∣∣≤ εn(F ,δ) , (13)
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and
∀ f ∈ F

∣∣∣Q( f (X) = 1,Y = 0)− Q̂( f (X) = 1,Y = 0)
∣∣∣≤ εn(F ,δ) , (14)

hold, where Q̂ denotes the empirical distribution built on the sample.
Then the following inequalities hold with probability at least (1− δ)2 ≥ 1− 2δ (over the draw

of the nominal and unlabeled samples) :

∀ f ∈ F mFDR( f ) = PX(Y = 0|X = 1)≤
(R̂0( f )+ εm)(1− π̂−(F ,δ))

(1− R̂X( f )− εn)+
,

and

∀ f ∈ F FDP( f )≤
(R̂0( f )+ εm)(1− π̂−(F ,δ))+ εn

(1− R̂X( f ))
,

where π̂−(F ,δ) is defined in (12).

Note that Equations (13) and (14) hold as before with εn(F ,δ) = c
√

V logn−logδ
n when F has

VC dimension V . In the interest of simplicity, we use the same bound εn for both uniform error
assumptions. Separate bounds could also be adopted, allowing (13) to be slightly tighter. We also
remark that since FDP is an empirical quantity based on the contaminated sample, the second bound
is in fact a transductive bound rather than semi-supervised.
Proof . The mFDR can be rewritten as mFDR( f ) = P0( f (X) = 1|Y = 0)PXY (Y = 0)/PX( f (X) =
1) = R0( f )(1−π)/(1−RX( f )) . In this expression we can plug in the lower bound for π of The-
orem 7 and uniform bounds for R0( f ) and RX( f ) coming from assumption (13). The FDP can be
written as FDP( f ) = P̂XY ( f (X) = 1,Y = 0)/(1− R̂X( f )) . Using assumption (14), the numerator
can be upper bounded by PXY ( f (X) = 1,Y = 0)+ εn = R0( f )(1−π)+ εn , and we can then use the
same reasoning as for the first part.

Similarly to what was proposed in Section 4 under the false positive rate constraint, we can in
this context consider to maximize R̂X( f ) over f ∈ F subject to the constraint that the above empir-
ical bound on the mFDR or FDP is less than α . This can then be suitably extended to a sequence
of classes Fk . While a full study of the resulting procedure is out of the scope of the present pa-
per, we want to point out the important difference that the mFDR is necessarily lower bounded by
infx∈X PXY (Y = 0|X = x) which is generally strictly positive. Hence, the required constraint may
not be realizable if α is smaller than this lower bound, in which case the empirical procedure should
return a failure statement with probability one as n→ ∞.

8. Experiments

Despite previous work on learning with positive and unlabeled examples (LPUE), as discussed
in Section 2, the efficacy of our proposed learning reduction, compared to the method of induc-
tive novelty detection, has not been empirically demonstrated. In addition, we evaluate our pro-
posed hybrid method. To assess the impact of unlabeled data on novelty detection, we applied
our framework to some data sets which are common benchmarks for binary classification. The
first 13 data sets (Müller et al., 2001) are from http://www.fml.tuebingen.mpg.de/Members/
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Data Set dim Ntrain Ntest πbase
banana 2 400 4900 0.45
breast-cancer 9 200 77 0.29
diabetes 8 468 300 0.35
flare-solar 9 666 400 0.55
german 20 700 300 0.30
heart 13 170 100 0.44
ringnorm 20 400 7000 0.50
thyroid 5 140 75 0.30
titanic 3 150 2051 0.32
twonorm 20 400 7000 0.50
waveform 21 400 4600 0.33
image 18 1300 1010 0.57
splice 60 1000 2175 0.48
ionosphere 34 251 100 0.64
mushrooms 112 4124 4000 0.48
sonar 60 108 100 0.47
adult 123 3000 3000 0.24
web 300 3000 3000 0.03

Table 1: Description of data sets. dim is the number of features, and Ntrain and Ntest are the numbers
of training and test examples. πbase is the proportion of positive examples (novelties) in the
combined training and test data. Thus, the average (across permutations) nominal sample
size m is (1−πbase)Ntrain.

raetsch/benchmark and the last five data sets (Chang and Lin, 2001) are from http://www.csie.
ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

Each data set consists of both positive and negative examples. Furthermore, each data set is
replicated 100 times (except for image and splice, which are replicated 20 times), with each copy
corresponding to a different random partitioning into training and test examples. All numerical
results for a data set were obtained by averaging across all partitions. The negative examples from
the training set were taken to form the nominal sample, and the positive training examples were not
used at all in the experiments. The data sets are summarized in Table 1. Here Ntrain and Ntest are the
sizes1 of the training and test sets, respectively, while πbase is the proportion of positive examples in
the combined training and test data. Thus, the average (across permutations) nominal sample size
m is (1−πbase)Ntrain.

We emphasize that in these experiments we do not implement the empirical risk minimization
(ERM) algorithm from Sec. 4. The reduction to Neyman-Pearson classification is general and
can by applied in conjunction with any NP classification algorithm, whether that algorithm has
associated performance guarantees or not. We here elect to apply the reduction using a plug-in
kernel density estimate (KDE) classifier. ERM is computationally infeasible, and the bounds tend

1. The web and adult data sets were subsampled owing to their large size.
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to be too loose in practice to be effective. The KDE plug-in rule can be implemented efficiently, and
there is a natural inductive counterpart for comparison, the thresholded KDE based on the nominal
sample.

8.1 Experimental Setup

We evaluated our methodology in two learning paradigms, comparing five learning methods across
several values of π. The two learning paradigms are semi-supervised and transductive. For semi-
supervised learning, the test data were divided into two halves. The first half was used as the
contaminated, unlabeled data. The second half was used as an independent sample of contaminated
data, not used in the learning stage, but only for evaluation of classifiers returned by each method.
In particular, the second half of the test data was used to estimate the area under the ROC (AUC)
of each method. Here, the ROC is the one which views P0 as the null distribution and P1 as the
alternative. For transductive learning, the entire test set was treated as the unlabeled data, and was
also used for evaluating the AUC.

The learning methods are the inductive approach, our proposed learning reduction, and three
versions of the hybrid approach. The three hybrids correspond to pn = 1.0, 0.5, and 0.1, in which a
uniform sample of size 100pn% of the unlabeled sample size is appended to the unlabeled data. We
emphasize that each algorithm was implemented in the same way in the two learning paradigms;
the only differences are the size of the contaminated sample, and how they are evaluated.

We implemented the inductive novelty detector using a thresholded kernel density estimate
(KDE) with Gaussian kernel, and SSND using a plug-in KDE classifier. To alleviate concerns
that our inductive implementation is inadequate, we also tested the one-class support vector ma-
chine (Schölkopf et al., 2001) in several experimental settings, and found its performance to be very
similar. Letting kσ denote a Gaussian kernel with bandwidth σ, the inductive novelty detector at
density level λ is

f (x) =
{
1 if 1m ∑

m
i=1 kσ0(x,xi)> λ

0 otherwise,

and the SSND classifier at density ratio λ is

f (x) =
{
1 if ( 1n ∑

m+n
i=m+1 kσX (x,xi))/(

1
m ∑

m
i=1 kσ0(x,xi))> λ

0 otherwise.

The hybrid method is implemented similarly. The ROCs of these methods are obtained by varying
the level/threshold λ.

For each class, a single kernel bandwidth parameter was employed, and optimized by maximiz-
ing a cross-validation estimate of the AUC. Note that this ROC is different from the one used to
evaluate the methods (see above). In particular, it still views P0 as the null distribution, but now
the alternative distribution is taken to be the uniform distribution P2 for the inductive detector (see
Section 5; effectively we use a uniform random sample of size n in place of the unlabeled data),
PX for SSND, and the appropriate P̃X for the hybrid methods (see Section 5). Thus, the test label
information was not used at any stage (prior to validation) by any of the methods.

We also compared the learning methods for several values of π. For semi-supervised learning,
we examined π = 0.5,π = 0.2,π = 0.1, and π = 0.0. For transductive learning, we examined π =
0.5,π = 0.2, and π = 0.1. The case π = 0.0 cannot be evaluated in the transductive paradigm
because there are no positive examples in the unlabeled data. For each value of π, we discarded
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just enough examples (either negative or positive) so that the desired proportion was achieved in
the contaminated data. Note that the number of positive examples (novelties) in the contaminated
sample could be very small. For the smallest data sets, in the semi-supervised setting and when
π= 0.1, this number is less than 10.

We remark that the AUC is only one possible performance measure to assess our algorithms.
An alternative choice, and one that is more directly connected to our theory, would be to select
several different values of α, and compare the false negative and false positive rates, for each value
of α, across all different data sets and algorithms. It would be straightforward in our experimental
setup to calibrate the thresholds, using cross-validation for example, to achieve the desired false
positive rate. We have adopted the AUC as a more concise alternative that in a sense averages the
performance for Neyman-Pearson classification across the complete range of α.

8.2 Statistical Summaries and Methodology

The complete results are summarized in Tables 2 through 5. Tables 2 and 3 show the average
AUC for each data set and experimental setting, for the semi-supervised and transductive paradigms
respectively. The inductive method is labeled Ind. Our learning reduction is labeled SSND or TND
depending on the setting. The hybrid methods are labeled H(pn) in Tables 2-3, and Hybrid(pn) in
Tables 4-5.

We followed the methodology of Demšar (2006) for comparing algorithms across multiple data
sets. For each data set and each experimental setting, the algorithms were ranked 1 (best) through
5 (worst) based on AUC. The Friedman test was used to determine, for each experimental setting,
whether there was a significant difference in the average ranks of the five algorithms across the data
sets. The average ranks and p-values are reported in Tables 4 and 5. The results indicate that there
is a significant difference among the algorithms at the 0.1 significance level for all settings, with the
exception of the transductive setting when π= 0.1.

When the Friedman test resulted in significant differences, we then performed a post-hoc Ne-
menyi test to assess when there was a significant difference between individual algorithms. For a
five algorithm experiment on 18 data sets, with a significance level of 0.1, the critical difference for
the Nemenyi test is 1.30. That is, when the average ranks of two algorithms differ by more than
1.30, their performance is deemed to be significantly different.

8.3 Analysis of Results

From the results presented in Tables 2-5, we draw the following conclusions.

1. The average ranks in Tables 4-5 conform to our expectations in many respects. SSND/TND
outrank the inductive approach when π = 0.5, and inductive outranks SSND when π = 0.0.
At the intermediate values π= 0.1 and 0.2, hybrid methods achieve the best ranking.

2. The average ranks also reveal that the performance of the hybrid methods vary according to
the value of π. As π increases, the best performing hybrid has a correspondingly smaller
amount of auxiliary uniform data appended to the unlabeled sample. This also conforms to
our expectations.
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data set π = 0.5 π = 0.2
Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)

banana 0.924 0.939 0.931 0.933 0.936 0.924 0.915 0.924 0.923 0.921
breast-cancer 0.654 0.643 0.675 0.669 0.667 0.654 0.557 0.657 0.648 0.621
diabetes 0.744 0.782 0.770 0.772 0.776 0.744 0.684 0.724 0.727 0.717
flare-solar 0.674 0.661 0.664 0.660 0.662 0.674 0.629 0.641 0.643 0.642
german 0.628 0.703 0.693 0.696 0.704 0.628 0.582 0.633 0.632 0.636
heart 0.793 0.854 0.845 0.853 0.851 0.793 0.690 0.805 0.789 0.745
ringnorm 0.999 0.997 0.996 0.996 0.996 0.999 0.992 0.990 0.991 0.983
thyroid 0.985 0.966 0.964 0.967 0.955 0.985 0.889 0.929 0.940 0.943
titanic 0.628 0.643 0.636 0.644 0.643 0.628 0.612 0.636 0.634 0.628
twonorm 0.915 0.993 0.989 0.989 0.990 0.915 0.940 0.961 0.958 0.953
waveform 0.761 0.958 0.952 0.945 0.956 0.761 0.839 0.848 0.896 0.901
image 0.818 0.939 0.929 0.935 0.939 0.818 0.892 0.874 0.879 0.875
splice 0.415 0.935 0.905 0.921 0.932 0.415 0.702 0.613 0.764 0.785
ionosphere 0.256 0.926 0.839 0.921 0.922 0.256 0.695 0.475 0.607 0.704
mushrooms 0.945 1.000 1.000 1.000 1.000 0.945 0.999 0.999 0.999 0.999
sonar 0.688 0.752 0.757 0.764 0.764 0.688 0.595 0.682 0.683 0.646
adult 0.605 0.872 0.872 0.864 0.835 0.605 0.705 0.720 0.829 0.720
web 0.462 0.778 0.749 0.697 0.788 0.462 0.616 0.631 0.585 0.674
data set π = 0.1 π = 0.0

Ind. SSND H(1.0) H(0.5) H(0.1) Ind. SSND H(1.0) H(0.5) H(0.1)
banana 0.924 0.891 0.922 0.919 0.913 0.924 0.540 0.919 0.905 0.785
breast-cancer 0.654 0.515 0.643 0.633 0.575 0.654 0.556 0.640 0.628 0.568
diabetes 0.744 0.605 0.699 0.700 0.692 0.744 0.494 0.689 0.669 0.657
flare-solar 0.674 0.571 0.624 0.629 0.626 0.674 0.471 0.613 0.603 0.611
german 0.628 0.548 0.623 0.624 0.602 0.628 0.522 0.595 0.608 0.592
heart 0.793 0.593 0.778 0.776 0.688 0.793 0.506 0.759 0.750 0.620
ringnorm 0.999 0.984 0.981 0.986 0.991 0.999 0.478 0.958 0.978 0.985
thyroid 0.985 0.786 0.884 0.906 0.895 0.985 0.590 0.852 0.869 0.795
titanic 0.628 0.591 0.632 0.634 0.621 0.628 0.443 0.630 0.628 0.572
twonorm 0.915 0.931 0.945 0.934 0.923 0.915 0.480 0.894 0.879 0.860
waveform 0.761 0.801 0.815 0.822 0.806 0.761 0.487 0.736 0.727 0.705
image 0.818 0.769 0.824 0.836 0.851 0.818 0.431 0.634 0.696 0.780
splice 0.415 0.630 0.518 0.584 0.625 0.415 0.523 0.447 0.493 0.493
ionosphere 0.256 0.618 0.438 0.488 0.575 0.256 0.520 0.392 0.431 0.486
mushrooms 0.945 0.995 0.992 0.998 0.996 0.945 0.566 0.972 0.980 0.982
sonar 0.688 0.556 0.658 0.652 0.615 0.688 0.510 0.628 0.643 0.587
adult 0.605 0.627 0.659 0.666 0.626 0.605 0.505 0.558 0.556 0.572
web 0.462 0.554 0.584 0.544 0.611 0.462 0.557 0.553 0.523 0.564

Table 2: AUC values for five novelty detection algorithms in the semi-supervised setting. ‘H’ indi-
cates a hybrid method.
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data set π = 0.5 π = 0.2
Ind. TND H(1.0) H(0.5) H(0.1) Ind. TND H(1.0) H(0.5) H(0.1)

banana 0.924 0.938 0.931 0.932 0.935 0.924 0.915 0.923 0.923 0.919
breast-cancer 0.663 0.673 0.662 0.662 0.670 0.663 0.615 0.649 0.659 0.630
diabetes 0.742 0.784 0.776 0.779 0.788 0.742 0.708 0.728 0.725 0.727
flare-solar 0.673 0.686 0.683 0.684 0.684 0.673 0.661 0.658 0.662 0.666
german 0.633 0.739 0.709 0.711 0.714 0.633 0.617 0.632 0.637 0.636
heart 0.796 0.869 0.856 0.856 0.864 0.796 0.716 0.811 0.794 0.788
ringnorm 0.999 0.997 0.996 0.996 0.996 0.999 0.993 0.989 0.991 0.983
thyroid 0.984 0.976 0.978 0.979 0.974 0.984 0.957 0.962 0.955 0.962
titanic 0.629 0.667 0.646 0.658 0.661 0.629 0.642 0.641 0.658 0.645
twonorm 0.915 0.993 0.990 0.990 0.990 0.915 0.940 0.961 0.961 0.956
waveform 0.771 0.960 0.953 0.947 0.957 0.771 0.847 0.850 0.900 0.905
image 0.845 0.955 0.949 0.949 0.953 0.845 0.897 0.889 0.891 0.901
splice 0.416 0.941 0.913 0.930 0.939 0.416 0.716 0.623 0.769 0.820
ionosphere 0.254 0.953 0.844 0.931 0.952 0.254 0.714 0.413 0.633 0.746
mushrooms 0.945 1.000 1.000 1.000 1.000 0.945 0.999 0.999 0.999 0.999
sonar 0.683 0.757 0.767 0.778 0.781 0.683 0.615 0.678 0.683 0.662
adult 0.606 0.875 0.873 0.865 0.835 0.606 0.687 0.736 0.847 0.739
web 0.464 0.810 0.758 0.727 0.788 0.464 0.644 0.639 0.590 0.667
data set π = 0.1

Ind. TND H(1.0) H(0.5) H(0.1)
banana 0.924 0.896 0.921 0.920 0.910
breast-cancer 0.663 0.564 0.687 0.642 0.598
diabetes 0.742 0.658 0.720 0.709 0.693
flare-solar 0.673 0.615 0.655 0.643 0.659
german 0.633 0.556 0.615 0.616 0.615
heart 0.796 0.626 0.792 0.784 0.729
ringnorm 0.999 0.985 0.973 0.986 0.992
thyroid 0.984 0.910 0.970 0.955 0.932
titanic 0.629 0.603 0.643 0.642 0.626
twonorm 0.915 0.933 0.943 0.937 0.923
waveform 0.771 0.813 0.821 0.823 0.808
image 0.845 0.888 0.870 0.871 0.880
splice 0.416 0.630 0.554 0.553 0.640
ionosphere 0.254 0.589 0.349 0.443 0.552
mushrooms 0.945 0.996 0.994 0.997 0.997
sonar 0.683 0.514 0.646 0.655 0.592
adult 0.606 0.658 0.681 0.684 0.629
web 0.464 0.567 0.573 0.538 0.604

Table 3: AUC values for five novelty detection algorithms in the transductive setting. ‘H’ indicates
a hybrid method.
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π Inductive SSND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value
0.0 1.89 4.39 2.72 2.89 3.11 0.000
0.1 2.83 4.00 2.83 2.28 3.06 0.023
0.2 3.28 3.83 2.61 2.56 2.72 0.071
0.5 4.28 1.94 3.44 3.00 2.33 0.000

Table 4: The comparison of average ranks of the five algorithms in the semi-supervised setting,
by the Friedman test. The critical difference of the post-hoc Nemenyi test is 1.30 at a
significance level of 0.1.

π Inductive TND Hybrid(1.0) Hybrid(0.5) Hybrid(0.1) p-value
0.1 2.94 3.78 2.56 2.67 3.06 0.157
0.2 3.17 3.78 3.06 2.50 2.50 0.085
0.5 4.44 1.44 3.56 3.17 2.39 0.000

Table 5: The comparison of average ranks of the five algorithms in the transductive setting, by the
Friedman test. The critical difference of the post-hoc Nemenyi test is 1.30 at a significance
level of 0.1.

3. All tables indicate that the proposed methodology performs better in the transductive setting
than the semi-supervised setting. A likely reason is that, in our experimental setup, TND sees
twice as much unlabeled data as SSND.

4. When π = 0.0 in the semi-supervised experiments, SSND typically has an AUC around 0.5,
which corresponds to random guessing. This makes sense, because it is essentially trying to
classify between two realizations of the nominal distribution. From Tables 2 and 4 we see
that the hybrid methods clearly improve upon SSND when π= 0.0.

5. For some data sets (splice, ionosphere, web), the inductive method does worse than random
guessing, but our methods do not. In each case, our methods yield dramatic increases in AUC.

6. The benefits of unlabeled data increase with dimension. In particular, SSND and TND tend
to perform much better relative to the inductive approach on data sets of dimension at least
18. This is especially evident in the second half of the data sets, which even show significant
gains for π = 0.1. This trend suggests that as dimension increases, the assumption implicit
in the inductive approach (that novelties are uniform where they overlap the support of the
nominal distribution) breaks down.

Figure 1 depicts a sampling of results comparing the inductive and semi-supervised methods,
and highlights the impact of dimension. The top graph shows ROCs for a two-dimensional data set
where the two classes are fairly well separated, meaning the novelties lie in the tails of the nominal
class, and π = 0.5. Not surprisingly, the inductive method is close to the semi-supervised method.
The middle graph represents the 60-dimensional splice data set, where the inductive method does
worse than random guessing, yet SSND does quite well. The bottom graph in Figure 1 shows the
results for the 21-dimensional waveform data for π = 0.1. Here the assumptions of the inductive
approach are also evidently violated to some degree.
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Figure 1: Illustrative results from the semi-supervised setting. Top: In the 2-dimensional banana
data, the two classes are well separated, and the inductive approach fares well. Middle: In
the 60-dimensional splice data, the inductive approach does worse than random guessing.
Bottom: In the 21-dimensional waveform data, unlabeled data still offer gains when π is
small (here 0.1).
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9. Conclusions

We have shown that semi-supervised novelty detection reduces to Neyman-Pearson classification.
This allows us to leverage known performance guarantees for NP classification algorithms, and to
import practical algorithms. We have applied techniques from statistical learning theory, such as
uniform deviation inequalities, to establish distribution free performance guarantees for SSND, as
well as a distribution free lower bound and universally consistent estimator for π, and test for π= 0.
Our approach optimally adapts to the unknown novelty distribution, unlike inductive approaches,
which operate as if novelties are uniformly distributed. We also introduced a hybrid method that has
the properties of SSND when π> 0, and effectively reverts to the inductive method when π= 0.

Our analysis strongly suggests that in novelty detection, unlike traditional binary classification,
unlabeled data are essential for attaining optimal performance in terms of tight bounds, consistency,
and rates of convergence. In an extensive experimental study, we found that the advantages of our
approach are most pronounced for high dimensional data. Our analysis and experiments confirm
some challenges that seem to be intrinsic to the SSND problem. In particular, SSND is more difficult
for smaller π. Furthermore, estimating the novelty proportion π can become arbitrarily difficult as
the nominal and novel distributions become increasingly similar.

Our methodology also provides general solutions to two well-studied problems in hypothesis
testing. First, our lower bound on π translates immediately to a test for π = 0, which amounts to
a distribution-free solution to the two-sample problem. Second, we also show that SSND provides
a powerful generalization of standard multiple testing. Important problems for future work will
include developing practical methodologies for these problems based on our theoretical framework.
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Appendix A. Proofs

The remaining proofs are now presented.

A.1 Proof of Theorem 2

For the first two claims of the theorem, we directly apply Theorem 3 of Scott and Nowak (2005) to
the problem of NP classification of P0 versus PX , and obtain that for a suitable choice of constants
c,c′ we have with probability at least 1−δ :

R0( f̂τ)−α≤ c′εn ; RX( f̂τ)−RX( f ∗)≤ c′εm .

From this, we deduce (3)-(4) by application of Theorem 1.
For the second claim, by application of Bayes’ rule we have for any classifier f :

Q0( f ) =
(1−π)(1−R0( f ))
PX( f (X) = 0)

=
(1−π)(1−R0( f ))

πR1( f )+(1−π)(1−R0( f ))
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and

Q1( f ) =
π(1−R1( f ))
PX( f (X) = 1)

=
π(1−R1( f ))

(1−π)R0( f )+π(1−R1( f ))
.

Observe that for a,b > 0 the function ζ(x,y) = a(1−x)
by+a(1−x) is decreasing in y ∈ R+ for x ∈ (−∞,1],

and decreasing in x ∈ [0,1+by/a) for y ∈ R+. Hence, using (3)-(4) and the fact that Ri( f ) ∈ [0,1] ,
we derive a lower bound on Q0( f̂τ) as follows:

Q0( f̂τ) =
(1−π)(1−R0( f̂τ))

πR1( f̂τ)+(1−π)(1−R0( f̂τ))

≥
(1−π)(1−α− c′εn)

π(R1( f ∗)+ c′π−1(εn+ εm))+(1−π)(1−R0( f ∗)− c′εn)

=
(1−π)(1−α− c′εn)

PX( f ∗(X) = 0)+ c′(εm+πεn)

≥
(1−π)(1−α)

PX( f ∗(X) = 0)+ c′(εm+πεn)
−

c′(1−π)εn
PX( f ∗(X) = 0)

≥
(1−π)(1−α)− c′(1−π)εn

PX( f ∗(X) = 0)
−

(1−π)(1−α)c′(εm+πεn)
PX( f ∗(X) = 0)2

≥ Q0( f ∗)−
c′(εn+ εm)

PX( f ∗(X) = 0)
.

The first inequality comes from the monotonicity properties of ζ(x,y) (applied first with respect to
y, then x). The second is elementary. In the third inequality we used the fact that the function g : δ -→
g(δ) = A

B+δ is convex for A,B,δ positive and has derivative −A/B
2 in zero, so that g(δ)≥ A

B −δ A
B2 ,

with A= (1−π)(1−α),B= PX( f ∗(X) = 0),δ= c′(εm+πεn) . In the last inequality we used (with
the same definition for A,B) that AB = Q0( f ∗)≤ 1 .

The treatment for Q1 is similar. Suppose first that

c′(εn+ εm)< PX( f ∗(X) = 1). (15)

We then have

Q1( f̂τ) =
π(1−R1( f̂τ))

(1−π)R0( f̂τ)+π(1−R1( f̂τ))

≥
π(1−R1( f ∗)− c′π−1(εn+ εm))

(1−π)(α+ c′εn)+π(1−R1( f ∗)− c′π−1(εn+ εm))

=
π(1−R1( f ∗))− c′(εn+ εm)
PX( f ∗(X) = 1)− c′(πεn+ εm)

≥ Q1( f ∗)−
c′(εn+ εm)

PX( f ∗(X) = 1)− c′(εn+ εm)
,

where we used again the monotonicity properties of ζ(x,y). Note that assumption (15) ensures
that all denominators in the above chain of inequalities are positive, which is required for these
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inequalities to hold. Now, since Q1( f̂τ)≥ 0 and Q1( f ∗)≤ 1, the above implies

Q1( f̂τ)≥ Q1( f ∗)−min
(
1,

c′(εn+ εm)
PX( f ∗(X) = 1)− c′(εn+ εm)

)

≥ Q1( f ∗)−
2c′(εn+ εm)
PX( f ∗(X) = 1)

;

in the last inequality we used the fact that min(1,x/(1− x)) ≤ 2x for x ∈ [0,1) (with x = c′(εn+
εm)/PX( f ∗(X) = 1)) . If (15) is not satisfied, then the last display still trivially holds since its RHS
is nonpositive. This establishes (5) for i= 1 .

A.2 Proof of Proposition 5

Let π∗ be defined as

π∗ := inf{α ∈ [0,1] : ∃Q probability distribution: PX = (1−α)P0+αQ} .

We want to establish that π∗ satisfies the claims of the theorem (and in particular that the above
infimum is a minimum). In the case P0 = PX , obviously we have π∗ = 0 and this is a minimum.
We now assume for the remainder of the proof that P0 )= PX . Consider the Lebesgue decomposition
PX = P0X +P⊥

X with P0X 3 P0 (that is, P0X is absolutely continuous with respect to P0) and P⊥
X ⊥ P0X

(that is, P⊥
X and P0 are mutually singular) . Let f = dP0X/dP0 and a be the essential infimum of f

wrt. P0. We claim that π∗ = 1−a. Observe first that

a≤ EX∼P0 [ f (X)] = P0X(X )≤ PX(X ) = 1 .

In particular, a = 1 must imply that the above inequalities are equalities, hence that EX∼P0 [ f ] = a.
The latter can only be valid if f = a= 1 P0-a.s., implying that P0 = P0X , and further P0 = PX , which
we excluded before. Therefore it holds that a< 1. Certainly we then have the valid decomposition

PX = aP0+(1−a)P1 , P1 :=
(
(1−a)−1

(
( f −a)P0+P⊥

X

))
,

so that π∗ ≤ 1−a .
By definition of singular measures there exists a measurable set D such that P0(D) = 1 and

P⊥
X (D) = 0 . Fix ε > 0 ; by definition of the essential infimum there exists a measurable set C such
that P0(C)> 0 and f ≤ a+ ε P0-a.s. onC . Put A=C∩D . Then P0(A) = P0(C)> 0 . Furthermore

P1(A)
P0(A)

=
EX∼P0

[
(1−a)−1( f −a)1{X∈A}

]

P0(A)
≤ ε/(1−a) .

Existence of a decomposition of the form P1 = (1−γ)Q+γP0 implies that for any measurable set A ,
P1(A)≥ γP0(A) . Hence the above implies that γ= 0 for any such decomposition, that is, P1 must be
a proper novelty distribution wrt. P0 . It also implies that for any ε> 0 there exists a measurable set
A with P0(A) > 0 and PX(A)/P0(A) ≤ a+ ε . Hence for any decomposition PX = (1−α)P0+αQ,
it must hold that (1−α)≤ a, so that π∗ ≥ 1−a . We thus established π∗ = 1−a and the existence
of the decomposition. Concerning the unicity, the decomposition established above implies that for
any α ≥ π∗ , PX = (1−α)P0+αQ holds with Q = (1− π∗

α )P0+
π∗
α P1 . Note that for any fixed α ,

existence of a decomposition PX = (1−α)P0+αQ uniquely determines Q . Hence for α > π∗ the
corresponding Q is not a proper novelty distribution, and the only valid decomposition of PX into P0
and a proper novelty distribution is the one established previously.
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A.3 Lemma Used in Proof of Theorem 6

For the proof of Theorem 6 we made use of the following auxiliary result:

Lemma 13 Assume P1 is a proper novelty distribution wrt. P0 . Then for any ε > 0 there exists a
(deterministic) classifier f such that R0( f )< 1 and

R1( f )
1−R0( f )

≤ ε .

Proof . Since P1 is a proper novelty distribution wrt. P0, reiterating the reasoning in the proof of
Proposition 5 shows that there exists a measurable set A with P0(A)> 0 and P1(A)/P0(A)≤ ε . Put
α= 1−P0(A)< 1 . Consider the classifier f (x) = 1{x∈Ac} . Then R0( f ) = P0( f = 1) = α , while

0≤ R1( f ) = P1( f = 0) = P1(A)≤ ε(1−α) . (16)

This leads to the desired conclusion.

A.4 Proof of Theorem 8

By application of Lemma 13, for any ε> 0 there exists a classifier f ∗ such that R1( f ∗)
1−R0( f ∗) ≤ ε . Then

we have as in the proof of Theorem 6:

1−
RX( f ∗)
1−R0( f ∗)

= π

(
1−

R1( f ∗)
1−R0( f ∗)

)
≥ π(1− ε) .

Fix γ> 0 and define P̃= 1
2(P0+P1) . Using the assumption of universal approximation, pick k such

that there exists f ∗k ∈ Fk with P̃( f ∗k (X) )= f ∗(X))≤ γ . Since P̃≥ 1
2P0 and P̃≥ 1

2P1 this implies also
P0( f ∗k (X) )= f ∗(X))≤ 2γ as well as PX( f ∗k (X) )= f ∗(X))≤ 2γ .

From now we only work in the class Fk and so we omit the parameters in the notation εi ≡
εi(Fk,δk−2) . By the union bound, the uniform control of the form (11) is valid simultaneously for
all Fk , with probability 1− cδ (with c = π2/6). Hence with probability 1− cδ= 1− c(mn)−2 , we
have

R̂0( f ∗k )≤ R0( f ∗k )+ εm ≤ R0( f ∗)+2γ+ εm ,

and also
R̂X( f ∗k )≤ RX( f ∗k )+ εn ≤ RX( f ∗)+2γ+ εn .

From this we deduce that with probability 1− c(mn)−2 :

π̂−(δ)≥ π̂−(Fk,(mn)−2k−2)≥ 1−
RX( f ∗)+2γ+2εn

1−R0( f ∗)−2γ−2εm
.

Since εn,εm go to zero as min(m,n) goes to infinity we deduce that a.s. (using the Borel-Cantelli
lemma, and the fact that the error probabilities are summable over (m,n) ∈ N2)

liminf
min(m,n)→∞

π̂−(δ)≥ 1−
RX( f ∗)+2γ
1−R0( f ∗)−2γ

≥ π(1− ε)
1−R0( f ∗)

1−R0( f ∗)−2γ
−

4γ
1−R0( f ∗)−2γ

.

Taking the limit of the above as γ→ 0 (for fixed ε and f ∗), then as ε→ 0 , leads to the conclusion.
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A.5 Proof of Theorem 9

The principle of the argument is relatively standard and can be sketched as follows. Assume there
exists a non-trivial upper confidence bound π̂+(δ) on the proportion of anomalies. From the non-
triviality assumption, there exists a generating distribution P and a set of samples B such that
π̂+(δ) < 1 for all samples in B while P(B) > δ. We will construct below an alternate generat-
ing distribution P̃ and set of samples B̃ ⊂B which are very close to P and B , in particular satisfying
P̃(B̃)> δ; however the proportion of anomalies for P̃ is 1, contradicting the universality of π̂+ since
π̂+(δ)< 1 for all samples in B̃ .

Let P0,P1,δ,π be given by the non-triviality assumption and P :=P⊗m
0 ⊗P⊗n

X denote correspond-
ingly the joint distribution of nominal and contaminated data. Fix some γ> 0 and a set D such that
0< P0(D)< γ (such a set always exists by the assumption that P0 is weakly diffuse). Put A= Dc ,
so that 1− γ < P0(A) < 1 . Consider the distribution P0 conditional to belonging to A, given by
1x∈A
P0(A)P0. Since it has its support strictly included in the support of P0 , it is a proper novelty distribu-
tion with respect to P0. Therefore, since P1 is also a proper novelty distribution with respect to P0,
so is P̃1 := (1−π) 1x∈AP0(A)P0+πP1.

Now consider the novelty detection problem with nominal distribution P0, novelty distribution
P̃1, and novelty proportion π̃ = 1, so that P̃X = (1− π̃)P0+ π̃P̃1 = P̃1. Finally, define the modified
joint distribution on nominal and contaminated data P̃= P⊗m

0 ⊗ P̃⊗n
X .

By the non-triviality assumption, there exists a set B of (m,n) samples such that π̂+(δ) < 1 on
the set B and P(B) = δ0 > δ . Denote A = Xm×An . By assumption, P(A)≥ (1−γ)n ; furthermore
from the construction of P̃ it can be verified straightforwardly that for any set C ⊂A , P̃(C )≥ P(C ) .
Define now B̃ = B ∩A ; we have

P̃(B̃)≥ P(B̃)≥ δ0− (1− (1− γ)n).

Hence for γ small enough, we have P̃(B̃) > δ which contradicts the fact that π̂+(δ) is a 1− δ
confidence upper bound, since on B̃ we have π̂+(δ)< 1= π̃ .

A.6 Proof of Corollary 10

Put
γ := sup

P∈P (m,n)
E
[
|π̂−π|p

]
.

By Markov’s inequality, it means that for any generating distribution P,

P
(
π> π̂+

( γ
δ

) 1
p
)
≤ δ.

Hence π̂+(δ) = π̂+
( γ
δ

) 1
p is a distribution-free upper confidence bound on π .

By theorem (9), this bound must be trivial. We investigate the consequences of this fact. Let us
consider any generating distribution P ∈ P (m,n) for which π = 0, and the nominal distribution P0
is weakly diffuse (it is possible to find such a P0 since X is infinite). Assume δ < 1

2 and fix some
δ0 ∈ (δ,1−δ). Markov’s inequality again implies that for this distribution,

P

(

π̂≥

(
γ
δ0

) 1
p
)

≤ δ0,
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so that
P
(
π̂+(δ)≥ 2

( γ
δ

) 1
p
)
≤ δ0 ≤ 1−δ.

Choosing δ0 = 1/2, δ= 1/3, the above implies that π̂+(δ) would be non-trivial if γ< 2−p/3. Thus
we must conclude that γ≥ c(p) := 2−p/3.

Appendix B. Randomized classifiers and ROCs

In this appendix we review some properties of ROCs that are relevant to our setting. These should
be considered well-known (see for example the paper of Fawcett, 2006, and references therein, for
an overview of ROC analysis over sets of classifiers). For the sake of completeness, we give here
statements and short proofs that are tailored to correspond precisely to the context considered in the
main body of the paper.

Let F be a fixed set of classifiers, and recall the Neyman-Pearson classification optimization
problem (1), restated here for convenience:

R∗
1,α(F ) := inf

f∈F
R1( f ) (1)

s.t. R0( f )≤ α .

We call optimal ROC of P1 versus P0 for set F the function α ∈ [0,1] -→ 1−R∗
1,α(F ) ∈ [0,1] .

For reference, first consider a very “regular” case where F is the set of all possible deterministic
classifiers, and one assumes that both class probabilities P0,P1 have densities h0,h1 with respect to
some reference measure, such that the likelihood ratio F(x) = h1(x)

h0(x) is continuous with infF = 0 and
supF =+∞ . Then the optimal solutions f ∗α of (1) are indicators of sets of the form

Cλ =
{
x ∈ X :

h1(x)
h0(x)

≥ λ

}
,

with λ(α) such that P0(Cλ) = α . In this case R∗
1,α(F ) = P1(Cλ(α)) and it can be shown that the ROC

is continuous, nondecreasing and concave between the points (0,0) and (1,1) . In particular in this
case it holds that R0( f ∗α) = α .

When some of the above assumptions are not satisfied, for example if we consider an arbi-
trary subset F of classifiers (which is of course necessary for adequate estimation error control),
or the probability distributions P0 and P1 have atoms (which is the case in practice for empirical
distributions), some of these properties may fail to hold. While it is clear that the optimal ROC is
always a nondecreasing function, it might fail to be concave, and the optimal solution might have
R0( f ∗α)< α . This is for example obviously the case if F is a finite set of classifiers, in which case
the ROC is a step function and R0( f ) can only take finitely many values.

We are interested in the following regularity properties depending on F ,P0 and P1:

(A’) For any α∈ (0,1) , there exists a sequence fn ∈F such that R0( fn)=α and R1( fn)→R∗
1,α(F ) .

(B) The function α -→ R∗
1,α(F )/(1−α) is nondecreasing on [0,1] .

Note that for simplicity of exposition, in the main body of the paper we simplified property (A’)
into (A) , where the sequence fn is replaced by its limit, assumed to belong to the considered set of
classifiers. Our results still hold under (A’) with straightforward modifications of the proofs.
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Condition (B) states that the slope of the line joining the point of the optimal ROC at α and
the point (1,1) is nonincreasing in α ; this assumption is weaker than concavity of the ROC. It is
relevant for the discussion in the final paragraph below, related to our result on precision.

To ensure regularity properties of the ROC, a standard device is to extend the class F and con-
sider randomized classifiers, whose output is not a deterministic function, but a Bernoulli variable
with probability depending on the point x . Formally this amounts to allowing a classifier f to take
real values in the interval [0,1] ; now for a given x the final decision D( f ,x) is a Bernoulli vari-
able (independent of everything else) taking value 1 with probability f (x) and 0 with probability
1− f (x) . In this setting the error probabilities become for y= 0,1 :

Ry( f ) := Py(D( f ,X) )= y) = Ey[| f (X)− y|] ,

where Ey is a shortcut for EX∼Py . Although the function f itself remains strictly speaking determin-
istic, in view of the above interpretation we will call with some abuse f a deterministic classifier if
it takes values in {0,1} and randomized classifier if takes values in [0,1].

We consider two types of extensions of a (usually deterministic) class F , the first one is the
convex hull of F , or full randomization,

F =

{

g
∣∣∣∣g=

N

∑
i=1

λi fi ;N ∈ N , fi ∈ F ,λi ≥ 0 for 1≤ i≤ N ,
N

∑
i=1

λi = 1

}

.

The second is given by

F + = {g|g= λ f +(1−λ) , f ∈ F ,λ ∈ [0,1]} ,

where the randomization is limited to convex interpolation between one classifier of the base class
and the constant classifier equal to 1.

The following standard lemma summarizes the properties of the optimal ROC curve for these
extended classes:

Lemma 14 Let F be a set of deterministic classifiers containing the constant classifier equal to
zero, and let P0,P1 be arbitrary distributions on X . Then assumptions (A’) and (B) are met when
considering optimization problem (1) over either F or F + . The optimal ROC for the set F is
concave.

Proof . The fact that the constant zero classifier belongs to F ensures that the infimum in (1) (over
either of the classes F , F + or F ) is not taken over an empty set and exists. The definition of
an infimum ensures that there exists a sequence gn of elements of F + such that R0(gn) ≤ α and
R1(gn)↘ R∗

1,α(F
+) . Then putting λn = (1−α)/(1−R0(gn)) , the sequence fn = λngn+(1−λn)

belongs to F +, and is such that

R0( fn) = E0[ fn] =
(1−α)

(1−R0(gn))
R0(gn)+

(
1−

(1−α)
(1−R0(gn))

)
= α

while
R∗
1,α(F

+)≤ R1( fn) = 1−E1[ fn] = λnR1(gn)≤ R1(gn)↘ R∗
1,α(F

+),

and thus ensures (A’). The same reasoning applies to F .
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For property (B), consider a sequence ( fn) from property (A’), a number β ∈ [α,1] and hn =
(1− ζ) fn+ ζ where ζ = (1−β)/(1−α) ∈ [0,1] . Then hn ∈ F + , R0(hn) = β and R1(hn) = (1−
ζ)R1( fn)+ζ . Letting n grow to infinity we obtain R∗

1,β(F
+)≤ (1−ζ)R∗

1,α(F
+)+ζ which in turn

implies (B) .
In the case of F , similarly consider sequences fn,1, fn,2 like above for α = α1, resp. α = α2

with α2 ≥ α1; for any β ∈ [α1,α2] , write β = λα1 + (1− λ)α2 ; correspondingly the sequence
λ fn,1+(1−λ) fn,2 belongs to F and ensures that R∗

1,β(F ) ≤ λR∗
1,α1(F )+ (1−λ)R∗

1,α2(F ) that is,
the optimal ROC for F is concave.

Concerning estimation error control for the extended classes, a uniform control of the error on
the base class is sufficient, since it carries over to the extended classes by convex combination. To
be more specific, let us consider for example the estimation of R0( f ) uniformly over f ∈ F . The
empirical counterpart of R0( f ) is given by

R̂0( f ) := P̂0(D( f ,X) )= 0) = Ê0[ f (X)] ,

where Ê0 denotes the empirical expectation on the nominal sample. By definition of F , f can be
written f =∑N

i=1λi fi with ∑N
i=1λi = 1 and λi ≥ 0, fi ∈F for 1≤ i≤N, and thus the estimation error

is controlled as follows:
∣∣∣R0( f )− R̂0( f )

∣∣∣=
∣∣∣E0[ f (X)]− Ê0[ f (X)]

∣∣∣≤
N

∑
i=1

|λi|
∣∣∣P0( fi(X) = 1)− P̂0( fi(X) = 1)

∣∣∣

≤ sup
f∈F

∣∣∣P0( f (X) = 1)− P̂0( f (X) = 1)
∣∣∣ ,

Therefore, if an error control of the form (11) holds over the base class F (for example if it is a
VC-class), then the same type of bound holds for quantities of interest over the extended classes
F + and F .

For practical purposes, it might be significantly more difficult to find the solution of the (empir-
ical version of) (1) for randomized classes and in particular for the fully randomized extension F .
An advantage of the more limited form of randomization is that optimization problem (1) over F +

can be rewritten equivalently as an optimization problem over the original class, namely as

inf
h∈F

R1(h)
1−R0(h)

s.t. R0(h)≤ α . (17)

To see why, assume for simplicity of exposition that (A) rather than (A’) is satisfied. Then the
optimization problem (1) over F + is attained for some randomized classifier f ∗ ; by construction f ∗
is of the form f ∗ = λh∗+(1−λ) for some λ ∈ [0,1] and h∗ ∈ F . By property (A) we can assume
R0( f ∗) = α , which entails λ = (1−α)/(1−R0(h∗)) and R1( f ∗) = (1−α)R1(h∗)/(1−R0(h∗)) ,
hence the equivalence with (17) (with the above relation between f ∗ and h∗) .

Finally, in general we can interpret the optimization problem (17) as a maximization of the class
0 precision,

Q0( f ) = PXY (Y = 0| f (X) = 0) =
(1−π)(1−R0( f ))

(1−π)(1−R0( f ))+πR1( f )
=

(1−π)

(1−π)+π R1( f )
1−R0( f )

,
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under the constraint R0( f )≤ α , since the above display shows that Q0( f ) is a decreasing function
of the ratio R1( f )/(1−R0( f )) . In general if properties (A) and (B) are satisfied for the considered
class, then it is easy to see that the solutions to (1) and (17) coincide, so that the same classifier f ∗
achieves the minimum FNR and class 0 precision under the constraint on the FPR.
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Abstract
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference
and prediction. GPs are specified by mean and covariance functions; we offer a library of simple
mean and covariance functions and mechanisms to compose more complex ones. Several likeli-
hood functions are supported including Gaussian and heavy-tailed for regression as well as others
suitable for classification. Finally, a range of inference methods is provided, including exact and
variational inference, Expectation Propagation, and Laplace’s method dealing with non-Gaussian
likelihoods and FITC for dealing with large regression tasks.
Keywords: Gaussian processes, nonparametric Bayes, probabilistic regression and classification
Gaussian processes (GPs) (Rasmussen andWilliams, 2006) have convenient properties for many

modelling tasks in machine learning and statistics. They can be used to specify distributions over
functions without having to commit to a specific functional form. Applications range from regres-
sion over classification to reinforcement learning, spatial models, survival and other time series1
models. Predictions of GP models come with a natural confidence measure: predictive error-bars.

Although the implementation of the basic principles in the simplest case is straight forward,
various complicating features are often desired in practice. For example, a GP is determined by a
mean function and a covariance function, but these functions are mostly difficult to specify fully a
priori, and typically they are given in terms of hyperparameters, that is, parameters which have to
be inferred. Another source of difficulty is the likelihood function. For Gaussian likelihoods, in-
ference is analytically tractable; however, in many tasks, Gaussian likelihoods are not appropriate,
and approximate inference methods such as Expectation Propagation (EP) (Minka, 2001), Laplace’s
approximation (LA) (Williams and Barber, 1998) and variational bounds (VB) (Gibbs and MacKay,
2000) become necessary (Nickisch and Rasmussen, 2008). In case of large training data, approxi-
mations (Candela and Rasmussen, 2005) like FITC (Snelson and Ghahramani, 2006) are needed.

The GPML toolbox is designed to overcome these hurdles with its variety of mean, covariance
and likelihood functions as well as inference methods, while being simple to use and easy to extend.

∗. Also at Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany.
1. Note, that here we typically think of GPs with a more general index set than time.

©2010 Carl Edward Rasmussen and Hannes Nickisch.



RASMUSSEN AND NICKISCH

1. Implementation

The GPML toolbox can be obtained from http://gaussianprocess.org/gpml/code/matlab/
and also http://mloss.org/software/view/263/ under the FreeBSD license. Based on simple
interfaces for covariance, mean, likelihood functions as well as inference methods, we offer full
compatibility to both Matlab 7.x2 and GNU Octave 3.2.x.3 Special attention has been given to
properly disentangle covariance, likelihood and mean hyperparameters. Also, care has been taken to
avoid numerical inaccuracies, for example, safe likelihood evaluations for extreme inputs and stable
matrix operations. For example, the covariance matrix K can become numerically close to singular
making its naive inversion numerically unsafe. We handle these situations in a principled way4
such that Cholesky decompositions are computed of well-conditioned matrices only. As a result,
our code shows a high level of robustness along the full spectrum of possible hyperparameters.
The focus of the toolbox is on approximate inference using dense matrix algebra. We currently
do not support covariance matrix approximation techniques to deal with large numbers of training
examples n. Looking at the (growing) body of literature on sparse approximations, this knowledge
is still somewhat in flux, and consensus on the best approaches has not yet been reached.

We provide stable and modular code checked by an exhaustive suite of test cases. A single
function gp.m serves as main interface to the user—it can make inference and predictions and allows
the mean, covariance and likelihood function as well as the inference methods to be specified freely.

Furthermore, gp.m enables convenient learning of the hyperparameters by maximising the log
marginal likelihood lnZ. One of the particularly appealing properties of GP models is that princi-
pled and practical approaches exist for learning the parameters of mean, covariance and likelihood
functions. Good adaptation of such parameters can be essential to obtain both high quality pre-
dictions and insights into the properties of the data. The GPML toolbox is particularly flexible,
including a large library of different covariance and mean functions, and flexible ways to combine
these into more expressive, specialised functions. The user can choose between two gradient-based
optimisers: one uses conjugate gradients (CG)5 and the other one relies on a quasi-Newton scheme.6
Computing the derivatives w.r.t. hyperparameters ∂

∂θi
lnZ with gp.m does not need any extra pro-

gramming effort; every inference method automatically collects the respective derivatives from the
mean, covariance and likelihood functions and passes them to gp.m.

Our documentation comes in two pieces: a hypertext user documentation7 doc/index.html
with examples and code browsing and a technical documentation8 doc/manual.pdf focusing on
the interfaces and more technical issues. A casual user will use the hypertext document to quickly
get his data analysed, however a power user will consult the pdf document once he wants to include
his own mean, covariance, likelihood and inference routines or learn about implementation details.

2. Matlab is available from MathWorks, http://www.mathworks.com/.
3. Octave is available from the Free Software Foundation, http://www.gnu.org/software/octave/.
4. We do not consider the “blind” addition of a “small ridge” to K a principled way.
5. Carl Rasmussen’s code is available at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/.
6. Peter Carbonetto’s wrapper can be found at http://www.cs.ubc.ca/˜pcarbo/lbfgsb-for-matlab.html.
7. Documentation can be found at http://www.gaussianprocess.org/gpml/code/matlab/doc/index.html.
8. Technical docs are available at http://www.gaussianprocess.org/gpml/code/matlab/doc/manual.pdf.
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2. The GPML Toolbox

We illustrate the modular structure of the GPML toolbox by means of a simple code example.
GPs are used to formalise and update knowledge about distributions over functions. A GP prior
distribution on an unknown latent function f ∼ GP (mφ(x),kψ(x,x′)), consists of a mean func-
tion m(x) = E[ f (x)], and a covariance function k(x,x) = E[( f (x)−m(x))( f (x′)−m(x′))], both of
which typically contain hyperparameters φ and ψ, which we want to fit in the light of data. We
generally assume independent observations, that is, input/output pairs (xi,yi) of f with joint likeli-
hood Pρ(y|f) =∏n

i=1Pρ(yi| f (xi)) factorising over cases. Finally, after specification of the prior and
fitting of the hyperparameters θ = {φ,ψ,ρ}, we wish to compute predictive distributions for test
cases.

% 1) SET UP THE GP: COVARIANCE; MEAN , LIKELIHOOD , INFERENCE METHOD
1 mf = {’meanSum’,{’meanLinear’,@meanConst}}; a = 2; b = 1; % m(x) = a*x+b
2 cf = {’covSEiso’}; sf = 1; ell = 0.7; % squared exponential covariance funct
3 lf = ’likLaplace’; sn = 0.2; % assume Laplace noise with variance snˆ2
4 hyp0.mean = [a;b]; hyp0.cov = log([ell;sf]); hyp0.lik = log(sn); % hypers
5 inf = ’infEP’; % specify expectation propagation as inference method

% 2) MINIMISE NEGATIVE LOG MARGINAL LIKELIHOOD nlZ wrt. hyp; do 50 CG steps
6 Ncg = 50; [hyp, nlZ] = minimize(hyp0 , ’gp’, -Ncg , inf , mf, cf, lf, X, y);

% 3) PREDICT AT UNKNOWN TEST INPUTS
7 [ymu, ys2] = gp(hyp , inf , mf, cf, lf, X, y, Xs); % test input Xs

In line 1, we specify the mean mφ(x) = a%x+ b of the GP with hyperparameters φ = {a,b}.
First, the functional form of the mean function is given and its parameters are initialised. The
desired mean function, happens not to exist in the library of mean functions; instead we have to
make a composite mean function from simple constituents. This is done using a nested cell array
containing the algebraic expression for m(x): As the sum of a linear (mean/meanLinear.m) and
a constant mean function (mean/meanConst.m) it is an affine function. In addition to linear and
constant mean functions, the toolbox offers m(x) = 0 and m(x) = 1. These simple mean functions
can be combined by compositemean functions to obtain sums (mean/meanSum.m)m(x) =∑ j m j(x),
productsm(x)=∏ j m j(x), scaled versionsm(x)=αm0(x) and powersm(x)=m0(x)d . This flexible
mechanism is used for convenient specification of an extensible algebra of mean functions. Note
that functions are referred to either as name strings ’meanConst’ or alternatively function handles
@meanConst. The order of components of the hyperparameters φ is the same as in the specification
of the cell array. Every mean function implements its evaluation m = mφ(X) and first derivative
computation mi =

∂
∂φi
mφ(X) on a data set X.

In the same spirit, the squared exponential covariance kψ(x,x′) = σ f ²exp(−‖x−x′‖2 /2!2)
(cov/covSEiso.m) with hyperparameters ψ = {ln!, lnσ f } is set up in line 2. Note, that the hy-
perparameters are represented by the logarithms, as these parameters are naturally positive. Many
other simple covariance functions are contained in the toolbox. Among others, we offer linear,
constant, Matérn, rational quadratic, polynomial, periodic, neural network and finite support co-
variance functions. Composite covariance functions allow for sums k(x,x′) = ∑ j k j(x,x′), prod-
ucts k(x,x′) = ∏ j k j(x,x′), positive scaling k(x,x′) = σ2f k0(x,x′) and masking of components
k(x,x′) = k0(xI,x′I) with I ⊆ [1,2, ..,D], x ∈ RD. Again, the interface is simple since only the
evaluation of the covariance matrix K = kψ(X) and its derivatives ∂iK = ∂

∂ψi
kψ(X) on a data set

X are required. Furthermore, we need cross terms k∗ = kψ(X,x∗) and k∗∗ = kψ(x∗,x∗) for pre-
diction. There are no restrictions on the composition of both mean and covariance functions—any
combination is allowed including nested composition.
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The Laplace (lik/likLaplace.m) likelihood Pρ(y| f ) = exp(−
√
2/σn|y− f |)/

√
2σn with hy-

perparameters ρ= {lnσn} is specified in line 3. There are only simple likelihood functions: Gaus-
sian, Sech-squared, Laplacian and Student’s t for ordinary and sparse regression as well as the error
and the logistic function for classification. Again, the same inference code is used for any likelihood
function. Although the specification of likelihood functions is simple for the user, writing new like-
lihood functions is slightly more involved as different inference methods require access to different
properties; for example, LA requires second derivatives and EP requires derivatives of moments.

All hyperparameters θ = {φ,ψ,ρ} are stored in a struct hyp.{mean,cov,lik}, which is ini-
tialised in line 4; we select the approximate inference algorithm EP (inf/infEP.m) in line 5.

We optimise the hyperparameters θ ≡ hyp by calling the CG optimiser (util/minimize.m)
with initial value θ0 ≡ hyp0 in line 6 allowing at most N = 50 evaluations of the EP approximation
to the marginal likelihood ZEP(θ) as done by gp.m. Here, D = (X,y) ≡ (X,y) is the training
data where X = {x1, ..,xn} and y ∈ Rn. Under the hood, gp.m computes in every step a Gaussian
posterior approximation and the derivatives ∂

∂θ lnZEP(θ) of the marginal likelihood by calling EP.
Predictions with optimised hyperparameters are done in line 7, where we call gp.m with the

unseen test inputs X∗ ≡ Xs as additional argument. As a result, we obtain the approximate marginal
predictive mean E[P(y∗|D,X∗)]≡ ymu and the predictive variance V[P(y∗|D,X∗)]≡ ys2.

Likelihood \ Inference Exact FITC EP Laplace VB Type, Output Domain Alternate Name
Gaussian ! ! ! ! ! regression, R
Sech-squared ! ! ! regression, R logistic distribution
Laplacian ! ! regression, R double exponential
Student’s t ! ! regression, R
Error function ! ! ! classification, {±1} probit regression
Logistic function ! ! ! classification, {±1} logit regression

Table 1: Likelihood↔ inference compatibility in the GPML toolbox

Table 1 gives the legal likelihood/inference combinations. Exact inference and the FITC approx-
imation support the Gaussian likelihood only. Variational Bayesian (VB) inference is applicable to
all likelihoods. Expectation propagation (EP) for the Student’s t likelihood is inherently unstable
due to its non-log-concavity. The Laplace approximation (LA) for Laplace likelihoods is not sensi-
ble due to the non-differentiable peak of the Laplace likelihood. Special care has been taken for the
non-convex optimisation problem imposed by the combination Student’s t likelihood and LA.

If the number of training examples is larger than a few thousand, dense matrix computations be-
come too slow. We provide the FITC approximation for regression with Gaussian likelihood where
instead of the exact covariance matrix K, a low-rank plus diagonal matrix K̃ = Q+ diag(K−Q)
whereQ=K%

u K−1
uuKu is used. The matricesKuu andKu contain covariances and cross-covariances

of and between inducing inputs ui and data points x j. Using inf/infFITC.m together with any co-
variance function wrapped into cov/covFITC.m makes the computations feasible for large n.

Acknowledgments
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Abstract
Probabilistic grammars offer great flexibility in modeling discrete sequential data like natural lan-
guage text. Their symbolic component is amenable to inspection by humans, while their proba-
bilistic component helps resolve ambiguity. They also permit the use of well-understood, general-
purpose learning algorithms. There has been an increased interest in using probabilistic grammars
in the Bayesian setting. To date, most of the literature has focused on using a Dirichlet prior. The
Dirichlet prior has several limitations, including that it cannot directly model covariance between
the probabilistic grammar’s parameters. Yet, various grammar parameters are expected to be cor-
related because the elements in language they represent share linguistic properties. In this paper,
we suggest an alternative to the Dirichlet prior, a family of logistic normal distributions. We derive
an inference algorithm for this family of distributions and experiment with the task of dependency
grammar induction, demonstrating performance improvements with our priors on a set of six tree-
banks in different natural languages. Our covariance framework permits soft parameter tying within
grammars and across grammars for text in different languages, and we show empirical gains in a
novel learning setting using bilingual, non-parallel data.
Keywords: dependency grammar induction, variational inference, logistic normal distribution,
Bayesian inference

1. Introduction

One of the motivating applications for grammar induction, or unsupervised grammatical structure
discovery, is for the syntactic analysis of text data. Grammar induction, in that case, may lead to the
automatic acquisition of linguistic knowledge and the automatic construction of linguistic analyzers
for under-studied text domains and languages, without the costly construction of manually annotated
corpora. Grammar induction may also shed light on the cognitive process of language acquisition
in humans.

When it comes to the problem of grammar induction from natural language data, a fruitful
research direction has built on the view of a grammar as a parameterized, generative process ex-
plaining the data (Pereira and Schabes, 1992; Carroll and Charniak, 1992; Chen, 1995; Klein and
Manning, 2002, 2004, inter alia). If the grammar is a probability model, then learning a grammar
means selecting a model from a prespecified model family. In much prior work, the family is de-
fined as the set of probabilistic grammar for a fixed set of grammar rules, so that grammar learning
amounts to parameter estimation from incomplete data: sentences in the language are yields of hid-

c©2010 Shay B. Cohen and Noah A. Smith.
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den derivations from the grammar. Baker (1979) and Lari and Young (1990) describe how dynamic
programming (the “inside-outside” algorithm) can be used within an Expectation-Maximization al-
gorithm (Dempster et al., 1977) to estimate the grammar’s probabilities from a corpus of text, in the
context-free case.

Probabilistic grammars are attractive for several reasons. Like symbolic grammars, they are
amenable to inspection by humans, so that it is relatively easy to understand what tendencies the
model has captured if the underlying rules are understandable. Unlike purely symbolic grammars,
they model frequency and provide a mechanism for reasoning in the face of ambiguity, which is
ubiquitous in natural language. Probabilistic grammars can be specialized (e.g., as hidden Markov
models for sequential structures) and generalized (e.g., as lexicalized grammars, as synchronous
models over tuples of strings, and as grammars in context-sensitive classes). Probabilistic gram-
mars are widely used to build models in natural language processing from annotated data, thus
allowing easy comparison between unsupervised and supervised techniques. NLP applications of
probabilistic grammars and their generalizations include parsing (Collins, 2003; Klein and Man-
ning, 2003; Charniak and Johnson, 2005), machine translation (Wu, 1997; Ding and Palmer, 2005;
Chiang, 2005), and question answering (Wang et al., 2007). Probabilistic grammars are probabilistic
models, so they permit the use of well-understood methods for learning.

Meanwhile, in machine learning, significant attention has recently been devoted to Bayesian
models. The attraction of Bayesian models is that they manage uncertainty in the face of learning
from incomplete data, while permitting the use of background knowledge, in the form of a prior over
models. This prior can be used to inject bias into a model. Such bias can be especially important
in cases where the sample size is not large or when the grammar is highly non-identifiable, two
scenarios that hold with grammar induction (see Cohen and Smith, 2010, for a discussion of the
size of sample required for estimation of probabilistic grammars).

Bayesian methods have been applied to probabilistic grammars in various ways: specifying pri-
ors over the parameters of a PCFG (Johnson et al., 2007; Headden et al., 2009) as well as over
the states in a PCFG (Finkel et al., 2007; Liang et al., 2007), and even over grammatical deriva-
tion structures larger than context-free production rules (Johnson et al., 2006; Cohn et al., 2009).
The challenge in Bayesian grammar learning is efficiently approximating probabilistic inference.
Variational approximations (Johnson, 2007; Kurihara and Sato, 2006) and randomized sampling
approximations (Johnson et al., 2006; Goldwater, 2006) are typically applied.

Much of the Bayesian literature and its application to probabilistic grammars has focused on
conjugate priors in the form of Dirichlet distributions. Conjugate priors were introduced by Raiffa
and Schaifer (1961), who gave a desiderata for prior families, including analytical tractability. We
argue that the literature has focused on this desideratum only, ignoring expressive power and inter-
pretability. We begin by motivating the modeling of covariance among the probabilities of grammar
derivation events, and propose the use of logistic normal distributions (Aitchison, 1986; Blei and
Lafferty, 2006) over multinomials to build priors over grammars (Section 3). Our motivation re-
lies on the observation that various grammar parameters are expected to be correlated because of
the elements in language they represent share linguistic properties. Noting that grammars are built
out of a large collection of multinomials, we introduce shared logistic normal distributions to al-
low arbitrary covariance among any grammar probabilities. We then describe efficient inference
techniques to support decoding and learning with (shared) logistic normal priors over grammars
(Section 4), facing the challenge of non-conjugacy of the logistic normal prior to the multinomial
family. We experiment with probabilistic dependency grammar induction from data in six lan-
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guages, showing how the new approach performs compared to non-Bayesian alternatives as well as
more traditional Dirichlet prior-based alternatives (Section 5.1 and Section 5.2). We then demon-
strate that the approach can also be effective when learning from multilingual, non-parallel text,
softly tying parameters across languages (Section 5.4).

The research results in this paper build on work previously reported by Cohen et al. (2008)
and Cohen and Smith (2009). Here we provide a more extensive discussion of the techniques,
connections to related work, a full derivation of the variational inference algorithms, and a larger
set of experiments on more data sets.

2. Probabilistic Grammars

We begin by discussing the general family of probabilistic grammars to which our methods are ap-
plicable. A probabilistic grammar defines a probability distribution over a certain kind of structured
object (a derivation of the underlying symbolic grammar) explained step-by-step as a stochastic
process. HMMs, for example, can be understood as a random walk through a probabilistic finite-
state network, with an output symbol sampled at each state. PCFGs generate phrase-structure trees
by recursively rewriting nonterminal symbols as sequences of “child” symbols (each itself either a
nonterminal symbol or a terminal symbol analogous to the emissions of an HMM). Our experiments
will consider a particular family of PCFGs that represent dependency structure (see Section 2.2).

Each step or emission of an HMM and each rewriting operation of a PCFG is conditionally
independent of the others given a single structural element (one HMM or PCFG state); this Markov
property permits efficient inference over derivations given a string.

In general, a probabilistic grammar defines the joint probability of a string x and a grammatical
derivation y:1

p(x,y | θ) =
K

∏
k=1

Nk
∏
i=1

θ
fk,i(x,y)
k,i = exp

K

∑
k=1

Nk
∑
i=1

fk,i(x,y) logθk,i, (1)

where fk,i is a function that “counts” the number of times the kth distribution’s ith event occurs in
the derivation. The parameters θ are a collection of K multinomials 〈θ1, . . . ,θK〉, the kth of which
includes Nk competing events. Letting θk = 〈θk,1, . . . ,θk,Nk〉, each θk,i is a probability, such that

∀k,∀i, θk,i ≥ 0, (2)

∀k,
Nk
∑
i=1

θk,i = 1. (3)

As is often the case in probabilistic modeling, there are different ways to carve up the random
variables. We can think of x and y as correlated structure variables (often x is known if y is known),
or the derivation event counts f(x,y) = 〈 fk,i(x,y)〉1≤k≤K,1≤i≤Nk as an integer-vector random variable
(useful for variational inference, in Section 4). In this paper, x is always observable and y is hidden
until we use gold standard data for testing.

Note that there may be many derivations y for a given string x—perhaps even infinitely many
in some kinds of grammars. For HMMs, there are three kinds of multinomials: a starting state
multinomial, a transition multinomial per state and an emission multinomial per state. In that case
K = 2s+ 1, where s is the number of states. The value of Nk depends on whether the kth multi-
nomial is the starting state multinomial (in which case Nk = s), transition multinomial (Nk = s) or

1. A table of notation can be found in Appendix A, Table 4, page 3042.
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emission multinomial (Nk = t, with t being the number of symbols in the HMM). For PCFGs, each
multinomial among the K multinomials correspond to a set of Nk context-free rules headed by the
same nonterminal. θk,i is then the probability of the ith rule for the kth nonterminal.

The field of grammatical inference also includes algorithms and methods for learning the struc-
ture of a (formal) language generator or grammar (Angluin, 1988; de la Higuera, 2005; Clark and
Thollard, 2004; Clark et al., 2008, inter alia). This paper is complementary, focusing on the esti-
mation of the weights assigned to the grammar’s rules. The choice of using a fixed model family
corresponds to a choice to work in a statistical parametric setting; extensions to nonparametric
settings are possible (Goldwater, 2006; Johnson et al., 2006; Cohen et al., 2010). We focus on
grammars which generate dependency structures for derivations. Dependency syntax is a popular
representation that has been found useful in a wide range of natural language applications, including
machine translation (Lin, 2004; Gimpel and Smith, 2009), question answering (Wang et al., 2007),
as well as deeper semantic processing tasks (Johansson and Nugues, 2007; Das et al., 2010). The
grammars used in our experiments are extremely permissive, allowing every possible dependency
structure for a sentence (see Section 2.2).

2.1 Simple Example: Class-Based Unigram Model

It is helpful to keep in mind a simple model with a relatively small number of parameters such as a
class-based unigram model (Brown et al., 1990). Let the observed symbols in x range over words in
some language’s vocabulary Γ. Let each word token xi have an associated word class from a finite
set Λ, denoted yi; the yi are all hidden. The derivation in this model is the sequence 〈y1, . . . ,yn〉. The
probabilistic model consists of two parts:

1. For all y ∈ Λ∪{stop}, θc(y) is the probability that the next word will be generated by class y.
θc(stop) is the stopping probability.

2. For all y ∈ Λ and all x ∈ Γ, θw(x | y) is the conditional probability that class y will generate
word x.

In this simple model, K = 1+ |Λ|, N1 = |Λ|, and for k > 1, Nk = |Γ|. This model can be thought
of as a hidden Markov model with zero order, that is, it has no dependencies between the different
hidden states. In addition, if we place a Dirichlet prior on the grammar parameters θ (Section 3.1)
and treat θ as a latent variable sampled once per document, this model becomes equivalent to the
latent Dirichlet allocation model (Blei et al., 2003). (Our θw is denoted β in their notation.) In this
case, the derivation vector y corresponds to a set of topics selected for each word in the bag of words
representing the document.

2.2 Dependency Model with Valence

Dependency grammar (Tesnière, 1959) refers to linguistic theories that posit graphical representa-
tions of sentences in which words are vertices and the syntax is a directed tree. Such grammars
can be context-free or context-sensitive in power, and they can be made probabilistic (Gaifman,
1965). Dependency syntax is used in information extraction, machine translation, question answer-
ing, and other natural language processing applications. Our experiments perform unsupervised
induction of probabilistic dependency grammars using a model known as “dependency model with
valence” (Klein and Manning, 2004). The model is a probabilistic split head automaton grammar
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y=

x= 〈$ DT NN IN DT NN VBD IN RBR IN CD NN〉

p(x,y | θ) = θc(VBD | $, r)× p(y(1) | VBD,θ)
p(y(1) | VBD,θ) = θs(¬stop | VBD, l, f)×θc(NN | VBD, l)× p(y(2) | NN,θ)

×θs(stop | VBD, l, t)×θs(¬stop | VBD, r, f)×θc(IN | VBD, r)

× p(y(4) | IN,θ)×θs(stop | VBD, r, t)

p(y(2) | NN,θ) = θs(¬stop | NN, l, f)×θc(DT | NN, l)×θs(stop | DT, r, f)

×θs(stop | DT, l, f)θc(IN | NN, r)× p(y(3) | IN,θ)
×θs(stop | IN, l, f)×θs(stop | NN, l, t)×θs(stop | NN, r, t)

p(y(3) | IN,θ) = θs(¬stop | IN, r, f)×θc(NN | IN, r)×θc(DT | NN, l)
×θs(stop | DT, r, f)×θs(stop | DT, l, f)
×θs(stop | NN, r, f)×θs(stop | NN, l, t)

p(y(4) | IN,θ) = θs(stop | IN, l, f)×θs(¬stop | IN, r, f)×θc(NN | IN, r)
×θs(stop | NN, r, f)×θs(¬stop | NN, l, f)×θc(RBR | NN, r)

×θs(stop | RBR, l, f)× p(y(5) | RBR,θ)
p(y(5) | RBR,θ) = θs(¬stop | RBR, r, f)×θc(IN | RBR, r)×θc(CD | IN, r)

×θs(stop | IN, l, f)×θs(stop | IN, r, t)×θs(stop | CD, r, f)
×θs(stop | CD, l, f)

Figure 1: An example of a dependency tree (derivation y). and its probability. The part-of-speech
tags NN, VBD, DT, CD, RBR, and IN denote noun, past-tense verb, determiner, number,
comparative adverb, and preposition, respectively, following Penn Treebank conventions.
We break the probability of the tree down into recursive parts, one per head word, marked
in blue (lighter). l, r, t, and f denote left, right, true, and false, respectively (see Equation
4).

(Alshawi and Buchsbaum, 1996) that renders inference cubic in the length of the sentence (Eisner,
1997). The language of the grammar is context-free, though our models are permissive and allow
the derivation of any string in Γ∗. This is a major point of departure between theoretical work in
grammatical inference and work on natural language text, particularly using probabilistic gram-
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mars; our goal is to induce a distribution over derivations so that the most likely derivations under
the model closely mimic those preferred by linguists (Smith and Eisner, 2005).

“Valence” here refers to the number of arguments controlled by the head of a phrase.2 In the
DMV, each word has a binomial distribution over whether it has at least one left child (similarly on
the right), and a geometric distribution over the number of further children (for each side).

Let x = 〈x1,x2, ...,xn〉 be a sentence (here, as in prior work, represented as a sequence of part-
of-speech tags). x0 is a special “wall” symbol, $, on the left of every sentence. A tree y is defined by
a pair of functions yleft and yright (both {0,1,2, ...,n}→ 2{1,2,...,n}) that map each word to its sets of
left and right dependents, respectively. Here, the graph is constrained to be a projective tree rooted
at x0 = $: each word except $ has a single parent, and there are no cycles or crossing dependencies.
yleft(0) is taken to be empty, and yright(0) contains the sentence’s single head. Let y(i) denote the
subtree rooted at position i (i.e., y(i) is a tree consisting of all descendents of xi in the tree y). The
probability P(y(i) | xi,θ) of generating this subtree, given its head word xi, is defined recursively:

p(y(i) | xi,θ) = ∏
D∈{left,right}

θs(stop | xi,D, [yD(i) = /0]) (4)

× ∏
j∈yD(i)

θs(¬stop | xi,D,firsty( j))×θc(x j | xi,D)× p(y( j) | x j,θ),

where firsty( j) is a predicate defined to be true iff x j is the closest child (on either side) to its parent
xi. The probability of the entire tree is given by p(x,y | θ) = p(y(0) | $,θ). The parameters θ are
the conditional multinomial distributions θs(· | ·, ·, ·) and θc(· | ·, ·). To follow the general setting
of Equation 1, we index these distributions as θ1, ...,θK . Figure 1 shows a dependency tree and its
probability under this model (Equation 4).

Note that if all weights θ are greater than zero, the model permits any dependency tree over any
sentence in Γ∗. Hence the goal of grammar induction is to model the distribution of derivations, not
to separate grammatical strings or derivations from ungrammatical ones.

Klein and Manning’s (2004) dependency model with valence is widely recognized as an effec-
tive probabilistic grammar for dependency grammar induction. Many recent studies on dependency
grammar induction use it. For example, this model has been used to test estimation algorithms such
as Viterbi EM (Spitkovsky et al., 2010b), contrastive estimation (Smith and Eisner, 2005), and al-
gorithms which gradually introduce more data to the learning process (Spitkovsky et al., 2010a); it
has been used to test the efficacy of multilingual learning through dependency grammar induction
(Ganchev et al., 2009; Berg-Kirkpatrick and Klein, 2010); it has been used as a base model that has
inspired more complex lexicalized models (Headden et al., 2009). The DMV has also been used
as a base model within various estimation techniques with the goal of improving its performance
by relying on other properties of language and text such as: dependencies between parameters in
the model (Berg-Kirkpatrick et al., 2010), sparsity (Gillenwater et al., 2010), preference for short
attachments (Smith and Eisner, 2006), and additional annotation offered by hypertext markup as
found on the Web (Spitkovsky et al., 2010c). In addition, the DMV is related to the head-outward
model used by Collins (2003) for supervised parsing; Collins’ parser is one of the best performing
parsers for English. In the rest of the paper, we assume we have a fixed grammar G for which we
estimate the parameters.

2. Here, we refer to “head of a phrase” as in the linguistic sense—the word in a phrase that determines the syntactic
category of this phrase.
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2.3 Parameter Estimation by Maximum Likelihood

In the original framework, Klein and Manning (2004) treated the DMV as a model on its own, and
also in combination with a model over bracketing structures called the “constituent-context model.”
Here we consider the DMV on its own as it is more capable of generalization and better exemplifies
probabilistic grammars.

Klein and Manning learned the DMV using maximum likelihood estimation, carried out by the
Expectation-Maximization (EM) algorithm. Because EM for probabilistic grammars has been well
documented elsewhere (Lari and Young, 1990; Pereira and Schabes, 1992; Carroll and Charniak,
1992), we only briefly mention that it proceeds by alternating between two steps that update the
model parameters. Let θ(t) denote their values at time step t.

1. E-step: For each training example x, infer the posterior distribution p(y | x,θ(t),G) = p(x,y |
θ(t))/p(x | θ(t),G). This is accomplished by dynamic programming (for HMMs, the forward-
backward algorithm; for PCFGs, the inside-outside algorithm; for the DMV, an algorithm due
to Eisner, 1997), and the result is usually represented as a vector of derivation event expected
frequencies, 〈Ep(·|x,θ(t),G) fk,i(x, ·)〉k,i.

2. M-step: Estimate θ(t+1) from the expected frequencies, as if they were observed frequencies.
Since the model is built out of multinomials, there is a closed form solution obtained by
normalizing the frequencies.

It is helpful to consider the problem EM iterations aim to solve in its declarative form, the
problem of maximizing likelihood:

max
θ

p(x | θ,G) =max
θ
∑
y
p(x,y | θ,G).

(In fact, EM only locally maximizes this function.) In the above, we suppress the collection of
sentences constituting the training data; to be precise, we should take a product of probabilities or a
sum of log-probabilities for all training examples:

max
θ

M

∏
m=1
∑
y
p(xm,y | θ,G).

In the Bayesian approach, we treat θ not as a set of parameters to be estimated, but rather as a
random event. This contrasts with earlier research that aims to bias the grammar learner with prior
information. Klein and Manning (2004), for example, biased the learner by initializing EM with
a “harmonic” posterior over dependency attachments that preferred linking words that are closer
together in the string to more distant words. Smith and Eisner (2006) more explicitly biased EM by
manipulating the posterior calculated in the E-step with penalties for longer dependency attachments
or, in an alternative model that permitted disconnected graphs, for contiguity.

3. Bayesian Models over Grammars

An attractive way to incorporate prior knowledge about grammars is through a prior distribution
over the grammar’s probabilities θ. Priors are often used to obtain smooth estimates; Smith (2006)
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Model I:

For m ∈ {1, . . . ,M}:

1. Draw θm from the prior p(θ |G, . . .).

2. Draw (xm,ym) from p(xm,ym | θm,G).

Model II:

1. Draw θ from the prior p(θ |G, . . .).

2. For m ∈ {1, . . . ,M}:
Draw (xm,ym) from p(xm,ym | θ,G).

Figure 2: Two variations on Bayesian modeling of probabilistic grammars.

explored symmetric Dirichlet priors in the DMV in a maximum a posteriori framework for learning
that can still be accomplished by EM:

max
θ

p(θ | α,G)
M

∏
m=1
∑
y
p(xm,y | θ,G), (5)

where α denotes the parameters of the prior over grammars. EM is efficient when p(θ | α,G) is a
collection of Dirichlet distributions with each α ≥ 1 (discussed below). For the moment, we leave
aside the form of the prior, though it is a major focus of this article.

In this paper, we go farther. We treat θ as a hidden variable, not unlike y. It will therefore be
integrated out in defining the probability of the data:

p(x1, . . . ,xM | α,G) =
∫

p(θ | α,G)
M

∏
m=1
∑
y
p(xm,y | θ,G) dθ. (6)

In this setting, it is α, the distribution over grammar parameters, that encodes knowledge about the
grammar, and it will be α that we estimate when we perform learning.

We consider two alternative variations on the Bayesian idea, illustrated in Figure 2. In the first,
called “model I,” the grammar’s probabilities θ are drawn randomly once per sentence for the whole
corpus x1, . . . ,xM. In “model II,” the grammar parameters are drawn once for all of the sentences in
the corpus.

Conceptually, both options have advantages and disadvantages when modeling natural language.
Drawing θ for each derivation permits more flexibility across derivations, perhaps allowing the
learner to capture variation across the corpus (even if not systematically, as the grammars are drawn
IID), arising from different authors, for example. Generating θ only once suggests we need to do
inference in a smaller space: we only need to find the posterior over a single θ, perhaps leading to
better generalization. We will consider both forms in our experiments (Section 5.1).

The question of the choice of a prior distribution still remains. In their pioneering work about
conjugate priors,3 Raiffa and Schaifer (1961) set desiderata for prior distributions in parametric
models. These desiderata, which serve as the foundation for conjugate priors, include: (i) analytical
tractability—the posterior using a certain prior family should stay in the prior family, while it is
reasonably easy to identify the posterior from a sample and a prior; (ii) richness—there should be a
member in the prior family that is able to express the modeler’s beliefs and prior information; (iii)

3. A prior family is conjugate for a family of distributions if the posterior over the family, after observing some data, is
also in the prior family. See Raiffa and Schaifer (1961).
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interpretability—the prior should be easily interpreted so the modeler can verify that the choice of
prior matches prior judgments.

Unfortunately, much of the Bayesian literature for probabilistic grammars and even in gen-
eral has diverged considerably from these desiderata, and focused only on the first requirement of
analytical tractability. As a result, most of the Bayesian language learning literature has focused
on Bayesian models with a Dirichlet prior (Johnson et al., 2007; Goldwater and Griffiths, 2007;
Toutanova and Johnson, 2007; Kurihara and Sato, 2006, inter alia), which is conjugate to the multi-
nomial family. We argue that the last two requirements are actually more important than the first
one, which is motivated by mere mathematical and computational convenience. We suggest re-
placing the first requirement with “computational tractability”—it should be easy to represent the
posterior (or an approximation of it) computationally. In that case, the modeler can focus on choos-
ing rich priors that can more properly model different structural elements of a grammar. To solve
the problem of inference, we can now use approximate inference algorithms such as the one we
give in Section 4 and Appendix B. Indeed, approximations are sometimes required even for the
conjugate case, and are always required when the data are incomplete.

We next give an overview of the Dirichlet prior that provides analytical tractability for prob-
abilistic grammars, and then demonstrate the alternative which focuses on the second and third
requirements, the logistic normal distribution. The logistic normal, we suggest, improves over the
Dirichlet from the perspective of desideratum (ii), though we must take further steps to achieve
sufficient “richness” to account for arbitrary covariance and for multilingual text data.

3.1 Dirichlet Distributions

From the computational perspective, the Dirichlet distribution is indeed a natural choice for a prior
over the parameters of the grammar because of its analytical tractability, which makes inference
more elegant and less computationally intensive in both the maximum a posteriori (Equation 5) and
Bayesian (Equation 6) settings. In addition, a Dirichlet prior can encourage sparse solutions (i.e.,
many θk,i = 0), a property which is desirable in natural language learning (Johnson et al., 2007),
as it corresponds to eliminating unnecessary grammar rules. (Indeed, learning to exclude rules by
setting their probabilities to zero is one way of going about symbolic grammar induction.)

If we use a Dirichlet distribution with a probabilistic grammar, then the hyperparameters for the
grammar consist of K vectors with positive elements, the kth of which has length Nk. We denote
these hyperparameters by α, in which case the prior over the grammar parameters θ has the form:

p(θ | α) =
K

∏
k=1




∏Nk
i=1Γ(αk,i)

Γ
(

∑Nk
i=1αk,i

)

Nk
∏
i=1

θ
αk,i−1
k,i



= B(θ)×
K

∏
k=1

Nk
∏
i=1

θ
αk,i−1
k,i ,

where Γ(·) is the Gamma function and B(θ) is a constant term with respect to θ.
Consider again the simple model of Section 2.1. If we embed it inside model I (Figure 2) we

arrive exactly at the latent Dirichlet allocation model of Blei et al. (2003), where each example is a
document (not a sentence).

The Dirichlet distribution can also be derived as a normalized set of variables of exponentiated
independentGamma-distributed variables. More precisely, for each multinomial θk (k∈ {1, . . . ,K}),
we can draw Nk independent random samples vk,1, . . . ,vk,Nk from Gamma distributions with shapes
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αk,1, . . . ,αk,Nk , respectively, and scale 1 and then let:

θk,i =
vk,i

∑Nk
i′=1 vk,i′

.

This alternative representation of the Dirichlet distribution points to a weakness: there is no
explicit covariance structure present when θ are drawn from a Dirichlet. The only way θk covary is
through the normalization that maps vk,i to the probability simplex. In fact, the correlation between

θk,i and θk,i′ is always negative and equals −
(αk,iαk,i′)1/2

((αk,0−αk,i)(αk,0−αk,i′))
1/2 where αk,0 = ∑Nk

i=1αk,i.

This relates back to the desiderata of Raiffa and Schaifer: the covariance (and in fact, variance)
structure that the Dirichlet distribution offers is not rich. This is especially true when modeling
language, as we explain in the section below.

3.2 Modeling Covariance with Logistic Normal Distributions

When we consider probabilistic grammars for natural languages, especially those over words or
word classes like parts of speech, we do expect to see covariance structure. Intuitively, the prob-
ability of a particular word or word class having singular nouns as arguments is likely tied to the
probability of the same word having plural nouns as arguments. Words that tend to attach to one
type of parent are expected to tend to attach to similar parents. This follows because words and
word classes tend to follow patterns. This is a large part of the empirical motivation for syntactic
theories that make use of part of speech and phrase categories.

A natural candidate for a distribution that models covariance is the multivariate normal distri-
bution. However, values drawn from the multivariate normal distribution can be both positive and
negative, and they also do not necessarily normalize to 1, both are requirements from θ (see Equa-
tions 2–3). Aitchison (1986) suggested a logistic transformation on a multivariate normal variable
to get values which correspond to points on the probabilistic simplex. He called it the “logistic
normal” distribution.

The logistic normal (LN) distribution maps a (d− 1)-dimensional multivariate Gaussian to a
distribution on the d-dimensional probability simplex, {〈z1, . . . ,zd〉 ∈ Rd : zi ≥ 0,∑d

i=1 zi = 1}, as
follows:

1. Draw η= 〈η1, . . . ,ηd−1〉 from a multivariate Gaussian with mean µ and covariance matrix Σ.

2. Let ηd = 0.

3. For i ∈ {1, . . . ,d}, let:
zi =

expηi
∑d
j=1 expη j

.

Drawing from a (d− 1)-dimensional Gaussian preserves identifiability; a d-dimensional Gaussian
would have an extra degree of freedom, allowing more than one outcome of η to lead to the same z.

For probabilistic grammars, we define one LN distribution per multinomial. This gives a prior
over each θk that permits covariance among 〈θk,1, . . . ,θk,Nk〉.

Blei and Lafferty (2006) and Ahmed and Xing (2007) successfully used the LN distribution for
topic models, extending the latent Dirichlet allocation model (Blei et al., 2003). In Cohen et al.
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I1 = {1:2,3:6,7:9} = { I1,1, I1,2, I1,L1 }
I2 = {1:2,3:6} = { I2,1, I2,L2 }
I3 = {1:4,5:7} = { I3,1, I3,L3 }
IN = {1:2} = { I4,L4 }

J1 J2 JK















prt. struct. S

η1 = 〈η1,1,η1,2, η1,3,η1,4,η1,5,η1,6, η1,7,η1,8,η1,!1〉 ∼ Normal(µ1,Σ1)
η2 = 〈η2,1,η2,2, η2,3,η2,4,η2,5,η2,!2〉 ∼ Normal(µ2,Σ2)
η3 = 〈η3,1,η3,2,η3,3,η3,4, η3,5,η3,6,η3,!3〉 ∼ Normal(µ3,Σ3)
η4 = 〈η4,1,η4,!4〉 ∼ Normal(µ4,Σ4)











sample η

η̃1 = 1
3 〈η1,1+η2,1+η4,1, η1,2+η2,2+η4,2〉

η̃2 = 1
3 〈η1,3+η2,3+η3,1, η1,4+η2,4+η3,2, η1,5+η2,5+η3,3,
η1,6+η2,6+η3,4〉

η̃3 = 1
2 〈η1,7+η3,5, η1,8+η3,6, η1,9+η3,7〉











combine η

θ1 = (exp η̃1)
/

∑
N1
i′=1 exp η̃1,i′

θ2 = (exp η̃2)
/

∑
N2
i′=1 exp η̃2,i′

θ3 = (exp η̃3)
/

∑
N3
i′=1 exp η̃3,i′













softmax

Figure 3: An example of a shared logistic normal distribution, illustrating Def. 1. N = 4 experts are
used to sample K = 3 multinomials; L1 = 3, L2 = 2, L3 = 2, L4 = 1, !1 = 9, !2 = 6, !3 = 7,
!4= 2, N1= 2, N2= 4, andN3= 3. From top to bottom: the partition structure S describes
I j which tell how segment a normal expert into parts which are matched to multinomials
(“prt. struct. S”). Each normal expert is sampled from a multivariate normal (“sample
η”), and then matched and averaged according to the partition strcture (“combine η”).
The final step is exponentiating and normalizing η to get θ (“softmax”). This figure is
best viewed in color.

(2008), we demonstrated how the LN distribution is an effective alternative to the Dirichlet for
probabilistic dependency grammar induction in the Bayesian setting.

We note that the family of logistic normal distributions and the family of Dirichlet distributions
are very different from each another. One cannot find two distributions from each class which are
arbitrary close to each other in any meaningful sense. However, it can be shown (Aitchison, 1986)
that given a Dirichlet distribution with very large α, we can find a logistic normal distribution such
that the KL-divergence between the Dirichlet distribution and logistic normal distribution is small.

3.3 Sharing Across Multinomials

The LN distribution has an inherent limitation when we consider probabilistic models made up
of more than one multinomial distribution, such as probabilistic grammars. Each multinomial is
drawn separately from an independent Gaussian, so that covariance can only be imposed among
events competing within one multinomial, not across multinomials. With the DMV, for example,
the probability of a past-tense verb (VBD) having a noun as a right child might correlate with the
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probability that other kinds of verbs (VBZ, VBN, etc.) have a noun as a right child. This correlation
cannot be captured by the LN distribution, because the VBZ and VBN as parents are represented
using their own multinomials over children, unrelated to that of VBD as a parent.

One way to mend this limitation is to define a single Gaussian over N ! ∑K
k=1Nk variables

with one N ×N covariance matrix. Then, instead of applying the logistic transformation to the
whole vector as a single multinomial, we can apply it to subvectors to get disjoint multinomials.
When learning, the large covariance matrix captures correlations between all pairs of events in all
multinomials. The induced distribution is called the partitioned logistic normal (PLN) distribution.
It is a generalization of the LN distribution (see Aitchison, 1986).

In practice, creating a covariance matrix of size N ×N is likely to be too expensive. DMV,
for example, has O(t2) weights for a part-of-speech vocabulary of size t, requiring a very large
multivariate normal distribution with O(t4) covariance parameters.

To solve this problem, we suggest a refinement of the class of PLN distributions. Instead of
using a single normal vector for all of the multinomials, we use several normal vectors, partition
each one and then recombine parts which correspond to the same multinomial, as an average. Next,
we apply the logistic transformation on the mixed vectors (each of which is normally distributed
as well). Figure 3 gives an example of a non-trivial case of using a SLN distribution, where three
multinomials are generated from four normal experts.

We now formalize this notion. For a natural number N, we denote by 1:N the set {1, . . . ,N}.
For a vector in v ∈ RN and a set I ⊆ 1:N, we denote by vI the vector created from v by using the
coordinates in I. Recall that K is the number of multinomials in the probabilistic grammar, and Nk
is the number of events in the kth multinomial. We define a shared logistic normal distribution with
N “experts” over a collection of K multinomial distributions:

Definition 1 Let ηn ∼ Normal(µn,Σn) be a set of multivariate normal variables for n ∈ 1:N, where
the length of ηn is denoted !n. Let In = {In, j}Lnj=1 be a partition of 1:!n into Ln sets, such that
∪Lnj=1In, j = 1:!n and In, j ∩ In, j′ = /0 for j 1= j′. Let Jk for k ∈ 1:K be a collection of (disjoint) sub-
sets of {In, j | n ∈ 1:N, j ∈ 1:!n, |In, j| = Nk}, such that all sets in Jk are of the same size, Nk. Let
η̃k =

1
|Jk| ∑In, j∈Jk ηn,In, j , and θk,i = exp(η̃k,i)

/

∑i′ exp(η̃k,i′) . We then say θ distributes according to
the shared logistic normal distribution with partition structure S = ({In}Nn=1,{Jk}Kk=1) and normal
experts {(µn,Σn)}Nn=1 and denote it by θ∼ SLN(µ,Σ,S).

The partitioned LN distribution in Aitchison (1986) can be formulated as a shared LN distribu-
tion where N = 1. The LN collection presented in Section 3.2 is the special case where N = K, each
Ln = 1, each !k = Nk, and each Jk = {Ik,1}.

We note that there is an issue with identifiability that we need to resolve with SLN distributions,
as with the LN distribution. It is required that for all multinomials, we set the first value of the
samples from the normal expert to 0. For simplicity, we did not include it explicitly in Definition 1,
because this can be achieved by setting the normal expert’s mean and variance values to 0 in the
first index of each normal expert (ηn,1 = 0 for all n).

The covariance among arbitrary θk,i is not defined directly; it is implied by the definition of
the normal experts ηn,In, j , for each In, j ∈ Jk. We note that a SLN can be represented as a PLN by
relying on the distributivity of the covariance operator, and merging all the partition structure into
one (perhaps sparse) covariance matrix. SLNs, in that case, represent a subset of PLNs with a
factored structure on the covariance matrices.
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It is convenient to think of each ηi, j as a weight associated with a unique event’s probability,
a certain outcome of a certain multinomial in the probabilistic grammar. By letting different ηi, j
covary with each other, we strengthen the relationships among θk, j and permit learning of the one
to affect the learning of the other. Definition 1 also implies that we multiply several multinomials
together in a product-of-experts style (Hinton, 1999), because the exponential of an average of
normals becomes a product of (unnormalized) probabilities.

We note that the partition structure is a hyperparameter. In our experiments, it encodes domain
knowledge about the languages we experiment with (Section 5.3). We believe this is a key advantage
of SLN in this setting: marrying the notions of prior knowledge and a Bayesian prior. The beliefs
of the model about a language can be encoded into a distribution over the parameters. We leave for
future work the discovery of partition structure during the learning process.

3.4 Local Log-Linear Models over Parameters

We give now another interpretation of the shared logistic normal prior using a feature representation,
which is related to recent work by Berg-Kirkpatrick et al. (2010). A probabilistic grammar with a
shared logistic normal prior can be thought of as a probabilistic grammar where the grammar’s
parameters are themselves modeled using a local log-linear model with a Gaussian prior over the
weights of this log-linear model. Let θk be a multinomial in the collection of multinomials for a
probabilistic grammar. Then, according to Definition 1 we have:

θk,i =
exp(gk(i) ·η)

Zk(η)
,

where η is a vector of length ∑N
n=1 !n, a concatenation of all normal experts, and gk(i) is a feature

vector, again of length ∑N
n=1 !n, which is divided into subvectors gk,n(i) each of length !n. gk,n, j(i) =

1/|Jk| if the ith event in the kth multinomial uses the jth coordinate of the nth normal expert—that
is, there exists an In,r ∈ In∩ Jk such that j ∈ In,r (according to Definition 1)—and 0 otherwise. The
term Zk(η) is a normalization constant of the form:

Zk(η) =∑
i′
exp

(

gk(i′) ·η
)

.

Note that the features in the local log-linear model refer to the hyperparameters of the SLN,
more specifically, the partition structure. They do not refer to the observed data or the latent struc-
tural elements in the probabilistic grammar. These features have a Gaussian prior over them, repre-
sented by the normal experts’ mean values and covariance matrices (µand Σ). In that case, the Gaus-
sian prior which we optimize during inference using empirical Bayes (Section 4) can be thought of
as a quadratic penalty on the local log-linear weights. We note that in most cases in the literature,
Gaussian priors (or L2 regularizers) are used with mean value 0 and a uniform diagonal covariance
matrix, in order to push feature weights to values close to 0. This is not the case with our model.

Berg-Kirkpatrick et al. (2010) used the idea of local log-linear models for several natural lan-
guage processing tasks, including dependency grammar induction and part-of-speech tagging. In-
stead of using features that are based on a Gaussian prior, they used a set of ordinary binary features,
which describe relationships between different parameters in a similar way to the ones presented in
Section 5.3.
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4. Inference and Learning

Having defined a family of probability models over grammars, we now consider the problem of
inferring posterior distributions under this model. We first consider inference over y, then over θ,
then learning the parameters of the distribution over grammars in an empirical Bayesian framework.

4.1 Decoding: Inferring y

Classical statistical approaches to language processing normally assume that inputs (here, sentences
x) are independently and identically distributed. Decoding is the problem of choosing an analysis
(here, grammatical derivation y) given the input. Most commonly this is accomplished by choosing
the most probable analysis:

y∗ = argmax
y

p(y | x,θ,G) = argmax
y

p(x,y | θ,G). (7)

This is commonly called “Viterbi” decoding, referring to the algorithm that accomplishes the maxi-
mization for hidden Markov models. An alternative is to choose the analysis that minimizes risk, or
the expectation (under the model) of a cost function. Let cost(y,y∗) denote the nonnegative cost of
choosing analysis y when the correct analysis is y∗.

y∗ = argmax
y

Ep(·|x,θ,G)cost(y, ·) = argmax
y

∑
y′
p(y′ | x,θ,G) cost(y,y′).

This is known as minimum Bayes risk (MBR) decoding.4 For dependency parsing, the cost function
counts the number of words attached to the wrong parent.

Decoding is a crucial step in evaluation of models of natural language. Typically for supervised
and unsupervised models, decoding output is compared to expert human-annotated gold standard
analyses, providing an objective measure of the quality of the learned model. Best practice measures
quality on new test data unseen during training, to test the generalization ability of the learned
model. This is an attractive approach to evaluating the quality of unsupervisedly induced grammars.

In the Bayesian setting, decoding might be accomplished using the posterior over derivations,
marginalizing out the unknown grammar weights. For model I, Viterbi decoding would correspond
to:

y∗ = argmax
y

p(y | α,G) = argmax
y

∫
p(θ | α,G)p(x,y | θ,G) dθ. (8)

Unfortunately, there is no closed-form solution for the integral in Equation 8 and finding y∗ is
intractable. We therefore have to resort to approximate inference (Section 4.2). Model II creates
dependence among the derivations of the different sentences in the training set, requiring a different
inference procedure.

In this work, we consider three decoding techniques. The first takes a point estimate of θ and
applies Viterbi decoding (Equation 7). The point estimate is derived using techniques discussed
below. After estimating the µ (and the Σ), we use the logistic transformation on µ to obtain this
point estimate for Viterbi decoding. Recall that for the DMV, decoding can be accomplished in
cubic time using dynamic programming (Section 2.2).

4. In some cases, decoding selects only certain salient aspects of a derivation, such as the derived tree corresponding to
a tree adjoining grammar’s derivation tree. In such cases, Viterbi and/or MBR decoding may require approximations.
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The second approach makes use of the same point estimate of θ, only withMBR decoding, as de-
scribed above. The loss function we use is dependency attachment error, for the task of dependency
grammar induction. MBR decoding in this case works as follows: using θ and the inside-outside
algorithm, we compute the posterior probability of each dependency attachment (directed edge in
the graph) being present in the grammatical derivation for the sentence. Then, we find the tree with
the largest score, the score being the sum of the posterior probabilities of each edge present in the
tree.

Neither Viterbi nor MBR decoding uses the entire distribution over grammar weights. In the
LN case, for example, the covariance matrix Σ is ignored. We suggest “committee decoding,” in
which a set of randomly sampled grammar weights are drawn for each sentence to be parsed. The
weights are drawn from the learned distribution over grammar weights, parameterized by µ and Σ
in the LN case. Viterbi or MBR decoding can then be applied. Note that this decoding mechanism
is randomized: we sample a grammar per sentence, and use it to decode. We apply this decoding
mechanism ten times, and average performance. This decoding method is attractive because it has
generalization error guarantees: in a PAC-Bayesian framework, it can be shown that the error of
committee parsing on the sample given should be close to the expected error (see Seeger, 2002;
McAllester, 2003; Banerjee, 2006).

4.2 Variational Inference with Logistic Normal Distributions

The lack of conjugacy of the logistic normal distribution to the multinomial family complicates the
inference of distributions over θ and distributions over the hidden derivations y from the probabilis-
tic grammar, given a sequence of observed sentences x1, ...,xM.

Mimno et al. (2008) explored inference with the logistic normal distribution using sampling
with an auxiliary variable method. However, sampling is notoriously slow to converge, especially
with complicated structures such as grammatical derivations. The algorithm Mimno et al. suggest
is also rather complicated, while alternatives, such as mean-field variational inference (Wainwright
and Jordan, 2008), offer faster convergence and a more intuitive solution to the problem of non-
conjugacy of the logistic normal distribution.

Variational inference algorithms have been successfully applied to various grammar and syntax
learning tasks (Kurihara and Sato, 2006; Liang et al., 2007; Headden et al., 2009; Boyd-Graber and
Blei, 2010; Cohen et al., 2010, inter alia). We give the full technical details of mean-field variational
inference for probabilistic grammars with logistic normal priors in Appendix B, and turn to give a
brief overview of the main technical details next, under the simplifying assumption that we have a
single observation x.

Mean-field variational inference in the Bayesian setting relies on two principal approximations:
the first approximation is done to the marginalized log-likelihood. Using Jensen’s inequality and
an auxiliary distribution q(θ,y), later to be used as our approximate posterior, we bound the log-
likelihood, marginalizing out the parameters and the hidden derivations in the grammar:

log
∫
∑
y
p(x,y,θ | µ,Σ,S,G) dθ≥ Eq[log p(x,y,θ | µ,Σ,S,G)]. (9)

The goal of the approximation in Equation 9 is to derive a bound which is optimized with
respect to q, instead of optimizing the marginalized log-likelihood, which is intractable. q serves as
our approximate posterior.
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The bound in Equation 9 requires further approximation, the mean-field approximation, to be
tractable. This mean-field approximation states that q(θ,y) is factorized and has the following form:

q(θ,y) = q(θ)q(y).

The variational distributions, q(θ) and q(y) can take an arbitrary form, as long as the bound in
Equation 9 can be efficiently maximized with respect to these variational distributions. For the
case of logistic normal priors, an additional approximation will be necessary (a first-order Taylor
approximation to the log of the normalization of the logistic normal distribution), because of the lack
of conjugacy of the logistic normal priors to the multinomial family (see Appendix B). We show in
Appendix B that even though q(y) can have an arbitrary form, in order to maximize the variational
bound it needs to have the form of a probabilistic grammar, dominated by the grammar’s variational
parameters. This makes inference applicable through the use of an inside-outside algorithm with a
weighted grammar of the same form as the original model. The mean-field approximation yields
an elegant algorithm, which looks similar to the Expectation-Maximization algorithm (Section 2.3),
alternating between optimizing the bound in Equation 9 with respect to q(θ) and with respect to
q(y).

4.3 Variational EM

The variational inference algorithm in Section 4.2 assumes that the µ and Σ are fixed. We are
interested in obtaining an estimate for µ and Σ, so that we can fit the data and then use the learned
model as described in Section 4.1 to decode new data (e.g., the test set in our experiments). To
achieve this, we will use the above variational method within an EM algorithm that estimates µ
and Σ in empirical Bayes fashion. (For Viterbi and MBR decoding, we then estimate θ as µ, the
mean of the learned prior; see Section 4.1.) In the E-step, we maximize the bound with respect
to the variational parameters using coordinate ascent as in Section 4.2. We optimize each of these
separately in turn, cycling through them, using appropriate optimization algorithms for each. In the
M-step, we apply maximum likelihood estimation with respect to µ and Σ given sufficient statistics
gathered from the variational parameters in the E-step. Appendix C describes the algorithm in full.

5. Experiments

We applied our modeling framework to unsupervised learning of the dependency model discussed
in Section 2.2. We consider four scenarios:

1. (Section 5.1) Experiments with dependency grammar induction for English text using the
logistic normal distribution.

2. (Section 5.2) Experiments with text in five additional languages: Chinese, Portuguese, Turk-
ish, Czech, and Japanese.

3. (Section 5.3) Experiments with the shared logistic normal distribution for tying parameters
which correspond to the same coarse part-of-speech tag (English, Portuguese, and Turkish).

4. (Section 5.4) Experiments with the shared logistic normal distribution in bilingual settings
(English, Portuguese, and Turkish).
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attachment accuracy (%)
Viterbi decoding MBR decoding Committee decoding

≤ 10 ≤ 20 all ≤ 10 ≤ 20 all ≤ 10 ≤ 20 all
MLE 45.8 39.1 34.2 46.1 39.9 35.9 ∗
Dirichlet-I 45.9 39.4 34.9 46.1 40.6 36.9 ∗

LN-I, Σ(0)k = I 56.5 42.9 36.6 58.4 45.2 39.5 56.4±.001 42.3±.001 36.2±.001
LN-I, families 59.3 45.1 39.0 59.4 45.9 40.5 56.3±.01 41.3±.01 34.9±.005
LN-II, Σ(0)k = I 26.1 24.0 22.8 27.9 26.1 25.3 22.0±.02 20.1±.02 19.1±.02
LN-II, families 24.9 21.0 19.2 26.3 22.8 21.5 26.6±.003 22.7±.003 20.8±.0006

Table 1: Attachment accuracy of different learning methods on unseen test data from the Penn Tree-
bank of varying levels of difficulty imposed through a length filter. MLE is a reproduction
of an earlier result using EM (Klein and Manning, 2004). LN-I and LN-II denote using the
logistic normal with model I and model II (Figure 2), respectively. Committee decoding
includes ten averaged runs. Numbers in small font denote variance. Results in bold denote
best results in a column. Training is done on sentences of length ≤ 10, though testing is
done on longer sentences as well.

5.1 English Text

We begin our experiments with the Wall Street Journal Penn treebank (Marcus et al., 1993). Fol-
lowing standard practice, sentences were stripped of words and punctuation, leaving part-of-speech
tags for the unsupervised induction of dependency structure. We note that, in this setting, using gold
standard part-of-speech tags as the input to the learning algorithm is common (Klein and Manning,
2004; Smith and Eisner, 2006; Spitkovsky et al., 2010b,a; Gillenwater et al., 2010, inter alia).

We train on §2–21, tune on §22 (without using annotations), and report final results on §23.
Details of this data set (and others) are found in Table 2. Unsupervised training for these data sets
can be costly, and requires iteratively running a cubic-time inside-outside dynamic programming
algorithm, so we follow Klein and Manning (2004) in restricting the training set to sentences of ten
or fewer words in length. Short sentences are also less structurally ambiguous and may therefore be
easier to learn from.

To evaluate the performance of our models, we report the fraction of words whose predicted
parent matches the gold standard annotation in the treebank.5 This performance measure is known
as attachment accuracy. We will report attachment accuracy on three subsets of the test corpus:
sentences of length ≤ 10 (typically reported in prior work and most similar to the training data
set), length ≤ 20, and the full test corpus. We considered the three decoding methods mentioned in
Section 4.1. For MBR decoding, we use the number of dependency attachment errors as the loss
function. This means that at decoding time, we minimize the expected number of attachment errors
according to the prediction of the estimated model. Because committee decoding is a randomized
algorithm, we run it ten times on the unseen data, and then average the dependency attachment
accuracy.

5. The Penn Treebank’s phrase-structure annotations were converted to dependencies using the head rules of Yamada
and Matsumoto, which are very similar to the ones by Collins (1999). See http://www.jaist.ac.jp/˜h-yamada.
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Initialization is important for all conditions, because likelihood and our variational bound are
non-concave functions. For the values of the multinomials (θ), we use the harmonic initializer from
Klein andManning (2004). It estimates θ using soft counts on the training data where, in an n-length
sentence, (i) each word is counted as the sentence’s head 1

n times, and (ii) each word xi attaches to
x j proportional to |i− j|−1, normalized to a single attachment per word. This initializer is used with
MLE and Dirichlet-I (“I” stands for model I from Figure 2). In the case of LN-I and LN-II, it is
used as an initializer both for µ and inside the E-step.

For learning with the logistic normal prior, we consider two initializations of the covariance
matrices Σk. The first is the Nk×Nk identity matrix. We then tried to bias the solution by injecting
prior knowledge about the part-of-speech tags. To do that, we manually mapped the tag set (34 tags)
to twelve disjoint tag “families.” These are simply coarser tags: adjective, adverb, conjunction, for-
eign, interjection, noun, number, particle, preposition, pronoun, proper, verb. The coarse tags were
chosen to loosely account for the part-of-speech tag sets of seven treebanks in different languages.
The mapping from fine-grained tags to coarser tags are based on the annotation guidelines of the rel-
evant treebank. This mapping into families provides the basis for an initialization of the covariance
matrices for the dependency distributions: 1 on the diagonal, 0.5 between probabilities of possible
child tags that belong to the same family, and 0 elsewhere. These results are denoted “families” and
are compared to the identity matrix as an initializer.

We compared several models, where learning is accomplished using (variational) EM: MLE,
standard maximum-likelihood estimation using EM; Dirichlet-I, a common baseline in the literature
which uses a Dirichlet prior together with variational EM; and LN-I (LN-II), a model with the
logistic normal distribution using model I (model II). In all cases, we either run the (variational)
EM algorithm until convergence of the log-likelihood (or its bound) or until the log-likelihood on
an unannotated development set of sentences does not increase.

We note that on the full test set, attaching each word to the word on its right (“Attach-Right”)
achieves about 30% accuracy, and attaching each word to the word on its left (“Attach-Left”)
achieves about 20% accuracy.

Table 1 shows the experimental results. Note that there are two variants which consistently
get lower performance than their counterparts: using model II (versus using model I) and using
committee decoding instead of Viterbi or MBR decoding. This suggests that the covariance matrices
play a useful role during the learning process, but are not informative when performing decoding,
since they are not used by Viterbi and MBR decoding. Interestingly, Smith and Eisner (2006) report
a similar result for structurally biased DMV—a model that includes a parameter to control the
length of the decoded dependencies. Their bias parameter is useful only during the learning process,
but never during decoding. In general, the logistic normal distribution with model I outperforms
substantially the baselines. It is interesting to note that LN-I outperforms Dirichlet-I and MLE even
when using identity covariance matrices for initialization. The reason could be the fact that the
logistic normal distribution, even when permitting only just diagonal covariance matrices (the case
with identity covariance matrix initialization is weaker—we only initialize with diagonal matrices)
allows to model the variance directly in the parameters. This is not possible with the Dirichlet
distribution.

When we tested model II and committee decoding on other languages, the performance decrease
was consistent. For the rest of the experiments, we report only MBR (and possibly Viterbi) decoding
results using model I. The reason for the underperformance of model II could be the small number
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language tag set training development test baselines
tokens sent. tokens sent. tokens sent. A-R A-L

English 34 55340 7179 35021 1700 49363 2416 30.2 20.4
Chinese 34 27357 4775 5824 350 7007 348 32.9 9.7
Portuguese 21 15976 2477 14558 907 5009 288 25.9 31.1
Turkish 29 18873 4497 7812 500 6288 623 68.2 4.3
Czech 47 67756 10674 32647 2535 33147 2535 24.4 28.3
Japanese 74 39121 10300 14666 1700 13648 1700 66.4 13.4

Table 2: Information about the data sets used in this paper. “Tag set” stands for the size of the
part-of-speech tag set. Train, development and test columns show the number of tokens
and number of sentences in each data set. The training set consists of sentences of length
ten or less, as described in the text. The development set and the test set do not have any
length restriction. The development set includes unannotated set of sentences from the re-
spective language. A-R (A-L) stands for Attach-Right (Attach-Left), which are attachment
accuracy baselines on the test set for all sentences. See text for details.

of parameters which is defined by the model. This small set of parameters cannot capture well the
nuances across sentences in the data.

5.2 Additional Languages

Following Section 5.1, we experiment with other languages: Chinese, Portuguese, Turkish, Czech
and Japanese.

• For Chinese, we used the Chinese treebank (Xue et al., 2004). We train on §1–270, use
§301–1151 for development and test on §271–300.

• For Portuguese, we used the Bosque treebank (Afonso et al., 2002) from the CoNLL shared
task in 2006 (Buchholz and Marsi, 2006).

• For Turkish, we used the METU-Sabancı treebank (Atalay et al., 2003; Oflazer et al., 2003)
from the CoNLL shared task in 2006.

• For Czech, we used the Prague treebank (Hajič et al., 2000) from the CoNLL shared task in
2007 (Nivre et al., 2007).

• For Japanese, we used the VERBMOBIL Treebank for Japanese (Kawata and Bartels, 2000)
from the CoNLL shared task in 2006.

Whenever using CoNLL shared task data, we used the first 80% of the data distributed in the shared
task for training, and the rest was divided equally for development and testing. Table 2 gives statis-
tics about the data sets used with the performance of the Attach-Right and Attach-Left baselines
given for the whole test data. As in the case for English, sentences were stripped of words and
punctuation, leaving part-of-speech tags for the unsupervised induction of dependency structure.
All learning algorithms were run on sentences of length ten words or less. Note that strong perfor-
mance is achieved for Turkish and Japanese by the Attach-Right baseline.
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Results of running the different learning algorithms are given in Figure 4. Note that for Por-
tuguese, the difference is much smaller between the EM baselines and logistic normal variational
EM when only short sentences are considered, but there is a wider gap for longer sentences; the LN
models appear to generalize better to longer sentences. For Turkish, no method outperforms Attach-
Right, but there is still a big gap between variational EM with the logistic normal and the other EM
baselines. The case is similar for Japanese, though logistic normal does outperform the Attach-
Right baselines for shorter sentences. For Czech, it seems like Dirichlet and EM do somewhat
better than the logistic normal prior, but performance of all four methods is close. It is conceivable
that the approximation inherent in a projective syntax representation for the Czech sentences (whose
gold-standard analyses have a relatively large fraction of nonprojective dependencies) interacts with
different models in different ways.6

In general, the covariance matrices learned when initializing with the identity covariance matrix
are rather sparse, but there is a high degree of variability across the diagonal (for the variance values
learned). For the DMV, when using an identity initializer, diagonal matrices are the local optimum
that is reached by the variational EM algorithm. When initializing the covariance matrices with the
tag families initializer, the learned matrices are still rather sparse, but they have a larger number of
significant correlations (for Portuguese, for example, using a t-test for testing the significance of the
correlation, we found that 0.3% of the values in the covariance matrices had significant correlation).7

5.3 SLN with Nouns, Verbs, and Adjectives

We now turn to experiments where the partition structure lets parameters across multinomials co-
vary, making use of the expressive power of the shared logistic normal distribution. We use a few
simple heuristics to decide which partition structure S to use. Our heuristics rely mainly on the
centrality of content words: nouns, verbs, and adjectives. For example, in the English treebank, the
most common attachment errors (with the LN prior) happen with a noun (25.9%) or a verb (16.9%)
parent. The fact that the most common errors happen with these attachments results from nouns and
verbs being the most common parents in most of the data sets we experimented with.

Following this observation, we compare four different settings in our experiments (all SLN
settings include one normal expert for each multinomial on its own, equivalent to the regular LN
setting):

• TIEV: We add normal experts that tie all probabilities corresponding to a verbal parent (any
verbal parent, using the coarse tags of Cohen et al., 2008). Let V be the set of part-of-speech tags
that belong to the verb category. For each direction D (left or right), the set of multinomials of
the form θc(· | v,D), for v ∈V , all share a normal expert. For each direction D and each boolean
value B of the predicate firsty(·), the set of multinomials θs(· | v,D,B) for v ∈ V share a normal
expert.

• TIEN: This is the same as TIEV, only for nominal parents.

6. We note that we also experimented with other languages, including Hebrew and Arabic. We do not include these
results, because in these cases all methods, including MLE, Dirichlet-I and LN-I performed badly (though Dirichlet-I
and MLE could do better than LN-I). We believe that for these languages, the DMV is probably not the appropriate
model. Developing better grammatical models for these languages is beyond the scope of this paper.

7. However, it is interesting to note that most of the elements of the covariance matrices were not exactly zero. For
example, 90% of the values in the covariance matrices were larger (in absolute value) than 2.3×10−6.
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Figure 4: Attachment accuracy results for English (equivalent to Table 1), Chinese, Portuguese,
Turkish, Czech and Japanese. The decoding mechanism used is MBR. Legend for the
baselines: MLE (green, first column in each block); Dirichlet-I (yellow, second column);
Legend for the methods in this paper: LN-I, Σ(0)k = I (blue, third column), and LN-I,
families initializer (red, fourth column).

• TIEV&N: Tie both verbs and nouns (in separate partitions). This is equivalent to taking the union
of the partition structures of the above two settings.

• TIEA: This is the same as TIEV, only for adjectival parents.
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English Portuguese Turkish
≤ 10 ≤ 20 all ≤ 10 ≤ 20 all ≤ 10 ≤ 20 all

MLE 46.1 39.9 35.9 44.3 35.4 29.3 35.6 32.4 31.4
Dirichlet-I 46.1 40.6 36.9 43.8 34.1 28.0 38.6 36.7 35.9
Σ(0)k = I 59.1 45.9 40.5 45.6 45.9 46.5 55.3 47.2 44.0
families 59.4 45.9 40.5 45.9 44.0 44.4 55.5 47.6 44.4

Tr
ai
ne
d
w
ith

En
gl
ish

TIEV 60.2 46.2 40.0 45.4 43.7 44.5 † 56.5 48.7 45.5
TIEN 60.2 46.7 40.9 45.7 44.3 45.0 51.1 43.7 41.2
TIEV&N 61.3 47.4 41.4 46.3 44.6 45.1 55.9 48.2 45.2
TIEA 59.9 45.8 39.6 45.4 43.8 44.6 49.8 43.2 40.8

Po
rtu
gu
es
e TIEV 62.1 48.1 42.2 45.2 42.3 42.3 56.7 † 48.6 45.1

TIEN 60.7 46.9 40.9 45.7 42.8 42.9 33.2 29.8 28.7
TIEV&N 61.4 47.8 42.0 46.3 44.6 45.1 56.7 49.2 46.0
TIEA 62.1 47.8 41.8 45.2 42.7 42.7 31.5 28.4 27.5

Tu
rk
ish

TIEV 62.5 48.3 42.4 45.4 43.2 43.7 55.2 47.3 44.0
TIEN 61.0 47.2 41.2 45.9 43.9 44.4 45.1 39.8 37.8
TIEV&N † 62.3 48.3 † 42.3 46.7 44.3 44.6 55.7 48.7 45.5
TIEA † 62.3 48.0 42.1 45.1 43.2 43.7 38.6 34.0 32.5

Table 3: Attachment accuracy of different monolingual tying models and bilingual tying models in
varying levels of difficulty imposed through a length filter (Sections 5.3 and 5.4). Mono-
lingual results (Section 5.3) are described when the languages in both the column and the
row are identical (blocks on the diagonal). Results for MLE and Dirichlet-I are identical
to Figure 4. Results for Σ(0)k = I and families are identical to Table 1 and Figure 4. Each
block contains the results of tying one language with the other, specifying performance for
the column language. Results in bold denote best results in a column, and † marks figures
that are not significantly worse (binomial sign test, p< 0.05).

Since learning a model with parameter tying can be computationally intensive, we first run
the inference algorithm without parameter tying, and then add parameter tying to the rest of the
inference algorithm’s execution until convergence.

For the covariance matrices, we follow the setting described in Section 5.1. For each treebank,
we divide the tags into twelve disjoint tag families. The covariance matrices for all dependency
distributions were initialized with 1 on the diagonal, 0.5 between tags which belong to the same
family, and 0 otherwise.

The results are given in the blocks on the diagonal of Table 3, where the languages in the
columns and rows are identical. MBR decoding was used. For English, there are small improve-
ments when adding the expressive power of SLN. The best results are achieved when tying both
nouns and verbs together. Portuguese shows small benefits compared on shorter sentences, and
when compared to the families-initialized LN-I model, but not the stronger identity-initialized LN-I
model. For Turkish, tying across multinomials hurts performance.
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5.4 Bilingual Experiments

Leveraging linguistic information from one language for the task of disambiguating another lan-
guage has received considerable attention (Dagan, 1991; Yarowsky et al., 2001; Hwa et al., 2005;
Smith and Smith, 2004; Snyder and Barzilay, 2008; Burkett and Klein, 2008). Usually such a set-
ting requires a parallel corpus or other annotated data that ties between those two languages. One
notable exception is Haghighi et al. (2008), where bilingual lexicons were learned from non-parallel
monolingual corpora.

Our bilingual experiments use the data for English, Portuguese, and Turkish (two at a time),
which are not parallel corpora, to train parsers for two languages at a time, jointly. Sharing infor-
mation between two models is accomplished by softly tying grammar weights in the two hidden
grammars.

For each pair of languages, we first merge the models for these two languages by taking a union
of the multinomial families of each and the corresponding prior parameters. We then add a normal
expert that ties between the parts of speech in the respective partition structures for both grammars
together. Parts of speech are matched through the single coarse tag set. For example, with TIEV, let
V = VEng ∪V Por be the set of part-of-speech tags which belong to the verb category for either the
English or Portuguese treebank (to take an example). Then, we tie parameters for all part-of-speech
tags in V . We tested this joint model for each of TIEV, TIEN, TIEV&N, and TIEA. After running
the inference algorithm which learns the two models jointly, we use unseen data to test each learned
model separately.

We repeat the generative story specifically for the bilingual setting, using the example of TIEV.
For each language, there are normal experts for all part-of-speech tags, for the basic DMV. In
addition, there are normal experts, for each language, that combine together all part-of-speech tags
that belong to the verb category. Finally, there are normal experts, for the two languages together,
that combine together all part-of-speech tags that belong to the verb category in either language. For
each sentence in the corpus, the following two steps are conducted as before (model I): the normal
experts are sampled from the SLN distribution and combined into multinomials to parameterize the
DMV; a grammar derivation is sampled from the resulting DMV.

Table 3 presents the results for these experiments (blocks not on the diagonal). English grammar
induction shows moderate gains when tied with Portuguese and strong gains with Turkish. Cohen
and Smith (2009) reported qualitatively similar results when English was tied with Chinese. For
Portuguese, there is not much gain from tying it with other languages, though it improves the per-
formance of the other two languages. In general, the table shows that with the proper selection of
pair of languages and multinomials to tie together, we can usually get improvement over the LN
baselines and the technique is not harmful (cf. Turkish grammar induction with SLN, on its own).
We note that selection of the multinomials to tie encodes prior knowledge about the languages. This
knowledge simply requires being able to map fine-grained, treebank-specific part-of-speech tags to
coarse categories. In addition, bilingual learning with SLN does not require bitext parsing at any
point, which is an expensive operation. The runtime of the variational E-step for a sentence x is still
cubic in the length of x, as in EM, so that the runtime of the variational E-step scales in the multi-
lingual case the same as it would be if we added an equivalent amount of data in the monolingual
case.

Since the experiments reported here were conducted, others, notably Gillenwater et al. (2010)
and Spitkovsky et al. (2010b), have reported performance surpassing ours, for some of the languages
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in our experiments. Differences in the experimental settings prevent direct comparisons. Some of
the improvements in dependency grammar induction are achieved because of techniques which are
orthogonal to ours, such as improvements in the underlying grammar (instead of DMV; Headden
et al., 2009; Gillenwater et al., 2010), and those techniques could be incorporated into the Bayesian
model we described. Others are somewhat different (e.g., Viterbi training).

6. Discussion

We have shown that modeling covariance among grammar weights within a probabilistic gram-
mar’s multinomial distributions, across its distributions, and across grammars in two languages can
have benefits for learning dependency structure in an unsupervised empirical Bayesian framework.
This approach addresses one of the desiderata of Raiffa and Schaifer (1961) for prior distributions,
“richness.” The empirical benefits of modeling covariance, we have shown, are compelling.

We believe, however, that more remains to be done to incorporate prior linguistic knowledge
into unsupervised grammar induction. Covariance structure is, perhaps, not the most interpretable
kind of prior knowledge about grammars that might be brought to bear on learning. The empir-
ical Bayesian paradigm explored here, and the use of variational approximations for coping with
non-conjugacy, will be important tools in future work that brings together prior knowledge and
unannotated data for grammar induction.

For natural language data, a direction for future work is to capture deeper linguistic phenomena.
Here, background knowledge abounds: the entire field of theoretical linguistics has contributed
both descriptive facts about the structure of specific natural languages and general theories about
the way that structure is constrained. Viewing the logistic normal prior as local log-linear models
(Section 3.4) is a first step towards encoding such prior knowledge. Similar to Berg-Kirkpatrick
et al. (2010), it permits the use of arbitrary features in the parameterization of the grammar.

We note that our inference algorithm, described in detail in Appendix B, can be easily adapted
to scenarios which do not necessarily use the multivariate normal distribution as the base distribu-
tion in the prior. The “softmax” can be applied to any multivariate sample to get a point in the
probability simplex—perhaps capturing other tendencies in the data than covariance. The conve-
nience of performing such an extension depends on the ability to effectively compute the moment
generating function of the distribution replacing the multivariate Gaussian, in which case we can
develop Equation 13 and proceed with optimizing the variational bound using this distribution.

7. Conclusion

In this paper we demonstrated the effectiveness of estimating probabilistic grammars in a Bayesian
setting. We used the Bayesian setting to model covariance between the different parameters of
probabilistic grammars. To model the covariance, we used the logistic normal distribution as a prior
over the grammar parameters. In addition, we extended the logistic normal distribution to a new
family of distributions, in order to model covariance across the multinomial family in a probabilistic
grammar.

We proposed a variational inference algorithm for estimating the parameters of the probabilis-
tic grammar, providing a fast, parallelizable,8 and deterministic alternative to MCMC methods to
approximate the posterior over derivations and grammar parameters.

8. We used a cluster running MapReduce (Dean and Ghemawat, 2004) to perform inference when training our models.
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We experimented with grammar induction on six different languages, demonstrating the use-
fulness of our approach. Our experiments include a novel promising setting, in which syntactic
trees are inferred in a bilingual setting that uses multilingual, non-parallel corpora. Notably, our
approach tends to generalize better to longer sentences, despite learning (as in previous research)
on short sentences. The focus of the experiments was on dependency grammar induction with
the dependency model with valence. Our choice of the DMV is motivated by the fact that it is a
widespread grammar for dependency grammar induction (Section 2.2), enabling us to tease apart
the problem of estimation of the grammar from the problem of deciding on the grammar structure.
Our inference algorithm, though, could be applied to any probabilistic grammar that has an efficient
procedure, such as the inside-outside algorithm, for computing sufficient statistics in the form of
expected counts of rule firing in grammar derivations.

Acknowledgments

The authors would like to thank the anonymous reviewers, Matthew Harrison, Mark Johnson, John
Lafferty, and Eric Xing for their useful feedback and comments. The authors would also like to
thank Yahoo! for making computational resources available. This research was supported by NSF
grants IIS-0713265, IIS-0836431 and IIS-0915187.

Appendix A. Notation

Table 4 gives a table of notation for symbols used throughout this paper.

Appendix B. Variational Inference with Logistic Normal Priors

We give a derivation of a variational inference algorithm for model I, with the shared logistic normal
distribution as a prior. The derivation is based on the one given in Blei and Lafferty (2006). The
derivation for model II can be followed similarly, as explained below. For model I, we seek to
find an approximation posterior function q(η1, ...,ηM,y1, ...,yM) that maximizes a lower bound (the
negated variational free energy) on the log-likelihood, a bound which is achieved using Jensen’s
inequality (the following probability quantities should be understood as if we always condition on
the grammar G):

M

∑
m=1
∑
y
log p(xm,y | µ,Σ,S)

≥
M

∑
m=1

(
N

∑
i=1

Eq
[

log p(ηm,i | µi,Σi)
]

+Eq [log p(xm,ym | ηm,S)]

)

+H(q). (10)

H(·) denotes the Shannon entropy.
We make a mean-field assumption, and assume that the posterior has the following form:

q(η1, ...,ηM,y1, ...,yM) =
M

∏
m=1

qm(ηm,ym), (11)
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symbol description
gr
am
m
ar
sa
nd
da
ta

G grammar (for example, context-free grammar rules)
M number of observed sentences
xm mth observed sentence in the available data
ym inferred derivation grammatical structure for xm
θ parameters of a probabilistic grammar
K number of multinomials in the probabilistic grammar
Nk size of the kth multinomial of the probabilistic grammar

fk,i(x,y) number of times the ith event fires in the kth multinomial in the derivations x
and y

pr
io
rs

α hyperparameters for the Dirichlet prior of a probabilistic grammar
Σ covariance matrices for the (shared) logistic normal prior of a probabilistic

grammar
µ mean values for the (shared) logistic normal prior of a probabilistic grammar
η values drawn from the Gaussians for (S)LN, before the logistic transformation

is applied
S partition structure for the shared logistic normal distribution
N number of normal experts for the SLN
ln length of nth normal expert (SLN)
In partition of the nth normal expert into segments mapping to multinomials in G

(SLN)
Jk collection of segments of normal experts mapping to kth multinomial in G

(SLN)

va
ria
tio
na
lE
M

qm(θ,y) variational distribution which is used as an approximation posterior for the mth
datum

µ̃m,k,i variational parameter for mean value of the ith event in the kth for the mth
datum

σ̃m,k,i variational parameter for variance of the ith event in the kth for the mth datum
f̃m,k,i expected count of the ith event in the kth for the mth datum
ψ̃m,k,i intermediate quantity aggregating variational parameters
ζ̃m,k variational parameter for the first-order Taylor approximation of LN’s denom-

inator

Table 4: Table of notation symbols used in this paper.

where

qm(ηm,ym) =
(

N

∏
k=1

Lk
∏
i=1

qm(ηm,k,i | µ̃m,k,i, σ̃2m,k,i)

)

×qm(ym),

and qm(ηm,k,i | µ̃m,k,i, σ̃2m,k,i) is a Gaussian with mean µ̃m,k,i and variance σ̃2m,k,i. Note that this means
that the variational distributions have a diagonal matrix for their covariance structure. The model
covariance matrices (the hyperparameters Σ) can still have covariance structure. This selection of
variational distributions makes inference much easier. The factorized form of Equation 11 implies
the following identities:
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Eq
[

log p(ηm,i | µi,Σi)
]

= Eqm
[

log p(ηm,i | µi,Σi)
]

,

Eq [log p(xm,ym | ηm,S)] = Eqm [log p(xm,ym | ηm,S)] ,

H(q) =
N

∑
m=1

H(qm).

Let ηCk,i be an intermediate variable, denoting the average of the normal experts which appear in
the partition structure and determine the value of the ith event in the kth multinomial of the grammar.
More formally, we define the vector ηCk of length Nk to be:

ηCk !
1
|Jk| ∑Ir, j∈Jk

ηr,Ir, j .

Unfolding the expectation with respect to qm(ym) in the second term in Equation 10, while
recalling that θm is a deterministic function of ηm that averages different subvectors from the col-
lection of multinomials ηm according to the partition structure S, we have that:

Eqm [log p(xm,ym | ηm,S)]

= Eqm(ηm)

[
K

∑
k=1

∑Nk
i=1∑

y
qm(ym) fk,i(xm,ym)

︸ ︷︷ ︸

f̃m,k,i

logθm,k,i

]

= Eqm(ηm)

[
K

∑
k=1

Nk
∑
i=1

f̃m,k,i

(

ηCm,k,i− log
Nk
∑
i′=1
expηCm,k,i′

)]

, (12)

where f̃m,k,i is the expected number of occurrences of the ith event in distribution k, under qm(ym).
With many kinds of probabilistic grammars, this quantity can be computed using a dynamic pro-
gramming algorithm like the forward-backward or inside-outside algorithm.

The logarithm term in Equation 12 is problematic because of the expectation with respect to
qm(ηm). We approximate it with a first-order Taylor expansion, introducingM×K more variational
parameters ζ̃m,k for m ∈ {1, ...,M} and K ∈ {1, ...,K}:

log

(
Nk
∑
i′=1
expηCm,k,i′

)

≤ log ζ̃m,k−1+
1
ζ̃m,k

Nk
∑
i′=1
expηCm,k,i′ . (13)

We note that the valueEqm(ηm)
[

exp(ηCm,k,i′)
]

can be calculated by evaluating the moment-generating

function of the normal distribution g(t) = Eqm(ηm)

[

exp(tηCm,k,i′)
]

at t = 1. We now have:
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Algorithm 1: Variational EM for probabilistic grammars with LN prior
Input: initial parameters µ(0), Σ(0), training data x, and development data x′
Output: learned parameters µ, Σ
t ← 1 ;
repeat

Call E-Step for each training example m= 1, ...,M (Algorithm 2)
Call M-Step (Algorithm 3)
t ← t+1;

until likelihood of held-out data, p(x′ | E[µ(t)]), decreases ;
return µ(t), Σ(t)

Eqm [log p(xm,ym | ηm,S)]

≥ Eqm(ηm)

[
K

∑
k=1

Nk
∑
i=1

f̃m,k,i

(

ηm,k,i− log ζ̃m,k+1−
1
ζ̃m,k

Nk
∑
i′=1
expηm,k,i′

)]

=
K

∑
k=1

Nk
∑
i=1

f̃m,k,i

(

µ̃m,k,i− log ζ̃m,k+1−
1
ζ̃m,k

Nk
∑
i′=1
exp

(

µ̃Cm,k,i+
(σ̃Cm,k,i)

2

2

))

︸ ︷︷ ︸

ψ̃m,k,i

=
K

∑
k=1

Nk
∑
i=1

f̃m,k,iψ̃m,k,i

where we use again the properties of the shared logistic normal distribution and rely on the partition
structure S to define:

µ̃Cm,k !
1
|Jk| ∑Ir, j∈Jk

µ̃m,r,Ir, j ,

(σ̃Cm,k)
2 !

1
|Jk|2 ∑Ir, j∈Jk

σ̃2m,r,Ir, j .

Note the shorthand ψ̃k,i to denote an expression involving µ̃C, σ̃C, and ζ̃.
The final form of our bound is:9

log p(x,y | µ,Σ)≥
(

K

∑
k=1

Eq [log p(ηk | µk,Σk)]

)

+

(
K

∑
k=1

Nk
∑
i=1

f̃k,iψ̃k,i

)

+H(q). (14)

Using an EM-style algorithm, we will alternate between finding the maximizing q(η) and the
maximizing q(y). Maximization with respect to qm(ηm) is not hard, because q(η) is parameterized.
The following lemma shows that fortunately, finding the maximizing qm(ym), which we did not
parameterize originally, is not hard either:

9. A tighter bound, based on a second-order approximation, was proposed in Ahmed and Xing (2007). We use a first-
order approximation for simplicity, similar to Blei and Lafferty (2006).
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Algorithm 2: E-Step (subroutine for Algorithm 1)
repeat

optimize for µ̃(t)m,k,k = 1, ...,K: use conjugate gradient descent with

∂B
∂µ̃m,k,i

=−
(

(Σ(t−1)k )−1)(µ(t−1)k − µ̃m,k)
)

i
− f̃m,k,i

+
Nk
∑
i′=1

(

f̃m,k,i′/ζ̃m,k
)

exp

(

µ̃k,i′ + σ̃2k,i′

2

)

optimize σ̃(t)m,k,k = 1, ...,K: use Newton’s method for each coordinate (with σ̃m,k,i > 0)
with

∂B
∂σ̃2m,k,i

=−
Σ(t−1)k,ii
2

−

(

∑Nk
i′=1 f̃m,k,i′

)

exp
(

µ̃m,k,i+σ̃2m,k,i
2

)

2ζ̃m,k
+

1
2σ̃2m,k,i

update ζ̃(t)m,k,∀k:

ζ̃(t)m,k ←
Nk
∑
i=1
exp



µ̃(t)m,k,i+
(σ̃(t)m,k,i)

2

2





update ψ̃(t)
m,k,∀k:

ψ̃(t)
m,k,i ← µ̃(t)m,k,i− log ζ̃

(t)
m,k+1−

1
ζ̃(t)m,k

Nk
∑
i′=1
exp



µ̃(t)m,k,i+
(σ̃(t)m,k,i)

2

2





compute expected counts f̃(t)m,k,k = 1, ...,K: use an inside-outside algorithm to re-estimate
expected counts f̃ (t)m,k,i in weighted grammar q(y) with weights eψ̃m ;

until B does not change ;

Lemma 2 Let r(ym | xm,eψ̃m) denote the conditional distribution over ym given xm defined as:

rm(ym | xm,eψ̃) =
1

Zm(ψ̃m)

K

∏
k=1

Nk
∏
i=1
exp(ψ̃m,k,i fm,k,i(xm,ym))

where Zm(ψ̃m) is a normalization constant. Then qm(ym) = rm(ym | xm,eψ̃m) maximizes the bound
in Equation 14.

Proof First note that H(qm) =H(qm(ηm | µ̃m, σ̃m))+H(qm(ym)). This means that the terms we are
interested in maximizing from Equation 14 are the following, after plugging in f̃m,k,i explicitly:

L= argmax
qm(ym)

∑
ym
qm(ym)

(
K

∑
k=1

Nk
∑
i=1

fm,k,i(xm,ym)ψ̃m,k,i

)

+H(qm(ym)).
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Algorithm 3: M-Step (subroutine for Algorithm 1)
Estimate µ(t) and Σ(t) using the following maximum likelihood closed-form solution:

µ(t)k,i ←
1
M

M

∑
m=1

µ̃(t)m,k,i

[

Σ(t)k

]

i, j
←

1
M

(
M

∑
m=1

µ̃(t)m,k,iµ̃
(t)
m,k, j+(σ̃(t))2m,k,iδi, j+Mµ(t)k,iµ

(t)
k, j

−µ(t)k, j
M

∑
m=1

µ̃(t)m,k,i−µ(t)k,i
M

∑
m=1

µ̃(t)m,k, j

)

,

where δi, j = 1 if i= j and 0 otherwise.

Then, note that:

L= argmin
qm(ym)

DKL
(

qm(ym)
∥
∥ rm(ym | xm,eψ̃m)

)

, (15)

where DKL denotes the KL divergence. To see that, combine the definition of KL divergence with
the fact that ∑K

k=1∑
Nk
i=1 fm,k,i(x,y)ψ̃m,k,i− logZm(ψ̃m) = logrm(ym | xm,eψ̃m) where logZm(ψ̃) does

not depend on qm(ym). Equation 15 is minimized when qm = rm.

The above lemma demonstrates that the minimizing qm(ym) has the same form as the probabilis-
tic grammar G, only without having sum-to-one constraints on the weights (leading to the required
normalization constant Zm(ψ̃m)). As in classic EM with probabilistic grammars, we never need to
represent qm(ym) explicitly; we need only f̃m, which can be calculated as expected feature values
under rm(ym | xm,eψ̃m) using dynamic programming.

Variational inference for model II is done similarly to model I. The main difference is that
instead of having variational parameters for each qm(ηm), we have a single distribution q(η), and
the sufficient statistics from the inside-outside algorithm are used altogether to update it during
variational inference.

Appendix C. Variational EM for Logistic-Normal Probabilistic Grammars

The algorithm for variational inference with probabilistic grammars using logistic normal prior
is defined in Algorithms 1–3.10 Since the updates for ζ̃(t)k are fast, we perform them after each
optimization routine in the E-step (suppressed for clarity). There are variational parameters for
each training example, indexed by m. We denote by B the variational bound in Equation 14. Our
stopping criterion relies on the likelihood of a held-out set (Section 5) using a point estimate of the
model.

10. An implementation of the algorithm is available at http://www.ark.cs.cmu.edu/DAGEEM. For simplicity, we give
the vanilla logistic normal version of the algorithm in this appendix. The full version requires a more careful indexing
and can be derived using the equations from Appendix B.
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J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret. The CoNLL 2007
shared task on dependency parsing. In Proceedings of the CoNLL Shared Task, EMNLP-CoNLL,
2007.

K. Oflazer, B. Say, D. Z. Hakkani-Tür, and G. Tür. Building a Turkish treebank. In A. Abeille,
editor, Building and Exploiting Syntactically-Annotated Corpora. Kluwer, 2003.

F. C. N. Pereira and Y. Schabes. Inside-outside reestimation from partially bracketed corpora. In
Proceedings of ACL, 1992.

H. Raiffa and R. Schaifer. Applied Statistical Decision Theory. Wiley-Interscience, 1961.

M. Seeger. PAC-Bayesian generalization bounds for Gaussian processes. Journal of Machine Learn-
ing Research, 3:233–269, 2002.

D. A. Smith and N. A. Smith. Bilingual parsing with factored estimation: Using English to parse
Korean. In Proceedings of EMNLP, 2004.

N. A. Smith. Novel Estimation Methods for Unsupervised Discovery of Latent Structure in Natural
Language Text. PhD thesis, Johns Hopkins University, 2006.

N. A. Smith and J. Eisner. Guiding unsupervised grammar induction using contrastive estimation.
In Proceedings of IJCAI Workshop on Grammatical Inference Applications, 2005.

N. A. Smith and J. Eisner. Annealing structural bias in multilingual weighted grammar induction.
In Proceedings of COLING-ACL, 2006.

B. Snyder and R. Barzilay. Unsupervised multilingual learning for morphological segmentation. In
Proceedings of ACL, 2008.

3050



COVARIANCE IN UNSUPERVISED LEARNING OF PROBABILISTIC GRAMMARS

V. Spitkovsky, H. Alshawi, and D. Jurafsky. From baby steps to leapfrog: How “less is more” in
unsupervised dependency parsing. In Proceedings of NAACL, 2010a.

V. I. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Manning. Viterbi training improves unsuper-
vised dependency parsing. In Proceedings of CoNLL, 2010b.

V. I. Spitkovsky, D. Jurafsky, and H. Alshawi. Profiting from mark-up: Hyper-text annotations for
guided parsing. In Proceedings of ACL, 2010c.
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Abstract
Inducing a grammar from text has proven to be a notoriously challenging learning task despite
decades of research. The primary reason for its difficulty is that in order to induce plausible gram-
mars, the underlying model must be capable of representing the intricacies of language while also
ensuring that it can be readily learned from data. The majority of existing work on grammar induc-
tion has favoured model simplicity (and thus learnability) over representational capacity by using
context free grammars and first order dependency grammars, which are not sufficiently expressive
to model many common linguistic constructions. We propose a novel compromise by inferring a
probabilistic tree substitution grammar, a formalism which allows for arbitrarily large tree frag-
ments and thereby better represent complex linguistic structures. To limit the model’s complexity
we employ a Bayesian non-parametric prior which biases the model towards a sparse grammar with
shallow productions. We demonstrate the model’s efficacy on supervised phrase-structure parsing,
where we induce a latent segmentation of the training treebank, and on unsupervised dependency
grammar induction. In both cases the model uncovers interesting latent linguistic structures while
producing competitive results.
Keywords: grammar induction, tree substitution grammar, Bayesian non-parametrics, Pitman-Yor
process, Chinese restaurant process

1. Introduction

Inducing a grammar from a corpus of strings is one of the central challenges of computational
linguistics, as well as one of its most difficult. Statistical approaches circumvent the theoretical
problems with learnability that arise with non-statistical grammar learning (Gold, 1967), and per-
formance has improved considerably since the early statistical work of Merialdo (1994) and Carroll
and Charniak (1992), but the problem remains largely unsolved. Perhaps due to the difficulty of this
unsupervised grammar induction problem, a more recent line of work has focused on a somewhat
easier problem, where the input consists of a treebank corpus, usually in phrase-structure format,
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and the task is to induce a grammar from the treebank that yields better parsing performance than
the basic maximum-likelihood probabilistic context free grammar (PCFG). Examples of work on
this kind of grammar induction, which we will refer to as grammar refinement because the learned
grammars can be viewed as refinements of the treebank PCFG, include the symbol-splitting ap-
proach of Petrov and Klein (2007) and the tree-substitution grammars of Data-Oriented Parsing
(Bod et al., 2003; Bod, 2003). Although the grammars induced by these systems are latent, the
resulting parsers are supervised in the sense that the input to the learning system consists of strings
and parses, and the goal is to learn how to parse new strings. Consequently, these systems do not
remove the necessity of hand-annotating a large corpus, but they can potentially reduce the amount
of engineering effort required to develop a successful statistical parser for a new language or do-
main, by obviating the need for complex hand-engineering of features, independence assumptions,
and backoff schemes.

The desire for automatic grammar refinement methods highlights one possible reason why un-
supervised grammar induction is so difficult. Simple models of syntactic structure such as hidden
Markov models (HMMs) or PCFGs make strong independence assumptions that fail to capture
the true complexity of language, so these models tend to learn something other than the desired
structure when used in an unsupervised way. On the other hand, more complex models with, for
example, head-lexicalized rules have too many free parameters to be learned successfully from
unannotated data without the use of sophisticated backoff schemes. Thus, finding the right balance
between learnability and complexity is critical to developing a successful model of grammar induc-
tion. We posit that this balance can be achieved by using a rich grammatical formalism coupled
with a nonparametric Bayesian prior to limit the model’s complexity. In this way the model can
learn sufficiently complex structure to model the data, but will only do so when there is enough
evidence to support such complexity; otherwise it will generalise to simpler structures. The model
can therefore learn plausible structures from either small or large training samples.

We present here a model for automatically learning a Probabilistic Tree Substitution Grammar
(PTSG) from either a treebank or strings. A PTSG is an extension to the PCFG in which nonter-
minals can rewrite as entire tree fragments (elementary trees), not just immediate children (Joshi,
2003; Bod et al., 2003). These large fragments can be used to encode non-local context, such as ar-
gument frames, gender agreement and idioms. A fundamental problem with PTSGs is that they are
difficult to estimate, even in the supervised (grammar refinement) scenario where treebanked data
is available. This is because treebanks are typically not annotated with their TSG derivations—how
to decompose a tree into elementary tree fragments—instead the derivation needs to be inferred.

Probably the best-known previous work on inducing PTSGs is within the framework of Data-
Oriented Parsing (DOP; Bod et al., 2003), which, like our model, has been applied in both super-
vised and unsupervised settings (Bod, 2003; Prescher et al., 2004; Zollmann and Sima’an, 2005;
Zuidema, 2007; Bod, 2006).1 DOP seeks to use as TSG productions all subtrees of the training cor-
pus, an approach which makes parameter estimation difficult and led to serious problems with early
estimation methods (Johnson, 2002), namely inconsistency for DOP1 (Bod, 2003) and overfitting
of the maximum likelihood estimate (Prescher et al., 2004). More recent work on DOP estima-
tion has tackled these problems, drawing from estimation theory to solve the consistency problem
(Prescher et al., 2004; Zollmann and Sima’an, 2005), or using a grammar brevity heuristic to avoid
the degeneracy of the MLE (Zuidema, 2007). Our work differs from DOP in that we use an ex-

1. Tree adjoining grammar induction (Chiang and Bikel, 2002; Xia, 2002) tackles a similar learning problem in the
supervised case.
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plicit generative model of TSG and a Bayesian prior for regularisation. The prior is nonparametric,
which allows the model to learn a grammar of the appropriate complexity for the size of the train-
ing data. A further difference is that instead of seeking to use all subtrees from the training data
in the induced TSG, our prior explicitly biases against such behaviour, such that the model learns
a relatively compact grammar.2 A final minor difference is that, because our model is generative,
it assigns non-zero probability to all possible subtrees, even those that were not observed in the
training data. In practice, unobserved subtrees will have very small probabilities.

We apply our model to the two grammar induction problems discussed above:

• Inducing a TSG from a treebank. This regime is analogous to the case of supervised DOP,
where we induce a PTSG from a corpus of parsed sentences, and use this PTSG to parse
new sentences. We present results using two different inference methods, training on either
a subset of WSJ or on the full treebank. We report performance of 84.7% when training on
the full treebank, far better than the 64.2% for a PCFG parser. These gains in accuracy are
obtained with a grammar that is somewhat larger than the PCFG grammar, but still much
smaller than the DOP all-subtrees grammar.

• Inducing a TSG from strings. As in other recent unsupervised parsing work, we adopt
a dependency grammar (Mel′čuk, 1988) framework for the unsupervised regime. We use
the split-head construction (Eisner, 2000; Johnson, 2007) to map between dependency and
phrase-structure grammars, and apply our model to strings of POS tags. We report perfor-
mance of 65.9% on the standard WSJ≤10 data set, which is statistically tied with the best re-
ported result on the task and considerably better than the EM baseline which obtains 46.1%.
When evaluated on test data with no restriction on sentence length—a more realistic setting—
our approach significantly improves the state-of-the-art.

Our work displays some similarities to previous work on both the grammar refinement and
unsupervised grammar induction problems, but also differs in a number of ways. Aside from DOP,
which we have already discussed, most approaches to grammar refinement can be viewed as symbol-
splitting. That is, they allow each nonterminal to be split into a number of subcategories. The
most notable examples of the symbol-splitting approach include Petrov et al. (2006), who use a
likelihood-based splitting and merging algorithm, and Liang et al. (2007) and Finkel et al. (2007),
who develop nonparametric Bayesian models. In theory, any PTSG can be recast as a PCFG with a
sufficiently large number of subcategories (one for each unique subtree), so the grammar space of
our model is a subspace of the symbol-splitting grammars. However, the number of nonterminals
required to recreate our PTSG grammars in a PCFG would be exorbitant. Consequently, our model
should be better able to learn specific lexical patterns, such as full noun phrases and verbs with
their subcategorisation frames, while theirs are better suited to learning subcategories with larger
membership, such as the days of the week or count versus mass nouns. The approaches are largely
orthogonal, and therefore we expect that a PTSG with nonterminal refinement could capture both
types of concept in a single model, thereby improving performance over either approach alone.

For the unsupervised grammar induction problem we adopt the Dependency Model with Va-
lency (DMV; Klein and Manning, 2004) framework that is currently dominant for grammar induc-
tion (Cohen et al., 2009; Cohen and Smith, 2009; Headden III et al., 2009; Cohen et al., 2010;
2. The prior favours compact grammars by assigning the majority of probability mass to few productions, and very little
(but non-zero) mass to other productions. In practice we use Markov Chain Monte Carlo sampling for inference
which results in sparse counts with structural zeros, thus permitting efficient representation.
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Spitkovsky et al., 2010). The first grammar induction models to surpass a trivial baseline concen-
trated on the task of inducing unlabelled bracketings for strings and were evaluated against tree-
bank bracketing gold standard (Clark, 2001; Klein and Manning, 2002). Subsequently the DMV
model has proved more attractive to researchers, partly because it defined a well founded generative
stochastic grammar, and partly due to the popularity of dependency trees in many natural language
processing (NLP) tasks. Recent work on improving the original DMV model has focused on three
avenues: smoothing the head-child distributions (Cohen et al., 2009; Cohen and Smith, 2009; Head-
den III et al., 2009), initialisation (Headden III et al., 2009; Spitkovsky et al., 2010), and extending
the conditioning distributions (Headden III et al., 2009). Our work falls into the final category: by
extending the DMV CFG model to a TSG we increase the conditioning context of head-child deci-
sions within the model, allowing the grammar to directly represent groups of linked dependencies.

Adaptor Grammars (Johnson et al., 2007b) are another recent nonparametric Bayesian model
for learning hierarchical structure from strings. They instantiate a more restricted class of tree-
substitution grammar in which each subtree expands completely, with only terminal symbols as
leaves. Since our model permits nonterminals as subtree leaves, it is more general than Adaptor
Grammars. Adaptor Grammars have been applied successfully to induce labeled bracketings from
strings in the domains of morphology and word segmentation (Johnson, 2008a,b; Johnson and Gold-
water, 2009) and very recently for dependency grammar induction (Cohen et al., 2010). The latter
work also introduced a variational inference algorithm for Adaptor Grammar inference; we use a
sampling method here.

The most similar work to that presented here is our own previous work (Cohn et al., 2009; Cohn
and Blunsom, 2010), in which we introduced a version of the model described here, along with two
other papers that independently introduced similar models (Post and Gildea, 2009; O’Donnell et al.,
2009). Cohn et al. (2009) and Post and Gildea (2009) both present models based on a Dirichlet
process prior and provide results only for the problem of grammar refinement, whereas in this
article we develop a newer version of our model using a Pitman-Yor process prior, and also show
how it can be used for unsupervised learning. These extensions are also reported in our recent
work on dependency grammar induction (Blunsom and Cohn, 2010), although in this paper we
present a more thorough exposition of the model and experimental evaluation. O’Donnell et al.
(2009) also use a Pitman-Yor process prior (although their model is slightly different from ours) and
present unsupervised results, but their focus is on cognitive modeling rather than natural language
processing, so their results are mostly qualitative and include no evaluation of parsing performance
on standard corpora.

To sum up, although previous work has included some aspects of what we present here, this
article contains several novel contributions. Firstly we present a single generative model capable
of both supervised and unsupervised learning, to induce tree substitution grammars from either
trees or strings. We demonstrate that in both settings the model outperforms maximum likelihood
baselines while also achieving results competitive with the best current systems. The second main
contribution is to provide a thorough empirical evaluation in both settings, examining the effect of
various conditions including data size, sampling method and parsing algorithm, and providing an
analysis of the structures that were induced.

In the remainder of this article, we briefly review PTSGs in Section 2 before presenting our
model, including versions for both constituency and dependency parsing, in Section 3. In Section 4
we introduce two different Markov Chain Monte Carlo (MCMC) methods for inference: a local
Gibbs sampler and a blocked Metropolis-Hastings sampler. The local sampler is much simpler but
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is only applicable in the supervised setting, where the trees are observed, whereas the Metropolis-
Hastings sampler can be used in both supervised and unsupervised settings and for parsing. We
discuss how to use the trained model for parsing in Section 5, presenting three different parsing al-
gorithms. Experimental results for supervised parsing are provided in Section 6, where we compare
the different training and parsing methods. Unsupervised dependency grammar induction experi-
ments are described in Section 7, and we conclude in Section 8.

2. Tree-substitution grammars

A Tree Substitution Grammar3 (TSG) is a 4-tuple, G = (T,N,S,R), where T is a set of terminal
symbols, N is a set of nonterminal symbols, S ∈ N is the distinguished root nonterminal and R is a
set of productions (rules). The productions take the form of elementary trees—tree fragments4 of
height ≥ 1—where each internal node is labelled with a nonterminal and each leaf is labelled with
either a terminal or a nonterminal. Nonterminal leaves are called frontier nonterminals and form
the substitution (recursion) sites in the generative process of creating trees with the grammar. For
example, in Figure 1b the S→ NP (VP (V hates) NP) production rewrites the S nonterminal as the
fragment (S NP (VP (V hates) NP)).5 This production has the two NPs as its frontier nonterminals.

A derivation creates a tree by starting with the root symbol and rewriting (substituting) it with
an elementary tree, then continuing to rewrite frontier nonterminals with elementary trees until there
are no remaining frontier nonterminals. We can represent derivations as sequences of elementary
trees e, where each elementary tree is substituted for the left-most frontier nonterminal of the tree
being generated. Unlike Context Free Grammars (CFGs) a syntax tree may not uniquely specify the
derivation, as illustrated in Figure 1 which shows two derivations using different elementary trees
to produce the same tree.

A Probabilistic Tree Substitution Grammar (PTSG), like a PCFG, assigns a probability to each
rule in the grammar, denoted P(e|c) where the elementary tree e rewrites nonterminal c. The proba-
bility of a derivation e is the product of the probabilities of its component rules. Thus if we assume
that each rewrite is conditionally independent of all others given its root nonterminal c (as in stan-
dard TSG models),6 then we have

P(e) = ∏
c→e∈e

P(e|c) . (1)

The probability of a tree, t, and string of words, w, are given by

P(t) = ∑
e:tree(e)=t

P(e) and

P(w) = ∑
t:yield(t)=w

P(t) ,

3. A TSG is a Tree Adjoining Grammar (TAG; Joshi, 2003) without the adjunction operator, which allows insertions at
internal nodes in the tree. This operation allows TAGs to describe the set of mildly context sensitive languages. A
TSG in contrast can only describe the set of context free languages.

4. Elementary trees of height 1 correspond to productions in a context free grammar.
5. We use bracketed notation to represent tree structures as linear strings. The parenthesis indicate the hierarchical
structure, with the first argument denoting the node label and the following arguments denoting child trees. The
nonterminals used in our examples denote nouns, verbs, etc., and their respective phrasal types, using a simplified
version of the Penn treebank tag set (Marcus et al., 1993).

6. Note that this conditional independence does not hold for our model because (as we will see in Section 3) we integrate
out the model parameters.
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Figure 1: Example derivations for the same tree, where arrows indicate substitution sites. The
left figures (a) and (c) show two different derivations and the right figures (b) and (d) show the
elementary trees used in the respective derivation.

respectively, where tree(e) returns the tree for the derivation e and yield(t) returns the string of
terminal symbols at the leaves of t.

Estimating a PTSG requires learning the sufficient statistics for P(e|c) in (1) based on a training
sample. Estimation has been done in previous work in a variety of ways, for example using heuristic
frequency counts (Bod, 1993), a maximum likelihood estimate (Bod, 2000) and heldout estimation
(Prescher et al., 2004). Parsing involves finding the most probable tree for a given string, that is,
argmaxt P(t|w). This is typically simplified to finding the most probable derivation, which can be
done efficiently using the CYK algorithm. A number of improved algorithms for parsing have been
reported, most notably a Monte-Carlo approach for finding the maximum probability tree (Bod,
1995) and a technique for maximising labelled recall using inside-outside inference in a PCFG
reduction grammar (Goodman, 1998).

2.1 Dependency Grammars

Due to the wide availability of annotated treebanks, phrase structure grammars have become a pop-
ular formalism for building supervised parsers, and we will follow this tradition by using phrase
structure trees from the Wall Street Journal corpus (Marcus et al., 1993) as the basis for our su-
pervised grammar induction experiments (grammar refinement). However, the choice of formalism
for unsupervised induction is a more nuanced one. The induction of phrase-structure grammars is
notoriously difficult, since these grammars contain two kinds of ambiguity: the constituent structure
and the constituent labels. In particular, constituent labels are highly ambiguous: firstly we don’t
know a priori how many there are, and secondly labels that appear high in a tree (e.g., an S category
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Figure 2: An unlabelled dependency analysis for the example sentence George hates broccoli. The
artificial ROOT node denotes the head of the sentence.

for a clause) rely on the correct inference of all the latent labels above and below them. Much of
the recent work on unsupervised grammar induction has therefore taken a different approach, fo-
cusing on inducing dependency grammars (Mel′čuk, 1988). In applying our model to unsupervised
grammar induction we follow this trend by inducing a dependency grammar. Dependency gram-
mars represent the structure of language through directed links between words, which relate words
(heads) with their syntactic dependents (arguments). An example dependency tree is shown in Fig-
ure 2, where directed arcs denote each word’s arguments (e.g., hates has two arguments, ‘George’
and ‘broccoli’). Dependency grammars are less ambiguous than phrase-structure grammars since
the set of possible constituent labels (heads) is directly observed from the words in the sentence,
leaving only the induction challenge of determining the tree structure. Most dependency grammar
formalisms also include labels on the links between words, denoting, for example, subject, object,
adjunct etc. In this work we focus on inducing unlabelled directed dependency links and assume that
these links form a projective tree (there are no crossing links, which correspond to discontinuous
constituents). We leave the problem of inducing labeled dependency grammars to further work.

Although we will be inducing dependency parses in our unsupervised experiments, we define
our model in the following section using the formalism of a phrase-structure grammar. As detailed
in Section 7, the model can be used for dependency grammar induction by using a specially designed
phrase-structure grammar to represent dependency links.

3. Model

In defining our model, we focus on the unsupervised case, where we are given a corpus of text strings
w and wish to learn a tree-substitution grammar G that we can use to infer the parses for our strings
and to parse new data. (We will handle the supervised scenario, where we are given observed trees
t, in Section 4; we treat it as a special case of the unsupervised model using additional constraints
during inference.) Rather than inferring a grammar directly, we go through an intermediate step of
inferring a distribution over the derivations used to produce w, that is, a distribution over sequences
of elementary trees e that compose to form w as their yield. We will then essentially read the
grammar off the elementary trees, as described in Section 5. Our problem therefore becomes one of
identifying the posterior distribution of e given w, which we can do using Bayes’ Rule,

P(e|w) ∝ P(w|e)P(e) .

Note that any sequence of elementary trees uniquely specifies a corresponding sequence of words:
those words that can be read off the leaves of the elementary trees in sequence. Therefore, given a
sequence of elementary trees e, P(w|e) either equals 1 (if w is consistent with e) or 0 (otherwise).
Thus, in our model, all the work is done by the prior distribution over elementary trees,

P(e|w) ∝ P(e)δ(w(e),w) ,
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Figure 3: An example of the Pitman-Yor Chinese restaurant process with z−10 =
(1,2,1,1,3,1,1,4,3). Black dots indicate the number of customers sitting at each table, and the
value listed below table k is P(z10 = k|z−10).

where δ is the Kronecker delta and w(e) = yield(tree(e)) returns the string yield of the tree defined
by the derivation e.

Because we have no way to know ahead of time how many elementary trees might be needed
to account for the data, we use a nonparametric Bayesian prior, specifically the Pitman-Yor process
(PYP) (Pitman, 1995; Pitman and Yor, 1997; Ishwaran and James, 2003), which is a generalization
of the more widely known Dirichlet process (Ferguson, 1973). Drawing a sample from a PYP
(or DP) yields a probability distribution G with countably infinite support. The PYP has three
parameters: a discount parameter a, a strength parameter b, and a base distribution PE. Informally,
the base distribution determines which items will be in the support of G (here, we will define PE
as a distribution over elementary trees, so that G is also a distribution over elementary trees), and
the discount and strength parameters a and b determine the shape of G. The discount parameter a
ranges from 0 to 1; when a= 0, the PYP reduces to a Dirichlet process, in which case the strength
parameter b is known as the concentration parameter and is usually denoted with α. We discuss the
roles of a and b further below.

Assuming an appropriate definition for PE (we give a formal definition below), we can use the
PYP to define a distribution over sequences of elementary trees e= e1 . . .en as follows:

G|a,b,PE ∼ PYP(a,b,PE)
ei|G ∼ G . (2)

In this formulation, G is an infinite distribution over elementary trees drawn from the PYP
prior, and the ei are drawn iid from G. However, since it is impossible to explicitly represent an
infinite distribution, we integrate over possible values of G, which induces dependencies between
the ei. Perhaps the easiest way to understand the resulting distribution over e is through a variant
of the Chinese restaurant process (CRP; Aldous, 1985; Pitman, 1995) that is often used to explain
the Dirichlet process. Imagine a restaurant with an infinite number of tables, each with an infinite
number of seats. Customers enter the restaurant one at a time and seat themselves at a table. If zi is
the index of the table chosen by the ith customer, then the Pitman-Yor Chinese Restaurant Process
(PYCRP) defines the distribution

P(zi = k|z−i) =







n−k −a
i−1+b 1≤ k ≤ K−

K−a+b
i−1+b k = K−+1

,
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where z−i is the seating arrangement of the i−1 previous customers, n−k is the number of customers
in z−i who are seated at table k, K− = K(z−i) is the total number of tables in z−i, and z1 = 1 by
definition. Figure 3 illustrates. When a= 0, this process reduces to the standard Chinese restaurant
process. Like the CRP, the PYCRP is exchangeable and produces a power-law distribution on the
number of customers at each table (Pitman, 2006). The hyperparameters a and b together control
the manner of the clustering, although the difference between the two is rather subtle. A high value
of b will bias towards more clusters irrespective of their individual sizes, only accounting for their
aggregate size. In contrast a large a→ 1 will bias the clustering towards smaller individual clusters.

The PYCRP produces a sequence of integers z whose joint probability is

P(z) =
n

∏
i=1

P(zi|z1...i−1)

= 1 ·
n

∏
i=2

P(zi|z1...i−1)

=

(
n−1

∏
j=1

1
j+b

)(
K(z)−1

∏
k=1

(ka+b)

)




K(z)

∏
k=1

n−k −1

∏
j=1

( j−a)





=
Γ(1+b)
Γ(n+b)

(
K−1

∏
k=1

(ka+b)

)(
K

∏
k=1

Γ(n−k −a)
Γ(1−a)

)

, (3)

where K is the total number of tables in z and Γ is the gamma function. In order to produce a
sequence of elementary trees e we need to introduce a second step in the process. We can do so by
imagining that each table in the restaurant is labelled with an elementary tree, with !(z) = !1 . . .!K
being the trees labelling each table. Whenever a customer sits at a previously unoccupied table,
a label is chosen for that table according to the base distribution PE, and this label is used by all
following customers at that table, as illustrated in Figure 4. We define ei to be !zi , the label of the
table chosen by the ith customer. This yields the following conditional distribution on ei:

P(ei = e|z−i,!(z−i)) =
K(z−i)

∑
k=1

δ(!k,e)
n(z−i)k −a
i−1+b

+
K(z−i)a+b
i−1+b

PE(e)

=
n−e −Ke(z−i)a+(K(z−i)a+b)PE(e)

i−1+b
, (4)

whereK−
e is the number of tables labelled with e in z−i, and δ is the Kronecker delta. The probability

of an entire sequence of elementary trees is

P(e) =∑
z,!
P(e,z,!) ,

where P(e,z,!) = 0 except when !zi = ei for all i, in which case

P(e,z,!) = P(z,!) = P(z)P(!|z)

=
Γ(1+b)
Γ(n+b)

(
K−1

∏
k=1

(ka+b)

)(
K

∏
k=1

Γ(n−k −a)
Γ(1−a)

PE(!k)

)

,

where K is the total number of tables in z.
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Figure 4: The Pitman-Yor process, illustrated as a labelled Chinese restaurant process. In this
example, z−10 = (1,2,1,1,3,1,1,4,3) and each table k is labelled with an elementary tree !k. Black
dots indicate the number of occurrences of each tree in e = (!1,!2,!1,!1,!3,!1,!1,!4,!3). In this
illustration, which corresponds to the model given in (2), a single Pitman-Yor process is used to
generate all elementary trees, so the trees do not necessarily fit together properly. Our complete
model, defined in (5), would have a separate Pitman-Yor restaurant for each root category.

Equation 4 shows that, like other PYP and DP models, this model can be viewed as a cache
model, where ei can be generated in one of two ways: by drawing from the base distribution or
by drawing from a cache of previously generated elementary trees, where the probability of any
particular elementary tree is proportional to the discounted frequency of that tree. This view makes
it clear that the model embodies a “rich-get-richer” dynamic in which a few elementary trees will
occur with high probability, but many will occur only once or twice, as is typical of natural language.

In the model just defined, a single PYP generates all of the elementary trees in e. Notice,
however, that these elementary trees might not tile together properly to create full syntax trees. For
example, in Figure 4, e1 = (S NP VP) and e2 = (PP (IN in) NP), where the first substitution site in
e1 is an NP, but the root of e2 is a PP, so e2 cannot be used to expand e1. To solve this problem,
we modify the model so that there is a separate PYP for each non-terminal category c, with a base
distribution conditioned on c. The distribution over elementary trees with root category c is defined
as

Gc|ac,bc,PE ∼ PYP(ac,bc,PE(·|c))
e|c,Gc ∼ Gc , (5)

where PE(·|c) is a distribution over the infinite space of elementary trees rooted with c, and ac and
bc are the PYP hyper-parameters for non-terminal c. We elect not to tie together the values of these
hyper-parameters as these control the tendency to infer larger or smaller sets of elementary trees
from the observed data; we expect the distribution over productions to differ substantially between
non-terminals. To generate e, we now draw e1 from GS, giving us an elementary tree with frontier
nodes c1 . . .cm. We then draw e2 . . .em in turn from Gc1 . . .Gcm . We continue in this fashion until a
full tree is generated, at which point we can start again with a draw from GS.

Integrating over Gc, we obtain the following distribution over ei, now conditioned on its root
category as well as the previously generated table labels and assignments:

P(ei = e|c,z−i,!(z−i)) =
n−e −K−

e ac+(K−
c ac+bc)PE(e|c)

n−c +bc
, (6)

where K−
c = ∑e:root(e)=c K−

e is the total number of tables for nonterminal c, n−e is the number of
times e has been used to rewrite c and n−c = ∑e:root(e)=c n−e is the total count of rules rewriting c. As
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before, the − superscript denotes that the counts are calculated over the previous elementary trees,
e−i, and their seating arrangements, z−i.

Finally, we turn to the definition of the base distribution over elementary trees, PE. Recall that
in an elementary tree, each internal node is labelled with a non-terminal category symbol and each
frontier (leaf) node is labelled with either a non-terminal or a terminal symbol. Given a probabilistic
context-free grammar R, we assume that elementary trees are generated (conditioned on the root
non-terminal c) using the following generative process. First, choose a PCFG production c→ α
for expanding c according to the distribution given by R. Next, for each non-terminal in α decide
whether to stop expanding (creating a non-terminal frontier node, also known as a substitution site)
or to continue expanding. If the choice is to continue expanding, a new PCFG production is chosen
to expand the child, and the process continues recursively. The generative process completes when
the frontier is composed entirely of substitution sites and terminal symbols.

Assuming a fixed distribution PC over the rules in R, this generative process leads to the follow-
ing distribution over elementary trees:

PE(e|c) = ∏
i∈I(e)

(1− sci) ∏
f∈F(e)

sc f ∏
c′→α∈e

PC(α|c′) , (7)

where I(e) are the set of internal nodes in e excluding the root, F(e) are the set of frontier non-
terminal nodes, ci is the non-terminal symbol for node i and sc is the probability of stopping ex-
panding a node labelled c. We treat sc as a parameter which is estimated during training, as de-
scribed in Section 4.3. In the supervised case it is reasonable to assume that PC is fixed; we simply
use the maximum-likelihood PCFG distribution estimated from the training corpus (i.e., PC(α|c′) is
simply the relative frequency of the rule c′ → α). In the unsupervised case, we will infer PC; this
requires extending the model to assume that PC is itself drawn from a PYP prior with a uniform base
distribution. We describe this extension below, along with its associated changes to equation 14.

The net effect of our base distribution is to bias the model towards simple rules with a small
number of internal nodes. The geometric increase in cost associated with the stopping decisions
discourages the model from using larger rules; for these rules to be included they must occur very
frequently in the corpus. Similarly, rules which use high-probability (frequent) CFG productions
are favoured. It is unclear if these biases are ideal: we anticipate that other, more sophisticated
distributions would improve the model’s performance.

In the unsupervised setting we no longer have a training set of annotated trees and therefore do
not have a PCFG readily available to use as the base distribution in Equation 7. For this reason we
extend the previous model to a two level hierarchy of PYPs. As before, the topmost level is defined
over the elementary tree fragments (Gc) with the base distribution (PE) assigning probability to the
infinite space of possible fragments. The model differs from the supervised one by defining PC
in (7) using a PYP prior over CFG rules. Accordingly the model can now infer a two level hierarchy
consisting of a PCFG embedded within a TSG, compared to the supervised parsing model which
only learnt the TSG level with a fixed PCFG. Formally, each CFG production is drawn from7

Hc|a′c,b′c ∼ PYP(a′c,b′c,Uniform(·|c))
α|c,Hc ∼ Hc , (8)

7. As we are using a finite base distribution over CFG productions, we could use a Dirichlet instead of the PYP presented
in (8). However we elect to use a PYP because it is more general, having additional expressive power from its
discounting behaviour.
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where a′c and b′c are the PYP hyper-parameters and Uniform(·|c) is a uniform distribution over
the space of rewrites for non-terminal c.8 As before, we integrate out the model parameters, Hc.
Consequently draws from PC are no longer iid but instead are tied in the prior, and the probability
of the sequence of component CFG productions {c′ → α ∈ e} now follows a Pitman-Yor Chinese
Restaurant Process.

The CFG level and TSG level PYCRPs are connected as follows: every time an elementary tree
is assigned to a new table in the TSG level, each of its component CFG rules are drawn from the
CFG level prior. Note that, just as elementary trees are divided into separate restaurants at the TSG
level based on their root categories, CFG rules are divided into separate restaurants at the CFG level
based on their left-hand sides. Formally, the probability of r j, the jth CFG rule in the sequence, is
given by

PC(r j = r|c j = c,z′− j,!
′
− j) =

n′−r −K′−
r a′c+(K′−

c a′c+b′c) 1
|Rc|

K′−
c +b′c

, (9)

where c j is the left-hand side of r j; z′− j and !′− j are the table assignments and table labels in the
CFG-level restaurants (we use prime symbols to indicate variables pertaining to the CFG level);
n′−r is the number of times rule r is used in any table label in a TSG restaurant (equivalently, the
number of customers at tables labelled r in the CFG restaurants); K′−

r and K′−
c = ∑r:root(r)=c K′−

r
are the CFG-level table counts for r and all rules rewriting c, respectively; and Rc is the set of
CFG productions which can rewrite c. This formulation reflects that we now have multiple tied
restaurants, and each time an elementary tree opens a new table in a top-level restaurant all its
rules are considered to have entered their own respective PC restaurants (according to their root c).
Accordingly the CFG-level customer count, n′−r , is the number of occurrences of r in the elementary
trees that label the tables in the TSG restaurants (excluding r j). Thus, in the unsupervised case, the
product of rule probabilities (the final factor) in Equation (7) is computed by multiplying together
the conditional probability of each rule (9) given the previous ones.

4. Training

We present two alternative algorithms for training our model, both based on Markov chain Monte
Carlo techniques, which produce samples from the posterior distribution of the model by iteratively
resampling the values of the hidden variables (tree nodes). The first algorithm is a local sampler,
which operates by making a local update to a single tree node in each sampling step. The second
algorithm is a blocked sampler, which makes much larger moves by sampling analyses for full sen-
tences, which should improve the mixing over the local sampler. Importantly the blocked sampler is
more general, being directly applicable to both supervised and unsupervised settings (and for pars-
ing test sentences, which is equivalent to an unsupervised setting) while the local sampler is only
applicable for supervised learning, where the trees are observed. We now present the two sampling
methods in further detail.

8. In our experiments on unsupervised dependency parsing the space of rewrites varied depending on c, and can be as
large as the set of part-of-speech tags. See Section 7 for details.
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Figure 5: Gibbs sampler state (b) corresponding to the example derivation (a) (reproduced from
Figure 1a). Each node is labelled with its substitution variable.

4.1 Local Sampler

The local sampler is designed specifically for the supervised scenario, and samples a TSG derivation
for each tree by sampling local updates at each tree node. It uses Gibbs sampling (Geman and
Geman, 1984), where random variables are repeatedly sampled conditioned on the current values of
all other random variables in the model. The actual algorithm is analogous to the Gibbs sampler used
for inference in the Bayesian model of word segmentation presented by Goldwater et al. (2006);
indeed, the problem of inferring the derivations e from t can be viewed as a segmentation problem,
where each full tree must be segmented into one or more elementary trees. To formulate the local
sampler, we associate a binary variable xd ∈ {0,1} with each non-root internal node, d, of each
tree in the training set, indicating whether that node is a substitution point (xd = 1) or not (xd = 0).
Each substitution point forms the root of some elementary tree, as well as a frontier nonterminal
of an ancestor node’s elementary tree. Conversely, each non-substitution point forms an internal
node inside an elementary tree. Collectively the training trees and substitution variables specify the
sequence of elementary trees e that is the current state of the sampler. Figure 5 shows an example
tree with its substitution variables and its corresponding TSG derivation.

Our Gibbs sampler works by sampling the value of the xd variables, one at a time, in random
order. If d is the node associated with xd , the substitution variable under consideration, then the
two possible values of xd define two options for e: one in which d is internal to some elementary
tree eM, and one in which d is the substitution site connecting two smaller trees, eA and eB. In the
example in Figure 5, when sampling the VP node, eM = (S NP (VP (V hates) NP)), eA= (S NP VP),
and eB = (VP (V hates) NP). To sample a value for xd , we compute the probabilities of eM and
(eA,eB), conditioned on e−: all other elementary trees in the training set that share at most a root or
frontier nonterminal with eM,eA, or eB. These probabilities are easy to compute because the PYP is
exchangeable, meaning that the probability of a set of outcomes does not depend on their ordering.
Therefore we can treat the elementary trees under consideration as the last ones to be sampled, and
apply Equation (6). We then sample one of the two outcomes (merging or splitting) according to the
relative probabilities of these two events. More specifically, the probabilities of the two outcomes,
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conditioned on the current analyses of the remainder of the corpus, are

P(eM|cM) =
n−eM −K−

eMacM +(K−
cMacM +bcM)PE(eM|cM)

n−cM +bcM
and

P(eA,eB|cA,cB) =∑
zeA

P(eA,zeA |cA)P(eB|eA,zeA ,cA,cB)

=
n−eA −K−

eAacA
n−cA +bcA

×
n−eB +δe−K−

eBacB +(K−
cBacB +bcB)PE(eB|cB)

n−cB +δc+bcB

+
(K−

cAacA +bcA)PE(eA|cA)
n−cA +bcA

×
n−eB +δe− (K−

eB +δe)acB +
(

(K−
cB +δc)acB +bcB

)

PE(eB|cB)
n−cB +δc+bcB

, (10)

where cy is the root label of ey, the counts n− and K− are derived from z−M and !(z−M) (this
dependency is omitted from the conditioning context for brevity), δe = δ(eA,eB) is the Kronecker
delta function which has value one when eA and eB are identical and zero otherwise, and similarly for
δc = δ(cA,cB) which compares their root nonterminals cA and cB. The δ terms reflect the changes
to n− that would occur after observing eA, which forms part of the conditioning context for eB.
The two additive terms in (10) correspond to different values of zeA , the seating assignment for eA.
Specifically, the first term accounts for the case where eA is assigned to an existing table, zeA < K−

eA ,
and the second term accounts for the case where eA is seated at a new table, zeA = K−

eA . The seating
affects the conditional probability of eB by potentially increasing the number of tables K−

eA or K
−
cA

(relevant only when eA = eB or cA = cB).

4.2 Blocked Sampler

The local sampler has the benefit of being extremely simple, however it may suffer from slow
convergence (poor mixing) due to its very local updates. That is, it can get stuck because many
locally improbable decisions are required to escape from a locally optimal solution. Moreover it is
only applicable to the supervised setting: it cannot be used for unsupervised grammar induction or
for parsing test strings. For these reasons we develop the blocked sampler, which updates blocks of
variables at once, where each block consists of all the the nodes associated with a single sentence.
This sampler can make larger moves than the local sampler and is more flexible, in that it can
perform inference with both string (unsupervised) or tree (supervised) input.9

The blocked sampler updates the analysis for each sentence given the analyses for all other
sentences in the training set. We base our approach on the algorithm developed by Johnson et al.
(2007a) for sampling parse trees using a finite Bayesian PCFG model with Dirichlet priors over the
multinomial rule probabilities. As in our model, they integrate out the parameters (in their case,
the PCFG rule probabilities), leading to a similar caching effect due to interdependences between
the latent variables (PCFG rules in the parse). Thus, standard dynamic programming algorithms
cannot be used to sample directly from the desired posterior, p(t|w, t−), that is, the distribution
of parse trees for the current sentence given the words in the corpus and the trees for all other
sentences. To solve this problem, Johnson et al. (2007a) developed a Metropolis-Hastings (MH)

9. A recently-proposed alternative approach is to perform type-level updates, which samples updates to many similar
tree fragments at once (Liang et al., 2010). This was shown to converge faster than the local Gibbs sampler.
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sampler. The MH algorithm is an MCMC technique which allows for samples to be drawn from
a probability distribution, π(s), by first drawing samples from a proposal distribution, Q(s′|s), and
then correcting these to the true distribution using an acceptance/rejection step. Given a state s,
we sample a next state s′ ∼ Q(·|s) from the proposal distribution; this new state is accepted with
probability

A(s,s′) =min
{
π(s′)Q(s|s′)
π(s)Q(s′|s)

,1
}

and is rejected otherwise, in which case s is retained as the current state. The Markov chain defined
by this process is guaranteed to converge on the desired distribution, π(s). Critically, the MH
algorithm enables sampling from distributions fromwhich we cannot sample directly, and moreover,
we need not know the normalisation constant for π(·), since it cancels in A(s,s′).

In Johnson et al.’s (2007a) algorithm for sampling from a Bayesian PCFG, the proposal distri-
bution is simply Q(t ′|t) = P(t ′|θMAP), the posterior distribution over trees given fixed parameters
θMAP, where θMAP is the MAP estimate based on the conditioning data, t−. Note that the proposal
distribution is a close fit to the true posterior, differing only in that under the MAP the production
probabilities in a derivation are iid, while for the true model the probabilities are tied by the prior
(giving rise to the caching effect). The benefit of using the MAP is that its independences mean that
inference can be solved using dynamic programming, namely the inside algorithm (Lari and Young,
1990). Given the inside chart, which stores the aggregate probability of all subtrees for each word
span and rooted with a given nonterminal label, samples can be drawn using a simple top-down
recursion (Johnson et al., 2007a).

Our model is similar to Johnson et al.’s, as we also use a Bayesian prior in a model of grammar
induction and consequently face similar problems with directly sampling due to the caching effects
of the prior. For this reason, we use the MH algorithm in a similar manner, except in our case we
draw samples of derivations of elementary trees and their seating assignments, p(zi,!i|w,z−i,!−i),
and use a MAP estimate over (z−i,!i−) as our proposal distribution.10 However, we have an added
complication: the MAP cannot be estimated directly. This is a consequence of the base distribution
having infinite support, which means the MAP has an infinite rule set. For finite TSG models, such
as those used in DOP, constructing a CFG equivalent grammar is straightforward (if unwieldy).
This can be done by creating a rule for each elementary tree which rewrites its root nontermi-
nal as its frontier. For example under this technique S→ NP (VP (V hates) NP would be mapped
to S→ NP hates NP.11 However, since our model has infinite support over productions, it cannot
be mapped in the same way. For example, if our base distribution licences the CFG production
NP→ NP PP then our TSG grammar will contain the infinite set of elementary trees NP→ NP PP,
NP→ (NP NP PP) PP, NP→ (NP (NP NP PP) PP) PP, . . . , each with decreasing but non-zero proba-
bility. These would all need to be mapped to CFG rules in order to perform inference under the
grammar, which is clearly impossible.

Thankfully it is possible to transform the infinite MAP-TSG into a finite CFG, using a method
inspired by Goodman (2003), who developed a grammar transform for efficient parsing with an

10. Calculating the proposal and acceptance probabilities requires sampling not just the elementary trees, but also their
table assignments (for both levels in the hierarchical model). We elected to simplify the implementation by separately
sampling the elementary trees and their table assignments.

11. Alternatively, interspersing a special nonterminal, for example, S→ {S-NP-{VP-{V-hates}-NP} → NP hates NP,
encodes the full structure of the elementary tree, thereby allowing the mapping to be reversed. We use a similar
technique to encode non-zero count rules in our grammar transformation, described below.

3067



COHN, BLUNSOM AND GOLDWATER

all-subtrees DOP grammar. In the transformed grammar inside inference is tractable, allowing us to
draw proposal samples efficiently and thus construct a Metropolis-Hastings sampler. The resultant
grammar allows for efficient inference, both in unsupervised and supervised training and in parsing
(see Section 5).

We represent the MAP using the grammar transformation in Table 1, which separates the count
and base distribution terms in Equation 6 into two separate CFGs, denoted A and B. We reproduce
Equation 6 below along with its decomposition:

P(ei = e|c,z−i,!(z−i)) =
n−e −K−

e ac+(K−
c ac+bc)PE(e|c)

n−c +bc

=
n−e −K−

e ac
n−c +bc

︸ ︷︷ ︸

count

+
K−
c ac+bc
n−c +bc

PE(e|c)
︸ ︷︷ ︸

base

. (11)

Grammar A has productions for every elementary tree e with n−e ≥ 1, which are assigned as their
probability the count term in Equation 11.12 The function sig(e) returns a string signature for el-
ementary trees, for which we use a form of bracketed notation. To signify the difference between
these nonterminal symbols and trees, we use curly braces and hyphens in place of round parentheses
and spaces, respectively, for example, the elementary tree (S NP (VP (V hates) NP)) is denoted by
the nonterminal symbol {S-NP-{VP-{V-hates}-NP}}. Grammar B has productions for every CFG
production licensed under PE; its productions are denoted using primed (’) nonterminals. The rule
c→ c′ bridges from A to B, weighted by the base term in Equation 11 excluding the PE(e|c) factor.
The contribution of the base distribution is computed recursively via child productions. The remain-
ing rules in grammar B correspond to every CFG production in the underlying PCFG base distribu-
tion, coupled with the binary decision of whether or not nonterminal children should be substitution
sites (frontier nonterminals). This choice affects the rule probability by including an s or 1− s fac-
tor, and child substitution sites also function as a bridge back from grammar B to A. There are often
two equivalent paths to reach the same chart cell using the same elementary tree—via grammar A
using observed TSG productions and via grammar B using PE backoff—which are summed to yield
the desired net probability. The transform is illustrated in the example in Figures 6 and 7.

Using the transformed grammar we can represent the MAP grammar efficiently and draw sam-
ples of TSG derivations using the inside algorithm. In an unsupervised setting, that is, given a
yield string as input, the grammar transform above can be used directly with the inside algorithm
for PCFGs (followed by the reverse transform to map the sampled derivation into TSG elementary
trees). This has an asymptotic time complexity cubic in the length of the input.

For supervised training the trees are observed and thus we must ensure that the TSG analysis
matches the given tree structure. This necessitates constraining the inside algorithm to only consider
spans that are present in the given tree and with the given nonterminal. Nonterminals are said to
match their primed and signed counterparts, for example, VP′ and {VP-{V-hates}-NP} both match
VP. A sample from the constrained inside chart will specify the substitution variables for each node
in the tree: For each node d if it has a non-primed category in the sample then it is a substitution

12. The transform assumes inside inference, where alternate analyses for the same span of words with the same non-
terminal are summed together. In Viterbi inference the summation is replaced by maximisation, and therefore we
need different expansion probabilities. This requires changing the weight for c→ sig(e) to P(ei = e|c,z−i,!(z−i)) in
Table 1.
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G
ra
m
m
ar
A For every ET, e, rewriting c with non-zero count:

c→ sig(e) n−e −K−
e ac

n−c +bc
For every internal node ei in e with children ei,1, . . . ,ei,n

sig(ei)→ sig(ei,1) . . .sig(ei,n) 1
A
→
B For every nonterminal, c:

c→ c′ K−
c ac+bc
n−c +bc

G
ra
m
m
ar
B

For every pre-terminal CFG production, c→ t:
c′ → t PC(c→ t)

For every unary CFG production, c→ a:
c′ → a PC(c→ a)sa
c′ → a′ PC(c→ a)(1− sa)

For every binary CFG production, c→ ab:
c′ → ab PC(c→ ab)sasb
c′ → ab′ PC(c→ ab)sa(1− sb)
c′ → a′b PC(c→ ab)(1− sa)sb
c′ → a′b′ PC(c→ ab)(1− sa)(1− sb)

Table 1: Grammar transformation rules to map an infinite MAP TSG into an equivalent CFG,
separated into three groups for grammar A (top), the bridge between A→ B (middle) and grammar
B (bottom). Production probabilities are shown to the right of each rule. The sig(e) function creates
a unique string signature for an ET e (where the signature of a frontier node is itself) and sc is the
probability of c being a substitution variable, thus stopping the PE recursion.

S→ {NP-{VP-{V-hates}-NP}} n−e −K−
e aS

n−S +bS
{NP-{VP-{V-hates}-NP}} → NP {VP-{V-hates}-NP} 1
{VP-{V-hates}-NP} → {V-hates} NP 1
{V-hates} → hates 1
S→ S’ K−

S aS+bS
n−S +bS

S’→ NP VP’ PC(S→ NP VP)sNP(1− sVP)
VP’→ V’ NP PC(VP→ V NP)(1− sV )sNP
V’→ hates PC(V→ hates)

Figure 6: Example showing the transformed grammar rules for the single elementary tree e =
(S NP (VP (V hates) NP)) and the scores for each rule. Only the rules which correspond to e and its
substitution sites are displayed. Taking the product of the rule scores above the dashed line yields
the count term in (11), and the product of the scores below the line yields the base term. When the
two analyses are combined and their probabilities summed together, we get P(ei = e|c,z−i,!(z−i)).
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S

{S-NP-{VP-{V-hates}-NP}}

NP

George

{VP-{V-hates}-NP}

{V-hates}

hates

NP

broccoli

S

S’

NP

George

VP’

V’

hates

NP

broccoli

Figure 7: Example trees under the grammar transform, which both encode the same TSG deriva-
tion from Figure 1a. The left tree encodes that the S→ NP (VP (V hates) NP elementary tree was
drawn from the cache, while for the right tree this same elementary tree was drawn from the base
distribution (the count and base terms in (11), respectively).

site, xd = 1, otherwise it is an internal node, xd = 0. For example, both trees in Figure 7 encode that
both NP nodes are substitution sites and that the VP and V nodes are not substitution sites (the same
configuration as Figure 5).

The time complexity of the constrained inside algorithm is linear in the size of the tree and the
length of the sentence. The local sampler also has the same time complexity, however it is not im-
mediately clear which technique will be faster in practise. It is likely that the blocked sampler will
have a slower runtime due to its more complicated implementation, particularly in transforming
the grammar and inside inference. Although the two samplers have equivalent asymptotic com-
plexity, the constant factors may differ greatly. In Section 6 we compare the two training methods
empirically to determine which converges more quickly.

4.3 Sampling Hyperparameters

In the previous discussion we assumed that we are given the model hyperparameters, (a,b,s). While
it might be possible to specify their values manually or fit them using a development set, both
approaches are made difficult by the high dimensional parameter space. Instead we treat the hyper-
parameters as random variables in our model, by placing vague priors over them and infer their
values during training. This is an elegant way to specify their values, although it does limit our
ability to tune the model to optimise a performance metric on held-out data.

For the PYP discount parameters a, we employ independent Beta priors, ac ∼ Beta(1,1). The
prior is uniform, encoding that we have no strong prior knowledge of what the value of each ac
should be. The conditional probability of ac given the current derivations z,! is

P(ac|z,!) ∝P(z,!|ac)×Beta(ac|1,1) .

We cannot calculate the normaliser for this probability, however P(z,!|ac) can be calculated using
Equation 3 and thus P(ac|z,!) can be calculated up to a constant. We use the range doubling slice
sampling technique of Neal (2003) to draw a new sample of a′c from its conditional distribution.13

We treat the concentration parameters, b, as being generated by independent gamma priors,
bc ∼ Gamma(1,1). We use the same slice-sampling method for ac to sample from the conditional

13. We used the slice sampler included in Mark Johnson’s Adaptor Grammar implementation, available at
http://web.science.mq.edu.au/˜mjohnson/Software.htm.
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over bc,

P(bc|z,!) ∝P(z,!|bc)×Gamma(bc|1,1) .

This prior is not vague, that is, the probability density function decays exponentially for higher
values of bc, which serves to limits the influence of the PC prior. In our experimentation we found
that this bias had little effect on the generalisation accuracy of the supervised and unsupervised
models, compared to a much vaguer Gamma prior with the same mean.

We use a vague Beta prior for the stopping probabilities in PE, sc ∼ Beta(1,1). The Beta dis-
tribution is conjugate to the binomial, and therefore the posterior is also a Beta distribution from
which we can sample directly,

sc ∼ Beta

(

1+∑
e
Ke(z) ∑

n∈F(e)
δ(n,c), 1+∑

e
Ke(z) ∑

n∈I(e)
δ(n,c)

)

,

where e ranges over all non-zero count elementary trees, F(e) are the nonterminal frontier nodes
in e, I(e) are the non-root internal nodes and the δ terms count the number of nodes in e with
nonterminal c. In other words, the first Beta argument is the number of tables in which a node with
nonterminal c is a stopping node in the PE expansion and the second argument is the number of
tables in which c has been expanded (a non-stopping node).

All the hyper-parameters are resampled after every full sampling iteration over the training trees,
except in the experiments in Section 7 where they are sampled every 10th iteration.

5. Parsing

We now turn to the problem of using the model to parse novel sentences. This requires finding the
maximiser of

p(t|ω,w) =
∫ ∫ ∫ ∫

p(t|ω,z,!,a,b,s) p(z,!,a,b,s|w) dz d! da db ds , (12)

where ω is the sequence of words being parsed, t is the resulting tree, w are the training sentences,
z and ! represent their parses, elementary tree representation and table assignments and (a,b,s) are
the model’s hyper-parameters. For the supervised case we use the training trees, t, in place of w in
Equation 12.

Unfortunately solving for the maximising parse tree in Equation 12 is intractable. However, it
can be approximated using Monte Carlo techniques. Given a sample of (z,!,a,b,s) we can reason
over the space of possible TSG derivations, e, for sentence w using the same Metropolis-Hastings
sampler presented in Section 4.2 for blocked inference in the unsupervised setting.14 This gives us
a set of samples from the posterior p(e|w,z,!,a,b,s). We then use a Monte Carlo integral to obtain
a marginal distribution over trees (Bod, 2003),

p̂MPT (t) =
M

∑
m=1

δ(t, tree(em)) , (13)

14. Using many samples in a Monte Carlo integral is a straight-forward extension to our parsing algorithm. We did not
observe a significant improvement in parsing accuracy when using a multiple samples compared to a single sample,
and therefore just present results for a single sample. However, using multiple models has been shown to improve
the performance of other parsing models (Petrov, 2010).

3071



COHN, BLUNSOM AND GOLDWATER

where {em}Mm=1 are our sample of derivations for w. It is then straightforward to find the best parse,
t∗ = argmax p̂(t), which is simply the most frequent tree in the sample.

In addition to solving from the maximum probability tree (MPT) using Equation 13, we also
present results for a number of alternative objectives. To test whether the derivational ambiguity is
important, we also compute the maximum probability derivation (MPD),

p̂MPD(e) =
M

∑
m=1

δ(e,em) ,

using a Monte-Carlo integral, from which we recover the tree, t∗ = tree(argmaxe p̂MPD(e)). We also
compare using the Viterbi algorithm directly with theMAP grammar, t∗ = tree(argmaxePMAP(e|w)),
which constitutes an approximation to the true model in which we can search exactly. This contrasts
with the MPD which performs approximate search under the true model. We compare the different
methods empirically in Section 6.

The MPD and MPT parsing algorithms require the computation of Monte-Carlo integrals over
the large space of possible derivations or trees. Consequently, unless the distribution is extremely
peaked the chance of sampling many identical structures is small, vanishingly so for long sentences
(the space of trees grows exponentially with the sentence length). In other words, the sampling
variance can be high which could negatively affect parsing performance. For this reason we present
an alternative parsing method which compiles more local statistics for which we can obtain reliable
estimates. The technique is based on Goodman’s (2003) algorithm for maximising labelled recall in
DOP parsing and subsequent work on parsing in state-splitting CFGs (Petrov and Klein, 2007). The
first step is to acquire marginal distributions over the CFG productions within each sampled tree.
Specifically, we collect counts for events of the form (c→ α, i, j,k), where c→ α is a CFG produc-
tion spanning words [i, j) and k is the split point between child constituents for binary productions,
i< k < j (k = 0 for unary productions). These counts are then marginalised by the number of trees
sampled. Finally the Viterbi algorithm is used to find the tree with the maximum cumulative proba-
bility under these marginals, which we call the maximum expected rule (MER) parse. Note that this
is a type of minimum Bayes risk decoding and was first presented in Petrov and Klein (2007) as the
MAX-RULE-SUM method (using exact marginals, not Monte-Carlo estimates as is done here).

6. Supervised Parsing Experiments

In this section we present an empirical evaluation of the model on the task of supervised parsing.
In this setting the model learns a segmentation of a training treebank, which defines a TSG. We
present parsing results using the learned grammar, comparing the effects of the sampling strategy,
initialisation conditions, parsing algorithm and the size of the training set. The unsupervised model
is described in the following section, Section 7.

We trained the model on the WSJ part of Penn. treebank (Marcus et al., 1993) using the standard
data splits, as shown in Table 2. As our model is parameter free (the a,b,s parameters are learnt
in training), we do not use the development set for parameter tuning. We expect that fitting the
hyperparameters to maximise performance on the development set would lead to a small increase
in generalisation performance, but at a significant cost in runtime. We adopt Petrov et al.’s (2006)
method for data preprocessing: right-binarizing the trees to limit the branching factor and replacing
tokens with count≤ 1 in the training sample with one of roughly 50 generic unknown word markers
which convey the token’s lexical features and position. The predicted trees are evaluated using
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Partition sections sentences tokens types types (unk)
training 2–21 33180 790237 40174 21387

development 22 1700 40117 6840 5473
testing 23 2416 56684 8421 6659

small training 2 1989 48134 8503 3728

Table 2: Corpus statistics for supervised parsing experiments using the Penn treebank, reporting for
each partition its WSJ section/s, the number of sentences, word tokens and unique word types. The
final column shows the number of word types after unknown word processing using the full training
set, which replaces rare words with placeholder tokens. The number of types after preprocessing in
the development and testing sets is roughly halved when using the the small training set.

EVALB15 and we report the F1 score over labelled constituents and exact match accuracy over all
sentences in the testing sets.

In our experiments, we initialised the sampler by setting all substitution variables to 0, thus
treating every full tree in the training set as an elementary tree. Unless otherwise specified, the
blocked sampler was used for training. We later evaluated the effect of different starting conditions
on the quality of the configurations found by the sampler and on parsing accuracy. The sampler was
trained for 5000 iterations and we use the final sample of z,!,a,b,s for parsing. We ran all four
different parsing algorithms and compare their results on the testing sets. For the parsing methods
that require a Monte Carlo integral (MPD, MPT and MER), we sampled 1000 derivations from the
MAP approximation grammar which were then input to the Metropolis-Hastings acceptance step
before compiling the relevant statistics. The Metropolis-Hastings acceptance rate was around 99%
for both training and parsing. Each experiment was replicated five times and the results averaged.

6.1 Small Data Sample

For our first treebank experiments we train on a small data sample by using only section 2 of the
treebank (see Table 2 for corpus statistics.) Bayesian methods tend to do well with small data
samples, while for larger samples the benefits diminish relative to point estimates. For this reason
we present a series of exploratory experiments on the small data set before moving to the full
treebank.

In our experiments we aim to answer the following questions: Firstly, in terms of parsing ac-
curacy, does the Bayesian TSG model outperform a PCFG baseline, and how does it compare to
existing high-quality parsers? We will also measure the effect of the parsing algorithm: Viterbi,
MPD, MPT and MER. Secondly, which of the local and blocked sampling techniques is more effi-
cient at mixing, and which is faster per iteration? Finally, what kind of structures does the model
learn and do they match our expectations? The hyper-parameter values are also of interest, partic-
ularly to evaluate whether the increased generality of the PYP is justified over the DP. Our initial
experiments aim to answer these questions on the small data set, after which we take the best model
and apply it to the full set.

Table 3 presents the prediction results on the development set. The baseline is a maximum like-
lihood PCFG. The TSG models significantly outperform the baseline. This confirms our hypothesis
that CFGs are not sufficiently powerful to model syntax, and that the increased context afforded to

15. See http://nlp.cs.nyu.edu/evalb/.
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Model Viterbi MPD MPP MER # rules

PCFG 60.20 60.20 60.20 - 3500
TSG PYP 74.90 76.68 77.17 78.59 25746
TSG DP 74.70 75.86 76.24 77.91 25339
Berkeley parser (τ= 2) 71.93 71.93 - 74.32 16168
Berkeley parser (τ= 5) 75.33 75.33 - 77.93 39758

Table 3: Development results for models trained on section 2 of the Penn treebank, showing labelled
constituent F1 and the grammar size. For the TSG models the grammar size reported is the number
of CFG productions in the transformed MAP PCFG approximation. Unknown word models are
applied to words occurring less than two times (TSG models and Berkeley τ = 2) or less than five
times (Berkeley τ= 5).

the TSG can make a large difference. Surprisingly, the MPP technique is only slightly better than
the MPD approach, suggesting that derivational ambiguity is not as much of a problem as previously
thought (Bod, 2003). Also surprising is the fact that exact Viterbi parsing under the MAP approx-
imation is much worse than the MPD method which uses an approximate search technique under
the true model. The MER technique is a clear winner, however, with considerably better F1 scores
than either MPD or MPP, with a margin of 1–2 points. This method is less affected by sampling
variance than the other MC algorithms due to its use of smaller tree fragments (CFG productions at
each span).

We also consider the difference between using a Dirichlet process prior (DP) and a Pitman-Yor
process prior (PYP). This amounts to whether the a hyper-parameters are set to 0 (DP) or are allowed
to take on non-zero values (PYP), in which case we sample their values as described in Section 4.3.
There is a small but consistent gain of around 0.5 F1 points across the different parsing methods
from using the PYP, confirming our expectation that the increased flexibility of the PYP is useful
for modelling linguistic data. Figure 8a shows the learned values of the PYP hyperparameters after
training for each nonterminal category. It is interesting to see that the hyper-parameter values mostly
separate the open-class categories, which denote constituents carrying semantic content, from the
closed-class categories, which are largely structural. The open classes (noun-, verb-, adjective- and
adverb-phrases: NP, VP, ADJP and ADVP, respectively) tend to have higher a and b values (towards
the top right corner of the graph) and therefore can describe highly diverse sets of productions. In
contrast, most of the closed classes (the root category, quantity phrases, wh-question noun phrases
and sentential phrases: TOP, QP, WHNP and S, respectively) have low a and b (towards the bottom
left corner of the graph), reflecting that encoding their largely formulaic rewrites does not necessitate
diverse distributions.

The s hyper-parameter values are shown in Figure 8b, and are mostly in the mid-range (0.3–
0.7). Prepositions (IN), adverbs (RB), determiners (DT) and some tenses of verbs (VBD and VBP)
have very low s values, and therefore tend to be lexicalized into elementary trees. This is expected
behaviour, as these categories select strongly for the words they modify and some (DT, verbs) must
agree with their arguments in number and tense. Conversely particles (RP), modal verbs (MD) and
possessive particles (PRP$) have high s values, and are therefore rarely lexicalized. This is rea-
sonable for MD and PRP$, which tend to be exchangeable for one another without rendering the
sentence ungrammatical (e.g., ‘his’ can be substituted for ‘their’ and ‘should’ for ‘can’). However,
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(a) PYP hyper-parameters, a,b
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Figure 8: Inferred hyper-parameter values. Points (left) or bars (right) show the mean value with
error bars indicating one standard deviation, computed over the final samples of five sampling runs.
For legibility, a) has been limited to common phrasal nonterminals, while b) also shows preterminals
and binarized nonterminals (those with the -BAR suffix). Note that in a) b is plotted on a log-scale.

particles are highly selective for the verbs they modify, and therefore should be lexicalized by the
model (e.g., for ‘tied in’, we cannot substitute ‘out’ for ‘in’). We postulate that the model does not
learn to lexicalise verb-particle constructions because they are relatively uncommon, they often oc-
cur with different tenses of verb and often the particle is not adjacent to the verb, therefore requiring
large elementary trees to cover both words. The phrasal types all have similar s values except for
VP, which is much more likely to be lexicalized. This allows for elementary trees combining a verb
with its subject noun-phrase, which is typically not part of the VP, but instead a descendent of its
parent S node. Finally, the s values for the binarized nodes (denoted with the -BAR suffix) on the
far right of Figure 8b are all quite low, encoding a preference for the model to reconstitute binarized
productions into their original form. Some of the values have very high variance, for example, $,
which is due to their rewriting as a single string with probability 1 under PC (or a small set of strings
and a low entropy distribution), thus making the hyper-parameter value immaterial.

For comparison, we trained the Berkeley split-merge parser (Petrov et al., 2006) on the same
data and decoded using the Viterbi algorithm (MPD) and expected rule count (MER, also known as
MAX-RULE-SUM). We ran two iterations of split-merge training, after which the development F1
dropped substantially (in contrast, our model is not fit to the development data). The result (denoted
τ = 2) is an accuracy slightly below that of our model. To be fairer to their model, we adjusted
the unknown word threshold to their default setting, that is, to apply to word types occurring fewer
than five times (denoted τ = 5).16 Note that our model’s performance degraded using the higher

16. The Berkeley parser has a number of further enhancements that we elected not to use, most notably, a more sophisti-
cated means of handling unknown words. These enhancements produce further improvements in parse accuracy, but
could also be implemented in our model to similar effect.
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≤ 40 all
Parser F1 EX F1 EX

MLE PCFG 64.2 7.2 63.1 6.7

TSG PYP Viterbi 83.6 24.6 82.7 22.9
TSG PYP MPD 84.2 27.2 83.3 25.4
TSG PYP MPT 84.7 28.0 83.8 26.2
TSG PYP MER 85.4 27.2 84.7 25.8

DOP (Zuidema, 2007) 83.8 26.9
Berkeley parser (Petrov and Klein, 2007) 90.6 90.0
Berkeley parser (restricted) 87.3 31.0 86.6 29.0
Reranking parser (Charniak and Johnson, 2005) 92.0 91.4

Table 4: Full treebank testing results showing labelled F1 and exact match accuracy for sentences
of up to 40 words, and for all sentences. The results of several treebank parsers are also shown (as
reported in the literature, hence the missing values), representing a baseline (PCFG), systems similar
to our own (DOP, Berkeley) and state-of-the-art (Berkeley, Reranking parser). Berkeley (restricted)
uses simplified data preprocessing as compared to Berkeley; the simplified preprocessing is the
same as used in our system, so provides a more fair comparison.

threshold, which impedes the model’s ability to learn highly lexicalized fragments. The grammar
sizes are not strictly comparable, because we are comparing different types of grammar. For our
TSG models we report the number of CFG productions in the transformed MAP PCFG, in which
non-zero count TSG rules typically rewrite as many CFG rules17 and CFG rules from the base
distribution are replicated up to four times. Nevertheless the trend is clear: our model produces
similar results to a state-of-the-art parser, and does so using a similar sized grammar. With additional
rounds of split-merge training the Berkeley grammar grows exponentially larger (200K rules after
six iterations). Our TSG grammar is also far smaller than the full DOP grammar induced from this
data set, which extracts every possible TSG rule from the training set with no size limit, and has
approximately 700K rules.

6.2 Full Treebank

We now train the model on the full training partition of the Penn treebank, using sections 2–21 (see
Table 2 for corpus statistics). We initialise the sampler using a converged model from the end of
a sampling run on the small data set and run the blocked Metropolis Hastings sampler for 20,000
iterations. The MAP PCFG approximation had 156k productions and training took 1.2 million
seconds in total or 61 seconds per iteration.18 We repeated this three times and present the averaged
results in Table 4.

17. The encoding of TSG rules could be made more compact by skipping the internal rewrite steps, instead directly
rewriting the transformed root node as the rule’s frontier. This would mean that each input TSG rule would produce
only two rules in the transformed CFG. It would also affect the choice of parsing algorithm because the transformed
grammar would no longer be binary.

18. Measured using a single core of an AMD Opteron 2.6GHz machine.
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The TSG models far surpass the MAP PCFG baseline, while the relative orderings of the dif-
ferent parsing algorithms corroborate our earlier evaluation on the small training set. The model
outperforms the most comparable DOP result, although the numbers are not strictly comparable as
Zuidema (2007) used an enriched nonterminal set for testing. However, our results are still well
below state-of-the art parsers, and even underperform the Berkeley parser when it is restricted to
the same preprocessing steps for rare tokens and binarization as we used (results labelled restricted
in Table 4). But we must bear in mind that these parsers have benefited from years of tuning to
the Penn-treebank, where our model is much simpler and is largely untuned. We anticipate that
careful data preparation, model tuning and improved inference algorithms would greatly improve
our model’s performance, bringing it closer to the state-of-the-art.

6.3 Sampling Strategy

Next we investigate which of the two sampling methods is more effective for training the model.
Recall that in Section 4 we described a blocked sampler and a local sampler; these samplers differ
in the number of variables that they update in every sampling step. We return to the small training
sample for these experiments. Figure 9 shows how the log posterior over the training set varies with
the sampling iteration and with time for the two different sampling algorithms. It is clear that the
blocked MH sampler exhibits faster convergence in general than the local Gibbs sampler, despite
being somewhat slower per iteration. The speed difference is fairly minor, amounting to roughly
a 50% increase in time over the local sampler,19 although on the full data set the time differential
reduces to 19%. This difference is largely due to the cost of performing the grammar transformation,
which could potentially be further optimised to reduce the gap.

Figure 9 shows the results for a number of different initialisations, using minimal elementary
trees where every node is a substitution point (the CFG analysis), initialising the substitution vari-
ables uniformly at random (even), and using maximal elementary trees where no nodes are sub-
stitution points. The blocked sampler is more robust to starting point than the local sampler and
converges faster in terms of iterations and total time in general. Interestingly, the blocked sampler
converges faster with the maximal initialisation, which is due to the initialisation condition resulting
in much smaller initial table counts, and therefore it is quite easy for the model to move away from
that solution. However, with the minimal initialisation the counts begin with very high values, and
therefore deviating from the initial solution will be much less likely. In contrast, the local sampler
behaves in the opposite way with respect to initialisation, such that with the minimal initialisation it
performs at or above the level of the blocked sampler. This is a surprising finding which contradicts
our intuition about the mixing properties of the sampler and warrants further research.

In the above we have been comparing the log training posterior as a measure of the quality of
the sampler, however it is not a given that a probable model is one with good parsing accuracy.
Figure 10 shows that the posterior is highly correlated with generalisation F1, with a Pearson’s
correlation efficient of 0.95 on this data, and therefore improving the sampler convergence will have
immediate positive effects on performance. This is corroborated in Table 5, which shows the F1
scores using the final sample for each initialisation condition. The blocked sampler out-performs the
local sampler for all initialisation conditions and has lower lower variance. Moreover, the blocked
sampler is less dependent on its initialisation, performing well independent of initialisation. In

19. To account for the speed differential, the local samplers were run for 15k iterations and the blocked samplers for 10k
iterations to produce Figure 9 and Table 5.
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Figure 9: Training likelihood vs. iteration (left) or elapsed time (right). Both sampling methods were ini-
tialised in three different ways, minimal (all substitution variables set to 1, x= 1), even (xd ∼ Uniform(0,1))
and maximal (x= 0).

Sampling method Initialisation F1 σF1 Training time (s)

Local minimal 78.2 0.50 44674
Local even 78.3 0.31 43543
Local maximal 78.5 0.51 44453

Block minimal 78.5 0.18 46483
Block even 78.6 0.35 46535
Block maximal 78.6 0.38 39789

Table 5: Parsing performance and training time for the local versus blocked samplers with different
initialisations. Results are shown on the development set using the MER parsing, reporting the
mean F1 and standard deviation (σF1) from five independent runs. The blocked samplers were run
for 10k iterations and the local sampler for 15k iterations iterations in order to allow all methods
approximately the same running time.

contrast, the local sampler performs well only with the maximal initialisation, with which it roughly
equals the blocked sampler in terms of F1 and log posterior (see Figure 9).

6.4 Discussion

The previous sections show that our model performs far better than a standard PCFG trained on
the same corpus; it is natural to ask what kinds of rules it is learning that allow it to do so well.
Figure 11 shows the grammar statistics for a TSG model trained on the full treebank training set.
This model has a total of 72955 rules with an aggregate count of 733755. Of these, only 46% are
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Figure 11: Grammar statistics for a TSG model trained on the full Penn treebank training set, show-
ing the aggregate count for elementary trees of given height, number of nodes, terminals (lexemes)
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nodes > 10; these have been truncated for display purposes.
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Figure 12: Inferred TSG structure for one of the training trees. Nonterminals shown with an over-
bar (e.g., S) denote a binarized sub-span of the given phrase type.

CFG rules. The TSG rules vary in height from one to nineteen with the majority between one and
four. Most rules combine a small amount of lexicalisation and a variable or two. This confirms that
the model is learning local structures to encode, for example, multi-word units, subcategorisation
frames and lexical agreement. The few very large rules specify full parses for sentences which were
repeated in the training corpus. These complete trees are also evident in the long tail of node counts
(up to 30; not shown in the figure) and counts for highly lexicalized rules (up to 11).

It is also instructive to inspect the inferred segmentations for individual trees in the training set.
Figure 12 shows an example taken from the training set showing the learned derivation. Notice that
the model has learned to use a large rule from the TOP node to capture the typical NP VP . sen-
tence structure while lexicalizing the initial determiner, which is necessary to properly describe its
capitalisation. It has also learnt a subcategorisation frame for had which specifies a VBN argument
and an NP, and learnt the <num> cents and NP a share fragments, which are both common in the
training corpus (Wall Street Journal articles).
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To provide a better picture of the types of rules being learnt, Table 6 shows the top fifteen rules
for three phrasal categories for the model trained on the full Penn treebank. We can see that many of
these rules are larger than CFG rules, confirming that the CFG rules alone are inadequate to model
the treebank. Two of the NP rules encode the prevalence of prepositional phrases headed by ‘of’
within a noun phrase, as opposed to other prepositions. Highly specific tokens are also incorporated
into lexicalized rules.

The model also learns to use large rules to describe the majority of root node expansions (we add
a distinguished TOP node to all trees). These rules mostly describe cases when the S category is used
for a full sentence and includes punctuation such as the full stop and quotation marks. In contrast,
the majority of expansions for the S category do not include any punctuation. The model has learnt
to distinguish between the two different classes of S—full sentence versus internal clause—due to
their different expansions.

Many of the verb phrase expansions have been lexicalized, encoding verb subcategorisation, as
shown in Table 7. Notice that each verb here accepts only one or a small set of argument frames,
indicating that by lexicalizing the verb in the VP expansion the model can find a less ambiguous and
more parsimonious grammar. The lexicalized noun phrase expansions in Table 7 also show some in-
teresting patterns, such as reconstituting binarized productions and lexicalizing prepositional phrase
arguments. Of particular interest are the rules NP→ CD (NN %) and NP→ (NNP Mr.) NNP, in which
the lexicalized item has a common tag but a very specific function. These rules are considerably
more expressive than their CFG counterparts. Overall these results demonstrate that the model
uses deep elementary trees to describe regular patterns in the data, thereby out-performing a simple
PCFG. Despite having an infinite space of grammar productions, the induced grammars are com-
pact, with the majority of probability mass on a small number of individually small productions.

7. Unsupervised Dependency Induction Experiments

Having considered the application of our non-parametric TSG model to supervised parsing, in this
section we present an empirical evaluation for our model on the task of unsupervised parsing. Our
approach to the unsupervised task differs from the supervised one in several ways. Two differences
result from the fact that parse trees are not observed during training: first, we cannot use the local
Gibbs sampler presented above, leaving the blocked sampler as our only option. Second, we cannot
directly estimate PC from the training data, so we must extend the model with an extra level of
hierarchy (as described in Section 3) in order to induce PC. A final difference in our unsupervised
experiments is that we now focus on dependency grammar induction rather than phrase-structure
induction; as outlined in Section 2.1, dependency grammars are a more feasible formalism for
unsupervised grammar learning. Before presenting our experimental results, we first describe how
to represent dependency grammars using our Bayesian TSG model.

To date, the most successful framework for unsupervised dependency induction is the Depen-
dency Model with Valence (DMV, Klein and Manning, 2004). This approach induces a dependency
grammar using a simple generative model in which the strings are said to be generated by a top-down
process which recursively generates child dependents from each parent head word. This model has
been adapted and extended by a number of authors (e.g., Cohen and Smith, 2009; Headden III
et al., 2009); these approaches currently represent the state-of-the-art for dependency induction. In
this section, we present a method for dependency grammar induction that incorporates the basic
intuitions of the DMV, but is also capable of modelling larger units than just single parent-child
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NP→
(DT the) NP
NNS
NP (NP (CC and) NP)
JJ NNS
NP (PP (IN of) NP)
NP PP
(DT the) NN
DT (NP JJ NN)
NN NNS
(DT the) NNS
JJ NP
(NP DT NN) (PP (IN of) NP)

VP→
VBD VP
VBZ NP
VBD NP
VBZ VP
VBP NP
VBP VP
MD (VP VB NP)
(VBD said) (SBAR (S NP VP))
MD (VP VB VP)
VP (VP (CC and) VP)
(VBZ is) ADJP
(VBD said) (SBAR (S (NP (PRP it)) VP))

PP→
(IN in) NP
(IN for) NP
(IN on) NP
(IN with) NP
TO NP
(IN at) NP
(IN from) NP
(IN by) NP
(TO to) NP
(IN of) NP
IN (S (VP VBG NP))
IN NP

ADJP→
JJ
(JJ able) S
RB JJ
RB ADJP
(RB very) JJ
JJ (ADJP CC JJ)
ADJP (ADJP CC ADJP)
(RBR more) JJ
JJ PP
(NP CD (NNS years)) (JJ old)
(JJ UNK-LC)
(RB too) JJ

ADVP→
(RB also)
(RB now)
RB
(RB still)
(NP (DT a) (NN year)) (RBR earlier)
(RB already)
(RB UNK-LC-ly)
(RB again)
(RB just)
(RB then)
(RB never)
(RB currently)

TOP→
(S NP (S VP (. .)))
SINV
(S (NP (DT The) NP) (S VP (. .)))
(S S (S , S))
(S (CC But) S)
(S (PP (IN In) NP) (S (, ,) S))
(S (NP (DT The) NN) (S VP (. .)))
(S (“ “) (S S (S (, ,) S)))
(S (NP NP (NP , (NP NP ,))) (S VP (. .)))
(S PP (S (, ,) (S NP (S VP (. .)))))
(S (NP (PRP He)) (S VP .))
(S (CC And) S)

S→
NP VP
(VP TO (VP VB NP))
(NP PRP) VP
(VP TO (VP VB VP))
(VP TO (VP VB (VP NP PP)))
(VP TO (VP VB))
(VP TO (VP VB PP))
(VP VBG NP)
(VP VBG VP)
(NP (PRP We)) VP
(NP (PRP it)) VP
(NP (PRP I)) VP

Table 6: Most frequent expansions for a selection of nonterminals. Counts were taken from the final
sample of a model trained on the full Penn treebank.
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NP→
(DT the) NP
NP (NP (CC and) NP)
NP (PP (IN of) NP)
(DT the) NN
(DT the) NNS
(NP DT NN) (PP (IN of) NP)
(DT a) NP
(PRP$ its) NP
NP (NP (, ,) (SBAR WHNP (S VP)))
NP (NP , (NP (SBAR WHNP (S VP)) (, ,)))
CD (NN %)
NP (NP (, ,) NP)
(NP NNP (POS ’s)) NP
(NNP Mr.) NNP
(PRP it)
(NP DT (NP JJ NN)) (PP (IN of) NP)
(DT a) (NP JJ NN)
NP (SBAR (WHNP (WDT that)) (S VP))
NP (NP (, ,) (NP NP (, ,)))
(NP (DT the) NN) (PP (IN of) NP)

VP→
(VBD said) (SBAR (S NP VP))
VP (VP (CC and) VP)
(VBD said) (SBAR (S (NP (PRP it)) VP))
VBD (VP (NP CD (NN %)) VP)
VP (VP , (VP (CC and) VP))
VP (VP (, ,) (VP (CC but) VP))
(VBD said) (SBAR (S (NP (PRP he)) VP))
(MD will) (VP VB VP)
(VBD said) (SBAR (S (NP (DT the) NN) VP))
(VBD agreed) S
(VBZ is) (VP (VBN expected) S)
(VBP say) (SBAR (S NP VP))
MD (VP (RB n’t) (VP VB VP))
(VBZ says) (SBAR (S NP VP))
(VBP do) (VP (RB n’t) (VP VB NP))
(MD will) (VP VB NP)
(VBZ plans) S
(VBD was) (VP VBN (PP (IN by) NP))
(VBD did) (VP (RB n’t) (VP VB NP))
VP (VP (CC but) VP)

Table 7: Most frequent lexicalized expansions for noun and verb phrases. Forms of to be and to
have dominate the VP expansions and consequently have been excluded.

dependency relations. We approach the problem by representing dependency structures using the
formalism of a CFG, and then applying our model (Section 3) to learn a TSG based on that CFG.

A dependency grammar can be represented in a CFG by labelling constituents with their head
word, and encoding each dependency edge between a head and a child word in the grammar produc-
tions. This grammar has productions of the form S→ H (word H heads the sentence), H →CH (C
is a left child of H) and H→HC (C is a right child of H), where S is the start nonterminal and the H
andC denote head and child nonterminals, respectively, which are both drawn from the same alpha-
bet as the terminals (in our case part-of-speech tags). Unfortunately parsing with this representation
is inefficient, having an asymptotic time complexity of O(|w|5).20 The complexity can be improved
to O(|w|3) by replicating (splitting) each terminal and processing all left and right dependents of
each head word separately (Eisner, 2000). This is illustrated in Figure 13 where the leaves are all
replicated with the l and r subscripts, while the spans defined by the tree structure denote the left
and right dependents of each head word. Here we employ the fold-unfold representation (Johnson,
2007) that generalises Eisner’s (2000) split-head parsing algorithm by defining an equivalent CFG
under which standard inference methods can be used. Table 8 shows the CFG grammar for the
DMV model (CFG-DMV), while Figure 13 shows the derivation in this grammar for the example
sentence in Figure 2. The key insight to understanding the nonterminals in this grammar is that the
subscripts encode the terminals at the boundaries of the span dominated by that nonterminal. For
example the nonterminal LH encodes that the right most terminal spanned by this constituent is H

20. This is a result of the usual CYK complexity of O(G2|w|3), and the grammar constant G being equal to the number
of terminals |w| in the sentence.

3083



COHN, BLUNSOM AND GOLDWATER

(and the reverse for HR), while AMB encodes that A and B are the left and right terminals of the span.
The superscripts ∗ and 1 denote the valency of the head: both indicate that the head has at least one
attached dependent in the specified direction, with 1 indicating that the head will continue to attach
more children. The time complexity of inference in this grammar is only O(|w|3) because each span
in the parse chart bounded by terminals A and B can only contain nonterminal labels from the set
{LB, L∗B, L1B, AR, AR∗, AR1, AMB∗ , A∗MB, S}. Consequently the grammar constant is fixed rather
than quadratic in the sentence length.

We apply our TSG model to unsupervised dependency grammar induction using the CFG-DMV
as the underlying grammar representation. Our model is capable of learning tree fragments which
combine multiple adjacent CFG productions, affording considerable additional modelling power
above that of a PCFG. Thereby the model can learn to condition dependency links on the valence.
For example by combining LNN → L1NN and L1NN → LDT DTMNN∗ rules into an elementary tree the
model can describe that the leftmost child of a noun (NN) is a determiner (DT). Moreover, the
model can learn groups of dependencies that occur together by conjoining multiple L1H or HR1
nonterminals. This can represent, for example, the complete preferred argument frame of a verb.

7.1 Experiments

We perform inference for the TSG-DMV model by drawing 1000 samples using the blocked
Metropolis-Hastings sampler described in Section 4.2 and evaluate the model using the final sam-
ple. Given that we do not observe parse trees in training, we cannot use the local Gibbs sampler as
it only allows the sampling of the segmentation of a fixed tree, not the tree itself. In order to parse
sentences in the test set we use the Viterbi algorithm to find the maximum probability parse under
the MAP grammar (see Section 5). All hyperparameters, a,b and s, are sampled after every ten full
samples over the training set.

A final and important consideration is the initialisation of the sampler. Klein and Manning
(2004) emphasised the importance of the initialiser for achieving good performance with their
model. We employ Klein and Manning’s harmonic initialiser which defines a PCFG in which
all words have the same valency distribution and probability of being the sentence head, while the
probability of a head word attaching to a child word is inversely proportional to the average distance
between these words in the training corpus. To obtain the initial derivations for the sampler we take
the Viterbi derivations under this PCFG.

We follow the standard evaluation regime for DMV style models by performing experiments
on the text of the WSJ section of the Penn. Treebank (Marcus et al., 1993). The corpus statistics
are reported in Table 9. Like previous work we pre-process the training and test data to remove the
words and punctuation, training our models on the gold-standard part-of-speech tags.

It is difficult for an unsupervised model to learn from long training sentences as their structure
is highly ambiguous, and therefore the majority of DMV based approaches have been trained on
sentences restricted in length to ≤ 10 tokens. This has the added benefit of decreasing the runtime
for experiments. We present experiments with this training scenario, plus an additional experiment
where we increase the length cutoff to ≤ 15. For the ≤ 15 experiment we start by sampling only
sentences up to length 10, then gradually relax this length cutoff until we are sampling all sentences
up to length 15 after 900 samples.21 The training data is taken from sections 2-21, while section 23 is
used for evaluation (see Table 9). An advantage of our sampling based approach over previous work

21. This training method is similar in spirit to the Baby Steps algorithm (Spitkovsky et al., 2010).
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CFG Rule DMV Distribution Description

S→ LH HR p(root = H) The head of the sentence is H.

LH → Hl p(STOP|dir = L,head = H,val = 0) H has no left children.
LH → L1H p(CONT |dir = L,head = H,val = 0) H has at least one left child.

L∗H → Hl p(STOP|dir = L,head = H,val = 1) H has no more left children.
L∗H → L1H p(CONT |dir = L,head = H,val = 1) H has another left child.

HR→ Hr p(STOP|dir = R,head = H,val = 0) H has no right children.
HR→ HR1 p(CONT |dir = R,head = H,val = 0) H has at least one right child.

HR∗ → Hr p(STOP|dir = R,head = H,val = 1) H has no more right children.
HR∗ → HR1 p(CONT |dir = R,head = H,val = 1) H has another right child.

L1H → LC CMH∗ p(C|dir = L,head = H) C is a left child of H.
HR1 → H∗MC CR p(C|dir = R,head = H) C is a right child of H.

CMH∗ → CR L∗H p= 1 Structural rule.
H∗MC → HR∗ LC p= 1 Structural rule.

Table 8: The CFG-DMV grammar schema. Note that the actual CFG is created by instantiating
these templates with part-of-speech tags observed in the data for the variables H and C. Valency
(val) can take the value 0 (no attachment in direction dir) and 1 (one or more attachment). L and R
indicates child dependents left or right of the parent; superscripts encode the stopping and valency
distributions, X1 indicates that the head will continue to attach more children and X∗ that it has
already attached a child.

S

Lhates

L1hates

LGeorge

Georgel

GeorgeMhates∗

GeorgeR

Georger

L∗hates

hatesl

hatesR

hatesR1

hates∗Mbroccoli

hatesR∗

hatesr

Lbroccoli

broccolil

broccoliR

broccolir

Figure 13: The CFG-DMV derivation for the example sentence George hates broccoli. The depen-
dency parse for this sentence is given in Figure 2.
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Partition Sections Words Sentences

training≤10 2–21 42505 6007
training≤15 2–21 132599 12880
development≤10 22 1805 258
test≤10 23 2649 398
test≤15 23 16591 1286
test≤∞ 23 49368 2416

Table 9: Corpus statistics for the training and testing data for the TSG-DMV model. All models are
trained on the gold standard part-of-speech tags after removing punctuation.

is that we infer all the hyperparameters; consequently there is no need to tune on the development
set (section 22).

The models are evaluated in terms of head attachment accuracy (the percentage of correctly
predicted head dependency links for each token in the test data), on three subsets of the testing data.
Although unsupervised models are better learnt from a corpus of short rather than long sentences,
they must still be able to parse long sentences. The most commonly employed test set mirrors the
training data by only including sentences ≤ 10, however we also include results for sentences ≤ 20
and the whole test set with no length restriction. As we are using MCMC sampling the result of any
single run is non-deterministic and will exhibit a degree of variance. Our reported results are the
mean and standard deviation (σ) from 40 sampling runs.

7.2 Discussion

Table 10 shows the head attachment accuracy results for our TSG-DMV, along with those of several
other competitive models. Our model performs very well in comparison to the others; in particular it
achieves the highest reported accuracy on the full test set by a considerable margin. On the |w|≤ 10
test set the TSG-DMV is second only to the L-EVG model of Headden III et al. (2009). The L-
EVG model extends DMV by adding additional lexicalisation, valency conditioning, interpolated
back-off smoothing and a random initialiser. In particular Headden III et al. show that the random
initialiser is crucial for good performance, but their approach requires training 1000 models to
select a single best model for evaluation and leads to considerable variance in test set performance.
Our model exhibits considerably less variance than those induced using this random initialiser,
suggesting that the combination of the harmonic initialiser and blocked MH sampling may be a
more practical training regime. The recently-proposed Adaptor Grammar DMV model of Cohen
et al. (2010) is similar in many ways to our TSG model, incorporating a Pitman Yor prior over
units larger than CFG rules. As such it is surprising that our model performs significantly better
than this model. We can identify a number of possible explanations for these results: the Adaptor
Grammar model is trained using variational inference with the space of tree fragments truncated,
while we employ a sampler which can nominally explore the full space of tree fragments; and the
tree fragments in the Adaptor Grammar model must be complete subtrees (i.e., they don’t contain
variables), whereas our model can make use of arbitrary tree fragments. An interesting avenue for
further research would be to extend the variational algorithm of Cohen et al. (2010) to our TSG
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Directed Attachment Accuracy
% on Section 23

Model Initialiser |w|≤ 10 |w|≤ 20 |w|≤ ∞

Attach-Right - 38.4 33.4 31.7

EM (Klein and Manning, 2004) Harmonic 46.1 39.9 35.9
Dirichlet (Cohen et al., 2009) Harmonic 46.1 40.6 36.9

LN (Cohen et al., 2009) Harmonic 59.4 45.9 40.5
SLN, TIE V&N (Cohen and Smith, 2009) Harmonic 61.3 47.4 41.4

DMV (Headden III et al., 2009) Random 55.7σ=8.0 - -
DMV smoothed (Headden III et al., 2009) Random 61.2σ=1.2 - -
EVG smoothed (Headden III et al., 2009) Random 65.0σ=5.7 - -
L-EVG smoothed (Headden III et al., 2009) Random 68.8σ=4.5 - -

Less is More WSJ15 (Spitkovsky et al., 2010) Harmonic 56.2 48.2 44.1
Leap Frog WSJ45 (Spitkovsky et al., 2010) Harmonic 57.1 48.7 45.0

Adaptor Grammar (Cohen et al., 2010) Harmonic 50.2 - -

TSG-DMV Harmonic 65.9σ=2.4 58.3σ=2.3 53.1σ=2.4
TSG-DMVWSJ15 Harmonic 66.4σ=1.7 58.5σ=1.7 53.4σ=1.8
Supervised MLE (Cohen and Smith, 2009) - 84.5 74.9 68.8

Table 10: Head attachment accuracy for our two TSG-DMV models (highlighted), and many other
high performing models.
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Tag Frequency Accuracy Tag Frequency Accuracy
NN 564 0.70 CC 62 0.77
NNP 366 0.67 VBG 48 0.71
NNS 302 0.74 POS 26 0.92
DT 292 0.81 MD 22 0.82
IN 292 0.59 JJR 20 0.60
JJ 266 0.67 PRP$ 18 1.00
VBD 266 0.79 EX 12 1.00
CD 224 0.21 WP 12 0.17
RB 212 0.40 JJS 10 0.40
PRP 132 0.94 WDT 6 1.00
VBZ 118 0.88 RP 6 0.33
VBN 84 0.71 RBS 4 1.00
VBP 78 0.67 UH 4 0.50
TO 70 0.43

Table 11: Head attachment accuracy stratified by child tag, as measured on the held-out development
set (WSJ 22, |w|≤ 10). The tags are sorted by frequency.

model, possibly improving inference time while also allowing for the implementation to be more
easily parallelised.

To illustrate the kinds of structures the model induces and the types of errors it makes, Figure
14 presents a representative example tree for a sentence from Section 22 of the WSJ. Though many
of the elementary trees in this example resist an obvious linguistic explanation, on the right side
of the derivation (highlighted in green) we see that the model has learnt to encode that the verb
takes a single noun phrase as its object, while on the left (highlighted in blue) is a rule specifying
the DT JJ subject dependent of the VBZ. This derivation is typical of the analyses produced by
the model as it contains a number of dependency links which are inconsistent with the treebank.
However we can see that the model has learnt to analyse the noun, verb and preposition phrases in a
manner which is quite plausible, despite not matching the reference tree. In particular there would
seem to be little obvious reason to prefer the treebank’s analysis of the conjunction phrase (‘either
apathy or civility’) over that produced by the unsupervised model. This highlights the difficulty in
evaluating the output of unsupervised grammar induction algorithms against a treebank reference;
in this instance it is clear that the analysis found by the model, despite its low accuracy, could be
very useful for a downstream NLP application reliant on a dependency analysis.

For further analysis Tables 11 and 12 show the accuracy of the model at predicting the head
for each tag type and the accuracy for dependencies spanning a given number of tokens. Clearly
the model is far more accurate when predicting short dependencies, a result that is also reflected
in the per-tag results. We also note that the model accurately predicts the head of the sentence
84% of the time, indicating an ability to capture the high level sentence structure. As mentioned
above, conjunctions pose a particular difficulty with unsupervised models as the correct modelling
of these remains a contentious linguistic issue. Nevertheless on conjunctions the model does achieve
a reasonable level of agreement with the treebank.
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(a) TSG-DMV representation. Large bold nodes indicate substitution points.
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(b) Dependency tree representation. The red links below the sentence show where the treebank reference analysis differs
from the predicted tree.

         



Figure 14: An example induced tree, shown as an elementary tree (a) and as a dependency tree (b).
The sentence was taken from the development set: "TheDT aboveJJ representsVBZ aDT triumphNN

ofIN eitherDT apathyNN orCC civilityNN".
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Link Distance Precision Recall F1-Score

ROOT 0.84 0.84 0.84
1 0.68 0.72 0.70
2 0.61 0.53 0.57
3 0.56 0.46 0.51
4 0.47 0.52 0.49
5 0.27 0.35 0.30
6 0.44 0.57 0.50
7 0.33 0.38 0.35
8 0.25 0.12 0.17

Table 12: Performance on dependency links of varying distance. Precision, recall and f-score on the
WSJ Section 22 (|w|≤ 10) held-out set.

TSG-DMV Rules Frequency

LNN → (LNN (L1NN LDT (DTMNN∗ DTR L∗NN))) 906
INR → (INR (INR1 IN∗MNN NNR)) 839
S → (S (LVBD L1VBD) VBDR) 707

JJMNN∗ → (JJMNN∗ JJR (L∗NN NNl)) 600
NN∗MNN → (NN∗MNN NNR∗ (LNN NNl)) 589

L1NN → (L1NN LDT (DTMNN∗ DTR L∗NN)) 587
LNNP → (LNNP (L1NNP (LNNP NNPl) NNPMNNP∗)) 540
L∗NN → (L∗NN (L1NN LJJ JJMNN∗)) 500

TO∗MVB → (TO∗MVB (TOR∗ TOr) LVB) 437
NNR → (NNR (NNR1 NN∗MNN (NNR NNr))) 412

DTMNNS∗ → (DTMNNS∗ (DTR DTr) L∗NNS) 397
INR → (INR (INR1 IN∗MNNS (NNSR NNSr))) 328
LNNS → (LNNS (L1NNS LDT DTMNNS∗)) 326

INMCD∗ → (INMCD∗ (INR INr) (L∗CD CDl)) 302
NNSMVBD∗ → (NNSMVBD∗ (NNSR NNSr) L∗VBD) 296

Table 13: The fifteen most frequent TSG-DMV rules in the training data.
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Table 13 lists the most frequent TSG rules learnt by the model. The most frequent rule at the top
of the table models noun phrases, encoding the fact that determiners have no children and attach as
a left child to a phrase headed by a noun. It is interesting to see that our model has used a TSG rule
to analyse noun phrases in a way consistent with the treebank, whereas the original DMV model
preferred the opposite analysis of having DTs as the heads of noun phrases (Klein and Manning,
2004). Both results could be supported from a linguistic standpoint (Abney, 1987), but nevertheless
it is a notable outcome that our more powerful model prefers to head noun phrases with nouns.
Further down the table we see another interesting rule: TO∗MVB → (TO∗MVB (TOR∗ TOr) LVB). This
rule specifies that a verb phrase headed by an infinitive attaches as the first child of the particle to
on its left. Here the model has used the tree fragment to encode that the verb must be the first right
child of the particle, an analysis both consistent with the treebank and expressing a bias against any
form of split infinitive construction.

8. Conclusion

In this work we have presented a non-parametric Bayesian model for inducing tree substitution
grammars in both supervised and unsupervised settings. By incorporating a structured prior over
elementary rules our model is able to reason over the infinite space of all such rules, producing
compact and simple grammars. In doing so, our model learns local structures for latent linguistic
phenomena, such as verb subcategorisation and lexical agreement.

Our experimental results indicate that our model holds significant potential for a range of gram-
mar induction tasks. In experiments using a treebank for training, we showed that the induced TSG
grammars strongly out-perform standard PCFGs, and are comparable to a state-of-the-art parser on
small data samples. While our results when training on the full treebank are well shy of the best
available parsers, we have proposed a number of improvements to the model and the parsing algo-
rithm that could lead to state-of-the-art performance in the future. Our second set of experiments
removed the reliance on a treebank and showed that our TSG model achieves performance similar
to the best recent models on sentences up to length 10, and outperforms all other models on longer
sentences. This result is particularly promising, since it demonstrates the possibility of successfully
learning complex hierarchical models, beyond just CFGs, without supervision. We hope that our
work will open the door to further research into inducing linguistically rich grammars, such as tree
adjoining and categorial grammars, that have so far been considered too difficult to learn from raw
strings.
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Abstract
Many structured information extraction tasks employ collective graphical models that capture inter-
instance associativity by coupling them with various clique potentials. We propose tractable fam-
ilies of such potentials that are invariant under permutations of their arguments, and call them
symmetric clique potentials. We present three families of symmetric potentials—MAX, SUM, and
MAJORITY.

We propose cluster message passing for collective inference with symmetric clique potentials,
and present message computation algorithms tailored to such potentials. Our first message com-
putation algorithm, called α-pass, is sub-quadratic in the clique size, outputs exact messages for
MAX, and computes 1315 -approximate messages for Potts, a popular member of the SUM family. Em-
pirically, it is upto two orders of magnitude faster than existing algorithms based on graph-cuts or
belief propagation. Our second algorithm, based on Lagrangian relaxation, operates on MAJORITY
potentials and provides close to exact solutions while being two orders of magnitude faster. We
show that the cluster message passing framework is more principled, accurate and converges faster
than competing approaches.

We extend our collective inference framework to exploit associativity of more general intra-
domain properties of instance labelings, which opens up interesting applications in domain adaptation.
Our approach leads to significant error reduction on unseen domains without incurring any over-
head of model retraining.

Keywords: graphical models, collective inference, clique potentials, cluster graphs, message
passing

1. Introduction

Markov Random Fields (MRFs) are the models of choice in various structured information extrac-
tion (IE) tasks such as part-of-speech tagging, NP-chunking, text segmentation, and named entity
recognition. The goal of IE is to mark each token in a sentence with a label from a discrete set, like
Person, Location, and Other. As illustrated in Figure 1(c), the basic MRF extraction model defines
edge potentials between labels of adjacent words to capture first-order dependencies (Lafferty et al.,
2001). The resulting chain model allows tractable exact inference that is, computing the maximum
a-posteriori (MAP) labeling of the sentence is easy.
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Apart from traditional settings, IE is now being increasingly used in many web scenarios, such
as query-driven extraction (Gupta and Sarawagi, 2009; Carlson et al., 2010) and constructing on-
the-fly relations from semi-structured web sources (Elmeleegy et al., 2009). However these setups
are characterized by limited training data, which restricts the robustness of the resulting MRFs
during deployment. One promising way to increase the robustness of MRFs during deployment
is to strengthen the first-order dependencies of the model with extra long-range dependencies ,
resulting in more robust labelings. The goal of this paper is to exploit long-range dependencies in a
principled manner.

There has been a lot of work on capturing long-range dependencies between labels of non-
adjacent words. This typically includes dependencies of the form—if a token repeats in a document,
then the labels of the repetitions should ideally be the same (Sutton and McCallum, 2004; Bunescu
and Mooney, 2004; Krishnan and Manning, 2006; Finkel et al., 2005). In Figure 1(d), we show
an example where the extra dotted edges join unigram recurrences. Such long-range dependencies
are termed associative since they introduce positive couplings between labels of token pairs. Apart
from textual tokens, associative dependencies have also been exploited while labeling documents
(Lu and Getoor, 2003; Chakrabarti et al., 1998), image pixels (Taskar et al., 2004), and annotating
Web documents (Kulkarni et al., 2009). Due to these couplings, MAP inference is done collectively
across all sentences so as to maximize the sum of sentence-specific and long-range associative
potentials. This joint MAP computation task is traditionally called collective inference.

Previous work on collective inference can be broadly classified into two categories. The first
category defines a separate associative potential over every inter-instance edge (i.e., dotted edge
in Figure 1(d)). Inference on such graphs is performed by viewing it as a graphical model with
pairwise potentials. A variety of generic approximation algorithms have been used to solve this
typically intractable inference task, including Loopy Belief propagation (Bunescu and Mooney,
2004; Sutton and McCallum, 2004), and Gibbs sampling (Finkel et al., 2005). The second category
defines an associative potential for each clique that is created from all repetitions of a unigram
and the potentials can take more general forms like the Majority function (Krishnan and Manning,
2006). Collective inference on this category of models is performed using local search algorithms
such as Iterative Conditional Mode fitting (ICM) (Lu and Getoor, 2003; Chakrabarti et al., 1998) or
two stage algorithms (Krishnan and Manning, 2006).

This paper unifies various collective extraction tasks with different forms of associative poten-
tials under a single framework. We do this by employing a cluster graph representation of the collec-
tive model. Figure 1(e) illustrates the cluster graph for our toy example. The cluster graph comprises
of one cluster per MRF-instance, and one cluster per clique with its corresponding associative po-
tential. As in the traditional collective extraction models, we assume that a clique comprises of all
the occurrences of a particular token. We emphasize that instead of clusters for chain models, the
framework can also define clusters for any tractable component, such as a bipartite matching or an
alignment, but since our interest is in IE tasks, we shall focus on chain models.

Collective inference in our model then simply corresponds to message passing in this cluster
graph. This view of collective inference offers several advantages over earlier approaches. First,
it allows us to plug in and study various clique potentials cleanly under the same cluster message
passing umbrella. Second, it allows us to exploit special properties of the associative potentials to
design combinatorial algorithms that are both more accurate and more efficient than existing al-
gorithms. Specifically, we show that most associative potentials used in practice are symmetric
clique potentials. Symmetric clique potentials are invariant under any permutation of their argu-
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ments. So the value of a symmetric potential depends only on the counts of its distinct arguments,
and not their position in the clique. For example in Figure 1(d), the clique potential on ‘Iraq’ would
give a low score if its end vertices had different labels, regardless of which ‘Iraq’ vertex gets what
label. We present three families of symmetric clique potentials that capture label associativity in
different ways—MAX, SUM (which subsumes the popular Potts potential), and MAJORITY. The
most crucial component of the collective inference problem is then to efficiently compute outgoing
messages from clique clusters governed by symmetric potentials. We denote this sub-problem as
clique inference.

1.1 Contributions

We show that the overall collective inference problem is intractable even for the case of two labels.
We therefore concentrate on designing efficient and accurate message passing algorithms on our
special cluster graph. We present a suite of efficient combinatorial algorithms tailored to specific
symmetric clique potentials for the clique inference sub-problem. We devised a combinatorial al-
gorithm called α-pass that computes exact outgoing messages for cliques with MAX potentials, and
also for any arbitrary symmetric clique potential over two labels. We show that α-pass provides
a 1315 -approximation for clique inference with the well-known and NP-hard Potts potential with the
SUM family. We show that this analysis is tight, and that the corresponding clique inference bound
by alternative schemes like α-expansion, LP-rounding, TRW-S and ICM are either 12 . or at best lo-
cally optimal. Further, the runtime of α-pass is O(mn logn) where n is the clique size, and m is the
number of labels. We also show that α-pass can be generalized to provide a better approximation of
8
9 , but with a runtime ofO(m

2n logn). Alternative clique inference approaches such as the graph-cut
algorithm of Boykov et al. (2001) and the tree-reweighted message passing (TRWS) algorithm of
Kolmogorov (2006) are quadratic in n. We present a new Lagrangian-relaxation based algorithm,
called LR, for MAJORITY potentials. The LR algorithm is nearly exact in practice but is usually two
orders of magnitude faster than an exact LP-based algorithm.

Our experiments show that computing a rich set of messages leads to significantly more accuracy
gains over other collective inference approaches that do not compute such messages, for example,
Krishnan and Manning (2006). We also show that decomposing the problem over the cluster graph
and employing fast message computation algorithms helps our collective inference scheme converge
one-order faster than alternatives like loopy belief propagation. In short, we show that it makes more
sense to compute messages at a cluster level, and we provide fast and accurate algorithms to do so.

We then extend our collective inference framework to capture associativity of a more general
kind than just labels of unigram repetitions. We encourage associativity of properties of labelings of
records appearing as a group. We apply this framework to domain adaptation, where a model trained
on one or more domains is deployed on a different but related domain. For example, a model trained
for extracting fields of a bibliographic records is deployed on all records coming from the homepage
of a single author. The bibliographic entries from the same author’s publications homepage would
predominantly have the same style, such as order of labels, say Title followed by Author(s) followed
by Venue, or the HTML tag before a Title. While we do not know the property values across the
records apriori, we do know that they will be largely unimodal across records within a given domain.
We use this collective signal to couple together the labelings of intra-domain records, and show
how our collective inference framework naturally extends to this scenario and provides significant
reduction in error.
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War in Iraq continues..

US troops in Iraq suffered..

..coalition troops enter Iraq..

(a) Input sentences (b) Base Model (c) Structured Model (MRF)

(d) Collective Model

troops

Iraq

(e) Cluster graph for the collective model

Figure 1: Various models for named-entity recognition illustrated on a small corpus. Figure 1(e)
shows the cluster graph for the collective model of (d) with one cluster per sentence
(shown as flat chains), and one cluster per associative clique (shown as big circles).

At this point, we note that our previous work (Gupta et al., 2007) focused primarily on the α-
pass algorithm along with a sketch of some of its properties. This paper presents a detailed treatment
of the algorithm and its generalized version, with rigorous proofs of their approximation bounds,
including some new bounds for a variant of the clique inference objective with Potts potential. In
addition, new material in this paper includes the LR algorithm for the MAJORITY potential, exten-
sion of our framework to include properties-based associativity, and empirical studies of various
collective inference techniques.

We also note that subsequent to our work (Gupta et al., 2007), there has been an abundance of
research on higher order clique potentials in last few years, primarily by the computer vision com-
munity. While their applications and basic graph structure are different (grids vs chains), many of
their ideas are highly relevant—either in terms of special algorithms for clique/collective inference
(Komodakis et al., 2007a; Komodakis and Paragios, 2009; Kumar and Torr, 2008a; Werner, 2008),
reduction of clique potentials to pairwise potentials (Kohli et al., 2009; Ishikawa, 2009), and special
families of clique potentials (Potetz and Lee, 2008; Rother et al., 2009; Tarlow et al., 2010). We will
present theoretical and empirical comparisons and draw parallels with the relevant schemes later on
in this paper.

1.2 Outline

In Section 2, we present the MRF model for extraction and define the collective inference problem
in the traditional setup of unigrams. We show that even with this setup, collective inference remains
NP-hard. In Section 3, we discuss the cluster message passing algorithm for collective inference,
and introduce the clique inference sub-problem which formalizes the task of computing outbound
messages from clique clusters. Then in Section 4, we describe the MAX, SUM, and MAJORITY fami-
lies of symmetric potentials. In Section 5 we present the α-pass and LR clique inference algorithms,
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and analyze their approximation quality. In Section 6, we extend our framework to capture more
general associative properties. Section 7 contains experimental results of three types: (a) quality
of the α-pass and LR algorithms; (b) effect of modeling more general associative properties in a
domain adaptation task; and (c) collective inference via cluster message passing vs alternatives. Fi-
nally, Section 8 discusses prior art and Section 9 contains conclusions and a discussion of future
work.

2. Collective Inference with MRFs

We now review the basic first-order MRFmodel for information extraction, and then formally define
the collective inference problem over various coupled MRFs. We denote a sentence by bold x, and
its labeling vector by y. Consequently, xi and yi denote the ith token in x and its label respectively.
The MRF defines a log-linear model parameterized by a weight vector w, where the conditional
probability of a labeling is given by:

logP(y|x,w) =∑
i
φi(yi,yi−1;x,w)− logZw.

Here φi(yi,yi−1;w) is the log of the potential on the edge between tokens i and i−1, These potentials
are local, that is, they depend only on the labels of the edge and logZw is the normalization factor.
During inference, we compute the most probable labeling of x:

argmax
y
logP(y|x,w) = argmax

y ∑i
φi(yi,yi−1;x,w).

If there arem possible labels at each token, and n tokens in x, then exact inference can be done using
max-product message passing in O(nm2) time.

We now move to the collective model whose toy example is illustrated in Figure 1(d). Let there
be N sentences {x1, . . . ,xN}. Correspondingly, we have N conditional distributions P(yk|xk,w), k=
1, . . . ,N. We use the shorthand φki (yki ,yki−1) to refer to φki (yki ,yki−1;xk,w).

Let t denote a token that repeats across the sentences, and let T denote the set of all such tokens.
For a repeating token t, let D(t) be the set of all (sentence-id, token-id) locations where it occurs in
the N sentences, that is, D(t) = {(k, i)|xki = t}. We express the conformance in the label assigned to
positions in D(t) with a higher order clique potential Ct({yki }(k,i)∈D(t)). Our collective MRF model
that couples sentences using unigrams is then given by (up to a normalization constant):

logP({yk}Nk=1|{xk}Nk=1,w) ≈
N

∑
k=1
logP(yk|xk,w)+∑

t∈T
Ct({yki }(k,i)∈D(t)) (1)

≈

(

N

∑
k=1

|xk|

∑
i=1

φki (yki ,yki−1)

)

+∑
t∈T

Ct({yki }(k,i)∈D(t)).

The clique potential Ct has two important properties: First, it is invariant under any permutation
of its arguments—that is, it is a symmetric function of its input. Thus, if there are m possible
labels, we can represent the arguments with an m-bin histogram. For example, if m = 3 and input
is {1,2,1,1,2,3,2}, then Ct(S) depends on the 3-bin histogram with values 3,3,1. Second, Ct is
associative—that is, it favors agreement of labels in its argument set, and it maximized when all
arguments have the same label.
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All collective extraction methods proposed in the literature fit the above framework. The earliest
and the most popular collective model used associative potentials over every pair of occurrences of
t (Sutton and McCallum, 2004; Finkel et al., 2005). This pairwise potential was a Potts potential—1
if the pair had matching labels and 0 otherwise. Clearly, we can define an appropriate Ct that mimics
this behavior while staying symmetric. Consider the clique potential:

Ct({yki |(k, i) ∈ D(t)}) = ∑
(k,i), (l, j)∈D(t)

δ(yki = ylj).

This is equivalent to all the pairwise potentials for t. Also, using the histogram view, this can be
re-written up to a constant as ∑m

α=1 n2α, where nα is the bin count for label α in the histogram cor-
responding to {yki |(k, i) ∈ D(t)}. Other known collective models like the ones proposed by Lu and
Getoor (2003) and Krishnan and Manning (2006) can also be cast using the ‘Majority’ symmetric
clique potential as we shall see in later sections.

Having defined our collective model, and shown that it subsumes popular collective models, we
are ready to define the collective inference objective.

Definition 1 (Collective Inference) Collective inference is the task of finding labelings y1, . . . ,yN
that jointly maximize the probability of the collective model (Equation 1):

arg max
y1,...,yN

(

N

∑
k=1

|xk|

∑
i=1

φki (yki ,yki−1)

)

+∑
t∈T

Ct({yki }(k,i)∈D(t)). (2)

In general terms, collective inference corresponds to labeling the nodes of a generic cyclic graph.
However, our graph has a special structure—it is composed of chains and cliques, and although the
intra-chain edge potentials φ can be arbitrary, the clique potentials are associative and symmetric.
However we next prove that even in this setup, collective inference is NP-hard.

Theorem 2 The collective inference problem is NP-hard even with just two labels.

Proof We reduce the well-known NP-hard problem of finding MAX-CUTs in an arbitrary graph G
to our collective inference problem (called CI). For each node u ∈ G define a 2-node chain u1 u2 in
CI where each node can take binary labels and with edge potential φu(y,y′) =Mδ(y &= y′). M is a
large positive number > 2E, where E is the number of edges in G. For an edge (u,v) ∈ G, we add
three cliques: (u1,v1),(u1,v2) and (u2,v1). All three clique potentials are Ct({y,y′}) = δ(y= y′).

The key observation is that G has a cut of size≥ k iff CI has a map score of≥Mn+E+k where
n is the number of nodes in G.

Suppose G has a cut (A,B) of size ≥ k. Define a labeling in CI where all variables in A′ !

{v1|v ∈ A}∪ {v2|v ∈ B} are labeled 0 and the rest B′ are labeled 1. Then for every u ∈ G, (u1,u2)
are labeled differently, thus the total contribution from the edge potentials within chains of CI is
Mn. For an edge (u,v) ∈ G that is part of the cut (A,B) with u ∈ A,v ∈ B, two cliques (u1,v2)
and (u2,v1) have both their arguments labeled the same whereas for all other edges only one of the
cliques (u1,v1) reaches such conformance. Thus, the total contribution from clique potentials is
E+ k. The converse holds the same way. Since M is sufficiently large, the edge (u1,u2) in CI will
always have both ends labeled differently. So given a labeling in CI, we can define a cut in G by the
subset of vertices v for which v1 is labeled 0 in CI.
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At this point we note that our collective inference objective is related to various bodies of work
on joint inference, primarily in computer vision tasks. For the sake of continuity we defer our
discussion of all related work to Section 8 and instead present our framework for maximizing the
collective inference objective.

3. Cluster Graph based Collective Inference Framework

Having established that optimizing the objective in Equation 2 is NP-hard, one natural choice for
approximating it is ordinary pairwise belief propagation on the collective graphical model. This
involves passing messages along edges inside the chains, as well as along the clique edges. How-
ever this approach is not suitable due to many reasons. First, some symmetric potentials like the
Majority potential cannot be decomposed along the clique edges, so we cannot compute the cor-
responding messages. Second, the approach does not exploit the special nature of the clusters and
the symmetric potentials. Third, this approach is not tenable if we wish to extend the framework to
capture associativities of more general properties of the kind discussed in Section 6.

Hence we adopt message passing on a special cluster graph where every chain and clique cor-
responds to a cluster. The clique cluster for a unigram is adjacent to all the chains that contain that
unigram, as shown via singleton separator vertices in Figure 1(e). This setup of message passing
on the cluster graph allows us to exploit potential-specific algorithms at the cliques, and at the same
time work with any arbitrary symmetric clique potentials. Cluster graphs have been used effectively
for message passing elsewhere as well (Yedidia et al., 2003; Duchi et al., 2007).

Let mk→t and mt→k denote message vectors from chain k to an incident clique t and vice-versa.
A chain is said to be incident on a clique if there exists a position j in chain k which matches term
t, that is, (k, j) ∈ D(t). We assume that D(t) is created such that from any chain only one position
belongs to it. We next discuss how these messages are computed.

3.1 Message from an Instance to a Clique

The message mk→t(y) for a (k, j) ∈ D(t) is given by:

mk→t(y) = max
yk:ykj=y

(

|xk|

∑
i=1

φk(yki , yki−1)+ ∑
t ′ &=t∈T ,(k, j′)∈D(t ′)

mt ′→k(ykj′)

)

.

To compute mk→t(y), we need to absorb the incoming messages from other incident cliques t ′ &= t,
and do the maximization while freezing the label of position j in chain k to y for a (k, j) ∈ D(t). A
clique t ′ is incident to chain k via only a singleton vertex so we can easily absorb the message mt ′→k
by including it in the node potential of this vertex. After absorption, mk→t can be computed using
the same inference algorithm applicable to the chain.
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3.2 Message from a Clique to an Instance

The more interesting message computation is that for mt→k given a (k, j) ∈ D(t). Let the clique t
have n vertices. Then the message computation can be written as:

mt→k(y) = max
(y1,...,yk=y,...,yn)

∑
(k′, j′)∈D(t) k′ &=k

mk′→t(yk′)+Ct({y1, . . . ,yn}). (3)

The maximization in Equation 3 can be re-written as

−mk→t(y)+ max
(y1,...,yk=y,...,yn)

(

∑
(k′, j′)∈D(t)

mk′→t(yk′)+Ct({y1, . . . ,yn})

)

. (4)

The maximization term is an instance of the general clique inference problem defined as:

Definition 3 (Clique Inference) Given a clique over n vertices, with a symmetric clique potential
C(y1, . . . ,yn), and vertex potentials ψ jy for all j ≤ n and labels y. Compute a labeling of the clique
vertices that maximizes:

max
y1,...,yn

n

∑
j=1

ψ jy j +C(y1, . . . ,yn). (5)

Thus the second term in Equation 4 can be seen as clique inference by defining ψ jy ! mj→t(y) and
C!Ct . To compute mt→k(y), we can solve the clique inference problem with the easily enforceable
constraint yk = y. From now on, we refer to outbound message computation at the cliques as clique
inference.

4. Symmetric Clique Potentials

Having established cluster message passing as our collective inference paradigm, and clique infer-
ence as our message computation tool, we turn our attention towards various families of symmetric
clique potentials. As seen in Section 2, these associative clique potentials depend only on the
histogram of label counts {ny|y = 1, . . . ,m} over the clique, ny being the number of clique vertices
labeled y. Thus for ease of notation, we will denote the arguments of a symmetric potential Ct by ei-
ther the vertex labels yt = (y1, . . . ,yn) or by its corresponding count histogram n(yt) = (n1, . . . ,nm).
Here we clarify that n is used to denote the entire count histogram, ny to denote the count for label y,
while n denotes the clique size. An associative symmetric clique potential is thus maximized when
ny = n for some y, that is, one label is given to all the clique vertices.

We consider specific families of clique potentials, many of which are currently used in real-life
tasks. In Section 5 we will look at various potential-specific exact and approximate clique inference
algorithms that exploit the specific structure of the potential at a clique.

In particular, we consider the three types of symmetric clique potentials listed in Table 1. They
differ in the manner in which they reward skew in the count histogram n.

4.1 MAX Clique Potentials

These clique potentials are of the form:

C(n1, . . . ,nm) =maxy fy(ny).
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Name Form Remarks
MAX maxy fy(ny) fy is a non-decreasing function.
SUM ∑y fy(ny) fy non-decreasing. Includes Potts = λ∑y n2y .

MAJORITY fa(n), where a= argmaxyny A popular form is fa(n) = ∑y wayny.

Table 1: Three kinds of symmetric clique potentials considered in this paper. n = (n1, . . . ,nm) de-
notes the counts of various labels among the clique vertices.

for arbitrary non-decreasing functions fy. When fy(ny)! ny, we get the makespan clique potential
which has roots in the job-scheduling literature. This potential depends only on the biggest label
count and ignores the other labels. Truncated version of this potential have been recently used in
computer vision (Kohli et al., 2009).

In Section 5.1, we present the α-pass algorithm that computes messages for MAX clique poten-
tials exactly in O(mn logn) time. MAX potentials are tractable and relatively simpler potentials, but
most importantly, they provide key insights to deal with the more complex SUM potentials.

4.2 SUM Clique Potentials

SUM clique potentials are of the form:

C(n1, . . . ,nm) =∑
y
fy(ny).

This family of potentials includes functions that aggregate the histogram skew over bins, for exam-
ple, the entropy potential where fy(ny) ∝ ny logny. One very interesting member is the case when
the well-known Potts model is applied homogeneously on all edges of a clique. Let λ > 0 be the
pairwise reward of assigning the same label to two nodes of an edge. The summation of these terms
over a clique is equivalent (up to a constant) to the clique potential:

CPotts(n1, . . . ,nm) = λ∑
y
n2y .

This corresponds to the gini entropy of the histogram. We will show that the clique inference
problem is NP-hard with the above potential and provide a 1315 -approximation in Section 5.

We note that the traditional usage of Potts is in a minimization setting, that is, edges are pe-
nalized by some cost γ if their end vertices are labeled differently. The corresponding cost version
of Potts is then Cmin(y1, . . . ,yn;γ) ! γ∑ j>i δ(yi &= y j). It is easy to see that these two versions are
related by:

CPotts(y1, . . . ,yn;λ) = λn2−Cmin(y1, . . . ,yn;2λ).

We show that our algorithm provides a 32 approximation for the minimization version of the problem.

4.3 MAJORITY Clique Potentials

A MAJORITY potential is defined as:

C(n1, . . . ,nm) = fa(n), a= argmaxy ny. (6)
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An important special subclass is the linear majority potentials defined as:

CMaj =∑
y
wayny, a= argmaxy ny.

This potential has been used for a variety of tasks such as link-based classification of web-pages
(Lu and Getoor, 2003) and named-entity extraction (Krishnan and Manning, 2006). The role of the
parameters way is to capture the co-existence of some label pairs in the same clique. Co-existence
allows us to downplay ‘strict associativity’ viz. it permits a few cliques vertices to have similar
but not necessarily the same labels. For example, consider a clique made from occurrences of the
unigram ‘America’. However, some occurrences of America correspond to Location, while others
might correspond to an Organization, say Bank of America. Also, it is rare for a location name
to be shared with a person name. This can be captured by allowing a higher value of wαy for the
(Location, Organization) pair than for the (Location, Person) pair.

Unlike Potts potential, MAJORITY potential cannot be represented using edge potentials. We
will present an exact polynomial time algorithm and several efficient approximations in Section 5.3.

5. Algorithms for Clique Inference

We will use F(y1, . . . ,yn) to denote the clique inference objective in Equation 5. As short-hand,
we will denote F(y1, . . . ,yn) by F(y) = ψ(y) +C(y), where ψ(y) is the vertex score (i.e., node
potential) of the clique labeling y and the second term is the clique score (i.e., clique potential).
Wlog assume that all the vertex terms ψiy are positive. Otherwise a constant can be added to all of
them and that will not affect the maximization. The MAP clique labeling will be denoted by y∗, and
ŷ will denote a possibly sub-optimal labeling.

We show that the clique inference is easy for any C() with just two labels and in Section 5.1 we
present an exact algorithm called α-pass for this case. We show that the same algorithm generalizes
to give an exact solution for MAX potentials. We address the SUM and MAJORITY clique potentials
respectively in Sections 5.2 and 5.3. Finally, in Section 5.4 we show how to extend the clique
inference algorithms to efficiently batch the computation of multiple max-marginals.

5.1 α-pass Algorithm

We begin with MAX potentials. Recall that a MAX potential is of the form C(n(y)) = maxy fy(ny).
We propose an exact inference procedure called α-pass (Algorithm 1) for such potentials.

The α-pass algorithm guesses that the dominant label in y∗ is α, with a count of k. Of course
we do not know α or k so all (α,k) combinations are tried out. For each (α,k) combination, α-pass
computes the best k vertices to assign the label α. These k vertices are obtained by sorting all the
vertices according to the criteria ψ.α−maxβ&=αψ.β, and picking the top-k vertices. Every remaining
vertex u is labeled with the best non-α label as per the vertex score, that is, with argmaxβψuβ.
Let ŷαk denote the clique labeling thus obtained in the (α,k)th combination. Trying out all (α,k)
combinations, α-pass returns the ŷαk whose score F(ŷαk) is the highest.

It is straightforward to see that α-pass runs in O(mn logn) time by incrementally computing
F(ŷαk) from F(ŷα(k−1)), that is, for each α, we can sort the vertices just once for all k = 1, . . . ,n.
For clique potentials that are decomposable over the edges, as in Potts, this runtime is much better
than ordinary belief propagation, which would cost O(m2n2).

We now look at properties of α-pass.
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Input: Vertex scores ψ, Clique Potential C
Output: Labeling ŷ
Best = −∞;
foreach label α ∈ {1, . . . ,m} do

Sort the vertices in descending order according to the metric ψ.α−maxβ &=αψ.β;
foreach k ∈ {1, . . . ,n} do

Assign the first k sorted vertices the label α;
Assign the remaining vertices their individual best non-α label;
s← score of this labeling under F();
if s > Best then

Best← s;
ŷ← current labeling;

end
end

end
return ŷ;

Algorithm 1: The α-pass algorithm

Claim 5.1 Assignment ŷαk has the maximum vertex score over all y where k vertices are assigned
label α, that is, ψ(ŷαk) = maxy:nα(y)=kψ(y).

Claim 5.2 For MAX potentials, C(ŷαk)≥ fα(k).

Proof Label α has a count of k and the MAX potential considers the maximum over all label counts,
which is at least k.

Theorem 4 The α-pass algorithm solves the clique inference problem exactly for MAX clique po-
tentials in O(mn logn) time.

Proof Let y∗ be the true MAP and let β = argmaxy fy(ny(y∗)), ! = nβ(y∗). Let ŷ be the labeling
returned by α-pass. We have:

F(ŷ) = max
1≤α≤m,1≤k≤n

F(ŷαk)

≥ F(ŷβ!)
= ψ(ŷβ!)+C(ŷβ!)
≥ ψ(ŷβ!)+ fβ(!) (by Claim 5.2)
= ψ(ŷβ!)+C(y∗)
≥ ψ(y∗)+C(y∗) (by Claim 5.1)
= F(y∗).

Although we had initially designed the α-pass algorithm for MAX potentials, a similar argu-
ment can be used to show that α-pass performs exact clique inference for any arbitrary symmetric
potential when we have two labels.

Claim 5.3 α-pass is exact for arbitrary symmetric potentials over two labels.
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Proof Let the MAP y∗ have label counts n1 and n− n1, and a vertex score of ψ(y∗). Let ŷ
be the labeling returned by α-pass. Then we get F(ŷ) ≥ F(ŷ1n1) = ψ(ŷ1n1) +C(n1,n− n1) ≥
ψ(y∗)+C(n1,n−n1) = F(y∗). SinceC is arbitrary, the result follows.

We also note that in some real-life tasks the vertex terms tend to heavily dominate the clique
term. In such a case too, α-pass will provide an exact solution. This follows immediately from
Claim 5.1 and the observation that F(y)≈ ψ(y).

5.2 Clique Inference for SUM Potentials

We focus on the Potts potential, the most popular member of the SUM family. Potts potential is
given by CPotts(y) = λ∑y n2y and the clique inference objective is:

max
y1,...,yn

n

∑
j=1

ψ jy j +λ∑
y
n2y . (7)

In the above, λ > 0 since we are interested in the associative case which encourages agreement
among labels. It is well known that inference with Potts potentials over general graphs, is NP-hard
(Boykov et al., 2001) when number of labels is > 2 even with λ> 0. So we will first show that the
task remains NP-hard even for cliques. Then, we will prove that α-pass achieves an approximation
ratio of 45 , followed by a more complex proof for a better and tight approximation ratio of

13
15 . We

will then generalize the α-pass algorithm, which will result in an improved ratio of 89 at a cost of
higher runtime. In contrast, the α-expansion algorithm of Boykov et al. (2001) will be shown to
have a ratio of only 1

2 .

Theorem 5 When C(y) = λ∑y n2y ,λ> 0, clique inference is NP-hard.

Proof We prove hardness by reduction from the NP-complete Exact Cover by 3-sets problem (Pa-
padimitriou and Steiglitz, 1982). In an instance of Exact Cover by 3-sets, we are given a universe
U of elements, a set S of subsets ofU where each subset has three elements, and the goal is to find
S′ ⊆ S that covers U , while minimizing |S′|. We create an instance of clique inference as follows.
We let elements of U correspond to vertices, and each set in S to a label. Assign ψiy = 2nλ if ele-
ment i belongs to set y, and zero otherwise (set λ> 0 arbitrarily). Consider the problem of deciding
if exactly n

3 out of m subsets cover U . The MAP score in the constructed clique inference instance
will be (2n2+32 n3)λ iff we can find an exact cover.

The above proof establishes that there cannot be an algorithm that is polynomial in both n and m.
But we have not ruled out algorithms with complexity that is polynomial in n but exponential in m,
say of the form O(2mnk) for a constant k.

We next analyze the approximation guarantees provided by the α-pass algorithm. We first
present an easy proof for a weaker bound of 45 and then move on to a more detailed proof for
13
15 . Recall that the optimal labeling is y

∗ and the labeling output by α-pass is ŷ.

Theorem 6 F(ŷ)≥ 4
5F(y

∗).
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Proof Without loss of generality assume that the label counts of y∗ are n1 ≥ n2 ≥ . . . ≥ nm. Then
C(y∗) = λ∑y n2y ≤ λn1∑y ny = λnn1.

F(ŷ) ≥ F(ŷ1n1) = ψ(ŷ1n1)+C(ŷ1n1)
≥ ψ(y∗)+C(ŷ1n1) (from Claim 5.1)
≥ ψ(y∗)+λn21 (since λ> 0)
≥ ψ(y∗)+C(y∗)−λn1n+λn21
≥ F(y∗)−λn2/4. (8)

Now consider the two cases where F(y∗)≥ 5
4λn

2 and F(y∗)< 5
4λn

2. For the first case we get from
above that F(ŷ) ≥ F(y∗)−λn2/4 ≥ 4

5F(y
∗). For the second case, we know that the score F(ŷmn)

where we assign all vertices the last label is at least λn2 (because all vertex scores are assumed to
be non-negative) and thus F(ŷ)≥ 4

5F(y
∗).

We stress that non-negativity of the vertex scores is important for the multiplicative bound of 45 ,
else one can construct examples where F(y∗) = 0. At the same time, Equation 8 provides a useful
additive bound that holds for arbitrary vertex scores.

We now state the more involved proof for showing that α-pass actually provides a tight approx-
imation bound of 1315 for clique inference with Potts when the vertex scores are non-negative.

Theorem 7 F(ŷ)≥ 13
15F(y

∗). Further, this ratio is tight.

Proof See Appendix A.

We next present a generalization of the α-pass algorithm that provides provably better guarantees
for Potts.

5.2.1 GENERALIZED α-PASS ALGORITHM

In α-pass, for each label α, we go over each count k and find the best vertex score with k vertices
assigned label α. We generalize this to go over all label subsets of size no more than q, a parameter
of the algorithm that is fixed based on the desired approximation guarantee.

For each label subset A ⊆ {1, . . . ,m} of size no more than q, and for each count k, maximize
vertex scores with exactly k vertices assigned a label from A. For this, we sort the vertices in
decreasing order of maxα∈Aψiα−maxy&∈Aψiy, assign the top k vertices their best label in A and the
remaining their best label not in A. The best solution over all combinations (A,k) with |A| ≤ q is
returned as the final labeling ŷ. It is easy to see that this algorithm reduces to α-pass when q= 1.

The complexity of this algorithm is O(nmq logn) because there are
(m
q
)

choices for the set A.
In practice, we can use heuristics to prune the number of label subsets. Further, we can make the
following claims about the quality of its output.
Theorem 8 Generalized α-pass enjoys an approximation bound of 89 , that is, F(ŷ)≥

8
9F(y

∗).
Proof The bound is achieved with q= 2. We provide the details in Appendix A.

We conjecture that the bound for general q is 4q
4q+1 . This bound is not tight as for q= 1 we have

already shown that the 4
5 bound can be tightened to

13
15 . With q = 2 we get a bound of

8
9 which is

better than 13
15 .
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5.2.2 α-EXPANSION ALGORITHM

In general graphs, a popular method that provides the approximation guarantee of 1/2 for the Potts
model is the graph-cut based α-expansion algorithm (Boykov et al., 2001). We explore the behavior
of this algorithm for clique inference with Potts potentials.

In this scheme, we start with any initial labeling—for example, all vertices are assigned the first
label, as suggested in Boykov et al. (2001). Next, for each label αwe perform an α-expansion phase
where we switch the labeling of an optimal set of vertices from their current label to α. We repeat
this in a round over the m labels, until no vertices switch their labeling in a complete round.

For graphs whose edge potentials form a metric, an optimal α-expansion move is based on the
use of the mincut algorithm of Boykov et al. (2001) which for the case of cliques can be O(n3).
We next show how to perform optimal α-expansion moves more efficiently (in O(mn2) time) for all
kinds of SUM potentials.
An α-expansion move: Let ỹ be the labeling at the start of this move. For each label y &= α create a
sorted list Sy of vertices assigned y in ỹ in decreasing order of ψiα−ψiy. If in an optimal move, we
move ky vertices from y to α, then it is clear that we need to pick the top ky vertices from Sy. Let ri
be the rank of a vertex i in Sy. Our remaining task is to decide the optimal number ky to take from
each Sy. We find these using dynamic programming. Without loss of generality assume α= m. Let
Dj(k) denote the best score when k vertices with current labels in 1 . . . j switch to α. We compute

Dj(k) = max
l≤k, l≤n j(ỹ)

Dj−1(k− l)+ f j(n j(ỹ)− l)+ ∑
i′:ri′≤l

ψi′α+ ∑
i′:ri′>l

ψi′ j,

where n j() is the usual cardinality of label j in the labeling. Now we can find the optimal number
of vertices to switch to α as argmaxk≤n−nα(ỹ)Dm−1(k)+ fα(k+nα(ỹ)).

5.2.3 COMPARISON WITH EXISTING APPROXIMATION BOUNDS

As mentioned earlier, the CPotts clique potential is equivalent to the sum of Potts potentials over
edges of a complete graph. For arbitrary graphs with homogeneous Potts potential on edges, the
alpha expansion algorithm of Boykov et al. (2001) and the LP relaxation algorithm of Kleinberg
and Tardos (2002) provide a factor of 2 approximation guarantee for a minimization version of the
objective. For cliques with homogeneous edge potentials, their objective reduces to an energy-based
formulation (using their notation):

min
y ∑j

θ j(y j)+ γ ∑
i, j>i

δ(y j &= yi)≡miny ∑j
θ j(y j)+

γ
2
(n2−∑

y
n2y), (9)

where θ j(y j) denotes node energy and is assumed to be positive and γ denotes the homogeneous
Potts parameter.

First we show that α-expansion provides an approximation bound of 2 even for the special case
of cliques. Symmetrically, we also show that the α-expansion algorithm provides a bound of 12
for our original max-version of the clique inference problem. Next, we show that α-pass provides
a bound of 32 for even the minimization objective above. Thus, for both the minimization and
maximization objectives, α-pass improves upon the guarantees obtained by existing algorithms.

Theorem 9 The α-expansion algorithm provides no better approximation guarantee than 2 for the
minimization objective (9).
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Proof An instance where this occurs is as follows. There are n nodes and n+1 labels y0, . . . ,yn. The
vertex energy for (xi,y0) is 2n−2 and for (xi,yi) it is 0. All other vertex energies are ∞, and γ= 1.
Suppose initially all nodes are assigned label y0. Then the clique energy is 0 and vertex energy is
n(2n− 2). Now considering any other label yi, i >= 1, the optimal set of nodes to switch is just
xi. But this reduces vertex energy by 2n−2 but increases clique energy by the same amount, so no
switching is done. However the optimal solution has xi labeled with yi, which has a total energy of
n2−n.

Theorem 10 The α-expansion algorithm provides no better approximation guarantee than 1/2 for
the maximization objective (7).

Proof Consider an instance where m =
√
n+ 1, and λ = 1. Let ψu1 = 2

√
n for all u. Divide the

vertices into
√
n groups of size

√
n each, and let ψu,i+1 = 2n for every vertex u in the ith group.

All other vertex scores are zero. Consider the solution where every vertex is assigned label 1. This
labeling is locally optimal wrt any α-expansion move, and its score is n2(1+2/

√
n). However, the

exact solution assigns every vertex group its label, with a score n2(2+ 1/
√
n) , thus giving a ratio

of 1/2 in the limit.

Theorem 11 The α-pass algorithm achieves an approximation ratio of 32 for the minimization ob-
jective 9.

Proof Suppose k=maxy ny is the highest count in the optimal labeling. Consider two cases, k≥ n/2
and k < n/2.

If k ≥ n/2, the clique energy is at least γ(n2− (k2+(n− k)2)) = γ2k(n− k). The clique energy
in α-pass is at most γ(2n2− k2− (n− k)) = γ(n− k)(n+ k− 1). The vertex energy in the optimal
labeling cannot be smaller than that in α-pass. Since k >= n/2,(n+ k−1)/2k ≤ 3/2.

If k ≤ n/2, then the clique energy in the optimal labeling is at least γ(n2− nk) = γn(n− k).
Therefore the ratio is again at most (n+ k−1)/n≤ 3/2.

As expected, generalized α-pass provides a superior approximation ratio for Objective 9.

Theorem 12 The generalized α-pass algorithm with two labels (q= 2) achieves an approximation
ratio of 1+

√
2

2 for objective 9.

Proof We omit the complete proof as it is quite detailed and give only a brief sketch. Wlog assume
that 1 and 2 are the two most dominant labels in the optimal labeling OPT, with counts n1,n2 ≤ n1.
Consider two solutions—one given by α-pass (i.e., q = 1) when label 1 has count n1, and another
given by generalized α-pass with q= 2 when counts of labels 1 and 2 are n1+n2. The node energies
of these two labelings cannot be worse than that of OPT (Claim 5.1). So the approximation bound
depends only on the ratios of the clique energies. Therefore wlog assume that γ= 2 in Objective 9.
The clique energies of the two solutions cannot exceed (n2−n21) and (n2−

(n1+n2)2
2 ) respectively. We

can now work out the two cases whether n21≤ (n1+n2)2/2 or not, and get the desired approximation
bound through contradictions. The analysis also shows that the bound is tight, and is achieved when
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n1 = n/
√
2 and n2 = n−n/

√
2.

5.2.4 ENTROPY POTENTIALS AND THE α-PASS ALGORITHM

As an aside, let us explore the behavior of α-pass on another family of additive potentials—entropy
potentials. Entropy potentials are of the form:

C(n(y)) = λ∑
y
ny logny, where λ> 0.

The main reason α-pass provides a good bound for Potts potentials is that it guarantees a clique
potential of at least n21 where n1 is the count of the most dominant label in the optimal solution y∗.
The quadratic term compensates for possible sub-optimality of counts of other labels. If we had a
sub-quadratic term instead, say n1 logn1 for the entropy potentials, the same bound would not have
held. In fact the following theorem shows that for entropy potentials, even though α-pass guarantees
a clique potential of at least n1 logn1, that is not enough to provide a good approximation ratio.

Theorem 13 α-pass does not provide a bound better than 1
2 for entropy potentials.

Proof Consider a counter example where there are m= n+ logn labels. Divide the labels into two
sets—A with logn labels and B with n labels. The vertex scores are as follows: the vertices are
divided into logn chunks of size n/ logn each. If the jth vertex lies in the yth chunk, then let it have
a vertex score of logn with label y in A and a vertex score of logn+ ε with the jth label in B. Let all
other vertex scores be zero. Also, let λ= 1.

Consider the labeling which assigns the yth label in A to the yth chunk. Its score is 2n logn−
n log logn. Now consider α-pass, with α ∈ A. Initially vertex y will be set to the yth label in B. The
best labeling found by α-pass will assign every vertex to α, for a total score of roughly n+n logn.
If α ∈ B, then again the best labeling will assign everything to α for a total score of roughly (n+
1) logn.

Thus the bound is no better than 1
2 as n→ ∞.

Thus, α-pass provides good approximations when the clique potential is heavily dominated by
the most dominating label. We now look at MAJORITY potentials, which are linear in the counts
{ny}y. Looking at Theorem 13, we expect that α-pass will not have decent approximation guarantees
for MAJORITY. This is indeed the case. We will prove in Section 5.3 that neither α-pass nor a natural
modification of α-pass enjoy good approximation guarantees.

5.3 Clique Inference for MAJORITY Potentials

Recall that MAJORITY potentials are of the form C = fa(n), a = argmaxy ny. We consider linear
majority potentials where fa(n) = ∑y wayny. The matrix W = {wyy′} is not necessarily diagonally
dominant or symmetric.

We show that exact MAP for linear majority potentials can be found in polynomial time. We
also present a modification to the α-pass algorithm to serve as an efficient heuristic, but without
approximation guarantees. Then we present a Lagrangian relaxation based approximation, whose
runtime is competitive with α-pass, but which provides much more accurate solutions.
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5.3.1 MODIFIED α-PASS ALGORITHM

Assume that we magically know the majority label α in advance. Then for linear majority potentials,
we can incorporate the linear clique term wαyny in the various vertex scores, and this leads to the
following natural modifications to the α-pass algorithm: (a) While making iterations for the label
α, sort the vertices according to the modified metric ψiα+wαα−maxy&=α(ψiy+wαy), and (b) While
sweeping the list for α with varying values of k, discard all candidate solutions whose majority label
is not α.

However even after these modifications, α-pass does not provide the same approximation guar-
antee as for homogeneous Potts potentials, as we prove next.

Theorem 14 The modified α-pass algorithm cannot have an approximation ratio better than 1
2 on

linear majority potentials with arbitrary W.

Proof Consider the degenerate example where all vertex scores are zero. Let β and γ be two fixed
labels and let the matrixW be defined as follows: wβγ =M+ ε, wβy =M ∀y &= β,γ and all the other
entries inW are zero.

In modified α-pass, when α &= β, the labeling returned will have a zero score. When α= β, all
vertices will prefer the label γ, so α-pass will have to assign exactly n/2 vertices to β to make it
the majority label, thus returning a score of (M+ε)n

2 . However, consider the labeling which assigns
n/m vertices to each value, with a score of (m−1)Mn/m. Hence the approximation ratio cannot be
better than 1

2 .

5.3.2 EXACT ALGORITHM

Since MAJORITY potentials are linear, we can pose the optimization problem in terms of Integer
Programs (IPs). Assume that we know the majority label α. Then, the optimization problem corre-
sponds to the IP:

max
z ∑i,y

(ψiy+wαy)ziy,

s.t. ∀y : ∑
i
ziy ≤∑

i
ziα,

∀i : ∑
y
ziy = 1, ziy ∈ {0,1}. (10)

We can solve m such IPs by guessing various labels as the majority label, and reporting the best
overall labeling as the output. However, Equation 10 cannot be tightly relaxed to a linear program.
This can be easily shown using a counter example: Consider a 3-vertex, 3-label clique with a zeroW
matrix. Let the vertex score vectors be ψ0 = (1,4,0), ψ1 = (4,0,4), ψ2 = (3,4,0). While solving
for α = 0, the best IP labeling is 1,0,0 with a score of 11. However the LP relaxation has the
solution z= (0,1,0;1,0,0;1/2,1/2,0) with a score of 11.5.
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This issue can be resolved by making the constraint matrix totally unimodular as follows. Guess
the majority label α, its count k = nα, and solve the following IP:

max
z ∑i,y

(ψiy+wαy)ziy,

s.t. ∀y &= α : ∑
i
ziy ≤ k,

∑
i
ziα = k,

∀i : ∑
y
ziy = 1, ziy ∈ {0,1}. (11)

This IP solves the degree constrained bipartite matching problem, which can be solved exactly in
polynomial time. Indeed, it can be shown that the constraint matrix of this IP is totally unimodular,
so its LP relaxation will have an integral solution. We refer the reader to Gupta et al. (2009) for the
details. Thus we solve O(mn) such problems by varying α and k, and report the best solution. We
believe that the above LP is concave in k, so the system for a fixed α should be efficiently solvable
using golden section search.

5.3.3 LAGRANGIAN RELAXATION BASED ALGORITHM FOR MAJORITY POTENTIALS

Solving the linear system in Equation 11 is very expensive because we need to solve O(mn) LPs,
whereas the system in Equation 10 cannot be solved exactly using a linear relaxation. Here, we
look at a Lagrangian Relaxation based approach (LR), where we solve the system in Equation 10
but bypass the troublesome constraint ∀y &= α : ∑i ziy ≤ ∑i ziα.

We use Lagrangian relaxation to move this constraint to the objective function. Any violation
of this constraint is penalized by a positive penalty term. Consider the following modified program,
also called the Lagrangian:

L(γ) = L(γ1, . . . ,γm) =maxz ∑i,y
(ψiy+wαy)ziy + ∑

y
γy(∑

i
ziα−∑

i
ziy),

s.t. ∀i :∑
y
ziy = 1, ziy ∈ {0,1}. (12)

For γ≥ 0, and feasible z, L(γ) is an upper bound for our objective in Equation 10. Thus, we compute
the lowest such upper bound:

L∗ =min
γ≥0

L(γ). (13)

Further, the penalty term in Equation 12 is linear in z, so we can merge it with the first term to get
another set of modified vertex potentials:

ψαiy ! ψiy+wαy− γy+

{

∑y′ γy′ y= α
0 y &= α

.

Equation 12 can now be rewritten in terms of ψα, with the only constraint that z correspond to
a valid labeling:

max
y ∑i,y

ψαiyziy,

s.t. ∀i :∑
y
ziy = 1, ziy ∈ {0,1}.
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Hence, L(γ) can be computed by independently assigning each vertex i to its best label viz. argmaxyψαiy.
We now focus on computing L∗. We use an iterative approach, beginning with γ = 0, and

carefully choose a new γ at each step to get a non-increasing sequence of L(γ)’s. We describe
the method of choosing a new γ later in this section, and instead outline sufficient conditions for
termination and detection of optimality.

Theorem 15 z∗ and γ∗ are optimum solutions to Equations 10 and 13 respectively if they satisfy the
conditions:

∀y : ∑
i
z∗iy ≤∑

i
z∗iα, (14)

∀y : |γ∗y(∑
i
z∗iy−∑

i
z∗iα)|= 0. (15)

Theorem 15 holds only for fractional z∗. To see how, consider an example with three vertices and
two labels. Let ψi1+wα1 > ψi2+wα2 for all i and α. During Lagrangian relaxation with α = 2,
initially γ = 1 will cause all vertices to be assigned label 1, violating Equation 14. Since the count
difference ∑i zi1−∑i zi2 ∈ {±1,±2,±3}, any non-zero γ1 will violate Equation 15. Subsequent
reduction of γ1 to zero will again cause the original violation of Equation 14. Consequently, one of
Equations 14 and 15 will never be satisfied and the algorithm will oscillate.

To tackle this, we relax Equation 15 to |γy(∑i z∗iy−∑i z∗iα)|≤ ε, where ε is a small fraction of an
upper bound on γy. This helps in reporting labelings that respect the majority constraint in Equation
14 and are close to the optimal.

The outline of the algorithm is described in Figure 2.
We now discuss a somewhat conservative approach to select a new γ at every step. We ini-

tially attempted subgradient optimization and golden search to compute step direction and sizes for
changing γ. However, we ran into various practical difficulties. Subgradient optimization required
very careful tweaking of the step size across iterations, an issue exacerbated by the discrete na-
ture of our problem. On the other hand, golden search was too aggressive in practice, leading to
many avoidable label flips and consequently many more iterations. So instead we implemented a
conservative approach which we describe next.

5.3.4 CONSERVATIVE COORDINATE DESCENT

We perform conservative coordinate descent which avoids large changes and thus too many label
flips. Let y be the worst violating label in the current iteration. We will first consider the case when
its count exceeds that of α, so that Equation 14 does not hold.

To decrease the count of y, we need to increase γy. Let i be a vertex currently assigned y
and let β(i) be its second most preferred label under the vertex potentials ψαi . The vertex j =
argmaxi:ziy=1ψ

α
iβ(i)−ψαiy is the easiest to flip. So we increase γy just enough to make this flip happen.

The new value of γy is therefore given by:

γy = min
i:ziy=1

{

Δψ(i,y,β(i))+ γβ(i) β(i) &= α
1
2(Δψ(i,y,α)−∑y′ &=y γy′) β(i) = α

, (16)

where Δψ(i,y,y′) denotes ψiy+wαy−ψiy′ −wαy′ . It is possible that by flipping vertex j, β( j) now
violates Equation 14. Moreover, increasing γy also increases ψαiα, so some other vertices that are not
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assigned y may also move to α. However since the change is conservative, we expect this behavior
to be limited. In our experiments, we found that this conservative scheme converges much faster
than golden search over a variety of data.

We now look at the case when Equation 14 is satisfied by all labels but Equation 15 is violated
by some label y. In this scenario, we need to decrease γy to decrease the magnitude of the violation.
Here too, we conservatively decrease γy barely enough to flip one vertex to y. If i is any vertex not
assigned label y and β(i) is its current label, then the new value of γy is given by:

γy = max
i:ziy &=1

{

Δψ(i,y,β(i))+ γβ(i) β(i) &= α
1
2(Δψ(i,y,α)−∑y′ &=y γy′) β(i) = α

. (17)

Note that the arguments of Equations 16 and 17 are the same. In this case too, in spite of a conser-
vative move, more than one vertex marked α may flip to some other value, although at most one of
them will be flipped to y. As before, the small magnitude of the change restricts this behavior in
practice.

Input: ψ,W,α,maxIters,tolerance
Output: approximately best assignment ŷ
γ← 0;
iter← 0;
ẑ← Assignment with all vertices assigned α;
while iter < maxIters do

Compute L(γ) (Equation 12), let z be the solution;
if F(z)> F(ẑ) then

ẑ← z;
end
(y,Δ)←Worst violator and violation (Equations 14 and 15);
if Δ < tolerance then

We are done, L∗ = L(γ);
break;

else
Modify γy using conservative coordinate descent;

end
iter← iter+1;

end
Construct assignment ŷ from ẑ;
return ŷ

Algorithm 2: LR Algorithm for Majority potentials

5.4 Computing All Node Max-marginals

In this section, we discuss an important optimization that speeds up message-passing in a cluster
graph. We show that for symmetric potentials we can compute max-marginals in O(m2) calls to the
clique inference algorithm in practice, as opposed to the expected nm invocations. Cliques can be
arbitrarily big, so removing the dependence on n is very helpful in practice.

Our basic strategy is as follows. For label pairs α,β, define a modified clique potential function
Cαβ that adds “1” to the count for label β and subtracts “1” from the count of label α:

Cαβ(y) = C(n1(y), . . . ,nα(y)−1, . . . ,nβ(y)+1, . . .nm).
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Find MAP labeling yαβ using the modified scoring function Fαβ(y) = ψ(y)+Cαβ(y). Let v be a
vertex whose label in yαβ is α, then the max marginal Mvβ ! maxy:yv=βF(y) = Fαβ(yαβ)−ψvα+
ψvβ. The outgoing message mt→v(β) is then simply Mvβ−mv→t(β) as per Equation 4. A proof of
correctness of this optimization is as follows.

Theorem 16 maxy:yv=βF(y) = Fαβ(yαβ)−ψvα+ψvβ.

Proof

max
y
Fαβ(y) = max

y:yv=α
Fαβ(y) since v is labeled α in yαβ

= max
y:yv=α

ψ(y)+Cαβ(y)

= max
y:yv=β

ψ(y)−ψvβ+ψvα+C(y)

= max
y:yv=β

F(y)−ψvβ+ψvα.

We invoke the above strategy for all label pairs α,β when some vertex in the original MAP gets
label α. There is no guarantee that all nm messages would be generated by the above scheme. The
ones that are not covered are computed using separate invocations of MAP.

This concludes the description of our various clique inference algorithms and their theoret-
ical properties. The discussion until now had focused on the traditional unigram-clique collec-
tive inference model. We now switch tracks and describe an extension of the collective inference
framework—one which captures richer kinds of associativity that is often present in the data. We
will see that the same cluster message passing setup and collective inference algorithms can be used
almost as is in this more general scenario.

6. Properties-based Collective Inference Framework

We broaden the notion of collective inference to encourage richer forms of associativity amongst the
labelings of multiple records. This more general framework has applications in domain adaptation.
We illustrate this via an example.
Example: Consider extracting bibliographic information from an author’s publications homepage
using a model trained on a different set of pages. The labels of interest are Title, Author, Venue, and
Date. Typically, within each homepage (a domain) we expect consistency in the style of individual
publication records. For example, we expect the following properties to be largely uni-valued inside
a domain:

1. The ordering of labels in the labelings (e.g., Title→ Author*→ Venue).

2. The token preceding the Title, or ‘Start’ if Title occurs at the beginning.

3. The label appearing after the Venue, or ‘End’ if Venue occurs at the end.

4. Label of the token ‘IEEE’.
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A Simulator for estimating Railway Line Capacity.
In APORS - 2003.

(Start, Date, <b>) Bhardwaj, P. (2001). Delegating Pricing Decisions.
Marketing Science 20(2). 143-169.

(‘.’, Volume, <li>)

Scheduling Loosely Connected Task Graphs. Jour-
nal of Computer and System Sciences , August 2003
.

(Start, Date, <b>) Balasubramaniam, S. and P. Bhardwaj (2004). When
not all conflict is bad: Manufacturing marketing con-
flict and strategic incentive design. Management Sci-
ence 50(4). 489-502.

(‘.’, Volume, <li>)

Devanagari Pen-written Character Recognition. In
ADCOM - 2001 .

(Start, Date, <b>) Bhardwaj, P. and S. Balasubramaniam (2005). Man-
aging Channel Profits: The Role of Managerial Incen-
tives. Forthcoming Quantitative Marketing and Eco-
nomics.

(‘.’, End, <li>)

Table 2: Two publications pages with different styles. Text in parentheses shows the values of three
properties on the correct labelings: (i) Token before Title (ii) First non-Other label after
Venue (iii) HTML tag containing Title. The properties are largely uni-modal inside a page,
but the mode varies across pages.

Note that ‘IEEE’ will tend to recur across multiple records, so the last property corresponds to the
unigram-based cliques that we modeled thus far. It is clear now that we can gain a lot more if we
couple the records together according to ‘richer’ properties than just unigrams.

Of course the choice of properties is crucial. For all the properties illustrated above, we expect
that the labelings inside the domain agree on the property value, without caring for what the value
actually is (which varies from domain to domain). This allows us to use the same property on
different domains, with varying formatting and authoring styles. Table 2 illustrates this for two
publications pages with different styles. It shows three properties that take on largely similar values
across records inside a domain, but the dominant value changes across domains. Thus we can
reward associativity of these property values using the same symmetric potentials that we have used
for unigram cliques.

Now assume that we have an array of such conformance-promoting properties, and a basic
MRF trained on some labeled domains. An effective way of deploying this MRF on a previously
unseen domain is by labeling the records in the new domain collectively while encouraging the
individual labelings to agree on our set of properties. If the properties continue to remain associative
in the unseen domain, then collective inference can be expected to correct a significant number of
errors. This provides us with an inference-only approach, in contrast to many existing solutions for
domain adaptation which require model re-training (Blei et al., 2002; Blitzer et al., 2006; Mann and
McCallum, 2007).

We now give an intuitive description of how the introduction of properties causes only minor
changes in our collective inference framework. The modified collective inference objective is now
given by:

arg max
y1,...,yN

(

N

∑
k=1

|xk|

∑
i=1

φki (yki ,yki−1)

)

+ ∑
g∈G

Cg({g(xk,yk)}k),

instead of Equation 2. Here G is the set of properties, each of which defines an associative clique.
We reuse the cluster message passing setup in this collective inference scenario. We define one clus-
ter per chain, one per property, while separators remain singleton—they correspond to the property
value. The new messages are of the kind mg→k(v) and mk→g(v), where v is a possible value output
by the property g(). The property-to-chain messages are computed as before using our potential-
specific clique inference algorithms. However the chain-to-property messagesmk→g cannot be com-
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puted for arbitrary properties. To illustrate, say g(xk,yk) = Number of tokens marked Author in yk.
Computing chain messages for this property is quite expensive, if not hard. So for computational
reasons we restrict ourselves to Markovian properties, that is, properties whose chain-to-property
messages can be computed with a first-order algorithm like Viterbi or max-product. Examples of
Markovian properties include—Token before Title, and Label after Author. A sample message for
the second property would be, say, mk→g(Title), which can be computed by running Viterbi with
the first-order constraint that Author be followed by Title. In general, values of Markovian prop-
erties depend only on the Markovian blanket of a part of the chain, which leads to tractability of
message computation. We refer the reader to Gupta et al. (2009) for the formal technical details of
chain-to-property message computation for Markovian properties.

We stress that such a support for Markovian properties is not possible in alternative collective
inference approaches like TRW-S. This is because even with Potts potentials over properties, the
inter-cluster separators still remain complete chain labelings instead of scalar property values, so
the cluster model cannot be represented as a pairwise graphical model.

In Section 7.3 we will look at the effect of introducing associative properties in the context of
domain adaptation on a citation extraction task.

7. Experiments

Our goal is to empirically demonstrate that cluster message passing is indeed a more accurate and
efficient framework for doing collective inference. Once this is established, it would necessitate
the design of fast and accurate message computation algorithms that work for symmetric clique
potentials. This would justify our design and analysis of the various clique inference algorithms
presented in this paper. After illustrating the effectiveness of cluster message passing, we will show
that the extension of collective inference to capture richer associative properties leads to significant
boosts in domain adaptation tasks. Keeping these goals in mind, we present results of three dif-
ferent experiments—clique inference, collective inference, and the extension to general Markovian
properties.

First, in Section 7.1 we compare our clique inference algorithms against applicable alternatives
in the literature. We compare the algorithms on computation speed and accuracy of the MAP assign-
ments. For Potts potentials, we show that α-pass provides similar MAPs as the various alternatives
but is up to two orders faster. For linear MAJORITY potentials (Equation 6), we compare our al-
gorithms against the exact LP-based approach of Section 5.3.2 and the ICM algorithm. For other
clique potentials that are not decomposable along the clique edges, we compare α-pass against the
ICM algorithm.

Second, in Section 7.2 we show that message passing on the cluster graph is a more effective
method for collective inference than its alternatives. For collective models with Potts potentials, we
compare cluster message passing against belief propagation that decomposes Potts along the clique
edges. In the case of linear MAJORITY potentials, we compare against the stacking based approach
of Krishnan and Manning (2006).

Finally, in Section 7.3 we demonstrate the application of our generalized collective framework
on domain adaptation. On a citation extraction task, we show that capturing the associativity of
richer properties leads to significant reduction in test error.
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λ ICM α-pass α2-pass α-exp DP α-exp FastCut FastPD TRW-S DD
Clique MAP scores

0.50 4866.7 4862.3 4864.2 4866.0 4867.0 4867.2 4866.7 4866.4 4833.3
0.55 4878.0 4872.6 4875.5 4878.5 4879.6 4879.7 4879.1 4878.6 4838.1
0.60 4899.8 4893.8 4895.8 4898.0 4900.9 4900.8 4900.7 4899.7 4865.6
0.65 4914.9 4909.4 4911.6 4913.3 4915.9 4916.9 4914.6 4915.1 4881.3
0.70 4919.6 4913.0 4916.7 4916.6 4921.5 4923.1 4920.6 4919.6 4891.2
0.75 4930.0 4934.7 4936.9 4928.8 4935.1 4936.8 4938.2 4938.4 4926.8
0.80 4965.0 4969.3 4972.5 4959.5 4959.5 4971.2 4954.3 4971.4 4961.7
0.85 4977.3 5009.6 5010.0 4995.5 4988.3 5002.8 4997.7 5007.0 4999.9
0.90 5018.5 5082.3 5082.3 5073.9 5081.2 5081.1 5080.1 5079.0 5049.1
0.95 5053.5 5155.9 5155.9 5154.4 5154.9 5155.1 5154.9 5150.7 5100.9
1.00 5137.2 5264.3 5264.3 5264.3 5264.3 5264.3 5264.3 5262.1 5161.9
1.05 5279.4 5417.1 5417.1 5417.1 5417.1 5417.1 5417.1 5417.1 5269.5
1.10 5383.8 5528.1 5528.1 5528.1 5528.1 5528.1 5528.1 5528.1 5358.1
All 65223.5 65812.5 65831.2 65794.0 65813.5 65844.2 65816.6 65833.4 65137.3

Running Time (ms)
0.50 24 38 464 155 5900 7910 2510 12170 117180
0.55 27 38 455 174 6610 8010 2930 13290 117480
0.60 28 38 454 160 8140 8810 3640 16290 118270
0.65 29 38 452 157 8700 9120 4190 17740 117050
0.70 35 43 470 162 11680 9630 5210 19480 118360
0.75 34 41 460 155 13770 10460 7180 21730 117170
0.80 42 39 459 153 16710 11060 8650 22660 117450
0.85 38 44 464 139 18260 11310 7360 22610 117730
0.90 42 42 462 163 19100 14980 7280 20170 117670
0.95 49 39 458 127 16450 13640 6620 17910 117070
1.00 58 39 456 85 11280 11200 6320 10670 117240
1.05 59 39 458 82 10730 10800 5810 5280 116780
1.10 50 39 467 82 10490 10420 6000 3400 116920
All 514 519 5979 1795 157820 137350 73700 203400 1526370

Table 3: Clique MAP scores and runtimes of various clique inference algorithms for Potts potential.
Each number is an aggregate over 25 cliques for the corresponding λ.

7.1 Clique Inference Experiments

For clique potentials decomposable over clique edges, we compare our clique inference algorithms
against sequential tree re-weighted message passing (TRW-S), graph-cut based inference (α-exp),
the ICM algorithm, and recent advancements including the faster graph-cut algorithm of Alahari
et al. (2008) (FastCut), the fast primal-dual algorithm of Komodakis and Tziritas (2007) (FastPD),
and the dual-decomposition scheme of Komodakis et al. (2007a) (DD). For non-decomposable po-
tentials, we present comparisons against the ICM algorithm. We present comparison results on
running time and quality of the MAP. Our experiments were performed on both synthetic and real
data.
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(a) POTTS: Runtime vs λ (b) CoNLL with Potts: α-pass vs TRW-S

Figure 2: Potts potential: (a) Runtime of α-pass vs TRW-S, Graph-cut and FastPD aggregated on
25 cliques as λ is varied in the synthetic data set POTTS (b) Comparing α-pass and TRW-S
on MAP scores and runtimes for each CoNLL clique.

Synthetic Data Set: We generated cliques with 100 vertices and m = 24 labels by choosing vertex
potentials at random from [0,2] for all vertex-label pairs. A Potts version (POTTS) was created by
gradually varying λ, and generating 25 cliques for every value of λ. We also created analogous EN-
TROPY, MAKESPAN and MAKESPAN2 versions of the data set by choosing entropy (λ∑y ny logny),
linear makespan (λmaxy ny) and square makespan (λmaxy n2y) clique potentials respectively.

For linear MAJORITY potentials we generated two kinds of data sets (parameterized by λ): (a)
MAJ-DENSE obtained by generating a random symmetricW for each clique, whereWyy = λ was the
same for all y andWyy′ ∈ [0,2λ] (y &= y′), and (b) MAJ-SPARSE from symmetricW withWyy′ ∈ [0,2λ]
for all y,y′, roughly 70% of whose entries were zeroed. This sparse data set is supposed to mirror
the sparseness ofW in real-life data sets.
CoNLL Data Set: The CoNLL 2003 data set1 is a popular choice for demonstrating the benefit of
collective labeling in named entity recognition tasks. We used the BIOU encoding of the entities,
that resulted in 20 labels. We took a subset of 1460 records from the test set of CoNLL, and selected
all 233 cliques of size 10 and above. The smaller cliques were ignored as the algorithms hardly differ
in performance over them. The median and largest clique sizes were 16 and 259 respectively. The
vertex potentials of the cliques were set by a sequential Conditional Random Field trained on a
separate training set. We created a Potts version by setting λ = 0.9/n using the development set,
where n is the clique size. Such a λ allowed us to balance the vertex and clique potentials for each
clique. A majority version was also created by learningW discriminatively in the training phase.

We developed Java implementations for all our algorithms—α-pass, generalized α-pass with
q = 2, dynamic programming based α-expansion of Section 5.2.2 (denoted α-exp DP), modified
α-pass, Lagrangian relaxation, and the Exact LP-based algorithm for Majority potentials. We used
publicly available C++ implementations for TRW-S,2 (Boykov et al., 2001; Szeliski et al., 2006;
Kolmogorov and Zabih, 2004; Boykov and Kolmogorov, 2004), FastCut (Alahari et al., 2008), and
FastPD (Komodakis and Tziritas, 2007; Komodakis et al., 2008). In addition, we implemented DD

1. This data set can be found at http://cnts.uia.ac.be/conll2003/ner/.
2. This code can be found at http://www.adastral.ucl.ac.uk/˜vladkolm/papers/TRW-S.html and http://

vision.middlebury.edu/MRF/.
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Figure 3: Comparing the MAP quality of α-pass vs ICM on non-decomposable potentials. Plotted
point (r, f ) denotes that for a fraction f of the cliques, α-pass returned a MAP score at
least r times that of ICM.

in C++ and ICM in Java. All experiments were performed on a Pentium-IV 3.0 GHz machine with
8 GB of RAM.

7.1.1 EDGE DECOMPOSABLE POTENTIALS

Table 3 compares the various clique inference algorithms on the POTTS data set. We vary the
Potts parameter λ uniformly in the range [0.5,1.1]. This range is of special interest because it
allows maximal contention between the clique and vertex potentials. For λ outside this range, the
MAP is usually a trivial assignment, viz. one which either individually assigns each vertex to its
best label (optimizing vertex potential), or assigns all vertices to a single label (optimizing clique
potential). Each number in the upper half of Table 3 is the aggregate MAP score of 25 cliques for
that particular λ, while the bottom half reports the aggregate clique inference time rounded to the
nearest millisecond.

We observe that apart from ICM and DD, all the other algorithms return MAP scores in a small
interval (0.5%) of each other. In particular α-pass performs almost identical to α-exp and FastPD in
this regard. FastCut provides the best aggregate MAP scores, but α2-pass and TRW-S are quite close
as well. We note that the three expansion algorithms α-exp, α-exp DP, and FastCut return different
MAP scores, primarily because they employ different bootstrapping steps. Further we observe that
DD returns significantly low MAP scores, because even with suitable step-size selection heuristics
such as the one proposed by Komodakis et al. (2007a), DD converges very slowly and invariably
hits the maximum iteration limit of 30 with a sub-par MAP. ICM also returns lower MAP scores, as
expected, due to its highly local updates.

In terms of runtime, Table 3 shows a clear separation of the algorithms. ICM and α-pass are
the fastest, while α-exp, FastCut, FastPD, and TRW-S are 150-400 times slower. This is because in
contrast to α-pass, the other algorithms perform multiple costly iterations (e.g., an iteration of TRW-
S is O(n2)). The cut-based algorithms and FastPD are faster than TRW-S, while DD is the slowest,
at 3000 times α-pass. This is because DD has to deal with O(n) spanning trees which is costly, and
leads to slow convergence. Consequently DD hits the iteration limit every time. Our α2-pass and
dynamic programming based α-expansion (α-exp DP) algorithms are ten and three times slower
than α-pass respectively, but still more than an order faster than the other algorithms. Finally we
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see that while α-pass and α2-pass take almost a constant time irrespectively of λ, the other schemes
take up more time (as they iterate more) around the “maximal contention range” of [0.7,1.0] for
λ. Figure 2(a) illustrates this behavior, where we vary λ and plot the runtimes of α-pass, FastPD,
TRW-S, and FastCut. Note that α-pass lies very close to the x-axis, illustrating its small runtime.

Figure 2(b) presents the results on Potts cliques from the CoNLL data set. For simplicity we only
compare α-pass with TRW-S as the other algorithms behave analogous to the synthetic scenario. For
each clique, we plot (a) the ratio of the α-pass MAP score with that of TRW-S, and (b) ratio of TRW-
S runtime vs α-pass runtime. While both the algorithms report the same MAP, α-pass is still more
than 10 times faster on more than one-third of the cliques, and is never slower. This ratio is not as
bad as for synthetic cliques mainly because the median clique size here is much smaller at 16.

7.1.2 NON-DECOMPOSABLE POTENTIALS

In this case, we cannot compare against the TRW-S or graph-cut based algorithms. Hence we
compare with the ICM algorithm that has been popular in such scenarios (Lu and Getoor, 2003).
The scheme of Potetz and Lee (2008) is another alternative, but we omit a comparison with it as it
is bound to be quite expensive in m (see discussion in Section 8).

We varied λ with increments of 0.02 in [0.7,1.1) and generated 500 cliques each from MAJ-
DENSE, MAJ-SPARSE, ENTROPY, MAKESPAN and MAKESPAN2. We measure the ratio of MAP
score of α-pass with ICM and for each ratio r we plot the fraction of cliques where α-pass returns
a MAP score at least r times that of ICM. Figure 3 shows the results on all the potentials except
MAJORITY, which will be presented later. The curves for linear and square makespan lie totally to
the right of ratio= 1, which is expected because α-pass will always return the true MAP for those
potentials. In contrast ICM can only return a locally optimal solution. For entropy, α-pass was
found to be significantly better than ICM in all the cases. The runtimes of ICM and α-pass were
similar.

7.1.3 MAJORITY POTENTIALS

In Figures 4(a) and 4(b), we compare ICM, Lagrangian Relaxation (LR) and modified-α-pass (Sec-
tion 5.3.1, denoted ModAlpha) against the LP-based exact method (LP) on synthetic data. Each
curve plots, for each MAP ratio r, the fraction of cliques on which ICM (or LR or ModAlpha) re-
turns a MAP score better than r times the optimal MAP score. An ideal algorithm’s curve would
just be a dot at (1,1) indicating that it retrieves the true MAP for all the cliques.

We observe that on MAJ-DENSE, both ModAlpha and ICM return a MAP score better than 0.85
of the true MAP, with ICM being slightly better. However, LR out-performs both of them, providing
a MAP ratio always better than 0.97 and returning the true MAP in more than 70% of the cases. In
MAJ-SPARSE too, LR dominates the other two algorithms, returning the true MAP in more than 80%
of the cases, with a MAP ratio always better than 0.92. Further it can be derived that on average, LR
returns a MAP score 1.15 times that of ICM. Thus, LR performs much better than its competitors
across dense as well as sparse majority potentials.

The results on CoNLL data set, whose W matrix is 85% sparse, are displayed in Figure 4(c).
ICM, ModAlpha, and LR return the true MAP in 87%, 95% and 99% of the cliques respectively,
with the worst case MAP ratio of LR being 0.97 as opposed to 0.94 and 0.74 for ModAlpha and
ICM respectively. Figure 4(d) displays runtime ratios on all CoNLL cliques for all three inexact
algorithms vs LP. ICM and ModAlpha are roughly 100-10000 times faster than LP, while LR is
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(a) MAJ-DENSE (b) MAJ-SPARSE

(c) CoNLL (d) Time(CoNLL)

Figure 4: (a)-(c) MAP quality of modified α-pass, ICM, LR vs LP on MAJORITY potentials over
MAJ-DENSE, MAJ-SPARSE, and CoNLL. To be interpreted in the same way as Figure 3.
(d) Runtime ratios vs LP of these algorithms for each CoNLL clique.

only 3−5 times more expensive than ICM and ModAlpha on average. Thus, for practical majority
potentials, LR and ModAlpha quickly provide highly accurate solutions.

7.2 Collective Labeling of Repeated Words

We now establish that for collective inference setups like the one in Figure 1(d), message passing on
the cluster graph (denoted CI) is a better option than the alternatives. This would justify the design
of special clique inference algorithms such as α-pass and LR.

We consider information extraction over text records, and define cliques over repeated occur-
rences of words. We create two versions of the experiment—with Potts and MAJORITY potentials
on the cliques respectively. Message computation at those cliques will be done using α-pass and
LR respectively, as we have already established their efficiency and accuracy in Section 7.1.

For the edge-decomposable Potts version, we compare CI against TRW-S on the giant pairwise
graph. Other algorithms such as FastPD, FastCut, and α-exp are not applicable as none of the chain
edge potentials in the giant graph are semi-metric or submodular. For the MAJORITY version, we
compare CI against the stacking approach of Krishnan and Manning (2006).

We report results on three data sets—the Address data set consisting of roughly 400 non-US
postal addresses, the Cora data set (McCallum et al., 2000) containing 500 bibliographic records,
and the CoNLL’03 data set. The training splits were 30%, 10% and 100% respectively for the three

3124



COLLECTIVE INFERENCE FOR JOINT EXTRACTION WITH SYMMETRIC CLIQUE POTENTIALS

data sets, and the parameter λ for Potts was set to 0.2,1 and 0.05 using cross-validation on a held out
split. The MAJORITY parameterW was learnt generatively through label co-occurrence statistics in
the cliques present in the training data. We report the token-F1 scores as a measure of accuracy of
the various approaches.

Figure 5 reports the combined token-F1 over all labels except ‘Other’. Unless specified oth-
erwise, all the approaches post statistically significant gains over the base model. The accuracies
show only modest improvements over the base model. This is because our cliques are of a highly
limited form and so we cannot expect to correct too many errors using a collective model. We will
look at more complex cliques in Section 7.3. Coming back to Figure 5, for MAJORITY potentials,
CI is superior to the stacking based approach. The difference is statistically significant for Cora
and CoNLL’03. For the Potts version, TRW-S and CI provide similar gains over Address and Cora.
We could not run TRW-S on CoNLL’03, as the resulting graph was too big for the TRW-S code to
handle.

We now compare the different approaches on running time. In Figure 6 we plot the accuracy of
the two methods versus the number of iterations. CI achieves its best accuracy after just one round
of message passing, whereas TRW-S takes around 20 iterations. In terms of clock time, an iteration
of TRW-S costs ∼ 3.2s for CORA, and that of CI costs 3s, so CI is roughly an order of magnitude
faster than TRW-S for the same accuracy levels. The comparison was similar for the Address data
set.

Potential Model Addr Cora CoNLL
Base 81.5 88.9 87.0

Potts CI 81.9 89.7 88.8
TRW-S 81.9 89.7 -

Majority CI 82.2 89.6 88.8
Stacking 81.7∗ 87.5↓ 87.8

Figure 5: Token-F1 of various collective inference schemes. F1 averaged over five splits for Ad-
dress and Cora. ‘*’ and ↓ denote statistically insignificant difference and significant loss
over Base respectively.

7.3 Domain Adaptation

We move on to a generalization of our collective inference framework, and show that capturing
associativity of a richer set of properties can help us in domain adaptation. We focus on a citation
extraction task, where the aim is to adapt a sequential model across widely varying publications
pages of authors. Our data set consists of 433 bibliographic entries from the web-pages of 31 au-
thors, hand-labeled with 14 labels such as Title, Author, Venue, Location and Year. Bibliographic
entries across different authors differ in many aspects like label-ordering, missing labels, punctua-
tion, HTML formatting and bibliographic style.

A fraction of the 31 domains were used to train a baseline sequential model. The model was
trained with the LARank algorithm of Bordes et al. (2007), using the BCE encoding for the labels.
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Figure 6: F1 vs iterations for CI vs TRW-S on Cora and Address.

We used standard extraction features in a window around each token, along with label transition
features (Peng and McCallum, 2004).

For our collective framework, we used the following Markovian properties:

g1(x,y) = First non-Other label in y
g2(x,y) = Token before the Title segment in y
g3(x,y) = First non-Other label after Title in y
g4(x,y) = First non-Other label after Venue in y

Inside a domain, any one of the above properties will predominantly favor one value, for example,
g3 might favor the value ‘Author’ in one domain, and ‘Date’ in another. Thus these properties
encourage consistent labeling around the Title and Venue segments. We use Potts potential for each
property, setting λ= 1 using cross-validation.

We reiterate that there are no alternative collective inference schemes for this property-based
framework. This is primarily because other algorithms like TRW-S or ordinary belief propagation
cannot deal with property-based separators (ref. Section 6).

The performance results of CI with the above properties versus the baseline model are presented
in Figure 7. For the test domains, we report token-F1 of the important labels—Title, Author and
Venue. The accuracies are averaged over five trials. CI leads to upto 25% reduction over the base
test error for Venue and Title, labels for which we had defined related properties. The gain is
statistically significant (p < 0.05). Though the improvement is more prominent when only a few
domains are available for training, we continue to see an improvement even with more training
domains as there invariably are new styles in the test data. Figure 8 shows the error reduction on
individual test domains for one particular train-test split of five and 26 domains respectively. The
errors are computed from the combined token F1 scores of Title, Venue and Author. For some
domains the errors are reduced by more than 50%. Collective inference increases errors in only two
domains. Such an increase happens when most of the records in the domain take on wrong property
values, so collective inference ends up reinforcing those errors by wrongly biasing the remaining
minority of the records that have correct property values.

Finally, we mention that for this task, applying the classical collective inference setup with
cliques over word repetitions leads to very minor gains. This is because most of the word cliques
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already agree on their vertex labels under the base model, so collective inference with word cliques
does not add too much value. In this context, the generalized collective inference framework is
indeed a much more accurate mechanism for joint labeling.

Train Title Venue Author
(%) Base CI Base CI Base CI
5 70.7 74.8 58.8 62.5 74.1 74.3
10 78.0 82.1 69.2 72.2 75.6 75.9
20 85.8 88.6 76.7 78.9 80.7 80.7
30 91.7 93.0 81.5 82.6 87.7 88.0
50 92.3 94.2 83.5 84.5 89.4 90.0

Figure 7: Token-F1 of CI and Base

8. Related Work

We group the known approaches into various categories and compare them with our collective
inference framework.

8.1 Generic Collective Inference Approaches

Collective graphical models have been used to capture associativity in many text mining tasks such
as IE, entity labeling, and document classification (Sutton and McCallum, 2004; Finkel et al., 2005;
Bunescu and Mooney, 2004; Krishnan and Manning, 2006; Kulkarni et al., 2009; Chakrabarti et al.,
1998; Lu and Getoor, 2003; Taskar et al., 2004). However these models use generic algorithms
like ordinary belief propagation (Sutton and McCallum, 2004; Bunescu and Mooney, 2004; Taskar
et al., 2004), Gibbs sampling (Finkel et al., 2005), local search (Lu and Getoor, 2003) or multi-stage
schemes (Krishnan andManning, 2006). Our framework is general enough to support various clique
potentials, yet exploits the structure of the potential to efficiently compute a full set of messages for
collective inference.

Figure 8: Per-domain F1-error
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8.2 MAP Inference on Pairwise Models

We provide only a brief overview of the many recent advances in inference over pairwise graphs
since our main interest lies in higher-order potentials. These approaches fall under two broad cat-
egories. The first category has message passing algorithms that solve the dual of an LP relaxation,
including TRW-S (Kolmogorov, 2006), max-sum diffusion (Werner, 2009), and other convergent
alternatives (Meltzer et al., 2009; Ravikumar et al., 2010). These LP relaxations, that only im-
pose local pairwise constraints, have been tightened in various ways using cycle and higher order
marginal constraints (Sontag et al., 2008; Werner, 2009; Komodakis and Paragios, 2008; Kumar
et al., 2009). The second category includes combinatorial algorithms based on graph-cuts. For bi-
nary labels, two well known methods are the graph-cut method for submodular potentials (Boykov
et al., 2001) and the Quadratic Pseudo-Boolean Optimization method (QPBO) for getting a partial
solution for arbitrary potentials (Boros and Hammer, 2002; Kovtun, 2003; Kolmogorov and Rother,
2007). For multi-label models with metric edge potentials, the α-expansion algorithm of Boykov
et al. (2001) provides a 1/2-approximation. α-expansion has subsequently been generalized, ana-
lyzed and optimized (Veksler, 2007; Kumar and Torr, 2008b; Lempitsky et al., 2007; Komodakis and
Tziritas, 2005; Komodakis et al., 2007b; Alahari et al., 2008). In particular, the FastPD algorithm of
Komodakis et al. (2007b) is a primal-dual generalization which works even with semi-metric edge
potentials. However our chain edge potentials are not even semi-metric. Similarly the partial opti-
mality guarantee of QPBO is of limited appeal, as our model has a large fraction of non-submodular
edges.

8.3 Alternate Collective Inference Frameworks

Recently, two inference frameworks, the LP relaxation ofWerner (2008) and the dual-decomposition
framework of Komodakis and Paragios (2009) have been extended to handle higher-order potentials.
In the LP relaxation framework, a max-sum diffusion algorithm is used to solve the dual and each
step of the algorithm requires the computation of max-marginals from the higher-order cliques. In
the dual-decomposition framework, the model is decomposed into tractable components and the
component MAPs or marginals are used to construct a sub-gradient of the collective inference LP.
Like cluster message passing, these frameworks also allow the plugging-in of arbitrary algorithms
for computing max-marginals at each clique. Thus, our clique inference algorithms can be used un-
changed in these two frameworks. However, while these alternative frameworks provide interesting
new ways of looking at inference, they do not necessarily provide faster convergence guarantees.
For example, as noted in Werner (2009), max-sum diffusion converges very slowly as compared to
TRW-S even for binary potentials. We showed in Section 7.1 that dual decomposition is significantly
slower than α-pass when used for clique inference.

8.4 Transforming Higher-Order Cliques to Pairwise Potentials

A lot of recent work on higher-order clique potentials in vision deals with reducing these potentials
to pairwise and then applying α-expansion or QPBO as applicable (Ishikawa, 2009; Kohli et al.,
2008; Ramalingam et al., 2008; Rother et al., 2009; Kohli and Kumar, 2010). These transformations
add auxiliary nodes, which are few in number when the potentials are truncated and sparse (Rother
et al., 2009). However our potentials are dense and not truncated. Consequently these techniques
will introduce too many extra nodes, for example, exponential in n (Ishikawa, 2009), or O(mn)
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(Kohli et al., 2008). Similarly, the method of Kohli and Kumar (2010) will expand the node set by
a factor equal to the number of functions used to approximate our potential (and this can be quite
large). Too many auxiliary nodes makes inference using α-expansion/QPBO quite expensive. In
contrast we perform clique inference without any transformation, and our clique inference bounds
are better than the alternatives.

We also note that there are transformations that extend α-expansion to metric potentials over
triangles (Kolmogorov and Zabih, 2004), and truncated versions of Potts potentials over arbitrarily
large cliques (Kohli et al., 2007, 2009). Our symmetric potentials are not truncated so the same
transformations cannot be applied to our model.

8.5 Special Higher-Order Potentials

An orthogonal body of work deals with special higher-order potentials that allow efficient message
computation, such as linear-constrained potentials (Potetz and Lee, 2008), convex and order-based
potentials (Tarlow et al., 2010), and decomposable potentials (Chen et al., 2008). Although our
cluster graph can seamlessly incorporate these potentials and their clique inference algorithms, it is
fruitful to compare some of these potentials with ours. Linear-constrained potentials assume that
the labels are numeric and the potential’s value depends only on a linear combination of node labels.
Such potentials allow O(nm2) message computation using clever variable substitution during belief
propagation. When we have only two labels, our symmetric potentials can be encoded as linear-
constrained potentials, thus leading to O(n) clique inference as compared to O(n logn) using α-
pass. However, this encoding does not have an inexpensive generalization to discrete multi-label
cliques. Also, representing multi-label potentials using a collection of linear-constrained potentials
can make clique inference exponential in m (Potetz and Lee, 2008). Chen et al. (2008) propose
decomposable potentials that are sums of a few sub-potentials, each of which is a product of low-
arity functions. This includes the Voting Potential, which combines associativity scores additively
along edges unlike multiplicatively as in Potts.3 For some decomposable potentials, including the
Voting Potential, exact messages can be computed in closed form.

Symmetric potentials have been used in special ways in other inference tasks too. Jaimovich
et al. (2007) proposed a framework for inference over relational data where symmetric potentials
are used to collapse large instance-level factor graphs into template-level graphs. Similarly, Milch
et al. (2008) proposes lifting techniques with counting potentials. In our framework we have a mix
of symmetric potentials, individual node and non-symmetric edge potentials. We therefore cannot
perform any kind of collapsing or lifted inference.

9. Conclusions and Future Work

We presented a general collective inference framework that exploits the associativity of a rich set of
properties of instances and their labelings. We argued that cluster message passing, which exploits
the special associative structure and computes a complete set of messages, is a more principled in-
ference mechanism than other cluster-oblivious or message-oblivious approaches. We demonstrated
the effectiveness of the framework on a real-life domain adaptation task.

3. Although Potts decomposes additively along the clique edges, the probability P(y|x) is exponential in the clique
potential term, which makes it multiplicative.
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We presented potential-specific combinatorial algorithms for message computation in associa-
tive cliques. We presented the α-pass algorithm which is sub-quadratic in the clique size and gives
the exact MAP for all MAX clique potentials, and any symmetric potential with two labels, and a
tight approximation guarantee of 1315 on the Potts potential. We showed that α-pass is significantly
faster while providing the same or better accuracy than alternatives such as TRW-S, graph-cuts, and
their recently proposed improved versions. We gave a Lagrangian relaxation method for generating
messages from a clique with majority potential. This algorithm is at least two orders of magnitude
faster than an exact algorithm and more accurate than other approximate approaches.

Our future work includes automated property induction to figure out rich associative properties
in unlabeled domains. We are also interested in applying symmetric potentials to general dense
subgraphs instead of cliques. We believe that this might help in semi-supervised learning tasks.

Appendix A. Proofs

Theorem 7 F(ŷ)≥ 13
15F(y

∗). Further, this ratio is tight.

Proof The proof is by contradiction. Suppose there is an instance where F(ŷ) < 13
15F(y

∗). Wlog
assume that λ = 1 and n1 ≥ n2 ≥ . . . ≥ nk > 0, (2 ≤ k ≤ m) be the non-zero counts in the optimal
solution and let ψ∗ be its vertex score. Thus F(y∗) = ψ∗+n21+n22+ . . .+n2k .

Now, F(ŷ) is at least ψ∗+ n21 (ref. Claim 5.1). This implies
ψ∗+n21

ψ∗+n21+...+n2k
≤ 13

15 , that is, 2(ψ
∗+

n21)< 13(n22+ . . .+n2k) or

ψ∗ <
13
2
(n22+ . . .+n2k)−n21. (18)

Since k labels have non-zero counts, and the vertex score is ψ∗, at least ψ∗/k of the vertex score
is assigned to one label. Considering a solution where all vertices are assigned to this label, we get
F(ŷ)≥ ψ∗/k+n2.

Therefore F(y∗)> 15/13(n2+ψ∗/k).
Since F(y∗) = ψ∗+n21+ . . .+n2k , we get:

ψ∗ >
15kn2−13k(n21+ . . .+n2k)

13k−15
. (19)

We show that Equations 18 and 19 contradict each other. It is sufficient to show that for all
n1 ≥ . . .≥ nk ≥ 1,

15kn2−13k(n21+ . . .n2k)
13k−15

≥
13
2
(n22+ . . .+n2k)−n21.

Simplifying, this is equivalent to

kn2−
13
2
(k−1)(n22+ . . .+n2k)−n21 ≥ 0.

Consider a sequence n1, . . . ,nk for which the expression on the left hand side is minimized. If
ni > ni+1 then we must have nl = 1 ∀l ≥ i+2. Otherwise, replace ni+1 by ni+1+1 and decrement
n j by 1, where j is the largest index for which n j > 1. This gives a new sequence for which the
value of the expression is smaller. Therefore the sequence must be of the form ni = n1 for 1≤ i< l
and ni = 1 for i > l, for some l ≥ 2. Further, considering the expression as a function of nl , it is
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quadratic with a negative second derivative. So the minimum occurs at one of the extreme values
nl = 1 or nl = n1. Therefore we only need to consider sequences of the form n1, . . . ,n1,1, . . . ,1 and
show that the expression is non-negative for these.

In such sequences, differentiating with respect to n1, the derivative is positive for n1 ≥ 1, which
means that the expression is minimized for the sequence 1, . . . ,1. Now it is easy to verify that it is
true for such sequences. The expression is zero only for the sequence 1,1,1, which gives the worst
case example.

We now illustrate the tightness of this ratio through a pathological instance where the solution
of α-pass is exactly 13

15 of the optimal. The clique is constructed as follows. Let m = n+ 3 and
λ = 1. For the first n/3 vertices let ψu1 = 4n/3, for the next n/3 vertices let ψu2 = 4n/3, and
for the remaining n/3 let ψu3 = 4n/3. Also for all vertices let ψu(u+3) = 4n/3. All other vertex
scores are zero. The optimal solution is to assign the first three labels n/3 vertices each, yielding a
score of 4n2/3+3( n3)

2 = 5n2/3. The first α-pass with α= 1, where initially a vertex u is assigned
its vertex optimal label u+ 3, will assign the first n/3 vertices label 1. This keeps the sum of to-
tal vertex scores unchanged at 4n2/3, the clique score increases to n2/9+ 2n/3 and total score =
4n2/3+ n2/9+ 2n/3 = 13n2/9+ 2n/3. No subsequent combinations with any other label α can
improve this score. Thus, the score of α-pass is 1315 of the optimal in the limit n→ ∞.

Theorem 8 Generalized α-pass enjoys an approximation bound of 89 , that is, F(ŷ)≥
8
9F(y

∗).

Proof This bound is achieved if we run the algorithm with q = 2. Let the optimal solution have
counts n1 ≥ n2 ≥ . . .≥ nm and let its vertex score be ψ∗. For simplicity let a= n1/n, b= n2/n and
c= ψ∗/n2. Then F(y∗)/n2 ≤ c+a2+b(1−a), F(ŷ)/n2 ≥ c+a2 and F(ŷ)/n2 ≥ c+ (a+b)2

2 .
Case 1: a2 ≥ (a+b)2

2 . Then F(y∗)−F(ŷ) ≤ bn2(1− a). For a given value of a, this is maximized
when b is as large as possible. For Case 1 to hold, the largest possible value of b is given by
a2 = (a+b)2

2 , which gives b = a(
√
2− 1). Therefore F(y∗)−F(ŷ) ≤ n2(

√
2−1)
4 < n2

8 ≤ F(ŷ)
8 , that is,

F(ŷ)≥ 8
9F(y

∗).
Case 2: a2 ≤ (a+b)2

2 . This holds if b≥ (
√
2−1)a. Since a+b≤ 1, this is possible only if a≤ 1/

√
2.

Now F(y∗)−F(ŷ)
n2 ≤ a2+b(1−a)− (a+b)2/2= a2−4ab+2b−b2

2 .
For a given a, this expression is quadratic in b with a negative second derivative. This is max-

imized (by differentiating) for b = 1− 2a. Since b ≤ a, this value is possible only if a ≥ 1/3.
Similarly, for case 2 to hold with this value of b, we must have a≤

√
2−1. Substituting this value

of b, the difference in scores is 5a2−4a+12 .
Since this is quadratic with a positive second derivative, it is maximized when a has either the

minimum or maximum possible value. For a = 1/3 this value is 1/9, while for a =
√
2− 1, it is

10−7
√
2. In both cases, it is less than 1/8.

If a ≤ 1/3 the maximum is achieved when b = a. In this case, the score difference is at most
(a−2a2) which is maximized for a= 1/4, where the value is 1/8. (This is the worst case).

For
√
2− 1 < a ≤ 1/

√
2, the maximum will occur for b = (

√
2− 1)a. Substituting this value

for b, the score difference is (
√
2−1)(a−a2), which is maximized for a = 1/2, where its value is

(
√
2−1)/4< 1/8.
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Abstract
With the goal to generate more scalable algorithms with higher efficiency and fewer open parame-
ters, reinforcement learning (RL) has recently moved towards combining classical techniques from
optimal control and dynamic programming with modern learning techniques from statistical esti-
mation theory. In this vein, this paper suggests to use the framework of stochastic optimal control
with path integrals to derive a novel approach to RL with parameterized policies. While solidly
grounded in value function estimation and optimal control based on the stochastic Hamilton-Jacobi-
Bellman (HJB) equations, policy improvements can be transformed into an approximation problem
of a path integral which has no open algorithmic parameters other than the exploration noise. The
resulting algorithm can be conceived of as model-based, semi-model-based, or even model free,
depending on how the learning problem is structured. The update equations have no danger of
numerical instabilities as neither matrix inversions nor gradient learning rates are required. Our
new algorithm demonstrates interesting similarities with previous RL research in the framework
of probability matching and provides intuition why the slightly heuristically motivated probability
matching approach can actually perform well. Empirical evaluations demonstrate significant per-
formance improvements over gradient-based policy learning and scalability to high-dimensional
control problems. Finally, a learning experiment on a simulated 12 degree-of-freedom robot dog
illustrates the functionality of our algorithm in a complex robot learning scenario. We believe that
Policy Improvement with Path Integrals (PI2) offers currently one of the most efficient, numeri-
cally robust, and easy to implement algorithms for RL based on trajectory roll-outs.
Keywords: stochastic optimal control, reinforcement learning, parameterized policies

1. Introduction

While reinforcement learning (RL) is among the most general frameworks of learning control to cre-
ate truly autonomous learning systems, its scalability to high-dimensional continuous state-action
systems, for example, humanoid robots, remains problematic. Classical value-function based meth-
ods with function approximation offer one possible approach, but function approximation under the
non-stationary iterative learning process of the value-function remains difficult when one exceeds
about 5-10 dimensions. Alternatively, direct policy learning from trajectory roll-outs has recently
made significant progress (Peters, 2007), but can still become numerically brittle and full of open
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tuning parameters in complex learning problems. In new developments, RL researchers have started
to combine the well-developed methods from statistical learning and empirical inference with clas-
sical RL approaches in order to minimize tuning parameters and numerical problems, such that ulti-
mately more efficient algorithms can be developed that scale to significantly more complex learning
system (Dayan and Hinton, 1997; Koeber and Peters, 2008; Peters and Schaal, 2008c; Toussaint
and Storkey, 2006; Ghavamzadeh and Yaakov, 2007; Deisenroth et al., 2009; Vlassis et al., 2009;
Jetchev and Toussaint, 2009).

In the spirit of these latter ideas, this paper addresses a new method of probabilistic reinforce-
ment learning derived from the framework of stochastic optimal control and path integrals, based on
the original work of Kappen (2007) and Broek et al. (2008). As will be detailed in the sections be-
low, this approach makes an appealing theoretical connection between value function approximation
using the stochastic HJB equations and direct policy learning by approximating a path integral, that
is, by solving a statistical inference problem from sample roll-outs. The resulting algorithm, called
Policy Improvement with Path Integrals (PI2), takes on a surprisingly simple form, has no open
algorithmic tuning parameters besides the exploration noise, and it has numerically robust perfor-
mance in high dimensional learning problems. It also makes an interesting connection to previous
work on RL based on probability matching (Dayan and Hinton, 1997; Peters and Schaal, 2008c;
Koeber and Peters, 2008) and motivates why probability matching algorithms can be successful.

This paper is structured into several major sections:

• Section 2 addresses the theoretical development of stochastic optimal control with path in-
tegrals. This is a fairly theoretical section. For a quick reading, we would recommend Sec-
tion 2.1 for our basic notation, and Table 1 for the final results. Exposing the reader to a
sketch of the details of the derivations opens the possibility to derive path integral optimal
control solutions for other dynamical systems than the one we address in Section 2.1.
The main steps of the theoretical development include:

– Problem formulation of stochastic optimal control with the stochastic Hamilton-Jacobi-
Bellman (HJB) equation

– The transformation of the HJB into a linear PDE
– The generalized path integral formulation for control systems with controlled and un-
controlled differential equations

– General derivation of optimal controls for the path integral formalism
– Path integral optimal control applied to special cases of control systems

• Section 3 relates path integral optimal control to reinforcement learning. Several main issues
are addressed:

– Reinforcement learning with parameterized policies
– Dynamic Movement Primitives (DMP) as a special case of parameterized policies,
which matches the problem formulation of path integral optimal control.

– Derivation of Policy Improvement with Path Integrals (PI2), which is an application of
path integral optimal control to DMPs.

• Section 4 discusses related work.
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• Section 5 illustrates several applications of PI2 to control problems in robotics.

• Section 6 addresses several important issues and characteristics of RL with PI2.

2. Stochastic Optimal Control with Path Integrals

The goal in stochastic optimal control framework is to control a stochastic dynamical system while
minimizing a performance criterion. Therefore, stochastic optimal control can be thought as a con-
strained optimization problem in which the constrains corresponds to stochastic dynamical systems.
The analysis and derivations of stochastic optimal control and path integrals in the next sections rely
on the Bellman Principle of optimality (Bellman and Kalaba, 1964) and the HJB equation.

2.1 Stochastic Optimal Control Definition and Notation

For our technical developments, we will use largely a control theoretic notation from trajectory-
based optimal control, however, with an attempt to have as much overlap as possible with the
standard RL notation (Sutton and Barto, 1998). Let us define a finite horizon cost function for a
trajectory τi (which can also be a piece of a trajectory) starting at time ti in state xti and ending at
time1 tN

R(τi) = φtN +
∫ tN

ti
rt dt, (1)

with φtN = φ(xtN ) denoting a terminal reward at time tN and rt denoting the immediate cost at time
t. In stochastic optimal control (Stengel, 1994), the goal is to find the controls ut that minimize the
value function:

V (xti) =Vti =minuti:tN
Eτi [R(τi)] , (2)

where the expectation Eτi [.] is taken over all trajectories starting at xti . We consider the rather
general class of control systems:

ẋt = f(xt , t)+G(xt)(ut + εt) = ft +Gt (ut + εt) , (3)

with xt ∈ℜn×1 denoting the state of the system, Gt =G(xt) ∈ℜn×p the control matrix, ft = f(xt) ∈
ℜn×1 the passive dynamics, ut ∈ℜp×1 the control vector and εt ∈ℜp×1 Gaussian noise with vari-
ance Σε. As immediate cost we consider

rt = r(xt ,ut , t) = qt +
1
2
uTt Rut , (4)

where qt = q(xt , t) is an arbitrary state-dependent cost function, and R is the positive semi-definite
weight matrix of the quadratic control cost. The stochastic HJB equation (Stengel, 1994; Fleming
and Soner, 2006) associated with this stochastic optimal control problem is expressed as follows:

−∂tVt =minu

(

rt +(∇xVt)TFt +
1
2
trace

(

(∇xxVt)GtΣεGT
t
)

)

, (5)

1. If we need to emphasize a particular time, we denote it by ti, which also simplifies a transition to discrete time
notation later. We use t without subscript when no emphasis is needed when this “time slice” occurs, t0 for the start
of a trajectory, and tN for the end of a trajectory.
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where Ft is defined as Ft = f(xt , t)+G(xt)ut . To find the minimum, the cost function (4) is
inserted into (5) and the gradient of the expression inside the parenthesis is taken with respect to
controls u and set to zero. The corresponding optimal control is given by the equation:

u(xt) = ut =−R−1GT
t (∇xtVt).

Substitution of the optimal control above, into the stochastic HJB (5), results in the following
nonlinear and second order Partial Differential Equation (PDE):

−∂tVt = qt +(∇xVt)T ft −
1
2
(∇xVt)TGtR−1GT

t (∇xVt)+
1
2
trace

(

(∇xxVt)GtΣεGT
t
)

.

The ∇x and ∇xx symbols refer to the Jacobian and Hessian, respectively, of the value function
with respect to the state x, while ∂t is the partial derivative with respect to time. For notational
compactness, we will mostly use subscripted symbols to denote time and state dependencies, as
introduced in the equations above.

2.2 Transformation of HJB into a Linear PDE

In order to find a solution to the PDE above, we use a exponential transformation of the value
function:

Vt =−λ logΨt .

Given this logarithmic transformation, the partial derivatives of the value function with respect to
time and state are expressed as follows:

∂tVt =−λ
1
Ψt
∂tΨt ,

∇xVt =−λ
1
Ψt
∇xΨt ,

∇xxVt = λ
1
Ψ2t

∇xΨt ∇xΨ
T
t −λ

1
Ψt
∇xxΨt .

Inserting the logarithmic transformation and the derivatives of the value function we obtain:

λ
Ψt
∂tΨt = qt −

λ
Ψt

(∇xΨt)
T ft −

λ2

2Ψ2t
(∇xΨt)

TGtR−1GT
t (∇xΨt)+

1
2
trace(Γ) , (6)

where the term Γ is expressed as:

Γ=

(

λ
1
Ψ2t

∇xΨt ∇xΨT
t −λ

1
Ψt
∇xxΨt

)

GtΣεGT
t .

The trace of Γ is therefore:

trace(Γ) = λ
1
Ψ2

trace
(

∇xΨ
T
t GtΣεGt∇xΨt

)

−λ
1
Ψt
trace

(

∇xxΨtGtΣεGT
t
)

. (7)
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Comparing the underlined terms in (6) and (7), one can recognize that these terms will cancel
under the assumption of λR−1 = Σε, which implies the simplification:

λGtR−1GT
t =GtΣεGT

t = Σ(xt) = Σt . (8)

The intuition behind this assumption (cf. also Kappen, 2007; Broek et al., 2008) is that, since the
weight control matrix R is inverse proportional to the variance of the noise, a high variance control
input implies cheap control cost, while small variance control inputs have high control cost. From
a control theoretic stand point such a relationship makes sense due to the fact that under a large
disturbance (= high variance) significant control authority is required to bring the system back to a
desirable state. This control authority can be achieved with corresponding low control cost in R.

With this simplification, (6) reduces to the following form

−∂tΨt =−
1
λ
qtΨt + fTt (∇xΨt)+

1
2
trace

(

(∇xxΨt)GtΣεGT
t
)

, (9)

with boundary condition: ΨtN = exp
(

− 1
λφtN

)

. The partial differential equation (PDE) in (9) corre-
sponds to the so called Chapman Kolmogorov PDE, which is of second order and linear. Analytical
solutions of (9) cannot be found in general for general nonlinear systems and cost functions. How-
ever, there is a connection between solutions of PDEs and their representation as stochastic differ-
ential equation (SDEs), that is mathematically expressed by the Feynman-Kac formula (Øksendal,
2003; Yong, 1997). The Feynman-Kac formula (see appendix B) can be used to find distributions
of random processes which solve certain SDEs as well as to propose numerical methods for solving
certain PDEs. Applying the Feynman-Kac theorem, the solution of (9) is:

Ψti = Eτi
(

ΨtN e
−
∫ tN
ti

1
λqtdt

)

= Eτi

[

exp
(

−
1
λ
φtN −

1
λ

∫ tN

ti
qt dt

)]

. (10)

Thus, we have transformed our stochastic optimal control problem into the approximation prob-
lem of a path integral. With a view towards a discrete time approximation, which will be needed for
numerical implementations, the solution (10) can be formulated as:

Ψti = lim
dt→0

∫
p(τi|xi)exp

[

−
1
λ

(

φtN +
N−1

∑
j=i

qt jdt

)]

dτi, (11)

where τi = (xti , .....,xtN) is a sample path (or trajectory piece) starting at state xti and the term
p(τi|xi) is the probability of sample path τi conditioned on the start state xti . Since Equation (11)
provides the exponential cost to go Ψti in state xti , the integration above is taken with respect to
sample paths τi = (xti ,xti+1 , .....,xtN). The differential term dτi is defined as dτi = (dxti , .....,dxtN ).
Evaluation of the stochastic integral in (11) requires the specification of p(τi|xi), which is the topic
of our analysis in the next section.

2.3 Generalized Path Integral Formulation

To develop our algorithms, we will need to consider a more general development of the path integral
approach to stochastic optimal control than presented in Kappen (2007) and Broek et al. (2008). In
particular, we have to address that in many stochastic dynamical systems, the control transition
matrix Gt is state dependent and its structure depends on the partition of the state in directly and
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non-directly actuated parts. Since only some of the states are directly controlled, the state vector
is partitioned into x = [x(m)T x(c)T ]T with x(m) ∈ ℜk×1 the non-directly actuated part and x(c) ∈
ℜl×1the directly actuated part. Subsequently, the passive dynamics term and the control transition
matrix can be partitioned as ft = [f(m)t

T
f(c)t

T
]T with fm ∈ℜk×1, fc ∈ℜl×1 and Gt = [0k×p G(c)

t
T
]T

with G(c)
t ∈ℜl×p. The discretized state space representation of such systems is given as:

xti+1 = xti + ftidt+Gti

(

utidt+
√
dtεti

)

,

or, in partitioned vector form:
(

x(m)ti+1
x(c)ti+1

)

=

(

x(m)ti
x(c)ti

)

+

(

f(m)ti
f(c)ti

)

dt+

(

0k×p
G(c)
ti

)

(

utidt+
√
dtεti

)

. (12)

Essentially the stochastic dynamics are partitioned into controlled equations in which the state
x(c)ti+1 is directly actuated and the uncontrolled equations in which the state x

(m)
ti+1 is not directly actu-

ated. Since stochasticity is only added in the directly actuated terms (c) of (12), we can develop
p(τi|xi) as follows.

p(τi|xti) = p(τi+1|xti)
= p(xtN , .....,xti+1|xti)
= ΠN−1

j=i p
(

xt j+1 |xt j
)

,

where we exploited the fact that the start state xti of a trajectory is given and does not contribute
to its probability. For systems where the control has lower dimensionality than the state (12), the
transition probabilities p

(

xt j+1 |xt j
)

are factorized as follows:

p
(

xt j+1 |xt j
)

= p
(

x(m)t j+1 |xt j
)

· p
(

x(c)t j+1 |xt j
)

= p
(

x(m)t j+1 |x
(m)
t j ,x(c)t j

)

· p
(

x(c)t j+1 |x
(m)
t j ,x(c)t j

)

∝ p
(

x(c)t j+1 |xt j
)

, (13)

where we have used the fact that p
(

x(m)ti+1 |x
(m)
ti ,x(c)ti

)

is the Dirac delta function, since x(m)t j+1 can be

computed deterministically from x(m)t j ,x(c)t j . For all practical purposes,2 the transition probability of
the stochastic dynamics is reduced to the transition probability of the directly actuated part of the
state:

p(τi|xti) =ΠN−1
j=i p

(

xt j+1 |xt j
)

∝ ΠN−1
j=i p

(

x(c)t j+1 |xt j
)

. (14)

Since we assume that the noise ε is zero mean Gaussian distributed with variance Σε, where
Σε ∈ℜl×l , the transition probability of the directly actuated part of the state is defined as:3

p
(

x(c)t j+1 |xt j
)

=
1

(

(2π)l · |Σt j |
)1/2 exp

(

−
1
2

-

-

-
x(c)t j+1 −x

(c)
t j − f(c)t j dt

-

-

-

2

Σ−1
t j

)

, (15)

2. The delta functions will all integrate to 1 in the path integral.
3. For notational simplicity, we write weighted square norms (or Mahalanobis distances) as vTMv= ‖v‖2M.
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where the covariance Σt j ∈ ℜl×l is expressed as Σt j = G
(c)
t j ΣεG

(c)
t j

T
dt. Combining (15) and (14)

results in the probability of a path expressed as:

p(τi|xti) ∝
1

ΠN−1
j=i

(

(2π)l‖Σt j |
)1/2 exp

(

−
1
2

N−1

∑
j=1

-

-

-
x(c)t j+1 −x

(c)
t j − f(c)t j dt

-

-

-

2

Σ−1
t j

)

.

Finally, we incorporate the assumption (8) about the relation between the control cost and the vari-
ance of the noise, which needs to be adjusted to the controlled space as Σt j = G

(c)
t j ΣεG

(c)
t j

T
dt =

λG(c)
t j R−1G(c)

t j
T
dt = λHt j dt with Ht j =G

(c)
t j R−1G(c)

t j
T
. Thus, we obtain:

p(τi|xti) ∝
1

ΠN−1
j=i

(

(2π)l|Σt j |
)1/2 exp



−
1
2λ

N−1

∑
j=i

-

-

-

-

-

x(c)t j+1 −x
(c)
t j

dt
− f(c)t j

-

-

-

-

-

2

H−1
t j

dt



.

With this formulation of the probability of a trajectory, we can rewrite the the path integral (11)
as:

Ψti = lim
dt→0

∫ exp



− 1
λ



φtN +∑N−1
j=i qt jdt+

1
2 ∑

N−1
j=i

-

-

-

-

x(c)t j+1−x
(c)
t j

dt − f(c)t j

-

-

-

-

2

H−1
t j

dt









ΠN−1
j=i

(

(2π)l/2|Σt j |1/2
) dτ(c)i

= lim
dt→0

∫ 1
D(τi)

exp
(

−
1
λ
S(τi

)

dτ(c)i , (16)

where, we defined

S(τi) = φtN +
N−1

∑
j=i

qt jdt+
1
2

N−1

∑
j=i

-

-

-

-

-

x(c)t j+1 −x
(c)
t j

dt
− f(c)t j

-

-

-

-

-

2

H−1
t j

dt,

and
D(τi) =ΠN−1

j=i

(

(2π)l/2|Σt j |1/2
)

.

Note that the integration is over dτ(c)i =
(

dx(c)ti , .....,dx(c)tN
)

, as the non-directly actuated states
can be integrated out due to the fact that the state transition of the non-directly actuated states is
deterministic, and just added Dirac delta functions in the integral (cf. Equation (13)). Equation (16)
is written in a more compact form as:

Ψti = lim
dt→0

∫
exp

(

−
1
λ
S(τi)− logD(τi)

)

dτ(c)i

= lim
dt→0

∫
exp

(

−
1
λ
Z(τi)

)

dτ(c)i , (17)

where Z(τi) = S(τi)+λ logD(τi). It can be shown that this term is factorized in path dependent
and path independent terms of the form:
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Z(τi) = S̃(τi)+
λ(N− i)l

2
log(2πdtλ) ,

where S̃(τi) = S(τi) + λ
2 ∑

N−1
j=i log |Ht j |. This formula is a required step for the derivation of

optimal controls in the next section. The constant term λ(N−i)l
2 log(2πdtλ) can be the source of

numerical instabilities especially in cases where fine discretization dt of stochastic dynamics is
required. However, in the next section, and in a great detail in Appendix A, lemma 1, we show how
this term drops out of the equations.

2.4 Optimal Controls

For every moment of time, the optimal controls are given as uti = −R−1GT
ti (∇xtiVti). Due to the

exponential transformation of the value function, the equation of the optimal controls can be written
as

uti = λR−1Gti
∇xtiΨti

Ψti
.

After substituting Ψti with (17) and canceling the state independent terms of the cost we have:

uti = lim
dt→0






λR−1GT

ti

∇x(c)ti

(∫
e−

1
λ S̃(τi)dτ(c)i

)

∫
e−

1
λ S̃(τi)dτ(c)i






,

Further analysis of the equation above leads to a simplified version for the optimal controls as

uti =
∫
P(τi)uL (τi)dτ(c)i , (18)

with the probability P(τi) and local controls uL (τi) defined as

P(τi) = e−
1
λ S̃(τi)∫

e−
1
λ S̃(τi)dτi

(19)

uL (τi) =−R−1G(c)
ti

T lim
dt→0

(

∇x(c)ti
S̃(τi)

)

.

The path cost S̃(τi) is a generalized version of the path cost in Kappen (2005a) and Kappen (2007),
which only considered systems with state independent control transition4 Gti . To find the local
controls uL (τi) we have to calculate the limdt→0∇x(c)ti

S̃(τi). Appendix A and more precisely lemma
2 shows in detail the derivation of the final result:

lim
dt→0

(

∇x(c)ti
S̃(τi)

)

=−H−1
ti

(

G(c)
ti εti −bti

)

,

where the new term bti is expressed as bti = λHtiΦti and Φti ∈ℜl×1 is a vector with the jth element
defined as:

(Φti) j =
1
2
trace

(

H−1
ti

(

∂
[x(c)ti ] j

Hti

))

.

4. More precisely if G(c)
ti =G(c) then the term λ

2 ∑
N−1
j=i log |Ht j | disappears since it is state independent and it appears in

both nominator and denominator in (19). In this case, the path cost is reduced to S̃(τi) = S(τi).
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The local control can now be expressed as:

uL(τi) = R−1G(c)
ti

TH−1
ti

(

G(c)
ti εti −bti

)

,

By substituting Hti = G
(c)
ti R−1G(c)

ti
T in the equation above, we get our main result for the local

controls of the sampled path for the generalized path integral formulation:

uL(τi) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

. (20)

The equations in boxes (18), (19) and (20) form the solution for the generalized path integral
stochastic optimal control problem. Given that this result is of general value and constitutes the
foundation to derive our reinforcement learning algorithm in the next section, but also since many
other special cases can be derived from it, we summarized all relevant equations in Table 1.

The Given components of Table 1 include a model of the system dynamics, the cost function,
knowledge of the system’s noise process, and a mechanism to generate trajectories τi. It is important
to realize that this is a model-based approach, as the computations of the optimal controls requires
knowledge of εi. εi can be obtained in two ways. First, the trajectories τi can be generated purely
in simulation, where the noise is generated from a random number generator. Second, trajectories
could be generated by a real system, and the noise εi would be computed from the difference be-
tween the actual and the predicted system behavior, that is, G(c)

ti εi = ẋti − ˆ̇xti = ẋti − (fti +Gtiuti).
Computing the prediction ˆ̇xti also requires a model of the system dynamics.

Previous results in Kappen (2005a), Kappen (2007), Kappen (2005b) and Broek et al. (2008)
are special cases of our generalized formulation. In the next section we show how our generalized
formulation is specialized to different classes of stochastic dynamical systems and we provide the
corresponding formula of local controls for each class.

2.5 Special Cases

The purpose of this section is twofold. First, it demonstrates how to apply the path integral approach
to specialized forms of dynamical systems, and how the local controls in (20) simplify for these
cases. Second, this section prepares the special case which we will need for our reinforcement
learning algorithm in Section 3.

2.5.1 SYSTEMS WITH ONE DIMENSIONAL DIRECTLY ACTUATED STATE

The generalized formulation of stochastic optimal control with path integrals in Table 1 can be
applied to a variety of stochastic dynamical systems with different types of control transition matri-
ces. One case of particular interest is where the dimensionality of the directly actuated part of the
state is 1D, while the dimensionality of the control vector is 1D or higher dimensional. As will be
seen below, this situation arises when the controls are generated by a linearly parameterized func-
tion approximator. The control transition matrix thus becomes a row vector G(c)

ti = g(c)Tti ∈ ℜ1×p.
According to (20), the local controls for such systems are expressed as follows:

uL(τi) =
R−1g(c)ti

g(c)Tti R−1g(c)ti

(

g(c)Tti εti −bti
)

.
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• Given:

– The system dynamics ẋt = ft +Gt (ut + εt) (cf. 3)
– The immediate cost rt = qt + 1

2u
T
t Rut (cf. 4)

– A terminal cost term φtN (cf. 1)
– The variance Σε of the mean-zero noise εt
– Trajectory starting at ti and ending at tN : τi = (xti , .....,xtN)
– A partitioning of the system dynamics into (c) controlled and (m) uncontrolled equa-
tions, where n= c+m is the dimensionality of the state xt (cf. Section 2.3)

• Optimal Controls:

– Optimal controls at every time step ti: uti =
∫
P(τi)u(τi)dτ(c)i

– Probability of a trajectory: P(τi) = e−
1
λ S̃(τi)∫

e−
1
λ S̃(τi)dτi

– Generalized trajectory cost: S̃(τi) = S(τi)+ λ
2 ∑

N−1
j=i log |Ht j | where

∗ S(τi) = φtN +∑N−1
j=i qt jdt+

1
2 ∑

N−1
j=i

-

-

-

-

x(c)t j+1−x
(c)
t j

dt − f(c)t j

-

-

-

-

2

H−1
t j

dt

∗ Ht j =G
(c)
t j R−1G(c)

t j
T

– Local Controls: uL(τi) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

where

∗ bti = λHtiΦti

∗ [Φti ] j =
1
2 trace

(

H−1
ti

(

∂
[x(c)ti ] j

Hti

))

Table 1: Summary of optimal control derived from the path integral formalizm.

Since the directly actuated part of the state is 1D, the vector x(c)ti collapses into the scalar x(c)ti
which appears in the partial differentiation above. In the case that g(c)ti does not depend on x(c)ti , the
differentiation with respect to x(c)ti results to zero and the the local controls simplify to:

uL(τi) =
R−1g(c)ti g

(c)T
ti

g(c)Tti R−1g(c)ti
εti .

2.5.2 SYSTEMS WITH PARTIALLY ACTUATED STATE

The generalized formula of the local controls (20) was derived for the case where the control transi-
tion matrix is state dependent and its dimensionality isG(c)

t ∈ℜl×p with l < n and p the dimension-
ality of the control. There are many special cases of stochastic dynamical systems in optimal control
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and robotic applications that belong into this general class. More precisely, for systems having a
state dependent control transition matrix that is square (G(c)

ti ∈ ℜl×l with l = p) the local controls
based on (20) are reformulated as:

uL(τi) = εti −G
(c)
ti

−1
bti . (21)

Interestingly, a rather general class of mechanical systems such as rigid-body and multi-body
dynamics falls into this category. When these mechanical systems are expressed in state space
formulation, the control transition matrix is equal to rigid body inertia matrix G(c)

ti =M(θti) (Sci-
avicco and Siciliano, 2000). Future work will address this special topic of path integral control for
multi-body dynamics.

Another special case of systems with partially actuated state is when the control transition matrix
is state independent and has dimensionality G(c)

t = G(c) ∈ ℜl×p. The local controls, according to
(20), become:

uL(τi) = R−1G(c)T
(

G(c)R−1G(c)T
)−1

G(c)εti . (22)

If G(c)
ti is square and state independent, G(c)

ti =G(c) ∈ℜl×l , we will have:

uL(τi) = εti . (23)

This special case was explored in Kappen (2005a), Kappen (2007), Kappen (2005b) and Broek
et al. (2008). Our generalized formulation allows a broader application of path integral control
in areas like robotics and other control systems, where the control transition matrix is typically
partitioned into directly and non-directly actuated states, and typically also state dependent.

2.5.3 SYSTEMS WITH FULLY ACTUATED STATE SPACE

In this class of stochastic systems, the control transition matrix is not partitioned and, therefore, the
control u directly affects all the states. The local controls for such systems are provided by simply
substituting G(c)

ti ∈ℜn×p in (20) with Gti ∈ℜn×n. Since Gti is a square matrix we obtain:

uL(τi) = εti −G−1
ti bti ,

with bti = λHtiΦti and

(Φti) j =
1
2
trace

(

H−1
ti

(

∂(xti ) jHti

))

,

where the differentiation is not taken with respect to (x(c)ti ) j but with respect to the full state (xti) j.
For this fully actuated state space, there are subclasses of dynamical systems with square and/or
state independent control transition matrix. The local controls for these cases are found by just
substituting G(c)

ti with Gti in (21), (22) and (23).

3. Reinforcement Learning with Parameterized Policies

Equipped with the theoretical framework of stochastic optimal control with path integrals, we can
now turn to its application to reinforcement learning with parameterized policies. Since the be-
ginning of actor-critic algorithms (Barto et al., 1983), one goal of reinforcement learning has been
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to learn compact policy representations, for example, with neural networks as in the early days of
machine learning (Miller et al., 1990), or with general parameterizations (Peters, 2007; Deisenroth
et al., 2009). Parameterized policies have much fewer parameters than the classical time-indexed
approach of optimal control, where every time step has it own set of parameters, that is, the optimal
controls at this time step. Usually, function approximation techniques are used to represent the op-
timal controls and the open parameters of the function approximator become the policy parameters.
Function approximators use a state representation as input and not an explicit time dependent rep-
resentation. This representation allows generalization across states and promises to achieve better
generalization of the control policy to a larger state space, such that policies become re-usable and
do not have to be recomputed in every new situation.

The path integral approach from the previous sections also follows the classical time-based
optimal control strategy, as can be seen from the time dependent solution for optimal controls in
(33). However, a minor re-interpretation of the approach and some small mathematical adjustments
allow us to carry it over to parameterized policies and reinforcement learning, which results in a
new algorithm called Policy Improvement with Path Integrals (PI2).

3.1 Parameterized Policies

We are focusing on direct policy learning, where the parameters of the policy are adjusted by a
learning rule directly, and not indirectly as in value function approaches of classical reinforcement
learning (Sutton and Barto, 1998)—see Peters (2007) for a discussion of pros and cons of direct
vs. indirect policy learning. Direct policy learning usually assumes a general cost function (Sutton
et al., 2000; Peters, 2007) in the form of

J(x0) =
∫
p(τ0)R(τ0)dτ0, (24)

which is optimized over states-action trajectories5 τ0=(xt0 ,at0 , ...,xtN ). Under the first orderMarkov
property, the probability of a trajectory is

p(τi) = p(xti)ΠN−1
j=i p(xt j+1 |xt j ,at j)p(at j |xt j).

Both the state transition and the policy are assumed to be stochastic. The particular formulation
of the stochastic policy is a design parameter, motivated by the application domain, analytical con-
venience, and the need to inject exploration during learning. For continuous state action domains,
Gaussian distributions are most commonly chosen (Gullapalli, 1990; Williams, 1992; Peters, 2007).
An interesting generalized stochastic policy was suggested in Rueckstiess et al. (2008) and applied
in Koeber and Peters (2008), where the stochastic policy p(ati |xti) is linearly parameterized as:

ati = gTti (θ+ εti), (25)

with gti denoting a vector of basis functions and θ the parameter vector. This policy has state de-
pendent noise, which can contribute to faster learning as the signal-to-noise ratio becomes adaptive
since it is a function of gti . It should be noted that a standard additive-noise policy can be expressed
in this formulation, too, by choosing one basis function (gti) j = 0. For Gaussian noise ε the proba-
bility of an action is p(ati |xti) = N

(

θTgti ,Σti
)

with Σti = gTti Σεgti . Comparing the policy formulation

5. We use at to denote actions here in order to avoid using the symbol u in a conflicting way in the equations below, and
to emphasize that an action does not necessarily coincide with the control command to a physical system.
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in (25) with the control term in (3), one recognizes that the control policy formulation (25) should
fit into the framework of path integral optimal control.

3.2 Generalized Parameterized Policies

Before going into more detail of our proposed reinforcement learning algorithm, it is worthwhile
contemplating what the action at actually represents. In many applications of stochastic optimal
control there are three main problems to be considered: i) trajectory planning, ii) feedforward con-
trol, and iii) feedback control. The results of optimization could thus be an optimal kinematic
trajectory, the corresponding feedforward commands to track the desired trajectory accurately in
face of the system’s nonlinearities, and/or time varying linear feedback gains (gain scheduling) for
a negative feedback controller that compensates for perturbations from accurate trajectory tracking.

There are very few optimal control algorithms which compute all three issues simultaneously,
such as Differential Dynamic Programming(DDP) (Jacobson and Mayne, 1970), or its simpler ver-
sion the Iterative Linear Quadratic Regulator(iLQR) (Todorov, 2005). However, these are model
based methods which require rather accurate knowledge of the dynamics and make restrictive as-
sumptions concerning differentiability of the system dynamics and the cost function.

Path integral optimal control allows more flexibility than these related methods. The concept of
an “action” can be viewed in a broader sense. Essentially, we consider any “input” to the control
system as an action, not unlike the inputs to a transfer function in classical linear control theory.
The input can be a motor command, but it can also be anything else, for instance, a desired state,
that is subsequently converted to a motor command by some tracking controller, or a control gain
(Buchli et al., 2010) . As an example, consider a robotic system with rigid body dynamics (RBD)
equations (Sciavicco and Siciliano, 2000) using a parameterized policy:

q̈ = M(q)−1 (−C(q, q̇)−v(q))+M(q)−1u, (26)
u = G(q)(θ+ εti), (27)

where M is the RBD inertia matrix, C are Coriolis and centripetal forces, and v denotes gravity
forces. The state of the robot is described by the joint angles q and joint velocities q̇. The policy
(27) is linearly parameterized by θ, with basis function matrix G—one would assume that the di-
mensionality of θ is significantly larger than that of q to assure sufficient expressive power of this
parameterized policy. Inserting (27) into (26) results in a differential equation that is compatible
with the system equations (3) for path integral optimal control:

q̈ = f(q, q̇)+ G̃(q)(θ+ εti) (28)
where

f(q, q̇) = M(q)−1 (−C(q, q̇)−v(q)) ,
G̃(q) = M(q)−1G(q).

This example is a typical example where the policy directly represents motor commands.
Alternatively, we could create another form of control structure for the RBD system:

q̈ = M(q)−1 (−C(q, q̇)−v(q))+M(q)−1u,
u = KP(qd−q)+KD(q̇d− q̇),
q̈d = G(qd , q̇d)(θ+ εti). (29)
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Here, a Proportional-Derivative (PD) controller with positive definite gain matrices KP and KD
converts a desired trajectory qd , q̇d into a motor command u. In contrast to the previous example,
the parameterized policy generates the desired trajectory in (29), and the differential equation for
the desired trajectory is compatible with the path integral formalism.

What we would like to emphasize is that the control system’s structure is left to the creativity
of its designer, and that path integral optimal control can be applied on various levels. Importantly,
as developed in Section 2.3, only the controlled differential equations of the entire control system
contribute to the path integral formalism, that is, (28) in the first example, or (29) in the second
example. And only these controlled differential equations need to be known for applying path
integral optimal control—none of the variables of the uncontrolled equations is ever used.

At this point, we make a very important transition from model-based to model-free learning.
In the example of (28), the dynamics model of the control system needs to be known to apply
path integral optimal control, as this is a controlled differential equation. In contrast, in (29), the
system dynamics are in an uncontrolled differential equation, and are thus irrelevant for applying
path integral optimal control. In this case, only knowledge of the desired trajectory dynamics is
needed, which is usually created by the system designer. Thus, we obtained a model-free learning
system.

3.3 Dynamic Movement Primitives as Generalized Policies

As we are interested in model-free learning, we follow the control structure of the 2nd example of
the previous section, that is, we optimize control policies which represent desired trajectories. We
use Dynamic Movement Primitives (DMPs) (Ijspeert et al., 2003) as a special case of parameterized
policies, which are expressed by the differential equations:

1
τ
żt = ft +gTt (θ+ εt), (30)

1
τ
ẏt = zt ,

1
τ
ẋt = −αxt ,

ft = αz(βz(g− yt)− zt).

Essentially, these policies code a learnable point attractor for a movement from yt0 to the goal
g, where θ determines the shape of the attractor. yt , ẏt denote the position and velocity of the
trajectory, while zt ,xt are internal states. αz,βz,τ are time constants. The basis functions gt ∈
ℜp×1are defined by a piecewise linear function approximator with Gaussian weighting kernels, as
suggested in Schaal and Atkeson (1998):

[gt ] j =
wj xt
∑
p
k=1wk

(g− y0),

wj = exp
(

−0.5h j(xt − c j)2
)

, (31)

with bandwith h j and center c j of the Gaussian kernels—for more details see Ijspeert et al. (2003).
The DMP representation is advantageous as it guarantees attractor properties towards the goal while
remaining linear in the parameters θ of the function approximator. By varying the parameter θ the
shape of the trajectory changes while the goal state g and initial state yt0 remain fixed. These
properties facilitate learning (Peters and Schaal, 2008a).
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3.4 Policy Improvements with Path Integrals: The (PI2) Algorithm

As can be easily recognized, the DMP equations are of the form of our control system (3), with only
one controlled equation and a one dimensional actuated state. This case has been treated in Section
2.5.1. The motor commands are replaced with the parameters θ—the issue of time dependent vs.
constant parameters will be addressed below. More precisely, the DMP equations can be written as:





ẋt
żt
ẏt



=





−αxt
yt

αz(βz(g− yt)− zt)



+





01×p
01×p
g(c)t T



(θt + εt) .

The state of the DMP is partitioned into the controlled part x(c)t = yt and uncontrolled part
x(m)t = (xt zt)T . The control transition matrix depends on the state, however, it depends only on one
of the state variables of the uncontrolled part of the state, that is, xt . The path cost for the stochastic
dynamics of the DMPs is given by:

S̃(τi) = φtN +
N−1

∑
j=i

qt jdt+
1
2

N−1

∑
j=i

-

-

-

-

-

x(c)t j+1 −x
(c)
t j

dt
− f(c)t j

-

-

-

-

-

2

H−1
t j

dt+
λ
2

N−1

∑
j=i
log |Ht j |

∝ φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

-

-

-
g(c)Tt j (θt j + εt j)

-

-

-

2

H−1
t j

= φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

1
2
(θt j + εt j)

Tg(c)t j H
−1
t j g

(c)T
t j (θt j + εt j)

= φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

1
2
(θt j + εt j)

T g(c)t j g
(c)T
t j

g(c)Tt R−1 g(c)t
(θt j + εt j)

= φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

1
2
(θt j + εt j)

TMT
t jRMt j(θt j + εt j). (32)

withMt j =
R−1gt j g

T
t j

gTt jR
−1gt j

. Ht becomes a scalar given by Ht = g(c)Tt R−1 g(c)t . Interestingly, the term
λ
2 ∑

N−1
j=i log |Ht j | for the case of DMPs depends only on xt , which is a deterministic variable and

therefore can be ignored since it is the same for all sampled paths. We also absorbed, without
loss of generality, the time step dt in cost terms. Consequently, the fundamental result of the path
integral stochastic optimal problem for the case of DMPs is expressed as:

uti =
∫
P(τi)uL (τi)dτ(c)i , (33)

where the probability P(τi) and local controls u(τi) are defined as

P(τi) =
e−

1
λ S̃(τi)∫

e−
1
λ S̃(τi)dτi

, uL(τi) =
R−1g(c)ti g

(c)T
ti

g(c)Tti R−1g(c)ti
εti ,
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and the path cost given as

S̃(τi) = φtN +
N−1

∑
j=i

qt j +
1
2

N−1

∑
j=i

εTt jM
T
t jRMt jεt j .

Note that θ= 0 in these equations, that is, the parameters are initialized to zero. These equations
correspond to the case where the stochastic optimal control problem is solved with one evaluation
of the optimal controls (33) using dense sampling of the whole state space under the “passive dy-
namics” (i.e., θ = 0), which requires a significant amount of exploration noise. Such an approach
was pursued in the original work by Kappen (2007) and Broek et al. (2008), where a potentially
large number of sample trajectories was needed to achieve good results. Extending this sampling
approach to high dimensional spaces, however, is daunting, as with very high probability, we would
sample primarily rather useless trajectories. Thus, biasing sampling towards good initial conditions
seems to be mandatory for high dimensional applications.

Thus, we consider only local sampling and an iterative update procedure. Given a current guess
of θ, we generate sample roll-outs using stochastic parameters θ+εt at every time step. To see how
the generalized path integral formulation is modified for the case of iterative updating, we start with
the equations of the update of the parameter vector θ, which can be written as:

θ(new)ti =
∫
P(τi)

R−1gtigti T (θ+ εti)
gti TR−1gti

dτi

=
∫
P(τi)

R−1gtigti T εti
gti TR−1gti

dτi+
R−1gtigti Tθ
gti TR−1gti

= δθti +
R−1gtigti T

trace(R−1gtigti T )
θ

= δθti +Mtiθ. (34)

The correction parameter vector δθti is defined as δθti =
∫
P(τi)

R−1gtigti
Tεti

gti TR−1gti
dτi. It is important to

note that θ(new)ti is now time dependent, that is, for every time step ti, a different optimal parameter
vector is computed. In order to return to one single time independent parameter vector θ(new), the
vectors θ(new)ti need to be averaged over time ti.

We start with a first tentative suggestion of averaging over time, and then explain why it is
inappropriate, and what the correct way of time averaging has to look like. The tentative and most
intuitive time average is:

θ(new) =
1
N

N−1

∑
i=0

θ(new)ti =
1
N

N−1

∑
i=0

δθti +
1
N

N−1

∑
i=0
Mtiθ.

Thus, we would update θ based on two terms. The first term is the average of δθti , which is reason-
able as it reflects the knowledge we gained from the exploration noise. However, there would be a
second update term due to the average over projected mean parameters θ from every time step—it
should be noted thatMti is a projection matrix onto the range space of gti under the metricR−1, such
that a multiplication withMti can only shrink the norm of θ. From the viewpoint of having optimal
parameters for every time step, this update component is reasonable as it trivially eliminates the part
of the parameter vector that lies in the null space of gti and which contributes to the command cost
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of a trajectory in a useless way. From the view point of a parameter vector that is constant and time
independent and that is updated iteratively, this second update is undesirable, as the multiplication
of the parameter vector θ withMti in (34) and the averaging operation over the time horizon reduces
the L2 norm of the parameters at every iteration, potentially in an uncontrolled way.6 What we
rather want is to achieve convergence when the average of δθti becomes zero, and we do not want
to continue updating due to the second term.

The problem is avoided by eliminating the projection matrix in the second term of averaging,
such that it become:

θ(new) =
1
N

N−1

∑
i=0

δθti +
1
N

N−1

∑
i=0

θ=
1
N

N−1

∑
i=0

δθti +θ.

The meaning of this reduced update is simply that we keep a component in θ that is irrelevant and
contributes to our trajectory cost in a useless way. However, this irrelevant component will not
prevent us from reaching the optimal effective solution, that is, the solution that lies in the range
space of gti . Given this modified update, it is, however, also necessary to derive a compatible cost
function. As mentioned before, in the unmodified scenario, the last term of (32) is:

1
2

N−1

∑
j=i

(θ+ εt j)
TMT

t jRMt j(θ+ εt j)

To avoid a projection of θ, we modify this cost term to be:

1
2

N−1

∑
j=i

(θ+Mt jεt j)
TR(θ+Mt jεt j).

With this modified cost term, the path integral formalism results in the desired θ(new)ti without the
Mti projection of θ.

The main equations of the iterative version of the generalized path integral formulation, called
Policy Improvement with Path Integrals (PI2), can be summarized as:

P(τi) =
e−

1
λS(τi)∫

e−
1
λS(τi)dτi

, (35)

S(τi) = φtN +
N−1

∑
j=i

qt jdt+
1
2

N−1

∑
j=i

(θ+Mt jεt j)
TR(θ+Mt jεt j)dt, (36)

δθti =
∫
P(τi)Mtiεtidτi, (37)

[δθ] j =
∑N−1
i=0 (N− i) wj,ti [δθti ] j

∑N−1
i=0 wj,ti(N− i)

, (38)

θ(new) = θ(old) +δθ.

Essentially, (35) computes a discrete probability at time ti of each trajectory roll-out with the help
of the cost (36). For every time step of the trajectory, a parameter update is computed in (37) based

6. To be precise, θ would be projected and continue shrinking until it lies in the intersection of all null spaces of the gti
basis function—this null space can easily be of measure zero.
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on a probability weighted average over trajectories. The parameter updates at every time step are
finally averaged in (38). Note that we chose a weighted average by giving every parameter update a
weight7 according to the time steps left in the trajectory and the activation of the kernel in (31). This
average can be interpreted as using a function approximator with only a constant (offset) parameter
vector to approximate the time dependent parameters. Giving early points in the trajectory a higher
weight is useful since their parameters affect a large time horizon and thus higher trajectory costs.
Other function approximation (or averaging) schemes could be used to arrive at a final parameter
update—we preferred this simple approach as it gave very good learning results. The final parameter
update is θ(new) = θ(old) +δθ.

The parameter λ regulates the sensitivity of the exponentiated cost and can automatically be
optimized for every time step i to maximally discriminate between the experienced trajectories.
More precisely, a constant term can be subtracted from (36) as long as all S(τi) remain positive—this
constant term8 cancels in (35). Thus, for a given number of roll-outs, we compute the exponential
term in (35) as

exp
(

−
1
λ
S(τi)

)

= exp
(

−h
S(τi)−minS(τi)

maxS(τi)−minS(τi)

)

,

with h set to a constant, which we chose to be h = 10 in all our evaluations. The max and min
operators are over all sample roll-outs. This procedure eliminates λ and leaves the variance of the
exploration noise ε as the only open algorithmic parameter for PI2. It should be noted that the
equations for PI2 have no numerical pitfalls: no matrix inversions and no learning rates,9 rendering
PI2 to be very easy to use in practice.

The pseudocode for the final PI2 algorithm for a one dimensional control system with function
approximation is given in Table 2. A tutorial Matlab example of applying PI2 can be found at
http://www-clmc.usc.edu/software .

4. Related Work

In the next sections we discuss related work in the areas of stochastic optimal control and rein-
forcement learning and analyze the connections and differences with the PI2 algorithm and the
generalized path integral control formulation.

4.1 Stochastic Optimal Control and Path Integrals

The path integral formalism for optimal control was introduced in Kappen (2005a,b). In this work,
the role of noise in symmetry breaking phenomena was investigated in the context of stochastic
optimal control. In Kappen et al. (2007), Wiegerinck et al. (2006), and Broek et al. (2008), the path
integral formalism is extended for the stochastic optimal control of multi-agent systems.

Recent work on stochastic optimal control by Todorov (2008), Todorov (2007) and Todorov
(2009b) shows that for a class of discrete stochastic optimal control problems, the Bellman equa-

7. The use of the kernel weights in the basis functions (31) for the purpose of time averaging has shown better perfor-
mance with respect to other weighting approaches, across all of our experiments. Therefore this is the weighting that
we suggest. Users may develop other weighting schemes as more suitable to their needs.

8. In fact, the term inside the exponent results by adding hminS(τi)
maxS(τi)−minS(τi) , which cancels in (35), to the term

− hS(τi)
maxS(τi)−minS(τi) which is equal to −

1
λS(τi).

9. R is a user design parameter and usually chosen to be diagonal and invertible.
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• Given:

– An immediate cost function rt = qt +θTt Rθt (cf. 1)
– A terminal cost term φtN (cf. 1)
– A stochastic parameterized policy at = gTt (θ+ εt) (cf. 25)
– The basis function gti from the system dynamics (cf. 3 and Section 2.5.1)
– The variance Σε of the mean-zero noise εt
– The initial parameter vector θ

• Repeat until convergence of the trajectory cost R:

– Create K roll-outs of the system from the same start state x0 using stochstic parameters
θ+ εt at every time step

– For k = 1...K, compute:

∗ P(τi,k) = e−
1
λ S(τi,k)

∑Kk=1[e
− 1λ S(τi,k)]

∗ S(τi,k) = φtN ,k+∑N−1
j=i qt j,k+

1
2 ∑

N−1
j=i+1(θ+Mt j,kεt j,k)

TR(θ+Mt j,kεt j,k)

∗ Mt j,k =
R−1gt j ,k g

T
t j ,k

gTt j ,kR
−1gt j ,k

– For i= 1...(N−1), compute:
∗ δθti = ∑K

k=1 [P(τi,k)Mti,k εti,k]

– Compute [δθ] j = ∑N−1i=0 (N−i) wj,ti [δθti ] j
∑N−1i=0 wj,ti (N−i)

– Update θ← θ+δθ

– Create one noiseless roll-out to check the trajectory cost R = φtN +∑N−1
i=0 rti . In case

the noise cannot be turned off, that is, a stochastic system, multiple roll-outs need be
averaged.

Table 2: Pseudocode of the PI2 algorithm for a 1D Parameterized Policy (Note that the discrete
time step dt was absorbed as a constant multiplier in the cost terms).

tion can be written as the KL divergence between the probability distribution of the controlled and
uncontrolled dynamics. Furthermore it is shown that the class of discrete KL divergence control
problem is equivalent to the continuous stochastic optimal control formalism with quadratic cost
control function and under the presence of Gaussian noise. In Kappen et al. (2009), the KL diver-
gence control formalism is considered and it is transformed to a probabilistic inference problem.
In all this aforementioned work, both in the path integral formalism as well as in KL divergence
control, the class of stochastic dynamical systems under consideration is rather restrictive since the
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control transition matrix is state independent. Moreover, the connection to direct policy learning in
RL and model-free learning was not made in any of the previous projects.

Our PI2 algorithm differs with respect to the aforementioned work in the following points.
• In Todorov (2009b) the stochastic optimal control problem is investigated for discrete action
- state spaces and therefore it is treated as Markov Decision Process (MDP). To apply our PI2
algorithm, we do not discretize the state space and we do not treat the problem as an MDP.
Instead we work in continuous state - action spaces which are suitable for performing RL in
high dimensional robotic systems. To the best of our knowledge, our results present RL in
one of the most high dimensional continuous state action spaces.

• In our derivations, the probabilistic interpretation of control comes directly from the Feynman-
Kac Lemma. Thus we do not have to impose any artificial “pseudo-probability“ treatment of
the cost as in Todorov (2009b). In addition, for the continuous state - action spaces we do not
have to learn the value function as it is suggested in Todorov (2009b) via Z-learning. Instead
we directly find the controls based on our generalization of optimal controls.

• In the previous work, the problem of how to sample trajectories is not addressed. Sampling
is performed at once with the hope to cover the all state space. We follow a rather different
approach that allows to attack robotic learning problems of the complexity and dimensionality
of the little dog robot.

• The work in Todorov (2009a) considers stochastic dynamics with state dependent control
matrix. However, the way of how the stochastic optimal control problem is solved is by
imposing strong assumptions on the structure of the cost function and, therefore, restrictions
of the proposed solution to special cases of optimal control problems. The use of this specific
cost function allows transforming the stochastic optimal control problem to a deterministic
optimal control problem. Under this transformation, the stochastic optimal control problem
can be solved by using deterministic algorithms.

• With respect to the work in Broek et al. (2008), Wiegerinck et al. (2006) and Kappen et al.
(2009) our PI2 algorithm has been derived for a rather general class of systems with control
transition matrix that is state dependent. In this general class, Rigid body and multi-body
dynamics as well as the DMPs are included. Furthermore we have shown how our results
generalize previous work.

4.2 Reinforcement Learning of Parameterized Policies

There are two main classes of related algorithms: Policy Gradient algorithms and probabilistic
algorithms.

Policy Gradient algorithms (Peters and Schaal, 2006a,b) compute the gradient of the cost func-
tion (24) at every iteration and the policy parameters are updated according to θ(new) = θ(old) +
α∇θJ. Some well-established algorithms, which we will also use for comparisons, are as follows
(see also Peters and Schaal, 2006a,b).

4.2.1 REINFORCE

Williams (1992) introduced the episodic REINFORCE algorithm, which is derived from taking the
derivative of (24) with respect to the policy parameters. This algorithm has rather slow convergence
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due to a very noisy estimate of the policy gradient. It is also very sensitive to a reward baseline
parameter bk (see below). Recent work derived the optimal baseline for REINFORCE (cf. Peters
and Schaal, 2008a), which improved the performance significantly. The episodic REINFORCE
update equations are:

∇θkJ = Eτ0

[

(R(τ0)−bk)
N−1

∑
i=0

∇θk ln p(ati |xti)
]

,

bk =
Eτ0

[

(

∑N−1
i=0 ∇θk ln p(ati |xti)

)2R(τ0)
]

Eτ0
[

(

∑N−1
i=0 ∇θk ln p(ati |xti)

)2] ,

where k denotes the k-th coefficient of the parameter vector and R(τ0) = 1
N ∑

N−1
i=0 rti .

4.2.2 GPOMDP AND THE POLICY GRADIENT THEOREM ALGORITHM

In their GPOMDP algorithm, Baxter and Bartlett (2001) introduced several improvements over RE-
INFORCE that made the gradient estimates more efficient. GPOMDP can also be derived from the
policy gradient theorem (Sutton et al., 2000; Peters and Schaal, 2008a), and an optimal reward base-
line can be added (cf. Peters and Schaal, 2008a). In our context, the GPOMDP learning algorithm
can be written as:

∇θkJ = Eτ0

[

N−1

∑
j=0

(rt j−b(k)t j )
j

∑
i=0

(∇θk ln p(ati |xti))
]

,

b(k)ti =
Eτ0

[

(∇θk ln p(ati |xti))
2 rti

]

Eτ0
[

(∇θk ln p(ati |xti))
2
] .

4.2.3 THE EPISODIC NATURAL ACTOR CRITIC

One of the most efficient policy gradient algorithm was introduced in Peters and Schaal (2008b),
called the Episodic Natural Actor Critic. In essence, the method uses the Fisher Information Matrix
to project the REINFORCE gradient onto a more effective update direction, which is motivated by
the theory of natural gradients by Amari (1999). The eNAC algorithm takes the form of:

ξti,k =

[

∇θk ln p(ati |xti)
1

]

,

[

∇θJ
J0

]

= Eτ0

[

N−1

∑
i=0

ξti,kξ
T
ti,k

]−1

Eτ0

[

R(τ0)
N−1

∑
i=0

ξti,k

]

,

where J0 is a constant offset term.

4.2.4 POWER

The PoWER algorithm (Koeber and Peters, 2008) is a probabilistic policy improvement method, not
a gradient algorithm. It is derived from an Expectation-Maximization framework using probability
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matching (Dayan and Hinton, 1997; Peters and Schaal, 2008c). Using the notation of this paper, the
parameter update of PoWER becomes:

δθ= Eτ0

[

N−1

∑
i=0

Rti
gtigTti
gTti gti

]−1

Eτ0

[

tN
∑
ti=to

Rti
gtigTti εt
gTti gti

]

,

where Rti = ∑N−1
j=i rt j . If we set R−1 = c I in the update (37) of PI2, and set gtig

T
ti

gTti gti
= I in the matrix

inversion term of (39), the two algorithms look essentially identical. But it should be noted that
the rewards rti in PoWER need to behave like an improper probability, that is, be strictly positive
and integrate to a constant number—this property can make the design of suitable cost functions
more complicated. PI2, in contrast, uses exponentiated sum of reward terms, where the immedi-
ate reward can be arbitrary, and only the cost on the motor commands needs be quadratic. Our
empirical evaluations revealed that, for cost functions that share the same optimum in the PoWER
pseudo-probability formulation and the PI2 notation, both algorithms perform essentially identical,
indicating that the matrix inversion term in PoWERmay be unimportant for many systems. It should
be noted that in Vlassis et al. (2009), PoWER was extended to the discounted infinite horizon case,
where PoWER is the special case of a non-discounted finite horizon problem.

5. Evaluations

We evaluated PI2 in several synthetic examples in comparison with REINFORCE, GPOMDP,
eNAC, and, when possible, PoWER. Except for PoWER, all algorithms are suitable for optimiz-
ing immediate reward functions of the kind rt = qt+utRut . As mentioned above, PoWER requires
that the immediate reward behaves like an improper probability. This property is incompatible with
rt = qt +utRut and requires some special nonlinear transformations, which usually change the na-
ture of the optimization problem, such that PoWER optimizes a different cost function. Thus, only
one of the examples below has a compatible a cost function for all algorithms, including PoWER. In
all examples below, exploration noise and, when applicable, learning rates, were tuned for every in-
dividual algorithms to achieve the best possible numerically stable performance. Exploration noise
was only added to the maximally activated basis function in a motor primitive,10 and the noise was
kept constant for the entire time that this basis function had the highest activation—empirically, this
tick helped improves the learning speed of all algorithms.

5.1 Learning Optimal Performance of a 1 DOF Reaching Task

The first evaluation considers learning optimal parameters for a 1 DOF DMP (cf. Equation 30). The
immediate cost and terminal cost are, respectively:

rt = 0.5 f 2t +5000 θTθ, φtN = 10000(ẏ2tN +10(g− ytN )
2)

with yt0 = 0 and g = 1—we use radians as units motivated by our interest in robotics application,
but we could also avoid units entirely. The interpretation of this cost is that we would like to reach
the goal gwith high accuracy while minimizing the acceleration of the movement and while keeping
the parameter vector short. Each algorithm was run for 15 trials to compute a parameter update, and

10. That is, the noise vector in (25) has only one non-zero component.
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a total of 1000 updates were performed. Note that 15 trials per update were chosen as the DMP
had 10 basis functions, and the eNAC requires at least 11 trials to perform a numerically stable
update due to its matrix inversion. The motor primitives were initialized to approximate a 5-th
order polynomial as point-to-point movement (cf. Figure 1a,b), called a minimum-jerk trajectory
in the motor control literature; the movement duration was 0.5 seconds, which is similar to normal
human reaching movements. Gaussian noise of N(0,0.1) was added to the initial parameters of the
movement primitives in order to have different initial conditions for every run of the algorithms.
The results are given in Figure 1. Figure 1a,b show the initial (before learning) trajectory generated
by the DMP together with the learning results of the four different algorithms after learning—
essentially, all algorithms achieve the same result such that all trajectories lie on top of each other.
In Figure 1c, however, it can be seen that PI2 outperforms the gradient algorithms by an order
of magnitude. Figure 1d illustrates learning curves for the same task as in Figure 1c, just that
parameter updates are computed already after two roll-outs—the eNAC was excluded from this
evaluation as it would be too heuristic to stabilize its ill-conditioned matrix inversion that results
from such few roll-outs. PI2 continues to converge much faster than the other algorithms even in
this special scenario. However, there are some noticeable fluctuation after convergence. This noise
around the convergence baseline is caused by using only two noisy roll-outs to continue updating
the parameters, which causes continuous parameter fluctuations around the optimal parameters.
Annealing the exploration noise, or just adding the optimal trajectory from the previous parameter
update as one of the roll-outs for the next parameter update can alleviate this issue—we do not
illustrate such little “tricks” in this paper as they really only affect fine tuning of the algorithm.

5.2 Learning Optimal Performance of a 1 DOF Via-Point Task

The second evaluation was identical to the first evaluation, just that the cost function now forced
the movement to pass through an intermediate via-point at t = 300ms. This evaluation is an abstract
approximation of hitting a target, for example, as in playing tennis, and requires a significant change
in how the movement is performed relative to the initial trajectory (Figure 2a). The cost function
was

r300ms = 100000000(G− yt300ms)
2, φtN = 0

with G = 0.25. Only this single reward was given. For this cost function, the PoWER algorithm
can be applied, too, with cost function r̃300ms = exp(−1/λ r300ms) and r̃ti = 0 otherwise. This
transformed cost function has the same optimum as r300ms. The resulting learning curves are given in
Figure 2 and resemble the previous evaluation: PI2 outperforms the gradient algorithms by roughly
an order of magnitude, while all the gradient algorithms have almost identical learning curves. As
was expected from the similarity of the update equations, PoWER and PI2 have in this special case
the same performance and are hardly distinguishable in Figure 2. Figure 2a demonstrates that all
algorithms pass through the desired target G, but that there are remaining differences between the
algorithms in how they approach the target G—these difference have a small numerical effect in
the final cost (where PI2 and PoWER have the lowest cost), but these difference are hardly task
relevant.

5.3 Learning Optimal Performance of a Multi-DOF Via-Point Task

A third evaluation examined the scalability of our algorithms to a high-dimensional and highly
redundant learning problem. Again, the learning task was to pass through an intermediate target G,
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Figure 1: Comparison of reinforcement learning of an optimized movement with motor primitives.
a) Position trajectories of the initial trajectory (before learning) and the results of all algo-
rithms after learning—the different algorithms are essentially indistighuishable. b) The
same as a), just using the velocity trajectories. c) Average learning curves for the differ-
ent algorithms with 1 std error bars from averaging 10 runs for each of the algorithms. d)
Learning curves for the different algorithms when only two roll-outs are used per update
(note that the eNAC cannot work in this case and is omitted).

just that a d = 2,10, or 50 dimensional motor primitive was employed. We assume that the multi-
DOF systems model planar robot arms, where d links of equal length l = 1/d are connected in an
open chain with revolute joints. Essentially, these robots look like a multi-segment snake in a plane,
where the tail of the snake is fixed at the origin of the 2D coordinate system, and the head of the
snake can be moved in the 2D plane by changing the joint angles between all the links. Figure 3b,d,f
illustrate the movement over time of these robots: the initial position of the robots is when all joint
angles are zero and the robot arm completely coincides with the x-axis of the coordinate frame.
The goal states of the motor primitives command each DOF to move to a joint angle, such that the
entire robot configuration afterwards looks like a semi-circle where the most distal link of the robot
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Figure 2: Comparison of reinforcement learning of an optimized movement with motor primitives
for passing through an intermediate target G. a) Position trajectories of the initial trajec-
tory (before learning) and the results of all algorithms after learning. b) Average learning
curves for the different algorithms with 1 std error bars from averaging 10 runs for each
of the algorithms.

(the end-effector) touches the y-axis. The higher priority task, however, is to move the end-effector
through a via-point G = (0.5,0.5). To formalize this task as a reinforcement learning problem, we
denote the joint angles of the robots as ξi, with i = 1,2, ...,d, such that the first line of (30) reads
now as ξ̈i,t = fi,t +gTi,t(θi+ εi,t)—this small change of notation is to avoid a clash of variables with
the (x,y) task space of the robot. The end-effector position is computed as:

xt =
1
d

d

∑
i=1

cos(
i

∑
j=1

ξ j,t), yt =
1
d

d

∑
i=1

sin(
i

∑
j=1

ξ j,t).

The immediate reward function for this problem is defined as

rt =
∑d
i=1(d+1− i)

(

0.1 f 2i,t+0.5 θ
T
i θi

)

∑d
i=1(d+1− i)

, (39)

Δr300ms = 100000000
(

(0.5− xt300ms)
2+(0.5− yt300ms)

2) ,

φtN = 0,

where Δr300ms is added to rt at time t = 300ms, that is, we would like to pass through the via-
point at this time. The individual DOFs of the motor primitive were initialized as in the 1 DOF
examples above. The cost term in (39) penalizes each DOF for using high accelerations and large
parameter vectors, which is a critical component to achieve a good resolution of redundancy in the
arm. Equation (39) also has a weighting term d+ 1− i that penalizes DOFs proximal to the orgin
more than those that are distal to the origin—intuitively, applied to human arm movements, this
would mean that wrist movements are cheaper than shoulder movements, which is motivated by the
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fact that the wrist has much lower mass and inertia and is thus energetically more efficient to move.

The results of this experiment are summarized in Figure 3. The learning curves in the left
column demonstrate again that PI2 has an order of magnitude faster learning performance than the
other algorithms, irrespective of the dimensionality. PI2 also converges to the lowest cost in all
examples:

Algorithm 2-DOFs 10-DOFs 50-DOFs
PI2 98000±5000 15700±1300 2800±150
REINFORCE 125000±2000 22000±700 19500±24000
PG 128000±2000 28000±23000 27000±40000
NAC 113000±10000 48000±8000 22000±2000

Figure 3 also illustrates the path taken by the end-effector before and after learning. All algo-
rithms manage to pass through the via-point G appropriately, although the path particularly before
reaching the via-point can be quite different across the algorithms. Given that PI2 reached the low-
est cost with low variance in all examples, it appears to have found the best solution. We also added
a “stroboscopic” sketch of the robot arm for the PI2 solution, which proceeds from the very right to
the left as a function of time. It should be emphasized that there were absolutely no parameter tun-
ing needed to achieve the PI2 results, while all gradient algorithms required readjusting of learning
rates for every example to achieve best performance.

5.4 Application to Robot Learning

Figure 4 illustrates our application to a robot learning problem. The robot dog is to jump across as
gap. The jump should make forward progress as much as possible, as it is a maneuver in a legged
locomotion competition which scores the speed of the robot—note that we only used a physical
simulator of the robot for this experiment, as the actual robot was not available. The robot has three
DOFs per leg, and thus a total of d = 12 DOFs. Each DOF was represented as a DMP with 50
basis functions. An initial seed behavior (Figure 5-top) was taught by learning from demonstration,
which allowed the robot barely to reach the other side of the gap without falling into the gap—the
demonstration was generated from a manual adjustment of spline nodes in a spline-based trajectory
plan for each leg.

PI2 learning used primarily the forward progress as a reward, and slightly penalized the squared
acceleration of each DOF, and the length of the parameter vector. Additionally, a penalty was
incurred if the yaw or the roll exceeded a threshold value—these penalties encouraged the robot to
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Figure 3: Comparison of learning multi-DOF movements (2,10, and 50 DOFs) with planar robot
arms passing through a via-point G. a,c,e) illustrate the learning curves for different RL
algorithms, while b,d,f) illustrate the end-effector movement after learning for all algo-
rithms. Additionally, b,d,f) also show the initial end-effector movement, before learning
to pass through G, and a “stroboscopic” visualization of the arm movement for the final
result of PI2 (the movements proceed in time starting at the very right and ending by
(almost) touching the y axis).
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(a) Real & Simulated Robot Dog















  








(b) Learning curve for Dog Jump with PI2 ±1std

Figure 4: Reinforcement learning of optimizing to jump over a gap with a robot dog. The improve-
ment in cost corresponds to about 15 cm improvement in jump distance, which changed
the robot’s behavior from an initial barely successful jump to jump that completely tra-
versed the gap with entire body. This learned behavior allowed the robot to traverse a gap
at much higher speed in a competition on learning locomotion. The experiments for this
paper were conducted only on the robot simulator.

jump straight forward and not to the side, and not to fall over. The exact cost function is:

rt = rroll+ ryaw+
d

∑
i=1

(

a1 f 2i,t +0.5a2 θTi θ
)

(a1 = 1.e−6,a2 = 1.e−8),

rroll =

{

100∗ (|rollt |−0.3)2, if (|rollt |> 0.3)
0, otherwise,

ryaw =

{

100∗ (|yawt |−0.1)2, if (|yawt |> 0.1)
0, otherwise,

φtN = 50000(goal− xnose)2,

where roll,yaw are the roll and yaw angles of the robot’s body, and xnose is the position of the front
tip (the “nose”) of the robot in the forward direction, which is the direction towards the goal. The
multipliers for each reward component were tuned to have a balanced influence of all terms. Ten
learning trials were performed initially for the first parameter update. The best 5 trials were kept, and
five additional new trials were performed for the second and all subsequent updates. Essentially, this
method performs importance sampling, as the rewards for the 5 trials in memory were re-computed
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Figure 5: Sequence of images from the simulated robot dog jumping over a 14cm gap. Top: before
learning. Bottom: After learning. While the two sequences look quite similar at the first
glance, it is apparent that in the 4th frame, the robot’s body is significantly higher in the
air, such that after landing, the body of the dog made about 15cm more forward progress
as before. In particular, the entire robot’s body comes to rest on the other side of the gap,
which allows for an easy transition to walking. In contrast, before learning, the robot’s
body (and its hind legs) are still on the right side of the gap, which does not allow for a
successful continuation of walking.

with the latest parameter vectors. A total of 100 trials was performed per run, and ten runs were
collected for computing mean and standard deviations of learning curves.

Figure 4 illustrates that after about 30 trials (i.e., 5 updates), the performance of the robot was
converged and significantly improved, such that after the jump, almost the entire body was lying on
the other side of the gap. Figure 4 captures the temporal performance in a sequence of snapshots of
the robot. It should be noted that applying PI2 was algorithmically very simple, and manual tuning
only focused on generated a good cost function, which is a different research topic beyond the scope
of this paper.

6. Discussion

This paper derived a more general version of stochastic optimal control with path integrals, based
on the original work by Kappen (2007) and Broek et al. (2008). The key results were presented in
Table 1 and Section 2.5, which considered how to compute the optimal controls for a general class
of stochastic control systems with state-dependent control transition matrix. One important class
of these systems can be interpreted in the framework of reinforcement learning with parameterized
policies. For this class, we derived Policy Improvement with Path Integrals (PI2) as a novel algo-
rithm for learning a parameterized policy. PI2 inherits its sound foundation in first order principles
of stochastic optimal control from the path integral formalism. It is a probabilistic learning method
without open algorithmic tuning parameters, except for the exploration noise. In our evaluations,
PI2 outperformed gradient algorithms significantly. It is also numerically simpler and has easier
cost function design than previous probabilistic RL methods that require that immediate rewards
are pseudo-probabilities. The similarity of PI2 with algorithms based on probability matching indi-
cates that the principle of probability matching seems to approximate a stochastic optimal control
framework. Our evaluations demonstrated that PI2 can scale to high dimensional control systems,
unlike many other reinforcement learning systems.

Some issues, however, deserve more detailed discussions in the following paragraphs.
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6.1 The Simplification λR−1 = Σε

In order to obtain linear 2nd order differential equations for the exponentially transformed HJB equa-
tions, the simplification λR−1 = Σε was applied. Essentially, this assumption couples the control
cost to the stochasticity of the system dynamics, that is, a control with high variance will have rela-
tively small cost, while a control with low variance will have relatively high cost. This assumption
makes intuitively sense as it would be mostly unreasonable to attribute a lot of cost to an unreliable
control component. Algorithmically, this assumption transforms the Gaussian probability for state
transitions into a quadratic command cost, which is exactly what our immediate reward function
postulated. Future work may allow removing this simplification by applying generalized versions
of the Feynman-Kac Lemma.

6.2 Model-based, Hybrid, and Model-free Learning

Stochastic optimal control with path integrals makes a strong link to the dynamic system to be
optimized—indeed, originally, it was derived solely as model-based method. As this paper demon-
strated, however, this view can be relaxed. The roll-outs, needed for computing the optimal controls,
can be generated either from simulating a model, or by gathering experience from an actual system.
In the latter case, only the control transition matrix of the model needs be known, such that we obtain
a hybrid model-based/model-free method. In this paper, we even went further and interpreted the
stochastic dynamic system as a parameterized control policy, such that no knowledge of the model
of the control system was needed anymore—that is, we entered a model-free learning domain. It
seems that there is a rich variety of ways how the path integral formalism can be used in different
applications.

6.3 Rules of Cost Function Design

The cost functions allowed in our formulations can have arbitrary state cost, but need quadratic
command cost. This is somewhat restrictive, although the user can be flexible in what is defined as
a command. For instance, the dynamic movement primitives (30) used in this paper can be written
in two alternative ways:

1
τ
żt = ft +gTt (θ+ εt),

or
1
τ
żt =

[

gTt ft
]

([

θ
1

]

+ ε̃t

)

,

where the new noise vector ε̃t has one additional coefficient. The second equation treats ft as another
basis function whose parameter is constant and is thus simply not updated. Thus, we added ft to the
command cost instead of treating it as a state cost.

We also numerically experimented with violations of the clean distinction between state and
command cost. Equation (36) could be replaced by a cost term, which is an arbitrary function of
state and command. In the end, this cost term is just used to differentiate the different roll-outs
in a reward weighted average, similarly as in Peters and Schaal (2008c) and Koeber and Peters
(2008). We noticed in several instances that PI2 continued to work just fine with this improper cost
formulation.
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Again, it appears that the path integral formalism and the PI2 algorithm allow the user to exploit
creativity in designing cost functions, without absolute need to adhere perfectly to the theoretical
framework.

6.4 Dealing with Hidden State

Finally, it is interesting to consider in how far PI2 would be affected by hidden state. Hidden state
can either be of stochastic or deterministic nature, and we consider hidden state as adding additional
equations to the system dynamics (3). Section 2.3 already derived that deterministic hidden states
drop out of the PI2 update equations—these states of the system dynamics were termed as “ non-
directly actuated” states.

More interesting are hidden state variables that have stochastic differential equations, that is,
these equations are uncontrolled but do have a noise term and a non-zero corresponding coefficient
in Gt in Equation (3), and these equations are coupled to the other equations through their passive
dynamics. The noise term of these equations would, in theory, contribute terms in Equation (36),
but given that neither the noise nor the state of these equations are observable, we will not have the
knowledge to add these terms. However, as long as the magnitude of these terms is small relative to
the other terms in Equation (36), PI2 will continue to work fine, just a bit sub-optimally. This issue
would affect other reinforcement learning methods for parameterized policies in the same way, and
is not specific to PI2.

6.5 Arbitrary States in the Cost Function

As a last point, we would like to consider which variables can actually enter the cost functions for
PI2. The path integral approach prescribes that the cost function needs to be a function of the state
and command variables of the system equations (3). It should be emphasized that the state cost qt
can be any deterministic function of the state, that is, anything that is predictable from knowing the
state, even if we do not know the predictive function. There is a lot of flexibility in this formulation,
but it is also more restrictive than other approaches, for example, like policy gradients or the PoWER
algorithm, where arbitrary variables can be used in the cost, no matter whether they are states or
not.

We can think of any variable that we would like to use in the cost as having a corresponding
differential equation in the system dynamics (3), that is, we simply add these variables as state
variables, just that we do not know the analytical form of these equations. As in the previous
section, it is useful to distinguish whether these states have deterministic or stochastic differential
equations.

If the differential equation is deterministic, we can cover the case with the derivations from
Section 2.3, that is, we consider such an equation as uncontrolled deterministic differential equation
in the system dynamics, and we already know that we can use its state in the cost without any
problems as it does not contribute to the probability of a roll-out.

If the differential equation is stochastic, the same argument as in the previous section applies,
that is, the (unknown) contribution of the noise term of this equation to the exponentiated cost (36)
needs to be small enough for PI2 to work effectively. Future work and empirical evaluations will
have to demonstrate when these issues really matter—so far, we have not encountered problems in
this regard.
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7. Conclusions

The path integral formalism for stochastic optimal control has a very interesting potential to dis-
cover new learning algorithms for reinforcement learning. The PI2 algorithm derived in this paper
for learning with parameterized policies demonstrated a surprisingly good performance, literally
without any need for manual tuning of the parameters of the algorithm. We also demonstrated that
the algorithm scales well into very high dimensional domains that were previously hardly approach-
able for reinforcement learning. Future work will thus allow us to focus much more on machine
learning algorithms for cost function design, as the algorithmic components of the learning algo-
rithm seem to be able to move towards a “black box” character.
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Appendix A.

Appendix A contains the lemmas A1 and A2 and one theorem. The theorem provides the main
result of the generalized path integral control formalism expressed by (18), (19), (20). Its proof is
based on results proven in the lemmas A1 and A2. In appendix B we provide the Feynman-Kac
formula and we sketch the corresponding proof.

Lemma 1 : The optimal control solution to the stochastic optimal control problem expressed by
(1),(2),(3) and (4) is formulated as:

uti = lim
dt→0

[

−R−1G(c)
ti

T
∫
p̃(τi)∇x(c)ti

S̃(τi)dτi
]

where p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
is a path dependent probability distribution. The term S̃(τi) is

a path function defined as S̃(τi) = S(τi) + λ
2 ∑

N−1
j=i log |Ht j | that satisfies the following condition

limdt→0
∫
exp

(

− 1
λ S̃(τi)

)

dτi ∈ C (1) for any sampled trajectory starting from state xti . Moreover the
term Ht j is given by Ht j =G

(c)
t j R−1G(c)

t j
T while the term S(τi) is defined according to

S(τi) = φtN +
N−1

∑
j=i

qt jdt+
1
2

N−1

∑
j=i

‖
x(c)t j+1 −x

(c)
t j

dt
− f(c)t j ‖

2
Ht j
dt.

Proof The optimal controls at the state xti is expressed by the equation uti = −R−1Gti∇xtiVti . Due
to the exponential transformation of the value function Ψti = −λ logVti the equation of the optimal
controls is written as:

uti = λR−1Gti
∇xtiΨti

Ψti
.
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In discrete time the optimal control is expressed as follows:

uti = lim
dt→0

(

λR−1GT
ti
∇xtiΨ

(dt)
ti

Ψ(dt)
ti

)

.

By using equation (17) and substituting Ψ(dt)(xti , t) we have:

uti = lim
dt→0

(

λR−1GT
ti
∇xti

∫
exp

(

− 1
λZ(τi)

)

dτi∫
exp

(

− 1
λZ(τi)

)

dτi

)

.

Substitution of the term Z(τi) results in the equation:

uti = lim
dt→0



λR−1GT
ti

∇xti
∫
exp

(

− 1
λ S̃(τi)−

λ(N−i)l
2 log(2πdtλ)

)

dτi
∫
exp

(

− 1
λ S̃(τi)−

λ(N−i)l
2 log(2πdtλ)

)

dτi



 .

Next we are using standard properties of the exponential function that lead to:

uti = lim
dt→0



λR−1GT
ti

∇xti

[∫
exp

(

− 1
λ S̃(τi)

)

exp
(

−λ(N−i)l
2 log(2πdtλ)

)

dτi
]

∫
exp

(

− 1
λ S̃(τi)

)

exp
(

−λ(N−i)l
2 log(2πdtλ)

)

dτi



 .

The term exp
(

−λNl
2 log(2πdtλ)

)

does not depend on the trajectory τi, therefore it can be taken
outside the integral as well as outside the gradient. Thus we will have that:

uti = lim
dt→0



λR−1GT
ti

exp
(

−λ(N−i)l
2 log(2πdtλ)

)

∇xti
[∫
exp

(

− 1
λ S̃(τi)

)

dτi
]

exp
(

−λ(N−i)l
2 log(2πdtλ)

)∫
exp

(

− 1
λ S̃(τi)

)

dτi



 .

The constant term drops from the nominator and denominator and thus we can write:

uti = lim
dt→0

(

λR−1GT
ti

[

∇xti
∫
exp

(

− 1
λ S̃(τi)

)

dτi∫
exp

(

− 1
λ S̃(τi)

)

dτi

])

.

Under the assumption that term exp
(

− 1
λ S̃(τi)

)

dτi is continuously differentiable in xti and dt we
can change order of the integral with the differentiation operations. In general for ∇x

∫
f (x,y)dy=∫

∇x f (x,y)dy to be true, f (x, t) should be continuous in y and differentiable in x. Under this as-
sumption, the optimal controls can be further formulated as:

uti = lim
dt→0

[

λR−1GT
ti

∫
∇xti exp

(

− 1
λ S̃(τi)

)

dτi∫
exp

(

− 1
λ S̃(τi)

)

dτi

]

.

Application of the differentiation rule of the exponent results in:

uti = lim
dt→0

[

λR−1GT
ti

∫
exp

(

− 1
λ S̃(τi)

)

∇xti
(

− 1
λ S̃(τi)

)

dτi∫
exp

(

− 1
λ S̃(τi)

)

dτi

]

.
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The denominator is a function of xti the current state and thus it can be pushed inside the integral
of the nominator:

uti = lim
dt→0

[

λR−1GT
ti

∫ exp
(

− 1
λ S̃(τi)

)

∫
exp

(

− 1
λ S̃(τi)

)

dτi
∇xti

(

−
1
λ
S̃(τi)

)

dτi

]

.

By defining the probability p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
the expression above can be written as:

uti = lim
dt→0

[

λR−1GT
ti

∫
p̃(τi)∇xti

(

−
1
λ
S̃(τi)

)

dτi
]

.

Further simplification will result in:

uti = lim
dt→0

[

−R−1GT
ti

∫
p̃(τi)∇xti S̃(τi)dτi

]

.

We know that the control transition matrix has the form G(xti)T = [0T Gc(xxti )
T ]. In addition

the partial derivative ∇xti S̃(τi) can be written as ∇xti S̃(τi)
T = [∇x(m)ti

S̃(τi)T ∇x(c)ti
S̃(τi)T ]. By using

these equations we will have that:

uti = lim
dt→0

(

−R−1[0T G(c)
ti

T ]
∫
p̃(τo)

[

∇x(m)ti
S̃(τi)

∇x(c)ti
S̃(τi)

]

dτi

)

.

The equation above can be written in the form:

uti = lim
dt→0

(

−[0T R−1G(c)
ti

T ]
∫
p̃(τi)

[

∇x(m)ti
S̃(τi)

∇x(c)ti
S̃(τi)

]

dτi

)

.

or

uti = lim
dt→0

(

−[0T R−1G(c)
ti

T ]

[
∫
p̃(τi) ·∇x(m)ti

S̃(τi)dτi∫
p̃(τi) ·∇x(c)ti

S̃(τi)dτi

])

.

Therefore we will have the result

uti = lim
dt→0

[

−R−1G(c)
ti

T
∫
p̃(τi)∇x(c)ti

S̃(τi)dτi
]

.

Lemma 2 : Given the stochastic dynamics and the cost in (1),(2),(3) and(4) the gradient of the
path function S̃(τi) with respect to the directly actuated part of the state x(c)ti is formulated as:

lim
dt→0

(

∇x(c)ti
S̃(τi)

)

=−H−1
ti

(

G(c)
ti εti −bti

)
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where the function b(xti) defined as λH(xti)Φti withHti =G
(c)
ti R−1G(c)

ti
T
and the quantityΦti ∈ℜl×1

is expressed as:

Φti =
1
2





























trace
(

H−1
ti ∂x(c1)ti

Hti

)

trace
(

H−1
ti ∂x(c2)ti

Hti

)

.

.

.

trace
(

H−1
ti ∂x(cl)ti

Hti

)





























.

Proof
We are calculating the term ∇x(c)to

S̃(τo) . More precisely we have shown that

S̃(τi) = φtN +
N−1

∑
j=i

qt jdt+
1
2

N−1

∑
j=i

‖
x(c)t j+1 −x

(c)
t j

dt
− f(c)t j ‖

2
Ht j
dt+

λ
2

N−1

∑
j=i
log |Ht j |.

To limit the length of our derivation we introduce the notation γt j = αTt j h
−1
t j αt j and αt j =

(

x(c)t j+1 −x
(c)
t j − f(c)t j dt

)

and it is easy to show that ‖
x(c)t j+1−x

(c)
t j

dt − f(c)t j ‖2Ht j dt =
1
dt γt j and therefore we will

have:

S̃(τi) = φtN +
1
2dt

N−1

∑
j=i

γt j +
tN
∑
to
Qt jdt+

λ
2

N−1

∑
j=i
log |Ht j |.

In the analysis that follows we provide the derivative of the 1th, 2th and 4th term of the cost
function. We assume that the cost of the state during the time horizon Qti = 0. In cases that this
is not true then the derivative ∇x(c)ti

∑tNti Qtidt needs to be found as well. By calculating the term

∇x(c)to
S̃(τo) we can find the local controls u(τi). It is important to mention that the derivative of the

path cost S(τi) is taken only with respect to the current state xto .
The first term is:

∇x(c)ti
(φtN ) = 0.

DERIVATIVE OF THE 2TH TERM ∇x(c)ti

[ 1
2dt ∑

N−1
i=1 γti

]

OF THE COST S(τi).

The second term can be found as follows:

∇x(c)ti

[

1
2dt

N−1

∑
j=i

γt j

]

.
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The operator ∇x(c)to
is linear and it can massaged inside the sum:

1
2dt

N−1

∑
j=i

∇x(c)t j

(

γt j
)

.

Terms that do not depend on x(c)ti drop and thus we will have:

1
2dt

∇x(c)ti
γti .

Substitution of the parameter γti = αTti H
−1
ti αti will result in:

1
2dt

∇x(c)ti

[

αTti H
−1
ti αti

]

.

Bymaking the substitution βti =H
−1
ti αti and applying the rule∇

(

u(x)Tv(x)
)

=∇(u(x))v(x)+
∇(v(x))u(x) we will have that:

1
2dt

[

∇x(c)ti
αti βti +∇x(c)ti

βti αti

]

. (40)

Next we find the derivative of αto :

∇x(c)ti
αti = ∇x(c)ti

[

x(c)ti+1 −x
(c)
ti − fc(xti)dt

]

.

and the result is

∇x(c)ti
αti =−Il×l−∇x(c)ti

f(c)ti dt.

We substitute back to (40) and we will have:

1
2dt

[

−
(

Il×l+∇x(c)ti
f(c)ti dt

)

βti +∇x(c)ti
βti αti

]

.

−
1
2dt

(

Il×l+∇x(c)ti
f(c)ti dt

)

βti +
1
2dt

∇x(c)ti
βti αti .

After some algebra the result of ∇x(c)ti
( 1
2dt ∑

N−1
i=1 γti

)

is expressed as:

−
1
2dt

βti −
1
2
∇x(c)ti

f(c)ti βti +
1
2dt

∇x(c)ti
βti αti .

The next step now is to find the limit of the expression above as dt→ 0. More precisely we will
have that:

lim
dt→0

[

−
1
2dt

βti −
1
2
∇x(c)ti

f(c)ti βti +
1
2dt

∇x(c)ti
βti αti

]

.
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LIMIT OF THE FIRST SUBTERM: − 1
2dt βti

We will continue our analysis by finding the limit for each one of the 3 terms above. The limit of
the first term is calculated as follows:

lim
dt→0

(

−
1
2dt

βti

)

=− lim
dt→0

(

1
2dt

H−1
ti αti

)

=−
1
2
H−1
ti lim

dt→0
αti

=−
1
2
H−1
ti lim

dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

.

LIMIT OF THE SECOND SUBTERM: − 1
2∇x(c)ti

f(c)ti βti

The limit of the second term is calculated as follows:

− lim
dt→0

(

1
2
∇x(c)ti

f(c)ti βti

)

=−
1
2
∇x(c)ti

fc(xti) lim
dt→0

βti

=−
1
2
∇x(c)ti

f(c)ti lim
dt→0

(

H−1
ti αti

)

=−
1
2
∇x(c)ti

fc(xti) H−1
ti lim

dt→0
αti

= 0.

The limit of the term limdt→0αti is derived as:

lim
dt→0

(

x(c)ti+1 −x
(c)
ti − fc(xti)dt

)

= lim
dt→0

(

x(c)tti+dt −x
(c)
ti

)

− lim
dt→0

fc(xti)dt = 0−0= 0.

LIMIT OF THE THIRD SUBTERM: 1
2dt ∇x(c)ti

βti αti

Finally the limit of the third term can be found as:

lim
dt→0

(

1
2dt

∇x(c)ti
βti αti

)

=

= lim
dt→0

∇x(c)ti
βti lim

dt→0

(

1
2dt

αti

)

=

= lim
dt→0

∇x(c)ti
βti

1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

.

We substitute βti =H
−1
ti αti and write the matrix H−1

ti in row form:
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= lim
dt→0

∇x(c)ti

(

H−1
ti αti

) 1
2
lim
dt→0

(

(x(c)ti −x(c)ti )
1
dt

− f(c)ti
)

=

= lim
dt→0

∇x(c)ti









































H(1)−T
ti
H(2)−T
ti
.
.
.

H(l)−T
ti





















αti





















1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

= lim
dt→0

∇x(c)ti





















H(1)−T
ti αti
H(2)−T
ti αti

.

.

.

H(l)−T
ti αti





















1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

.

We can push the operator ∇x(c)ti
insight the matrix and apply it to each element.

= lim
dt→0

























∇T
x(c)ti

(

H(1)−T
ti αti

)

∇T
x(c)ti

(

H(2)−T
ti αti

)

.

.

.

∇T
x(c)ti

(

H(l)−T
ti αti

)

























1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

.

We again use the rule ∇
(

u(x)Tv(x)
)

= ∇(u(x))v(x)+∇(v(x))u(x) and thus we will have:

= lim
dt→0































(

∇x(c)ti
H(1)−T
ti αti +∇x(c)ti

αti H
(1)−T
ti

)T

(

∇x(c)ti
H(2)−T
ti αti +∇x(c)ti

αti H
(2)−T
ti

)T

.

.

.
(

∇x(c)ti
H(l)−T
ti αti +∇x(c)ti

αti H
(l)−T
ti

)T































lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

.

We can split the matrix above into two terms and then we pull out the terms αti and ∇x(c)ti
αti

respectively :
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= lim
dt→0

























αTti

























∇x(c)ti
H(1)−T
ti

∇x(c)ti
H(2)−T
ti

.

.

.

∇x(c)ti
H(l)−T
ti

























+





















H(1)−T
ti
H(2)−T
ti
.
.
.

H(l)−T
ti





















∇x(c)ti
αTti

























1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

= lim
dt→0

(

αTti ∇x(c)ti
H−1
ti +H−1

ti ∇x(c)ti
αTti

)

1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

=

(

lim
dt→0

(

αTti
)

∇x(c)ti
H−1
ti +H−1

ti lim
dt→0

(

∇x(c)ti
αTti

))

1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

.

Since limdt→0
(

αTti
)

= 01×l and limdt→0

(

∇x(c)ti
αTti

)

= −Il×l the final result is expressed as fol-

lows

lim
dt→0

(

1
2dt

∇x(c)ti
βti αti

)

=−H−1
ti

1
2
lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)to
)

.

After we have calculated the 3 sub-terms, the 2th term of the of the derivative of path cost S(τo)
can be expressed in the following form:

∇x(c)ti

(

1
2λdt

N−1

∑
j=i

γt j

)

=−H−1
ti lim

dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti )

)

.

DERIVATIVE OF THE FOURTH TERM ∇x(c)ti

(

λ
2 ∑

N−1
j=i log |Ht j |

)

OF THE COST S(τi).

The analysis for the 4th term is given below:

∇x(c)ti

(

λ
2

N−1

∑
j=i
log |Ht j |

)

=
λ
2
∇x(c)ti

log |Hti |.

If we assume that x(c)to = [x(c1)to ,x(c2)to ....x(cl)to ] and take the derivative with respect to each element we
will have

∂x(ci)ti

(

λ
2
log |Hti |

)

=
λ
2
1

|Hti |
∂x(ci)ti

|Hti |.

∂x(ci)ti

(

λ
2
log |Hti |

)

=
λ
2

1
|H(xti)|

|Hti | trace
(

H−1
ti ·∂x(ci)ti

Hti

)

.

∂x(ci)ti

(

λ
2
log |Hti |

)

=
λ
2
trace

(

H−1
ti ∂x(ci)ti

Hti

)

.
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Where we make used of the identity ∂det(A) = det(A)Tr
(

A−1∂A
)

. The result is expressed as:

∇x(c)ti

(

λ
2
log |Hti |

)

=
λ
2





























trace
(

H−1
ti ∂x(c1)ti

Hti

)

trace
(

H−1
ti ∂x(c2)ti

Hti

)

.

.

.

trace
(

H−1
ti ∂x(cl)ti

Hti

)





























.

or in a more compact form:

∇x(c)ti

(

λ
2
log |Hti |

)

=H−1
ti bti .

where b(xti) = λH(xti)Φti and the quantity Φti ∈ℜl×1 is defined as:

Φti =
1
2





























trace
(

H−1
ti ∂x(c1)ti

Hti

)

trace
(

H−1
ti ∂x(c2)ti

Hti

)

.

.

.

trace
(

H−1
ti ∂x(cl)ti

Hti

)





























. (41)

Since we computed all the terms of the derivative of the path cost S̃(τo) and after putting all the
terms together we have the result expressed as follows:

lim
dt→0

(

∇x(c)ti
S̃(τi)

)

=−H−1
ti

(

lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

−bti
)

.

By taking into account the fact that limdt→0

(

(x(c)ti+1 −x
(c)
ti ) 1dt − f

(c)
ti

)

=G(c)
ti εti we get the follow-

ing final expression:

lim
dt→0

(

∇x(c)ti
S̃(τi)

)

=−H−1
ti

(

G(c)
ti εti −bti

)

.

Theorem 3 : The optimal control solution to the stochastic optimal control problem expressed
by (1),(2),(3),(4) is formulated by the equation that follows:

uti = lim
dt→0

∫
p̃(τi) uL (τi) dτi,
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where p̃(τi) =
exp(− 1

λ S̃(τi))∫
exp(− 1

λ S̃(τi))dτi
is a path depended probability distribution and the term u(τi) de-

fined as uL (τi) = R−1G(c)
ti

T
(

G(c)
ti R−1G(c)

ti
T
)−1(

G(c)
ti εti −bti

)

are the local controls of each sam-
pled trajectory starting from state xti . The terms εti and bti are defined as εti =
(

(x(c)ti+1 −x
(c)
ti ) 1dt − f

(o)
ti

)

and b(xti) = λH(xti)Φti with Hti =G
(c)
ti R−1G(c)

ti
T
and Φti given in (41).

Proof
To prove the theorem we make use of the Lemma 2 and we substitute ∇x(c)ti

S̃(τi) in the main
result of Lemma 1. More precisely from lemma A1 we have that:

uti = lim
dt→0

(

R−1G(c)
ti

T
∫
p̃(τi)H−1

ti

(

∇x(c)ti
S̃(τi)

)

dτi
)

.

The terms R−1 and Gti can be pushed insight the integral since they are independent of τi =
(x1,x2, ...,xN). Thus we have the expression:

uti = lim
dt→0

(∫
p̃(τi)R−1G(c)

ti
TH−1

ti

(

∇x(c)ti
S̃(τi)

)

dτi
)

,

uti = lim
dt→0

∫
p̃(τi) u(dt)L (τi) dτi,

where the local controls u(dt)L (τi) are given as follows:

u(dt)L (τi) = R−1G(c)
ti

TH−1
ti ∇x(c)ti

S̃(τi).

After applying the limit, and making use of the result in Lemma 2 the equation above is ex-
pressed as:

uti =
∫
p̃(τi)uL(xti+1 ,xti)dτi,

where the local controls uL(xti+1 ,xti) are given as follows:

uL(τi) = uL(xti+1 ,xti) = R−1G(c)
ti

TH−1
ti

(

lim
dt→0

(

(x(c)ti+1 −x
(c)
ti )

1
dt

− f(c)ti
)

−bti
)

,

or in a simpler form:

uL(xti+1 ,xti) = R−1G(c)
ti

TH−1
ti (Gcεti −bti) .

By substituting with H(xti) =G
(c)
ti R−1G(c)

ti
T we have the final result:

uL(τi) = uL(xti+1 ,xti) = R−1G(c)
ti

T
(

G(c)
ti R

−1G(c)
ti

T
)−1(

G(c)
ti εti −bti

)

.
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Appendix B.

Theorem 4 : Let us assume that x satisfies the SDE ẋ = f(x, t) +G(x)ε(t). Then Ψ(x, to) =
Ψ(x, to, tN) = E

(

Ψ(x, tN) e
∫ tN
to − 1

λq(x)dτ
)

if and only if Ψ(x, t) satisfies the backward Kolmogorov
PDE:

−∂tΨt =−
1
λ
qtΨt + fTt (∇xΨt)+

1
2
trace

(

(∇xxΨt)GtΣεGT
t
)

,

with boundary condition:

Ψ(x, tN) = exp
(

−
1
λ
φ(x(tN))

)

.

Proof Given that x satisfies the SDE ẋ = f(x, t)+G(x)ε(t) and Ψ(x, t) satisfies the PDE above,
application of Ito lemma (Øksendal, 2003) to function Y (t) =Ψ(xt , t) e

∫ t
to −

1
λq(x)dτ leads to the final

result Ψ(x, to) = E
(

Ψ(x, tN) e
∫ tN
to − 1

λq(x)dτ
)

. This result is the solution of the linear PDE.
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Abstract
Large-scale linear classification is widely used in many areas. The L1-regularized form can be
applied for feature selection; however, its non-differentiability causes more difficulties in training.
Although various optimization methods have been proposed in recent years, these have not yet
been compared suitably. In this paper, we first broadly review existing methods. Then, we discuss
state-of-the-art software packages in detail and propose two efficient implementations. Extensive
comparisons indicate that carefully implemented coordinate descent methods are very suitable for
training large document data.
Keywords: L1 regularization, linear classification, optimization methods, logistic regression,
support vector machines, document classification

1. Introduction

Recently, L1-regularized classifiers have attracted considerable attention because they can be used
to obtain a sparse model. Given a set of instance-label pairs (xi,yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1,+1}, training an L1-regularized linear classifier involves the following unconstrained opti-
mization problem:

min
w

f (w)≡ ‖w‖1+C
l

∑
i=1

ξ(w;xi,yi), (1)

where ‖ ·‖1 denotes the 1-norm and ξ(w;xi,yi) is a non-negative (convex) loss function. The regu-
larization term ‖w‖1 is used to avoid overfitting the training data. The user-defined parameterC> 0
is used to balance the regularization and loss terms.

If ‖w‖2 is used in (1), we obtain an L2-regularized classifier. Although L2 regularization is used
more commonly, an L1-regularized formula often produces a sparse w. Nonzero elements help to
select important features; in addition, the time required to produce predictions may be reduced.
Considerable literature has been published on the advantages of using L1 regularization; see, for
example, Zhao and Yu (2006). However, an L1-regularized form (1) is not differentiable regardless
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of its loss function. This drawback leads to greater difficulty in solving the optimization problem.
Therefore, certain considerations are required to handle the non-differentiability.

Many loss functions can be used for linear classification. A commonly used one is logistic loss:

ξlog(w;x,y) = log(1+ e−yw
T x). (2)

This loss function is twice differentiable. Note that minimizing logistic loss is equivalent to maxi-
mizing the likelihood, whereas minimizing the regularized loss in (1) is equivalent to maximizing
the posterior with independent Laplace priors on the parameters. Two other frequently used func-
tions are the L1- and the L2-loss functions:

ξL1(w;x,y) =max(1− ywTx, 0) and (3)
ξL2(w;x,y) =max(1− ywTx, 0)2. (4)

Because of the max(·) operation, the L1-loss function is not differentiable. On the other hand, L2
loss is differentiable, but not twice differentiable (Mangasarian, 2002). We refer to (1) with logistic
loss as L1-regularized logistic regression and (1) with L1/L2 loss as L1-regularized L1-/L2-loss
support vector machines (SVMs).

In some applications, we require a bias term b (also called as an intercept) in the loss function;
therefore, wTx in (2)–(4) is replaced with wTx+b. For example, the logistic loss function becomes

ξlog(w,b;x,y) = log
(

1+ e−y(w
T x+b)

)

.

The optimization problem then involves variables w and b:

min
w,b

‖w‖1+C
l

∑
i=1

ξ(w,b;xi,yi). (5)

Because b does not appear in the regularization term, most optimization methods used to solve
(1) can solve (5) as well. In this paper, except whenever b is required, we mainly consider the
formulation (1).

Many papers have proposed optimization methods for large-scale L1-regularized logistic regres-
sion (i.e., using ξlog as the loss function). These studies did not consider L1- or L2-loss functions
because logistic loss has a probability interpretation and is twice differentiable. These methods
differ in various aspects such as the convergence speed, ease of implementation, and practical appli-
cability. With so many available methods, it is important to conduct a comprehensive comparison.
Schmidt et al. (2007, 2009) compared optimization methods for L1-regularized classifiers; how-
ever, they did not include some state-of-the-art solvers. Moreover, their comparison is based on the
number of function evaluations instead of the actual running time. In this paper, we categorize and
compare existing methods for logistic regression. We also extend some methods to solve L2-loss
SVMs. We exclude L1 loss from the discussion because most methods for logistic regression or
L2-loss SVMs assume the differentiability of the loss functions. Readers interested in using L1-
loss SVMs can refer to Bradley and Mangasarian (1998), Zhu et al. (2004), Fung and Mangasarian
(2004), Mangasarian (2006), and references therein.
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1.1 Basic Properties of (1)

In this paper, we assume that the loss function ξ(w;xi,yi) is convex, differentiable, and nonnegative.
The proof presented in Appendix A shows that (1) attains at least one global optimum. Unlike L2
regularization, which leads to a unique optimal solution, here, (1) may possess multiple optimal
solutions. We use w∗ to denote any optimal solution of (1). The convexity of f (w) implies that all
optimal solutions have the same function value, which is denoted as f ∗. For more information about
the set of optimal solutions, see, for example, Hale et al. (2008, Section 2).

From standard convex analysis, w∗ is optimal for (1) if and only if w∗ satisfies the following
optimality conditions:









∇ jL(w∗)+1= 0 if w∗
j > 0,

∇ jL(w∗)−1= 0 if w∗
j < 0,

−1≤ ∇ jL(w∗)≤ 1 if w∗
j = 0,

(6)

where L(w) is the loss term in (1):

L(w)≡C
l

∑
i=1

ξ(w;xi,yi). (7)

1.2 Organization and Notation

The remainder of this paper is organized as follows. In Section 2, we briefly survey existing ap-
proaches. Section 3 lists state-of-the-art L1-regularized logistic regression packages compared in
this study. Sections 4–6 discuss these packages in detail; two of these (Sections 4.1.2 and 5.1) are
our proposed implementations. In Section 7, we extend several methods to train L2-loss SVMs.
Section 8 describes the extensive experiments that were carried out. Comparison results indicate
that decomposition methods (Section 4) are very suitable for large-scale document data. Finally, the
discussions and conclusions are presented in Section 9. A supplementary file including additional
details and descriptions of experiments is available at http://www.csie.ntu.edu.tw/˜cjlin/
papers/l1/supplement.pdf

In this study, we use consistent notation to describe several state-of-the-art methods that are
considered. The following table lists some frequently used symbols:

l: number of instances
n: number of features
i: index for a data instance
j: index for a data feature
k: iteration index for an optimization algorithm

We may represent training instances (xi,yi), i= 1, . . . , l in the following form:

X =






xT1
...
xTl




 ∈ Rl×n and y=






y1
...
yl




 ∈ {−1,+1}l.

For any vector v, we consider the following two representations for sub-vectors:

vt:s ≡ [vt , . . . ,vs]T and vI ≡ [vi1 , . . . ,vi|I| ]
T ,
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where I = {i1, . . . , i|I|} is an index set. Similarly,

XI,: ≡






xTi1...
xTi|I|




 . (8)

The function τ(s) gives the first derivative of the logistic loss function log(1+ es):

τ(s)≡
1

1+ e−s
. (9)

An indicator vector for the jth component is

e j ≡ [0, . . . ,0
︸ ︷︷ ︸

j−1

,1,0, . . . ,0]T . (10)

We use ‖ ·‖ or ‖ ·‖2 to denote the 2-norm and ‖ ·‖1 to denote the 1-norm.

2. A Survey of Existing Methods

In this section, we survey existing methods for L1-regularized problems. In Sections 2.1–2.3, we
focus on logistic regression and L2-loss SVMs for data classification. Section 2.5 briefly discusses
works on regression problems using the least-square loss.

2.1 Decomposition Methods

Decomposition methods are a classical optimization approach. Because it is difficult to update
all variables simultaneously, at each iteration, we can choose a subset of variables as the working
set and fix all others. The resulting sub-problem contains fewer variables and is easier to solve.
The various decomposition methods that have been applied to solve L1-regularized problems are
categorized into two types according to the selection of the working set.

2.1.1 CYCLIC COORDINATE DESCENT METHODS

A simple coordinate descent method cyclically chooses one variable at a time and solves the fol-
lowing one-variable sub-problem:

min
z

g j(z)≡ f (w+ ze j)− f (w), (11)

where e j is defined in (10). This function g j(z) has only one non-differentiable point at z = −wj.
In optimization, the cyclic method for choosing working variables is often called the Gauss-Seidel
rule (Tseng and Yun, 2007).

Several works have applied coordinate descent methods to solve (1) with logistic loss. Here, a
difficulty arises in that sub-problem (11) does not have a closed-form solution. Goodman (2004)
assumed nonnegative feature values (i.e., xi j ≥ 0, ∀i, j) and then approximated g j(z) by a function
Aj(z) at each iteration. Aj(z) satisfies Aj(z)≥ g j(z),∀z, and Aj(0) = g j(0) = 0; therefore, minimiz-
ing Aj(z) may reduce the function value. Moreover, there is a closed-form solution for minimizing
Aj(z). Goodman (2004) actually studied a problem with additional constraints wj ≥ 0; however, his
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approach can be extended to solve the original L1-regularized logistic regression by taking the sign
of wj into consideration.

Genkin et al. (2007) implemented a cyclic coordinate descent method called BBR to solve L1-
regularized logistic regression. BBR approximately minimizes sub-problem (11) in a trust region
and applies one-dimensional Newton steps. Balakrishnan andMadigan (2005) reported an extension
of BBR for online settings.

In Section 4.1.2, we propose a coordinate descent method by extending Chang et al.’s (2008)
approach for L2-regularized classifiers. Chang et al. (2008) approximately solved the sub-problem
(11) by a one-dimensional Newton direction with line search. Experiments show that their approach
outperforms a BBR variant for L2-regularized classification. Therefore, for L1 regularization, this
approach might be faster than BBR. Hereafter, we refer to this efficient coordinate descent method
as CDN (coordinate descent using one-dimensional Newton steps).

Tseng and Yun (2007) broadly discussed decomposition methods for L1-regularized problems.
One of their approaches is a cyclic coordinate descent method. They considered a general cyclic
setting so that several working variables are updated at each iteration. We show that CDN is a special
case of their general algorithms.

If we randomly select the working variable, then the procedure becomes a stochastic coordinate
descent method. Shalev-Shwartz and Tewari (2009, Algorithm 2) recently studied this issue. Duchi
and Singer (2009) proposed a similar coordinate descent method for the maximum entropy model,
which is a generalization of logistic regression.

2.1.2 VARIABLE SELECTION USING GRADIENT INFORMATION

Instead of cyclically updating one variable, we can choose working variables based on the gradient
information.1 This method for selecting variables is often referred to as the Gauss-Southwell rule
(Tseng and Yun, 2007). Because of the use of gradient information, the number of iterations is fewer
than those in cyclic coordinate descent methods. However, the cost per iteration is higher. Shevade
and Keerthi (2003) proposed an early decomposition method with the Gauss-Southwell rule to solve
(1). In their method, one variable is chosen at a time and one-dimensional Newton steps are applied;
therefore, their method differs from the cyclic coordinate descent methods described in Section 2.1.1
mainly in terms of finding the working variables. Hsieh et al. (2008) showed that for L2-regularized
linear classification, maintaining the gradient for selecting only one variable at a time is not cost-
effective. Thus, for decomposition methods using the gradient information, a larger working set
should be used at each iteration.

In the framework of decomposition methods proposed by Tseng and Yun (2007), one type of
method selects a set of working variables based on the gradient information. The working set can be
large, and therefore, they approximately solved the sub-problem. For the same method, Yun and Toh
(2009) enhanced the theoretical results and carried out experiments with document classification
data. We refer to their method as CGD-GS because the method described in Tseng and Yun (2007)
is called “coordinate gradient descent” and a Gauss-Southwell rule is used.

2.1.3 ACTIVE SET METHODS

Active set methods are a popular optimization approach for linear-constrained problems. For prob-
lem (1), an active method becomes a special decomposition method because at each iteration, a

1. Because f (w) is not differentiable, ∇ jL(w)±1 is used according to the sign of wj.
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sub-problem over a working set of variables is solved. The main difference from decomposition
methods described earlier is that the working set contains all non-zero variables. Therefore, an ac-
tive set method iteratively predicts what a correct split of zero and non-zero elements in w is. If the
split is correct, then solving the sub-problem gives the optimal values of non-zero elements.

Perkins et al. (2003) proposed an active set method for (1) with logistic loss. This implementa-
tion uses gradient information to predict w’s zero and non-zero elements.

2.2 Methods by Solving Constrained Optimization Problems

This type of method transforms (1) to equivalent constrained optimization problems. We further
classify them into two groups.

2.2.1 OPTIMIZATION PROBLEMS WITH SMOOTH CONSTRAINTS

We can replace w in (1) with w+ −w−, where w+ and w− are both nonnegative vectors. Then,
problem (1) becomes equivalent to the following bound-constrained optimization problem:

min
w+,w−

n

∑
j=1

w+
j +

n

∑
j=1

w−
j +C

l

∑
i=1

ξ(w+−w−;xi,yi)

subject to w+
j ≥ 0, w

−
j ≥ 0, j = 1, . . . ,n.

(12)

The objective function and constraints of (12) are smooth, and therefore, the problem can be solved
by standard bound-constrained optimization techniques. Schmidt et al. (2009) proposed Projec-
tionL1 to solve (12). This is an extension of the “two-metric projection” method (Gafni and Bert-
sekas, 1984). Limited-memory quasi Newton implementations, for example, LBFGS-B by Byrd
et al. (1995) and BLMVM by Benson and Moré (2001), require function/gradient evaluations and
use a limited amount of memory to approximate the Hessian matrix. Kazama and Tsujii (2003) pre-
sented an example of using BLMVM for (12). Lin and Moré’s (1999) trust region Newton method
(TRON) can also be applied to solve (12). In addition to function/gradient evaluations, TRON needs
to calculate Hessian-vector products for faster convergence. Lin et al. (2008) applied TRON to solve
L2-regularized logistic regression and showed that TRON outperforms LBFGS for document data.
No previous work has applied TRON to solve L1-regularized problems, and therefore, we describe
this in Section 5.1.

Koh et al. (2007) proposed an interior point method to solve L1-regularized logistic regression.
They transformed (1) to the following constrained problem:

min
w,u

n

∑
j=1

u j+C
l

∑
i=1

ξ(w;xi,yi)

subject to −u j ≤ wj ≤ u j, j = 1, . . . ,n.
(13)

Equation (13) can be made equivalent to (12) by setting

w+
j =

u j+wj

2
and w−

j =
u j−wj

2
.

To ensure that w and u are in the interior of the feasible region set, Koh et al. (2007) added a log
barrier to the objective function of (13) and applied a Newton method.
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2.2.2 OPTIMIZATION PROBLEMS WITH NON-SMOOTH CONSTRAINTS

It is well-known that for any choice of C in (1), there exists a corresponding K such that (1) is
equivalent to the following problem:

min
w

l

∑
i=1

ξ(w;xi,yi)

subject to ‖w‖1 ≤ K.
(14)

See the explanation in, for example, Donoho and Tsaig (2008, Section 1.2). Notice that in (14), the
constraint is not smooth at {w | wj = 0 for some j}. However, (14) contains fewer variables and
constraints than (12). Lee et al. (2006) applied the LARS algorithm described in Efron et al. (2004)
to find a Newton direction at each step and then used a backtracking line search to minimize the
objective value. Kivinen and Warmuth’s (1997) concept of exponentiated gradient (EG) can solve
(14) with additional constraints wj ≥ 0, ∀ j. In a manner similar to the technique for constructing
(12), we can remove the nonnegative constraints by replacing w with w+−w−. If k is the iteration
index, EG updates w by the following rule:

wk+1j =
wkj exp

(

−ηk∇ j
(

∑l
i=1 ξ(wk;xi,yi)

))

Zk
,

where Zk is a normalization term for maintaining ‖wk‖1 = K, ∀k and ηk is a user-defined learning
rate. Duchi et al. (2008) applied a gradient projection method to solve (14). The update rule is

wk+1 = argmin
w

{

‖
(

wk−ηk∇
(

∑l
i=1 ξ(w

k;xi,yi)
))

−w‖
∣
∣
∣ ‖w‖1 ≤ K

}

. (15)

They developed a fast algorithm to project a solution to the closest point satisfying the constraint.
They also considered replacing the gradient in (15) with a stochastic sub-gradient. In a manner sim-
ilar to (15), Liu et al. (2009) proposed a gradient projection method called Lassplore and carefully
addressed the selection of the learning rate ηk. However, they evaluated their method only on data
with no more than 2,000 instances.2

Kim and Kim (2004) discussed a coordinate descent method to solve (14). They used the gradi-
ent information to select an element wj for update. However, because of the constraint ‖w‖1 ≤ K,
the whole vector w is normalized at each step. Thus, the setting is very different from the un-
constrained situations described in Section 2.1.1. Kim et al. (2008) made further improvements to
realize faster convergence.

Active set methods have also been applied to solve (14). However, in contrast to the active
set methods described in Section 2.1.3, here, the sub-problem at each iteration is a constrained
optimization problem. Roth (2004) studied general loss functions including logistic loss.

2.3 Other Methods for L1-regularized Logistic Regression/L2-loss SVMs

We briefly review other methods in this section.

2. Although Table 1 in Liu et al. (2009) shows larger numbers, in Section 6 of the same paper, they stated that “we use
a total of 2,000 samples in the following experiments.”
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2.3.1 EXPECTATION MAXIMIZATION

Many studies have considered Expectation Maximization (EM) frameworks to solve (1) with logis-
tic loss (e.g., Figueiredo, 2003; Krishnapuram et al., 2004, 2005). These works find an upper-bound
function f̂ (w) ≥ f (w),∀w, and perform Newton steps to minimize f̂ (w). However, as pointed out
by Schmidt et al. (2009, Section 3.2), the upper-bound function f̂ (w) may not be well-defined at
some wi = 0 and hence certain difficulties must be addressed.

2.3.2 STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent methods have been successfully applied to solve (1). At each iteration,
the solution is updated using a randomly selected instance. These types of methods are known to
efficiently generate a reasonable model, although they suffer from slow local convergence. Under
an online setting, Langford et al. (2009) solved L1-regularized problems by a stochastic gradient
descent method. Shalev-Shwartz and Tewari (2009) combined Langford et al.’s (2009) method with
other techniques to obtain a new stochastic gradient descent method for (1).

2.3.3 QUASI NEWTON METHODS

Andrew and Gao (2007) proposed an Orthant-Wise Limited-memory quasi Newton (OWL-QN)
method. This method is extended from LBFGS (Liu and Nocedal, 1989), a limited memory quasi
Newton approach for unconstrained smooth optimization. At each iteration, this method finds a
sub-space without considering some dimensions with wj = 0 and obtains a search direction simi-
lar to LBFGS. A constrained line search on the same sub-space is then conducted and the property
wk+1j wkj ≥ 0 is maintained. Yu et al. (2010) proposed a quasi Newton approach to solve non-smooth
convex optimization problems. Their method can be used to improve the line search procedure in
OWL-QN.

2.3.4 HYBRID METHODS

Shi et al. (2010) proposed a hybrid algorithm for (1) with logistic loss. They used a fixed-point
method to identify the set { j |w∗

j = 0}, where w∗ is an optimal solution, and then applied an interior
point method to achieve fast local convergence.

2.3.5 QUADRATIC APPROXIMATION FOLLOWED BY COORDINATE DESCENT

Krishnapuram et al. (2005) and Friedman et al. (2010) replaced the loss term with a second-order
approximation at the beginning of each iteration and then applied a cyclic coordinate descent method
to minimize the quadratic function. We will show that an implementation in Friedman et al. (2010)
is efficient.

2.3.6 CUTTING PLANE METHODS

Teo et al. (2010) implemented a bundle (cutting plane) method BMRM to handle non-smooth loss
functions. It includes an extension for L1 regularization.
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2.3.7 APPROXIMATING L1 REGULARIZATION BY L2 REGULARIZATION

Kujala et al. (2009) proposed the approximation of L1-regularized SVMs by iteratively reweighting
training data and solving L2-regularized SVMs. That is, using the current wj, they adjusted the jth
feature of the training data and then trained an L2-regularized SVM in the next step.

2.3.8 SOLUTION PATH

Several works have attempted to find the “solution path” of (1). The optimal solution of (1) varies
according to parameter C. It is occasionally useful to find all solutions as a function of C; see, for
example, Rosset (2005), Zhao and Yu (2007), Park and Hastie (2007), and Keerthi and Shevade
(2007). We do not provide details of these works because this paper focuses on the case in which a
singleC is used.

2.4 Strengths and Weaknesses of Existing Methods

Although this paper will compare state-of-the-art software, we discuss some known strengths and
weaknesses of existing methods.

2.4.1 CONVERGENCE SPEED

Optimization methods using higher-order information (e.g., quasi Newton or Newton methods) usu-
ally enjoy fast local convergence. However, they involve an expensive iteration. For example, New-
ton methods such as TRON or IPM need to solve a large linear system related to the Hessian matrix.
In contrast, methods using or partially using the gradient information (e.g., stochastic gradient de-
scent) have slow local convergence although they can more quickly decrease the function value in
the early stage.

2.4.2 IMPLEMENTATION EFFORTS

Methods using higher-order information are usually more complicated. Newton methods need to
include a solver for linear systems. In contrast, methods such as coordinate descent or stochas-
tic gradient descent methods are easy to implement. They involve only vector operations. Other
methods such as expectation maximization are intermediate in this respect.

2.4.3 HANDLING LARGE-SCALE DATA

In some methods, the Newton step requires solving a linear system of n variables. Inverting an n×n
matrix is difficult for large n. Thus, one should not use direct methods (e.g., Gaussian elimination) to
solve the linear system. Instead, TRON and IPM employ conjugate gradient methods and Friedman
et al. (2007) use coordinate descent methods. We observe that for existing EM implementations,
many consider direct inversions, and therefore, they cannot handle large-scale data.

2.4.4 FEATURE CORRELATION

Methods that work on a block of variables at a time (e.g., decomposition methods) may be more
efficient if features are almost independent; however, they may be less efficient if features are highly
correlated.
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2.4.5 DATA TYPE

No method is the most suitable for all data types. A method that is efficient for one application may
be slow for another. This paper is focused on document classification, and a viable method must be
able to easily handle large and sparse features.

2.5 Least-square Regression for Signal Processing and Image Applications

Recently, L1-regularized problems have attracted considerable attention for signal processing and
image applications. However, they differ from (1) in several aspects. First, yi ∈ R, and therefore, a
regression instead of a classification problem is considered. Second, the least-square loss function
is used:

ξ(w;xi,yi) = (yi−wTxi)2. (16)

Third, in many situations, xi are not directly available. Instead, the product between the data matrix
X and a vector can be efficiently obtained through certain operators. We briefly review some of
the many optimization methods for least-square regression. If we use formulation (14) with non-
smooth constraints, the problem reduces to LASSO proposed by Tibshirani (1996) and some early
optimization studies include, for example, Fu (1998) and Osborne et al. (2000a,b). Fu (1998) ap-
plied a cyclic coordinate descent method. For least-square loss, the minimization of the one-variable
sub-problem (11) has a closed-form solution. Sardy et al. (2000) also considered coordinate descent
methods, although they allowed a block of variables at each iteration. Wu and Lange (2008) con-
sidered a coordinate descent method, but used the gradient information for selecting the working
variable at each iteration. Osborne et al. (2000a) reported one of the earliest active set methods for
L1-regularized problems. Roth’s (2004) method for general losses (see Section 2.2.2) reduces to
this method if the least-square loss is used. Friedman et al. (2007) extended Fu’s coordinate de-
scent method to find a solution path. Donoho and Tsaig (2008) also obtained a solution path. Their
procedure requires solving a linear system of a matrix XT:,JX:,J , where J is a subset of {1, . . . ,n}.
Figueiredo et al. (2007) transformed the regression problem to a bound-constrained formula in (12)
and applied a projected gradient method. Wright et al. (2009) proposed the iterative minimization
of the sum of the L1 regularization term and a quadratic approximation of the loss term. In the
quadratic approximation, they used a diagonal matrix instead of the Hessian of the loss term, and
therefore, the minimization can be easily carried out. Hale et al. (2008) proposed a fixed point
method to solve (1) with the least-square loss (16). Their update rule is generated from a fixed-point
view; however, it is very similar to a gradient projection algorithm.

The dual of LASSO and the dual of (1) have been discussed in Osborne et al. (2000b) and Kim
et al. (2007), respectively. However, thus far, there have been few optimization methods for the
dual problem. Tomioka and Sugiyama (2009) proposed a dual augmented Lagrangian method for
L1-regularized least-square regression that theoretically converges super-linearly.

Most optimization methods for classification discussed in the earlier sections can handle general
smooth loss functions, and therefore, they can be applied to the regression problem. However, data
for classification applications may be very different from those for regression applications. For
example, in text classification, the numbers of instances and features are both large and data are
very sparse. However, in certain signal processing applications, the number of instances may be
much smaller than the number of features (i.e., l + n) and the data may be dense. Moreover, in
classification, the parameter C is often selected by cross validation; however, in signal processing,
the selection may be application dependent. Few optimization studies have investigated both types
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of applications. The interior point method for logistic regression by solving (13) has been applied to
the least-square regression problem (Kim et al., 2007). Duchi et al. (2008) compared their gradient
projection implementation (see Section 2.2.2) with interior point methods using both logistic and
least-square losses. In Section 2.1.2, we mentioned a decomposition method CGD-GS by Yun and
Toh (2009). In the same paper, Yun and Toh have also investigated the performance of CGD-GS on
regression problems.

In this paper, we focus on data classification, and therefore, our conclusions may not apply to
regression applications. In particular, the efficient calculation between X and a vector in some signal
processing applications may afford advantages to some optimization methods.

3. Methods and Software Included for Comparison

In the rest of this paper, we compare some state-of-the-art software BBR, SCD, CGD-GS, IPM,
BMRM, OWL-QN, Lassplore and GLMNET. We further develop two efficient implementations. One
is a coordinate descent method (CDN) and the other is a trust region Newton method (TRON). These
packages are selected because of two reasons. First, they are publicly available. Second, they are
able to handle large and sparse data sets. We categorize these packages into three groups:

• decomposition methods,

• methods by solving constrained optimization problems,

• other methods,

and describe their algorithms in Sections 4–6. The comparison results are described in Sections 8.
Note that classification (logistic regression and L2-loss SVMs) is our focus, and therefore, software
for regression problems using the least-square loss (16) is not considered.

4. Decomposition Methods

This section discusses three methods sequentially or randomly choosing variables for update, and
one method using gradient information for the working set selection.

4.1 Cyclic Coordinate Descent Methods

From the current solutionwk, a coordinate descent method updates one variable at a time to generate
wk, j ∈ Rn, j = 1, . . . ,n+1, such that wk,1 = wk, wk,n+1 = wk+1, and

wk, j =
[

wk+11 , . . . ,wk+1j−1,w
k
j, . . . ,wkn

]T
for j = 2, . . . ,n.

To update wk, j to wk, j+1, the following one-variable optimization problem is solved:

min
z

g j(z) = |wk, jj + z|− |wk, jj |+Lj(z;wk, j)−Lj(0;wk, j), (17)

where
Lj(z;wk, j)≡ L(wk, j+ ze j).
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Algorithm 1 A framework of coordinate descent methods
1. Given w1.
2. For k = 1,2,3, . . . (outer iterations)

(a) wk,1 = wk.
(b) For j = 1,2, . . . ,n (inner iterations)

• Find d by solving the sub-problem (17) exactly or approximately.
• wk, j+1 = wk, j+de j.

(c) wk+1 = wk,n+1.

For simplicity, hereafter, we use Lj(z) in most places. If the solution of (17) is d, then we update
the jth element by

wk, j+1j = wk, jj +d.

Typically, a coordinate descent method sequentially goes through all variables and then repeats
the same process; see the framework in Algorithm 1. We refer to the process of updating every n
elements (i.e., fromwk towk+1) as an outer iteration and the step of updating one element (i.e., from
wk, j to wk, j+1) as an inner iteration. Practically, we only approximately solve (17), where several
approaches are discussed below.

Using the same way to obtain the optimality condition in (6), for the one-variable function g j(z),
we have that z= 0 is optimal for (17) if and only if









L′j(0)+1= 0 if wk, jj > 0,
L′j(0)−1= 0 if wk, jj < 0,
−1≤ L′j(0)≤ 1 if wk, jj = 0.

(18)

The optimality condition at z= 0 shows if modifying wk, jj may decrease the function value or not.

4.1.1 BBR

Genkin et al. (2007) propose a coordinate descent method BBR for (1) and (5) with logistic loss.
This method is extended from Zhang and Oles (2001) for L2-regularized logistic regression. At each
inner iteration, BBR approximately solves the sub-problem (17) by a trust region Newton method.
With the trust region Δ j, it requires the step z to satisfy

|z|≤ Δ j and wk, jj + z

{

≥ 0 if wk, jj > 0,
≤ 0 if wk, jj < 0.

(19)

The first constraint confines the step size to be in the trust region and Δ j is updated at the end of
each inner iteration. Due to the non-differentiable point at z=−wk, jj , the second constraint ensures
that the function is differentiable in the search space.

To approximately solve (17), BBR minimizes a quadratic function upper-bounding the function
g j(z) in the trust region. Though g j(z) is not differentiable, by considering both cases of wk, jj > 0
and wk, jj < 0, we obtain the following form:

g j(z) = g j(0)+g′j(0)z+
1
2
g′′j (ηz)z2, (20)
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where 0< η< 1,

g′j(0)≡

{

L′j(0)+1 if wk, jj > 0,
L′j(0)−1 if wk, jj < 0,

and g′′j (ηz)≡ L′′j (ηz). (21)

Notice that when wk, jj = 0, g j(z) is non-differentiable at z= 0 and g′j(0) is not well-defined. We will
discuss this situation later. BBR finds an upper boundUj of g′′j (z) such that

Uj ≥ g′′j (z), ∀|z|≤ Δ j.

Then ĝ j(z) is an upper-bound function of g j(z):

ĝ j(z)≡ g j(0)+g′j(0)z+
1
2
Ujz2.

Any step z satisfying ĝ j(z)< ĝ j(0) leads to

g j(z)−g j(0) = g j(z)− ĝ j(0)≤ ĝ j(z)− ĝ j(0)< 0,

so the function value is decreased. If logistic loss (2) is used, BBR suggests settingUj as

Uj ≡C
l

∑
i=1

x2i jF
(

yi(wk, j)Txi,Δ j|xi j|
)

, (22)

where

F(r,δ) =

{

0.25 if |r|≤ δ,
1

2+e(|r|−δ)+e(δ−|r|) otherwise.

If wk, jj -= 0, BBR minimizes ĝ j(z) under the constraints (19) to obtain

d =min
(

max
(

P(−
g′j(0)
Uj

,wk, jj ),−Δ j
)

,Δ j

)

, (23)

where

P(z,w)≡

{

z if sgn(w+ z) = sgn(w),
−w otherwise.

Now consider the case of wk, jj = 0, where g′j(0) is not well-defined at this point. If L′j(0)+1< 0, by
defining g′j(0)≡ L′j(0)+1, any 0< z≤−g′j(0)/Uj gives a smaller ĝ j(z) than ĝ j(0). We thus obtain
the new point by mapping −g′j(0)/Uj back to the trust region. The situation for L′j(0)− 1 > 0 is
similar. We do not need to handle the situation −1 ≤ L′j(0) ≤ 1 as (18) and w

k, j
j = 0 indicate that

z= 0 is the minimum of g j(z).
The procedure of BBR to approximately solve (17) is described in Algorithm 2. The major cost

is on calculating g′j(0) andUj. For logistic loss, L′j(0) needed for calculating g′j(0) is

L′j(0) =C
l

∑
i=1

yixi j
(

τ(yi(wk, j)Txi)−1
)

, (24)
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Algorithm 2 BBR: Approximately solving the sub-problem by a trust region method
1. Given wk, j and Δ j.
2. CalculateUj by (22).
3. Find a step d by (23).
4. Update Δ j by Δ j ←max(2|d|,Δ j/2).

where τ(·) is defined in (9). From (22) and (24), the most expensive operation is on obtaining
wTxi, ∀i. A common trick for saving the running time is to store wTxi, ∀i and update them accord-
ing to

wTxi ← wTxi+d · xi j. (25)

If wTxi, ∀i are available, both (22) and (24) need O(l) operations. Because maintaining wTxi via
(25) also takes O(l), the cost per inner iteration is O(l).

Unfortunately, there is no convergence proof yet for the method BBR.

4.1.2 COORDINATE DESCENT METHOD USING ONE-DIMENSIONAL NEWTON DIRECTIONS
(CDN)

BBR replaces the second derivative term in (20) with an upper bound Uj. If we keep using g′′j (0)
and obtain the one-dimensional Newton direction at z = 0, the local convergence may be faster.
This issue has been studied in L2-regularized logistic regression/SVMs, where BBR reduces to the
approach by Zhang and Oles (2001), and Chang et al. (2008) showed that a coordinate descent
method using one-dimensional Newton directions is faster. Here, we extend Chang et al.’s method
for L1-regularized problems. The new approach, referred to as CDN, is expected to be faster than
BBR following a similar reason.

A Newton direction is obtained from minimizing the second-order approximation, but g j(z)
is not differentiable due to the L1-regularization term. Thus, we consider only the second-order
approximation of the loss term Lj(z) and solve

min
z

|wk, jj + z|− |wk, jj |+L′j(0)z+
1
2
L′′j (0)z2. (26)

This problem can be reduced to a form commonly referred to as “soft-thresholding” in signal pro-
cessing. We show in Appendix B that (26) has the following closed-form solution:

d =













−
L′j(0)+1
L′′j (0)

if L′j(0)+1≤ L′′j (0)w
k, j
j ,

−
L′j(0)−1
L′′j (0)

if L′j(0)−1≥ L′′j (0)w
k, j
j ,

−wk, jj otherwise.

(27)

Because (26) is only a quadratic approximation of f (wk, j+ ze j)− f (wk, j), the direction d may not
ensure the decrease of the function value. For the convergence, Chang et al. (2008) consider a line
search procedure to find λ ∈ (0,1) such that the step λd satisfies the sufficient decrease condition:

f (wk, j+λde j)− f (wk, j) = g j(λd)−g j(0)≤−σ(λd)2,

where σ is any constant in (0,1). However, as pointed out by Tseng and Yun (2007), this condition
may not be suitable here due to the non-smooth regularization term ‖w‖1. We follow Tseng and
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Algorithm 3 CDN: Approximately solving the sub-problem by Newton directions with line search
1. Given wk, j. Choose β ∈ (0,1).
2. Calculate the Newton direction d by (27).
3. Compute λ=max{1,β,β2, . . .} such that λd satisfies (28).

Yun (2007) to use a modified condition:

g j(λd)−g j(0)≤ σλ
(

L′j(0)d+ |wk, jj +d|− |wk, jj |
)

. (28)

To find λ, CDN adopts a backtrack line search to sequentially check λ = 1, β, β2, . . . , where
β ∈ (0,1), until λd satisfies (28). A description of how CDN approximately solves the sub-problem
(17) is in Algorithm 3.

In Appendix D, we explain that Algorithm 3 falls into a class of Gauss-Seidel coordinate descent
methods in Tseng and Yun (2007). By showing that all required assumptions are satisfied, we can
directly enjoy some nice theoretical properties. First, following Lemma 3.4(b) in Tseng and Yun
(2007), the line search procedure stops in a finite number of steps. Second, for (1) with logistic loss,
any limit point of {wk} is an optimum.

We discuss the computational cost. To obtain the sub-problem (26), we must calculate L′j(0)
and L′′j (0). For logistic loss, L′j(0) is shown in (24) and

L′′j (0) =C
l

∑
i=1

x2i j
(

τ(yi(wk, j)Txi)
)(

1− τ(yi(wk, j)Txi)
)

. (29)

Similar to the situation in BBR, calculating wTxi, ∀i is the major cost here. We can apply the same
trick in (25) to maintain wTxi, ∀i. In our implementation, we maintain ew

T xi instead:

ew
T xi ← ew

T xi · eλdxi j . (30)

The line search procedure needs to calculate g j(λd). From (2), the main cost is still on obtaining
(w+λde j)Txi, ∀i, so the trick in (30) is again useful. If ew

T xi , ∀i are available, from (24), (29) and
(2), the cost per inner iteration is

(1+# line search steps)×O(l).

To reduce the cost for line search, Chang et al. (2008) obtain a function ĝ j(·) satisfying ĝ j(λd) >
g j(λd) and check ĝ j(λd)− g j(0) in (28). Calculating ĝ j(λd) is much easier than g j(λd), so we
may avoid calculating the last g j(λd) in the line search procedure. In some iterations, λ= 1 already
satisfies (28), and therefore, this trick makes the cost of the line search procedure negligible. We do
not show details here; however, derivations can be found in Fan et al. (2008, Appendix G).

Next we describe two implementation techniques to improve the convergence speed. The first
one is to use a random permutation of sub-problems. In Algorithm 1, we cyclically consider vari-
ables to form one-variable sub-problems. Chang et al. (2008) show that solving sub-problems
in a random order may lead to faster convergence. That is, at the kth iteration, we randomly
permute {1,2, . . . ,n} to {πk(1),πk(2), . . . ,πk(n)} and update the elements of w in the order of
{wπk(1),wπk(2), . . . ,wπk(n)}.
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The second implementation technique is shrinking. Past works such as Hsieh et al. (2008),
Joachims (1998), and Krishnapuram et al. (2005, Section 3.5) heuristically remove some variables
to obtain a smaller optimization problem. If wj has remained zero at many iterations, it is very
possible that the optimal w∗

j is also zero. Therefore, we can remove such variables. Our shrink-
ing implementation is related to that in the software LIBSVM (Chang and Lin, 2001). From the
optimality condition (6),

−1< ∇ jL(w∗)< 1 implies w∗
j = 0. (31)

We prove in Appendix C the following theorem:

Theorem 1 Assume {wk} globally converges to w∗. If −1 < ∇ jL(w∗) < 1, then there is Kj such
that for all k ≥ Kj,

−1< ∇ jL(wk, j)< 1 and wk, jj = 0.

Using this theorem, we design the following shrinking strategy. Before updating wk, jj via approxi-
mately solving the sub-problem (17), if

wk, jj = 0 and −1+Mk−1 < ∇ jL(wk, j)< 1−Mk−1, (32)

we conjecture that wk, jj may remain zero and hence remove it for optimization. We choose

Mk−1 ≡
max j v j

l
,

where

v j ≡









|∇ jL(wk−1, j)+1| if wk−1, jj > 0,
|∇ jL(wk−1, j)−1| if wk−1, jj < 0,
max

(

∇ jL(wk−1, j)−1, −1−∇ jL(wk−1, j), 0
)

if wk−1, jj = 0,

From (6), v j, j = 1, . . . ,n measure the violation of the optimality condition at the (k−1)st iteration.
The value Mk−1 reflects how aggressive we remove variables. It is large in the beginning, but
approaches zero in the end.

The shrinking implementation introduces little extra cost. When updating the jth component at
the kth iteration, we calculate

∇ jL(wk, j) = L′j(0;wk, j)

for the direction d in (27), regardless of implementing shrinking or not. Thus, ∇ jL(wk, j) needed
for checking (32) is already available. Moreover, it can be used to calculate v j and Mk, which are
needed for the next iteration.

4.1.3 STOCHASTIC COORDINATE DESCENT METHOD (SCD)

Shalev-Shwartz and Tewari (2009) propose a stochastic coordinate descent method (SCD) to solve
the bound-constrained problem in (12). At the kth iteration, SCD randomly chooses a working
variable from {w+

1 , . . . ,w+
n , w−

1 , . . . ,w−
n }. The one-variable sub-problem is

min
z

g j(z)≡ z+Lj(z;wk,+−wk,−)−Lj(0;wk,+−wk,−),

3198



COMPARING METHODS AND SOFTWARE FOR L1-REGULARIZED LINEAR CLASSIFICATION

Algorithm 4 SCD for L1-regularized logistic regression
1. Given (w+,w−) andUj > 0.
2. While (w+,w−) is not optimal for (12)

(a) Select an element from {w+
1 , . . . ,w+

n ,w−
1 , . . . ,w−

n }.
(b) Update w+

j or w
−
j by (36)–(37).

subject to the non-negativity constraint

wk,+j + z≥ 0 or wk,−j + z≥ 0,

according to whether w+
j or w

−
j is the working variable. SCD considers a second-order approxima-

tion similar to BBR:
ĝ j(z) = g j(0)+g′j(0)z+

1
2
Ujz2, (33)

where

g′j(0) =

{

1+L′j(0) for w+
j

1−L′j(0) for w−
j

and Uj ≥ g′′j (z), ∀z.

BBR considers Uj to be an upper bound of g′′j (z) only in the trust region, while SCD finds a global
upper bound of g′′j (z). For logistic regression, following (9) and (29), we have τ(·)(1− τ(·))≤ 0.25
and

Uj = 0.25C
l

∑
i=1

x2i j ≥ g′′j (z), ∀z. (34)

Shalev-Shwartz and Tewari (2009) assume −1≤ xi j ≤ 1, ∀i, j, so a simpler upper bound is

Uj = 0.25Cl. (35)

Using the direction obtained by minimizing (33) and taking the non-negativity into considera-
tion, SCD updates w by the following way:

If w+
j is selected

w+
j ← w+

j +max(−w
+
j , −

1+L′j(0)
Uj

) (36)

Else

w−
j ← w−

j +max(−w
−
j , −

1−L′j(0)
Uj

) (37)

A description of SCD is in Algorithm 4.

4.2 CGD-GS: a Decomposition Method Using Gradients for Selecting Variables

Instead of updating one variable at a time, some decomposition methods choose a larger working set
J ⊂ N ≡ {1, . . . ,n}. We discuss a Gauss-Southwell method for selecting J (Tseng and Yun, 2007;
Yun and Toh, 2009). This method, referred to as CGD-GS, can handle any smooth loss function
including ξlog.
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Following the principle of decomposition methods, if wk is the current solution and J is the set
of working variables, one should solve the following sub-problem:

min
d

L(wk+d)−L(wk)+‖wk+d‖1−‖wk‖1

subject to d j = 0, ∀ j /∈ J.

Because it is still difficult to solve this sub-problem, CGD-GS considers a quadratic approximation
of the loss term:

min
d

qk(d)≡ ∇L(wk)Td+ 1
2
dTHd+‖wk+d‖1−‖wk‖1

subject to d j = 0, ∀ j /∈ J,
(38)

where H is either ∇2L(wk) or its approximation. To ensure the convergence, CGD-GS conducts a
backtrack line search to find λ such that λd satisfies

f (wk+λd)− f (wk)≤ σλ
(

∇L(wk)Td+ γdTHd+‖wk+d‖1−‖wk‖1
)

, (39)

where 0 < σ < 1 and 0 ≤ γ < 1. This condition is the same as (28) if γ = 0 and J contains only
one element. Tseng and Yun (2007) used (39) for both the cyclic selection (Gauss-Seidel) or the
selection using gradient information (Gauss-Southwell).

For selecting J using gradients, Tseng and Yun (2007) proposed two possible ways. The first
one, referred to as the Gauss-Southwell-r rule, requires J to satisfy

‖d(J)‖∞ ≥ v‖d(N)‖∞, (40)

where v ∈ (0,1) is a constant and d(J) and d(N) are the solution of (38) by considering J and N as
the working set, respectively. This condition connects the directions of solving sub-problems using
a subset and a full set. The other condition for selecting J is

qk(d(J))≤ v ·qk(d(N)), (41)

where v ∈ (0,1) and qk(d) is defined in (38). This condition is referred to as the Gauss-Southwell-q
rule. Algorithm 5 summarizes the procedure.

The remaining issues are how to solve the sub-problem (38) and how to obtain J satisfying
(40) or (41). The CGD-GS implementation considers a diagonal matrix with positive entries as H.
For example, Hj j = max(∇2j jL(wk),ε), where ε is a small positive value. Then, the sub-problem
becomes |J| separable one-variable problems like (26). Each one-variable problem has a simple
closed-form solution. Further, it is easy to find indices satisfying (40) or (41). For example, the rule
(40) becomes to find the larger elements of d(N). Tseng and Yun (2007) proved that any limit point
of {wk} is an optimum of (1).

We discuss the computational cost for logistic regression. If H is diagonal, then solving (38)
takes only O(|J|) operations. Constructing (38) is more expensive because we need to calculate

∇L(w) =C
l

∑
i=1

(

τ(yiwTxi)−1
)

yixi. (42)

Yun and Toh (2009) apply a trick similar to (30) and maintain ewT xi , ∀i, but the gradient calculation
still needs O(ln). This high cost may not pay off, and therefore, Hsieh et al. (2008) favor decom-
position methods without maintaining the gradient. Finding the working set J is another potentially
expensive step, but it is cheap for a diagonal H.
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Algorithm 5 CGD-GS for L1-regularized logistic regression
1. Given w1. Choose (40) or (41) as the strategy for selecting working sets. Given 0< β,σ< 1
and 0≤ γ< 1.

2. For k = 1,2,3, . . .
• Choose an H and a working set J.
• Get dk by solving the sub-problem (38).
• Compute λ=max{1,β,β2, . . .} such that λdk satisfies (39).
• wk+1 = wk+λdk.

5. Methods by Solving Constrained Optimization Problems

Section 2.2 lists several methods for L1-regularized classification by solving the bound-constrained
problems (12), (13), and (14). In this section, we discuss TRON, IPM, and Lassplore in detail.

5.1 A Trust Region Newton Method (TRON)

We apply the trust region Newton method in Lin and Moré (1999) to solve (12). A previous study of
this method for L1-regularized logistic regression is by Lee (2008). For convenience, in this section,
we slightly abuse the notation by redefining

w≡

[

w+

w−

]

∈ R2n. (43)

Then, problem (12) can be written in a general form of bounded-constrained problems:

min
w

f̄ (w)

subject to w ∈Ω≡ {w | l j ≤ wj ≤ u j,∀ j},

where f̄ (w) denotes the objective function of (12), and l and u are lower and upper bounds, respec-
tively.

At the kth iteration of the trust region Newton method, we have an iterate wk, a size Δk of the
trust region, and a quadratic model

qk(d)≡
1
2
dT∇2 f̄ (wk)d+∇ f̄ (wk)Td

to approximate the value f̄ (wk+d)− f̄ (wk). Next, we find a step dk by approximately solving the
following trust region problem

min
d

qk(d)

subject to ‖d‖ ≤ Δk, wk+d ∈Ω.
(44)

We then update wk and Δk by checking the ratio

ρk =
f̄ (wk+dk)− f̄ (wk)

qk(dk)
(45)
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Algorithm 6 A trust region method for L1-regularized logistic regression
1. Given w1.
2. For k = 1,2,3, . . . (outer iterations)

• Approximately solve (44) and obtain a direction dk; see Algorithm 7.
• Compute ρk via (45).
• Update wk to wk+1 according to (46) and update Δk to Δk+1.

Algorithm 7 TRON: Finding a direction dk by approximately solving (44)
1. Given 0< ε< 1. Find the Cauchy step dk,C and the Cauchy point

wk,1 = wk+dk,C and dk,1 = dk,C.

2. For t = 1, . . . ,2n+1 (inner iterations)
• Find Ft and Bt (free/bounded sets) at wk,t by (50).
• If Ft = /0, then stop and return dk = wk,t −wk.
• Approximately solve

min
vFt

qk(dk,t +v)

subject to ‖dk,t +v‖ ≤ Δk, vBt = 0,

by Conjugate Gradient (CG) methods. Denote the solution as vk,t .
• Projected line search on wk,t +λvk,t to obtain wk,t+1 and dk,t+1; see Equation (55). We
ensure that Ft ⊂ Ft+1 and |Ft |< |Ft+1|.

• If one of the following situations occurs:

‖∇qk(dk,t+1)Ft‖ ≤ ε‖∇ f̄ (wk)Ft‖,

or CG abnormally stops (explained in text), then stop and return

dk = wk,t+1−wk.

of the actual reduction in the function to the predicted reduction in the quadratic model. The direc-
tion dk is accepted if ρk is large enough:

wk+1 =
{

wk+dk if ρk > η0,

wk if ρk ≤ η0,
(46)

where η0> 0 is a pre-specified value. The size Δk of the trust region is then updated according to the
reduction of the function value. If the reduction is significant, then Δk is enlarged. Otherwise, we
reduce Δk. More details can be found in Lin and Moré (1999). The framework of our trust region
method is given in Algorithm 6. Earlier works applying trust region methods for L2-regularized
problems include, for example, Lin et al. (2008). The algorithm here is more complicated due to
the bound constraints.
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5.1.1 CAUCHY POINT

A challenge for minimizing bound-constrained problems is to quickly identify bounded components
at an optimal solution (i.e., components which are upper- or lower-bounded). Because each wj can
be either bounded or free, the number of combinations is exponential. One commonly used approach
takes the negative gradient direction to obtain a new point and projects it back to the feasible region
Ω. With a proper line search to ensure the reduction of the quadratic model qk(d), not only do
we effectively guess the set of bounded components at an optimum, but also the convergence is
guaranteed. To be more precise, we find a step size λ> 0 so that

qk(dk,C)≤ qk(0)+σ∇qk(0)Tdk,C and ‖dk,C‖ ≤ Δk, (47)

where
dk,C = P[wk−λ∇ f̄ (wk)]−wk (48)

is called the Cauchy step in bound-constrained optimization and σ ∈ (0,1/2) is a constant. The
projection operator P[·] maps wk−λ∇ f̄ (wk) back to the feasible region Ω:

P[wj] =min(u j, max(wj, l j)) , (49)

so some components become bounded. Although the negative gradient direction is projected in
(48), the resulting direction is still a descending one (i.e., ∇qk(0)Tdk,C < 0). Hence, one can always
find a small λ> 0 such that (47) is satisfied. The point wk,C ≡wk+dk,C is referred to as the Cauchy
point.

5.1.2 NEWTON DIRECTION

Gradient descent methods suffer from slow convergence, so in (48) we should have used the Newton
direction. However, the second-order information is accurate only if there are no bound constraints.
Lin and Moré (1999) propose using Newton directions on the subspace of the Cauchy point’s free
components. Recall that we find the Cauchy point to predict the bounded elements at an optimum.
We obtain the free/bounded sets at the Cauchy point

F ≡ F(wk,C) = { j | l j < wk,Cj < u j} and B≡ B(wk,C) = { j | j /∈ F}, (50)

and find a Newton direction on the space F by solving

min
vF

qk(dk,C+v)

subject to ‖dk,C+v‖ ≤ Δk, vB = 0.
(51)

If the free set at the Cauchy point is close to that at an optimum, using a Newton direction on this
sub-space leads to fast convergence.

Because (51) does not enforce the feasibility of wk,C + v, one needs a projected line search
procedure similar to (47)–(48). Details are shown later in (55). The resulting point may contain
more bounded components than the Cauchy point. In this situation, Lin and Moré (1999) continue
to minimize a quadratic approximation on the new sub-space. They thus generate inner iterates
wk,1 = wk,C,wk,2,wk,3, . . ., until that the free/bounded sets do not change. If m inner iterations are
taken, then the direction dk for the kth trust region iteration in Algorithm 6 is

dk = wk,m+1−wk.
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Details of our procedure are described in Algorithm 7. Because each inner iteration enlarges the
bounded set, the number of inner iterations is bounded by 2n, the number of variables. In practice,
very few inner iterations (one or two) are taken. Another reason to take inner iterations is for the
quadratic convergence proof in Lin and Moré (1999).

Let t be the inner-iteration index and Bt ,Ft be bounded/free sets at wk,t . With vBt = 0,

qk(dk,t +v) =
1
2
vTFt∇

2 f̄ (wk)Ft ,FtvFt +∇qk(dk,t)TFtvFt +qk(dk,t), (52)

so minimizing qk(dk,t +v) is equivalent to solving the following linear system
∇2 f̄ (wk)Ft ,FtvFt =−∇qk(dk,t)Ft . (53)

To solve (53), we conduct conjugate gradient (CG) iterations until

‖∇2 f̄ (wk)Ft ,FtvFt +∇qk(dk,t)Ft‖= ‖∇qk(dk,t+1)Ft‖ ≤ ε‖∇ f̄ (wk)Ft‖ (54)

is satisfied, where ε is a given positive constant. See Section 5.1.3 for reasons to choose CG. CG
may stop before reaching (54) if either the iterate causes our search direction to exceed the trust
region boundary or the singularity of the matrix ∇2 f̄ (wk)Ft ,Ft is detected.

Once a direction vk,t is identified, we conduct a projected line search to ensure the feasibility
and the sufficient decrease of qk(d). This procedure is similar to (47)–(48) for the Cauchy step. We
find λ (e.g., by a backtrack line search) such that

wk,t+1 = P[wk,t+λvk,t ], dk,t+1 = wk,t+1−wk, and
qk(dk,t+1)≤ qk(dk,t)+σ∇qk(dk,t)TFt (d

k,t+1−dk,t)Ft ,
(55)

where P[·] is defined in (49) and σ is the same as that in (47).

5.1.3 HESSIAN-VECTOR PRODUCT

CG is very suitable for solving the linear system (53) as it requires only Hessian-vector products.
For logistic regression,

∇2 f̄ (w)Ft ,Ft =C
[

XT
−XT

]

Ft ,:
D
[

X −X
]

:,Ft
, (56)

where D is an l× l diagonal matrix with

Dii = τ
(

yi(w+−w−)Txi
)(

1− τ(yi(w+−w−)Txi)
)

. (57)

The matrix ∇2 f̄ (w)Ft ,Ft may be too large to be stored. If using CG, the Hessian-vector product can
be conducted by a sequence of matrix-vector products:

∇2 f̄ (wk,t)Ft ,FtvFt =C
[

XT
−XT

]

Ft ,:

(

D
(
[

X −X
]

:,Ft
vFt

))

. (58)

Thus, the memory problem is solved.
In Lin et al. (2008) for L2-regularized problems, Hessian-vector products are only needed in

CG, but here they are also used in the projected line search for calculating qk(dk,t+1)− qk(dk,t);
see (52) and (55). Moreover, in (58) we use only a sub-matrix of the Hessian, so |Ft | columns of[

X −X
]

are needed. Because in general |Ft | is smaller than the number of variables, calculating
(58) may be faster than the product between the whole Hessian and a vector. To quickly access X’s
columns, storing the data matrix X in the column format is more suitable. For a discussion between
row and column formats, see Lin et al. (2008, Section 4.3).
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5.1.4 CONVERGENCE

From Theorem 2.1 of Lin and Moré (1999), any limit point of {wk} is an optimum of (12). For
the local convergence rate, in Appendix E, we indicate that in general TRON can achieve quadratic
convergence.

5.2 An Interior Point Method (IPM)

Koh et al. (2007) proposed an interior point method to solve (13) with logistic loss. In (13), we omit
the bias term b, but Koh et al. (2007) included this term. They consider a log barrier function so that
(w,u) is an interior point of the feasible region:

φt(b,w,u)≡ t

(
n

∑
j=1

u j+C
l

∑
i=1

ξ(w,b;xi,yi)
)

−
n

∑
j=1
log(u2j −w2j),

where t > 0 is a parameter. The unique minimizer (b∗(t),w∗(t),u∗(t)) under any given t forms a
curve called the “central path,” which approaches an optimal solution of (13) as t → ∞. An interior
point method thus alternatively minimizes φt(b,w,u) and adjusts t. From a set of (w,b) on the
search path, we can construct a feasible solution to the dual problem of (13) and evaluate the duality
gap. The duality gap is guaranteed to converge to 0 as we walk along the central path when t → ∞.
Thus, we can check the duality gap for the stopping condition.

At the kth iteration, using the current tk, interior point methods approximately minimize φtk(b,w,u)
by finding a Newton direction. The following linear system is solved:

∇2φtk(b
k,wk,uk)





Δb
Δw
Δu



=−∇φtk(b
k,wk,uk). (59)

For logistic loss,

∇φt(b,w,u) =















tC∑l
i=1 yi

(

τ(yi(wTxi+b))−1
)

tC∑l
i=1

(

τ(yi(wTxi+b))−1
)

yixi+






2w1/
(

u21−w21
)

...
2wn/

(

u2n−w2n
)






ten−






2u1/
(

u21−w21
)

...
2un/

(

u2n−w2n
)




















and

∇2φt(b,w,u) =





tCyTDy tCeTl DX 0T
tCXTDel tCXTDX+D1 D2

0 D2 D1



 ,

where τ(·) is defined in (9), en ∈ Rn and el ∈ Rl are the vectors of all ones, D is similar to (57) but
includes b, and D1 and D2 are n×n diagonal matrices:

(D1) j j = 2
(

u2j +w2j
)

/
(

u2j −w2j
)2 and (D2) j j =−4u jw j/

(

u2j −w2j
)2
.
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Algorithm 8 IPM for L1-regularized logistic regression
1. Given b1 and an interior point (w1,u1). Let t1 = 1

Cl .
2. For k = 1,2,3, . . .

• Obtain a Newton direction





Δb
Δw
Δu



 by solving (59).

• A backtrack line search procedure to ensure the sufficient decrease of φtk(·)
• Update





bk+1
wk+1
uk+1



=





bk+λΔb
wk+λΔw
uk+λΔu



 .

• Construct a dual feasible point and evaluate the duality gap η.
• Set

tk+1 =

{

max
(

µmin(2n/η, tk), tk
)

if λ≥ smin,
tk otherwise,

where µ and smin are constants.

Koh et al. (2007) apply preconditioned conjugate gradient methods (PCG) to solve (59) with diag-
onal preconditioning.

For the convergence, a backtrack line search procedure is needed to ensure the sufficient de-
crease of φtk(·). Koh et al. (2007) did not discuss details of their method’s convergence. However,
because interior point methods are a type of Newton methods, they often enjoy fast local conver-
gence.

5.3 LassploreMethod

Liu et al. (2009) apply Nesterov’s method (Nesterov, 2003) to solve (14). This method can handle
(14) with and without the bias term. For simplicity, we do not consider the bias term. In addition to
the sequence of iterations {wk}, for faster convergence, Nesterov’s method uses another sequence
of searching points {sk}, where

sk = wk+βk(wk−wk−1),

for some positive parameter βk. From sk, we obtain wk+1 by taking the negative gradient direction:

wk+1 = sk−λk∇L̄(sk),

where

L̄(w)≡
l

∑
i=1

ξi(w;xi,yi)

is the objective function of (14) and λk is the step size. Note that L̄(w) is different from L(w) defined
in (7) because the penalty parameter C is not needed in (14). Liu et al. (2009) suggest to estimate
βk by

βk =
γk(1−αk−1)
αk−1(γk+

αk
λk
)
, (60)
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Algorithm 9 Lassplore for solving (14)
• Given w0 and w1, α0 = 0.5, λ1 > 0, γ1 ≥ 0.
• For k = 1,2,3, . . .

1. While 1 do
– Compute αk ∈ (0,1) as the root of ηk(α), βk by (60), and γk+1 by (61).
– Compute sk = xk+βk(wk−wk−1).
– Compute wk+1 by (63).
– If L̄(wk+1) satisfies (62)

goto Step 2.
Else

λk ← λk/2.
2. Find the initial λk+1 for the next iteration by an adaptive scheme.3

where αk ∈ (0,1) is the root of a quadratic function

ηk(α)≡
α2

λk
+ γkα− γk

and γk ≥ 0 satisfies
γk+1 = (1−αk)γk if k ≥ 1 and γ1 ≥ 0. (61)

We have αk ∈ (0,1) because ηk(0) =−γk < 0 and ηk(1) = 1/λk > 0.
Lassplore applies an adaptive line search scheme that adjusts λk so that wk+1 satisfies

L̄(wk+1)≤ L̄(sk)+∇L̄(sk)T (wk+1− sk)+ 1
2λk

‖wk+1− sk‖22. (62)

The new solution wk+1 generated from the above process may not satisfy the constraint in (14), so
Lassplore projects the solution to the feasible region:

wk+1 ≡ argmin
w

{‖(sk−λk∇L(sk))−w‖ | ‖w‖1 ≤ K}. (63)

This projection is related to (15) in Section 2.2.2, but Lassplore applies the method in Liu and Ye
(2009) to efficiently compute (63).

A summary of Lassplore is given in Algorithm 9.

6. Three Other Methods for L1-regularized Logistic Regression

We describe details of three more methods because they are included in our comparison.

6.1 Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)

LBFGS (Liu and Nocedal, 1989) is a limited memory quasi Newton method for unconstrained
smooth optimization. It can not deal with (1) because of the non-differentiability. Andrew and
Gao (2007) modified LBFGS to solve (1) and named their method as OWL-QN. Here, we discuss
how they handle the non-differentiability.

3. See Liu et al. (2009, Algorithm 3) for details.
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From earlier discussion, we know that (1) is differentiable in a region where the sign of wj does
not change. Thus, OWL-QN restricts the search space to such a region (called orthant). At the kth
iteration, it searches wk+1 on the space:

Ωk ≡ {w ∈ Rn | sgn(wj) = skj, j = 1, . . . ,n},

where

skj ≡

{

sgn(wkj) if wkj -= 0,
sgn(−∇̄ j f (wk)) otherwise,

(64)

and

∇̄ j f (w)≡









L′j(w)+1 if wj > 0 or (wj = 0 and L′j(w)+1< 0),
L′j(w)−1 if wj < 0 or (wj = 0 and L′j(w)−1> 0),
0 otherwise

(65)

is defined as the pseudo gradient of f (w). In (64), if wkj = 0, we consider the space where wj
can be moved by taking the negative gradient direction. OWL-QN then approximately minimizes a
quadratic approximation of (1) in the search space Ωk:

min
d

f (wk)+ ∇̄ f (wk)Td+ 1
2
dTHkd

subject to wk+d ∈Ωk,
(66)

where Hk approximates the Hessian of f (wk) by the first-order information gathered from previous
iterations. Details for getting Hk can be found in Liu and Nocedal (1989). To approximately solve
(66), OWL-QN finds the minimum of the quadratic objective function:

dk =−H−1
k ∇̄ f (wk), (67)

obtains a direction d̄k by confining dk on the same orthant as −∇̄ f (wk):

d̄kj =

{

dkj if sgn(dkj ) = sgn(−∇̄ j f (wk)),
0 otherwise,

(68)

and then conducts a backtracking line search to find λ such that the sufficient decrease of the function
value is satisfied. Note that wk+1 must be in Ωk, so following (64),

wk+1j =

{

wkj+λd̄kj if sgn(wkj+λd̄kj ) = skj,
0 otherwise.

Algorithm 10 summarizes the procedure.
Regarding the convergence, Yu et al. (2010, Appendix D) point out that the proof by Andrew and

Gao (2007) is flawed. Yu et al. (2010) give the convergence proof for a slightly modified algorithm.
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Algorithm 10 OWL-QN: An extension of LBFGS for L1-regularized logistic regression
1. Given w1.
2. For k = 1,2,3, . . .

• Compute ∇̄ f (wk) by (65).
• Obtain Hk by information gathered from previous iterations and compute dk by (67).
• Compute d̄k by (68).
• Find wk+1 ∈Ωk by a backtracking line search.

6.2 Generalized Linear Model with Elastic Net

Friedman et al. (2010) proposed GLMNET to handle least-square and log-linear losses with L1/L2
regularization. Here, we discuss how GLMNET solves L1-regularized logistic regression. Although
GLMNET can solve (5) with the bias term, for simplicity, we only indicate how GLMNET solves (1).

Because of the twice differentiability of the logistic loss function, the gradient of L(w) is shown
in (42) and the Hessian is

∇2L(w) =CXTDX , (69)

where D ∈ Rl×l is a diagonal matrix with

Dii = τ(yiwTxi)
(

1− τ(yiwTxi)
)

(70)

and τ(·) is defined in (9). See similar formulations derived earlier for TRON in (56) and (57). Given
the current solutionwk,GLMNET considers a quadratic approximation of L(w). By the second-order
Taylor expansion,

f (wk+d)− f (wk)

=
(

‖wk+d‖1+L(wk+d)
)

−
(

‖wk‖1+L(wk)
)

≈∇L(wk)Td+ 1
2
dT∇2L(wk)d+‖wk+d‖1−‖wk‖1.

Then, GLMNET solves the Newton-like system

min
d

qk(d)≡ ∇L(wk)Td+ 1
2
dT∇2L(wk)d+‖wk+d‖1−‖wk‖1 (71)

by a cyclic coordinate descent method. Following the framework in Algorithm 1, d’s values are
sequentially updated by minimizing the following one-variable function:

g j(z)≡ qk(d+ ze j)−qk(d)

= |wkj+d j+ z|− |wkj+d j|+Bz+
1
2
Az2,

where
B≡ ∇ jL(wk)+∑

t
∇2jtL(wk)dt and A≡ ∇2j jL(wk)

can be calculated using (42) and (69). It is easy to minimize g j(z) by (27).4

4. In GLMNET implementation, instead of finding z, a different but equivalent update is used to get new wkj+d j.
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Algorithm 11 GLMNET for L1-regularized logistic regression
1. Given w1.
2. For k = 1,2,3, . . .

• Let dk ← 0.
• While dk is not optimal for minimizing qk(d)

– For j = 1, . . . ,n
∗ Solve the following one-variable problem by (27):

z̄= argmin
z

qk(dk+ ze j)−qk(dk).

∗ dkj ← dkj + z̄.
• wk+1 = wk+dk.

Because calculating the matrix D involves many exponential operations, GLMNET also consid-
ers using an approximation of ∇2L(w) and minimizes

qk(d)≡ ∇L(wk)Td+ 1
2
dTHd+‖wk+d‖1−‖wk‖1,

where H ≡ 0.25CXT IX and I is an identity matrix. That is, we use a cheaper but less accurate
approximation of f (wk+d)− f (wk). A sketch of GLMNET is in Algorithm 11.

We briefly describe someGLMNET’s implementation details. GLMNET applies a shrinking tech-
nique to solve a smaller optimization problem than (71); see similar techniques for decomposition
methods in Section 4.1.2. Using a sparse representation of w and maintaining an index set Ω to
indicate the non-zero elements of d, GLMNET solves a smaller problem by a coordinate descent
method:

min
dΩ

∇L(wk)Td+ 1
2
dTHd+‖wk+d‖1−‖wk‖1.

GLMNET conducts feature-wise normalization before solving the optimization problem. That is, it
solves (1) by replacing xi with x̃i, where

x̃i j ≡
xi j− x̄ j
σ j

,∀i, j, x̄ j =
∑l
i=1 xi j
l

,∀ j, and σ j =

√

l

∑
i=1

x2i j−
l

∑
i=1

x̄2j ,∀ j.

Notice that there is no guarantee that GLMNET converges to an optimum. Furthermore, the
function value may not decrease because GLMNET does not conduct a line search procedure on the
direction d. For minimizing the quadratic approximation qk(d), GLMNETmeasures the relative step
change in the successive coordinate descent iterations. Deciding when to stop minimizing qk(d) is
an issue because a strict stopping condition may already cause long running time for q1(d).

6.3 Bundle Method

Bundle method is a cutting plane approach for minimizing non-smooth convex problems. Teo et al.
(2010) proposed a bundle method BMRM to handle non-differentiable loss functions (e.g., L1 loss).
They provide an extension to handle L1 regularization. Interestingly, BMRM applies cutting planes
only to the loss function, regardless of whether it is differentiable or not. Therefore, for problem (1)
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Algorithm 12 BMRM for L1-regularized logistic regression
1. Given w1.
2. For k = 1,2,3, . . .

• Compute and store ak and bk by (73).
• Obtain wk+1 by solving the linear program (76).

with logistic loss, BMRM uses a non-smooth method to handle the smooth loss function and some
other ways for the non-smooth regularization term ‖w‖1.

Let wk be the solution at the kth iteration. Using the convexity of the loss function, BMRM
builds a cutting plane (i.e., the first-order Taylor expansion) of L(w) at w= wk:

L(w)≥∇L(wk)T (w−wk)+L(wk)
=aTk w+bk, ∀w,

(72)

where
ak ≡ ∇L(wk) and bk ≡ L(wk)−aTk wk. (73)

If L(w) is non-differentiable, in (72), BMRM substitutes ∇L(w) with the sub-gradient of L(w).
BMRM maintains all cutting planes from the earlier iterations to form a lower-bound function

for L(w):
L(w)≥ LCPk (w)≡ max

1≤t≤k
aTt w+bt , ∀w. (74)

BMRM obtains wk+1 by solving the following sub-problem:

min
w

‖w‖1+LCPk (w). (75)

Using (74) and the splitting of w in (12) by w=w+−w−, Equation (75) can be reformulated to the
following linear programming problem:

min
w+,w−,ζ

n

∑
j=1

w+
j +

n

∑
j=1

w−
j +ζ

subject to aTt (w+−w−)+bt ≤ ζ, t = 1, . . . ,k,
w+
j ≥ 0, w

−
j ≥ 0, j = 1, . . . ,n.

(76)

A summary of the BMRM approach is given in Algorithm 12. Teo et al. (2010, Appendix C) in-
dicated that because of the L1 regularization, the convergence result has not been fully established
yet.

7. L1-regularized L2-loss Support Vector Machines

Previous sections have focused on L1-regularized logistic regression. Now we consider (1) with the
L2-loss function (4). The optimization problem can be rewritten as

min
w

f (w)≡ ‖w‖1+C ∑
i∈I(w)

bi(w)2, (77)
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where
bi(w)≡ 1− yiwTxi and I(w)≡ {i | bi(w)> 0}. (78)

Therefore, the sum of losses is
L(w) =C ∑

i∈I(w)
bi(w)2. (79)

In contrast to logistic loss, the L2-loss function is differentiable but not twice differentiable (Man-
gasarian, 2002). Thus, some methods discussed in Sections 4–6 may not be directly applicable
because they use second-order information. However, as shown in Mangasarian (2002, Section 3),
(79) is twice differentiable at all but {w | bi(w) = 0 for some i}. Moreover, ∇L(w) is globally Lip-
schitz continuous, so a generalized Hessian exists everywhere. Using a generalized Hessian, we
may modify algorithms using the second-order information for L1-regularized L2-loss SVMs. In
the following two sections, we extend CDN and TRON to solve (77).

7.1 CDN for L2-loss SVMs

To apply CDN for L2-loss SVMs, in the sub-problem (17), we have

Lj(z) =C ∑
i∈I(wk, j+ze j)

bi(wk, j+ ze j)2.

For a second-order approximation similar to (26), we need L′j(0) and L′′j (0):

L′j(0) =−2C ∑
i∈I(wk, j)

yixi jbi(wk, j).

Unfortunately, L′′j (0) is not well-defined if there exists some i such that bi(wk, j) = 0. Following
Chang et al. (2008), we consider the generalized second derivative:

2C ∑
i∈I(wk, j)

x2i j. (80)

By replacing L′′j (0) in (26) with the above quantity, we can easily obtain a direction d. However,
the value in (80) may be zero if xi j = 0, ∀i ∈ I(wk, j). To apply the convergence result in Tseng and
Yun (2007), we ensure the strict positivity by taking

max
(

2C ∑
i∈I(wk, j)

x2i j, ε
)

, (81)

where ε is a small positive value. Following the explanation in Appendix F, we have the finite
termination of the line search procedure and the asymptotic convergence of the function value.

Like the situation for logistic regression, the major cost for finding the Newton direction d and
for the line search procedure is to calculate wTxi, ∀i ∈ I. We maintain bi(w), ∀i using the same
trick in (25). All other implementation techniques discussed in Section 4.1.2 for logistic regression
can be applied here.
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7.2 TRON for L2-loss SVMs

We apply TRON to solve the bound-constrained problem (12) using L2 loss. Following the notation
in Section 5.1, w ∈ R2n is defined in (43) and f̄ (w) is the objective function in (12).

The quadratic model qk(d) requires the gradient and the Hessian of f̄ (w). We have

∇ f̄ (w) = e+2C
(

X̄TI,:X̄I,:w− X̄TI,:yI
)

,

where e ∈ R2n is a vector of all ones, X̄ ≡
[

X −X
]

, and I is defined in (78). X̄I,: denotes a sub-
matrix including X̄’s rows corresponding to I; see (8). Note that bi(w) defined in (78) is now
calculated by

1− yi(w1:n−w(n+1):2n)
Txi.

Following Mangasarian (2002) and Fan et al. (2008, Appendix D), we consider the generalized
Hessian matrix:

2CX̄TDX̄ ,

where D ∈ Rl×l is a diagonal matrix with

Dii =

{

1 if bi(w)> 0,
0 if bi(w)≤ 0.

We then apply Algorithm 7 to approximately minimize qk(d). For the Hessian-vector product, only
instances in the index set I and variables in the free set F are considered. Thus, the Hessian-vector
product in (58) becomes

2CX̄TI,F (DI,I (X̄I,FvF)) ,

where v is a vector in R2n.
Regarding the convergence, from Theorem 2.1 of Lin and Moré (1999), any limit point of {wk}

is an optimal solution. However, without the twice differentiability, it is unclear if the local quadratic
convergence holds.

8. Numerical Experiments

In Sections 4–7, we have described details of several large-scale optimization methods for L1-
regularized linear classification. In this section, we conduct experiments to investigate their perfor-
mances. We describe data sets and experimental settings first. Then, we comprehensively compare
methods for logistic regression and L2-loss SVMs. Programs used in this paper are available at
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

8.1 Data Sets

Table 1 lists data statistics. Most data sets include documents, where the numbers of both fea-
tures and instances are large. An exception is the problem a9a from UCI “adults” data sets; it has
l 2 n. For other document sets, real-sim includes some Usenet articles, news20 is a collection of
news documents, rcv1 is an archive of manually categorized newswire stories from Reuters, and
yahoo-japan/yahoo-korea are document data from Yahoo!. Except yahoo-japan and yahoo-korea,
other data sets are publicly available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
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Data set l n #nz
a9a 32,561 123 451,592
real-sim 72,309 20,958 3,709,083
news20 19,996 1,355,191 9,097,916
rcv1 677,399 47,236 49,556,258
yahoo-japan 176,203 832,026 23,506,415
yahoo-korea 460,554 3,052,939 156,436,656

Table 1: Statistics of data sets: l and n denote the numbers of instances and features in a data set,
respectively. The column #nz indicates the number of non-zero entries.

Data set LR without bias LR with bias L2-loss SVM
C Density Acc. C Density Acc. C Density Acc.

a9a 4.0 94.3 85.2 2.0 89.3 85.3 0.5 90.2 85.2
real-sim 4.0 16.8 97.1 4.0 16.2 97.0 1.0 18.9 97.1
news20 64.0 0.2 95.1 64.0 0.2 94.9 64.0 0.7 96.1
rcv1 4.0 23.8 97.8 4.0 23.0 97.8 1.0 25.9 97.8
yahoo-japan 4.0 1.3 91.9 4.0 1.0 93.1 1.0 1.4 92.2
yahoo-korea 4.0 1.0 87.6 4.0 0.9 87.7 1.0 1.0 87.7

Table 2: The best parameter C, the model density (%), and the testing accuracy (%). We conduct
five-fold cross validation on the training set to select C in

{

2k | k =−4,−3, . . . ,6
}

. Using the
selectedC, we build a model to predict the testing set.

datasets/. For every document data set, instance-wise normalization has been conducted so that
the length of each instance is one.

To estimate the testing accuracy, a stratified selection is taken to split each data set into one fifth
for testing and the rest for training.

8.2 Experimental Settings

We consider the following implementations discussed in Sections 4–7.
• BBR: the cyclic coordinate descent method for logistic regression is described in Section 4.1.1.
We download version 4.03 from http://www.bayesianregression.org/.

• CDN: the cyclic coordinate descent methods for logistic regression and L2-loss SVMs are re-
spectively described in Sections 4.1.2 and 7.1. To check the sufficient decrease condition, we use
σ = 0.01 and β = 1/2. For L2-loss SVM, we use ε = 10−12 in (81). The implementation is the
same as that included in version 1.6 of our software LIBLINEAR (http://www.csie.ntu.edu.
tw/˜cjlin/liblinear/).
In Section 4.1.2, we discuss the shrinking technique for CDN. We defer the investigation of its
effectiveness to Section 8.4. In all other places of the comparison, we run CDN with the shrinking
strategy.

• SCD: the stochastic coordinate descent method for logistic regression is described in Section
4.1.3. The source code is available at http://ttic.uchicago.edu/˜tewari/code/scd/.
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• CGD-GS: the block coordinate gradient descent method for logistic regression is described in
Section 4.2. Following Yun and Toh’s (2009) settings, we choose

H = diag
[

min
(

max(∇2j jL(wk),10−10),1010
)
]

j=1,...,n

and apply the Gauss-Southwell-r rule to choose the working set J; see Equation (40). Note
that from Table 9 of Yun and Toh (2009), implementations using Gauss-Southwell-r and Gauss-
Southwell-q rules perform similarly on document data. We use default values for all parameters;
see Section 5.1 in Yun and Toh (2009). In particular, σ = 0.1, β = 1/2, and γ = 0. The source
code is available at http://www.math.nus.edu.sg/˜matys/.

• TRON: the trust region Newton methods for logistic regression and L2-loss SVMs are respectively
described in Sections 5.1 and 7.2. In the projected line search (47) and (55), we use σ= 0.01 and
β = 0.1. For the stopping condition of the CG procedure in Algorithm 7, we use ε = 0.1. The
parameter η0 in (46) is 0.0001.

• IPM: the interior point method for logistic regression is described in Section 5.2. For small and
dense data sets, IPM solves a linear system in Algorithm 8 by Cholesky factorization. For large
and sparse data sets, it applies a preconditioned conjugate gradient method to approximately solve
the linear system. In the experiment, we only consider the large and sparse setting. We use default
parameters: σ= 0.01 and β= 1/2 for the line search procedure. To update tk, we use smin = 1/2
and µ= 2. The source code (version 0.8.2) is downloaded from http://www.stanford.edu/
˜boyd/l1_logreg/.
As w lies in the interior of the feasible region, every wj is non-zero after IPM stops. To gain the
sparsity, following the condition (31), Koh et al. (2007) assign those wj satisfying |∇ jL(w)| ≤
0.9999 to zero. However, if we have not run enough iterations to obtain an accurate solution, this
modification of w may result in an erroneous model. We thus add another condition |wj| < 1 in
deciding if wj should be assigned to zero. We will address this issue again in Section 8.3.
We find that because of a problem of not initializing an element in an array, the previous ver-
sion (0.8.1) of IPM is two or three times slower than the latest version (0.8.2). This observation
indicates the difficulty in comparing software. Some minor issues may significantly affect the
conclusions.

• OWL-QN: the quasi Newton method is described in Section 6.1. The source code (version 1.1.2)
is available at http://research.microsoft.com/en-us/um/people/jfgao/.

• GLMNET: the method is described in Section 6.2 for logistic regression. Following the default
setting, we use the full Hessian in (71) instead of an approximation. We gradually reduce the
stopping tolerance to obtain different models. The coordinate descent method for minimizing the
quadratic approximation qk(d) stops according to a tolerance the same as the overall stopping
tolerance. The source code (version 1.5) is available at http://cran.r-project.org/web/
packages/glmnet/index.html.

• Lassplore: this method is described in Section 5.3. We check the 1-norm of the optimal solution
(obtained by other solvers) to calculate the value K in (14). The source code (version 1.0) is
available at http://www.public.asu.edu/˜jye02/Software/lassplore.

• BMRM: this bundle method is described in Section 6.3. We apply it to both logistic regression and
L2-loss SVMs. The linear programming problem (76) is solved via GNU Linear Programming
Kit (GLPK). The source code (version 2.2) and GLPK are available at http://users.rsise.
anu.edu.au/˜chteo/BMRM.html and http://www.gnu.org/software/glpk/, respectively.
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GLMNET is implemented in Fortran along with an R interface. CGD-GS and Lassplore are
primarily implemented inMATLAB, but expensive operations are coded in C/C++. All other solvers
are implemented in C/C++ with double precision.

Some implementations (SCD, TRON, OWL-QN, and BMRM) solve (1), while some (CGD-GS,
IPM, GLMNET, and Lassplore) consider the bias term and solve (5). BBR5 and our CDN implemen-
tation can handle both (1) and (5). According to whether the bias term is considered, we categorize
methods into two groups for comparison.6 Moreover, for certain solvers their formulations are
scaled by a constant. We ensure that equivalent optimization problems are solved.

Software such as IPM and GLMNET supports finding a solution path of various C values. How-
ever, in our experiments, we focus on the performance of an algorithm using a fixed C. For all
methods, we set the initial solution w1 = 0.

The parameter C is chosen by five-fold cross validation (CV) on the training set. Using models
trained under the best C, we predict the testing set to obtain the testing accuracy. The best C, the
model density (the number of non-zero coefficients inw divided by n), and the corresponding testing
accuracy are recorded in Table 2.

In the rest of this section, we compare the training speed of solvers for logistic regression and
L2-loss SVMs by using the best parameter C of each data set. We run all experiments on a 64-bit
machine with Intel Xeon 2.0GHz CPU (E5504), 128KB L1 cache, 1GB L2 cache, and 32GB main
memory. We use GNU C/C++/Fortran compilers (version 4.4.1) and ensure that for each package
the “-O3” optimization flag is set.

8.3 Comparing Methods for L1-regularized Logistic Regression

We separately compare solvers for optimization problems without/with the bias term. The first
group, which solves (1), includes BBR, CDN, SCD, TRON, OWL-QN, and BMRM. We begin at
showing in Figure 1 the relation between the function value and the training time. In each figure,
the x-axis is the training time and the y-axis is the relative difference to the optimal function value:

f (w)− f ∗

f ∗
, (82)

where f ∗ is obtained by running TRON with a strict stopping condition. Both x-axis and y-axis are
log-scaled. We draw a dotted reference line in Figure 1 to indicate the relative error 0.1. From
Figure 1, BBR and CDN can more quickly give a good solution than SCD, TRON, OWL-QN, and
BMRM. However, quasi Newton and Newton methods may have faster local convergence. In Figures
1(c) and 1(d), TRON’s curve is almost vertical in the end. This fast local convergence is mainly
useful for problems such as a9a, for which BBR and CDN are less competitive. We note that a9a is
not a document data set and its number of features is much smaller than the number of instances.
Earlier studies for L2-regularized classifiers have shown that coordinate descent methods are less
competitive for this type of data (Hsieh et al., 2008). The same situation seems to occur here for L1
regularization.

It is surprising that SCD is much slower than CDN and BBR because they are all coordinate
descent methods. WemodifyCDN to randomly select working variables, a stochastic method similar
to SCD; the result was still much faster than SCD, suggesting that the stochastic selection is not the

5. BBR considers bias term as a feature and allows users to use an option “-I” to specify weights to individual features.
6. For simplicity, we apply BBR only to solve (1).
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(f) yahoo-korea
Figure 1: Relative difference between the objective function and the optimum value, versus training
time. Logistic regression without using the bias term. Both x-axis and y-axis are log-scaled.

culprit. It turns out that a too large upper bound of the second derivative causes the slow convergence
of SCD. When xi j ∈ [−1,1], SCD replaces ∑l

i=1 x2i j in (34) with l. Then itsUj in (35) is much larger
thanUj in (22) for BBR. Therefore, SCD’s step size −g′j(0)/Uj is often too small.

Equation (82) cannot be used for a practical stopping condition because f ∗ is not easily avail-
able. Instead, we often rely on the gradient information. Now (1) is not differentiable, so we follow
the optimality condition (6) to define the minimum-norm sub-gradient:

∇S
j f (w)≡









∇ jL(w)+1 if wj > 0,
∇ jL(w)−1 if wj < 0,
sgn(∇ jL(w))max(|∇ jL(w)|−1,0) otherwise.

Since ∇S f (w) = 0 if and only if w is optimal, we can check ‖∇S f (w)‖ for the stopping condition.
Figure 2 shows the scaled 2-norm of the minimum-norm sub-gradient,

l
min(∑i:yi=1 1,∑i:yi=−1 1)‖∇S f (w1)‖‖∇

S f (w)‖, (83)

along the training time. From Figure 2, CDN and BBR are the best in the early stage of the procedure,
while Newton and quasi Newton methods such as TRON and OWL-QN have faster local conver-
gence. This observation is consistent with Figure 1. Some methods (e.g., decomposition methods)
do not calculate ∇S f (w) in their procedures, so a gradient-based stopping condition may introduce
extra cost. However, these methods may be able to use approximate gradient values obtained during
the calculation. For example, coordinate descent methods calculate only ∇ j f (wk, j), j = 1, . . . ,n
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(f) yahoo-korea
Figure 2: The 2-norm of the minimum-norm sub-gradient (83) versus training time. Logistic re-
gression without using the bias term. Both x-axis and y-axis are log-scaled.

instead of ∇ f (wk+1), but these values can be directly used in a stopping condition; see details in
Appendix F of Fan et al. (2008).

In Figure 3, we investigate how the testing accuracy is improved along the training time. The
testing accuracy is the percentage of correct predictions on the testing set. Results show that BBR
and CDN achieve the final accuracy more quickly. In addition, we are interested in the progress of
these methods on gaining the sparsity. Figure 4 shows the number of non-zero coefficients of w and
the training time. For most data sets, BBR and CDN more efficiently obtain a sparse solution.

Next, we compare methods solving (5) with the bias term. These solvers include CDN, CGD-
GS, IPM, Lassplore, and GLMNET. Although BBR can solve (5), we omit it in the comparison as its
performance is similar to that of solving (1). Following the comparison for methods solving (1), we
begin with checking the running time to reduce the relative error of the function value and the scaled
norm of the minimum-norm sub-gradient; see (82) and (83), respectively. The results are given in
Figures 5 and 6. The reference value f ∗ is obtained using IPMwith a strict stopping condition. From
Figure 5, CDN is the fastest, IPM comes the second, and CGD-GS is the third. However, in Figure 6
for reducing the gradient norm, IPM often surpasses CDN in the final stage.

GLMNET gives good performances in Figures 5(b)–5(d). In particular, it has fast local conver-
gence; see curves that are close to vertical in Figures 5(c) and 5(d). This fast local convergence is
due to using the quadratic approximation qk(d), which generates a Newton-like direction. We find
that the approximation of replacing D in (69) with a constant diagonal matrix is effective for micro-
array data used in Friedman et al. (2010). However, for large document sets, using the exact Hessian
is better. Unfortunately, GLMNET fails to generates results for yahoo-japan and yahoo-korea after
sufficient running time. We find that setting an appropriate stopping tolerance for minimizing the
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Figure 3: The testing accuracy versus training time (log-scaled). Logistic regression without using
the bias term. Curves of BMRM may not be shown because values are out of the range.

10−1 100 101 10280

90

100

110

120

130

140

Log−scaled Training Time (sec)

N
um

be
r o

f N
on

ze
ro

s

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(a) a9a

100 101 1023300

3400

3500

3600

3700

3800

3900

4000

4100

4200

Log−scaled Training Time (sec)

N
um

be
r o

f N
on

ze
ro

s

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(b) real-sim

100 101 102 103

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

Log−scaled Training Time (sec)

N
um

be
r o

f N
on

ze
ro

s

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(c) news20

102 103 1041.08

1.1

1.12

1.14

1.16

1.18

1.2 x 104

Log−scaled Training Time (sec)

N
um

be
r o

f N
on

ze
ro

s

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(d) rcv1

100 101 102 103 1041

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5 x 104

Log−scaled Training Time (sec)

N
um

be
r o

f N
on

ze
ro

s

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(e) yahoo-japan

102 104 1062.8

3

3.2

3.4

3.6

3.8

4 x 104

Log−scaled Training Time (sec)

N
um

be
r o

f N
on

ze
ro

s

 

 

BBR
CDN
SCD
TRON
BMRM
OWL−QN

(f) yahoo-korea
Figure 4: The number of non-zero coefficients versus training time (log-scaled). Logistic regression
without using the bias term. Curves of BMRM may not be shown because values are out of the
range. The solid horizontal line indicates the final number of non-zero coefficients.
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Figure 5: Relative difference between the objective function and the optimum value, versus training
time. Logistic regression with the bias term. Both x-axis and y-axis are log-scaled.
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Figure 6: The 2-norm of the minimum-norm sub-gradient (83) versus training time. Logistic re-
gression with the bias term. Both x-axis and y-axis are log-scaled.
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Figure 7: The testing accuracy versus training time (log-scaled). (log-scaled). Logistic regression
with the bias term.

quadratic approximation in (71) is sometimes difficult. This issue might cause the problem in train-
ing yahoo-japan and yahoo-korea. For IPM, the performance is in general competitive. Because IPM
is a type of Newton method, it has fast local convergence.

The result that CDN is faster than CGD-GS is worth for further discussion. Tseng and Yun
(2007) show that for some least-square regression problems, an implementation similar to CDN
(i.e., a Gauss-Seidel rule for selecting working variables) is slower than CGD-GS, which selects
variables using the gradient information. This result is opposite to ours. Two issues might cause
the different results. First, problems are different. We aim at classifying large and sparse document
data, but they solve regression problems. Second, we implement two techniques (permutation of
sub-problems and shrinking) to improve the convergence.

Yun and Toh (2009) show that for some document data sets used here, their CGD-GS is faster
than IPM. However, our results indicate that IPM is better. This difference is apparently due to that
Yun and Toh (2009) run an earlier version (0.8.1) of IPM. We indicate in Section 8.2 that a minor
problem in this version causes this version to be two or three times slower than a later version (0.8.2)
used here.

Figure 7 indicates the testing accuracy versus the training time. We can see in Figures 7(e) and
7(f) that IPM’s accuracy may not improve as the training time increases. As we mentioned in Section
8.2, this result is because we modify certain w elements to zero. In the middle of the procedure, w is
not close to an optimum yet, but many elements have satisfied |∇ jL(w)|≤ 0.9999 and are trimmed
to zero. Hence, the resulting accuracy may be worse than that in the early stage of the procedure.
In fact, due to IPM’s dense w throughout iterations, to get the final sparsity and the testing accuracy,
we need to accurately solve the optimization problem.
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Figure 8: The number of non-zero coefficients versus training time (log-scaled). Logistic regression
with the bias term. The solid horizontal line indicates the final number of non-zero coefficients.

Figure 8 presents the number of w’s non-zero coefficients. Similar to methods solving (1), all
methods here, except CGD-GS, have solutions with many non-zero coefficients in the beginning and
gradually gain the sparsity. In contrast, CGD-GS’s numbers of non-zero coefficients in the whole
optimization process are not much more than those of the final solutions. We find that this nice
property is from using the gradient information for selecting working variables. In contrast, without
the gradient information, CDN wrongly updates some elements of w to be non-zeros in the early
stage of the procedure.

In summary, for large document data, coordinate descents methods such as CDN perform well
in the early stage of the optimization procedure. As a result, they achieve the final accuracy more
quickly. However, for some applications, a correct sparsity pattern of the model is important and a
more accurate solution is sought. Then, GLMNET by combining both Newton-type and coordinate
descent approaches is useful.

8.4 Comparing Methods for L1-regularized L2-loss SVMs and Investigating CDN’s
Shrinking Strategy

In Section 7, we have extended CDN and TRON to handle L2 loss, so methods included for compar-
ison are CDN, TRON, and BMRM. Note that we solve (77) without considering the bias term.

Following the experiment for logistic regression, we plot the relative difference to the optimal
function value in Figure 9 and the scaled norm of the minimum-norm sub-gradient in Figure 10.
The reference f ∗ is obtained by running TRON with a strict stopping condition. One can see that
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Figure 9: Relative difference between the objective function and the optimum value, versus training
time. L2-loss SVMs without using the bias term. Both x-axis and y-axis are log-scaled.

CDN’s training time is the shortest among the three solvers and TRON is better than BMRM. BMRM
does not properly decrease the function value and the norm of gradient on large data sets.

In Figures 9 and 10, we also present results of CDNwithout implementing the shrinking strategy
(denoted as CDN-NS). In most cases, the implementation with shrinking is only slightly better.
However, shrinking is effective if the sparsity is high (e.g., news20 and yahoo-japan). In such a
situation, most w components are zero. We can safely remove some zero components and more
efficiently solve smaller optimization problems.

9. Discussions and Conclusions

In Section 2.5, we briefly discuss optimization methods for L1-regularized least-square regression.
Some comparisons can be seen in, for example, the experiment section of Wright et al. (2009) and
Yun and Toh (2009). Note that an optimization method may perform differently on classification
and regression problems. For instance, Yun and Toh (2009) show that CGD-GS is faster than CDN
for regression problems, but here we have an opposite observation for document classification.

Figures 1–8 indicate that CDN is faster for solving (1) than (5). Our past work (Huang et al.,
2010, Section 5) has indicated that the bias term may affect the running time of the same optimiza-
tion method. As the accuracy does not differ much, it seems that in general the bias term should not
be considered.

Among quasi Newton and Newton approaches, IPM and OWL-QN are faster than TRON. This
result seems to indicate that TRON suffers from the difficulty for finding w’s final non-zero coeffi-
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Figure 10: The 2-norm of the minimum-norm sub-gradient (83) versus training time. L2-loss SVMs
without using the bias term. Both x-axis and y-axis are log-scaled.

cients. However, IPM’s w elements are all non-zeros, so we must accurately solve the optimization
problem before trimming some elements to zero.

Figures 9 and 10 indicate that CDN/TRON for L2-loss SVMs is faster than CDN/TRON for
logistic regression. Each iteration of CDN/TRON for L2-loss SVMs is cheaper because no exp/log
operations are involved. Because the accuracy is similar, in general we prefer L2-loss SVMs over
logistic regression.

The choice of the regularization parameter C affects the performance of solvers. In Figure 11,
we present results on the rcv1 data set with regularization parameters 10C∗ and 0.1C∗, respectively,
where C∗ = 4 is the best parameter obtained from cross validation; see Table 2. Results show that
all solvers take longer running time when C is large. Therefore, one should avoid a value much
larger than C∗ by trying from a small C. Moreover, methods using low-order (e.g., gradient only)
information seem to be more sensitive to the change of C. For example, with C∗ and 0.1C∗ we
respectively observe in Figures 1(d) and 11(b) that CDN is faster than OWL-QN, but with 10C∗,
OWL-QN surpasses CDN in the final stage.

GLMNET iteratively considers quadratic approximations and applies coordinate descent meth-
ods at each iteration. The discussion in Section 8.3 indicates that GLMNET’s speed may be further
improved if an adaptive stopping condition is properly designed for minimizing each quadratic ap-
proximation.

It is challenging to efficiently solve L1-regularized linear classification problems. The 1-norm
term causes the non-differentiability of the objective function. In this paper, we review many exist-
ing methods for logistic regression and L2-loss SVMs. We discuss some state-of-the-art methods
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Figure 11: A comparison of logistic regression solvers with regularization parameters 10C∗ and
0.1C∗. Both x-axis (relative difference between the objective function and the optimum value) and
y-axis (training time) are log-scaled.

in detail. Our extensive comparison shows that carefully implemented coordinate descent methods
are effective for L1-regularized classification with large-scale document data.
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Appendix A. Existence of Optimal Solutions of (1)

Consider the following level set:
S≡ {w | f (w)≤ f (0)}.

We prove that S is compact (closed and bounded). Clearly, S is closed due to the continuity of f (w).
If S is not bounded, then there is a sequence {wk} ⊂ S such that ‖wk‖1 → ∞. Because we assume
that ξ(w;xi,yi) ≥ 0, f (wk) ≥ ‖wk‖1. Then, f (wk) → ∞ contradicts f (wk) ≤ f (0). Thus, S is a
compact set. From Weierstrass’ Theorem, f (w) has at least one minimum in S.

Appendix B. Solution of (26)

We consider the following general form with A> 0:

min
z

|wj+ z|+Bz+
1
2
Az2. (84)

Clearly,

|wj+ z|+Bz+
1
2
Az2 =

{

g1(z) if z≥−wj,

g2(z) if z≤−wj,
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where
g1(z)≡ wj+ z+Bz+

1
2
Az2 and g2(z)≡−wj− z+Bz+

1
2
Az2.

By checking if the minimum of the quadratic function occurs on the right or the left side of −wj,
we know

arg min
z≥−wj

g1(z) =

{

−B+1
A if B+1≤ Awj,

−wj otherwise,

and

arg min
z≤−wj

g2(z) =

{

−B−1
A if B−1≥ Awj,

−wj otherwise.

Because B+1≤ Awj and B−1≥ Awj cannot hold at the same time, and g1(−wj) = g2(−wj), we
can easily conclude that the solution of (84) is









−B+1
A if B+1≤ Awj,

−B−1
A if B−1≥ Awj,

−wj otherwise.

Appendix C. Proof of Theorem 1

From the assumption that wk → w∗ and the way that w is cyclically updated, we have wk, j →
w∗ as well. The first result −1 < ∇ jL(wk, j) < 1 immediately follows from the assumption −1 <
∇ jL(w∗)< 1 and the continuity of ∇L(w).

We then focus on the second result to show that wk, jj = 0 after k is large enough. The optimality
condition (6) and the assumption −1 < ∇ jL(w∗) < 1 imply that w∗

j = 0. From the continuity of
∇2L(w) and the compactness of the level set S proved in Appendix A, we can define

M ≡max{∇2j jL(w) | w ∈ S}≥ 0. (85)

With the assumption −1 < ∇ jL(w∗) < 1 and the property wk, jj → w∗
j = 0, for any σ ∈ (0,1), there

exists an iteration index Kj such that for all k ≥ Kj,

−1+
M
1−σ

|wk, jj |≤ L′j(0;wk, j) = ∇ jL(wk, j)≤ 1−
M
1−σ

|wk, jj | (86)

and
{

w
∣
∣ ‖w−wk, j‖ ≤ ‖wk, j−w∗‖ for some k ≥ Kj

}

⊂ S.7 (87)

We prove that wk, jj = 0, ∀k ≥ Kj. Recall that in the decomposition method we use (27) to obtain a
direction d. From (86), we see that at k = Kj, the third case in (27) is taken. That is, d =−wk, jj . If
σ in (86) is chosen to be the constant used in the sufficient decrease condition (28), we claim that

7. We need f (w∗)< f (0). This property generally holds. If not, we can slightly enlarge S so that (87) and all subsequent
derivations still follow.
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d =−wk, jj satisfies (28) with λ= 1: If wk, jj ≥ 0,

g j(−wk, jj )−g j(0)−σ
(

−wk, jj −L′j(0;wk, j)w
k, j
j

)

=(1−σ)
(

−wk, jj −L′j(0;wk, j)w
k, j
j

)

+
1
2
L′′j (z̃;wk, j)(w

k, j
j )2 (88)

≤(1−σ)
(

−wk, jj −L′j(0;wk, j)w
k, j
j

)

+
1
2
M(wk, jj )2 (89)

≤
−1
2
M(wk, jj )2 ≤ 0, (90)

where z̃ is between 0 and −wk, jj , Equation (88) follows from (20)–(21), Equation (89) is from (87)
and (85),8 and Equation (90) is from the first inequality of (86). The above result is precisely the
sufficient decrease condition (28) with λ = 1. The situation for wk, jj < 0 is similar. By taking the
step d = −wk, jj , we have w

k+1, j
j = 0. At the (k+ 1)st iteration, wk+1, jj = 0 and (86) imply that the

optimality condition (18) for the sub-problem has been satisfied. Thus, the jth element ofw remains
zero in all subsequent iterations.

Appendix D. Convergence of CDN: Logistic Regression

If each time one variable is used, the sub-problem considered in Tseng and Yun (2007) is

min
z

|wj+ z|− |wj|+L′j(0)z+
1
2
Hz2. (91)

Clearly, (26) is a special case of (91) by taking H = L′′j (0). Therefore, we can apply results proved
in Tseng and Yun (2007).

To have the finite termination of the line search procedure, Tseng and Yun (2007, Lemma 3.4)
require that there exists A> 0 such that

‖∇L(w1)−∇L(w2)‖ ≤ A‖w1−w2‖, ∀w1,w2 ∈ Rn (92)

and
L′′j (0;w)> 0, (93)

where w is the current solution used to generate the direction d in (27). Equation (92) means that
L(·) is globally Lipschitz continuous. For logistic regression, we have

‖∇L(w1)−∇L(w2)‖ ≤ ‖∇2L(w̃)‖‖w1−w2‖,

where w̃ is between w1 and w2. Moreover,

‖∇2L(w̃)‖=C‖XTD(w̃)X‖ ≤C‖XT‖‖X‖, (94)

where D(w̃) ∈ Rl×l is a diagonal matrix similar to (70). Because any diagonal element of D(w̃) is
less than one, we have the inequality in (94). Thus, we can useC‖XT‖‖X‖ as the constant A in (92).

8. More precisely,
‖wk, j+ z̃e j−wk, j‖ ≤ |wk, jj |= |wk, jj −w∗

j |≤ ‖wk, j−w∗‖.
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For (93), from (29), L′′j (0;w) in the level set S is lower bounded by a positive value. The only
exception is that L′′j (0;w) = 0 when xi j = 0, ∀i = 1, . . . , l. In this situation, L′j(0;w) = 0 and the
optimal w∗

j = 0. The one-variable function g j(z) is reduced to

g j(z) = |wj+ z|− |wj|,

so d =−wj from (27) and d satisfies the sufficient decrease condition (28). Therefore, wj becomes
zero after the first iteration and is not changed after. It is like that the jth feature has been removed
in the beginning.

Next, we discuss the asymptotic convergence of function values. Tseng and Yun (2007) impose
certain conditions on choosing the working set; see Equation (12) in their paper. If one variable
is updated at a time, their condition is reduced to that between wk and wk+1, one must go through
n sub-problems covering all w1, . . . ,wn. This setting is exactly what we do, regardless of using a
sequential order of 1, . . . ,n or a permutation π(1), . . . ,π(n).

Tseng and Yun (2007) need an additional assumption for the asymptotic convergence (see As-
sumption 1 in their paper):

0< λmin ≤ ∇2j jL(wk, j)≤ λmax,∀ j = 1, . . . ,n,k = 1, . . . , (95)

where λmin and λmax are positive constants. From (29) and the boundedness of the level set S (see
Appendix A), this assumption holds except that for some j, xi j = 0,∀i. For such j, ∇ jL(w) = 0,∀w.
Hence, wj becomes zero by (27) at the first iteration and is not changed subsequently. Because
wj = 0 is optimal in this situation, it is like that the jth variable has been removed for optimization.
Therefore, we have (95) without problems.

Following Tseng and Yun (2007, Theorem 4.1(e)), any limit point of {wk} is an optimum of (1)
with logistic loss.

Appendix E. Convergence of TRON: Logistic Regression

Consider any limit point w̄ generated by {wk}. Lin and Moré (1999) proved that if

∇2 f̄ (w̄)J,J is positive definite, (96)

where
J ≡ { j | ∇ j f̄ (w̄) = 0},

then the following two results hold:
1. {wk} globally converges to w̄.
2. {wk} quadratically converges. That is, there exist µ∈ (0,1) and a positive integer K such that

‖wk+1− w̄‖ ≤ (1−µ)‖wk− w̄‖2, ∀k > K.

The remaining question is whether (96) holds. From (58), we have

∇2 f̄ (w̄) =C
[

XT
−XT

]

D
[

X −X
]

, (97)

where D is defined in (57). ∇2 f̄ (w̄) cannot be positive definite if there exists 1 ≤ j ≤ n such that
{ j, j+n}⊂ J. The reason is that one can easily find a vector v ∈ R2n such that vT∇2 f̄ (w̄)v= 0. For
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example, let v j = v j+n -= 0 and other elements be zero. However, we claim that { j, j+n}⊂ J does
not happen. Otherwise,

∇ j f̄ (w̄) = 1+∇ jL(w̄1:n− w̄n+1:2n) and
∇ j+n f̄ (w̄) = 1−∇ jL(w̄1:n− w̄n+1:2n)

are both zero, but this situation is not possible.
From the optimality condition (6), J is the same as the following set:

{ j | w̄ j > 0 or w̄ j = ∇ j f̄ (w̄) = 0}.

Therefore, if the solution is sparse and those w̄ j = 0 or w̄ j+n = 0, 1≤ j ≤ n satisfy
{

∇ j f̄ (w̄)> 0 if w̄ j = 0,
∇ j+n f̄ (w̄)> 0 if w̄ j+n = 0,

(i.e., the optimization problem is non-degenerate), then |J| is small. From (97), ∇2 f̄ (w̄)J,J tends to
be positive definite if |J| is small. Then, we can have the quadratic convergence.

Appendix F. Convergence of CDN: L2-loss SVM

To have the finite termination of the line search procedure, we need conditions similar to (92) and
(93). The condition (92) means that ∇L(w) is globally Lipschitz continuous. L2-loss SVM satisfies
this property (Mangasarian, 2002, Section 3). For (93), the setting in (81) ensures that H in (91) is
always positive. Therefore, the line search procedure stops in a finite number of steps.

For the asymptotic convergence, we need again the condition (95). Our setting in (81) meets
this assumption, so any limit point of {wk} is an optimal solution of (77).

References

Galen Andrew and Jianfeng Gao. Scalable training of L1-regularized log-linear models. In Pro-
ceedings of the Twenty Fourth International Conference on Machine Learning (ICML), 2007.

Suhrid Balakrishnan and David Madigan. Algorithms for sparse linear classifiers in the massive
data setting. 2005. URL http://www.stat.rutgers.edu/˜madigan/PAPERS/sm.pdf.
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Abstract
Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential
family using the variational Bayesian expectation maximisation (VB EM) algorithm or one of its
variants. In this paper we present an efficient algorithm for applying VB to more general models.
The method is based on specifying the functional form of the approximation, such as multivariate
Gaussian. The parameters of the approximation are optimised using a conjugate gradient algorithm
that utilises the Riemannian geometry of the space of the approximations. This leads to a very ef-
ficient algorithm for suitably structured approximations. It is shown empirically that the proposed
method is comparable or superior in efficiency to the VB EM in a case where both are applica-
ble. We also apply the algorithm to learning a nonlinear state-space model and a nonlinear factor
analysis model for which the VB EM is not applicable. For these models, the proposed algorithm
outperforms alternative gradient-based methods by a significant margin.
Keywords: variational inference, approximate Riemannian conjugate gradient, fixed-form ap-
proximation, Gaussian approximation

1. Introduction

Bayesian methods have recently gained popularity in machine learning. This is at least partially due
to their robustness against overfitting compared to maximum likelihood and other methods based
on point estimates. Variational Bayesian (VB) methods provide an efficient and often sufficiently
accurate deterministic approximation to Bayesian learning (Bishop, 2006). Mean field type VB
also has the benefit that its objective function can be used for choosing the model structure or model
order. Most work on variational methods has focused on the class of conjugate exponential models
for which simple EM-like learning algorithms can be derived easily (Ghahramani and Beal, 2001;
Winn and Bishop, 2005). These models and algorithms are computationally convenient but they
rule out many interesting model types.

∗. These authors contributed equally to this work. This project may be found at http://www.cis.hut.fi/projects/
bayes/.
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Many practically important models are not in the conjugate-exponential family and they have
received far less attention in the VB literature. In this paper we present an efficient general method
for applying VB learning to these more general models. The method could be used to speed up,
for instance, the Gaussian variational approximation method of Opper and Archambeau (2009), or
other previous more specific methods (e.g., Lappalainen and Honkela, 2000; Valpola and Karhunen,
2002).

Our method is based on first selecting the functional form of the approximation. For parts of the
model that are conjugate-exponential, the corresponding factorised exponential family distribution
is often a good choice, while in general we may use something else such as a multivariate Gaussian.

After fixing the functional form, we must be able to evaluate the variational free energy as a
function of the variational parameters. The details of this step depend on the model—often most
terms can be evaluated analytically while others may require computing some bounds (Jordan et al.,
1999) or applying some linearisation techniques (see, e.g., Honkela and Valpola, 2005) or other
approximations.

Once the free energy is known, we are left with a typically high-dimensional optimisation prob-
lem. Here1 we propose using an approximate conjugate gradient algorithm that utilises the Rie-
mannian geometry of the space of the approximations to speed up convergence. One of the main
contributions of this paper is to use the geometry of the approximations. This is in contrast to
more common applications of Riemannian geometry in natural gradient methods using the geome-
try of the predictive model. The geometry of the approximations is the natural choice if the varia-
tional inference is viewed as an optimisation problem in the space of approximating distributions.
Furthermore, the geometry of the approximation is often much simpler, leading to more efficient
computation and generic algorithms. The computational complexity of operations with the Fisher
information matrix determining the geometry can be linear if the approximation is fully factoris-
ing or if its multivariate Gaussian blocks have a tree-like dependence structure, for instance. The
resulting algorithm can provide dramatic speedups of potentially several orders of magnitude over
state-of-the-art Euclidean conjugate gradient methods.

In previous machine learning algorithms Riemannian geometry is usually invoked through the
natural gradient of Amari (1998). There, the aim has been to use maximum likelihood to directly
update the model parameters θθθ taking into account the geometry imposed by the predictive dis-
tribution of the data p(XXX |θθθ). The resulting geometry is often quite complicated as the effects of
different parameters cannot be separated and the Fisher information matrix is relatively dense. Re-
cently Girolami and Calderhead (2011) have applied this in a Bayesian setting as a method to speed
up Hamiltonian Monte Carlo samplers. In this paper, only the simpler geometry of the VB ap-
proximating distributions q(θθθ|ξξξ) is used. Because the approximations are often chosen to minimise
dependencies between different parameters θθθ, the resulting Fisher information matrix with respect
to the variational parameters ξξξ will be mostly diagonal and hence easy to work with.

The rest of the paper is organised as follows. Section 2 introduces the background in varia-
tional Bayes and information geometry. The proposed approximate Riemannian conjugate gradient
learning algorithm is introduced in Section 3. The method is demonstrated in three case studies:
a Gaussian mixture model, a nonlinear state-space model and a nonlinear factor analysis model in
Secs. 4, 5 and 6, respectively. We end with discussion in Section 7.

1. This paper is an extended version of the earlier conference paper (Honkela et al., 2008).
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2. Background

The approximate Riemannian conjugate gradient learning algorithm follows very naturally from an
optimisation view of variational Bayes and the Riemannian geometry of probability distributions in
information geometry. We will start with a brief introduction to both of these techniques separately.

2.1 Variational Bayes

Variational Bayesian (VB) learning (Jordan et al., 1999; Ghahramani and Beal, 2001; Bishop, 2006)
is based on approximating the posterior distribution p(θθθ|XXX) with a tractable approximation q(θθθ|ξξξ),
where XXX is the data, θθθ are the unobserved variables (including both the parameters of the model and
the latent variables), and ξξξ are the variational parameters of the approximation (such as the mean
and the variance of a Gaussian approximation). The approximation is fitted by minimising the free
energy

F (q(θθθ|ξξξ)) = Eq(θθθ|ξξξ)
{

log
q(θθθ|ξξξ)
p(XXX ,θθθ)

}

= DKL(q(θθθ|ξξξ)‖p(θθθ|XXX))− log p(XXX). (1)

This is equivalent to minimising the Kullback-Leibler (KL) divergence DKL(q‖p) between q and
p (Bishop, 2006). The negative free energy also provides a lower bound on the marginal log-
likelihood, that is, log p(XXX)≥−F (q(θθθ|ξξξ)) due to non-negativity of the KL-divergence.

Typical classes of approximations used in VB include factorising approximations, most often
starting from assuming the latent variables and parameters to be independent and extending to the
fully factorising mean-field approximation, and approximations having a fixed functional form, such
as a Gaussian.

In the former case, learning is typically performed using the variational Bayesian expectation
maximisation (VB EM) algorithm which alternates between minimising the free energy with respect
to the distribution of the latent variables (VB-E step) and the distribution of the parameters (VB-M
step) (Bishop, 2006).

In the case of approximation with a fixed functional form, EM-like updates are usually not avail-
able and generic gradient-based optimisation methods have to be used (see, e.g., Opper and Archam-
beau, 2009). This is often very challenging in practice, as the problems are quite high dimensional
and the lack of specific knowledge of interactions of the parameters that define the geometry of
the problem can seriously hinder generic optimisation tools. Such methods have nevertheless been
applied to a number of models that are not in the conjugate exponential family, such as multi-layer
perceptron (MLP) networks (Barber and Bishop, 1998), kernel classifiers (Seeger, 2000), nonlin-
ear factor analysis (Lappalainen and Honkela, 2000; Honkela and Valpola, 2005; Honkela et al.,
2007) and nonlinear dynamical models (Valpola and Karhunen, 2002; Archambeau et al., 2008),
non-conjugate variance models (Valpola et al., 2004; Raiko et al., 2007) as well as Gaussian process
latent variable models (Titsias and Lawrence, 2010). Optimisation methods have included the con-
jugate gradient algorithm and heuristic speed-ups, but the use of a Riemannian conjugate gradient
algorithm for VB as proposed in this paper is novel.

In practice, convergence of conjugate gradient algorithms in latent variable models is often
really slow. To get an intuition of why this is the case, let us consider a generic latent variable
model with latent variables that connect to one observation each and parameters that connect to a
number of observations. As we increase the number of observations, the gradient with respect to the
parameters grows linearly, whereas the gradient with respect to the latent variables stays constant.
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As a result, with a reasonable number of observations, conjugate gradient algorithms are forced to
take very small steps to avoid overshooting the parameters, and as a result the latent variables are
hardly changed at all. The Riemannian gradient provides an automatic remedy to this problem by
properly scaling the gradient.

2.2 Information Geometry and Optimisation on Riemannian Manifolds

When applying a generic optimisation algorithm to a problem such as optimising the free energy
(1), a lot of background information on the geometry of the problem is lost. The parameters ξξξ of
q(θθθ|ξξξ) can have different roles as location, shape, and scale parameters, and their effect is influenced
by other parameters. This implies that the geometry of the problem is in most cases not Euclidean.

Riemannian geometry studies smooth manifolds {M |ξξξ} that are locally diffeomorphic with Rn.
The manifold has an inner product 〈·, ·〉k defined at every point ξξξk of the manifold. The inner product
is defined for vectors in tangent space Tξξξk ofM at ξξξk as

〈x,y〉k = xTG(ξξξk)y=∑
i, j
xiy jgi j(ξξξk), (2)

where G(ξξξk) is the Riemannian metric tensor at ξξξk. Most Riemannian manifolds are curved, with
geodesics as the counterparts of Euclidean straight lines as length-minimising curves between two
points (Murray and Rice, 1993).

Information geometry studies the Riemannian geometric structure of the manifold of probability
distributions (Amari, 1985). It has been applied to derive efficient natural gradient learning rules
for maximum likelihood algorithms in independent component analysis (ICA) and multi-layer per-
ceptron (MLP) networks (Amari, 1998). The approach has been used in several other problems as
well, for example in analysing the properties of an on-line variational Bayesian EM method (Sato,
2001).

For probability distributions, the most natural metric is given by the Fisher information

gi j(ξξξ) = Ii j(ξξξ) = E
{

∂ logq(θθθ|ξξξ)
∂ξi

∂ logq(θθθ|ξξξ)
∂ξ j

}

= E
{

−
∂2 logq(θθθ|ξξξ)
∂ξi∂ξ j

}

. (3)

Here the last equality is valid if q(θθθ|ξξξ) is twice continuously differentiable (Murray and Rice, 1993).
Fisher information is a unique metric for probability distributions in the sense that it is the only
metric which is invariant with respect to transformations to sufficient statistics (Amari and Nagaoka,
2000).

In a Riemannian space, the direction of steepest ascent of a function F (ξξξ) is given by the
Riemannian or natural gradient

∇̃F (ξξξ) =G−1(ξξξ)∇F (ξξξ) (4)

instead of the regular gradient ∇F (ξξξ). This can be verified by finding the maximum of F (ξξξ+Δξξξ)
subject to the constraint ||Δξξξ||2ξξξ = 〈Δξξξ,Δξξξ〉ξξξ = ΔξξξT G(ξξξ)Δξξξ< ε2. The relation between gradient and
Riemannian gradient is illustrated in Figure 1.

This choice of geometry between Euclidean and Riemannian is, however, independent of the
choice of the optimisation algorithm, and recently several authors have combined conjugate gradient
methods with the Riemannian or natural gradient (Smith, 1993; González and Dorronsoro, 2008;
Honkela et al., 2008). In principle this can be achieved by replacing all vector space operations in
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Figure 1: Gradient and Riemannian gradient directions are shown for the mean of distribution q.
VB learning with a diagonal covariance is applied to the posterior p(x,y) ∝ exp[−9(xy−
1)2− x2− y2]. The Riemannian gradient strengthens the updates in the directions where
the uncertainty is large.

the conjugate gradient algorithm with their Riemannian counterparts: Riemannian inner products
and norms, parallel transport of gradient vectors between different tangent spaces as well as line
searches and steps along geodesics in the Riemannian space. In practical algorithms some of these
can be approximated by their flat-space counterparts. We shall apply the approximate Riemannian
conjugate gradient (RCG) method which implements Riemannian (natural) gradients, inner products
and norms but uses flat-space approximations of the others as our optimisation algorithm of choice
throughout the paper. As shown in Appendix A, these approximations do not affect the asymptotic
convergence properties of the algorithm. The difference between gradient and conjugate gradient
methods is illustrated in Figure 2.

In this paper we propose using the Riemannian structure of the distributions q(θθθ|ξξξ) to derive
more efficient algorithms for approximate inference and especially VB using approximations with
a fixed functional form. This differs from the traditional natural gradient learning by Amari (1998)
which uses the Riemannian structure of the predictive distribution p(XXX |θθθ). The proposed method
can be used to jointly optimise all the parameters ξξξ of the approximation q(θθθ|ξξξ), or in conjunction
with VB EM for some parameters.
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p
gradient
conjugate gradient

Figure 2: Gradient and conjugate gradient updates are applied to finding the maximum of the pos-
terior p(x,y)∝ exp[−9(xy−1)2−x2−y2]. The step sizes that maximise p are used. Note
that the first steps are the same, but following gradient updates are orthogonal whereas
conjugate gradient finds a much better direction.

2.3 Information Geometry of VB EM

The optimal VB approximation has an information-geometric interpretation as a specific projection
of the true posterior to a manifold of tractable distributions (Tanaka, 2001). This interpretation is
equally valid for all optimisation methods.

Amari (1995) has also presented the geometric interpretation of the EM algorithm as alternating
projections for E- and M-steps. This asymmetric view does not directly generalise to the VB EM
method when used to infer distributions over all parameters, because VB EM is symmetric with
respect to different parameters.

By embedding the VB-E step update within the VB-M step with point estimates and consid-
ering the resulting update, the VB EM algorithm for conjugate exponential family models can be
interpreted as a natural gradient method (Sato, 2001). It therefore implicitly optimally utilises the
Riemannian geometric structure of q(θθθ|ξξξ) (Amari, 1998). Nevertheless, the EM-based methods are
prone to slow convergence, especially under low noise, even though more elaborate optimisation
schemes can speed up their convergence somewhat. It is worth pointing out that this correspon-
dence of VB EM is with the regular natural gradient algorithm, not Riemannian (natural) conjugate
gradients as proposed in this paper.

3. Approximate Riemannian Conjugate Gradient Learning for Fixed-Form VB

Given a fixed-form approximation q(θθθ|ξξξ) and the free energy F (q(θθθ|ξξξ)), it is possible to use stan-
dard gradient-based optimisation techniques to minimise the free energy with respect to ξξξ. We will
use VB EM updates for some variational parameters ξξξEM and RCG for others ξξξRCG.

Instead of a regular Euclidean gradient algorithm, we optimise the free energy using a conjugate
gradient algorithm that is adapted to Riemannian space by using Riemannian inner products and
norms instead of Euclidean ones. Steps are still taken along Euclidean straight lines and the step
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length is determined using a line search. We call this the (approximate) Riemannian conjugate
gradient (RCG) algorithm.

Our RCG is an approximation of a true Riemannian conjugate gradient algorithm (Smith, 1993),
in which the steps are taken along geodesic curves and tangent vectors evaluated at different points
are transformed to the same tangent space using parallel transport along a geodesic. For small step
sizes and geometries which are locally close to Euclidean, the approximations that we have made
still retain many of the benefits of the exact algorithm while greatly simplifying the computations.
Edelman et al. (1998) showed that near the solution Riemannian conjugate gradient method differs
from the flat space version of conjugate gradient only by third order terms, and therefore both
algorithms converge quadratically near the optimum. This convergence property is demonstrated in
detail for our approximation in Appendix A.

The search direction for the RCG method is given by

pk =−g̃k+βpk−1,

where g̃k = ∇̃F (ξξξ) is the Riemannian gradient of Equation (4). The coefficient β is evaluated using
the Polak-Ribiére formula (Nocedal, 1992; Smith, 1993; Edelman et al., 1998)

β=
〈g̃k, g̃k− g̃k−1〉k
||g̃k−1||2k−1

, (5)

where ||g̃k||2k = 〈g̃k, g̃k〉k is the squared Riemannian norm of g̃k in the tangent space where g̃k is
defined, and 〈x,y〉k denotes the Riemannian inner product of Equation (2) in the same tangent
space.

We also apply a Riemannian version of the Powell-Beale restart method (Powell, 1977): the
search direction is reset to the negative gradient direction if

|〈g̃k−1, g̃k〉k|≥ 0.2||g̃k||2k . (6)

Compared to the traditional conjugate gradient, the Equations (5) and (6) are similar with just the
dot products of the vectors replaced with Riemannian inner products.

Once the search direction is determined, we use standard line search to find the final update. Be-
cause the evaluation of the objective function is computationally costly, it is worthwhile to consider
line search methods that stop earlier rather than wasting many function evaluations on fine tuning
the parameters.

An example implementation of the algorithm is summarised in Algorithm 1. The inputs include
the probabilistic model p, the form of used posterior approximation q, the initialisations for the
variational parameters ξξξ, and the data set XXX which is implicitly used in the objective function F .
The algorithm returns the variational parameters ξξξ that solve the learning and inference problem of
q(θθθ|ξξξ).

3.1 Computational Considerations

The RCGmethod is efficient as the geometry is defined by the approximation q(θθθ|ξξξ) and not the full
model p(XXX |θθθ) as in typical natural gradient methods. If the approximation q(θθθ|ξξξ) is chosen such
that disjoint groups of variables are independent, that is,

q(θθθ|ξξξ) =∏
i
qi(θθθi|ξξξi),
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Algorithm 1 An outline of an example Riemannian conjugate gradient algorithm for fixed-form
VB. The presented method of integrating VB EM updates is only one of many possible alternatives.

function VB-RCG(p,q,ξξξ0 = (ξξξEM0 ,ξξξRCG0 ),XXX)
p0 = 0, g̃0 = 1
for k = 1,2, . . . do ! Repeat until convergence
for ξξξ(i) ∈ ξξξEM = (ξξξ(1), . . . ,ξξξ(N)) do

ξξξ(i)k ← argminξξξ(i) F (q(θθθ|ξξξ(1)k , . . . ,ξξξ(i−1)k ,ξξξ(i),ξξξ(i+1)k−1 , . . . ,ξξξ(N)k−1,ξξξ
RCG
k−1 ))

! VB EM for some parameters
g̃k ←G−1(ξξξRCGk−1 )∇ξξξRCGk−1

F (q(θθθ|ξξξEMk ,ξξξRCGk−1 )) ! Riemannian gradient

β← 〈g̃k,g̃k−g̃k−1〉k
||g̃k−1||2k−1

! Polak-Ribiére formula
pk ←−g̃k+βpk−1 ! Update direction
α← argminαF (q(θθθ|ξξξEMk ,ξξξRCGk−1 +αpk)) ! Line search
ξξξRCGk ← ξξξRCGk−1 +αpk

the computation of the Riemannian gradient is simplified as the Fisher information matrix becomes
block-diagonal. The required matrix operations can be performed very efficiently because

diag(A1, . . . ,An)−1 = diag(A−1
1 , . . . ,A−1

n ).

The dimensionality of the problem space is often so high that working with the full matrix would
not be feasible.

All vector operations needed in the RCG algorithm are of the form

〈g̃k, g̃l〉m = 〈G−1
k gk,G

−1
l gl〉m = gTkG−T

k GmG−1
l gl (7)

for some iterate indices k, l,m. This is further simplified in case m = k where G−T
k Gm = I and in

case m = l where GmG−1
l = I. Depending on the structure of the Fisher information matrix, the

operations can be performed as a series of solving linear systems and matrix products to exploit the
sparsity. A practical example of this in the case of a Gaussian approximation is presented in Section
3.2.1.

Finally, it is worth to note that when updating only a subset of variational parameters ξξξ at a time,
many terms in F are constant and can be disregarded when finding a minimum.

3.2 Gaussian Approximation

Most obvious applications of the Riemannian gradient method are with a Gaussian approximation.
In that case, it is most convenient to use a simple fixed-point update rule for the covariance and a
Riemannian conjugate gradient update only for the mean.

Let us consider the optimisation of the free energy (1) when the approximation q(θθθ|ξξξ) is a
multivariate Gaussian. The free energy can be decomposed as

F (q(θθθ|ξξξ)) = Eq(θθθ|ξξξ)
{

log
q(θθθ|ξξξ)
p(XXX ,θθθ)

}

= Eq(θθθ|ξξξ) {logq(θθθ|ξξξ)}+Eq(θθθ|ξξξ) {− log p(XXX ,θθθ)} .
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The former term is the negative entropy of the approximation, which in the case of a multivariate
Gaussian q(θθθ|µµµ,ΣΣΣ) with mean vector µµµ and covariance matrix ΣΣΣ is

Eq(θθθ|ξξξ) {logq(θθθ|ξξξ)}=−
1
2
logdet(2πeΣΣΣ).

Straightforward differentiation yields a fixed point update rule for the covariance (Lappalainen and
Miskin, 2000; Opper and Archambeau, 2009):

ΣΣΣ−1 =−2∇ΣΣΣEq(θθθ|ξξξ) {log p(XXX ,θθθ)} , (8)

where ∇ΣΣΣ denotes the gradient with respect to ΣΣΣ. If the covariance matrix is assumed (block) diag-
onal, the same update rule applies for the (block) diagonal terms.

3.2.1 COMPUTING THE RIEMANNIAN METRIC TENSOR

For the univariate Gaussian distribution parametrised by mean and variance q(θ|µ,v) = N (θ|µ,v),
we have

logq(θ|µ,v) =−
1
2v

(θ−µ)2−
1
2
log(v)−

1
2
log(2π).

Furthermore,

E
{

−
∂2 logq(θ|µ,v)

∂µ2

}

=
1
v
, (9)

E
{

−
∂2 logq(θ|µ,v)

∂v∂µ

}

= 0, and (10)

E
{

−
∂2 logq(θ|µ,v)

∂v2

}

=
1
2v2

. (11)

The vanishing of the cross term between the mean and the variance further supports using the
simpler fixed point rule (8) to update the variances.

(a) (b) (c) (d)

Figure 3: The absolute change in the mean of the Gaussian in figures (a) and (b) and the absolute
change in the variance of the Gaussian in figures (c) and (d) is the same. However, the
relative effect is much larger when the variance is small as in figures (a) and (c) compared
to the case when the variance is high as in figures (b) and (d) (Valpola, 2000).

In the case of univariate Gaussian distribution, the Riemannian gradient has a rather straightfor-
ward intuitive interpretation, which is illustrated in Figure 3. Compared to conventional gradient,
Riemannian gradient compensates for the fact that changing the parameters of a Gaussian with small
variance has much more pronounced effects than when the variance is large.

3243



HONKELA, RAIKO, KUUSELA, TORNIO AND KARHUNEN

In case of multivariate Gaussian distribution parametrised by mean and covariance q(θθθ|µµµ,ΣΣΣ) =
N (θθθ|µµµ,ΣΣΣ), the elements of the Fisher information matrix corresponding to the mean are simply

E
{

−
∂2 logq(θθθ|µµµ,ΣΣΣ)

∂µµµT∂µµµ

}

=ΣΣΣ−1. (12)

The Fisher information matrix is thus equal to the precision matrix Gk =ΛΛΛk = ΣΣΣ−1k .
Typically the covariance matrixΣΣΣ is assumed to have a simple structure that makes working with

it very efficient. Possible structures for a covariance matrix include full, diagonal, block diagonal,
a Gaussian Markov random field with a specific structure, and a factor analysis covariance ΣΣΣ =
D+∑k

i=1 vvT , where D is a diagonal matrix, or ΣΣΣ−1 = K−1 + diag(v) with a fixed K and only
N parameters in v for an N-variate Gaussian (Opper and Archambeau, 2009). It is also possible to
derive the geometry for the covariance of a multivariate Gaussian. The result does, however, depend
on the specific structure of the covariance.

Assuming a structured Gaussian Markov random field approximation with a tree or blocked
tree structure, the precision matrix will be sparse with a simple structure. This allows efficient
computation of the operations needed in Equation (7). ΛΛΛ−1

l gl (and correspondingly for k) can be
computed by solving the linear system ΛΛΛlx = gl , which can be done in O(N) time for N variables
using a propagation algorithm in the tree. For a blocked tree formed of N/n blocks of size n, the
complexity is O(n2N). Examples of such algorithms for chains are given in Golub and Loan (1996),
but a general tree can be handled analogously. The complexity of multiplication byΛΛΛ is similar.

Examples of Gaussian Markov random fields with this structure can be easily found in time
series models, where the approximation for the state sequence SSS= (s(1), . . . ,s(T )) is typically either
a single “blocked” chain

q(SSS) =
T

∏
t=2

q(s(t)|s(t−1))q(s(1))

or a product of independent chains

q(SSS) =∏
i

[

q(si(1))
T

∏
t=2

q(si(t)|si(t−1))

]

. (13)

In a d dimensional model of length T , the time complexity of the Riemannian vector operations in
RCG is O(d3T ) for the former and O(dT ) for the latter.

4. Case Study: Mixture of Gaussians

As the first case study, we consider the mixture-of-Gaussians (MoG) model as was done by Kuusela
et al. (2009). In this case, we applied the RCG also for variables with a non-Gaussian approximation.
Furthermore, the conjugate-exponential nature of the MoGmodel allows direct comparison with VB
EM.

4.1 The Mixture-of-Gaussians Model

We consider a finite mixture of K Gaussians (Attias, 2000; Bishop, 2006)

p(x|πππ,µµµ,ΛΛΛ) =
K

∑
k=1

πkN (x|µµµk,ΛΛΛk),
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The model p(X|Z,µµµ,ΛΛΛ) =∏N
n=1∏

K
k=1N (xn|µµµk,ΛΛΛ−1

k )znk

p(Z|πππ) =∏N
n=1∏

K
k=1π

znk
k

Key variables Z= (znk) ,θθθ= (µµµk,ΛΛΛk,πππ)
The approximation q(Z,θθθ) = q(Z)q(θθθ)
The update algorithm Joint RCG updates for Z and means of µµµk, fixed point updates for vari-

ances of µµµk, VB EM updates for the rest

Table 1: Summary of the mixture-of-Gaussians model

where x is a D-dimensional random vector, πππ= [π1 · · ·πK ]T are the mixing coefficients, and µµµk and
ΛΛΛk are the mean vector and the precision matrix of the kth Gaussian component, respectively.

In the case of the MoG model, the binary latent variables Z denote which one of the K Gaussian
components has generated a particular observation xn with znk = 1 denoting the component respon-
sible for generating the observed data point xn. Let N denote the total number of observed data
points.

Given the mixing coefficients πππ, the probability distribution over the latent variables is given by

p(Z|πππ) =
N

∏
n=1

K

∏
k=1

πznkk .

The mixing coefficients have a conjugate Dirichlet prior

p(πππ) = Dir(πππ|ααα0),

where ααα0 = [α0, . . . ,α0]T .
Similarly, the likelihood can be written as

p(X|Z,µµµ,ΛΛΛ) =
N

∏
n=1

K

∏
k=1

N (xn|µµµk,ΛΛΛ−1
k )znk .

In this case, the conjugate prior for the component parameters µµµ and ΛΛΛ is given by the Gaussian-
Wishart distribution

p(µµµ,ΛΛΛ) = p(µµµ|ΛΛΛ)p(ΛΛΛ) =
K

∏
k=1

N (µµµk|m0,(β0ΛΛΛk)−1)W (ΛΛΛk|W0,ν0),

where the Wishart distribution is defined up to a normalising constant by the equation

W (ΛΛΛ|W,ν) ∝ |ΛΛΛ|(ν−D−1)/2 exp
(

−
1
2
Tr(W−1ΛΛΛ)

)

.

The joint distribution over all the random variables of the model is then given by

p(X,Z,πππ,µµµ,ΛΛΛ) = p(X|Z,µµµ,ΛΛΛ)p(Z|πππ)p(πππ)p(µµµ|ΛΛΛ)p(ΛΛΛ).

This resulting model can be illustrated with the graphical model shown in Figure 4.
We now make the factorising approximation

q(Z,πππ,µµµ,ΛΛΛ) = q(Z)q(πππ,µµµ,ΛΛΛ),
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Figure 4: A graphical model representing the MoG model (Attias, 2000; Bishop, 2006), where the
hyperparameters have been omitted for clarity. The observed data X are marked with a
shaded circle. The rectangular plates denote the repetition of N observations xn along
with corresponding latent variables zn, and of the parameters of K mixture components.

which leads to an update rule for q(Z) (VB-E step) and subsequently an update rule for q(πππ,µµµ,ΛΛΛ)
(VB-M step). The resulting approximate posterior distributions are

q(Z) =
N

∏
n=1

K

∏
k=1

rznknk (14)

and

q(πππ,µµµ,ΛΛΛ) = q(πππ)q(µµµ,ΛΛΛ) = q(πππ)
K

∏
k=1

q(µµµk,ΛΛΛk),

where
q(πππ) = Dir(πππ|ααα) (15)

and
q(µµµk,ΛΛΛk) =N (µµµk|mk,(βkΛΛΛk)

−1)W (ΛΛΛk|Wk,νk). (16)

The derivations of the VB EM and RCG learning algorithms for the MoG model are presented
in Appendix B.

4.2 Experiments

The hyperparameters are set to the following values for all the experiments: α0 = 1, β0 = 1, ν0 =D,
W0 =

4
DI and m0 = 0. These values can be interpreted to describe our prior beliefs of the model

when we anticipate having Gaussian components near the origin but are fairly uncertain about the
number of the components.

The maximum number of components is set to K = 8 unless otherwise mentioned with each
component having a randomly generated initial mean mk drawn from a Gaussian distribution with
zero mean and covariance 0.16I. Other distribution parameters are initially set to the following
values: αk = 1, βk = 10, νk = D and Wk =

4
DI for all k. The Powell-Beale restart scheme of

Equation (6) is not used. Instead, the search direction is reset to the negative gradient direction
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after
√
n iterations, where n is the number of parameters updated with the gradient method. The

optimisation is assumed to have converged when the improvement in free energy |F t −F t−1| < ε
for two consecutive iterations with ε being separately specified for each of the experiments below.

It should be noted that this convergence criterion favours methods such as VB EM which typi-
cally takes more of cheaper and smaller steps, while the Riemannian gradient algorithm takes fewer
larger steps that are computationally more demanding and take longer to reach the preset improve-
ment threshold.

Because different initial means can produce significantly different results in terms of the re-
quired CPU time and achieved final free energy, all the experiments are repeated 30 times with
different initialisations.

The artificial data set used to compare the different algorithms in learning the MoG model was
drawn from a mixture of 5 spherical two-dimensional Gaussians with equal weights. The mean
of the first component is at the origin while the means of the others are (±R,±R). The constant
R= 0.3 unless otherwise mentioned and the covariance of all the components is 0.03I.

When different gradient-based algorithms are compared using the artificial data containing
N = 500 data points, the results shown in Figure 5 are obtained. It can be seen that the stan-
dard gradient descent and conjugate gradient (CG) algorithms have problems locating even a decent
optimum within a reasonable time. Clearly the convergence criterion, which was set to ε= 10−7N,
is too lax for these algorithms as the simulations are terminated before convergence to a good so-
lution. Using the Riemannian gradient (RG) and further RCG radically improves the performance.
Based on the curves, even the standard CG algorithm is more than 10 times slower than RCG. This
experiment was conducted using a fairly small number of observations, a lax convergence criterion
and the maximum number of components K = 5 in order to allow the standard gradient to finish in
a reasonable time.

We also considered the L-BFGS algorithm (Byrd et al., 1995; Carbonetto, 2007) as a higher or-
der Euclidean algorithm. L-BFGS is a limited-memory version of the popular quasi-Newton BFGS
algorithm. It can be seen as a compromise between the fast converging but memory-intensive quasi-
Newton methods and the less efficient conjugate gradient methods better suited for medium- to
large-scale problems. The degree of this compromise is controlled by the memory length parameter
m which was set to m= 20 in Figure 5. It was found out that, regardless of the value of m, the per-
formance of L-BFGS was very similar to CG with the small deviations explained by the differences
in the line search methods employed by the algorithms. It also turned out that the line search sub-
routine of the L-BFGS implementation had a tendency to converge prematurely to a poor solution.
In order to circumvent this, the convergence criterion of the L-BFGS had to be tightened by a factor
of 10−9 compared to the gradient-based algorithms.

We next compare RCG, RG and VB EM using different values of R. The number of observations
was increased toN = 1000 and the convergence criterion was set to ε= 10−12N in order to maximise
the quality of the optima found. Figure 6 shows the median CPU time required for convergence for
the different algorithms in 30 repeated experiments. It can be seen that with small values of R, RCG
outperforms VB EM, while with large values of R, VB EM performs slightly better. This means
that, at least in terms of this experiment, RCG performs better than VB EMwhen the latent variables
are difficult to infer from the data.

Given the discussion of Section 2.3, it is not surprising to note that both VB EM and RG perform
qualitatively in a fairly similar manner in the experiment of Figure 6. It should especially be noted
that both methods suffer from significant slowdowns near the values of R= 0.2 and R= 0.325. On
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Figure 5: Convergence curves of gradient-based algorithms using the MoG model for artificial data
with R= 0.3. The algorithms compared are the standard gradient descent, the conjugate
gradient (CG), the Riemannian gradient (RG) and the Riemannian conjugate gradient
(RCG) methods as well as the limited-memory BFGS (L-BFGS) algorithm. The curves
shown are medians of 30 simulations drawn up to the median termination time. The
smaller marks denote 25% and 75% quantiles of the termination time in the horizontal
direction and the corresponding quantiles of the free energy at the median termination
time in the vertical direction. Note that the time scale is logarithmic.

the other hand, the use of conjugate directions in the Riemannian space seems to result in a fairly
uniform performance across all values of R.

There is some variation in the quality of the optima the different methods converge to. This is
illustrated in Figure 7 for RCG and VB EM. There is no evidence for either algorithm consistently
producing better results than the other. The only outlier in this data is with R= 0.225 where VB EM
is the only algorithm to discover the global optimum. This is by no means typical, and with other
data sets we have seen RCG sometimes consistently finding better optima. Based on the figure,
RCG seems slightly more sensitive to local optima, but the result is not qualitatively different from
VB EM which, to some extent, also suffers from the same problem.

Although the time complexity of one step of each of the compared algorithms is linear in the
number of samples, the algorithms nevertheless perform differently as the number of samples in-
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Figure 6: Comparison of VB EMwith the Riemannian gradient (RG) and the Riemannian conjugate
gradient (RCG) methods using the MoG model with the artificial data. The curves show
the median CPU time required for convergence as a function of R. VB EM slows down
significantly at the critical overlap of R≈ 0.2, while RCG is almost unaffected. A similar
slowdown also affects RG implying that the use of conjugate directions contributes to the
nearly uniform running time of RCG.

creases. To see this, we set ε = 10−8N and probed a wide range of values of N. The results are
illustrated in Figure 8 which shows that VB EM slows down faster than linearly as the number
of samples increases. The most likely reason for this behaviour is that the posterior will be more
peaked when the number of observations is large and this slows down the alternating VB EM it-
eration. The same phenomenon also affects RCG, but the effect is much stronger in VB EM. The
results suggest that especially for large data sets, it can be worthwhile to consider alternatives to
basic batch VB EM, such as on-line algorithms (Sato, 2001) or gradient-based methods.
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Figure 7: Final free energy value as a function of running time in the critical parameter range in the
MoG experiment with varying R. Both RCG and VB EM sometimes fail to converge to
the global optimum. Interestingly, there usually is no correlation between the quality of
the solution and convergence time.
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Figure 8: Median convergence times of 30 simulations of the MoG model on artificial data as a
function of the number of observations N with VB EM and the Riemannian conjugate
gradient (RCG) algorithms. The smaller marks indicate 25% and 75% quantiles.

The model x(t) = f(s(t),θθθf)+n(t)
s(t) = s(t−1)+g(s(t−1),θθθg)+m(t)

Key variables θθθSSS = (s(t)) ,θθθθθθ = (θθθf,θθθg,vm,vn)
The approximation q(θθθSSS,θθθθθθ) = q(θθθSSS)q(θθθθθθ), where q(θθθθθθ) is Gaussian with diagonal covari-

ance and q(θθθSSS) Gaussian with tridiagonal precision (see text)
The update algorithm Joint RCG updates for the means of θθθSSS,θθθf,θθθg, fixed point updates for

their covariances, VB EM updates for the rest

Table 2: Summary of the nonlinear state-space model

5. Case Study: Nonlinear State-Space Models

As the second case study, we consider the nonlinear state-space model (NSSM) introduced by
Valpola and Karhunen (2002). The model is specified by the generative model

x(t) = f(s(t),θθθf)+n(t), (17)
s(t) = s(t−1)+g(s(t−1),θθθg)+m(t), (18)
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where t is time, x(t) are the observations, and s(t) are the hidden states. The observation mapping
f and the dynamical mapping g are nonlinear and they are modelled with multi-layer perceptron
(MLP) networks whose weight matrices are included in θθθf and θθθg. The observation noise vector n
and process noise vector m are assumed Gaussian with zero mean and covariances diag(exp(2vn))
and diag(exp(2vm)). The latent states s(t) are commonly denoted by θθθSSS. The model parameters
include both the weights of the MLP networks and a number of hyperparameters. The posterior
approximation of these parameters is a Gaussian with a diagonal covariance matrix. The posterior
approximation of the states q(θθθSSS|ξξξSSS) is a Gaussian Markov random field with a correlation between
the corresponding components of subsequent state vectors s j(t) and s j(t− 1), as in Equation (13).
This is a realistic minimum assumption for modelling the dependence of the state vectors s(t) and
s(t− 1) (Valpola and Karhunen, 2002). Omitted details of the model are presented in Appendix C
and a summary is given in Table 2.

Because of the nonlinearities the model is not in the conjugate exponential family, and the
standard VB learning methods are only applicable to hyperparameters but not to the latent states
or weights of the MLPs. The free energy (1) can nevertheless be evaluated by linearising the MLP
networks f and g (Honkela and Valpola, 2005; Honkela et al., 2007). This allows evaluating the
gradient with respect to ξξξSSS, ξξξf, and ξξξg and using a gradient based optimiser to adapt the parameters.
Combining Equations (4) and (12), the Riemannian gradient for the mean elements is given by

∇̃µµµqF (ξξξ) = ΣΣΣq∇µµµqF (ξξξ),

whereµµµq is the mean of the variational approximation q(θθθ|ξξξ) andΣΣΣq is the corresponding covariance.
The covariance matrix of the model parameters is diagonal while the inverse covariance matrix of
the latent states s(t) is block-diagonal with tridiagonal blocks. This implies that all computations
with these can be done in linear time with respect to the number of the parameters. The covariances
are updated separately using a fixed-point update rule similar to (8) as described by Valpola and
Karhunen (2002). A complete derivation of the free energy of the model is presented in Appendix C.

5.1 Experiments

We applied the method for learning nonlinear state-space models presented above to real world
speech data. Experiments were conducted with different data sizes to study the performance dif-
ferences between the algorithms. The data consisted of 21 dimensional mel-frequency log power
speech spectra of continuous human speech. This is a detailed representation of speech signals
similar to those often used in speech recognition. A segment of 100 samples corresponds to approx-
imately 0.8 seconds of speech. The task is to learn a nonlinear dynamical model for this data.

To study the performance differences between the Riemannian conjugate gradient (RCG)method,
standard Riemannian gradient (RG) method, standard conjugate gradient (CG) method and the
heuristic algorithm from Valpola and Karhunen (2002), the algorithms were applied to different
sized parts of the speech data set. Unfortunately a reasonable comparison with a VB EM algo-
rithm was impossible because an extended-Kalman-filter-based VB EM algorithm failed with the
nonlinear model.

The size of the data subsets varied between 200 and 500 samples. A five-dimensional state-space
was used. The MLP networks for the observation and dynamical mappings had 20 hidden nodes.
Four different initialisations and two different segments of data of each size were used, resulting
in eight repetitions for each algorithm and data size. The results for different data segments of the
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same size were pooled together as the convergence times were in general very similar. An algorithm
was assumed to have converged when |F t −F t−1|< ε= (10−5N/80) for 5 consecutive iterations,
where F t is the free energy at iteration t and N is the size of the data set. Alternatively, the iteration
was stopped after 24 hours even if it had not converged.

TheMLP network is notoriously prone to local optima. Practically all our simulations converged
to local optima with different parameter estimates, but there were no statistically significant differ-
ences in the free energies corresponding to these optima attained by different algorithms (Wilcoxon
rank-sum test, 5 % significance level). In practice, the free energy values tend to have a very strong
correlation with predictive performance of the model (Honkela et al., 2007). There were still some
differences, and especially the RG algorithm with smaller data sizes often appeared to converge very
early to an extremely poor solution. These were filtered by removing results where the attained free
energy that was more than two RCG standard deviations worse than RCG average for the particular
data set. Thus all the used results are from runs converging to a roughly equally good solution. The
results of one run where the heuristic algorithm diverged were also discarded from the analysis.

The results can be seen in Figure 9. The plain CG and RG methods were clearly slower than
others and the maximum runtime was reached by most CG and some RG runs. RCG was clearly the
fastest algorithmwith the heuristic method of Valpola and Karhunen (2002) between these extremes.
The observed differences are, save for a few exceptions mostly with smaller data sets, statistically
significant (Wilcoxon rank-sum test, 5 % significance level).

As a more realistic example, a larger data set of 1000 samples was used to train a seven-
dimensional state-space model. In this experiment both MLP networks of the NSSM had 30 hidden
nodes. The convergence criterion was ε= 10−6 and the maximum runtime was 72 hours. The per-
formances of the RCG, RG, CG methods and the heuristic algorithm were compared. The results
can be seen in Figure 10. The results show the convergence for five different initialisations with
markers at the end showing when the convergence was reached. It should be noted that the scale of
the CPU time axis is logarithmic.

RCG clearly outperformed the other algorithms in this experiment as well. In particular, both
RG and CG hit the maximum runtime in every run, and especially CG was nowhere near conver-
gence at this time. RCG also outperformed the heuristic algorithm (Valpola and Karhunen, 2002)
by a factor of more than 10.

6. Case Study: Nonlinear Factor Analysis

The model x(t) = f(s(t),θθθf)+n(t)
s(t) =N (0,diag(exp(2vs)))

Key variables SSS= (s(t)) ,θθθ= (θθθf,vs,vn)
The approximation q(SSS,θθθ)= q(SSS)q(θθθ), where both q(θθθ) and q(SSS) are Gaussian with diagonal

covariances
The update algorithm Joint RCG updates for means of SSS,θθθf, fixed point update for their covari-

ances, VB EM updates for the rest

Table 3: Summary of the nonlinear factor analysis model

As the final case study, the RCG and RG methods were implemented as extensions to the VB
nonlinear factor analysis (NFA) method (Lappalainen and Honkela, 2000; Honkela and Valpola,
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Figure 9: Convergence speed of the Riemannian conjugate gradient (RCG), the Riemannian gradi-
ent (RG) and the conjugate gradient (CG) methods as well as the heuristic algorithm (Old)
with different data sizes of the speech data set and the nonlinear state-space model. The
lines show median times with 25 % and 75 % quantiles shown by the smaller marks. The
times were limited to at most 24 hours, which was reached by a number of simulations.

2005; Honkela et al., 2007). NFA models the mapping between latent factors s(t) and observations
x(t) with an MLP as in Equation (17):

x(t) = f(s(t),θθθf)+n(t).

Instead of the dynamical model of Equation (18), s(t) has independent Gaussian priors with a unit
covariance. As NFA can be seen as a special case of NSSM with no dynamic mapping, the im-
plementation is straightforward. The model is summarised in Table 3. Complete derivation of the
model and a learning algorithm based on conjugate gradients is presented by Honkela et al. (2007).
The generalisation for Riemannian gradient is straightforward as the Fisher information matrix is
diagonal.

The RCG, RG and CG methods were applied for learning an NFA model for parts of the speech
data set, a different part of which was also used in the NSSM experiments. As the NFA model
cannot capture the dynamics of speech, the experiment aimed at finding a nonlinear embedding of
speech on a lower dimensional manifold. To stimulate this, we drew a suitable subset of samples
randomly from the full data set of 7860 samples, excluding any dynamical relations in the data.
Silent segments were excluded from the data.

We tested each algorithm for data sets ranging in size from 300 to 1000 samples, running 10
simulations with different random initialisations for every setting. The results are shown in Figure
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Figure 10: Comparison of the performance of the Riemannian conjugate gradient (RCG), the Rie-
mannian gradient (RG), the conjugate gradient (CG) methods and the heuristic algorithm
with the full speech data set of 1000 samples using the nonlinear state-space model. The
free energy F is plotted against computation time using a logarithmic time scale. The
tick marks show when simulations either converged or were terminated after 72 hours.

11. RCG is again clearly superior to both RG and CG, but CG is now faster than RG. The observed
differences are statistically significant (Wilcoxon rank-sum test, 5 % significance level), except
between CG and RG for 300 samples.

7. Discussion

The proposed RCG algorithm combines two improvements over plain gradient optimisation: use
of Riemannian gradient and conjugate gradients. One interesting feature in the experimental re-
sults is the relative performance of the conjugate gradient and Riemannian gradient algorithms that
implement only one of these. Conjugate gradient is faster than Riemannian gradient for NFA, but
the opposite is true for NSSM and MoG. Especially the latter differences are quite significant and
consistent across several different data sets. One obvious difference between the models is that
for NFA the Fisher information matrix is diagonal while for NSSM and MoG this is not the case.
This suggests that the Riemannian gradient approach may be the most useful when the metric is
more complex, although more careful analysis would be needed to properly understand the effects
of different improvements.
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Figure 11: Convergence speed of the Riemannian conjugate gradient (RCG), the Riemannian gra-
dient (RG) and the conjugate gradient (CG) methods with different data sizes of the
speech dimensionality reduction data set with the nonlinear factor analysis model. The
lines show median times with 25 % and 75 % quantiles shown by the smaller marks.

As illustrated by the MoG example, the RCG algorithm can also be applied to conjugate-
exponential models to replace the more common VB EM algorithm. In practice, simpler and more
straightforward EM acceleration methods based on, for example, pattern search or adaptive over-
relaxation (see, e.g., Honkela et al., 2003; Salakhutdinov and Roweis, 2003) may still provide com-
parable or better results with less human effort. These methods are only applicable when EM itself
is applicable, though.

The experiments in this paper show that using even a greatly simplified variant of the Rieman-
nian conjugate gradient method for some variables is enough to acquire a large speedup. Consid-
ering univariate Gaussian distributions, the regular gradient is prone to overemphasise changes to
model variables with small posterior variance and underemphasise variables with large posterior
variance, as seen from Equations (9)–(11). The posterior variance of latent variables is often much
larger than the posterior variance of model parameters and the Riemannian gradient takes this into
account in a very natural manner.

The Riemannian conjugate gradient method differs from Euclidean superlinear optimisation
methods such as quasi-Newton methods in that it uses higher-order information of the geometry of
the parameter space, but not of the function being optimised. These are essentially two independent
avenues for improvement: it would be possible, although complicated, to derive a Riemannian
quasi-Newton method. Our experiments clearly show that in these problems, a proper model of the

3256



RIEMANNIAN CONJUGATE GRADIENT FOR VB

geometry appears significantly more important than using higher-order information of the objective
function.

In this paper, we have presented a Riemannian conjugate gradient learning algorithm for fixed-
form variational Bayes. The RCG algorithm provides an efficient method for VB learning in models
that do not belong to the conjugate-exponential family as required by the standard variational EM
algorithm. For suitably structured approximations, the computational overhead from using Rieman-
nian gradients instead of conventional gradients is negligible. In practical examples, the Riemannian
gradient approach provided several orders of magnitude speedups over conventional gradient algo-
rithms, thus making VB learning of these models practical on a much larger scale.

MATLAB code for all the models used in the case studies is available at http://www.cis.
hut.fi/projects/bayes/software/ncg/.
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Appendix A. Convergence of the Riemannian Conjugate Gradient Algorithm

The Riemannian conjugate gradient algorithm has similar superlinear convergence properties to the
Euclidean space conjugate gradient algorithm. Assuming the objective F (ξξξ) has continuous third
order derivatives and that there exist m> 0,M such that the Hessian H(ξξξ) satisfies

mxTx≤ xTH(ξξξ)x≤MxTx

for all ξξξ and x, the error decreases quadratically over N steps in an N-dimensional problem. Thus,
denoting the optimum by ααα and the iterates by ξξξi, we have (Edelman et al., 1998; Cohen, 1972)

||ααα−ξξξi+N ||≤C||ααα−ξξξi||2 (19)

in some neighbourhood of ααα.
We now show that the approximations in the RCG algorithm, namely ignoring the parallel trans-

ports and performing line searches along straight lines instead of geodesics, do not effect the con-
vergence rate of Equation (19).

Theorem 1 Assuming the objective F (ξξξ) has bounded derivatives for up to third order and that
the Fisher information G(ξξξ) is smooth in a neighbourhood of the solution, the RCG algorithm
performing a line search along a straight line in the direction

pk =−g̃k+βpk−1,

where g̃k is the Riemannian gradient and

β=
〈g̃k, g̃k− g̃k−1〉k
||g̃k−1||2k−1
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to find the sequence of iterates ξξξk shares the same convergence property of Equation (19) in some
ε-neighbourhood of the solution as the Riemannian conjugate gradient algorithm performing a line
search along a geodesic in the direction

p∗k =−g̃∗k+β∗τp∗k−1,

where g̃k is the Riemannian gradient, τp∗k−1 is the vector p∗k−1 after parallel transport to the starting
point of the new search and

β∗ =
〈g̃∗k , g̃∗k− τg̃∗k−1〉k∗
||g̃∗k−1||2(k−1)∗

,

where 〈·, ·〉k∗ is the inner product at ξξξ∗k , to find the sequence of iterates ξξξ∗k .

Proof Let us assume that the two algorithms are started at ξξξk = ξξξ∗k and ||ξξξk−ααα||< ε for some ε> 0.
We show by induction on i that pi−1 = p∗i−1+O(ε2) and ξξξi = ξξξ∗i +O(ε2) for i≥ k which is sufficient
to prove the theorem.

The base case is trivial as ξξξk = ξξξ∗k and pk−1 = p∗k−1 = 0 at the start of the algorithm.
Assume now that the claim is valid for i = k, . . . ,K, and let us prove it for i = K+ 1. From

Edelman et al. (1998) we know that

ξξξ(ε) = ξξξ(0)+ εΔ/||Δ||+O(ε3),

τg̃(ε) = g̃+O(ε2),

where ξξξ(ε) is a geodesic in direction Δ, τg̃(ε) is the parallel transport of g̃ to ξξξ(ε). The norms of g̃
and p are also of the order O(ε).

The assumption ξξξK = ξξξ∗K +O(ε2) implies that the gradients evaluated at these points satisfy
g̃K = g̃∗K+O(ε2). Furthermore,

〈x,y〉K∗ = xTG(ξξξ∗K)y = xT (G(ξξξK) + O(ε2))y = 〈x,y〉K + O(ε2||x||K||y||K).

Using the above asymptotics,

β∗ =
〈g̃∗K , g̃∗K− τg̃∗K−1〉K∗

||g̃∗K−1||2(K−1)∗
=

〈g̃K+O(ε2), g̃K− g̃K−1+O(ε2)〉K∗

||g̃K−1+O(ε2)||2(K−1)∗

= (1+O(ε))
〈g̃K, g̃K− g̃K−1〉K∗ +O(ε3)

||g̃K−1||2(K−1)∗
= (1+O(ε))

〈g̃K, g̃K− g̃K−1〉K+O(ε3)
||g̃K−1||2(K−1) +O(ε3)

= (1+O(ε))

(

〈g̃K , g̃K− g̃K−1〉K
||g̃K−1||2(K−1)

+O(ε)

)

= β+O(ε).

Similarly we can find the difference in the search direction,

p∗K =−g̃∗K+β∗τp∗K−1 =−g̃K+β∗p∗K−1+O(ε2) =−g̃K+βpK−1+O(ε2)

= pK+O(ε2),

which completes the first part of the induction step.
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The corresponding step lengths, t∗ and t, also differ by O(ε). To show this, let us use the Taylor
expansion of f about the optimum ααα:

F (ξξξ) = F (ααα)+
1
2
(ξξξ−ααα)TH(ααα)(ξξξ−ααα)+O(ε3),

∇F (ξξξ) = H(ααα)(ξξξ−ααα)+O(ε2).

The line search finds the zero of pK ·∇F (ξξξ) along the line ξξξ= ξξξK−1+ tpK , which yields

pTKH(ααα)
[

(ξξξK−1+ tpK−ααα)+O(ε2)
]

= 0,

which can be solved to obtain

t =−
pTKH(ααα)(ξξξK−1−ααα)

pTKH(ααα)pK
+O(ε),

where we have used the fact that pTKH(ααα)pK ≥ m||pK ||2.
Correspondingly, the exact algorithm finds the zero along the geodesic from ξξξ∗K−1 in the direc-

tion p∗K of (τp∗K)T∇F (ξξξ)

(τp∗K(t∗||p∗K ||))TH(ααα)[ξξξ∗K−1(t∗||p∗K ||)−ααα+O(ε2)] =

(p∗K+O(ε2))TH(ααα)[ξξξ∗K−1+ t∗p∗K−ααα+O(ε2)]+O(ε3) = 0,

where ξξξK−1(t∗||p∗K ||) is the geodesic starting from ξξξ∗K−1 in the direction p∗K , and τp∗K(t∗||p∗K ||) is the
parallel transport of p∗K along this geodesic. The solution of this equation yields

t∗ =−
(p∗K+O(ε2))TH(ααα)[ξξξ∗K−1−ααα+O(ε3)]

(p∗K+O(ε2))TH(ααα)p∗K
+O(ε)

=−
(pK+O(ε2))TH(ααα)[ξξξK−1−ααα+O(ε2)]

(pK+O(ε2))TH(ααα)[pK+O(ε2)]
+O(ε)

=−(1+O(ε))
pTKH(ααα)[ξξξK−1−ααα]+O(ε3)

pTKH(ααα)pK
+O(ε) = t+O(ε).

Now

ξξξ∗K = ξξξ∗K−1(t∗||p∗K ||) = ξξξ∗K−1+ t∗p∗K+O(ε3)

= ξξξK−1+O(ε2)+ [t+O(ε)][pK+O(ε2)]+O(ε3) = ξξξK+O(ε2),

which completes the proof.

Appendix B. Derivations of the Mixture-of-Gaussians Model

In this section we present details of the variational MoG model, including necessary EM updates,
the free energy and the metric tensor for the RCG algorithm.
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B.1 VB EM for the Mixture-of-Gaussians Model

This section is completely based on the variational treatment of the MoG model of Attias (2000)
and Bishop (2006). Because of this, some details of the derivation of the VB EM algorithm for the
MoG model will be omitted here and we will concentrate only on the most important results.

In expressing the update rules for the distribution parameters in Equations (14), (15) and (16),
we will find the following definitions useful:

Nk =
N

∑
n=1

rnk,

xk =
1
Nk

N

∑
n=1

rnkxn,

Sk =
1
Nk

N

∑
n=1

rnk(xn−xk)(xn−xk)T ,

log Λ̃k =
D

∑
i=1

ψ

(

νk+1− i
2

)

+D log2+ log |Wk|,

log π̃k = ψ(αk)−ψ

(

K

∑
k′=1

αk′

)

,

where D is the dimensionality of the data and ψ(·) is the digamma function which is defined as the
derivative of the logarithmic gamma function, that is

ψ(x) =
d
dx
logΓ(x).

Using these definitions, the parameters rnk of the approximate posterior over latent variables
q(Z) which are updated in the E-step are given by

rnk =
ρnk

∑K
l=1ρnl

,

where

ρnk = π̃kΛ̃
1/2
k exp

(

−
D
2βk

−
νk
2
(xn−mk)

TWk(xn−mk)

)

.

The parameters rnk are called responsibilities because they represent the responsibility the kth com-
ponent takes in explaining the nth observation. The responsibilities can be arranged into a matrix
R= (rnk) and will have to satisfy the following conditions

0≤ rnk ≤ 1, (20)
K

∑
k=1

rnk = 1. (21)
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The parameter update equations for the M-step are then given by

αk = α0+Nk, (22)
βk = β0+Nk, (23)
νk = ν0+Nk+1, (24)

mk =
1

β0+Nk
(β0m0+Nkxk),

W−1
k =W−1

0 +NkSk+
β0Nk
β0+Nk

(xk−m0)(xk−m0)T . (25)

B.2 The Free Energy

The free energy of Equation (1) is

F =∑
Z

∫
πππ

∫
µµµ

∫
ΛΛΛ
q(Z,πππ,µµµ,ΛΛΛ) log q(Z,πππ,µµµ,ΛΛΛ)

p(X,Z,πππ,µµµ,ΛΛΛ)dπ
ππdµµµdΛΛΛ

= Eq {logq(Z,πππ,µµµ,ΛΛΛ)}−Eq {log p(X,Z,πππ,µµµ,ΛΛΛ)}
= Eq {logq(Z)}+Eq {logq(πππ)}+Eq {logq(µµµ,ΛΛΛ)}
−Eq {log p(X|Z,µµµ,ΛΛΛ)}−Eq {log p(Z|πππ)}
−Eq {log p(πππ)}−Eq {log p(µµµ,ΛΛΛ)} . (26)

These expectations can be evaluated to give (Bishop, 2006)

Eq {logq(Z)}=
N

∑
n=1

K

∑
k=1

rnk logrnk,

Eq {logq(πππ)}=
K

∑
k=1

(αk−1) log π̃k+ logC(ααα),

Eq {logq(µµµ,ΛΛΛ)}=
K

∑
k=1

{

1
2
log Λ̃k+

D
2
log

βk
2π

−
D
2
−Hq{ΛΛΛk}

}

,

Eq {log p(Z|πππ)}=
N

∑
n=1

K

∑
k=1

rnk log π̃k,

Eq {log p(πππ)}= logC(ααα0)+(α0−1)
K

∑
k=1
log π̃k,

Eq {log p(X|Z,µµµ,ΛΛΛ)}=
1
2

K

∑
k=1

Nk
{

log Λ̃k−
D
βk

−νkTr(SkWk)−νk(xk−mk)
TWk(xk−mk)−D log2π

}

,

Eq {log p(µµµ,ΛΛΛ)}=
1
2

K

∑
k=1

{

D log
β0
2π

+ log Λ̃k−
Dβ0
βk

−β0νk(mk−m0)TWk(mk−m0)
}

+K logB(W0,ν0)+
ν0−D−1

2

K

∑
k=1
log Λ̃k−

1
2

K

∑
k=1

νkTr(W−1
0 Wk),
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where Tr(A) denotes the trace of matrix A and Hq{ΛΛΛk} is the entropy of the distribution q(ΛΛΛk). The
functionsC and B are defined by the following two equations:

C(ααα) = Γ

(

K

∑
k=1

αk

)(

K

∏
k=1

Γ(αk)

)−1

,

B(W,ν) = |W|−ν/2
(

2νD/2πD(D−1)/4
D

∏
i=1

Γ

(

ν+1− i
2

)

)−1

.

B.3 Riemannian Conjugate Gradient for the Mixture-of-Gaussians Model

To be able to compare the VB EM and RCG algorithms, we assume that the approximate posterior
distribution q(Z,πππ,µµµ,ΛΛΛ) takes the same functional form as in the case of the VB EM algorithm.
Thus, the fixed form posterior distributions are given by Equations (14), (15) and (16) and the free
energy which is to be minimised by the RCG algorithm is given Equation (26). In this work, we
will only be optimising the responsibilities rnk and the means mk using gradient-based methods.
All other model parameters, namely the parameters αk of the Dirichlet distribution, the parameters
βk controlling the covariance of the component means as well as the parametersWk and νk of the
Wishart distribution, are updated using the VB EM update Equations (22), (23), (24) and (25).

There are a few things that have to be taken into account when deriving gradient-based algo-
rithms for the MoG model. Firstly, the responsibilities have to satisfy the constraints given by
Equations (20) and (21). This can be enforced by using the softmax parametrisation

rnk =
eγnk

∑K
l=1 eγnl

. (27)

It can be easily seen that by using this parametrisation the responsibilities are always positive and
∑K
k=1 rnk = 1. As a results it holds that 0≤ rnk ≤ 1 and we can conduct unconstrained optimisation
in the γγγ space.

Secondly, if we set the responsibilities rnk,n= 1 . . .N,k = 1 . . .K−1 to some values, the values
of rnK ,n = 1 . . .N are given by condition (21), that is rnK = 1−∑K−1

k=1 rnk. As a result, the number
of degrees of freedom in the responsibilities of the model is not the number of responsibilities
NK but instead N(K− 1). When we are using the parametrisation (27), this means that we can
regard the parameters γnK as constants and only optimise the free energy with respect to parameters
γnk,n= 1 . . .N,k = 1 . . .K−1. This is especially important when using the Riemannian gradient.

The gradient of the free energy (26) with respect tomk is given by

∇mk F = νkWk(Nk(mk−xk)+β0(mk−m0))

and the derivative with respect to γnk is given by

∂F
∂γnk

= Enk− rnkFn,

where

Enk = rnk
(

logrnk− log π̃k−
1
2

(

log Λ̃k−
D
βk

−D log2π−νk(xn−mk)
TWk(xn−mk)

))
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and

Fn =
K

∑
k=1

Enk.

We can update the responsibilities rnk without having to evaluate and store the parameters γnk
by noting that

r′nk =
eγnk+Δγnk

∑K
l=1 eγnl+Δγnl

=
∑K
l=1 eγnl

∑K
l=1 eγnl+Δγnl

eγnk

∑K
l=1 eγnl

eΔγnk = cnrnkeΔγnk ,

where r′nk is the new responsibility, Δγnk is the change in parameter γnk determined by a line search
in the search direction and cn is a normalising constant which makes sure that ∑K

k=1 r′nk = 1. Thus
cn can also be expressed in the form cn = (∑K

k=1 rnkeΔγnk)−1 and we can update the responsibilities
using the formula

r′nk =
rnkeΔγnk

∑K
l=1 rnleΔγnl

.

In order to use the Riemannian gradient, we need to know the Riemannian metric tensor G
of the parameter space (m,γγγ) which is given by Equation (3). The resulting matrix is a block
diagonal matrix with blocks Ak = βkνkWk for each mk and blocks Bn = −rTn rn + diag(rn) for
each sample, where rn is the nth row of the responsibility matrix R except for element rnK , that
is rn = [rn1 · · ·rnK−1]. diag(a) is used here to denote a square matrix which has the elements of
vector a on its main diagonal. This block-diagonal structure of the matrix makes the Riemannian
vector operations easy and efficient to implement.

Since the EM updates of parameters are computationally efficient compared to the evaluation of
the objective function, it is more efficient to do them also within the line search of the RCG update
rather than as a separate step as in Algorithm 1.

Appendix C. Derivation of the Nonlinear State-Space Model

In this section we review the details of the nonlinear state-space model of Valpola and Karhunen
(2002).

C.1 Probability Model and Priors

The nonlinear state-space model of Valpola and Karhunen (2002) can be described with these two
equations:

s(t)∼N (s(t−1)+g(s(t−1),θθθg),diag(exp(2vm))), (28)
x(t)∼N (f(s(t),θθθf),diag(exp(2vn))), (29)

where N (µµµ,ΣΣΣ) denotes a multivariate Gaussian distribution with mean µµµ and covariance ΣΣΣ. The
nonlinear mappings are modelled with MLP networks:

g(s(t−1),θθθg) = D tanh[Cs(t−1)+ c]+d,
f(s(t),θθθf) = B tanh[As(t)+a]+b.
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The model for data X is thus described using unobserved variables

θθθ= (s(t),A,a,B,b,C,c,D,d,vm,vn) .

The priors of the variables are specified to fix the scaling ambiguity between s and A and to
have a hierarchical prior allowing automatic relevance determination (ARD) (Bishop, 2006) like
decisions to inactivate parts of the model:

Ai j ∼N (0,1),
Φi j ∼N (0,exp(2vΦ j)),

φi ∼N (mφ,exp(2vφ)),
vνi ∼N (mvν ,exp(2vvν)),
vΦ j ∼N (mvΦ ,exp(2vvΦ)),

where ν ∈ {m,n}, φ ∈ {a,b,c,d} and Φ ∈ {B,C,D}. All the hyperparameters have vague priors
N (0,1002).

C.2 Posterior Approximation

In order to allow efficient learning, the posterior approximation q(θθθ) = N (θθθ|µµµθθθ,ΛΛΛ−1
θθθ ) is restricted

to be Gaussian with mean µµµθθθ and precision (inverse covariance) ΛΛΛθθθ. Furthermore, the precision
of the approximation is restricted to be almost diagonal. The only allowed off-diagonal terms are
in the approximation of s(t) which includes a correlation between si(t) and si(t + 1). Different
components of the state vector s(t) are still assumed independent, and the posterior approximation
of the states is a product of independent chains.

Following the theory of Gaussian Markov random fields, this assumption translates to a tridiag-
onal precision (inverse covariance) matrix with non-zero elements only on the main diagonal and
on the diagonal corresponding to the assumed links. The corresponding covariance matrix has full
blocks for each component of the state.

C.3 The Free Energy

In order to derive the value of the free energy (1), we note that

F (q(θθθ)) = Eq(θθθ) {logq(θθθ)}+Eq(θθθ) {− log p(X,θθθ)} .

The first term is the negative entropy of a Gaussian

Eq(θθθ) {logq(θθθ)}=−
N
2
log(2πe)−

1
2
logdetΛΛΛθθθ,

where N is the dimensionality of θθθ. The second term splits to a sum of a number of terms according
to Equations (28)–(29).

Eq(θθθ) {− log p(X,θθθ)}=∑
t,i
Eq(θθθ) {− log p(xi(t)|θθθ)} +∑

γ∈θθθ
Eq(θθθ)

{

− log p(γ|θθθ\γ)
}

,

where θθθ\γ denotes the parameters γ depends on.
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The terms in the sum are expectations for parameters γ following a normal model N (m,e2v).
The negative logarithm of the pdf is

− log p(γ|θθθ\γ) =
1
2
log(2π)+ v+

1
2
(γ−m)2 exp(−2v).

Assuming independent Gaussian approximations2 for γ, m and v with means γ̄, m̄, v̄ and variances
γ̃, m̃, ṽ, respectively, the expectation is

Eq(θθθ)
{

− log p(γ|θθθ\γ)
}

=
1
2
log(2π)+ v̄+

1
2
[(γ̄− m̄)2+ γ̃+ m̃]exp(2ṽ−2v̄).

For the observations xi(t) we obtain similarly

Eq(θθθ) {− log p(xi(t)|θθθ)}=
1
2
log(2π)+ v̄ni +

1
2
[(x− f̄i(t))2+ f̃i(t)]exp(2ṽni −2v̄ni),

where the means f̄i(t) and variances f̃i(t) of f(s(t)) are evaluated as explained in Honkela and
Valpola (2005); Honkela et al. (2007).

For the states si(t) we can similarly derive (Valpola and Karhunen, 2002)

Eq(θθθ)
{

− log p(si(t)|θθθ\s(t))
}

=
1
2
log(2π)+ v̄mi

+
1
2

[

(s̄i(t)− ḡi(t))2+ s̃i(t)+ g̃i(t)−2s̆i(t, t−1)
gi(t)

si(t−1)
s̃i(t−1)

]

exp(2ṽmi −2v̄mi),

where ḡi(t) and g̃i(t) are the mean and variance of g(s(t−1)) evaluated similarly as those of f(s(t)),
and s̆i(t, t − 1) is the linear correlation between si(t − 1) and si(t) as explained in Valpola and
Karhunen (2002). The partial derivative gi(t)

si(t−1) is evaluated naturally as a by-product of evalua-
tion of g̃i(t) as explained previously (Honkela and Valpola, 2005; Honkela et al., 2007).

C.4 Update Rules

The hyperparameters vΦ j ,mφ,vφ,vνi ,mvν ,vvν ,vΦ j ,mvΦ ,vvΦ are updated using a VB EM type scheme
to find a global optimum, given current values of the other parameters (Lappalainen and Miskin,
2000). The variances of the states and the weights of the MLP networks are updated using the
fixed-point rule and the means by the RCG algorithm, as described in Section 5.
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Abstract
A non-parametric hierarchical Bayesian framework is developed for designing a classifier, based
on a mixture of simple (linear) classifiers. Each simple classifier is termed a local “expert”, and the
number of experts and their construction are manifested via a Dirichlet process formulation. The
simple form of the “experts” allows analytical handling of incomplete data. The model is extended
to allow simultaneous design of classifiers on multiple data sets, termed multi-task learning, with
this also performed non-parametrically via the Dirichlet process. Fast inference is performed using
variational Bayesian (VB) analysis, and example results are presented for several data sets. We also
perform inference via Gibbs sampling, to which we compare the VB results.
Keywords: classification, incomplete data, expert, Dirichlet process, variational Bayesian, multi-
task learning

1. Introduction

In many applications one must deal with data that have been collected incompletely. For example,
in censuses and surveys, some participants may not respond to certain questions (Rubin, 1987); in
email spam filtering, server information may be unavailable for emails from external sources (Dick
et al., 2008); in medical studies, measurements on some subjects may be partially lost at certain
stages of the treatment (Ibrahim, 1990); in DNA analysis, gene-expression microarrays may be
incomplete due to insufficient resolution, image corruption, or simply dust or scratches on the slide
(Wang et al., 2006); in sensing applications, a subset of sensors may be absent or fail to operate at
certain regions (Williams and Carin, 2005). Unlike in semi-supervised learning (Ando and Zhang,
2005) where missing labels (responses) must be addressed, features (inputs) are partially missing in
the aforementioned incomplete-data problems. Since most data analysis procedures (for example,
regression and classification) are designed for complete data, and cannot be directly applied to
incomplete data, the appropriate handling of missing data is challenging.

Traditionally, data are often “completed” by ad hoc editing, such as case deletion and sin-
gle imputation, where feature vectors with missing values are simply discarded or completed with
specific values in the initial stage of analysis, before the main inference (for example, mean im-
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putation and regression imputation see Schafer and Graham, 2002). Although analysis procedures
designed for complete data become applicable after these edits, shortcomings are clear. For case
deletion, discarding information is generally inefficient, especially when data are scarce. Secondly,
the remaining complete data may be statistically unrepresentative. More importantly, even if the
incomplete-data problem is eliminated by ignoring data with missing features in the training phase,
it is still inevitable in the test stage since test data cannot be ignored simply because a portion of
features are missing. For single imputation, the main concern is that the uncertainty of the missing
features is ignored by imputing fixed values.

The work of Rubin (1976) developed a theoretical framework for incomplete-data problems,
where widely-cited terminology for missing patterns was first defined. It was proven that ignoring
the missing mechanism is appropriate (Rubin, 1976) under the missing at random (MAR) assump-
tion, meaning that themissing mechanism is conditionally independent of the missing features given
the observed data. As elaborated later, given the MAR assumption (Dick et al., 2008; Ibrahim, 1990;
Williams and Carin, 2005), incomplete data can generally be handled by full maximum likelihood
and Bayesian approaches; however, when themissing mechanism does depend on the missing values
(missing not at random or MNAR), a problem-specific model is necessary to describe the missing
mechanism, and no general approach exists. In this paper, we address missing features under the
MAR assumption. Previous work in this setting may be placed into two groups, depending on
whether the missing data are handled before algorithm learning or within the algorithm.

For the former, an extra step is required to estimate p(xm|xo), conditional distributions of miss-
ing values given observed ones, with this step distinct from the main inference algorithm. After
p(xm|xo) is learned, various imputation methods may be performed. As a Monte Carlo approach,
Bayesian multiple imputation (MI) (Rubin, 1987) is widely used, where multiple (M > 1) samples
from p(xm|xo) are imputed to form M “complete” data sets, with the complete-data algorithm ap-
plied on each, and results of those imputed data sets combined to yield a final result. The MI method
“completes” data sets so that algorithms designed for complete data become applicable. Further-
more, Rubin (1987) showed that MI does not require as many samples as Monte Carlo methods
usually do. With a mild Gaussian mixture model (GMM) assumption for the joint distribution of
observed and missing data, Williams et al. (2007) managed to analytically integrate out missing
values over p(xm|xo) and performed essentially infinite imputations. Since explicit imputations
are avoided, this method is more efficient than the MI method, as suggested by empirical results
(Williams et al., 2007). Other examples of these two-step methods include Williams and Carin
(2005), Smola et al. (2005) and Shivaswamy et al. (2006).

The other class of methods explicitly addresses missing values during the model-learning pro-
cedure. The work proposed by Chechik et al. (2008) represents a special case, in which no model
is assumed for structurally absent values; the margin for the support vector machine (SVM) is
re-scaled according to the observed features for each instance. Empirical results (Chechik et al.,
2008) show that this procedure is comparable to several single-imputation methods when values
are missing at random. Another recent work (Dick et al., 2008) handles the missing features inside
the procedure of learning a support vector machine (SVM), without constraining the distribution of
missing features to any specific class. The main concern is that this method can only handle miss-
ing features in the training data; however, in many applications one cannot control whether missing
values occur in the training or test data.

A widely employed approach for handling missing values within the algorithm involves maxi-
mum likelihood (ML) estimation via expectation maximization (EM) (Dempster et al., 1977). Be-
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sides the latent variables (e.g., mixture component indicators), the missing features are also inte-
grated out in the E-step so that the likelihood is maximized with respect to model parameters in the
M-step. The main difficulty is that the integral in the E-step is analytically tractable only when an
assumption is made on the distribution of the missing features. For example, the intractable integral
is avoided by requiring the features to be discrete (Ibrahim, 1990), or assuming a Gaussian mixture
model (GMM) for the features (Ghahramani and Jordan, 1994; Liao et al., 2007). The discreteness
requirement is often too restrictive, while the GMM assumption is mild since it is well known that
a GMM can approximate arbitrary continuous distributions.

In Liao et al. (2007) the authors proposed a quadratically gated mixture of experts (QGME)
where the GMM is used to form the gating network, statistically partitioning the feature space into
quadratic subregions. In each subregion, one linear classifier works as a local “expert”. As a mixture
of experts (Jacobs et al., 1991), the QGME is capable of addressing a classification problem with a
nonlinear decision boundary in terms of multiple local experts; the simple form of this model makes
it straightforward to handle incomplete data without completing kernel functions (Graepel, 2002;
Williams and Carin, 2005). However, as in many mixture-of-expert models (Jacobs et al., 1991;
Waterhouse and Robinson, 1994; Xu et al., 1995), the number of local experts in the QGME must
be specified initially, and thus a model-selection stage is in general necessary. Moreover, since the
expectation-maximization method renders a point (single) solution that maximizes the likelihood,
over-fitting may occur when data are scarce relative to the model complexity.

In this paper, we first extend the finite QGME (Liao et al., 2007) to an infinite QGME (iQGME),
with theoretically an infinite number of experts realized via a Dirichlet process (DP) (Ferguson,
1973) prior; this yields a fully Bayesian solution, rather than a point estimate. In this manner model
selection is avoided and the uncertainty on the number of experts is captured in the posterior density
function.

The Dirichlet process (Ferguson, 1973) has been an active topic in many applications since the
middle 1990s, for example, density estimation (Escobar and West, 1995; MacEachern and Müller,
1998; Dunson et al., 2007) and regression/curve fitting (Müller et al., 1996; Rasmussen and Ghahra-
mani, 2002; Meeds and Osindero, 2006; Shahbaba and Neal, 2009; Rodrı́guez et al., 2009; Hannah
et al., 2010). The latter group is relevant to classification problems of interest in this paper. The
work in Müller et al. (1996) jointly modeled inputs and responses as a Dirichlet process mixture
of multivariate normals, while Rodrı́guez et al. (2009) extended this model to simultaneously esti-
mate multiple curves using dependent DP. In Rasmussen and Ghahramani (2002) and Meeds and
Osindero (2006) two approaches to constructing infinite mixtures of Gaussian Process (GP) experts
were proposed. The difference is that Meeds and Osindero (2006) specified the gating network
using a multivariate Gaussian mixture instead of a (fixed) input-dependent Dirichlet Process. In
Shahbaba and Neal (2009) another form of infinite mixtures of experts was proposed, where experts
are specified by a multinomial logit (MNL) model (also called softmax) and the gating network is
Gaussian mixture model with independent covariates. Further, Hannah et al. (2010) generalized
existing DP-based nonparametric regression models to accommodate different types of covariates
and responses, and further gave theoretical guarantees for this class of models.

Our focus in this paper is on developing classification models that handle incomplete
inputs/covariates efficiently using Dirichlet process. Some of the above Dirichlet process regres-
sion models are potentially capable of handling incomplete inputs/features; however, none of them
actually deal with such problems. In Müller et al. (1996), although the joint multivariate normal
assumption over inputs and responses endow this approach with the potential of handling missing
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features and/or missing responses naturally, a good estimation for the joint distribution does not
guarantee a good estimation for classification boundaries. Other than a full joint Gaussian distri-
bution assumption, explicit classifiers were used to model the conditional distribution of responses
given covariates in the models proposed in Meeds and Osindero (2006) and Shahbaba and Neal
(2009). These two models are highly related to the iQGME proposed here. The independence
assumption of covariates in Shahbaba and Neal (2009) leads to efficient computation but is not ap-
pealing for handling missing features. With Gaussian process experts (Meeds and Osindero, 2006),
the inference for missing features is not analytical for fast inference algorithms such as variational
Bayesian (Beal, 2003) and EM, and the computation could be prohibitive for large data sets. The
iQGME seeks a balance between the ease of inference, computational burden and the ability of han-
dling missing features. For high-dimensional data sets, we develop a variant of our model based on
mixtures of factor analyzers (MFA) (Ghahramani and Hinton, 1996; Ghahramani and Beal, 2000),
where a low-rank assumption is made for the covariance matrices of high-dimensional inputs in
each cluster.

In addition to challenges with incomplete data, one must often address an insufficient quantity of
labeled data. InWilliams et al. (2007) the authors employed semi-supervised learning (Zhu, 2005) to
address this challenge, using the contextual information in the unlabeled data to augment the limited
labeled data, all done in the presence of missing/incomplete data. Another form of context one may
employ to address limited labeled data is multi-task learning (MTL) (Caruana, 1997; Ando and
Zhang, 2005), which allows the learning of multiple tasks simultaneously to improve generalization
performance. The work of Caruana (1997) provided an overview of MTL and demonstrated it
on multiple problems. In recent research, a hierarchical statistical structure has been favored for
such models, where information is transferred via a common prior within a hierarchical Bayesian
model (Yu et al., 2003; Zhang et al., 2006). Specifically, information may be transferred among
related tasks (Xue et al., 2007) when the Dirichlet process (DP) (Ferguson, 1973) is introduced as a
common prior. To the best of our knowledge, there is no previous example of addressing incomplete
data in a multi-task setting, this problem constituting an important aspect of this paper.

The main contributions of this paper may be summarized as follows. The problem of missing
data in classifier design is addressed by extending QGME (Liao et al., 2007) to a fully Bayesian
setting, with the number of local experts inferred automatically via a DP prior. The algorithm is fur-
ther extended to a multi-task setting, again using a non-parametric Bayesian model, simultaneously
learning J missing-data classification problems, with appropriate sharing (could be global or local).
Throughout, efficient inference is implemented via the variational Bayesian (VB) method (Beal,
2003). To quantify the accuracy of the VB results, we also perform comparative studies based on
Gibbs sampling.

The remainder of the paper is organized as follows. In Section 2 we extend the finite QGME
(Liao et al., 2007) to an infinite QGME via a Dirichlet process prior. The incomplete-data problem is
defined and discussed in Section 3. Extension to the multi-task learning case is considered in Section
4, and variational Bayesian inference is developed in Section 5. Experimental results for synthetic
data and multiple real data sets are presented in Section 6, followed in Section 7 by conclusions and
a discussions of future research directions.
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2. Infinite Quadratically Gated Mixture of Experts

In this section, we first provide a brief review of the quadratically gated mixture of experts (QGME)
(Liao et al., 2007) and Dirichlet process (DP) (Ferguson, 1973), and then extend the number of
experts to be infinite via DP.

2.1 Quadratically Gated Mixture of Experts

Consider a binary classification problem with real-valued P-dimensional column feature vectors
xi and corresponding class labels yi ∈ {1,−1}. We assume binary labels for simplicity, while the
proposed method may be directly extended to cases with more than two classes. Latent variables ti
are introduced as “soft labels” associated with yi, as in probit models (Albert and Chib, 1993), where
yi = 1 if ti > 0 and yi =−1 if ti ≤ 0. The finite quadratically gated mixture of experts (QGME) (Liao
et al., 2007) is defined as

(ti|zi = h) ∼ N (wT
h x

b
i ,1), (1)

(xi|zi = h) ∼ NP(µh,Λ
−1
h ), (2)

(zi|π) ∼
K

∑
h=1

πhδh, (3)

with ∑K
h=1πh = 1, and where δh is a point measure concentrated at h (with probability one, a draw

from δh will be h). The (P+ 1)×K matrix W has columns wh, where each wh are the weights
on a local linear classifier, and the xbi are feature vectors with an intercept, that is, xbi = [xTi ,1]T .
A total of K groups of wh are introduced to parameterize the K experts. With probability πh the
indicator for the ith data point satisfies zi = h, which means the hth local expert is selected, and xi
is distributed according to a P-variate Gaussian distribution with mean µh and precision Λh.

It can be seen that the QGME is highly related to the mixture of experts (ME) (Jacobs et al.,
1991) and the hierarchical mixture of experts (HME) (Jordan and Jacobs, 1994) if we write the
conditional distribution of labels as

p(yi|xi) =
K

∑
h=1

p(zi = h|xi)p(yi|zi = h,xi), (4)

where

p(yi|zi = h,xi) =
∫
tiyi>0

N (ti|wT
h x

b
i ,1)dti, (5)

p(zi = h|xi) =
πhNP(xi|µh,Λ

−1
h )

∑K
k=1πkNP(xi|µk,Λ

−1
k )

. (6)

From (4), as a special case of the ME, the QGME is capable of handling nonlinear problems with
linear experts characterized in (5). However, unlike other ME models, the QGME probabilistically
partitions the feature space through a mixture of K Gaussian distributions for xi as in (6). This
assumption on the distribution of xi is mild since it is well known that a Gaussian mixture model
(GMM) is general enough to approximate any continuous distribution. In the QGME, xi as well as
yi are treated as random variables (generative model) and we consider a joint probability p(yi,xi)
instead of a conditional probability p(yi|xi) for fixed xi as in most ME models (which are typically
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discriminative). Previous work on the comparison between discriminative and generative models
may be found in Ng and Jordan (2002) and Liang and Jordan (2008). In the QGME, the GMM
of the inputs xi plays two important roles: (i) as a gating network, while (ii) enabling analytic
incorporation of incomplete data during classifier inference (as discussed further below).

The QGME (Liao et al., 2007) is inferred via the expectation-maximization (EM)method, which
renders a point-estimate solution for an initially specified model (1)-(3), with a fixed number K of
local experts. Since learning the correct model requires model selection, and moreover in many
applications there may exist no such fixed “correct” model, in the work reported here we infer the
full posterior for a QGME model with the number of experts data-driven. The objective can be
achieved by imposing a nonparametric Dirichlet process (DP) prior.

2.2 Dirichlet Process

The Dirichlet process (DP) (Ferguson, 1973) is a random measure defined on measures of random
variables, denoted as DP (αG0), with a real scaling parameter α ≥ 0 and a base measure G0. As-
suming that a measure is drawn G∼DP (αG0), the base measure G0 reflects the prior expectation
of G and the scaling parameter α controls how much G is allowed to deviate from G0. In the limit
α→ ∞, G goes to G0; in the limit α→ 0, G reduces to a delta function at a random point in the
support of G0.

The stick-breaking construction (Sethuraman, 1994) provides an explicit form of a draw from a
DP prior. Specifically, it has been proven that a draw G may be constructed as

G=
∞

∑
h=1

πhδθ∗
h
, (7)

with 0≤ πh ≤ 1 and ∑∞
h=1πh = 1, and

πh =Vh
h−1

∏
l=1

(1−Vl), Vh
iid
∼ Be(1,α), θ∗

h
iid
∼ G0.

From (7), it is clear that G is discrete (with probability one) with an infinite set of weights πh
at atoms θ∗

h . Since the weights πh decrease stochastically with h, the summation in (7) may be
truncated with N terms, yielding an N-level truncated approximation to a draw from the Dirichlet
process (Ishwaran and James, 2001).

Assuming that underlying variables θi are drawn i.i.d. from G, the associated data χi ∼ F(θi)
will naturally cluster with θi taking distinct values θ∗

h , where the function F(θ) represents an arbi-
trary parametric model for the observed data, with hidden parameters θ. Therefore, the number of
clusters is automatically determined by the data and could be “infinite” in principle. Since θi take
distinct values θ∗

h with probabilities πh, this clustering is a statistical procedure instead of a hard
partition, and thus we only have a belief on the number of clusters, which is affected by the scaling
parameter α. As the value of α influences the prior belief on the clustering, a gamma hyper-prior is
usually employed on α.

2.3 Infinite QGME via DP

Consider a classification task with a training data set D = {(xi,yi) : i = 1, . . . ,n}, where xi ∈ RP

and yi ∈ {−1,1}. With soft labels ti introduced as in Section 2.1, the infinite QGME (iQGME)
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model is achieved via a DP prior imposed on the measure G of (µi,Λi,wi), the hidden variables
characterizing the density function of each data point (xi, ti). For simplicity, the same symbols are
used to denote parameters associated with each data point and the distinct values, with subscripts i
and h indexing data points and unique values, respectively:

(xi, ti) ∼ NP(xi|µi,Λ
−1
i )N (ti|wT

i x
b
i ,1),

(µi,Λi,wi)
iid
∼ G,

G ∼ DP (αG0), (8)

where the base measure G0 is factorized as the product of a normal-Wishart prior for (µh,Λh) and
a normal prior for wh, for the sake of conjugacy. As discussed in Section 2.2, data samples cluster
automatically, and the same mean µh, covariance matrixΛh and regression coefficients (expert)wh
are shared for a given cluster h. Using the stick-breaking construction, we elaborate (8) as follows
for i= 1, . . . ,n and h= 1, . . . ,∞:

Data generation:
(ti|zi = h) ∼ N (wT

h x
b
i ,1),

(xi|zi = h) ∼ NP(µh,Λ
−1
h ),

Drawing indicators:

zi ∼
∞

∑
h=1

πhδh, where πh =Vh∏
l<h

(1−Vl),

Vh ∼ Be(1,α),
Drawing parameters from G0 :

(µh,Λh) ∼ NP(µh|m0,u−10 Λ
−1
h )W (Λh|B0,ν0),

wh ∼ NP+1(ζ, [diag(λ)]−1), where λ= [λ1, . . . ,λP+1].

Furthermore, to achieve a more robust algorithm, we assign diffuse hyper-priors on several crucial
parameters. As discussed in Section 2.2, the scaling parameter α reflects our prior belief on the
number of clusters. For the sake of conjugacy, a diffuse Gamma prior is usually assumed for α as
suggested by West et al. (1994). In addition, parameters ζ,λ characterizing the prior of the distinct
local classifiers wh are another set of important parameters, since we focus on classification tasks.
Normal-Gamma priors are the conjugate priors for the mean and precision of a normal density.
Therefore,

α ∼ Ga(τ10,τ20),
(ζ|λ) ∼ NP+1(0,γ

−1
0 [diag(λ)]−1),

λp ∼ Ga(a0,b0), p= 1, . . . ,P+1,

where τ10,τ20,a0,b0 are usually set to be much less than one and of about the same magnitude, so
that the constructed Gamma distributions with means about one and large variances are diffuse; γ0
is usually set to be around one.

The graphical representation of the iQGME for single-task learning is shown in Figure 1. We
notice that a possible variant with sparse local classifiers could be obtained if we impose zero mean
for the local classifiers wh, that is, ζ = 0, and retain the Gamma hyper-prior for the precision λ, as
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Figure 1: Graphical representation of the iQGME for single-task leaning. All circles denote ran-
dom variables, with shaded ones indicating observable data, and bright ones representing
hidden variables. Diamonds denote fixed hyper-parameters, boxes represent independent
replicates with numbers at the lower right corner indicating the numbers of i.i.d. copies,
and arrows indicate the dependence between variables (pointing from parents to children).

in the relevance vector machine (RVM) (Tipping, 2000), which employs a corresponding Student-t
sparseness prior on the weights. Although this sparseness prior is useful for seeking relevant features
in many applications, imposing the same sparse pattern for all the local experts is not desirable.

2.4 Variant for High-Dimensional Problems

For the classification problem, we assume access to a training data set D = {(xi,yi) : i= 1, . . . ,n},
where feature vectors xi ∈ RP and labels yi ∈ {−1,1}. We have assumed that the feature vectors of
objects in cluster h are generated from a P-variate normal distribution with mean µh and covariance
matrix Λ−1

h , that is,

(xi|zi = h) ∼ NP(µh,Λ
−1
h ) (9)

It is well known that each covariance matrix has P(P+ 1)/2 parameters to be estimated. Without
any further assumption, the estimation of these parameters could be computationally prohibitive for
large P, especially when the number of available training data n is small, which is common for clas-
sification applications. By imposing an approximately low-rank constraint on the covariances, as in
well-studied mixtures of factor analyzers (MFA) models (Ghahramani and Hinton, 1996; Ghahra-
mani and Beal, 2000), the number of unknowns could be significantly reduced. Specifically, assume
a vector of standard normal latent factors si ∈RT×1 for data xi, a factor loading matrixAh ∈RP×T

for cluster h, and Gaussian residues εi with diagonal covariance matrix ψhIP, then

(xi|zi = h) ∼ NP(Ahsi+µh,ψ
−1
h IP).

Marginalizing si with si ∼NT (0,IT ), we recover (9), withΛ−1
h =AhA

T
h +ψ−1

h IP. The number of
free parameters is significantly reduced if T << P .
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In this paper, we modify the MFA model for classification applications with scarce samples.
First, we consider a common loading matrixA for all the clusters, and introduce a binary vector bh
for each cluster to select which columns ofA are used, that is,

(xi|zi = h) ∼ NP(Adiag(d◦bh)si+µh,ψ
−1
h IP),

where each column of A, Al ∼NP(0,P−1IP), si ∼NL(0,IL) , d is a vector responsible for scale,
and ◦ is a component-wise (Hadamard) product. For d we employ the prior dl ∼ N (0,β−1l ) with
βl ∼Ga(c0,d0). Furthermore, we let the algorithm infer the intrinsic number of factors by imposing
a low-rank belief for each cluster through the prior of bh, that is,

bhl ∼ Bern(πhl), πhl ∼ Be(a0/L,b0(L−1)/L), l = 1, . . . ,L,

where L is a large number, which defines the largest possible dimensionality the algorithmmay infer.
Through the choice of a0 and b0 we impose our prior belief about the intrinsic dimensionality of
cluster h (upon integrating out the draw πh, the number of non-zero components of bh is drawn from
Binomial[L,a0/(a0+ b0(L− 1))]). As a result, both the number of clusters and the dimensionality
of each cluster is inferred by this variant of iQGME.

With this form of iQGME, we could build local linear classifiers in either the original feature
space or the (low-dimensional) space of latent factors si. For the sake of computational simplicity,
we choose to classify in the low-dimensional factor space.

3. Incomplete Data Problem

In the above discussion it was assumed that all components of the feature vectors were available (no
missing data). In this section, we consider the situation for which feature vectors xi are partially
observed. We partition each feature vector xi into observed and missing parts, xi = [xoii ;x

mi
i ],

where xoii = {xip : p ∈ oi} denotes the subvector of observed features and xmii = {xip : p ∈ mi}
represents the subvector of missing features, with oi and mi denoting the set of indices for observed
and missing features, respectively. Each xi has its own observed set oi and missing set mi, which
may be different for each i. Following a generic notation (Schafer and Graham, 2002), we refer
to R as the missingness. For an arbitrary missing pattern, R could be defined as a missing data
indicator matrix, that is,

Rip =
{

1, xip observed,
0, xip missing.

We use ξ to denote parameters characterizing the distribution of R, which is usually called the
missing mechanism. In the classification context, the joint distribution of class labels, observed
features and the missingnessR may be given by integrating out the missing features xm,

p(y,xo,R|θ,ξ) =
∫
p(y,x|θ)p(R|x,ξ)dxm. (10)

To handle such a problem analytically, assumptions must be made on the distribution of R. If the
missing mechanism is conditionally independent of missing values xm given the observed data, that
is, p(R|x,ξ) = p(R|xo,ξ), the missing data are defined to be missing at random (MAR) (Rubin,
1976). Consequently, (10) reduces to

p(y,xo,R|θ,ξ) = p(R|xo,ξ)
∫
p(y,x|θ)dxm = p(R|xo,ξ)p(y,xo|θ). (11)
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According to (11), the likelihood is factorizable under the assumption of MAR. As long as the prior
p(θ,ξ) = p(θ)p(ξ) (factorizable), the posterior

p(θ,ξ|y,xo,R) ∝ p(y,xo,R|θ,ξ)p(θ,ξ) = p(R|xo,ξ)p(ξ)p(y,xo|θ)p(θ)

is also factorizable. For the purpose of inferring model parameters θ, no explicit specification is
necessary on the distribution of the missingness. As an important special case of MAR, missing
completely at random (MCAR) occurs if we can further assume that p(R|x,ξ) = p(R|ξ), which
means the distribution of missingness is independent of observed values xo as well. When the
missing mechanism depends on missing values xm, the data are termed to be missing not at random
(MNAR). From (10), an explicit form has to be assumed for the distribution of the missingness, and
both the accuracy and the computational efficiency should be concerned.

When missingness is not totally controlled, as in most realistic applications, we cannot tell
from the data alone whether the MCAR or MAR assumption is valid. Since the MCAR or MAR
assumption is unlikely to be precisely satisfied in practice, inference based on these assumptions
may lead to a bias. However, as demonstrated in many cases, it is believed that for realistic problems
departures from MAR are usually not large enough to significantly impact the analysis (Collins
et al., 2001). On the other hand, without the MAR assumption, one must explicitly specify a model
for the missingness R, which is a difficult task in most cases. As a result, the data are typically
assumed to be either MCAR or MAR in the literature, unless significant correlations between the
missing values and the distribution of the missingness are suspected.

In this work we make the MAR assumption, and thus expression (11) applies. In the iQGME
framework, the joint likelihood may be further expanded as

p(y,xo|θ) =
∫
p(y,x|θ)dxm =

∫
ty>0

∫
p(t|x,θ2)p(x|θ1)dxmdt. (12)

The solution to such a problem with incomplete data xm is analytical since the distributions of t and
x are assumed to be a Gaussian and a Gaussian mixture model, respectively. Naturally, the missing
features could be regarded as hidden variables to be inferred and the graphical representation of
the iQGME with incomplete data remains the same as in Figure 1, except that the node presenting
features are partially observed now. As elaborated below, the important but mild assumption that
the features are distributed as a GMM enables us to analytically infer the variational distributions
associated with the missing values in a procedure of variational Bayesian inference.

As in many models (Williams et al., 2007), estimating the distribution of the missing values
first and learning the classifier at a second step gives the flexibility of selecting the classifier for
the second step. However, (12) suggests that the classifier and the data distribution are coupled,
provided that partial data are missing and thus have to be integrated out. Therefore, a joint estimation
of missing features and classifiers (searching in the space of (θ1,θ2)) is more desirable than a two-
step process (searching in the space of θ1 for the distribution of the data, and then in the space of
θ2 for the classifier).

4. Extension to Multi-Task Learning

Assume we have J data sets, with the jth represented asD j = {(x ji,y ji) : i= 1, . . . ,n j}; our goal is to
design a classifier for each data set, with the design of each classifier termed a “task”. One may learn
separate classifiers for each of the J data sets (single-task learning) by ignoring connections between
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the data sets, or a single classifier may be learned based on the union of all data (pooling) by ignoring
differences between the data sets. More appropriately, in a hierarchical Bayesian framework J task-
dependent classifiers may be learned jointly, with information borrowed via a higher-level prior
(multi-task learning). In some previous research all tasks are assumed to be equally related to each
other (Yu et al., 2003; Zhang et al., 2006), or related tasks share exactly the same task-dependent
classifier (Xue et al., 2007). With multiple local experts, the proposed iQGMEmodel for a particular
task is relatively flexible, enabling the borrowing of information across the J tasks (two data sets
may share parts of the respective classifiers, without requiring sharing of all classifier components).

As discussed in Section 2.2, a DP prior encourages clustering (each cluster corresponds to a local
expert). Now considering multiple tasks, a hierarchical Dirichlet process (HDP) (Teh et al., 2006)
may be considered to solve the problem of sharing clusters (local experts) across multiple tasks.
Assume a random measure Gj is associated with each task j, where each Gj is an independent
draw from Dirichlet processDP (αG0) with a base measure G0 drawn from an upper-level Dirichlet
process DP (βH), that is,

Gj ∼ DP (αG0), for j = 1, . . . ,J,
G0 ∼ DP (βH).

As a draw from a Dirichlet process, G0 is discrete with probability one and has a stick-breaking
representation as in (7). With such a base measure, the task-dependent DPs reuse the atoms θ∗

h
defined in G0, yielding the desired sharing of atoms among tasks.

With the task-dependent iQGME defined in (8), we consider all J tasks jointly:

(x ji, t ji) ∼ NP(x ji|µ ji,Λ
−1
ji )N (t ji|wT

jix
b
ji,1),

(µ ji,Λ ji,w ji)
iid
∼ Gj,

Gj ∼ DP (αG0),
G0 ∼ DP (βH).

In this form of borrowing information, experts with associated means and precision matrices
are shared across tasks as distinct atoms. Since means and precision matrices statistically define
local regions in feature space, sharing is encouraged locally. We explicitly write the stick-breaking
representations for Gj and G0, with z ji and c jh introduced as the indicators for each data point
and each distinct atom of Gj, respectively. By factorizing the base measure H as a product of a
normal-Wishart prior for (µs,Λs) and a normal prior for ws, the hierarchical model of the multi-

3279



WANG, LIAO, CARIN AND DUNSON

task iQGME via the HDP is represented as

Data Generation:
(t ji|c jh = s,z ji = h) ∼ N (wT

s x
b
ji,1),

(x ji|c jh = s,z ji = h) ∼ NP(µs,Λ
−1
s ),

Drawing lower-level indicators:

z ji ∼
∞

∑
h=1

π jhδh, where π jh =Vjh∏
l<h

(1−Vjl),

Vjh ∼ Be(1,α),
Drawing upper-level indicators:

c jh ∼
∞

∑
s=1

ηsδs, where ηs =Us∏
l<s

(1−Ul),

Us ∼ Be(1,β),
Drawing parameters from H :

(µs,Λs) ∼ NP(µs|m0,u−10 Λ
−1
s )W (Λs|B0,ν0),

ws ∼ NP+1(ζ, [diag(λ)]−1).

where j = 1, . . . ,J and i = 1, . . . ,n j index tasks and data points in each tasks, respectively; h =
1, . . . ,∞ and s = 1, . . . ,∞ index atoms for task-dependent Gj and the globally shared base G0, re-
spectively. Hyper-priors are imposed similarly as in the single-task case:

α ∼ Ga(τ10,τ20),
β ∼ Ga(τ30,τ40),

(ζ|λ) ∼ NP+1(0,γ
−1
0 [diag(λ)]−1),

λp ∼ Ga(a0,b0), p= 1, . . . ,P+1,

The graphical representation of the iQGME for multi-task learning via the HDP is shown in Figure
2.

5. Variational Bayesian Inference

We initially present the inference formalism for single-task learning, and then discuss the (relatively
modest) extensions required for the multi-task case.

5.1 Basic Construction

For simplicity we denote the collection of hidden variables and model parameters asΘ and specified
hyper-parameters asΨ. In a Bayesian framework we are interested in p(Θ|D,Ψ), the joint posterior
distribution of the unknowns given observed data and hyper-parameters. From Bayes’ rule,

p(Θ|D,Ψ) =
p(D|Θ)p(Θ|Ψ)

p(D|Ψ)
,

where p(D|Ψ)=
∫
p(D|Θ)p(Θ|Ψ)dΘ is the marginal likelihood that often involves multi-dimensional

integrals. Since these integrals are nonanalytical in most cases, the computation of the marginal like-
lihood is the principal challenge in Bayesian inference. These integrals are circumvented if only a
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Figure 2: Graphical representation of the iQGME for multi-task leaning via the hierarchical Dirich-
let process (HDP). Refer to Figure 1 for additional information.

point estimate Θ̂ is pursued, as in the expectation-maximization algorithm (Dempster et al., 1977).
Markov chain Monte Carlo (MCMC) sampling methods (Gelfand et al., 1990; Neal, 1993) provide
one class of approximations for the full posterior, based on samples from a Markov chain whose
stationary distribution is the posterior of interest. As a Markov chain is guaranteed to converge
to its true posterior theoretically as long as the chain is long enough, MCMC samples constitute
an unbiased estimation for the posterior. Most previous applications with a Dirichlet process prior
(Ishwaran and James, 2001; West et al., 1994), including the related papers we reviewed in Section
1, have been implemented with various MCMC methods. The main concerns of MCMC methods
are associated with computational costs for computation of sufficient collection samples, and that
diagnosis of convergence is often difficult.

As an efficient alternative, the variational Bayesian (VB) method (Beal, 2003) approximates the
true posterior p(Θ|D,Ψ) with a variational distribution q(Θ) with free variational parameters. The
problem of computing the posterior is reformulated as an optimization problem of minimizing the
Kullback-Leibler (KL) divergence between q(Θ) and p(Θ|D,Ψ), which is equivalent to maximiz-
ing a lower bound of log p(D|Ψ), the log marginal likelihood. This optimization problem can be
solved iteratively with two assumptions on q(Θ): (i) q(Θ) is factorized; (ii) the factorized compo-
nents of q(Θ) come from the same exponential family as the corresponding priors do. Since the
lower bound cannot achieve the true log marginal likelihood in general, the approximation given by
the variational Bayesian method is biased. Another issue concerning the VB algorithm is that the
solution may be trapped at local optima since the optimization problem is not convex. The main
advantages of VB include the ease of convergence diagnosis and computational efficiency. As the
VB is solving an optimization problem, the objective function—the lower bound of the log marginal
likelihood—is a natural criterion for convergence diagnosis. Therefore, VB is a good alternative to
MCMC when conjugacy is achieved and computational efficiency is desired. In recent publications
(Blei and Jordan, 2006; Kurihara et al., 2007), discussions on the implementation of the variational
Bayesian inference are given for Dirichlet process mixtures.

We implement the variational Bayesian inference throughout this paper, with comparisons made
to Gibbs sampling. Since it is desirable to maintain the dependencies among random variables (e.g.,
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shown in the graphical models Figure 1) in the variational distribution q(Θ), one typically only
breaks those dependencies that bring difficulty to computation. In the subsequent inference for the
iQGME, we retain some dependencies as unbroken. Following Blei and Jordan (2006), we employ
stick-breaking representations with a truncation level N as variational distributions to approximate
the infinite-dimensional random measures G.

We detail the variational Bayesian inference for the case of incomplete data. The inference for
the complete-data case is similar, except that all feature vectors are fully observed and thus the step
of learning missing values is skipped. To avoid repetition, a thorough procedure for the complete-
data case is not included, with differences from the incomplete-data case indicated.

5.2 Single-task Learning

For single-task iQGME the unknowns areΘ= {t,xm,z,V ,α,µ,Λ,W ,ζ,λ}, with hyper-parameters
Ψ= {m0,u0,B0,ν0,τ10,τ20,γ0,a0,b0}. We specify the factorized variational distributions as

q(t,xm,z,V ,α,µ,Λ,W ,ζ,λ)

=
n

∏
i=1

[qti(ti)qxmi
i ,zi(x

mi
i ,zi)]

N−1

∏
h=1

qVh(Vh)
N

∏
h=1

[qµh,Λh(µh,Λh)qwh(wh)
P+1

∏
p=1

qζp,λp(ζp,λp)qα(α)

where

• qti(ti) is a truncated normal distribution,

ti ∼ T N (µti,1,yiti > 0), i= 1, . . . ,n,

which means the density function of ti is assumed to be normal with mean µti and unit variance
for those ti satisfying yiti > 0.

• qxmi
i ,zi(x

mi
i ,zi) = qxmi

i
(xmii |zi)qzi(zi), where qzi(zi) is a multinomial distribution with proba-

bilities ρi, and there are N possible outcomes, zi ∼MN(1,ρi1, . . . ,ρiN), i = 1, . . . ,n. Given
the associated indicators zi, since features are assumed to be distributed as a multivariate
Gaussian, the distributions of missing values xmii are still Gaussian according to conditional
properties of multivariate Gaussian distributions:

(xmii |zi = h)∼N|mi|(m
mi|oi
h ,Σ

mi|oi
h ), i= 1, . . . ,n, h= 1, . . . ,N.

We retain the dependency between xmii and zi in the variational distribution since the inference
is still tractable; for complete data, the variation distribution for (xmii |zi = h) is not necessary.

• qVh(Vh) is a beta distribution,

Vh ∼ Be(vh1,vh2), h= 1, . . . ,N−1.

Recall that we have a truncation level of N, which implies that the mixture proportions πh(V )
are equal to zero for h > N. Therefore, qVh(Vh) = δ1 for h = N, and qVh(Vh) = δ0 for h > N.
For h< N, Vh has a variational Beta posterior.

• qµh,Λh(µh,Λh) is a normal-Wishart distribution,

(µh,Λh)∼NP(mh,u−1h Λ
−1
h )W (Bh,νh), h= 1, . . . ,N.
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• qwh(wh) is a normal distribution,

wh ∼NP+1(µ
w
h ,Σ

w
h ), h= 1, . . . ,N.

• qζp,λp(ζp,λp) is a normal-gamma distribution,

(ζp,λp)∼N (φp,γ−1λ−1p )Ga(ap,bp), p= 1, . . . ,P+1.

• qα(α) is a Gamma distribution,
α∼ Ga(τ1,τ2).

Given the specifications on the variational distributions, a mean-field variational algorithm (Beal,
2003) is developed for the iQGME model. All update equations and derivations for q(xmii ,zi) are
included in the Appendix; similar derivations for other random variables are found elsewhere (Xue
et al., 2007; Williams et al., 2007). Each variational parameter is re-estimated iteratively condi-
tioned on the current estimate of the others until the lower bound of the log marginal likelihood
converges. Although the algorithm yields a bound for any initialization of the variational parame-
ters, different initializations may lead to different bounds. To alleviate this local-maxima problem,
one may perform multiple independent runs with random initializations, and choose the run that
produces the highest bound on the marginal likelihood. We will elaborate on our initializations in
the experiment section.

For simplicity, we omit the subscripts on the variational distributions and henceforth use q to
denote any variational distributions. In the following derivations and update equations, we use
generic notation 〈 f 〉q(·) to denote Eq(·)[ f ], the expectation of a function f with respect to variational
distributions q(·). The subscript q(·) is dropped when it shares the same arguments with f .

5.3 Multi-task Learning

For multi-task learning much of the inference is highly related to that of single-task learning, as
discussed above; in the following we focus only on differences. In the multi-task learning model,
the latent variables areΘ= {t,xm,z,V ,α,c,U ,β,µ,Λ,W ,ζ,λ}, and hyper-parameters areΨ=
{m0,u0,B0,ν0,τ10,τ20,τ30,τ40,γ0,a0,b0}. We specify the factorized variational distributions as

q(t,xm,z,V ,α,c,U ,β,µ,Λ,W ,ζ,λ)

=
J

∏
j=1

{
n j

∏
i=1

[q(t ji)q(x
mji
ji )q(z ji)]

N−1

∏
h=1

q(Vjh)
N

∏
h=1

q(c jh)}
S−1

∏
s=1

q(Us)

S

∏
s=1

[q(µs,Λs)q(ws)]
P+1

∏
p=1

q(ζp,λp)q(α)q(β)

where the variational distributions of (t ji,Vjh,α,µs,Λs,ws,ζp,λp) are assumed to be the same as in
the single-task learning, while the variational distributions of hidden variables newly introduced for
the upper-level Dirichlet process are specified as

• q(c jh) for each indicator c jh is a multinomial distribution with probabilities σ jh,

c jh ∼MS(1,σ jh1, . . . ,σ jhS), j = 1, . . . ,J, h= 1, . . . ,N.
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• q(Us) for each weightUs is a Beta distribution,

Us ∼ Be(κs1,κs2), s= 1, . . . ,S−1.

Here we have a truncation level of S for the upper-lever DP, which implies that the mixture
proportions ηs(U) are equal to zero for s> S. Therefore, q(Us) = δ1 for s= S, and q(Us) = δ0
for s> S. For s< S,Us has a variational Beta posterior.

• q(β) for the scaling parameter β is a Gamma distribution,

β∼ Ga(τ3,τ4).

We also note that with a higher-level of hierarchy, the dependency between the missing values
x
mji
ji and the associated indicator z ji has to be broken so that the inference becomes tractable. The

variational distribution of z ji is still assumed to be multinomial distributed, while x
mji
ji is assumed

to be normally distributed but no longer dependent on z ji. All update equations are included in the
Appendix.

5.4 Prediction

For a new observed feature vector xo!! , the prediction on the associated class label y! is given by
integrating out the missing values.

P(y! = 1|xo!! ,D) =
p(y! = 1,xo!! |D)

p(xo!! |D)
=

∫
p(y! = 1,x!|D)dxm!

!∫
p(x!|D)dxm!

!

=

∫
∑N
h=1P(z! = h|D)p(x!|z! = h,D)P(y! = 1|x!,z! = h,D)dxm!

!∫
∑N
k=1P(z! = k|D)p(x!|z! = k,D)dxm!

!
.

We marginalize the hidden variables over their variational distributions to compute the predictive
probability of the class label

P(y! = 1|xo!! ,D) =
∑N
h=1 EV [πh]

∫ ∞
0
∫
EµhΛh [NP(x!|µh,Λ

−1
h )]Ewh

[

N (t!|wT
h x

b
!,1)

]

dxm!
! dt!

∑N
k=1 EV [πk]

∫
EµkΛk [NP(x!|µk,Λ

−1
k )]dxm!

!

where

EV [πh] = EV [Vh∏
l<h

(1−Vl)] = 〈Vh〉∏
l<h

〈1−Vl〉=
[

vh1
vh1+ vh2

]1(h<N)

∏
l<h

[

vl2
vl1+ vl2

]1(h>1)
.

The expectation Eµh,Λh [NP(x!|µh,Λ
−1
h )] is a multivariate Student-t distribution (Attias, 2000).

However, for the incomplete-data situation, the integral over the missing values is tractable only
when the two terms in the integral are both normal. To retain the form of norm distributions, we use
the posterior means of µh,Λh and wh to approximate the variables:

P(y! = 1|xo!! ,D) ≈
∑N
h=1 EV [πh]

∫ ∞
0
∫
NP(x!|mh,(νhBh)−1)N (t!|(µw

h )
Txb!,1)dxm!

! dt!
∑N
k=1 EV [πk]

∫
NP(x!|mk,(νkBk)−1)dxm!

!

=
∑N
h=1 EV [πh]N|o!|(x

o!
! |mo!

h ,(νhBh)−1,o!o!)
∫ ∞
0 N (t!|ϕ!h,g!h)dt!

∑N
k=1 EV [πk]N|o!|(x

o!
! |mo!

k ,(νkBk)−1,o!o!)
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where

ϕ!h = [mT
h ,1]µw

h +Γ
T
!h(∆

o!o!
h )−1(xo!! −mo!

h ),

g!h = 1+(µ̄w
h )

T
∆hµ̄

w
h −Γ

T
!h(∆

o!o!
h )−1Γ!h,

Γ!h = ∆
o!o!
h (µw

h )
o! +∆

o!m!
h (µw

h )
m! ,

µ̄w
h = (µw

h )1:P,

∆h = (νhBh)
−1.

For complete data the integral of missing features is absent, so we take advantage of the full varia-
tional posteriors for prediction.

5.5 Computational Complexity

Given the truncation level (or the number of clusters) N, the data dimensionality P, and the num-
ber of data points n, we compare the iQGME to closely related DP regression models (Meeds and
Osindero, 2006; Shahbaba and Neal, 2009), in terms of the time and memory complexity. The in-
ference of the iQGME with complete data requires inversion of two P×P matrices (the covariance
matrices for the inputs and the local expert) associated with each cluster. Therefore, the time and
memory complexity areO(2NP3) andO(2NP2), respectively. With incomplete data, since the miss-
ing pattern is unique for each data point, the time and memory complexity increase with number of
data points, that is, O(nNP3) and O(nNP2), respectively. The mixture of Gaussian process experts
(Meeds and Osindero, 2006) requires O(NP3+n3/N) computations for each MCMC iteration if the
N experts equally divide the data, and the memory complexity is O(NP2+n2/N). In the model pro-
posed by Shahbaba and Neal (2009), no matrix inversion is needed since the covariates are assumed
to be independent. The time and memory complexity are O(NP) and O(NP), respectively.

From the aspect of computational complexity, the model in Meeds and Osindero (2006) is re-
stricted by the increase of both dimensionality and data size; while the model proposed in Shahbaba
and Neal (2009) is more efficient. Although the proposed model requires more computations for
each MCMC iteration than the latter one, we are able to handle missing values naturally, and much
more efficiently compared to the former one. Considering the usual number of iterations required
by VB (several dozens) and MCMC (thousands or even tens of thousands), our model is even more
efficient.

6. Experimental Results

In all the following experiments the hyper-parameters are set as follows: a0 = 0.01, b0 = 0.01,
γ0 = 0.1, τ10 = 0.05, τ20 = 0.05, τ30 = 0.05, τ40 = 0.05, u0 = 0.1, ν0 = P+2, andm0 and B0 are
set according to sample mean and sample precision, respectively. These parameters have not been
optimized for any particular data set (which are all different in form), and the results are relatively
insensitive to “reasonable” settings. The truncation levels for the variational distributions are set to
be N = 20 and S= 50. We have found the results insensitive to the truncation level, for values larger
than those considered here.

Because of the local-maxima issue associated with VB, initialization of the inferred VB hyper-
parameters is often important. We initialize most variational hyper-parameters using the corre-
sponding prior hyper-parameters, which are data-independent. The precision/covariance matrices
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Bh andΣw
h are simply initialized as identity matrices. However, for several other hyper-parameters,

we may obtain information for good start points from the data. Specifically, the variational mean
of the soft label µti is initialized by the associated label yi. A K-means clustering algorithm is im-
plemented on the feature vectors, and the cluster means and identifications for objects are used to
initialize the variational mean of the Gaussian meansmh and the indicator probabilities ρi, respec-
tively. As an alternative, one may randomly initialize mh and ρi multiple times, and select the
solution that produces the highest lower bound on the log marginal likelihood. The two approaches
work almost equivalently for low-dimensional problems; however, for problems with moderate to
high dimensionality, it could be fairly difficult to get a satisfying initialization by making several
random trials.

6.1 Synthetic Data

We first demonstrate the proposed iQGME single-task learning model on a synthetic data set, for il-
lustrative purposes. The data are generated according to a GMMmodel p(x)=∑3k=1πkN2(x|µk,Σk)
with the following parameters:

π =
[

1/3 1/3 1/3
]

, µ1 =

[

−3
0

]

, µ2 =

[

1
0

]

, µ3 =

[

5
0

]

Σ1 =

[

0.52 −0.36
−0.36 0.73

]

, Σ2 =

[

0.47 0.19
0.19 0.7

]

, Σ3 =

[

0.52 −0.36
−0.36 0.73

]

.

The class boundary for each Gaussian component is given by three lines x2 = wkx1+ bk for k =
1,2,3, where w1 = 0.75,b1 = 2.25, w2 =−0.58,b2 = 0.58, and w3 = 0.75,b3 =−3.75. The simu-
lated data are shown in Figure 3(a), where black dots and dashed ellipses represent the true means
and covariance matrices of the Gaussian components, respectively.
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Figure 3: Synthetic three-Gaussian single-task data with inferred components. (a) Data in feature
space with true labels and true Gaussian components indicated; (b) inferred posterior ex-
pectation of weights on components, with standard deviations depicted as error bars; (c)
ground truth with posterior means of dominant components indicated (the linear classi-
fiers and Gaussian ellipses are inferred from the data).

The inferred mean mixture weights with standard deviations are depicted in Figure 3(b), and
it is observed that three dominant mixture components (local “experts”) are inferred. The domi-
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nant components (those with mean weight larger than 0.005) are characterized by Gaussian means,
covariance matrices and local experts, as depicted in Figure 3(c). From Figure 3(c), the nonlinear
classification is manifested by using three dominant local linear classifiers, with a GMM defining
the effective regions stochastically.
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Figure 4: Synthetic three-Gaussian single-task data: (a) prior and posterior beliefs on the number
of dominant components; (b) prior and posterior beliefs on α.

An important point is that we are not selecting a “correct” number of mixture components as
in most mixture-of-expert models, including the finite QGME model (Liao et al., 2007). Instead,
there exists uncertainty on the number of components in our posterior belief. Since this uncertainty
is not inferred directly, we obtain samples for the number of dominant components by calculating
πh based on Vh sampled from their probability density functions (prior or variational posterior), and
the probability mass functions given by histogram are shown in Figure 4(a). As discussed, the scale
parameter α is highly related to the number of clusters, so we depict the prior and the variational
posterior on α in Figure 4(b).

The predictions in feature space are presented in Figure 5, where the prediction in sub-figure (a)
is given by integrating over the full posteriors of local experts and parameters (means and covari-
ance matrices) of Gaussian components; while the prediction in sub-figure (b) is given by posterior
means. We examine these two cases since the analytical integrals over the full posteriors may be un-
available sometimes in practice (for example, for cases with incomplete data as discussed in Section
5). From Figures 5(a) and 5(b), we observe that these two predictions are fairly similar, except that
(a) allows more uncertainty on regions with scarce data. The reason for this is that the posteriors
are often peaked and thus posterior means are usually representative. As an example, we plot the
broad common prior imposed for local experts in Figure 5(c) and the peaked variational posteriors
for three dominant experts in Figure 5(d). According to Figure 5, we suggest the usage of full pos-
teriors for prediction whenever integrals are analytical, that is, for experiments with complete data.
It also empirically justifies the use of posterior means as an approximation. These results have been
computed using VB inference, with MCMC-based results presented below, as a comparison.
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Figure 5: Synthetic three-Gauss single-task data: (a) prediction in feature space using the full pos-
teriors; (b) prediction in feature space using the posterior means; (c) a common broad
prior on local experts; (d) variational posteriors on local experts.

6.2 Benchmark Data

To further evaluate the proposed iQGME, we compare it with other models, using benchmark data
sets available from the UCI machine learning repository (Newman et al., 1998). Specifically, we
consider Wisconsin Diagnostic Breast Cancer (WDBC) and the Johns Hopkins University Iono-
sphere database (Ionosphere) data sets, which have been studied in the literature (Williams et al.,
2007; Liao et al., 2007). These two data sets are summarized in Table 1.

The models we compare to include:

• State-of-the-art classification algorithms: Support Vector Machines (SVM) (Vapnik, 1995)
and Relevance Vector Machines (RVM) (Tipping, 2000). We consider both linear models
(Linear) and non-linear models with radial basis function (RBF) for both algorithms. For
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Data set Dimension Number of positive instances Number of negative instances
Ionosphere 34 126 225
WDBC 30 212 357

Table 1: Details of Ionosphere and WDBC data sets

each data set, the kernel parameter is selected for one training/test/validation separation, and
then fixed for all the other experimental settings. The RVM models are implemented with
Tipping’s Matlab code available at http://www.miketipping.com/index.php?page=rvm.

Since those SVM and RVM algorithms are not directly applicable to problems with missing
features, we use two methods to impute the missing values before the implementation. One is
using the mean of observed values (unconditional mean) for the given feature, referred to as
Uncond; the other is using the posterior mean conditional on observed features (conditional
mean), referred to as Cond (Schafer and Graham, 2002).

• Classifiers handling missing values: the finite QGME inferred by expectation-maximization
(EM) (Liao et al., 2007), referred to as QGME-EM, and a two-stage algorithm (Williams
et al., 2007) where the parameters of the GMM for the covariates are estimated first given the
observed features, and then a marginalized linear logistic regression (LR) classifier is learned,
referred to as LR-Integration. Results are cited from Liao et al. (2007) and Williams et al.
(2007), respectively.

In order to simulate the missing at random setting, we randomly remove a fraction of feature
values according to a uniform distribution, and assume the rest are observed. Any instance with all
feature values missing is deleted. After that, we randomly split each data set into training and test
subsets, imposing that each subset encompasses at least one instance from each of the classes. Note
that the random pattern of missing features and the random partition of training and test subsets
are independent of each other. By performing multiple trials we consider the general (average)
performance for various data settings. For convenient comparison with Williams et al. (2007) and
Liao et al. (2007), the performance of algorithms is evaluated in terms of the area under a receiver
operating characteristic (ROC) curve (AUC) (Hanley and McNeil, 1982).

The results on the Ionosphere and WDBC data sets are summarized in Figures 6 and 7, respec-
tively, where we consider 25% and 50% of the feature values missing. Given a portion of missing
values, each curve is a function of the fraction of data used in training. For a given size of training
data, we perform ten independent trials for the SVM and RVM models and the proposed iQGME.

From both Figures 6 and 7, the proposed iQGME-VB is robust for all the experimental settings,
and its overall performance is the best among all algorithms considered. Although the RVM-RBF-
Cond and the SVM-RBF-Cond perform well for the Ionosphere data set, especially when the train-
ing data is limited, their performance on the WDBC data set is not as good. The kernel methods
benefit from the introduction of the RBF kernel for the Ionosphere data set; however, the perfor-
mance is inferior for the WDBC data set. We also note that the one-step iQGME and the finite
QGME outperform the two-step LR-integration. The proposed iQGME consistently performs bet-
ter than the finite QGME (where, for the latter, in all cases we show results for the best/optimized
choice of number of experts K), which reveals the advantage of retaining the uncertainty on the
model structure (number of experts) and model parameters. As shown in Figure 7, the advantage of
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Figure 6: Results on Ionosphere data set for (a)(b) 25%, and (c)(d) 50% of the feature values miss-
ing. For legibility, we only report the standard deviation for the proposed iQGME-VB
algorithm as error bars, and present the compared algorithms in two figures for each case.
The results of the finite QGME solved with an expectation-maximization method are
cited from Liao et al. (2007), and those of LR-Integration are cited from Williams et al.
(2007). Since the performance of the QGME-EM is affected by the choice of number of
experts K, the overall best results among K = 1,3,5,10,20 are cited for comparison in
each case (no such selection of K is required for the proposed iQGME-VB algorithm).

considering the uncertainty on the model parameters is fairly pronounced for the WDBC data set,
especially when training examples are relatively scarce and thus the point-estimation EM method
suffers from over-fitting issues. A more detailed examination on the model uncertainty is shown in
Figures 8 and 9.

In Figure 8, the influence of the preset value for K on the QGME-EM model is examined on the
Ionosphere data. We observe that with different fractions of missing values and training samples,
the values for K which achieve the best performance may be different; as K goes to a large number
(e.g., 20 here), the performance gets worse due to over-fitting. In contrast, we do not need to set the
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Figure 7: Results on WDBC data set for cases when (a)(b) 25%, and (c)(d) 50% of the feature
values are missing. Refer to Figure 6 for additional information.

number of clusters for the proposed iQGME-VB model. As long as the truncation level N is large
enough (N = 20 for all the experiments), the number of clusters is inferred by the algorithm. We
give an example for the posterior on the number of clusters inferred by the proposed iQGME-VB
model, and report the statistics for the most probable number of experts given each missing fraction
and training fraction in Figure 9, which suggests that the number of clusters may vary significantly
even for the trials with the same fraction of feature values missing and the same fraction of samples
for training. Therefore, it may be not appropriate to set a fixed value for the number of clusters for
all the experimental settings as one has to do for the QGME-EM.

Although our main purpose is classification, one may also be interested in how well the algo-
rithm can estimate the missing values while pursuing the main purpose. In Figure 10, we show
the ratio of correctly estimated missing values for the Ionosphere data set with 25% feature values
missing, where two criteria are considered: true values are one standard deviation (red circles) or
two standard deviations (blue squares) away from the posterior means. This figure suggests that
the algorithm estimates most of the missing values in a reasonable range away from the true val-
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Figure 8: The comparison on the Ionosphere data set between QGME-EM with different preset
number of clusters K and the proposed iQGME-VB, when (a)(b)(c) 25%, and (d)(e)(f)
50% of the features are missing. In each row, 10%, 50%, and 90% of samples are used
for training, respectively. Results of QGME-EM are cited from Liao et al. (2007).

ues when the training size is large enough; even with not so satisfying estimations (as for limited
training data), the classification results are still relatively robust as shown in Figure 6.

We have discussed the advantages and disadvantages for the inference with MCMC and VB
in Section 5.1. Here we take the Ionosphere data with 25% features missing as an example to
compare these two inference techniques, as shown in Figure 11. It can be seen that they achieve
similar performance for the particular iQGME model proposed in this paper. The time consumed
for each iteration is also comparable, and increases almost linearly with the training size, as dis-
cussed in Section 5.5. The VB inference takes a little bit longer per iteration, probably due to the
extra computation for the lower bound of the log marginal likelihood, which serves as convergence
criterion. Significant differences occur on the number of iterations we have to take. In the experi-
ment, even though we set a very strict threshold (10−6) for the relative change of the lower bound,
the VB algorithm converges at about 50 iterations for most cases except when training data are very
scarce (10%). For the MCMC inference, we discard the initial samples from the first 1000 iterations
(burn-in), and collect the next 500 samples to present the posterior. It is far from enough to claim
convergence; however, we consider it a fair comparison for computation as the two methods yield
similar results under this setting. Given the fact that the VB algorithm only takes about 1/30 the
CPU time, and VB and MCMC performance are similar, in the following examples we only present
results based on VB inference. However, in all the examples below we also performed Gibbs sam-
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Figure 9: Number of clusters for the Ionosphere data set inferred by iQGME-VB. (a) Prior and
inferred posterior on the number of clusters for one trial given 10% samples for training,
the number of clusters for the case when (b) 25%, and (c) 50% of features are missing.
The most probable value of clusters number is used for each trial to generate (b) and (c)
(e.g., the most probable value of clusters number is two for the trial shown in (a)). In
(b) and (c), the distribution of number of clusters for the ten trials given each missing
fraction and training fraction is presented as a box-plot, where the red line represents the
median; the bottom and top of the blue box are the 25th and 75th percentile, respectively;
the bottom and top black lines are the end of the whiskers, which could be the minimum
and maximum, respectively; if some data are beyond 1.5 times of the length of the blue
box (interquartile range), they are outliers, indicated by a red ‘+’.
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Figure 10: Ratio of missing values whose true values are one standard deviation (red circles) or two
standard deviations (blue squares) away from the posterior means for the Ionosphere
data set with 25% feature values missing. One trial for each training size is considered.

pling, and the relative inference consistency and computational costs relative to VB were found to
be as summarized here (i.e., in all cases there was close agreement between the VB and MCMC
inferences, and considerable computational acceleration manifested by VB).
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Figure 11: Comparison between VB andMCMC inferred iQGME on the Ionosphere data with 25%
features missing in terms of (a) performance, (b) time consumed for each iteration, (c)
number of iterations. For the VB inference, we set a threshold (10−6) for the relative
change of lower bound in two consecutive iterations as the convergence criterion; for the
MCMC inference, we discard the initial samples from the first 1000 iterations (burn-in),
and collect the next 500 samples to present the posterior.

6.3 Unexploded Ordnance Data

We now consider an unexploded ordnance (UXO) detection problem (Zhang et al., 2003), where
two types of sensors are used to collect data, but one of them may be absent for particular targets.
Specifically, one sensor is a magnetometer (MAG) and the other an electromagnetic induction (EMI)
sensor; these sensors are deployed separately to interrogate buried targets, and for some targets both
sensors are deployed and for others only one sensor is deployed. This is a real sensing problem for
which missing data occurs naturally. The data considered were made available to the authors by the
US Army (and were collected from a real former bombing range in the US); the data are available
to other researchers upon request. The total number of targets are 146, where 79 of them UXO and
the rest are non-UXO (i.e., non-explosives). A six-dimensional feature vector is extracted from the
raw signals to represent each target, with the first three components corresponding to MAG features
and the rest as EMI features (details on feature extraction is provided in Zhang et al., 2003). Figure
12 shows the missing patterns for this data set.

We compare the proposed iQGME-VB algorithm with the SVM, RVM and LR-Integration as
detailed in Section 6.2. In order to evaluate the overall performance of classifiers, we randomly
partition the training and test subsets, and change the training size. Results are shown in Figure 13,
where only performance means are reported for the legibility of the figures. From this figure, the
proposed iQGME-VB method is robust for all the experimental settings under both performance
criteria.

6.4 Sepsis Classification Data

In Sections 6.2 and 6.3, we have demonstrated the proposed iQGME-VB on data sets with low to
moderate dimensionality. A high-dimensional data set with natural missing values is considered
in this subsection. These data were made available to the authors from the National Center for
Genomic Research in the US, and will be made available upon request. This is another example
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Figure 12: Missing pattern for the unexploded ordnance data set, where black and white indicate
observed and missing, respectively.
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Figure 13: Mean performance over 100 random training/test partitions for each training fraction on
the unexploded ordnance data set, in terms of (a) area under the ROC curve, and (b)
classification accuracy.

for which missing data are a natural consequence of the sensing modality. There are 121 patients
who are infected by sepsis, with 90 of them surviving (label -1) and 31 of them who die (label
1). For each patient, we have 521 metabolic features and 100 protein features. The purpose is to
predict whether a patient infected by sepsis will die given his/her features. The missing pattern
of feature values is shown in Figure 14(a), where black indicates observed (this missingness is a
natural consequence of the sensing device).

As the data are in a 621-dimensional feature space, with only 121 samples available, we use the
MFA-based variant of the iQGME (Section 2.4). To impose the low-rank belief for each cluster, we
set c0 = d0 = 1, and the largest possible dimensionality for clusters is set to be L= 50.
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We compare to the same algorithms considered in Section 6.3, except the LR-Integration al-
gorithm since it is not capable of handling such a high-dimensional data set. Mean AUC over ten
random partitions are reported in Figure 14(b). Here we report the SVM and RVM results on the
original data since they are able to classify the data in the original 621-dimensional space after miss-
ing values are imputed; we also examined SVM and RVM results on the data in a lower-dimensional
latent space, after first performing factor analysis on the data, and these results were very similar
to the SVM/RVM results in the original 621-dimensional space. From Figure 14(b), our method
provides improvement by handling missing values analytically in the procedure of model inference
and performing a dimensionality reduction jointly with local classifiers learning.
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Figure 14: Sepsis data set. (a) Missing pattern, where black and white indicate observed and miss-
ing, respectively, (b) mean performance over 100 random training/test partitions for each
training fraction.

6.5 Multi-Task Learning with Landmine Detection Data

We now consider a multi-task-learning example. In an application of landmine detection (available
at http://www.ee.duke.edu/˜lcarin/LandmineData.zip), data collected from 19 landmine
fields are treated as 19 subtasks. Among them, subtasks 1-10 correspond to regions that are rel-
atively highly foliated and subtasks 11-19 correspond to regions that are bare earth or desert. In
all subtasks, each target is characterized by a 9-dimensional feature vector x with corresponding
binary label y (1 for landmines and -1 for clutter). The number of landmines and clutter in each task
is summarized in Figure 15. The feature vectors are extracted from images measured with airborne
radar systems. A detailed description of this landmine data set has been presented elsewhere (Xue
et al., 2007).

Although our main objective is to simultaneously learn classifiers for multiple tasks with in-
complete data, we first demonstrate the proposed iQGME-based multi-task learning (MTL) model
on the complete data, comparing it to two multi-task learning algorithms designed for the situation
with all the features observed. One is based on task-specific logistic regression (LR) models, with
the DP as a hierarchical prior across all the tasks (Xue et al., 2007); the other assumes an underlying
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Figure 15: Number of landmines and clutter in each task for the landmine-detection data set (Xue
et al., 2007).

structure, which is shared by all the tasks (Ando and Zhang, 2005). For the LR-MTL algorithm,
we cite results on complete data from Xue et al. (2007), and implement the authors’ Matlab code
with default hyper-parameters on the cases with incomplete data. The Matlab implementation for
the Structure-MTL algorithm is included in the “Transfer Learning Toolkit for Matlab” available at
http://multitask.cs.berkeley.edu/. The dimension of the underlying structure is a user-set
parameter, and it should be smaller than the feature dimension in the original space. As the dimen-
sion of the landmine detection data is 9, we set the hidden dimension as 5. We also tried 6, 7, and
8, and did not observe big differences in performance. Single-task learning (STL) iQGME and LR
models are also included for comparison.

Each task is divided into training and test subsets randomly. Since the number of elements in the
two classes is highly unbalanced, as shown in Figure 15, we impose that there is at least one instance
from each class in each subset. Following Xue et al. (2007), the size of the training subset in each
task varies from 20 to 300 in increments of 20, and 100 independent trials are performed for each
size of data set. An average AUC (Hanley and McNeil, 1982) over all the 19 tasks is calculated as
the performance representation for one trial of a given training size. Results are reported in Figure
16.

The first observation from Figure 16 is that we obtain a significant performance improvement
for single-task learning by using the iQGME-VB instead of the linear logistic regression model (Xue
et al., 2007). We also notice that the multi-task algorithm based on iQGME-VB further improves
the performance when the training data are scarce, and yields comparable overall results as the LR-
MTL does. The structure-MTL does not perform well on this data set. We suspect that a hidden
structure in such a 9-dimensional space does not necessarily exist. Another possible reason may be
that the minimization of empirical risk is sensitive for the cases with highly unbalanced labels, as
for this data set.
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Figure 16: Average AUC over 19 tasks of landmine detection with complete data. Error bars reflect
the standard deviation across 100 random partitions of training and test subsets. Results
of logistic regression based algorithms are cited from Xue et al. (2007), where LR-MTL
and LR-STL respectively correspond to SMTL-2 and STL in Figure 3 of Xue et al.
(2007).

It is also interesting to explore the similarity among tasks. The similarity defined by different
algorithms may be different. In Xue et al. (2007), two tasks are defined to be similar if they share
the same linear classifier. However, with the joint distribution of covariates and the response, the
iQGME-MTL requires both the data distributions and the classification boundaries to be similar if
two tasks are deemed to be similar. Another difference is that two tasks could be partially similar
since sharing between tasks is encouraged at the cluster-level instead of at the task-level (Xue et al.
2007 employs task-level clustering). We generate the similarity matrices between tasks as follows:
In each random trial, there are in total S higher-level items shared among tasks. For each task, we
can find the task-specific probability mass function (pmf) over all the higher-level items. Using these
pmfs as the characteristics for tasks in the current trial, we calculate the pair-wise Kullback-Leibler
(KL) distances and convert them to similarity measures through a minus exponential function. Re-
sults of multiple trials are summed over and normalized as shown in Figure 17. It can be seen that
the similarity structure among tasks becomes clearer when we have more training data available. As
discovered by Xue et al. (2007), we also find two big clusters correspond to two different vegetation
conditions of the landmine fields (task 1-10 and task 11-19). Further sub-structures among tasks are
also explored by the iQGME-MTL model, which may suggest other unknown difference among the
landmine fields.

After yielding competitive results on the landmine-detection data set with complete data, the
iQGME-based algorithms are evaluated on incomplete data, which are simulated by randomly re-
moving a portion of feature values for each task as in Section 6.2. We consider three different

3298



MULTI-TASK CLASSIFICATION FOR INCOMPLETE DATA

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Index of Task

In
de

x 
of

 T
as

k

(a)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Index of Task

In
de

x 
of

 T
as

k
(b)

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18

Index of Task

In
de

x 
of

 T
as

k

(c)

Figure 17: Similarity between tasks in the landmine detection problem with complete data given
(a) 20, (b) 100, and (c) 300 training samples from each task. The size of green blocks
represent the value of the corresponding matrix element.

portions of missing values: 25%, 50% and 75%. As in the experiments above on benchmark data
sets, we perform ten independent random trials for each setting of missing fraction and training size.

To the best of our knowledge, there exists no previous work in the literature on multi-task
learning with missing data. As presented in Figure 18, we use the LR-MTL (Xue et al., 2007) and
the Structure-MTL (Ando and Zhang, 2005) with missing values imputed as baseline algorithms.
Results of the two-step LR with integration (Williams et al., 2007) and the LR-STL with single
imputations are also included for comparison. Imputations using both unconditional-means and
conditional-means are considered. From Figure 18, iQGME-STL consistently performs best among
single-task learning methods and even better than LR-MTL-Uncond when the size of the training set
is relatively large. The imputations using conditional-means yields consistently better results for the
LR-based models on this data set. The iQGME-MTL outperforms the baselines and all the single-
task learning methods overall. Furthermore, the improvement of iQGME-MTL is more pronounced
when there are more features missing. These observations underscore the advantage of handling
missing data in a principled manner and at the same time learning multiple tasks simultaneously.

The task-similarity matrices for the incomplete-data cases are shown in Figure 19. It can be seen
that when a small fraction (e.g., 25%) of the feature values are missing and training data are rich
(e.g., 300 samples from each task), the similarity pattern among tasks is similar to what we have
seen for the complete-data case. As the fraction of missing values becomes larger, tasks appear
more different from each other in terms of the usage of the higher-level items. Considering that the
missing pattern for each task is unique, it is probable that tasks look quite different from each other
after a large fraction of feature values are missing. However, the fact that tasks tend to use different
subsets of higher-level items does not mean it is equivalent to learning them separately (STL), as
parameters of the common base measures are inferred based on all the tasks.

6.6 Multi-Task Learning with Handwritten Letters Data

The final example corresponds to multi-task learning of classifiers for handwritten letters, this data
set included in the “Transfer Learning Toolkit for Matlab” available at http://multitask.cs.
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Figure 18: Average AUC over 19 tasks of landmine detection for the cases when (a) 25%, (b) 50%,
and (c) 75% of the features are missing. Mean values of performance across 10 random
partitions of training and test subsets are reported. Error bars are omitted for legibility.

berkeley.edu/. The objective of each task is to distinguish two letters which are easily confused.
The number of samples for all the letters considered in the total eight tasks is summarized in Table
2. Each sample is a 16×8 image as shown in Figure 20. We use the 128 pixel values of each sample
directly as its feature vector.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8
‘c’: 2107 ‘g’: 2460 ‘m’: 1596 ‘a’: 4016 ‘i’: 4895 ‘a’: 4016 ‘f’: 918 ‘h’: 858
‘e’: 4928 ‘y’: 1218 ‘n’: 5004 ‘g’: 2460 ‘j’: 188 ‘o’: 3880 ‘t’: 2131 ‘n’: 5004

Table 2: Handwritten letters classification data set.

We compare the proposed iQGME-MTL algorithm to the LR-MTL (Xue et al., 2007) and the
Structure-MTL (Ando and Zhang, 2005) mentioned in Section 6.5. For the non-parametric Bayesian
methods (iQGME-MTL and LR-MTL), we use the same parameter setting as before. The dimension
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Figure 19: Similarity between tasks in the landmine detection problem with incomplete data. Row
1, 2 and 3 corresponds to the cases with 25%, 50% and 75% features missing, respec-
tively; column 1, 2 and 3 corresponds to the cases with 20, 100 and 300 training samples
from each task, respectively.

of the underlying structure for the Structure-MTL is set to be 50 in the results shown in Figure 21.
We also tried 10, 20, 40, 60, 80 and 100, and did not observe big difference. From Figure 21, the
iQGME-MTL performs significantly better than the baselines on this data set for all the missing
fractions and training fractions under consideration. As we expected, the Structure-MTL yields
comparable results as the LR-MTL on this data set.
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Figure 20: Sample images of the handwritten letters. The two images in each column represents
the two classes in the corresponding task described in Table 2.
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Figure 21: Average AUC over eight tasks of handwriting letters classification for the cases when
(a) none, (b) 25%, (c) 50%, and (d) 75% of the features are missing. Mean values of
performance with one standard deviation across 10 random partitions of training and
test subsets are reported.

7. Conclusion and Future Work

In this paper we have introduced three new concepts, summarized as follows. First, we have em-
ployed non-parametric Bayesian techniques to develop a mixture-of-experts algorithm for classifier
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design, which employs a set of localized (in feature space) linear classifiers as experts. The Dirich-
let process is employed to allow the model to infer automatically the proper number of experts and
their characteristics; in fact, since a Bayesian formulation is employed, a full posterior distribution is
manifested on the properties of the local experts, including their number. Secondly, the classifier is
endowed with the ability to naturally address missing data, without the need for an imputation step.
Finally, the whole framework has been placed within the context of a multi-task learning, allow-
ing one to jointly infer classifiers for multiple data sets with missing data. The multi-task-learning
component has also been implemented with the general tools associated with the Dirichlet process,
with specific implementations manifested via the hierarchical Dirichlet process. Because of the hi-
erarchical form of the model, in terms of a sequence of distributions in the conjugate-exponential
family, all inference has been manifested efficiently via variational Bayesian (VB) analysis. The
VB results have been compared to those computed via Gibbs sampling; the VB results have been
found to be consistent with those inferred via Gibbs sampling, while requiring a small fraction of the
computational costs. Results have been presented for single-task and multi-task learning on various
data sets with the same hyper-parameters setting (no model-parameter tuning), and encouraging
algorithm performance has been demonstrated.

Concerning future research, we note that the use of multi-task learning provides an important
class of contextual information, and therefore is particularly useful when one has limited labeled
data and when the data are incomplete (missing features). Another form of context that has received
significant recent attention is semi-supervised learning (Zhu, 2005). There has been recent work on
integrating multi-task learning with semi-supervised learning (Liu et al., 2007). An important new
research direction includes extending semi-supervised multi-task learning to realistic problems for
which the data are incomplete.

Appendix A.

The update equations of single-task learning with incomplete data are summarized as follows:

1. q(ti|µti)

µti =
N

∑
h=1

ρih〈wh〉
T x̂bi,h where x̂bi,h = [xoii ;m

mi|oi
h ;1].

The expectation of ti and t2i may be derived according to properties of truncated normal dis-
tributions:

〈ti〉 = µti+
φ(−µti)

1(yi = 1)−Φ(−µti)
,

〈t2i 〉 = 1+(µti)
2+

µtiφ(−µti)
1(yi = 1)−Φ(−µti)

,

where φ(·) and Φ(·) denote the probability density function and the cumulative density func-
tion of the standard normal distribution, respectively.

2. q(xmii ,zi|m
mi|oi
ih ,Σ

mi|oi
ih ,ρih)

A related derivation for a GMMmodel with incomplete data could be found in Williams et al.
(2007), where no classifier terms appear.
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First, we explicitly write the intercept wbh , that is, wh = [(wx
h)
T ,wbh]

T :

q(xmii ,zi = h)
∝ exp{〈ln[p(ti|zi = h,xi,W )p(zi = h|V )p(xi|zi = h,µ,Λ)]〉q(ti)q(wh)q(V )q(µh,Λh)}

∝ AihNP(xi|µ̃ih,Σ̃ih),

where

Σ̃ih = [〈wx
h(w

x
h)
T 〉+νhBh]

−1

µ̃ih = Σ̃ih[〈ti〉〈wx
h〉+νhBhmh−〈wx

hw
b
h〉]

Aih = exp{〈lnVh〉+∑
l<h

〈ln(1−Vl)〉+ 〈ti〉〈wbh〉

+
1
2
[〈ln |Λh|〉+ µ̃T

ihΣ̃
−1
ih µ̃ih+ ln |Σ̃ih|−

P
uh

−mT
h νhBhmh−〈(wbh)

2
〉]}.

Since
[

xoii
xmii

]

∼NP

([

µ̃oi
ih

µ̃mi
ih

]

,

[

Σ̃
oioi
ih Σ̃

oimi
ih

Σ̃
mioi
ih Σ̃

mimi
ih

])

,

the conditional distribution of missing features xmii given observable features xoii is also a
normal distribution, that is, xmii |xoii ∼N|mi|(m

mi|oi
h ,Σ

mi|oi
h ) with

m
mi|oi
h = µ̃mi

ih + Σ̃
mioi
ih (Σ̃oioi

ih )−1(xoii − µ̃oi
ih),

Σ
mi|oi
h = Σ̃

mimi
ih − Σ̃

mioi
ih (Σ̃oioi

ih )−1Σ̃oimi
ih .

Therefore, q(xmii ,zi = h) could be factorized as the product of a factor independent of xmii and
the variational posterior of xmii , that is,

q(xmii ,zi = h) ∝ AihN|oi|(x
oi
i |µ̃

oi
ih,Σ̃

oioi
ih )N|mi|(x

mi
i |m

mi|oi
h ,Σ

mi|oi
h )

ρih ∝ AihN|oi|(x
oi
i |µ̃

oi
ih,Σ̃

oioi
ih )

For complete data, no factorization for the distribution for xmii is necessary:

ρih ∝ exp{〈ti〉〈wh〉
Txi−

1
2
xTi 〈whw

T
h 〉xi+ 〈lnVh〉

+∑
l<h

〈ln(1−Vl)〉+
1
2
〈ln |Λh|〉−

1
2
〈(xi−µh)

T
Λh(xi−µh)〉}

3. q(Vh|vh1,vh2)
Similar updating could be found in Blei and Jordan (2006), except that we put a prior belief
on α here instead of setting a fixed number.

vh1 = 1+
n

∑
i=1

ρih, vh2 = 〈α〉+
n

∑
i=1
∑
l>h

ρil;

〈lnVh〉= ψ(vh1)−ψ(vh1+ vh2), 〈ln(1−Vl)〉= ψ(vl2)−ψ(vl1+ vl2).
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4. q(µh,Λh|mh,uh,Bh,νh)

Similar updating could be found in Williams et al. (2007).

νh = ν0+Nh, uh = u0+Nh, mh =
u0m0+Nhx̄h

uh
,

B−1
h =B−1

0 +
n

∑
i=1

ρihΩ̂i,h+NhS̄h+
u0Nh
uh

(x̄h−m0)(x̄h−m0)
T ,

where

Nh =
n

∑
i=1

ρih, x̄h =
n

∑
i=1

ρihxi/Nh, S̄h =
n

∑
i=1

ρih(x̂i,h− x̄h)(x̂i,h− x̄h)
T/Nh.

x̂i,h =

[

xoii
m

mi|oi
h

]

, Ω̂i,h =

[

0 0

0 Σ
mi|oi
h

]

.

〈ln |Λh|〉=
P

∑
p=1

ψ((νh− p+1)/2)+P ln2+ ln |Bh|,

〈(xi−µh)
T
Λh(xi−µh)〉= (x̂i,h−mh)

TνhBh(x̂i,h−mh)+P/uh+ tr(νhBhΩ̂i,h).

5. q(wh|µw
h ,Σ

w
h ), 〈wh〉= µw

h , 〈whw
T
h 〉=Σw

h +µw
h (µ

w
h )

T .

Σ
w
h =

(

n

∑
i=1

ρih(Ω̂i,h+ x̂bi,hx̂b
T
i,h)+diag(〈λ〉)

)−1

,

µw
h =Σ

w
h

(

n

∑
i=1

ρihx̂bi,h〈ti〉+diag(〈λ〉)φ

)

.

6. q(ζp,λp|φp,γ,ap,bp), 〈λp〉= ap/bp.
Similar updating could be found in Xue et al. (2007).

φp =
N

∑
h=1

〈whp〉/γ, γ= γ0+N

ap = a0+
N
2
, bp = b0+

1
2

N

∑
h=1

〈w2hp〉−
1
2
γφ2p.

7. q(α|τ1,τ2), 〈α〉= τ1/τ2.

Similar updating could be found in any VB-inferred DP model with a Gamma prior on α
(Xue et al., 2007).

τ1 = N−1+ τ10, τ2 = τ20−
N−1

∑
h=1

〈ln(1−Vh)〉.
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The update equations of multi-task learning with incomplete data are summarized as follows:

1. q(t ji|µtji)

µtji =
S

∑
s=1

Eσ jis〈ws〉
T x̂b ji where Eσ jis =

N

∑
h=1

ρ jihσ jhs, x̂b ji = [x
o ji
ji ;m

mji|o ji
ji ;1].

2. q(xmji
ji |m

mji|o ji
ji ,Σ

mji|o ji
ji )

m
mji|o ji
ji = µ̃

mji
ji + Σ̃

mjio ji
ji (Σ̃

o jio ji
ji )−1(x

o ji
ji − µ̃

o ji
ji ),

Σ
mji|o ji
ji = Σ̃

mjim ji
ji − Σ̃

mjio ji
ji (Σ̃

o jio ji
ji )−1Σ̃

o jim ji
ji ,

where

Σ̃ ji =

(

S

∑
s=1

Eσ jis(〈w
x
s(w

x
s)
T 〉+νsBs)

)−1

,

µ̃ ji = Σ̃ ji

S

∑
s=1

Eσ jis(〈t ji〉〈wx
s〉+νsBsms−〈wx

swbs 〉).

x̂ ji =

[

x
o ji
ji

m
mji|o ji
ji

]

, Ω̂ ji =

[

0 0

0 Σ
mji|o ji
ji

]

, 〈x jix
T
ji〉= x̂ jix̂

T
ji+ Ω̂ ji.

3. q(z ji|ρ ji)

ρ jih = q(z ji = h)

∝ exp{
S

∑
s=1

σ jhs[〈t ji〉〈ws〉
T x̂b ji−

1
2
tr(〈wsw

T
s 〉〈x

b
ji(x

b
ji)
T
〉)]

+〈lnVjh〉+∑
l<h

〈ln(1−Vjl)〉

+
1
2

S

∑
s=1

σ jhs[〈ln |Λs|〉− (x̂ ji−ms)
TνsBs(x̂ ji−ms)−P/us− tr(νsBsΩ̂ ji)]}.

4. q(V |v)

v jh1 = 1+
n j

∑
i=1

ρ jih, v jh2 = 〈α〉+∑
l>h

n j

∑
i=1

ρ jil .

〈lnVjh〉= ψ(v jh1)−ψ(v jh1+ v jh2), 〈ln(1−Vjl)〉= ψ(v jl2)−ψ(v jl1+ v jl2).

5. q(α|τ1,τ2), 〈α〉= τ1/τ2.

τ1 = J(N−1)+ τ10, τ2 = τ20−
J

∑
j=1

N−1

∑
h=1

〈ln(1−Vjh)〉.
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6. q(c|σ)

σ jhs ∝ exp{
n j

∑
i=1

ρ jih[〈t ji〉〈ws〉
T x̂b ji−

1
2
tr(〈wsw

T
s 〉〈x

b
ji(x

b
ji)
T
〉)]

+〈lnUs〉+∑
l<s

〈ln(1−Us)〉

+
1
2

n j

∑
i=1

ρ jih[〈ln |Λs|〉− (x̂ ji−ms)
TνsBs(x̂ ji−ms)−P/us− tr(νsBsΩ̂ ji)]}.

7. q(Us|κs1,κs2)

κs1 = 1+
J

∑
j=1

N

∑
h=1

σ jhs, κs2 = 〈β〉+
J

∑
j=1

N

∑
h=1
∑
l>s

σ jhl.

〈lnUs〉= ψ(κs1)−ψ(κs1+κs2), 〈ln(1−Us)〉= ψ(κs2)−ψ(κs1+κs2).

8. q(β|τ3,τ4), 〈β〉= τ3/τ4.

τ3 = S−1+ τ30, τ4 = τ40−
S−1

∑
s=1

〈ln(1−Us)〉.

9. q(µs,Λs|ms,us,Bs,νs)

νs = ν0+Ns, us = u0+Ns, ms =
u0m0+Nsx̄s

us
,

B−1
s =B−1

0 +
J

∑
j=1

n j

∑
i=1

Eσ jisΩ̂ ji+NsS̄s+
u0Ns
us

(x̄s−m0)(x̄s−m0)
T ,

where Eσ jis = ∑N
h=1ρ jihσ jhs, and

Ns =
J

∑
j=1

n j

∑
i=1

Eσ jis, x̄s =
J

∑
j=1

n j

∑
i=1

Eσ jisx̂ ji/Ns,

S̄s =
J

∑
j=1

n j

∑
i=1

Eσ jis(x̂ ji− x̄s)(x̂ ji− x̄s)
T/Ns.

〈ln |Λs|〉=
P

∑
p=1

ψ((νs− p+1)/2)+P ln2+ ln |Bs|,

〈(x ji−µs)
T
Λs(x ji−µs)〉= (x̂ ji−ms)

TνsBs(x̂ ji−ms)+P/us+ tr(νsBsΩ̂ ji).

10. q(ws|µw
s ,Σ

w
s )

Σ
w
s =

(

J

∑
j=1

n j

∑
i=1

Eσ jis(x̂b jix̂b
T
ji+ Ω̂ ji)+diag(〈λ〉)

)−1

,

µw
s = Σ

w
s

(

J

∑
j=1

n j

∑
i=1

Eσ jisx̂b ji〈t ji〉+diag(〈λ〉)φ

)

.

〈ws〉= µw
s , 〈wsw

T
s 〉=Σ

w
s +µw

s (µ
w
s )

T .
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11. q(λp|ap,bp), 〈λp〉= ap/bp.

φp =
S

∑
s=1

〈wsp〉/γ, γ= γ0+S,

ap = a0+
S
2
, bp = b0+

1
2

S

∑
s=1

〈W 2
sp〉−

1
2
γφ2p.
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Abstract
The presence of asymmetry in the misclassification costs or class prevalences is a common occur-
rence in the pattern classification domain. While much interest has been devoted to the study of
cost-sensitive learning techniques, the relationship between cost-sensitive learning and the specifi-
cation of the model set in a parametric estimation framework remains somewhat unclear. To that
end, we differentiate between the case of the model including the true posterior, and that in which
the model is misspecified. In the former case, it is shown that thresholding the maximum likelihood
(ML) estimate is an asymptotically optimal solution to the risk minimization problem. On the other
hand, under model misspecification, it is demonstrated that thresholded ML is suboptimal and that
the risk-minimizing solution varies with the misclassification cost ratio. Moreover, we analytically
show that the negative weighted log likelihood (Elkan, 2001) is a tight, convex upper bound of
the empirical loss. Coupled with empirical results on several real-world data sets, we argue that
weighted ML is the preferred cost-sensitive technique.
Keywords: empirical risk minimization, loss function, cost-sensitive learning, imbalanced data
sets

1. Introduction

Pattern classifiers make decisions; when those decisions are wrong, a loss is incurred. Thus, the
ultimate goal of a classifier is to minimize the loss. When put into probabilistic terms, the mathe-
matical expectation of the loss is called the risk, and is related to the classifier’s error rates. In the
case of a binary classification this can be written as (Duda et al., 2001):

risk= p(+1)c(+1)p(error|+1)+ p(−1)c(−1)p(error|−1) , (1)

where c(+1) and c(−1) denote the costs of a false negative and false positive, respectively, p(+1)
and p(−1) are the prior probabilities for classes y = +1 and y = −1, p(error|+1) is the false
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negative rate, and p(error|−1) is the false positive rate. Notice that the false positive and negative
rates are the only terms which depend on the classifier parameters, whereas the misclassification
costs and class priors are typically constants of the classification problem (later, we consider the
case of example-dependent costs). The class priors are coupled with the costs of misclassification
in the expression for expected loss. Thus, the risk minimization problem is uniquely defined by
the ratio p(+1)c(+1)

p(−1)c(−1) ; that is, even though the priors and costs may vary, as long as this ratio stays
constant, the optimization problem is unchanged.

The term cost-sensitive learning (Elkan, 2001) has been attached to classification environments
in which c(+1) #= c(−1). On the other hand, classification with imbalanced data sets (Chawla and
Japkowicz, 2004) refers to the case where p(+1) #= p(−1). The presence of at least one of these
asymmetries has been referred to by some as the “nonstandard” case (Lin et al., 2002), even though
the situation is rather common in practice. In any case, these two problems may be unified simply
by stating that the goal of the classification is to minimize the risk, as opposed to the conventional
error rate:

error rate= p(+1) p(error|+1)+ p(−1) p(error|−1) .

A classifier that is designed to minimize the error rate will generally yield a high expected loss
when applied to the case c(+1) #= c(−1), as the error-minimizing classifier will under-emphasize
the more costly class. The problem may be exacerbated if the class prevalences are also skewed,
and in the extreme case, the algorithm yields a trivial classifier which always selects the common
class.

Minimizing risk is synonymous with optimally trading off the false negative and false positive
rates. The trade-off between the false positive rate and false negative rate is precisely depicted by
receiver operating characteristic (ROC) curves (Provost and Fawcett, 1997; Fawcett, 2004; Egan,
1975). Thus, ROC curves are well-suited to evaluating the expected loss of a classifier across the
range of misclassification costs. However, “reading off” the expected loss from an ROC graph is not
straightforward, and Drummond and Holte (2000) proposed cost curves as an explicit visualization
of a classifier’s risk for varying misclassification costs and class priors. Since the ratio p(+1)c(+1)

p(−1)c(−1) is
unbounded, the curves instead show the risk as a function of the probability cost function (pcf):

pcf=
p(+1)c(+1)

p(+1)c(+1)+ p(−1)c(−1)
.

Cost curves facilitate the quantification of the reduction in loss offered by a cost-sensitive learning
algorithm.

Several methodologies have been developed in the effort to design risk-minimizing classifiers.
The simplest approach is to modify the threshold of an existing, cost-insensitive classifier. If the
classifier is based on the log of the ratio of true class posterior probabilities, the threshold should
be modified by a value equal to the log of the ratio of misclassification costs (Duda et al., 2001).
In practice, the true class-conditional probabilities are unknown. Nevertheless, shifting the thresh-
old by the corresponding amount has become a common heuristic (Elkan, 2001; Lin et al., 2002).
Elkan (2001) proposes handling asymmetric misclassification costs by retraining the classifier on
a training set in which the proportion of positive and negative examples is matched to the ratio of
misclassification costs. Alternatively, if an algorithm may apply weights to the training examples,
the negative examples should be weighted by a value corresponding to the asymmetry in misclas-
sification costs. Maloof (2003) points out that although the problems of imbalanced data sets and
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varying misclassification costs are separate problems, they may be tackled in very similar ways. He
shows empirically that oversampling the less prevalent class (or undersampling the more prevalent
class) is a procedure which yields results virtually identical to adjusting the decision threshold.

Domingos (1999) proposes a technique to relabel the training data in such a way that the rela-
beled data set may be trained using a standard (cost-insensitive) technique to yield a cost-sensitive
classifier. The posteriors for the labeled examples are estimated via bagging and then used in con-
junction with the Bayesian minimum risk criterion to assign new labels to the supervised data.
Margineantu (2000) analyzes the approach of Domingos (1999) and suggests ways of improving
the class probability estimates of the training data. Dudik and Phillips (2009) address the class im-
balance problem by proposing a method which attempts to minimize loss assuming the worst-case
class proportions. Masnadi-Shirazi and Vasconcelos (2010) describe a cost-sensitive version of the
popular support vector machine.

Some work has been devoted to the case of example-dependent costs (Zadrozny and Elkan,
2001; Zadrozny et al., 2003). Moreover, some authors have advocated for maximizing benefits
rather than minimizing costs (Elkan, 2001).

In Guerrero-Curieses et al. (2004), the authors examine loss functions which are minimized by
the true class posterior probabilities; moreover, it is pointed out that the corresponding optimization
algorithms should focus on training points near the decision boundary.

It is also important to point out that risk minimization is a diverse problem spanning multiple
research communities; in particular, significant contributions to the problem have been made in the
econometrics literature. To that end, Elliott and Lieli (2007) examine a problem analogous to cost-
sensitive learning, namely the determination of a profit maximizing decision scheme by a lender.
It is noted therein that to construct the minimum risk decision, the model density need not match
the true density; rather, it is only required that the classifier output from the model density falls on
the same side of the threshold as the classifier output using the true density. Moreover, the authors
use a new loss function, namely an affine transformation of the expected utility (risk), and show an
empirical advantage over traditional methods.

While a plethora of cost-sensitive methods has been investigated, it remains unclear under what
conditions shifting the threshold of an existing cost-insensitive classifier is an appropriate solution.
The distinction between the case of the model family including the true posterior, versus that of
“misspecification” (the model does not contain the truth), has large implications on the resulting
cost-sensitive learning process.

In the former case, shifting the threshold of the maximum likelihood (ML) solution is an asymp-
totically optimal solution to the risk minimization problem, and in the following we provide a proof
of this important point. This means that when employing an expressive family which contains the
true posterior, the cost-sensitive learning problem becomes one of density estimation, and the costs
affect only the threshold, not the estimator. This may lead one to use a rich model set leading to
complex classifiers. However, the choice to employ a simple classifier brings many advantages:
ease of implementation, a lesser number of parameters to estimate, a reduced risk of over-fitting,
and consequently simplified regularization procedures. Coupled with the complexity of real-world
data sets, misspecified models are frequently encountered in practice. In this case, we demonstrate
that thresholded ML is suboptimal, and that the minimum risk solution varies with the ratio of
misclassification costs.

The problems with minimizing the true empirical risk, a non-smooth function, are well-known:
for zero-one loss, the idea of smoothing out the indicator function appears in Horowitz (1992). In
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this paper, we employ a sigmoidal approximation of the empirical risk to yield a novel minimizer
of the loss under asymmetric misclassification cost values. Rather than argue for its optimality,
this estimator is used as a basis for comparison and to argue for the relative merits of existing
cost-sensitive techniques. We show analytically that the negative weighted log likelihood serves as
an upper bound to the sigmoidal empirical risk. Based on the convexity of the negative weighted
log likelihood and forthcoming numerical results, we will argue that weighted ML is generally the
preferred technique.

2. Classification Model

In the following, we adopt a probabilistic model for the classification task: assume that the true
posterior probability p(y|x) of class y ∈ {−1,+1} given received feature vector x ∈ RD is known.
Let c(y,x) denote the cost of a misclassification when the true class is y for feature x, minus the cost
of a correct prediction. Note that in general, c is feature-dependent, although in many applications,
c(y,x) = c(y). If there is also no cost for a correct decision, then c(y) is simply the cost of a false
positive (y=−1) or false negative (y=+1). The optimal Bayesian decision rule is to predict ŷ=+1
if (Duda et al., 2001):

p(+1|x)
p(−1|x) > co(x),

where co(x) = c(−1,x)
c(+1,x) > 0. The optimal decision rule may be written as:

ŷ(x) = sgn [ f (x)− lnco(x)] , (2)

where ŷ(x) is the predicted class given feature vector x, sgn is the signum function sgn(x) =
{

1 x> 0
−1 x≤ 0 , and f (x) is the discriminant function:

f (x) = ln p(+1|x)
p(−1|x) .

It should be noted that the argument of the signum function may be written in log units due to the
nonnegativity of the ratio of posteriors and the optimal threshold co(x).

In practice, we do not have access to the true class posteriors, but rather estimate their values
from available training data. The estimate is denoted by p(y|x;θ), where θ ∈ Θ is a vector parame-
terizing the model posterior, and Θ is termed the model set. If the true posterior is in the model set,
denote the true value of θ by θ∗, such that p(y|x) = p(y|x;θ∗). The model discriminant is written as
f (x,θ) = ln p(+1|x;θ)

p(−1|x;θ)
, and the classifier takes the form:

ŷ(x,θ) = sgn [ f (x,θ)− lnco(x)] . (3)

This paper is concerned with methods of estimating θ to minimize risk, and their relation to the
specification of the model set. In order to treat these estimation methods, we briefly outline the risk
minimization framework which allows for the subsequent analysis of the various cost-sensitive loss
functions.
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3. Risk Minimization for Cost-Sensitive Learning

Risk minimization is concerned with choosing a function from a set {ŷ(x,θ) ,θ ∈Θ} to minimize
the resulting risk functional

R(θ) =
∫ ∫

L(y,x,θ) p(x,y)dxdy,

where L(y,x,θ) quantifies the loss incurred by the classifier ŷ(x,θ) in response to labeled data (x,y).
Note that the loss L varies with the feature x. To ease notation throughout the rest of the paper, the
dependence of ŷ on x and θ is implied.

The problems of regression, density estimation, and pattern recognition may all be formulated
within the context of risk minimization, simply by altering the loss function L, as outlined in Vap-
nik (1998, 1999). In the case of error-minimizing pattern recognition, the classical zero-one loss
function is given by:

L(y,x,θ) = (y #= ŷ) ,

where (Φ) is the indicator function which equals one when Φ is true and zero otherwise.
Since we do not have access to the true density p(x,y), the empirical risk minimization (ERM)

approach substitutes the empirical density:

pemp (x,y) =
1
N

N

∑
n=1

(x= xn) (y= yn) ,

where D = (xn,yn)Nn=1 is a set of N labeled observations which are independent and identically
distributed samples drawn from the true joint density p(x,y), leading to the following expression
for the empirical risk:

Remp (θ) =
1
N

N

∑
n=1

L(yn,xn,θ) . (4)

In order to design a cost-sensitive classifier, a loss function modeling the asymmetry in misclassifi-
cation costs is required. Several alternatives exist. In the following subsections, we describe these
loss functions.

3.1 Thresholded Maximum Likelihood

The traditional (cost-insensitive) ML loss function is given by Vapnik (1998):

L(y,x,θ) =− ln p(y|x;θ) ,

leading to the following expression for the empirical risk:

Rmlemp (θ) =−
1
N∑n

ln p(yn|xn;θ) . (5)
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The minimizer of (5) is the well-known ML estimate (Duda et al., 2001):

θ̂ML = argmax
θ∈Θ

ln
N

∏
n=1

p(yn|xn;θ)

= argmax
θ∈Θ

ln
N

∏
n=1

1

1+ p(−yn|xn;θ)
p(yn|xn;θ)

= argmax
θ∈Θ

N

∑
n=1
ln

[

1
1+ e−yn f(xn,θ)

]

,

where the second step follows from Bayes’ rule. If the model set Θ contains the true parameter θ∗,
it follows that in the asymptotic limit, we have limN→∞ θ̂ML = θ∗ (Kay, 1993). From (2) and (3), if
we have knowledge of θ∗, then a threshold shift of lnco(x) yields the optimal classifier. Assuming
continuity of the log likelihood (in θ), we have that limN→∞ ŷ

(

x, θ̂ML
)

= ŷ(x,θ∗), and thus the
thresholded ML estimate yields the minimum risk decision rule for all cost ratios. Once the ML
estimate is available, the cost-sensitive classifier for any cost ratio may be formed by appropriately
adjusting the threshold. There is no need to retrain the classifier if the cost ratio changes. In the
case of a generalized linear model for p(y|x,θ), it may easily be shown (McCullagh and Nelder,
1989; Parra et al., 2005) that the risk function is convex, and an iteratively reweighted least squares
(IRLS) algorithm locates the optimal linear classifier often within a few iterations.

Unfortunately, in many real-world classification problems, the model set (for example, the set of
all hyperplanes) does not contain the true posterior. Notice, for example, that even in the simple case
of Gaussian data, the linear discriminant is only optimal in the case of equal covariance matrices;
nevertheless, linear classifiers are heavily used. (For a comprehensive treatment of misspecified
models in ML, refer to White, 1982.) In such cases, the classifier in the model set which minimizes
risk will vary with the pcf. As a result, a shift in threshold of the ML solution will yield a sub-
optimal classifier.

3.2 Example: Minimum Risk Hyperplane for Gaussian Data

To illustrate this point, we consider the instructive case of Gaussian densities with unequal covari-
ances and a linear classifier function. The purpose of this exercise is not to argue for a simple
Gaussian model or a linear classifier but rather to demonstrate in an analytically tractable case
the problem that arises with thresholded ML when the model is misspecified. It is assumed that
c(y,x) = c(y).

Consider a linear classifier of the form f (x;θ)= θTx−b, and assume Gaussian class-conditional
densities:

p(x|y) =
1

(2π)D/2 |Σy|1/2
e−

1
2 (x−µy)

TΣ−1
y (x−µy), y ∈ {−1,+1} .

Note that by the normality of x|y, θTx∼N
(

θTµy,θTΣyθ
)

. Thus, we have:

p(error|y) = p
[

y
(

θTx−b
)

< 0
]

=
1
2



1+ y · erf





b−θTµy
√

2θTΣyθ







 . (6)
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Substituting (6) into (1), the expression for the expected loss takes the form:

R(θ,b) =
c(+1)p(+1)

2

[

1+ erf

(

b−θTµ+
√

2θTΣ+θ

)]

+
c(−1)p(−1)

2
erfc

(

b−θTµ−
√

2θTΣ−θ

)

. (7)

The optimal hyperplane is the one which minimizes the risk: argminθ,b R(θ,b).
Below, we illustrate an example where the parameters of the data are given by:

µ+ =
[

0.5 0
]T

, µ− =
[

0 0.5
]T

, Σ+ =

[

1 0
0 0.5

]

, Σ− =

[

0.5 0
0 1

]

.

In this case of unequal covariance, the optimal ML classification function is not linear but instead a
quadric (Duda et al., 2001, Chapter 2).

Figure 1(a) displays the minimum risk quadrics for various values of the pcf, where it is assumed
that p(+1) = p(−1). The quadrics are related to each other via a threshold shift. On the other hand,
Figure 1(b) depicts the minimum risk planes for the same data, which were computed by minimizing
(7) using numerical optimization techniques. It is clear that the direction of the optimal plane is a
function of the pcf, and a threshold shift of the minimum error plane is not an optimal solution to
the risk minimization problem. Figure 1 (c) displays the threshold-shifted ML solutions for various
values of the pcf. The suboptimality of the ML approach is readily apparent by contrasting Figure
1(b) with Figure 1(c). Notice that at the extremes of the pcf, the optimal planes are orthogonal to
each other. Meanwhile, the ML plane has unit slope for all pcf. The risks obtained by applying the
ML and minimum risk planes to the given data are shown in Figure 1(d). In the figure, we normalize
the raw risk of (1) by the “trivial risk”, which is defined as the risk achieved by the scheme:

ŷtrivial = sgn [p(+1)c(+1)− p(−1)c(−1)] .

We call this the “trivial risk” because the decision rule is feature-independent and is strictly a func-
tion of the class priors and misclassification costs. A normalized risk less than 1 indicates that the
classification scheme yields a “savings” over the a priori decision rule. The normalization allows us
to quantify the “percentage of savings” achieved by employing a “smart” decision rule.

The curves were generated by averaging over 1000 ensembles, where each ensemble consisted
of N = 1000 training samples. The ML classifier was trained on each ensemble and the resulting
risk computed by substituting the solution into (7). The risk margin between the threshold-shifted
ML solution and that of the minimum risk plane is what is “available” for cost-sensitive learning
algorithms to improve upon. These methods attempt to learn, for each pcf, the minimum risk plane
shown in Figure 1(b), to achieve the dashed cost curve in Figure 1(d).

The difference between the threshold-shifted ML and cost-sensitive paradigms may be under-
stood in terms of ROC analysis—Figure 1 (e) depicts the ROC curves for the thresholded ML and
minimum risk classifiers. In the ML method, the ROC curve is generated by sweeping the thresh-
old of the base classifier across the real line and computing the corresponding error rates. In the
cost-sensitive paradigm, each point on the ROC curve corresponds to a distinct classifier which is
computed by minimizing (7) for a specific ratio of misclassification costs, resulting in values for the
true and false positive rates. Note that one may also produce a family of ROC curves by sweeping
the threshold of each of these distinct cost-sensitive classifiers, although this is not shown in the
figure.
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(b) Minimum risk planes
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(d) Cost curves
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Figure 1: Minimum risk classification of Gaussian data with unequal covariance matrices.

3.3 Relabeled Examples

One heuristic to cost-sensitive classification is to modify the training labels to achieve a balance in
class prevalence. In terms of an ERM loss function, this may be written as:

L(y,x,θ) =− ln p [g(x)|x;θ] ,

where the function g(x) :RD → {−1,+1}, produces a new label for each training sample according
to some criterion. Domingos (1999) proposes MetaCost, which reassigns labels according to the
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Bayesian minimum risk criterion:

g(x) = arg max
y∈{−1,+1}

c(y) p̂(y|x) , (8)

where p̂(y|x) is an estimate of the class posterior probability which is obtained using bagging
(Breiman, 1996). It is typically the examples near the boundary which are re-labeled. The em-
pirical risk follows as:

Rrelemp (θ) =−
1
N∑n

ln p [g(xn)|xn;θ] .

As the re-labeling of (8) varies with the ratio of misclassification costs, the resulting cost-
sensitive classifier is a function of the pcf and thus has the ability to yield the minimum risk es-
timator. The success of the method hinges on the estimation of the posterior probabilities; in the
best case scenario, the re-labeling results in the cost-sensitive boundary approaching the minimum
risk boundary. In contrast to the forthcoming methods, MetaCost does not reweight examples, and
thus the risk function will not dominated by the examples of a rare but costly class. The technique
may be used as a cost-sensitive pre-processing to any classification technique, and not just ML es-
timation of the posterior. In the case of ML, we maximize the log-likelihood but with the altered
labels.

3.4 Weighted Likelihood

A standard approach for developing cost-sensitive classifiers is to weight the training examples
according to the “costliness” of misclassifying that example. This procedure may be viewed in
terms of an ERM loss function (Elkan, 2001; Zadrozny et al., 2003):

L(y,x,θ) =−c(y,x) ln p(y|x;θ) ,

such that the corresponding empirical risk takes the form:

Rwmlemp (θ) =−
1
N∑n

c(yn,xn) ln p(yn|xn;θ) . (9)

Weighting the log likelihood has previously been studied as a tool to handle misspecification (Shi-
modaira, 2000). Note that such weighting of examples is equivalent to modifying the proportion of
examples in the training set according to the weightings c(y,x). If these weightings change, so does
the cost function, and thus the classifier needs to be retrained. In principle, this technique allows the
classification to choose the model in Θ which minimizes risk for the specified cost matrix. More-
over, example-weighting may easily be incorporated into the IRLS algorithm, yielding an iterative
reweighted weighted least-squares scheme (McCullagh and Nelder, 1989) which minimizes (9)—in
the appendix, we provide a MATLAB implementation.

Notice that if the misclassification costs are highly asymmetric, the more “costly” examples
will be heavily emphasized in the empirical risk function. Furthermore, if there are only a few such
examples, the classifier is at an increased risk of overfitting, since the effective number of examples
is much less than N. This issue plagues any cost-sensitive method which weights the examples
based on cost.
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3.5 Sigmoidal Empirical Risk

In order to relate the risk of (1) with the empirical risk (4), the appropriate loss function is found to
be:

L(y,x,θ) = c(y,x) (ŷ #= y) .

Strict equivalence is achieved in the simplifying case of c(y,x) = c(y) (ŷ #= y) assuming that there
is no cost for a correct decision. Generally, the empirical risk follows as:

Remp(θ) = const.+
1
N∑n

c(yn,xn) (ŷn #= yn)

= const.+
1
N∑n

c(yn,xn)u [−yn f (xn,θ)] (10)

where the constant is a summation across the costs of a correct decision and u(x) is the step function:

u(x) =
{

1 x> 0
0 x≤ 0 . Since our goal is to minimize (1), the optimization of the empirical risk under

the direct loss of (10) is of great importance.
Elliott and Lieli (2007) propose to optimize a function closely related to (10) in an econometric

context; employing the notation of this paper, the objective function maximized by Elliott and Lieli
(2007) is written as:

Rel (θ) =
N

∑
n=1

ync(yn,xn)sgn [ f (xn,θ)− lnco(xn)] , (11)

and the authors propose simulated annealing to perform the optimization.
Note that both objective functions (10) and (11) are not differentiable due to the non-smoothness

of u and sgn at zero, respectively. In the case of (10), we may approximate the step function with a
sigmoid :

u(x)≈
1

1+ e−x
. (12)

Substituting (12) into (10), we obtain the following expression for the approximate empirical risk:

R̃emp(θ) =
1
N∑n

c(yn,xn)
1

1+ eyn f(xn,θ)
.

The classifier θ which minimizes the empirical risk follows as:

θ̂= argmin
θ
R̃emp(θ). (13)

The advantage of this approach is that it closely approximates (up to the ability of the sigmoid
to approximate a step) the true empirical risk. On the other hand, the risk function is non-convex,
complicating the minimization of (13).
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3.6 Relating Sigmoidal Risk to Weighted ML

The need to minimize non-convex functions arises often in practice. A standard trick in optimizing a
non-convex function is to optimize a convex upper bound of the original function. In this subsection,
we show that the negative weighted log likelihood, a convex function, provides a tight upper bound
of the sigmoidal empirical risk.

To see this, note the inequality:

z≤− ln(1− z), z≤ 1. (14)

Substituting z= 1

1+eyn f(xn ,θ)
into (14) results in:

1
1+ eyn f(xn,θ)

≤− ln
1

1+ e−yn f(xn,θ)
.

Combining these inequalities over the training examples and assuming strict positivity of the weights
c(yn,xn), we obtain:

∑
n
c(yn,xn)

1
1+ eyn f(xn,θ)

≤−∑
n
c(yn,xn) ln

1
1+ e−yn f(xn,θ)

.

As a result,

R̃emp(θ)≤ Rwmlemp (θ) .

This means that minimizing the weighted negative log-likelihood (9) minimizes an upper bound
on the empirical risk. As will be shown numerically with upcoming examples, this bound is fairly
tight (c.f., Figures 2 and 3). Since the negative weighted log-likelihood is convex, to circumvent the
non-convexity of the sigmoidal empirical risk, one option is to employ the weighted likelihood loss
function.

4. Experimental Evaluation

To assess the performance of the various cost-sensitive approaches (and its dependence onN), and to
support the upper bound relationship of weighted ML to sigmoidal risk, we conducted an empirical
evaluation of the various cost-sensitive learning approaches on several data sets. We first consider
the case of example-independent and synthetic (i.e., exogenous to the features) costs. Later, we
examine a data set where costs are endogenous and depend on the features. We employed a linear
model set of the form f (x,θ) = θTx−b. For all data sets, five-fold cross-validation was employed,
and we plot the mean loss over the N examples (each example is used once for validation) along
with standard errors of the mean.

The prevalence of the positive class is data-set dependent. The pcf was varied from 0.1 to 0.9 in
increments of 0.1. The relationship between the misclassification cost ratio and the pcf is given by:

c(−1)
c(+1)

=
p(+1)
p(−1)

(1−pcf)
pcf

.

Thus, a pcf of 0.5 corresponds to the case where the ratio of misclassification costs is inversely
related to the ratio of class priors [i.e., c(−1)p(−1) = c(+1)p(+1)].
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The generalization ability of all algorithms benefited from !2 regularization. Thus, the problem
of cost-sensitive learning becomes one of penalized ERM:

θ̂= argmin
θ

{

Remp (θ)+
λ
2
‖θ‖2

}

. (15)

Where computationally feasible, the value of λ was determined using a nested cross-validation loop
which tunes λ on the training set; the tuned value is then fed up to the outer cross-validation loop
which evaluates performance on the test set.

The implementation of all cost-sensitive learning methods requires solving the optimization
problem (15). For the 3 likelihood based methods, the Newton-Raphson IRLS algorithm (McCul-
lagh and Nelder, 1989) was employed to solve the optimization. In order to solve the minimum
risk optimization of (13), the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method
(Fletcher, 2000) was employed in conjunction with multiple random restarts: a random starting
vector is chosen, the BFGS algorithm is run, and the training risk evaluated. This process is re-
peated 100 times, and the final solution is selected as the classifier which yields the lowest training
risk among the runs.

4.1 Gaussian Data

Before delving into real-world data sets, we evaluated the various cost-sensitive approaches on the
Gaussian data described in Section 3. This example is instructive as we have a closed-form expres-
sion for the minimum attainable value of risk, and thus can evaluate the convergence properties with
an increased sample size. Figure 2 depicts the cost curves1 for various training sizes N. At N = 10,
there is a substantial loss margin between the minimum risk plane and that which is achieved by
the thresholded ML technique. However, it is clear that the cost-sensitive techniques are not able
to provide reliable estimates of the minimum risk plane direction with such limited data. As the
size of the training set increases, the sigmoidal risk estimator converges to the minimum risk plane.
Notice, however, that with such large sample sizes, the thresholded ML technique is relatively adept
at yielding risk values comparable to the true minimum. The reason for this is that the examples
which are misclassified by thresholded ML and classified correctly by the the other techniques are
mostly the low-cost examples (compare Fig. 1(b) with Fig. 1(c), for example). Also shown in all
plots is the Bayes risk, which is the risk attained by the minimum risk quadric.

4.2 UCI Data

Next, we evaluate the classifiers on several real-world data sets obtained from the UCI database
(Asuncion and Newman, 2007) as well as our previous work on the classification of electroen-
cephalographic (EEG) data in a real-time detection task (Parra et al., 2008).2 Table 1 summarizes
the parameters used in the evaluation of these data sets.

From Figs. 3 (a) and (b), it is once again apparent that given a modest value of N, the benefits
provided by cost-sensitive learners over the thresholded ML approach are not substantial. However,
in Figs. 3 (c) and (d), one observes a tangible loss reduction of the sigmoidal risk estimator over

1. In addition to the ensemble-averaged risk, we also report standard errors of the mean, which follow as the sample
standard deviation of the ensemble-averaged mean, divided by the square root of the number of ensembles.

2. Since only one “ensemble” is available in the experiments with real data, we treat the cost (at test time) of each
example as an iid realization of the risk and report standard errors of the mean across examples.
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(a) N = 10
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(b) N = 100
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(c) N = 1000

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pcf

C
os

t
/

T
ri
vi

al
C

os
t

 

 

Thresholded ML
MetaCost
Weighted ML
Sigmoidal
Minimum risk hyperplane
Bayes Risk

(d) N = 10000

Figure 2: Cost curves for Gaussian data with varying training set sizes. In (d), the thresholded ML
and MetaCost curves are nearly equivalent.

Data set N(+) N(−) D λ p(+1)
Haberman 81 225 3 optimized 0.26
Transfusion 178 570 4 optimized 0.24
Magic 6688 12332 10 fixed (0.2) 0.35
Adult 7841 24720 14 fixed (0.2) 0.24
EEG 830 40608 15 fixed (2) 0.02

Table 1: Data set and regularization parameters. N(+) and N(−) refer to the number of positive
and negative examples, respectively.

thresholded ML and MetaCost, whose curves overlap. Lastly, Fig. 3 (e) demonstrates the near-
optimality of weighted ML and its close approximation of the sigmoidal risk minimizing solution.
Note that for this heavily skewed data set, while the total number of examples is N = 41438, only
830 of these are positive exemplars. Note also that a skew in class prevalence leads to asymmetry
in the resulting cost curves.
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(a) Haberman
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(b) Transfusion
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(c) Magic
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(d) Adult
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(e) EEG

Figure 3: Cost curves (with standard errors of the means) for various real data sets with synthetic
costs.

4.3 German Banking Data

Finally, we evaluated the risk minimizing classifiers on a publicly available data set collected by
a German bank: http://www.stat.uni-muenchen.de/service/datenarchiv/kredit/kredit.html. The data
set details the credit history and biographical information of N = 1000 past loan applicants, as well
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Figure 4: NPV per applicant: means and standard errors. Solid horizontal lines indicate statistical
significance at the p= 0.01 level.

as whether the loan was repaid. This data set has been used previously to evaluate a novel profit-
maximizing decision rule in the econometrics literature (Lieli and White, 2010).

Upon receiving a loan request, the bank decides either to grant the loan at a certain interest rate,
or rather to invest the loan amount in a risk-free government bond. In this application, it is easier
to work with benefits rather than costs; as such, the net present value (NPV), measured in Deutsche
Marks (DM) of extending the loan must be compared with the NPV of rejecting the application,
which is zero as outlined in Lieli and White (2010). The NPV of extending the loan depends on
whether the loan is repaid, and thus the optimal decision rule takes into account the probability of
repayment as well as the potential profit to be made on the loan. Thus, the aim of the evaluation
is to predict, from an applicant’s credit history and biographical information, the likelihood of the
applicant repaying the loan which he/she is seeking.

In the framework described in the earlier sections, we have c(y,x) = y ·π(y,x), where π(y,x)
denotes the NPV associated with predicting ŷ=+1 when the truth is y (repayment: y=+1, default:
y = −1). Please refer to Lieli and White (2010) for the precise mathematical relationship between
the NPV π and the individual features in x. In the evaluation, we used the D = 5 dimensional
feature set chosen by Lieli and White (2010), as well as their proxies for the interest and risk-
free government rates. Note that the “costs” are both example-dependent and endogenous to the
problem. We conducted a leave-one-out cross-validation of the thresholded ML, weighted ML, and
sigmoidal risk estimators on this N = 1000 example data set (MetaCost is not applicable to problems
with example-dependent costs).

Figure 4 displays the mean NPV per applicant, along with standard errors. On average, the
means obtained by the thresholded ML, weighted ML, and sigmoidal risk estimators are DM 3.0
, DM 19.8 , and DM 21.2 . The standard errors are given by DM 18.1 , DM 14.7, and DM 11.9,
respectively (a negative value of NPV indicates an overall loss for the classification scheme). We
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performed pairwise sign-tests of statistical significance to determine if performance differs signifi-
cantly for the classifiers. A statistically significant improvement in NPV is achieved by both WML
and sigmoidal risk estimators over the thresholded ML solution (p < 0.01). On the other hand,
statistical significance cannot be established between WML and sigmoidal risk (p ≈ 0.9). This
empirical finding supports the analytical result of negative weighted log likelihood upper bounding
empirical loss.

5. Discussion

It is interesting to point out the process which led to the findings presented in this paper. Initially,
we were motivated by the observation that with a misspecified model, the direction of the minimum
risk hyperplane is a function of the ratio of misclassification costs and the class priors. Since the
ML approach is inherently to shift the minimum error hyperplane, we sought to develop an estima-
tor which, given a ratio of misclassification costs, will find the direction required to minimize risk
rather than maximizing likelihood. The expectation was that such an estimator would provide large
performance gains over the ML approach. This led us to the development of the sigmoidal empiri-
cal risk minimizer. During the algorithm evaluation process, several findings emerged. Firstly, the
search for the minimum risk hyperplane is non-trivial: regularization techniques proved to be nec-
essary, particularly in the case of a limited training set. Moreover, both the existing and proposed
cost-sensitive learning techniques yield the greatest benefits over thresholded ML when presented
with large amounts of training data. When abundant data is available, the sigmoidal risk estimator
typically outperforms all other methods, but weighted ML yields quite comparable values.

When the model set includes the true posterior, the threshold-shifted ML approach is optimal.
This naturally brings us to the following question: why not employ a rich model set (for example,
a multi-layer neural network), estimate its parameters using ML, and then shift the threshold by
the log of the misclassification cost ratio? With an infinite amount of training data, we are sure to
arrive at the lowest attainable risk. However, there are a few reasons why this procedure may not be
desirable: a rich model set consists of many parameters, which in turn requires a large amount of
training data to prevent over-fitting. From the so-called structural risk minimization principle, it is
well-known that a simpler model set yields empirical risks that are closer to the true risk (Vapnik,
1998). Moreover, the optimality of the ML solution is not guaranteed for a finite amount of data.
Thus, rates of convergence are key to determining the best approach.

In general, the choice of model complexity hinges upon several factors: the dimensionality of
the feature space in relation to the number of available examples, the signal-to-noise ratio, and also
the skew in class prevalence. For example, in applications involving a rare and expensive class,
the key is to yield accurate decisions for this infrequent class. If the number of such examples
is low, then even if the number of overall examples is high, a complex model will generally be
undesirable. In other words, the effective sample size is closer to the number of costly examples
than the entire sample size N. Consequently, the number of free parameters needs to be limited to
prevent overfitting. The design issue in cost-sensitive learning is thus how best to use these few
degrees of freedom: whether to “prioritize” correct decisions on the costly training examples, or
rather to “spend” the degrees of freedom on achieving the best model fit.

The results with Gaussian data presented above appear to indicate that the sigmoidal risk min-
imizer tends to the true minimum risk model given enough data. However, the weighted ML esti-
mator provides a tight upper bound on the sigmoidal empirical risk and thus this solution is not far
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from optimal. Given that the negative weighted likelihood is convex, weighted ML thus becomes
the preferred cost-sensitive technique.

Lastly, as seen in Figure 2, both the opportunity and the challenge in cost-sensitive learning lies
in the ability to estimate the minimum risk model with limited data. Thus, the focus going forward
should be on sparse (i.e., with few examples relative to the dimensionality of the feature space)
inference of the minimum risk classifier.

6. Conclusion

This paper has elucidated the role of the specification of the model set in the problem of learning
with asymmetric costs or class prevalences. It was shown that in the case of the model family includ-
ing the true posterior, thresholding the ML solution is guaranteed to asymptotically minimize risk.
In this case, cost-sensitive learning is synonymous with threshold adjustment. On the other hand,
with a misspecified model, the risk minimizing solution is a function of the misclassification cost
ratios, and thresholding the ML estimate is sub-optimal. A novel estimator based on a sigmoidal
estimation of the empirical risk was presented and shown to outperform conventional techniques
provided enough data; however, the negative weighted log likelihood was analytically and empiri-
cally shown to tightly upper bound the sigmoidal loss. Thus, we advocated for the weighted ML as
the preferred cost-sensitive learning technique.
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Appendix A. MATLAB Code for Weighted Maximum Likelihood

Provided below is a basic MATLAB implementation of the weighted ML approach to cost-sensitive
learning using iteratively reweighted weighted least squares. For a more detailed version as well as
implementations of thresholded ML and sigmoidal risk minimization, please refer to http://bme.
ccny.cuny.edu/faculty/lparra/cost.

function v = wml(x,y,c,lambda)
% x - N-by-D matrix of input samples \in (-inf,inf)
% y - N-by-1 vector of binary labels \in {0,1}
% c - N-by-1 vector of costs \in (0,inf)
% lambda - regularization parameter \in (0,inf) (defaults to 0)
% v - v(1:D) normal to separating hyperplane, v(D+1) threshold
% (c) Lucas C. Parra, Jacek P. Dmochowski
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if nargin<4; lambda=0; end;
[N,D]=size(x);
s = std(x); x = x./repmat(s,[N 1]);
x = [x ones(N,1)];
v = zeros(D+1,1);
lambda = [0.5*lambda*ones(1,D) 0]’;
while 1

vold=v;
mu = exp(x*v - log(1+exp(x*v)));
w = ( mu.*(1-mu) ).*c;
e = (y - mu).*c;
grad = x’*e - lambda .* v;
inc = inv(x’*(repmat(w,1,D+1).*x)+diag(lambda)) * grad;
v = v + inc;
if norm(vold) & subspace(v,vold)<10ˆ-10, break, end;

end;
v(1:end-1) = v(1:end-1)./s’;
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Abstract
This paper introduces a Bayesian algorithm for constructing predictive models from data that are
optimized to predict a target variable well for a particular instance. This algorithm learns Markov
blanket models, carries out Bayesian model averaging over a set of models to predict a target vari-
able of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable
models to average over. We call this method the instance-specific Markov blanket (ISMB) algo-
rithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance
measures and its performance was compared to that of several commonly used predictive algo-
rithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest
Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm per-
formed better on average on all performance measures against all the comparison algorithms.
Keywords: instance-specific, Bayesian network, Markov blanket, Bayesian model averaging

1. Introduction

Prediction is a central problem in machine learning that involves inducing a model from a set of
training instances that is then applied to future instances to predict a target variable of interest.
Several commonly used predictive algorithms, such as logistic regression, neural networks, decision
trees, and Bayesian networks, typically induce a single model from a training set of instances, with
the intent of applying it to all future instances. We call such a model a population-wide model
because it is intended to be applied to an entire population of future instances. A population-wide
model is optimized to predict well on average when applied to expected future instances.

Recent research in machine learning has shown that inducing models that are specific to the
particular features of a given instance can improve predictive performances (Gottrup et al., 2005).
We call such a model an instance-specific model since it is constructed specifically for a particular
instance (case). The structure and parameters of an instance-specific model are specialized to the
particular features of an instance, so that it is optimized to predict especially well for that instance.
The goal of inducing an instance-specific model is to obtain optimal prediction for the instance at
hand. This is in contrast to the induction of a population-wide model where the goal is to obtain
optimal predictive performance on average on all future instances.

There are several possible approaches for learning predictive models that are relevant to a single
instance. One approach is to learn a model from a subset of the training data set that consists
of instances that are similar in some way to the instance at hand. Another approach is to learn a
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model from a subset of variables that are pertinent in some fashion to the instance at hand. A third
approach, applicable to model averaging where a set of models is collectively used for prediction,
is to identify a set of models that are most relevant to prediction for the instance at hand.

In this paper, we describe a new instance-specific method for learning predictive models that
(1) uses Bayesian network models, (2) carries out Bayesian model averaging over a set of models
to predict the target variable for the instance at hand, and (3) employs an instance-specific heuristic
to identify a set of suitable models to average over. The remainder of this section gives a brief
description of each of these characteristics.

Bayesian network (BN) models are probabilistic graphical models that provide a powerful
formalism for representation, reasoning and learning under uncertainty (Pearl, 1988; Neapolitan,
2003). These graphical models are also referred to as probabilistic networks, belief networks or
Bayesian belief networks. A BN model combines a graphical representation with numerical in-
formation to represent a probability distribution over a set of random variables in a domain. The
graphical representation constitutes the BN structure, and it explicitly highlights the probabilistic
independencies among the domain variables. The complementary numerical information consti-
tutes the BN parameters, which quantify the probabilistic relationships among the variables. The
instance-specific method that we describe in this paper uses Markov blanket models, which are a
special type of BN models.

Typically, methods that learn predictive models from data, including those that learn BN mod-
els, perform model selection. In model selection a single model is selected that summarizes the
data well; it is then used to make future predictions. However, given finite data, there is uncer-
tainty in choosing one model to the exclusion of all others, and this can be especially problematic
when the selected model is one of several distinct models that all summarize the data more or less
equally well. A coherent approach to dealing with the uncertainty in model selection is Bayesian
model averaging (BMA) (Hoeting et al., 1999). BMA is the standard Bayesian approach wherein
the prediction is obtained from a weighted average of the predictions of a set of models, with more
probable models influencing the prediction more than less probable ones. In practical situations, the
number of models to be considered is enormous and averaging the predictions over all of them is
infeasible. A pragmatic approach is to average over a few good models, termed selective Bayesian
model averaging, which serves to approximate the prediction obtained from averaging over all mod-
els. The instance-specific method that we describe in this paper performs selective BMA over a set
of models that have been selected in an instance-specific fashion.

The instance-specific method described here learns both the structure and parameters of BNs
automatically from data. The instance-specific characteristic of the method is motivated by the
intuition that in constructing predictive models, all the available information should be used includ-
ing available knowledge of the features of the current instance. Specifically, the instance-specific
method uses the features of the current instance to inform the BN learning algorithm to selectively
average over models that differ considerably in their predictions for the target variable of the in-
stance at hand. The differing predictions of the selected models are then combined to predict the
target variable.

2. Characterization of Instance-Specific Models

Figure 1 illustrates the key difference between population-wide and instance-specific models: the
instance-specific model is constructed from data in the training set, as well as, from the features
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about the particular instance to which it will be applied. In contrast, the population-wide model is
constructed only from data in the training set. Thus, intuitively, the additional information available
to the instance-specific method can facilitate the induction of a model that provides better prediction
for the instance at hand. In instance-specific modeling, different instances will potentially result in
different models, because the instances contain potentially different values for the features.1 The
instance-specific models may differ in the variables included in the model (variable selection), in the
interaction among the included variables (encoded in the structure of the model), and in the strength
of the interaction (encoded in the parameters of the model). Another approach is to select a subset
of the training data that are similar in their feature values to those of the instance at hand and learn
the model from the subset. A generalization of this is to weight the instances in the training data set
such that those that are more similar to the instance at hand are assigned greater weights than others,
and then learn the model from the weighted data set. The following are two illustrative examples
where instance-specific methods may perform better than population-wide methods.




 








 





Figure 1: A general characterization of the induction of and inference in population-wide (top
panel) and instance-specific (bottom panel) models. In the bottom panel, there is an
extra arc from instance to model, because the structure and parameters of the model are
influenced by the features of the instance at hand.

2.1 Variable Selection

Many model induction methods implicitly or explicitly perform variable selection, a process by
which a subset of the domain variables is selected for inclusion in the model. For example, logistic

1. A feature is a variable-value pair, that is, a variable that has been assigned a value.
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regression is often used with a stepwise variable selection process. An instance-specific version
of logistic regression could, for example, select different variables for different instances being
predicted, compared to the standard population-wide version that selects a single subset of variables.
Consider a simple example where a gene G that has several alleles. Suppose that allele a1 is rare,
and it is the only allele that predicts the development of disease D; indeed, it predicts D with
high probability. For future instances, the aim is to predict P(D|G). In a population-wide logistic
regression model, Gmay not be included as a predictor (variable) of D, because in the vast majority
of instances in the data set G "= a1 and D is absent, and having G as a predictor would just increase
the overall noise in predicting D. In contrast, if there is an instance at hand in which G = a1, then
the training data may contain enough instances to indicate that D is highly likely. In this situation, G
would be added as a predictor in an instance-specific model. Thus, for an instance in which G= a1,
the typical population-wide logistic regression model would predict poorly, but an instance-specific
model would predict well.

This idea can be extended to examples with more than one predictor, in which some predictors
are characterized by having particular values that are relatively rare but strongly predictive for the
outcome. A population-wide model tends to include only those predictors that on average provide
the best predictive performance. In contrast, an instance-specific model will potentially include
predictors that are highly predictive for the particular instance at hand; such predictors may be
different from those included in the population-wide model.

2.2 Decision Theoretic Comparison of Population-Wide and Instance-Specific Models

We first introduce some notation and definitions and then compare population-wide with instance-
specific models in decision theoretic terms. Capital letters like X , Z, denote random variables
and corresponding lower case letters, x, z, denote specific values assigned to them. A feature is
a specification of a variable and its value. Thus, X = x is a feature that specifies that variable
X is assigned the value x. Bold upper case letters, such as X, Z, represent sets of variables or
random vectors, and their realization is denoted by the corresponding bold lower case letters, x, z.
A feature vector is a list of features. Thus, X= x is a feature vector that specifies that the variables
in X have the values given by x. In addition, Z denotes the target variable (class variable) being
predicted, X denotes the set of predictor variables, M denotes a model (including both its structure
and parameters), D denotes the training data set,Ci =<Xi,Zi > denotes a generic training instance
in D and Ct =< Xt ,Zt > denotes a generic test instance that is not in D. A test instance t is one in
which the unknown value of the target variable Zt is to be predicted from the known values of the
predictors Xt and the known values of < Xi,Zi > of a set of training instances.

A probabilistic model is a family of probability distributions indexed by a set of parameters.
Model selection refers to the problem of using data to select one model from a set of models un-
der consideration (Wasserman, 2000). The process of selecting a model typically involves model
class selection (e.g., logistic regression, BN), variable selection, and parameter estimation. Model
averaging refers to the process of estimating some quantity (e.g., prediction of the value of a target
variable) under each of the models under consideration and obtaining a weighted average of their
estimates (Wasserman, 2000).

Model selection can be done using either non-Bayesian or Bayesian approaches. Non-Bayesian
methods of model selection include choosing among competing models by maximizing the like-
lihood, by maximizing a penalized version of the likelihood or by maximizing some measure of
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interest (e.g., accuracy) using cross-validation. Use of multiple models to improve performance
can also be done using either non-Bayesian or Bayesian approaches. Ensemble techniques such as
bagging and boosting are non-Bayesian approaches that combine multiple models to create a new
better performing model. In both bagging and boosting, the data are resampled several times, a
model is constructed from each sample, and the predictions of the individual models are combined
to obtain the final prediction. In the non-Bayesian approach, the heuristics used in model selection
and model combination are typically different. In contrast, the Bayesian approach to model selec-
tion and model combination both involve computing the posterior probability of each model under
consideration. In Bayesian model selection the single model found that has the highest posterior
probability is chosen. The Bayesian model combination technique is called model averaging where
the combined prediction is the weighted average of the individual predictions of the models with
the model posterior probabilities comprising the weights.

When the goal is prediction of future data or future values of the target variable, BMA is pre-
ferred, since it suitably incorporates the uncertainty about the identity of the true model. However,
sometimes interest is focused on a single model. For example, a single model may be useful for pro-
viding insight into the relationships among the domain variables or can be used as a computationally
less expensive method for prediction. In such cases, Bayesian model selection maybe preferred to
BMA. However, the optimal Bayesian approach is to perform model averaging, and thus, model
selection is at best an approximation to model averaging.

Population-wide model selection and instance-specific model selection are characterized in de-
cision theoretic terms as follows. In this paper, all conditional probabilities have a conditioning
event K, which represents background knowledge and which we will leave implicit for notational
simplicity. Given training data D and a generic test instance < Xt ,Zt >, the optimal population-
wide model is:

argmax
M

{

∑
Xt
U
[

P(Zt |Xt ,D),P(Zt |Xt ,M)
]

P(Xt |D)
}

(1)

where the utility functionU gives the utility of approximating the Bayes optimal estimate P(Zt |Xt ,D)
with the estimate P(Zt |Xt ,M) obtained from model M. For a model M, Expression 1 considers all
possible instantiations ofXt and for each instantiation computes the utility of estimating P(Zt |Xt ,D)
with the specific model estimate P(Zt |Xt ,M), and weights that utility by the posterior probability of
that instantiation. The maximization is over the modelsM in a given model space.

The Bayes optimal estimate P(Zt |Xt ,D) in Expression 1 is obtained by combining the estimates
of all models (in a given model space) weighted by their posterior probabilities:

P(Zt |Xt ,D) =
∫
M
P(Zt |Xt ,M)P(M|D)dM. (2)

The term P(Xt |D) in Expression 1 is given by:

P(Xt |D) =
∫
M
P(Xt |M)P(M|D)dM. (3)

The optimal instance-specific model for estimating Zt is the one that maximizes the following:

argmax
M

{

U
[

P(Zt |xt ,D),P(Zt |xt ,M)
]}

, (4)
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where xt are the values of the predictors of the test instance Xt for which the target variable Zt is to
be predicted. The Bayes optimal instance-specific prediction P(Zt |Xt ,D) is derived using Equation
2, for the special case in which Xt = xt , as follows:

P(Zt |xt ,D) =
∫
M
P(Zt |xt ,M)P(M|D)dM.

The difference between the population-wide and the instance-specific model selection can be
noted by comparing Expressions 1 and 4. Expression 1 for the population-wide model selects the
model that on average will have the greatest utility. Expression 4 for the instance-specific model,
however, selects the model that will have the greatest utility for the specific instance Xt = xt . For
predicting Zt given instance Xt = xt , application of the model selected using Expression 1 can never
have an expected utility greater than the application of the model selected using Expression 4. This
observation provides support for developing instance-specific models.

Equations 2 and 3 carry out BMA over all models in some specified model space. Expressions 1
and 4 include Equation 2; thus, these expressions for population-wide and instance-specific model
selection, respectively, are theoretical ideals. Moreover, Equation 2 is the Bayes optimal prediction
of Zt . Thus, in order to do optimal model selection, the optimal prediction obtained from BMA
must already be known.

Model selection, even if performed optimally, ignores the uncertainty inherent in choosing a
single model based on limited data. BMA is a normative approach for dealing with the uncertainty
in model selection. Such averaging is primarily useful when no single model in the model space
under consideration has a dominant posterior probability. However, since the number of models in
practically useful model spaces is enormous, exact BMA, where the averaging is done over the entire
model space, is usually not feasible. That is, it is usually not computationally feasible to solve for
the exact solution given by Equation 2. In such cases, selective BMA is typically performed, where
the averaging is done over a selected subset of models.

BMA has been shown to improve predictive performance, and several examples of significant
decrease in prediction errors with the use of BMA are described by Hoeting et al. (1999). However,
in other cases BMA has not proved to be better than ensemble techniques. For example, uniform
averaging was shown by Cerquides and Mantaras (2005) to have better classification performance
than BMA for one dependence estimators. This may be because, as Minka (2002) points out,
BMA is better described as a method for ’soft model selection’ rather than a technique for model
combination.

3. Related Work

There exists a vast literature in machine learning, data mining and pattern recognition that is con-
cerned with the problem of predictive modeling and supervised learning. We briefly describe some
of the aspects of the similarity-based methods and instance-specific methods because these methods
are most closely relevant to the present paper. Similarity-based methods are characterized by the
use of a similarity (or distance) measure necessary for measuring the similarity between instances.
Instance-specific methods, on the other hand, learn an explicit model or models from the training
instances that are then applied to the test instance. The induction of a model or set of models are
influenced by the values of the features of the test instance, and a similarity measure is not used.
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3.1 Similarity-Based Methods

These methods are also known as memory-based, case-based, instance-based, or exemplar-based
learners. They (1) use a similarity or a distance measure, (2) defer most of the processing until
a test instance is encountered, (3) combine the training instances in some fashion to predict the
target variable in the test instance, and (4) discard the answer and any intermediate results after
the prediction. Typically, no explicit model is induced from the training instances at the time of
prediction (Aha, 1998). The similarity measure evaluates the similarity between the test instance
and the training instances and selects the appropriate training instances and their relative weights
in response to the test instance (Zhang et al., 1997). The selected training instances can be equally
weighted or weighted according to their similarity to the test instance. To predict the target variable
in the test instance, the values of the target variable in the selected training instances are combined
in some simple fashion such as majority vote, simple numerical average or fitted with a polynomial.

The nearest-neighbor technique is the canonical similarity-based method. When a test instance
is encountered, the training instance that is most similar to the test instance is located and its target
value is returned as the prediction (Cover and Hart, 1967). A straight-forward extension to the
nearest-neighbor technique is the k-Nearest Neighbor(kNN)method. For a test instance, this method
selects the k most similar training instances and either averages or takes a majority vote of their
target values. Another extension is the distance-weighted k-Nearest Neighbor method. This weights
the contribution of each of the k most similar training instances according to its similarity to the
test instance, assigning greater weights to more similar instances (Dasarathy, 1991). A further
extension is locally weighted regression that selects instances similar to the test instance, weights
them according to their similarity, and performs regression to predict the target (Atkeson et al.,
1997).

One drawback of the similarity-based methods is that they may perform poorly when predictors
are redundant, irrelevant or noisy. To make the similarity metrics more robust, variable selection
and variable weighting have been employed.

3.2 Instance-Specific Methods

Instance-specific methods are model-based methods that take advantage of the features in the test
instance while inducing a model. Such methods are not as reliant on a similarity measure, if they
use one at all, as the similarity-based methods.

Friedman et al. (1996) describe one such algorithm called LazyDT that searches for the best
CART-like decision tree for a test instance. As implemented by the authors, LazyDT did not per-
form pruning and processed only nominal variables. The algorithm was compared to ID3 and C4.5
(standard population-wide methods for inducing decision trees), each with and without pruning.
When evaluated on 28 data sets from the UCI Machine Learning repository, LazyDT generally
out-performed both ID3 and C4.5 without pruning and performed slightly better than C4.5 with
pruning.

Ting et al. (1999) developed a framework for inducing rules in a lazy fashion that are tailored
to the features of the test instance. Zheng and Webb (2000) describe an implementation of this
framework called the Lazy Bayesian Rules (LBR) learner that induces a rule tailored to the features
of the test instance that is then used to classify it. A LBR rule consists of (1) a conjunction of the
features (variable-value pairs) present in the test instance as the antecedent, and (2) a local naive
Bayes classifier as the consequent. The structure of the local naive Bayes classifier consists of
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the target variable as the parent of all other variables that do not appear in the antecedent, and the
parameters of the classifier are estimated from those training instances that satisfy the antecedent.
A greedy step-forward search selects the optimal LBR rule for a test instance to be classified. In
particular, each predictor is added to the antecedent of the current best rule and evaluated for whether
it reduces the overall error rate on the training set that is estimated by cross-validation. The predictor
that most reduces the overall error rate is added to the antecedent and removed from the consequent,
and the search continues; if no single predictor move can decrease the current error rate, then the
search halts and the current rule is applied to predict the outcome for the test instance. LBR is an
example of an instance-specific method that uses feature information available in the test instance
to direct the search for a suitable model in the model space.

The performance of LBR was evaluated by Zheng and Webb (2000) on 29 data sets from the
UCI Machine Learning repository and compared to that of seven algorithms: a nave Bayes classifier
(NB), a decision tree algorithm (C4.5), a Bayesian tree learning algorithm (NBTree) (Kohavi, 1996),
a constructive Bayesian classifier that replaces single variables with new variables constructed from
Cartesian products of existing nominal variables (BSEJ) (Pazzani, 1998), a selective naive Bayes
classifier that deletes irrelevant variables using Backward Sequential Elimination (BSE) (Pazzani,
1995), and LazyDT, which is described above. Based on ten three-fold cross validation trials (for a
total of 30 trials), LBR achieved the lowest average error rate across the 29 data sets. The average
relative error reduction of LBR over NB, C4.5, NBTree, BSEJ, BSE and LazyDT were 9%, 10%,
2%, 3%, 5% and 16% respectively. LBR performed significantly better than all other algorithms
except BSE; compared to BSE its performance was better but not statistically significantly so.

The instance-specific algorithms like LazyDT and LBR have limitations in that they can process
only discrete variables, and continuous variables have to be discretized. Also, they are computation-
ally more intensive than many other learning algorithms. However, they have been shown to have
better accuracy than several of the population-wide methods.

4. Bayesian Networks

A Bayesian network (BN) is a probabilistic model that combines a graphical representation (the BN
structure) with quantitative information (the BN parameterization) to represent a joint probability
distribution over a set of random variables (Pearl, 1988; Neapolitan, 2003). More specifically, a
BN model M representing the set of random variables X for some domain consists of a pair G,θG.
The first component G is a directed acyclic graph (DAG) that contains a node for every variable
in X and an arc between a pair of nodes if the corresponding variables are directly probabilisti-
cally dependent. Conversely, the absence of an arc between a pair of nodes denotes probabilistic
independence between the corresponding variables. In this paper, the terms variable and node are
used interchangeably in the context of random variables being modeled by nodes in a BN. Thus, a
variable Xi in the domain of interest is represented by a node labeled Xi in the BN graph. Note that
the phrase BN structure refers only to the graphical structure G, while the term BN (model) refers
to both the structure G and a corresponding set of parameters θG.

The terminology of kinship is used to denote various relationships among nodes in a graph.
These kinship relations are defined along the direction of the arcs. Predecessors of a node Xi in G,
both immediate and remote, are called the ancestors of Xi. In particular, the immediate predecessors
of Xi are called the parents of Xi. The set of parents of Xi in G is denoted by Pa(Xi,G) or more
simply as Pai when the BN structure is obvious from the context. In a similar fashion, successors of
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Xi in G, both immediate and remote, are called the descendants of Xi, and the immediate successors
are called the children of Xi. A node Xj is termed a spouse of Xi if Xj is a parent of a child of
Xi. The set of nodes consisting of a node Xi and its parents is called the family of Xi. Figure 2
gives an illustrative example of a simple hypothetical BN, where the top panel shows the graphical
component G of the BN. In the figure, the variable poor diet is a parent of the variable ischemic
heart disease as well as a parent of the variable gastroesophageal reflux disease. The variable chest
pain is a child of the variable lung cancer as well as a child of the variable gastroesophageal reflux
disease, and the variables ischemic heart disease and abnormal electrocardiogram are descendants
of the variable poor diet.





  

 


 




 














































Figure 2: A simple hypothetical Bayesian network for a medical domain. All the nodes represent
binary variables, taking values in the domain T, F where T stands for True and F for
False. The graph at the top represents the Bayesian network structure. Associated with
each variable (node) is a conditional probability table representing the probability of each
variable’s value conditioned on its parent set. (Note: these probabilities are for illustration
only; they are not intended to reflect frequency of events in any actual patient population.)
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The second component θG represents the parameterization of the probability distribution over
the space of possible instantiations of X and is a set of local probabilistic models that encode quan-
titatively the nature of dependence of each variable on its parents. For each node Xi there is a
probability distribution (that may be discrete or continuous) defined on that node for each state of
its parents. The set of all the probability distributions associated with all the nodes comprises the
complete parameterization of the BN. The bottom panel in Figure 2 gives an example of a set of
parameters for G. Taken together, the top and bottom panels in Figure 2 provide a fully specified
structural and quantitative representation for the BN.

4.1 Markov Blanket

The Markov blanket of a variable Xi, denoted by MB(Xi), defines a set of variables such that con-
ditioned on MB(Xi) is conditionally independent of all variables given MB(Xi) for joint probability
distributions consistent with BN in whichMB(Xi) appears (Pearl, 1988). The minimal Markov blan-
ket of a node Xi, which is sometimes called its Markov boundary, consists of the parents, children,
and children’s parents of Xi. In this paper, we refer to the minimal Markov blanket as the Markov
blanket (MB). This entails that the variables in MB(Xi) are sufficient to determine the probability
distribution of Xi. Since d-separation is applied to the graphical structure of a BN to identify all
conditional independence relations, it can also be applied to identify the MB of a node in a BN. The
MB of a node Xi consists of its parents, its children, and its children’s parents and is illustrated in
Figure 3. The parents and children of Xi are directly connected to it. In addition, the spouses are also
included in the MB, because of the phenomenon of explaining away which refers to the observation
that when a child node is instantiated its parents in general are statistically dependent. Analogous
to BNs, the MB structure refers only to the graphical structure while the MB (model) refers to both
the structure and a corresponding set of parameters.



   















Figure 3: Example of a Markov blanket. The Markov blanket of the node X6 (shown stippled)
comprises the set of parents, children and spouses of the node and is indicated by the
shaded nodes. The nodes in the Markov blanket include X2 and X3 as parents, X8 and X9
as children, and X5 and X7 as spouses of X6. X1, X4, X10 and X11 are not in the Markov
blanket of X6.

The MB of a node is noteworthy because it identifies all the variables that shield the node from
the rest of the network. In particular, when interest centers on the distribution of a specific target
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node, as is the case in classification, the structure and parameters of only the MB of the target node
need be learned.

4.2 Markov Blanket Algorithms

Many approaches for learning general BNs as well as for learning MBs from data have been de-
scribed in the literature. Here we briefly review algorithms that learn MB classifiers. One of the
earliest described MB learning algorithms is the Grow-Shrink (GS) Markov blanket algorithm that
orders the variables according to the strength of association with the target and uses conditional
independence tests to find a reduced set of variables estimated to be the MB (Margaritis and Thrun,
1999). Madden (2002a,b) described the Markov Blanket Bayesian Classifier (MBBC) algorithm
that constructs an approximate MB classifier using a Bayesian score for evaluating the network.
The algorithm consists of three steps: the first step identifies a set of direct parents and children
of the target, the second step identifies a set of parents of the children, and the third step identifies
dependencies among the children. The MBBC was competitive in terms of speed and accuracy rel-
ative to Nave Bayes, Tree-Augmented Nave Bayes and general Bayesian networks, when evaluated
on a large set of UCI data sets.

Several MB algorithms have been developed in the context of variable selection and learning
local causal structures around target variables of interest. Koller and Sahami (1996) showed that
the optimal set of variables to predict a target is its MB. They proposed a heuristic entropy-based
procedure (commonly referred to as the KS algorithm) that assumes that the target influences the
predictor variables and that the variables most strongly associated with the target are in its MB.
The KS algorithm was not guaranteed to succeed. Tsamardinos and Aliferis (2003) showed that for
faithful distributions, the MB of a target variable is exactly the set of strongly relevant features, and
developed the Incremental Association Markov Blanket (IAMB) to identify it. This algorithm has
two stages: a growing phase that adds potential predictor variables to the MB and a shrinking phase
that removes the false positives that were added in the first phase. Based on the faithfulness assump-
tion, Tsamardinos et al. (2006) later developed the Min-Max Markov Blanket algorithm (MMMB)
that first identifies the direct parents and children of the target and then parents of the children using
conditional independence tests. A comparison of the efficiency of several MB learning algorithms
are provided by Fu and Desmarais (2008). A recent comprehensive overview of MB methods of
classification and the local structure learning is provided by Aliferis et al. (2010a,b).

Several methods for averaging over BNs for prediction or classification have been described in
the literature, including Dash and Cooper (2002), Dash and Cooper (2004) and Hwang and Zhang
(2005). In prior work, we developed a lazy instance-specific algorithm that performs BMA over
LBR models (Visweswaran and Cooper, 2004) and showed that it had better classification perfor-
mance than did model selection. However, to our knowledge, averaging over MBs has not been
described in the literature.

5. The Instance-Specific Markov Blanket (ISMB) Algorithm

The goal of the instance-specific Markov blanket (ISMB) algorithm is to predict well a discrete
target variable of interest. Relative to some model space, BMA is the optimal method for making
predictions in the sense that it achieves the lowest expected error rate in predicting the outcomes of
future instances. Such Bayes optimal predictions involve averaging over all models in the model
space which is usually computationally intractable. One approach, termed selective model averag-
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ing, has been to approximate the Bayes optimal prediction by averaging over a subset of the pos-
sible models and has been shown to improve predictive performance (Hoeting et al., 1999; Raftery
et al., 1997; Madigan and Raftery, 1994). The ISMB algorithm performs selective model averaging
and uses a novel heuristic search method to select the models over which averaging is done. The
instance-specific characteristic of the algorithm arises from the observation that the search heuristic
is sensitive to the features of the particular instance at hand.

The model space employed by the ISMB algorithm is the space of BNs over the domain vari-
ables. In particular, the algorithm considers only MBs of the target node, since a MB is sufficient
for predicting the target variable. The remainder of this section describes the ISMB algorithm in
terms of the (1) model space, (2) scoring functions including parameter and structure priors, and
(3) the search procedure for exploring the space of models. The current version of the algorithm
handles discrete variables.

5.1 Model Space

As mentioned above, the ISMB algorithm learns MBs of the target variable rather than entire BNs
over all the variables. Typically, BN structure learning algorithms that learn from data induce a BN
structure over all the variables in the domain. The MB of the target variable can be extracted from
the learned BN structure by ignoring those nodes and their relations that are not members of the
MB. The ISMB algorithm modifies the typical BN structure learning algorithm to learn only MBs
of the target node of interest, by using a set of operators that generate only the MB structures of the
target variable.

The ISMB algorithm is a search-and-score method that searches in the space of possible MB
structures. Both, the BN structure learning algorithms and the MB structure learning algorithm
used by ISMB, search in a space of structures that is exponential in the number of domain variables.
Though the number of MB structures grows more slowly than the number of BN structures with
the number of domain variables, the number of MB structures is still exponential in the number of
variables (Visweswaran and Cooper, 2009). Thus, exhaustive search in this space is infeasible for
domains containing more than a few variables and heuristic search is appropriate.

5.2 Instance-Specific Bayesian Model Averaging

The objective of the ISMB algorithm is to derive the posterior distribution P(Zt |,xt ,D) for the target
variable Zt in the instance at hand, given the values of the other variables Xt = xt and the training
data D. The ideal computation of the posterior distribution P(Zt |,xt ,D) by BMA is as follows:

P(Zt |xt ,D) = ∑
G∈M

P(Zt |xt ,G,D)P(G|D), (5)

where the sum is taken over all MB structures G in the model space M. The first term on the
right hand side, P(Zt |xt ,G,D), is the probability P(Zt |xt) computed with a MB that has structure
G and parameters θ̂G that are given by Equation 6 below. This parameterization of G produces
predictions equivalent to those obtained by integrating over all the possible parameterizations for
G. The second term, P(G|D), is the posterior probability of the MB structure G given the training
data D. In essence, Equation 5 states that a conditional probability of interest P(Zt |xt) is derived by
taking a weighted average of that probability over all MB structures, where the weight associated
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with a MB structure is the probability of that MB structure given the data. In general, P(Zt |xt) will
have different values for the different sets of models over which the averaging is carried out.

5.3 Inference in Markov Blankets

Computing P(Zt |xt ,G,D) in Equation 5 involves doing inference in the MB with a specified struc-
ture G. First, the parameters of the MB structure G are estimated using Bayesian parameters as
given by the following expression (Cooper and Herskovits, 1992; Heckerman, 1999):

P(Xi = k|Pai = j)≡ θ̂i jk =
αi jk+Ni jk
αi j+Ni j

(6)

where (1) Ni jk is the number of instances in data set D in which Xi = k and the parents of Xi have
the state denoted by j, (2) Ni j =∑k Ni jk, (3) αi jk is a parameter prior that can be interpreted as belief
equivalent to having previously (prior to obtaining D seen αi jk instances in which Xi = k and the
parents of Xi have the state denoted by j, and (4) αi j = ∑kαi jk. The θ̂i jk in Equation 6 represent
the expected value of the probabilities that are derived by integrating over all possible parameter
values. For the ISMB algorithm we set αi jk to 1 for all i, j, and k, as a simple non-informative
parameter prior (Cooper and Herskovits, 1992). Next, the parameterized MB is used to compute the
distribution over the target variable Zt of the instance at hand given the values xt of the remaining
variables in the MB by applying standard BN inference (Neapolitan, 2003).

5.4 Bayesian Scoring of Markov Blankets

In the Bayesian approach, the scoring function is based on the posterior probability P(G|D) of the
BN structure G given data D. This is the second term on the right hand side in Equation 3. The
Bayesian approach treats the structure and parameters as uncertain quantities and incorporates prior
distributions for both. The specification of the structure prior P(G) assigns prior probabilities for
the different MB structures. Application of Bayes rule gives:

P(G|D) =
P(D|G)P(G)

P(D)
. (7)

Since the denominator P(D) does not vary with the structure, it simply acts as a normalizing factor
that does not distinguish between different structures. Dropping the denominator yields the follow-
ing Bayesian score:

score(G;D) = P(D|G)P(G). (8)

The second term on the right in Equation 8 is the prior over structures, while the first term is
the marginal likelihood (also know as the integrated likelihood or evidence) which measures the
goodness of fit of the given structure to the data. The marginal likelihood is computed as follows:

P(D|G) =
∫
θG
P(D|θG,G)P(θG|G)dθG, (9)

where P(D|θG,G) is the likelihood of the data given the BN (G,θG) and P(θG|G) is the specified
prior distribution over the possible parameter values for the network structure G. Intuitively, the
marginal likelihood measures the goodness of fit of the structure over all possible values of its
parameters. Note that the marginal likelihood is distinct from the maximum likelihood, though both
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are computed from the same function: the likelihood of the data given the structure. The maximum
likelihood is the maximum value of this function while the marginal likelihood is the integrated (or
the average) value of this function with the integration being carried out with respect to the prior
P(θG|G).

Equation 9 can be evaluated analytically when the following assumptions hold: (1) the vari-
ables are discrete and the data D is a multinomial random sample with no missing values; (2) global
parameter independence, that is, the parameters associated with each variable are independent; (3)
local parameter independence, that is, the parameters associated with each parent state of a variable
are independent; and (4) the parameters’ prior distribution is Dirichlet. Under the above assump-
tions, the closed form for P(D|G) is given by (Cooper and Herskovits, 1992; Heckerman, 1999):

P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)
Γ(αi j+Ni j)

ri
∏
k=1

Γ(αi jk+Ni jk)
Γ(αi jk)

, (10)

where Γ denotes the Gamma function,n is the number of variables in G, qi is the number of joint
states of the parents of variable Xi that occur in D, ri is the number of states of Xi that occur in D,
and αi j = ∑kαi jk. Also, as previously described, Ni jk is the number of instances in the data where
node i has value k and the parents of i have the state denoted by j, and Ni j = ∑k Ni jk.

The Bayesian score in Equation 7 incorporates both structure and parameter priors. The term
P(G) represents the structure prior and is the prior probability assigned to the BN structure G. For
the ISMB algorithm, a uniform prior belief over all G is assumed which makes the term P(G) a
constant. Thus, P(G|D) is equal to P(D|G) up to a proportionality constant and the Bayesian score
for P(G) is defined simply as the marginal likelihood as follows:

score(G;D) = P(D|G) ∝ P(G|D). (11)

The parameter priors are incorporated in the marginal likelihood P(D|G) as is obvious from the
presence of the alpha terms in Equation 10. For the ISMB algorithm we set αi jk to 1 for all i, j, and
k in Equation 10, as a simple non-informative parameter prior, as mentioned in the previous section.

5.5 Selective Bayesian Model Averaging

Since Equation 5 sums over a very large number of MB structures, it is not feasible to compute
it exactly. Hence, complete model averaging given by Equation 5 is approximated with selective
model averaging, and heuristic search (described in the next section) is used to sample the model
space. For a set R of MB structures that have been chosen from the model space by heuristic search,
selective model averaging estimates P(Zt |xt ,G) as:

P(Zt |xt ,D)∼= ∑
G∈R

P(Zt |xt ,G,D) P(G|D)
∑G′∈RP(G′|D)

. (12)

Substituting Equation 11 into Equation 12, we obtain:

P(Zt |xt ,D)∼= ∑
G∈R

P(Zt |xt ,G,D) score(G;D)
∑G′∈R score(G′;D)

. (13)

The ISMB algorithm performs selective model averaging and seeks to locate a good set of
models over which averaging is carried out.
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5.6 Instance-Specific Search

The ISMB algorithm uses a two-phase search to sample the space of MB structures. The first phase
(phase 1) ignores the evidence xt from the instance at hand, while searching for MB structures that
best fit the training data. The second phase (phase 2) continues to add to the set of MB structures
obtained from phase 1, but now searches for MB structures that have the greatest impact on the
prediction of Zt for the instance at hand. We now describe in greater detail the two phases of the
search.

Phase 1 uses greedy hill-climbing search and accumulates the best model discovered at each
iteration of the search into a set R. At each iteration of the search, successor models are generated
from the current best model; the best of the successor models is added to R only if this model
is better than current best model; and the remaining successor models are discarded. Since, no
backtracking is performed, phase 1 search terminates in a local maximum.

Phase 2 uses best-first search and adds the best model discovered at each iteration of the search
to the set R. Unlike greedy hill-climbing search, best-first search holds models that have not been
expanded (i.e., whose successors have not be generated) in a priority queue Q. At each iteration of
the search, successor models are generated from the current best model and added to Q; after an
iteration the best model from Q is added to R even if this model is not better than the current best
model in R. Phase 2 search terminates when a user set criterion is satisfied. Since, the number of
successor models that are generated can be quite large, the priority queue Q is limited to a capacity
of at most w models. Thus, if Q already contains w models, addition of a new model to it leads to
removal of the worst model from it. The queue allows the algorithm to keep in memory up to the
best w scoring models found so far, and it facilitates limited backtracking to escape local maxima.

5.7 Search Operators and Scores

The operators used by the ISMB algorithm to traverse the space of MB structures are the same as
those used in standard BN structure learning with minor modifications. The standard BN structure
learning operators are (1) add an arc between two nodes if one does not exist, (2) delete an exist-
ing arc, and (3) reverse an existing arc, with the constraint that an operation is allowed only if it
generates a legal BN structure (Neapolitan, 2003). This constraint simply implies that the graph of
the generated BN structure be a DAG. A similar constraint is applicable to the generation of MB
structures, namely, that an operation is considered valid if it produces a legal MB structure of the
target node. This constraint entails that some of the operations be deemed invalid, as illustrated in
the following examples. With respect to a MB, the nodes can be categorized into five groups: (1)
the target node, (2) parent nodes of the target, (3) child nodes of the target, (4) spousal nodes, which
are parents of the children, and (5) other nodes, which are not part of the current MB. Incoming arcs
into parents or spouses are not part of the MB structure and, hence operations that add such arcs
are deemed invalid. Arcs between nodes not in the MB are not part of the MB structure and, hence
operations that add such arcs are also deemed invalid. Figure 4 gives exhaustively the validity of the
MB operators. Furthermore, the application of the delete arc or the reverse arc operators may lead
to additional removal of arcs to produce a valid MB structure (see Figure 5 for an example).

As described in the previous section, the search for MB structures proceeds in two sequential
phases. In phase 1 the candidate MB structures are scored with the Bayesian score (phase 1 score)
shown in Equation 11. Since this phase selects the highest scoring MB structure at each iteration, it
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Figure 4: Constraints on the Markov blanket operators. The nodes are categorized into five groups:
T = target, P = parent, C = child, S = spouse, and O = other (not in the Markov blanket of
T). The cells with check marks indicate valid operations and are the only ones that need
to be considered in generating candidate structures. The cells with an asterisk indicate
that the operation is valid only if the resulting graph is acyclic.



 







 

 





 

Figure 5: An example where the application of an operator leads to additional removal of arcs to
produce a valid Markov blanket structure. Deletion of arc Z→ X5 leads to removal of the
arc X4→ X5 since X5 is no longer a part of the Markov blanket of Z. Reversal of the same
arc also leads to removal of the arc X4 → X5 since X5 is now a parent and is precluded
from having incoming arcs. Also, unless X4 → X5 is removed there will be a cycle.

accumulates MB structures with high marginal likelihood. The purpose of this phase is to identify
a set of MB structures that are highly probable, given data D.

Phase 2 searches forMB structures that change the current model-averaged estimate of P(Zt |xt ,D)
the most. The notion here is to find viable competing MB structures for making this posterior prob-
ability prediction. When no competitive MB structures can be found, the prediction is assumed to
be stable. Phase 2 differs from the phase 1 in two aspects: it uses best-first search and it employs a
different scoring function for evaluating candidate MB structures.
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At the beginning of the phase 2, R contains MB structures that were generated in phase 1.
Successors to the MB structures in R are generated, scored with the phase 2 score (described in
detail below) and added to the priority queue Q. At each iteration of the search, the highest scoring
MB structure in Q is removed from Q and added to R; all operations leading to legal MB structures
are applied to it; the successor structures are scored with the phase 2 score; and the scored structures
are added to Q. Phase 2 search terminates when no MB structure in Q has a score higher than some
small value ε or when a period of time t has elapsed, where ε and t are user specified parameters.

In phase 2, the model score is computed as follows. Each successor MB structureG∗ to be added
to Q is scored based on how much it changes the current estimate of P(Zt |xt ,D); this is obtained
by model averaging over the MB structures in R. More change is better. Specifically, we use the
Kullback-Leibler (KL) divergence between the two estimates of P(Zt |xt ,D), one estimate computed
with and another computed without G∗ in the set of models over which the model averaging is
carried out. The KL divergence, or relative entropy, is a quantity which measures the difference
between two probability distributions (Cover and Joy, 2006). Thus, the phase 2 score for a candidate
MB structure G∗ is given by:

f (R,G∗) = KL(p||q)≡∑
x
p(x) log

p(x)
q(x)

,

where

p(x) = ∑
G∈R

P(Zt |xt ,G,D) P(G|D)
∑G′∈RP(G′|D)

and

q(x) = ∑
G∈R∪G∗

P(Zt |xt ,G,D) P(G|D)
∑G′∈R∪G∗ P(G′|D)

.

Using Equation 11 the term P(G|D) that appears in p(x) and q(x) can be substituted with the term
score(G;D). Using this substitution, the score for G∗ is:

f (R,G∗) = KL(p||q)≡∑
x
p(x) log

p(x)
q(x)

, (14)

where

p(x) = ∑
G∈R

P(Zt |xt ,G,D) score(G;D)
∑G′∈R score(G′;D)

and

q(x) = ∑
G∈R∪G∗

P(Zt |xt ,G,D) score(G;D)
∑G′∈R∪G∗ score(G′;D)

.

The pseudocode for the two-phase search procedure used by ISMB algorithm is given in Figure
6.
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ProcedureSearchForISMB
// phase 1: greedy hill-climbing search
R← empty set
BestModel← empty MB (graph containing only the target node)
Score BestModel with phase 1 score
BestScore← phase 1 score of BestModel
Add BestModel to R

Do
For every possible operator O that can be applied to BestModel
Apply O to BestModel to derive Model
Score Model with phase 1 score
ModelScore← phase 1 score ofModel
If ModelScore> BestScore

BestModel←Model
BestScore←ModelScore
FoundBetterModel← True

End if
End for
If FoundBetterModel is True
Add BestModel to R

Else
Terminate do

End if
End do

// phase 2: best-first search
Q← empty priority queue with maximum capacity w
Generate all successors for the MB structures in R and add them to Q
Score all MB structures in Q with phase 2 score

Do while elapsed time < t
BestModel← remove MB structure with highest phase 2 score from Q
BestScore← phase 2 score of BestModel
For every possible operator O that can be applied to BestModel
Apply O to BestModel to derive Model
Score Model with phase 2 score
Add Model to Q

End for
If BestScore> ε
Add BestModel to R

Else
Terminate do

End if
End do

Return R

Figure 6: Pseudocode for the two-phase search procedure used by the ISMB algorithm. Phase 1
uses greedy hill-climbing search while phase 2 uses best-first search.

5.8 Complexity of the ISMB Algorithm

For one instance, the ISMB algorithm runs in O(bdmn) time and uses O((w+d)mn) space, where
m is the number of instances in the training data set D, n is the number of domain variables, d is the
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total number of iterations of the search in the two phases 2, b (the branching factor) is the maximum
number of successors generated from a MB structure, and w is the capacity of the priority queue Q.

5.8.1 TIME COMPLEXITY

At each iteration of the search, a maximum of b successor MB structures are generated. For d
iterations of the search, the number of MB structures generated and scored with the phase 1 score
is O(bd). Note that both phases of the search require successor MB structures to be scored with the
phase 1 score.

Since the phase 1 score decomposes over the MB nodes, to compute it for a newly generated
MB structure only those MB nodes whose parent nodes have changed need be evaluated. The
number of MB nodes that need to be evaluated is either one (when the add or remove operator is
applied) or two (when the reverse operator is applied). Computing the phase 1 score for a MB
node entails estimating the parameters for that node and calculating the marginal likelihood from
those parameters. Estimating the parameters requires one pass over D and takes O(mn) time which
determines the time complexity of the phase 1 score.

The phase 2 score computes the effect of a candidate MB structure on the model averaged
estimate of the distribution of the target variable. This requires doing inference for the target node
in a MB that contains all measured variables which takes O(n) since at most n nodes influence the
target distribution and hence at most n sets of parameters need be retrieved. Computing both phase
1 and phase 2 scores for a MB structure therefore takes O(mn) time. Thus, the total time required
by the ISMB algorithm that runs for d iterations of the search and generates bMB structures at each
iteration is O(bdmn). However, the branching factor b is O(n2) and d is O(n) and hence the overall
complexity is O(mn4). This complexity limits that algorithm’s applicability to data sets of small to
medium dimensionality with up to several hundred variables.

5.8.2 SPACE COMPLEXITY

The ISMB algorithm searches in the space of MB structures using greedy hill-climbing search for
phase 1 and best-first search with a priority queue of capacity w for phase 2. For d iterations of the
search, the maximum number of MB structures that is stored is O(w+ d). The space required for
each MB structure is linear in the number of its parameters.

For a given MB node, the number of parameters (using a conditional probability table) is ex-
ponential in the number of its parent nodes. However, the number of distinct parameters cannot be
greater than the number of instances m in the training data D; the remaining parameters for a node
have a single default value. Thus, the space required for the parameters of a MB node is O(m).
In a domain with n variables, a MB structure can have up to n nodes and thus requires space of
O(mn). In total, the space required by the ISMB algorithm that runs for d iterations of the search is
O((w+d)mn).

6. Evaluation of the ISMB Algorithm

This section describes the evaluation of the ISMB algorithm on a synthetic data set and several data
sets from the UCI Machine Learning repository (UCI data sets). We first describe the preprocessing
of variables, the evaluation measures and the comparison algorithms.
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6.1 Preprocessing

Any instance that had one or more missing values was removed from the data set, as was done by
Friedman et al. (1997). Sixteen of the 21 UCI data sets have no missing values and no instances
were removed. In the remaining five data sets, removal of missing values resulted in a decrease in
the size of the data set of less than 10%. After the removal of instances with missing values, the
data sets were evaluated with two stratified applications of 10-fold cross-validation. Hence, each
data set was split twice into 10 stratified training and test folds to create a total of 20 training and
test folds. All experiments were carried out on the same set of 20 training and test folds. All target
variables in all the data sets are discrete. However, some of the predictor variables are continuous.
All continuous variables were discretized using the method described by Fayyad and Irani (1993).
The discretization thresholds were determined only from the training sets and then applied to both
the training and test sets.

6.2 Performance Measures

The performance of the ISMB algorithm was evaluated on two measures of discrimination (i.e., pre-
diction under 0-1 loss) and three probability measures. The discrimination measures used are the
misclassification error and the area under the ROC curve (AUC). For multiple classes, we used the
method described by Hand and Till (2001) for computing the AUC. The discrimination measures
evaluate how well an algorithm differentiates among the various classes (or values of the target vari-
able). The probability measures considered are the logarithmic loss, squared error, and calibration.
The closer the measure is to zero the better. For the multiclass case, we computed the logarithmic
loss as described by Witten and Frank (2005) and the squared error as described by Yeung et al.
(2005). For calibration, we used the CAL score that was developed by Caruana and Alexandru
(2004) and is based on reliability diagrams. The probability measures indicate how well probability
predictions correspond to reality. For example, consider a subset C of test instances in which target
outcome is predicted to be positive with probability p. If a fraction p of C actually has a positive
outcome, then such performance will contribute toward the probability measures being low. A brief
description of the measures is given in Table 1.

Performance measure Range Best score
Misclassification error [0, 1] 0
Area under the ROC curve (AUC) [0, 1] 1
Logarithmic loss [0, ∞) 0
Squared error [0, 1] 0
Calibration score (CAL) [0, 1] 0

Table 1: Brief description of the performance measures used in evaluation of the performance of
the algorithms.

6.3 Comparison Algorithms

The performance of the instance-specific algorithms was compared to the following methods: nave
Bayes (NB), C4.5 decision tree (DT), logistic regression (LR), neural networks (NN), k-Nearest
Neighbor (kNN), Lazy Bayesian Rules (LBR), and AdaBoost (AB). The first four are representative
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population-wide methods, the next two are examples of instance-specific methods, and AB is an
ensemble method. kNN is a similarity-based method. The LBR algorithm induces a rule tailored to
the features of the test instance that is then used to classify it, and is an example of a model-based
instance-specific method that performs model selection. For all the seven comparison methods, we
used the implementations in the Weka software package (version 3.4.3) (Witten and Frank, 2005).
We used the default settings provided in Weka for NB, DT, and LR. For NN, we set the number
of hidden nodes to (n+ c)/2 where n is the number of predictor variables and c is the number of
classes, the learning rate to 0.3 and the momentum to 0.2 (these are the default settings in Weka) and
the number of iterations to 1000 since this setting resulted in slightly better performance than the
default setting of 500. For kNN, we used the Weka setting that identifies the best value for k (i.e., the
number of neighbors) by way of cross validation. For AB, we used Weka’s AdaBoostM1 procedure
with the decision tree J48 as the base classifier and the number of iterations set to n/log(m), where
n is the number of variables and m is the number of instances in the training data set. We did not
perform variable selection as a pre-processing step before applying the above classification methods.
However, DT, LBR and AB perform variable selection as part of the model learning procedure,
while the other the methods do not.

Three versions of the ISMB algorithm were used in the experiments described later in this
section, and they are listed in Table 2. The ISMB algorithm performs selective model averaging
to estimate the distribution of the target variable of the instance at hand as described in Section 5.
The ISMB-MS algorithm is a model selection version of the ISMB algorithm. It chooses the MB
structure that has the highest posterior probability from those found by the ISMB algorithm in the
two-phase search, and uses that single model to estimate the distribution of the target variable of the
instance at hand. Comparing the ISMB algorithm to the ISMB-MS algorithm measures the effect
of approximating selective model averaging by using model selection. When the training data set is
large the performance of the ISMB algorithm and the ISMB-MS algorithmmay be similar if a single
model with a relatively large posterior probability overwhelms the contributions of the remaining
models during model averaging.

Acronym Algorithm Phase 1 Phase 2 Prediction
ISMB Instance-specific Is non-instance- Is instance-specific By model averaging

Markov blanket specific Uses best-first search over models selected
Uses greedy hill- Uses phase 2 score in phase 1 and
climbing search phase 2
Uses phase 1 score

ISMB-MS Instance-specific Same as ISMB Same as ISMB Based on the highest
Markov blanket - scoring model from
Model Selection models found by ISMB

NISMB Non-instance- Same as ISMB Is non-instance- By model averaging;
specific Markov specific number of selected
blanket Uses best-first search models is the same

Uses phase 1 score as in ISMB

Table 2: Three versions of the ISMB algorithm.
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The NISMB algorithm is the non-instance-specific (i.e., population-wide) version of the ISMB
algorithm. Phase 1 of the NISMB algorithm is identical to that of the ISMB algorithm. In phase 2,
the NISMB algorithm accumulates the same number of MB models as the ISMB algorithm except
that the models are identified on the basis of the non-instance-specific phase 1 score. Thus, the
NISMB algorithm averages over the same number of models as the ISMB algorithm. Comparing
the ISMB algorithm to the NISMB algorithm measures the effect of the instance-specific heuristic
on the performance of model averaging.

6.4 Evaluation on a Synthetic Data Set

This section describes the evaluation of the ISMB algorithm on a small synthetic data set. The
synthetic domain consists of five binary variables A, B, C, D, Z where Z is a deterministic function
of the other variables:

Z = A∨ (B∧C∧D).

On such a small data set it is possible to perform model averaging over all models, and this es-
tablishes the best possible prediction performance that is attainable using MB models. The training
and the test sets used in the experiments are shown in Figure 7. The training set simulates a low
occurrence of A = T (only five out of 69 instances have A = T), and the test set consists of three
instances of A= T which are not present in the training set.



























Figure 7: Training and test data sets derived from the deterministic function Z = A∨ (B∧C∧D).
The training set contains a total of 69 instances and the test set a total of three instances
as shown; the test instances are not present in the training set. The training set simu-
lates low prevalence of A= T since only five of the 69 instances have this variable-value
combination.

The following algorithms were used in the experiments: (1) a complete model averaged version
of the ISMB algorithm where model averaging is carried out over all 3567 possible MB structures,
(2) the ISMB algorithm, (3) the ISMB-MS algorithm, and (4) the NISMB algorithm.
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The settings used for the ISMB algorithm are as follows:

• Phase 1: As described in Section 5.

• Phase 2: The model score for phase 2 is computed using Equation 14 that is based on KL-
divergence. Phase 2 uses best-first search with a priority queue Q whose maximum capacity
w was set to 1000. Phase 2 search terminates when no MB structure in Q has a phase 2 score
higher than ε = 0.001 for 10 consecutive iterations of the search. The maximum period of
running time t for phase 2 was not specified since the algorithm terminated in a reasonable
period of time with the specified value for ε.

• The predicted distribution for the target variable Z of the test instance is computed using
Equation 13; for each MB structure the parameters are estimated using Equation 6.

The results are given in Table 3. All performance measures except the AUC were computed for
the test set of three instances. The AUC could not be computed since all the instances in the test
set are from the same class, Z = T. The results from complete model averaging represent the best
achievable expected performance that could be achieved by the ISMB algorithm. The ISMB and the
NISMB algorithms that average over a subset of all models had poorer performance than complete
model averaging but performed better than ISMB-MS. However, the ISMB algorithm improved over
the performance of the NISMB algorithm. Though both methods average over the same number of
models, the ISMB algorithm uses the instance-specific phase 2 score to choose phase 2 models
while the ISMB algorithm uses the non-instance-specific phase 1 score to choose both phase 1 and
phase 2 models. The phase 2 models chosen by the ISMB algorithm are potentially different for
each test instance in contrast to the NISMB algorithm which selects the same models irrespective
of the test instance. These results, while limited in scope, provide support that the instance-specific
search for models may be able to choose models that better approximate the distribution of the target
variable of the instance at hand.

Performance measure ISMB ISMB ISMB-MS NISMB
complete model
averaged

Misclassification error 0.0000 0.0000 0.3333 0.3333
AUC - - - -
Logarithmic loss 0.0406 0.0505 0.0596 0.0585
Squared error 0.0684 0.0783 0.0902 0.0862
CAL score 0.3720 0.4092 0.4534 0.4284

Table 3: Results obtained from the training and test sets that are given in Figure 7. The AUC could
not be computed since the test set instances are all from a single class. Results in the first
column are obtained by model averaging over all 3567 MBs.

Figure 8 plots the estimate of P(Zt = T|xt ,D) for each test instance t as it varies with each
addition of a model to the set of models being averaged over. A second curve plots the model score
as the logarithmic posterior probability of the model given the data; this score measures the relative
contribution of the model to the final estimate of P(Zt = T|xt ,D). Each row in the figure contains a
pair of plots for a single test instance, the plot on the left is obtained from the ISMB algorithm and
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the corresponding plot on the right is obtained from the NISMB algorithm. The plot for the estimate
of P(Zt = T|xt ,D) is shown in black while the plot for the model score is shown in gray. In each
plot, on going from left to right, the estimate of P(Zt = T|xt ,D) initially fluctuates considerably and
then settles to a stable estimate as the number of models providing the estimate increases. In the
first two test instances the final estimates of P(Zt = T|xt ,D) obtained from the instance-specific and
non-instance-specific model averaging respectively are very close; both the ISMB and the NISMB
algorithms predicted the value of Z correctly as T. In the third test instance, the final estimates of
P(Zt = T|xt ,D) are quite different; the ISMB algorithm predicted the value of Z correctly as T while
the NISMB algorithm predicted the value of Z incorrectly as F.

6.5 Evaluation on UCI Data Sets

We now describe the evaluation of the ISMB algorithm on 21 data sets from the UCI Machine
Learning repository (UCI data sets) (Frank and Asuncion, 2010). The selected UCI data sets have
between four and 60 predictor variables and a single target variable that has between two and seven
classes. The size of the data sets, the number and type of predictor variables, and the number of
classes (states) taken by the target variable are given in Table 4 The performance of the ISMB
algorithm is compared to that of the ISMB-MS and the NISMB algorithms, and also to that of the
seven comparison machine learning methods described in Section 6.3.

6.5.1 EXPERIMENTAL DESIGN

The experimental design is as follows:

• For each data set, a total of 10 machine learning algorithms were run: ISMB, ISMB-MS,
NISMB, NB, DT, LR, NN, kNN, LBR and AB.

• The data sets used in the experiments are the 21 UCI data sets listed in Table 4.

• Summary statistics were measured using 10-fold stratified cross-validation done twice for a
total of 20 training-test pairs. The summary statistics were computed for misclassification
error, the AUC, logarithmic loss, squared error and the CAL score.

• The statistical tests performed were (1) significance testing with the Wilcoxon paired-samples
signed ranks test, and (2) effect size testing with paired-samples t test.

The settings for the ISMB algorithm are the same as those stated in Section 6.4 for the synthetic
data evaluation.

6.5.2 RESULTS

Table 5 gives the average number of models selected by the ISMB and the NISMB algorithms in
each of the phases for each data set. The average number of models varies from 17.99 for the iris
data set (with four predictor variables) to 89.38 for the lymphography data set (with 18 predictor
variables).

Tables 6 to 10 report the means of the misclassification error, the AUC, logarithmic loss, squared
error and the CAL score respectively for the ISMB algorithm, its variants and the comparison al-
gorithms. In each table, a row represents a data set and a column represents an algorithm. The last
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Figure 8: Plots of model averaged estimate of P(Zt = T|xt ,D) that is abbreviated as P(Z = T) and
model score obtained by ISMB and NISMB algorithms on the three test cases given in
Figure 7. Each row represents a single test case with the plot on the left obtained from
the ISMB algorithm and the plot on the right obtained from the NISMB algorithm. The
value of the final averaged estimate of P(Zt = T|xt ,D) is the point where the darker curve
meets the Y-axis on the right.
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Data Set # Predictors # Classes # Cases
(cnt + dsc = total)

australian 6 + 8 = 14 2 690
breast-cancer 9 + 0 = 9 2 683
cleveland 6 + 9 = 13 2 296
corral 0 + 6 = 6 2 128
crx 6 + 9 = 15 2 653
diabetes 8 + 0 = 8 2 768
flare 0 + 10 = 10 2 1066
german 7 + 13 = 20 2 1000
glass2 9 + 0 = 9 2 163
glass 9 + 0 = 9 7 214
heart 13 + 0 = 13 2 270
hepatitis 6 + 13 = 19 2 80
iris 4 + 0 = 4 3 150
lymphography 0 + 18 = 18 4 148
pima 8 + 0 = 8 2 768
postoperative 1 + 7 = 8 3 87
sonar 60 + 0 = 60 2 208
vehicle 18 + 0 = 18 4 846
vote 0 + 16 = 16 2 435
wine 13 + 0 = 13 3 178
zoo 0 + 16 = 16 7 101

Table 4: Description of the 21 UCI data sets used in the experiments. In the column on predictors,
the number of continuous (cnt) and discrete (dsc) predictors as well as the total number of
predictor variables (excluding the target variable) are given. In the column on instances,
the numbers of instances used in the experiments are given; this may be less than the total
number of instances in the original UCI data set since instances with missing values were
removed.

row in each table gives for each algorithm the overall mean of the specified performance measure
across all the data sets. From the tables, it is seen that on all five performance measures, the ISMB
algorithm achieved a better overall average score than each of the other algorithms.

Tables 11 and 12 report results from pair-wise comparisons of the performance of the algorithms
on all the data sets that are aimed at assessing the statistical significance and the magnitude of the
observed differences in the measures. Table 11 reports results from a two-sided Wilcoxon paired-
samples signed ranks test, and Table 12 reports results from a two-sided paired-samples t test.

Table 13 reports the running times of the ISMB and the comparison algorithms. The experiments
were performed on a server with 8 GB of RAM and two dual core Pentium processors of 3 GHz
each that were running the Windows XP operating system. The algorithms were restricted to a
single core in all the experiments. Averaged over all the data sets, the ISMB took approximately 2
minutes for a test instance.

We ran additional experiments on the first seven data sets (see Table 4) to analyze the sensitivity
of the ISMB algorithm to the parameters w (queue capacity) and ε (change in Phase 2 score). For
w, we evaluated values of 100, 200, 400, 800, 1600, 3200 and 6400. The performance on all the
evaluation measures peaked at values of 800 or 1600 and beyond 1600 no further improvement was
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Data Set # models # models # models
phase 1 phase 2 phases 1 and 2

australian 28.55 11.00 39.55
breast-cancer 18.85 10.15 29.00
cleveland 20.45 11.99 32.44
corral 10.65 15.03 25.68
crx 32.10 13.42 45.52
diabetes 11.65 10.03 21.68
flare 20.75 11.44 32.19
german 22.45 19.23 41.68
glass2 12.05 13.26 25.31
glass 15.80 10.73 26.53
heart 18.50 11.32 29.82
hepatitis 27.45 26.63 54.08
iris 7.25 10.74 17.99
lymphography 51.55 37.83 89.38
pima 40.40 16.97 57.37
postoperative 12.00 10.02 22.02
sonar 11.65 10.09 21.74
vehicle 1.15 21.09 22.24
vote 59.80 18.44 78.24
wine 39.30 10.73 50.03
zoo 45.55 13.53 59.08

Table 5: Average number of models in phases 1 and 2 over which averaging is carried out by the
ISMB and NISMB algorithms. Both algorithms average over the same number of models
in each phase. Both algorithms select the same models in phase 1 but potentially different
models in phase 2. The number of models in phases 1 and 2 is the sum of the models
selected in the two phases.

seen. For ε, we evaluated values of 1.0, 0.1, 0.01, 0.001, 0.0001 and 0.00001. The performance
improved as ε decreased until 0.001 or 0.0001, but did not improve further for smaller values of ε.

The results are encouraging in that they show that the ISMB algorithm never underperformed
on any performance measure when compared to the other learning methods including the variants
of the ISMB algorithm that do model selection and non-instance-specific model averaging. For
misclassification error, logarithmic loss, squared error and the CAL score, the mean difference is
always negative which denotes that the ISMB algorithm always has a lower score on these measures.
For the AUC, the difference is always positive which means that the ISMB algorithm always has
a higher AUC. However, all mean differences are not statistically significant at the 0.05 level as
can be seen by the p-values in Tables 11 and 12. The best performance is seen in logarithmic loss
where the ISMB algorithm significantly outperforms all other methods, followed by squared error
and CAL score where the ISMB algorithm significantly outperforms many of the methods. On
misclassification error and the AUC, the ISMB algorithm has smaller performance gains.

Overall, the ISMB algorithm significantly improved on the probabilities of the predictions while
maintaining or slightly improving on discrimination over all other algorithms used in the experi-
ments. The non-instance-specific NISMB algorithm had inferior performance on logarithmic loss
and squared error but similar performance on the other measures when compared to the ISMB al-
gorithm. Both the ISMB and the NISMB algorithms average over the same number of models and
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.1457 0.1457 0.1435 0.1449 0.1333 0.1486 0.1848 0.1457 0.1471 0.1453
breast-cancer 0.0256 0.0271 0.0256 0.0256 0.0403 0.0337 0.0373 0.0286 0.0256 0.0264
cleveland 0.1740 0.1791 0.1740 0.1655 0.2095 0.1655 0.1993 0.1791 0.1655 0.1985
corral 0.0000 0.0156 0.0000 0.1328 0.0508 0.1289 0.0000 0.0977 0.1250 0.0000
crx 0.1547 0.1577 0.1485 0.1348 0.1317 0.1424 0.1692 0.1485 0.1340 0.1308
diabetes 0.2116 0.2129 0.2142 0.2201 0.2194 0.2135 0.2272 0.2201 0.2207 0.2244
flare 0.1806 0.1834 0.1825 0.2012 0.1735 0.1721 0.2054 0.1806 0.1750 0.1730
german 0.2580 0.2585 0.2580 0.2445 0.2845 0.2425 0.2980 0.2695 0.2475 0.2818
glass2 0.1503 0.1564 0.1472 0.1595 0.1933 0.1442 0.1442 0.1411 0.1503 0.1503
glass 0.2150 0.2220 0.2196 0.2687 0.2500 0.2547 0.2220 0.2173 0.2500 0.2420
heart 0.1778 0.1778 0.1778 0.1630 0.1870 0.1630 0.1963 0.1741 0.1630 0.1724
hepatitis 0.0938 0.1000 0.1000 0.1375 0.1250 0.1375 0.1688 0.0688 0.1375 0.1040
iris 0.0567 0.0600 0.0633 0.0533 0.0600 0.0567 0.0633 0.0633 0.0533 0.0600
lymphography 0.1622 0.1486 0.1622 0.1486 0.2365 0.2365 0.1622 0.1622 0.1520 0.1622
pima 0.2155 0.2135 0.2142 0.2214 0.2259 0.2148 0.2389 0.2246 0.2227 0.2224
postoperative 0.3391 0.3851 0.3391 0.3103 0.2989 0.3736 0.4138 0.3333 0.3103 0.2111
sonar 0.1635 0.1659 0.1731 0.1490 0.1659 0.1442 0.1611 0.1707 0.1490 0.1742
vehicle 0.2600 0.2577 0.2612 0.3712 0.2843 0.2914 0.2825 0.2766 0.2784 0.2923
vote 0.0453 0.0582 0.0453 0.0927 0.0388 0.0733 0.0711 0.0819 0.0927 0.0438
wine 0.0084 0.0084 0.0056 0.0112 0.0702 0.0253 0.0169 0.0281 0.0112 0.0617
zoo 0.0347 0.0396 0.0347 0.0644 0.0792 0.0594 0.0495 0.0347 0.0644 0.0658
average 0.1463 0.1511 0.1471 0.1629 0.1647 0.1629 0.1672 0.1546 0.1560 0.1496

Table 6: Mean misclassification errors of different algorithms based on 10-fold cross-validation
done twice. The bottom row gives the average misclassification errors. Best results are
underlined.

both select the same models in phase 1 of the search. In phase 2 of the search, while the number of
selected models is the same, the two methods identify potentially different models. This provides
evidence that the models selected in phase 2 by the ISMB algorithm, using instance-specific search,
are able to improve the performance of the ISMB algorithm over the already good performance
obtained by the NISMB algorithm. Of note, LBR, which is an instance-specific approach that per-
forms model selection, is tied with ISMB on mean error and comes second after ISMB on AUC, but
it performs more poorly on the probabilistic measures.

7. Discussion

This paper described the development and evaluation of a new approach for learning predictive
models that are relevant to a single instance. The instance-specific method we developed uses MB
models, carries out selective BMA to predict the outcome of interest for the instance at hand, and
employs an instance-specific heuristic to locate a set of suitable models to average over. The essence
of the instance-specific method lies in the model score used in phase 2 of the search. This score is
sensitive to both the posterior probability of the model and the predicted distribution for the outcome
variable of the instance at hand. Typically, methods that evaluate models with a score employ a
score that is sensitive only to the fit of the model to the training data and not to the prediction of the
outcome variable.
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.9315 0.9303 0.9313 0.9200 0.9032 0.9187 0.8937 0.9092 0.9186 0.9172
breast-cancer 0.9926 0.9922 0.9925 0.9933 0.9613 0.9879 0.9818 0.9930 0.9933 0.9802
cleveland 0.9098 0.9079 0.9084 0.9141 0.7952 0.9089 0.8781 0.8995 0.9141 0.8350
corral 1.0000 0.9997 1.0000 0.9252 0.9916 0.9459 1.0000 0.9827 0.9373 0.9932
crx 0.9303 0.9280 0.9302 0.9301 0.9087 0.9138 0.9002 0.9057 0.9302 0.9140
diabetes 0.8468 0.8468 0.8466 0.8438 0.7991 0.8439 0.8311 0.8148 0.8423 0.8004
flare 0.7289 0.7288 0.7261 0.7557 0.4916 0.7451 0.6445 0.6797 0.7520 0.7034
german 0.7662 0.7633 0.7641 0.7903 0.6736 0.7839 0.7340 0.7442 0.7891 0.7911
glass2 0.8703 0.8653 0.8700 0.8769 0.7982 0.8845 0.8483 0.8384 0.8826 0.8744
glass 0.9364 0.9361 0.9361 0.9408 0.8834 0.9101 0.9241 0.9112 0.9434 0.9488
heart 0.9055 0.9049 0.9073 0.9106 0.8239 0.9032 0.8649 0.8791 0.9106 0.8332
hepatitis 0.9225 0.9262 0.9237 0.9013 0.8203 0.7784 0.8436 0.8792 0.8970 0.9004
iris 0.9890 0.9900 0.9905 0.9938 0.9629 0.9846 0.9785 0.9886 0.9938 0.9808
lymphography 0.9139 0.9156 0.9173 0.9193 0.7741 0.8571 0.9192 0.9087 0.9175 0.8830
pima 0.8431 0.8424 0.8424 0.8450 0.7977 0.8456 0.8237 0.8134 0.8449 0.8284
postoperative 0.5026 0.4943 0.4538 0.5035 0.4228 0.4515 0.4113 0.3665 0.5035 0.4975
sonar 0.9203 0.9204 0.9217 0.9343 0.8521 0.9275 0.9331 0.9132 0.9345 0.9142
vehicle 0.9234 0.9228 0.9235 0.8655 0.8761 0.9016 0.8931 0.9032 0.9109 0.8965
vote 0.9875 0.9850 0.9854 0.9684 0.9578 0.9582 0.9871 0.9735 0.9660 0.9498
wine 0.9994 0.9994 0.9994 1.0000 0.9660 0.9967 0.9994 0.9981 1.0000 1.0000
zoo 0.9994 0.9992 0.9992 0.9989 0.9565 0.9967 0.9916 0.9995 0.9989 0.9622
average 0.8962 0.8952 0.8938 0.8919 0.8293 0.8783 0.8705 0.8715 0.8943 0.8764

Table 7: Mean AUCs of different algorithms based on 10-fold cross-validation done twice. The
bottom row gives the average AUCs. Best results are underlined.

The experimental results demonstrate that the ISMB algorithm improves prediction of the target
variable on a variety of performance measures when compared to several population-wide predictive
algorithms. The greatest improvements occur in logarithmic loss and squared error, followed by
good improvement in calibration and smaller improvements in misclassification error and the AUC.
BMA had better performance than Bayesian model selection, and within model averaging, instance-
specific BMA had better performance than non-instance-specific BMA though the improvement
is not as large as that of model averaging over model selection. The improved performance by
ISMB may arise from not only the model averaging but also from the variable selection that is
performed implicitly by the Markov blanket models. Both these components likely explain the
better performance of ISMB over comparison methods such as NB, LR and kNN that do not perform
variable selection. However, the superiority of ISMB over ISMB-MS suggests that model averaging
is an important component in the improved performance of the former. We have also evaluated
ISMB on several medical data sets and obtained good results (Visweswaran et al., 2010).

Several situations are possible where the instance-specific method has no advantage over a
population-wide method. As one example, in a domain where complete BMA is tractable and
model averaging is carried out over all models in the model space, a search heuristic that selects a
subset of models such as the one used by the instance-specific method is superfluous. Typically, in
real life domains, complete BMA over all models is not tractable due to the enormous number of
models in the model space. Thus, the ISMB algorithm is useful for selective model averaging where
it identifies a potentially relevant set of models that is predictive of the instance at hand. As another
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.3390 0.3456 0.3417 0.4476 0.4091 0.7136 0.4263 0.8627 0.4482 0.3850
breast-cancer 0.1068 0.1138 0.1083 0.2497 0.2955 0.1485 0.1205 0.2138 0.2497 0.2772
cleveland 0.3925 0.4067 0.4021 0.4491 1.3001 0.6500 0.4584 0.8625 0.4491 0.7044
corral 0.1018 0.1101 0.0989 0.3326 0.1475 0.2753 0.1542 0.0175 0.3130 0.1280
crx 0.3451 0.3564 0.3525 0.4113 0.3783 0.9377 0.4678 0.8747 0.4018 0.3845
diabetes 0.4601 0.4606 0.4604 0.4809 0.5497 0.4588 0.6039 0.5028 0.4826 0.4478
flare 0.4282 0.4294 0.4314 0.5904 0.4879 0.4042 0.5333 0.5858 0.5182 0.4032
german 0.5331 0.5413 0.5377 0.5213 1.4604 0.5229 0.5801 1.5415 0.5221 0.7981
glass2 0.4238 0.4302 0.4246 0.4532 0.8498 0.4154 0.8853 0.4562 0.4447 0.4530
glass 0.7112 0.7239 0.7113 0.7697 2.3005 4.0749 1.3612 0.8685 0.7264 0.9452
heart 0.3996 0.4069 0.3973 0.4560 0.6920 0.3907 0.6109 0.8483 0.4560 0.3788
hepatitis 0.2396 0.2517 0.2583 0.4247 0.6122 17.7871 0.3562 0.6253 0.4272 0.2548
iris 0.1560 0.1909 0.1620 0.1621 0.5287 0.7579 0.5770 0.2240 0.1621 0.1712
lymphography 0.4100 0.4289 0.4430 0.4282 2.9112 21.6371 0.5765 0.7272 0.4409 0.7422
pima 0.4647 0.4657 0.4657 0.4793 0.5268 0.4572 0.5873 0.5114 0.4774 0.4880
postoperative 0.7381 0.7776 0.7287 0.7953 1.1395 2.8236 1.3339 1.9418 0.7953 0.9453
sonar 0.3573 0.3726 0.3743 0.4573 1.2814 0.5762 0.4170 0.5728 0.4554 0.4344
vehicle 0.5863 0.5900 0.5866 1.8645 2.3842 3.9997 1.0134 1.2590 0.7815 1.0042
vote 0.1393 0.1635 0.1588 0.6804 0.3028 5.5427 0.3171 0.2782 0.5629 0.1562
wine 0.0418 0.0402 0.0367 0.0303 0.8270 0.9593 0.1032 0.0409 0.0303 0.0531
zoo 0.1297 0.1202 0.1268 0.1474 1.1102 0.5325 0.0596 0.1595 0.1474 0.1130
average 0.3573 0.3679 0.3622 0.5063 0.9759 3.0507 0.5497 0.6654 0.4425 0.4604

Table 8: Mean logarithmic losses of different algorithms based on 10-fold cross-validation done
twice. The bottom row gives the average logarithmic losses. Best results are underlined.

example, in a domain where features that are relevant are commonly present, selection of relevant
variables may not be a problem. In such a situation, the variables selected by a population-wide
method are likely to be relevant for predicting any future instance and the instance-specific method
that performs model selection will likely select the same set of variables for each new instance.

Improvements in the phase 1 search may make the phase 2 search relatively less contributory to
the overall performance. We believe that the greedy hill climbing approach used in phase 1 of ISMB
serves as a useful starting point for investigating this algorithm. Nonetheless, such an approach may
become trapped in local maxima, leading it to miss finding highly probable MB structures. To
explore this issue a number of search strategies that augment local greedy search that have been
successfully applied to learning BN structures can be tried, such as best-first search (Neapolitan,
2003), simulated annealing (Heckerman et al., 1995), tabu lists (Friedman et al., 1999), random
restarts to escape the numerous local optima (Heckerman et al., 1995), and optimal reinsertion
(Moore and Wong, 2003). Algorithms that have been developed specifically for learning MBs
such as the Markov Blanket Bayesian Classifier (MBBC) (Madden, 2002a), HITON (Aliferis et al.,
2003), the Incremental Association Markov Blanket (IAMB) (Tsamardinos and Aliferis, 2003),
and the Min-Max Markov Blanket algorithm (MMMB) (Tsamardinos et al., 2006) are additional
candidates for consideration. Investigating the use of such alternative search methods in phase 1 is
an interesting open problem.

There are several open questions regarding the behavior of the instance-specific method. Char-
acterizing theoretically the bias of the selective model averaged prediction of the instance-specific
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.2054 0.2082 0.2060 0.2234 0.2066 0.2116 0.3062 0.2287 0.2287 0.2075
breast-cancer 0.0440 0.0449 0.0441 0.0474 0.0731 0.0542 0.0689 0.0484 0.0474 0.0622
cleveland 0.2433 0.2499 0.2462 0.2553 0.3516 0.2339 0.3364 0.2526 0.2553 0.3314
corral 0.0352 0.0463 0.0354 0.2056 0.0887 0.1836 0.0038 0.1051 0.1951 0.0787
crx 0.2081 0.2146 0.2087 0.2092 0.1965 0.2121 0.2948 0.2363 0.2078 0.1987
diabetes 0.2978 0.2981 0.2979 0.3073 0.3219 0.2978 0.3156 0.3315 0.3086 0.2978
flare 0.2619 0.2626 0.2652 0.3145 0.2846 0.2513 0.3203 0.2843 0.2700 0.2498
german 0.3526 0.3570 0.3555 0.3419 0.4196 0.3368 0.5104 0.3591 0.3433 0.4050
glass2 0.2469 0.2513 0.2468 0.2450 0.3116 0.2409 0.2572 0.2603 0.2393 0.2572
glass 0.3609 0.3635 0.3605 0.3823 0.4186 0.4363 0.4075 0.3880 0.3673 0.3857
heart 0.2444 0.2486 0.2420 0.2570 0.3113 0.2394 0.3273 0.2611 0.2570 0.2565
hepatitis 0.1410 0.1495 0.1534 0.2079 0.2170 0.2750 0.2579 0.1481 0.2090 0.1483
iris 0.0727 0.0828 0.0753 0.0751 0.1122 0.0942 0.1032 0.1086 0.0751 0.0834
lymphography 0.2391 0.2353 0.2433 0.2344 0.4162 0.4545 0.2687 0.2650 0.2406 0.2388
pima 0.3009 0.3011 0.3011 0.3065 0.3264 0.2968 0.3248 0.3332 0.3060 0.3130
postoperative 0.4772 0.5044 0.4748 0.4894 0.4525 0.6011 0.7221 0.6168 0.4894 0.4512
sonar 0.2349 0.2391 0.2369 0.2411 0.2887 0.2228 0.2764 0.2402 0.2405 0.2614
vehicle 0.3471 0.3481 0.3470 0.5805 0.4171 0.4109 0.4672 0.3934 0.4059 0.3815
vote 0.0788 0.0903 0.0810 0.1681 0.0703 0.1461 0.1172 0.1293 0.1529 0.0911
wine 0.0183 0.0158 0.0142 0.0191 0.1268 0.0503 0.0213 0.0407 0.0191 0.0255
zoo 0.0612 0.0652 0.0630 0.0860 0.1415 0.0991 0.0568 0.0406 0.0860 0.0877
average 0.2129 0.2179 0.2142 0.2475 0.2644 0.2547 0.2745 0.2415 0.2354 0.2292

Table 9: Mean squared errors of different algorithms based on 10-fold cross-validation done twice.
The bottom row gives the average squared errors. Best results are underlined.

method is an open problem. In contrast, the bias of selective BMA over models that are chosen
randomly is low. However, the variance of selective BMA over models that are chosen randomly is
likely to be much larger than the variance of selective BMA over models chosen by the instance-
specific method which is constrained to prefer models that are good fit to the training data. The
results here support that as a practical matter ISMB is attaining a good balance between bias and
variance.

The experimental work presented in this paper is a first step in exploring the utility of the
instance-specific framework, and several directions of future work are possible. The computation
of the phase 2 score (see Equation 14) requires a dissimilarity metric to compare the predictive
distributions of the target variable in candidate MB structures. The current implementation of the
ISMB algorithm uses KL divergence as the dissimilarity metric. The experimental results indicate
that KL divergence optimizes most logarithmic loss and the largest improvement in performance is
observed on this measure. Alternative dissimilarity metrics that may optimize other performance
measures are worth exploring.
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Data Set ISMB ISMB- NISMB NB DT LR NN kNN LBR AB
MS

australian 0.0470 0.0459 0.0454 0.0775 0.0463 0.0440 0.0526 0.1423 0.0817 0.0454
breast-cancer 0.0146 0.0146 0.0144 0.0200 0.0261 0.0155 0.0114 0.0299 0.0200 0.0210
cleveland 0.0497 0.0630 0.0569 0.0930 0.0690 0.0295 0.0432 0.1543 0.0930 0.0632
corral 0.0583 0.0656 0.0561 0.0470 0.0505 0.0473 0.0162 0.0115 0.0368 0.0516
crx 0.0452 0.0518 0.0503 0.0711 0.0440 0.0394 0.0722 0.1354 0.0689 0.0430
diabetes 0.0403 0.0401 0.0411 0.0618 0.0633 0.0433 0.0813 0.0662 0.0590 0.0400
flare 0.0551 0.0546 0.0562 0.1260 0.0467 0.0414 0.0762 0.1000 0.0707 0.0404
german 0.0684 0.0696 0.0699 0.0625 0.1038 0.0504 0.0547 0.2363 0.0645 0.0942
glass2 0.0359 0.0395 0.0373 0.0644 0.0386 0.0322 0.0482 0.0561 0.0569 0.0349
glass 0.0188 0.0189 0.0186 0.0282 0.0223 0.0262 0.0258 0.0246 0.0241 0.0232
heart 0.0498 0.0585 0.0513 0.0913 0.0641 0.0321 0.0624 0.1385 0.0913 0.0524
hepatitis 0.0422 0.0294 0.0381 0.0488 0.0306 0.0462 0.0197 0.0492 0.0466 0.0288
iris 0.0110 0.0115 0.0114 0.0132 0.0188 0.0142 0.0219 0.0205 0.0132 0.0144
lymphography 0.0226 0.0259 0.0256 0.0326 0.0279 0.0863 0.0272 0.0512 0.0359 0.0269
pima 0.0532 0.0539 0.0539 0.0596 0.0660 0.0444 0.0960 0.0805 0.0586 0.0588
postoperative 0.0404 0.0358 0.0438 0.0436 0.0450 0.0707 0.0844 0.1175 0.0436 0.0430
sonar 0.0437 0.0656 0.0643 0.1042 0.0591 0.0814 0.0503 0.1336 0.1045 0.0535
vehicle 0.0479 0.0481 0.0480 0.1272 0.0654 0.0632 0.0567 0.0984 0.0690 0.0543
vote 0.0247 0.0285 0.0306 0.0722 0.0227 0.0520 0.0603 0.0346 0.0658 0.0235
wine 0.0062 0.0043 0.0054 0.0083 0.0247 0.0154 0.0256 0.0133 0.0083 0.0103
zoo 0.0065 0.0067 0.0069 0.0078 0.0094 0.0055 0.0029 0.0075 0.0078 0.0067
average 0.0372 0.0396 0.0393 0.0600 0.0450 0.0419 0.0471 0.0810 0.0533 0.0395

Table 10: Mean CAL scores of different algorithms based on 10-fold cross-validation done twice.
The bottom row gives the average CAL scores. Best results are underlined.

Performance ISMB- NISMB NB DT LR NN kNN LBR AB
measure MS
Misclassification -2.338 -0.776 -2.121 -2.070 -1.181 -3.861 -0.825 -0.368 -1.720
error 0.019 0.438 0.034 0.038 0.238 <0.001 0.409 0.713 0.085
AUC -2.085 -1.257 -1.511 -4.457 -2.197 -4.029 -4.203 -0.927 -3.198

0.037 0.209 0.131 0.001 0.028 0.001 0.001 0.354 0.001
Logarithmic -3.595 -2.426 -4.280 -4.457 -3.340 -4.254 -4.026 -4.051 -3.215
loss 0.001 0.015 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Squared error -3.608 -2.313 -3.975 -3.24 -2.121 -4.127 -3.518 -3.213 -2.839

0.001 0.021 0.001 0.001 0.034 0.001 0.001 0.001 0.005
CAL score -2.032 -1.867 -4.026 -2.806 -0.063 -4.076 -1.892 -3.543 -1.443

0.042 0.062 0.001 0.005 0.949 0.001 0.058 0.001 0.149

Table 11: Two-sided Wilcoxon paired-samples signed ranks test comparing the performance of
ISMB with other algorithms. For each performance measure the number on top is the
Z statistic and the number at the bottom is the corresponding p-value. The Z statistic is
negative when ISMB has a lower score on a performance measure than the competing
algorithm. On all measures, a negative Z statistic indicates better performance by ISMB.
Underlined results indicate p-values of 0.05 or smaller.
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Performance ISMB- NISMB NB DT LR NN kNN LBR AB
measure MS
Misclassification -0.004 -0.001 -0.021 -0.013 -0.012 -0.019 -0.005 -0.007 -0.003
error 0.077 0.312 0.014 0.021 0.065 <0.001 0.334 0.289 0.258
AUC -0.001 -0.002 -0.001 -0.104 -0.017 -0.032 -0.023 -0.001 -0.020

0.077 0.242 0.975 <0.001 0.022 <0.001 <0.001 0.932 0.001
Logarithmic -0.009 -0.004 -0.163 -0.211 -0.215 -0.306 -0.140 -0.071 -0.103
loss 0.001 0.026 0.005 <0.001 0.006 <0.001 <0.001 <0.001 0.002
Squared error -0.004 -0.001 -0.044 -0.044 -0.034 -0.062 -0.023 -0.019 -0.016

0.003 0.054 0.002 <0.001 0.009 0.002 <0.001 0.017 0.007
CAL score -0.003 -0.002 -0.033 -0.011 -0.003 -0.047 -0.008 -0.016 -0.002

0.044 0.058 <0.001 0.018 0.441 <0.001 0.079 0.001 0.237

Table 12: Two-sided paired-samples t test comparing the performance of ISMB with other algo-
rithms. For each performance measure the number on top is the mean difference between
ISMB and the indicated algorithm and the number at the bottom is the corresponding
p-value. The mean difference is negative when ISMB has a lower score on a performance
measure than the competing algorithm. On all measures, a negative mean difference
indicates better performance by ISMB. Underlined results indicate p-values of 0.05 or
smaller.

Algorithm Average running time
NB < 1 second
DT < 1 second
LR < 1 second
NN < 1 second
kNN < 1 second
LBR ≈ 1 second
AB < 1 second
ISMB ≈ 2 minutes

Table 13: Approximate running times of the various algorithms. For each algorithm, the time
shown is the average running time over all the UCI data sets. For the instance-specific
algorithms LBR and ISMB the reported running time is for a single test instance, while
for the other algorithms the reported running time is over all test instances.
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Abstract
We explore an original strategy for building deep networks, based on stacking layers of denoising
autoencoders which are trained locally to denoise corrupted versions of their inputs. The resulting
algorithm is a straightforward variation on the stacking of ordinary autoencoders. It is however
shown on a benchmark of classification problems to yield significantly lower classification error,
thus bridging the performance gap with deep belief networks (DBN), and in several cases surpass-
ing it. Higher level representations learnt in this purely unsupervised fashion also help boost the
performance of subsequent SVM classifiers. Qualitative experiments show that, contrary to ordi-
nary autoencoders, denoising autoencoders are able to learn Gabor-like edge detectors from natural
image patches and larger stroke detectors from digit images. This work clearly establishes the value
of using a denoising criterion as a tractable unsupervised objective to guide the learning of useful
higher level representations.
Keywords: deep learning, unsupervised feature learning, deep belief networks, autoencoders,
denoising

1. Introduction

It has been a long held belief in the field of neural network research that the composition of several
levels of nonlinearity would be key to efficiently model complex relationships between variables
and to achieve better generalization performance on difficult recognition tasks (McClelland et al.,
1986; Hinton, 1989; Utgoff and Stracuzzi, 2002). This viewpoint is motivated in part by knowledge
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of the layered architecture of regions of the human brain such as the visual cortex, and in part by a
body of theoretical arguments in its favor (Håstad, 1986; Håstad and Goldmann, 1991; Bengio and
LeCun, 2007; Bengio, 2009). Yet, looking back at the history of multi-layer neural networks, their
problematic non-convex optimization has for a long time prevented reaping the expected benefits
(Bengio et al., 2007; Bengio, 2009) of going beyond one or two hidden layers.1 Consequently
much of machine learning research has seen progress in shallow architectures allowing for convex
optimization, while the difficult problem of learning in deep networks was left dormant.

The recent revival of interest in such deep architectures is due to the discovery of novel ap-
proaches (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2007; Ranzato et al.,
2007; Lee et al., 2008) that proved successful at learning their parameters. Several alternative tech-
niques and refinements have been suggested since the seminal work on deep belief networks (DBN)
by Hinton et al. (2006) and Hinton and Salakhutdinov (2006). All appear however to build on the
same principle that we may summarize as follows:

• Training a deep network to directly optimize only the supervised objective of interest (for ex-
ample the log probability of correct classification) by gradient descent, starting from random
initialized parameters, does not work very well.

• What works much better is to initially use a local unsupervised criterion to (pre)train each
layer in turn, with the goal of learning to produce a useful higher-level representation from the
lower-level representation output by the previous layer. From this starting point on, gradient
descent on the supervised objective leads to much better solutions in terms of generalization
performance.

Deep layered networks trained in this fashion have been shown empirically to avoid getting
stuck in the kind of poor solutions one typically reaches with only random initializations. See
Erhan et al. (2010) for an in depth empirical study and discussion regarding possible explanations
for the phenomenon.

In addition to the supervised criterion relevant to the task, what appears to be key is using an
additional unsupervised criterion to guide the learning at each layer. In this sense, these techniques
bear much in common with the semi-supervised learning approach, except that they are useful even
in the scenario where all examples are labeled, exploiting the input part of the data to regularize,
thus approaching better minima of generalization error (Erhan et al., 2010).

There is yet no clear understanding of what constitutes “good” representations for initializing
deep architectures or what explicit unsupervised criteria may best guide their learning. We know
but a few algorithms that work well for this purpose, beginning with restricted Boltzmann machines
(RBMs) (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Lee et al., 2008), and autoencoders
(Bengio et al., 2007; Ranzato et al., 2007), but also semi-supervised embedding (Weston et al.,
2008) and kernel PCA (Cho and Saul, 2010).

It is worth mentioning here that RBMs (Hinton, 2002; Smolensky, 1986) and basic classical
autoencoders are very similar in their functional form, although their interpretation and the pro-
cedures used for training them are quite different. More specifically, the deterministic function
that maps from input to mean hidden representation, detailed below in Section 2.2, is the same for
both models. One important difference is that deterministic autoencoders consider that real valued

1. There is a notable exception to this in the more specialized convolutional network architecture of LeCun et al. (1989).
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mean as their hidden representation whereas stochastic RBMs sample a binary hidden representa-
tion from that mean. However, after their initial pretraining, the way layers of RBMs are typically
used in practice when stacked in a deep neural network is by propagating these real-valued means
(Hinton et al., 2006; Hinton and Salakhutdinov, 2006). This is more in line with the deterministic
autoencoder interpretation. Note also that reconstruction error of an autoencoder can be seen as an
approximation of the log-likelihood gradient in an RBM, in a way that is similar to the approxima-
tion made by using the Contrastive Divergence updates for RBMs (Bengio and Delalleau, 2009).
It is thus not surprising that initializing a deep network by stacking autoencoders yields almost as
good a classification performance as when stacking RBMs (Bengio et al., 2007; Larochelle et al.,
2009a). But why is it only almost as good? An initial motivation of the research presented here was
to find a way to bridge that performance gap.

With the autoencoder paradigm in mind, we began an inquiry into the question of what can
shape a good, useful representation. We were looking for unsupervised learning principles likely to
lead to the learning of feature detectors that detect important structure in the input patterns.

Section 2 walks the reader along the lines of our reasoning. Starting from the simple intuitive
notion of preserving information, we present a generalized formulation of the classical autoencoder,
before highlighting its limitations. This leads us in Section 3 to motivate an alternative denoising
criterion, and derive the denoising autoencoder model, for which we also give a possible intuitive
geometric interpretation. A closer look at the considered noise types will then allow us to derive a
further extension of the base model. Section 4 discusses related preexisting works and approaches.
Section 5 presents experiments that qualitatively study the feature detectors learnt by a single-layer
denoising autoencoder under various conditions. Section 6 describes experiments with multi-layer
architectures obtained by stacking denoising autoencoders and compares their classification perfor-
mance with other state-of-the-art models. Section 7 is an attempt at turning stacked (denoising)
autoencoders into practical generative models, to allow for a qualitative comparison of generated
samples with DBNs. Section 8 summarizes our findings and concludes our work.

1.1 Notation

We will be using the following notation throughout the article:
• Random variables are written in upper case, for example, X .

• If X is a random vector, then its jth component will be noted Xj.

• Ordinary vectors are written in lowercase bold. For example, a realization of a random vector
X may be written x. Vectors are considered column vectors.

• Matrices are written in uppercase bold (e.g.,W). I denotes the identity matrix.

• The transpose of a vector x or a matrix W is written xT or WT (not x′ or W′ which may be
used to refer to an entirely different vector or matrix).

• We use lower case p and q to denote both probability density functions or probability mass
functions according to context.

• Let X and Y two random variables with marginal probability p(X) and p(Y ). Their joint
probability is written p(X ,Y ) and the conditional p(X |Y ).

• We may use the following common shorthands when unambiguous: p(x) for p(X = x);
p(X |y) for p(X |Y = y) (denoting a conditional distribution) and p(x|y) for p(X = x|Y = y).
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• f , g, h, will be used for ordinary functions.

• Expectation (discrete case, p is probability mass): Ep(X)[ f (X)] = ∑x p(X = x) f (x).

• Expectation (continuous case, p is probability density): Ep(X)[ f (X)] =
∫
p(x) f (x)dx.

• Entropy or differential entropy: IH(X) = IH(p) = Ep(X)[− log p(X)].

• Conditional entropy: IH(X |Y ) = Ep(X ,Y )[− log p(X |Y )].

• Kullback-Leibler divergence: IDKL(p‖q) = Ep(X)[log p(X)
q(X) ].

• Cross-entropy: IH(p‖q) = Ep(X)[− logq(X)] = IH(p)+ IDKL(p‖q).

• Mutual information: I(X ;Y ) = IH(X)− IH(X |Y ).

• Sigmoid: s(x) = 1
1+e−x and s(x) = (s(x1), . . . ,s(xd))T .

• Bernoulli distribution with mean µ: B(µ). By extension for vector variables: X ∼B(µ) means
∀i,Xi ∼ B(µi).

1.2 General setup

We consider the typical supervised learning setup with a training set of n (input, target) pairs Dn =
{(x(1), t(1)) . . . ,(x(n), t(n))}, that we suppose to be an i.i.d. sample from an unknown distribution
q(X ,T ) with corresponding marginals q(X) and q(T ). We denote q0(X ,T ) and q0(X) the empirical
distributions defined by the samples in Dn. X is a d-dimensional random vector (typically in IR

d or
in [0,1]d).

In this work we are primarily concerned with finding a new, higher-level representation Y of X .
Y is a d′-dimensional random vector (typically in IR

d′ or in [0,1]d′). If d′ > d we will talk of an
over-complete representation, whereas it will be termed an under-complete representation if d′ < d.
Y may be linked to X by a deterministic or stochastic mapping q(Y |X ;θ) parameterized by a vector
of parameters θ.

2. What Makes a Good Representation? From Mutual Information to Autoencoders

From the outset we can give an operational definition of a “good” representation as one that will
eventually be useful for addressing tasks of interest, in the sense that it will help the system quickly
achieve higher performance on those tasks than if it hadn’t first learned to form the representa-
tion. Based on the objective measure typically used to assess algorithm performance, this might be
phrased as “A good representation is one that will yield a better performing classifier”. Final classi-
fication performance will indeed typically be used to objectively compare algorithms. However, if
a lesson is to be learnt from the recent breakthroughs in deep network training techniques, it is that
the error signal from a single narrowly defined classification task should not be the only nor primary
criterion used to guide the learning of representations. First because it has been shown experimen-
tally that beginning by optimizing an unsupervised criterion, oblivious of the specific classification
problem, can actually greatly help in eventually achieving superior performance for that classifica-
tion problem. Second it can be argued that the capacity of humans to quickly become proficient in
new tasks builds on much of what they have learnt prior to being faced with that task.

In this section, we begin with the simple notion of retaining information and progress to formally
introduce the traditional autoencoder paradigm from this more general vantage point.
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2.1 Retaining Information about the Input

We are interested in learning a (possibly stochastic) mapping from input X to a novel representa-
tion Y . To make this more precise, let us restrict ourselves to parameterized mappings q(Y |X) =
q(Y |X ;θ) with parameters θ that we want to learn.

One natural criterion that we may expect any good representation to meet, at least to some
degree, is to retain a significant amount of information about the input. It can be expressed in
information-theoretic terms as maximizing the mutual information I(X ;Y ) between an input random
variable X and its higher level representationY . This is the infomax principle put forward by Linsker
(1989).

Mutual information can be decomposed into an entropy and a conditional entropy term in two
different ways. A first possible decomposition is I(X ;Y ) = IH(Y )− IH(Y |X) which lead Bell and
Sejnowski (1995) to their infomax approach to Independent Component Analysis. Here we will
start from another decomposition: I(X ;Y ) = IH(X)− IH(X |Y ). Since observed input X comes from
an unknown distribution q(X) on which θ has no influence, this makes IH(X) an unknown constant.
Thus the infomax principle reduces to:

argmax
θ

I(X ;Y ) = argmax
θ

−IH(X |Y )

= argmax
θ

Eq(X ,Y )[logq(X |Y )].

Now for any distribution p(X |Y ) we will have

Eq(X ,Y )[log p(X |Y )]≤ Eq(X ,Y )[logq(X |Y )]
︸ ︷︷ ︸

−IH(X |Y )

, (1)

as can easily be shown starting from the property that for any two distributions p and q we have
IDKL(q‖p)≥ 0, and in particular IDKL(q(X |Y = y)‖p(X |Y = y))≥ 0.

Let us consider a parametric distribution p(X |Y ;θ′), parameterized by θ′, and the following
optimization:

max
θ,θ′

Eq(X ,Y ;θ)[log p(X |Y ;θ′)].

From Equation 1, we see that this corresponds to maximizing a lower bound on −IH(X |Y ) and thus
on the mutual information. We would end up maximizing the exact mutual information provided
∃θ′ s.t. q(X |Y ) = p(X |Y ;θ′).

If, as is done in infomax ICA, we further restrict ourselves to a deterministic mapping from X to
Y , that is, representation Y is to be computed by a parameterized function Y = fθ(X) or equivalently
q(Y |X ;θ) = δ(Y − fθ(X)) (where δ denotes Dirac-delta), then this optimization can be written:

max
θ,θ′

Eq(X)[log p(X |Y = fθ(X);θ′)].

This again corresponds to maximizing a lower bound on the mutual information.
Since q(X) is unknown, but we have samples from it, the empirical average over the training

samples can be used instead as an unbiased estimate (i.e., replacing Eq(X) by Eq0(X)):

max
θ,θ′

Eq0(X)[log p(X |Y = fθ(X);θ′)]. (2)
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We will see in the next section that this equation corresponds to the reconstruction error criterion
used to train autoencoders.

2.2 Traditional Autoencoders (AE)

Here we briefly specify the traditional autoencoder (AE)2 framework and its terminology, based on
fθ and p(X |Y ;θ′) introduced above.

Encoder: The deterministic mapping fθ that transforms an input vector x into hidden represen-
tation y is called the encoder. Its typical form is an affine mapping followed by a nonlinearity:

fθ(x) = s(Wx+b).

Its parameter set is θ = {W,b}, where W is a d′ × d weight matrix and b is an offset vector of
dimensionality d′.

Decoder: The resulting hidden representation y is then mapped back to a reconstructed d-
dimensional vector z in input space, z= gθ′(y). This mapping gθ′ is called the decoder. Its typical
form is again an affine mapping optionally followed by a squashing non-linearity, that is, either
gθ′(y) =W′y+b′ or

gθ′(y) = s(W′y+b′), (3)

with appropriately sized parameters θ′ = {W′,b′}.
In general z is not to be interpreted as an exact reconstruction of x, but rather in probabilistic

terms as the parameters (typically the mean) of a distribution p(X |Z = z) that may generate x with
high probability. We have thus completed the specification of p(X |Y ;θ′) from the previous section
as p(X |Y = y) = p(X |Z = gθ′(y)). This yields an associated reconstruction error to be optimized:

L(x,z) ∝− log p(x|z). (4)

Common choices for p(x|z) and associated loss function L(x,z) include:

• For real-valued x, that is, x ∈ IR
d: X |z∼N (z,σ2I), that is, Xj|z∼N (z j,σ2).

This yields L(x,z) = L2(x,z) =C(σ2)‖x− z‖2 where C(σ2) denotes a constant that depends
only on σ2 and that can be ignored for the optimization. This is the squared error objective
found in most traditional autoencoders. In this setting, due to the Gaussian interpretation, it
is more natural not to use a squashing nonlinearity in the decoder.

• For binary x, that is, x ∈ {0,1}d: X |z∼ B(z), that is, Xj|z∼ B(z j).
In this case, the decoder needs to produce a z ∈ [0,1]d . So a squashing nonlinearity such as a
sigmoid s will typically be used in the decoder. This yields L(x,z) = LIH(x,z) =
−∑ j[x j logz j+(1−x j) log(1−z j)] = IH(B(x)‖B(z)) which is termed the cross-entropy loss
because it is seen as the cross-entropy between two independent multivariate Bernoullis, the
first with mean x and the other with mean z. This loss can also be used when x is not strictly
binary but rather x ∈ [0,1]d .

2. Note: AutoEncoders (AE) are also often called AutoAssociators (AA) in the literature. The shorter autoencoder term
was preferred in this work, as we believe encoding better conveys the idea of producing a novel useful representation.
Similarly, what we call Stacked Auto Encoders (SAE) has also been called Stacked AutoAssociators (SAA).
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Note that in the general autoencoder framework, we may use other forms of parameterized func-
tions for the encoder or decoder, and other suitable choices of the loss function (corresponding to a
different p(X |z)). In particular, we investigated the usefulness of a more complex encoding function
in Larochelle, Erhan, and Vincent (2009b). For the experiments in the present work however, we
will restrict ourselves to the two usual forms detailed above, that is, an affine+sigmoid encoder
and either affine decoder with squared error loss or affine+sigmoid decoder with cross-entropy
loss. A further constraint that can optionally be imposed, and that further parallels the workings of
RBMs, is having tied weights betweenW andW ′, in effect definingW ′ asW ′ =WT .

Autoencoder training consists in minimizing the reconstruction error, that is, carrying the fol-
lowing optimization:

argmin
θ,θ′

Eq0(X)[L(X ,Z(X))],

where we wrote Z(X) to emphasize the fact that Z is a deterministic function of X , since Z is
obtained by composition of deterministic encoding and decoding.

Making this explicit and using our definition of loss L from Equation 4 this can be rewritten as:

argmax
θ,θ′

Eq0(X)[log p(X |Z = gθ′( fθ(X)))],

or equivalently
argmax

θ,θ′
Eq0(X)[log p(X |Y = fθ(X);θ′)].

We see that this last line corresponds to Equation 2, that is, the maximization of a lower bound on
the mutual information between X and Y .

It can thus be said that training an autoencoder to minimize reconstruction error amounts
to maximizing a lower bound on the mutual information between input X and learnt repre-
sentation Y . Intuitively, if a representation allows a good reconstruction of its input, it means that
it has retained much of the information that was present in that input.

2.3 Merely Retaining Information is Not Enough

The criterion that representation Y should retain information about input X is not by itself sufficient
to yield a useful representation. Indeed mutual information can be trivially maximized by setting
Y = X . Similarly, an ordinary autoencoder where Y is of the same dimensionality as X (or larger)
can achieve perfect reconstruction simply by learning an identity mapping.3 Without any other
constraints, this criterion alone is unlikely to lead to the discovery of a more useful representation
than the input.

Thus further constraints need to be applied to attempt to separate useful information (to be re-
tained) from noise (to be discarded). This will naturally translate to non-zero reconstruction error.
The traditional approach to autoencoders uses a bottleneck to produce an under-complete repre-
sentation where d′ < d. The resulting lower-dimensional Y can thus be seen as a lossy compressed
representation of X . When using affine encoder and decoder without any nonlinearity and a squared
error loss, the autoencoder essentially performs principal component analysis (PCA) as showed by

3. More precisely, it suffices that g◦ f be the identity to obtain zero reconstruction error. For d = d′ if we had a linear
encoder and decoder this would be achieved for any invertible matrix W by setting W′ =W−1. Now there is a
sigmoid nonlinearity in the encoder, but it is possible to stay in the linear part of the sigmoid with small enoughW.
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Baldi and Hornik (1989).4 When a nonlinearity such as a sigmoid is used in the encoder, things
become a little more complicated: obtaining the PCA subspace is a likely possibility (Bourlard and
Kamp, 1988) since it is possible to stay in the linear regime of the sigmoid, but arguably not the only
one (Japkowicz et al., 2000). Also when using a cross-entropy loss rather than a squared error the
optimization objective is no longer the same as that of PCA and will likely learn different features.
The use of “tied weights” can also change the solution: forcing encoder and decoder matrices to
be symmetric and thus have the same scale can make it harder for the encoder to stay in the linear
regime of its nonlinearity without paying a high price in reconstruction error.

Alternatively it is also conceivable to impose on Y different constraints than that of a lower
dimensionality. In particular the possibility of using over-complete (i.e., higher dimensional than
the input) but sparse representations has received much attention lately. Interest in sparse repre-
sentations is inspired in part by evidence that neural activity in the brain seems to be sparse and
has burgeoned following the seminal work of Olshausen and Field (1996) on sparse coding. Other
motivations for sparse representations include the ability to handle effectively variable-size repre-
sentations (counting only the non-zeros), and the fact that dense compressed representations tend
to entangle information (i.e., changing a single aspect of the input yields significant changes in all
components of the representation) whereas sparse ones can be expected to be easier to interpret and
to use for a subsequent classifier. Various modifications of the traditional autoencoder framework
have been proposed in order to learn sparse representations (Ranzato et al., 2007, 2008). These
were shown to extract very useful representations, from which it is possible to build top performing
deep neural network classifiers. A sparse over-complete representations can be viewed as an alter-
native “compressed” representation: it has implicit straightforward compressibility due to the large
number of zeros rather than an explicit lower dimensionality.

3. Using a Denoising Criterion

We have seen that the reconstruction criterion alone is unable to guarantee the extraction of useful
features as it can lead to the obvious solution “simply copy the input” or similarly uninteresting ones
that trivially maximizes mutual information. One strategy to avoid this phenomenon is to constrain
the representation: the traditional bottleneck and the more recent interest on sparse representations
both follow this strategy.

Here we propose and explore a very different strategy. Rather than constrain the representation,
we change the reconstruction criterion for a both more challenging and more interesting objec-
tive: cleaning partially corrupted input, or in short denoising. In doing so we modify the implicit
definition of a good representation into the following: “a good representation is one that can be
obtained robustly from a corrupted input and that will be useful for recovering the corresponding
clean input”. Two underlying ideas are implicit in this approach:

• First it is expected that a higher level representation should be rather stable and robust under
corruptions of the input.

• Second, it is expected that performing the denoising task well requires extracting features that
capture useful structure in the input distribution.

4. More specifically it will find the same subspace as PCA, but the specific projection directions found will in general
not correspond to the actual principal directions and need not be orthonormal.
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We emphasize here that our goal is not the task of denoising per se. Rather denoising is ad-
vocated and investigated as a training criterion for learning to extract useful features that will
constitute better higher level representation. The usefulness of a learnt representation can then be
assessed objectively by measuring the accuracy of a classifier that uses it as input.

3.1 The Denoising Autoencoder Algorithm

This approach leads to a very simple variant of the basic autoencoder described above. A denoising
autoencoder (DAE) is trained to reconstruct a clean “repaired” input from a corrupted version of
it (the specific types of corruptions we consider will be discussed below). This is done by first
corrupting the initial input x into x̃ by means of a stochastic mapping x̃∼ qD(x̃|x).

Corrupted input x̃ is then mapped, as with the basic autoencoder, to a hidden representation
y = fθ(x̃) = s(Wx̃+ b) from which we reconstruct a z = gθ′(y). See Figure 1 for a schematic
representation of the procedure. Parameters θ and θ′ are trained to minimize the average recon-
struction error over a training set, that is, to have z as close as possible to the uncorrupted input x.
The key difference is that z is now a deterministic function of x̃ rather than x. As previously, the
considered reconstruction error is either the cross-entropy loss LIH(x,z) = IH(B(x)‖B(z)), with an
affine+sigmoid decoder, or the squared error loss L2(x,z) = ‖x− z‖2, with an affine decoder. Pa-
rameters are initialized at random and then optimized by stochastic gradient descent. Note that each
time a training example x is presented, a different corrupted version x̃ of it is generated according
to qD(x̃|x).

Note that denoising autoencoders are still minimizing the same reconstruction loss between a
clean X and its reconstruction from Y . So this still amounts to maximizing a lower bound on the
mutual information between clean input X and representation Y . The difference is that Y is now
obtained by applying deterministic mapping fθ to a corrupted input. It thus forces the learning of a
far more clever mapping than the identity: one that extracts features useful for denoising.

fθ

xxx̃

qD

y

z

LH(x,z)gθ′

Figure 1: The denoising autoencoder architecture. An example x is stochastically corrupted (via
qD ) to x̃. The autoencoder then maps it to y (via encoder fθ) and attempts to reconstruct
x via decoder gθ′ , producing reconstruction z. Reconstruction error is measured by loss
LH(x,z).
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3.2 Geometric Interpretation

The process of denoising, that is, mapping a corrupted example back to an uncorrupted one, can
be given an intuitive geometric interpretation under the so-called manifold assumption (Chapelle
et al., 2006), which states that natural high dimensional data concentrates close to a non-linear
low-dimensional manifold. This is illustrated in Figure 2. During denoising training, we learn a
stochastic operator p(X |X̃) that maps a corrupted X̃ back to its uncorrupted X , for example, in the
case of binary data,

X |X̃ ∼ B(gθ′( fθ(X̃))).

Corrupted examples are much more likely to be outside and farther from the manifold than the
uncorrupted ones. Thus stochastic operator p(X |X̃) learns a map that tends to go from lower prob-
ability points X̃ to nearby high probability points X , on or near the manifold. Note that when X̃ is
farther from the manifold, p(X |X̃) should learn to make bigger steps, to reach the manifold. Suc-
cessful denoising implies that the operator maps even far away points to a small region close to the
manifold.

The denoising autoencoder can thus be seen as a way to define and learn a manifold. In particu-
lar, if we constrain the dimension of Y to be smaller than the dimension of X , then the intermediate
representationY = f (X) may be interpreted as a coordinate system for points on the manifold. More
generally, one can think of Y = f (X) as a representation of X which is well suited to capture the
main variations in the data, that is, those along the manifold.

3.3 Types of Corruption Considered

The above principle and technique can potentially be used with any type of corruption process. Also
the corruption process is an obvious place where prior knowledge, if available, could be easily in-
corporated. But in the present study we set to investigate a technique that is generally applicable. In

′( ( ))









D ( |)

Figure 2: Manifold learning perspective. Suppose training data (×) concentrate near a low-
dimensional manifold. Corrupted examples (.) obtained by applying corruption process
qD(X̃ |X) will generally lie farther from the manifold. The model learns with p(X |X̃)
to “project them back” (via autoencoder g′θ( fθ(·))) onto the manifold. Intermediate rep-
resentation Y = fθ(X) may be interpreted as a coordinate system for points X on the
manifold.
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particular we want it to be usable for learning ever higher level representations by stacking denois-
ing autoencoders. Now while prior knowledge on relevant corruption processes may be available in
a particular input space (such as images), such prior knowledge will not be available for the space
of intermediate-level representations.

We will thus restrict our discussion and experiments to the following simple corruption pro-
cesses:

• Additive isotropic Gaussian noise (GS): x̃|x∼N (x,σ2I);

• Masking noise (MN): a fraction ν of the elements of x (chosen at random for each example)
is forced to 0;

• Salt-and-pepper noise (SP): a fraction ν of the elements of x (chosen at random for each
example) is set to their minimum or maximum possible value (typically 0 or 1) according to
a fair coin flip.

Additive Gaussian noise is a very common noise model, and is a natural choice for real val-
ued inputs. The salt-and-pepper noise will also be considered, as it is a natural choice for input
domains which are interpretable as binary or near binary such as black and white images or the
representations produced at the hidden layer after a sigmoid squashing function.

Much of our work however, both for its inspiration and in experiments, focuses on masking
noise which can be viewed as turning off components considered missing or replacing their value
by a default value—that is, a common technique for handling missing values. All information about
these masked components is thus removed from that particular input pattern, and we can view the
denoising autoencoder as trained to fill-in these artificially introduced “blanks”. Also, numerically,
forcing components to zero means that they are totally ignored in the computations of downstream
neurons.

We draw the reader’s attention to the fact that both salt-and-pepper and masking noise drasti-
cally corrupt but a fraction of the elements while leaving the others untouched. Denoising, that is,
recovering the values of the corrupted elements, will only be possible thanks to dependencies be-
tween dimensions in high dimensional distributions. Denoising training is thus expected to capture
these dependencies. The approach probably makes less sense for very low dimensional problems,
at least with these types of corruption.

3.4 Extension: Putting an Emphasis on Corrupted Dimensions

Noise types such as masking noise and salt-and-pepper that erase only a changing subset of the
input’s components while leaving the others untouched suggest a straightforward extension of the
denoising autoencoder criterion. Rather than giving equal weight to the reconstruction of all com-
ponents of the input, we can put an emphasis on the corrupted dimensions. To achieve this we give
a different weight α for the reconstruction error on components that were corrupted, and β for those
that were left untouched. α and β are considered hyperparameters.

For the squared loss this yields

L2,α(x,z) = α

(

∑
j∈J (x̃)

(x j− z j)2

)

+β

(

∑
j/∈J (x̃)

(x j− z j)2

)

,

where J (x̃) denotes the indexes of the components of x that were corrupted.
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And for the cross-entropy loss this yields

LIH,α(x,z) = α

(

− ∑
j∈J (x̃)

[x j logz j+(1−x j) log(1− z j)]
)

+β

(

− ∑
j/∈J (x̃)

[x j logz j+(1−x j) log(1− z j)]
)

.

We call this extension emphasized denoising autoencoder. A special case that we call full
emphasis is obtained for α = 1, β = 0 where we only take into account the error on the prediction
of corrupted elements.

3.5 Stacking Denoising Autoencoders to Build Deep Architectures

Stacking denoising autoencoders to initialize a deep network works in much the same way as stack-
ing RBMs in deep belief networks (Hinton et al., 2006; Hinton and Salakhutdinov, 2006) or ordinary
autoencoders (Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2009a). Let us specify
that input corruption is only used for the initial denoising-training of each individual layer, so that
it may learn useful feature extractors. Once the mapping fθ has thus been learnt, it will henceforth
be used on uncorrupted inputs. In particular no corruption is applied to produce the representation
that will serve as clean input for training the next layer. The complete procedure for learning and
stacking several layers of denoising autoencoders is shown in Figure 3.

Once a stack of encoders has thus been built, its highest level output representation can be used
as input to a stand-alone supervised learning algorithm, for example a Support Vector Machine
classifier or a (multi-class) logistic regression. Alternatively, as illustrated in Figure 4, a logistic
regression layer can be added on top of the encoders, yielding a deep neural network amenable
to supervised learning. The parameters of all layers can then be simultaneously fine-tuned using a
gradient-based procedure such as stochastic gradient descent.

4. Related Approaches in the Literature

In this section, we briefly review and discuss related prior work along three different axes.

4.1 Previous Work on Training Neural Networks for Denoising

The idea of training a multi-layer perceptron using error backpropagation on a denoising task is not
new. The approach was first introduced by LeCun (1987) and Gallinari et al. (1987) as an alternative
method to learn an (auto-)associative memory similar to how Hopfield Networks (Hopfield, 1982)
were understood. The networks were trained and tested on binary input patterns, corrupted by
flipping a fraction of input bits chosen at random. Both the model and training procedure in this
precursory work are very similar to the denoising autoencoder we describe.5 Our motivation and
goal are however quite different. The objective of LeCun (1987) was to study the capacity of
such a network for memorization tasks, that is, counting how many training patterns it was able to

5. There are a few minor differences; for example, the use of a squared error after sigmoid for binary data, while we
tend to use a cross-entropy loss. Also their denoising procedure considers doing several recurrent passes through the
autoencoder network, as in a recurrent net.
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Figure 3: Stacking denoising autoencoders. After training a first level denoising autoencoder (see
Figure 1) its learnt encoding function fθ is used on clean input (left). The resulting
representation is used to train a second level denoising autoencoder (middle) to learn a
second level encoding function f (2)θ . From there, the procedure can be repeated (right).

Target

supervised cost
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f (2)θ
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Figure 4: Fine-tuning of a deep network for classification. After training a stack of encoders as
explained in the previous figure, an output layer is added on top of the stack. The param-
eters of the whole system are fine-tuned to minimize the error in predicting the supervised
target (e.g., class), by performing gradient descent on a supervised cost.

3383



VINCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

correctly recall under these conditions. The work also clearly established the usefulness of a non-
linear hidden layer for this. By contrast, our work is motivated by the search and understanding
of unsupervised pretraining criteria to initialize deep networks. Our primary interest is thus in
investigating the ability of the denoising criterion to learn good feature extractors, with which to
initialize a deep network by stacking and composing these feature extractors. We focus on analyzing
the learnt higher-level representations and their effect on the classification performance of resulting
deep networks.

Another insightful work that is very much related to the approach advocated here is the research
of Seung (1998), in which a recurrent neural network is trained to complete corrupted input patterns
using backpropagation through time. Both the work of Seung (1998) and that of LeCun (1987) and
Gallinari et al. (1987) appear to be inspired by Hopfield-type associative memories (Hopfield, 1982)
in which learnt patterns are conceived as attractive fixed points of a recurrent network dynamic.
Seung (1998) contributes a very interesting analysis in terms of continuous attractors, points out the
limitations of regular autoencoding, and advocates the pattern completion task as an alternative to
density estimation for unsupervised learning. Again, it differs form our study mainly by its focus
a) on recurrent networks6 and b) on the image denoising task per se. The latter justifies their use of
prior knowledge of the 2D topology of images, both in the architectural choice of local 2D receptive
field connectivity, and in the corruption process that consists in zeroing-out a square image patch at
a random position. This occlusion by a 2D patch is a special form of a structured masking noise,
where the a-priori known 2D topological structure of images is taken into account. In our research
we deliberately chose not to use topological prior knowledge in our model nor in our corruption
process, so that the same generic procedure may be applied to learn higher levels of representation
from lower ones, or to other domains for which we have no such topological prior knowledge.

More recently Jain and Seung (2008) presented a very interesting and successful approach for
image denoising, that consists in layer-wise building of a deep convolutional neural network. Their
algorithm yields comparable or better performance than state-of-the-art Markov Random Field and
wavelet methods developed for image denoising. The approach clearly has roots in their earlier
work (Seung, 1998) and appears also inspired by more recent research on deep network pretraining,
including our own group’s (Bengio et al., 2007). But apparently, neither of us was initially aware of
the other group’s relevant work on denoising (Vincent et al., 2008; Jain and Seung, 2008). Again the
focus of Seung (1998) on image denoising per se differs from our own focus on studying deep net-
work pretraining for classification tasks and results in marked differences in the actual algorithms.
Specifically, in Jain and Seung (2008) each layer in the stack is trained to reconstruct the original
clean image a little better, which makes sense for image denoising. This can be contrasted with
our approach, in which upper layers are trained to denoise-and-reconstruct whatever representation
they receive from the layer immediately below, rather than to restore the original input image in
one operation. This logically follows from our search for a generic feature extraction algorithm
for pretraining, where upper level representations will eventually be used for a totally different task
such as classification.

6. Note however that a recurrent network can be seen as deep network, with the additional property that all layers share
the same weights.
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4.2 Training Classifiers with Noisy Inputs

The idea of training a neural network with noisy input (Scalettar and Zee, 1988; von Lehman et al.,
1988)—or training with jitter as it is sometimes called—has been proposed to enhance generaliza-
tion performance for supervised learning tasks (Sietsma and Dow, 1991; Holmstrm and Koistinen,
1992; An, 1996). This thread of research is less directly related to autoencoders and denoising than
the studies discussed in the previous section. It is nevertheless relevant. After all, denoising amounts
to using noisy patterns as input with the clean pattern as a supervised target, albeit a rather high di-
mensional one. It has been argued that training with noise is equivalent to applying generalized
Tikhonov regularization (Bishop, 1995). On the surface, this may seem to suggest that training with
noisy inputs has a similar effect to training with an L2 weight decay penalty (i.e., penalizing the sum
of squared weights), but this view is incorrect. Tikhonov regularization applied to linear regression
is indeed equivalent to a L2 weight decay penalty (i.e., ridge regression). But for a non-linear map-
ping such as a neural network, Tikhonov regularization is no longer so simple (Bishop, 1995). More
importantly, in the non-linear case, the equivalence of noisy training with Tikhonov regularization
is derived from a Taylor series expansion, and is thus only valid in the limit of very small additive
noise. See Grandvalet et al. (1997) for a theoretical study and discussion regarding the limitations
of validity for this equivalence. Last but not least, our experimental results in Section 5.1 clearly
show qualitatively very different results when using denoising autoencoders (i.e., noisy inputs) than
when using regular autoencoders with a L2 weight decay.

Here, we must also mention a well-known technique to improve the generalization performance
of a classifier (neural network or other), which consists in augmenting the original training set
with additional distorted inputs, either explicitly (Baird, 1990; Poggio and Vetter, 1992) or virtually
through a modified algorithm (Simard et al., 1992; Schölkopf et al., 1996). For character images
for instance such distortions may include small translations, rotations, scalings and shearings of
the image, or even applying a scanner noise model. This technique can thus be seen as training
with noisy corrupted inputs, but with a highly structured corruption process based on much prior
knowledge.7 As already explained and motivated above, our intent in this work is to develop and
investigate a generally applicable technique, that should also be applicable to intermediate higher
level representations. Thus we intentionally restrict our study to very simple generic corruption
processes that do not incorporate explicit prior knowledge.

We also stress the difference between the approaches we just discussed, that consist in training a
neural network by optimizing a global supervised criterion using noisy input, and the approach we
investigate in the present work, that is, using a local unsupervised denoising criterion to pretrain
each layer of the network with the goal to learn useful intermediate representations. We shall see
in experimental Section 6.4 that the latter applied to a deep network yields better classification
performance than the former.

4.3 Pseudo-Likelihood and Dependency Networks

The view of denoising training as “filling in the blanks” that motivated the masking noise and the
extension that puts an emphasis on corrupted dimensions presented in Section 3.4, can also be re-
lated to the pseudo-likelihood (Besag, 1975) and Dependency Network (Heckerman et al., 2000)

7. Clearly, simple Tikhonov regularization cannot achieve the same as training with such prior knowledge based cor-
ruption process. This further illustrates the limitation of the equivalence between training with noise and Tikhonov
regularization.
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paradigms. Maximizing pseudo-likelihood instead of likelihood implies replacing the likelihood
term p(X) by the product of conditionals ∏d

i=1 p(Xi|X¬i). Here Xi denotes the ith component of
input vector variable X and X¬i denotes all components but the ith. Similarly, in the Dependency
Network approach of Heckerman et al. (2000) one learns d conditional distributions, each trained to
predict component i given (a subset of) all other components. This is in effect what an emphasized
denoising autoencoder with a masking noise that masks but one input component (ν = 1

d ), and a
full emphasis (α = 1, β = 0), is trained to do. More specifically, for binary variables it will learn
to predict p(Xi = 1|X¬i); and when using squared error for real-valued variables it will learn to
predict E[Xi|X¬i] assuming Xi|X¬i ∼N (E[Xi|X¬i],σ2). Note that with denoising autoencoders, all d
conditional distributions are constrained to share common parameters, which define the mapping to
and from hidden representation Y . Also when the emphasis is not fully put on the corrupted com-
ponents (β > 0) some of the network’s capacity will be devoted to encoding/decoding uncorrupted
components.

A more important difference can be appreciated by considering the following scenario: What
happens if components of the input come in identical pairs? In that case, conditional distribution
p(Xi|X¬i) can simply learn to replicate the other component of the pair, thus not capturing any other
potentially useful dependency. Now for dependency networks this exact scenario is forbidden by
the formal requirement that no input configuration may have zero probability. But a similar problem
may occur in practice if the components in a pair are not identical but very highly correlated. By
contrast, denoising autoencoders can and will typically be trained with a larger fraction ν of cor-
rupted components, so that reliable prediction of a component cannot rely exclusively on a single
other component.

5. Experiments on Single Denoising Autoencoders: Qualitative Evaluation of
Learned Feature Detectors

A first series of experiments was carried out using single denoising autoencoders, that is, without
any stacking nor supervised fine tuning. The goal was to examine qualitatively the kind of feature
detectors learnt by a denoising criterion, for various noise types, and compare these to what ordinary
autoencoders yield.

Feature detectors that correspond to the first hidden layer of a network trained on image data
are straightforward to visualize. Each hidden neuron y j has an associated vector of weightsW j that
it uses to compute a dot product with an input example (before applying its non-linearity). These
W j vectors, the filters, have the same dimensionality as the input, and can thus be displayed as little
images showing what aspects of the input each hidden neuron is sensitive to.

5.1 Feature Detectors Learnt from Natural Image Patches

We trained both regular autoencoders and denoising autoencoders on 12×12 patches from whitened
natural scene images, made available by Olshausen (Olshausen and Field, 1996).8 A few of these
patches are shown in Figure 5 (left). For these natural image patches, we used a linear decoder
and a squared reconstruction cost. Network parameters were trained from a random start,9 using

8. More specifically randomly positioned 12× 12 patches were extracted from the 20× 20 patches made available by
Olshausen at the following URL: https://redwood.berkeley.edu/bruno/sparsenet/.

9. We applied the usual random initialization heuristic in which weights are sampled independently form a uniform in
range [− 1√

fanin ,
1√

fanin ] where fanin in this case is the input dimension.
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stochastic gradient descent to perform 500000 weight updates with a fixed learning rate of 0.05. All
filters shown were from experiments with tied weights, but untied weights yielded similar results.

Figure 5 displays filters learnt by a regular under-complete autoencoder that used a bottleneck
of 50 hidden units, as well as those learnt by an over-complete autoencoder using 200 hidden units.
Filters obtained in the under-complete case look like very local blob detectors. No clear structure is
apparent in the filters learnt in the over-complete case.

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12× 12 image
patches used for training. Middle: filters learnt by a regular under-complete autoencoder
(50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt by a
regular over-complete autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtained in the over-
complete case have no recognizable structure, looking entirely random.

We then trained 200 hidden units over-complete noiseless autoencoders regularized with L2
weight decay, as well as 200 hidden units denoising autoencoders with isotropic Gaussian noise
(but no weight decay). Resulting filters are shown in Figure 6. Note that a denoising autoencoder
with a noise level of 0 is identical to a regular autoencoder. So, naturally, filters learnt by a denoising
autoencoder at small noise levels (not shown) look like those obtained with a regular autoencoder
previously shown in Figure 5. With a sufficiently large noise level however (σ= 0.5), the denoising
autoencoder learns Gabor-like local oriented edge detectors (see Figure 6). This is similar to what
is learnt by sparse coding (Olshausen and Field, 1996, 1997), or ICA (Bell and Sejnowski, 1997)
and resembles simple cell receptive fields from the primary visual cortex first studied by Hubel and
Wiesel (1959). The L2 regularized autoencoder on the other hand learnt nothing interesting beyond
restoring some of the local blob detectors found in the under-complete case. Note that we did try a
wide range of values for the regularization hyperparameter,10 but were never able to get Gabor-like
filters. From this experiment, we see clearly that training with sufficiently large noise yields a
qualitatively very different outcome than training with a weight decay regularization, which
confirms experimentally that the two are not equivalent for a non-linear autoencoder, as discussed
earlier in Section 4.2.

Figure 7 shows some of the results obtained with the other two noise types considered, that is,
salt-and-pepper noise, and masking-noise. We experimented with 3 corruption levels ν: 10%,25%,55%.
The filters shown were obtained using 100 hidden units, but similar filters were found with 50 or
200 hidden units. Salt-and-pepper noise yielded Gabor-like edge detectors, whereas masking noise

10. Attempted weight decays values were the following: λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,
1.0}.
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Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units). Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learning rates: filters
never appeared to capture a more interesting structure than what is shown here. Note
that some local blob detectors are recovered compared to using no weight decay at all
(Figure 5 right). Right: a denoising autoencoder with additive Gaussian noise (σ = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learnt are qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly different corruption types and levels
can yield qualitatively different filters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28× 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, but with different noise levels. Figure 8 shows some
of the resulting filters learnt and how they are affected as we increase the level of corruption. With
0% corruption, the majority of the filters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, filters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly larger structure learnt at a
higher noise level often appears related to the smaller structure obtained at lower noise levels, in
that they share about the same position and orientation.
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Figure 7: Filters obtained on natural image patches by denoising autoencoders using other noise
types. Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filters. They
appear slightly less localized than when using Gaussian noise (contrast with Figure 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising training appears to learn filters
that capture meaningful natural image statistics structure.

6. Experiments on Stacked Denoising Autoencoders

In this section, we evaluate denoising autoencoders as a pretraining strategy for building deep net-
works, using the stacking procedure that we described in Section 3.5. We shall mainly compare the
classification performance of networks pretrained by stacking denoising autoencoders (SDAE), ver-
sus stacking regular autoencoders (SAE), versus stacking restricted Boltzmann machines (DBN),
on a benchmark of classification problems.

6.1 Considered Classification Problems and Experimental Methodology

We considered 10 classification problems, the details of which are listed in Table 1. They consist
of:

• The standard MNIST digit classification problem with 60000 training examples.

• The eight benchmark image classification problems used in Larochelle et al. (2007) which in-
clude more challenging variations of the MNIST digit classification problem (all with 10000
training examples), as well as three artificial 28 × 28 binary image classification tasks.11

These problems were designed to be particularly challenging to current generic learning al-
gorithms (Larochelle et al., 2007). They are illustrated in Figure 9.

• A variation of the tzanetakis audio genre classification data set (Bergstra, 2006) which con-
tains 10000 three-second audio clips, equally distributed among 10 musical genres: blues,
classical, country, disco, hiphop, pop, jazz, metal, reggae and rock. Each example in the set

11. The data sets for this benchmark are available at http://www.iro.umontreal.ca/˜lisa/icml2007.
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(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels ν. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:
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• MLP random: multilayer perceptron with usual random initialization;

• DBN (deep belief networks) corresponds to stacked RBM pretraining;

• SAE stacked autoencoder pretraining;

• SDAE stacked denoising autoencoder pretraining.

In all cases, the same supervised fine-tuning procedure was then used, that is, simple stochastic
gradient descent with early stopping based on validation set performance.

Data Set Description input m Train-Valid-Test
MNIST Standard MNIST digit classi-

fication problem.
784 gray-scale
values scaled
to [0,1]

10 50000-10000-10000

basic Smaller subset of MNIST. 10 10000-2000-50000
rot MNIST digits with added

random rotation.
10 10000-2000-50000

bg-rand MNIST digits with random
noise background.

10 10000-2000-50000

bg-img MNIST digits with random
image background.

10 10000-2000-50000

bg-img-rot MNIST digits with rotation
and image background.

10 10000-2000-50000

rect Discriminate between tall
and wide rectangles (white
on black).

784 values
∈{0,1}

2 10000-2000-50000

rect-img Discriminate between tall
and wide rectangular image
overlayed on a different
background image.

784 values ∈
[0,1]

2 10000-2000-50000

convex Discriminate between con-
vex and concave shape.

784 values
∈{0,1}

2 6000-2000-50000

tzanetakis Classify genre of thirty sec-
ond audio-clip.

592 MPC
coefficients,
standardized.

10 10-fold cross valida-
tion on 10000 training
samples.

Table 1: Data sets. Characteristics of the 10 different problems considered. Except for tzane-
takis whose input is made of 592 MPC features extracted from short audio sequences,
all other problems are 28×28 gray-scale image classification tasks (i.e., input dimension-
ality is 28×28 = 784). See Larochelle et al. (2007) and Bergstra (2006) for further details
on these data sets. The table gives, for each task, its shorthand name, a description of the
problem, a description of input preprocessing, the number of classes (m), and the number
of examples used for the training, validation and test sets respectively.
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(a) rot, bg-rand, bg-img, bg-img-rot (b) rect, rect-img, convex

Figure 9: Samples form the various image classification problems. (a): harder variations on the
MNIST digit classification problems. (b): artificial binary classification problems.

On the 28×28 gray-scale image problems, SAE and SDAE used linear+sigmoid decoder layers
and were trained using a cross-entropy loss, due to this being a natural choice for this kind of (near)
binary images, as well as being functionally closer to RBM pretraining we wanted to compare
against.

However for training the first layer on the tzanetakis problem, that is, for reconstructing MPC
coefficients, a linear decoder and a squared reconstruction cost were deemed more appropriate (sub-
sequent layers used sigmoid cross entropy as before). Similarly the first layer RBM used in pre-
training a DBN on tzanetakis was defined with a Gaussian visible layer.

Table 2 lists the hyperparameters that had to be tuned by proper model selection (based on
validation set performance). Note that to reduce the choice space, we restricted ourselves to the
same number of hidden units, the same noise level, and the same learning rate for all hidden layers.

6.2 Empirical Comparison of Deep Network Training Strategies

Table 3 reports the classification performance obtained on all data sets using a 3 hidden layer neural
network pretrained with the three different strategies: by stacking denoising autoencoders (SDAE-
3), stacking restricted Boltzmann machines (DBN-3), and stacking regular autoencoders (SAE-3).
For reference the table also contains the performance obtained by a single hidden-layer DBN-1 and
by a Support Vector Machine with a RBF kernel (SVMrbf).12

12. SVMs were trained using the libsvm implementation. Their hyperparameters (C and kernel width) were tuned semi-
automatically (i.e., by human guided grid-search), searching for the best performer on the validation set.
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hyperparameter description considered values
nHLay number of hidden layers {1,2,3}
nHUnit number of units per hidden layer

(same for all layers)
{1000,2000,3000}

lRate fixed learning rate for unsuper-
vised pretraining

{ 5× 10−6, 5× 10−5, 5× 10−4,
5×10−3, 5×10−2, 10−1}

lRateSup fixed learning rate for supervised
fine-tuning

{0.0005,0.005,0.05,0.1,0.15,0.2}

nEpoq number of pretraining epochs
(passages through the whole
training set)

{5,10,50,100,125,150,200,300}

ν corrupting noise level fraction of corrupted inputs
(0,0.10,0.25,0.40)
or standard deviation
for Gaussian noise
(0,0.05,0.10,0.15,0.30,0.50)

Table 2: List of hyperparameters for deep networks. These hyperparameters are common to all
considered deep network training strategies, except for noise level ν which is specific
to SDAE (for which we must also choose the kind of corruption). We list the typical
values we considered in the majority of our experiments. Best performing configuration
on the validation set was always searched for in a semi-automatic fashion, that is, running
experiments in parallel on a large computation cluster, but with manual guidance to avoid
wasting resources on unnecessary parts of the configuration space. Some experiments
meant to study more closely the influence of specific hyperparameters occasionally used a
finer search grid for them, as will be specified in the description of these experiments.

In these experiments, SDAE used a zero-masking corruption noise for all problems except for
tzanetakis, for which a Gaussian noise was deemed more appropriate due to the nature of the input.

We see that SDAE-3 systematically outperforms the baseline SVM, as well as SAE-3 (except
for convex for which the difference is not statistically significant). This shows clearly that de-
noising pretraining with a non-zero noise level is a better strategy than pretraining with regular
autoencoders. For all but one problem, SDAE-3 is either the best performing algorithm or has its
confidence interval overlap with that of the winning algorithm (i.e., difference cannot be considered
statistically significant). In most cases, stacking 3 layers of denoising autoencoder seems to be on
par or better than stacking 3 layers of RBMs in DBN-3.

In the following subsections, we will be conducting further detailed experiments to shed light
on particular aspects of the denoising autoencoder pretraining strategy.

6.3 Influence of Number of Layers, Hidden Units per Layer, and Noise Level

Next we wanted to study more closely the influence of important architectural hyperparameters,
namely the number of layers, the number of hidden units per layer, and the noise level. For this finer
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Data Set SVMrb f DBN-1 SAE-3 DBN-3 SDAE-3 (ν)
MNIST 1.40±0.23 1.21±0.21 1.40±0.23 1.24±0.22 1.28±0.22 (25%)
basic 3.03±0.15 3.94±0.17 3.46±0.16 3.11±0.15 2.84±0.15 (10%)
rot 11.11±0.28 14.69±0.31 10.30±0.27 10.30±0.27 9.53±0.26 (25%)
bg-rand 14.58±0.31 9.80±0.26 11.28±0.28 6.73±0.22 10.30±0.27 (40%)
bg-img 22.61±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
bg-img-rot 55.18±0.44 52.21±0.44 51.93±0.44 47.39±0.44 43.76±0.43 (25%)
rect 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)
tzanetakis 14.41±2.18 18.07±1.31 16.15±1.95 18.38±1.64 16.02±1.04(0.05)

Table 3: Comparison of stacked denoising autoencoders (SDAE-3) with other models. Test error
rate on all considered classification problems is reported together with a 95% confidence
interval. Best performer is in bold, as well as those for which confidence intervals overlap.
SDAE-3 appears to achieve performance superior or equivalent to the best other model on
all problems except bg-rand. For SDAE-3, we also indicate the fraction ν of corrupted
input components, or in case of tzanetakis, the standard deviation of the Gaussian noise, as
chosen by proper model selection. Note that SAE-3 is equivalent to SDAE-3 with ν= 0%.

grained series of experiments, we chose to concentrate on the hardest of the considered problems,
that is, the one with the most factors of variation: bg-img-rot.

We first examine how the proposed network training strategy behaves as we increase the capacity
of the model both in breadth (number of neurons per layer) and in depth (number of hidden layers).
Figure 10 shows the evolution of the performance as we increase the number of hidden layers from
1 to 3, for three different network training strategies: without any pretraining (standard MLP),
with ordinary autoencoder pretraining (SAE) and with denoising autoencoder pretraining (SDAE).
We clearly see a strict ordering: denoising pretraining being better than autoencoder pretraining
being better than no pretraining. The advantage appears to increase with the number of layers (note
that without pretraining it seems impossible to successfully train a 3 hidden layer network) and
with the number of hidden units. This general behavior is a typical illustration of what is gained
by pretraining deep networks with a good unsupervised criterion, and appears to be common to
several pretraining strategies. We refer the reader to Erhan et al. (2010) for an empirical study
and discussion regarding possible explanations for the phenomenon, centered on the observation of
regularization effects (we exploit the hypothesis that features of X that help to capture P(X) also
help to capture P(Y |X)) and optimization effects (unsupervised pre-training initializes parameters
near a better local minimum of generalization error).

Notice that in tuning the hyperparameters for all classification performances so far reported, we
considered only a coarse choice of noise levels ν (namely 0%, 10%, 25%, or 40% of zero-masking
corruption for the image classification problems). Clearly it was not necessary to pick the noise
level very precisely to obtain good performances. In Figure 11 we examine in more details the
influence of the level of corruption ν using a more fine-grained grid for problem bg-img-rot. We
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Figure 10: Classification performance on bg-img-rot for standard MLP with random initialization
(NoPreTrain, left), SAE (middle), and SDAE (right), as we increase the number of hid-
den layers and the number of neurons per layer. Error bars show 95% confidence in-
tervals. Note that without pretraining the curve for 3 layers is outside the graphic, the
classification error being above 89%.

notice that SDAE appears to perform better than SAE (0 noise) for a rather wide range of noise
levels, regardless of the number of hidden layers.

The following section reports an experiment that was conducted on three other data sets. The ex-
periment had a different goal and thus used a coarser ν grid, but the resulting curves (see Figure 12)
appear to follow a similar pattern to the one seen here (Figure 11).

6.4 Denoising Pretraining vs. Training with Noisy Input

We discussed in Section 4.2 the important distinction between denoising pretraining as it is done
in SDAE and simply training with noisy inputs. SDAE uses a denoising criterion to learn good
initial feature extractors at each layer that will be used as initialization for a noiseless supervised
training. This is very different from training with noisy inputs, which amounts to training with a
(virtually) expanded data set. This latter approach can in principle be applied to any classifier, such
as an SVM13 or a SAE. Note that in the case of the SAE, since there are two phases (pretraining
and fine-tuning), it is possible to use noisy inputs for only the pretraining or for both the pretraining

13. For SAE, input examples can cheaply be corrupted on the fly, but this is not an option with standard SVM algorithms.
So for SVM training we first augmented the training set by generating 9 extra variations of each original training
example thus yielding a training set 10 times bigger than the original. Alternatively, we could instead have used the
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Figure 11: Sensitivity to the level of corruption. The curves report the test error rate for SDAE
trained on problem bg-img-rot as a function of the fraction ν of corrupted input compo-
nents (using zero masking noise). Error bars show 95% confidence interval. Note that
0% corruption corresponds to a SAE (regular autoencoder).

and fine-tuning phase. We experimentally compare these different approaches on three data sets in
Figure 12. We see that denoising pretraining with SDAE, for a large range of noise levels, yields
significantly improved performance, whereas training with noisy inputs sometimes degrades the
performance, and sometimes improves it slightly but is clearly less beneficial than SDAE.

6.5 Variations on the Denoising Autoencoder: Alternate Corruption Types and Emphasizing

In the next series of experiments, we wanted to evaluate quantitatively the effect of using the various
corrupting noises described in Section 3.3 as well as the emphasized denoising autoencoder variant
described in Section 3.4.

Extensive experiments were carried out on the same 3 problems we used in the previous section.
Besides zero-masking noise (MN) we trained 3 hidden layer SDAE using salt-and-pepper noise (SP)
and additive Gaussian noise (GS). For MN and SP, we also tried the emphasized variant.14 For each
considered variant, hyperparameters were selected as usual to yield the best performance on the

virtual SV technique (Schölkopf et al., 1996), which may or may not have yielded better performance, but since our
main focus here is comparing noisy SAE with SDAE, SVM only serves as a simple baseline.

14. As already mentioned previously, since Gaussian noise corrupts every dimension, emphasized denoising does not
make sense for this type of corruption.
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(a) basic

(b) rot (c) bg-rand

Figure 12: SDAE vs. training with noisy input. The test error of a SDAE with 3 hidden layers
is compared to other algorithms trained with noisy inputs: a SVM with RBF kernel
(SVMrbf), a 3-hidden-layers SAE where noisy inputs were used for pretraining only
(SAE(1)) and one where noisy inputs were used both for pretraining and supervised
fine-tuning (SAE(2)). Hidden layers have 1000 neurons each. Zero-masking noise was
used. Note that at 0% noise, the three stacked models correspond to an ordinary SAE.
Error bars show 95% confidence interval. Denoising pretraining with SDAE appears to
always yield significantly better performance, unlike training with noisy inputs.
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Model basic rot bg-rand
SVMrb f 3.03±0.15 11.11±0.28 14.58±0.31

SAE-3 3.46±0.16 10.30±0.27 11.28±0.28

DBN-3 3.11±0.15 10.30±0.27 6.73±0.22

SDAE-3MN(ν) 2.84±0.15(10%) 9.53±0.26(25%) 10.30±0.27(40%)
SDAE-3MN(ν) + emph 2.76±0.14(25%) 10.36±0.27(25%) 9.69±0.26(40%)
SDAE-3SP(ν) 2.66±0.14(25%) 9.33±0.25(25%) 10.03±0.26(25%)
SDAE-3SP(ν) + emph 2.48±0.14(25%) 8.76±0.29(25%) 8.52±0.24(10%)
SDAE-3GS(ν) 2.61±0.14(0.1) 8.86±0.28(0.3) 11.73±0.28(0.1)

Table 4: Variations on 3-hidden-layer stacked denoising autoencoders (SDAE-3): alternative noise
types and effect of emphasis. Considered noise types are masking noise (MN), salt-and-
pepper (SP) and Gaussian noise (GS). Emphasized version considered double emphasis
and full emphasis (see main text for detailed explanation). For easy comparison, the table
also reproduces previously shown results for SVMrbf, SAE-3, and DBN-3. Test error rate
is reported together with a 95% confidence interval. Best performer is in bold, as well
as those for which confidence intervals overlap. Corruption level ν (fraction of corrupted
input components or Gaussian standard deviation) that was retained by model selection on
the validation set is specified in parenthesis. SDAE-3SP with emphasis on reconstruction of
corrupted dimension appears to be the best SDAE variant for these data sets, significantly
improving performance on rot and bg-rand.

validation set. These included the number of units per layer (same for all layers), the corruption
level ν (fraction of corrupted dimensions for MN and SP, or standard deviation for GS), with the
usual considered values (listed previously in Table 2). For the emphasized version, a further hy-
perparameter was the degree of emphasis. We considered both double emphasis, where the weight
on the reconstruction of the corrupted components is twice that on the uncorrupted components
(α= 1, β= 0.5), and full emphasis where all the weight is on reconstructing the corrupted compo-
nents and none on the uncorrupted dimensions (α = 1, β = 0). Table 4 reports the corresponding
classification performance on the held-out test set. For the three considered data sets, an empha-
sized SDAE with salt-and-pepper noise appears to be the winning SDAE variant. It thus appears
that a judicious choice of noise type and added emphasis may often buy us a better performance.
However we had hoped, with these variants, to catch up with the performance of DBN-3 on the
bg-rand problem,15 but DBN-3 still performs significantly better than the best SDAE variant on this
particular problem.

6.6 Are Features Learnt in an Unsupervised Fashion by SDAE Useful for SVMs?

In the following series of experiments, we wanted to verify whether the higher level representations
extracted using SDAE could improve the performance of learning algorithms other than a neural
network, such as SVMs.

15. As discussed in Larochelle et al. (2007), bg-rand is particularly favorable to RBMs because the pixel-wise indepen-
dent noise perfectly matches what an RBM expects and will naturally not be represented in the hidden units.
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To this end, we fed the representations learnt by the purely unsupervised phase of SDAE, at
increasing higher levels (first, second and third hidden layer) to both a linear SVM and a Kernel
SVM (using a RBF kernel). The hyperparameters of the SVM and its kernel were tuned on the
validation set as usual. For computational reasons, we did not re-tune SDAE hyperparameters.
Instead, we identified the best performing SDAE-pretrained neural networks with 1000 units per
layer, based on their validation performance after fine-tuning from previous experiments, but used
their saved weights prior to fine-tuning (i.e., after unsupervised denoising training only).

Results for all considered data sets are reported in Table 5, and Figure 13 highlights performance
curves for two of them. Clearly, SVM performance can benefit significantly from using the higher
level representation learnt by SDAE.16 On all problems we see improved performance compared
to using the original input (SVM0). More interestingly, on most problems, SVM performance im-
proves steadily as we use ever higher level representations. While it is not too surprising that linear
SVMs can benefit from having the original input processed non-linearly, it is noteworthy that RBF
kernel SVMs, which are high-capacity non-linear classifiers, also seem to benefit greatly from the
non-linear mapping learned by SDAE.

Figure 13: SVM on representations learnt by SDAE. The curves show evolution, on two data sets,
of the test performance of linear and RBF kernel SVMs as we train them on higher level
representations learnt in the unsupervised phase of SDAE. Performance of SDAE after
supervised fine-tuning is also shown as SDAEmn (mn stands for masking noise). Hidden
layer 0 corresponds to original input representation.

7. Generating Samples from Stacked Denoising Autoencoder Networks

Besides the classification performance comparisons and qualitative visual inspection of learnt filters,
it is also customary in studies of deep generative models such as DBNs, to show samples generated

16. To verify that the learnt representation was responsible for the improved performance, rather than a random non-
linear transformation, we also trained SVMs on the representation of the same neural network architecture but using
randomly initialized weights: the performance degraded as we used the higher level representations.
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Data Set SVM
kernel SVM0 SVM1 SVM2 SVM3

linear 5.33±0.44 1.49 ±0.24 1.24±0.22 1.2±0.21MNIST rbf 1.40±0.23 1.04±0.20 0.94±0.19 0.95±0.19

linear 7.32±0.23 3.43±0.16 2.71±0.14 2.63±0.14basic rbf 3.03±0.15 2.59±0.14 2.55±0.14 2.57±0.14

linear 43.47±0.43 21.74±0.36 15.15±0.31 10.00±0.26rot rbf 11.11±0.28 8.45±0.24 8.27±0.24 8.64±0.25

linear 24.14±0.38 13.58±0.30 13.00±0.29 11.32±0.28bg-rand rbf 14.58±0.31 11.00±0.27 10.08±0.26 10.16±0.26

linear 25.08±0.38 16.72±0.33 20.73±0.36 14.55±0.31bg-img rbf 22.61±0.37 15.91±0.32 16.36±0.32 14.06±0.30

linear 63.53±0.42 50.44±0.44 50.26±0.44 42.07±0.43bg-img-rot rbf 55.18±0.44 44.09±0.44 42.28±0.43 39.07±0.43

linear 29.04±0.40 6.43±0.22 2.31±0.13 1.80±0.12rect rbf 2.15±0.13 2.19±0.13 1.46±0.11 1.22±0.10

linear 49.64±0.44 23.12±0.37 23.01±0.37 21.43±0.36rect-img rbf 24.04±0.37 22.27±0.36 21.56±0.36 20.98±0.36

linear 45.75±0.44 24.10±0.37 18.40±0.34 18.06±0.34convex rbf 19.13±0.34 18.09±0.34 17.39±0.33 17.53±0.33

linear 20.72±2.51 12.51±2.05 7.95±1.68 5.04±1.36tzanetakis rbf 14.41±2.18 7.54±1.64 5.20±1.38 4.13±1.23

Table 5: SVM performance on higher level representations learnt by SDAE. Performance of both
linear SVM, and SVM with RBF kernel is reported, as they are trained on either original
input (SVM0), or on the representation learnt by a SDAE at the level of its first (SVM1),
second (SVM2), or third (SVM3) hidden layer. The representations used for the SVMs
were those obtained prior to fine-tuning. Test error rate on all considered classification
problems is reported together with a 95% confidence interval. Best performer is in bold,
as well as those for which confidence intervals overlap. Clearly both linear and kernel
SVM performance benefit from using the higher level representations learnt by SDAE.
For most problems the performance increases steadily as we use representations from ever
higher levels of the architecture.

from the trained models. This can yield another qualitative visual assessment of whether they were
able to capture the input distribution well.

7.1 Top-Down Generation of a Visible Sample Given a Top-Layer Representation

Given a top-layer representation, a deep belief network (Hinton et al., 2006) is a directed graphical
model, and it is easy to do a top down sampling pass, that is, sampling each layer conditioned on
the layer above, to eventually produce a sample in the bottom layer that can be displayed. More
precisely, in sigmoid deep belief networks (DBN), the representation at a lower layer X given the
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layer above Y is distributed according to a product of independent Bernoullis whose mean is a
deterministic function of Y , that is, X |Y ∼ B(gθ′(Y )), where gθ′ has the exact same form as that
given in Equation 3 for the decoder part of an autoencoder. From a trained SAE or SDAE17 it is
thus possible to generate samples at one layer from the representation of the layer above in the exact
same way as in a DBN.

7.2 Bottom-Up Inferring of the Top-Layer Representation Corresponding to a Given Input
Pattern

In SAE/SDAE, given an input representation at the bottom layer, the corresponding representation
in the top layer is computed in a deterministic bottom-up pass using encoding functions fθ. The
same procedure is used in DBNs and, in the graphical model perspective, can be viewed as an
approximate inference of a factorial Bernoulli top-layer distribution given the low level input. This
top-layer representation is to be understood as the parameters (the mean) of a factorial Bernoulli
distribution for the actual binary units.

7.3 Generating Samples with SAE, SDAE, and DBN Using the Same Procedure

The deep belief network of Hinton et al. (2006) is a fully specified generative model. In particular
the joint distribution of its top two layers is defined by an RBM model,18, that is, an undirected
graphical model from which one can efficiently sample using alternating Gibbs sampling (Hinton
et al., 2006). So to sample from a DBN model, one would first sample from the top-layer RBM
using alternating Gibbs sampling. Then, given the thus obtained top-layer representation, perform
the single top down sampling pass previously described to produce a visible pattern at the bottom
layer.

By contrast, SAE/SDAE training does not attempt to model the distribution of the top-layer
representation. So even though—given a top-layer representation—we can use the exact same top
down sampling procedure to generate input patterns from a SAE/SDAE as for a DBN, SAE/SDAE
cannot by themselves alone be treated as fully specified generative models. They lack a model of
the marginal distribution of their top layer.

We can easily fix this by modeling that top-layer distribution non-parametrically by the simple
memory-based empirical distribution of the encoded top-layer representations of the n training set
patterns. A visible sample can then be generated by simply taking the top-layer encoded represen-
tation of a randomly picked training set input, and carrying out the top-down sampling procedure
explained previously, as illustrated in Figure 14. This same technique can also be used as an alter-
native sample-generation procedure for DBNs built by stacking RBMs.

If we keep the same fixed input pattern, and hence the same corresponding higher level rep-
resentation, and perform several top-down samplings, we can thus observe what kind of pattern
variations the deep multilayer part of a deep network has learnt to model (or abstract away in ex-
tracting the top-layer representation). Figure 15 shows the resulting variability in the regenerated
patterns, for models pretrained respectively as SAE, SDAE19 and DBN on MNIST without any su-

17. SAE and SDAE train such gθ′ to perform reconstruction, that is, predicting the mean value of a layer given the
representation in the layer immediately above it.

18. This RBM was trained, using the training set, to model the representations obtained at the layer just below the top
one, produced by the bottom-up pass we just described.

19. Both were pretrained with salt-and-pepper noise.
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Figure 14: Non-parametric sampling procedure for pretrained networks. A randomly picked input
form the original data set is provided as input. Its top level representation is obtained by
deterministic bottom-up encoding using functions fθ(k) . A visible pattern is generated
given this high level representation, by alternating Bernoulli sampling and deterministic
decoding, that is, by successively sampling from B(gθ′(k) (previouslayer). This same
procedure can be applied with SAE, SDAE and DBN. It allows to see the quality and
variability of patterns one obtains given a high-level representation.

pervised fine-tuning. It appears that SDAE and DBN are able to resynthesize a variety of similarly
good quality digits, whereas the SAE trained model regenerates patterns with much visible degra-
dation in quality. This is further evidence of the qualitative difference resulting from optimizing a
denoising criterion instead of mere reconstruction criterion. Note how SDAE puts back the miss-
ing hole in the loop of the regenerated 6, and sometimes straightens up the upper stroke of the 7,
suggesting that it did indeed capture interesting specific characteristics. It appears that, when using
this same sample generation procedure, SDAE and DBN yield a similar degree of variability in the
regenerated patterns (with DBN patterns looking slightly fatter and SDAE patterns slightly thinner).
Neither DBN nor SDAE guarantee that class boundaries will not be crossed,20 for example DBN
closes a loop in a 7 making it look closer to a 9, whereas SDAE sometimes breaks open the loop
of an 8 making it look like a 3. But in all cases, and contrary to SAE, the regenerated patterns look
like they could be samples from the same unknown input distribution that yielded the training set.

8. Conclusion and Future Work

The present work was inspired by recent successful approaches to training deep networks, specif-
ically by their use of a local unsupervised criterion, and led by the question of what that crite-
rion should be. At the same time we were motivated by a desire to bridge a remaining perfor-
mance gap between deep belief networks and the stacking of ordinary autoencoders (Bengio et al.,
2007; Larochelle et al., 2009a). This led us to address a theoretical shortcoming of traditional
autoencoders—namely their inability in principle to learn useful over-complete representations—in
a simple yet original way: by changing the objective from one involving mere reconstruction to
the more challenging task of denoising. The resulting Stacked Denoising Autoencoder algorithm

20. The reader should however keep in mind that this results from unsupervised training only.
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(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattern in each row
is a training set pattern. Following the sample generation depicted in Figure 14, it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, like DBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note how SDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightens up
the upper stroke of the last 7, suggesting that it did indeed capture meaningful specific
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.
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for training deep networks, proved indeed able to bridge the performance gap with DBNs, yielding
equivalent or better classification performance on all but one of the considered benchmark prob-
lems. As a deep network pretraining strategy, stacking of denoising autoencoders yielded in most
cases a significant improvement in performance over the stacking of ordinary autoencoders. The
representations thus extracted layer by layer, using a purely unsupervised local denoising criterion,
appear to make subsequent classification tasks much easier. This is further evidenced by the fact
that state-of-the-art shallow classifiers such as kernel SVMs also appear able to greatly benefit from
it. Close examination of the feature extractors learnt by denoising autoencoders showed that they
were able to zero in on useful structure in the data (such as Gabor-like edge detectors on natural
image patches) that regular autoencoders seemed unable to learn.

The algorithm we developed is a straightforward, easy to implement, variation on the well-
understood ordinary autoencoders. All that remains to be chosen is the kind and level of corrupting
noise. It is likely that a careful choice, possibly guided by prior domain knowledge, may further
boost application-specific performance. Nevertheless our experiments showed that high perfor-
mance can already be achieved using very simple and generic noise types and with little tuning of
the noise level. In addition, we were able to show that, contrary to what it may seem on the sur-
face based on popular myths, the denoising training we advocate is not equivalent to using a mere
weight decay regularization, nor is it the same as direct supervised training with corrupted (jittered)
examples.

Beyond the specificities and practical usefulness of the simple algorithm we developed, our re-
sults clearly establish the value of using a denoising criterion as an unsupervised objective to
guide the learning of useful higher level representations. This is in our view the most important
contribution of our work, as it offers an interesting alternative to more usual (and often intractable)
likelihood derived criteria. Indeed, denoising performance can easily be measured and directly op-
timized. The use of a denoising criterion is very different from the contrastive divergence training
of RBMs or the direct enforcing of sparsity in autoencoders. We hope that our very encouraging
results will inspire further research in this direction, both theoretical (to better understand the rela-
tionship between denoising and representation learning), and practical (to develop better learning
algorithms based on this understanding).

There are certainly better ways to use denoising-based training signals in the learning of a deep
network than the simple local approach we explored here. In particular, while stacking denoising
autoencoders allows us to build a deep network, the denoising autoencoders we used here were
shallow. It would thus be interesting to investigate deep denoising autoencoders with several hidden
layers, and their ability to form useful representations. The choice and role of the corruption process
also deserves further inquiry. If more involved corruption processes than those explored here prove
beneficial, it would be most useful if they could be parameterized and learnt directly from the data,
rather than having to be hand-engineered based on prior-knowledge.
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Abstract

In this paper, we introduce a new family of probability densities called Lp-nested symmetric distri-
butions. The common property, shared by all members of the new class, is the same functional form
ρ(xxx) = ρ̃( f (xxx)), where f is a nested cascade of Lp-norms ‖xxx‖p = (∑ |xi|p)1/p. Lp-nested symmetric
distributions thereby are a special case of ν-spherical distributions for which f is only required to
be positively homogeneous of degree one. While both, ν-spherical and Lp-nested symmetric dis-
tributions, contain many widely used families of probability models such as the Gaussian, spher-
ically and elliptically symmetric distributions, Lp-spherically symmetric distributions, and certain
types of independent component analysis (ICA) and independent subspace analysis (ISA) models,
ν-spherical distributions are usually computationally intractable. Here we demonstrate that Lp-
nested symmetric distributions are still computationally feasible by deriving an analytic expression
for its normalization constant, gradients for maximum likelihood estimation, analytic expressions
for certain types of marginals, as well as an exact and efficient sampling algorithm. We discuss
the tight links of Lp-nested symmetric distributions to well known machine learning methods such
as ICA, ISA and mixed norm regularizers, and introduce the nested radial factorization algorithm
(NRF), which is a form of non-linear ICA that transforms any linearly mixed, non-factorial Lp-
nested symmetric source into statistically independent signals. As a corollary, we also introduce
the uniform distribution on the Lp-nested unit sphere.

Keywords: parametric density model, symmetric distribution, ν-spherical distributions, non-linear
independent component analysis, independent subspace analysis, robust Bayesian inference, mixed
norm density model, uniform distributions on mixed norm spheres, nested radial factorization

1. Introduction

High-dimensional data analysis virtually always starts with the measurement of first and second-
order moments that are sufficient to fit a multivariate Gaussian distribution, the maximum entropy
distribution under these constraints. Natural data, however, often exhibit significant deviations from
a Gaussian distribution. In order to model these higher-order correlations, it is necessary to have
more flexible distributions available. Therefore, it is an important challenge to find generaliza-
tions of the Gaussian distribution which are more flexible but still computationally and analytically
tractable. In particular, density models with an explicit normalization constant are desirable be-
cause they make direct model comparison possible by comparing the likelihood of held out test
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samples for different models. Additionally, such models often allow for a direct optimization of the
likelihood.

One way of imposing structure on probability distributions is to fix the general form of the
iso-density contour lines. This approach was taken by Fernandez et al. (1995). They modeled the
contour lines by the level sets of a positively homogeneous function of degree one, that is functions
ν that fulfill ν(a ·xxx) = a ·ν(xxx) for xxx∈Rn and a∈R

+
0 . The resulting class of ν-spherical distributions

have the general form ρ(xxx) = ρ̃(ν(xxx)) for an appropriate ρ̃ which causes ρ(xxx) to integrate to one.
Since the only access of ρ to xxx is via ν one can show that, for a fixed ν, those distributions are gen-
erated by a univariate radial distribution. In other words, ν-spherically distributed random variables
can be represented as a product of two independent random variables: one positive radial variable
and another variable which is uniform on the 1-level set of ν. This property makes this class of
distributions easy to fit to data since the maximum likelihood procedure can be carried out on the
univariate radial distribution instead of the joint density. Unfortunately, deriving the normalization
constant for the joint distribution in the general case is intractable because it depends on the surface
area of those level sets which can usually not be computed analytically.

Known tractable subclasses of ν-spherical distributions are the Gaussian, elliptically contoured,
and Lp-spherical distributions. The Gaussian is a special case of elliptically contoured distributions.
After centering and whitening xxx :=C−1/2(sss−E[sss]) a Gaussian distribution is spherically symmetric
and the squared L2-norm ||xxx||22 = x21+ · · ·+ x2n of the samples follow a χ2-distribution (that is, the
radial distribution is a χ-distribution). Elliptically contoured distributions other than the Gaussian
are obtained by using a radial distribution different from the χ-distribution (Kelker, 1970; Fang
et al., 1990).

The extension from L2- to Lp-spherically symmetric distributions is based on replacing the L2-
norm by the Lp-norm

ν(xxx) = ‖xxx‖p =

(
n

∑
i=1

|xi|p
) 1

p

, p> 0

in the density definition. That is, the density of Lp-spherically symmetric distributions can always
be written in the form ρ(xxx) = ρ̃(||xxx||p). Those distributions have been studied by Osiewalski and
Steel (1993) and Gupta and Song (1997). We will adopt the naming convention of Gupta and
Song (1997) and call ‖xxx‖p an Lp-norm even though the triangle inequality only holds for p ≥ 1.
Lp-spherically symmetric distributions with p &= 2 are no longer invariant with respect to rotations
(transformations from SO(n)). Instead, they are only invariant under permutations of the coordinate
axes. In some cases, it may not be too restrictive to assume permutation or even rotational symmetry
for the data. In other cases, such symmetry assumptions might not be justified and cause the model
to miss important regularities.

Here, we present a generalization of the class of Lp-spherically symmetric distributions within
the class of ν-spherical distributions that makes weaker assumptions about the symmetries in the
data but still is analytically tractable. Instead of using a single Lp-norm to define the contour of the
density, we use a nested cascade of Lp-norms where an Lp-norm is computed over groups of Lp-
norms over groups of Lp-norms ..., each of which having a possibly different p. Due to this nested
structure we call this new class of distributions Lp-nested symmetric distributions. The nested com-
bination of Lp-norms preserves positive homogeneity but does not require permutation invariance
anymore. While Lp-nested symmetric distributions are still invariant under reflections of the coordi-
nate axes, permutation symmetry only holds within the subspaces of the Lp-norms at the bottom of
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the cascade. As demonstrated in Sinz et al. (2009b), one possible application domain of Lp-nested
symmetric distributions is natural image patches. In the current paper, we would like to present a
formal treatment of this class of distributions. Readers interested in the application of these distri-
butions to natural images should refer to Sinz et al. (2009b).

We demonstrate below that the construction of the nested Lp-norm cascade still bears enough
structure to compute the Jacobian of polar-like coordinates similar to those of Song and Gupta
(1997), and Gupta and Song (1997). With this Jacobian at hand it is possible to compute the uni-
variate radial distribution for an arbitrary Lp-nested symmetric density and to define the uniform
distribution on the Lp-nested unit sphere Lν = {xxx ∈ Rn|ν(xxx) = 1}. Furthermore, we compute the
surface area of the Lp-nested unit sphere and, therefore, the general normalization constant for
Lp-nested symmetric distributions. By deriving these general relations for the class of Lp-nested
symmetric distributions we have determined a new class of tractable ν-spherical distributions which
is so far the only one containing the Gaussian, elliptically contoured, and Lp-spherical distributions
as special cases.

Lp-spherically symmetric distributions have been used in various contexts in statistics and ma-
chine learning. Many results carry over to Lp-nested symmetric distributions which allow a wider
application range. Osiewalski and Steel (1993) showed that the posterior on the location of a Lp-
spherically symmetric distributions together with an improper Jeffrey’s prior on the scale does not
depend on the particular type of Lp-spherically symmetric distribution used. Below, we show that
this results carries over to Lp-nested symmetric distributions. This means that we can robustly
determine the location parameter by Bayesian inference for a very large class of distributions.

A large class of machine learning algorithms can be written as an optimization problem on the
sum of a regularizer and a loss function. For certain regularizers and loss functions, like the sparse L1
regularizer and the mean squared loss, the optimization problem can be seen as the maximum a pos-
teriori (MAP) estimate of a stochastic model in which the prior and the likelihood are the negative
exponentiated regularizer and loss terms. Since ρ(xxx) ∝ exp(−||xxx||pp) is an Lp-spherically symmet-
ric model, regularizers which can be written in terms of a norm have a tight link to Lp-spherically
symmetric distributions. In an analogous way, Lp-nested symmetric distributions exhibit a tight link
to mixed-norm regularizers which have recently gained increasing interest in the machine learn-
ing community (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski et al., 2008). Lp-nested
symmetric distributions can be used for a Bayesian treatment of mixed-norm regularized algorithms.
Furthermore, they can be used to understand the prior assumptions made by such regularizers. Be-
low we discuss an implicit dependence assumption between the regularized variables that follows
from the theory of Lp-nested symmetric distributions.

Finally, the only factorial Lp-spherically symmetric distribution (Sinz et al., 2009a), the p-
generalized Normal distribution, has been used as an ICA model in which the marginals follow
an exponential power distribution. This class of ICA is particularly suited for natural signals like
images and sounds (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki, 2002). Interestingly, Lp-
spherically symmetric distributions other than the p-generalized Normal give rise to a non-linear
ICA algorithm called radial Gaussianization for p= 2 (Lyu and Simoncelli, 2009) or radial factor-
ization for arbitrary p (Sinz and Bethge, 2009). As discussed below, Lp-nested symmetric distribu-
tions are a natural extension of the linear Lp-spherically symmetric ICA algorithm to ISA, and give
rise to a more general non-linear ICA algorithm in the spirit of radial factorization.

The remaining part of the paper is structured as follows: in Section 2 we define polar-like coordi-
nates for Lp-nested symmetrically distributed random variables and present an analytical expression
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for the determinant of the Jacobian for this coordinate transformation. Using this expression, we
define the uniform distribution on the Lp-nested unit sphere and the class of Lp-nested symmetric
distributions for an arbitrary Lp-nested function in Section 3. In Section 4 we derive an analytical
form of Lp-nested symmetric distributions when marginalizing out lower levels of the Lp-nested
cascade and demonstrate that marginals of Lp-nested symmetric distributions are not necessarily
Lp-nested symmetric. Additionally, we demonstrate that the only factorial Lp-nested symmetric
distribution is necessarily Lp-spherically symmetric and discuss the implications of this result for
mixed norm regularizers. In Section 5 we propose an algorithm for fitting arbitrary Lp-nested sym-
metric models. We derive a sampling scheme for arbitrary Lp-nested symmetric distributions in
Section 6. In Section 7 we generalize a result by Osiewalski and Steel (1993) on robust Bayesian
inference on the location parameter to Lp-nested symmetric distributions. In Section 8 we discuss
the relationship of Lp-nested symmetric distributions to ICA and ISA, and their possible role as
priors on hidden variables in over-complete linear models. Finally, we derive a non-linear ICA al-
gorithm for linearly mixed non-factorial Lp-nested symmetric sources in Section 9 which we call
nested radial factorization (NRF).

2. Lp-nested Functions, Coordinate Transformation and Jacobian

Consider the function

f (xxx) =
(
|x1|p /0 +(|x2|p1 + |x3|p1)

p /0
p1

) 1
p /0 (1)

with p /0, p1 ∈ R+. This function is obviously a cascade of two Lp-norms and is thus positively
homogeneous of degree one. Figure 1(a) shows this function visualized as a tree. Naturally, any
tree like the ones in Figure 1 corresponds to a function of the kind of Equation (1). In general, the n
leaves of the tree correspond to the n coefficients of the vector xxx∈Rn and each inner node computes
the Lp-norm of its children using its specific p. We call the class of functions which is generated
in this way Lp-nested and the corresponding distributions, which are symmetric or invariant with
respect to it, Lp-nested symmetric distributions.

Lp-nested functions are much more flexible in creating different shapes of level sets than single
Lp-norms. Those level sets become the iso-density contours in the family of Lp-nested symmetric
distributions. Figure 2 shows a variety of contours generated by the simplest non-trivial Lp-nested
function shown in Equation (1). The shapes show the unit spheres for all possible combinations
of p /0, p1 ∈ {0.5,1,2,10}. On the diagonal, p /0 and p1 are equal and therefore constitute Lp-norms.
The corresponding distributions are members of the Lp-spherically symmetric class.

To make general statements about general Lp-nested functions, we introduce a notation that is
suitable for the tree structure of Lp-nested functions. As we will heavily use that notation in the
remainder of the paper, we would like to emphasize the importance of the following paragraphs.
We will illustrate the notation with an example below. Additionally, Figure 1 and Table 1 can be
used for reference.

We use multi-indices to denote the different nodes of the tree corresponding to an Lp-nested
function f . The function f = f /0 itself computes the value v /0 at the root node (see Figure 1).
Those values are denoted by variables v. The functions corresponding to its children are denoted
by f1, ..., f! /0 , that is, f (·) = f /0(·) = ‖( f1(·), ..., f! /0(·))‖p /0 . We always use the letter “!” indexed by
the node’s multi-index to denote the total number of direct children of that node. The functions of
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(a) Equation (1) as tree. (b) Equation (1) as tree in multi-index notation.

Figure 1: Equation (1) visualized as a tree with two different naming conventions. Figure (a) shows
the tree where the nodes are labeled with the coefficients of xxx ∈ Rn. Figure (b) shows
the same tree in multi-index notation where the multi-index of a node describes the path
from the root node to that node in the tree. The leaves v1,v2,1 and v2,2 still correspond to
x1,x2 and x3, respectively, but have been renamed to the multi-index notation used in this
article.

f (·) = f /0(·) Lp-nested function
I = i1, ..., im Multi-index denoting a node in the tree: The single indices describe

the path from the root node to the respective node I.
xxxI All entries in xxx that correspond to the leaves in the subtree under

the node I
xxxÎ All entries in xxx that are not leaves in the subtree under

the node I
fI(·) Lp-nested function corresponding to the subtree under the node I
v /0 Function value at the root node
vI Function value at an arbitrary node with multi-index I
!I The number of direct children of a node I
nI The number of leaves in the subtree under the node I
vvvI,1:!I Vector with the function values at the direct children of a node I

Table 1: Summary of the notation used for Lp-nested functions in this article.

the children of the ith child of the root node are denoted by fi,1, ..., fi,!i and so on. In this manner,
an index is added for denoting the children of a particular node in the tree and each multi-index
denotes the path to the respective node in the tree. For the sake of compact notation, we use upper
case letters to denote a single multi-index I = i1, ..., i!. The range of the single indices and the length
of the multi-index should be clear from the context. A concatenation I,k of a multi-index I with
a single index k corresponds to adding k to the index tuple, that is, I,k = i1, ..., im,k. We use the
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Figure 2: Variety of contours created by the Lp-nested function of Equation (1) for all combinations
of p /0, p1 ∈ {0.5,1,2,10}.

convention that I, /0 = I. Those coefficients of the vector xxx that correspond to leaves of the subtree
under a node with the index I are denoted by xxxI . The complement of those coefficients, that is, the
ones that are not in the subtree under the node I, are denoted by xxxÎ . The number of leaves in a
subtree under a node I is denoted by nI . If I denotes a leaf then nI = 1.

The Lp-nested function associated with the subtree under a node I is denoted by

fI(xxxI) = ||( fI,1(xxxI,1), ..., fI,!I(xxxI,!I ))
'||pI .
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Just like for the root node, we use the variable vI to denote the function value vI = fI(xxxI) of a subtree
I. A vector with the function values of the children of I is denoted with bold font vvvI,1:!I where the
colon indicates that we mean the vector of the function values of the !I children of node I:

fI(xxxI) = ||( fI,1(xxxI,1), ..., fI,!I(xxxI,!I ))
'||pI

= ||(vI,1, ...,vI,!I)
'||pI = ||vvvI,1:!I ||pI .

Note that we can assign an arbitrary p to leaf nodes since ps for single variables always cancel.
For that reason we can choose an arbitrary p for convenience and fix its value to p= 1. Figure 1(b)
shows the multi-index notation for our example of Equation (1).

To illustrate the notation: Let I = i1, ..., id be the multi-index of a node in the tree. i1, ..., id
describes the path to that node, that is, the respective node is the ithd child of the ithd−1 child of
the ithd−2 child of the ... of the ith1 child of the root node. Assume that the leaves in the subtree
below the node I cover the vector entries x2, ...,x10. Then xxxI = (x2, ...,x10), xxxÎ = (x1,x11,x12, ...),
and nI = 9. Assume that node I has !I = 2 children. Those would be denoted by I,1 and I,2.
The function realized by node I would be denoted by fI and only acts on xxxI . The value of the
function would be fI(xxxI) = vI and the vector containing the values of the children of I would be
vvvI,1:2 = (vI,1,vI,2)' = ( fI,1(xxxI,1), fI,2(xxxI,2))'.

We now introduce a coordinate representation specially tailored to Lp-nested symmetrically
distributed variables: One of the most important consequences of the positive homogeneity of f
is that it can be used to “normalize” vectors and, by that property, create a polar like coordinate
representation of a vector xxx. Such polar-like coordinates generalize the coordinate representation
for Lp-norms by Gupta and Song (1997).

Definition 1 (Polar-like Coordinates) We define the following polar-like coordinates for a vector
xxx ∈ Rn:

ui =
xi
f (xxx)

for i= 1, ...,n−1,

r = f (xxx).

The inverse coordinate transformation is given by

xi = rui for i= 1, ...,n−1,
xn = rΔnun

where Δn = sgnxn and un = |xn|
f (xxx) .

Note that un is not part of the coordinate representation since normalization with 1/ f (xxx) de-
creases the degrees of freedom uuu by one, that is, un can always be computed from all other ui by
solving f (uuu) = f (xxx/ f (xxx)) = 1 for un. We use the term un only for notational simplicity. With a
slight abuse of notation, we will use uuu to denote the normalized vector xxx/ f (xxx) or only its first n−1
components. The exact meaning should always be clear from the context.

The definition of the coordinates is exactly the same as the one by Gupta and Song (1997)
with the only difference that the Lp-norm is replaced by an Lp-nested function. Just as in the case
of Lp-spherical coordinates, it will turn out that the determinant of the Jacobian of the coordinate
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transformation does not depend on the value of Δn and can be computed analytically. The deter-
minant is essential for deriving the uniform distribution on the unit Lp-nested sphere L f , that is,
the 1-level set of f . Apart from that, it can be used to compute the radial distribution for a given
Lp-nested symmetric distribution. We start by stating the general form of the determinant in terms
of the partial derivatives ∂un∂uk , uk and r. Afterwards we demonstrate that those partial derivatives have
a special form and that most of them cancel in Laplace’s expansion of the determinant.

Lemma 2 (Determinant of the Jacobian) Let r and uuu be defined as in Definition 1. The general
form of the determinant of the Jacobian J =

(
∂xi
∂y j

)

i j
of the inverse coordinate transformation for

y1 = r and yi = ui−1 for i= 2, ...,n, is given by

|detJ |= rn−1
(
−
n−1

∑
k=1

∂un
∂uk

·uk+un

)
. (2)

Proof The proof can be found in the Appendix A.

The problematic parts in Equation (2) are the terms ∂un∂uk , which obviously involve extensive usage
of the chain rule. Fortunately, most of them cancel when inserting them back into Equation (2),
leaving a comparably simple formula. The remaining part of this section is devoted to computing
those terms and demonstrating how they vanish in the formula for the determinant. Before we state
the general case we would like to demonstrate the basic mechanism through a simple example.
We urge the reader to follow this example as it illustrates all important ideas about the coordinate
transformation and its Jacobian.

Example 1 Consider an Lp-nested function very similar to our introductory example of Equation
(1):

f (xxx) =
(
(|x1|p1 + |x2|p1)

p /0
p1 + |x3|p /0

) 1
p /0 .

Setting uuu= xxx
f (xxx) and solving for u3 yields

f (uuu) = 1⇔ u3 =
(
1− (|u1|p1 + |u2|p1)

p /0
p1

) 1
p /0 . (3)

We would like to emphasize again, that u3 is actually not part of the coordinate representation and
only used for notational simplicity. By construction, u3 is always positive. This is no restriction since
Lemma 2 shows that the determinant of the Jacobian does not depend on its sign. However, when
computing the volume and the surface area of the Lp-nested unit sphere, it will become important
since it introduces a factor of 2 to account for the fact that u3 (or un in general) can in principle
also attain negative values.

Now, consider

G2(uuu2̂) = g2(uuu2̂)
1−p /0 =

(
1− (|u1|p1 + |u2|p1)

p /0
p1

) 1−p /0
p /0 ,

F1(uuu1) = f1(uuu1)p /0−p1 = (|u1|p1 + |u2|p1)
p /0−p1
p1 ,
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where the subindices of uuu, f , g, G and F have to be read as multi-indices. The function gI computes
the value of the node I from all other leaves that are not part of the subtree under I by fixing the
value of the root node to one.

G2(uuu2̂) and F1(uuu1) are terms that arise from applying the chain rule when computing the partial
derivatives ∂u3

∂uk . Taking those partial derivatives can be thought of as peeling off layer by layer
of Equation (3) via the chain rule. By doing so, we “move” on a path between u3 and uk. Each
application of the chain rule corresponds to one step up or down in the tree. First, we move upwards
in the tree, starting from u3. This produces the G-terms. In this example, there is only one step
upwards, but in general, there can be several, depending on the depth of un in the tree. Each step
up will produce one G-term. At some point, we will move downwards in the tree to reach uk. This
will produce the F-terms. While there are as many G-terms as upward steps, there is one term less
when moving downwards. Therefore, in this example, there is one term G2(uuu2̂) which originates
from using the chain rule upwards in the tree and one term F1(uuu1) from using it downwards. The
indices correspond to the multi-indices of the respective nodes.

Computing the derivative yields
∂u3
∂uk

=−G2(uuu2̂)F1(uuu1)Δk|uk|
p1−1.

By inserting the results in Equation (2) we obtain

1
r2
|J |=

2

∑
k=1

G2(uuu2̂)F1(uuu1)|uk|
p1 +u3

= G2(uuu2̂)

(
F1(uuu1)

2

∑
k=1

|uk|p1 +1−F1(uuu1)F1(uuu1)−1 (|u1|p1 + |u2|p1)
p /0
p1

)

= G2(uuu2̂)

(
F1(uuu1)

2

∑
k=1

|uk|p1 +1−F1(uuu1)
2

∑
k=1

|uk|p1
)

= G2(uuu2̂).

The example suggests that the terms from using the chain rule downwards in the tree cancel
while the terms from using the chain rule upwards remain. The following proposition states that
this is true in general.

Proposition 3 (Determinant of the Jacobian) Let L be the set of multi-indices of the path from
the leaf un to the root node (excluding the root node) and let the terms GI,!I (uuuÎ,!I ) recursively be
defined as

GI,!I (uuuÎ,!I ) = gI,!I (uuuÎ,!I )
pI,!I−pI =

(
gI(uuuÎ)

pI −
!−1

∑
j=1

fI, j(uuuI, j)pI
) pI,!I−pI

pI

where each of the functions gI,!I computes the value of the !th child of a node I as a function of its
neighbors (I,1), ..., (I,!I − 1) and its parent I while fixing the value of the root node to one. This
is equivalent to computing the value of the node I from all coefficients uuuÎ that are not leaves in the
subtree under I. Then, the determinant of the Jacobian for an Lp-nested function is given by

|detJ |= rn−1∏
L∈L

GL(uuuL̂).
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Proof The proof can be found in the Appendix A.

Let us illustrate the determinant with two examples:

Example 2 Consider a normal Lp-norm

f (xxx) =

(
n

∑
i=1

|xi|p
) 1

p

which is obviously also an Lp-nested function. Resolving the equation for the last coordinate of
the normalized vector uuu yields gn(uuun̂) = un =

(
1−∑n−1

i=1 |ui|p
) 1
p . Thus, the term Gn(uuun̂) is given by

(
1−∑n−1

i=1 |ui|p
) 1−p

p which yields a determinant of |detJ |= rn−1
(
1−∑n−1

i=1 |ui|p
) 1−p

p . This is exactly
the one derived by Gupta and Song (1997).

Example 3 Consider the introductory example

f (xxx) =
(
|x1|p /0 +(|x2|p1 + |x3|p1)

p /0
p1

) 1
p /0 .

Normalizing and resolving for the last coordinate yields

u3 =
(
(1− |u1|p /0)

p1
p /0 − |u2|p1

) 1
p1

and the terms G2(uuu2̂) and G2,2(uuu2̂,2) of the determinant |detJ |= r2G2(uuu2̂)G2,2(uuu2̂,2) are given by

G2(uuu2̂) = (1− |u1|p /0)
p1−p /0
p /0 ,

G2,2(uuu2̂,2) =
(
(1− |u1|p /0)

p1
p /0 − |u2|p1

) 1−p1
p1 .

Note the difference to Example 1 where x3 was at depth one in the tree while x3 is at depth two in
the current case. For that reason, the determinant of the Jacobian in Example 1 involved only one
G-term while it has two G-terms here.

3. Lp-Nested Symmetric and Lp-Nested Uniform Distribution

In this section, we define the Lp-nested symmetric and the Lp-nested uniform distribution and derive
their partition functions. In particular, we derive the surface area of an arbitrary Lp-nested unit
sphere L f = {xxx ∈ Rn | f (xxx) = 1} corresponding to an Lp-nested function f . By Equation (5) of
Fernandez et al. (1995) every ν-spherical and hence any Lp-nested symmetric density has the form

ρ(xxx) =
φ( f (xxx))

f (xxx)n−1S f (1)
, (4)

where S f is the surface area of L f and φ is a density on R+. Thus, we need to compute the surface
area of an arbitrary Lp-nested unit sphere to obtain the partition function of Equation (4).
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Proposition 4 (Volume and Surface of the Lp-nested Sphere) Let f be an Lp-nested function and
let I be the set of all multi-indices denoting the inner nodes of the tree structure associated with f .
The volume V f (R) and the surface S f (R) of the Lp-nested sphere with radius R are given by

V f (R) =
Rn2n

n ∏
I∈I

(
1

p!I−1I

!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

])
(5)

=
Rn2n

n ∏
I∈I

∏!I
k=1Γ

[
nI,k
pI

]

p!I−1I Γ
[
nI
pI

] , (6)

S f (R) = Rn−12n∏
I∈I

(
1

p!I−1I

!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

])
(7)

= Rn−12n∏
I∈I

∏!I
k=1Γ

[
nI,k
pI

]

p!I−1I Γ
[
nI
pI

] (8)

where B[a,b] = Γ[a]Γ[b]
Γ[a+b] denotes the β-function.

Proof The proof can be found in the Appendix B.

Inserting the surface area in Equation 4, we obtain the general form of an Lp-nested symmetric
distribution for any given radial density φ.

Corollary 5 (Lp-nested Symmetric Distribution) Let f be an Lp-nested function and φ a density
on R+. The corresponding Lp-nested symmetric distribution is given by

ρ(xxx) =
φ( f (xxx))

f (xxx)n−1S f (1)

=
φ( f (xxx))
2n f (xxx)n−1∏I∈I



p!I−1I

!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

]−1


 . (9)

The results of Fernandez et al. (1995) imply that for any ν-spherically symmetric distribution,
the radial part is independent of the directional part, that is, r is independent of uuu. The distribution
of uuu is entirely determined by the choice of ν, or by the Lp-nested function f in our case. The
distribution of r is determined by the radial density φ. Together, an Lp-nested symmetric distribution
is determined by both, the Lp-nested function f and the choice of φ. From Equation (9), we can see
that its density function must be the inverse of the surface area of L f times the radial density when
transforming (4) into the coordinates of Definition 1 and separating r and uuu (the factor f (xxx)n−1 = r
cancels due to the determinant of the Jacobian). For that reason we call the distribution of uuu uniform
on the Lp-sphere L f in analogy to Song and Gupta (1997). Next, we state its form in terms of the
coordinates uuu.

Proposition 6 (Lp-nested Uniform Distribution) Let f be an Lp-nested function. Let L be the
set of multi-indices on the path from the root node to the leaf corresponding to xn. The uniform
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distribution on the Lp-nested unit sphere, that is, the set L f = {xxx ∈ Rn| f (xxx) = 1} is given by the
following density over u1, ...,un−1

ρ(u1, , ...,un−1) =
∏L∈L GL(uuuL̂)

2n−1 ∏
I∈I



p!I−1I

!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

]−1


 .

Proof Since the Lp-nested sphere is a measurable and compact set, the density of the uniform dis-
tribution is simply one over the surface area of the Lp-nested unit sphere. The surface S f (1) is given
by Proposition 4. Transforming 1

S f (1) into the coordinates of Definition 1 introduces the determinant
of the Jacobian from Proposition 3 and an additional factor of 2 since the (u1, ...,un−1) ∈Rn−1 have
to account for both half-shells of the Lp-nested unit sphere, that is, to account for the fact that un
could have been be positive or negative. This yields the expression above.

Example 4 Let us again demonstrate the proposition at the special case where f is an Lp-norm
f (xxx) = ||xxx||p = (∑n

i=1 |xi|p)
1
p . Using Proposition 4, the surface area is given by

S||·||p = 2
n 1
p! /0−1/0

! /0−1

∏
k=1

B
[
∑k
i=1 nk
p /0

,
nk+1
p /0

]
=
2nΓn

[
1
p

]

pn−1Γ
[
n
p

] .

The factor Gn(uuun̂) is given by
(
1−∑n−1

i=1 |ui|p
) 1−p

p (see the Lp-norm example before), which, after
including the factor 2, yields the uniform distribution on the Lp-sphere as defined in Song and Gupta
(1997)

p(uuu) =
pn−1Γ

[
n
p

]

2n−1Γn
[
1
p

]
(
1−

n−1

∑
i=1

|ui|p
) 1−p

p

.

Example 5 As a second illustrative example, we consider the uniform density on the Lp-nested
unit ball, that is, the set {xxx ∈ Rn| f (xxx)≤ 1}, and derive its radial distribution φ. The density of the
uniform distribution on the unit Lp-nested ball does not depend on xxx and is given by ρ(xxx)= 1/V f (1).
Transforming the density into the polar-like coordinates with the determinant from Proposition 3
yields

1
V f (1)

=
nrn−1∏L∈L GL(uuuL̂)

2n−1 ∏
I∈I



p!I−1I

!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

]−1


 .

After separating out the uniform distribution on the Lp-nested unit sphere, we obtain the radial
distribution

φ(r) = nrn−1 for 0< r ≤ 1

which is a β-distribution with parameters n and 1.
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The radial distribution from the preceeding example is of great importance for our sampling
scheme derived in Section 6. The idea behind it is the following: First, a sample from a “simple”
Lp-nested symmetric distribution is drawn. Since the radial and the uniform component on the Lp-
nested unit sphere are statistically independent, we can get a sample from the uniform distribution
on the Lp-nested unit sphere by simply normalizing the sample from the simple distribution. After-
wards we can multiply it with a radius drawn from the radial distribution of the Lp-nested symmetric
distribution that we actually want to sample from. The role of the simple distribution will be played
by the uniform distribution within the Lp-nested unit ball. Sampling from it is basically done by
applying the steps in Proposition 4’s proof backwards. We lay out the sampling scheme in more
detail in Section 6.

4. Marginals

In this section we discuss two types of marginals: First, we demonstrate that, in contrast to Lp-
spherically symmetric distributions, marginals of Lp-nested symmetric distributions are not nec-
essarily Lp-nested symmetric again. The second type of marginals we discuss are obtained by
collapsing all leaves of a subtree into the value of the subtree’s root node. For that case we derive
an analytical expression and show that the values of the root node’s children follow a special kind
of Dirichlet distribution.

Gupta and Song (1997) show that marginals of Lp-spherically symmetric distributions are again
Lp-spherically symmetric. This does not hold, however, for Lp-nested symmetric distributions. This
can be shown by a simple counterexample. Consider the Lp-nested function

f (xxx) =
(
(|x1|p1 + |x2|p1)

p /0
p1 + |x3|p /0

) 1
p /0 .

The uniform distribution inside the Lp-nested ball corresponding to f is given by

ρ(xxx) =
np1p /0Γ

[
2
p1

]
Γ
[
3
p /0

]

23Γ2
[
1
p1

]
Γ
[
2
p0

]
Γ
[
1
p0

] .

The marginal ρ(x1,x3) is given by

ρ(x1,x3) =
np1p /0Γ

[
2
p1

]
Γ
[
3
p /0

]

23Γ2
[
1
p1

]
Γ
[
2
p0

]
Γ
[
1
p0

]
(
(1− |x3|p /0)

p1
p /0 − |x1|p1

) 1
p1 .

This marginal is not Lp-spherically symmetric. Since any Lp-nested symmetric distribution in two
dimensions must be Lp-spherically symmetric, it cannot be Lp-nested symmetric as well. Figure
3 shows a scatter plot of the marginal distribution. Besides the fact that the marginals are not
contained in the family of Lp-nested symmetric distributions, it is also hard to derive a general
form for them. This is not surprising given that the general form of marginals for Lp-spherically
symmetric distributions involves an integral that cannot be solved analytically in general and is
therefore not very useful in practice (Gupta and Song, 1997). For that reason we cannot expect
marginals of Lp-nested symmetric distributions to have a simple form.

In contrast to single marginals, it is possible to specify the joint distribution of leaves and inner
nodes of an Lp-nested tree if all descendants of their inner nodes in question have been integrated
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Figure 3: Marginals of Lp-nested symmetric distributions are not necessarily Lp-nested symmetric:
Figure (a) shows a scatter plot of the (x1,x2)-marginal of the counterexample in the text
with p /0 = 2 and p1 = 1

2 . Figure (d) displays the corresponding Lp-nested sphere. (b-
c) show the univariate marginals for the scatter plot. Since any two-dimensional Lp-
nested symmetric distribution must be Lp-spherically symmetric, the marginals should be
identical. This is clearly not the case. Thus, (a) is not Lp-nested symmetric.

out. For the simple function above (the same that has been used in Example 1), the joint distribution
of x3 and v1 = ‖(x1,x2)'‖p1 would be an example of such a marginal. Since marginalization affects
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the Lp-nested tree vertically, we call this type of marginals layer marginals. In the following, we
present their general form.

From the form of a general Lp-nested function and the corresponding symmetric distribution,
one might think that the layer marginals are Lp-nested symmetric again. However, this is not the case
since the distribution over the Lp-nested unit sphere would deviate from the uniform distribution in
most cases if the distribution of its children were Lp-spherically symmetric.

Proposition 7 Let f be an Lp-nested function. Suppose we integrate out complete subtrees from
the tree associated with f , that is, we transform subtrees into radial times uniform variables and
integrate out the latter. Let J be the set of multi-indices of those nodes that have become new leaves,
that is, whose subtrees have been removed, and let nJ be the number of leaves (in the original tree)
in the subtree under the node J. Let xxxĴ ∈ Rm denote those coefficients of xxx that are still part of
that smaller tree and let vvvJ denote the vector of inner nodes that became new leaves. The joint
distribution of xxxĴ and vvvJ is given by

ρ(xxxĴ ,vvvJ ) =
φ( f (xxxĴ ,vvvJ ))
S f ( f (xxxĴ ,vvvJ ))

∏
J∈J

vnJ−1J . (10)

Proof The proof can be found in the Appendix C.

Equation (10) has an interesting special case when considering the joint distribution of the root
node’s children.

Corollary 8 The children of the root node vvv1:! /0 = (v1, ...,v! /0)' follow the distribution

ρ(vvv1:! /0) =
p! /0−1/0 Γ

[
n
p /0

]

f (v1, ...,v! /0)n−12m∏
! /0
k=1Γ

[
nk
p /0

]φ( f (v1, ...,v! /0))
! /0

∏
i=1

vni−1i

where m ≤ ! /0 is the number of leaves directly attached to the root node. In particular, vvv1:! /0 can
be written as the product RU, where R is the Lp-nested radius and the single |Ui|p /0 are Dirichlet
distributed, that is, (|U1|p /0 , ..., |U! /0 |

p /0)∼ Dir
[
n1
p /0 , ...,

n! /0
p /0

]
.

Proof The joint distribution is simply the application of Proposition (7). Note that f (v1, ...,v! /0) =
||vvv1:! /0 ||p /0 . Applying the pointwise transformation si = |ui|p /0 yields

(|U1|p /0 , ..., |U! /0−1|
p /0)∼ Dir

[
n1
p /0

, ...,
n! /0
p /0

]
.

The Corollary shows that the values fI(xxxI) at inner nodes I, in particular the ones directly below
the root node, deviate considerably from Lp-spherical symmetry. If they were Lp-spherically sym-
metric, the |Ui|p should follow a Dirichlet distribution with parameters αi = 1

p as has been already
shown by Song and Gupta (1997). The Corollary is a generalization of their result.

We can use the Corollary to prove an interesting fact about Lp-nested symmetric distributions:
The only factorial Lp-nested symmetric distribution must be Lp-spherically symmetric.
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Proposition 9 Let xxx be Lp-nested symmetric distributed with independent marginals. Then xxx is
Lp-spherically symmetric distributed. In particular, xxx follows a p-generalized Normal distribution.

Proof The proof can be found in the Appendix D.

One immediate implication of Proposition 9 is that there is no factorial probability model corre-
sponding to mixed norm regularizers which have the form ∑k

i=1 ‖xxxIk‖
q
p where the index sets Ik form

a partition of the dimensions 1, ...,n (see, e.g., Zhao et al., 2008; Yuan and Lin, 2006; Kowalski
et al., 2008). Many machine learning algorithms are equivalent to minimizing the sum of a regu-
larizer R(www) and a loss function L(www,xxx1, ...,xxxm) over the coefficient vector www. If the exp(−R(www))
and exp(−L(www,xxx1, ...,xxxm)) correspond to normalizeable density models, the minimizing solution
of the objective function can be seen as the maximum a posteriori (MAP) estimate of the poste-
rior p(www|xxx1, ...,xxxm) ∝ p(www) · p(xxx1, ...,xxxm|www) = exp(−R(www)) · exp(−L(www,xxx1, ...,xxxm)). In that sense,
the regularizer naturally corresponds to the prior and the loss function corresponds to the likeli-
hood. Very often, regularizers are specified as a norm over the coefficient vector www which in turn
correspond to certain priors. For example, in Ridge regression (Hoerl, 1962) the coefficients are
regularized via ‖www‖22 which corresponds to a factorial zero mean Gaussian prior on www. The L1-norm
‖www‖1 in the LASSO estimator (Tibshirani, 1996), again, is equivalent to a factorial Laplacian prior
on www. Like in these two examples, regularizers often correspond to a factorial prior.

Mixed norm regularizers naturally correspond to Lp-nested symmetric distributions. Proposition
9 shows that there is no factorial prior that corresponds to such a regularizer. In particular, it implies
that the prior cannot be factorial between groups and coefficients at the same time. This means
that those regularizers implicitly assume statistical dependencies between the coefficient variables.
Interestingly, for q= 1 and p= 2 the intuition behind these regularizers is exactly that whole groups
Ik get switched on at once, but the groups are sparse. The Proposition shows that this might not only
be due to sparseness but also due to statistical dependencies between the coefficients within one
group. The Lp-nested symmetric distribution which implements independence between groups will
be further discussed below as a generalization of the p-generalized Normal (see Section 8). Note
that the marginals can be independent if the regularizer is of the form ∑k

i=1 ‖xxxIk‖
p
p. However, in

this case p = q and the Lp-nested function collapses to a simple Lp-norm which means that the
regularizer is not mixed norm.

5. Maximum Likelihood Estimation of Lp-Nested Symmetric Distributions

In this section, we describe procedures for maximum likelihood fitting of Lp-nested symmetric dis-
tributions on data. We provide a toolbox online for fitting Lp-spherically symmetric and Lp-nested
symmetric distributions to data. The toolbox can be downloaded at http://www.kyb.tuebingen.
mpg.de/bethge/code/.

Depending on which parameters are to be estimated, the complexity of fitting an Lp-nested
symmetric distribution varies. We start with the simplest case and later continue with more complex
ones. Throughout this subsection, we assume that the model has the form p(xxx) = ρ(Wxxx) · |detW |=

φ(Wxxx)
f (Wxxx)n−1S f (1)

· |detW | whereW ∈ Rn×n is a complete whitening matrix. This means that given any
whitening matrix W0, the freedom in fitting W is to estimate an orthonormal matrix Q ∈ SO(n)
such thatW = QW0. This is analogous to the case of elliptically contoured distributions where the
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distributions can be endowed with 2nd-order correlations via W . In the following, we ignore the
determinant ofW since data points can always be rescaled such that detW = 1.

The simplest case is to fit the parameters of the radial distribution when the tree structure, the
values of the pI , andW are fixed. Due to the special form of Lp-nested symmetric distributions (4),
it then suffices to carry out maximum likelihood estimation on the radial component only, which
renders maximum likelihood estimation efficient and robust. This is because the only remaining
parameters are the parameters ϑϑϑ of the radial distribution and, therefore,

argmaxϑϑϑ logρ(Wxxx|ϑϑϑ) = argmaxϑϑϑ (− logS f ( f (Wxxx))+ logφ( f (Wxxx)|ϑϑϑ))
= argmaxϑϑϑ logφ( f (Wxxx)|ϑϑϑ).

In a slightly more complex case, when only the tree structure andW are fixed, the values of the
pI, I ∈ I and ϑϑϑ can be jointly estimated via gradient ascent on the log-likelihood. The gradient for
a single data point xxx with respect to the vector ppp that holds all pI for all I ∈ I is given by

∇ppp logρ(Wxxx) =
d
dr
logφ( f (Wxxx)) ·∇ppp f (Wxxx)−

(n−1)
f (Wxxx)

∇ppp f (Wxxx)−∇ppp logS f (1).

For i.i.d. data points xxxi the joint gradient is given by the sum over the gradients for the single data
points. Each of them involves the gradient of f as well as the gradient of the log-surface area of L f
with respect to ppp, which can be computed via the recursive equations

∂
∂pJ

vI =






0 if I is not a prefix of J
v1−pII vpI−1I,k · ∂

∂pJ vI,k if I is a prefix of J
vJ
pJ

(
v−pJJ ∑!J

k=1 v
pJ
J,k · logvJ,k− logvJ

)
if J = I

and

∂
∂pJ

logS f (1) =−
!J−1
pJ

+
!J−1

∑
k=1

Ψ

[
∑k+1
i=1 nJ,k
pJ

]
∑k+1
i=1 nJ,k
p2J

−
!J−1

∑
k=1

Ψ

[
∑k
i=1 nJ,k
pJ

]
∑k
i=1 nJ,k
p2J

−
!J−1

∑
k=1

Ψ

[
nJ,k+1
pJ

]
nJ,k+1
p2J

,

where Ψ[t] = d
dt logΓ[t] denotes the digamma function. When performing the gradient ascent, one

needs to set 000 as a lower bound for ppp. Note that, in general, this optimization might be a highly
non-convex problem.

On the next level of complexity, only the tree structure is fixed, andW can be estimated along
with the other parameters by joint optimization of the log-likelihood with respect to ppp, ϑϑϑ and W .
Certainly, this optimization problem is also not convex in general. Usually, it is numerically more
robust to whiten the data first with some whitening matrixW0 and perform a gradient ascent on the
special orthogonal group SO(n) with respect to Q for optimizing W = QW0. Given the gradient
∇W logρ(Wxxx) of the log-likelihood, the optimization can be carried out by performing line searches
along geodesics as proposed by Edelman et al. (1999) (see also Absil et al. (2007)) or by projecting
∇W logρ(Wxxx) on the tangent space TWSO(n)) and performing a line search along SO(n) in that
direction as proposed by Manton (2002).
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The general form of the gradient to be used in such an optimization scheme can be defined as

∇W logρ(Wxxx)
=∇W (−(n−1) · log f (Wxxx)+ logφ( f (Wxxx)))

=−
(n−1)
f (Wxxx)

·∇yyy f (Wxxx) · xxx'+
d logφ(r)

dr
( f (Wxxx)) ·∇yyy f (Wxxx) · xxx',

where the derivatives of f with respect to yyy are defined by recursive equations

∂
∂yi

vI =






0 if i &∈ I
sgn yi if vI,k = |yi|
v1−pII · vpI−1I,k · ∂

∂yi vI,k for i ∈ I,k.

Note, that f might not be differentiable at yyy= 0. However, we can always define a sub-derivative at
zero, which is zero for pI &= 1 and [−1,1] for pI = 1. Again, the gradient for i.i.d. data points xxxi is
given by the sum over the single gradients.

Finally, the question arises whether it is possible to estimate the tree structure from data as well.
A simple heuristic would be to start with a very large tree, for example, a full binary tree, and to
prune out inner nodes for which the parents and the children have sufficiently similar values for their
pI . The intuition behind this is that if they were exactly equal, they would cancel in the Lp-nested
function. This heuristic is certainly sub-optimal. Firstly, the optimization will be time consuming
since there can be about as many pI as there are leaves in the Lp-nested tree (a full binary tree on n
dimensions will have n−1 inner nodes) and due to the repeated optimization after the pruning steps.
Secondly, the heuristic does not cover all possible trees on n leaves. For example, if two leaves are
separated by the root node in the original full binary tree, there is no way to prune out inner nodes
such that the path between those two nodes will not contain the root node anymore.

The computational complexity for the estimation of all other parameters despite the tree struc-
ture is difficult to assess in general because they depend, for example, on the particular radial dis-
tribution used. While the maximum likelihood estimation of a simple log-Normal distribution only
involves the computation of a mean and a variance which are in O(m) form data points, a mixture of
log-Normal distributions already requires an EM algorithm which is computationally more expen-
sive. Additionally, the time it takes to optimize the likelihood depends on the starting point as well
as the convergence rate, and we neither have results about the convergence rate nor is it possible to
make problem independent statements about a good initialization of the parameters. For this reason
we state only the computational complexity of single steps involved in the optimization.

Computation of the gradient ∇ppp logρ(Wxxx) involves the derivative of the radial distribution, the
computation of the gradients ∇ppp f (Wxxx) and ∇pppS f (1). Assuming that the derivative of the radial
distribution can be computed in O(1) for each single data point, the costly steps are the other two
gradients. Computing ∇ppp f (Wxxx) basically involves visiting each node of the tree once and perform-
ing a constant number of operations for the local derivatives. Since every inner node in an Lp-nested
tree must have at least two children, the worst case would be a full binary tree which has 2n− 1
nodes and leaves. Therefore, the gradient can be computed in O(nm) for m data points. For similar
reasons, f (Wxxx), ∇ppp logS f (1), and the evaluation of the likelihood can also be computed in O(nm).
This means that each step in the optimization of ppp can be done O(nm) plus the computational costs
for the line search in the gradient ascent. When optimizing forW =QW0 as well, the computational
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costs per step increase to O(n3+ n2m) since m data points have to be multiplied with W at each
iteration (requiring O(n2m) steps), and the line search involves projecting Q back onto SO(n) which
requires an inverse matrix square root or a similar computation in O(n3).

For comparison, each step of fast ICA (Hyvärinen and O., 1997) for a complete demixing matrix
takes O(n2m) when using hierarchical orthogonalization and O(n2m+ n3) for symmetric orthogo-
nalization. The same applies to fitting an ISA model (Hyvärinen and Hoyer, 2000; Hyvärinen
and Köster, 2006, 2007). A Gaussian Scale Mixture (GSM) model does not need to estimate an-
other orthogonal rotation Q because it belongs to the class of spherically symmetric distributions
and is, therefore, invariant under transformations from SO(n) (Wainwright and Simoncelli, 2000).
Therefore, fitting a GSM corresponds to estimating the parameters of the scale distribution which is
O(nm) in the best case but might be costlier depending on the choice of the scale distribution.

6. Sampling from Lp-Nested Symmetric Distributions

In this section, we derive a sampling scheme for arbitrary Lp-nested symmetric distributions which
can for example be used for solving integrals when using Lp-nested symmetric distributions for
Bayesian learning. Exact sampling from an arbitrary Lp-nested symmetric distribution is in fact
straightforward due to the following observation: Since the radial and the uniform component are in-
dependent, normalizing a sample from any Lp-nested symmetric distribution to f -length one yields
samples from the uniform distribution on the Lp-nested unit sphere. By multiplying those uni-
form samples with new samples from another radial distribution, one obtains samples from another
Lp-nested symmetric distribution. Therefore, for each Lp-nested function f , a single Lp-nested sym-
metric distribution which can be easily sampled from is enough. Sampling from all other Lp-nested
symmetric distributions with respect to f is then straightforward due to the method we just de-
scribed. Gupta and Song (1997) sample from the p-generalized Normal distribution since it has in-
dependent marginals which makes sampling straightforward. Due to Proposition 9, no such factorial
Lp-nested symmetric distribution exists. Therefore, a sampling scheme like that for Lp-spherically
symmetric distributions is not applicable. Instead we choose to sample from the uniform distribu-
tion inside the Lp-nested unit ball for which we already computed the radial distribution in Example
5. The distribution has the form ρ(xxx) = 1

V f (1)
. In order to sample from that distribution, we will first

only consider the uniform distribution in the positive quadrant of the unit Lp-nested ball which has
the form ρ(xxx) = 2n

V f (1)
. Samples from the uniform distributions inside the whole ball can be obtained

by multiplying each coordinate of a sample with independent samples from the uniform distribution
over {−1,1}.

The idea of the sampling scheme for the uniform distribution inside the Lp-nested unit ball is
based on the computation of the volume of the Lp-nested unit ball in Proposition 4. The basic
mechanism underlying the sampling scheme below is to apply the steps of the proof backwards,
which is based on the following idea: The volume of the Lp-unit ball can be computed by computing
its volume on the positive quadrant only and multiplying the result with 2n afterwards. The key is
now to not transform the whole integral into radial and uniform coordinates at once, but successively
upwards in the tree. We will demonstrate this through a brief example which also should make the
sampling scheme below more intuitive. Consider the Lp-nested function

f (xxx) =
(
|x1|p /0 +(|x2|p1 + |x3|p1)

p /0
p1

) 1
p /0 .
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To solve the integral ∫
{xxx: f (xxx)≤1& xxx∈Rn

+}
dxxx,

we first transform x2 and x3 into radial and uniform coordinates only. According to Proposition 3 the
determinant of the mapping (x2,x3) ,→ (v1, ũ) = (‖xxx2:3‖p1 ,xxx2:3/‖xxx2:3‖p1) is given by v1(1− ũp1)

1−p1
p1 .

Therefore the integral transforms into
∫
{xxx: f (xxx)≤1& xxx∈Rn

+}
dxxx=

∫
{v1,x1: f (x1,v1)≤1& x1,v1∈R+}

∫ ∫
v1(1− ũp1)

1−p1
p1 dx1dv1dũ.

Now we can separate the integrals over x1 and v1, and the integral over ũ, since the boundary of the
outer integral does only depend on v1 and not on ũ:∫

{xxx: f (xxx)≤1& xxx∈Rn
+}
dxxx=

∫
(1− ũp1)

1−p1
p1 dũ ·

∫
{v1,x1: f (x1,v1)≤1& x1,v1∈R+}

∫
v1dx1dv1.

The value of the first integral is known explicitly since the integrand equals the uniform distribution
on the ‖ · ‖p1 -unit sphere. Therefore, the value of the integral must be its normalization constant
which we can get using Proposition 4:

∫
(1− ũp1)

1−p1
p1 dũ=

Γ
[
1
p1

]2
· p1

Γ
[
2
p1

] .

An alternative way to arrive at this result is to use the transformation s = ũp1 and to notice that the
integrand is a Dirichlet distribution with parameters αi = 1

p1 . The normalization constant of the
Dirichlet distribution and the constants from the determinant of the Jacobian of the transformation
yield the same result.

To compute the remaining integral, the same method can be applied again yielding the volume
of the Lp-nested unit ball. The important part for the sampling scheme, however, is not the volume
itself but the fact that the intermediate results in this integration process equal certain distributions.
As shown in Example 5 the radial distribution of the uniform distribution on the unit ball is β [n,1],
and as just indicated by the example above, the intermediate results can be seen as transformed
variables from a Dirichlet distribution. This fact holds true even for more complex Lp-nested unit
balls although the parameters of the Dirichlet distribution can be slightly different. Reversing the
steps leads us to the following sampling scheme. First, we sample from the β-distribution which
gives us the radius v /0 on the root node. Then we sample from the appropriate Dirichlet distribution
and exponentiate the samples by 1

p /0 which transforms them into the analogs of the variable u from
above. Scaling the result with the sample v /0 yields the values of the root node’s children, that
is, the analogs of x1 and v1. Those are the new radii for the levels below them where we simply
repeat this procedure with the appropriate Dirichlet distributions and exponents. The single steps
are summarized in Algorithm 1.

The computational complexity of the sampling scheme is O(n). Since the sampling procedure
is like expanding the tree node by node starting with the root, the number of inner nodes and leaves
is the total number of samples that have to be drawn from Dirichlet distributions. Every node in an
Lp-nested tree must at least have two children. Therefore, the maximal number of inner nodes and
leaves is 2n− 1 for a full binary tree. Since sampling from a Dirichlet distribution is also in O(n),
the total computational complexity for one sample is in O(n).
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Algorithm 1 Exact sampling algorithm for Lp-nested symmetric distributions
Input: The radial distribution φ of an Lp-nested symmetric distribution ρ for the Lp-nested function
f .
Output: Sample xxx from ρ.
Algorithm

1. Sample v /0 from a beta distribution β [n,1].

2. For each inner node I of the tree associated with f , sample the auxiliary variable sssI from
a Dirichlet distribution Dir

[
nI,1
pI , ...,

nI,!I
pI

]
where nI,k are the number of leaves in the subtree

under node I,k. Obtain coordinates on the Lp-nested sphere within the positive orthant by

sssI ,→ sss
1
pI
I = ũuuI (the exponentiation is taken component-wise).

3. Transform these samples to Cartesian coordinates by vI · ũuuI = vvvI,1:!I for each inner node, start-
ing from the root node and descending to lower layers. The components of vvvI,1:!I constitute
the radii for the layer direct below them. If I = /0, the radius had been sampled in step 1.

4. Once the two previous steps have been repeated until no inner node is left, we have a sample
xxx from the uniform distribution in the positive quadrant. Normalize xxx to get a uniform sample
from the sphere uuu= xxx

f (xxx) .

5. Sample a new radius ṽ /0 from the radial distribution of the target radial distribution φ and
obtain the sample via x̃xx= ṽ /0 ·uuu.

6. Multiply each entry xi of x̃xx by an independent sample zi from the uniform distribution over
{−1,1}.

7. Robust Bayesian Inference of the Location

For Lp-spherically symmetric distributions with a location and a scale parameter

p(xxx|µµµ,τ) = τnρ(‖τ(xxx−µµµ)‖p),

Osiewalski and Steel (1993) derived the posterior in closed form using a prior p(µµµ,τ) = p(µ) ·c ·τ−1,
and showed that p(xxx,µµµ) does not depend on the radial distribution φ, that is, the particular type of
Lp-spherically symmetric distributions used for a fixed p. The prior on τ corresponds to an improper
Jeffrey’s prior which is used to represent lack of prior knowledge on the scale. The main implication
of their result is that Bayesian inference of the location µµµ under that prior on the scale does not
depend on the particular type of Lp-spherically symmetric distribution used for inference. This
means that under the assumption of an Lp-spherically symmetric distributed variable, for a fixed p,
one has to know the exact form of the distribution in order to compute the location parameter.

It is straightforward to generalize their result to Lp-nested symmetric distributions and, hence,
making it applicable to a larger class of distributions. Note that when using any Lp-nested symmetric
distribution, introducing a scale and a location via the transformation xxx ,→ τ(xxx− µµµ) introduces a
factor of τn in front of the distribution.
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Proposition 10 For fixed values p /0, p1, ... and two independent priors p(µµµ,τ) = p(µµµ) · cτ−1 of the
location µ and the scale τ where the prior on τ is an improper Jeffrey’s prior, the joint distribution
p(xxx,µµµ) is given by

p(xxx,µµµ) = f (xxx−µµµ)−n · c ·
1
Z
· p(µµµ),

where Z denotes the normalization constant of the Lp-nested uniform distribution.

Proof Given any Lp-nested symmetric distribution ρ( f (xxx)), the transformation into the polar-like
coordinates yields the following relation

1=
∫
ρ( f (xxx))dxxx=

∫ ∫
∏
L∈L

GL(uuuL̂)r
n−1ρ(r)drduuu=

∫
∏
L∈L

GL(uuuL̂)duuu ·
∫
rn−1ρ(r)dr.

Since ∏L∈L GL(uuuL̂) is the unnormalized uniform distribution on the Lp-nested unit sphere, the inte-
gral must equal the normalization constant which we denote with Z for brevity (see Proposition 6
for an explicit expression). This implies that ρ has to fulfill

1
Z
=

∫
rn−1ρ(r)dr.

Writing down the joint distribution of xxx,µµµ and τ, and using the substitution s= τ f (xxx−µµµ) we obtain

p(xxx,µµµ) =
∫
τnρ( f (τ(xxx−µµµ))) · cτ−1 · p(µµµ)dτ

=
∫
sn−1ρ(s) · c · p(µµµ) f (xxx−µµµ)−nds

= f (xxx−µµµ)−n · c ·
1
Z
· p(µµµ).

Note that this result could easily be extended to ν-spherical distributions. However, in this case
the normalization constant Z cannot be computed for most cases and, therefore, the posterior would
not be known explicitly.

8. Relations to ICA, ISA and Over-Complete Linear Models

In this section, we explain the relations among Lp-spherically symmetric, Lp-nested symmetric,
ICA and ISA models. For a general overview see Figure 4.

The density model underlying ICA models the joint distribution of the signal xxx as a linear
superposition of statistically independent hidden sources Ayyy = xxx or yyy = Wxxx. If the marginals
of the hidden sources belong to the exponential power family, we obtain the p-generalized Nor-
mal which is a subset of the Lp-spherically symmetric class. The p-generalized Normal distri-
bution p(yyy) ∝ exp(−τ‖yyy‖pp) is a density model that is often used in ICA algorithms for kurtotic
natural signals like images and sound by optimizing a demixing matrix W w.r.t. to the model
p(yyy) ∝ exp(−τ‖Wxxx‖pp) (Lee and Lewicki, 2000; Zhang et al., 2004; Lewicki, 2002). It can be
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-nested 

symmetric
ISA
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p
-spherically

symmetric
ICA
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2
-spherically

symmetric
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p
-nested ISA

p-generalized
Normal

Gaussian

Figure 4: Relations between the different classes of distributions: Arrows indicate that the child
class is a specialization (subset) of the parent class. Polygon-shaped classes are inter-
sections of those parent classes which are connected via edges with round arrow-heads.
For one-dimensional subspaces ISA is a superclass of ICA. All classes belonging to ISA
are colored white or light gray. Lp-nested symmetric distributions are a superclass of Lp-
spherically symmetric distributions. All Lp-nested symmetric models are colored dark or
light gray. Lp-nested ISA models live in the intersection of Lp-nested symmetric distri-
butions and ISA models. Those Lp-nested ISA models that are Lp-spherically symmetric
are also ICA models: This is the class of p-generalized Normal distributions. If p is fixed
to two, one obtains the L2-spherically symmetric distributions. The only class of distri-
butions in the intersection between spherically symmetric distributions and ICA models
is the Gaussian.

shown that the p-generalized Normal is the only factorial model in the class of Lp-spherically sym-
metric models (Sinz et al., 2009a), and, by Proposition 9, also the only factorial Lp-nested symmetric
distribution.

An important generalization of ICA is the independent subspace analysis (ISA) proposed by
Hyvärinen and Hoyer (2000) and by Hyvärinen and Köster (2007) who used Lp-spherically symmet-
ric distributions to model the single subspaces, that is, each ρk below was Lp-spherically symmetric.
Like in ICA, ISA models the hidden sources of the signal as a product of multivariate distributions:

ρ(yyy) =
K

∏
k=1

ρk(yyyIk).

Here, yyy =Wxxx and Ik are index sets selecting the different subspaces from the responses ofW to xxx.
The collection of index sets Ik forms a partition of 1, ...,n. ICA is a special case of ISA in which
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Ik = {k} such that all subspaces are one-dimensional. For the ISA models used by Hyvärinen et al.
the distribution on the subspaces was chosen to be either spherically or Lp-spherically symmetric.

In its general form, ISA is not a generalization of Lp-spherically symmetric distributions. The
most general ISA model for the transformed data yyy =Wxxx does not assume a certain type of distri-
bution on the single subspace like in Hyvärinen and Köster (2007). While one could say for any
non-factorial distribution that a factorial product over subspaces is a generalization, this is certainly
a trivial step. Only in this particular sense is the particular ISA model by Hyvärinen and Köster
(2007) a generalization of Lp-spherically symmetric distributions.

In contrast to ISA, Lp-nested symmetric distributions generally do not make an independence
assumption on the “subspaces”. In fact, for most of the models the subspaces will be dependent
(see also our diagram in Figure 4). Therefore, not every ISA model is automatically Lp-nested
symmetric and vice versa. In fact, in Sinz et al. (2009b) we have demonstrated for natural images
that the dependencies between subspaces is stronger than the dependencies within subspaces on
natural image patches. This is in stark contrast to the assumptions underlying ISA.

Note also that the product of Lp-spherically symmetric distributions used by Hyvärinen and
Köster (2007) is not an Lp-nested function (Equation (6) in Hyvärinen and Köster, 2007) since
the single a j can be different and, therefore, the overall function is not positively homogeneous in
general.

ICA and ISA have been used to infer features from natural signals, in particular from natu-
ral images. However, as mentioned by several authors (Zetzsche et al., 1993; Simoncelli, 1997;
Wainwright and Simoncelli, 2000) and demonstrated quantitatively by Bethge (2006) and Eich-
horn et al. (2009), the assumptions underlying linear ICA are not well matched by the statistics
of the pixel intensities of natural images. A reliable parametric way to assess how well the inde-
pendence assumption is met by a signal at hand is to fit a more general class of distributions that
contains factorial as well as non-factorial distributions which both can equally well reproduce the
marginals. By comparing the likelihood on held out test data between the best fitting non-factorial
and the best-fitting factorial case, one can assess how well the sources can be described by a facto-
rial distribution. For natural images, for example, one can use an arbitrary Lp-spherically symmetric
distribution ρ(‖Wxxx‖p), fit it to the whitened data and compare its likelihood on held out test data
to the one of the p-generalized Normal distribution (Sinz and Bethge, 2009). Since any choice of
radial distribution φ determines a particular Lp-spherically symmetric distribution, the idea is to ex-
plore the space between factorial and non-factorial models by using a very flexible density φ on the
radius. Note that having an explicit expression of the normalization constant allows for particularly
reliable model comparisons via the likelihood. For many graphical models, for instance, such an
explicit and computable expression is often not available.

The same type of dependency-analysis can be carried out for ISA using Lp-nested symmetric
distributions (Sinz et al., 2009b). Figure 5 shows the Lp-nested tree corresponding to an ISA with
four subspaces. In general, for such trees, each inner node—except the root node—corresponds to
a single subspace. When using the radial distribution

φ /0(v /0) =
p /0vn−1/0

Γ
[
n
p /0

]
s

n
p /0

exp
(
−
vp /0/0
s

)
, (11)
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Figure 5: Tree corresponding to an Lp-nested ISA model.

the subspaces v1, ...,v! /0 become independent and one obtains an ISA model of the form

ρ(yyy) =
1
Z
exp

(
−
f (yyy)p /0
s

)

=
1
Z
exp

(
−
∑! /0
k=1 ‖yyyIk‖pk

s

)

=
p! /0/0

s
n
p /0 ∏! /0

i=1Γ
[
ni
p /0

] exp
(
−
∑! /0
k=1 ‖yyyIk‖pk

s

)
! /0

∏
k=1

p!k−1k Γ
[
nk
pk

]

2nkΓnk
[
1
pI

] ,

which has Lp-spherically symmetric distributions on each subspace. Note that this radial distribution
is equivalent to a Gamma distribution whose variables have been raised to the power of 1

p /0 . In the
following we will denote distributions of this type with γp (u,s), where u and s are the shape and
scale parameter of the Gamma distribution, respectively. The particular γp distribution that results in
independent subspaces has arbitrary scale but shape parameter u= n

p /0 . When using any other radial
distribution, the different subspaces do not factorize, and the distribution is also not an ISA model.
In that sense Lp-nested symmetric distributions are a generalization of ISA. Note, however, that not
every ISA model is also Lp-nested symmetric since not every product of arbitrary distributions on
the subspaces, even if they are Lp-spherically symmetric, must also be Lp-nested.

It is natural to ask, whether Lp-nested symmetric distributions can serve as a prior distribution
p(yyy|ϑϑϑ) over hidden factors in over-complete linear models of the form

p(xxx|W,σ,ϑϑϑ) =
∫
p(xxx|Wyyy,σ)p(yyy|ϑϑϑ)dyyy,

where p(xxx|Wyyy) represents the likelihood of the observed data point xxx given the hidden factors yyy
and the over-complete matrixW . For example, p(xxx|Wyyy,σ) =N (Wyyy,σ · I) could be a Gaussian like
in Olshausen and Field (1996). Unfortunately, such a model would suffer from the same problems
as all over-complete linear models: While sampling from the prior is straightforward sampling
from the posterior p(yyy|xxx,W,ϑϑϑ,σ) is difficult because a whole subspace of yyy leads to the same xxx.
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Since parameter estimation either involves solving the high-dimensional integral p(xxx|W,σ,ϑϑϑ) =∫
p(xxx|Wyyy,σ)p(yyy|ϑϑϑ)dyyy or sampling from the posterior, learning is computationally demanding in

such models. Various methods have been proposed to learnW , ranging from sampling the posterior
only at its maximum (Olshausen and Field, 1996), approximating the posterior with a Gaussian
via the Laplace approximation (Lewicki and Olshausen, 1999) or using Expectation Propagation
(Seeger, 2008). In particular, all of the above studies either do not fit hyper-parameters ϑϑϑ for the
prior (Olshausen and Field, 1996; Lewicki and Olshausen, 1999) or rely on the factorial structure
of it (Seeger, 2008). Since Lp-nested symmetric distributions do not provide such a factorial prior,
Expectation Propagation is not directly applicable. An approximation like in Lewicki and Olshausen
(1999) might be possible, but additionally estimating the parameters ϑϑϑ of the Lp-nested symmetric
distribution adds another level of complexity in the estimation procedure. Exploring such over-
complete linear models with a non-factorial prior may be an interesting direction to investigate, but
it will need a significant amount of additional numerical and algorithmical work to find an efficient
and robust estimation procedure.

9. Nested Radial Factorization with Lp-Nested Symmetric Distributions

Lp-nested symmetric distribution also give rise to a non-linear ICA algorithm for linearly mixed
non-factorial Lp-nested hidden sources yyy. The idea is similar to the radial factorization algorithms
proposed by Lyu and Simoncelli (2009) and Sinz and Bethge (2009). For this reason, we call it
nested radial factorization (NRF). For a one layer Lp-nested tree, NRF is equivalent to radial fac-
torization as described in Sinz and Bethge (2009). If additionally p is set to p = 2, one obtains
the radial Gaussianization by Lyu and Simoncelli (2009). Therefore, NRF is a generalization of
radial Factorization. It has been demonstrated that radial factorization algorithms outperform linear
ICA on natural image patches (Lyu and Simoncelli, 2009; Sinz and Bethge, 2009). Since Lp-nested
symmetric distributions are slightly better in likelihood on natural image patches (Sinz et al., 2009b)
and since the difference in the average log-likelihood directly corresponds to the reduction in depen-
dencies between the single variables (Sinz and Bethge, 2009), NRF will slightly outperform radial
factorization on natural images. For other types of data the performance will depend on how well
the hidden sources can be modeled by a linear superposition of—possibly non-independent—Lp-
nested symmetrically distributed sources. Here we state the algorithm as a possible application of
Lp-nested symmetric distributions for unsupervised learning.

The idea is based on the observation that the choice of the radial distribution φ already deter-
mines the type of Lp-nested symmetric distribution. This also means that by changing the radial dis-
tribution by remapping the data, the distribution could possibly be turned in a factorial one. Radial
factorization algorithms fit an Lp-spherically symmetric distribution with a very flexible radial dis-
tribution to the data and map this radial distribution φs (s for source) into the one of a p-generalized
Normal distribution by the mapping

yyy ,→
(F −1

⊥⊥ ◦Fs)(‖yyy‖p)
‖yyy‖p

· yyy, (12)

where F⊥⊥ and Fs are the cumulative distribution functions of the two radial distributions involved.
The mapping basically normalizes the demixed source yyy and rescales it with a new radius that has
the correct distribution.
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Exactly the same method cannot work for Lp-nested symmetric distributions since Proposition
9 states that there is no factorial distribution into which we could map the data by merely changing
the radial distribution. Instead we have to remap the data in an iterative fashion beginning with
changing the radial distribution at the root node into the radial distribution of the Lp-nested ISA
shown in Equation (11). Once the nodes are independent, we repeat this procedure for each of
the child nodes independently, then for their child nodes and so on, until only leaves are left. The
rescaling of the radii is a non-linear mapping since the transform in Equation (12) is non-linear.
Therefore, NRF is a non-linear ICA algorithm.

Figure 6: Lp-nested non-linear ICA for the tree of Example 6: For an arbitrary Lp-nested symmetric
distribution, using Equation (12), the radial distribution can be remapped such that the
children of the root node become independent. This is indicated in the plot via dotted
lines. Once the data have been rescaled with that mapping, the children of root node can
be separated. The remaining subtrees are again Lp-nested symmetric and have a particular
radial distribution that can be remapped into the same one that makes their root nodes’
children independent. This procedure is repeated until only leaves are left.

We demonstrate this with a simple example.

Example 6 Consider the function

f (yyy) =

(
|y1|p /0 +

(
|y2|p /0,2 +(|y3|p2,2 + |y4|p2,2)

p /0,2
p2,2

) p /0
p /0,2

) 1
p /0

for yyy = Wxxx where W has been estimated by fitting an Lp-nested symmetric distribution with a
flexible radial distribution to Wxxx as described in Section 5. Assume that the data has already been
transformed once with the mapping of Equation (12). This means that the current radial distribution
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is given by (11) where we chose s= 1 for convenience. This yields a distribution of the form

ρ(yyy) =
p /0

Γ
[
n
p /0

] exp
(
−|y1|p /0 −

(
|y2|p /0,2 +(|y3|p2,2 + |y4|p2,2)

p /0,2
p2,2

) p /0
p /0,2

)

×
1
2n∏I∈I

p!I−1I

Γ
[
nI
pI

]

∏!I
k=1Γ

[
nI,k
pI

] .

Now we can separate the distribution of y1 from the distribution over y2, ...,y4. The distribution of
y1 is a p-generalized Normal

p(y1) =
p /0

2Γ
[
1
p /0

] exp(−|y1|p /0) .

Thus the distribution of y2, ...,y4 is given by

ρ(y2, ...,y4) =
p /0

Γ
[
n /0,2
p /0

] exp
(
−

(
|y2|p /0,2 +(|y3|p2,2 + |y4|p2,2)

p /0,2
p2,2

) p /0
p /0,2

)

×
1
2n−1 ∏I∈I\ /0

p!I−1I

Γ
[
nI
pI

]

∏!I
k=1Γ

[
nI,k
pI

] .

By using Equation (9) we can identify the new radial distribution to be

φ(v /0,2) =
p /0vn−2/0,2

Γ
[
n /0,2
p /0

] exp
(
−vp /0/0,2

)
.

Replacing this distribution by the one for the p-generalized Normal (for data we would use the
mapping in Equation (12)), we obtain

ρ(y2, ...,y4) =
p /0,2

Γ
[
n /0,2
p /0,2

] exp
(
−|y2|p /0,2 − (|y3|p2,2 + |y4|p2,2)

p /0,2
p2,2

)

×
1
2n−1 ∏I∈I\ /0

p!I−1I

Γ
[
nI
pI

]

∏!I
k=1Γ

[
nI,k
pI

] .

Now, we can separate out the distribution of y2 which is again p-generalized Normal. This leaves
us with the distribution for y3 and y4

ρ(y3,y4) =
p /0,2

Γ
[
n2,2
p /0,2

] exp
(
−(|y3|p2,2 + |y4|p2,2)

p /0,2
p2,2

)
1
2n−2 ∏

I∈I\{ /0,( /0,2)}
p!I−1I

Γ
[
nI
pI

]

∏!I
k=1Γ

[
nI,k
pI

] .

For this distribution we can repeat the same procedure which will also yield p-generalized Normal
distributions for y3 and y4.
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Algorithm 2 Recursion NRF(yyy, f ,φs)
Input: Data point yyy, Lp-nested function f , current radial distribution φs,
Output: Non-linearly transformed data point yyy
Algorithm

1. Set the target radial distribution to be φ⊥⊥ ← γp



 n /0
p /0 ,

Γ
[
1
p /0

] p /0
2

Γ
[
3
p /0

] p /0
2





2. Set yyy← F −1
⊥⊥ (Fs( f (yyy)))

f (yyy) ·yyywhere F denotes the cumulative distribution function of the respective
φ.

3. For all children i of the root node that are not leaves:

(a) Set φs ← γp



n /0,i
p /0 ,

Γ
[
1
p /0

] p /0
2

Γ
[
3
p /0

] p /0
2





(b) Set yyy /0,i ← NRF(yyy /0,i, f /0,i,φs). Note that in the recursion /0, i will become the new /0.

4. Return yyy

This non-linear procedure naturally carries over to arbitrary Lp-nested trees and distributions,
thus yielding a general non-linear ICA algorithm for linearly mixed non-factorial Lp-nested sym-
metric sources. For generalizing Example 6, note the particular form of the radial distributions
involved. As already noted above, the distribution (11) on the root node’s values that makes its
children statistically independent is that of a Gamma distributed variable with shape parameter n /0

p /0
and scale parameter s which has been raised to the power of 1

p /0 . In Section 8 we denoted this class
of distributions with γp [u,s], where u and s are the shape and the scale parameter, respectively.
Interestingly, the radial distributions of the root node’s children are also γp except that the shape pa-
rameter is n /0,i

p /0 . The goal of the radial remapping of the children’s values is hence just changing the
shape parameter from n /0,i

p /0 to
n /0,i
p /0,i . Of course, it is also possible to change the scale parameter of the

single distributions during the radial remappings. This will not affect the statistical independence
of the resulting variables. In the general algorithm, that we describe now, we choose s such that the
transformed data is white.

The algorithm starts with fitting a general Lp-nested model of the form ρ(Wxxx) as described in
Section 5. Once this is done, the linear demixing matrix W is fixed and the hidden non-factorial
sources are recovered via yyy=Wxxx. Afterwards, the sources yyy are non-linearly made independent by
calling the recursion specified in Algorithm 2 with the parametersWxxx, f and φ, where φ is the radial
distribution of the estimated model.

The computational complexity for transforming a single data point is O(n2) because of the ma-
trix multiplicationWxxx. In the non-linear transformation, each single data dimension is not rescaled
more that n times which means that the rescaling is certainly also in O(n2).

An important aspect of NRF is that it yields a probabilistic model for the transformed data.
This model is simply a product of n independent exponential power marginals. Since the radial
remappings do not change the likelihood, the likelihood of the non-linearly separated data is the

3437



SINZ AND BETHGE

same as the likelihood of the data under Lp-nested symmetric distribution that was fitted to it in
the first place. However, in some cases, one might like to fit a different distribution to the outcome
of Algorithm 2. In that case the determinant of the transformation is necessary to determine the
likelihood of the input data—and not the transformed one—under the model. The following lemma
provides the determinant of the Jacobian for the non-linear rescaling.

Lemma 11 (Determinant of the Jacobian) Let zzz = NRF(Wxxx, f ,φs) as described above. Let tttI
denote the values of Wxxx below the inner node I which have been transformed with Algorithm 2
up to node I. Let gI(r) = (Fφ⊥⊥ ◦Fφs)(r) denote the radial transform at node I in Algorithm 2.
Furthermore, let I denote the set of all inner nodes, excluding the leaves. Then, the determinant of
the Jacobian

(
∂zi
∂x j

)

i j
is given by

∣∣∣∣det
∂zi
∂x j

∣∣∣∣= |detW | ·∏
I∈I

∣∣∣∣
gI( fI(tttI))nI−1

fI(tttI)nI−1
·

φs( fI(tttI))
φ⊥⊥(gI( fI(tttI)))

∣∣∣∣

Proof The proof can be found in the Appendix E.

10. Conclusion

In this article we presented a formal treatment of the first tractable subclass of ν-spherical distribu-
tions which generalizes the important family of Lp-spherically symmetric distributions. We derived
an analytical expression for the normalization constant, introduced a coordinate system particularly
tailored to Lp-nested functions, and computed the determinant of the Jacobian for the correspond-
ing coordinate transformation. Using these results, we introduced the uniform distribution on the
Lp-nested unit sphere and the general form of an Lp-nested symmetric distribution for arbitrary
Lp-nested functions and radial distributions. We also derived an expression for the joint distribu-
tion of inner nodes of an Lp-nested tree and derived a sampling scheme for an arbitrary Lp-nested
symmetric distribution.

Lp-nested symmetric distributions naturally provide the class of probability distributions corre-
sponding to mixed norm priors, allowing full Bayesian inference in the corresponding probabilistic
models. We showed that a robustness result for Bayesian inference of the location parameter known
for Lp-spherically symmetric distributions carries over to the Lp-nested symmetric class. We dis-
cussed the relationship of Lp-nested symmetric distributions to indepedent component (ICA) and
independent subspace Analysis (ISA), as well as its applicability as a prior distribution in over-
complete linear models. Finally, we showed how Lp-nested symmetric distributions can be used to
construct a non-linear ICA algorithm called nested radial factorization (NRF).

The application of Lp-nested symmetric distribution has been presented in a previous conference
paper (Sinz et al., 2009b). Code for training this class of distribution is provided online under
http://www.kyb.tuebingen.mpg.de/bethge/code/.
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Appendix A. Determinant of the Jacobian

Proof [Lemma 2] The proof is very similar to the one in Song and Gupta (1997). To derive Equation
(2) one needs to expand the Jacobian of the inverse coordinate transformation with respect to the
last column using the Laplace’s expansion of the determinant. The term Δn can be factored out of
the determinant and cancels due to the absolute value around it. Therefore, the determinant of the
coordinate transformation does not depend on Δn.

The partial derivatives of the inverse coordinate transformation are given by:

∂
∂uk

xi = δikr for 1≤ i,k ≤ n−1

∂
∂uk

xn = Δnr
∂un
∂uk

for 1≤ k ≤ n−1

∂
∂r
xi = ui for 1≤ i≤ n−1

∂
∂r
xn = Δnun.

Therefore, the structure of the Jacobian is given by

J =





r . . . 0 u1
... . . . ...

...
0 . . . r un−1

Δnr ∂un∂u1 . . . Δnr ∂un
∂un−1 Δnun




.

Since we are only interested in the absolute value of the determinant and since Δn ∈ {−1,1}, we
can factor out Δn and drop it. Furthermore, we can factor out r from the first n−1 columns which
yields

|detJ |= rn−1

∣∣∣∣∣∣∣∣∣

det





1 . . . 0 u1
... . . . ...

...
0 . . . 1 un−1
∂un
∂u1 . . . ∂un

∂un−1 un





∣∣∣∣∣∣∣∣∣

.

Now we can use the Laplace’s expansion of the determinant with respect to the last column. For
that purpose, let Ji denote the matrix which is obtained by deleting the last column and the ith row
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from J . This matrix has the following structure

Ji =





1 0
. . . 0

1 0
... 1

0 . . .
0 1

∂un
∂u1

∂un
∂ui

∂un
∂un−1





.

We can transform Ji into a lower triangular matrix by moving the column with all zeros and ∂un
∂ui

bottom entry to the rightmost column of Ji. Each swapping of two columns introduces a factor of
−1. In the end, we can compute the value of detJi by simply taking the product of the diagonal
entries and obtain detJi = (−1)n−1−i ∂un∂ui . This yields

|detJ |= rn−1
(

n

∑
k=1

(−1)n+kuk detJk

)

= rn−1
(
n−1

∑
k=1

(−1)n+kuk detJk+(−1)2n
∂xn
∂r

)

= rn−1
(
n−1

∑
k=1

(−1)n+kuk(−1)n−1−k
∂un
∂uk

+un

)

= rn−1
(
−
n−1

∑
k=1

uk
∂un
∂uk

+un

)
.

Before proving Proposition 3 stating that the determinant only depends on the terms GI(uuuÎ)
produced by the chain rule when used upwards in the tree, let us quickly outline the essential mech-
anism when taking the chain rule for ∂un∂uq : Consider the tree corresponding to f . By definition un is
the rightmost leaf of the tree. Let L,!L be the multi-index of un. As in the example, the chain rule
starts at the leaf un and ascends in the tree until it reaches the lowest node whose subtree contains
both, un and uq. At this point, it starts descending the tree until it reaches the leaf uq. Depending
on whether the chain rule ascends or descends, two different forms of derivatives occur: while as-
cending, the chain rule produces GI(uuuÎ)-terms like the one in the example above. At descending,
it produces FI(uuuI)-terms. The general definitions of the GI(uuuÎ)- and FI(uuuI)-terms are given by the
recursive formulae

GI,!I (uuuÎ,!I ) = gI,!I (uuuÎ,!I )
pI,!I−pI =

(
gI(uuuÎ)

pI −
!I−1

∑
j=1

fI, j(uuuI, j)pI
) pI,!I−pI

pI
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and

FI,ir(uuuI,ir) = fI,ir(uuuI,ir)
pI−pI,ir =

(
!I,ir

∑
k=1

fI,ir,k(uuuI,ir,k)
pI,ir

) pI−pI,ir
pI,ir

.

The next two lemmata are required for the proof of Proposition 3. We use the somewhat sloppy
notation k ∈ I, ir if the variable uk is a leaf in the subtree below I, ir. The same notation is used for Î.

Lemma 12 Let I = i1, ..., ir−1 and I, ir be any node of the tree associated with an Lp-nested function
f . Then the following recursions hold for the derivatives of gI,ir(uuuÎ,ir)

pI,ir and f pII,ir(uuuI,ir) w.r.t uq: If
uq is not in the subtree under the node I, ir, that is, k &∈ I, ir, then

∂
∂uq

fI,ir(uuuI,ir)
pI = 0

and

∂
∂uq

gI,ir(uuuÎ,ir)
pI,ir =

pI,ir
pI

GI,ir(uuuÎ,ir) ·






∂
∂uq gI(uuuÎ)

pI if q ∈ I

− ∂
∂uq fI, j(uuuI, j)

pI if q ∈ I, j

for q ∈ I, j and q &∈ I,k for k &= j. Otherwise

∂
∂uq

gI,ir(uuuÎ,ir)
pI,ir = 0 and

∂
∂uq

fI,ir(uuuI,ir)
pI =

pI
pI,ir

FI,ir(uuuI,ir)
∂
∂uq

fI,ir,s(uuuI,ir,s)
pI,ir

for q ∈ I, ir,s and q &∈ I, ir,k for k &= s.

Proof Both of the first equations are obvious, since only those nodes have a non-zero derivative for
which the subtree actually depends on uq. The second equations can be seen by direct computation

∂
∂uq

gI,ir(uuuÎ,ir)
pI,ir = pI,irgI,ir(uuuÎ,ir)

pI,ir−1 ∂
∂uq

GI,ir(uuuÎ,ir)

= pI,irgI,ir(uuuÎ,ir)
pI,ir−1 ∂

∂uq

(
gI(uuuÎ)

pI −
!I−1

∑
j=1

fI, j(uuuI, j)pI
) 1

pI

=
pI,ir
pI

gI,ir(uuuÎ,ir)
pI,ir−1gI,ir(uuuÎ,ir)

1−pI ∂
∂uq

(
gI(uuuÎ)

pI −
!I−1

∑
j=1

fI, j(uuuI, j)pI
)

=
pI,ir
pI

GI,ir(uuuÎ,ir) ·






∂
∂uq gI(uuuÎ)

pI if q ∈ I

− ∂
∂uq fI, j(uuuI, j)

pI if q ∈ I, j
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Similarly

∂
∂uq

fI,ir(uuuI,ir)
pI = pI fI,ir(uuuI,ir)

pI−1 ∂
∂uq

fI,ir(uuuI,ir)

= pI fI,ir(uuuI,ir)
pI−1 ∂

∂uq

(
!I,ir

∑
k=1

fI,ir,k(uuuI,ir,k)
pI,ir

) 1
pI,ir

=
pI
pI,ir

fI,ir(uuuI,ir)
pI−1 fI,ir(uuuI,ir)

1−pI,ir ∂
∂uq

fI,ir,s(uuuI,ir,s)
pI,ir

=
pI
pI,ir

FI,ir(uuuI,ir)
∂
∂uq

fI,ir,s(uuuI,ir,s)
pI,ir

for k ∈ I, ir,s.

The next lemma states the form of the whole derivative ∂un
∂uq in terms of the GI(uuuÎ)- and FI(uuuI)-terms.

Lemma 13 Let |uq|= v!1,...,!m,i1,...,it , |un|= v!1,...,!d with m< d. The derivative of un w.r.t. uq is given
by

∂
∂uq

un =−G!1,...,!d(uuu ̂!1,...,!d
) · ... ·G!1,...,!m+1(uuu ̂!1,...,!m+1

)

×F!1,...,!m,i1(uuu!1,...,!m,i1) ·F!1,...,!m,i1,...,it−1(uuu!1,...,!m,i1,...,it−1) ·Δq|uq|
p!1,...,!m,i1,...,it−1−1

with Δq = sgnuq and |uq|p = (Δquq)p. In particular

uq
∂
∂uq

un =−G!1,...,!d(uuu ̂!1,...,!d
) · ... ·G!1,...,!m+1(uuu ̂!1,...,!m+1

)

×F!1,...,!m,i1(uuu1) ·F!1,...,!m,i1,...,it−1(uuu!1,...,!m,i1) · |uq|
p!1,...,!m,i1,...,it−1 .

Proof Successive application of Lemma (12).

Proof [Proposition 3] Before we begin with the proof, note that FI(uuuI) and GI(uuuÎ) fulfill following
equalities

GI,im(uuuÎ,im)
−1gI,im(uuuÎ,im)

pI,im = gI,im(uuuÎ,im)
pI

= gI(uuuÎ)
pI −

!I−1

∑
k=1

FI,k(uuuI,k) fI,k(uuuI,k)pI,k (13)

and

fI,im(uuuI,im)
pI,im =

!I,im

∑
k=1

FI,im,k(uuuI,im,k) fI,im,k(uuuI,im,k)
pI,im ,k . (14)

Now let L = !1, ...,!d−1 be the multi-index of the parent of un. We compute 1
rn−1 |detJ | and

obtain the result by solving for |detJ |. As shown in Lemma (2) 1
rn−1 |detJ | has the form

1
rn−1

|detJ | = −
n−1

∑
k=1

∂un
∂uk

·uk+un.
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By definition un = gL,!d (uuuL̂,!d ) = gL,!d (uuuL̂,!d )
pL,!d . Now, assume that um, ...,un−1 are children of L,

that is, uk = vL,I,it for some I, it = i1, ..., it and m≤ k< n. Remember, that by Lemma (13) the terms
uq ∂

∂uq un for m≤ q< n have the form

uq
∂
∂uq

un =−GL,!d (uuuL̂,!d ) ·FL,i1(uuuL,i1) · ... ·FL,I(uuuL,I) · |uq|
p!1,...,!d−1,i1,...,it−1 .

Using Equation (13), we can expand the determinant as follows

−
n−1

∑
k=1

∂un
∂uk

·uk+gL,!d (uuuL̂,!d )
pL,!d

=−
m−1

∑
k=1

∂un
∂uk

·uk−
n−1

∑
k=m

∂un
∂uk

·uk+gL,!d (uuuL̂,!d )
pL,!d

=−
m−1

∑
k=1

∂un
∂uk

·uk

+GL,!d (uuuL̂,!d )

(
−

n−1

∑
k=m

GL,!d (uuuL̂,!d )
−1 ∂un
∂uk

·uk+GL,!d (uuuL̂,!d )
−1gL,!d (uuuL̂,!d )

pL,!d

)

=−
m−1

∑
k=1

∂un
∂uk

·uk

+GL,!d (uuuL̂,!d )

(
−

n−1

∑
k=m

GL,!d (uuuL̂,!d )
−1 ∂un
∂uk

·uk+gL(uuuL̂)
pL −

!d−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)pL,k
)
.

Note that all terms GL,!d (uuuL̂,!d )
−1 ∂un

∂uk ·uk for m≤ k < n now have the form

GL,!d (uuuL̂,!d )
−1uk

∂
∂uk

un =−FL,i1(uuuL,i1) · ... ·FL,I(uuuL,I) · |uq|
p!1,...,!d−1,i1,...,it−1

since we constructed them to be neighbors of un. However, with Equation (14), we can fur-
ther expand the sum ∑!d−1

k=1 FL,k(uuuL,k) fL,k(uuuL,k)
pL,k down to the leaves um, ...,un−1. When doing so

we end up with the same factors FL,i1(uuuL,i1) · ... ·FL,I(uuuL,I) · |uq|
p!1,...,!d−1,i1,...,it−1 as in the derivatives

GL,!d (uuuL̂,!d )
−1uq ∂

∂uq un. This means exactly that

−
n−1

∑
k=m

GL,!d (uuuL̂,!d )
−1 ∂un
∂uk

·uk =
!d−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)pL,k
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and, therefore,

−
m−1

∑
k=1

∂un
∂uk

·uk

+GL,!d (uuuL̂,!d )

(
−

n−1

∑
k=m

GL,!d (uuuL̂,!d )
−1 ∂un
∂uk

·uk+gL(uuuL̂)
pL −

!d−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)pL,k
)

=−
m−1

∑
k=1

∂un
∂uk

·uk

+GL,!d (uuuL̂,!d )

(
!d−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)pL,k +gL(uuuL̂)
pL −

!d−1

∑
k=1

FL,k(uuuL,k) fL,k(uuuL,k)pL,k
)

=−
m−1

∑
k=1

∂un
∂uk

·uk+GL,!d (uuuL̂,!d )gL(uuuL̂)
pL .

By factoring out GL,!d (uuuL̂,!d ) from the equation, the terms ∂un
∂uk · uk loose the GL,!d in front and

we get basically the same equation as before, only that the new leaf (the new “un”) is gL(uuuL̂)
pL and

we got rid of all the children of L. By repeating that procedure up to the root node, we successively
factor out all GL′(uuuL̂′) for L

′ ∈ L until all terms of the sum vanish and we are only left with v /0 = 1.
Therefore, the determinant is

1
rn−1

|detJ |= ∏
L∈L

GL(uuuL̂)

which completes the proof.

Appendix B. Volume and Surface of the Lp-Nested Unit Sphere

Proof [Proposition 4] We obtain the volume by computing the integral
∫
f (xxx)≤R dxxx. Differentiation

with respect to R yields the surface area. For symmetry reasons we can compute the volume only on
the positive quadrant Rn

+ and multiply the result with 2n later to obtain the full volume and surface
area. The strategy for computing the volume is as follows. We start with inner nodes I that are
parents of leaves only. The value vI of such a node is simply the LpI norm of its children. Therefore,
we can convert the integral over the children of I with the transformation of Gupta and Song (1997).
This maps the leaves vvvI,1:!I into vI and “angular” variables ũuu. Since integral borders of the original
integral depend only on the value of vI and not on ũuu, we can separate the variables ũuu from the radial
variables vI and integrate the variables ũuu separately. The integration over ũuu yields a certain factor,
while the variable vI effectively becomes a new leaf.
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Now suppose I is the parent of leaves only. Without loss of generality let the !I leaves correspond
to the last !I coefficients of xxx. Let xxx∈Rn

+. Carrying out the first transformation and integration yields

∫
f (xxx)≤R

dxxx=
∫
f (xxx1:n−!I ,vI)≤R

∫
ũuu∈V !I−1

+

v!I−1I

(
1−

!I−1

∑
i=1

ũpIi

) 1−pI
pI

dvIdũuudxxx1:n−!I

=
∫
f (xxx1:n−!I ,vI)≤R

vnI−1I dvIdxxx1:n−!I ×
∫
ũuu∈V !I−1

+

(
1−

!I−1

∑
i=1

ũpIi

) nI,!I−pI
pI

dũuu.

where V+ denotes the intersection of the positive quadrant and the LpI -norm unit ball. For solving
the second integral we make the pointwise transformation si = ũpIi and obtain

∫
ũuu∈V !I−1

+

(
1−

!I−1

∑
i=1

ũpIi

) nI,!I−pI
pI

dũuu=
1

p!I−1I

∫
∑si≤1

(
1−

!I−1

∑
i=1

si

) nI,!I
pI

−1 !I−1

∏
i=1

s
1
pI
−1

i dsss!I−1

=
1

p!I−1I

!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

]

=
1

p!I−1I

!I−1

∏
k=1

B
[
k
pI
,
1
pI

]

by using the fact that the transformed integral has the form of an unnormalized Dirichlet distribution
and, therefore, the value of the integral must equal its normalization constant.

Now, we solve the integral
∫
f (xxx1:n−!I ,vI)≤R

vnI−1I dvIdxxx1:n−!I . (15)

We carry this out in exactly the same manner as we solved the previous integral. We need only
to make sure that we only contract nodes that have only leaves as children (remember that radii of
contracted nodes become leaves) and we need to find a formula describing how the factors vnI−1I
propagate through the tree.

For the latter, we first state the formula and then prove it via induction. For notational conve-
nience let J denote the set of multi-indices corresponding to the contracted leaves, xxxĴ the remaining
coefficients of xxx and vvvJ the vector of leaves resulting from contraction. The integral which is left to
solve after integrating over all ũuu is given by (remember that nJ denotes real leaves, that is, the ones
corresponding to coefficients of xxx):

∫
f (xxxĴ ,vvvJ )≤R

∏
J∈J

vnJ−1J dvvvJ dxxxĴ .

We already proved the first induction step by computing Equation (15). For computing the general
induction step suppose I is an inner node whose children are leaves or contracted leaves. Let J ′

be the set of contracted leaves under I and K = J \J ′. Transforming the children of I into radial

3445



SINZ AND BETHGE

coordinates by Gupta and Song (1997) yields

∫
f (xxxĴ ,vvvJ )≤R

∏
J∈J

vnJ−1J dvvvJ dxxxĴ =
∫
f (xxxĴ ,vvvJ )≤R

(

∏
K∈K

vnK−1K

)
·

(

∏
J′∈J ′

vnJ′−1J′

)
dvvvJ dxxxĴ

=
∫
f (xxxK̂ ,vvvK ,vI)≤R

∫
ũuu!I−1∈V

!I−1
+




(
1−

!I−1

∑
i=1

ũpIi

) 1−pI
pI

v!I−1I



 ·

(

∏
K∈K

vnK−1K

)

×







vI

(
1−

!I−1

∑
i=1

ũpIi

) 1
pI




n!I−1

!I−1

∏
k=1

(vIũk)nk−1



dxxxK̂ dvvvK dvIdũuu!I−1

=
∫
f (xxxK̂ ,vvvK ,vI)≤R

∫
ũuu!I−1∈V

!I−1
+

(

∏
K∈K

vnK−1K

)

×



v!I−1+∑
!I
i=1(ni−1)

I

(
1−

!I−1

∑
i=1

ũpIi

) n!I−pI
pI !I−1

∏
k=1

ũnk−1k



dxxxK̂ dvvvK dvIdũuu!I−1

=
∫
f (xxxK̂ ,vvvK ,vI)≤R

(

∏
K∈K

vnK−1K

)
vnI−1I dxxxK̂ dvvvK dvI

×
∫
ũuu!I−1∈V

!I−1
+

(
1−

!I−1

∑
i=1

ũpIi

) n!I−pI
pI !I−1

∏
k=1

ũnk−1k dũuu!I−1.

Again, by transforming it into a Dirichlet distribution, the latter integral has the solution

∫
ũuu!I−1∈V

!I−1
+

(
1−

!I−1

∑
i=1

ũpIi

) n!I−pI
pI !I−1

∏
k=1

ũnk−1k dũuu!I−1 =
!I−1

∏
k=1

B

[
∑k
i=1 nI,k
pI

,
nI,k+1
pI

]

while the remaining former integral has the form

∫
f (xxxK̂ ,vvvK ,vI)≤R

(

∏
K∈K

vnK−1K

)
vnI−1I dxxxK̂ dvvvK dvI =

∫
f (xxxĴ ,vvvJ )≤R

∏
J∈J

vnJ−1J dvvvJ dxxxĴ

as claimed.
By carrying out the integration up to the root node, the remaining integral becomes

∫
v /0≤R

vn−1/0 dv /0 =
∫ R

0
vn−1/0 dv /0 =

Rn

n
.

Collecting the factors from integration over the ũuu proves the Equations (5) and (7). Using B [a,b] =
Γ[a]Γ[b]
Γ[a+b] yields Equations (6) and (8).
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Appendix C. Layer Marginals

Proof [Proposition 7]

ρ(xxx) =
φ( f (xxx))
S f ( f (xxx))

=
φ( f (xxx1:n−!I ,vI, ũuu!I−1,Δn))

S f ( f (xxx))
· v!I−1I

(
1−

!I−1

∑
i=1

|ũi|pI
) 1−pI

pI

where Δn = sign(xn). Note that f is invariant to the actual value of Δn. However, when integrating
it out, it yields a factor of 2. Integrating out ũuu!I−1 and Δn now yields

ρ(xxx1:n−!I ,vI) =
φ( f (xxx1:n−!I ,vI))

S f ( f (xxx))
· v!I−1I

2!IΓ!I
[
1
pI

]

p!I−1I Γ
[
!I
pI

]

=
φ( f (xxx1:n−!I ,vI))
S f ( f (xxx1:n−!I ,vI))

· v!I−1I

Now, we can go on and integrate out more subtrees. For that purpose, let xxxĴ denote the remaining
coefficients of xxx, vvvJ the vector of leaves resulting from the kind of contraction just shown for vI , and
J the set of multi-indices corresponding to the “new leaves”, that is, node vI after contraction. We
obtain the following equation

ρ(xxxĴ ,vvvJ ) =
φ( f (xxxĴ ,vvvJ ))
S f ( f (xxxĴ ,vvvJ ))

∏
J∈J

vnJ−1J .

where nJ denotes the number of leaves in the subtree under the node J. The calculations for the
proof are basically the same as the one for proposition (4).

Appendix D. Factorial Lp-Nested Distributions

Proof [Proposition 9] Since the single xi are independent, f1(xxx1), ..., f! /0(xxx! /0) and, therefore, v1, ...,v! /0
must be independent as well (xxxi are the elements of xxx in the subtree below the ith child of the root
node). Using Corollary 8 we can write the density of v1, ...,v! /0 as (the function name g is unrelated
to the usage of the function g above)

ρ(vvv1:! /0) =
! /0

∏
i=1

hi(vi) = g(‖vvv1:! /0‖p /0)
! /0

∏
i=1

vni−1i

with

g(‖vvv1:! /0‖p /0) =
p! /0−1/0 Γ

[
n
p /0

]

‖vvv1:! /0‖
n−1
p /0 2m∏

! /0
k=1Γ

[
nk
p /0

]φ(‖vvv1:! /0‖p /0)
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Since the integral over g is finite, it follows from Sinz et al. (2009a) that g has the form g(‖vvv1:! /0‖p /0)=
exp(a /0‖vvv1:! /0‖

p /0
p /0 +b /0) for appropriate constants a /0 and b /0. Therefore, the marginals have the form

hi(vi) = exp(a /0vp /0i + c /0)vni−1i . (16)

On the other hand, the particular form of g implies that the radial density has the form φ( f (xxx))∝
f (xxx)(n−1) exp(a /0 f (xxx)p /0 + b /0)p /0 . In particular, this implies that the root node’s children fi(xxxi) (i =
1, ...,! /0) are independent and Lp-nested symmetric again. With the same argument as above, it fol-
lows that their children vvvi,1:!i follow the distribution ρ(vi,1, ...,vi,!i)= exp(ai‖vvvi,1:!i‖

pi
pi+bi)∏

!i
j=1 v

ni, j−1
i, j .

Transforming that distribution to Lp-spherically symmetric polar coordinates vi = ‖vvvi,1:!i‖pi and
ũuu= vvvi,1:!i−1/‖vvvi,1:!i‖pi as in Gupta and Song (1997), we obtain the form

ρ(vi, ũuu) = exp(aivpii +bi)v!i−1i

(
1−

!i−1

∑
j=1

|ũ j|pi
) 1−pi

pi



vi

(
1−

!i−1

∑
j=1

|ũ j|pi
) 1

pi




ni,!i−1

!i−1

∏
j=1

(ũ jvi)ni, j−1

= exp(aivpii +bi)vni−1i

(
1−

!i−1

∑
j=1

|ũ j|pi
) ni,!i−pi

pi !i−1

∏
j=1

ũni, j−1j ,

where the second equation follows the same calculations as in the proof of Proposition 4. After in-
tegrating out ũuu, assuming that the xi are statistically independent, we obtain the density of vi which
is equal to (16) if and only if pi = p /0. However, if p /0 and pi are equal, the hierarchy of the Lp-
nested function shrinks by one layer since pi and p /0 cancel themselves. Repeated application of the
above argument collapses the complete Lp-nested tree until one effectively obtains an Lp-spherical
function. Since the only factorial Lp-spherically symmetric distribution is the p-generalized Normal
(Sinz et al., 2009a) the claim follows.

Appendix E. Determinant of the Jacobian for NRF

Proof [Lemma 11] The proof is a generalization of the proof of Lyu and Simoncelli (2009). Due
to the chain rule the Jacobian of the entire transformation is the multiplication of the Jacobians
for each single step, that is, the rescaling of a subset of the dimensions for one single inner node.
The Jacobian for the other dimensions is simply the identity matrix. Therefore, the determinant of
the Jacobian for each single step is the determinant for the radial transformation on the respective
dimensions. We show how to compute the determinant for a single step.

Assume that we reached a particular node I in Algorithm 2. The leaves, which have been
rescaled by the preceding steps, are called tttI . Let ξξξI =

gI( fI(tttI))
fI(tttI)) · tttI with gI(r) = (F −1

⊥⊥ ◦Fs)(r). The
general form of a single Jacobian is

∂ξξξI
∂tttI

= tttI ·
∂
∂tttI

(
gI( fI(tttI))
fI(tttI)

)
+
gI( fI(tttI))
fI(tttI)

InI ,

where

∂
∂tttI

(
gI( fI(tttI))
fI(tttI)

)
=

(
g′I( fI(tttI))
fI(tttI)

−
gI( fI(tttI))
fI(tttI)2

)
∂
∂tttI

fI(tttI).
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Let yi be a leave in the subtree under I and let I,J1, ...,Jk be the path of inner nodes from I to yi,
then

∂
∂yi

fI(tttI) = v1−pII vpI−pJ1J1 · ... · v
pJk−1−pJk
k |yi|pJk−1 · sgnyi.

If we denote r = fI(tttI) and ζi = vpI−pJ1J1 · ... · v
pJk−1−pJk
k |yi|pJk−1 · sgnyi for the respective Jk, we

obtain

det
(
tttI ·

∂
∂tttI

(
gI( fI(tttI))
fI(tttI)

)
+
gI( fI(tttI))
fI(tttI)

InI

)
= det

((
g′I(r)−

gI(r)
r

)
r−pI tttI ·ζζζ'+

gI(r)
r

InI

)
.

Now we can use Sylvester’s determinant formula det(In+ btttIζζζ') = det(1+ bttt'I ζζζ) = 1+ bttt'I ζζζ
or equivalently

det(aIn+btttIζζζ') = det
(
a ·

(
In+

b
a
tttIζζζ'

))

= an det
(
In+

b
a
tttIζζζ'

)

= an−1(a+bttt'I ζζζ),

as well as ttt'I ζζζ= fI(tttI)pI = rpI to see that

det
((

g′I(r)−
gI(r)
r

)
r−pI tttI ·ζζζ'+

gI(r)
r

In
)
=
gI(r)n−1

rn−1
det

((
g′I(r)−

gI(r)
r

)
r−pI ttt'I ·ζζζ+

gI(r)
r

)

=
gI(r)n−1

rn−1
det

(
g′I(r)−

gI(r)
r

+
gI(r)
r

)

=
gI(r)n−1

rn−1
d
dr
gI(r).

d
dr gI(r) is readily computed via

d
dr gI(r) =

d
dr (F

−1
⊥⊥ ◦Fs)(r) = φs(r)

φ⊥⊥(gI(r)) .
Multiplying the single determinants along with detW for the final step of the chain rule com-

pletes the proof.
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Abstract
The topic of the paper is computer testing of (probabilistic) conditional independence (CI) impli-
cations by an algebraic method of structural imsets. The basic idea is to transform (sets of) CI
statements into certain integral vectors and to verify by a computer the corresponding algebraic re-
lation between the vectors, called the independence implication. We interpret the previous methods
for computer testing of this implication from the point of view of polyhedral geometry. However,
the main contribution of the paper is a new method, based on linear programming (LP). The new
method overcomes the limitation of former methods to the number of involved variables. We re-
call/describe the theoretical basis for all four methods involved in our computational experiments,
whose aim was to compare the efficiency of the algorithms. The experiments show that the LP
method is clearly the fastest one. As an example of possible application of such algorithms we
show that testing inclusion of Bayesian network structures or whether a CI statement is encoded in
an acyclic directed graph can be done by the algebraic method.
Keywords: conditional independence inference, linear programming approach

1. Introduction

First, we explain the motivation and mention some previous work. Then we describe the aim and
structure of the paper.

1.1 Motivation

Conditional independence (CI) is a highly important concept in statistics and artificial intelligence.
Properties of probabilistic CI provide theoretical justification for the method of local computation

∗. Also at the University of Auckland, New Zealand.

c©2010 Remco Bouckaert, Raymond Hemmecke, Silvia Lindner and Milan Studený.
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(Cowel et al., 1999) which is at the core of probabilistic expert systems (Jensen, 2001), successfully
applied in numerous areas. The importance of CI is given by its interpretation in terms of relevance
among symptoms or variables in consideration (Pearl, 1988); that’s why it is crucial in probabilistic
reasoning. Traditional methods for describing (statistical models of) CI structures use graphs whose
nodes correspond to variables in consideration; it leads to popular graphical models (Lauritzen,
1996).

Formal properties of probabilistic CI and the attempts to describe probabilistic CI inference in
terms of mathematical logic have been traditional research topics since the late 1970’s. Basic prop-
erties of CI, now known as the semi-graphoid properties, were accentuated in statistics by Dawid
(1979). Pearl (1988) interpreted those properties, formulated in the form of simple implications be-
tween CI statements, as axioms for the relevance relation. Moreover, Pearl proposed to view graphs
as “inference engines” devised for efficient representing and manipulating relevance relationships.
His idea (see Pearl, 1988, page 14) was to use an input list of CI statements to construct a graph
and then, by using a special graphical separation criterion, to read from the graph additional CI
statements, implied by the input list through the axioms. The goal of such inference procedures is
to enable one to determine, at any state of knowledge, what information is relevant to the task at
hand and what can be ignored.

Pearl’s intention led him to a conjecture that CI inference for discrete probabilistic distributions
can be characterized by the semi-graphoid properties. The conjecture was refuted in Studený (1989);
actually, it has been shown later that there is no finite system of properties of semi-graphoid type
characterizing (discrete probabilistic) CI inference (Studený, 1992). Thus, the question of computer
testing of CI inference became a topic of research interest.

In Studený (2005), the method of structural imsets has been proposed as a non-graphical alge-
braic device for describing probabilistic CI structures; its advantage over graphical approaches is
that it allows one to describe any discrete probabilistic CI structure. The idea is to use, instead of
graphs, certain special integral vectors (of high dimension), called imsets, as tools for describing
CI structures and implementing the “inference engine” for CI implication. This is because the cor-
responding algebraic relation between structural imsets, called independence implication, gives a
sufficient condition for (probabilistic) CI inference. The topic of this paper is computer testing of
this implication. The intended use is

• computer testing of implications between CI statements, and

• checking equivalence of structural imsets by an algebraic method.

Another (indirect) source of motivation for this paper is learning Bayesian network (BN) struc-
tures by score and search methods (Neapolitan, 2004). The point is that every BN structure can be
described uniquely by a simple algebraic representative, called the standard imset. It was shown in
Studený (2005, Chapter 8) that every reasonable scoring function (for learning BN structures) can
be viewed as an affine function of the standard imset. This observation opens the way to the appli-
cation of efficient linear programming (LP) methods in this area (Studený, Vomlel, and Hemmecke,
2010). Nevertheless, if a graphical model of CI structure is described by an imset, a natural question
arises: is there any criterion, a counterpart of the graphical separation criterion, which allows one to
read from this algebraic representative all CI statements encoded in it? This question again leads to
the task of (computer) testing independence implication.
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1.2 Some Former Algorithms

Given structural imsets u and v (over a set of variables N), the intuitive meaning of the implication
u⇀ v (≡ u independence implies v) is that the CI structure induced by u contains the CI structure
induced by v. In Studený (2005, § 6.2) two algebraic characterizations of the relation u⇀ v were
given. They established the theoretical basis for the first-generation algorithms for computer testing
of u⇀ v. The limitation of these algorithms is that to implement them fully one needs some addi-
tional information obtainable as the result of computations, which were performed only for |N|≤ 5
(Studený, Bouckaert, and Kočka, 2000).

The theoretical aspects of their implementation were analyzed in Studený (2004), while their
practical implementations were described in detail in Bouckaert and Studený (2007). Basically,
there are two algorithms, which can be interpreted as mutually complementary procedures. One of
them, based on so-called “direct” characterization of u⇀ v (see Studený, 2005, § 6.2.1), is suitable
to confirm the implication; that’s why it was called the verification algorithm in Bouckaert and
Studený (2007). The other algorithm, based on so-called “skeletal” characterization of u⇀ v (see
Studený, 2005, § 6.2.2), fits to disproving the implication; that’s why it was named the falsification
algorithm.

The main idea of Bouckaert and Studený (2007) was to combine both algorithms to get a more
effective tool. Owing to the computations from Studený et al. (2000), the implemented versions
of both these algorithms are guaranteed to give a decisive answer to any independence implication
problem for |N| ≤ 5. Nevertheless, the combined version has also been implemented for |N| = 6,
although without a guaranteed response to each implication problem. Recently, the first-generation
algorithms from Bouckaert and Studený (2007) have been applied (in a modified form) in connec-
tion with the lattice-theoretic approach to CI inference (Niepert, van Gucht, and Gyssens, 2008).

1.3 Aim of the Paper

In this paper, we bring a new view on the problem of testing CI inference. First, we interpret
the previous methods from the point of view of polyhedral geometry. Second, this geometric in-
terpretation and the linear programming approach lead to new methods and, consequently, to the
second-generation algorithms for testing CI inference, which appear to be more efficient than the
first-generation algorithms.

More specifically, the geometric view has recently helped to solve an open problem that was
very closely related to the topic of CI inference (see Studený, 2005, Question 7). It was the question
whether every structural imset is a combinatorial imset, that is, whether it can be written as the
sum of elementary imsets (= imsets corresponding to elementary CI statements). The question has
been answered negatively in Hemmecke et al. (2008), where an example of a structural imset over
5 variables was found that is not combinatorial.

This fact naturally leads to a more advanced question motivated by the topic of CI inference:
what is the so-called Hilbert basis of the cone generated by standard imsets (cf., Studený, 2005,
Theme 10). A recent achievement is that the Hilbert basis for |N| = 5 has been found as a result
of computations by Bruns et al. (2010). This makes it possible to design two modifications of the
verification algorithm for 5 variables. In fact, the CI inference problem is transformed to testing
whether a given imset is combinatorial, respectively structural.

Another important idea brought by this paper is that every testing u⇀ v task can be re-formulated
as a special LP problem. Note that the LP approach was mentioned as a potential method for testing
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this implication already in Studený (2004, § 5). However, in the present paper, we re-formulate this
implication problem in a different way. The LP approach has the following advantages:

• it allows one to go far beyond the limit of 5 variables,

• the second-generation algorithms are much faster than the first-generation ones,

• the re-formulation makes it possible to apply highly effective software packages developed to
solve LP problems.

The goal of this paper is to describe the idea of the new approach, the corresponding algorithms and
the experiments, whose aim was to compare the new algorithms (with the old ones).

Moreover, to give an example of the possible use of the algorithms we prove a result related
to learning Bayesian networks. We characterize the inclusion of BN structures in terms of their
algebraic representatives, standard imsets. Given acyclic directed graphs G and H over N, we show
that the BN structure induced byH is contained in the one induced byG iff the difference uG−uH of
their standard imsets is a combinatorial imset, which happens iff it is a structural imset. Thus, testing
the inclusion can be transformed to testing combinatorial imsets (or structural ones). A consequence
of this observation is an elegant algebraic procedure for reading CI statements represented in a
standard imset uG, a kind of counterpart of the graphical separation criterion. Since the standard
imset uG is quite simple we have reasons to conjecture that our procedure can be implemented with
polynomial complexity with respect to |N|.

1.4 Structure of the Paper

Section 2 is devoted to the terminology for CI inference using structural imsets, while basic concepts
from polyhedral geometry are recalled in Section 3. In Section 4, the methods we are using are
explained and, in Section 5, the experiments we performed are described. In Conclusions we discuss
the perspectives and formulate some open problems. Appendices contain some proofs, a table of
types of the Hilbert basis elements for 5 variables, an illustrative example and a comment on possible
interpretation of the LP method.

2. Concepts Concerning CI Inference

The symbol N will be used to denote a non-empty finite set of variables in consideration. Given
disjoint sets of variables A,B⊆ N, the juxtaposition AB will denote their union.

2.1 Conditional Independence

Let P be a discrete probability distribution over N specified by its density p : XN → [0,1], where
XN ≡ ∏i∈N Xi is the joint sample space, a product of non-empty finite individual sample spaces.
Given A⊆N and x∈XN , let xA denote the respective marginal configuration of x and pA the marginal
density of p; by convention p /0(−) = 1. Given pairwise disjoint A,B,C ⊆ N, we say that A is
conditionally independent of B given C with respect to P if

∀x ∈ XN pA∪B∪C(xA∪B∪C) · pC(xC) = pA∪C(xA∪C) · pB∪C(xB∪C) .
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We write A⊥⊥ B |C [P] then and call it a CI statement with respect to P; if P is not material we just
use the symbol A ⊥⊥ B |C. The CI structure induced by P consists of all CI statements valid with
respect to P.

Now, let L be a set of CI statements, called an input list, and t a CI statement outside L. We say
L probabilistically implies t if, for every discrete probability distribution P, whenever all statements
in L are valid with respect to P then t is valid with respect to P, too. Classic examples of valid
probabilistic CI implications are the semi-graphoid properties (Pearl, 1988):

Symmetry A⊥⊥ B |C =⇒ B⊥⊥ A |C,
Decomposition A⊥⊥ BD |C =⇒ A⊥⊥ D |C,
Weak union A⊥⊥ BD |C =⇒ A⊥⊥ B |DC,
Contraction A⊥⊥ B |DC & A⊥⊥ D |C =⇒ A⊥⊥ BD |C.

A CI statement A⊥⊥ B |C is called elementary if both A and B are singletons and it is called trivial
if either A= /0 or B= /0. Since trivial statements are always valid, it follows from the semi-graphoid
properties that, for any discrete probability distribution P, the CI structure induced by P is uniquely
determined by the list of elementary CI statements valid with respect to P.

2.2 Imsets

An imset over N is an integer-valued function on the power set of N, denoted by P (N) in the rest of
the paper.1 It can be viewed as a vector whose components, indexed by subsets of N, are integers.
An easy example is the zero imset, denoted by 0; another simple example is the identifier δA of a
subset A⊆ N:

δA(S) =
{

1 if S= A ,
0 if S⊆ N, S -= A .

An imset associated with a CI statement A⊥⊥ B |C is then the combination

u〈A,B|C〉 ≡ δABC+δC−δAC−δBC .

The class of elementary imsets (over N), denoted by E(N), consists of imsets associated with ele-
mentary CI statements (over N).

A combinatorial imset is an imset u that can directly be decomposed into elementary imsets,
that is,

u= ∑
w∈E(N)

kw ·w for some kw ∈ Z+ .

We denote the class of combinatorial imsets over N by C (N).
An imset u over N will be called structural if there exists n ∈ N such that the multiple n ·u is a

combinatorial imset, that is,

n ·u= ∑
w∈E(N)

kw ·w for some n ∈ N, kw ∈ Z+ .

In other words, a structural imset is an imset which is a combination of elementary ones with non-
negative rational coefficients. The class of structural imsets over N will be denoted by S(N); this

1. The word imset is an abbreviation for integer-valued multiset.
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class of imsets is intended to describe CI structures. Clearly, E(N) ⊆ C (N) ⊆ S(N). One has
C (N) = S(N) for |N|≤ 4 (Studený, 1991), but S(N) -= C (N) for |N|= 5 (Hemmecke et al., 2008).

However, one can show (see Studený, 2005, Lemma 6.3) that there exists a smallest n∗ ∈ N,
depending on |N|, such that u ∈ S(N)⇔ n∗ ·u ∈ C (N) for every imset u over N. One has n∗ = 1 for
|N| ≤ 4 (Studený, 1991) and one of the news brought by this paper is that n∗ = 2 for |N| = 5 (see
Proposition 6 in Appendix B). An open question is what is the exact value of n∗ for every |N| (cf.,
Studený, 2005, Theme 11).

2.3 Independence Implication

Let u,v be structural imsets over N. We say that u independence implies v and write u⇀ v if there
exists k ∈ N such that k ·u− v is a structural imset:

u⇀ v iff ∃k ∈ N k ·u− v ∈ S(N) . (1)

Now, given u ∈ S(N) the corresponding CI structureM (u) consists of all CI statements A⊥⊥ B |C
such that u⇀ u〈A,B|C〉. The importance of structural imsets follows from the fact that, for every
discrete probability distribution P over N, there exists u ∈ S(N) such that the CI structure induced
by P coincides withM (u) (use Studený, 2005, Theorem 5.2).

An equivalent characterization of independence implication is as follows. A real set function
m : P (N)→ R is called supermodular iff

m(C∪D)+m(C∩D)≥ m(C)+m(D) for everyC,D⊆ N.

Such a function can be viewed as a real vector whose components are indexed by subsets of N. The
scalar product of m and an imset u over N is then

〈m,u〉 ≡ ∑
S⊆N

m(S) ·u(S) .

The dual definition of independence implication is this (see Studený, 2005, Lemma 6.2): one has
u⇀ v iff, for every supermodular function m over N,

〈m,u〉= 0 =⇒ 〈m,v〉= 0 . (2)

The independence implication can be viewed as a sufficient condition for probabilistic CI im-
plication. More specifically, given an input list L of CI statements, let us “translate” every statement
s in L into the associated imset us and introduce a combinatorial imset uL ≡ ∑s∈L us. Then one has:

Proposition 1 Let L be an input list of CI statements and t another CI statement over N. If uL ⇀ ut
then L probabilistically implies t.

The proof, based on observations from Studený (2005), is given in Appendix A. Note that the
above-mentioned condition is a sufficient condition for the probabilistic CI implication, but not a
necessary one. On the other hand, the analysis in the case of four variables suggests that it is quite
good approximation of probabilistic implication. For |N|= 4, one has 22108 (formal) CI structures
induced by structural imsets, while the actual number of (discrete) probabilistic CI structures is
18478 (Šimeček, 2007), and there are only about 20 types of probabilistic CI implications that are
not derivable through Proposition 1.
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The reader may be interested in whether there exists a limit for the factor k in (1). If we assume
that the “input” u is a combinatorial imset and the “output” v an elementary one then such a limit
exists. One can show (cf., Studený, 2005, Lemma 6.4) that the least k∗ ∈ N exists such that

u⇀ v iff k∗ ·u− v ∈ S(N) .

It depends on |N|: k∗ = 1 for |N| ≤ 4 and k∗ = 7 for |N| = 5 (Studený et al., 2000). It is an open
question what is the exact value of k∗ for |N|≥ 6 (cf., Studený, 2005, Theme 12).

2.4 Bayesian Network Translation

Bayesian networks (Pearl, 1988; Neapolitan, 2004) can be interpreted as graphical models of CI
structures assigned to acyclic directed graphs. More specifically, given an acyclic directed graph G
having N as the set of its nodes, the corresponding graphical separation criterion (for the definition
see Lauritzen, 1996, § 3.2.2) defines the collection I (G) of CI restrictions given by G. The corre-
sponding statistical model then consists of probability distributions on XN that are Markovian with
respect to G, that is, satisfy those CI restrictions. Given two acyclic directed graphs G and H over
N, we say they are independence equivalent if I (G) = I (H); it essentially means they define the
same statistical model.

Given an acyclic directed graph G over N, the standard imset for G, denoted by uG, is given by
the formula

uG = δN−δ /0+∑
i∈N

{δpaG(i)−δ{i}∪paG(i) }, (3)

where paG(i) ≡ { j ∈ N; j → i in G} denotes the set of parents of a node i in G. Lemma 7.1
in Studený (2005) says that uG is always a combinatorial imset and M (uG) = I (G). Thus, the
graphical separation criterion applied to G can be replaced by an algebraic criterion applied to
uG. Moreover, Corollary 7.1 in Studený (2005) adds that uG = uH iff G and H are independence
equivalent. That means, the standard imset is a unique representative of the equivalence class of
graphs.

Note that uG need not be the only combinatorial imset defining I (G); it is the simplest such
imset, a kind of “standard” representative. Using standard imsets we can easily characterize the
inclusion for Bayesian networks:

Proposition 2 Let G and H be acyclic directed graphs over N. Then I (H) ⊆ I (G) if and only if
uG−uH ∈ C (N), which is also equivalent to uG−uH ∈ S(N).

Proof The equivalence I (H)⊆ I (G) ⇔ uG−uH ∈ C (N) is proved in (Studený, 2005, Lemma 8.6).
Clearly, uG− uH ∈ C (N) implies uG− uH ∈ S(N). Conversely, if uG− uH ∈ S(N) then, by (1),
uG ⇀ uH and it makes no problem to showM (uH)⊆M (uG). This means I (H)⊆ I (G).

We have some reasons to conjecture that testing whether a difference of two standard imsets
is a combinatorial imset can be done with polynomial complexity in |N|; see Conclusions for the
discussion. Moreover, let us emphasize that as far as we are aware of, there is no direct graphical
characterization of independence inclusion; in our view, it is quite difficult task to describe this in
graphical terms. Note that indirect transformational graphical description of independence inclusion
by Chickering (2002) does not provide an algorithm for testing the inclusion for a given pair of

3459



BOUCKAERT, HEMMECKE, LINDNER AND STUDENÝ

acyclic directed graphs G and H. Of course, a different situation is with testing independence
equivalence, in which case a simple graphical characterization and algorithms are available.

Proposition 2 has the following consequence, which allows one to replace the graphical separa-
tion criterion by testing whether an imset is combinatorial.

Corollary 3 Given an acyclic directed graph G over N, the class I (G) coincides with the collection
of CI statements A⊥⊥ B |C such that uG−u〈A,B|C〉 ∈ C (N), respectively uG−u〈A,B|C〉 ∈ S(N).

Proof It is enough to construct, for every CI statements A ⊥⊥ B |C, an acyclic directed graph H
such that u〈A,B|C〉 = uH . To this end, consider a total order of nodes in N in which C is followed A,
B and N \ABC, direct edges of the complete undirected graph over N according to this order and
remove the arrows between A and B.

Of course, as mentioned above, there are elegant graphical separation criteria for testing whether
a CI statement is represented in an acyclic directed graph. There are no doubts that these criteria
can be implemented with polynomial complexity in |N| (see Geiger, Verma, and Pearl, 1989) and
that they are also appropriate for human users. However, our method proposed in Corollary 3 may
appear to be suitable for computer testing, in particular in the situation when the Bayesian network
structure is internally represented in a computer by the standard imset, as suggested in Studený,
Vomlel, and Hemmecke (2010).

3. Basic Concepts from Polyhedral Geometry

Here we recall some well-known concepts and facts from the theory of convex polyhedra. Proofs
can be found in textbooks on linear programming, for example Schrijver (1986).

Vectors are regarded as column vectors. Given two vectors x,y, their scalar product will be
denoted either by 〈x,y〉 or, using matrix multiplication notation, by xᵀy, where xᵀ is the transpose
of x. The inequality x ≤ y is meant in all components, and 0, respectively 1, is a vector all whose
components are zeros, respectively ones.

3.1 Polyhedra, Polyhedral Cones and Farkas’ Lemma

Systems of linear inequalities appear in many areas of mathematics. Let A be a d×n-matrix and b
a d-vector. The set of all solutions in Rn to the linear system Ax ≤ b is called a polyhedron. If the
defining matrix A and the right-hand side vector b are rational, the polyhedron is said to be rational.
Polyhedra defined via homogeneous inequalities Ax≤ 0 are called polyhedral cones.

A non-trivial fundamental result in polyhedral geometry states that every polyhedral cone C can
equivalently be introduced as the conical hull cone(V) of finitely many points V ⊆ Rn, that is, the
set of all finite conical combinations∑t λt ·vt (with λt ≥ 0 for all t) of elements vt ∈ V (see Schrijver,
1986, Corollary 7.1a). If the polyhedral cone is rational then it is the conical hull of finitely many
rational points. A classic algorithmic task is to change between the inner description C= cone(V)
and the outer description C= {x ∈ Rn; Ax≤ 0}, and back. Standard software packages that allow
one to switch between both descriptions are for example 4TI2 (4ti2 team, 2008), CDD (Fukuda,
2008), or CONVEX (Franz, 2009).

In our studies below, it will be important to decide whether a given polyhedron P is empty or
not. Clearly, a certificate for P= {x ∈ Rn; Ax≤ b} -= /0 is any v ∈ P. Given v ∈ Rn, we can easily
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check whether Av ≤ b and thus, v ∈ P. However, is there also a simple certificate for the case that
P= /0? Indeed, there is such a certificate (see Schrijver, 1986, Corollary 7.1e):

Lemma 4 (Farkas’ lemma) The system Ax ≤ b is solvable iff every u ∈ Rd with Aᵀu = 0, u ≥ 0
satisfies uᵀb≥ 0.

Thus, any u ∈ Rd satisfying Aᵀu = 0, u ≥ 0 and uᵀb < 0 gives a certificate that P is empty.
Indeed, given x∈ P, write 0= 0ᵀx= (Aᵀu)ᵀx= (uᵀA)x= uᵀ(Ax)≤ uᵀb< 0 to get a contradiction.

To decide using a computer whether P -= /0 or not, we can make use of well-developed tools
from the theory of linear programming (see below, Section 3.4).

3.2 Dimension and Faces of a Polyhedron

The dimension dim(P) of a polyhedron P ⊆ Rn is the dimension of its affine hull aff(P), which is
the set of all finite affine combinations ∑t λt · vt (with λt ∈ R for all t and ∑t λt = 1) of elements
vt ∈ P. By convention, the dimension of the empty set is −1. A polyhedron is full-dimensional if
dim(P) = n.

Given v ∈ Rn and α ∈ R, we call the inequality 〈v,x〉 ≤ α valid for a polyhedron P⊆ Rn if it is
satisfied for every x ∈ P. If the inequality 〈v,x〉 ≤ α is valid for the polyhedron P, we call the set
F= P∩{x ∈ Rn; 〈v,x〉= α} a face of P.

The sets /0 and P are always faces of a polyhedron P, defined by the valid inequalities 〈0,x〉 ≤ 1
and 〈0,x〉 ≤ 0, respectively. Every polyhedron P has only finitely many faces and all of them are
polyhedra, too (see Schrijver, 1986, § 8.3). They can be classified by their dimension. Faces of
dimension 0 are points in Rn, called vertices. Faces of dimension 1 are called edges: these are
either line-segments, half-lines or lines. Faces of dimension dim(P)−1 are called facets.

If a polyhedron is full-dimensional then facet-defining inequalities establish a unique (up to
positive scalar factors) inclusion-minimal inequality system defining P (for details see Schrijver,
1986, § 8.4). Since every (proper) face F of P is the intersection of facets containing it, facets
implicitly determine all faces.

A polyhedron P = {x; Ax ≤ b} is pointed if the only vector y with Ay = 0 is the zero vector
y = 0 (see Schrijver, 1986, § 8.2). A non-empty pointed polyhedron has at least one vertex. A
pointed polyhedral cone C has just one vertex 0, its edges are half-lines, called extreme rays. Non-
zero representatives of the extreme rays of C then provide its inclusion-minimal inner description
(Schrijver, 1986, § 8.8).

3.3 Hilbert Basis

A lattice point (in Rn) is an integral vector x ∈ Zn, that is, a vector whose components are integers.
If C is a pointed rational polyhedral cone then each of its extreme rays contains a non-zero lattice
point; this lattice point is unique if it is normalized, that is, if its components have no common
integer divisor. Then one can show that every lattice point in C is a linear combination of these
unique representatives (of extreme rays) with non-negative rational coefficients (Studený, 1993,
Lemma 10). However, in general, not every lattice point in C can be obtained as such a combination
of those representatives with non-negative integral coefficients. Therefore, the following concept is
important.
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By a Hilbert basis of a rational polyhedral cone C (see Schrijver, 1986, § 16.4) is meant a finite
set H ⊆ C of lattice points such that every lattice point in C is a non-negative integer linear combi-
nation of elements in H. A relevant result in polyhedral geometry (Schrijver, 1986, Theorem 16.4)
says that every rational polyhedral cone possesses a Hilbert basis. If the cone is in addition pointed,
there is a unique inclusion-minimal Hilbert basis. Clearly, any Hilbert basis of C has to include the
above mentioned normalized representatives of extreme rays of C.

Again, it is a challenging algorithmic task to compute the minimal integral Hilbert basis of a
given (pointed) rational polyhedral cone. However, there are a few software packages that allow to
do so in some simpler cases, for example 4TI2 (4ti2 team, 2008) or NORMALIZ (Bruns, Ichim, and
Söger, 2009).

3.4 LP Problems and the Simplex Method

A linear programming (LP) problem is the task to maximize/minimize a linear function x 5→ 〈c,x〉,
where c ∈ Rn, over a polyhedron P= {x ∈ Rn; Ax≤ b}. A classic tool to deal with this problem is
the simplex method. Nevertheless, it is not the aim to describe here the details of this method; they
can be found in textbooks on linear programming; for example Schrijver (1986, Chapter 11).

We just recall its main features to explain the geometric interpretation. The plain version of the
simplex method (see Schrijver, 1986, § 11.1) assumes one has a vertex of (a pointed polyhedron)
P as a starting iteration. The basic idea is to move from vertex to vertex along the edges of P
until an optimal vertex is reached or an edge is found on which the linear function is unbounded.
Each particular variant of the simplex method uses a special pivoting operation to choose the next
iteration, which should have a better value of the linear objective function than the previous one.

However, it may be the case that one is not sure whether the polyhedron P is non-empty. Then
the simplex method has two phases. In Phase I, one finds at least one x ∈ P, called a feasible vertex
solution, provided that it exists, or one concludes that P = /0 otherwise. If a feasible solution is
available, Phase II consists of finding an optimal solution as mentioned above. A standard trick to
deal with Phase I is to re-formulate it as an auxiliary LP problem, in which a feasible vertex solution
is known.

For example, consider the task to optimize a linear function over a special polyhedron of the
form Q= {x∈Rn; Ax= b,x≥ 0}, where A∈Rd×n and b∈Rd , which task is, in fact, equivalent to
the general case (see Schrijver, 1986, § 7.4). Moreover, one can assume without loss of generality
b≥ 0 here.2 Then the auxiliary LP problem is as follows:

min{〈1,z〉; (x,z) ∈ R
n+d, Ax+ z= b, x≥ 0, z≥ 0}. (4)

This LP problem has the vector (0,b) as a feasible vertex solution3 and it has the property that its
optimal value 〈1,z〉 is 0 iff (x,z) = (x,0) and x ∈ Q. Thus, testing whether the polyhedron Q is
non-empty can be done in this way.

4. Methods

In this section, we describe a few methods that can be used to test CI inference. The task is as
follows. An input list L of elementary CI statements and another elementary CI statement t over
2. Indeed, if the i-th component of b is negative, one can replace the i-th row of A and the i-th component of b with
their multiples by −1.

3. Actually, (0,b) is a vertex of the region, defined by valid inequality 〈1,x〉 ≥ 0.
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N are given and the goal is to decide whether uL ⇀ ut (cf., Proposition 1). We are going to give a
computational comparison of these methods for |N| = 5 in Section 5.1 to see which of them is the
fastest.

4.1 Method 1: using Skeletal Characterization

This is the first ever implemented method for testing independence implication (Studený et al.,
2000, § 7.4). The motivation source for this method was the dual definition (2) of independence
implication in terms of supermodular functions (see Section 2.3). The point is that, in (2), written
in contrapositive form as 4

〈m,v〉> 0 =⇒ 〈m,u〉> 0 ,

one can limit oneself to "-standardized supermodular functions m : P (N)→ R, that is, to those that
satisfy m(S) = 0 if |S| ≤ 1. This is a pointed rational polyhedral cone. The class of normalized
integral representatives of its extreme rays was called the "-skeleton in Studený (2005) and denoted
by K 6

"(N).
The skeletal characterization of the implication u⇀ v, for u,v ∈ S(N), is as follows:

∀m ∈K 6
"(N) 〈m,v〉> 0 =⇒ 〈m,u〉> 0 (5)

(see Studený, 2005, Lemma 6.2). The "-skeleton was computed for |N|= 5 (Studený et al., 2000):
it consists of 117978 imsets, which break into 1319 permutational types.

Thus, the corresponding algorithm consists in checking whether each of the implications in (5)
is valid or not. To disprove the implication u ⇀ v it is enough to find at least one m ∈ K 6

"(N)
violating (5); to confirm it one has to check that all of them are valid. By ordering the elements of
the "-skeleton such that those m ∈ K 6

"(N) which are more likely to cause violation are tried earlier
one can speed up the disproval (but not the confirmation). This suggested to sort elements ofK 6

"(N)
on the basis of zeros in {〈m,w〉 ; w ∈ E(N)} (for details see Bouckaert and Studený, 2007, § 3.1).

Example 1 To illustrate the method consider a trivial example with N = {a,b,c}: take the input
L = {a ⊥⊥ b |c , a ⊥⊥ c | /0} and t : a ⊥⊥ b | /0. We already know by semi-graphoid properties that
L probabilistically implies t (see Section 2.1). However, the aim of this example is to get this
conclusion through Proposition 1 (see Section 2.3) using the skeletal characterization. We have

uL = u〈a,b|c〉+u〈a,c| /0〉 = δabc−δbc−δa+δ /0 and ut = u〈a,b| /0〉 = δab−δa−δb+δ /0 .

In the case of 3 variables, the "-skeleton has 5 elements, listed in rows of Table 1. The columns in
the table correspond to structural imsets ut and uL, the items are corresponding scalar products.
The condition (5) evidently holds for v= ut and u= uL. Thus, uL ⇀ ut .

The interpretation of the method from the point of view of polyhedral geometry is as follows.
The independence implication can equivalently be defined in terms of (inclusion of) facets of the
cone R (N)≡ cone(E(N)), the cone spanned by elementary imsets. Let Fu denote the face of R (N)
generated by u ∈ S(N) ⊆ R (N), that is, the least face of R (N) containing u (≡ the intersection of
all faces of R (N) containing u). Then, for u,v ∈ S(N), one has u⇀ v iff the face Fu contains v,
which means, Fv ⊆ Fu (see Studený, 2005, Remark 6.2).

4. Note that 〈m,u〉 ≥ 0 for any m supermodular and u ∈ S(N) (see Studený, 2005, Proposition 5.1).
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ut = δab−δa−δb+δ /0 uL = δabc−δbc−δa+δ /0
m1 = δabc 0 1
m2 = δabc+δab 1 1
m3 = δabc+δac 0 1
m4 = δabc+δbc 0 0
m5 = 2 ·δabc+δab+δac+δbc 1 1

Table 1: Scalar products with elements of K 6
"(N) for N = {a,b,c}.

The method is based on the computation of all facets of the cone R (N). These facets correspond
to the extreme rays of the (dual) cone of "-standardized supermodular functions. Thus, basically,
one is checking whether every facet containing Fu also contains Fv. The problem with this approach
is that it can hardly be extended beyond five variables because computing these facets seems to be
computationally infeasible for |N|≥ 6.

4.2 Method 2: Racing Algorithms

The idea of the paper (Bouckaert and Studený, 2007) was to combine two algorithms for testing the
independence implication u⇀ v. One of them, called the verification algorithm, was based on (1)
and appeared to be suitable to confirm the implication provided it holds. However, it may spend a
long time before it gives a response if the implication does not hold. The other algorithm, called
the falsification algorithm and based on (2), was designed to disprove the implication if it does not
hold. However, it is not able to confirm u⇀ v provided it holds.

The combined procedure starts with two threads, the verification one and the falsification one.
Once one thread finds its proof, it stops the other and returns its outcome. This approach makes it
possible to go beyond 5 variables, but may not give a decisive response (in reasonable time) to some
complex implication problems. On the other hand, empirical evidence from Bouckaert and Studený
(2007) suggests that this method is, on average, faster than the method described in Section 4.1.

4.2.1 VERIFICATION: DECOMPOSING INTO ELEMENTARY IMSETS

Consider a combinatorial imset u ∈ C (N), an elementary imset v ∈ E(N) and the task to decide
whether u⇀ v. That is, by (1), testing whether k ·u−v is a structural imset for some k ∈N. Observe
that (1) is equivalent to

∃ l ∈ N l ·u− v ∈ C (N) . (6)

Indeed, C (N) ⊆ S(N) gives (6)⇒(1). Now, (1) implies that n · (k · u− v) is a combinatorial imset
for some k,n ∈ N (see Section 2.2). As (n−1) · v ∈ C (N), it gives (n · k) ·u− v ∈ C (N). Moreover,
it follows from concluding remarks in Sections 2.2 and 2.3 that n∗ · k∗ is an upper limit for l in (6).
In general, we do not know what is the least such upper limit for l. Even in case |N| = 5, we only
know it is a number between 7 (see Studený et al., 2000) and 14= 2 ·7= n∗ · k∗.

The characterization (6) allows one to transform testing independence implication to the task
to decide whether a given candidate imset y = l · u− v is combinatorial. A combinatorial imset y
may have many decompositions y= ∑w∈E(N) kw ·w, kw ∈ Z+ into elementary imsets. However, the
number ∑w∈E(N) kw of summands, called the degree of y, is the same for any such decomposition
(see Studený, 2005, § 4.2.2). Because there is a simple formula for the degree of the candidate imset
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y, the search space, the tree of potential decompositions, is known. This space could be big, but it
can be limited by introducing additional sanity checks, which allow one to cut off some blind alleys
in the tree. Moreover, the search can be guided by suitable heuristics and this can speed up the
resulting algorithm (for details see Bouckaert and Studený, 2007, § 3.2).

The decomposition itself is quite fast, but what can slow down the whole procedure is the factor
l from (6), depending on a particular pair u,v. The point is that the degree of a candidate imset
y = l · u− v grows (linearly) with l; consequently, the size of the corresponding tree of possible
decompositions grows exponentially with l. Typically, if u⇀ v holds then one often finds a decom-
position of y with l = 1. However, for |N| = 5, there are a few cases when the decomposition of y
exists for 1 < l ≤ 7 and not for l− 1 (for examples see Studený et al., 2000, § 4.3). In these cases
and also when u⇀ v does not hold one has to search through a huge space, which makes the method
infeasible for efficient disproving implications.

Example 2 Consider N = {a,b,c,d}, the input list

L= {a⊥⊥ b |c , a⊥⊥ c |d , a⊥⊥ d |b , b⊥⊥ c |ad } , (7)

and another CI statement t : a⊥⊥ c |b. We are going to show uL ⇀ ut by the decomposition method.
Actually, we show that (6) holds with l = 1. More specifically, we have

uL = u〈a,b|c〉+u〈a,c|d〉+u〈a,d|b〉+u〈b,c|ad〉
= δabcd+δabc−δab−δac−δbc−δbd−δcd+δb+δc+δd ,

and, as ut = δabc−δab−δbc+δb, we know that

y≡ 1 ·uL−ut = δabcd−δac−δbd−δcd+δc+δd .

The task is to test whether y is a combinatorial imset. If this is the case then the degree of y must be
3, which means we search for a decomposition into elementary imsets with 3 summands. Clearly,
at least one summand v has to satisfy v(abcd) > 0. There are 6 elementary imsets over {a,b,c,d}
with this property and two of them are excluded by sanity checks. For example, for v′ = u〈c,d|ab〉 and
y′ = y−v′ one has −1=∑{c,d}⊆T y′(T )< 0, which is impossible for a combinatorial imset in place
of y′. However, if we subtract ṽ= u〈a,b|cd〉 then

ỹ= y− ṽ= δacd+δbcd−δac−δbd−2 ·δcd+δc+δd

is a good direction. Again, at least one of two summands v in the searched decomposition of ỹ must
satisfy v(acd)> 0 and the choice v= u〈a,d|c〉 leads to the final decomposition

y= u〈a,b|cd〉+u〈a,d|c〉+u〈b,c|d〉 .

Thus, the implication uL ⇀ ut has been confirmed by the decomposition method.

To explain the geometric interpretation (of the method) note that the cone R (N) = cone(E(N))
is slightly special. The lattice points in this cone are just structural imsets.5 Moreover, there exists

5. As mentioned in Section 3.3, lattice points in R (N) are just non-negative rational combinations of elementary imsets
E(N), that is, structural imsets (see Section 2.2).
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a hyperplane in RP (N) which intersects all extreme rays of R (N) just in its normalized integral
representatives E(N) and these are the only lattice points in the intersection of this hyperplane with
R (N). In particular, every structural imset belongs to one of parallel hyperplanes (to this basic one)
and its “degree” says how far it is from the origin (= zero imset). Now, the condition (1) means that
at least one multiple of u (by k ∈ N) has the property that it remains a lattice point within the cone
R (N) even if v is subtracted. The condition (6) is a minor modification of (1): it requires a multiple
of u minus v is a sum of elementary imsets (with possible repetition). The algorithm, therefore,
looks for the decomposition and the degree (of the candidate imset y) serves as the measure of its
complexity.

4.2.2 FALSIFICATION: RANDOMLY GENERATING SUPERMODULAR FUNCTIONS

Falsification is based on the characterization (2). To disprove the implication u⇀ v it is enough to
find a supermodular function m : P (N)→ R such that 〈m,u〉= 0 and 〈m,v〉> 0. Actually, one can
limit oneself to "-standardized integer-valued supermodular functions, that is, supermodular imsets.
These imsets have a special form which allows one to generate them randomly. The idea is

• to randomly generate a collection of subsets of N,

• to assign them randomly selected positive integer values
(and the zero values to remaining sets), and

• to modify the resulting function to make it a supermodular imset.

The details of this procedure can be found in Bouckaert and Studený (2007, § 3.3). The procedure
allows one to disprove (= falsify) the implication u⇀ v even for |N|≥ 6, but it is clearly not able to
confirm it provided it holds. Therefore, it has to be combined with a verification procedure.

Example 3 Consider N = {a,b,c,d} and the same input list (7) as in Example 2, but a different CI
statement t : b⊥⊥ c |a to be derived. If our random procedure generates the supermodular imset

m = 2 ·δabcd+δabc+δabd+δacd+2 ·δbcd+δbc+δbd+δcd ,

then one can observe that 〈m,uL〉 = 0 while 〈m,u〈b,c|a〉〉 = 1. In particular, by (2), the respective
implication is not valid: ¬(uL ⇀ u〈b,c|a〉).

The geometric interpretation of the algorithm is similar to the interpretation of the method from
Section 4.1. Supermodular functions correspond to faces of the cone R (N). Thus, the procedure
consists in random generating faces of R (N) and the aim to find a face of R (N) which contains u
but not v.

4.3 Method 3: Decomposition via Hilbert Basis

An alternative to testing whether an imset is combinatorial is testing whether it is structural. Since
structural imsets coincide with the lattice points in the cone R (N)≡ cone(E(N)), each of them can
be written as a sum (with possible repetition) of the elements of the Hilbert basis H (N) of the cone
R (N) (see Section 3.3). For |N|≤ 4 one has H (N) = E(N) (Studený, 1991); however, the results
from Hemmecke et al. (2008) imply that the set of elementary imsets does not constitute a Hilbert
basis of R (N) for |N|≥ 5.
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Computation of the Hilbert basis is a very hard task. Recently, the Hilbert basis of R (N) for
|N|= 5 has been obtained as a result of sophisticated computations (Bruns et al., 2010). In Appendix
B we provide a list of its representatives. Altogether, the obtained Hilbert basis of R (N) has 1300
elements, falling into 35 (permutation equivalence) types.

Thus, having the Hilbert basis of R (N) at hand, one can test the independence implication
u⇀ v for u,v ∈ S(N) through (1): the task is to find out whether there exists a decomposition of
y ≡ k · u− v into Hilbert basis elements for some k ∈ N. This is analogous to the decomposition
approach from Section 4.2.1, where the set of elementary imsets E(N) was used instead of H (N).

Thus, the interpretation of this new method is the same, the difference is that we have now a
wider class of leaves of the (potential) decomposition tree. On the other hand, the advantage of
the Hilbert basis decomposition for |N|= 5 should be that, in some complex cases, a much simpler
decomposition of ymay exist that involves also the elements ofH (N)\E(N) (simpler = with a less
number of summands). We are also sure that the upper limit for the constant k is only k∗ = 7. In
particular, the depth of the tree of potential decompositions should be smaller, while the tree itself
is expected to be wider.

4.4 Method 4: Linear Programming

The basic idea is to re-formulate (the definition of) independence implication in terms of the (pointed
rational polyhedral) cone R (N) ≡ cone(E(N)) spanned by elementary imsets. More specifically,
given u,v ∈ S(N), the condition (1) can be expressed in this way:

u⇀ v iff ∃k ∈ [0,∞) k ·u− v ∈ R (N) . (8)

Indeed, since S(N)⊆R (N) the implication (1)⇒(8) is evident. Conversely, provided (8) holds with
k, it holds with any k′ ≥ k because R (N) is a cone and (k′ − k) ·u ∈ R (N). Therefore, there exists
k′ ∈ N with k′ ·u− v ∈ R (N). As k′ ·u− v is an imset, it belongs to S(N), and (1) holds.

The geometric interpretation of the condition (8) is clear. It means that the ray (= half-line) with
the origin in −v and the direction given by u intersects the cone R (N). The point is that testing
whether this happens can be viewed as an LP problem:

Lemma 5 Given u,v ∈ S(N) one has u⇀ v iff the system of equalities

∑
w∈E(N)

λw ·w(S)− k ·u(S) =−v(S) for any S⊆ N , (9)

has a non-negative solution in λw, w ∈ E(N) and k.

Proof The cone R (N) consists of conic combinations of representatives of its extreme rays, that
is, of elementary imsets. Thus, (8) can be re-written as the requirement for the existence of k ≥ 0
and λw ≥ 0 with k ·u−v=∑w∈E(N)λw ·w. This imset equality, specified for any S⊆N, yields (9).

Non-negative solutions to (9) form a polyhedron of the type Q= {x; Ax= b, x≥ 0}, A ∈ Rd×n,
b ∈ Rd . Indeed, the rows of A correspond to subsets of N, while the columns to elementary imsets
and the factor k. Thus, d = |P (N)| = 2|N| and n = |E(N)|+ 1 =

(|N|
2
)

· 2|N|−2+ 1. As explained in
Section 3.4, testing whether Q is non-empty is equivalent to solving the auxiliary LP problem (4) in
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(n+d)-dimensional space. An illustrative example of the application of this LP method in the case
|N|= 3 is given in Appendix C.

The advantage of this approach is that it is not limited to a particular number of variables as the
previous ones. To get an impression of the implication problem complexity at hand, let us have a
look at Table 2. Clearly, these (comparably small) linear programs should be solvable quickly in
practice. We give computational evidence to this claim in Section 5.2. Another comment is that
this LP method can be interpreted as a kind of decomposition procedure (analogous to the one from
Section 4.2.1); see Appendix D for an explanation.

|N| 3 4 5 6 7 8 9 10
n+d 15 41 113 305 801 2049 5121 12545

Table 2: The dimensions of LP problems to be solved in order to decide u⇀ v.

Let us finally note that there are alternative ways to re-formulate testing of u ⇀ v as an LP
problem. For example, consider the cone of "-standardized supermodular functions. We know the
outer description of this (pointed) cone:

K "(N) = {m ∈ R
P (N); m(S) = 0 for |S|≤ 1, 〈m,w〉 ≥ 0 for w ∈ E(N)} .

Since, in (2), one can limit oneself to "-standardized supermodular functions, u⇀ v is equivalent to
the requirement

sup{〈m,v〉 ; m ∈K "(N), 〈m,u〉= 0} = 0 . (10)

This is an LP problem with a feasible region.6 Thus, Phase II of the simplex method can be applied
to solve it. Note that (10), mentioned in Studený (2004, § 5), can be viewed, after appropriate
modifications, as the dual LP problem to (9) in the sense of the LP theory; however, we omit the
details in this paper.

5. Experiments

In this section, we describe the results of our computational experiments. We performed two sepa-
rate bunches of experiments. One of them was done in New Zealand and the aim was to compare
various methods in case |N|= 5 (see Section 5.1).

As the result was that the LP method performs best in case |N| = 5, the aim of the other group
of experiments (see Section 5.2), done in Germany, was to test the LP approach in case |N| > 5.
These latter experiments were based on the commercial optimization software CPLEX (IBM Ilog
team, 2009).

5.1 Comparison for Five Variables

Empirical evaluation of the methods can give insight in the practical behavior of the various meth-
ods. First, we considered the case of five variables, so that we can compare the new methods with
techniques based on skeletal representations (see Section 4.1). The experimental set up from Bouck-
aert and Studený (2007) was used for the five-variable tests. In short, a thousand random input lists

6. Indeed, m≡ 0 is a feasible solution to (10).
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containing 3, up to 11 elementary CI statements were generated and, for each elementary CI state-
ment outside the input list, it was verified whether it was implicated or not. So, the thousand 3-input
cases result in verification of a thousand times the total number of elementary CI statements (80 for
5 variables) minus the 3 statements already given in the input list, that is, 1000× (80−3) = 77000
inference problems. Table 3 lists the numbers of inference problems in its last column.

The algorithms considered were:

• Skeletal algorithm and sorted skeletal algorithm (see Section 4.1).

• Racing algorithms (see Section 4.2). There are situations where both the verification and the
falsification algorithm perform poor, resulting in unacceptable running times. These outliers
distort the typical behavior of the algorithm, so we put a cap on total calculation time and re-
port the number of problems where a solution is not found within this deadline as the number
of unresolved cases in Table 3.

• Hilbert basis (HB) decomposition algorithm (see Section 4.3). Initial experimentation showed
that the HB approach is very good at verifying the implication. However, when a CI state-
ment is not implied, it takes a long time to traverse the search space. So, the average time
for the HB approach is expected to be very poor. Again, we capped the allowed time for the
algorithm to run and when no solution was found within that time the problem was as marked
unresolved.

• The observation that the HB algorithm performs well for implication but poor on falsification
immediately gives rise to another algorithm where the HB decomposition algorithm and fal-
sification algorithm are raced against each other. This algorithm is called the Hilbert racer.
Like the racer algorithm, this algorithm was time constrained.

• Now we have two algorithms that appear to perform well for verification, it is natural to
combine them with the falsifier and thus get a three horse race. This algorithm is called the
triple racer, and it is time constrained as well.

• The last algorithm under consideration is the LP method described in Section 4.4.

Input Hilbert Hilbert triple
size capped racer racer racer Total
3 5127 (6.7%) 0 (0%) 0 (0%) 0 (0%) 77000
4 10098 (13.3%) 0 (0%) 0 (0%) 0 (0%) 76000
5 12793 (17.1%) 0 (0%) 6 (0.01%) 9 (0.01%) 75000
6 15139 (20.5%) 11 (0.01%) 28 (0.04%) 30 (0.04%) 74000
7 16475 (22.6%) 38 (0.05%) 110 (0.15%) 88 (0.12%) 73000
8 18042 (25.1%) 85 (0.12%) 238 (0.33%) 215 (0.30%) 72000
9 18308 (25.8%) 181 (0.25%) 377 (0.53%) 306 (0.43%) 71000
10 17738 (25.3%) 211 (0.30%) 489 (0.70%) 386 (0.55%) 70000
11 16798 (24.3%) 230 (0.33%) 495 (0.72%) 349 (0.51%) 69000

Table 3: Numbers of inference problems that were not resolved due to time-outs.

All algorithms were implemented in Java, run under Sun Java 1.6.0 12 in server mode on a
Intel dual Core 3.00GHz CPU with 2GB memory, though memory is not an issue for any of the
algorithms.
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5.1.1 RESULTS AND DISCUSSION

Table 3 shows the number of unresolved cases when time was capped at 1 second per problem.
Only the algorithms that did not resolve all problems are shown there. The numbers in brackets are
percentages, the last column the total number of problems for a particular input size.

Given the total number of problems (around 70 thousand per input size) this restricted calcu-
lation took around 20 hours per input size. Clearly, the HB decomposition method when capped
leaves a large proportion of implication problems unresolved, up to a quarter for the larger input
sizes.

Combining the HB algorithm with the falsification algorithm reduces the number of unresolved
problems to less than a third of a percent. Comparing the Hilbert racer with the original racer al-
gorithm shows that more problems are resolved in the time available, so the HB decomposition
algorithm appears to perform better at resolving problems. Finally, the triple racer, which combines
both algorithms, performs in between the two algorithms in terms of number of unresolved prob-
lems. At first sight, one would expect the triple racer to perform at least as good as the Hilbert racer,
however, since the test was run on a dual core processor instead of a machine with at least three
cores, the various algorithms were too busy battling for processor access and lost time to make the
deadline.

User time
skeletal Hilbert triple

Input size skeletal sorted Hilbert racer racer racer LP
3 286 351 5955 132 14 163 29
4 680 648 10320 207 23 318 31
5 1476 1122 12868 414 107 667 32
6 2748 1713 15225 707 1418 1050 32
7 5385 2652 16584 1690 5601 1915 32
8 8583 3625 18171 2884 12145 3159 32
9 12086 4771 18476 6099 24274 4602 32
10 16180 6439 18089 19238 28227 11919 31
11 19530 8225 17507 20962 32452 17145 31

Elapsed time
skeletal Hilbert triple

Input size skeletal sorted Hilbert racer racer racer LP
3 288 353 12745 90 28 152 31
4 681 650 16471 162 38 277 32
5 1477 1124 18636 313 105 562 33
6 2749 1714 20606 516 876 855 33
7 5385 2652 21665 1016 3120 1548 34
8 8582 3625 22977 1889 6864 2522 34
9 12085 4771 23156 4610 13509 3693 33
10 16177 6439 22749 17080 16350 10509 33
11 19528 8224 22118 18255 18221 15250 32

Table 4: Total computer times for the experiments in seconds.

Table 4 shows total computer time to resolve all problems for a given input size. This is a
rough indication of the average computation time per implication problem, given that the number of
problems per input size changes slightly (less than 10%) from the smallest 3-input problems to the
largest 11-input problems. The user time is time the processor spent on the problem, while elapsed
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time is actual clock time. Since the racing algorithms are multi-threaded, having multiple jobs run
in parallel, elapsed time can be less than user time. For the single threaded algorithms, user time is
approximately equal to elapsed time.

Comparing the unsorted and sorted skeleton approaches, it shows that ordering the skeletons
can result in considerable time savings.

The HB decomposition algorithm is outperformed, clearly due to its bad performance in falsifi-
cations. There is a relatively large gap between user and elapsed time for the HB algorithm, which
is due to the way the time-out is implemented. This causes the central processing unit to be idle for
some of the time in some cases. Note the high correlation between user time and number of unre-
solved problems in Table 3. This indicates that the HB decomposition algorithm finds a resolution
for a large number of problems very quickly, but performs very poor on a large number of others.

The racer algorithm performs very well on the smaller input sizes, but looses out on the larger
ones. The Hilbert racer performs even better on the smaller problems, but again looses out on the
larger input sizes. The triple racer is the best performer on the larger problems. However, taking in
account the number of unresolved problems, the Hilbert racer is winning out, so it is to be expected
that a slightly longer time-out period will bring the performance of the triple racer on the same level
as the Hilbert racer.

The most remarkable result is the performance of the LP algorithm. Unlike all the other algo-
rithms, it does not suffer from performance degradation with increasing input sizes. Furthermore,
the calculation times are just a fraction of the times for the other algorithms. Considering that this is
a straightforward Java implementation of the algorithm where only limited effort went in optimizing
the code, its performance compared to the other algorithms is overwhelmingly better.

5.2 Experiments for Higher Number of Variables

To perform the experiments for |N|> 5, the only chance is to use the LPmethod presented in Section
4.4. The experiments were analogously defined as in Section 5.1. If L is an input list of elementary
CI statements, then one single experiment comprises the testing of |E(N)| many independence
implications uL ⇀ u for all u ∈ E(N).7 For |N|= 4,5,6 we have considered input lists L containing
3 up to 11 different elementary CI statements over N and performed 1000 such experiments for
each combination of |N| and |L|. Thus, we made 9000 experiments in total for |N| = 4,5,6. For
|N|= 7,8,9,10 we only considered 1000 experiments with L containing 3 elementary CI statements.

The number of LP problems to be tested within a single experiment and the dimension of these
problems depends on the number |E(N)| =

(|N|
2
)

· 2|N|−2 of elementary imsets and on the number
2|N| of subsets of N (compare with Table 2 in Section 4.4). The running times are averaged over all
9000 experiments for |N| = 4,5,6 and over all 1000 experiments for |N| = 7,8,9,10, respectively.
The running times include the set up of the LP method and the actual LP computation. The tests are
done using the commercial optimization software CPLEX 9.100 (IBM Ilog team, 2009) on a Sun
Fire V890 Ultra Sparc IV processor.

Table 5 illustrates the growth of the running times of the computations for |N|= 4 up to |N|= 10.
Therein, we relate the running times with the growth of |N| and the amount |E(N)| of LP problems
to be tested for each experiment.

7. Contrary to Section 5.1, we involved “unnecessary” testing uL ⇀ ut for t ∈ L in the experiments.
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|N| 4 5 6 7 8 9 10
LPs/experiment 24 80 240 672 1792 4608 11520
time/experiment 4 ms 18 ms 115 ms 658 ms 5037 ms 150.38s 3862.10s

Table 5: The growth of computation times for |N|= 4 to |N|= 10.

5.2.1 RESULTS AND DISCUSSION

Table 5 illustrates a natural increase in the time needed for one experiment as |N| increases. This
is clear as both more LP problems have to be solved and they are of higher dimensions. For small
values of |N| the increase in time occurs mainly because of the LP set up, not because of the com-
putation itself. For higher |N| this proportion changes. But in spite of that, even for |N|= 7 all 1000
experiments together could be done within minutes. For |N| = 10 it took more than one month to
perform all 1000 experiments; however, it took only about an hour for each single experiment. More
specifically, on average, only about one third of a second was enough to test uL ⇀ ut for |N|= 10.

Just looking at the increase of the dimensions of the LP problems, it is reasonable to assume that
one can test independence implication for up to |N|= 15 by directly plugging the corresponding LP
problem into CPLEX. However, testing all |E(N)| inference problems for one experiment would be
too expensive. Recall that one experiment already required about one hour of computation time for
|N|= 10. To go even beyond |N|= 15 for testing uL ⇀ ut , one can still exploit the known structure
of the matrix A of the LP problem and employ column generation techniques in order to solve these
much bigger LP problems to optimality. Of course, this approach has to be coded and tested for
bigger |N| to determine its efficiency.

6. Conclusions

Our computational experiments confirmed that the LP approach both overcomes the barriers of
previous methods set by the number of variables in consideration and, moreover, it is also much
faster. The new method also has the perspective to go even beyond the present limits, provided
special LP techniques are used.

For small CI inference problems, involving a limited number of variables, one can enter data
manually through web interfaces (based on LP method) available at

http://www.cs.waikato.ac.nz/˜remco/ci/.

For bigger inference problems, in which the input is expected in the form of a file, one can use
efficient commercial LP software instead.

We showed that the potential application of computer testing of CI inference is in the area
of Bayesian networks (see Section 2.4). More specifically, by Proposition 2 (and Corollary 3),
testing independence inclusion (and reading CI restrictions from an acyclic directed graph) can be
transformed to the task whether a difference of two standard imsets is a combinatorial imset. Since,
by (3), every standard imset has at most 2 · |N| non-zero values, and, also, its degree is at most
|N|−1, we have good reasons to believe that the decomposition algorithm from Section 4.2.1 can be
implemented with polynomial complexity in this special case. Actually, a relevant result (Studený
and Vomlel, 2011, Lemma 3) implies that if the difference of two standard imsets is a combinatorial
imset then it is a plain sum of elementary imsets (= a combination with coefficients +1). Thus, we
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dare to conjecture that testing whether a difference of two standard imsets is a combinatorial imset
can be done with polynomial complexity in |N| using the procedure from Section 4.2.1.

After finishing this paper, we learned about a conference paper by Niepert (2009), which also
comes with the idea of application of the LP approach to probabilistic CI inference. The reader
may be interested in what is the relation of both approaches. The LP problem in Niepert (2009,
Proposition 4.9) is, in fact, equivalent to our task (9) with fixed factor k = 1, if one uses a suitable
one-to-one linear transformation to involved imsets u,v and w. This transformation has a nice
property that the transformed LP problem Ãx= b̃, x≥ 0 has 0-1 matrix Ã and b̃≥ 0. However, since
the transformation is linear and one-to-one, it is essentially the same LP problem. Our approach is
more general because it allows one to consider the multiplicative factor k≥ 0 in (9), which results in
a wider class of derivable CI implications (cf., Section 4.2.1). We hope that the algorithms presented
in our paper will find their application, perhaps in the research on stable CI statements (Niepert, van
Gucht, and Gyssens, 2010).

The results presented in the paper lead to further open theoretical problems. The most difficult
one is probably to find out what is the exact value of the constant n∗ from Section 2.2 for |N| > 5,
as it seems to be related to finding the Hilbert basis H (N), which is a hard task. Another group of
open questions concerns the verification of the implication u⇀ v for u ∈ C (N) and v ∈ E(N). We
would like to know the minimal bounds for the factors in (1), (6) and (8). Perhaps computing these
bounds can be formulated as a mixed (integer) LP problem. Finally, there are general questions of
complexity, like whether it is NP hard to decide CI implications with respect to the input size.
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Appendix A. Proof of Proposition 1

Recall that L is an input list of CI statements over N and t another CI statement over N. The basic
tool for our arguments is the multiinformation function mP : P (N) → R ascribed to any discrete
probability distribution P over N (for technical details see Studený, 2005, § 2.3.4). Corollary 2.2
in Studený (2005) says that mP is always a supermodular function and, for every CI statement
s≡ A⊥⊥ B |C over N, one has

〈mP,us〉= 0 iff A⊥⊥ B |C [P] . (11)

Now, assuming uL ⇀ ut , the equivalent characterization (2) of the independence implication implies
that, for every discrete probability distribution P over N,

whenever 〈mP,uL〉= 0 then 〈mP,ut〉= 0 . (12)

Assuming P is a distribution such that every s in L is valid with respect to P, one has 〈mP,us〉= 0 by
(11), and, hence, by the linearity of the scalar product, 〈mP,uL〉 = ∑s∈L〈mP,us〉 = 0. This implies,
by (12), 〈mP,ut〉= 0, which means, by (11), that t is a valid CI statement with respect to P.
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Appendix B. Hilbert Basis for Five Variables

As said in Section 4.3, the Hilbert basis H (N) for |N| = 5 falls into 35 types. Nevertheless, there
is a further symmetry within it. Consider a bijective reflection map ι : P (N) → P (N), given by
ι(A) = N \A for A ⊆ N. Observe that elementary imsets are closed under (the composition with)
reflection. Thus, the cone R (N) and its Hilbert basis H (N) are closed under the reflection, too. In
particular, some of 35 permutation equivalence classes are reflections of others. If the reflection is
taken into consideration, the number of resulting equivalence classes in H (N) is lower, namely 21.
Their representatives are given in Table 6.

/0 0 0 2 2 1 1 0 0 1 0 0 1 0 2 0 0 1 2 3 3 2
{a} 0 0 0 0 0 0 1 1 0 1 0 1 1 -1 1 1 0 0 -1 1 1
{b} 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 -1 -1 0
{c} 0 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 -1 0
{d} 0 0 0 -2 0 0 1 1 0 1 1 0 1 -1 1 1 2 0 -1 -1 0
{e} 0 0 -2 0 0 -1 1 1 0 1 1 -1 1 -1 1 1 -1 -2 -2 -2 -2
{a,b} 0 0 -1 -1 0 -1 -1 -1 -1 -2 0 -1 0 0 -2 -1 -1 -1 0 -1 -1
{a,c} 0 0 -1 -1 -1 1 0 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1
{a,d} 0 0 1 1 -1 -1 -2 -2 0 -1 0 -1 1 1 -1 -1 -1 1 0 -1 -1
{a,e} 0 0 1 0 2 1 1 0 2 1 0 0 -2 1 0 -1 1 2 1 2 2
{b,c} 0 0 0 0 -1 -2 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 1 -1 0 -1
{b,d} 0 0 -1 1 2 0 0 0 2 1 -1 1 0 1 0 -1 -1 -1 0 0 -1
{b,e} 0 0 1 -1 -1 0 -2 -2 0 -1 -1 1 0 1 -1 -1 1 1 1 1 1
{c,d} 0 0 -1 1 -1 -1 0 0 -1 -1 -1 -1 -2 1 -1 -1 -2 -1 -1 0 -1
{c,e} 0 0 1 -1 -1 0 0 0 -1 -1 -1 0 1 1 -1 -1 0 1 1 1 1
{d,e} 0 1 1 1 0 1 -1 -1 -1 -2 -1 1 -1 0 -2 -1 0 1 1 1 1
{a,b,c} 0 0 1 1 0 0 -1 -1 1 1 -1 1 -1 1 1 0 2 0 1 1 1
{a,b,d} 0 0 0 -1 -1 1 1 1 -1 0 -1 0 -2 -2 1 0 1 0 1 1 1
{a,b,e} 0 0 0 1 -1 -1 0 1 -1 0 1 -1 1 -1 1 2 0 -1 -1 -1 -1
{a,c,d} 0 0 0 0 2 0 1 1 1 1 1 1 0 -1 1 2 1 0 1 1 1
{a,c,e} 0 0 -1 1 -1 -2 -2 -1 -1 -1 -1 1 0 -2 0 0 -1 -1 0 -1 -1
{a,d,e} 0 0 -2 -1 -1 0 0 1 -1 0 -1 -1 0 0 1 0 -1 -2 -1 -1 -1
{b,c,d} 0 0 1 -1 -1 1 -1 -1 -1 -1 1 0 1 -1 0 1 1 0 1 1 2
{b,c,e} 0 0 -1 1 2 1 1 1 1 1 1 -1 -2 -1 1 1 -1 -2 0 -1 -1
{b,d,e} 0 -1 -1 0 -1 -1 1 1 -1 0 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1
{c,d,e} 1 -1 0 -1 0 -1 -1 -1 1 1 1 -1 0 -1 1 1 1 -1 0 -1 -1
{a,b,c,d} 0 0 -1 0 0 -1 0 0 0 0 0 -1 1 1 -1 -1 -2 0 -2 -2 -2
{a,b,c,e} 0 0 0 -2 0 1 1 0 0 0 0 0 1 1 -1 -1 0 1 -1 0 0
{a,b,d,e} 0 0 1 0 1 0 -1 -2 1 0 0 1 1 1 -2 -1 0 1 1 0 0
{a,c,d,e} -1 0 1 0 0 1 1 0 0 0 0 0 0 1 -1 -1 0 1 -1 0 0
{b,c,d,e} -1 1 0 0 0 0 0 0 0 0 -2 1 1 1 -1 -2 0 2 -1 1 1
{a,b,c,d,e} 1 0 1 2 1 1 1 2 1 1 2 1 0 0 3 3 2 0 3 2 2

Table 6: The 21 columns correspond to representatives of equivalence classes of H (N).

The consequence of finding H (N) for |N|= 5 in Bruns et al. (2010) is as follows:

Proposition 6 For |N| = 5, the least factor n∗ ∈ N such that, for any imset u over N, it holds
u ∈ S(N) ⇔ n∗ ·u ∈ C (N), is n∗ = 2.

Proof Using a computer, we checked that every element v ∈ H (N) for |N| = 5 has the property
that 2 · v is a combinatorial imset. Now, given u ∈ S(N), consider its Hilbert basis decomposition
u= ∑v∈H (N) kv · v, kv ∈ Z+ and write 2 ·u= ∑v∈H (N) kv · (2 · v), where each summand 2 · v is known
to be a combinatorial imset. In particular, 2 ·u ∈ C (N).
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Appendix C. Example of the Application of the LP Method

The aim of this text is to illustrate the LP method from Section 4.4 by an example. We assume that
the reader is familiar with the details of the tableau form of the simplex method (see, for example,
Schrijver, 1986, § 11.2). Consider the same situation as in Example 1:

N = {a,b,c}, L= {a⊥⊥ b |c , a⊥⊥ c | /0}, and t : a⊥⊥ b | /0 ,

which leads to the task to verify/disprove u⇀ v for

u= uL = δabc−δbc−δa+δ /0 and v= ut = δab−δa−δb+δ /0 .

By Lemma 5, this is equivalent to solving the system of equations (9). In this case, it means
searching for a non-negative solution x ≥ 0 of Ax = b, where A is 8× 7-matrix and b a column
8-vector specified as follows:

A λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k b
/0 0 0 0 +1 +1 +1 −1 −1
a 0 0 +1 −1 −1 0 +1 +1
b 0 +1 0 −1 0 −1 0 +1
c +1 0 0 0 −1 −1 0 0
ab 0 −1 −1 +1 0 0 0 −1
ac −1 0 −1 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 −1 0

Here, the first 6 columns of A are elementary imsets, the 7-th column is −u, while b encodes −v.
Moreover, the columns ofA are named by the respective (searched) non-negative coefficients, while
the rows are named by corresponding subsets of N. To get the standard case b ≥ 0 we modify it
by multiplying by (−1) the rows of A and components of b corresponding /0 and ab. The modified
system is A′x= b′, where one has:

A′ λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k b′
/0 0 0 0 −1 −1 −1 +1 +1
a 0 0 +1 −1 −1 0 +1 +1
b 0 +1 0 −1 0 −1 0 +1
c +1 0 0 0 −1 −1 0 0
ab 0 +1 +1 −1 0 0 0 +1
ac −1 0 −1 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 −1 0

We are going to solve the auxiliary LP problem (4) (see Section 3.4), to which purpose we create
a tableau with additional identity submatrix and cost vector.

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost 0 0 0 0 0 0 0 +1 +1 +1 +1 +1 +1 +1 +1 0
/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 −1 −1 0 +1 0 +1 0 0 0 0 0 0 +1
b 0 +1 0 −1 0 −1 0 0 0 +1 0 0 0 0 0 +1
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab 0 +1 +1 −1 0 0 0 0 0 0 0 +1 0 0 0 +1
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0 0 0 0 0 0 +1 0 0
abc +1 +1 +1 0 0 0 −1 0 0 0 0 0 0 0 +1 0
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The next step is to “recompute” the cost vector to get zeros above the identity submatrix. In our
case it means subtracting the sum of 8 rows that correspond to sets from the previous version of the
cost vector. In the additional row, bullets indicate the current basis and the corresponding (starting)
vertex is given by the coefficients indicated.

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost 0 −2 −2 +4 +2 +2 −2 0 0 0 0 0 0 0 0 −4
/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 −1 −1 0 +1 0 +1 0 0 0 0 0 0 +1
b 0 +1 0 −1 0 −1 0 0 0 +1 0 0 0 0 0 +1
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab 0 +1 +1 −1 0 0 0 0 0 0 0 +1 0 0 0 +1
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc −1 −1 0 0 0 +1 +1 0 0 0 0 0 0 +1 0 0
abc +1 +1 +1 0 0 0 −1 0 0 0 0 0 0 0 +1 0

• • • • • • • •
vert 1 1 1 0 1 0 0 0

Now, the proper algorithm can start. The strategy for the choice of the pivoting position from
Schrijver (1986, § 11.2) leads to pivoting on abc× λ〈a,c|b〉-cell, which results in the following
tableau:

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost +2 0 0 +4 +2 +2 −4 0 0 0 0 0 0 0 +2 −4
/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 −1 −1 0 +1 0 +1 0 0 0 0 0 0 +1
b −1 0 −1 −1 0 −1 +1 0 0 +1 0 0 0 0 −1 +1
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab −1 0 0 −1 0 0 +1 0 0 0 0 +1 0 0 −1 +1
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc 0 0 +1 0 0 +1 0 0 0 0 0 0 0 +1 +1 0
abc +1 +1 +1 0 0 0 −1 0 0 0 0 0 0 0 +1 0

• • • • • • • •
vert 0 1 1 1 0 1 0 0

The vertex and the value of the cost function in it remain unchanged, just the vertex is expresses
using another basis. The same procedure now leads to the choice of another pivoting cell: the
column corresponds to k and the row to /0.

λ〈a,b|c〉 λ〈a,c|b〉 λ〈b,c|a〉 λ〈a,b| /0〉 λ〈a,c| /0〉 λ〈b,c| /0〉 k /0 a b c ab ac bc abc
cost +2 0 0 0 −2 −2 0 +4 0 0 0 0 0 0 +2 0
/0 0 0 0 −1 −1 −1 +1 +1 0 0 0 0 0 0 0 +1
a 0 0 +1 0 0 +1 0 −1 +1 0 0 0 0 0 0 0
b −1 0 −1 0 +1 0 0 −1 0 +1 0 0 0 0 −1 0
c +1 0 0 0 −1 −1 0 0 0 0 +1 0 0 0 0 0
ab −1 0 0 0 +1 +1 0 −1 0 0 0 +1 0 0 −1 0
ac −1 0 −1 0 +1 0 0 0 0 0 0 0 +1 0 0 0
bc 0 0 +1 0 0 +1 0 0 0 0 0 0 0 +1 +1 0
abc +1 +1 +1 −1 −1 −1 0 +1 0 0 0 0 0 0 +1 +1

• • • • • • • •
vert 1 1 0 0 0 0 0 0

Now, we observe the decrease in the value of the cost function: the corresponding vertex is
given by k = 1, λ〈a,c|b〉 = 1 and remaining coefficients vanishing. The value of the cost function is
already 0, a further terminating iteration (= pivoting on b×λ〈a,c| /0〉-cell) does not change the vertex
and, hence, the value of the cost function in it. Thus, we have successfully found a non-negative
solution to (9). In particular, we confirmed uL ⇀ ut by the LP method.
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Appendix D. Decomposition Interpretation of the LP Method

In spite of the different formulations, the procedure from Section 4.2.1 and the LP approach from
Section 4.4 have common points. Given u ∈ C (N) and v ∈E(N), both methods try to find a decom-
position of k ·u−v into elementary imsets. A formal difference is that k and the searched coefficients
are integers in Section 4.2.1 but reals in Section 4.4. We try now to explain the analogy to the reader
familiar with the details of the simplex method.

To see the analogy let us assume that k is a fixed natural number, as in Section 4.2.1. For
example, let k be the upper limit for the factor l in (6). This ensures that k ·u− v ∈ C (N) iff u⇀ v.
Put b(S) = k ·u(S)− v(S) for S ⊆ N and search for a non-negative solution in λw, w ∈ E(N) to the
system

∑
w∈E(N)

λw ·w(S) = b(S) for any S⊆ N.

The set of such solutions is a polyhedron Q̂= {x ∈Rn; Ax= b, x≥ 0}, with A ∈Rd×n and b ∈Rd .
Here, the rows of A correspond to subsets of N (d = |P (N)|), the columns to elementary imsets
(n = |E(N)|) and b has b(S), S ⊆ N as components. The only difference from the situation in
Section 4.4 is that we have one column less.

As mentioned in Section 3.4, b (and A) can be modified so that it has non-negative integers as
components and entries in A remain in {−1,0,1}. The simplex method takes (0,b) ≡ (x0,z0) as
its starting iteration and generates a sequence (x0,z0), . . . ,(xm,zm), m ≥ 0 of points in the feasible
region of (4). The final iteration (xm,zm) then minimizes the function (x,z) 5→ 〈1,z〉 over that region.
As explained in Section 3.4, Q̂ -= /0 iff zm = 0.

Now, the move from (0,b) ≡ (x0,z0) to (x1,z1) means the following. One finds w ∈ E(N),
corresponding to a (column) component xw, and a set S′ ⊆ N, corresponding to a component zS′ ,
such that b(S′)−λw ·w(S′) = 0 with λw ≥ 0. The components of z1 are then b(S)−λw ·w(S) for
S⊆ N. Since b= z0 has integral components, λw ∈ Z+. In other words, the first step of the simplex
method, the move from z0 to z1, means subtracting a non-negative integral multiple of an elementary
imset w from b= z0 so that the result remains a non-negative vector.

Although further steps already cannot be interpreted as elementary imset subtraction, the follow-
ing still holds. If Q̂ -= /0, the simplex method finds iteratively the decomposition of b into elementary
imsets with non-negative coefficients. Moreover, in every iteration, one set (= a component of z) is
“vanished”. This is analogous to the procedure from Section 4.2.1, the difference is that the heuristic
for finding the next set S′ to be “vanished” is given by the pivoting operation.
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Winfried Bruns, Bogdan Ichim, and Christof Söger. NORMALIZ, a tool for computations in affine
monoids, vector configurations, lattice polytopes and rational cones. Available electronicly at
http://www.math.uos.de/normaliz/, 2009.

Winfried Bruns, Raymond Hemmecke, Bogdan Ichim, Matthias Köppe, and Christof Söger. Chal-
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Milan Studený. Structural imsets, an algebraic method for describing conditional independence
structures. In Proceedings of IPMU 2004 (B. Bouchon-Meunier, G. Coletti, R. R. Yager eds.),
pages 1323–1330, 2004.
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Milan Studený and Jiřı́ Vomlel. On open questions in the geometric approach to structural learning
Bayesian nets. Accepted in International Journal of Approximate Reasoning, to appear in 2011.

4ti2 team. 4TI2, a software package for algebraic, geometric and combinatorial problems on linear
spaces. Available electronicly at www.4ti2.de, 2008.

3479



 



Journal of Machine Learning Research 11 (2010) 3481-3518 Submitted 6/09; Revised 8/10; Published 12/10

An Exponential Model for Infinite Rankings
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Abstract
This paper presents a statistical model for expressing preferences through rankings, when the num-
ber of alternatives (items to rank) is large. A human ranker will then typically rank only the most
preferred items, and may not even examine the whole set of items, or know how many they are.
Similarly, a user presented with the ranked output of a search engine, will only consider the highest
ranked items. We model such situations by introducing a stagewise ranking model that operates
with finite ordered lists called top-t orderings over an infinite space of items. We give algorithms to
estimate this model from data, and demonstrate that it has sufficient statistics, being thus an expo-
nential family model with continuous and discrete parameters. We describe its conjugate prior and
other statistical properties. Then, we extend the estimation problem to multimodal data by intro-
ducing an Exponential-Blurring-Mean-Shift nonparametric clustering algorithm. The experiments
highlight the properties of our model and demonstrate that infinite models over permutations can
be simple, elegant and practical.
Keywords: permutations, partial orderings, Mallows model, distance based ranking model, expo-
nential family, non-parametric clustering, branch-and-bound

1. Introduction

The stagewise ranking model of Fligner and Verducci (1986), also known as generalized Mallows
(GM), has been recognized as particularly appropriate for modeling the human process of ranking.
This model assigns a permutation π over n items a probability that decays exponentially with its
distance to a central permutation σ. Here we study this class of models in the limit n→ ∞, with
the assumption that out of the infinitely many items ordered, one only observes those occupying the
first t ranks.

Ordering an infinite number of items is common in retrieval tasks: search engines, programs that
match a face, or a fingerprint, or a biological sequence against a database, all output the first t items
in a ordering over virtually infinitely many objects. We shall call this output a top-t ordering. Unlike
machines, people can only reliably rank a small number of items. The GM model has been success-
fully used to model human ranking decisions. We can view the difference between the standard
GM model and the Infinite GM model that we introduce here as the difference between an election
where each voter returns an ordering of a small number of preselected candidates (nominees) and a
“grassroots” election process, where everyone can nominate and order their own favourites from a
virtually unlimited population. For instance, the difference between “Order the following issues by
how much you care about them” vs. “List in order the issues that you care most about” illustrates
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the difference between the standard and the Infinite GM models. By these examples, we argue that
the Infinite GM corresponds to realistic scenarios. An even more realistic scenario, that we will not
tackle for now, is one where a voter (ranker) does not have access to the whole population of items
(e.g., a search engine only orders a subset of the web, or a reviewer only evaluates a subset of the
submissions to a conference).

After defining the infinite GMmodel, we show that it has sufficient statistics and give algorithms
for estimating its parameters from data in the Maximum Likelihood (ML) framework. To be noted
that our model will have an infinite number of parameters, of which only a finite number will be
constrained by the data from any finite sample.

Then, we consider the non-parametric clustering of top-t ranking data. Non-parametric cluster-
ing is motivated by the fact that in many real applications the number of clusters is not known and
outliers are possible. Outliers are known to throw off estimation in an exponential model, unless
the tails are very heavy. We introduce an adapted version of the well known Gaussian Blurring
Mean-Shift algorithm (Carreira-Perpiñán, 2006) (GBMS) that we call exponential blurring Mean
Shift (EBMS).

2. The Infinite Generalized Mallows Model

In this section, we give definitions of key terms used in the article and introduce the Infinite Gener-
alized Mallows (IGM) model.

2.1 Permutations, Infinite Permutations and top-t Orderings

A permutation σ is a function from a set of items { i1, i2, . . . in} to the set of ranks 1 : n. W.l.o.g.
the set of items can be considered to be the set 1 : n. Therefore σ(i) denotes the rank of item i and
σ−1( j) denotes the item at rank j in σ.

There are many other ways to represent permutations, of which we will use three, the ranked
list, the matrix and the inversion table representation; all three will be defined shortly.

In this paper, we consider permutations over a countable set of items, assumed for convenience
to be the the set of positive natural numbers P= {1, 2, . . . , i . . .}. It is easy to see that the notations
σ(i),σ−1( j) extend immediately to countable items. This will be the case with the other definitions;
hence, from now on, we will always consider that the set of items is P.

Any permutation σ can be represented by the (infinite) ranked list (σ−1(1)|σ−1(2)| . . . |σ−1( j)|
. . .). For example, let σ= (2|3|1|5|6|4| . . . |3n−1|3n|3n−2| . . .). Then σ(1) = 3 means that item 1
has rank 3 in this permutation; σ(2) = 1 means that item 2 has rank 1, etc. Conversely, σ−1(1) = 2
and σ−1(3 j) = 3 j−2 mean that the first in the list representation of σ is item 2, and that at rank 3 j
is to be found item 3 j− 2, respectively. Often we will call the list representation of a permutation
an ordering.

A top-t ordering π is the prefix (π−1(1)|π−1(2)| . . . |π−1(t)) of some infinite ordering. For in-
stance, the top-3 ordering of the above σ is (2|3|1).

A top-t ordering can be seen as defining a set consisting of those infinite orderings which start
with the prefix π. If we denote by SP the set of all permutations over P and by SP−t = {σ ∈
SP |σ(i) = i, for i = 1 : t} the subgroup of all permutations that leave the top-t ranks unchanged,
then a top-t ordering π corresponds to a unique element of the right coset SP/SP−t .

We will use Greek letters like π and σ for both full permutations and for top-t orderings to
keep the notation light. But we will distinguish almost always between “central permutations”
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ideal infinite objects denoted by σ, and observed orderings, denoted by π, which by virtue of being
observed, are always top-t , that is, truncated. Hence, unless otherwise stated, π will denote a
top-t ordering, while σ will denote an infinite permutation.

2.2 The Permutation Matrix Representation and the Inversion Table

Now we introduce the two other ways use to represent permutations and top-t orderings.
For any σ, the permutation matrix Σ corresponding to σ has Σi j = 1 iff σ(i) = j and Σi j = 0

otherwise. If σ is an infinite permutation, Σ will be an infinite matrix with exactly one 1 in every
row and column. For two permutations σ,σ′ over P, the matrix product ΣΣ′ corresponds to the
function composition σ′ ◦σ.

The matrix Π of a top-t ordering π is a truncation of some infinite permutation matrix Σ. It has
t columns, each with a single 1 in π−1( j), for j = 1 : t.

For example, if σ= (2|3|1|7|4| . . .) and π= (2|3|1) is its top-3 ordering, then

Σ =









0 0 1 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .









and Π =









0 0 1
1 0 0
0 1 0
0 0 0
. . . . . . . . .









. (1)

For a permutation σ and a top-t ordering π, the matrix ΣTΠ corresponds to the list of ranks in σ of
the items in π. In this context, one can consider σ as a one-to-one relabeling of the set P.

The inversion table of a permutation σ, with respect to the identity permutation id is an infinite
sequence of non-negative integers (s1, s2, . . .) which are best defined algorithmically and recur-
sively. We consider the ranked list (1|2|3| . . .). In it, we find σ−1(1) the first item of σ, and count
how many positions past the head of the list it lies. This is s1, and it always equals σ−1(1)−1. Then
we delete the entry σ−1(1) from the list, and look up σ−1(2); s2 is the number of positions past the
head of this list where we find σ−1(2). We then delete σ−1(2) as well and proceed to find σ−1(3),
which will give us s3, etc. By induction, it follows that an infinite permutation can be represented
uniquely by the list (s1, s2, . . .). Hence s j ∈ {0,1,2, . . .}, and, denoting by 1[p] the function which is
1 if the predicate p is true and is 0 otherwise, we have

s j(σ) = σ−1( j)−1− ∑
j′< j
1[σ−1( j′)<σ−1( j)].

It is also easy to see that, if π is a top-t ordering, it can be uniquely represented by an inversion table
of the form (s1, . . .st). If π is the top-t ordering of an infinite permutation σ, then the inversion table
of π is the t-prefix of the inversion table of σ. This property makes the inversion table particularly
convenient for our purposes.

For example, if σ= (2|3|1|7|4| . . .) and π= (2|3|1), then s1(σ) = s1(π) = 1, s2(σ) = s2(π) = 1,
s3(σ) = s3(π) = 0, s4(σ) = 3, s5(σ) = 0, etc.

The inversion table has a particularly simple interpretation in the matrix representation of σ or
π: s1 equals the number of zeros preceding 1 in column 1; we delete the row containing this 1, then
count the number of zeros in column 2 preceding the 1 to obtain s2; we delete the row containing
this 1, then go to column 3 to count the zeros preceding the 1 in column 3 in order to obtain s3, and
so on. The reader can verify that s1:3(π) = (1, 1, 0) from the matrix Π in Equation (1) above.
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Another property of the inversion table is that it can be defined with respect to any infinite
permutation σ0, by letting the ordered list corresponding to σ0 replace the list (1|2|3| . . .) in the
above definition of the inversion table as follows:

s j(σ|σ0) = σ0(σ
−1( j))−1− ∑

j′< j
1[σ0(σ−1( j′))<σ0(σ−1( j))]. (2)

In other words, 1+ s j is the rank of σ−1( j) in σ0
∣
∣
P\{σ−1(1),...σ−1( j−1)} .

In matrix representation, s1(σ|σ0) is the number of 0’s preceding the 1 in the first column of
ΣT0 Σ; after we delete the row containing this 1, s2(σ|σ0) is the number of 0’s preceding the 1 in the
second column, and so on. For a top-t ordering π, this operation is done on the matrix ΣT0Π.

For example, for π= (3|2|1) and σ0 = (3|4|2|1| . . .) the matrix representation is

ΣT0Π =









1 0 0
0 0 0
0 1 0
0 0 1
. . . . . . . . .









,

and s1(π|σ0) = 0, s2(π|σ0) = 1, s3(π|σ0) = 1.
If σ0 is given, π is completely determined by the inversion table s1:t(π|σ). Equation (2) can

be interpreted as a recursive algorithm to construct π from σ, which we briefly describe here. We
imagine σ to be an ordered list of available items. From it, we choose the first rank in π by skipping
the first s1 ranks in σ and picking π−1(1) = σ−1(s1+1). Once π−1(1) is picked, this item is deleted
from the ordering σ. From this new list of available items, the second rank in π is picked by
skipping the first s2 ranks, and chosing the item in the (s2+ 1)-th rank. This item is also deleted,
and one proceeds to choose π−1(3), π−1(4), . . .π−1(t), etc. in a similar manner. This reconstruction
algorithm proves that the representation (s1:t) uniquely determines π. It is also easy to see that if π
is a prefix of σ, that is, if π−1( j) = σ−1( j) for j = 1 : t, then s1 = s2 = . . .= st = 0.

For an example we now show how to reconstruct π = (3|2|1) using σ = (3|4|2|1| . . .). Recall
that the inversion table of π is given by s1(π|σ) = 0, s2(π|σ) = 1, s3(π|σ) = 1.
Stage π σ Comments
Initial () (3|4|2|1| . . .)
j = 1 (3) (' 3|4|2|1| . . .) Skip s1 = 0 ranks from σ, then assign the current item to π−1(1)
j = 2 (3|2) (' 3|4|' 2|1| . . .) Skip s2 = 1 ranks from σ, then assign the current item to π−1(2)
j = 3 (3|2|1) (' 3|4|' 2|' 1| . . .) Skip s3 = 1 ranks from σ, then assign the current item to π−1(3)
The definition of the inversion table s is identical to the first equation of Section 3 from Fligner

and Verducci (1986). A reciprocal definition of the inversion table is used by Meilă et al. (2007)
and Stanley (1997) and is typically denoted by (V1,V2, . . .). The “V” form of the inversion table is
closely related to the inversion table we use here. We discuss this relationship in Section 7.

2.3 Kendall Type Divergences

For finite permutations of n items π and σ,

dK(π,σ) =
n−1

∑
j=1

s j(π|σ) =
n−1

∑
j=1

s j(σ|π)
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denotes the Kendall distance (Mallows, 1957) (or inversion distance) which is a metric. In the
above, the index j runs only to n−1 because for a finite permutation, sn ≡ 0. The Kendall distance
represents the number of adjacent transpositions needed to turn π into σ. An extension of the
Kendall distance which has been found very useful for modeling purposes was introduced by Fligner
and Verducci (1986). It is

dθ(π,σ) =
n−1

∑
j=1

θ js j(π|σ),

with θ= (θ1, . . .θn−1) a vector of real parameters, typically non-negative. Note that dθ is in general
not symmetric, nor does it always satisfy the triangle inequality.

For the case of countable items, we introduce the divergence

dθ(π,σ) =
t

∑
j=1

θ js j(π|σ), (3)

where π is a top-t ordering, σ is a permutation in SP, and θ = (θ1:t) a vector of strictly positive
parameters.1

When θ j are all equal dθ(π,σ) is proportional to the Kendall distance between σ and the set of
orderings compatible with π and counts the number of inversions needed to make σ compatible with
π. In general, this “distance” between a top-t ordering and an infinite ordering is a set distance.2

2.4 A Probability Model over top-t Rankings of Infinite Permutations

Now we are ready to introduce the Infinite Generalized Mallows (IGM) model. We start with the
observation that as any top-t ordering can be represented uniquely by a sequence of t natural num-
bers, defining a distribution over the former is equivalent to defining a distribution over the latter,
which is a more intuitive task. In keeping with the GM paradigm of Fligner and Verducci (1986),
each s j is sampled independently from a discrete exponential with parameter θ j > 0.

P(s j) =
1

ψ(θ j)
e−θ js j , s j = 0, 1, 2, . . . . (4)

The normalization constant ψ is

ψ(θ j) =
∞

∑
k=0

e−θ jk =
1

1− e−θ j
, (5)

and the expectation of s j is E[s j|θ j] = e−θ j
1−e−θ j

= 1
eθ j−1

the well known expectation of the discrete
geometric distribution. Now we fix a permutation σ. Since any π is uniquely defined by σ and
the inversion table s1:t(π|σ), Equations (4) and (5) define a distribution over top-t orderings, by
Pθ,σ(π) =∏t

j=1P(s j(π|σ)). This is equivalent to

Pθ,σ(π) = e−∑tj=1[θ js j(π|σ)+lnψ(θ j)]. (6)

1. Definition 3 can be easily extended to a pair σ,σ′ ∈ SP, but in this case the divergence will often take infinite values.
2. A set distance, often called “distance” between two sets, is the minimum distance between elements in different sets,
that is, δ(A,B) = minx∈A,y∈B δ(x,y) for a metric or divergence δ. The set distance is not a metric, as it can easily be
shown by counterexample.
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The above Pθ,σ(π) has a t-dimensional real parameter θ and an infinite-dimensional discrete param-
eter σ. The normalization constant ∏t

j=1ψ(θ j) ensures that

∑
π∈top-t orderings ofP

Pθ,σ(π) = 1.

In contrast with the finite GM, the parameters θ j must be strictly positive for the probability distri-
bution to exist. The most probable π for any given t has s1(π|σ) = . . . = st(π|σ) = 0. This is the
top-t prefix of σ.

The permutation σ is called the central permutation of Pθ,σ. The parameters θ control the spread
around the mode σ. Larger θ j correspond to more concentrated distributions. These facts are direct
extensions of statements about the GM model from Fligner and Verducci (1986) and therefore the
detailed proofs are omitted.

What is different about the IGM model definition w.r.t its finite counterpart is that the parameter
σ is now an infinite sequence instead of a finite one. Another difference is the added condition that
θ j > 0 which ensures that ψ(θ j) is finite. This condition is not necessary in the finite case, which
leads to the non-identifiability3 of the parameter σ.

If θ1 = θ2 = . . . = θ the IGM model is called a single parameter IGM model. In this case
Equation (6) simplifies to

Pθ,σ(π) = e−θ∑
t
j=1 s j(π|σ)−t lnψ(θ).

2.5 The IGMModel is a Marginal Distribution

Any top-t ordering π stands for a set of infinite sequences starting with s1:t(π|σ). Therefore, Pθ,σ(π)
can be viewed as the marginal of s1:t in the infinite product space defined by the distribution

Pθ,σ(s) = e−∑∞j=1[θ js j+lnψ(θ j)] s ∈ N×N× . . . .

Because every infinite sequence s uniquely determines an infinite permutation, the distribution (6)
also represents the probability of the π element of the right coset SP/SP−t , that is, the set of infinite
permutations that have (π−1(1)|π−1(2)| . . . |π−1(t)) as a prefix. This fact was noted by Fligner and
Verducci (1986) in the context of finite number of items. Thus, the IGM model (6) is the infinite
counter part of the GM model.

Note also that the expected value of s j is the mean of the geometric distribution E[s j] = 1
eθ j−1

≡

ξ j. Thus, the mean value parametrization of the IGM can be easily derived (proof omitted):

Pξ,σ(π) =
t

∏
j=1

ξ
s j(π|σ)
j

(ξ j+1)s j(π|σ)+1
. (7)

It is clear by now that the IGM Pθ,σ is an exponential family model over the sample space
(s1, s2, . . .) (note that here σ plays no role). It is also evidently an exponential family model in θ
over complete or top-t permutations. The next section will demonstrate that, less evidently, the IGM
is in fact in the exponential family with respect to the discrete parameter σ as well.

3. The non-identifiability of the GM model is however not a severe problem for estimation, and can be removed by
imposing θ j ≥ 0 (Meilă et al., 2007).
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3. Estimating the Model From Data

We are given a set of N top-t orderings SN . Each π ∈ SN can have a different length tπ; all π are
sampled independently from a Pθ,σ with unknown parameters. We propose to estimate θ, σ from
this data in the ML paradigm. We will start by rewriting the log-likelihood of the model, in a way
that will uncover a set of sufficient statistics. Then we will show how to estimate the model based
on the sufficient statistics.

3.1 Sufficient Statistics

For any square (infinite) matrix A∈RP×P, denote by L(A) =∑i> j Ai j the sum of the elements below
the diagonal of A. Let Lσ(A) = L(ΣTAΣ), and let 1 be a vector of all 1’s. For any π, let tπ be its
length and denote tmax = maxSN tπ, T = ∑SN tπ, and by n the number of distinct items observed in
the data. As we shall see, tmax is the dimension of the concentration parameter θ, n is the order of
the estimated central permutation σ, and T counts the total number of items in the data, playing a
role akin to the sample size.

Proposition 1 Let {Nj,q j,Qj} j≥0 represent the following statistics: Nj is the number of π∈ SN that
have length tπ ≥ j (in other words, that contain rank j); q j is the vector [qi, j]i∈P, with qi, j being the
number of times i is observed in rank j in the data SN, Qj = [Qii′, j]i′,i∈P is a matrix whose element
Qii′, j counts how many times π(i) = j and π(i′)< j. Then,

lnPθ,σ(SN) = −∑
j≥1

[θ jLσ(Rj)+Nj lnψ(θ j)] with Rj = q j1T −Qj, (8)

To prove this result, we first introduce an alternative expression for the inversion table s j(π|σ).
Let the data set SN consist of a single permutation π and define q j(π),Qj(π) and Rj(π) similar to
q j,Qj,Rj above. Then we have
Proposition 2

s j(π|σ) = Lσ(q j(π)1T −Qj(π)). (9)
Proof Let Q0 be the infinite matrix that has 1 above the main diagonal and 0 elsewhere, (Q0)i j = 1
iff j > i and let Π: j denote the j-th column of Π. It is then obvious that L(A) = trace(Q0A) for any
A.

By definition, s j represents the number of 0’s preceding 1 in column j, minus all the 1’s in the
submatrix (ΣTΠ)1:σ(π−1( j))−1,1: j−1. In other words,

s j(π|σ) = ∑
l≥1

(Q0ΣTΠ: j)l(1−ΣTΠ:1−ΣTΠ:2− . . .ΣTΠ: j−1)l,

= (1− ∑
j′< j

ΣTΠ: j′)
TQ0ΣTΠ: j,

= 1TQ0ΣTΠ: j− ∑
j′< j

ΠT
: j′ΣQ0Σ

TΠ: j,

= traceQ0ΣTΠ: j1T − ∑
j′< j
traceΠ: jΠT

: j′ΣQ0Σ
T ,

= traceQ0ΣT [Π: j1T − ∑
j′< j

Π: jΠT
: j′Σ],

= L(ΣT [Π: j1T − ∑
j′< j

Π: jΠ
T
: j′ ]Σ) = Lσ(Π: j1T − ∑

j′< j
Π: jΠ

T
: j′).
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We use the fact that multiplying left by Q0 counts the zeros preceding 1 in a column in the first
equality, traceAB= traceBA in the fourth and fifth equations, and the identity 1TΣ= 1T in the last
equation. We now note that Π: j = q j(π) and ∑ j′< jΠ: jΠ

T
: j′ = Qj(π) and the result follows. !

Proof of Proposition 1. The log-likelihood of SN is given by

lnPθ,σ(SN) = − ∑
π∈SN

[
t

∑
j=1

πθ js j(π|σ)+ lnψ(θ j)

]

,

= −∑
j≥1

[

θ j ∑
π∈SN

s j(π|σ)+Nj lnψ(θ j)

]

.

Because Lσ is a linear operator, the sum over π ∈ SN equals

Lσ[( ∑
π∈SN

q j(π))1T − ∑
π∈SN

Qj(π))].

It is easy to verify now that the first sum represents q j and the second one represents Qj.
!

The sufficient statistics for the single parameter IGM model are described by the following
corollary.

Corollary 3 Denote
q=∑

j
q j, Q=∑

j
Q j, R = q1T −Q. (10)

If θ1 = θ2 = . . .= θ then the log-likelihood of the data SN can be written as

lnPθ,σ(SN) = −θLσ(R)−T lnψ(θ). (11)

Note that qi, Qii′ represent respectively the number of times item i is observed in the data and
the number of times item i′ precedes i in the data.

Proposition 1 and Corollary 3 show that the infinite model Pθ,σ has sufficient statistics. The
result is obtained without any assumptions on the lengths of the observed permutations. The data
π ∈ SN can have different lengths tπ, tπ may be unbounded, and may even be infinite.

As the parameters θ,σ of the model are infinite, the sufficient statistics Rj (or R) are infinite
matrices. However, for any practically observed data set, tmax will be finite and the total number
of items observed will be finite. Thus, Nj,Rj will be 0 for any j > tmax and R = ∑ j∈PRj will have
non-zero entries only for the items observed in some π∈ SN . Moreover, with a suitable relabeling of
the observed items, one can reduce Rj to a matrix of dimension n, the number of distinct observed
items. The rest of the rows and columns of Rj will be 0 and can be discarded. So in what follows
we will assume that Rj and the other sufficient statistics have dimension n.

3.2 ML Estimation: The Case of a Single θ

We now go on to estimate θ and σ starting with the case of equal θ j, that is, θ1 = θ2 = . . . = θ. In
this case, Equation (11) shows that the estimation of θ and σ decouple. For any fixed σ, Equation
(11) attains its maximum over θ at

θ= ln(1+T/Lσ(R)). (12)

3488



AN EXPONENTIAL MODEL FOR INFINITE RANKINGS

In contrast to the above explicit formula, for the finite GM, the likelihood has no analytic solution
for θ (Fligner and Verducci, 1986). The estimated value of θ increases when Lσ(R) decreases. This
has an intuitive interpretation. The lower triangle of ΣTRΣ counts the “out of order” events w.r.t.
the chosen model σ. Thus, Lσ(R) can be seen as a residual, which is normalized by the “sample
size” T . Equation (12) can be re-written as Lσ(R)/T = 1/(eθ− 1) ≡ ξ. In other words, the mean
value parameter ξ equals the average residual. This recovers a well-known fact about exponential
family models. In particular, if the residual is small, that is Lσ(R) has low counts, we conclude that
the distribution is concentrated, hence has a high θ.

Estimating σML amounts to minimizing Lσ(R) w.r.t σ, independently of the value of θ. The
optimal σ according to Corollary 3 is the permutation that minimizes the lower triangular part of
ΣTRΣ. To find it we exploit an idea first introduced in Meilă et al. (2007). This idea is to search for
σ= (i1|i2|i3| . . .) in a stepwise fashion, starting from the top item i1 and continuing down.

Assuming for a moment that σ= (i1|i2|i3| . . .) is known, the cost to be minimized Lσ(R) can be
decomposed columnwise as

Lσ(R) = ∑
l '=i1
Rli1 + ∑

l '=i1,i2
Rli2 + ∑

l '=i1,i2,i3
Rli3 + . . . ,

where the number of non-trivial terms is one less than the dimension of R. It is on this decomposition
that the search algorithm is based. Reading the above algorithmically, we can compute Lσ(R), for
any given σ by the following steps

1. zero out the diagonal of R
2. sum over column i1 of the resulting matrix
3. remove row and column i1
4. repeat recursively from step 2 for i2, i3, . . ..

If now σ is not known, the above steps 2, 3 become the components of a search algorithm, which
works by trying every i1 in turn, saving the partial sums, then continuing down for a promising i1
value to try all i2’s that could follow it, etc. This type of search is represented by a search tree,
whose nodes are candidate prefixes for σ.

The search tree has n! nodes, one for each possible ordering of the observed items. Finding
the lowest cost path through the tree is equivalent to minimizing Lσ(R). Branch-and-bound (BB)
(Pearl, 1984) algorithms are methods to explore the tree nodes in a way that guarantees that the
optimum is found, even though the algorithm may not visit all the nodes in the tree. The number
of nodes explored in the search for σML depends on the individual sufficient statistics matrix R. It
was shown by Meilă et al. (2007) that in the worst case, the number of nodes searched can be a
significant fraction of n! and as such intractable for all but small n. However, if the data distribution
is concentrated around a mode, then the search becomes tractable. The more concentrated the data,
the more effective the search.

We call the BB algorithm for estimating σ the SIGMA*, by analogy with the name A∗ under
which such algorithms are sometimes known. The algorithm is outlined in Figure 1. In this figure,
A is an admissible heuristic; Pearl (1984) explains their role. By default, one can use A ≡ 0. A
higher bound than 0 will accelerate the search; some of the admissible heuristics of Mandhani and
Meilă (2009) can be used for this purpose.

In addition to this slow but exact algorithm, various heuristic search techniques can be used
to explore the search tree of the problem. Two of them which showed good performance for the
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standard GM model and which transfer immediately to the infinite model are the greedy search
(GREEDYR) and the the SORTR heuristic of Fligner and Verducci (1988), both described in Figure
2. The SORTR computes the costs of the first step of BB, then outputs the permutation σ that sorts
these costs in increasing order. The algorithm as proposed by Fligner and Verducci (1988) also
performs limited search around this σ. For simplicity, this was not included in the pseudocode, but
can be implemented easily.

The GREEDYR replaces BB with greedy search on the same sufficient statistics matrix. This
algorithm was used by Cohen et al. (1999), where a factor of 2 approximation bound w.r.t. the cost
was also shown to hold.

A third heuristic is related to the special case t = 1, when each π contains only 1 element. This
is the situation of, for example, a search engine returning just the best match to a query. For t = 1, as
Q is 0, the optimal ordering is the one minimizing Lσ(q1T ) = [0 1 . . . n−1]ΣTq. This is obviously
the ordering that sorts the items in descending order of their frequency q.

In conclusion, to estimate the parameters from data in a single parameter case, one first computes
the sufficient statistics, then a prefix of σ is estimated by exact or heuristic methods, and finally, with
the obtained ordering of the observed items, one can compute the estimate of θ.

3.3 ML Estimation: The Case of General θ

Maximizing the likelihood of the data SN is equivalent, by Proposition 1, with minimizing

J(θ,σ) = ∑
j
[θ jLσ(Rj)+Nj lnψ(θ j)] = Lσ(∑

j
θ jR j

︸ ︷︷ ︸

Rθ

)+ function of θ. (13)

This estimation equation does not decouple w.r.t θ and σ. Minimization is however possible, due to
the following two observations. First, for any fixed set of θ j values, minimization w.r.t σ is possible
by the algorithms described in the previous section. Second, for fixed σ, the optimal θ j parameters
can be found analytically by

θ j = ln(1+Nj/Lσ(Rj)). (14)
The two observations immediately suggest an alternating minimization approach to obtaining

θML,σML. The algorithm is given in Figure 3. For the optimization w.r.t σ exact minimization can
be replaced with any algorithm that decreases the r.h.s of (13). As both steps increase the likelihood,
the algorithm will stop in a finite number of steps at a local optimum.4

3.4 Identifiability and Consistency Results

One remarkable property of the IGM, which is easily noted by examining the likelihood in (8)
or (11), is that the data will only constrain a finite number of parameters of the model. The log-
likelihood (8) depends only on the parameters θ1:tmax . Maximizing likelihood will determine θ1:tmax
leaving the other θ j parameters undetermined.

4. The reader may have noted that Pθ,σ is an exponential family model. For exponential family models with continuous
parameters over a convex set, the likelihood is log-concave and an iteration like the one presented here would end at
the global optimum. For our model, however, the parameter σ is discrete; moreover, the set of σ’s forms the vertices
of a convex polytope. One can show theoretically and practically that optimizing Lσ(R) can have multiple optima
and hence one cannot expect to always find a global maximum for the likelihood. However, we suspect that under the
conditions that make optimization tractable, that is, a concentrated data distribution, existence of a global optimum
may be proved.
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Algorithm SIGMA*

Input matrix R ∈ Rn×n of sufficient statistics

Initialize

S= {σ̄ /0}, σ̄ /0 =the empty ordering, j = 0, C(σ̄ /0) = B(σ̄ /0) = 0

Do

remove σ̄ ∈ argmin
σ̄∈S

B(σ̄) from S

if length(σ̄) = n (Return)

Output σ̄, B(σ̄) =C(σ̄) and Stop.

else (Expand σ̄)

for i j+1 ∈ {1 : n}\ σ̄
1. create node σ̄′ = (i1| . . . , |i j|i j+1)
2. v j+1(σ̄′) = ∑l∈{1:n}\σ̄′ Rli j+1
3. calculateC(σ̄′) =C(σ̄)+ v j+1, calculate A(σ̄′)
4. B(σ̄′) =C(σ̄′)+A(σ̄′)
5. store node (σ̄′, j+1,C(σ̄′), B(σ̄′)) in S

Figure 1: Algorithm SIGMA* outline. S is the set of nodes to be expanded; σ̄ = (i1| . . . , |i j) des-
ignates a top- j ordering, that is, a node in the tree at level j. The cost of the path σ̄ is
given by C(σ̄) = ∑

j
j′=1∑l '∈{i1: j′}Rlil , and A(σ̄) is a lower bound on the cost to go from σ̄,

possibly 0. The total estimated cost of node σ̄ is B(σ̄) =C(σ̄)+A(σ̄), which is used to
predict which is the most promising path through the tree. In an implementation, node σ̄
stores: σ̄= (i1| . . . , |i j), j = |σ̄|,C(σ̄), B(σ̄).

Let n be the number of distinct items observed in the data. From σ, we can estimate at most its
restriction to the items observed, that is, the restriction of σ to the set

⋃
π∈SN{π

−1(1),π−1(2), . . . ,
π−1(tπ)}. The next proposition shows that the ML estimate will always be a permutation which puts
the observed items before any unobserved items.

Proposition 4 Let SN be a sample of top-t orderings, and let σ be a permutation over P that ranks
at least one unobserved item i0 before an item observed in SN. Then there exists another permutation
σ̃ which ranks all observed items before any unobserved items, so that for any parameter vector
(θ1:t), Pθ,σ(SN)< Pθ,σ̃(SN).

Proof For an item i0 not observed in the data, qi0, j,Qi0i, j and Ri0i, j are 0, for any j = 1 : t and any
observed item i. Hence row i0 in any Rj is zero. Also note that if we switch among each other items
that were not observed, there is no effect in the likelihood. Hence, w.l.o.g we assume that i0 has
rank j0 in σ and is followed by an item i which is observed.
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Algorithm SORTR

Input matrix R ∈ Rn×n of sufficient statistics with 0 diagonal

1. compute the column sums of R, rl = ∑k Rkl , l = 1 : n

2. sort rl, l = 1 : n in increasing order

Output σ the sorting permutation

Algorithm GREEDYR

Input matrix R ∈ Rn×n of sufficient statistics with 0 diagonal

1. set V = 1 : n the set of unused items

2. Repeat for j = 1 : n−1

(a) compute rl = ∑k∈V Rkl , l ∈V the column sums of a submatrix of R
(b) let l∗ = argminl∈V rl
(c) set σ−1( j) = l∗, V ←V \{l∗}

3. set σ−1(n) to the last remaining item in V

Output σ

Figure 2: Heuristic algorithms to estimate a central permutation: SORTR and GREEDYR. The
elements Rii are never part of any s j, hence to simplify the code we assume they are set
to 0.

Algorithm ESTIMATESIGMATHETA

Input Sufficient statistics Rj,Nj, j = 1 : tmax
Initial parameter values θ1:tmax > 0

Iterate until convergence:

1. Calculate Rθ = ∑ j θ jR j

2. Find the ordering σ= argminσLσ(Rθ) (exactly by SIGMA* or by heuristics)
3. Estimate θ j = ln(1+Nj/Lσ(Rj))

Output σ, θ1:tmax

Figure 3: Algorithm ESTIMATESIGMATHETA.
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The idea of the proof is to show that if we switch items i0 and i the lower triangle of any Rj will
not increase, and for at least one Rj it will strictly decrease.

For this, we examine row i of some Rj. We have Qii0, j = 0 and Qii0, j = qi, j. Since i is observed
then for at least one j we have Rii0, j > 0. Denote by σ′ the permutation which is equal to σ except
for switching i and i0. The effect of switching i and i0 on Rj is to switch elements Rii0, j and Ri0i, j.
Since the latter is always 0 and the former is greater or equal to 0, it follows that Lσ′(Rj)≤ Lσ(Rj)
for any j, and that the inequality is strict for at least one j. By examining the likelihood expression
in Equation (8), we can see that for any positive parameters θ1: j we have lnPθ,σ(SN)< lnPθ,σ′(SN).

By successive switches like the one described here, we can move all observed items before the
unobserved items in a finite number of steps. Let the resulting permutation be σ̃. In this process, the
likelihood will be strictly increasing at each step, therefore the likelihood of σ̃ will be higher than
that of σ. !.

In other words σML is a permutation of the observed items, followed by the unobserved items
in any order. Hence the ordering of the unobserved items is completely non-identifiable (naturally
so). But not even the restriction of σ to the observed items is always completely determined. This
can be seen by the following example. Assume the data consists of the the two top-t orderings
(a|b|c), (a|b|d). Then (a|b|c|d) and (a|b|d|c) are both ML estimates for σ; hence, it would be more
accurate to say that the ML estimate of σ is the partial ordering (a|b|{c,d}). The reason σML is not
unique over a,b,c,d in this example is that the data has no information about the relative ranking
c,d, neither directly by observing c,d together in the same π, nor indirectly, via a third item. This
situation is likely to occur for the rarely observed items, situated near the ends of the observed π’s.
Thus this kind of inderterminacy will affect predominantly the last ranks of σML. Another kind of
indeterminacy can occur when the data is ambiguous w.r.t the ranking of two items c,d, that is,
when Rcd = Rdc > 0. This situation can occur at any rank, and will occur more often for values of
the θ j parameters near 0. However, observing more data mitigates this problem. Also, since more
observations typically increase the counts more for the first items in σ, this type of indeterminacy is
also more likely to occur for the later ranks of σML.

Thus, in general, there is a finite set of permutations of the observed items which have equal
likelihood. We expect that these permutations will agree more on their first ranks and less in the
last ranks. The exact ML estimation algorithm SIGMA* described here will return one of these
permutations.

We now discuss the convergence of the parameter estimates to their true values. The IGM
model has t real parameters θ j, j = 1 : t and a discrete and infinite dimensional parameter, the
central permutation σ. We give partial results on the consistency of the ML estimators, under the
assumption that the true model is an IGM model and that t the length of the observed permutations
is fixed or bounded.

Before we present the results, we need to make some changes in notation. In this section we
will denote by q̂, R̂, etc the statistics obtained from a sample, normalized by the sample size N. We
use q, R, etc for the asymptotic, population based expectation of a statistic under the true model Pid,θ
(single parameter or multiple parameters as will be the case). For instance q̂i, j = ∑π∈SN qi, j(π)/N
represents the frequency of i appearing in position j in the sample, while qi, j is the probability of
this event under Pid,θ. For simplicity of notation, the dependence of N is omitted.

We will show that under weak conditions, the statistics of the type q, Q, R converge to their
expectations, which in turn will entail convergence of the estimates based on them. The proofs are
in Appendix A.1.
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Proposition 5 Let σ be any infinite permutation. If the true model is Pid,θ (multiple parameters)
and t is fixed, then limN→∞Lσ(R̂ j) = Lσ(Rj) for any j = 1 : t.

Since we can assume w.l.o.g. that the central permutation of the true model is the identity permu-
tation, this proposition implies that for any IGM, with single or multiple parameters, and for any σ,
the statistics Lσ(R̂ j) are consistent when t is constant.

Proposition 6 If the true model is Pid,θ (multiple or single parameter) and t is fixed, then for any
infinite permutation σ, denote by θ̂ j(σ) (or θ̂(σ)) the ML estimate of θ j (or θ) given that the estimate
of the central permutation is σ. Then for j = 1 : t

lim
N→∞

θ̂ j(σ) = θ j(σ),

lim
N→∞

θ̂(σ) = θ(σ),

where the limits should be taken in the sense of convergence in probability.

Proposition 7 Assume that the true model is Pid,θ, t is fixed, and θ j ≥ θ j+1 for j = 1 : t− 1. Let
σ '= id be an infinite permutation. Then, P[Lid(R̂ j) < Lσ(R̂ j)] → 1. Consequently, P[Lid(R̂) <
Lσ(R̂)]→ 1.

The consequences of these results are as follows. Assume the true model has a single parameter, and
we are estimating a single parameter IGM model. Then, the likelihood of an infinite permutation σ
is given by R̂= ∑tj=1 R̂ j. By Proposition 7, for any σ other than the true one, the likelihood will be
lower than the likelihood of the true permutation, except in a vanishingly small set of cases. This
result is weaker than ideal, since ideally we would like to prove that the likelihood of the true σ
is higher than that of all other permutations simultaneously. We intend to pursue this topic, but to
leave the derivation of stronger and results for a further publication.

Proposition 6 shows that, if the correct σ is known, then the θ j parameters, or alternatively the
single θ parameter, are consistent.

In the multiple parameter IGM case, for any fixed θ, the likelihood of σ is given by R̂ =
∑tj=1θ jR̂ j. Hence, by Proposition 7, in this case too, for any given σ different from the true central
permutation, the likelihood of σ will be lower than the likelihood of the true model permutation.

The reader will note that these results can be easily extended to the case of bounded t.

4. Non-parametric Clustering

The above estimation algorithms can be thought of as finding a consensus ordering for the ob-
served data. When the data have multiple modes, the natural extension to optimizing consensus is
clustering, that is, finding the groups of the population that exhibit consensus.

Having defined a distance and a method for estimatingML parameters gives one access to a large
number of the existing clustering paradigms originally defined for Euclidean data. For instance,
the extensions of the K-means and EM algorithms to infinite orderings is immediate, and so are
extensions to other distance-based clustering methods. Here we will present only one clustering
method, a the Exponential Blurring Mean-Shift (EBMS), but which illustrates well the issues of
clustering in the space of top-t orderings. The EBMS is a nonparametric clustering method.
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Algorithm EBMS

Input Top-t orderings SN = {πi}i=1:N , with length ti; optionally, a scale parameter θ

1. For πi ∈ SN compute qi,Qi,Ri the sufficient statistics of a single data point.

2. Reduce data set by counting only the distinct permutations to obtain reduced S̃N and
counts Ni ≥ 1 for each ordering πi ∈ S̃N .

3. For πi,π j ∈ S̃N calculate Kendall distance di j = dK(πi,π j).

4. (Optional, if θ not given in input) Set θ by solving the equation

Eθ[d(S̃N)] =
tπe−θ

1− e−θ
−

tπ
∑
j=1

je−θ

1− e− jθ

where we set Eθ[d(S̃N)] to be the average of pairwise distances in step 3.

5. For πi ∈ S̃N (Compute weights and shift)

(a) For π j ∈ S̃N : set αi j =
exp(−θdi j)

∑nj′=1 exp(−θdi j′ )

(b) Calculate R̄i = ∑π j∈S̃N Njαi jR j

(c) Estimate σi the “central” permutation that optimizes R̄i
(exactly or by heuristics)

(d) Set πi ← σi(1 : tπ)
6. Go to step 2, until no πi changes.
Output S̃N

Figure 4: The EBMS algorithm.

Nonparametric clustering is motivated by the fact that in many real applications the number of
clusters is unknown and outliers exist. We consider an adapted version of the well known blur-
ring mean-shift algorithm for ranked data (Fukunaga and Hostetler, 1975; Cheng, 1995; Carreira-
Perpiñán, 2006). We choose the exponential kernel with bandwidth 1

θ > 0: Kθ(π,σ) = e−θd(π,σ)
ψ(θ) .

Under the Kendall distance dK(π,σ) the kernel has the same form as the one parameter Mallows’
model. The kernel estimator of πi is given by

r̂(πi) =
n

∑
j=1

Kθ(πi,π j)
∑n
k=1Kθ(πi,πk)

π j =
n

∑
j=1

e−θdK(πi,π j)

∑n
k=1 e−θdK(πi,πk)

π j,

which does not depend on the normalizing constant ψ(θ) in Mallows’ model.
The EBMS algorithm is summarized in Figure 4. It shift the “points” (i.e., top-t orderings)

to new locations obtained by a locally weighted combination of all the data. Thus, every π is
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“attracted” towards its closest neighbors; as the shifting is iterated the data collapse into one or
more clusters. The algorithm has a scale parameter θ. The scale influences the size of the local
neighborhood of a top-t ordering, and thereby controls the granularity of the final clustering: for
small θ values (large neighborhoods), points will coalesce more and few large clusters will form;
for large θ’s the orderings will cluster into small clusters and singletons. In the EBMS algorithm,
we estimate the scale parameter θ at each iteration by solving the equation in step (d).

Practical experience shows that blurring mean-shift merges the points into compact clusters in
a few iterations and then these clusters do not change but simply approach each other until they
eventually merge into a single point (Carreira-Perpiñán, 2006). Therefore, to obtain a meaningful
clustering, a proper stopping criterion should be proposed in advance. For ranked data, this is not
the case: since at each iteration step we round the local estimator into the nearest permutation, the
algorithm will stop in a finite number of steps, when no ordering moves from its current position.
Moreover, because ranked data is in a discrete set, we can also perform an accelerating process. As
soon as two or more orderings become identical, we replace this cluster with a single ordering with
a weight proportional to the cluster’s number of members. The total number of iterations remains
the same as for the original exponential blurring mean-shift but each iteration uses a data set with
fewer elements and is thus faster.

In the algorithm one evaluates distances between top-t orderings. There are several ways in
which to turn dK(π,σ) into a d(π1,π2), where both terms are top-t orderings, containing different
sets of items. Critchlow (1985) studied them, and here we adopt for d(π1,π2) what is called the set
distance, that is, the distance between the sets of infinite orderings compatible with π1 respectively
π2.

We chose this formulation rather than others because this distance equals 0 when π1 = π2, and
this is good, one could even argue necessary, for clustering. In addition, it can be calculated by a
relatively simple formula, inspired by Critchlow (1985). Let
A the set intersection of orderings π1,π2 t1, t2 lengths of π1,π2
B π1 \A, the items in π1 not in π2 nA,B,C the number of items in A, B,C
C π2 \A, the items in π2 not in π1 k j the index in π1 of the j-th item not in A

l j the index in π2 of the j-th item not in A

Then

d(π1,π2) = dK((π1)|A,(π2)|A)+nBnC+nBt1−
nB
∑
j=1

k j−
nB(nB−1)

2
+nCt2−

nC
∑
j=1

l j−
nC(nC−1)

2
.

(15)

π1 B1 B2 −→ π̃1 B1 B2 C1 C2 C3 C4
π2 C1 C2 C3 C4 −→ π̃2 C1 C2 C3 C4 B1 B2

Figure 5: An example of obtaining two partial orderings π̃1, π̃2 compatible respectively with π1,π2
that achieve the set distance. Empty spaces represent the common items, while B and
C symbols mark the items in B, respectively C. The distance d(π1,π2) is the Kendall
distance between π̃1 and π̃2.
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The intuitive interpretation of this distance is given in Figure 5. We extend π1 and π2 to two
longer orderings π̃1, π̃2, so that: (i) π̃1, π̃2 have identical sets of items, (ii) π̃1 is the closest ordering
to π2 which is compatible with π1, and (iii) reciprocally, π̃2 is the closest ordering to π1 which
is compatible with π2. We obtain π̃1 by taking all items in π2 but not in π1 and appending them
at the end of π1 while preserving their relative order. A similar operation gives us π̃2. Then,
d(π1,π2) = dK(π̃1, π̃2), and Equation (15) expresses this value.

5. The Conjugate Prior

The existence of sufficient statistics implies the existence of a conjugate prior (DeGroot, 1975)
for the parameters of model (6). Here we introduce the general form of this prior and show that
computing with the conjugate prior (or posterior), is significantly harder than computing with the
likelihood (6).

We shall assume for simplicity that all top-t rankings have the same t. Consequently, our pa-
rameter space consists of the real positive vector θ1:t and the discrete infinite parameter Σ.

We define the prior parameters as a set of “fictitious sufficient statistics”, by analogy with the
sufficient statistics for model (6). For this we first make a few straightforward observations about
the sufficient statistics q j, Qj, j = 1 : t as follows:

Q1 ≡ 0,
Qii′, j ≥ 0 for all i, i′, j,

∑
i
qi, j = Nj for all j,

Qj1 = ( j−1)q j for all j > 1.

Therefore

Rj = q j1T −Qj =

{

Qj

(
1
j−111

T − I
)

for j > 1
q11T for j = 1

.

Now we let ν denote the prior strength, representing the equivalent sample size, and λ1, Λ j, j= 2 : t
be the prior parameters corresponding to the sufficient statistics q1, Q2:t , normalized as follows.

Proposition 8 Let ν > 0, λ1 be a vector and Λ j, j = 2 : t denote a set of possibly infinite matrices
satisfying

λ1 ≥ 0,
Λii′, j ≥ 0 for all i, i′, j,
Λ j1 = ( j−1)λ j for all j > 1 (by definition),
1Tλ j = 1 for all j.

Denote Λ= {ν, λ1, Λ2:t} and

R0j =

{

Λ j

(
1
j−111

T − I
)

for j > 1
λ11T for j = 1

.

Define the distribution
PΛ(σ,θ) ∝ e−ν∑

t
j=1[θ jL(ΣT R0jΣ)+lnψ(θ j)], (16)

which is a conjugate prior for the model Pθ,σ(π) defined in (6).
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Proof Given observed permutations π1:N with sufficient statistics Rj, j = 1 : t, the posterior distri-
bution of (σ,θ) is updated by

P(θ,σ |Λ,π1:N) ∝ e−∑tj=1[(νLσ(R0j )+Lσ(Rj))θ j+(N+ν) lnψ(θ j)],

= e
−(N+ν)∑tj=1[θ jLσ

(

νR0j+R j
N+ν

)

+lnψ(θ j)]
.

If the hyperparameters ν,λ1,Λ2:t satisfy the conditions of the proposition, then the new hyperparam-
eters Λ′ = {ν+N, (νλ1+q1)/(ν+N), (νΛ j+Qj)/(ν+N), j = 2 : t} satisfy the same conditions.
!.

The conjugate prior is defined in (16) only up to a normalization constant.5 As it will be shown
below, this normalization constant is not always computable in closed form. Another aspect of con-
jugacy is that one prefers the conjugate hyperparameters to represent expectations of the sufficient
statistics under some Pθ,σ. The conditions in Proposition 8 are necessary, but not sufficient to ensure
this fact.

To simplify the notations, we write

S∗j = Lσ(νR0j +Rj). (17)

This notation reflects the fact that S∗j is the counterpart in the posterior of the s j in the distribution
Pθ,σ(π). If N = 0, then S∗j = νLσ(R0j). The value of S∗j depends on σ and the hyperparameters,
but does not depend on θ. The following result shows that for any fixed S∗j , the posterior can be
integrated over θ j in closed form.

Proposition 9 Let PΛ(σ,θ) be defined as in (16) and S∗j be defined by (17). Then,

PΛ(θ j |σ) = BetaS∗j ,ν+1(e
−θ j),

where Betaα,β denotes the Beta distribution.

Proof sketch Replacing ψ(θ j) with its value (5) yields

PΛ(θ j |σ) ∝ e−S
∗
jθ j(1− e−θ j)ν,

from which the desired result follows by a change of variable. !

As a consequence, we have that

PΛ(σ) ∝
t

∏
j=1

Beta(S∗j(σ),1+ν). (18)

In the above, the notation Beta(x,y) is used to denote the special function Beta defined as Beta(x,y)=
Γ(x)Γ(y)
Γ(x+y) .
We have shown thus that closed form integration over the continuous parameters θ j is possible.

The summation over the discrete parameters poses much harder problems. We list them here.

5. The general form of a conjugate prior may include factors in σ and θ which do not depend on Λ. For simplicity of
the exposition, we do not consider such a form here.
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A first unsolved question is the range of the variables S∗j . While the s j variables in the infinite
GM model are always integers ranging from 0 to infinity, the S∗j variables can have non-integer
values if ν or Λ j are non-integer. The latter is almost always the case, since under the conditions of
Proposition 8, Λ j is not integer unless all its elements are 0 or 1. Second, Λ j must have an infinite
number of non-null entries, which may create problems for its numerical representation. And finally,
there can be dependencies between S∗j values for different j’s. Hence, the factored expression (18)
should not be interpreted as implying the independence of the S∗j ’s.

We illustrate these points by a simple example. Assume that the conjugate prior hyperparameters
are equivalent to the fictitious sample {π1 = (1|2|3| . . .),π2 = (2|1|3| . . .)}. Then,

ν= 2, λ1 =





0.5
0.5
0



 Λ2 =





− 0.5 0
0.5 − 0
0 0 −



 , Λ3 =





− 0 0
0 − 0
1 1 −



 ,

R01 =





− 0.5 0.5
0.5 − 0.5
0 0 −



 , R02 =





− 0 0.5
0 − 0.5
0 0 −



 , R03 =





− 0 0
0 − 0
0 0 −



 .

For this example, there are two central rankings σ1 = (1|2|3| . . .) and σ2 = (2|1|3| . . .) which have
the same S∗1:3 = (1, 0, 0), but no σ with S∗j ≡ 0. Assume now that we are given just R01:3, ν= 2 and
S∗1(σ) = 1 for some σ. Because S∗1+2 is the sum of ranks of π−11,2(1) in σ, we can easily infer that
the first two items in σ must be either (1|2) or (2|1) since any other σ will have S∗1 '= 1. But, for
either of these possibilities, the computation of S∗2(σ) from R02 gives S∗2(σ) = 0. Hence, knowing S∗1
informs about S∗2 (in fact determines it completely), showing that S∗1,S∗2 are not independent.

Due to the above difficulties, computing the normalization constant of the posterior is an open
problem. However, under some restrictive conditions, we are able to compute the normalization
constant of the posterior in closed form.

Proposition 10 If ν and Λ1:t are all integer, the S∗j variables are independent, and the range of
values of S∗j is P then

P(S∗j = k) = (N+ν)Beta(k+1,N+1+ν),

and consequently
PΛ,ν(θ1:t ,S∗1:t) = (N+ν)te−∑tj=1[θ jS∗j+(N+ν) lnψ(θ j)].

The proof is given in Appendix A.1.
Now we examine the case of a single parameter IGM. The conjugate prior is given by ν> 0 and

a single matrix R0 corresponding to the normalized sufficient statistics matrix R,

Pν,R0(θ,σ) ∝ e−θL(Σ
T νR0Σ)+tν lnψ(θ), (19)

The posterior is
Pν,R0(θ,σ |π1:N) ∝ e−L(θΣ

T (νR0+R)Σ)+t(ν+N) lnψ(θ)].

Denote for simplicity N′ = N+ν, R′ = (R+νR0)/(N+ν), S∗(σ) = Lσ(N′R′). Then, the parameter
θ again follows a Beta distribution given σ,

PN′,R′(θ |σ) ∝ BetaS∗, tN′+1(e−θ).
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After integrating θ out, we obtain

PN′,R′(σ) ∝ Beta(S∗(σ), tN′+1).

Finally, let us note that that the priors in (16) and (19) are both informative with respect to σ.
By replacing the term Lσ(R0j) (respectively Lσ(R0)) with some r j > 0 (respectively r > 0) one can
obtain a prior that is independent of σ, hence uninformative. However, this prior is improper.

6. Experiments

In this section, we conduct experiments on single θ estimation, general θ estimation, real data sets,
and clustering.

6.1 Estimation Experiments, Single θ

In these experiments we generated data from an infinite GM model with constant θ j = ln2, ln4
and estimated the central permutation and the parameter θ. To illustrate the influence of t, tπ was
constant over each data set. The results are summarized in Table 1.

Note that while θ appears to converge, the distance dK(σML,σ) remains approximately the same.
This is due to the fact that, as either N or t increase, n, the number of items to be ranked, increases.
Thus the distance dK will be computed between ever longer permutations. The least frequent items
will have less support from the data and will be those misranked. We have confirmed this by
computing the distance between the true σ and our estimate, restricted to the first t ranks. This was
always 0, with the exception of n= 200,θ= 0.69, t = 2 when it averaged 0.04 (2 cases in 50 runs)
(A more detailed analysis of the ordering errors will be presented in the next subsection.)

Even so the table shows that most ordering errors are no larger than 1. We also note that the
sufficient statistic R is an unbiased estimate of the expected R. Hence, for any fixed length t̃ of σML,
the σ estimated from R should converge to the true σ (see also Fligner and Verducci, 1988). The
θML based on the true σ is also unbiased and asymptotically normal.

6.2 Estimation Experiments, General θ

We now generated data from an Infinite GM model with θ1 = ln2 or ln4 and θ j = 2−( j−1)/2θ1 for
j> 1. As before, tπ was fixed in each experiment at the values 2, 4, 8. We first look at the results for
t = 8 in more detail. As the estimation algorithm has local optima, we initialized the θ parameters
multiple times. The initial values were (i) the constant value 0.1 (chosen to be smaller than the
correct values of all θ j), (ii) the constant values 1 and respectively 2 depending whether θ1 = ln2 or
θ1 = ln4 and (iii) the true θ parameters. The case (ii) ensured that the initial point is higher than all
correct values for all the estimated θ j.

Figure 6 shows the estimated values of θ j for different sample sizes N ranging in {200, 500,
1000, 2000}. By comparing the respective (i) and (ii) panels, one sees that the final result was
insensitive to the initial values and always close to the true θ j. The results were also identical to the
results for the initialization (iii), and this was true for all the experiments we performed. Therefore,
in the subsequent plots, we only display results for one initialization, (i).

Qualitatively, the results are similar to those for single θ, with the main difference stemming
from the fact that, with decreasing θ j values, the sampling distribution of the data is spread more,
especially w.r.t the lower ranks.
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Estimates of θ (mean stdev)
θ N 200 500 1000 2000

mean std mean std mean std mean std
t = 2 0.68 0.04 0.68 0.03 0.68 0.03 0.68 0.024

0.69 t = 4 0.67 0.03 0.69 0.02 0.69 0.01 0.69 0.01
t = 8 0.68 0.02 0.69 0.01 0.69 0.01 0.69 0.007
t = 2 1.34 0.13 1.37 0.09 1.39 0.05 1.37 0.04

1.38 t = 4 1.40 0.06 1.38 0.05 1.39 0.03 1.38 0.03
t = 8 1.37 0.03 1.38 0.03 1.38 0.02 1.38 0.01

Ordering error
θ N 200 500 1000 2000

dK = 0 dK = 1 dK = 0 dK = 1 dK = 0 dK = 1 dK = 0 dK = 1
t = 2 0.42 0.36 0.28 0.36 0.40 0.38

0.69 t = 4 0.36 0.36 0.40 .44 0.32 0.30
t = 8 0.32 0.34 0.44 0.40 0.38 0.32
t = 2 0.82 0.18 0.92 0.08 0.76 0.24 0.90 0.08

1.38 t = 4 0.92 0.08 0.92 0.08 0.88 0.12 0.88 0.10
t = 8 0.84 0.16 0.92 0.08 0.76 0.20 0.16 0.88

Number observed items n
θ N 200 500 1000 2000

mean std mean std mean std mean std
t = 2 9.24 0.92 10.76 0.66 11.88 1.16 12.68 1.07

0.69 t = 4 11.92 0.81 12.92 1.04 14.32 1.10 14.88 1.01
t = 8 16.04 0.89 17.36 0.99 18.16 1.07 19.40 0.91
t = 2 5.68 0.74 6.04 0.79 6.76 0.78 7.32 0.55

1.38 t = 4 7.72 0.84 8.16 0.74 8.68 0.75 9.48 0.82
t = 8 11.52 0.65 12.52 0.58 13.24 0.66 13.40 0.71

Table 1: Results of estimation experiments, single parameter IGM. Top: mean and standard devi-
ation of θML for two values of the true θ and for different t values and sample sizes N.
Middle: the proportion of cases when the ordering error, that is, the number inversions
w.r.t the true σ−1 was 0, respectively 1. Bottom: number of observed items n (mean and
standard deviation). Each estimation was replicated 25 or more times.

This figure allows us to observe the “asymmetry” of the error in θML. The estimates seem to
biased towards larger values, especially for higher j and less data. There is a theoretical reason for
this. Recall that by Equation (12) θ is a decreasing function of Lσ(R). If the true σ is not optimal
for the given R, due to sample variance, then θML will tend to overestimate θ. Hence θML is a biased
estimate of θ. If however, due to imperfect optimization, the estimated σML is not optimal and has
higher cost than σ, then θML will err towards underestimation. In Figures 6 and 7 the bias is always
positive, indicating that the minimization over σ is done well (even though it is not guaranteed to
reach optimality).
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Now we consider the recovery of the central permutation σ. From our previous remarks, we
expect to see more ordering errors in the bottom ranks of σML, where the distribution is less concen-
trated (smaller θ j) and there is less data available. To visualize these effects easier, it is interesting
to look at rankings with small t. When t is small, 2, 4 or 8, the total number of items to be ranked
(Figure 8) is several times larger than t for our experiments. Thus the estimation algorithm has to put
together an ordering over this many items, when only groups of t = 2,4, . . . were observed together.
As an additional confounding effect, the top elements will be oversampled, so the information about
the lower ranks will have to be inferred indirectly by pooling the information from the whole data
set. This is what the algorithm is doing, and Figure 9 shows how well it succeeds in that.

The figure displays the ordering error between σML and the true σ for each rank, which is
measured by s j(σML|σ). Recall that the total number of inversions between σML and σ is the sum
of all s j; similarly, the total number of errors in σML up to rank r is given by ∑r

j=1 s j(σML|σ). All
plots illustrate the same general tendency of the s j values to increase slowly with j. The increase is
slower when there are more observations per rank, that is when N and t are larger, and when the θ j
are larger (thus the data distribution is more concentrated).

6.3 Experiments on Real Data Sets, With General θ, Tied Parameters

The next experiment was conducted with the data collected by Cohen et al. (1999). The data consists
of a list of 157 universities, the queries, and a set of 21 search engines, the “experts”. Each search
engine outputs a list of up to tmax = 30 URL’s when queried with the name of the university. The
data set provides also a “target” output for each query, which is the university’s home page.

Hence, we have 147 estimation problems (10 universities with no data), with sample size N ≤ 21
(as some experts return empty lists) and with variable length data ranging from t = 1 to t = 30. Fig-
ure 10 gives a summary view of number of samples for each rank Nj, j= 1 : t, the number of distinct
items n and the cumulative number of ranks observed (i.e., T = ∑ j≤30Nj). These values suggest
that estimating a fully parameterized model with distinct θ1:30 may lead to overfitting and therefore
we estimate several parameterizations, all having the form Θr = (θ1,θ2, . . .θr−1,θr,θr, . . .θr). In
other words, ranks 1 : r−1 have distinct parameters, while the following ranks share parameter θr.
We call θ1:r−1 the free parameters and θr the tied parameter. For r= 1 we have the single parameter
model, and for r = tmax = 30 we have the fully parameterized model.

Estimating a model with r parameters is done by a simple modification of the ESTIMATESIG-
MATHETA algorithm which is left to the reader.

The estimation algorithm was started from the fixed value θ j = 0.1 for all runs. The number of
iterations to convergence range between 10 and 50, with typical value 18. The running time was
around per model estimated.

In Figure 11 we give a synopsis of the values of the θ parameters under different models. The
single parameter models yields θ values in the range [0.007, 0.104] with the 10%, 50% and 90%
quantiles being respectively 0.009, 0.018,and 0.032. The parameters θ are on average decreasing in
all models, with the free parameters higher than the tied parameters for the remaining ranks. This is
true on average only, while for individual samples some of the free parameters may be smaller than
the tied parameter.

Notice also that for the models with fewer parameters the values of the free parameters tend to
be higher than the corresponding values in models with more parameters. Compare for instance the
values of θ1 in the two-parameter model with θ1 in the 30 parameter model.
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θ1 = ln2 θ1 = ln4

(i)

1 2 3 4 5 6 7 8
0.2
0.4
0.6
0.8

th
et

a

n = 200

1 2 3 4 5 6 7 8
0.2

0.4

0.6

0.8

th
et

a

n = 500

1 2 3 4 5 6 7 8
0.2

0.4

0.6

th
et

a

n = 1000

1 2 3 4 5 6 7 8
0.2

0.4

0.6

th
et

a

n = 2000

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 200

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 500

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 1000

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 2000

(ii)

1 2 3 4 5 6 7 8
0.2
0.4
0.6
0.8

th
et

a

n = 200

1 2 3 4 5 6 7 8
0.2
0.4
0.6
0.8

th
et

a

n = 500

1 2 3 4 5 6 7 8
0.2

0.4

0.6

th
et

a

n = 1000

1 2 3 4 5 6 7 8
0.2

0.4

0.6

th
et

a

n = 2000

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 200

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 500

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 1000

1 2 3 4 5 6 7 8
0.5

1

1.5

th
et

a

n = 2000

Figure 6: Estimation of the parameters θ1:t for t = 8, different sample sizes N =
200, 500, 1000, 2000, different true parameters θ, and different initializations: (i) θ j ←
0.1, (ii) θ j ← 1 or 2. For each experimental condition, the corresponding graph displays
box plots of the obtained estimates of θ j, j = 1 : 8 for 50 random samples, with the j on
the horizontal axis. The continuous line crossing the box plots marks the true values of
the parameters θ1:8 (exponential decay starting from the given θ1).

For each query and each model size, we computed the rank of the true university home page,
that is, the target, under the estimated central permutation σML. Assuming the search engines are
reasonably good, this rank is an indirect indicator of the goodness of a model. In addition, for each
query, we selected one model by BIC and calculated the target ranks for these models. Table 2 gives
the mean and median of the target rank for each model, as well as for the BIC selection. The rank
is assigned to tmax+1= 31 if the target is not among the items returned by the search engines.

It is evident that while BIC’s performance is better than selecting a one-parameter model, it is
not optimal w.r.t the ranking of the target home page.

We used a modified form of the BIC criterion, that takes into account that the continuous pa-
rameters are not all estimated from the same sample size. We have derived6 the following formula

6. The derivation is omitted, being outside the scope of this paper.
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Figure 7: Same as Figure 6 for t = 2 and t = 4 and a single initial point θ j ≡ 0.1.

for BIC:
BIC(r) = lnPσ,θ(SN)−

1
2

r

∑
j=1
lnN′

j (20)

where N′
j = Nj for j < r and N′

r = ∑tj′=r Nj. This expression approximates the marginal distribution
of the model w.r.t the continuous parameter. The discrete parameter σ is not marginalized out. This
parameter has always the same dimension, dictated by the observed data, and independent of r. In
any finite data situation, the parameter will be finite. Therefore we can see the model selection
problem as a model selection over r and a very large but finite set of discrete σ’s. Maximizing
the BIC in (20) is equivalent with maximizing the BIC over this much larger set of models, if one
assumes that the ML estimation procedure attains a global optimum.

Next, we tested the ESTIMATESIGMATHETA algorithm on the Jester data of Goldberg et al.
(2001).7 This data set represents a set of 100 jokes, which were scored by approximately 25,000
people. From the numerical scores, we obtained a partial ordering over the jokes rated by each
individual. Mao and Lebanon (2008) also analyzed this data set and found that it was multimodal.
To obtain data sets closer to unimodality, we picked a person at random (this is person 945 in the
data) and extracted the N nearest neighbors of this ranking, for N = 200 and N = 12,000. The
smaller data set was expected to be more concentrated than the larger data set.

7. Available at http://goldberg.berkeley.edu.
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Figure 8: Number of items observed for N = 200, 500, 1000, 2000, different parameters θ and t =
2,4,8. Each box plot represents the distribution of the number of items over 50 random
samples.

We ran the ESTIMATESIGMATHETA on this data set with different values of r. The log-
likelihoods obtained on the training set and the BIC values are shown in Figure 12.

As expected, the likelihood is highest or nearly so for the model with maximum number of free
parameters (for N = 12,000 the likelihood is not monotonic due to imperfect optimization over σ).
However, the BIC is not monotonic. For the large N case, where the data is dispersed, it chooses a
model with r = 76 parameters. The estimated θ j values range in [0.05, 0.07] for j = 1 : 30 (nearly
all ranks that have Nj = 12000) but become higher, up to 0.2 for the ranks that have smaller Nj’s.
For the smaller and more concentrated data set, BIC has equal values for three different models: the
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Figure 9: Ordering errors for N = 200, 500, 1000, 2000, different parameters θ j , and t = 2,4,8.
The error for a rank j is given by s j(σML|σtrue). Each box plot represents the distribution
of s j over 50 random samples.
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Figure 10: Summaries of the universities data: boxplots of the number of samples per rank, (a),
histogram of total items observed T (b), histogram of the number n of distinct items
observed (c), over all 147 queries.
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Figure 11: Boxplots of theΘ estimates over all queries for model with 2, 7, and 30 parameters. The
vertical axis of the scale is logarithmic, base 10, that is, 0 corresponds to θ j = 1 and −2
to θ j = 0.01. For clarity, the distribution of the tied parameter (which is always the last
parameter) is replicated for j = r : tmax. The horizontal line marks the mean value of θ
in the single parameter model.

Model size 1 2 3 4 5 6 7 8 9 10 30 BIC
Mean rank (good) 5.3 5.7 4.2 4.2 4.1 4.1 4.4 4.5 5.0 5.2 5.1 5.5
Median rank (good) 3 3 1.5 2 2 2 2 2 2 3 3 3
Mean rank (all) 16.5 16.1 15.4 15.5 15.5 15.6 15.8 15.7 15.9 16.0 16.0 17.5
Median rank (all) 13 15 11 11 12 9 10 10 11 11 11 18

Table 2: Mean and median of the rank of the target web page under each model, and under the BIC
selected model. These statistics are computed once over all 147 universities and once over
a subset of 41 universities where the target is always ranked in the first 30; the subset is
labeled as “good”.
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Figure 12: Log likelihood and BIC values per data point on two subsamples from the Jester data
set. The circles mark the maxima of the log-likelihood, respectively BIC.

single parameter model, the full parameter model, and an intermediate model with r = 36. This is
not so suprising as it may appear, since Nj = N for j ≥ 36, and the estimated θ j values in this range
are all very close to 0.1. Thus, the three models will effectively differ only in the way they model
ranks 37 : 43.

This finding suggests that the single parameter (infinite) Mallows model is a good model locally,
in the space of the jester data. The large N experiment indicates otherwise, which agrees both
with our common sense assumption that this data is multimodal, and with the finding of Mao and
Lebanon (2008). In Mao and Lebanon (2008) a non-parametric Mallows model was used (more
about this model in Section 7.3); our experiment supports their use of a single parameter model.

6.4 Clustering Experiments

The first experiment was with artificial data. We generated sample orderings with 3 clusters of
150 rankings each. Each cluster k was sampled from an Infinite GM model with a single spread
parameters θk, with θ1, θ2, θ3 equal to 1.5, 1.0, 0.7 respectively. The cluster centers are random
permutations of infinitely many objects. In addition, each data set contains 50 outliers. In each data
set all data had the same length t. We experimented with tπ = 4,6,8.

We ran the Exponential Blurring Mean-Shift, K-means, and EM Model-based clustering algo-
rithms 10 times on samples from this distribution. For EBMS, the scale parameter was estimated
based on the average of pairwise distances. In step 5c of the algorithm, the new ranking can be
much longer than the original partial ranking. As seen above, the last ranks are subject to noise and
overfitting. Therefore we truncated the new ranking to the length of number of observed items.

For the K-means and model-based algorithms, we experiment with different numbers of clus-
ters, and report the best classification error with respect to the true clustering. This puts these two
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algorithms at an advantage w.r.t EBMS, but as Table 3 shows, even so the nonparametric algorithm
achieves the best performance.

Note that the error rate in Table 3 is computed including the outliers, that is, we compared a
true clustering with 53 clusters (3 clusters and 50 singletons) to the clustering obtained when the
algorithm converged.

For EM and K-means the number of clusters associated with the lowest classification errors was
between 3 and 5. From the table we see that the K-means and model based approach identified
three primary clusters correctly. K-means did not have the ability of identifying the outliers, so it
just assigned each outlier into one of those primary clusters. The model-based approach assigned
outliers into primary clusters too, but it also gave more uncertainty on the outliers (the probabili-
ties of outliers belonging to their assigned cluster were relatively smaller than data from primary
clusters).

The running time per data set of EBMS was under a minute, and the number of iterations to
convergence followed the pattern typical of mean-shift algorithms and was never larger than 10.

Next, we examine data on college course preferences in the Republic of Ireland. Each prospec-
tive student applies by ranking up to 10 degree course in order of preference. Extensive details of
the college applications system are available at http://www.cao.ie.

The data used in our analysis was previously studied by Gormley and Murphy (2006). They
found that the geographical positions of the institution had a significant influence on choice of
courses which complicated the interpretation of the vocational callings. Our analysis focuses on
the subset of students who applied to Trinity College Dublin (TR) and University College Dublin
(DN), both located in the capital of Ireland. These two universities offered n= 228 degree courses.
There were 1095 female and 862 male applicants who only put TR and DN courses in their top-5
preferences. The EBMS algorithm is applied to top-5 rankings for the female and male applicants
separately.

Table 4 shows these clustering results. For the female applicants the first cluster mostly consists
of Art, Law and Business courses. Since the largest cluster contains about three quarters of the data,
we run the EBMS clustering again for the applicants within this cluster and find four major sub-
groups in term of vocational callings: Law, Business, Drama, and English. The clustering results
for male applicants show 5 clusters, plus a singleton. We run EBMS again for the largest cluster, and
find three major sub-groups in term of vocational callings: Finance, Law, and History. As Gormley
and Murphy (2006) discovered in their experiments, for the subset of Dublin applicants, there are
differences between the clustering of females and males in the central permutations, but similarities
too. The main similarity is that the grouping is vocational. Each group contains courses in both
universities, with no strong preference for one versus the other. Second, a large proportion of both
genders opt for business, economics and law disciplines. For the females, the Arts courses are also
highly favored. As Gormley and Murphy (2006) explains, the Arts course is a broad liberal arts

Top-t rankings EBMS K-means EM
t = 4 0.0030 (0.0001) 0.1014 (0.0038) 0.1008 (0.0025)
t = 6 0.0014 (0.0001) 0.0986 (0.0010) 0.1000 (0.0000)
t = 8 0.0002 (0.0001) 0.0972 (0.0010) 0.1000 (0.0000)

Table 3: Classification Errors: mean and standard deviation of 10 random samples.
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course which can be followed with many different specializations later on. Hence, its high ranking
in several clusters is an indication that female candidates want to leave more options open later. In
general, the central rankings of each cluster are very clearly separating the pool of candidates into
various profiles.

Males
cluster size 657 143 35 13 13
1st choice BESS (TR) Engineering (TR) Science (DN) Science (DN) Medicine (TR)
2nd choice Commerce (DN) Science (DN) Science (TR) Science (TR) Medicine (DN)
3rd choice Business and Law (DN) Engineering (DN) Mathematics (TR) Medicine (TR) Pharmacy (TR)
4th choice Arts (DN) Computer Science (DN) Theoretical Physics (TR) Medicine (DN) Dental Science (TR)
5th choice Economics and Finance (DN) Computer Science (TR) Theoretical Physics (DN) Pharmacy (TR) Veterinary Medicine (DN)

Females
cluster size 725 162 141 41 26
1st choice Arts (DN) Arts (DN) Arts (DN) Physiotherapy (DN) Physiotherapy (TR)
2nd choice Law (DN) Psychology (DN) Psychology (DN) Physiotherapy (TR) Physiotherapy (DN)
3rd choice BESS (TR) Psychology (TR) Psychology (TR) Radiation Therapy (TR) Science (DN)
4th choice Business and Law (DN) Science (DN) Law (DN) Radiography (DN) Medicine (DN)
5th choice Law (TR) Science (TR) Social Science (DN) Occupational Therapy (TR) Medicine (TR)

Table 4: EBMS Clustering of female and male applicants. BESS stands for Business, Economic
and Social Science, TR for Trinity College Dublin and DN for University College Dublin.

7. Discussion and Related Work

In this section, we discuss the relation between IGM and GM, other related models and algorithms,
and draw the brief conclusion.

7.1 Relation to the GMModel

It is useful to compare the various aspects of the IGM presented here with the respective aspects of
the standard GM. We do so now, highlighting also which of them were already published and which
are new.

• s representation. This was introduced by Fligner and Verducci (1986) for the GM model.
For finite number of items n, j ranges in 1 : n−1 and s j in 0 : n− j+1.

• marginal distributions, Pθ,σ, over top-t orderings. It is also introduced by Fligner and
Verducci (1986). The main difference with the IGM model is in the normalization constant,
which has the expression

t

∏
j=1

ψ j(θ j) with ψ j(θ j) =
1− e−(n− j+1)θ j

1− e−θ j
. (21)

Also, for the GM model, the underlying space Sn is finite, while for the IGM, SP is uncount-
able.

• sufficient statistics as in Proposition 1. Proposition 1 represents a new result for the GM as
well. The only difference is in the replacement of ψ(θ j) with ψ j(θ j) from (21) in (8). The
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nearest previous result is that of Meilă et al. (2007) which establishes sufficient statistics for
the GM model over complete permutations.

If we have a single parameter GMmodel and complete permutations, then it is easy to see that
∑ j Q j represents the sufficient statistics for σ alone. In computer science estimating σ in this
context is called the consensus ranking problem, or the minimum feedback arc set problem.
In this case, by setting t = n for all permutations, the sufficient statistics defined in (8) reduce
to the previously known ∑ j Q j. Thus, our main contribution in this respect is to prove that
not knowing θ, and not observing complete permutations still results in an exponential family
model with sufficient statistics.

• θ estimation. In the GM case, this is a convex unidimensional optimization solved numeri-
cally (Fligner and Verducci, 1986; Meilă et al., 2007).

• σ estimation by SIGMA* The SIGMA* and ESTIMATESIGMATHETA algorithms can be
used for the GM model as well, with the estimation of θ performed numerically. The closed
form Equation (12) can serve as a very good initial point for the iterative optimization algo-
rithm. Note that while the heuristics SORTR and GREEDYR are simple, they could not have
been applied before to the GM model over top-t orderings because it was not known that this
model has sufficient statistics for σ.

• conjugate prior Fligner and Verducci (1990) introduced an informative prior for θ, which
had a single “sufficient statistics” parameter. They used it with a uniform prior over σ, noting
that this prior cannot be normalized or integrated analytically. The informative conjugate
prior for θ and σ introduced in Section 5 applies also to the standard GM. Again, the main
formal change is replacing ψ(θ j) by ψ j(θ j). With this change, we lose the elegant closed
form integration over θ proved in Proposition 9. The GM conjugate prior will not be in
general integrable in closed form over θ. The uninformative prior for the IGM becomes of
course a proper prior in the GM case. If we set all the r j parameters to the same value, we
obtain exactly the same prior as Fligner and Verducci (1990).

Often a non-informative prior is used as a regularizer for the ML estimator, turning it into
a Maximum A-Posteriori (MAP) estimator. This is possible for the IGM and GM too. All
one needs to do is to replace, in the inputs to the estimation algorithms, the data sufficient
statistics with the posterior sufficient statistics.

• EBMS clustering The algorithm adapts seamlessly to finite number of items.

7.2 Other Models and Algorithms for Finite Permutations

This work acknowledges its roots in the work of Fligner and Verducci (1986) on stagewise ordering
models and in the recent paper Meilă et al. (2007). The latter shows for the first time that GM
models have sufficient statistics, and describes an exact but non-polynomial algorithm to find the
central permutation. While similarities exist between the algorithm of Meilă et al. (2007) and the
SIGMA* algorithm presented here, we stress that our representation (based on the inversion table
(s j) j=1:t) is different from the representation (denoted Vj) in Meilă et al. (2007).

In fact, the two representations could be called reciprocal, as for any given complete permuta-
tion π, finite or infinite, s j(π|id) =Vj(π−1|id). This difference is trivial if complete permutations are
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observed, but not for missing data. In particular, the distribution of Vj for top-t orderings does not
seem to have sufficient statistics for j> 2 even in the case of finite permutations. The s j representa-
tion has another advantage thatVj has not: for any finite data set, a parameter s j is either completely
determined or completely undetermined the data, whereas in the reciprocal Vj representation all Vj
are weakly constrained by data.

While both our SIGMA* and the algorithm of Meilă et al. (2007) perform branch-and-bound
search on a matrix of sufficient statistics, the sufficient statistics in this paper are derived by an
entirely different method, and cannot be obtained by naively replacing the sufficient statistics of
Meilă et al. (2007).

It may be noted that the cost Lσ(R) bears a striking similarity to the cost function used by
Quadrianto et al. (2010) in the context of matching by the method of kernelized sorting. The latter
cost function can be expressed as traceKΣTLΣ, to be minimized over Σ. The authors show that
this problem is quadratic in the matrix Σ when K,L are symmetric, positive definite matrices and
use a quadratic relaxation algorithm to optimize it efficiently. The cost Lσ(R) can be rewritten as
traceQ0ΣTRΣ where Q0 is the upper triangular matrix defined in the proof of Proposition 2. The
main difference between our cost function and the one of Quadrianto et al. (2010) is the fact that
ours involves the non-symmetric matrices Q0,R and is not a quadratic problem in Σ.

An interesting application of the GMmodel to multimodal data is Lebanon and Lafferty (2003),
where the σ’s play the role of the data, so the parameter estimation is done entirely differently.
In an early work Critchlow (1985) examines several classes of (Haussdorf) distances for partial
orderings. Murphy and Martin (2003) cluster ranking data by the EM algorithm and in Gormley
and Murphy (2005, 2006) the EM is used for the purpose of analyzing Irish voting patterns and
college applications. The base model used by the latter papers is is not the Mallows model but the
Plackett-Luce model (Plackett, 1975; Luce, 1959). The estimation of this model from data is much
more difficult and, as Gormley and Murphy (2005) show, can be only done approximately. Busse
et al. (2007) use the s j representation in the context of EM clustering of partial orderings, without
however recognizing the existence of sufficient statistics.

A greedy algorithm for consensus ordering with partially observed data is introduced in Cohen
et al. (1999). Meilă et al. (2007) show that their cost function optimized is closely related to the
log-likelihood of the Mallows’ model, using a modified form of the Q matrix defined in (10). This
algorithm, like GREEDYR, does not estimate a θ parameter. Cohen et al. (1999) introduce a compu-
tational improvement based on interpreting a value Qii′ > 0.5 as an arc from i to i′. They note that
it is sufficient to search for the optimal permutation in each strongly connected component of the
resulting directed graph, which can sometimes greatly reduce the dimension of the search space.

If a permutation π is not complete, Cohen et al. (1999) replaces the unobserved Qii′(π) with
the value 0.5. This ad-hoc procedure allows the GREEDYR to run on top-t rankings, but it is not
statistically correct, since the optimized cost will not be a likelihood. If we use the correct matrix of
sufficient statistics R, then the reduction procedure based on strongly connected components does
not apply any more.

7.3 Other Models and Algorithms For Infinite Permutations

All the above works deal with permutations on finite sets. In fairness to Cohen et al. (1999) we
remark that their work, although non-rigorous with respect to incomplete permutations, is motivated
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by the same problem as ours, that is, dealing with a very large set of items, of which only some are
ranked by the “voters”.

The paper of Thoma (1964) studies the space of infinite permutations which differ from the
identity in a finite number of positions. In the vocabulary of the present paper, these would be
the infinite permutations at finite distance dK from σ. In a single parameter infinite GM, these
infinite permutations are the only ones which have non-zero probability. While from a probabilistic
perspective the two views are equivalent, from a practical perspective they are not. We prefer to
consider in our sample space all possibile orderings, including those with vanishing probability. It
is the latter who are more representative of real experiments. For instance, in the university web
sites ranking experiment, our model assumed that there is a “true” central permutation from which
the observations were generated as random perturbations. This is already an idealization. But we
also have the liberty to assume that the observations are very long orderings which are close to the
central permutation only in their highest ranks, and which can diverge arbitrarily far from it in the
latter ranks. We consider this a more faithful scenario than assuming in addition that the observation
must be identical to the central permutation (and hence to each other!) on all but a finite number of
ranks.

Recently Mao and Lebanon (2008) introduced a kernel density estimator and estimation algo-
rithm, that elegantly allows partial orderings of a large variety of types to be modeled together. The
kernel is the single parameter Mallows’ model, with θ as kernel width. One of the interesting con-
tributions of this paper is an algorithm for averaging the d(π̃1, π̃2) over all (infinite) permutations
π̃1, π̃2 compatible with given partial orderings π1,π2. The relation with EBMS is evident. It is also
evident that within EBMS one could incorporate the average distance as calculated by Mao and
Lebanon (2008) instead of the current set distance, with everything else staying the same. Since
the average distance is always larger than the set (minimum) distance for top-t permutations, and in
particular it is not 0, the optimal kernel width θ will have different values.

7.4 Conclusion

We have introduced a natural extension of stagewise ordering to the the case of infinitely many
items. The new probabilistic model preserves the elegant properties of its finite counterpart: it has
sufficient statistics, an exact estimation algorithm (albeit intractable in the worst case) and tractable
heuristics that work well when the data come from a unimodal distribution. Sampling, distance
computations, clustering extend to this class of models in a natural way.

We have paid particular attention to non-parametric clustering by mean-shift blurring, showing
by experiments that the algorithm is practical and effective. This illustrates our view of the utility
of the IGM model. The IGM, an exponential model with a simple, intuitive distribution, should
be seen as a building block for more complex distributions, as needed by the data at hand. For
instance, the extension to finite mixtures (that is, parametric clustering and multimodal distributions)
is immediate. It is also an open problem to extend the kernel density estimator of Mao and Lebanon
(2008) to infinite models and GM models with multiple parameters.

We are not aware of any statistical work on estimating parametric models over infinite orderings.
There are also no previous results on sufficient statistics for finite partial orderings, so the present
paper can be said be first in this respect as well.

One important advantage of having a model with multiple parameters, with n finite or infinite,
is that each rank can be modeled by a separate parameter θ j (the standard GM/IGM) or one can

3513
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tie the parameters of different ranks (the way we did in Section 6). This way, one can use larger
θ j values to penalize the errors in the first ranks more, and smaller θ j values for the lower ranks,
where presumably more noise in the orderings is permissible. This property of the model fits well
with human perception of “distance” between orderings, or with the noise we may expect in human
generated data.

Tying the parameters for the lower ranks is also important for reducing variance. If the observed
data have different lengths t, then necessarily Nj ≥ Nj′ for j′ > j. In other words, for larger j’s
we may have less data available to estimate θ j. Tying the parameters has the benefic effect of
smoothing the θ j values, as it was shown in all the experiments with real data. Another way to
smooth the parameters is to use an uninformative prior as a regularizer. This way, too, each θ j can
be regularized separately by the hyperparameter r j. This hyperparameter has a clear meaning—it
is the expectation of s j in the fictitious sample; therefore, a user can easily tune the strength of the
prior using Equation (7) with r j in place of ξ j. This equation will give for any r j a value θ0j towards
which the θ j value will be shrunk. Shrinkage via the conjugate prior can be done for the finite GM
as well, except that the relation (7) will be implicit instead of closed form.

Beyond its mathematical elegance and simplicity of use, we believe that an infinite model has
practical importance as well. In many instances the number of items to rank is very large. Search
engines come immediately to mind, understood as algorithms for retrieval by inexact matching from
a large database. Under this umbrella fall not only the well-known web search engines, but also the
various specialized algorithms for finding matches in biological data bases, like Sequest (Eng et al.,
1994) and Blast (Altschul et al., 1990). These algorithms output ranked lists, from which the human
user interprets only the top t entries. The data base, that is, the set of items, is usually not fixed;
typically it is growing as more proteins, genes, web pages are discovered. It is natural under this
scenario to assume that n is potentially infinite. As we have shown, this does not make working
with the data more difficult, and occasionally makes it faster.
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Appendix A. Proofs

We give the proofs for the asymptotic results in the following subsection.

A.1 Proofs for the Asymptotic Results

Proof of Proposition 5We start with the observation that under Pid,θ any observed top-t ranking π is
a function of the variables s1:t who are independently distributed according to discrete exponential
laws. For each s j the empirical CDF converges to the true CDF and, as we know, this entails the fact
that for any function f over N, the sample expectation of f converges to the true expectation of f ;
see for example, van der Vaart (1998). This also holds for the joint distribution of s1:t and functions
of s1:t . In other words, the sample expectation of any function f (π) is consistent, when π ranges
over all top-t permutations.
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Now consider Lσ(Rj) for a fixed σ. By definition, Lσ(Rj(π)) = s j(π|σ) and Lσ(R̂ j) is the
sample expectation of s j(π|σ). According to the definition of s j(π|σ) in (2), this is a function
of π−1(1), . . .π−1( j) and the fixed σ. It follows by the argument above that Lσ(R̂ j) converges to
Lσ(Rj) for any j and any σ.

Note that for σ= id the argument is simpler, since L(Rj) = s j. !

We now refer to a property of the Mallows model introduced by Fligner and Verducci (1988).
An IGM Pσ,θ has complete consensus if for any two items i, i′ with i≺σ i, we have that P[i≺π i′]>
P[i′ ≺π i]. The following result is a modified form of Theorem 2 of Fligner and Verducci (1988) that
applies to truncated infinite permutations.

Proposition 11 (Complete consensus) The IGM model Pσ,θ with

θ j ≥ θ j+1, (22)

has complete consensus. Moreover, condition (22) entails that for any fixed t, any j = 1 : t, and any
items i, i′ with σ(i)< σ(i′)

Rii′, j < Ri′i, j.

Proof Fix i, i′ as above. Let π be a (complete) permutation where i ≺π i′. Let us denote by π′ the
permutation obtained by transposing i and i′ in π; denote π(i) = k, π(i′) = k′, k′ > k.

We want to show that under the condition of the proposition, Pσ,θ(π)≥Pσ,θ(π′). We first observe
that

s j(π′) =











s j(π) for j < kor j > k′
s j(π)+ i′ − i− r for j = kand r = |{x | i< σ(x)< i′, π(x)< k}|
s j(π)ors j(π)+1 for k < j < k′
s j(π)− r′ for j = k′ and r′ = |{x | i< σ(x)< i′, π(x)> k′}|

.

Note also that r+ r′ ≤ i′ − i− 1 or, in other words, i′ − i− r > r′. Now, we look at the likelihood
ratio Pσ,θ(π)/Pσ,θ(π′):

ln[Pσ,θ(π)/Pσ,θ(π′)] =
k′

∑
j=k

θ j[s j(π′)− s j(π)],

≥ θk[sk(π′)− sk(π)]+θk′ [sk′(π′)− sk′(π)],
= θk(i′ − i− r)−θk′r′,
≥ θkr′ −θk′r′ = (θk−θk′)r′ ≥ 0.

It follows that Pσ,θ(π)≥ Pσ,θ(π′). Moreover, if π(i) = j,π(i′) = j+1 for some j then this inequality
is strict. Now let A= {π | i≺π i′} be the set of all permutations π as defined above; its complement
B equals {π′ | i′ ≺π′ i}. It is immediate that from the above that Pσ,θ(A) = Pσ,θ(i ≺ i′) > Pσ,θ(B) =
Pσ,θ(i′ ≺ i), which proves the first claim of the proposition.

For the second claim, fix i, i′ with σ(i) < σ(i′), a rank j and another rank j′ > j. Take π such
that π(i) = j and π(i′) = j′, and let π′ be the permutation obtained by transposing i and i′ in π.
Then obviously Pσ,θ(π) > Pσ,θ(π′). Rii′, j, by definition, is the total probability of permutations of
the form π with j′ = j+1, j+2, . . ., while Ri′i, j is the total probability of permutations of the form
π′. Therefore, Rii′, j > Ri′i, j. !
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MEILĂ AND BAO

Proof of Proposition 5 From Proposition 11 it follows that if the true central permutation is the
identity, then Lid(Rj) < Lσ(Rj) for any σ '= id. Let ε = Lσ(Rj)− Lid(Rj) > 0. Then, because of
the consistency of Lσ(Rj) for any σ, it follows that Pid,θ[Lid(R̂ j)−Lσ(R̂ j)> Lid(Rj)−Lσ(Rj)+ε =
0] → 0. !

Proof of Proposition 6 This proof follows from the consistency of Lσ(Rj). Since the ML esti-
mate of θ j is a continuous function of Lσ(Rj) it will be consistent as well. Similarly, for the single
parameter IGM, the ML estimate of θ is a continuous function of (Lσ(Rj), j = 1 : t), and therefore
it is consistent as well. !

Proof of Proposition 10 Given the observed rankings {π1:N} and the hyperparameters ν, Λ1:t
the marginal distribution of the central permutation σ can be expressed in terms of S∗j :

P(S∗j = k) ∝ Beta(k+1,N+1+ν) =
Γ(k+1)Γ(N+1+ν)
Γ(k+N+2+ν)

= f (k),

f (k+1)
f (k)

=
Γ(k+2)Γ(N+1+ν)
Γ(k+N+3+ν)

÷
Γ(k+1)Γ(N+1+ν)
Γ(k+N+2+ν)

=
k+1

N+ k+2+ν
,

f (k) =
k!

(N+2+ν) · · ·(N+1+ν+ k)
× f (0) =

k!
(N+1+ν) · · ·(N+1+ν+ k)

.

We prove in Lemma 12 that ∑∞
k=0 f (k) = 1

(N+ν) . Therefore, the normalization constant of P(S
∗
j) is

1/(N+ν) and the conclusion of the Proposition follows. !

Lemma 12 ∑∞
k=0

k!
(N+ν+1)···(N+ν+1+k) =

1
(N+ν) .

Proof of Lemma 12We write the general term of the series as a difference
1

N+ν
−

1
(N+ν+1)

=
1!

(N+ν)(N+ν+1)
,

1!
(N+ν)(N+ν+1)

−
1!

(N+ν+1)(N+ν+2)
=

2!
(N+ν)(N+ν+1)(N+ν+2)

,

...

Through mathematical induction we can prove that
K

∑
k=0

k!
(N+ν+1) · · ·(N+ν+1+ k)

+
(K+1)!

(N+ν)(N+ν+1) · · ·(N+K+ν+1)
=

1
(N+ν)

.

Moreover, for fixed N,ν,
(K+1)!

(N+ν)(N+ν+1) · · ·(N+K+ν+1)
=

(K+1)!(N+ν−1)!
(N+K+ν+1)!

,

=
(N+ν−1)!

(K+2)(K+3) · · ·(N+K+ν+1)
,

= O(k−(N+ν)).

From this the desired result follows. !
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Abstract

We consider the estimation of regression coefficients in a high-dimensional linear model. For re-
gression coefficients in !r balls, we provide lower bounds for the minimax !q risk and minimax
quantiles of the !q loss for all design matrices. Under an !0 sparsity condition on a target coeffi-
cient vector, we sharpen and unify existing oracle inequalities for the Lasso and Dantzig selector.
We derive oracle inequalities for target coefficient vectors with many small elements and smaller
threshold levels than the universal threshold. These oracle inequalities provide sufficient conditions
on the design matrix for the rate minimaxity of the Lasso and Dantzig selector for the !q risk and
loss in !r balls, 0≤ r≤ 1≤ q≤∞. By allowing q=∞, our risk bounds imply the variable selection
consistency of threshold Lasso and Dantzig selectors.

Keywords: variable selection, estimation, oracle inequality, minimax, linear regression, penalized
least squares, linear programming

1. Introduction

As modern information technologies relentlessly generate voluminous and complex data, penalized
high-dimensional regression methods have been a focus of intense research activities in machine
learning and statistics in recent years. In many statistical and engineering applications, the number
p of design variables (features, covariates) can be larger or even of larger order than the sample size
n, but the number of important variables may still be smaller than the sample size. In such cases,
one seeks a parsimonious model that fits the data well. In linear regression, a popular approach for
achieving this goal is to impose a suitable penalty on the empirical loss.

This paper considers the estimation of a sparse vector of regression coefficients in a linear model.
Specifically, we are interested in the rate minimaxity of the Lasso and Dantzig selector under the
!q loss for the estimation of regression coefficients in !r balls. This requires lower bounds of the
minimax !q risk and minimax quantiles of the !q loss over all estimators as well as matching upper
bounds for the Lasso and Dantzig selector.
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Let y ∈ Rn be a response vector and X = (x1, . . . ,xp) ∈ Rn×p be a design matrix. The Lasso
(Tibshirani, 1996) is the !1-penalized estimator

β̂
(L)

(λ) = argmin
b

{
‖y−Xb‖2/(2n)+λ‖b‖1

}
(1)

for the regression coefficients. In the signal processing literature, the Lasso is known as basis pursuit
(Chen and Donoho, 1994). The Lasso has the interpretation as boosting (Freund and Schapire, 1996;
Friedman, Hastie, and Tibshirani, 2000) and is computationally feasible for high-dimensional data
(Osborne, Presnell, and Turlach, 2000a,b; Efron, Hastie, Johnstone, and Tibshirani, 2004). More
recently, Candes and Tao (2007) proposed an !1-minimization method called the Dantzig selector,

β̂
(D)

(λ) = argmin
b

{
‖b‖1 : |x′j(y−Xb)/n|≤ λ,∀ j

}
. (2)

A focus of recent studies of high-dimensional linear regression has been on the performance of
the Lasso and Dantzig selector for the estimation of the regression coefficients. Candes and Tao
(2007) derived an elegant probabilistic upper bound for the !2 loss of the Dantzig selector under a
condition on the number of nonzero coefficients and a uniform uncertainty principle on the Gram
matrix. Efron, Hastie, and Tibshirani (2007) questioned whether a similar performance bound holds
for the Lasso estimator as well. Upper bounds for the !q loss of the Lasso estimator has being studied
by Bunea, Tsybakov, and Wegkamp (2007) and van de Geer (2008) for q = 1, Zhang and Huang
(2008) for q ∈ [1,2], Meinshausen and Yu (2009) for q = 2, Bickel, Ritov, and Tsybakov (2009)
for q ∈ [1,2] with a parallel analysis of the Dantzig selector, and Zhang (2009b) for q ≥ 1. Under
different sets of regularity conditions on the Gram matrix and the sparsity of regression coefficients
β ∈ Rp, these results provide error bounds of the form ‖β̂−β‖q ≤ O(k1/qλ), where k is the number
of nonzero entries of a target vector of regression coefficients or an intrinsic dimensionality of the
sparse estimation problem. For N(0,σ2) errors and standardized designs with ‖x j‖ =

√
n, these

studies require a universal penalty level λuniv = σ
√
(2/n) log p or greater for the Dantzig selector

and a penalty level λ greater by a constant factor than λuniv for the Lasso. Different sets of regularity
conditions lead to different forms of constant factors in the error bounds so that the existing error
bounds are typically not directly comparable mathematically.

This paper contributes to high-dimensional regression in several ways. We provide lower bounds
for the minimax !q risk in !r balls and the minimax quantiles of the !q loss for all designs X . We
derive sufficient conditions on X for the Lasso and Dantzig selector to attain the rate of the minimax
!q risk and the minimax quantiles of the !q loss. We provide oracle inequalities for the !q loss of
the Lasso and Dantzig selector which sharpen, unify and extend the existing results and allow the
penalty level λ to be of smaller order than the universal penalty level.

The rest of the paper is organized as follows. In Section 2, we describe lower bounds for the
minimax risk and loss in !r balls. In Section 3, we provide oracle inequalities for the Lasso and
Dantzig selector under the !0 sparsity of regression coefficients. We compare these oracle inequal-
ities with existing ones and describe their implications in variable selection and rate minimaxity in
!0 balls. In Section 4, we provide more general oracle inequalities to allow many small regression
coefficients and penalty levels of smaller order than σ

√
(2/n) log p. These oracle inequalities are

used to establish the rate minimaxity for the !q loss in !r balls. In Section 5, we make a few remarks.
An appendix contains all proofs.
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We use the following notation throughout the paper. For vectors v= (v1, . . . ,vp)′, ‖v‖0 = #{ j :
v j += 0} and ‖v‖q = (∑ j |v j|q)1/q is the !q norm with the special ‖v‖= ‖v‖2 and the usual extension
to q=∞. Functions are applied to vectors in individual components, f (v) = ( f (v1), . . . , f (vp))′. For
matricesM and 0≤ a,b≤ ∞, ‖M‖a,b =max{‖Mv‖b : ‖v‖a = 1} is the operator norm from !a to !b.
For subsets A and B of {1, . . . , p}, XA = (x j, j ∈ A), ΣA,B = X ′AXB/n, ΣA,∗ = X ′AX/n, ΣA = ΣA,A, and
PA is the projection from Rn to the linear span of {x j : j ∈ A}. For real x, x+ =max(x,0), 1/x+ =∞
for x≤ 0, and -x. is the largest integer upper bound of x. For real numbers an and bn, an ≈ bn means
an = (1+o(1))bn, an ! bn means an ≤ (1+o(1))bn, and an " bn means an =O(bn). For simplicity,
the dependence of estimators on the penalty level λ is suppressed unless otherwise stated.

2. Lower Bounds for the Estimation Risk and Loss

Consider the linear model

y= Xβ+ ε=
p

∑
j=1

β jx j+ ε. (3)

Throughout the sequel, Pβ,X is the probability measure given {β,X} under which ε ∼ N(0,σ2In).
For simplicity, we also assume ‖x j‖2 = n whenever Pβ,X is referred to. Define

Θr,R = {v ∈ R
p : ‖v‖r ≤ R}, r > 0, Θ0,k = {v ∈ R

p : ‖v‖0 ≤ k}, (4)

as the !r and !0 balls respectively. Let σn = σ/
√
n and

λuniv = σn
√
2log p, λmm = σn

{
2log

(σrnp
Rr

)}1/2
, λmm = σn

√
2log(p/k), (5)

be respectively the universal (univ) penalty level (Donoho and Johnstone, 1994) and the minimax
(mm) penalty levels for the !r and !0 balls. The dependence of λmm on {r,R} or {0,k} is suppressed
since λmm is always used in association with a specific ball in (4).

Donoho and Johnstone (1994) proved that for 0< r< q and based on a p-vector ỹ∼N(β,σ2nIp),
the minimax !q risk in the !r ball Θr,R is approximately

inf
δ
sup
β∈Θr,R

Eβ,X
∥∥δ(ỹ)−β

∥∥q
q = (1+o(1))Rrλq−rmm

and is achieved within an infinitesimal fraction by threshold estimators at the threshold level λmm,
provided that λmm/σn→ ∞ and Rr/λrmm→ ∞. Here the infimum is taken over all Borel mappings
δ of proper dimensions. The following theorem extends their result to the estimation of regres-
sion coefficients under Pβ,X . For any class of vectors Θ ⊂ Rp, the minimax !q risk is Rq(Θ;X) =
infδ supβ∈ΘEβ,X‖δ(X ,y)−β‖

q
q.

Theorem 1 Let Θr,R and Θ0,k be as in (4) and λmm as in (5) with R > 0 and q ≥ r > 0. Suppose
Rr/λrmm→ ∞, k→ ∞ and λmm/σn→ ∞. Then,

Rq(Θr,R;X)
Rrλq−rmm

≥ (1+o(1)),
Rq(Θ0,k;X)

kλqmm
≥ (1+o(1)). (6)

Moreover, for either Θ=Θr,R with k = Rr/λrmm or Θ=Θ0,k,

inf
X
inf
δ
sup
β∈Θ

Pβ,X
{
‖δ(X ,y)−β‖qq ≥ (1− ε)kλqmm

}
≥
ε+o(1)
3q

, 0< ε< 1. (7)
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Remark 2 The value k in (7) can be viewed as an intrinsic lower bound for the number of param-
eters to be estimated for the minimaxity under the !q loss. By (5), λmm ≤ λuniv iff R≥ σn for r > 0.
For λuniv 3 λmm and respectively for r = 0 and 0 < r ≤ 1, Corollary 4 in Section 3.1 and Theorem
17 in Section 4.2 provide conditions on X for the Lasso and Dantzig selector to match the rate of
the minimax lower bound kλqmm in (7). For λmm4 λuniv, Theorem 19 in Section 4.2 gives the rate
minimaxity of the Lasso.

During the revision of this paper, we became aware of the technical report of Raskutti, Wain-
wright, and Yu (2009). The lower bounds in Theorem 1 are identical for all design matrices X and
thus are sharp only up to a constant factor under certain conditions on X . For example, the minimax
risk in a parameter classΘ5 0 is no smaller than the radius of the null setΘ∩{b : Xb= 0}. This and
some other aspect of the design matrix have been used to derive sharper lower bounds in Raskutti,
Wainwright, and Yu (2009). In our technical report (Ye and Zhang, 2009) and in Zhang (2009a),
Theorem 1 only covers the case r > 0.

3. Oracle Inequalities under !0 Sparsity and Variable Selection

We discuss in three subsections oracle inequalities for the !q loss, related work, and variable selec-
tion. We focus on coefficient vectors with a relatively small number of nonzero entries here. The
more complicated !r-sparse case will be considered in Section 4.

3.1 Oracle Inequalities and Rate Minimaxity under !0 Sparsity

For ξ≥ 0 and J ⊂ {1, . . . , p}, define cone invertibility factors (CIF)

CIFq,!(ξ,J) = inf
{ |J|1/q‖Σu‖∞
‖uA‖q

: u ∈ C (ξ,J), |A\ J|≤ !
}

(8)

with cones C (ξ,J)= {u : ‖uJc‖1≤ ξ‖uJ‖1 += 0}. Note thatCIFq,!(ξ,J)=CIFq,p−|J|(ξ,J) for !≥ p−
|J| and since the infimum is attained when uA takes the ! largest elements of u outside J,CIFq,!(ξ,J)
is decreasing in !. Similarly, define sign-restricted cone invertibility factors (SCIF)

SCIFq,!(ξ,J) = inf
{ |J|1/q‖Σu‖∞
‖uA‖q

: u ∈ C−(ξ,J), |A\ J|≤ !
}
. (9)

with sign-restricted cones C−(ξ,J) = {u ∈ C (ξ,J) : u jΣ j,∗u ≤ 0 ∀ j +∈ J}. We first present oracle
inequalities in terms of the (sign-restricted) CIF.

Theorem 3 Let β̂
(D)

and β̂
(L)

be the Lasso and Dantzig selector in (1) and (2), 1≤ q≤∞, β∗ ∈Rp,
J = { j : β∗j += 0} and z∗∞ = ‖X ′(y−Xβ∗)/n‖∞.
(i) Let CIFq,!(1,J) and SCIFq,!(ξ,J) be as in (8) and (9). In the event z∗∞ ≤ λ,

‖β̂
(D)
−β∗‖q ≤

|J|1/q(λ+ z∗∞)
CIFq,p(1,J)

≤
2|J|1/qλ

CIFq,p(1,J)
, (10)

and in the event z∗∞ ≤ λ(ξ−1)/(ξ+1)

‖β̂
(L)
−β∗‖q ≤

|J|1/q(λ+ z∗∞)
SCIFq,p(ξ,J)

≤
{2ξ/(ξ+1)}|J|1/qλ

SCIFq,p(ξ,J)
. (11)
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(ii) For λ = σ
√
(2/n) log(p/ε) and λ = σ

√
(2/n) log(p/ε)(ξ+ 1)/(ξ− 1) respectively, (10) and

(11) hold with β∗ = β and at least probability 1− ε/
√
π log(p/ε) under Pβ,X .

Theorem 3 immediately provides a sufficient condition on the design X for the rate minimaxity
of the Lasso and Dantzig selector in the quantiles of the !q loss in !0 balls, in the sense of (7) of
Theorem 1. We state this result as the following corollary. Define

CIF∗q (ξ,k) = inf
{
k1/q‖Σu‖∞/‖u‖q : 0< ‖u‖1 ≤ (1+ξ)max

|J|=k
‖uJ‖1

}
. (12)

Corollary 4 Suppose k∧ (p/k)→ ∞ for certain (p,k) = (pn,kn).
(i) Suppose M(D)

q,k = 2
√
log p/{

√
log(p/k)CIF∗q (1,k)} ≤M∗ < ∞. Then, the Dantzig selector β̂ =

β̂
(D)

with λ= λuniv in (5) is rate minimax in the sense of

sup
β∈Θ0,k

Pβ,X
{
‖β̂−β‖q ≥M∗k1/qλmm

}
→ 0. (13)

(ii) Suppose M(L)
q,k,ξ = max|J|≤k 2{ξ/(ξ− 1)}

√
log p/{

√
log(p/k)SCIFq,p(ξ,J)} ≤ M∗ < ∞. Then,

(13) holds for the Lasso β̂= β̂
(L)

with λ= λuniv(ξ+1)/(ξ−1).

The proof of Theorem 3 is simple since the (sign-restricted) CIF are exactly what we need. Let
h(D) = β(D)(λ)−β∗, h(L) = β(L)(λ)−β∗ and h= h(D) or h(L) throughout the sequel. It follows from
the feasibility of β∗ for the constraint in (2) and the Karush-Kuhn-Tucker conditions for the Lasso
(1) respectively that for z∗∞ ≤ λ,

h(D) ∈ C (1,J), v′Σh(L) ≤ (z∗∞+λ)‖vJ‖1+(z∗∞−λ)‖vJc‖1, (14)

for all vectors v satisfying sgn(vJc) = sgn(h(L)Jc ). With v = h(L) or vJ = 0 in (14), it follows that
h(L) ∈ C−(ξ,J) for ξ≥ (λ+ z∗∞)/(λ− z∗∞). Theorem 3 then follows from

‖Σh‖∞ ≤ z∗∞+λ. (15)

The lower bounds for the (sign-restricted) CIF in the following proposition facilitate more ex-
plicit results and connections to existing approaches. For given {J,!} define

φq,!(u,A,r,w,B;ξ,J) = 1−ξ|J|1−1/q(ar/!)1−1/r‖ΣB,AwA‖r/(r−1) (16)

in the following domain: u ∈ C (ξ,J), A= argmax|B\J|≤! ‖uB‖1 (determined by u up to ties), r ≥ 1,
w′AΣAuA = ‖uA‖q, B∩A= /0, |B|= -!/ar. and ar = (1−1/r)/r1/(r−1).

Proposition 5 Let {ξ,q,r}⊂ [1,∞], 1≤ s≤ q and 0< !≤ p− |J|. Then,

max
{CIFq,!(ξ,J)
CIFs,p(ξ,J)

,
SCIFq,!(ξ,J)
SCIFs,p(ξ,J)

}
≤Cs,q(ξ, |J|/!), (17)

where Cs,q(ξ, t) = (1+ξ)(1/s−1/q)/(1−1/q){1+ξq(aqt)q−1}(1−1/s)/(q−1);

CIFq,!(ξ,J) = inf
u∈C (ξ,J)

inf
|A\J|=!

sup
v+=0

|J|1/qv′Σu
‖v‖1‖uA‖q

≥ φ∗q,!(ξ,J), (18)
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where φ∗q,!(ξ,J) =minu,A maxr,w minB φq,!(u,A,r,w,B;ξ,J)|J|1/q/‖wA‖1; and

SCIFq,!(ξ,J)≥ inf
u∈C−(ξ,J)

inf
|A\J|=!

sup
v∈Q(u,J)

|J|1/qv′Σu
‖vJ‖1‖uA‖q

≥ φ∗∗q,!(ξ,J), (19)

where φ∗∗q,!(ξ,J) = minu,A maxr,w minB φq,!(u,A,r,w,B;ξ,J)|J|1/q/‖wJ‖1 with Q(u,J) =
{v : sgn(vJc) = sgn(uJc)} and vectors u ∈ C−(ξ,J) and w ∈Q(u,J).

Remark 6 Taking w= u‖uA‖/(u′AΣAuA) in (16) for the !2 loss, we find

φ̃∗2,!(ξ,J) = min
u,A
max
r
min
B

{
u′AΣAuA−ξ|J|1/2(ar/!)1−1/r‖ΣB,AuA‖r/(r−1)

}
,

≤ min
{
φ∗∗2,!(ξ,J),{(1+ !/|J|)1/2∧ (1+ξ)}φ∗2,!(ξ,J)

}
(20)

with ‖uA‖ = 1 and {A,r,B} in (16), due to ‖uA‖1 ≤ {(1+ !/|J|)1/2 ∧ (1+ ξ)}|J|1/2 and ‖wJ‖1 ≤
|J|1/2/(u′AΣAuA). However, for q > 2, w ∝ u in (16) does not lead to a right normalization since
‖uA‖/|A|1/2 does not control ‖uA‖q/|A|1/q. For general q ∈ [1,∞], ‖ΣAwA‖q/(q−1) =
w′AΣAuA/‖uA‖q = 1 gives a properly length normalized lower bound:

φ∗q,!(ξ,J)≥minA,B

{
1−ξ|J|1−1/q(ar/!)1−1/r‖Σ−1A ΣA,B‖r,q

}
|J|1/q/‖Σ−1A ‖∞,q. (21)

For (|A|, |B|,‖u‖,‖v‖r) = (-a.,-b.,1,1) with A∩B= /0, define

δ±a =max
A,u

{
±
(
‖ΣAu‖−1

)}
, δa = δ+a ∨δ−a , θ

(r)
a,b = max

A,B,u,v
v′ΣA,Bu. (22)

Oracle inequalities for the !q loss, 1≤ q≤ 2, have been given in terms of the quantities in (22). The
quantities 1± δ±a give the maximum and minimum sparse eigenvalues of the Gram matrix Σ up to
dimension -a.. For ‖uA‖= 1, we have u′AΣAuA≥ 1−δ

−
|A|, ‖ΣB,AuA‖r/(r−1)≤ θ

(r)
|B|,|A| and ‖ΣB,AuA‖

2≤
(1+δ+|B|)u

′
AΣAuA. Thus, Theorem 3, (17) with Cq,2(ξ,k/!) = (1+ξ)2/q−1{1+ξ2k/(4!)}1−1/q, and

(20) with r ∈ {2,∞} yield the following corollary.

Corollary 7 Let ‖β∗‖0 = |J|= k and 1≤ q≤ 2. Then, for z∗∞ = ‖X ′(y−Xβ∗)/n‖∞ ≤ λ,

‖β̂
(D)

(λ)−β∗‖q ≤
2|J|1/qλ

CIFq,p(1,J)
≤
22/q(1+ k/(4!))1−1/q(2∧

√
1+ !/k)k1/qλ

(1−δ−k+!)+{1−min(F̃1, F̃2, F̃3)}+
, (23)

where 1≤ !≤ p− k, F̃1 = (k1/2/!)θ(∞)!,k+!/(1−δ
−
k+!)+, F̃2 =

√
k/(4!)θ(2)4!,k+!/(1−δ

−
k+!)+ and F̃3 =

{(k/(4!))(1+δ+4!)/(1−δ
−
k+!)+}

1/2. Moreover, for z∗∞ ≤ λ(ξ−1)/(ξ+1),

‖β̂
(L)

(λ)−β∗‖q ≤
{2ξ/(ξ+1)}|J|1/qλ

SCIFq,p(ξ,J)
≤

(1+ξ)2/q−2(1+ξ2k/(4!))1−1/q2ξk1/qλ
(1−δ−k+!)+{1−ξmin(F̃1, F̃2, F̃3)}+

. (24)
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3.2 Related Work

Here we discuss the connections between the results in Section 3.1 and related work. We show that
the (sign-restricted) CIF-based oracle inequalities in Theorem 3 and Corollary 7 sharpen, unify and
extend existing performance bounds and offer a clear explanation of the differences among existing
analyses.

The CIF and SCIF in (8) and (9) are related to the restricted eigenvalues (RE)

REq,!(ξ,J) = inf
{ |J|1/q‖Xu‖
|nJ|1/2‖uA‖q

: u ∈ C (ξ,J), |A\ J|≤ !
}
, (25)

since they all conveniently provide factors required in proofs of the same type of oracle inequalities.
The quantity (25) includes as special cases the !2 version RE2,p(ξ,J) of Bickel, Ritov, and Tsybakov
(2009) and Koltchinskii (2009) and the constant factor RE1,0(3,J) for the compatibility condition
of van de Geer (2007). van de Geer and Bühlmann (2009) called RE1,0(ξ,J) the restricted !1-
eigenvalue.

Both types of quantities in (8), (9) and (25) involve minimum ratios of seminorms over cones.
The main differences between them are the quantities used to bound the estimation error and the
sign-restriction for SCIFq,!(ξ,J). Let {h(L),h(D),h} be as in (14) and (15). While the RE in (25)
uses the prediction regret h′Σh to bound the estimation error h, the (sign-restricted) CIF in (8) and
(9) uses the !∞ norm of the gradient to bound the estimation error via (15). The use of the gradient
bound in (8) and (9) provides sharper oracle inequalities by allowing the flexibility with the choice
of v in (18) and (19).

For the !2 loss of the Dantzig selector, the oracle inequality of Bickel, Ritov, and Tsybakov
(2009) and Theorem 3 can be compared as follows: for z∗ ≤ λ

‖h(D)‖ ≤
2|J|1/2λ

CIF2,p(1,J)
≤

4|J|1/2λ
RE1,0(1,J)RE2,p(1,J)

≤
4(1+

√
|J|/!)|J|1/2λ

RE22,!(1,J)
. (26)

The right-hand side of (26) is the upper bound in (7.6) of Theorem 7.1 of Bickel, Ritov, and Tsy-
bakov (2009). An application of the upper bound of van de Geer and Bühlmann (2009) on ‖h(D)J ‖1
in a modification of the proof of Bickel, Ritov, and Tsybakov (2009) yields the intermediate upper
bound. Theorem 3 provides the sharpest upper bound in (26). The second inequality in (26) fol-
lows from (18) with {!,v} = {p− |J|,u}. The third inequality in (26) follows from RE1,0(ξ,J) ≥
RE2,!(ξ,J) as in van de Geer and Bühlmann (2009) and (1+ξ|J|/!)1/2RE2,p(ξ,J)≥ RE2,!(ξ,J) by
the shifting inequality in Candes and Tao (2007). The shifting inequality of Cai, Wang, and Xu
(2010) can be used to reduce the factor (1+

√
|J|/!) to

√
1+ |J|/(4!) in (26), but (26) still holds.

Similarly, for z∗ ≤ λ/2,

‖h(L)‖ ≤
(3/2)|J|1/2λ
SCIF2,p(3,J)

≤
(3/2)|J|1/2λ

RE1,0(3,J)RE2,p(3,J)
≤
4(1+3

√
|J|/!)|J|1/2λ

RE22,!(3,J)
, (27)

with (7.10) of Theorem 7.2 of Bickel, Ritov, and Tsybakov (2009) on the right-hand side. The
differences of the upper bounds in (26) and (27) could be nontrivial since van de Geer and Bühlmann
(2009) showed by example the possibility of RE2,0(ξ,J)/RE1,0(ξ,J)→ 0.

A significant difference between the (sign-restricted) CIF- and RE- based oracle inequalities is
their relationships to the oracle inequalities of Candes and Tao (2007) and Zhang (2009b). While
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Theorem 3 is sharper than these inequalities, the RE-based oracle inequalities seem not to have this
property.

The flexibility with the choice of v in (18) and (19) is a significant advantage for (8) and (9). The
square of the potentially small (‖Σ1/2A uA‖−‖Σ

1/2
Ac uAc‖)+ has been used to bound u′Σu = ‖Xu‖2/n

from below in the proofs of RE-based oracle inequalities. This is not needed in Candes and Tao
(2007) and Zhang (2009b) since their arguments correspond to using vectors v with vAc = 0 in (18)
and (19). For example, (23) with F̃3 is at least by a factor {1−min(F̃1, F̃2, F̃3)}+ sharper than
inserting Lemma 4.1 (ii) into (7.6) in Bickel, Ritov, and Tsybakov (2009), even after an application
of sharper shifting inequalities to their Lemma 4.1 (ii). For q > 2, the ratio in (18) is not properly
length normalized with v = u, as discussed in Remark 6. Thus, direct extensions of (25) with u′Σu
in the numerator may not yield performance bounds of the right order.

Corollary 7 sharpens the oracle inequality of Candes and Tao (2007). The upper bound (23)
with F̃1 is of the sharpest form among the three for large ! due to the factor 1/!, compared with√
1/(4!) for F̃2 and F̃3. For != k/4 and q= 2, (23) with F̃2 yields

z∗ ≤ λ ⇒ ‖β̂
(D)

(λ)−β∗‖ ≤
2
√
kλ

CIF2,p(1,J)
≤

√
10kλ

(1−δ−1.25k−θ
(2)
k,1.25k)+

, (28)

a slightly sharper version of Cai, Wang, and Xu (2010) improvement of Candes and Tao (2007)
result due to δ−1.25k ≤ δ1.25k. Similarly, (24) with ξ=

√
2 and != k/2 yields

z∗ ≤ λ ⇒ ‖β̂
(L)(

(1+
√
2)2λ

)
−β∗‖ ≤

(1+
√
2)
√
8kλ

SCIF2,p(
√
2,J)

≤
(1+
√
2)4
√
kλ

(1−δ−1.5k−θ
(2)
2k,1.5k)+

. (29)

The right-hand sides of (28) and (29) are directly comparable with the Candes and Tao (2007)
inequality ‖β̂

(D)
(λ)−β∗‖ ≤ 4

√
kλ/(1−δ2k−θ

(2)
k,2k)+ in the same event.

Another option is to apply (17), (18) and (21) with (r,s) = (∞,q) to (10), resulting in

‖β̂
(D)

(λ)−β∗‖q ≤
2|J|1/qλ

CIFq,p(1,J)
≤max

A,B

2λ‖Σ−1A ‖∞,q(1+(aqk/!)q−1)1/q

{1− (k1−1/q/!)‖Σ−1A ΣA,B‖∞,q}+
(30)

for all 1 ≤ q ≤ ∞ in the event z∗∞ ≤ λ, where k = |J| and A and B are as in (16). Inequality (30)
and the combination of (11) and (19) with wA ∝ sgn(uA)|uA|q−1 are related to the results of Zhang
(2009b). For ‖β∗‖0 = k, his oracle inequality for the Lasso can be written as

∥∥β̂
(L)

(λ/t∗)−β∗
∥∥
q ≤

32(1+F∗)G∗

C̃(1−F∗)2+
for z∗∞ ≤ λ, 1≤ q≤ ∞, !≥ k, (31)

with F∗ = maxA,B,w(k1−1/q‖ΣB,AwA‖1/!), G∗ = C̃λ(k + !)1/qmaxA,w ‖wA‖q/(q−1) for
w ∝ Σ−1A sgn(uA)|uA|q−1, G∗ = C̃λk1/qmaxA,w ‖wA‖q/(q−1) for wA ∝ sgn(uA)|uA|q−1, C̃ = (1+1/t∗)
and t∗ = (1−F∗)/{4(1+F∗)}, where w′AΣAuA = ‖uA‖q = 1 and {A,B,uA} are as in (16). It turns
out that the combination of (11) and (19) with the same choice of w and (r,ar) = (∞,1) is at least by
a factor of 5/12 sharper than (31), even with the suboptimal aq = 1. For small k/!, Zhang (2009b)
pointed out the smaller order k1/qλ of G∗ for wA ∝ sgn(uA)|uA|q−1 as an advantage of the Lasso,
compared with the order (k+ !)1/qλ. The cost of this advantage is the square of (1−F∗)+ in the
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denominator of (31), compared with (23) and (30) for the Dantzig selector. Moreover, the error
bound in (23) for the Dantzig selector is also of the order k1/qλ for q ≤ 2 with much smaller con-
stant factors, and the difference between k1/q and (k+ !)1/q diminishes for large q as in Theorem 8.
Thus, the advantage of the Lasso in this aspect has some limitations.

We have proved that Theorem 3 sharpens and unifies a number of existing oracle inequalities for
the Lasso and Dantzig estimators, so that they can all be viewed as (possibly more explicit) upper
bounds for the right-hand sides of (10) and (11). The choice r=∞ in (16), and consequently in (18),
(19), (20) and (21), typically gives oracle inequalities of the sharpest form involving the dimension-
normalized ‖ ·‖∞,q norm as in (30), compared with the typical ‖ ·‖q,q norm in the literature. Oracle
inequalities for β∗Jc += 0 are given in Section 4. Although (10) and (11) are of the same format, the
Dantzig selector requires smaller λ and smaller ξ = 1. This theoretical advantage of the Dantzig
selector for z∗∞ ≤ λ reverses if ‖β̂

(D)
(λ)‖1 ≤ ‖β∗‖1 is replaced by ‖β̂

(D)
(λ)‖1 ≤ ‖β̂

(L)
(λ)‖1 for z∗∞ >

λ.

3.3 Vaiable Selection

Variable selection is fundamental for the interpretation of models with hign-dimensional data. Mein-
shausen and Bühlmann (2006), Tropp (2006), Zhao and Yu (2006), and Wainwright (2009) proved
that the Lasso is variable selection consistent under a strong irrepresentable condition and some
other regularity conditions on X and β. Candes and Plan (2009) proved the selection consistency
of the Lasso under random permutation and sign-change of regression coefficients and a mild con-
dition on the maximum absolute correlation among design vectors. Consistent variable selection in
linear regression can be achieved with a concave penalty (Fan and Li, 2001; Zhang, 2010) or adap-
tive Lasso (Zou, 2006; Huang, Ma, and Zhang, 2008), without requiring the strong irrepresentable
condition.

The !∞ error bounds in Theorem 3 (i) and their more explicit versions, for example, (30) with
q= ∞, naturally lead to variable selection by thresholding the Lasso or Dantzig selector. We focus
on the Dantzig selector here although parallel results can be obtained for the Lasso in the same way.
Zhang (2009b) studied the selection consistency of thresholding the Lasso through his upper bounds
for ‖β̂

(L)
−β∗‖∞. Lounici (2008) considered thresholding either the Lasso or the Dantzig selector

under the stronger condition max j +=k |(Σ) jk|≤ 1/{α(1+2ξ)|J|} with α> 1, (Σ) j j = 1, ξ= 3 for the
Lasso, and ξ= 1 for the Dantzig selector.

Candes and Tao (2007) considered the Gauss-Dantzig selector

β̂
(GD)

= argmin
b

{
‖y−Xb‖ : |β̂ j|≤ λ′ ⇒ b j = 0,∀ j, β̂= β̂

(D)
(λ)

}
. (32)

For threshold functions t(x;λ) satisfying {x : t(x;λ) = 0}= {x : |x|≤ λ} and xt(x;λ)≥ 0, define the
threshold Dantzig selector as

β̂
(TD)

= t
(
β̂
(D)

(λ);λ′
)
. (33)

This includes the hard t(x;λ) = xI{|x|> λ} and the soft t(x;λ) = sgn(x)(|x|−λ)+. Define

β̂
(oracle)

= argmin
b

{
‖y−Xb‖ : β j = 0⇒ b j = 0,∀ j

}
.
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Theorem 8 Suppose (3) holds with J = { j : β j += 0}. Let β̂
(GD)

and β̂
(TD)

be as in (32) and (33)
respectively with the universal penalty level λ = λuniv = σ

√
(2/n) log p and a threshold level λ′

satisfying 2λuniv/CIF∞,p(1,J)≤ λ′ <minβ j +=0 |β j|/2. Then,

Pβ,X
{
sgn(β̂

(TD)
) += sgn(β) or β̂

(GD)
+= β̂

(oracle)}
≤ 1/

√
π log p→ 0. (34)

Remark 9 If we use (21) in Theorem 8, (|J|/!)maxA,B ‖Σ−1A ΣA,B‖∞,∞< 1 becomes a basic condition
for (34). Meanwhile, the strong irrepresentable condition for the selection consistency of the Lasso
without post-thresholding is ‖ΣJc,JΣ−1J ‖∞,∞ < 1. Compared with Lounici (2008), we improve the
factor 1+2ξ to 1+ξ via

CIF∞,p(ξ,J)≥min
j∈J

(Σ) j j− (|J|−1+ξ|J|)max
j +=k

|(Σ) jk|.

4. Upper Bounds for the !q Loss in !r Balls

We divide this section into two subsections. The first subsection provides non-probabilistic oracle
inequalities: conditions on the data (X ,y) and a target coefficient vector β∗ for upper bounds of
‖β̂−β∗‖q for the Lasso and Dantzig selector. The second subsection provides sufficient condition
on the design X for the rate minimaxity for the !q loss in !r balls under Pβ,X .

4.1 Oracle Inequalities

The oracle inequalities here differ from Theorem 3 (i) by allowing target vectors with many small
entries and smaller penalty levels.

Our first theorem deals with the usual λ ≥ z∗∞ and allows targets β
∗ with small ‖β∗Jc‖1 for a

certain set J ⊂ {1, . . . , p}. The effect of the elements of β∗ in Jc is controlled by

Mq(λ,ρ) = sup
{
‖u‖q : ‖Σu‖∞ ≤ λ,‖u‖1 ≤ ρ

}
. (35)

Theorem 10 Let β∗ be a target vector, q ∈ [1,∞], J ⊂ {1, . . . , p} and ρJ = ‖β∗Jc‖1. Then,

‖β̂
(D)
−β∗‖q ≤max

{ 2|J|1/qλ
CIFq,p(ξ,J)

,2Mq

(
λ,
ξ+1
ξ−1

ρJ
)}

, ∀ξ> 1, (36)

in the event z∗∞ = ‖X ′(y−Xβ∗)/n‖∞ ≤ λ. Moreover, for z∗∞ ≤ λ(ξ0−1)/(ξ0+1),

‖β̂
(L)
−β∗‖q ≤max

{ ξ1|J|1/qλ
CIFq,p(ξ,J)

,Mq
(
ξ1λ,ξ2ρJ

)}
, ∀ξ> ξ0, (37)

where CIFq,!(ξ,J) is as in (8), ξ1 = 2ξ0/(ξ0+1) and ξ2 = (1+ξ0)(1+ξ)/(ξ−ξ0).

Remark 11 The first component of (36) and (37) can be viewed as the cost of estimating the large
components β∗ in J without knowing J, and the second component the cost of having potentially
many small elements of β∗ in Jc. Since Mq(λ,ρ)≤ ρ for q≥ 1, β∗Jc does not contribute to the order
of the error bounds in (36) and (37) when ρJ " |J|1/qλ/CIFq,p(ξ,J). In Proposition 15 below, we
provide conditions for Mq(λ,ρ)" λ(ρ/λ)1/q, as if Σ= I.
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Our next theorem deals with smaller penalty levels satisfying z∗2,d ≤ λ< z∗∞, where

z∗q,d = max
|A|=d

z∗q,A, z∗q,A = ‖X ′A(y−Xβ
∗)/n‖q/|A|1/q, z∗∞ = z∗∞,1. (38)

Since z∗q,d is the length normalized !q norm of the d largest absolute values of the elements of
z= X ′(y−Xβ∗)/n, z∗q,d is increasing in q and decreasing in d, and z∗q,d ≤ z∗∞. Let

Crelax(ξ,J,d) =
{
u : ‖uJc‖1 ≤ ξd1/2 max

|A|=d,A⊇J
‖uA‖

}
(39)

as a relaxed cone, and define the corresponding relaxed CIF as

CIFq,relax(ξ,J,d) = inf
u∈Crelax(ξ,J,d)

{d1/q‖ΣA,∗u‖
d1/2‖u‖q

: A= argmax
|B|=d,B⊇J

‖uB‖
}
. (40)

The following quantity plays the role of (35) for relaxed cones:

Mq,relax(λ,ρ,J,d) = sup
‖u‖1≤ρ

{
‖u‖q : ‖ΣA,∗u‖ ≤ d1/2λ,A= argmax

|B|=d,B⊇J
‖uB‖

}
. (41)

Since ‖uJ‖1 ≤ |A|1/2‖uA‖ for A⊇ J, the relaxed cone (39) is larger than the cone in (8). Moreover,
since ‖ΣA,∗u‖/|A|1/2 ≤ ‖Σu‖∞,

CIFq,relax(ξ,J,d)≤ (d/|J|)1/qCIFq,p(ξ,J), Mq,relax(λ,ρ,J,d)≥Mq(λ,ρ).

Theorem 12 Let β∗ be a target vector, q ∈ [1,∞], J ⊂ {1, . . . , p} with (4|J|/3)∨ 1 ≤ d ≤ p, ρJ =
‖β∗Jc‖1 and z∗2,d be as in (38). Then, for z∗2,d ≤ λ(ξ0−1)/(ξ0+1),

‖β̂
(L)
−β∗‖q ≤max

{ ξ1d1/qλ
CIFq,relax(ξ,J,d)

,Mq,relax

(
ξ1λ,ξ2ρJ,J,d

)}
, (42)

where ξ1 = 2ξ0/(ξ0+1) and ξ2 = (ξ0+1)(ξ+1)/(ξ−ξ0).

Remark 13 By (22) and (38), (z∗2,d)2/{σ2(1+ δ+d )} is no greater than the maximum of
(p
d
)
χ2d

variables under Pβ∗,X in (3), so that for certain λ 3 σ{(1+ δ+d )(2/n) log(p/d)}1/2, z∗2,d ≤ λ(ξ0−
1)/(ξ0+1) with large probability. Thus, for |J|= k 3 d and log(p/d)4 log p, Theorem 12 allows
λ4 λuniv = σ{(2/n) log p}1/2. Zhang (2010) derived similar oracle inequalities for the Lasso,
MC+, and other concave penalized least squares estimators at the same λ under the sparse Riesz
condition |J|≤ d/{(1+δ+d )/(1−δ

−
d )+1/2}.

Remark 14 Since ‖uA‖/d1/2 does not control ‖uA‖q/d1/q for q> 2 and large |A|= d, the relaxed
constant factors in (40) and (41) are not properly normalized for q > 2 and Σ = I. Thus, Theorem
12 is most useful when 1≤ q≤ 2, although it is valid for all 1≤ q≤ ∞.

We use the following quantities to bound the constant factors in Theorems 10 and 12:

ηq,d = max
|A|=d
‖Σ−1A ‖∞,q/d

1/q, η∗q,d =maxA ‖Σ
−1
A ‖q,q, (43)

κq,d,! = max
|A|=d

min
r≥1

max
|B|=!

!1−1/q(ar/!)1−1/r‖Σ−1A ΣA,B‖r,q.
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Proposition 15 Let CIFq,relax(ξ,J,!), Mq(λ,ρ) and Mq,relax(λ,ρ,J,!) be as in (40), (35) and (41)
respectively. Let {ηq,d ,η∗q,d,κq,d,!} be as in (43) and aq = (1−1/q)/q1/(q−1). Then,

Mq(λ,ρ)≤ ηq,kk1/qλ+(κqq,k,k+aq−1q )1/qk1/q−1ρ, ∀ k ≥ 1,1≤ q≤ ∞, (44)

Mq,relax(λ,ρ,J,d)≤ η∗2,dd1/qλ+{(d/!)1−q/2κq2,d,!+aq−1q }1/q!1/q−1ρ, 1≤ q≤ 2, (45)

with != d− |J|, and with Cq,2(ξ, t) and φ̃∗2,!(ξ,J) as in (17) and (20),

CIFq,p(ξ,J)≥CIFq,relax(ξ,J,!)≥
(d/|J|)1/q−1/2φ̃∗2,!(ξ

√
d/|J|,J)

Cq,2
(
ξ(d/|J|)1/2, |J|2/(d!)

) . (46)

Remark 16 Suppose that the quantities in (43) are bounded whenever invoked. For ρ/λ 3 k 3 !,
(44) and (45) give the rate Mq(λ,ρ)" ρ(λ/ρ)1−1/q and Mq,relax(λ,ρ,J,d)" ρ(λ/ρ)1−1/q, the same
as the simplest case Σ= I. Since (46) is of the form (20), Corollary 7 can be automatically extended
under the setting of Theorem 12.

4.2 Rate !q Minimax Estimation in !r Balls

We present sufficient conditions for the rate minimaxity of the Lasso and Dantzig selector in !r balls
in (4) in the sense of (6) and (7). Let λuniv and λmm be as in (5). We first consider the !q risk.

Theorem 17 Let q ≥ 1 ≥ r > 0. Suppose (log p)/n = O(1) and Rr/λrmm 3 d ≤ n∧ p for some
integer d → ∞ satisfying (logd)/ log p ≤ c0 < 1. Let 0 < α0 < 1 and β̂ be either the Lasso or
Dantzig selector with λ= λuniv/α0. Suppose p1−(α1/α0)

2
(nq/d+dq/r−1)≤ 1 and p1−(α/α0)2dq/r−q≤

1 for certain {α,α1} ⊂ (α0,1). For the Dantzig selector, let ξ > 1, ξ∗ = 1 for r = 1 and ξ∗ =
(ξ+ 1)/(ξ− 1) for r < 1. For the Lasso, let ξ > (1+α)/(1−α) ξ∗ = 1/(1−α1) for r = 1 and
ξ∗ = (ξ+1)/{ξ−1−α(ξ+1)} for r < 1. Then,

supβ∈Θr,R Eβ,X‖β̂−β‖
q
q

Rrλq−rmm
!
[
max

{C1I{r < 1}
CIF∗q (ξ,d)

,C1Mq

( 1
d1/q

,
ξ∗C2
d1/q−1

)}]q
, (47)

where C1 = 2(dλrmm/Rr)1/q/(α0
√
1− c0), C2 = α0

√
1− c0R/(d1/rλmm), CIF∗q (ξ,d) is as in (12)

and Mq(λ,ρ) is as in (35). Consequently, if either ηq,d+κq,d,d =O(1) with the {ηq,d,κq,d,d} in (43)
or Mq(d−1/q,d1−1/q)+ I{r < 1}/CIF∗q (ξ,d) = O(1), then

sup
‖β‖r≤R

Eβ,X‖β̂−β‖qq " inf
δ
sup
‖β‖r≤R

Eβ,X‖δ(X ,y)−β‖qq. (48)

Remark 18 For q= 2, ηq,k+κq,k,k =O(1) for some k3 d if the sparse Riesz condition holds Zhang
and Huang (2008), that is, 1/(1− δ−d )+ δ+d = O(1) for the δ±d in (22). For p; n, random matrix
theory can be applied to validate such conditions up to d 3 n/ log(p/n).

Theorem 17 differs from existing results by directly comparing the !q risk of estimators with the
minimax risk, instead of finding upper bounds for the !q loss. It is based on the oracle inequality
for λ > λuniv in Theorem 10. However, in practice, a penalty level λ < λuniv is often empirically
the best choice. As we mentioned in Remark 2, λmm < λuniv iff R > σ/

√
n. For λmm/λuniv = o(1),
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oracle inequalities requiring penalty levels λ ≥ λuniv do not match the order of the minimax lower
bounds in Theorem 1. For example, when p= n logn and d 3 Rr/λrmm 3 n/ log logn, λmm/λuniv→ 0
as n→ ∞ and the regularity conditions on X may still hold. Theorem 19 below closes this gap by
providing the rate minimaxity of the Lasso in the quantiles of the !q loss with λ 3 λmm = o(λuniv).
Define

CIF∗q,relax(ξ,k,d) = inf
|A|=d

{d1/q‖ΣA,∗u‖
d1/2‖u‖q

: min
|A\J|=d−k

‖uJc‖1 < ξd1/2‖uA‖
}
, (49)

M∗q,relax(λ,ρ,k,d) = sup
|A|=d

{
‖u‖q : ‖ΣA,∗u‖ ≤ d1/2λ, min

|A\J|=d−k
‖uJc‖1 ≤ ρ

}
. (50)

Theorem 19 Let λ=min
(
λuniv,(1+ε0)(1+δ+d )1/2λmm

)
/αwith 0< ε0≤α< 1 and {λmm,λuniv,δ+d }

in (5) and (22). Let 0 < r ≤ 1 ≤ q ≤ 2. Suppose n∧ p ≥ d 3 Rr/λrmm → ∞, δ+d = O(1) and
λmmn1/2/σ→ ∞. Suppose that for certain k+ != d with k 3 !,

max
{
1/CIF∗q,relax(ξ,k,d),M∗q,relax(d−1/2,d1/2,k,d)

}
= O(1).

Then, the Lasso is rate minimax in !r balls in the sense that for all ε> 0,

inf
[
t : sup
‖β‖r≤R

Pβ,X
{
‖β̂

(L)
−β‖qq ≥ tqRrλq−rmm

}
≤ ε

]
(51)

" inf
[
t : inf

δ
sup
‖β‖r≤R

Pβ,X
{
‖δ(X ,y)−β‖qq ≥ tqRrλq−rmm

}
≤ ε

]
< ∞.

In particular, (51) holds if 1/(1−δ−d )+δ+d = O(1) as in Remark 18.

The quantities (8), (12), (35), (40), (41), (49) and (50) are best understood by comparisons with
functions of (22) and (43) via Propositions 5 and 15. These quantities also facilitate comparisons
between our and existing upper bounds on the loss as in the derivation of Corollary 7. In such
comparisons, the Hölder inequality and (22) give

ηq,d ≤ η∗q,d, κq,d,! ≤ κ∗q,d,!, η∗2,d = 1/(1−δ−d ), κ∗2,d,! ≤ θd,!η∗2,d,

where κ∗q,d,! = a1−1/qq maxA,B ‖Σ−1A ΣA,B‖q,q with |A|= d, |B|= ! and A∩B= /0.

5. Discussion

Although this paper focuses on the estimation of regression coefficients, the estimation of Xβ∗

(prediction) is an important problem (Greenshtein and Rotiv, 2004). Similar to the proof of (11),
(9), (14) and (15) imply

‖X β̂
(L)
−Xβ∗‖2/n+2λ‖(β̂−β∗)J‖1/(ξ+1)≤

{2ξ/(ξ+1)}|J|λ2

SCIF1,0(ξ,J)
(52)

in the event z∗∞ = ‖X ′(y−Xβ∗)/n‖∞ ≤ λ(ξ− 1)/(ξ+ 1). Since SCIF1,0(ξ,J) ≥ RE1,0(ξ,J), (52)
implies Lemma 2.1 of van de Geer and Bühlmann (2009) for (z∗∞,ξ) = (0,1).
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As we have explained in Section 3.2, the use of ‖Σu‖∞ in the numerator of (8) and (9) seems
necessary to ensure the dominance of Theorem 3 over the oracle inequalities of the type (30). How-
ever, if we make the numerator quadratic in u, Corollary 7 still holds up to a constant factor with
the following weak CIF:

CIFwq,!(ξ,J) = inf
u∈C (ξ,J)

|J|1/qu′AΣA,∗u
‖uJ‖1‖uA‖q

, SCIFwq,!(ξ,J) = inf
u∈C−(ξ,J)

|J|1/qu′AΣA,∗u
‖uJ‖1‖uA‖q

, (53)

where A= argmax|A\J|≤! ‖uA‖. For example, (26), (27) and (28) are still consequences of Theorem
3 when (53) is used instead of (8) and (9).

Since the oracle inequalities in this paper apply directly to data points (X ,y) and target vectors
β∗, the normality assumption on the error in (3) is not crucial for the upper bounds for the estimation
risk and loss (not even the condition Eβ,Xy = Xβ). For example, for the estimation of a target β∗

with Xβ∗ ≈ Ey, the upper bounds in Theorem 19 are valid for ‖β̂
(L)
−β∗‖qq with large probability

under P and σ= σ1+σ2, provided that
{
E exp(v′X ′(y−Ey))≤ exp(−nσ21v′Σv/2),
max|A|=! ‖PA(Ey−Xβ∗)‖ ≤ σ2

√
2! log(p/!).

For design matrices X with iid sub-Gaussian rows, our results can be extended to β in !r balls with
1< r ≤ 2 due to σ2 ≤ O(‖βJc‖) for β

∗
J = βJ and β

∗
Jc = 0.

The proofs in this paper do not completely deal with the most difficult case of q> 2 and λmm =
o(λuniv). For example, an extension of Theorem 12 to q > 2 seems to require sharp upper bounds
for z∗q,d in (38).

For λ < λuniv, the proof of Theorem 12 can be extended to the Dantzig selector with the feasi-
bility of β∗ replaced by the feasibility of β̂

(L)
. This would yield slightly worse error bounds than

those in Theorem 12. However, if we modify the Dantzig selector as

β̃= argmin
b

{
‖b‖1 : max

|A|=d
‖X ′A(y−Xb)‖ ≤

√
dλ

}
, (54)

the feasibility of β∗ would be guaranteed in the event z∗2,d ≤ λ even for λ= o(λuniv) as in Theorems
12 and 19. This will provide sharper error bounds for the smaller λ and q ≤ 2. We omit this
modification since the computational issues with (54) is not clear for d > 1.
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Appendix A. Proofs

We provide all the proofs here. Lemms are stated and proved as needed.
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Proof of Theorem 1. Let Θ = Θr,R and k = Rr/λrmm for r > 0 and Θ = Θ0,k for r = 0. By (5),
λmm/σn =

√
2log(p/k)− r log(λmm/σn) for r > 0. Since λmm/σn→ ∞,

λmm = (1+o(1))σn
√
2log(p/k), min(k, p/k)→ ∞, ∀ r ≥ 0. (55)

Let Pµ,w be a (prior) probability distribution under which (z j,β j) are iid vectors with

z j|β j ∼ N(β j,σ2n), Pµ,w{β j = µ}= w= 1−Pµ,w{β j = 0},

where µ= λmm(1− ε) and w= (1− ε)k/p. Since z̃ j = x′j(y−∑i+= j βixi)/n is sufficient for β j given
(X ,y,βi, i += j) and z̃ j|β∼ z j|β, the minimum Bayes risk is bounded by

inf
β̂
Eµ,wEβ,X‖β̂−β‖qq ≥ Eµ,w

p

∑
j=1
min
t
Eβ,X

[
|t−β j|q

∣∣∣X ,y
]

≥ Eµ,w
p

∑
j=1
min
t
Eβ,X

[
|t−β j|q

∣∣∣X ,y,βi, i += j
]

= Eµ,w
p

∑
j=1
min
t
Eβ,X

[
|t−β j|q

∣∣∣z j
]

= (1+o(1))kλqmm (56)

as k∧ (p/k)→ ∞ and then ε→ 0. The last step above is by Donoho and Johnstone (1994).
Let N = #{ j : β j += 0}. Under Pµ,w, ‖β‖rr = Nµr and ‖β‖qq = Nµq, so that

β ∈ Θ ⇔ N ≤ k/(1− ε)r ⇒ ‖β‖qq ≤ kλqmm, ∀ r ≥ 0, (57)

due to Rr/µr = k/(1− ε)r and {k/(1− ε)r}µp/λpmm = k(1− ε)q−r ≤ k for r > 0. Let

δ∗ = argmin
δ

Eµ,wEβ,X
[
‖δ(X ,y)−β‖qq

∣∣X ,y,β ∈Θ
]
.

Since the conditional Bayes risk of δ∗ is no greater than the minimax risk in Θ,

(1+o(1))kλqmm
≤ Eµ,wEβ,X

[
‖δ∗ −β‖qq

∣∣β ∈Θ
]
+Eµ,wEβ,X‖δ∗ −β‖qqI{β +∈ Θ}

≤ R(Θ;X)+2(q−1)+Eµ,wEβ,X
(
‖δ∗‖qq+‖β‖qq

)
I{β +∈ Θ}. (58)

Since Eµ,wEβ,X [‖δ∗−β‖
q
q
∣∣X ,y,β∈Θ

]
≤Eµ,w[‖β‖qq

∣∣X ,y,β∈Θ
]
≤ kλqmm by (57), ‖δ∗‖qq≤ 2(q−1)+kλqmm

a.s. Thus, since N ∼ Binomial(p,w) with pw= (1− ε)k→ ∞,

Eµ,wEβ,X
(
‖δ∗‖qq+‖β‖qq

)
I{β +∈ Θ}

≤ 2(q−1)+kλqmmPµ,w{N > wp/(1− ε)}+µqEµ,wNI{N > wp/(1− ε)}
= o(1)kλqmm (59)

by (57). The combination of (58) and (59) gives (6).
Now consider the loss L(δ,β) = I{‖δ−β‖q > ck1/qλmm} in (7). Define

β̂= δ(X ,y)I
{
‖δ(X ,y)‖q ≤ (1+ c)k1/qλmm

}
.
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By (57), β ∈Θ implies ‖β‖qq ≤ kλqmm and

‖β̂−β‖qq ≤ cqkλqmmI
{
‖δ−β‖q ≤ ck1/qλmm

}

+
(
‖β‖q+(1+ c)k1/qλmm

)q
I
{
‖δ−β‖q > ck1/qλmm

}
.

Since ‖β‖qq = Nµq ≤ Nλqmm, it follows that

Eµ,wEβ,X‖β̂−β‖qq ≤ cqkλqmm+(2+ c)qkλqmmmax
β∈Θ

Eβ,XL(δ(X ,y),β)

+2q−1λqmmEµ,w
(
N+(1+ c)qk

)
I{β +∈Θ}. (60)

Since Eµ,w
(
N+(1+ c)qk

)
I{β +∈ Θ}= o(1)k by (57), (56) and (60) yield

sup
β∈Θ

Eβ,XL(δ(X ,y),β)≥
1− cq+o(1)

(2+ c)q
.

Since the o(1) is uniform in the choice of δ(X ,y), we find

inf
δ
sup
β∈Θ

Pβ,X
{
‖δ(X ,y)−β‖qq > (1− ε)kλqmm

}
≥
ε+o(1)
3q

, ∀0< ε< 1.

This gives (7) and completes the proof.
Proof of Theorem 3. Part (i) follows from (14) and (15) as briefly explained in the paragraph below
the statement of the theorem. For the Dantzig selector, z∗ ≤ λ implies (15) and the feasibility of β∗

for the !∞ constraint in (2), and the feasibility of β∗ implies (14). For the Lasso estimator, (14) and
(15) follow from the Karush-Kuhn-Tucker conditions

‖x j(y−X β̂)/n‖∞ ≤ λ, β̂ j += 0 ⇒ x j(y−X β̂)/n= sgn(β̂ j)λ.

Part (ii) follows from Pβ,X{z∗∞ > tσ/
√
n}≤ 2pP{N(0,1)> t}.

In this paper and those cited in Section 3.2, tails of !q norms or inner products are bounded
by shifting inequalities (Candes and Tao, 2007, Lemma 3.1). The following lemma combines and
extends the sharp shifting inequalities of Cai, Wang, and Xu (2010) for q = 2 and Ye and Zhang
(2009) for w′h with q= ∞.

Lemma 20 Let 1 ≤ q ≤ ∞ and aq = (1− 1/q)/q1/(q−1) with a∞ = 1. Let h ∈ Rp, J ⊂ {1, . . . , p}
and A be the union of J and the indices of the ! largest |h j| with j +∈ J, 1 ≤ ! ≤ p− |J|. Then,
‖hAc‖q ≤ (aq/!)1−1/q‖hJc‖1. Moreover, for any vector w ∈ Rp,

∑
j +∈A

wjh j ≤ ‖hJc‖1
(a
!
∨
aq
!

)1−1/q
max

{
‖wB‖q/(q−1) : B∩A= /0, |B|≤ -!/a.

}
. (61)

Proof. We first prove that for all decreasing functions h(t)≥ 0,

∞

∑
m=0

(∫ !+(m+1)!/a

!+m!/a
hq(t)dt

)1/q
≤max

{
1,(aq/a)1−1/q

}a1−1/q

!1−1/q

∫ ∞

0
h(t)dt. (62)
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With x= at/!−m and possibly different h ↓ 0, the above inequality is a consequence of

max
{∫ 1+a

a
hq(x)dx :

∫ 1

0
h(x)dx= 1

}
≤max

{
1,(aq/a)q−1

}
(63)

It suffices to consider 0 < a ≤ aq. Since
∫ 1+a
a hq(x)dx is convex in h, it suffices to consider h(x) =

v+(u−v)I{x≤w} for certain u≥ 1≥ v and a≤w≤ 1. Since
∫ 1
0 h(x)dx= 1, v= (1−uw)/(1−w).

Thus, for fixed w,
∫ 1+a
a hq(x)dx is convex in u, and its maximum is attained at the extreme points

u ∈ {1,1/w}. For u = 1/w, we have v = 0 and
∫ 1+a
a hq(x)dx = uq−1− auq, so that the optimal u

satisfies au = (q− 1)/q, resulting in the maximum {(q− 1)/(qa)}q−1/q = (aq/a)q−1. This yields
(63) since

∫ 1+a
a hq(x)dx= 1 at the other extreme u= 1. Thus, ‖hAc‖q ≤ (aq/!)1−1/q‖hJc‖1 by (62),

and (61) follows with an application of the Hölder inequality to
∫ !+(m+1)!/a
!+m!/a w(t)h(t)dt.

Proof of Proposition 5. Let k= |J|. Since ‖uAc‖q ≤ (aq/!)1−1/q‖uJc‖1 by Lemma 20 and ‖uJc‖1 ≤
ξ‖uJ‖1 ≤ ξk1−1/q‖uA‖q, ‖u‖q ≤ Cq,q(ξ,k/!)‖uA‖q. By the Hölder inequality
‖u‖s≤‖u‖

(1/s−1/q)/(1−1/q)
1 ‖u‖(1−1/s)/(1−1/q)q = ‖u‖1/s11 ‖u‖

1−1/s1
q with s1= (1−1/q)/(1/s−1/q)≥

s. Since ‖u‖1 ≤ (1+ξ)‖uJ‖1 ≤ (1+ξ)k1−1/q‖uA‖q,

‖u‖sk1/q−1/s/‖uA‖q ≤ (1+ξ)1/s1C1−1/s1q,q (ξ,k/!) =Cs,q(ξ,k/!).

This gives (17). Since v′JcΣJc,∗u≤ 0 for u ∈ C−(ξ,J) and v ∈Q(u,J), the first parts of (18) and (19)
follow from (8) and (9). For h = u and the choice of A in Lemma 20, an application of (61) with
w= (v′AΣA,∗)′ yields

v′AΣA,∗u = v′AΣAuA+ v′AΣA,AcuAc
≥ v′AΣAuA−maxB ‖ΣB,AvA‖r/(r−1)(ar/!)

1−1/r‖uJc‖1. (64)

Since ‖uJc‖1 ≤ ξ‖uJ‖1 ≤ ξk1−1/q‖uA‖q, (64) and (16) imply

v′AΣA,∗u
‖vA‖1‖uA‖q/k1/q

≥
v′AΣAuA−ξ‖uA‖qk1−1/q(ar/!)1−1/rmaxB ‖ΣB,AvA‖r/(r−1)

‖vA‖1‖uA‖q/k1/q
= φq,!(u,A,r,w,B;ξ,J)k1/q/‖wA‖1

with w= v‖uA‖q/(v′AΣAuA). This gives the second parts of (18) and (19).
Proof of Theorem 8. This theorem is a direct consequence of (10) with q = ∞, since ‖β̂−β‖∞ ≤
λ′ <minβ j +=0 |β j|/2 guarantees { j : |β̂ j|> λ′}= { j : β j += 0}.
Proof of Theorem 10. Let h= β̂−β∗ for either estimator. As in (14) and (15),

‖Σh‖∞ ≤ ξ1λ, ‖hJc‖1 ≤ ξ0‖hJ‖1+(ξ0+1)ρJ, (65)

in the given events, with {ξ0,ξ1} = (1,2) for the Dantzig selector and the {ξ0,ξ1} in (37) for the
Lasso. It follows from Theorem 3 that (36) and (37) hold for ‖hJc‖1 ≤ ξ‖hJ‖1, or equivalently
h ∈ C (ξ,J). By (65), it remains to consider

ξ‖hJ‖1 ≤ ‖hJc‖1 ≤ ξ0‖hJ‖1+(ξ0+1)ρJ.

Since ξ> ξ0, ‖hJ‖1 ≤ (ξ0+1)ρJ/(ξ−ξ0) in this case, so that ‖h‖1 ≤ (1+ξ0)‖hJ‖1+(ξ0+1)ρJ ≤
ρJ(1+ξ0)(1+ξ)/(ξ−ξ0) = ξ2ρJ . Thus, (35) gives ‖h‖q ≤Mq(ξ1λ,ξ2ρJ).
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Proof of Theorem 12. Let h = β̂
(L)
− β∗, z = X ′(y − Xβ∗)/n, k = |J|, ! = d − k, and

A = argmax|B|=d,B⊃J ‖hB‖ as in (40). Since k ≤ 3d/4, 4! ≥ d. Lemma 20 with {w,q,aq} =
{z,2,1/4} yields h′AczAc ≤ ‖hJc‖1z∗2,4! ≤ ‖hJc‖1z∗2,d , so that

‖Xh‖2/n = h′AzA+h′AczAc−h′X ′(y−X β̂
(L)

)/n
≤
√
d‖hA‖z∗2,d+‖hJc‖1z∗2,d−λ‖β̂

(L)
‖1+λ‖β∗‖1.

Since −λ‖β̂
(L)
‖1+λ‖β∗‖1 ≤−λ‖hJc‖1+λ‖hJ‖1+2λρJ and ‖hJ‖1 ≤

√
3d/4‖hA‖,

‖Xh‖2/n+(λ− z∗2,d)‖hJc‖1 ≤ (λ+ z∗2,d)
√
d‖hA‖+2λρJ.

Since ΣA,∗h= zA−X ′A(y−X β̂
(L)

)/n, ‖ΣA,∗h‖ ≤ (z∗2,d+λ)
√
d. Thus, as in (65),

‖ΣA,∗h‖ ≤ ξ1
√
dλ, ‖hJc‖1 ≤ ξ0

√
d‖hA‖+(ξ0+1)ρJ. (66)

For ‖hJc‖1 ≤ ξ
√
d‖hA‖, (42) follows from

d1/2−1/q‖h‖qCIFq,relax(ξ,J,d)≤ ‖ΣA,∗h‖ ≤ ξ1
√
dλ.

For ξ
√
d‖hA‖ ≤ ‖hJc‖1, the second inequality of (66) gives

√
d‖hA‖ ≤ (ξ0+1)ρJ/(ξ−ξ0) and then

‖h‖1 ≤ (1+ ξ0)(
√
d‖hA‖+ρJ) ≤ ξ2ρJ . Thus, ‖h‖q ≤ Mq,relax(ξ1λ,ξ2ρJ,J,d) by (41), in view of

the first inequality of (66).
Proof of Proposition 15. Let A be the index set of the k largest u j and w satisfy ‖ΣAwA‖q/(q−1) =
w′AΣAuA/‖uA‖q = 1. By Lemma 20, w′AΣA,AcuAc ≤ κq,k,kk1/q−1ρ, so that ‖uA‖q =
w′AΣAuA ≤ ‖wA‖1‖Σu‖∞ + κq,k,kk1/q−1ρ ≤ ηq,kk1/qλ+ κq,k,kk1/q−1ρ. This and ‖u‖q ≤ (‖uA‖qq +
(aq/k)q−1ρq)1/q from Lemma 20 yields (44).

Let A be as in (41) and wA= Σ−1A uA/‖uA‖. For ‖ΣA,∗u‖≤
√
dλ and ‖u‖1≤ ρ, ‖uA‖=w′AΣAuA≤

‖wA‖d1/2λ + wAΣA,AcuAc ≤ η∗2,dd1/2λ + κ2,d,!!−1/2ρ, so that (45) follows from ‖u‖qq ≤
(d1/q−1/2‖uA‖)q+(aq/!)q−1ρq.

Let u and A be as in (40) and k = |J|. Similar to the proof of Proposition 5, we have ‖u‖2 ≤
{1+ξ2k/(4!)}‖uA‖2 and ‖u‖1 ≤

√
k‖uA‖+‖uJc‖1 ≤ (1+ξ

√
d/k)k1/2‖uA‖. Thus, for 1≤ q≤ 2,

‖u‖q ≤ ‖u‖
2/q−1
1 ‖u‖2−2/q ≤Cq,2(ξ(d/k)1/2,k2/(d!))k1/q−1/2‖uA‖. Since ‖uJc‖1 ≤ ξd1/2‖uA‖ and

(64) holds for v = u, u′AΣA,∗u ≥ φ2,!(u,A,r,w,B;ξ′,J)/‖wA‖ for ‖uA‖ = 1, where ξ′ = ξ
√
d/k and

w= u/(u′AΣAuA). Thus, (20) gives (46).
The proof of Theorem 17 requires the following lemma.

Lemma 21 Let β̂ be either the Dantzig or the Lasso estimator at penalty level λ. Suppose ‖β‖r ≤ R
with 0< r∨1≤ q. For any event Ω0 with t∗ =

√
2log(1/Pβ,X(Ω0))≥ 1,

Eβ,X‖β̂−β‖qqIΩ0 ≤ 2q−1Pβ,X(Ω0)
{ Γ(2q+1)
(t2∗nλ/σ2)q

+
((t∗+

√
n)2

nλ/σ2
+2p(1−1/r)+R

)q}
. (67)

In particular, if (log p)/n+σ2/(nλ2)+Rr/(nλr)+λr/Rr = O(1), then

Eβ,X‖β̂−β‖qqIΩ0 = o(1)Rrλq−r, (68)

provided that Pβ,X(Ω0)(λr/Rr){(σ/λ)2q+ pq(1−1/r)+(R/λ)q}= o(1).
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Remark 22 Since the unit sphere Sn−1 ⊂Rn is covered by (2/ε+1)n ε-balls for all ε> 0, a certain
ε ball contains at least m unit vectors x j/‖x j‖ for ε = (log(p/m))/(2n). It follows that the set of
design vectors x j contains some highly correlated clusters when (log p)/n≥ 2. Thus, the condition
(log p)/n= O(1) is natural for the estimation of β.

Proof. Let β̂ be the Lasso estimator. Since β̂ minimizes the penalized loss, λ‖β̂‖1 ≤ ‖ε‖2/(2n)+
λ‖β‖1, so that

‖β̂‖1+‖β‖1 ≤
‖ε‖2

2nλ
+2‖β‖1 ≤

(‖ε‖/σ− t∗ −
√
n)2+

nλ/σ2
+

(t∗+
√
n)2

nλ/σ2
+2p(1−1/r)+R.

Since ‖ε/σ‖ is a Lipschitz(1) function of ε/σ∼N(0, In) and Eβ,X‖ε‖/σ≤
√
n, the Gaussian isoperi-

metric theorem gives Pβ,X{‖ε‖/σ−
√
n> t}≤ e−t2/2, so that

Eβ,X(‖ε‖/σ− t∗ −
√
n)2q+ ≤

∫ ∞

0
Pβ,X{‖ε‖/σ− t∗ −

√
n> t}dt2q

≤
∫ ∞

0
e−t

2
∗/2−t∗tdt2q = Pβ,X(Ω0)Γ(2q+1)/t2q∗ .

The above inequalities yield (67) due to ‖β̂−β‖qq ≤ (‖β̂‖1+‖β‖1)q for q≥ 1.
It follows from (67) that

Eβ,X‖β̂−β‖qqIΩ0/{R
rλq−r}

= O(λr/Rr)Pβ,X(Ω0)
{
O(1)+(t2∗/n+1)q(σ/λ)2q+ pq(1−1/r)+Rq/λq

}
.

Since the right-hand side is of no greater order than Pβ,X(Ω0){(t2∗+n)q+ pqnq/r}= o(1) for t2∗/(n∨
log p)→ ∞, it suffices to consider the case t2∗/n = O(1). Hence, (68) holds under the specified
conditions. The same conclusions hold for the Dantzig selector, since ‖β̂

(D)
‖1 ≤ ‖β̂

(L)
‖1.

Proof of Theorem 17. We first bound λuniv/λmm and the expected loss for large z∗∞ = ‖X ′ε/n‖∞.
Let σn = σ/

√
n. Since Rr/λrmm 3 d, (5) and (55) give

2σ2n log(p/d)≈ λ2mm. (69)

Since (logd)/ log p≤ c0, (1− c0)λ2univ = (1− c0)2σ2n log p≤ 2σ2n log(p/d)≈ λ2mm and

C1 ≈C∗1 = 2(λ/λmm)(dλrmm/Rr)1/q, C2 ≈C∗2 = R/(λd1/r).

Let Ω0 = {z∗∞/λ > α1}. Since z∗∞ is the maximum of p variables from N(0,σ2n), Pβ,X{Ω0}4
pexp(−n(α1λ)2/(2σ2))≤ p1−(α1/α0)2 for large n. Thus, due to λ2/σ2n3 log p and n≥ d3Rr/λrmm3
Rr/λr→ ∞, we have

Pβ,X(Ω0)(λr/Rr){(σ/λ)2q+(R/λ)q}= o(1)p1−(α1/α0)
2
(nq/d+dq/r−1) = o(1).

Since 0< r ≤ 1, Lemma 21 gives Eβ,X‖h‖
q
qI{z∗∞/λ> α1}= o(Rrλq−rmm ), where h= β̂−β.

Next we prove Eβ,X‖h‖
q
qI{z∗∞/λ ≤ α1} = O(Rrλq−rmm ). Consider z∗∞ ≤ α1λ. By (65) with J = /0,

‖h‖q ≤ 2Mq(λ,ξ′‖β‖1) with ξ′ = ξ∗ for r = 1. Since Mq(λ,ρ) = cMq(λ/c,ρ/c),

‖h‖q/(Rr/qλ
1−r/q
mm )≤C∗1Mq(d−1/q,ξ′2C∗2d1/r−1/q).
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This gives (47) for r= 1 and Eβ,X‖h‖
q
qI{αλ< z∗∞ ≤ α1λ}= o(p1−(α/α0)2dq(1/r−1)) = o(1) for r< 1.

Let J = argmax|A|=d ‖βA‖1. For β ∈ Θr,R, ‖βJc‖∞ ≤ (Rr/d)1/r, so that ρJ/(λd) ≤
(Rr/d)(1−r)/rRr/(λd) =C∗2 . Thus, in the event z∗∞ ≤ αλ, Theorem 10 gives

‖h‖q/(Rr/qλ
1−r/q
mm )≤max

{
C∗1/CIF∗q (ξ,d),C∗1Mq(d−1/q,ξ∗C∗2d1−1/q)

}
, r < 1.

It remains to prove (48) under ηq,d + κq,d,d = O(1). In fact, by (44) it suffices to prove
1/CIF∗q (ξ,k) = O(1) for any k+ ! = d with k 3 d. This follows from (21), since CIFq,p(ξ, |J|) #
{1−ξ(k/!)1−1/qκq,d,d}/ηq,d > 0 uniformly for |J|= k and small k/!.

The proof of Theorem 19 requires the following simpler version of Lemma 2 in Zhang (2010).

Lemma 23 Let p̃! be the positive number satisfying 2log p̃! − 1− log(2log p̃!) = (2/!) log
(p
!

)
.

Suppose ε∼ N(0,σ2In) under probability P. Then,

P
{
max
|A|=!
‖PAε‖ ≥ σ

√
2! log p̃!

}
≤

1
2
√
log p̃!

≤
1√
2
,

where PA = XA(X ′AXA)−1X ′A is the projection to the linear span of {x j, j ∈ A}.

Proof of Theorem 19. Let γd = (1+δ+d )
1/2 There are two cases. We omit the proof in the case of

λ= λuniv/α since it is identical to the second half of the proof of Theorem 17. It remains to consider
the case λ< λuniv/α, that is, (1+ ε0)γdλmm < λuniv.

For |A|= d, ‖X ′Aε/n‖ ≤ γd‖PAε‖/
√
n, so that by (38) and Lemma 23

Pβ,X
{
z∗2,d ≤ γdσ

√
(2/n) log p̃d

}
≥ 1−1/(2

√
log p̃d)→ 1.

Since Rr/λrmm 3 d and λmmn1/2/σ→ ∞, λmm = (1+ o(1))σ
√
(2/n) log(p/d) by (69). By Stir-

ling, log
(p
d
)
= (1+o(1))d log(p/d) for p/d→ ∞, so that λmm = (1+o(1))σ

√
(2/n) log p̃d . Thus,

γdσ
√
(2/n) log p̃d ≤ αλ and Pβ,X{z∗2,d ≤ αλ}→ 1.

Consider the event z∗2,d ≤ αλ. Since ξ > (1+α)/(1−α), Theorem 12 asserts that for J =
argmax|A|=k ‖βA‖1 and certain constants {ξ1,ξ2},

‖h‖q ≤max
{ ξ1d1/qλ
CIFq,relax(ξ,J,d)

,Mq,relax

(
ξ1λ,ξ2ρJ,J,d

)}
.

The rest of the proof is similar to the proof of Theorem 17 and omitted.
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Abstract
We propose a class of Bayesian networks appropriate for structured prediction problems where the
Bayesian network’s model structure is a function of the predicted output structure. These incremen-
tal sigmoid belief networks (ISBNs) make decoding possible because inference with partial output
structures does not require summing over the unboundedly many compatible model structures, due
to their directed edges and incrementally specified model structure. ISBNs are specifically targeted
at challenging structured prediction problems such as natural language parsing, where learning the
domain’s complex statistical dependencies benefits from large numbers of latent variables. While
exact inference in ISBNs with large numbers of latent variables is not tractable, we propose two ef-
ficient approximations. First, we demonstrate that a previous neural network parsing model can be
viewed as a coarse mean-field approximation to inference with ISBNs. We then derive a more ac-
curate but still tractable variational approximation, which proves effective in artificial experiments.
We compare the effectiveness of these models on a benchmark natural language parsing task, where
they achieve accuracy competitive with the state-of-the-art. The model which is a closer approxi-
mation to an ISBN has better parsing accuracy, suggesting that ISBNs are an appropriate abstract
model of natural language grammar learning.
Keywords: Bayesian networks, dynamic Bayesian networks, grammar learning, natural language
parsing, neural networks

1. Introduction

In recent years, there has been increasing interest in structured prediction problems, that is, clas-
sification problems with a large (or infinite) structured set of output categories. The set of output
categories are structured in the sense that useful generalisations exist across categories, as usually
reflected in a structured representation of the individual categories. For example, the output cate-
gories might be represented as arbitrarily long sequences of labels, reflecting generalisations across
categories which share similar sets of sub-sequences. Often, given an input, the structure of the
possible output categories can be uniquely determined by the structure of the input. For example
in sequence labelling tasks, all possible output categories are label sequences of the same length as
the input sequence to be labelled. In this article, we investigate structured classification problems
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where this is not true; the structure of the possible output categories is not uniquely determined by
the input to be classified. The most common type of such problems is when the input is a sequence
and the output is a more complex structure, such as a tree. In reference to this case, we will refer
to problems where the output structure is not uniquely determined by the input as “parsing prob-
lems”. Such problems frequently arise in natural language processing (e.g., prediction of a phrase
structure tree given a sentence), biology (e.g., protein structure prediction), chemistry, or image
processing. We will focus on the first of these examples, natural language parsing. The literature
on such problems clearly indicates that good accuracy cannot be achieved without models which
capture the generalisations which are only reflected in the output structure. For example, in English
sentences, if a noun is parsed as the subject of a verb, then these words must be compatible in their
singular/plural markings, independent of whether they are near each other in the input sentence.

In addition to limiting the scope of this article to parsing problems, we focus on tasks where the
training data specifies the output structure, but the labelling of this structure is not fully annotated.
While the unannotated labelling may not be evaluated in the task, by assuming incomplete labelling
we allow our models to capture generalisation which are not directly reflected in the labelled output
structure given for training. For example, the training data for natural language parsing problems
is generally assumed to be a tree, but assuming that all generalisations can be expressed in terms
of one-level fragments of the tree leads to poor empirical performance. However, much better
performance can be achieved with such a model by extending the labelling to include features of the
structural context (Charniak, 2000). Because we want to learn the necessary additional labelling,
we need to solve a limited form of grammar induction.

Graphical models provide the formal mechanisms needed to learn and reason about incomplete
labelling, using latent variables. They also provide the formal mechanisms needed to specify the
statistical dependencies implied by the structure of a single output category. However, these mech-
anisms are not sufficient to specify a complete probability model for a parsing problem, because
we need to specify the statistical dependencies for the complete space of possible output categories.
As we will discuss in Section 3, even graphical models for unbounded sequence labelling, such as
dynamic Bayesian networks, are in general not adequate for this task, because they are limited to
finite-state models.

There are well established methods for specifying probabilistic models of parsing problems,
based on grammar formalisms, such as probabilistic context-free grammars (PCFGs). The grammar
formalism defines how the complete space of possible pairs of an input sequence with an output
structure can be specified as a set of sequences of decisions about the input-output pair. Each
possible sequence of decisions, called a derivation, specifies a single input-output pair (e.g., phrase
structure tree or protein structure). The probability model is then defined in terms of probabilities
for each decision. In its most general form, these decision probabilities are conditioned on anything
from the unbounded history of previous decisions:

P(T ) = P(D1, ...,Dm) =∏
t
P(Dt |D1, . . . ,Dt−1), (1)

where T is the input-output structure and D1, . . . ,Dm is its equivalent sequence of decisions.
In PCFGs, the context-free assumption means that only a bounded amount of the history

D1, . . . ,Dt−1 is relevant to the probability for decision Dt . The context-free assumption only al-
lows statistical dependencies within each bounded one-level subtree of the output tree, so two such
subtrees can only interact through the bounded choice of label for the node they share, if any. Be-
cause the context-free assumption is defined in terms of the output structure, not in terms of the
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input sequence, which decisions in the history are relevant depends on the output structure specified
by the derivation. In graphical models, such a specification of which decisions are statistically de-
pendent on which other decisions is called the “model structure”. Thus PCFGs, like other grammar
formalisms, are examples of models where the model structure is a function of the output structure,
not just of the input sequence. This is the fundamental distinction between models of parsing prob-
lems and models of sequence labelling problems, and it will be central to our discussions in this
article.

The most common approach to building probability models for parsing problems is to use
PCFGs without any latent variables (e.g., Charniak, 2000; Collins, 1999; Durbin et al., 1998), but
this approach relies on hand-built sets of features to represent the unbounded decision histories
in (1). Latent probabilistic context-free grammars (LPCFGs) (Matsuzaki et al., 2005) extend the
node labels of PCFGs with latent annotations, but previous proposals have successfully induced
only a small number of latent annotations.

An alternative proposal to extending the labelling of parse trees is to use the hidden units of a
neural network (Henderson, 2003). In the model of Henderson (2003), vectors of hidden unit values
decorate the positions t in the derivation sequence, and are used to encode features of the unbounded
derivation history D1, . . . ,Dt−1. As with LPCFGs, the pattern of interdependencies between layers
of hidden units is a function of the output structure, making it appropriate for parsing problems. But
unlike LPCFGs, the pattern of interdependencies is not required to respect the context-free assump-
tion. This model achieved state-of-the-art results, but there is no clear probabilistic semantics for
the induced hidden representations.

In this article, we propose a class of graphical models which we call incremental sigmoid belief
networks (ISBNs), which are closely related to the neural network of Henderson (2003), but which
have a clear probabilistic semantics for all their variables. ISBNs are a kind of sigmoid belief
network (Neal, 1992), but are dynamic models and have an incrementally specified set of statistical
dependencies. Each position in the decision sequence has a vector of latent state variables, which
are statistically dependent on variables from previous positions via a pattern of edges determined
by the previous decisions. This incrementally specified model structure allows ISBNs to capture
the generalisations which are only reflected in the output structure, such as the tendency towards
correlations which are local in the output structure, which motivates the context-free assumption of
PCFGs.

Allowing the model structure to depend on the output structure means that the complete model
structure is not known until the complete output derivation is known. In general, this can complicate
decoding (i.e., parsing) because computing probabilities for sub-derivations requires marginalising
out the unknown portion of the model structure, which in the worst case could require summing over
an unbounded number of possible model structures. The properties of ISBNs avoid this problem
because the probability of a derivation prefix is always independent of the unknown portion of the
model structure, as discussed in Section 3.

Despite this simplification, exact inference (i.e., computing probabilities) is not in general
tractable in ISBNs, because they allow large vectors of latent variables in a heavily intercon-
nected directed model. We demonstrate the practical applicability of ISBN models by providing
efficient approximate inference methods. We consider two forms of approximation for ISBNs, a
feed-forward neural network approximation (NN) and a form of mean field approximation (Saul
and Jordan, 1999). In Section 5, we first show that the neural network model in Henderson (2003)
can be viewed as a coarse approximation to inference with ISBNs. We then propose an incremental

3543



HENDERSON AND TITOV

mean field method (IMF), which provides an improved approximation but remains tractable. Both
these approximations give us valid probability models.

In Section 7, we present two empirical evaluations. In the first experiment, we trained both of
the approximation models on artificial data generated from random ISBNs. The NN model achieves
a 60% average relative error reduction over a baseline model and the IMF model achieves a further
27% average relative error reduction over the NN model. These results demonstrate that the distri-
bution of output structures specified by an ISBN can be approximated, that these approximations
can be learnt from data, and that the IMF approximation is indeed better than the NN approxi-
mation. In the second experiment, we apply both of the approximation models to phrase structure
parsing with data from the Wall Street Journal Penn Treebank (Marcus et al., 1993). The IMF model
achieves statistically significant error reduction of about 8% over the NN model. Results of the IMF
model are non-significantly worse (less than 1% relative error increase) than the results of one of
the best known history-based models of parsing (Charniak, 2000). We argue that this correlation
between better approximation and better accuracy suggests that ISBNs are a good abstract model
for structured prediction.

Section 8 discusses related work not covered in the rest of this article. It focuses particularly on
previous work on LPCFGs.

2. Inference with Sigmoid Belief Networks

Before defining ISBNs, we provide background on sigmoid belief networks. A sigmoid belief net-
work (SBN) (Neal, 1992) is a type of Bayesian network. Bayesian networks are directed acyclic
graphs where the nodes are variables and the edges specify statistical dependencies between vari-
ables. SBNs have binary variables which have conditional probability distributions (CPDs) of the
form:

P(Si = 1|Par(Si)) = σ( ∑
S j∈Par(Si)

Ji jS j), (2)

where Par(Si) is the set of variables with edges directed to Si, σ denotes the logistic sigmoid func-
tion σ(x) = 1/(1+ e−x), and Ji j is the weight for the edge from variable S j to variable Si.1 SBNs
are similar to feed-forward neural networks, but unlike neural networks, SBNs have a precise prob-
abilistic semantics of their hidden variables. In ISBNs we consider a generalised version of SBNs
where we allow variables with any range of discrete values. The normalised exponential function is
used to define the CPDs at these nodes:

P(Si = k|Par(Si)) =
exp(∑S j∈Par(Si)W

i
k jS j)

∑k′ exp(∑S j∈Par(Si)W
i
k′ jS j)

, (3)

whereWi is the weight matrix for the variable Si.
Exact inference with all but very small SBNs is not tractable. Initially sampling methods were

used (Neal, 1992), but they are also not feasible for large networks, especially for the dynamic mod-
els of the type described in Section 4. Variational methods have also been proposed for approximat-
ing SBNs (Saul et al., 1996; Saul and Jordan, 1999). The main idea of variational methods (Jordan

1. For convenience, where possible, we will not explicitly include bias terms in expressions, assuming that every latent
variable in the model has an auxiliary parent variable set to 1.
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et al., 1999) is, roughly, to construct a tractable approximate model with a number of free parame-
ters. The free parameters are set so that the resulting approximate model is as close as possible to
the original model for a given inference problem.

The simplest example of a variational method is the mean field method, originally introduced in
statistical mechanics and later applied to neural networks in Hinton et al. (1995). Let us denote the
set of visible variables in the model by V and latent (hidden) variables by H = h1, . . . ,hl . The mean
field method uses a fully factorised distribution Q(H|V )=∏i Qi(hi|V ) as the approximate model,
where each Qi is the distribution of an individual latent variable. The independence between the
variables hi in this approximate distribution Q does not imply independence of the free parameters
which define the Qi. These parameters are set to minimise the Kullback-Leibler divergence between
the approximate distributionQ(H|V ) and the true distribution P(H|V ) or, equivalently, to maximise:

LV =∑
H
Q(H|V ) ln

P(H,V )
Q(H|V )

. (4)

The expression LV is a lower bound on the log-likelihood lnP(V ). It is used in the mean field
theory (Saul and Jordan, 1999) as an approximation of the log-likelihood. However, in our case of
dynamic graphical models, as explained later, we have to use a different approach which allows us
to construct an incremental structured prediction method without needing to introduce the additional
parameters proposed in Saul and Jordan (1999), as we will discuss in Section 5.3.

3. Incrementally Specifying Model Structure

We want to extend SBNs to make them appropriate for modelling parsing problems. As discussed
in the introduction, this requires being able to model arbitrarily long decision sequences D1, ...,Dm,
and being able to specify the pattern of edges (the model structure) as a function of the chosen
output structure. In this section, we define how incremental sigmoid belief networks specify such
model structures.

To extend SBNs for processing arbitrarily long sequences, such as the derivation decision se-
quence D1, ...,Dm, we use dynamic models. This gives us a form of dynamic Bayesian network
(DBN). To handle unboundedly long sequences, DBNs specify a Bayesian network template which
gets instantiated for each position in the sequence, thereby constructing a Bayesian network which
is as large as the sequence is long. This constructed Bayesian network is illustrated in the rightmost
graph of Figure 1, where the repeated two-box pattern is the template, and the left-to-right order
is the derivation order. This template instantiation defines a new set of variables for each position
in the sequence, but the set of edges and parameters for these variables are the same as in other
positions. The edges which connect variables instantiated for different positions must be directed
forward in the sequence, thereby allowing a temporal interpretation of the sequence. DBNs based on
sigmoid belief networks were considered in Sallans (2002) in the context of reinforcement learning.
Normally, DBNs only allow edges between adjacent (or a bounded window of) positions, which
imposes a Markov assumption on statistical dependencies in the Bayesian network.

The problem with only allowing edges between variables instantiated at positions which are ad-
jacent (or local) in the decision sequence is that this does not allow the model structure to adequately
reflect the correlations found in parsing problems. In particular, in many domains, correlations tend
to be local in the output structure, even when they are not local in the derivation sequence for that
structure. To capture these correlations in the statistical dependencies learnt by the model, we want
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Figure 1: Illustration of the predictive LR derivation of an output structure and its associated incre-
mental specification of an ISBN model structure (ordered top-to-bottom, left-to-right).
Dotted lines indicate the top of the parser’s stack at each derivation decision in the model
structure.

the edges of the model to reflect locality in the output structure. This requires specifying edges
based on the actual outputs in the decision sequence D1, ...,Dm, not just based on adjacency in this
sequence.

We constrain this edge specification so that a decision Dt ′ can only effect the placement of
edges whose destination variable is at a position t> t ′ after the decision Dt ′ . This gives us a form
of switching model (Murphy, 2002), where each decision switches the model structure used for the
remaining decisions. We allow the incoming edges for a given position to be any discrete func-
tion of the sequence of decisions which precede that position. For this reason, we call our model
an “incremental” model, not just a dynamic model; the structure of the Bayesian network is deter-
mined incrementally as the decision sequence proceeds. This incremental specification of the model
structure is illustrated in Figure 1 (the directed graphs), along with the partial output structures in-
crementally specified by the derivation (the trees). In Figure 1, dotted lines associate a position’s
instantiated template with the node in the output structure which is on top of the parser’s stack when
making that position’s decision. Note that the incoming edges for a position’s instantiated template
reflect edges between the associated nodes in the partial output structure.

Any discrete function can be used to map the preceding sequence of decisions to a set of incom-
ing edges for a given decision. In general, we can characterise this function in terms of an automaton
which reads derivations and deterministically outputs model structures. For every derivation prefix
D1, ...,Dt−1, the automaton outputs a set of labelled positions in the derivation prefix. For each
labelled position (t− c,r) in this set, label r determines which variables instantiated at that position
are linked to which variables instantiated at the current position t, and with which parameters.2 For

2. In all our models to date, we have respected the additional constraint that there is at most one labelled position in the
set for each label r, so the size of the set is bounded. We do not impose this constraint here because the model is still
well defined without it, but we do not have empirical evidence about the effect of removing it.
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example, the ISBN illustrated in Figure 1 uses a push-down automaton to compute which output
structure nodes are currently important (e.g., the top and next-to-top nodes on the automaton’s stack)
and specifies conditional dependencies between the current decision and previous decisions where
these nodes were on the top of the stack. By using a push-down automaton, this model is able to
express non-Markovian (e.g., context-free) regularities in the derivation sequences.

Previous applications of switching models to DBNs (e.g., Murphy, 2002) have allowed statistical
dependencies to be a function of the output, but only of the output from the immediately preceding
position in the sequence, and therefore have only allowed switching between a bounded number of
alternatives. Because the number of switched alternatives is bounded, the whole set of alternatives
can be expressed as a single bounded model, whose CPDs incorporate the discrete switching. Thus,
switching does not allow us to specify any models which could not be specified with a complicated
DBN, so switching DBNs also impose some form of Markov assumption. In terms of the automata
discussed above, this means that switching DBNs can be expressed using finite-state automata, so
would only be appropriate for problems with a regular-language structure to their output categories.
This limitation does not give us sufficient power to express the kinds of output-conditioned statis-
tical dependencies we need for parsing problems in general. Therefore, it is crucial to distinguish
between standard dynamic models and our incremental models.

Incremental sigmoid belief networks allow the model structure to depend on the output structure
without overly complicating the inference of the desired conditional probabilities P(Dt |D1, . . . ,Dt−1).
Computing this probability requires marginalising out the unknown model structure for the portion
of the Bayesian network which follows position t. In general, this could require explicitly summing
over multiple possible model structures, or in the worst case summing over the unbounded number
of possible model structures. ISBNs avoid summing over any of these possible model structures be-
cause in ISBNs P(Dt |D1, . . . ,Dt−1) is independent of all model structure which follows position t.
This can be proved by considering two properties of ISBNs. At position t in the sequence, the only
edges whose placement are not uniquely determined by D1, . . . ,Dt−1 have their destinations after
t. Also, none of the variables after t are visible (i.e., have their values specified in D1, . . . ,Dt−1).
Therefore none of the edges whose placement is not yet known can have any impact on the infer-
ence of P(Dt |D1, . . . ,Dt−1), as follows directly from well known properties of Bayesian networks.
This property implies that each individual Bayesian network depicted in Figure 1 can be used to
compute the conditional probability of its next derivation decision, and it will give the same answer
as if the same conditional probability were computed in the final Bayesian network at the end of the
derivation, or indeed in any such valid continuation.

The use of directed edges to avoid the need to sum over unknown model structures can also
be seen in Hidden Markov Models (HMMs). Given a sequence prefix, we can use an HMM to
infer the probability of the following element of the sequence. This distribution is not dependent
on the total length of the sequence, which would be needed to draw the complete HMM model
for the sequence. Note that this property does not hold for undirected graphical models, such as
Conditional Random Fields (Lafferty et al., 2001). Rohanimanesh et al. (2009) investigate inference
in undirected models with edges that are a function of the output structure, but the solutions are
approximate and computationally expensive.

The incremental specification of model structure can also be seen in LPCFGs. Given a top-
down left-to-right derivation of a phrase structure tree, the dependencies between LPCFG derivation
decisions have the same structure as the phrase structure tree, but with LPCFG rules (one-level
subtrees) labelling each node of this derivation tree. The number of branches at a node in the
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derivation tree is determined by the rule which is chosen to label that node, thereby incrementally
specifying the complete derivation tree. If we expressed an LPCFG as a graphical model, the model
structures would have the same general form as the derivation trees, so the model structure would
also be incrementally specified. Also, the edges in this graphical model would need to be directed,
because LPCFG rule probabilities are locally normalised. Therefore LPCFG can also be thought of
as Bayesian networks with incrementally specified model structure. The differences between ISBNs
and LPCFG will be discussed in the next section and Section 8.

As illustrated by the above examples, the argument for the incremental specification of model
structure can be applied to any Bayesian network architecture, not just sigmoid belief networks. We
focus on ISBNs because, as shown in Section 5, they are closely related to the empirically successful
neural network models of Henderson (2003). This previous work has shown that the combination
of logistic sigmoid hidden units and having a model structure which reflect locality in the output
structure results in a powerful form of feature induction. The edges from hidden units to hidden
units allow information to propagate beyond the notion of immediate structural locality defined in
the model, but the logistic sigmoid ensures a bias against propagating information through long
chains of hidden units, thereby providing a soft but domain-appropriate bias to feature induction.

4. The Probabilistic Model of Structured Prediction

In this section we complete the definition of incremental sigmoid belief networks for grammar
learning. We only consider joint probability models, since they are generally simpler and, unlike
history-based conditional models, do not suffer from the label bias problem (Bottou, 1991). Also,
in many complex predication tasks, such as phrase structure parsing, many of the most accurate
models make use of a joint model, either in reranking or model combinations (e.g., Charniak and
Johnson, 2005; Henderson, 2004).

We use a history-based probability model, as in Equation (1), but instead of treating each Dt
as an atomic decision, it will be convenient below to further split it into a sequence of elementary
decisions Dt = dt1, . . . ,dtn:

P(Dt |D1, . . . ,Dt−1) =∏
k
P(dtk|h(t,k)),

where h(t,k) denotes the decision history D1, . . . ,Dt−1,dt1, . . . ,dtk−1. For example, a decision to
create a new node in a labelled output structure can be divided into two elementary decisions:
deciding to create a node and deciding which label to assign to it.

An example of the kind of graphical model we propose is illustrated in Figure 2. It is organised
into vectors of variables: latent state variable vectors St ′ = st ′1 , . . . ,st

′

n , representing an intermediate
state at position t ′, and decision variable vectors Dt ′ , representing a decision at position t ′, where
t ′ ≤ t. Variables whose value are given at the current decision (t,k) are shaded in Figure 2; latent
and current decision variables are left unshaded.

As illustrated by the edges in Figure 2, the probability of each state variable sti depends on all
the variables in a finite set of relevant previous state and decision vectors, but there are no direct
dependencies between the different variables in a single state vector. As discussed in Section 3,
this set of previous state and decision vectors is determined by an automaton which runs over the
derivation history D1, . . . ,Dt−1 and outputs a set of labelled positions in the history which are con-
nected to the current position t. For each pair (t− c,r) in this set, r represents a relation between
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Figure 2: ISBN for estimating P(dtk|h(t,k)).

position t and the position t−c in the history. We denote by r(t−c, t) the predicate which returns
true if the position t−c with the relation label r is included in the set for t, and false otherwise.
In general this automaton is allowed to perform arbitrary computations, as specified by the model
designer. For example, it could select the most recent state where the same output structure node
was on the top of the automaton’s stack, and a decision variable representing that node’s label. Each
such selected relation r has its own distinct weight matrix for the resulting edges in the graph, but
the same weight matrix is used at each position where the relation is relevant (see Section 7.2 for
examples of relation types we use in our experiments).

We can write the dependency of a latent variable sti on previous latent variable vectors and a
decision history as:

P(sti = 1|S1, . . . ,St−1,h(t,1))=σ

(

∑
r,t ′:r(t ′,t)

∑
j
Jri jst

′

j+∑
k
Brkidt′k

)

, (5)

where Jr is the latent-to-latent weight matrix for relation r and Brk is the decision-to-latent weight
matrix for relation r and elementary decision k. If there is no previous step t ′ < t which is in relation
r to the time step t, that is, r(t ′, t) is false for all t ′, then the corresponding relation r is skipped in
the summation. For each relation r, the weight Jri j determines the influence of the jth variable in the
related previous latent vector St ′ on the distribution of the ith variable of the considered latent vector
St . Similarly, Brk

idt′k
defines the influence of the past decision dt ′k on the distribution of the considered

latent vector variable sti .
In the previous paragraph we defined the conditional distribution of the latent vector variables.

Now we describe the distribution of the decision vector Dt = dt1, . . .dtn. As indicated in Figure 2, the
probability of each elementary decision dtk depends both on the current latent vector St and on the
previously chosen elementary action dtk−1 from Dt . This probability distribution has the normalised
exponential form:

P(dtk= d|St ,dtk−1) =
Φh(t,k)(d)exp(∑ jWd jstj)

∑d′Φh(t,k)(d′)exp(∑ jWd′ jstj)
, (6)

3549



HENDERSON AND TITOV

where Φh(t,k) is the indicator function of the set of elementary decisions that can possibly follow the
last decision in the history h(t,k), and theWd j are the weights of the edges from the state variables.
Φ is essentially switching the output space of the elementary inference problems P(dtk = d|St ,dtk−1)
on the basis of the previous decision dtk−1. For example, in a generative history-based model of
natural language parsing, if decision dt1 was to create a new node in the tree, then the next possible
set of decisions defined by Φh(t,2) will correspond to choosing a node label, whereas if decision dt1
was to generate a new word then Φh(t,2) will select decisions corresponding to choosing this word.

Given this design for using ISBNs to model derivations, we can compare such ISBN models to
LPCFG models. As we showed in the previous section, LPCFGs can also be thought of as Bayesian
networks with incrementally specified model structure. One difference between LPCFGs and IS-
BNs is that LPCFGs add latent annotations to the symbols of a grammar, while ISBNs add latent
annotations to the states of an automaton. However, this distinction is blurred by the use of gram-
mar transforms in LPCFG models, and the many equivalences between grammars and automata.
But certainly, the automata of ISBNs are much less constrained than the context-free grammars of
LPCFGs. Another distinction between LPCFGs and ISBNs is that LPCFGs use latent annotations
to split symbols into multiple atomic symbols, while ISBNs add vectors of latent variables to the
existing symbol variables. The structure of the similarities between vectors is much richer than the
structure of similarities between split atomic symbols, which gives ISBNs a more structured latent
variable space than LPCFGs. This makes learning easier for ISBNs, allowing the induction of more
informative latent annotations. Both these distinctions will be discussed further in Section 8.

5. Approximating Inference in ISBNs

Exact inference with ISBNs is straightforward, but not tractable. It involves a summation over all
possible variable values for all the latent variable vectors. The presence of fully connected latent
variable vectors does not allow us to use efficient belief propagation methods. Even in the case of
dynamic SBNs (i.e., Markovian models), the large size of each individual latent vector would not
allow us to perform the marginalisation exactly. This makes it clear that we need to develop meth-
ods for approximating the inference problems required for structured prediction. Standard Gibbs
sampling (Geman and Geman, 1984) is also expensive because of the huge space of variables and
the need to resample after making each new decision in the sequence. It might be possible to de-
velop efficient approximations to Gibbs sampling or apply more complex versions of Markov Chain
Monte-Carlo techniques, but sampling methods are generally not as fast as variational methods. In
order to develop sufficiently fast approximations, we have investigated variational methods.

This section is structured as follows. We start by describing the application of the standard
mean field approximation to ISBNs and discuss its limitations. Then we propose an approach to
overcome these limitations, and two approximation methods. First we show that the neural network
computation used in Henderson (2003) can be viewed as a mean field approximation with the added
constraint that computations be strictly incremental. Then we relax this constraint to build more
accurate but still tractable mean field approximation.

5.1 Applicability of Mean Field Approximations

In this section we derive the most straightforward way to apply mean field methods to ISBN. Then
we explain why this approach is not feasible for structured prediction problems of the scale of
natural language parsing.
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The standard use of the mean field theory for SBNs (Saul et al., 1996; Saul and Jordan, 1999)
is to approximate probabilities using the value of the lower bound LV from expression (4) in Sec-
tion 2. To obtain a tighter bound, as we explained above, LV is maximised by choosing the optimal
distribution Q. To approximate P(dtk|h(t,k)) using the value of LV , we have to include the current
decision dtk in the set of visible variables, along with the visible variables specified in h(t,k). Then
to estimate the conditional probability P(dtk|h(t,k)), we need to normalise over the set of all possible
value of dtk. Thus we need to compute a separate estimate maxQLt,kV (d) for each possible value of
dtk = d:

max
Q

Lt,kV (d) = max
Q ∑

H
Q(Ht |h(t,k),dtk = d) ln

P(Ht ,h(t,k),dtk = d)
Q(Ht |h(t,k),dtk = d)

,

where Ht = {S1, . . . ,St}. Then P(dtk = d|h(t,k)) can be approximated as the normalised exponential
of Lt,kV (d) values:

P̂(dtk = d|h(t,k)) =
exp(maxQLt,kV (d))

∑d′ exp(maxQLt,kV (d′))
. (7)

It is not feasible to find the optimal distribution Q for SBNs, and mean field methods (Saul et al.,
1996; Saul and Jordan, 1999) use an additional approximation to estimate maxQLt,kV (d). Even with
this approximation, the maximum can be found only by using an iterative search procedure. This
means that decoding estimator (7) requires performing this numerical procedure for every possible
value of the next decision. Unfortunately, in general this is not feasible, in particular with labelled
output structures where the number of possible alternative decisions dtk can be large. For our gener-
ative model of natural language parsing, decisions include word predictions, and there can be a very
large number of possible next words. Even if we choose not to recompute mean field parameters for
all the preceding states St ′ , t ′< t, but only for the current state St (as proposed below), tractability
still remains a problem.3

In our modifications of the mean field method, we propose to consider the next decision dtk as
a hidden variable. Then the assumption of full factorisability of Q(Ht ,dtk|h(t,k)) is stronger than in
the standard mean field theory because the approximate distribution Q is no longer conditioned on
the next decision dtk. The approximate fully factorisable distribution Q(H|V ) can be written as:

Q(H|V ) = qtk(d
t
k)∏

t ′i

(

µt
′

i

)st′i (1−µt
′

i

)1−st′i
.

where µt ′i is the free parameter which determines the distribution of state variable i at position t ′,
namely its mean, and qtk(dtk) is the free parameter which determines the distribution over decisions
dtk. Importantly, we use qtk(d) to estimate the conditional probability of the next decision:

P(dtk = d|h(t,k)) ≈ qtk(d),

3. We conducted preliminary experiments with natural language parsing on very small data sets and even in this setup
the method appeared to be very slow and, surprisingly, not as accurate as the modification considered further in this
section.
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Figure 3: A graphical model fragment where variable A is a sink.

and the total structure probability is therefore computed as the product of decision probabilities
corresponding to its derivation:

P(T ) = P(D1, . . . ,Dm) ≈ ∏
t,k
qtk(d

t
k). (8)

5.2 A Feed-Forward Approximation

In this section we will describe the sense in which neural network computation can be regarded as a
mean field approximation under an additional constraint of strictly feed-forward computation. We
will call this approximation the feed-forward approximation. As in the mean field approximation,
each of the latent variables in the feed-forward approximation is independently distributed. But
unlike the general case of mean field approximation, in the feed-forward approximation we only
allow the parameters of every distribution Q(st ′i |h(t,k)) and Q(dtk|h(t,k)) to depend on the approx-
imate distributions of their parents, thus requiring that any information about the distribution of its
descendants is not taken into account. This additional constraint increases the potential for a large
KL divergence with the true model, but it significantly simplifies the computations.

We start with a simple proposition for general graphical models. Under the feed-forward as-
sumption, computation of the mean field distribution of a node in an ISBN is equivalent to compu-
tation of a distribution of a variable corresponding to a sink in the graph of the model, that is, a node
which does not have any outgoing edges. For example, node A is a sink in Figure 3. The following
proposition characterises the mean field distribution of a sink.

Proposition 1 The optimal mean field distribution of a sink A depends on the mean field distribution
Q(B) of its hidden parents B= (B1, . . . ,Bm) as

Q(A= a) ∝ exp(EQ logP(A= a|B,C)),

where Q is the mean field distribution of hidden variables, P is the model distribution, C are visible
parents of the node A and EQ denotes the expectation under the mean field distribution Q(B).

This proposition is straightforward to prove by maximising the variational bound LV (4) with
respect to the distribution Q(A). Now we can use the fact that SBNs have log-linear CPD. By
substituting their CPD given in expression (2) for P in the lemma statement, we obtain:

Q(Si = 1) = σ( ∑
S j∈Par(Si)

Ji jµj),
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which exactly replicates computation of a feed-forward neural network with the logistic sigmoid
activation function. Similarly, we can show that for variables with soft-max CPD, as defined in (3),
their mean field distribution will be the log-linear function of their parents’ means. Therefore min-
imising KL divergence under the constraint of feed-forward computation is equivalent to using
log-linear functions to compute distributions of random variables given means of their parents.

Now let us return to the derivation of the feed-forward approximation of ISBNs. As we just
derived, under the feed-forward assumption, means of the latent vector St ′ are given by

µt
′

i = σ(ηt
′

i ),

where ηt ′i is the weighted sum of the parent variables’ means:

ηt
′

i = ∑
r,t ′′:r(t ′′,t ′)

∑
j
Jri jµt

′′

j +∑
k
Brkidt′′k

, (9)

as follows from the definition of the corresponding CPD (5).
The same argument applies to decision variables; the approximate distribution of the next deci-

sion qtk(d) is given by

qtk(d) =
Φh(t,k)(d)exp(∑ jWd jµtj)

∑d′Φh(t,k)(d′)exp(∑ jWd′ jµtj)
. (10)

The resulting estimate of the probability of the entire structure is given by (8).
This approximation method replicates exactly the computation of the feed-forward neural net-

work model of Henderson (2003), where the above means µt ′i are equivalent to the neural network
hidden unit activations. Thus, that neural network probability model can be regarded as a simple
approximation to the ISBN graphical model.

In addition to the drawbacks shared by any mean field approximation method, this feed-forward
approximation cannot capture bottom-up reasoning. By bottom-up reasoning, we mean the effect of
descendants in a graphical model on distributions of their ancestors. For mean field approximations
to ISBNs, it implies the need to update the latent vector means µt ′i after observing a decision dtk, for
t ′ ≤ t. The use of edges directly from decision variables to subsequent latent vectors is designed to
mitigate this limitation, but such edges cannot in general accurately approximate bottom-up reason-
ing. The next section discusses how bottom-up reasoning can be incorporated in the approximate
model.

5.3 Incremental Mean Field Approximation

In this section we relax the feed-forward assumption to incorporate bottom-up reasoning into the
approximate model. Again as in the feed-forward approximation, we are interested in finding the
distribution Q which maximises the quantity LV in expression (4). The decision distribution qtk(dtk)
maximises LV when it has the same dependence on the latent vector means µtj as in the feed-forward
approximation, namely expression (10). However, as we mentioned above, the feed-forward com-
putation does not allow us to compute the optimal values of state means µt ′i .

Optimally, after each new decision dtk, we should recompute all the means µt ′i for all the latent
vectors St ′ , t ′ ≤ t. However, this would make the method intractable for tasks with long decision
sequences. Instead, after making each decision dtk and adding it to the set of visible variables
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V , we recompute only the means of the current latent vector St . This approach also speeds up
computation because, unlike in the standard mean field theory, there is no need to introduce an
additional variational parameter for each hidden layer variable sti .

The denominator of the normalised exponential function in (6) does not allow us to compute
LV exactly. Instead, we approximate the expectation of its logarithm by substituting Stj with their
means:4

EQln∑
d
Φh(t,k)(d)exp(∑

j
Wd jStj)≈ ln∑

d
Φh(t,k)(d)exp(∑

j
Wd jµtj),

where the expectation is taken over the latent vector St distributed according to the approximate
distribution Q. Unfortunately, even with this assumption there is no analytic way to maximise the
approximation of LV with respect to the means µti , so we need to use numerical methods. We can
rewrite the expression (4) as follows, substituting the true P(H,V ) defined by the graphical model
and the approximate distribution Q(H|V ), omitting parts independent of the means µti:

Lt,kV =∑
i
−µti lnµti− (1−µti) ln

(

1−µti
)

+µtiηti

+∑
k′<k
∑
j
Wdtk′ j

µtj− ln

(

∑
d
Φh(t,k′)(d)exp(∑

j
Wd jµtj)

)

, (11)

here, ηti is computed from the previous relevant state means and decisions as in (9). This expression
is concave with respect to the parameters µti , so the global maximum can be found. In the appendix,
where we derive the learning algorithm, we show that the Hessian of this expression can be viewed
as the negated sum of a positive diagonal matrix and some covariance matrices, thus implying the
concavity of expression (11). We use coordinatewise ascent, where each µti is selected by a line
search (Press et al., 1996) while keeping other µti′ fixed.

Though we avoided re-computation of means of the previous states, estimation of the complex
decision probability P(Dt |h(t,k)) will be expensive if the decision Dt is decomposed in a large
number of elementary decisions. As an example, consider a situation in dependency parsing, where
after deciding to create a link, the parser might need to decide on the type of the link and, then,
predict the part of speech type of the word and, finally, predict the word itself. The main reason
for this complexity is the presence of the summation over k′ in expression (11), which results in
expensive computations during the search for an optimal value of µti . This computation can be
simplified by using the means of St computed during the estimation of P(dtk−1|h(t,k−1)) as priors
for the computation of the same means during the estimation of P(dtk|h(t,k)). If we denote the
means computed at an elementary step (t,k) as µt,ki , then for k = 1, minimisation of Lt,kV can be
performed analytically, by setting

µt,1i = σ(ηti). (12)

4. In initial research, we considered the introduction of additional variational parameters associated with every possible
value of the decision variable in a way similar to Saul and Jordan (1999), but this did not improve the prediction
accuracy of the model, and considerably increased the computational time.
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For k > 1, expression (11) can be rewritten as:

Lt,kV =∑
i
−µt,ki lnµt,ki − (1−µt,ki ) ln

(

1−µt,ki
)

+µt,ki
(

lnµt,k−1
i − ln(1−µt,k−1

i )
)

+Wdtk−1iµ
t,k
i

− ln

(

∑
d
Φh(t,k−1)(d)exp(∑

j
Wd jµt,kj )

)

. (13)

Note that maximisation of this expression is done also after computing the last decision Kt for the
state t. The resulting means µt,Kt+1 are then used in the computation of ηt ′i for the relevant future
states t ′, that is, such t ′ that r(t, t ′) holds for some r:

ηt
′

i = ∑
r,t:r(t,t ′)

∑
j
Jri jµ

t,Kt+1
j +∑

k
Brkidtk , (14)

Concavity of expression (13) follows from concavity of (11), as their functional forms are dif-
ferent by only a linear term and the presence of summation over the elementary decisions. See
the appendix where we will show that the Hessian of Lt,kv is negative semidefinite, confirming this
statement.

6. Learning and Decoding

We train the models described in Sections 5.2 and 5.3 to maximise the fit of the approximate models
to the data. We use gradient descent, and a maximum likelihood objective function. In order to
compute the derivatives with respect to the model parameters, the error should be propagated back
through the structure of the graphical model. For the feed-forward approximation, computation of
the derivatives is straightforward, as in neural networks (Rumelhart et al., 1986). But for the mean
field approximation, this requires computation of the derivatives of the means µti with respect to the
other parameters in expression (13). The use of a numerical search in the mean field approximation
makes the analytical computation of these derivatives impossible, so a different method needs to
be used to compute their values. The appendix considers the challenges arising when using maxi-
mum likelihood estimation with the incremental mean field algorithm and introduces a modification
of the error backpropagation algorithm for this model. For both approximations, their respective
backpropagation algorithms have computational complexity linear in the length of a derivation.

The standard mean field approach considered in Saul and Jordan (1999) maximised LV (4)
during learning, because LV was used as an approximation of the log-likelihood of the training
data. LV is actually the sum of the log-likelihood and the negated KL divergence between the
approximate distribution Q(H|V ) and the SBN distribution P(H|V ). Thus, maximising LV will at
the same time direct the SBN distribution toward configurations which have a lower approximation
error. It is important to distinguish this regularisation of the approximate distribution from the
Gaussian priors on the SBN parameters, which can be achieved by simple weight decay. We believe
that these two regularisations should be complementary. However, in our version of the mean field
method the approximate distributions of hidden decision variables qtk are used to compute the data
likelihood (8) and, thus, maximising this target function will not automatically imply KL divergence
minimisation. Application of an additional regularisation term corresponding to minimisation of the
KL divergence might be beneficial for our approach, and it could be a subject of further research.
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Figure 4: Dynamic SBN used in artificial experiments.

In our current experiments, we used standard weight decay, which regularises the SBN distribution
with a Gaussian prior over weights.

ISBNs define a probability model which does not make any a-priori assumptions of indepen-
dence between any decision variables. As we discussed in Section 3, the use of relations based on
the partial output structure makes it possible to take into account statistical interdependencies be-
tween decisions closely related in the output structure, but separated by arbitrarily many positions
in the input structure. In general, this property leads to the complexity of complete search being
exponential in the number of derivation decisions. Fortunately, for many problems, such as natural
language parsing, efficient heuristic search methods are possible.

7. Experiments

The goal of the evaluation is to demonstrate that ISBNs are an appropriate model for grammar learn-
ing. Also, we would like to show that learning the mean field approximation derived in Section 5.3
(IMF method) results in a sufficiently accurate model, and that this model is more accurate than the
feed-forward neural network approximation (NN method) of Henderson (2003) considered in Sec-
tion 5.2. First, we start with an artificial experiment where the training and testing data is known to
have been generated by a SBN, and compare models based on each of the approximation methods.
Second, we apply the models to a real problem, parsing of natural language, where we compare our
approximations with state-of-the-art models.

7.1 Artificial Experiment

In order to have an upper bound for our artificial experiments, we do not consider incremental
models, but instead use a dynamic sigmoid belief network, a first order Markovian model, and
consider a sequence labelling task. This simplification allowed us to use Gibbs sampling from
a true model as an upper bound of accuracy. The following generative story corresponds to the
random dynamic SBNs:
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Figure 5: An example phrase structure tree.

Draw initial state vector S1 from a distribution of initial states P(S1).
t = 0.
Do

t = t + 1,
draw a label Yt from the distribution P(Yt |St) as in (6),
draw an input element Xt from the distribution P(Xt |Yt ,St),
draw the next latent state vector St+1 from P(St+1|St ,Xt ,Yt),

while Yt '= 0 and t < tmax.

A graphical representation of this dynamic model is shown in Figure 4. Different weight ma-
trices were used in the computation of P(Xt |Yt ,St) for each value of the label Yt . It is easy to see
that this model is a special case of the ISBN graphical model, namely Figure 2 with non-Markovian
dependencies removed. The state vector length was set to 5, the number of possible labels to 6, the
number of distinct input elements to 8, the maximal length of each sequence tmax to 100. We per-
formed 10 experiments.5 For each of the experiments, we trained both IMF and NN approximations
on a training set of 20,000 elements, and tested them on another 10,000 elements. Weight-decay
and learning rate were reduced through the course of the experiments whenever accuracy on the
development set went down. Beam search with a beam of 10 was used during testing. The IMF
methods achieved average error reduction of 27% with respect to the NN method, where accuracy
of the Gibbs sampler was used as an upper bound (average accuracies of 80.5%, 81.0%, and 82.3%
for the NN, IMF, and sampler, respectively).

The IMF approximation performed better than the NN approximation on 9 experiments out of
10 (statistically significant in 8 cases).6 These results suggest that the IMF method leads to a much
more accurate model than the NN method when the true distribution is defined by a dynamic SBN.
In addition, the average relative error reduction of even the NN approximation over the unigram
model exceeded 60% (the unigram model accuracy was 77.4% on average), which suggests that
both approximations are sufficiently accurate and learnable.

7.2 Natural Language Parsing

We compare our two approximations on the natural language phrase structure parsing task. The
output structure is defined as a labelled tree, which specifies the hierarchical decomposition of a

5. We preselected these 10 models to avoid random dynamic SBNs with trivial distributions. We excluded SBNs for
which unigram model accuracy was within 3% of the Gibbs sampler accuracy, and where accuracy of the Gibbs
sampler did not exceed 70%. All these constants were selected before conducting the experiments.

6. In all our experiments we used the permutation test (Diaconis and Efron, 1983) to measure significance and consid-
ered a result significant if p-value is below 5%.
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Figure 6: Derivation for a constituent parse tree.

sentence into phrases. An example of such a tree is presented on Figure 5, where the tree specifies
that the adjective (J) fresh and the noun (N) oranges form a noun phrase (NP) “fresh oranges”,
which, when combined with the verb (V) sells, forms the verb phrase (VP) “sells fresh oranges”.
The hypothesis we wish to test here is that the more accurate approximation of ISBNs will result
in a more accurate model of parsing. If this is true, then it suggests that ISBNs are a good abstract
model for problems similar to natural language parsing, namely parsing problems which benefit
from latent variable induction.

We replicated the same definition of derivation and the same pattern of interconnection between
states as described in Henderson (2003). For the sake of completeness we will provide a brief
description of the structure of the model here, though more details can be found in Henderson
(2003).

The model uses a modification of the predictive LR order (Soisalon-Soininen and Ukkonen,
1979), illustrated in Figure 6. In this ordering, a parser decides to introduce a node into the parse
tree after the entire subtree rooted at the node’s first child has been fully constructed. Then the
subtrees rooted at the remaining children of the node are constructed in their left-to-right order. The
state of the parser is defined by the current stack of nodes, the queue of remaining input words and
the partial structure specified so far. The parser starts with an artificial root element in the stack and
terminates when it reaches a configuration with an empty queue and with the artificial root element
on the top of the stack. The algorithm uses 3 main types of decisions:

1. The decision Shiftw shifts the word w from the queue to the stack.
2. The decision ProjectY replaces the current top of the stack X with a new nodeY , and specifies

that Y is the parent of X in the output structure.
3. The decisionAttach removes the current top of the stack X and specifies that elementY under

the top of the stack is the parent of X .

Though these three types of decisions are sufficient to parse any constituent tree, Henderson
(2003) extends the parsing strategy to include a specific treatment of a particular configuration in
the parse tree, Chomsky adjunction, using a version of the Attach decision calledModify.

As was defined in expression (5), the probability of each state variable stj in the ISBN depends on
all the latent variables and previous relevant decisions in a subset of previous relevant positions t ′ :
r(t ′, t). In this ISBN model for phrase structure parsing, we use the same pattern of interconnections
between variables as in the neural network of Henderson (2003), where there are different relations
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r(t ′, t) for selecting previous decision variables Dt ′ and for selecting previous latent variables St ′ .
Namely, the following four types of relations for selecting the previous positions t ′ : r(t ′, t) for
latent variables St ′ are used:

1. Stack Context: the last previous position with the same element on top of the stack as at
current position t.

2. Sub-Top of Stack: the last previous position where the node under the current top of the stack
was on top of the stack.

3. Left Child of Top of Stack: the last previous position where the leftmost child of the current
stack top was on top of the stack.

4. Right Child of Top of Stack: the last previous position where the rightmost child of the current
stack top was on top of the stack.

These relations were motivated by linguistic considerations and many of them have also been found
useful in other parsing models (Johnson, 1998; Roark and Johnson, 1999). Also, this set of relations
ensures that the immediately preceding state is always included somewhere in the set of connected
states. This requirement ensures that information, at least theoretically, can pass between any two
states in the decision sequence, thereby avoiding any hard independence assumptions. Also note that
each relation only selects at most one position (the most recent one of that kind). This ensures that
the number of such connections to a latent vector remains bounded at four, so it should generalise
well across larger, more complex constituency structures.

For selecting the previous positions t ′ : r(t ′, t) for decision variables Dt ′ , the following relations
are use:

1. Previous: the previous position t−1.
2. Top: the position at which the current top of the stack was shifted (if it is a terminal) or

introduced (if non-terminal).
3. Last Shift: the position at which the last terminal was shifted.
4. Left Terminal of Top of Stack: the position when the leftmost terminal dominated by the

current stack top was shifted.

This set includes the previous decision (Previous), which is important if the model does not do back-
ward reasoning, as in the feed-forward approximation. The remaining relations pick out important
labels, part-of-speech tags, and words in the context.

We used the Penn Treebank Wall Street Journal corpus to perform the empirical evaluation
of the considered approaches. It is expensive to train the IMF approximation on the whole WSJ
corpus, so instead we both trained and tested the model only on sentences of length at most 15, as
in Taskar et al. (2004); Turian et al. (2006); Finkel et al. (2008). The standard split of the corpus
into training (9,753 sentences, 104,187 words), validation (321 sentences, 3,381 words), and testing
(603 sentences, 6,145 words) was performed.

As in Henderson (2003) and Turian and Melamed (2006) we used a publicly available tag-
ger (Ratnaparkhi, 1996) to provide the part-of-speech tag for each word in the sentence. For each
tag, there is an unknown-word vocabulary item which is used for all those words which are not
sufficiently frequent with that tag to be included individually in the vocabulary. We only included
a specific tag-word pair in the vocabulary if it occurred at least 20 time in the training set, which
(with tag-unknown-word pairs) led to the very small vocabulary of 567 tag-word pairs.
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R P F1

Bikel, 2004 87.9 88.8 88.3
Taskar et al., 2004 89.1 89.1 89.1
NN method 89.1 89.2 89.1
Turian et al., 2006 89.3 89.6 89.4
IMF method 89.3 90.7 90.0
Charniak, 2000 90.0 90.2 90.1
Finkel et al., 2008, ‘feature-based’ 91.1 90.2 90.6

Table 1: Percentage labelled constituent recall (R), precision (P), combination of both (F1) on the
testing set.

For decoding, we use best-first search with the search space pruned in two different ways. First,
only a fixed number of the most probable partial derivations are pursued after each word shift opera-
tion. Secondly, the branching factor at each decision is limited. In the experiments presented in this
chapter, we used the post-shift beam width of 10 and the branching factor of 5. Increasing the beam
size and the branching factor beyond these values did not significantly effect parsing accuracy. For
both of the models, the state vector length of 40 was used. All the parameters for both the NN and
IMF models were tuned on the validation set. A single best model of each type was then applied to
the final testing set.

Table 1 lists the results of the NN approximation and the IMF approximation,7 along with re-
sults of different generative and discriminative parsing methods evaluated in the same experimental
setup (Bikel, 2004; Taskar et al., 2004; Turian et al., 2006; Charniak, 2000; Finkel et al., 2008).8
The IMF model improves over the baseline NN approximation, with a relative error reduction in
F-measure exceeding 8%. This improvement is statistically significant.

The IMF model achieves results which do not appear to be significantly different from the re-
sults of the best model in the list (Charniak, 2000). Although no longer one of the most accurate
parsing models on the standard WSJ parsing benchmark (including sentences of all lengths), the
(Charniak, 2000) parser achieves competitive results (89.5% F-measure) and is still considered a
viable approach, so the results reported here confirm the viability of our models. It should also be
noted that previous results for the NN approximation to ISBNs on the standard WSJ benchmark
(Henderson, 2003, 2004) achieved accuracies which are still competitive with the state of the art
(89.1% F-measure for Henderson, 2003 and 90.1% F-measure for Henderson, 2004). For com-
parison, the LPCFG model of Petrov et al. (2006) achieve 89.7% F-measure on the standard WSJ
benchmark.

We do not report the results on our data set of the LPCFG model of Petrov et al. (2006), probably
the most relevant previous work on grammar learning (see the extended discussion in Section 8), as
it would require tuning of their split-merge EM algorithm to achieve optimal results on the smaller

7. Approximate training times on a standard desktop PC for the IMF and NN approximations were 140 and 3 hours,
respectively, and parsing times were 3 and 0.05 seconds per token, respectively. Parsing with the IMF method could
be made more efficient, for example by not requiring the numerical approximations to reach convergence.

8. The results for the models of Bikel (2004) and Charniak (2000) trained and tested on sentences of length at most 15
were originally reported by Turian and Melamed (2005).
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data set. However, we note that the CRF-based model of Finkel et al. (2008) (the reported ‘feature-
based’ version) and the LPCFG achieves very close results when trained and tested on the sentences
of length under 100 (Finkel et al., 2008) and, therefore, would be expected to demonstrate similar
results in our setting. Note also that the LPCFG decoding algorithm uses a form of Bayes risk
minimisation to optimise for the specific scoring function, whereas our model, as most parsing
methods in the literature, output the highest scoring tree (maximum a-posteriori decoding). In fact,
approximate Bayes risk minimisation can be used with our model and in our previous experiments
resulted in approximately 0.5% boost in performance (Titov and Henderson, 2006). We chose not
to use it here, as the maximum a-posteriori decoding is simpler, more widely accepted and, unlike
Bayes risk minimisation, is expected to result in self-consistent trees.

These experimental results suggest that ISBNs are an appropriate model for structured predic-
tion. Even approximations such as those tested here, with a very strong factorisability assumption,
allow us to build quite accurate parsing models. We believe this provides strong justification for
work on more accurate approximations of ISBNs.

8. Additional Related Work

Whereas graphical models are standard models for sequence processing, there has not been much
previous work on graphical models for the prediction of structures more complex than sequences.
Sigmoid belief networks were used originally for character recognition tasks, but later a Markovian
dynamic extension of this model was applied to the reinforcement learning task (Sallans, 2002).
However, their graphical model, approximation method, and learning method differ substantially
from those of this paper.

When they were originally proposed, latent variable models for natural language parsing were
not particularly successful, demonstrating results significantly below the state-of-the-art models (Kuri-
hara and Sato, 2004; Matsuzaki et al., 2005; Savova and Peshkin, 2005; Riezler et al., 2002) or they
were used in combination with already state-of-the-art models (Koo and Collins, 2005) and demon-
strated a moderate improvement. More recently several methods (Petrov et al., 2006; Petrov and
Klein, 2007; Liang et al., 2007), framed as grammar refinement approaches, demonstrated results
similar to the best results achieved by generative models. All these approaches considered exten-
sions of a classic PCFG model, which augment non-terminals of the grammar with latent variables
(Latent-annotated PCFGs, LPCFGs). Even though marginalisation can be performed efficiently
by using dynamic programming, decoding under this model is NP-hard (Matsuzaki et al., 2005;
Sima’an, 1992). Instead, approximate parsing algorithms were considered.

The main reason for the improved performance of the more recent LPCFG methods is that
they address the problem that with LPCFGs it is difficult to discover the appropriate latent variable
augmentations for non-terminals. Early LPCFG models which used straight-forward implemen-
tations of expectation maximisation algorithms did not achieve state-of-the-art results (Matsuzaki
et al., 2005; Prescher, 2005). To solve this problem the split-and-merge approach was considered
in Petrov et al. (2006); Petrov and Klein (2007) and Dirichlet Process priors in Liang et al. (2007).
The model of Petrov and Klein (2007) achieved the best reported result for a single model parser
(90.1% F-measure). Even with the more sophisticated learning methods, in all of the work on
LPCFGs the number of latent annotations which are successfully learnt is small, compared to the
40-dimensional vectors used in our experiments with ISBNs.
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One important difference between LPCFGs and ISBNs is that in LPCFGs the latent annotations
are used to expand the set of atomic labels used in a PCFG, whereas ISBNs directly reason with a
vector of latent features. This use of a vector space instead of atomic labels provides ISBNs with a
much larger label space with a much richer structure of similarity between labels, based on shared
features. This highly structured label space allows standard gradient descent techniques to work
well even with large numbers of latent features. In contrast, learning for LPCFGs has required the
specialised methods discussed above and has succeeded in searching a much more limited space
of latent annotations. These specialised methods impose a hierarchical structure of similarity on
the atomic labels of LPCFGs, based on recursive binary augmentations of labels (“splits”), but this
hierarchical structure is much less rich that the similarity structure of a vector space.

Another important difference with LPCFGs is that ISBN models do not place strong restrictions
on the structure of statistical dependencies between latent variables, such as the context-free restric-
tion of LPCFGs. This makes ISBNs easily applicable to a much wider set of problems. For example,
ISBNs have been applied to the dependency parsing problem (Titov and Henderson, 2007) and to
joint dependency parsing and semantic role labelling (Henderson et al., 2008; Gesmundo et al.,
2009), where in both cases they achieved state-of-the-art results. The application of LPCFG mod-
els to even dependency parsing has required sophisticated grammar transformations (Musillo and
Merlo, 2008), to which the split-and-merge training approach has not yet been successfully adapted.

The experiments reported in Henderson et al. (2008) also suggest that the latent annotations
of syntactic states are not only useful for syntactic parsing itself but also can be helpful for other
tasks. In these experiments, semantic role labelling performance rose by about 3.5% when latent
annotations for syntactic decision were provided, thereby indicating that the latent annotation of
syntactic parsing states helps semantic role labelling.

9. Conclusions

This paper proposes a new class of graphical models for structured prediction problems, incremen-
tal sigmoid belief networks, and has applied it to natural language grammar learning. ISBNs allow
the structure of the graphical model to be dependent on the output structure. This allows the model
to directly express regularities that are local in the output structure but not local in the input struc-
ture, making ISBNs appropriate for parsing problems. This ability supports the induction of latent
variables which augment the grammatical structures annotated in the training data, thereby solving
a limited form of grammar induction. Exact inference with ISBNs is not tractable, but we derive
two tractable approximations. First, it is shown that the feed-forward neural network of Henderson
(2003) can be considered as a simple approximation to ISBNs. Second, a more accurate but still
tractable approximation based on mean field theory is proposed.

Both approximation models are empirically evaluated. First, artificial experiments were per-
formed, where both approximations significantly outperformed a baseline. The mean field method
achieved average relative error reduction of about 27% over the neural network approximation,
demonstrating that it is a more accurate approximation. Second, both approximations were applied
to the natural language parsing task, where the mean field method demonstrated significantly bet-
ter results. These results are non-significantly different from the results of another history-based
probabilistic model of parsing (Charniak, 2000) which is competitive with the state-of-the-art for
single-model parsers. The fact that a more accurate approximation leads to a more accurate parser
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suggests that the ISBNs proposed here are a good abstract model for grammar learning. This em-
pirical result motivates further research into more accurate approximations of ISBNs.
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Appendix A.

This appendix presents details of computing gradients for the incremental mean field approxima-
tion. We perform maximum likelihood estimation of the ISBN parameters, using the estimator of
the structure probability defined in expression (8). We focus on the incremental mean field approxi-
mation introduced in Section 5.3. As we have shown there, estimates of the conditional distribution
qtk(d)≈ P(dtk = d|h(t,k)) are dependent on the means µt,k computed at the elementary step (t,k) in
the same way as the estimates qtk(d) in the feed-forward approximation depend on the means µt in
expression (10), that is,

qtk(d) =
Φh(t,k)(d)exp(∑ jWd jµt,kj )

∑d′Φh(t,k)(d′)exp(∑ jWd′ jµt,kj )
. (15)

We use the gradient descent algorithm, so the goal of this section is to describe how to compute
derivatives of the log-likelihood

L̂(T ) =∑
t,k
∑
j
Wdtk jµ

t,k
j − log

(

∑
d′
Φh(t,k)(d′)exp(∑

j
Wd′ jµt,kj )

)

with respect to all the model parameters. The derivatives of L̂(T ) with respect to model parameters
can be expressed as

dL̂(T )
dx

=∑
d, j

∂L̂(T )
∂Wd j

dWd j

dx
+∑

t,k,i

∂L̂(T )
∂µt,ki

dµt,ki
dx

, (16)

where x is any model parameter, that is, entries of the weight matrices J, B and W . All the terms
except for dµt,ki

dx are trivial to compute:

∂L̂(T )
∂Wd j

=∑
t,k
µt,kj

(

δdtkd−qtk(d)
)

, (17)

∂L̂(T )
∂µt,ki

= (1−δk,Kt+1)

(

Wdtki−∑
d
qtk(d)Wdi

)

,
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where δi j is the Kronecker delta. Computation of the total derivatives dµt,ki
dx is less straightforward.

The main challenge is that dependence of µt,kj for k > 1 on other model parameters cannot be ex-
pressed analytically, as we found values of µt,kj by performing numerical maximisation of the ex-
pression Lt,kV (13). In the next several paragraphs we will consider only the case of k > 1, but later
we will return to the simpler case of k= 1, where the computation of derivatives is equivalent to the
backpropagation algorithm in standard feed-forward neural networks.

Note that the gradient of the log-likelihood can be easily computed in the standard mean field
methods for SBNs (Saul and Jordan, 1999; Saul et al., 1996), even though they also use numeric
strategies to find optimal means. There means are selected so as to maximise the variational upper
bound LV (4), which is used as the log-likelihood L̂ = LV in their approach. In static SBNs it
is feasible to perform complete maximisation of the entire L̂, which involves multiple backward-
forward passes through the structure of the graphical model. This leads to all the derivatives dL̂

dµi
being equal to zero. Therefore, no error backpropagation is needed in their case. All the derivatives
dL̂
dx can be computed using variational parameters associated with the nodes corresponding to the
parameter x. E.g. if x is a weight of an edge then only variational parameters associated with
the variables at its ends are needed to compute the derivative. Unfortunately, learning with the
incremental mean field approximation proposed in this paper is somewhat more complex.

In order to compute derivatives dµt,ki
dx we assume that maximisation of Lt,kV is done until conver-

gence, then the partial derivatives of Lt,kV with respect to µt,ki are equal to zero. This gives us a system
of linear equations, which describes interdependencies between the current means µt,k, the previous
means µt,k−1 and the weightsW :

Ft,ki =
∂Lt,kV
∂µt,ki

= ln(1−µt,ki )− lnµt,ki − ln(1−µt,k−1
i )+ lnµt,k−1

i

+Wdtk−1i−∑
d
q̂tk−1(d)Wdi = 0,

for 1 < i≤ n, where q̂tk−1 is the distribution over decisions computed in the same way as qtk−1 (15),
but using means µt,ki instead of µt,k−1

i :

q̂tk−1(d) =
Φh(t,k−1)(d)exp(∑ jWd jµt,kj )

∑d′Φh(t,k−1)(d′)exp(∑ jWd′ jµt,kj )
.

This system of equations permits the use of implicit differentiation to compute the derivatives
∂µt,ki
∂z , where z can be a weight matrix component Wd j or a previous mean µt,k−1

j involved in ex-
pression (13). It is important to distinguish z from x, used above, because x can be an arbitrary
model parameter not necessary involved in the expression Lt,kV but affecting the current means µt,ki
through µt,k−1

j . Equally important to distinguish partial derivatives ∂µt,ki
∂z from the total derivatives

dµti
dz , because the dependency of µt,ki on parameter z can be both direct, through maximisation of Lt,kV ,

but also indirect through previous maximisation steps (t ′,k′), where Lt
′,k′
V was dependent on z. The

relation between the total and partial derivatives can be expressed as

dµt,ki
dz

=
∂µt,ki
∂z

+∑
j

∂µt,ki
∂µt,k−1

j

dµt,k−1
j

dz
,
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meaning that indirect dependencies of µt,ki (k > 1) on parameters z are coming through previous
means µt,k−1

j . We apply the implicit differentiation theorem and obtain the vector of partial deriva-
tives with respect to a parameter z Dzµt = {

∂µt1
∂z , . . . ,

∂µtn
∂z } as

Dzµt =−
(

DµtFt,k
)−1

DzFt,k, (18)

where DµtFt,k and DzFt,k are Jacobians:

DµtFt,k =









∂Ft,k1
∂µt1

. . .
∂Ft,k1
∂µtn

. . . . . . . . .
∂Ft,kn
∂µt1

. . . ∂Ft,kn
∂µtn









, DzFt,k =







∂Ft,k1
∂z
. . .
∂Ft,kn
∂z






.

Now we derive the Jacobians DµtFt,k and DzFt,k for different types of parameters z. The matrix
DµtFt,k consists of the components

∂Ft,ki
∂µt,kj

=−
δi j

µt,kj (1−µt,kj )
−∑

d
q̂tk−1(d)WdiWd j

+

(

∑
d
q̂tk−1(d)Wdi

)(

∑
d
q̂tk−1(d)Wd j

)

, (19)

where δi j is the Kronecker delta. If we considerW·i as a random variable accepting valuesWdi under
distribution q̂tk−1, we can rewrite the Jacobian DµtFt,k as the negated sum of a positive diagonal
matrix and the covariance matrix Σq̂tk−1

(W ). Therefore the matrix DµtFt,k is negative semidefinite.
Note that this matrix is the Hessian for the expression Lt,kV (13), which implies concavity of Lt,kV

stated previously without proof. Similarly, the Hessian for (11) is only different by including output
weight covariances for all the previous elementary decision, not only for the last one, and therefore
expression (11) is also concave.

To conclude with the computation of ∂µt,ki
∂z , we compute Dµt,k−1Ft,k and DWFt,k:

∂Ft,ki
∂µt,k−1

j
=

δi j

µt,k−1
j (1−µt,k−1

j )
, (20)

∂Ft,ki
∂Wd j

= δi jδddtk − q̂tk−1(d)

(

δi j+(Wdi−∑
d′
q̂tk−1(d

′)Wd′i)µt,kj

)

. (21)

Now the partial derivatives ∂µt,ki
∂Wd j

and ∂µt,ki
∂µt,k−1

i
can be computed by substituting expressions (19)-(21)

into (18).
For k= 1, µt,1i was shown to be equal to the sigmoid function of the weighted sum of the parents

means as defined in (12) and (14). Therefore, we can compute the partial derivatives of µt,1i with
respect to other means and parameters involved in (12) and (14):

∂µt,1i
∂µt

′,Kt′+1
j

= σ′(ηti) ∑
r:r(t ′,t)

Jri j,
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∂µt,1i
∂Jrjl

= δi jσ
′(ηti) ∑

t ′:r(t ′,t)
µt

′,Kt′+1
l ,

∂µt,1i
∂Brkjd

= δi jσ′(ηti) ∑
t ′:r(t ′,t)

δddt′k
.

where σ′(ηti) = σ(ηti)(1−σ(ηti)).
In order to compute dµt,ki

dx in (16), derivatives with respect to previous means ∂µt,ki
∂µt,k−1

i
are used to

propagate the error in a similar way to the neural network backpropagation algorithm (Rumelhart
et al., 1986). We denote the total derivative of the approximate log-likelihood with respect to the
means of the latent variables as εt,ki = dL̂(T )

dµt,ki
. The incrementality of the mean field algorithm guar-

antees that latent vectors of means µt,k are computed from the means of the previous elementary
steps. Therefore, values εt,ki can be computed in the opposite order, propagating the information
back through the structure. Namely, the recursive formulae would be:

εt,ki =
∂logqtk
∂µt,ki

+∑
j
εt,k+1
j

∂µt,k+1
j

∂µt,ki
, k ≤ Kt ,

εt,K
t+1

i = ∑
r,t ′:r(t,t ′)

∑
j
εt

′,1
j σ′(ηt

′

j )Jrji.

After computing values ε for all the elementary steps (t,k), we can evaluate the derivatives of
the model parameters. We start with the output distribution parametersWdi:

dL̂(T )
dWdi

=
∂L̂(T )
∂Wdi

+∑
t,k
∑
j
εt,k

∂µt,kj
∂Wdi

.

The first term here is evaluated as defined in (17), the term ∂µt,kj
∂Wdi

is computed as explained above.
Finally, the total derivatives of the log-likelihood with respect to the parameters Jti j and Brkid are

found as follows

dL̂(T )
dJri j

=∑
t
µtj ∑

t ′:r(t,t ′)
εt

′,1
i σ′(ηt

′

i ),

dL̂(T )
dBrkid

=∑
t
δdtkd ∑

t ′:r(t,t ′)
εt

′,1
i σ′(ηt

′

i ).
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Leon Bottou. Une approche théoretique de l’apprentissage connexionniste: Applications à la re-
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Abstract
In regular statistical models, the leave-one-out cross-validation is asymptotically equivalent to the
Akaike information criterion. However, since many learning machines are singular statistical mod-
els, the asymptotic behavior of the cross-validation remains unknown. In previous studies, we
established the singular learning theory and proposed a widely applicable information criterion, the
expectation value of which is asymptotically equal to the average Bayes generalization loss. In the
present paper, we theoretically compare the Bayes cross-validation loss and the widely applicable
information criterion and prove two theorems. First, the Bayes cross-validation loss is asymptot-
ically equivalent to the widely applicable information criterion as a random variable. Therefore,
model selection and hyperparameter optimization using these two values are asymptotically equiv-
alent. Second, the sum of the Bayes generalization error and the Bayes cross-validation error is
asymptotically equal to 2λ/n, where λ is the real log canonical threshold and n is the number of
training samples. Therefore the relation between the cross-validation error and the generalization
error is determined by the algebraic geometrical structure of a learning machine. We also clarify
that the deviance information criteria are different from the Bayes cross-validation and the widely
applicable information criterion.
Keywords: cross-validation, information criterion, singular learning machine, birational invariant

1. Introduction

A statistical model or a learning machine is said to be regular if the map taking parameters to
probability distributions is one-to-one and if its Fisher information matrix is positive definite. If a
model is not regular, then it is said to be singular. Many learning machines, such as artificial neu-
ral networks (Watanabe, 2001b), normal mixtures (Yamazaki and Watanabe, 2003), reduced rank
regressions (Aoyagi and Watanabe, 2005), Bayes networks (Rusakov and Geiger, 2005; Zwiernik,
2010), mixtures of probability distributions (Lin, 2010), Boltzmann machines (Aoyagi, 2010), and
hidden Markov models (Yamazaki and Watanabe, 2005), are not regular but singular (Watanabe,
2007). If a statistical model or a learning machine contains a hierarchical structure, hidden vari-
ables, or a grammatical rule, then the model is generally singular. Therefore, singular learning
theory is necessary in modern information science.

The statistical properties of singular models have remained unknown until recently, because
analyzing a singular likelihood function had been difficult (Hartigan, 1985; Watanabe, 1995). In
singular statistical models, the maximum likelihood estimator does not satisfy asymptotic normality.

c©2010 Sumio Watanabe.
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Consequently, AIC is not equal to the average generalization error (Hagiwara, 2002), and the Bayes
information criterion (BIC) is not equal to the Bayes marginal likelihood (Watanabe, 2001a), even
asymptotically. In singular models, the maximum likelihood estimator often diverges, or even if
it does not diverge, makes the generalization error very large. Therefore, the maximum likelihood
method is not appropriate for singular models. On the other hand, Bayes estimation was proven to
make the generalization error smaller if the statistical model contains singularities. Therefore, in
the present paper, we investigate methods for estimating the Bayes generalization error.

Recently, new statistical learning theory, based on methods from algebraic geometry, has been
established (Watanabe, 2001a; Drton et al., 2009; Watanabe, 2009, 2010a,c; Lin, 2010). In singular
learning theory, a log likelihood function can be made into a common standard form, even if it con-
tains singularities, by using the resolution theorem in algebraic geometry. As a result, the asymptotic
behavior of the posterior distribution is clarified, and the concepts of BIC and AIC can be general-
ized onto singular statistical models. The asymptotic Bayes marginal likelihood was proven to be
determined by the real log canonical threshold (Watanabe, 2001a), and the average Bayes general-
ization error was proven to be estimable by the widely applicable information criterion (Watanabe,
2009, 2010a,c).

Cross-validation is an alternative method for estimating the generalization error (Mosier, 1951;
Stone, 1977; Geisser, 1975). By definition, the average of the cross-validation is equal to the average
generalization error in both regular and singular models. In regular statistical models, the leave-one-
out cross-validation is asymptotically equivalent to AIC (Akaike, 1974) in the maximum likelihood
method (Stone, 1977; Linhart, 1986; Browne, 2000). However, the asymptotic behavior of the
cross-validation in singular models has not been clarified.

In the present paper, in singular statistical models, we theoretically compare the Bayes cross-
validation, the widely applicable information criterion, and the Bayes generalization error and prove
two theorems. First, we show that the Bayes cross-validation loss is asymptotically equivalent to
the widely applicable information criterion as a random variable. Second, we also show that the
sum of the Bayes cross-validation error and the Bayes generalization error is asymptotically equal
to 2λ/n, where λ is the real log canonical threshold and n is the number of training samples. It
is important that neither λ or n is a random variable. Since the real log canonical threshold is a
birational invariant of the statistical model, the relationship between the Bayes cross-validation and
the Bayes generalization error is determined by the algebraic geometrical structure of the statistical
model.

The remainder of the present paper is organized as follows. In Section 2, we introduce the
framework of Bayes learning and explain singular learning theory. In Section 3, the Bayes cross-
validation is defined. In Section 4, the main theorems are proven. In Section 5, we discuss the
results of the present paper, and the differences among the cross-validation, the widely applica-
ble information criterion, and the deviance information criterion are investigated theoretically and
experimentally. Finally, in Section 6, we summarize the primary conclusions of the present paper.

2. Bayes Learning Theory

In this section, we summarize Bayes learning theory for singular learning machines. The results
presented in this section are well known and are the fundamental basis of the present paper. Table 1
lists variables, names, and equation numbers in the present paper.
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Variable Name Equation number
Ew[ ] posterior average Equation (1)
E
(i)
w [ ] posterior average without Xi Equation (16)
L(w) log loss function Equation (8)
L0 minimum loss Equation (9)
Ln empirical loss Equation (10)

BgL(n) Bayes generalization loss Equation (3)
BtL(n) Bayes training loss Equation (4)
GtL(n) Gibbs training loss Equation (7)
CvL(n) cross-validation loss Equation (17)
Bg(n) Bayes generalization error Equation (11)
Bt(n) Bayes training error Equation (12)
Cv(n) cross-validation error Equation (28)
V (n) functional variance Equation (5)
Yk(n) kth functional cumulant Equation (18)

WAIC(n) WAIC Equation (6)
λ real log canonical threshold Equation (29)
ν singular fluctuation Equation (30)

Table 1: Variables, Names, and Equation Numbers

2.1 Framework of Bayes Learning

First, we explain the framework of Bayes learning.
Let q(x) be a probability density function on the N dimensional real Euclidean space RN . The

training samples and the testing sample are denoted by random variables X1,X2, ...,Xn and X , re-
spectively, which are independently subject to the same probability distribution as q(x)dx. The
probability distribution q(x)dx is sometimes called the true distribution.

A statistical model or a learning machine is defined as a probability density function p(x|w)
of x ∈ RN for a given parameter w ∈W ⊂ Rd , where W is the set of all parameters. In Bayes
estimation, we prepare a probability density function ϕ(w) on W . Although ϕ(w) is referred to
as a prior distribution, in general, ϕ(w) does not necessary represent an a priori knowledge of the
parameter.

For a given function f (w) on W , the expectation value of f (w) with respect to the posterior
distribution is defined as

Ew[ f (w)] =

∫
f (w)

n

∏
i=1

p(Xi|w)β ϕ(w)dw
∫ n

∏
i=1

p(Xi|w)β ϕ(w)dw
, (1)

where 0< β<∞ is the inverse temperature. The case in which β= 1 is most important because this
case corresponds to strict Bayes estimation. The Bayes predictive distribution is defined as

p∗(x)≡ Ew[p(x|w)]. (2)

3573



WATANABE

In Bayes learning theory, the following random variables are important. The Bayes generalization
loss BgL(n) and the Bayes training loss BtL(n) are defined, respectively, as

BgL(n) = −EX [log p∗(X)], (3)

BtL(n) = −
1
n

n

∑
i=1
log p∗(Xi), (4)

where EX [ ] gives the expectation value over X . The functional variance is defined as

V (n) =
n

∑
i=1

{

Ew[(log p(Xi|w))2]−Ew[log p(Xi|w)]2
}

, (5)

which shows the fluctuation of the posterior distribution. In previous papers (Watanabe, 2009,
2010a,b), we defined the widely applicable information criterion

WAIC(n)≡ BtL(n)+
β
n
V (n), (6)

and proved that

E[BgL(n)] = E[WAIC(n)]+o(
1
n
),

holds for both regular and singular statistical models, where E[ ] gives the expectation value over
the sets of training samples.

Remark 1 Although the case in which β = 1 is most important, general cases in which 0 < β <
∞ are also important for four reasons. First, from a theoretical viewpoint, several mathematical
relations can be obtained using the derivative of β. For example, using the Bayes free energy or the
Bayes stochastic complexity,

F (β) =− log
∫ n

∏
i=1

p(Xi|w)βϕ(w)dw,

the Gibbs training loss

GtL(n) =−Ew

[1
n

n

∑
i=1
log p(Xi|w)

]

(7)

can be written as

GtL(n) =
∂F
∂β

.

Such relations are useful in investigating Bayes learning theory. We use ∂2F /∂β2 to investigate
the deviance information criteria in Section 5. Second, the maximum likelihood method formally
corresponds to β= ∞. The maximum likelihood method is defined as

p∗(x) = p(x|ŵ),
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instead of Equation (2), where ŵ is the maximum likelihood estimator. Its generalization loss is also
defined in the same manner as Equation (3). In regular statistical models, the asymptotic Bayes
generalization error does not depend on 0< β≤∞, whereas in singular models it strongly depends
on β. Therefore, the general case is useful for investigating the difference between the maximum
likelihood and Bayes methods. Third, from an experimental viewpoint, in order to approximate the
posterior distribution, the Markov chain Monte Carlo method is often applied by controlling β. In
particular, the identity

F (1) =
∫ 1

0

∂F
∂β

dβ

is used in the calculation of the Bayes marginal likelihood. The theoretical results for general β are
useful for monitoring the effect of controlling β (Nagata and Watanabe, 2008). Finally, in the re-
gression problem, β can be understood as the variance of the unknown additional noise (Watanabe,
2010c) and so may be optimized as the hyperparameter. For these reasons, in the present paper, we
theoretically investigate the cases for general β.

2.2 Notation

In the following, we explain the notation used in the present study.
The log loss function L(w) and the entropy S of the true distribution are defined, respectively, as

L(w) = −EX [log p(X |w)], (8)
S = −EX [logq(X)].

Then, L(w) = S+D(q||pw), where D(q||pw) is the Kullback-Leibler distance defined as

D(q||pw) =
∫
q(x) log

q(x)
p(x|w)

dx.

Then, D(q||pw)≥ 0, hence L(w)≥ S. Moreover, L(w) = S if and only if p(x|w) = q(x).
In the present paper, we assume that there exists a parameter w0 ∈W that minimizes L(w),

L(w0) = min
w∈W

L(w).

Note that such w0 is not unique in general because the map w )→ p(x|w) is, in general, not a one-
to-one map in singular learning machines. In addition, we assume that, for an arbitrary w that
satisfies L(w) = L(w0), p(x|w) is the same probability density function. Let p0(x) be such a unique
probability density function. In general, the set

W0 = {w ∈W ; p(x|w) = p0(x)}

is not a set of a single element but rather an analytic or algebraic set with singularities. Here, a set
in Rd is said to be an analytic or algebraic set if and only if the set is equal to the set of all zero
points of an analytic or algebraic function, respectively. For simple notations, the minimum log loss
L0 and the empirical log loss Ln are defined, respectively, as

L0 = −EX [log p0(X)], (9)

Ln = −
1
n

n

∑
i=1
log p0(Xi). (10)
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Then, by definition, L0 = E[Ln]. Using these values, Bayes generalization error Bg(n) and Bayes
training error Bt(n) are defined, respectively, as

Bg(n) = BgL(n)−L0, (11)
Bt(n) = BtL(n)−Ln. (12)

Let us define a log density ratio function as:

f (x,w) = log
p0(x)
p(x|w)

,

which is equivalent to

p(x|w) = p0(x)exp(− f (x,w)).

Then, it immediately follows that

Bg(n) = −EX [logEw[exp(− f (X ,w))]],

Bt(n) = −
1
n

n

∑
i=1
logEw[exp(− f (Xi,w))],

V (n) =
n

∑
i=1

{

Ew[ f (Xi,w)2]−Ew[ f (Xi,w)]2
}

.

Therefore, the problem of statistical learning is characterized by the function f (x,w).

Definition 2 (1) If q(x) = p0(x), then q(x) is said to be realizable by p(x|w). Otherwise, q(x) is
said to be unrealizable.
(2) If the set W0 consists of a single point w0 and if the Hessian matrix ∇∇L(w0) is strictly positive
definite, then q(x) is said to be regular for p(x|w). Otherwise, q(x) is said to be singular for p(x|w).

Bayes learning theory was investigated for a realizable and regular case (Schwarz, 1978; Levin
et al., 1990; Amari, 1993). The WAIC was found for a realizable and singular case (Watanabe,
2001a, 2009, 2010a) and for an unrealizable and regular case (Watanabe, 2010b). In addition,
WAIC was generalized for an unrealizable and singular case (Watanabe, 2010d).

2.3 Singular Learning Theory

We summarize singular learning theory. In the present paper, we assume the followings.

2.3.1 ASSUMPTIONS

(1) The set of parametersW is a compact set in Rd , the open kernel1 of which is not the empty set.
The boundary ofW is defined by several analytic functions,

W = {w ∈ R
d ;π1(w)≥ 0,π2(w)≥ 0, ...,πk(w)≥ 0}.

1. The open kernel of a set A is the largest open set that is contained in A.
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(2) The prior distribution satisfies ϕ(w) = ϕ1(w)ϕ2(w), where ϕ1(w)≥ 0 is an analytic function and
ϕ2(w)> 0 is aC∞-class function.
(3) Let s≥ 8 and let

Ls(q) = { f (x);‖ f‖ ≡
(

∫
| f (x)|sq(x)dx

)1/s
< ∞}

be a Banach space. The mapW , w )→ f (x,w) is an Ls(q) valued analytic function.
(4) A nonnegative function K(w) is defined as

K(w) = EX [ f (X ,w)].

The setWε is defined as

Wε = {w ∈W ; K(w)≤ ε}.

It is assumed that there exist constants ε,c> 0 such that

(∀w ∈Wε) EX [ f (X ,w)]≥ c EX [ f (X ,w)2]. (13)

Remark 3 In ordinary learning problems, if the true distribution is regular for or realizable by a
learning machine, then assumptions (1), (2), (3) and (4) are satisfied, and the results of the present
paper hold. If the true distribution is singular for and unrealizable by a learning machine, then
assumption (4) is satisfied in some cases but not in other cases. If the assumption (4) is not satisfied,
then the Bayes generalization and training errors may have asymptotic behaviors other than those
described in Lemma 1 (Watanabe, 2010d).

The investigation of cross-validation in singular learning machines requires singular learning
theory. In previous papers, we obtained the following lemma.

Lemma 1 Assume that assumptions (1), (2), (3), and (4) are satisfied. Then, the followings hold.
(1) Three random variables nBg(n), nBt(n), and V (n) converge in law, when n tends to infinity. In
addition, the expectation values of these variables converge.
(2) For k = 1,2,3,4, we define

Mk(n)≡ sup
|α|≤1+β

E

[1
n

n

∑
i=1

Ew[| f (Xi,w)|k exp(α f (Xi,w))]
Ew[exp(α f (Xi,w))]

]

,

where E[ ] gives the average over all sets of training samples. Then,

limsupn→∞

(

nk/2 Mk(n)
)

< ∞. (14)

(3) The expectation value of the Bayes generalization loss is asymptotically equal to the widely
applicable information criterion,

E[BgL(n)] = E[WAIC(n)]+o(
1
n
). (15)
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Proof For the case in which q(x) is realizable by and singular for p(x|w), this lemma was proven
in Watanabe (2010a) and Watanabe (2009). In fact, the proof of Lemma 1 (1) is given in Theorem
1 of Watanabe (2010a). Also Lemma 1 (2) can be proven in the same manner as Equation (32) in
Watanabe (2010a) or Equation (6.59) in Watanabe (2009). The proof of Lemma 1 (3) is given in
Theorem 2 and the discussion of Watanabe (2010a). For the case in which q(x) is regular for and
unrealizable by p(x|w), this lemma was proven in Watanabe (2010b). For the case in which q(x)
is singular for and unrealizable by p(x|w), these results can be generalized under the condition that
Equation (13) is satisfied (Watanabe, 2010d).

3. Bayes Cross-Validation

In this section, we introduce the cross-validation in Bayes learning.
The expectation value E(i)

w [ ] using the posterior distribution leaving out Xi is defined as

E
(i)
w [ ] =

∫
( )

n

∏
j .=i
p(Xj|w)β ϕ(w)dw

∫ n

∏
j .=i
p(Xj|w)β ϕ(w)dw

, (16)

where
n

∏
j .=i
shows the product for j = 1,2,3, ..,n, which does not include j = i. The predictive

distribution leaving out Xi is defined as

p(i)(x) = E
(i)
w [p(x|w)].

The log loss of p(i)(x) when Xi is used as a testing sample is

− log p(i)(Xi) =− logE(i)
w [p(Xi|w)].

Thus, the log loss of the Bayes cross-validation is defined as the empirical average of them,

CvL(n) =−
1
n

n

∑
i=1
logE(i)

w [p(Xi|w)]. (17)

The random variable CvL(n) is referred to as the cross-validation loss. Since X1,X2, ...,Xn are inde-
pendent training samples, it immediately follows that

E[CvL(n)] = E[BgL(n−1)].

Although the two random variablesCvL(n) and BgL(n−1) are different,

CvL(n) .= BgL(n−1),

their expectation values coincide with each other by the definition. Using Equation (15), it follows
that

E[CvL(n)] = E[WAIC(n−1)]+o(
1
n
).
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Therefore, three expectation values E[CvL(n)], E[BgL(n− 1)], and E[WAIC(n− 1)] are asymptoti-
cally equal to each other. The primary goal of the present paper is to clarify the asymptotic behaviors
of three random variables,CvL(n), BgL(n), and WAIC(n), when n is sufficiently large.

Remark 4 In practical applications, the Bayes generalization loss BgL(n) indicates the accuracy
of Bayes estimation. However, in order to calculate BgL(n), we need the expectation value over the
testing sample taken from the unknown true distribution, hence we cannot directly obtain BgL(n)
in practical applications. On the other hand, both the cross-validation loss CvL(n) and the widely
applicable information criterion WAIC(n) can be calculated using only training samples. Therefore,
the cross-validation loss and the widely applicable information criterion can be used for model
selection and hyperparameter optimization. This is the reason why comparison of these random
variables is an important problem in statistical learning theory.

4. Main Results

In this section, the main results of the present paper are explained. First, we define functional
cumulants and describe their asymptotic properties. Second, we prove that both the cross-validation
loss and the widely applicable information criterion can be represented by the functional cumulants.
Finally, we prove that the cross-validation loss and the widely applicable information criterion are
related to the birational invariants.

4.1 Functional Cumulants

Definition 5 The generating function F(α) of functional cumulants is defined as

F(α) =
1
n

n

∑
i=1
logEw[p(Xi|w)α].

The kth order functional cumulant Yk(n) (k = 1,2,3,4) is defined as

Yk(n) =
dkF
dαk

(0). (18)

Then, by definition,

F(0) = 0,
F(1) = −BtL(n),
Y1(n) = −GtL(n),
Y2(n) = V (n)/n.

For simple notation, we use

!k(Xi) = Ew[(log p(Xi|w))k] (k = 1,2,3,4).

Lemma 2 Then, the following equations hold:

Y1(n) =
1
n

n

∑
i=1

!1(Xi), (19)
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Y2(n) =
1
n

n

∑
i=1

{

!2(Xi)− !1(Xi)2
}

, (20)

Y3(n) =
1
n

n

∑
i=1

{

!3(Xi)−3!2(Xi)!1(Xi)+2!1(Xi)3
}

, (21)

Y4(n) =
1
n

n

∑
i=1

{

!4(Xi)−4!3(Xi)!1(Xi)−3!2(Xi)2

+12!2(Xi)!1(Xi)2−6!1(Xi)4
}

. (22)

Moreover,

Yk(n) = Op(
1
nk/2

) (k = 2,3,4).

In other words,

limsupn→∞E[nk/2 |Yk(n)|]< ∞ (k = 2,3,4). (23)

Proof First, we prove Equations (19) through (22). Let us define

gi(α) = Ew[p(Xi|w)α].

Then, gi(0) = 1,

g(k)i (0)≡
dkgi
dαk

(0) = !k(Xi) (k = 1,2,3,4),

and

F(α) =
1
n

n

∑
i=1
loggi(α).

For arbitrary natural number k,
(gi(α)(k)

gi(α)

)′
=
gi(α)(k+1)

gi(α)
−
(gi(α)(k)

gi(α)

)(gi(α)′

gi(α)

)

.

By applying this relation recursively, Equations (19), (20), (21), and (22) are derived. Let us prove
Equation (23). The random variables Yk(n) (k = 2,3,4) are invariant under the transform,

log p(Xi|w) )→ log p(Xi|w)+ c(Xi), (24)

for arbitrary c(Xi). In fact, by replacing p(Xi|w) by p(Xi|w)eC(Xi), we define

F̂(α) =
1
n

n

∑
i=1
logEw[p(Xi|w)α eαc(Xi)].

Then, the difference between F(α) and F̂(α) is a linear function of α, which vanishes by higher-
order differentiation. In particular, by selecting c(Xi) = − log p0(Xi), we can show that Yk(n) (k =
2,3,4) are invariant by the following replacement,

log p(Xi|w) )→ f (Xi,w).
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In other words, Yk(n) (n= 2,3,4) are invarianrt by the replacement,

!k(Xi) )→ Ew[ f (Xi,w)k].

Using the Cauchy-Schwarz inequality, for 1≤ k′ ≤ k,

Ew[| f (Xi,w)|k
′
]1/k

′
≤ Ew[| f (Xi,w)|k]1/k.

Therefore, for k = 2,3,4,

E[|Yk(n)|]≤ E

[Ck
n

n

∑
i=1

Ew[| f (Xi,w)|k]
]

≤CkMk(n),

whereC2 = 2,C3 = 6,C4 = 26. Then, using Equation (14), we obtain Equation (23).

Remark 6 Using Equation (24) with c(Xi)=−Ew[log p(Xi|w)] and the normalized function defined
as

!∗k(Xi) = Ew[(log p(Xi|w)− c(Xi))k],

it follows that

Y2(n) =
1
n

n

∑
i=1

!∗2(Xi),

Y3(n) =
1
n

n

∑
i=1

!∗3(Xi),

Y4(n) =
1
n

n

∑
i=1

{

!∗4(Xi)−3!∗2(Xi)2
}

.

These formulas may be useful in practical applications.

4.2 Bayes Cross-validation and Widely Applicable Information Criterion

We show the asymptotic equivalence of the cross-validation loss CvL(n) and the widely applicable
information criterion WAIC(n).

Theorem 1 For arbitrary 0 < β < ∞, the cross-validation loss CvL(n) and the widely applicable
information criterionWAIC(n) are given, respectively, as

CvL(n) = −Y1(n)+
(2β−1

2

)

Y2(n)

−
(3β2−3β+1

6

)

Y3(n)+Op(
1
n2

),

WAIC(n) = −Y1(n)+
(2β−1

2

)

Y2(n)

−
1
6
Y3(n)+Op(

1
n2

).
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Proof First, we considerCvL(n). From the definitions of Ew[ ] and E(i)
w [ ], we have

E
(i)
w [( )] =

Ew[( )p(Xi|w)−β ]
Ew[p(Xi|w)−β ]

. (25)

Therefore, by the definition of the cross-validation loss, Equation (17),

CvL(n) =−
1
n

n

∑
i=1
log

Ew[ p(Xi|w)1−β ]
Ew[ p(Xi|w)−β ]

.

Using the generating function of functional cumulants F(α),

CvL(n) = F(−β)−F(1−β). (26)

Then, using Lemma 1 (2) for each k = 2,3,4, and |α|< 1+β,

E[|F(k)(α)|] ≤ E

[Ck
n

n

∑
i=1

Ew[| f (Xi,w)|k exp(α f (Xi,w))]
Ew[exp(α f (Xi,w))]

]

≤ CkMk(n),

whereC2 = 2,C3 = 6,C4 = 26. Therefore,

|F(k)(α)|= Op(
1
nk/2

). (27)

By Taylor expansion of F(α) among α= 0, there exist β∗,β∗∗ (|β∗|, |β∗∗|< 1+β) such that

F(−β) = F(0)−βF ′(0)+
β2

2
F ′′(0)

−
β3

6
F(3)(0)+

β4

24
F(4)(β∗),

F(1−β) = F(0)+(1−β)F ′(0)+
(1−β)2

2
F ′′(0)

+
(1−β)3

6
F(3)(0)+

(1−β)4

24
F(4)(β∗∗).

Using F(0) = 0 and Equations (26) and (27), it follows that

CvL(n) = −F ′(0)+
2β−1
2

F ′′(0)

−
3β2−3β+1

6
F(3)(0)+Op(

1
n2

).

Thus, we have proven the first half of the theorem. For the latter half, by the definitions of WAIC(n),
Bayes training loss, and the functional variance, we have

WAIC(n) = BtL(n)+(β/n)V (n),
BtL(n) = −F(1),
V (n) = nF ′′(0).
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Therefore,

WAIC(n) =−F(1)+βF ′′(0).

By Taylor expansion of F(1), we obtain

WAIC(n) =−F ′(0)+
2β−1
2

F ′′(0)−
1
6
F(3)(0)+Op(

1
n2

),

which completes the proof.

From the above theorem, we obtain the following corollary.

Corollary 1 For arbitrary 0 < β < ∞, the cross-validation loss CvL(n) and the widely applicable
information criterionWAIC(n) satisfy

CvL(n) =WAIC(n)+Op(
1
n3/2

).

In particular, for β= 1,

CvL(n) =WAIC(n)+Op(
1
n2

).

More precisely, the difference between the cross-validation loss and the widely applicable informa-
tion criterion is given by

CvL(n)−WAIC(n)∼=
(β−β2

2

)

Y3(n).

If β= 1,

CvL(n)−WAIC(n)∼=
1
12
Y4(n).

4.3 Generalization Error and Cross-validation Error

In the previous subsection, we have shown that the cross-validation loss is asymptotically equivalent
to the widely applicable information criterion. In this section, let us compare the Bayes general-
ization error Bg(n) given in Equation (11) and the cross-validation error Cv(n), which is defined
as

Cv(n) =CvL(n)−Ln. (28)

We need mathematical concepts, the real log canonical threshold, and the singular fluctuation.

Definition 7 The zeta function ζ(z) (Re(z)> 0) of statistical learning is defined as

ζ(z) =
∫
K(w)zϕ(w)dw,
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where

K(w) = EX [ f (X ,w)]

is a nonnegative analytic function. Here, ζ(z) can be analytically continued to the unique mero-
morphic function on the entire complex plane C. All poles of ζ(z) are real, negative, and rational
numbers. The maximum pole is denoted as

(−λ) = maximum pole of ζ(z). (29)

Then, the positive rational number λ is referred to as the real log canonical threshold. The singular
fluctuation is defined as

ν= ν(β) = lim
n→∞

β
2
E[V (n)]. (30)

Note that the real log canonical threshold does not depend on β, whereas the singular fluctuation is
a function of β.

Both the real log canonical threshold and the singular fluctuation are birational invariants. In
other words, they are determined by the algebraic geometrical structure of the statistical model. The
following lemma was proven in a previous study (Watanabe, 2010a,b,d).

Lemma 3 The following convergences hold:

lim
n→∞

nE[Bg(n)] =
λ−ν
β

+ν, (31)

lim
n→∞

nE[Bt(n)] =
λ−ν
β

−ν, (32)

Moreover, convergence in probability

n(Bg(n)+Bt(n))+V (n)→
2λ
β

(33)

holds.

Proof For the case in which q(x) is realizable by and singular for p(x|w), Equations (31) and (32)
were proven by in Corollary 3 in Watanabe (2010a). The equation (33) was given in Corollary 2
in Watanabe (2010a). For the case in which q(x) is regular for p(x|w), these results were proved in
Watanabe (2010b). For the case in which q(x) is singular for and unrealizable by p(x|w) they were
generalized in Watanabe (2010d).

4.3.1 EXAMPLES

If q(x) is regular for and realizable by p(x|w), then λ = ν = d/2, where d is the dimension of
the parameter space. If q(x) is regular for and unrealizable by p(x|w), then λ and ν are given by
Watanabe (2010b). If q(x) is singular for and realizable by p(x|w), then λ for several models are
obtained by resolution of singularities (Aoyagi and Watanabe, 2005; Rusakov and Geiger, 2005;
Yamazaki and Watanabe, 2003; Lin, 2010; Zwiernik, 2010). If q(x) is singular for and unrealizable
by p(x|w), then λ and ν remain unknown constants.

We have the following theorem.
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Theorem 2 The following equation holds:

lim
n→∞

nE[Cv(n)] =
λ−ν
β

+ν,

The sum of the Bayes generalization error and the cross-validation error satisfies

Bg(n)+Cv(n) = (β−1)
V (n)
n

+
2λ
βn

+op(
1
n
).

In particular, if β= 1,

Bg(n)+Cv(n) =
2λ
n

+op(
1
n
).

Proof By Equation (31),

E[Bg(n−1)] =
(λ−ν

β
+ν

)1
n
+o(

1
n
).

Since E[Cv(n)] = E[Bg(n−1)],

lim
n→∞

nE[Cv(n)] = lim
n→∞

nE[Bg(n−1)]

=
λ−ν
β

+ν.

From Equation (33) and Corollary 1,

Bt(n) =Cv(n)−
β
n
V (n)+Op(

1
n3/2

),

and it follows that

(Bg(n)+Cv(n)) = (β−1)
V (n)
n

+
2λ
βn

+op(
1
n
),

which proves the Theorem.

This theorem indicates that both the cross-validation error and the Bayes generalization error
are determined by the algebraic geometrical structure of the statistical model, which is extracted as
the real log canonical threshold. From this theorem, in the strict Bayes case β= 1, we have

E[Bg(n)] =
λ
n
+o(

1
n
),

E[Cv(n)] =
λ
n
+o(

1
n
),

and

Bg(n)+Cv(n) =
2λ
n

+op(
1
n
). (34)
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Therefore, the smaller cross-validation error Cv(n) is equivalent to the larger Bayes generalization
error Bg(n). Note that a regular statistical model is a special example of singular models, hence
both Theorems 1 and 2 also hold in regular statistical models. In Watanabe (2009), it was proven
that the random variable nBg(n) converges to a random variable in law. Thus, nCv(n) converges
to a random variable in law. The asymptotic probability distribution of nBg(n) can be represented
using a Gaussian process, which is defined on the set of true parameters, but is not equal to the χ2
distribution in general.

Remark 8 The relation given by Equation (34) indicates that, if β= 1, the variances of Bg(n) and
Cv(n) are equal. If the average value 2ν=E[V (n)] is known, then Bt(n)+2ν/n can be used instead
of Cv(n), because both average values are asymptotically equal to the Bayes generalization error.
The variance of Bt(n)+ 2ν/n is smaller than that of Cv(n) if and only if the variance of Bt(n) is
smaller than that of Bg(n). If a true distribution is regular for and realizable by the statistical
model, then the variance of Bt(n) is asymptotically equal to that of Bg(n). However, in other cases,
the variance of Bt(n) may be smaller or larger than that of Bg(n).

5. Discussion

Let us now discuss the results of the present paper.

5.1 From Regular to Singular

First, we summarize the regular and singular learning theories.
In regular statistical models, the generalization loss of the maximum likelihood method is

asymptotically equal to that of the Bayes estimation. In both the maximum likelihood and Bayes
methods, the cross-validation losses have the same asymptotic behaviors. The leave-one-out cross-
validation is asymptotically equivalent to the AIC, in both the maximum likelihood and Bayes meth-
ods.

On the other hand, in singular learning machines, the generalization loss of the maximum like-
lihood method is larger than the Bayes generalization loss. Since the generalization loss of the
maximum likelihood method is determined by the maximum value of the Gaussian process, the
maximum likelihood method is not appropriate in singular models (Watanabe, 2009). In Bayes esti-
mation, we derived the asymptotic expansion of the generalization loss and proved that the average
of the widely applicable information criterion is asymptotically equal to the Bayes generalization
loss (Watanabe, 2010a). In the present paper, we clarified that the leave-one-out cross-validation in
Bayes estimation is asymptotically equivalent to WAIC.

It was proven (Watanabe, 2001a) that the Bayes marginal likelihood of a singular model is
different from BIC of a regular model. In the future, we intend to compare the cross-validation and
Bayes marginal likelihood in model selection and hyperparameter optimization in singular statistical
models.

5.2 Cross- validation and Importance Sampling

Second, let us investigate the cross-validation and the importance sampling cross-validation from a
practical viewpoint.

In Theorem 1, we theoretically proved that the leave-one-out cross-validation is asymptotically
equivalent to the widely applicable information criterion. In practical applications, we often approx-
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imate the posterior distribution using the Markov Chain Monte Carlo or other numerical methods.
If the posterior distribution is precisely realized, then the two theorems of the present paper hold.
However, if the posterior distribution was not precisely approximated, then the cross-validation
might not be equivalent to the widely applicable information criterion.

In Bayes estimation, there are two different methods by which the leave-one-out cross-validation
is numerically approximated. In the former method, CV1 is obtained by realizing all posterior dis-
tributions E(i)

w [ ] leaving out Xi for i= 1,2,3, ...,n, and the empirical average

CV1 =−
1
n

n

∑
i=1
logE(i)

w [p(Xi|w)]

is then calculated. In this method, we must realize n different posterior distributions, which requires
heavy computational costs.

In the latter method, the posterior distribution leaving out Xi is estimated using the posterior
average Ew[ ], in the same manner as Equation (25),

E
(i)
w [p(Xi|w)]∼=

Ew[p(Xi|w) p(Xi|w)−β ]
Ew[p(Xi|w)−β ]

.

This method is referred to as the importance sampling leave-one-out cross-validation (Gelfand et al.,
1992), in which only one posterior distribution is needed and the leave-one-out cross-validation is
approximated by CV2,

CV2 ∼=−
1
n

n

∑
i=1
log

Ew[p(Xi|w) p(Xi|w)−β ]
Ew[p(Xi|w)−β ]

.

If the posterior distribution is completely realized, then CV1 and CV2 coincide with each other
and are asymptotically equivalent to the widely applicable information criterion. However, if the
posterior distribution is not sufficiently approximated, then the valuesCV1,CV2, andWAIC(n)might
be different.

The average values using the posterior distribution may sometimes have infinite variances (Pe-
ruggia, 1997) if the set of parameters is not compact. Moreover, in singular learning machines,
the set of true parameters is not a single point but rather an analytic set, hence we must restrict
the parameter space to be compact for well-defined average values. Therefore, we adopted the as-
sumptions in Section 2.3 that the parameter space is compact and the log likelihood function has the
appropriate properties. Under these conditions, the observables studied in the present paper have
finite variances.

5.3 Comparison with the Deviance Information Criteria

Third, let us compare the deviance information criterion (DIC) (Spiegelhalter et al., 2002) to the
Bayes cross-validation and WAIC, because DIC is sometimes used in Bayesian model evaluation.
In order to estimate the Bayesian generalization error, DIC is written by

DIC1 = BtL(n)+
2
n

n

∑
i=1

{

−Ew[log p(Xi|w)]+ log p(Xi|Ew[w])
}

,

where the second term of the right-hand side corresponds to the “effective number of parameters” of
DIC divided by the number of parameters. Under the condition that the log likelihood ratio function
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in the posterior distribution is subject to the χ2 distribution, a modified DIC was proposed (Gelman
et al., 2004) as

DIC2 = BtL(n)+
2
n

[

Ew[
{ n

∑
i=1
log p(Xi|w)

}2
]−Ew[

n

∑
i=1
log p(Xi|w)]2

]

,

the variance of which was investigated previously (Raftery, 2007). Note that DIC2 is different from
WAIC. In a singular learning machine, since the set of optimal parameters is an analytic set, the
correlation between different true parameters does not vanish, even asymptotically.

We first derive the theoretical properties of DIC. If the true distribution is regular for the statis-
tical model, then the set of the optimal parameter is a single point w0. Thus, the difference of Ew[w]
and the maximum a posteriori estimator is asymptotically smaller than 1/

√
n. Therefore, based on

the results in Watanabe (2010b), if β= 1,

E[DIC1] = L0+(3λ−2ν(1))
1
n
+o(

1
n
).

If the true distribution is realizable by or regular for the statistical model and if β = 1, then the
asymptotic behavior of DIC2 is given by

E[DIC2] = L0+(3λ−2ν(1)+2ν′(1))
1
n
+o(

1
n
), (35)

where ν′(1)= (dν/dβ)(1). Equation (35) is derived from the relations (Watanabe, 2009, 2010a,b,d),

DIC2 = BtL(n)−2
∂
∂β
GtL(n),

E[GtL(n)] = L0+
(λ
β
−ν(β)

)1
n
+o(

1
n
),

where GtL(n) is given by Equation (7).
Next, let us consider the DIC for each case. If the true distribution is regular for and realizable by

the statistical model and if β= 1, then λ= ν= d/2, ν′(1) = 0, where d is the number of parameters.
Thus, their averages are asymptotically equal to the Bayes generalization error,

E[DIC1] = L0+
d
2n

+o(
1
n
),

E[DIC2] = L0+
d
2n

+o(
1
n
).

In this case, the averages of DIC1, DIC2,CV1,CV2, and WAIC have the same asymptotic behavior.
If the true distribution is regular for and unrealizable by the statistical model and if β= 1, then

λ = d/2, ν = (1/2)tr(IJ−1), and ν′(1) = 0 (Watanabe, 2010b), where I is the Fisher information
matrix at w0, and J is the Hessian matrix of L(w) at w= w0. Thus, we have

E[DIC1] = L0+
(3d
2

− tr(IJ−1)
)1
n
+o(

1
n
),

E[DIC2] = L0+
(3d
2

− tr(IJ−1)
)1
n
+o(

1
n
).
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In this case, as shown in Lemma 3, the Bayes generalization error is given by L0+d/(2n) asymp-
totically, and so the averages of the deviance information criteria are not equal to the average of the
Bayes generalization error.

If the true distribution is singular for and realizable by the statistical model and if β= 1, then

E[DIC1] = C+o(1), (36)

E[DIC2] = L0+(3λ−2ν(1)+2ν′(1))
1
n
+o(

1
n
),

where C (C .= L0) is, in general, a constant. Equation (36) is obtained because the set of true
parameters in a singular model is not a single point, but rather an analytic set, so that, in general,
the average Ew[w] is not contained in the neighborhood of the set of the true parameters. Hence
the averages of the deviance information criteria are not equal to those of the Bayes generalization
error.

The averages of the cross-validation loss and WAIC have the same asymptotic behavior as that
of the Bayes generalization error, even if the true distribution is unrealizable by or singular for the
statistical model. Therefore, the deviance information criteria are different from the cross-validation
and WAIC, if the true distribution is singular for or unrealizable by the statistical model.

5.4 Experiment

In this section, we describe an experiment. The purpose of the present paper is to clarify the theoreti-
cal properties of the cross-validation and the widely applicable information criterion. An experiment
was conducted in order to illustrate the main theorems.

Let x,y ∈ R3. We considered a statistical model defined as

p(x,y|w) =
s(x)

(2πσ2)3/2
exp(−

‖y−RH(x,w)‖2

2σ2
),

where σ= 0.1 and s(x) isN (0,22I). Here,N (m,A) exhibits a normal distribution with the average
vector m and the covariance matrix A, and I is the identity matrix. Note that the distribution s(x)
was not estimated. We used a three-layered neural network,

RH(x,w) =
H

∑
h=1

ah tanh(bh · x),

where the parameter was

w= {(ah ∈ R
3,bh ∈ R

3) ; h= 1,2, ...,H} ∈ R
6H .

In the experiment, a learning machine with H = 3 was used and the true distribution was set with
H = 1. The parameter that gives the distribution is denoted as w0, which denotes the parameters of
both modelsH = 1,3. Then, RH(x,w0)=RH0(x,w0). Under this condition, the set of true parameters

{w ∈W ; p(x|w) = p(x|w0)}

is not a single point but an analytic set with singularities, resulting that the regularity condition is
not satisfied. In this case, the log density ratio function is equivalent to

f (x,y,w) =
1
2σ2

{

‖y−RH(x,w)‖2−‖y−RH(x,w0)‖2
}

.
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In this model, although the Bayes generalization error is not equal to the average square error

SE(n) =
1
2σ2

EEX

[

‖ RH(X ,w0)−Ew[RH(X ,w)] ‖2
]

,

asymptotically SE(n) and Bg(n) are equal to each other (Watanabe, 2009).
The prior distribution ϕ(w) was set as N (0,102I). Although this prior does not have compact

support mathematically, it can be understood in the experiment that the support of ϕ(w) is essentially
contained in a sufficiently large compact set.

In the experiment, the number of training samples was fixed as n = 200. One hundred sets
of 200 training samples each were obtained independently. For each training set, the strict Bayes
posterior distribution β= 1 was approximated by the Markov chain Monte Carlo (MCMC) method.
The Metropolis method, in which each random trial was taken from N (0,(0.005)2I), was applied,
and the average exchanging ratio was obtained as approximately 0.35. After 100,000 iterations of
Metropolis random sampling, 200 parameters were obtained in every 100 sampling steps. For a fixed
training set, by changing the initial values and the random seeds of the software, the same MCMC
sampling procedures were performed 10 times independently, which was done for the purpose of
minimizing the effect of the local minima. Finally, for each training set, we obtained 200× 10 =
2,000 parameters, which were used to approximate the posterior distribution.

Table 2 shows the experimental results. We observed the Bayes generalization error BG =
Bg(n), the Bayes training error BT = Bt(n), importance sampling leave-one-out cross-validation
CV =CV2−Ln, the widely applicable information criterion WAIC=WAIC(n)−Ln, two deviance
information criteria, namely, DIC1 = DIC1−Ln and DIC2 = DIC2−Ln, and the sum BG+CV =
Bg(n)+Cv(n). The values AVR and STD in Table 2 show the average and standard deviation of
one hundred sets of training data, respectively. The original cross-validation CV1 was not observed
because the associated computational cost was too high.

The experimental results reveal that the average and standard deviation of BG were approxi-
mately the same as those of CV and WAIC, which indicates that Theorem 1 holds. The real log
canonical threshold, the singular fluctuation, and its derivative of this case were estimated as

λ ≈ 5.6,
ν(1) ≈ 7.9,
ν′(1) ≈ 3.6.

Note that, if the true distribution is regular for and realizable by the statistical model, λ = ν(1) =
d/2= 9 and ν′(1) = 0. The averages of the two deviance information criteria were not equal to that
of the Bayes generalization error. The standard deviation of BG+CV was smaller than the standard
deviations of BG and CV , which is in agreement with Theorem 2.

Note that the standard deviation of BT was larger than those of CV and WAIC, which indicates
that, even if the average value E[Cv(n)−Bt(n)] = 2ν/n is known and an alternative cross-validation,
such as the AIC,

CV3 = BtL(n)+2ν/n,

is used, then the variance ofCV3−Ln was larger than the variances ofCvL(n)−Ln and WAIC(n)−
Ln.
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BG BT CV WAIC DIC1 DIC2 BG+CV
AVR 0.0264 -0.0511 0.0298 0.0278 -35.1077 0.0415 0.0562
STD 0.0120 0.0165 0.0137 0.0134 19.1350 0.0235 0.0071

Table 2: Average and standard deviation

BG BT CV WAIC DIC1 DIC2 BG+CV
BG 1.000 -0.854 -0.854 -0.873 0.031 -0.327 0.043
BT 1.000 0.717 0.736 0.066 0.203 -0.060
CV 1.000 0.996 -0.087 0.340 0.481
WA 1.000 -0.085 0.341 0.443
DIC1 1.000 -0.069 -0.115
DIC2 1.000 0.102

Table 3: Correlation matrix

Table 3 shows the correlation matrix for several values. The correlation betweenCV and WAIC
was 0.996, which indicates that Theorem 1 holds. The correlation between BG and CV was -0.854,
and that between BG and WAIC was -0.873, which corresponds to Theorem 2.

The accuracy of numerical approximation of the posterior distribution depends on the statistical
model, the true distribution, the prior distribution, the Markov chain Monte Carlo method, and
the experimental fluctuation. In the future, we intend to develop a method by which to design
experiments. The theorems proven in the present paper may be useful in such research.

5.5 Birational Invariant

Finally, we investigate the statistical problem from an algebraic geometrical viewpoint.
In Bayes estimation, we can introduce an analytic function of the parameter space g :U →W ,

w= g(u).

Let |g′(u)| be its Jacobian determinant. Note that the inverse function g−1 is not needed if g satisfies
the condition that {u ∈U ; |g′(u)|= 0} is a measure zero set inU . Such a function g is referred to as
a birational transform. It is important that, by the transform,

p(x|w) )→ p(x|g(u)),
ϕ(w) )→ ϕ(g(u))|g′(u)|,

the Bayes estimation on W is equivalent to that on U . A constant defined for a set of statistical
models and a prior is said to be a birational invariant if it is invariant under such a transform w =
g(u).

The real log canonical threshold λ is a birational invariant (Atiyah, 1970; Hiroanaka, 1964;
Kashiwara, 1976; Kollór et al., 1998; Mustata, 2002; Watanabe, 2009) that represents the algebraic
geometrical relation between the set of parameters W and the set of the optimal parameters W0.
Although the singular fluctuation is also a birational invariant, its properties remain unknown. In
the present paper, we proved in Theorem 1 that

E[BgL(n)] = E[CvL(n)]+o(1/n). (37)
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On the other hand, in Theorem 2, we proved that

Bg(n)+Cv(n) =
2λ
n

+op(1/n). (38)

In model selection or hyperparameter optimization, Equation (37) shows that minimization of the
cross-validation makes the generalization loss smaller on average. However, Equation (38) shows
that minimization of the cross-validation does not ensure minimum generalization loss. The widely
applicable information criterion has the same property as the cross-validation. The constant λ ap-
pears to exhibit a bound, which can be attained by statistical estimation for a given pair of a statis-
tical model and a prior distribution. Hence, clarification of the algebraic geometrical structure in
statistical estimation is an important problem in statistical learning theory.

6. Conclusion

In the present paper, we have shown theoretically that the leave-one-out cross-validation in Bayes
estimation is asymptotically equal to the widely applicable information criterion and that the sum of
the cross-validation error and the generalization error is equal to twice the real log canonical thresh-
old divided by the number of training samples. In addition, we clarified that cross-validation and the
widely applicable information criterion are different from the deviance information criteria. This
result indicates that, even in singular statistical models, the cross-validation is asymptotically equiv-
alent to the information criterion, and that the asymptotic properties of these models are determined
by the algebraic geometrical structure of a statistical model.
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Abstract

We derive PAC-Bayesian generalization bounds for supervised and unsupervised learning models
based on clustering, such as co-clustering, matrix tri-factorization, graphical models, graph cluster-
ing, and pairwise clustering.1 We begin with the analysis of co-clustering, which is a widely used
approach to the analysis of data matrices. We distinguish among two tasks in matrix data analysis:
discriminative prediction of the missing entries in data matrices and estimation of the joint proba-
bility distribution of row and column variables in co-occurrence matrices. We derive PAC-Bayesian
generalization bounds for the expected out-of-sample performance of co-clustering-based solutions
for these two tasks. The analysis yields regularization terms that were absent in the previous for-
mulations of co-clustering. The bounds suggest that the expected performance of co-clustering is
governed by a trade-off between its empirical performance and the mutual information preserved by
the cluster variables on row and column IDs. We derive an iterative projection algorithm for finding
a local optimum of this trade-off for discriminative prediction tasks. This algorithm achieved state-
of-the-art performance in the MovieLens collaborative filtering task. Our co-clustering model can
also be seen as matrix tri-factorization and the results provide generalization bounds, regularization
terms, and new algorithms for this form of matrix factorization.

The analysis of co-clustering is extended to tree-shaped graphical models, which can be used
to analyze high dimensional tensors. According to the bounds, the generalization abilities of tree-
shaped graphical models depend on a trade-off between their empirical data fit and the mutual
information that is propagated up the tree levels.

We also formulate weighted graph clustering as a prediction problem: given a subset of edge
weights we analyze the ability of graph clustering to predict the remaining edge weights. The
analysis of co-clustering easily extends to this problem and suggests that graph clustering should
optimize the trade-off between empirical data fit and the mutual information that clusters preserve
on graph nodes.

Keywords: matrix tri-factorization, graphical models, graph clustering, pairwise clustering, com-
binatorial priors, density estimation
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1. Introduction

Structure learning and, in particular, clustering is an important and long-standing problem in sci-
ence. In many situations it has to be performed based on a limited data sample and with no or limited
supervision. A natural question that arises in this context is to what extent the inferred structure is
a reflection of a “true” structure underlying the data or a mere artifact of the learning model and/or
statistical fluctuation of the finite sample. But is there a “true structure” in the first place? Consider
the following example: assume we have a bag of blocks which we can cluster by multiple parame-
ters, such as shape, color, material they are made of, and so on. All these possibilities are equally
plausible and asking whether a clustering of blocks by shape is better or worse than a clustering of
blocks by color makes no sense. But the absence of an objective comparison criterion for outputs of
two structure learning algorithms poses a serious obstacle for their evaluation and the advancement
of unsupervised learning in general.

We argue that one does not learn structure for its own sake, but rather to facilitate solving some
higher level task. By evaluating the contribution of structure learning to the solution of the higher
level task it is possible to derive an objective comparison of the utility of different structures in
the context of this specific task. Returning to the bag of blocks example, if we know that after
clustering the blocks we will have to pack them into a box, then the clustering of blocks by shape
is much more useful than the clustering of blocks by color, since packing is indifferent to color. We
can further measure the amount of time that different clusterings saved us in the packing task and
thereby obtain an objective numerical evaluation of the utility of clustering of blocks by different
parameters in this context. Moreover, by repeating the experiment several times (or by some more
intelligent analysis) it is possible to provide generalization guarantees on how much time this or
other clustering algorithm is expected to save us in the packing task in the future.

Since in any non-trivial data many structures coexist simultaneously, “blind” unsupervised
learning without specification of its potential application is doomed to failure in the general case.
This is because the potential application (or range of applications) can make any property or ele-
ment of the structure either decisive or completely irrelevant for the task, and hence render it useful
or useless for identification by unsupervised learning. The need to consider unsupervised learning
within the context of its subsequent application has been pointed out by many researchers, especially
those concerned with practical applications of these methods (Guyon et al., 2009). In the present
paper we reformulate traditional unsupervised learning problems as prediction problems and then
adapt well-developed tools from supervised learning to provide generalization bounds on their ex-
pected out-of-sample performance. We start with the problem of co-clustering, but then show that
our approach to problem formulation is applicable to and can be analyzed in a much broader range
of applications.

Co-clustering is a widely used method for analysis of data in matrix form by simultaneous
clustering of rows and columns of the matrix (Banerjee et al., 2007). Here we focus solely on co-
clustering solutions that result in a grid form partition of the data matrix. This form of co-clustering
is also known as partitional co-clustering (Banerjee et al., 2007), checkerboard bi-clustering (Cheng
and Church, 2000; Kluger et al., 2003), grid clustering (Devroye et al., 1996; Seldin and Tishby,
2008, 2009), and box clustering. Note that some authors use the terms co-clustering and bi-
clustering to refer to a simultaneous grouping of rows and columns that does not result in a grid-
form partition of the whole data matrix (Hartigan, 1972; Madeira and Oliveira, 2004), but these
forms of partitions are not discussed in this work. Note as well that this paper considers soft as-
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signments of rows and columns to their clusters, while using two-level generative models such as
those discussed in Dhillon et al. (2003) and Banerjee et al. (2007) for hard assignments. Recently,
Bayesian approaches to co-clustering have been suggested, for example see Shan and Banerjee
(2008), Salakhutdinov and Mnih (2008), Shafiei and Milios (2006), Wang et al. (2009) and Lashkari
and Golland (2009), which consider mixed memberships by introducing an additional level to the
generative process. However, three-level generative models require approximate inference meth-
ods such as variational inference or Markov Chain Monte Carlo, whereas the two-level model for
discriminative prediction discussed here can be learned by iterative projections. The analysis pre-
sented here is not limited to two-dimensional data matrices, but holds for higher dimensional tensors
as well. A three-level Bayesian approach to clustered tensor factorization was recently presented by
Sutskever et al. (2009).

In the past decade co-clustering has successfully been applied in multiple domains, including
clustering of documents and words in text mining (Slonim and Tishby, 2000; El-Yaniv and Sourou-
jon, 2001; Dhillon et al., 2003; Takamura and Matsumoto, 2003), genes and experimental condi-
tions in bioinformatics (Cheng and Church, 2000; Cho et al., 2004; Kluger et al., 2003; Cho and
Dhillon, 2008), tokens and contexts in natural language processing (Freitag, 2004; Rohwer and Fre-
itag, 2004; Li and Abe, 1998), viewers and movies in recommender systems (George and Merugu,
2005; Seldin et al., 2007; Salakhutdinov and Mnih, 2008; Seldin, 2009), etc. In Seldin et al. (2007)
and Seldin and Tishby (2009) it was pointed out that there are actually two different classes of prob-
lems that are solved with co-clustering that correspond to two different high-level tasks and should
be analyzed separately. The first class of problems are discriminative prediction tasks, one typical
representative of which is collaborative filtering (Herlocker et al., 2004). In collaborative filtering,
the analyst is given a matrix of viewers by movies with ratings, for example, on a five-star scale,
attributed by the viewers to the movies. The matrix is usually sparse, as most viewers have not seen
all the movies. In this problem the task is usually to predict the missing entries. We assume that
there is some unknown probability distribution p(x1,x2,y) over the triplets of viewer x1, movie
x2, and rating y. The goal is to build a discriminative predictor q(y|x1,x2) that given a pair of
viewer x1 and movie x2 will predict the expected rating y. A natural form of evaluation of such
predictors, no matter whether they are based on co-clustering or not, is to evaluate the expected loss
Ep(x1,x2,y)Eq(y′|x1,x2)l(Y,Y ′), where l(y,y′) is an externally provided loss function for predicting
y′ instead of y. In Section 3 we provide this analysis for co-clustering-based predictors. The anal-
ysis can be used not only to construct co-clustering solutions to this problem, but also to conduct
a theoretical comparison of the co-clustering-based approach to this problem with other possible
approaches.

The second class of problems, which are solved using co-clustering, are problems of estimation
of a joint probability distribution in co-occurrence data analysis. A typical example of this kind
of problem is the analysis of word-document co-occurrence matrices in text mining (Slonim and
Tishby, 2000; El-Yaniv and Souroujon, 2001; Dhillon et al., 2003). Word-document co-occurrence
matrices are matrices of words by documents where the number of times each word occurred in each
document is counted in the corresponding entries. If normalized, such a matrix can be regarded as an
empirical joint probability distribution of words and documents. To illustrate the difference between
co-occurrence data and the data considered in discriminative prediction tasks, we point out that the
ratings in the collaborative filtering example are functions of viewer and movie ID pairs and they do
not depend on other viewers or movies. By contrast, in co-occurrence data the joint probability (or
the number of co-occurrence events) is normalized by the size of the corpus and thus depends on
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the whole subset of words and documents considered (or the size of the corpus if no normalization
is applied).

Although many researchers have analyzed co-occurrence data by clustering similar words and
similar documents (Slonim and Tishby, 2000; El-Yaniv and Souroujon, 2001; Dhillon et al., 2003;
Takamura and Matsumoto, 2003), or by using topic models (Steyvers and Griffiths, 2006; Blei and
Lafferty, 2009) and other approaches, no clear learning task in this problem has been defined and it
remains difficult to compare different approaches or perform model order selection. In Seldin and
Tishby (2009) one possible way of defining a high-level task for this problem was suggested. It
was assumed that the observed co-occurrence matrix was drawn from an unknown joint probability
distribution p(x1,x2) of words x1 and documents x2. The suggested task was an estimation of this
joint probability distribution based on the observed sample. In such a formulation, the quality of an
estimator q(x1,x2) for p(x1,x2) can be measured by −Ep(x1,x2) lnq(X1,X2), where the choice of
the logarithmic loss is natural in the context of density estimation. In particular, it corresponds to
the expected code length of an encoder that uses q(x1,x2) to encode samples generated by p(x1,x2)
(Cover and Thomas, 1991). In Section 3 we provide an analysis of this quantity for co-clustering-
based density estimators. Similar to the case with co-clustering-based discriminative predictors, the
analysis serves to perform model order selection in this problem. It further enables a theoretical
comparison of the co-clustering-based approach to this problem with other possible approaches.

For the purpose of analysis and derivation of generalization bounds for the above two problems
we found it convenient to apply the PAC-Bayesian framework (McAllester, 1998, 1999), which
is reviewed in Section 2. Similar to the Probably Approximately Correct (PAC) learning model
(Valiant, 1984), PAC-Bayesian bounds pose no assumptions or restrictions on the distribution that
generates the data (apart from the usual assumption that the data are independent and identically
distributed (i.i.d.) and that the train and test distributions are the same). However, unlike the usual
PAC bounds, where the whole hypothesis space is characterized by its Vapnik-Chervonenkis (VC)
dimension (Vapnik and Chervonenkis, 1968, 1971), PAC-Bayesian bounds apply a non-uniform
treatment of the hypotheses by introducing a prior distribution over the hypothesis space. For ex-
ample, within the class of decision trees a preference for shallow trees can be given by assigning a
higher prior. If a good prior over the hypothesis space can be designed, the tightness of the bounds
can be improved considerably. As shown in the literature, PAC-Bayesian analysis is able to provide
practically useful bounds that in some cases are only 10%-20% away from the test error (Langford,
2005; Seldin and Tishby, 2008; Seldin, 2009; Germain et al., 2009).

Originally, PAC-Bayesian bounds were derived for classification tasks. They have been applied
in the analysis of decision trees (Mansour and McAllester, 2000), Support Vector Machines (SVMs)
(Langford and Shawe-Taylor, 2002; McAllester, 2003; Langford, 2005; Ambroladze et al., 2007;
Crammer et al., 2009; Germain et al., 2009), transductive learning (Derbeko et al., 2004), struc-
tured prediction (Bartlett et al., 2005; McAllester, 2007), and other supervised learning models.
In Seldin and Tishby (2009) we introduced PAC-Bayesian analysis to discrete density estimation.
Recently, Higgs and Shawe-Taylor (2010) applied PAC-Bayesian analysis to continuous density
estimation. In Section 3 we present the PAC-Bayesian analysis of discriminative prediction and
density estimation with co-clustering. According to the derived bounds, the generalization perfor-
mance of co-clustering-based models depends on a trade-off between their empirical performance
and the mutual information that the clusters preserve on the observed parameters (row and column
IDs). The mutual information term introduces model regularization that was absent in the previ-
ous formulations of co-clustering (Dhillon et al., 2003; Banerjee et al., 2007). We further suggest
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algorithms for optimization of the trade-off in Section 4. In Section 5, we achieve state-of-the-art
performance in the prediction of missing ratings in the MovieLens collaborative filtering data set by
optimization of the trade-off.

The co-clustering models analyzed here are tightly related to matrix tri-factorization—a 3-factor
decomposition of a matrix of the form A ≈ QT

1 FQ2 (Banerjee et al., 2007; Ding et al., 2006; Yoo
and Choi, 2009a,b) and to Tucker decomposition of higher dimensional tensors (Kim and Choi,
2007). This relation is discussed in Section 6. We point out that similar to co-clustering itself there
are at least two different forms of matrix tri-factorization; one that corresponds to discriminative
prediction tasks, such as collaborative filtering, and the other which is more appropriate for co-
occurrence data analysis. In the first case A can be arbitrary, whereas in the second case the input
matrix A is a joint probability distribution matrix (its entries are non-negative and sum up to one).
At the technical level, in discriminative prediction tasks Q1 and Q2 are right stochastic matrices
(their rows sum up to one) and F is arbitrary, whereas in co-occurrence data analysis Q1 and Q2

are left stochastic matrices (their columns sum up to one) and F is a joint probability distribution
matrix (in the cluster product space). Our analysis provides generalization bounds, regularization
terms, and new algorithms for both forms of matrix tri-factorization.

Co-clustering can also be regarded as a simple graphical model. In Section 7 we suggest how
to extend our analysis to more general tree-shaped graphical models. Such graphical models can
be useful to treat the curse of dimensionality in the analysis of high dimensional tensors. This also
provides a new perspective on learning graphical models: instead of learning a graphical model that
fits the training data, the approach suggests optimizing the model’s ability to predict new observa-
tions. In Sections 3 and 7 it is demonstrated that PAC-Bayesian bounds are able to take advantage
of the factor form of graphical models and provide bounds that depend on the sizes of the cliques of
graphical models and the amount of mutual information that is propagated up the tree levels.

In Section 8 we extend our approach to the formulation of unsupervised learning problems as
prediction problems to graph clustering and pairwise clustering (the latter is equivalent to clustering
of a weighted graph, where edge weights correspond to pairwise distances). We formulate weighted
graph clustering as a prediction problem: given a sample of edge weights we analyze the ability
of graph clustering to predict the remaining edge weights. We adapt the PAC-Bayesian analysis
of co-clustering to derive a PAC-Bayesian generalization bound for graph clustering. The bound
shows that graph clustering should optimize a trade-off between empirical data fit and the mutual
information that clusters preserve on the graph nodes. A similar trade-off derived from information-
theoretic considerations has been shown to produce state-of-the-art results in practice (Slonim et al.,
2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better
theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate
way to deal with finite sample issues.

2. PAC-Bayesian Generalization Bounds

This section is devoted to PAC-Bayesian generalization bounds, which are the main tool used for
the analysis of our learning models in the subsequent sections. We review the well-known PAC-
Bayesian bound for classification and present a slight variation of a less well-known PAC-Bayesian
bound for discrete density estimation. The PAC-Bayesian generalization bounds pioneered by
McAllester (1998, 1999) provide guarantees on generalization abilities of randomized predictors
(formally defined below in Section 2.1) within the classical PAC learning model (Valiant, 1984)
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and build upon preceding works on PAC analysis of Bayesian learning models (Shawe-Taylor et al.,
1998; Shawe-Taylor and Williamson, 1997). The classical PAC learning model evaluates learning
algorithms by their ability to predict new events generated by the same probability distribution as
the one that was used to train the algorithm. No restrictions on the data generating probability distri-
bution are imposed except the assumption that the samples are i.i.d. The PAC-Bayesian framework
should be distinguished from Bayesian learning, which assumes that the data were generated by
hypotheses from the hypothesis class and applies Bayes’ rule for inference. Bayesian learning does
not provide guarantees on the expected error of the Bayes’ inference rule and in some situations can
lead to overfitting (Kearns et al., 1997).

The classical PAC bounds are derived by covering the error space of a hypothesis class. For
example, the most familiar PAC bounds are based on the VC-dimension of a hypothesis class, which
is a logarithm of the maximal number of points that can be jointly classified in any possible way by
functions from the hypothesis class (Vapnik and Chervonenkis, 1968, 1971; Vapnik, 1998; Devroye
et al., 1996). More recent bounds involve Rademacher and Gaussian complexities (Koltchinskii,
2001; Bartlett et al., 2001; Bartlett and Mendelson, 2001; Boucheron et al., 2005). However, in
all the above approaches the whole hypothesis class is characterized by a single number: its VC-
dimension or Rademacher complexity, which means that all the incorporating hypotheses are treated
identically and there is no way to differentiate them and give preference to “simpler” ones. For
example, if the hypothesis class consists of straight lines and parabolas, its VC-dimension is equal
to the VC-dimension of a hypothesis class consisting of parabolas only and there is no direct way
to give preference to straight lines within the combined hypothesis class. PAC-Bayesian bounds are
derived by covering the hypothesis space and they enable non-uniform treatment of the hypotheses.
In the PAC-Bayesian approach each hypothesis is characterized by its own complexity defined by
its prior. This refined approach provides several important benefits, which include: (1) the ability
to give explicit preference to certain hypotheses (e.g, in the example above we can assign a higher
prior to straight lines); (2) a gradient within the hypothesis space, which can be used in algorithms
for bound minimization; (3) considerably tighter bounds, which are meaningful in a practical sense:
in some applications the discrepancy between the bound value and the test error is only 10%-20%
(Langford, 2005; Seldin and Tishby, 2008; Seldin, 2009; Germain et al., 2009). There is one more
distinction between the usual PAC analysis and the PAC-Bayesian bounds that extend the scope
of applicability of the latter. Classical PAC analysis aims at bounding the discrepancy between the
expected performance of the hypothesis with the best empirical performance and the best hypothesis
within the hypothesis class. Such types of bounds require a uniform bound on the discrepancies
between empirical and expected performances for all the hypotheses within a hypothesis class. The
uniform bound exists if and only if the hypothesis class has a finite VC-dimension. PAC-Bayesian
bounds bound the expected performance of a given hypothesis, but do not attempt to bound its gap
to the performance of the best hypothesis within the hypothesis class. This fact makes it possible
to apply PAC-Bayesian bounds even in situations where the VC-dimension of a hypothesis class
is infinite, for example, decision trees of unlimited depth or separating hyperplanes in infinite-
dimensional spaces. This does not disprove the fundamental theorem of PAC learning theory, which
states that learning is possible if and only if the VC-dimension of a hypothesis class is finite, but
rather extends the notion of learnability. Instead of a regret-based definition of learnability, by
which the ability to learn is the ability to achieve, up to a small epsilon, the best possible solution
within a hypothesis class, the PAC-Bayesian approach defines learnability as the ability to bound the
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expected performance of the obtained solution. Then it is a question for the user to decide whether
the guaranteed expected performance is sufficient for his or her needs.

Since the strength of PAC-Bayesian analysis lies in its ability to provide a non-uniform treatment
of the hypotheses within a hypothesis class, its advantage over traditional PAC analysis is best
seen in the analysis of heterogeneous hypothesis classes (or, in other words, when the hypotheses
constituting a hypothesis class are not symmetric). Some hypothesis classes exhibit a “natural
heterogeneity”; for example, we can partition the class of decision trees into subclasses according
to tree depth. A higher prior can then be assigned to shallow trees to provide them with preference
over deep trees. For example, a prior P(t) = 2−(d(t)+1)2−2d(t) , where d(t) is the depth of a tree t
would be a legal prior over the space of full binary decision trees of unlimited depth (2−(d(t)+1) is
a prior over tree depth and 2−2d(t) is a prior over trees of a given depth). Note that it is possible
to assign a higher prior to all shallow trees simultaneously because there are fewer shallow trees
than deep trees. Hence, the above prior exploits knowledge about the structure of the hypothesis
space, but makes no assumptions about the data. As we will see below, the bounds depend on
− lnP(t) = ln(2)[(d(t) + 1) + 2d(t)]; thus the value of the logarithm of the first part of the prior
(d(t) + 1), which accounts for the tree depth, is negligible compared to the value of the logarithm
of the second half of the prior (2d(t)), which counts the number of symmetric trees given the depth.
Given a strong prior knowledge on the problem domain, which breaks the symmetry between trees
of a given depth, it is possible to give preference (a higher prior) to certain deep trees; however it
is impossible to give a higher prior to all deep trees simultaneously, because there are too many of
them. Thus, a choice of a different prior over tree depth and even precise prior knowledge of the
tree depth can only negligibly improve the bound.

For some hypothesis spaces which seem homogeneous at a first glance it may still be possible
to identify non-trivial asymmetries and define a corresponding structural prior. The best example
comes from the analysis of SVMs, where the class of all possible separating hyperplanes in Rd is
partitioned into subclasses according to the size of the margin and a higher prior is given to the
hyperplanes with large margins (Langford and Shawe-Taylor, 2002; McAllester, 2003; Langford,
2005). In structure learning the hypothesis class usually exhibits a natural heterogeneity since the
hypotheses (structures) can be differentiated by their complexity. Hence, PAC-Bayesian analysis
has great potential in the analysis of structure learning which is only partially explored in this work.
PAC-Bayesian bounds are further distinguished by their explicit dependence on model parameters,
which makes their optimization easy.

Following the pioneering work of McAllester (1998, 1999), the PAC-Bayesian bounds were
tightened and simplified by Seeger (2002, 2003). Some further improvements were suggested in
Maurer (2004), Audibert and Bousquet (2007) and Blanchard and Fleuret (2007). This section
draws on the easier-to-read expositions by Maurer (2004) and Banerjee (2006). In order to present
the bounds for classification and density estimation, we need to define the notion of randomized
predictors, which is done next. We then present the PAC-Bayesian theorems and their proofs.

2.1 Randomized Predictors

Let H be a hypothesis class and let Q(h) be a distribution over H (if H is infinite then Q(h) is a
probability density). A randomized predictor associated withQ, and with a small abuse of notation
denoted by Q, is defined in the following way: For each sample x a hypothesis h ∈ H is drawn
according to Q(h), and then applied to make a prediction on x. In the classification context, Q
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is termed a randomized classifier (Langford, 2005). However, since this work extends the PAC-
Bayesian framework beyond the classification scenario by using the same randomization technique,
we use the term “randomized predictor”. In this more general context h(x) is a general function of
x, not necessarily a classifier.

In the context of classification, let S = {(x1,y1), ..,(xN ,yN )} be an i.i.d. sample of size N of
instances and their labels drawn according to unknown distribution p(x,y) and let l(y,y′) be a given
loss function for predicting y′ instead of y. Let h(x) be the label of x predicted by hypothesis h. For
each h ∈ H we denote by L̂(h) = 1

N

∑

i l(yi,h(xi)) the empirical loss of the hypothesis h on S and
by L(h) = Ep(x,y)l(Y,h(X)) the expected loss of h with respect to the true, unknown distribution
that generates the data. We further extend the definitions of the empirical and expected losses for
randomized predictors in the following way:

L̂(Q) = EQ(h)L̂(h) and L(Q) = EQ(h)L(h).

For two distributions q and p over domain X we define

KL(q‖p) = Eq ln
q(x)

p(x)

to be the Kullback-Leibler (KL) divergence between q and p (Cover and Thomas, 1991). As well,
we define

kl(L̂(Q)‖L(Q)) = L̂(Q) ln
L̂(Q)

L(Q)
+(1− L̂(Q)) ln

1− L̂(Q)

1−L(Q)

as the KL-divergence between two Bernoulli distributions with biases L̂(Q) and L(Q). Now we are
ready to state the PAC-Bayesian theorems.

2.2 PAC-Bayesian Theorems

Theorem 1 (PAC-Bayesian bound for classification) For a hypothesis class H, a prior distribu-
tion P over H and a zero-one loss function l, with probability greater than 1 − δ over drawing a
sample of size N , for all randomized classifiers Q simultaneously:

kl(L̂(Q)‖L(Q)) ≤ KL(Q‖P)+ ln(N +1)− lnδ

N
. (1)

Theorem 2 (PAC-Bayesian bound for discrete density estimation) Let X be the sample space
(possibly infinite) and let p(x) be an unknown distribution over x ∈ X . Let H be a hypothesis
class, such that each member h ∈ H is a function from X to a finite set Z with cardinality |Z|. Let
ph(z) = PX∼p(x){h(X) = z} be the distribution overZ induced by p(x) and h. LetP be a prior dis-
tribution over H. Let Q be an arbitrary distribution over H and pQ(z) = E

Q(h)
ph(z) a distribution

over Z induced by p(x) and Q. Let S be an i.i.d. sample of size N generated according to p(x) and
let p̂(x) be the empirical distribution over X corresponding to S. Let p̂h(z) = PX∼p̂(x){h(X) = z}
be the empirical distribution over Z corresponding to h and S. Let p̂Q(z) = E

Q(h)
p̂h(z). Then with

probability greater than 1− δ for all possible Q simultaneously:

KL(p̂Q(z)‖pQ(z)) ≤ KL(Q‖P)+(|Z|−1) ln(N +1)− lnδ

N
. (2)
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Remarks:

1. This form of Theorem 1 first appeared in Seeger (2002). A slightly different version of
Theorem 2 first appeared in Seeger (2003) and independently in Seldin and Tishby (2009),
where it found the first non-trivial application.

2. The PAC-Bayesian bound for classification (1) is a direct consequence of the PAC-Bayesian
bound for density estimation (2). To see this, let Z be the error variable. Then each hypothesis
h ∈ H is a function from the sample space (in this case the samples are pairs 〈X,Y 〉) to the
error variable Z and |Z| = 2. Furthermore, L̂(h) = p̂h(Z = 1) and L(h) = ph(Z = 1), hence
kl(L̂(Q)‖L(Q)) = KL(p̂Q(z)‖pQ(z)). Substituting this into (2) yields (1).

3. Maurer (2004) showed that due to convexity of the KL-divergence, inequality (1) is valid for
all loss functions bounded in the [0,1] interval, and not only for the zero-one loss. He also
proved that due to tighter concentration of empirical means of binary variables, for N ≥ 8
bound (1) can be further tightened:

kl(L̂(Q)‖L(Q)) ≤
KL(Q‖P)+ 1

2 ln(4N)− lnδ

N
(3)

and that this is the tightest result that can be proved using the techniques which are also used
in this paper.

4. Although there is no analytical expression for the inverse of the kl-divergence, L(Q) can be
bounded numerically:

L(Q) ≤ kl−1

(

L̂(Q),
KL(Q‖P)+ 1

2 ln(4N)− lnδ

N

)

= max

{

v : kl(L̂(Q)‖v) ≤
KL(Q‖P)+ 1

2 ln(4N)− lnδ

N

}

. (4)

Since kl(L̂(Q)‖v) is convex in v, (4) is easy to compute.

5. The proof of Theorem 2 presented below reveals a close relation between the PAC-Bayesian
theorems and the method of types in information theory (Cover and Thomas, 1991). The
trade-off between L̂(Q) andKL(Q‖P) in the PAC-Bayesian bounds also has a tight relation
to the maximum entropy principle in learning and statistical mechanics (Jaynes, 1957; Dudı́k
et al., 2007; Catoni, 2007; Shawe-Taylor and Hardoon, 2009). The relations between the
PAC-Bayesian bounds, information theory, and statistical mechanics are further discussed in
Catoni (2007).

The proof of Theorem 2 presented below is based on two auxiliary results which have value
in their own right and therefore are presented in dedicated subsections. The first auxiliary result
applies the method of types to bound the expectation of the exponent of the divergence between
empirical and expected distributions over Z for a single hypothesis: ESeN ·KL(p̂h(z)‖ph(z)). The
second auxiliary result relates the divergence EQ(h)KL(p̂h(z)‖ph(z)) for all Q to a single (prior)
reference measure P . This relation is actually the cornerstone of the PAC-Bayesian analysis. Fi-
nally, in Section 2.5 a quantity depending on the prior measure P is treated using the first auxiliary
result to obtain the final bound in Equation (2).
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2.3 The Law of Large Numbers

In this subsection we analyze the rate of convergence of empirical distributions over finite domains
to their true values. The following result is based on the method of types in information theory
(Cover and Thomas, 1991).

Theorem 3 Let S = {X1, ..,XN } be i.i.d. distributed by p(x). Denote by p̂(x) the empirical dis-
tribution over X corresponding to S and by |X | the cardinality of X . Then:

E
S
eN ·KL(p̂(x)‖p(x)) ≤ (N +1)|X |−1. (5)

Proof Enumerate the possible values of X by 1, .., |X | and let ni count the number of occurrences
of value i. Let pi denote the probability of value i and p̂i = ni

N be its empirical counterpart. Let
H(p̂) = −

∑

i p̂i ln p̂i be the empirical entropy. Then:

E
S
eNKL(p̂‖p) =

∑

n1,..,n|X |:
∑

i
ni=N

(

N

n1, ..,n|X |

)

·
|X |
∏

i=1

pNp̂i
i ·eNKL(p̂‖p)

≤
∑

n1,..,n|X |:
∑

i
ni=N

eNH(p̂) ·eN
∑

i
p̂i lnpi ·eNKL(p̂‖p) (6)

=
∑

n1,..,n|X |:
∑

i
ni=N

1 =

(

N + |X |−1

|X |−1

)

≤ (N +1)|X |−1. (7)

In (6) we used the
( N

n1,..,n|X |

)

≤ eNH(p̂) bound on the multinomial coefficient, which counts the num-
ber of sequences with a fixed cardinality profile (unnormalized type) n1, ..,n|X | (Cover and Thomas,
1991). In the second equality in (7) the number of ways to choose ni-s equals the number of ways
we can place |X | − 1 ones in a sequence of N + |X | − 1 ones and zeros, where ones symbolize a
partition of zeros (“balls”) into |X | bins.

2.4 Change of Measure Inequality

The simultaneous treatment of all possible distributions (measures) Q over H is done by relating
them all to a single reference (prior) measure P . We call this relation a change of measure inequal-
ity. This inequality was formulated as a standalone result in Banerjee (2006), although it originates
much earlier. Banerjee (2006) terms it a compression lemma; however we find the term “change
of measure inequality” more appropriate to its nature and usage. The inequality is a simple conse-
quence of Jensen’s inequality.

Lemma 4 (Change of Measure Inequality) For any measurable function φ(h) on H and any dis-
tributions P and Q on H, we have:

EQ(h)φ(h) ≤ KL(Q‖P)+ lnEP(h)e
φ(h). (8)
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Proof For any measurable function φ(h), we have:

EQ(h)φ(h) = EQ(h) ln
(Q(h)

P(h)
·eφ(h) · P(h)

Q(h)

)

= KL(Q‖P)+EQ(h) ln
(

eφ(h) · P(h)

Q(h)

)

≤ KL(Q‖P)+ lnEQ(h)

(

eφ(h) · P(h)

Q(h)

)

(9)

= KL(Q‖P)+ lnEP(h)e
φ(h),

where (9) is by Jensen’s inequality.

2.5 Proof of the PAC-Bayesian Generalization Bound for Density Estimation

We apply the results of the previous two subsections to prove the PAC-Bayesian generalization
bound for density estimation.
Proof of Theorem 2 Let φ(h,S,p) = NKL(p̂h(z)‖ph(z)). Then:

NKL(p̂Q(z)‖pQ(z)) = NKL(EQ(h)p̂h(z)‖EQ(h)ph(z))

≤ EQ(h)NKL(p̂h(z)‖ph(z)) (10)

≤ KL(Q‖P)+ lnEP(h)e
NKL(p̂h(z)‖ph(z)), (11)

where (10) is by the convexity of the KL-divergence (Cover and Thomas, 1991) and (11) is by the
change of measure inequality. To obtain (2) it is left to bound EP(h)e

NKL(p̂h(z)‖ph(z)). This is
a random quantity depending on the sample S since p̂h(z) for each h depends on the sample. By
Markov’s inequality we know that with probability at least 1 − δ over the sample
EP(h)e

NKL(p̂h(z)‖ph(z)) ≤ 1
δES

[

EP(h)e
NKL(p̂h(z)‖ph(z))

]

. In order to obtain a bound on

ES

[

EP(h)e
NKL(p̂h(z)‖ph(z))

]

we note that it is possible to exchange ES with EP(h) since S and
h are independent:

ES

[

EP(h)e
NKL(p̂h(z)‖ph(z))

]

= EP(h)

[

ESeNKL(p̂h(z)‖ph(z))
]

≤ (N +1)|Z|−1. (12)

The last inequality in (12) is justified by the fact that ESeNKL(p̂h(z)‖ph(z)) ≤ (N +1)|Z|−1 for each
h individually according to (5). By Markov’s inequality we conclude that with probability of at least
1− δ over S:

EP(h)e
NKL(p̂h(z)‖ph(z)) ≤ (N +1)|Z|−1

δ
.

Substituting this into (11) and normalizing by N yields (2).

2.6 Addendum to the Law of Large Numbers

Note in passing that it is straightforward to recover theorem 12.2.1 in Cover and Thomas (1991)
from Theorem 3 (even with a slight improvement). This theorem is used later in the estimation of
marginal distributions.
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Theorem 5 (12.2.1 in Cover and Thomas, 1991) Under the notations of Theorem 3 with proba-
bility greater than 1− δ:

KL(p̂(x)‖p(x)) ≤ (|X |−1) ln(N +1)− lnδ

N
.

Proof Immediate from application of Markov’s inequality to (5).

2.7 Construction of a Density Estimator

Although we have bounded KL(p̂Q(z)‖pQ(z)) in Theorem 2, p̂Q(z) still cannot be used as a den-
sity estimator for pQ(z), because it is not bounded from zero. In order to bound the logarithmic
loss −EpQ(z) ln p̂Q(z), which corresponds, for example, to the expected code length of encoder p̂Q

when samples are generated by pQ, we have to smooth p̂Q. We denote a smoothed version of p̂Q by
p̃Q and define it as:

p̃h(z) =
p̂h(z)+γ

1+γ|Z| , (13)

p̃Q(z) = E
Q(h)

p̃h(z) =
p̂Q(z)+γ

1+γ|Z| .

In the following theorem we show that if KL(p̂Q(z)‖pQ(z)) ≤ ε(Q) and γ(Q) =
√
ε(Q)/2
|Z| , then

−EpQ(z) ln p̃Q(z) is roughly within ±
√

ε(Q)/2ln |Z| range around H(p̂Q(z)). The bound on
KL(p̂Q(z)‖pQ(z)) is naturally obtained by Theorem 2. Thus, the performance of the density
estimator p̃Q is optimized by distribution Q that minimizes the trade-off between H(p̂Q(z)) and
1
N KL(Q‖P).
Note that for a uniform distribution u(z) = 1

|Z| the value of −Ep(z) lnu(z) = ln |Z|. Thus,
the theorem below is interesting when

√

ε(Q)/2 is significantly smaller than 1. For technical
reasons in the proofs of the following section, the upper bound in the next theorem is stated for
−EpQ(z) ln p̃Q(z) and for −EQ(h)Eph(z) ln p̃h(z). We also denote ε= ε(Q) for brevity.

Theorem 6 Let Z be a random variable distributed according to pQ(z) and assume that

KL(p̂Q(z)‖pQ(z)) ≤ ε. Then −EpQ(z) ln p̃Q(z) is minimized by γ =
√
ε/2

|Z| . For this value of γ
the following inequalities hold:

−EQ(h)Eph(z) ln p̃h(z) ≤ H(p̂Q(z))+
√

ε/2ln |Z|+φ(ε), (14)

−EpQ(z) ln p̃Q(z) ≤ H(p̂Q(z))+
√

ε/2ln |Z|+φ(ε), (15)

−EpQ(z) ln p̃Q(z) ≥ H(p̂Q(z))−
√

ε/2ln |Z|−ψ(ε), (16)

where:
ψ(ε) =

√

ε/2ln
1+

√

ε/2
√

ε/2
and φ(ε) = ψ(ε)+ ln(1+

√

ε/2).
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The proof is provided in appendix A. Note that both φ(ε) and ψ(ε) converge to zero approximately
as−

√

ε/2ln
√

ε/2 and for
√

ε/2 < 1
|Z| they are in fact dominant over the

√

ε/2ln |Z| term. Never-
theless, the main message is still that in order to minimize −EpQ(z) ln p̃Q(z) the trade-off between
H(p̂Q(z)) and KL(p̂Q(z)‖pQ(z)) should be minimized. This message is explored in more details
in Section 3.4.

Remark: As an aside we consider the case of direct density estimation. Assume we are given a
set of N i.i.d. observations x1, ..,xN generated according to an unknown distribution p(x) over a
finite domain X . We want to construct an estimate p̃(x) for p(x) based on the empirical frequencies
p̂(x), such that the expectation −Ep(x) ln p̃(x) is minimized. This problem, known as “histogram
smoothing”, has received significant attention in statistics and information theory (Gilbert, 1971;
Cover, 1972; Krichevskiy, 1998; Paninski, 2004). Uniform smoothing of the form

p̃(x) =
p̂(x)+γ

1+γ|X | ,

such as the one applied in (13) is known as the Dirichlet-Bayes or “add-constant” estimator. Theo-
rem 6 provides the optimal value of γ

γ =
1

|X |

√

ε/2 =
1

|X |

√

(|X |−1) ln(N +1)− lnδ

2N

for which with probability greater than 1− δ over the sample

H(p̂(x))−
√

ε/2ln |X |−ψ(ε) ≤ −Ep(x) ln p̃(x) ≤ H(p̂(x))+
√

ε/2ln |X |+φ(ε),

where ε= (|X |−1) ln(N+1)−lnδ
N is obtained from Theorem 5. By Theorem 6 the optimal smoothing γ

decreases as the sample sizeN increases. A more detailed comparison of this result with preceding
work is beyond the scope of this paper and will be presented elsewhere. Note that in the more
general case considered in Theorem 6, where the distribution pQ(z) depends on Q the smoothing
parameter γ also depends on Q.

3. PAC-Bayesian Analysis of Co-clustering

In the introduction we defined two high-level goals, which can be solved via co-clustering. The
first is discriminative prediction of the matrix entries, as in the collaborative filtering example. The
second is estimation of the joint probability distribution in co-occurrence data analysis. We further
defined the notion of generalization for each of the two problems. In this section we derive PAC-
Bayesian generalization bounds for the two settings. We begin with the co-clustering approach to
discriminative prediction, which is slightly easier in terms of presentation. Then we consider the
discrete density estimation problem.

3.1 PAC-Bayesian Analysis of Discriminative Prediction with Grid Clustering

Let X1 × ..×Xd ×Y be a (d+1)-dimensional product space. We assume that each Xi is categorical
and its cardinality, denoted by |Xi| = ni, is fixed and known. We also assume that Y is finite with
cardinality |Y| and that a bounded loss function l(y,y′) for predicting y′ instead of y is given. As
an example, consider collaborative filtering. In collaborative filtering d = 2, X1 is the space of the
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(a) Graphical Model for Dis-
criminative Prediction

(b) Graphical Model for Den-
sity Estimation

Figure 1: Illustration of graphical models corresponding to discriminative prediction (17) and den-
sity estimation (26). The illustrations are for d = 2.

viewers, n1 is the number of viewers, X2 is the space of the movies, n2 is the number of movies,
and Y is the space of the ratings (e.g., on a five-star scale). The loss l(y,y′) can be, for example, the
absolute loss l(y,y′) = |y − y′| or the quadratic loss l(y,y′) = (y − y′)2. There is no natural metric
either on the space of viewers or on the space of movies; thus both X1 and X2 are categorical.

We assume an existence of an unknown probability distribution p(x1, ..,xd,y) over the X1 × ..×
Xd × Y product space. We further assume that we are given an i.i.d. sample of size N generated
according to p(x1, ..,xd,y). We use p̂(x1, ..,xd,y) to denote the empirical frequencies of (d + 1)-
tuples 〈x1, ..,xd,y〉 in the sample. We consider the following form of discriminative predictors:

q(y|x1, ..,xd) =
∑

c1,..,cd

q(y|c1, .., cd)
d

∏

i=1

q(ci|xi). (17)

The hidden variables C1, ..,Cd represent a clustering of the observed variables X1, ..,Xd. The
hidden variable Ci accepts values in {1, ..,mi}, where mi = |Ci| denotes the number of clusters
used along dimension i. The conditional probability distribution q(ci|xi) represents the probability
of mapping (assigning) xi to cluster ci. The conditional probability q(y|c1, .., cd) represents the
probability of assigning label y to cell 〈c1, .., cd〉 in the cluster product space. The prediction model
(17) corresponds to the graphical model in Figure 1.a. Note that this is a two-level randomized
prediction model. The free parameters of the model are the conditional distributions {q(ci|xi)}d

i=1

and q(y|c1, .., cd). We denote these collectively by Q =
{

{q(ci|xi)}d
i=1, q(y|c1, .., cd)

}

. In the next
subsection we show that (17) corresponds to a randomized prediction strategy. We further denote:

L(Q) = Ep(x1,..,xd,y)Eq(y′|x1,..,xd)l(Y,Y ′)

and
L̂(Q) = Ep̂(x1,..,xd,y)Eq(y′|x1,..,xd)l(Y,Y ′),

where q(y|x1, ..,xd) is defined by (17). We define

Ī(Xi;Ci) =
1

ni

∑

xi,ci

q(ci|xi) ln
q(ci|xi)

q̄(ci)
,
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where xi ∈ Xi are the possible values of Xi, ci ∈ {1, ..,mi} are the possible values of Ci, and

q̄(ci) =
1

ni

∑

xi

q(ci|xi)

is the marginal distribution over Ci corresponding to q(ci|xi) and a uniform distribution u(xi) = 1
ni

overXi. Thus, Ī(Xi;Ci) is the mutual information corresponding to the joint distribution q̄(xi, ci) =
1
ni

q(ci|xi) defined by q(ci|xi) and the uniform distribution over Xi.
With the above definitions we can state the following generalization bound for discriminative

prediction with co-clustering.

Theorem 7 For any probability measure p(x1, ..,xd,y) over X1 × .. × Xd × Y and for any loss
function l bounded by 1, with probability of at least 1 − δ over a selection of an i.i.d. sample S of
size N according to p, for all randomized classifiers Q =

{

{q(ci|xi)}d
i=1, q(y|c1, .., cd)

}

:

kl(L̂(Q)‖L(Q)) ≤
∑d

i=1

(

niĪ(Xi;Ci)+mi lnni

)

+M ln |Y|+ 1
2 ln(4N)− lnδ

N
, (18)

where M is the number of partition cells:

M =
d

∏

i=1

mi.

Remarks: Of course, any bounded loss can be normalized to the [0,1] interval. Note that given a
prediction strategy Q =

{

{q(ci|xi)}d
i=1, q(y|c1, .., cd)

}

both L̂(Q) and Ī(Xi;Ci) are computable
exactly. L(Q) can be bounded by numerical inversion of kl, as shown in Equation (4). To minimize
L(Q) both L̂(Q) and Ī(Xi;Ci) should be minimized.

Discussion: There are two extreme solutions to the collaborative filtering task that provide good
intuitions on the co-clustering approach to this problem. If we assign all of the data to a single large
cluster, we can evaluate the empirical mean/median/most frequent rating of that cluster fairly well.
In this situation the empirical loss L̂(Q) is expected to be large, because we approximate all the
entries with the global average, but its distance to the true loss L(Q) is expected to be small. If
we take the other extreme and assign each row and each column to a separate cluster, L̂(Q) can be
zero given that we can approximate every entry with its own value, but its distance to the true loss
L(Q) is expected to be large because each cluster has too little data to make a statistically reliable
estimation. Thus, the goal is to optimize the trade-off between the locality of the predictions and
their statistical reliability.

This trade-off is explicitly exhibited in bound (18): if we assign all xi-es to a single cluster, then
Ī(Xi;Ci) = 0 and therefore L(Q) is close to L̂(Q). And if we assign each xi to a separate cluster,
then Ī(Xi;Ci) is large, specifically in this case Ī(Xi;Ci) = lnni, and L(Q) is far from L̂(Q). But
there are even finer observations we can draw from the bound. Bear in mind that niĪ(Xi;Ci) is
linear in ni, whereas mi lnni is logarithmic in ni. Thus, at least when mi is small compared to
ni (which is a reasonable assumption when we cluster the values of Xi) the leading term in (18) is
niĪ(Xi;Ci). This term penalizes the effective complexity of a partition, rather than the raw number
of clusters used. For example, the unbalanced partition of a 4×4matrix into 2×2 clusters in Figure
2.a is simpler than the balanced partition into the same number of clusters in Figure 2.b. The reason,
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(a) Unbalanced Partition (b) Balanced Partition

Figure 2: Illustration of (a) an unbalanced and (b) a balanced partition of a 4×4 matrix into 2×2
clusters. Note that there are 4 possible ways to group 4 objects into 2 unbalanced clusters
and

(4
2

)

= 6 possible ways to group 4 objects into 2 balanced clusters. Thus, the subspace
of the unbalanced partitions is smaller than the subspace of the balanced partitions and
the unbalanced partitions are simpler (it is easier to describe an unbalanced partition than
a balanced one).

which will become clearer after we have defined the prior over the space of partitions in Section
3.3, is that there are fewer unbalanced partitions than balanced ones. Therefore, the subspace of
unbalanced partitions is smaller than the subspace of balanced partitions and it is easier to describe
an unbalanced partition than a balanced one. Intuitively, the partition in Figure 2.a does not fully
use the 2 × 2 clusters that it could use, and should therefore be penalized less. On a practical level,
the bound makes it possible to operate at the optimization step with more clusters than are actually
required and to penalize the final solution according to a de facto measure of cluster use. This
claim is supported by our experiments. To summarize this point, the bound (18) suggests a trade-off
between the empirical performance and the effective complexity of a partition.

Finally, consider the M ln |Y| term in the bound. M is the number of partition cells (in a
hard partition) and M ln |Y| corresponds to the size of the 〈C1, ..,Cd,Y 〉 clique in the moral graph
corresponding to the graph in Figure 1.a. The number of sample points N should be comparable to
the number of partition cells, so it is natural for this term to appear in the bound. This term grows
exponentially with the number of dimensions d; thus we can apply the bound for low-dimensional
problems like collaborative filtering, but when the number of dimensions grows a different approach
is required. We suggest one possible way to handle high dimensional problems in Section 7.

Proof of Theorem 7 The proof is a direct application of the PAC-Bayesian bound for classification
in Theorem 1 (or, more precisely, its refinement in (3)). In order to apply the theorem, we have to
define a hypothesis space H, a prior over hypothesis space P , a posterior over hypothesis space Q,
and calculate the KL-divergenceKL(Q‖P). We define the hypothesis space in the next subsection
and design a prior over it in Section 3.3. Substitution of the calculation of KL(Q‖P) in Lemma 9
into Theorem 1 completes the proof.
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3.2 Grid Clustering Hypothesis Space

We define the hypothesis space H to be the space of hard grid partitions of the product space
X1 × ..×Xd (as illustrated in Figure 2) augmented with label assignments to the partition cells. (In
Section 3.4 we use grid partitions without labels on the partition cells; thus the discussion in this
and the following subsection is kept general enough to hold in both cases.) In a hard grid partition
each value xi ∈ Xi is mapped deterministically to a single cluster ci ∈ {1, ..,mi}. To operate on H
we use the following notations:

• Let m̄ = (m1, ..,md) be a vector counting the number of clusters along each dimension.

• We use H|i to denote the space of partitions of Xi. In other words, H|i is a projection of H
onto dimension i.

• Let Hm̄ denote the subspace of partitions of X1 × .. × Xd in which the number of clusters
used along each dimension matches m̄. Obviously, for distinct m̄-s,Hm̄-s are disjoint.

• We useH|(y|m̄) or simplyH|y|m̄ to denote the space of possible assignments of labels toHm̄.
Then we can writeH =

⋃

m̄

(

Hm̄ ×H|y|m̄

)

.

• For each h ∈ H we write h = h|1 × ..×h|d ×h|y|m̄, where h|i denotes the partition induced by
h along dimension i and h|y|m̄ denotes the assignment of labels to partition cells of h. In the
discussion of density estimation with grid clustering in Section 3.4, h is just h = h|1 × ..×h|d,
without the labels assignment.

We show thatQ =
{

{q(ci|xi)}d
i=1, q(y|c1, .., cd)

}

is a distribution overH and (17) corresponds
to a randomized prediction strategy. More precisely, Q is a distribution over Hm̄ × H|y|m̄, where
m̄ matches the cardinalities of Ci-s in the definitions of

{

{q(ci|xi)}d
i=1, q(y|c1, .., cd)

}

. In order
to draw a hypothesis h ∈ H according to Q we draw a cluster ci for each xi ∈ Xi according to
q(ci|xi) and then draw a label for each partition cell according to q(y|c1, .., cd). For example, we
map each viewer to a cluster of viewers, map each movie to a cluster of movies, and assign ratings to
the product space of viewer clusters by movie clusters. Then, in order to assign a label to a sample
〈x1, ..,xd〉 we simply check which partition cell it has fallen into and return the corresponding label.
Recall that in order to assign a label to another sample point, we have to draw a new hypothesis from
H.

Note that in (17) we actually skip the step of assigning a cluster for each xi ∈ Xi and a label for
each partition cell (in fact, the whole step of drawing a hypothesis) and assign a label to a given point
〈x1, ..,xd〉 directly. Nevertheless, (17) corresponds to the randomized prediction process described
above. This makes it possible to apply the PAC-Bayesian analysis.

3.3 Combinatorial Priors in PAC-Bayesian Bounds

In this section we design a combinatorial prior over the grid clustering hypothesis space and calcu-
late the KL-divergenceKL(Q‖P) between the posterior defined earlier and the prior. An interesting
point about this result is that combinatorial priors result in mutual information terms in the calcula-
tions of the KL-divergence. This can be contrasted with the L2-norm and L1-norm terms resulting
from Gaussian and Laplacian priors respectively in the analysis of SVMs (Langford, 2005). Another
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important point to mention is that the posterior Q returns a named partition of Xi-s (the conditional
distribution q(ci|xi) specifies the “name” ci of the cluster that xi is mapped to). However, the hy-
pothesis spaceH and the prior P defined below operate with unnamed partitions: they only depend
on the structure of a partition (the sizes of the clusters), but do not depend on the names assigned
to the clusters. In this manner we account for all possible permutations of cluster names, which are
irrelevant for the solution.

The statements in the next two lemmas are given in two versions, one for H augmented with
labels, which is used in the proofs of Theorem 7, and the other for Hm̄ without the labels, which is
used later for the proofs on density estimation with grid clustering.

Lemma 8 It is possible to define a prior P over Hm̄ that satisfies:

P(h) ≥ 1

exp
[

∑d
i=1 (niH(hist(h|i))+(mi −1) lnni)

] , (19)

where hist(h|i) = {|ci1|, .., |cimi |} denotes the cardinality profile (histogram) of cluster sizes along
dimension i of a partition corresponding to h andH(hist(h|i)) = −

∑mi
j=1

|cij |
ni

ln |cij |
ni

is the entropy
of the (normalized) cardinality profile (note that

∑mi
j=1 |cij | = ni).

It is further possible to define a prior P over H =
⋃

m̄

(

Hm̄ ×H|y|m̄

)

that satisfies:

P(h) ≥ 1

exp
[

∑d
i=1 (niH(hist(h|i))+mi lnni)+M ln |Y|

] . (20)

Remark: The prior P over H that is defined explicitly in the proof of the lemma exploits struc-
tural asymmetries between more and less balanced grid partitions, as shown in Figure 2, without
making assumptions on the data generating process. Note that the leading terms in the prior are
niH(hist(h|i)) that count the number of possible ways to assign xi-s to ci-s, which are invariant
under permutation of xi-s within each Xi (see the proof for details). Thus, it is impossible to design
a significantly better prior without “strong” prior knowledge on the data generating process that can
break the permutation symmetry of xi-s. “Weak” prior knowledge on the number of clusters mi

along each dimension and even on their sizes can only introduce an improvement that is logarith-
mic in ni-s to the bounds. The PAC-Bayesian analysis enables us to operate with all possible grid
partitions, while paying a very low (logarithmic) price for this generality.

We note that recently Lever et al. (2010) suggested an elegant technique for defining priors
based on the true data distribution, which is, of course, a “strong” prior knowledge. For example,
using the true marginal distributions p(xi) over Xi-s in the definition of the prior would break the
permutation symmetry of xi-s. Since the true data distribution is independent of the sample, such
priors are perfectly valid, although uncomputable. Lever et. al. show that, at least in some situations,
the KL-divergence KL(Q‖P) can nevertheless be bounded, which is sufficient for application of
the PAC-Bayesian bounds. The possibility of application of distribution-dependent priors in co-
clustering will be explored in future work.

Lemma 9 For the prior defined in (19) and posterior Q = {q(ci|xi)}d
i=1:

KL(Q‖P) ≤
d

∑

i=1

(

niĪ(Xi;Ci)+(mi −1) lnni

)

. (21)
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For the prior defined in (20) and posterior Q =
{

{q(ci|xi)}d
i=1, q(y|c1, .., cd)

}

:

KL(Q‖P) ≤
d

∑

i=1

(

niĪ(Xi;Ci)+mi lnni

)

+M ln |Y|. (22)

3.3.1 PROOFS

Proof of Lemma 8 To define the prior P over Hm̄ we count the hypotheses in Hm̄. There are
(ni−1

mi−1

)

≤ nmi−1
i possibilities to choose a cluster cardinality profile along a dimension i. (This is

because each of themi clusters has a size of at least one. To define a cardinality profile we are free to
distribute the “excess mass” of ni −mi among themi clusters. The number of possible distributions
equals the number of possibilities to placemi −1 ones in a sequence of (ni −mi)+(mi −1) = ni −
1 ones and zeros.) For a fixed cardinality profile hist(h|i) there are

( ni

|ci1|,..,|cimi
|

)

≤ eniH(hist(h|i))

possibilities to assign xi-s to the clusters. Putting the combinatorial calculations together we can
define a distribution P overHm̄ that satisfies (19).

To prove (20) we further define a uniform prior over H|y|m̄. Note that there are |Y|M possibili-
ties to assign labels to the partition cells in Hm̄. Finally, we define a uniform prior over the choice
of m̄. There are ni possibilities to chose the value of mi (we can assign all xi-s to a single cluster,
assign each xi to a separate cluster, and all the possibilities in between). Combining this with the
combinatorial calculations performed for (19) yields (20).

Proof of Lemma 9 We first handle bound (21). We use the decomposition KL(Q‖P) =
−EQ lnP(h) − H(Q) and bound −EQ lnP(h) and H(Q) separately. We further decompose
P(h) = P(h|1) · .. · P(h|d) and Q(h) in a similar manner. Then −EQ lnP(h) = −

∑

iEQ lnP(h|i)
and H(Q) =

∑

i H(Q(h|i)). Therefore, we can treat each dimension separately.
By Lemma 8:

−EQ lnP(h|i) ≤ (mi −1) lnni +niEQH(hist(h|i)). (23)

Hence, in order to bound −EQ lnP(h|i) we have to bound the expected entropy of cluster cardi-
nality profiles of the hypotheses generated by Q. Recall that Q draws a cluster Ci for each xi ∈ Xi

according to q(ci|xi) and that this process results in marginal distribution q̄(ci) = 1
ni

∑

xi
q(ci|xi)

over the normalized cluster sizes (this is where the uniform distribution overXi comes in). To bound
EQH(hist(h|i)) we use the result on negative bias of empirical entropy estimates cited below, see
Paninski (2003) for a proof.

Theorem 10 (Paninski, 2003) Let X1, ..,XN be i.i.d. distributed by p(x) and let p̂(x) be their
empirical distribution. Then:

EpH(p̂) = H(p)−EpKL(p̂‖p) ≤ H(p). (24)

By (24) EQH(hist(h|i)) ≤ H(q̄(ci)). Substituting this into (23) yields:

−EQ lnP(h|i) ≤ niH(q̄(ci))+(mi −1) lnni. (25)

Now we turn to bound −H(Q(h|i)) = EQ lnQ(h|i). To do so we bound lnQ(h|i) from above.
The bound follows from the fact that if we draw ni values of Ci according to q(ci|xi) the probability
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of the resulting type is bounded from above by e−niH̄(Ci|Xi), where H̄(Ci|Xi) =
− 1

ni

∑

xi,ci
q(ci|xi) lnq(ci|xi) (see Cover and Thomas, 1991, Theorem 12.1.2). Thus,

EQ lnQ(h|i) ≤ −niH̄(Ci|Xi), which together with (25) and the identity Ī(Xi;Ci) = H(q̄(ci)) −
H̄(Ci|Xi) completes the proof of (21).

To prove (22) we recall that Q is defined for a fixed m̄. Hence, −EQ lnP(h|y|m̄) = M ln |Y|
and −H(Q(h|y|m̄)) ≤ 0. Finally, since the prior P(m̄) over the selection of m̄ is uniform we
have −EQ lnP(m̄) =

∑d
i=1 lnni and H(Q(m̄)) = 0, which is added to (21) by the additivity of

KL(Q‖P) completing the proof.

3.4 PAC-Bayesian Analysis of Density Estimation with Grid Clustering

In this subsection we derive a generalization bound for density estimation with grid clustering. This
time we have no labels and the goal is to find a good estimator for an unknown joint probability
distribution p(x1, ..,xd) over a d-dimensional product space X1 × ..×Xd based on a sample of size
N from p. As an illustrative example, think of estimating a joint probability distribution of words
and documents (X1 andX2) from their co-occurrence matrix. The goodness of an estimator q for p
is measured by −Ep(x1,..,xd) lnq(X1, ..,Xd).

By Theorem 5, to obtain a meaningful bound for a direct estimation of p(x1, ..,xd) from
p̂(x1, ..,xd) we need N to be exponential in ni-s, since the cardinality of the random variable
〈X1, ..,Xd〉 is

∏

i ni. To reduce this dependency to be linear in
∑

i ni we restrict the estimator
q(X1, ..,Xd) to be of the factor form:

q(x1, ..,xd) =
∑

c1,..,cd

q(c1, .., cd)
d

∏

i=1

q(xi|ci) (26)

=
∑

c1,..,cd

q(c1, .., cd)
d

∏

i=1

q(xi)

q(ci)
q(ci|xi). (27)

We emphasize that the above decomposition assumption is only on the estimator q and not on the
generating distribution p. A graphical model corresponding to Equation (26) is given in Figure 1.b.
Similar to the model for discriminative prediction, this is also a two-level randomized prediction
model.

We select the hypothesis spaceH to be the space of hard partitions of the product spaceX1 × ..×
Xd, as before; however, this time there are no labels to the partition cells. The general message of the
following two theorems is that the empirical distribution over the coarse partition space C1 × ..×Cd

converges to the true one faster than the empirical distribution over X1 × ..×Xd converges to its true
counterpart. We also show that (27) can be used to extrapolate the distribution over cluster space
back to X1 × .. × Xd space and obtain better generalization guarantees. Next we state this more
formally.

As seen in the previous subsection, a distribution Q = {q(ci|xi)}d
i=1 is a distribution over Hm̄.

To obtain a hypothesis h ∈ Hm̄ we draw a cluster for each xi ∈ Xi according to q(ci|xi). The way
we have written (27) enables us to view it as a randomized prediction process: we draw a hypothesis
h according to Q and then predict the probability of 〈x1, ..,xd〉 as q(ch

1(x1), .., ch
d(xd))

∏

i
q(xi)

q(ch
i (xi))

,
where ch

i (xi) = h(xi) is the partition cell that xi fell within h. Although (27) skips the process of
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drawing the complete partition h and returns the probability of 〈x1, ..,xd〉 directly, the described
randomized prediction process matches the predictions by (27) and thus enables its analysis with
PAC-Bayesian bounds.

Let h ∈ H be a hard partition of X1 × .. × Xd and let h(xi) denote the cluster to which xi is
mapped in h. We define the distribution over the partition cells 〈c1, .., cd〉 induced by p and h:

ph(c1, .., cd) =
∑

x1,..,xd:
∀i h(xi)=ci

p(x1, ..,xd),

ph(ci) =
∑

xi:h(xi)=ci

p(xi).

We further define the distribution over partition cells induced by the empirical distribution p̂(x1, ..,xd)
corresponding to the sample and h by substitution of p̂ instead of p in the above definitions:

p̂h(c1, .., cd) =
∑

x1,..,xd:
∀i h(xi)=ci

p̂(x1, ..,xd),

p̂h(ci) =
∑

xi:h(xi)=ci

p̂(xi).

We also define the distribution over partition cells induced byQ and p and its empirical counterpart:

pQ(c1, .., cd) =
∑

h

Q(h)ph(c1, .., cd) =
∑

x1,..,xd

p(x1, ..,xd)
d

∏

i=1

q(ci|xi),

pQ(ci) =
∑

h

Q(h)ph(ci) =
∑

xi

p(xi)q(ci|xi),

p̂Q(c1, .., cd) =
∑

h

Q(h)p̂h(c1, .., cd) =
∑

x1,..,xd

p̂(x1, ..,xd)
d

∏

i=1

q(ci|xi),

p̂Q(ci) =
∑

h

Q(h)p̂h(ci) =
∑

xi

p̂(xi)q(ci|xi).

We extrapolate ph, pQ, p̂h and p̂Q to the whole space X1 × ..×Xd using (27):

ph(x1, ..,xd) = ph(ch
1(x1), .., ch

d(xd))
d

∏

i=1

p(xi)

ph(ch
i (xi))

,

pQ(x1, ..,xd) =
∑

c1,..,cd

pQ(c1, .., cd)
d

∏

i=1

p(xi)

pQ(ci)
q(ci|xi),

p̂h(x1, ..,xd) = p̂h(ch
1(x1), .., ch

d(xd))
d

∏

i=1

p̂(xi)

p̂h(ch
i (xi))

,

p̂Q(x1, ..,xd) =
∑

c1,..,cd

p̂Q(c1, .., cd)
d

∏

i=1

p̂(xi)

p̂Q(ci)
q(ci|xi).

Note that pQ(x1, ..,xd) is a distribution over X1 × ..×Xd, which has the form (27) and is the closest
to the true distribution p(x1, ..,xd) under the constraint that {q(ci|xi)}d

i=1 are fixed. Further, note
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that since we have no access to p(x1, ..,xd) we do not know pQ(x1, ..,xd). In the next theorem we
provide rates of convergence of the distributions p̂Q(x1, ..,xd), p̂Q(c1, .., cd), and p̂Q(xi) based on
the sample to their counterparts corresponding to the true distribution p(x1, ..,xd).

Theorem 11 For any probability measure p over X1 × .. × Xd and an i.i.d. sample S of size N
according to p, with probability of at least 1 − δ for all grid clusterings Q = {q(ci|xi)}d

i=1 the
following holds simultaneously:

KL(p̂Q(c1, .., cd)‖pQ(c1, .., cd)) ≤
∑d

i=1 niĪ(Xi;Ci)+K1

N
(28)

and for all i

KL(p̂(xi)‖p(xi)) ≤
(ni −1) ln(N +1)+ ln d+1

δ

N
, (29)

where

K1 =
d

∑

i=1

mi lnni +(M −1) ln(N +1)+ ln
d+1

δ
. (30)

As well, with probability greater than 1− δ:

KL(p̂Q(x1, ..,xd)‖pQ(x1, ..,xd)) ≤
∑d

i=1 niĪ(Xi;Ci)+K2

N
, (31)

where

K2 =
d

∑

i=1

mi lnni +

[

M +
d

∑

i=1

ni −d−1

]

ln(N +1)− lnδ.

Before we discuss and prove the theorem we point out that although p̂Q(x1, ..,xd) converges
to pQ(x1, ..,xd) it still cannot be used to minimize −Ep(x1,..,xd) ln p̂Q(X1, ..,Xd), because it is not
bounded from zero. Also, we cannot construct a density estimator by smoothing p̂Q(x1, ..,xd)
directly using Theorem 6, because the cardinality of the random variable 〈X1, ..,Xd〉 is

∏

i ni and
this term will enter into the bounds. To circumvent this we take advantage of the factor form of pQ

and use the bounds (28) and (29). We define an estimator p̃Q, which is a smoothed version of p̂Q in
the following way:

p̃h(c1, .., cd) =
p̂h(c1, .., cd)+γ

1+γM
,

p̃(xi) =
p̂(xi)+γi

1+γini
, (32)

p̃h(ci) =
∑

xi:h(xi)=ci

p̃(xi),

p̃h(x1, ..,xd) = p̃h(ch
1(x1), .., ch

d(xd))
d

∏

i=1

p̃(xi)

p̃h(ch
i (xi))

.
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And for a distribution Q overH:

p̃Q(c1, .., cd) =
p̂Q(c1, .., cd)+γ

1+γM
, (33)

p̃Q(ci) =
∑

xi

p̃(xi)q(ci|xi) =
p̂Q(ci)+γiq̄(ci)ni

1+γini
, (34)

p̃Q(x1, ..,xd) =
∑

h

Q(h)p̃h(x1, ..,xd)

=
∑

c1,..,cd

p̃Q(c1, .., cd)
d

∏

i=1

p̃(xi)

p̃Q(ci)
q(ci|xi). (35)

In the following theorem we provide a bound on −Ep(x1,..,xd) ln p̃Q(X1, ..,Xd). Note that we take
the expectation with respect to the true, unknown distribution p that may have an arbitrary form
(i.e., p is not restricted to be of the factor form (26)).

Theorem 12 For the density estimator p̃Q(x1, ..,xd) defined by equations (32), (33), (34), and
(35), −Ep(x1,..,xd)p̃Q(X1, ..,Xd) attains its minimum at γ(Q) =

√
ε(Q)/2
M and γi =

√
εi/2
ni

, where
ε(Q) is defined by the right-hand side of (28) and εi-s are defined by the right-hand side of (29).
At this optimal level of smoothing, with probability greater than 1 − δ for all Q = {q(ci|xi)}d

i=1

simultaneously:

−Ep(x1,..,xd) ln p̃Q(X1, ..,Xd) ≤ −I(p̂Q(c1, .., cd))+ln(M)

√

∑d
i=1 niĪ(Xi;Ci)+K1

2N
+K3, (36)

where I(p̂Q(c1, .., cd)) =
[

∑d
i=1 H(p̂Q(ci))

]

− H(p̂Q(c1, .., cd)) is the multi-information between
C1, ..,Cd with respect to p̂Q(c1, .., cd), K1 is defined by (30),

K3 = φ(ε(Q))+

[

d
∑

i=1

H(p̂(xi))+2
√

εi/2lnni +φ(εi)+ψ(εi)

]

,

and the functions φ and ψ are defined in Theorem 6.

Discussion: We discuss Theorem 12 first. We point out that p̃Q(x1, ..,xd) is directly related to
p̂Q(x1, ..,xd) and that p̂Q(x1, ..,xd) is determined by the empirical frequencies p̂(x1, ..,xd) of the
sample and our choice of Q = {q(ci|xi)}d

i=1. There are only two quantities in the bound (36) that
depend on the choice of Q: −I(p̂Q(c1, .., cd)) and

∑

i
ni
N Ī(Xi;Ci) [note that the latter also appears

in φ(ε(Q) in K3]. Thus, Theorem 12 suggests that a good estimator p̃Q(x1, ..,xd) of p(x1, ..,xd)
should optimize the trade-off between −I(p̂Q(c1, .., cd)) and

∑

i
ni
N Ī(Xi;Ci). Similar to Theo-

rem 7, the latter term corresponds to the mutual information that the hidden cluster variables pre-
serve on the observed variables. Larger values of Ī(Xi;Ci) correspond to partitions of X1, ..,Xd,
which are more complex. The first term, −I(p̂Q(c1, .., cd)), corresponds to the amount of structural
information on Ci-s extracted by the partition. More precisely, we need to look at the value of
∑

i H(p̂(xi))−I(p̂Q(c1, .., cd)), where
∑

i H(p̂(xi)) is a part ofK3 and roughly corresponds to the
performance we can achieve by approximating p(x1, ..,xd) with a product of empirical marginals
∏

i p̂(xi). Thus, −I(p̂Q(c1, .., cd)) is the added value of the partition in estimating p(x1, ..,xd) and
since

∑

i H(p̂(xi)) ≥ I(p̂Q(c1, .., cd)) the bound (36) is always positive.
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The value of I(p̂Q(c1, .., cd)) increases monotonically with the increase of the partition com-
plexity Q (we can see this by the information processing inequality, Cover and Thomas, 1991).
Thus, the trade-off in (36) is analogous to the trade-off in (18): the partition Q should balance its
utility function−I(p̂Q(c1, .., cd)) and the statistical reliability of the estimate of the utility function,
which is related to

∑

i
ni
N Ī(Xi;Ci). This trade-off suggests a modification to the original objective

of co-clustering in Dhillon et al. (2003), which is maximization of I(C1;C2) alone (Dhillon et al.,
2003 discuss the case of two-dimensional matrices). The trade-off in (36) can be applied to model
order selection.

Now we make a few comments concerning Theorem 11. An interesting point about this theorem
is that the cardinality of the random variable 〈X1, ..,Xd〉 is

∏

i ni. Thus, a direct application of
Theorem 2 to bound KL(p̂Q(x1, ..,xd)‖pQ(x1, ..,xd)) would introduce this term into the bound.
However, by using the factor form (27) of p̂Q(x1, ..,xd) and pQ(x1, ..,xd) we are able to reduce
this dependency to (M +

∑

i ni − d − 1). This result reveals the great potential of applying PAC-
Bayesian analysis to more complex graphical models, which we explore further in Section 7.

3.4.1 PROOFS

We conclude this section by presenting the proofs of Theorems 11 and 12.
Proof of Theorem 11 The proof is based on PAC-Bayesian theorem on density estimation (The-
orem 2). To apply the theorem we need to define a prior P over H and then calculate KL(Q‖P).
We note that for a fixed Q the cardinalities of the clusters m̄ are fixed. There are

∏

i ni disjoint
subspaces Hm̄ in H. We handle each Hm̄ independently and then combine the results to obtain
Theorem 11.

By Theorem 2 and Lemma 9, for the prior P over Hm̄ defined in Lemma 8, with probability
greater than 1− δ

(d+1)
∏

i
ni
we obtain (28) for eachHm̄. In addition, by Theorem 5 with probability

greater than 1 − δ
d+1 inequality (29) holds for each Xi. By a union bound over the

∏

i ni subspaces
ofH and the d variablesXi we obtain that (28) and (29) hold simultaneously for allQ andXi with
probability greater than 1− δ.

To prove (31), fix some hard partition h and let ch
i = h(xi). Then:

KL(p̂h(x1, ..,xd)‖ph(x1, ..,xd))

= KL(p̂h(x1, ..,xd, ch
1(x1), .., ch

d(xd))‖ph(x1, ..,xd, ch
1(x1), .., ch

d(xd)))

= KL(p̂h(c1, .., cd)‖ph(c1, .., cd))

+KL(p̂h(x1, ..,xd|ch
1(x1), .., ch

d(xd))‖ph(x1, ..,xd|ch
1(x1), .., ch

d(xd)))

= KL(p̂h(c1, .., cd)‖ph(c1, .., cd))+
d

∑

i=1

KL(p̂h(xi|ch
i (xi))‖ph(xi|ch

i (xi)))

= KL(p̂h(c1, .., cd)‖ph(c1, .., cd))+
d

∑

i=1

KL(p̂(xi)‖p(xi))−
d

∑

i=1

KL(p̂h(ci)‖ph(ci))

≤ KL(p̂h(c1, .., cd)‖ph(c1, .., cd))+
d

∑

i=1

KL(p̂(xi)‖p(xi)).
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And:

ESeNKL(p̂h(x1,..,xd)‖ph(x1,..,xd)) ≤
(

ESeNKL(p̂h(c1,..,cd)‖ph(c1,..,cd))
)

d
∏

i=1

ESeNKL(p̂(xi)‖p(xi))

≤ (N +1)M+
∑d

i=1
ni−(d+1),

where the last inequality is by Theorem 3. From here we follow the lines of the proof of Theorem
2. Namely:

ES

[

EP(h)e
NKL(p̂h(x1,..,xd)‖ph(x1,..,xd))

]

= EP(h)

[

ESeNKL(p̂h(x1,..,xd)‖ph(x1,..,xd))
]

≤ (N +1)M+
∑d

i=1
ni−(d+1).

Thus, by Markov’s inequality EP(h)e
NKL(p̂h(x1,..,xd)‖ph(x1,..,xd)) ≤ 1

δ (N + 1)M+
∑

i
ni−(d+1) with

probability of at least 1 − δ and (31) follows by the change of measure inequality (8) and convex-
ity of the KL-divergence, when the prior P over H defined in Lemma 8 is selected (this time we
give a weight of (

∏

i ni)−1 to each Hm̄ and obtain a prior over the whole H). The calculation of
KL(Q‖P) for this prior is provided in Lemma 9.

Proof of Theorem 12

−Ep(x1,..,xd) ln p̃Q(X1, ..,Xd) = −Ep(x1,..,xd) lnEQ(h)p̃h(X1, ..,Xd)

≤ −EQ(h)Ep(x1,..,xd) ln p̃h(X1, ..,Xd)

= −EQ(h)Ep(x1,..,xd) ln p̃h(Ch
1 (X1), ..,Ch

d (Xd))
∏

i

p̃(Xi)

p̃h(Ch
i (Xi))

= −EQ(h)

[

Eph(c1,..,cd) ln p̃h(C1, ..,Cd)
]

−
∑

i

Ep(xi) ln p̃(Xi)+
∑

i

EQ(h)Eph(ci) ln p̃h(Ci)

≤ −EQ(h)

[

Eph(c1,..,cd) ln p̃h(C1, ..,Cd)
]

−
∑

i

Ep(xi) ln p̃(Xi)+
∑

i

EpQ(ci) ln p̃Q(Ci)

At this point we use (14) to bound the first and the second term and the lower bound (16) to bound
the last term and obtain (36).

4. Algorithms

In the previous section we presented generalization bounds for discriminative prediction and density
estimation with co-clustering. The bounds presented in Theorems 7 and 12 hold for any prediction
rule Q based on grid clustering of the parameter space X1 × .. × Xd. In Seldin (2009) it is shown
that for d = 1 the global minimum of bound (18) can be found efficiently. However, for d ≥ 2 it can
be exponentially hard to find the global minimum of both (18) and (36). Further, although we show
in the applications section that bound (18) is remarkably tight, its tightness can still be insufficient
for practical purposes. In this section we suggest how to replace the bounds with parameterized
trade-offs that can be further fine-tuned, for example, via cross-validation, to improve the usability
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in practice. The substitution of the bounds with parametrized trade-offs does not compromise on
the rigor of the analysis: first, the bounds hold simultaneously for all the solutions found by min-
imization of the parameterized trade-offs and, second, the parameter of the trade-offs can also be
tuned by substituting the result of trade-off minimization back into the corresponding bound, thus
providing an estimate on a local minima of the bound.

4.1 Minimization of the PAC-Bayesian Bound for Discriminative Prediction with Grid
Clustering

We start with minimization of the PAC-Bayesian bound for discriminative prediction based on grid
clustering (18) suggested in Theorem 7. We rewrite the bound in a slightly different way in order to
separate terms which are independent of the conditional distributions in Q:

kl(L̂(Q)‖L(Q)) ≤
∑d

i=1 niĪ(Xi;Ci)+K

N
, (37)

where

K =
d

∑

i=1

mi lnni +M ln |Y|+ 1

2
ln(4N)− lnδ. (38)

Note that K depends on the number of clusters mi used along each dimension, but not on a
specific form of a grid partition. Once the number of clusters used along each dimension has been
selected,K is constant.

The minimization problem corresponding to (37) can be stated as follows:

min
Q

L s.t. kl(L̂(Q)‖L) =

∑d
i=1 niĪ(Xi;Ci)+K

N
. (39)

It is generally possible to find a local minimum of the minimization problem (39) directly using
alternating projection methods - see, for example, Germain et al. (2009) for such an approach to
solving a similar minimization problem for linear classifiers. We take a slightly different approach
that further enables us to compensate for the imperfection of the bounds. SinceK is constant, L(Q)
depends on a parameterized trade-off between L̂(Q) and

∑d
i=1 niĪ(Xi;Ci), which can be written

as follows:

F(Q,β) = βNL̂(Q)+
d

∑

i=1

niĪ(Xi;Ci), (40)

where β is the trade-off parameter. The corresponding minimization problem is:

Fmin(β) = min
Q
βNL̂(Q)+

d
∑

i=1

niĪ(Xi;Ci). (41)

In general, every value of β yields a different solution to the minimization problem (41). The
optimum of (39) (which is computationally hard to find) corresponds to some specific value of β.
Hence, by scanning the possible values of β, minimizing (41), and substituting the resulting L̂(Q)
and Ī(Xi;Ci) back into (18) it is virtually possible to find the optimum of (39) (only virtually,
because finding the global optimum of (41) is computationally hard as well). However, the trade-off
(40) provides an additional degree of freedom. In cases where the bound (18) is not sufficiently
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tight for practical applications it is possible to tune the trade-off by determining the desired value of
β via cross-validation instead of back-substitution into the bound.

The minimization problem (41) is closely related to the rate distortion trade-off in information
theory (Cover and Thomas, 1991). To find a local minimum of F(Q,β) we adopt an EM-like
alternating projection procedure, very similar to the Blahut-Arimoto algorithm for minimization
of the rate distortion function (Arimoto, 1972; Blahut, 1972; Cover and Thomas, 1991). We note
that for d ≥ 2 the alternating projections involve more than two convex sets and hence only a local
minimum can be achieved. (For d = 1 the procedure achieves the global minimum.) For the sake
of simplicity of the notations we restrict ourselves to the case of d = 2, but it is straightforward to
extend the algorithm to higher dimensions.

The Lagrangian corresponding to the minimization problem (41) is:

L(Q,β) = βNL̂(Q)+
2

∑

i=1

niĪ(Xi;Ci)+
2

∑

i=1

∑

xi∈Xi

ν(xi)
∑

ci

q(ci|xi)+
∑

c1,c2

ν(c1, c2)
∑

y

q(y|c1, c2),

where ν-s are Lagrange multipliers corresponding to normalization constraints on {q(ci|xi)}2
i=1 and

q(y|c1, c2). In order to minimize L(Q,β) we write L̂(Q) explicitly:

L̂(Q) =
∑

x1,x2,y

p̂(x1,x2,y)
∑

y′

q(y′|x1,x2)l(y,y′)

=
∑

x1,x2,y

p̂(x1,x2,y)
∑

y′,c1,c2

q(y′|c1, c2)q(c1|x1)q(c2|x2)l(y,y′)

=
∑

y,y′

l(y,y′)
∑

c1,c2

q(y′|c1, c2)
∑

x1,x2

q(c1|x1)p̂(x1,x2,y)q(c2|x2).

We further derive L̂(Q) with respect to q(c1|x1). The derivative with respect to q(c2|x2) is similar.

∂L̂(Q)

∂q(c1|x1)
=

∑

y,y′

l(y,y′)
∑

x2,c2

q(y′|c1, c2)p̂(x1,x2,y)q(c2|x2). (42)

Recall that Ī(Xi;Ci) = 1
ni

∑

xi,ci
q(ci|xi) ln q(ci|xi)

q̄(ci)
and q̄(ci) = 1

ni

∑

xi
q(ci|xi). Hence the deriva-

tive of niĪ(Xi;Ci) is:

∂niĪ(Xi;Ci)

∂q(ci|xi)
= ln

q(ci|xi)

q̄(ci)
.

Derivatives of the remaining terms in L(Q,β) provide normalization for the corresponding vari-
ables. Thus, by taking the derivative of L(Q,β) with respect to q(ci|xi), equating it to zero and
reorganizing the terms we obtain a set of self-consistent equations that can be iterated until conver-
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gence:

q̄t(ci) =
1

ni

∑

xi

qt(ci|xi),

qt+1(ci|xi) =
q̄t(ci)

Zt+1(xi)
e

−βN ∂L̂(Qt)
∂q(ci|xi) ,

Zt+1(xi) =
∑

ci

qt+1(ci|xi),

y∗
t+1(c1, c2) = argmin

y′

∑

y

l(y,y′)
∑

x1,x2

qt+1(c1|x1)p̂(x1,x2,y)qt+1(c2|x2), (43)

qt+1(y|c1, c2) = δ[y,y∗
t+1(c1, c2)], (44)

where δ[·, ·] is the Kronecker delta function, ∂L̂(Q)
∂q(ci|xi)

is given by (42), and the subindex t denotes
the iteration number. Equations (43) and (44) correspond to minimization of L̂(Q) with respect to
q(y|c1, c2) and generally depend on the loss function. For the zero-one loss, y∗(c1, c2) is the most
frequent value of y appearing in the 〈c1, c2〉 partition cell; for the absolute loss it is the median
value; for the quadratic loss it is the average value. We summarize the algorithm in the Algorithm
1 box.2 We note that for the quadratic loss the loss minimizer y∗(c1, c2), which is the average value
in this case, can fall out of the finite space of labels Y . However, the algorithm can still be applied
and a bound can be obtained by post-process quantization, see appendix B for details.

Algorithm 1 Algorithm for minimization of F(Q,β) = βNL̂(Q) +
∑2

i=1 niĪ(Xi;Ci) by alternat-
ing projections.
Input: p̂(x1,x2,y), N , n1, n2,m1,m2, l(y,y′), |Y|, β.
Initialize: q0(ci|xi) and q0(y|c1, c2) randomly.
t ← 0
q̄t(ci) ← 1

ni

∑

xi
qt(ci|xi)

repeat
for i = 1,2 do

qt+1(ci|xi) ← q̄t(ci)e
−βN ∂L̂(Qt)

∂q(ci|xi)

Zt+1(xi) ←
∑

ci
qt+1(ci|xi)

qt+1(ci|xi) ← qt+1(ci|xi)
Zt+1(xi)

q̄t+1(ci) ← 1
ni

∑

xi
qt+1(ci|xi)

y∗
t+1(c1, c2) ← argminy′

∑

y l(y,y′)
∑

x1,x2
qt+1(c1|x1)p̂(x1,x2,y)qt+1(c2|x2)

qt+1(y|c1, c2) ← δ[y,y∗
t+1(c1, c2)]

t ← t+1
end for

until convergence
return {qt(ci|xi)}2

i=1, qt(y|c1, c2) from the last iteration.

2. Matlab implementation of the algorithm is available at http://www.kyb.mpg.de/˜seldin.
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4.2 Minimization of the PAC-Bayesian Bound for Density Estimation

Similar to the PAC-Bayesian bound for discriminative prediction, the PAC-Bayesian bound for den-
sity estimation (36) depends on the trade-off:

G(Q,β) = −βNI(p̂Q(c1, c2))+
2

∑

i=1

niĪ(Xi;Ci).

All other terms in (36) do not depend on the specific form of grid partition Q. (As in the previous
subsection we restrict ourselves to d = 2.) Unfortunately, −I(p̂Q(c1, c2)) is concave in q(ci|xi)-s,
whereas Ī(Xi;Ci) is convex in q(ci|xi). Therefore, alternating projection methods are hard to apply.
Instead, G(Q,β) can be minimized (with respect toQ) using sequential minimization (Slonim et al.,
2002; Dhillon et al., 2003). The essence of the sequential minimization method is that we start with
some random assignment q(ci|xi) and then iteratively take xi-s out of their clusters and reassign
them to new clusters, so that G(Q,β) is minimized. This approach leads to a hard partition of the
data (i.e., each xi is deterministically assigned to a single ci). The algorithm is given in Algorithm
2 box.

Algorithm 2 Algorithm for sequential minimization of G(Q,β) = −βNI(p̂Q(c1, c2)) +
∑2

i=1 niĪ(Xi;Ci).
Input: p̂(x1,x2), N , n1, n2,m1,m2, β.
Initialize: q0(ci|xi) randomly.
repeat
for all x1 ∈ X1 and all x2 ∈ X2 according to some random order over X1 and X2 do
for i = 1,2 do
Select xi ∈ Xi according to the order selected above.
Compute G(Q,β) for each possible assignment of xi to ci ∈ {1, ..,mi}
Reassign xi to ci such that G(Q,β) is minimized.
Update p̂Q(c1, c2) ←

∑

x1,x2
q(c1|x1)p̂(x1,x2)q(c2|x2).

end for
end for

until no reassignments further minimize G(Q,β).
return {q(ci|xi)}2

i=1 from the last iteration.

5. Applications

In this section we illustrate an application of the PAC-Bayesian bound for discriminative prediction
based on co-clustering (18) and Algorithm 1 for minimization of the corresponding trade-off (40)
on the problem of collaborative filtering. The problem of collaborative filtering was discussed in
the previous sections. The goal of collaborative filtering is to complete the missing entries in a
viewers-by-movies ratings matrix. This problem attracted a great deal of attention recently thanks
to the Netflix challenge.3 Since our goal here is mainly to illustrate our approach to co-clustering
via the PAC-Bayesian bounds rather than to solve the large-scale challenge we concentrate on a

3. See http://www.netflixprize.com/rules.
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much smaller MovieLens 100K data set.4 The data set consists of 100,000 ratings on a five-star
scale for 1,682 movies by 943 users. We take the five non-overlapping splits of the data set into
80% training and 20% test subsets provided at the MovieLens website. We stress that the training
data are extremely sparse - only 5% of the training matrix entries are populated, whereas 95% of
the values are missing.

To measure the accuracy of our algorithm we use the mean absolute error (MAE) measure,
which is commonly used for evaluation on this data set (Herlocker et al., 2004). Let p̌(x1,x2,y) be
the distribution over 〈X1,X2,Y 〉 in the test set. The mean absolute error is defined as:

MAE =
∑

x1,x2,y

p̌(x1,x2,y)
∑

y′

q(y′|x1,x2)|y −y′|.

In previous work the best MAE reported for this data set was 0.73 (Herlocker et al., 2004).
It is worth recalling that the ratings are on a five-star scale, thus a MAE of 0.73 means that, on
average, the predicted rating is 0.73 stars (less than one star) far from the observed rating. The
maximal possible error is 4 (which occurs if we predict one star instead of five or vice versa), which
determines the scale on which all the results should be judged.

In Seldin et al. (2007) we improved the MAE on this data set to 0.72 by using a Minimum
Description Length (MDL, Grünwald, 2007) formulation of co-clustering. In the MDL formula-
tion the co-clustering solutions are evaluated by the total description length, which includes the
length of the description of assignments of xi-s to ci-s together with the length of the description
of the ratings given the assignments. For fixed numbers of clusters (mi-s) used along each di-
mension, the MDL solution corresponds to optimization of the trade-off (40) with logarithmic loss
L̂(Q) = Î(Y ;C1,C2) and β = 1 (where Î(Y ;C1,C2) is the empirical mutual information between
the clusters and the label). In the MDL formulation of co-clustering developed in Seldin et al. (2007)
only hard (deterministic) assignments of xi-s to ci-s were considered. The best performance of 0.72
was achieved at m1 = 13 and m2 = 6 with below 1% sensitivity to small changes in m1 and m2

both in the description length and in the prediction accuracy. The deviation in prediction accuracy
between the five splits of the MovieLens data set was below 0.01.

In the present work we implemented Algorithm 1 for minimization of F(Q,β) as a function of
Q and applied it to the MovieLens data set. There are four major differences between Algorithm 1
and the MDL algorithm suggested in Seldin et al. (2007) that should be highlighted:

• Algorithm 1 directly optimizes a given loss function (MAE in the case of MovieLens) rather
than the description length, which is only indirectly related to the loss function.

• Algorithm 1 considers soft assignments of xi-s to ci-s.

• Algorithm 1 is an iterative projection algorithm rather than the sequential optimization algo-
rithm suggested in Seldin et al. (2007). Note that this point is neither positive nor negative,
since sequential optimization algorithms are very powerful and especially in hard cases can
outperform iterative projection methods. The advantage of iterative projection methods is in
their mathematical elegance, faster convergence (although in the hard cases it may be fast
convergence to trivial, but strong attractors), and the ability to handle soft assignments.

4. Available at http://www.grouplens.org.

3624



PAC-BAYESIAN ANALYSIS OF CO-CLUSTERING AND BEYOND

0.0625 0.125 0.25 0.5 1 2 4 8 16
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

β

M
ea

n 
Ab

so
lu

te
 E

rro
r

 

 
Test MAE
Bound

(a) Bound (18).
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(b) Test Loss (zoom into subfigure a.).

Figure 3: Co-clustering of the MovieLens data set into 13x6 clusters. Figure (a) shows the value of
bound (18) together with the MAE on the test set as a function of β. Figure (b) zooms
into MAE on the test set. The values of β are on a log scale. See text for further details.

• Algorithm 1 considers arbitrary values of β. (However, the algorithm in Seldin et al. (2007)
can be easily extended to handle arbitrary values of β.) As we will show below, the value
of β = 1 dictated by the MDL formulation is not always optimal and MDL solutions can
overfit the data. This observation was already made previously in a context of other learning
problems by Kearns et al. (1997).

We conducted three experiments with Algorithm 1. In all three experiments we fixed the num-
bers of clusters m1 and m2 used along both dimensions and analyzed the MAE on the test set and
the value of bound (18) as a function of β. In each experiment, for each of the five splits of the
data set into training and test sets mentioned earlier, and for each value of β we applied 10 random
initializations of the algorithm. The solutionQ corresponding to the best value of F(Q,β) per each
data split and per each value of β was then selected. We further calculated the average of the results
over the data set splits to produce the graphs of the bound values and test MAE as functions of β.

In the first experiment we verified that we are able to reproduce the results achieved previously
in Seldin et al. (2007). We set m1 = 13 and m2 = 6, as the best values obtained in Seldin et al.
(2007) and applied Algorithm 1. The results are presented in Figure 3. We make the following
conclusions from this experiment:

• The performance of Algorithm 1 is comparable to the performance achieved in Seldin et al.
(2007) with sequential optimization.

• The optimal performance is achieved at β close to one, which corresponds to the MDL func-
tional optimized in Seldin et al. (2007).

• The values of the bound are meaningful (recall that the maximal possible loss is 4; thus the
bound value of ∼ 1.25 is informative).

• The bound is 25%-75% far from the test error.
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(a) Bound (18).
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(b) Test Loss (zoom into subfigure a.).

Figure 4: Co-clustering of the MovieLens data set into 50x50 clusters. Figure (a) shows the value
of bound (18) together with the MAE on the test set as a function of β. Figure (b) zooms
into MAE on the test set. The values of β are on a log scale. See text for further details.

• The bound does not follow the shape of the test loss. According to the bound in this task
it is best to assign all the data to one big cluster. This is explained by the fact that this is a
hard problem and the improvement in the empirical loss L̂(Q) achieved by co-clustering is
relatively small. For the best co-clustering solution found L̂(Q) ≈ 0.67, whereas if we assign
all the data to one big cluster L̂(Q) ≈ 0.89. Thus, the improvement in L̂(Q) achieved by the
clustering is only about 30% while the tightness of the bound is 25%-75%. This is clearly
insufficient to apply the bound as the main guideline for model order selection. However,
it is possible to set the value of β in the trade-off F(Q,β) via cross-validation and obtain
remarkably good results. It should be pointed out that the trade-off F(Q,β) was derived from
the bound, thus even though the analysis is not perfectly tight it produced a useful practical
result.

• Note that in the setting of this experiment the small values of m1 and m2 provide “natural
regularization”; thus there is no significant decrease in performance when we increase β
beyond 1. This will change in the following experiments.

The power of bound (18) and the trade-off F(Q,β) derived from the bound is that it penalizes
the effective complexity of the solution rather than the gross number of clusters used. The practical
implication of this property is that we can initialize the optimization algorithm with more clusters
than are actually required to solve a problem, and the algorithm will automatically adjust the extent
to which it uses said available clusters. This property is verified in the following two experiments. In
the first experiment we initialized Algorithm 1 with m1 = m2 = 50 clusters along each dimension.
The result of optimization of F(Q,β) as a function of β is presented in Figure 4. We make the
following observations based on this experiment:

• The best performance (the 0.72 test MAE) achieved in the previous setting withm1 = 13 and
m2 = 6 is achieved in the new setting with m1 = m2 = 50 as well. This supports the ability
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Figure 5: Co-clustering of the MovieLens data set into 283x283 clusters. Figure (a) shows the value
of bound (18) together with the MAE on the test set as a function of β. Figure (b) zooms
into MAE on the test set. The values of β are on a log scale. See text for further details.

of the algorithm to operate with more clusters than are actually required by the problem and
to adjust the complexity of the solution automatically.

• Note that the optimal value of β in this setting is below 1. In particular, this implies that the
MDL formulation, which corresponds to β = 1 would overfit in this case. The role of the
regularization parameter β is also more evidently expressed here compared to the preceding
experiment.

• The values of the bound, although less tight than in the previous case, are still meaningful.
The shape of the bound becomes closer to the shape of the test loss, although in light of the
preceding experiment we would not attribute importance to it, and would still prefer to set the
value of β via cross-validation.

In our last experiment we went to the extreme case of taking m1 = m2 = 283 =
√

N . Note
that the size of the cluster space M = m1m2 in this case is 80,089 and is equal to the size of the
training set, N = 80,000. The implication is that extensive use of all available clusters can result
in a situation where each partition cell contains an order of a single observation, which is clearly
insufficient for statistically reliable predictions. Thus, in this experiment the number of clusters
provides no regularization at all and the only parameter responsible for regularization of the model
is the trade-off parameter β. The result of the experiment is presented in Figure 5. We highlight the
following points regarding this experiment:

• The best performance (the 0.72 test MAE) is achieved in this experiment as well. This further
stresses the ability to have full control over regularization of the model via parameter β of the
trade-off F(Q,β).
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(a) 13x6 clusters (b) 50x50 clusters (c) 283x283 clusters

Figure 6: The values of Ī(Xi;Ci) in the minimized F(Q,β) corresponding to Figures 3, 4, 5. We
show the values of Ī(Xi;Ci) that were obtained after minimization of F(Q,β) by Q
when clustering the MovieLens data set into 13x6, 50x50, and 283x283 clusters.

• The role of the regularization parameter β is further increased in this experiment compared
to the previous two. The optimal value of β here is clearly below 1 (the optimal β ≈ 0.5),
suggesting that the MDL solution would be overfitting.

• The value of the bound still remains meaningful, although it is already quite far from the test
error. The shape of the bound does not seem to provide useful information and the value of β
should be set via cross-validation.

In Figure 6 we show how the mutual information Ī(X1;C1) and Ī(X2;C2) changed in the three
experiments as we optimized F(Q,β) byQ for increasing values of β. An important observation to
be made from these graphs (by relating them to Figures 3, 4, and 5) is that in all three experiments
the best prediction performance was achieved at roughly the same values of the mutual information
Ī(X1;C1) and Ī(X2;C2). For clustering into 13x6 clusters prediction performance of MAE equal
to 0.72 and slightly lower was achieved at β values starting from 0.7 and larger, when Ī(X1;C1)
was in the range between 1.1 and 2.1 and Ī(X2;C2) was in the range between 0.8 and 1.5; for
clustering into 50x50 clusters prediction performance of 0.72 and slightly lower was achieved for
β values in the range between 0.5 and 1.0, when Ī(X1;C1) was in the range between 1.1 and 2.2
and Ī(X2;C2) was in the range between 0.8 and 1.7; and for clustering into 283x283 clusters the
optimal prediction performance of slightly below 0.72 was achieved for β = 0.5 and at this value of
β we had Ī(X1;C1) = 1.1 and Ī(X2;C2) = 0.8. We see that although the three experiments were
initialized with different numbers of clusters m1 and m2, the optimal prediction performance was
achieved at roughly the same effective complexity of the solution (measured by Ī(Xi;Ci)-s) and that
the trade-off parameter β took care of regularization of the model.

6. Probabilistic Matrix Tri-Factorization

For d = 2 the discriminative prediction and density estimation models considered in this paper can
be seen as two forms of matrix tri-factorization and for higher dimensions d > 2 as Tucker decom-
positions. In this section we discuss this relation in more detail, starting from the discriminative
prediction problem.
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6.1 Probabilistic Matrix Tri-Factorization for Discriminative Prediction

For d = 2 Equation (17) accepts the form:

q(y|x1,x2) =
∑

c1,c2

q(c1|x1)q(y|c1, c2)q(c2|x2).

If q(y|c1, c2) is restricted to be a delta distribution then it can be replaced by a function f(c1, c2).
This means that instead of drawing y in the cluster product space according to a distribution
q(y|c1, c2) it is predicted deterministically by f(c1, c2). Note that the assignment of xi-s to ci-s re-
mains stochastic. The restriction of deterministic q(y|c1, c2) does not limit the model significantly,
since for many loss functions, such as zero-one, absolute, or quadratic losses the optimal prediction
rule is deterministic in the cluster product space in any case. At the same time the bounds derived
previously are still valid, since they are valid for any distribution q(y|c1, c2) and in particular for the
delta distribution. The restricted model accepts the form:

f(x1,x2) =
∑

c1,c2

q(c1|x1)f(c1, c2)q(c2|x2),

which can be written as a matrix product:

A = QT
1 FQ2, (45)

where
Qi = [q(ci|xi)] (i = 1,2)

aremi ×ni left stochastic matrices5 mapping xi-s to their clusters ci-s, and

F = [f(c1, c2)]

is an m1 ×m2 matrix describing what happens in the cluster product space.
Given a data matrix A (probably sparse) and a trade-off parameter β Algorithm 1 provides

a locally optimal approximation of A in the form of (45) regularized by the mutual information
preserved in Q1 and Q2. Note that Algorithm 1 naturally handles the missing entries in A. The
product QT

1 FQ2 can then be used to complete the missing entries.
Matrix factorization of the form (45) was already considered in Banerjee et al. (2007) without

regularization. However, in Banerjee et al. (2007) the matricesQ1 andQ2 are restricted to determin-
istic assignments of xi-s to ci-s (the entries ofQ1 andQ2 are in {0,1}), whereas in the factorization
proposed hereQ1 andQ2 are stochastic matrices and F is arbitrary. Matrix tri-factorization consid-
ered in Ding et al. (2006); Yoo and Choi (2009a) is more closely related to matrix tri-factorization
for density estimation discussed in the next subsection. We note that the recent Bayesian approaches
to matrix factorization (Shan and Banerjee, 2008; Salakhutdinov and Mnih, 2008) are three-level
stochastic models and unlike the two-level stochastic model in (45) cannot be written as a simple
product of matrices. The following list of positive properties of probabilistic matrix tri-factorization
suggested here further distinguishes it from other forms of matrix factorization, including singular
value decomposition (SVD) (Strang, 2009; Golub and Loan, 1996), non-negative matrix factoriza-
tion (Lee and Seung, 1999, 2001), low-rank matrix factorization (Srebro et al., 2005a), and maxi-
mum margin matrix factorization (Srebro et al., 2005b; Srebro, 2004), that satisfy only parts of the
list:
5. A left stochastic matrix is a matrix of non-negative real numbers with each column summing up to 1. In a right
stochastic matrix each row sums up to 1.
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Figure 7: A graphical model for simultaneous tri-factorization of multiple matrices (equations (46)-
(48)). The mapping of Xi to Ci is modeled by a corresponding matrix Qi and labels Yi

correspond to prediction tasks in the respective matrices Ai.

• It has a clear probabilistic interpretation.

• It naturally handles missing values.

• The factorized matrix A can be arbitrary (not necessarily positive or positive definite).

• Overfitting can be controlled via the regularization parameter β.

• The generalization bound derived for co-clustering applies to this form of matrix factorization.

• It is a two-level stochastic model of the data.

• The model can be optimized by iterative projections.

• The model achieves state-of-the-art results in prediction of missing matrix entries.

We leave a wider practical comparison of the different matrix factorization methods as a subject for
future work.

A promising direction for future research suggested in Seldin (2009) and independently in Yoo
and Choi (2009b) is to apply matrix tri-factorization in tasks, where multiple related data sets are
considered. For example, letA1 be a matrix of viewers-by-viewers properties,A2 be a collaborative
filtering matrix, and A3 be a matrix of movies-by-movies properties. We can look for simultaneous
tri-factorizations, such that:

A1 ≈ QT
1 F1Q2 (46)

A2 ≈ QT
2 F2Q3 (47)

A3 ≈ QT
3 F3Q4. (48)

In other words, the clustering of viewers into clusters of viewers is shared between factorizations of
A1 and A2 and the clustering of movies into clusters of movies is shared between factorizations of
A2 and A3. An unregularized form of simultaneous tri-factorization for collaborative filtering was
already explored in Yoo and Choi (2009b). Problems of a similar form are also frequent in bioinfor-
matics, when multiple experiments with partial relations are considered. For example, Alter et al.
(2003) applied generalized SVD (GSVD) to compare yeast and human cell-cycle gene expression
data sets. In their experiment it is natural to create separate systems of clusters for yeast and human
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genes, but a common system of clusters for the cell-cycle time points. As already pointed out, prob-
abilistic matrix tri-factorization suggested here has several advantages over SVD (and consequently
over GSVD). Hence, it would be interesting to apply it to this type of problem.

6.2 Probabilistic Matrix Tri-Factorization for Density Estimation

The model for discrete density estimation based on co-clustering in Equation (26) can also be written
as matrix tri-factorization (for d = 2):

A = RT
1 GR2, (49)

where
Ri = [q(xi|ci)] =

[

q(xi)

q(ci)
q(ci|xi)

]

(i = 1,2)

aremi ×ni right stochastic matrices of probabilities of generating xi-s given ci-s and

G = [q(c1, c2)]

is anm1 ×m2 matrix of joint probability distribution of c1 and c2. As already mentioned, this model
is appropriate for co-occurrence data analysis, such as word-document co-occurrence matrices. An
unregularized form of such decomposition was already considered in Ding et al. (2006) and Yoo
and Choi (2009a). Here, A is assumed to be a joint probability matrix (i.e., the entries of A are
non-negative and sum up to 1). In practice A is an empirical joint probability distribution matrix
and factorization (49) regularized by the mutual informations Ī(Xi;Ci) can be used to regularize
the estimation of the joint probability distribution. Algorithm 2 can be used to find a local optimum
of such factorization given the regularization parameter β. The generalization bound developed in
Theorem 12 holds for this factorization. We remind the reader that Algorithm 2 operates with deter-
ministic assignments of xi-s to clusters ci-s. Although the resulting reverse conditional distribution
q(xi|ci) is not deterministic, the algorithm does not explore all possible solutions to this problem.
Developing an algorithm for finding a local optimum of the regularized decomposition with mixed
memberships of xi-s is a challenging direction for future research.

7. PAC-Bayesian Analysis of Graphical Models

The analysis of co-clustering presented in Section 3 holds for any dimension d. However, the
dependence of the bounds (18), (31), and (36) on d is exponential because of the M =

∏

i mi

term that they involve. This term is reasonably small when the number of dimensions is small
(two or three), as in the example of co-clustering. However, as the number of dimensions grows,
this term grows exponentially. Thus, high dimensional tasks require a different treatment. Some
improvements are also possible if we consider discriminative prediction based on a single parameter
X (i.e., in the case of d = 1), but the one-dimensional case is beyond the scope of this paper and
we refer the interested reader to (Seldin and Tishby, 2008; Seldin, 2009) for further details. In this
section we suggest a hierarchical approach to handle high-dimensional problems. We then show
that this approach can also be applied to generalization analysis of graphical models.

7.1 Hierarchical Approach to High Dimensional Problems (d > 2)

One possible way to handle high dimensional problems is to use hierarchical partitions, as shown
in Figures 8 and 9. For example, the discriminative prediction rule corresponding to the model in
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X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

(a) Discriminative Prediction Model

X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

Y

(b) Moralization of (a)

Figure 8: Illustration of (a) a graphical model for discriminative prediction and (b) its moralized
counterpart. The illustration is for d = 4.

Figure 8.a is:

q(y|x1, ..,x4) =
∑

d1,d2

q(y|d1,d2)
∑

c1,..,c4

2
∏

i=1

q(di|c2i−1, c2i)
4

∏

j=1

q(cj |xj). (50)

And the corresponding randomized prediction strategy is
Q =

{

{q(ci|xi)}4
i=1,{q(di|c2i−1, c2i)}2

i=1, q(y|d1,d2)
}

. In this case the hypothesis space is the
space of all hard partitions of xi-s to ci-s and of the pairs 〈c2i−1, c2i〉 to di-s. By repeating the
analysis in Theorem 7 we obtain that with probability greater than 1− δ:

kl(L̂(Q‖L(Q)) ≤
B1 +B2 + |D1||D2| ln |Y|+ 1

2 ln(4N)− lnδ

N
, (51)

where

B1 =
4

∑

i=1

(

niĪ(Xi;Ci)+mi lnni

)

,

B2 =
2

∑

i=1

(

(m2i−1m2i)Ī(Di;C2i−1,C2i)+ |Di| ln(m2i−1m2i)
)

.

Observe that the M ln |Y| term in (18), which corresponds to the clique 〈C1,C2,C3,C4,Y 〉, is
replaced in (51) with terms which correspond to much smaller cliques 〈C1,C2,D1〉, 〈C3,C4,D2〉,
and 〈D1,D2,Y 〉. This factorization makes it possible to control the complexity of the partition and
the tightness of the bound. In a similar way it is possible to derive factorized analogs to bounds (31)
and (36) that apply to density estimation hierarchies as in Figure 9.

We provide an illustration of a possible application of the models in Figure 9. Imagine that
we intend to analyze protein sequences. Protein sequences are sequences over the alphabet of 20
amino acids. Subsequences of length 8 can reach 208 = 256 · 108 instances. Instead of studying
this space directly, which would require an order of 256 · 108 samples, we can associate each Xi
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(a) Density Estimation Model

X1 X2

C1 C2

D1

X3 X4

C3 C4

D2

A R L A F T E G

(b) Moralization and Application of (a)

Figure 9: Illustration of (a) a directed model for density estimation and (b) its moralization and
application to sequence modeling. The sequence in subfigure (b) is an imaginary subse-
quence of length 8 of a protein sequence. Each Xi corresponds to a pair of amino acids
in the subsequence.

with a pair of amino acids - see Figure 9. The subspace of pairs of amino acids is only 202 = 400
instances and local interactions between adjacent pairs of amino acids can easily be studied. We can
cluster the pairs of amino acids into, say, 20 clusters C. Interactions between adjacent pairs of C-s
in such a construction correspond to interactions between quadruples of amino acids. The subspace
of quadruples is 204 = 16 · 104 instances. However, the reduced subspace of pairs of Ci-s is only
202 = 400 instances. Thus, we have doubled the range of interactions, but remained at the same
level of complexity. We can further cluster pairs of Ci-s (which correspond to quadruples of amino
acids) intoDi-s and study the space of 8-tuples of amino acids while remaining at the same level of
complexity.

The above approach shares the same basic principle already discussed in the collaborative fil-
tering task: by clustering together similar pairs (and then quadruples) of amino acids we increase
the statistical reliability of the observations, but reduce the resolution at which we process the data.
Bound (51) suggests how the trade-off between model resolution and statistical reliability can be
optimized.

7.2 PAC-Bayesian Analysis of Graphical Models

The result in the previous subsection suggests a new approach to learning graphical models by
providing a way to evaluate the expected performance of a graphical model on new data. Thus,
instead of constructing a graphical model that fits the observed data it serves to construct a model
with good generalization properties. The analysis used to derive bound (51) can be applied to any
directed graphical model in the form of a tree (as in Figures 8.a, 9.a) or its moralized counterpart
(as in Figures 8.b, 9.b). The analysis shows that the generalization power of these graphical models
is determined by a trade-off between empirical performance and the amount of mutual information
that is propagated up the tree. It is important to note that the PAC-Bayesian bound is able to take
advantage of the factor form of distribution (50) and that bound (51) depends on the sizes of the tree
cliques, but not on the size of the parameter spaceX1 × ..×Xd. Further, a prior can be added over all
possible directed graphs under consideration to obtain a PAC-Bayesian bound that will hold for all
of them simultaneously. Development of efficient algorithms for optimization of the tree structure
and extension of the results to more general graphical models are key directions for future research.
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8. PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

In this section we show that our approach to predictive formulation of unsupervised learning prob-
lems and their subsequent PAC-Bayesian analysis can also be applied to weighted graph clustering
(and, consequently, to pairwise clustering, which can be regarded as clustering of a graph with edge
weights corresponding to pairwise distances). Graph clustering is an important tool in data analysis
with a wide variety of applications including social networks analysis, bioinformatics, image pro-
cessing, and many more. As a result, a multitude of different approaches to graph clustering were
developed. Examples include graph cut methods (Shi and Malik, 2000), spectral clustering (Ng
et al., 2001), information-theoretic approaches (Slonim et al., 2005), to name just a few. Comparing
the different approaches is usually a painful task, mainly because the goal of each of these cluster-
ing methods is formulated in terms of the solution: most clustering methods start by defining some
objective functional and then minimize it. But, for a given problem, how can we choose whether to
apply a graph cut method, spectral clustering, or an information-theoretic approach?

Here we formulate weighted graph clustering as a prediction problem.6 Given a subset of edge
weights we analyze the ability of graph clustering to predict the remaining edge weights. The
rationale behind this formulation is that if a model (not necessarily cluster-based) is able to predict
with high precision all edge weights of a graph given a small subset of edge weights then it is a good
model of the graph. The advantage of this formulation of graph modeling is that it is independent
of the specific way chosen to model the graph and can be used to compare any two solutions,
either by comparison of generalization bounds or by cross-validation. The generalization bounds or
cross-validation also address the finite-sample nature of the graph clustering problem and provide a
clear criterion for model order selection. For very large data sets, where computational constraints
can prevent considering all edges of a graph, as for example in Yom-Tov and Slonim (2009), the
generalization bounds can be used to resolve the trade-off between computational workload and
precision of graph modeling.

Below we provide a PAC-Bayesian analysis of graph clustering in the case, where independent
sampling of edge weights is possible. For example, in the analysis of flow graphs, such as loads
on links in traffic or communication networks, we can repeatedly sample one or more non-adjacent
edge weights at a time (non-adjacent edges have no common vertices). In the analysis of snapshot
graphs, for example image segmentation, the dependencies between adjacent edge weight samples
should be taken into account, but this is again beyond the scope of this paper.

8.1 PAC-Bayesian Analysis of Graph Clustering

Assume that X is a space of |X | nodes and denote by wx1x2 the weight of an edge connecting
nodes x1 and x2.7 We assume that the weights wx1x2 are generated according to an unknown
probability distribution p(w|x1,x2). We further assume that the space of nodes X is known and we
are given a sample of size N of edge weights, generated according to p(x1,x2,w). The goal is to
build a regression function q(w|x1,x2) that will minimize the expected prediction error of the edge
weights Ep(x1,x2,w)Eq(w′|x1,x2)l(W,W ′) for some externally given loss function l(w,w′). Note that
this formulation does not assume any specific form of q(w|x1,x2) and enables comparison of all
possible approaches to this problem.

6. Unweighted graphs can be modeled by setting the weight of present edges as 1 and absent edges as 0.
7. All the results can be straightforwardly extended to hyper-graphs.
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Here we analyze generalization abilities of q(w|x1,x2) based on clustering:

q(w|x1,x2) =
∑

c1,c2

q(w|c1, c2)q(c1|x1)q(c2|x2). (52)

One can immediately see the relation between (52) and the co-clustering model for discriminative
prediction (17). The only difference is that in (52) the nodes x1,x2 belong to the same space of
nodes X and the conditional distribution q(c|x) is shared for the mapping of endpoints of an edge.
Let p̂(x1,x2,w) be the empirical distribution over edge weights. The empirical loss of prediction
strategy Q = {q(c|x), q(w|c1, c2)} corresponding to (52) can then be written as:

L̂(Q) = Ep̂(x1,x2,w)Eq(w′|x1,x2)l(W,W ′).

The following generalization bound for graph clustering can be proved by a minor adaptation of
the proof of Theorem 7.

Theorem 13 For any probability measure p(x1,x2,w) over the space of nodes and edge weights
X × X × W and for any loss function l bounded by 1, with probability of at least 1 − δ over a
selection of an i.i.d. sample S of size N according to p, for all graph clustering models defined by
Q = {q(c|x), q(w|c1, c2)}:

kl(L̂(Q)‖L(Q)) ≤
nĪ(X;C)+m lnn+m2 ln |W|+ 1

2 ln(4N)− lnδ

N
, (53)

where m = |C|, n = |X |, and |W| is the number of distinct edge weights.

Continuous edge weights can be handled by post-process quantization, as shown in appendix B.
As in the case of co-clustering, in practice we can replace (53) with a trade-off:

J (Q,β) = βNL̂(Q)+nĪ(X;C) (54)

and tune β either by substituting L̂(Q) and Ī(X;C) resulting from the solution of (54) back into
the bound or via cross-validation.

If the distribution q(w|c1, c2) is restricted to be a delta distribution Equation (52) can be rewritten
as:

f(x1,x2) =
∑

c1,c2

q(c1|x1)f(c1, c2)q(c2|x2)

and the corresponding matrix form is:
A ≈ QT FQ,

where Q = [q(c|x)], F = [f(c1, c2)], and A is an input matrix (probably sparse) providing a sample
of graph edge weights. This form of symmetric matrix tri-factorization is briefly mentioned in
Ding et al. (2006). Let I be an indicator matrix for the entries present in A. For quadratic loss the
empirical approximation error L̂(Q) can be written as:

L̂(Q) =
1

N
‖I◦ (A−QT FQ)‖2

2, (55)

where ◦ denotes entrywise product of two matrices. From (55) it is easy to see that L̂(Q) is not
convex in Q (unlike in the case of co-clustering, where the dependence on Qi-s was quadratic,
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here the power of Q is 4). Hence, although alternating projections similar to those in Algorithm 1
can be applied to J (Q,β) they are not guaranteed to converge to a local minimum. Nevertheless,
according to some preliminary experiments they can achieve reasonably good solutions and bound
(53) provides reasonably tight guarantees on the expected approximation quality (Seldin, 2010).
Alternatively, trade-off J (Q,β) can be optimized by sequential minimization. Unlike alternating
projections, sequential minimization (similar to the one in Algorithm 2) is guaranteed to converge to
a local minimum, but can operate with deterministic assignments of graph nodes xi-s to the clusters
ci-s only. A convergent algorithm that will be able to explore stochastic assignments still awaits to
be developed.

8.2 Related Work on Pairwise Clustering

The regularization of pairwise clustering by mutual information Ī(X;C) was already applied in
practice by Slonim et al. (2005). They maximized a parameterized trade-off β〈s〉− Ī(X;C), where
〈s〉 =

∑

c q̄(c)
∑

x1,x2
q(x1|c)q(x2|c)wx1x2 measured average pairwise similarities within a cluster.8

Their algorithm demonstrated superior results in cluster coherence compared to 18 other clustering
methods. The regularization by mutual information was motivated by information-theoretic consid-
erations inspired by the rate distortion theory (Cover and Thomas, 1991). Namely, the authors drew
a parallel between 〈s〉 and distortion and Ī(X;C) and compression rate of a clustering algorithm.
Further, Yom-Tov and Slonim (2009) showed that the algorithm can be run in parallel mode, where
each parallel worker operates with a subset of pairwise relations at each iteration rather than all of
them. Such a mode of operation was motivated by inability to consider all pairwise relations in very
large data sets due to computational constraints. Yom-Tov and Slonim (2009) reported only minor
empirical degradation in clustering quality, but no formal analysis or guarantees were suggested.
The results presented here can help to analyze such problems and help to address the trade-off
between computational workload and approximation quality in analysis of very large graphs.

9. Related Work on Clustering

The idea of considering clustering in the context of a higher level task was inspired by the Infor-
mation Bottleneck (IB) principle (Tishby et al., 1999; Slonim, 2002; Slonim et al., 2006). The IB
principle considers the problem of extracting information from a random variableX that is relevant
for prediction of a random variable Y . The relevance variable Y defines the high-level task. For
example,X might be a speech signal and the task might be identification of the speaker or transcrip-
tion of the signal. The extraction of relevant information from X is done by means of clustering
of X into clusters X̃ that preserve the information on Y (Tishby et al., 1999). Clearly, each rele-
vance variable Y corresponds to a different partition (clustering) of X . The IB principle was further
extended to graphical models in Slonim et al. (2006).

The idea to consider clustering as a proxy to solution of a prediction task was further developed
in Krupka and Tishby (2005, 2008) and Krupka (2008). Krupka and Tishby analyze a scenario
wherein each object has multiple properties, but only a fraction of the properties is observed. Con-
sider the following illustration: assume we are presented with multiple fruits and we observe their
parameters, such as size, color, and weight. We can cluster the fruits by their observed parameters

8. The loss L(Q) is slightly more general than 〈s〉 since it also considers edges between the clusters. Although, this
generality breaks the convexity of L̂(Q) in (55).
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in order to facilitate prediction of unobserved parameters, such as taste and toxicity. This approach
enables one to conduct a formal analysis and derive generalization bounds for prediction rules based
on clustering.

In recent years extensive attempts have been made to address the question of model order selec-
tion in clustering through evaluation of its stability (Lange et al., 2004; von Luxburg and Ben-David,
2005; Ben-David et al., 2006; Shamir and Tishby, 2009; Ben-David and von Luxburg, 2008). This
perspective suggests that for two random samples generated by the same source, clustering of the
samples should be similar (and hence stable). Otherwise the obtained clustering is unreliable. Al-
though it has been proven that in a large sample regime stability can be used for model order selec-
tion (Shamir and Tishby, 2009), no upper bounds on the minimal sample size required for stability
estimates to hold can be proved. Moreover, in certain cases stability indices based on arbitrarily
large samples can be misleading (Ben-David and von Luxburg, 2008). Since in any practical appli-
cation the amount of data available is limited, currently existing stability indices cannot be used for
reliable model order selection and it is not clear whether the stability indices can be used to compare
solutions based on different optimization objectives.

Gaussian ring example. We use the following example from Seldin (2009) to illustrate that
generalization and stability criteria for evaluation of clustering are not equivalent. Assume points
in R2 are generated according to the following process. First, we select a center µ of a Gaussian
according to a uniform distribution on a unit circle in R2. Then we generate a point x ∼ N (µ,σ2I)
according to a Gaussian distribution centered at µ with a covariance matrix σ2I for a fixed σ (I is
a 2 by 2 identity matrix). Given a sample generated according to the above process we can apply a
mixture of Gaussians clustering in order to learn the generating distribution. Note that:

1. Due to the circular symmetry in the generating process and model redundancy, the solution
will always be unstable (the centers of Gaussians in the mixture of Gaussians model can move
arbitrarily along the unit circle and their variance in the direction tangential to the circle is
loosely constrained).

2. By increasing the sample size and the number of Gaussians in the mixture of Gaussians model
the true density of the points can be approximated arbitrarily well.

Hence, models with good generalization properties are not necessarily stable. This point should be
kept in mind when using generalization as an evaluation criterion in clustering.

10. Discussion and Future Work

This paper underlines the importance of external evaluation of unsupervised learning, such as clus-
tering or more general structure learning, based on the context of its potential application. Such a
form of evaluation is important for delivery of better structure learning algorithms as well as for
better understanding of their outcome. We argue that structure learning does not occur for its own
sake, but rather in order to facilitate a solution of some higher level goal. In any non-trivial data
many structures co-exist simultaneously and it is a matter of the subsequent usage of the outcome
of the learning algorithm to determine which of the structure elements are valuable and which are
not. Therefore, unsupervised learning cannot be analyzed in isolation from its potential applica-
tion. In our opinion, one of the main obstacles in theoretical advancement of unsupervised learning
is an absence of a good mathematical definition of the context of its application. The analysis of
co-clustering presented here is a first step toward context-based analysis of more complex models.
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The work presented here started with an attempt to improve our understanding of clustering. We
note that clustering is tightly related to the object naming process in human language. In a sense,
a cluster is an entity that can be assigned a name. By clustering objects we ignore their irrelevant
properties and concentrate on the relevant ones. And of course, this division can change according
to our needs. For example, we can divide animals into birds and mammals or into flying and
notatorial or into domestic and wild. Whereas the classification into birds and mammals or flying
and notatorial may be considered intrinsic, the classification into domestic and wild is definitely
application-oriented. In order to design successful clustering and categorization algorithms it is
important to understand the basic principles behind this process. It is not a-priori clear that, if we
restrict ourselves to pure prediction tasks, clustering the underlying sample space helps. As shown
in Seldin and Tishby (2008); Seldin (2009), in classification by a single parameter there is no need
to cluster the parameter space, but rather simple smoothing performs better. In classification in
higher dimensional spaces, kernel-based methods can be superior to clustering-based approaches.
However, we know that as humans we communicate by using a clustered representation of the world
rather than by kernel matrices. Thus, there should be advantages for such form of communication.
Identification, understanding, and analysis of these advantages is an important future direction for
the design of better clustering and higher structure learning algorithms.
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Appendix A. Proof of Theorem 6

Proof of Theorem 6 First we prove inequality (14):

−EQ(h)Eph(z) ln p̃h(Z) = EQ(h)E[p̂h(z)−ph(z)] ln p̃h(Z)−EQ(h)Ep̂h(z) ln p̃h(Z)

= EQ(h)E[p̂h(z)−ph(z)] ln
p̂h(Z)+γ

1+γ|Z| −EQ(h)Ep̂h(z) ln
p̂h(Z)+γ

1+γ|Z|

≤ −1

2
‖p̂Q(z)−pQ(z)‖1 ln

γ

1+γ|Z| +EQ(h)H(p̂h(z))+ ln(1+γ|Z|)

≤ H(p̂Q(z))−
√

ε/2ln
γ

1+γ|Z| +ln(1+γ|Z|). (56)

The last inequality is justified by the concavity of the entropy function H and the KL-divergence
bound on the L1 norm (Cover and Thomas, 1991):

‖p̂Q(z)−pQ(z)‖1 ≤
√

2KL(p̂Q(z)‖pQ(z)) ≤
√

2ε.

By differentiation (56) is minimized by γ =
√
ε/2

|Z| . By substitution of this value of γ into (56) we
obtain (14). Inequality (15) is justified by (14) and the concavity of the ln function. Finally, we
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prove the lower bound (16):

−EpQ(z) ln p̃Q(Z) = E[p̂Q(z)−pQ(z)] ln p̃Q(Z)−Ep̂Q(z) ln p̃Q(Z)

≥ −1

2
‖p̂Q(z)−pQ(z)‖1 ln

1+γ|Z|
γ

+H(p̂Q(z))

≥ H(p̂Q(z))−
√

ε/2ln
|Z|(1+

√

ε/2)
√

ε/2
.

Appendix B. Treatment of Continuous Label Spaces Y via Quantization

In Theorems 7 and 13 it was assumed that the label space Y (or the edge weight space W) is finite.
However, for quadratic loss the minimization of F(Q,β) by Algorithm 1 can return a solution that
falls out of this finite space. Furthermore, the input space Y itself does not have to be finite (e.g.,
gene expression levels in bioinformatics can be given on a continuous scale). Here we show that the
bound can be easily generalized to handle this case via quantization of Y . The analysis can be seen
as post-processing and does not require modifications of the trade-off F(Q,β) and of Algorithm 1,
since the algorithm does not assume finiteness of Y .

Assume that Y is limited in [0,1] interval and apply uniform quantization of Y at intervals ∆,
then |Y∆| = 1

∆ (Y∆ is the quantized copy of Y and we assume that the quantization starts at 1
2∆

and ends at 1 − 1
2∆). By rounding the continuous values of y obtained by Algorithm 1 toward the

closest quantization both the empirical and the expected loss are increased by at most 2∆+∆2

(in the case of quadratic loss). This is because quantization can shift the true y and the prediction
y′ by at most 1

2∆ and then l(y − 1
2∆,y′ + 1

2∆) = (y − y′ −∆)2 = (y − y′)2 − 2(y − y′)∆+∆2 ≤
l(y,y′)+2∆+∆2, where the last inequality follows from the assumption that Y is limited in [0,1].
Hence, we have

L(Q) ≤ kl−1

(

L̂(Q)+2∆+∆2,

∑d
i=1 niĪ(Xi;Ci)+K

N

)

+2∆+∆2,

whereK, defined previously in (38), becomes:

K =
d

∑

i=1

mi lnni −M ln∆+
1

2
ln(4N)− lnδ.

As a rule of thumb one can choose ∆ = kM/N for k ≈ 5, so that the contribution of ∆ to the two
operands of the inverse KL-divergence is approximately equivalent. In general this correction for
quantization has no significant influence on the bound (Seldin, 2010).
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Abstract
Learning dynamic Bayesian network structures provides a principled mechanism for identifying
conditional dependencies in time-series data. An important assumption of traditional DBN struc-
ture learning is that the data are generated by a stationary process, an assumption that is not true in
many important settings. In this paper, we introduce a new class of graphical model called a non-
stationary dynamic Bayesian network, in which the conditional dependence structure of the under-
lying data-generation process is permitted to change over time. Non-stationary dynamic Bayesian
networks represent a new framework for studying problems in which the structure of a network is
evolving over time. Some examples of evolving networks are transcriptional regulatory networks
during an organism’s development, neural pathways during learning, and traffic patterns during the
day. We define the non-stationary DBN model, present an MCMC sampling algorithm for learning
the structure of the model from time-series data under different assumptions, and demonstrate the
effectiveness of the algorithm on both simulated and biological data.

Keywords: Bayesian networks, graphical models, model selection, structure learning, Monte
Carlo methods

1. Introduction

A principled mechanism for identifying conditional dependencies in time-series data is provided
through structure learning of dynamic Bayesian networks. An important requirement of this learn-
ing is that the time-series data is generated by a distribution that does not change with time—it is
stationary. The assumption of stationarity is adequate in many situations since certain aspects of
data acquisition or generation can be easily controlled and repeated. However, other interesting and
important circumstances exist where that assumption does not hold and potential non-stationarity
cannot be ignored.

The inspiration for this model of “networks evolving over time” comes primarily from neurobi-
ology. Dynamic Bayesian networks have been used to identify networks of neural information flow
that operate in the brains of songbirds (Smith et al., 2006). When a juvenile male songbird is born,
he cannot sing any songs; however, as he ages, he learns songs from other birds singing around him.
As the songbird learns from its environment, the networks of neural information flow slowly adapt
to make the processing of sensory information more efficient. The analysis carried out by Smith
et al. (2006) was limited by the fact that the researchers were forced to learn networks on subsets of
the data since DBN structure learning algorithms assume stationarity of the data. Therefore, a learn-
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ing algorithm based upon dynamic Bayesian networks that relaxes the data stationarity assumption
would be ideally suited to this problem.

As another example, structure learning of DBNs has been used widely in reconstructing tran-
scriptional regulatory networks from gene expression data (Friedman et al., 2000; Hartemink et al.,
2001). But during development, these regulatory networks are evolving over time, with certain con-
ditional dependencies between gene products being created as the organism develops, and others
being destroyed. As yet another example, one can use a DBN to model traffic flow patterns. The
roads upon which traffic passes do not change on a daily basis, but the dynamic utilization of those
roads changes daily during morning rush, lunch, evening rush, and weekends.

If one collects time-series data describing the levels of gene products in the case of transcrip-
tional regulation, traffic density in the case of traffic flow, or neural activity in the case of neural
information flow, and attempts to learn a DBN describing the conditional dependencies in the time-
series, one could be seriously misled if the data-generation process is non-stationary.

Here, we introduce a new class of graphical model called a non-stationary dynamic Bayesian
network (nsDBN), in which the conditional dependence structure of the underlying data-generation
process is permitted to change over time. In the remainder of the paper, we introduce and define
the nsDBN framework, present a simple but elegant algorithm for efficiently learning the structure
of an nsDBN from time-series data under a variety of different assumptions, and demonstrate the
effectiveness of these algorithms on both simulated and experimental data.

1.1 Related Work

Representing relationships or statistical dependencies between variables in the form of a network
is a popular technique in many communities, from economics to computational biology to soci-
ology. Recently, researchers have been interested in elucidating the temporal evolution of genetic
regulatory networks (Arbeitman et al., 2002; Luscombe et al., 2004) and neural information flow
networks (Smith et al., 2006), but were forced to perform their analysis on subsets of the data since
their structure learning algorithms assumed stationarity of the data. Additionally, some economics
techniques require prior specification of a graphical model (for a particular data set) and assume it is
stationary (Carvalho andWest, 2007) when the data set may actually be highly non-stationary (Xuan
and Murphy, 2007). Therefore, the identification of non-stationary behavior in graphical models is
of significant interest and importance to many communities.

We divide models of evolving statistical dependencies into those that model changing structures
and those that model changing parameters, and describe examples of both in this section. Addition-
ally, we briefly explain how our approach compares and some of the advantages it provides over
other methods.

1.1.1 STRUCTURAL NON-STATIONARITY

Approaches that learn structural non-stationarities are those that explicitly model the presence of
statistical dependencies between variables and allow them to appear and disappear over time (e.g.,
they define directed or undirected networks whose edges change over time).

In recent work modeling the temporal progression of networks from the social networks commu-
nity (Hanneke and Xing, 2006), the p∗ or exponential random graph model (ERGM) (Wasserman
and Pattison, 1996) was generalized to the temporal ERGM (tERGM) model, where a structural
evolutionary process is modeled with a set of features between adjacent network structures (Han-
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neke and Xing, 2006). The tERGM model was further extended to the hidden tERGM (htERGM)
to handle situations where the networks are latent (unobserved) variables that generate observed
time-series data (Guo et al., 2006, 2007).

While the transition model of an htERGM allows for nearly unlimited generality in characteriz-
ing how the network structure changes with time, it is restricted to functions of temporally adjacent
network structures. Therefore, an evolutionary process that differs between early observations and
later observations may not be effectively captured by a single transition model. Also, the emission
model defined in Guo et al. (2007) must be estimated a priori and only captures pairwise corre-
lations between variables; more complicated relationships between multiple variables that change
over time may be missed altogether. Finally, Guo and colleagues focus on identifying undirected
edges. Although it is possible to adapt the ERGM model for directed graphs, it becomes more
difficult to define the parameters of the tERGM and the emission model assuming directed edges.

In the continuous domain, some research has focused on learning the structure of a time-varying
undirected Gaussian graphical model (Talih and Hengartner, 2005). These authors use a reversible-
jump MCMC approach to estimate the time-varying variance structure of the data. They explicitly
model the network’s edges as non-zeroes in the precision matrix. While this model allows for fast,
efficient sampling, it only does so by defining several restrictions to the model space. First, the
structural evolutionary process is piecewise-stationary and restricted to single edge changes. Rapid
and significant structural changes would be approximated by a slowly changing network structure,
resulting in an inaccurate portrayal of the true evolutionary behavior of the data-generating process.
Additionally, the total number of segments or epochs in the piecewise stationary process is assumed
known a priori, thereby limiting application of the method in situations where the number of epochs
is not known. Finally, this approach only identifies undirected edges (correlations), while time-
series data should allow one to identify directed edges (conditional dependencies).

A similar algorithm—also based on undirected Gaussian graphical models—has been devel-
oped to segment multivariate time-series data (Xuan and Murphy, 2007). This approach iterates
between a convex optimization for determining the graph structure and a dynamic programming
algorithm for calculating the segmentation. This results in some notable advantages over Talih and
Hengartner (2005): it has no single edge change restriction and the number of segments is calcu-
lated a posteriori. The main restriction, however, is that the graph structure must be decomposable.
Additionally, because this method models structure as non-zeroes in the precision matrix, it only
identifies undirected edges. Finally, the networks (precision matrices) in each segment are assumed
independent, preventing the sharing of parameters and data between segments.

Another recently proposed model for identifying evolving networks is the temporally smoothed
l1-regularized logistic regression (TESLA) method, described by Kolar et al. (2010) and Ahmed and
Xing (2009). This approach involves learning a discrete binary Markov random field with sparse,
varying parameters. A useful advantage of this model is that can be reparameterized to account
for either smoothly varying or abrupt sudden changes to the network structure. Additionally, it
scales well to thousands of nodes. However, it is undirected, requires binary data, and only captures
pairwise relationships between variables. The binary input and pairwise relationship requirements
may be relaxed, but the likelihood function would have to be significantly modified to incorporate
cliques; the resulting optimization problem might become intractable.
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1.1.2 PARAMETER NON-STATIONARITY

Approaches that learn parameter non-stationarities are those that explicitly model the evolution
of parameters over time. Here we only focus on a few that can be represented as networks with
temporally changing parameters.

Switching state-space models (SSMs) represent a piecewise-stationary extension of linear dy-
namic systems (Ghahramani and Hinton, 2000). In an SSM, a sequence of observations is modeled
as a function of several independent hidden variables which is itself controlled by a switch vari-
able. The hidden variables as well as the switch variable all have Markovian dynamics. While this
approach is similar to ours in that it describes the evolution of a piecewise-stationary process, it
does have some notable differences. Our model has no hidden variables, only observed variables.
Critically, our variables are not assumed to be independent; rather, their dependencies are unknown
and must be estimated a posteriori. Additionally, the piecewise-stationary process in our approach
does not follow Markovian dynamics, like the switch variable in an SSM.

A more closely related model is the recently published non-homogeneous Bayesian network
(Grzegorczyk et al., 2008). In this model, the conditional distributions of the variables are assumed
to follow a mixture of Gaussians. Each observation is allocated to a single mixture component
where the parameters and number of the mixture components are determined a posteriori using an
allocation sampler. Unfortunately, an allocation sampler does not allow data to be shared across
different mixture components since they are assumed independent. However, this model seems
to do a good job of capturing the non-stationary behavior of parameters in a Gaussian Bayesian
network, assuming that the underlying structure is inferred correctly.

1.1.3 OUR APPROACH

Although we provide more detail in Section 3, for the purpose of comparison, we define our ap-
proach as the identification of a discrete Bayesian network that evolves according to a piecewise-
stationary process where edges are gained and lost over time. Building on the Bayesian network
model allows us to identify directed networks and results in efficient learning (under certain as-
sumptions). Additionally, when the conditional probability distributions of the Bayesian network
are multinomial, we can identify linear, non-linear, and combinatorial interactions between vari-
ables. Finally, the piecewise-stationary assumption (and additional constraints on how and when
edge changes occur) allows our method to scale to large data sets with many variables and provides
a natural parameterization for placing priors on the structural evolution process.

Our method falls into the category of models that identify non-stationarities in structure, not
parameters. In the rest of this paper, we define non-stationarities as times at which conditional
dependencies between variables are gained or lost (i.e., edges are gained or lost). We have chosen
to focus on structural non-stationarity for several reasons. First, we are not as interested in making
predictions about future data (such as might be the case with spam prediction) as we are in the
analysis of collected data to identify non-stationary statistical relationships between variables in
multivariate time-series. Additionally, the problems we analyze in this paper are highly multimodal
in the posterior over structures and likely to be even more varied in the posterior over parameters.
By assuming conjugate parameter priors, we address both problems by averaging out all possible
parameters and only examining the posterior over structures.

However, we recognize that the parameters of the conditional distributions may also change
with time. Some changes to the parameters of the conditional distributions may effectively result in
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a structural change, while other changes may be dramatic, yet not alter the structure. Ultimately, a
trade-off must be made between simplifying model assumptions resulting in greater statistical power
versus a completely general framework requiring approximation schemes. Under our modeling
assumptions, we can identify non-stationarities in the parameters of the conditional distributions that
are significant enough to result in structural changes; we assume other changes are small enough to
not alter edges in the predicted structure.

2. Brief Review of Structure Learning of Bayesian Networks

Bayesian networks are directed acyclic graphical models that represent conditional dependencies
between variables as edges. They define a simple decomposition of the complete joint distribution—
a variable xi is conditionally independent of its non-descendants given its parents. Therefore, the
joint distribution of every variable xi can be rewritten as P(x1, . . . ,xn) = ∏i P(xi|πi), where πi are
the parents of xi. Bayesian networks may be learned on time-series data, but the semantics are
slightly different, leading to the dynamic Bayesian network (DBN) model. DBNs enable cyclic
dependencies between variables to be modeled across time. DBNs are a special case of Bayesian
networks, with modeling assumptions regarding how far back in time one variable can depend
on another (minimum and maximum lag), and constraints placed on edges so that they do not go
backwards in time. For notational simplicity, we assume hereafter that the minimum and maximum
lag are both 1.

The task of inferring the structure (i.e., the set of conditional dependencies) of a Bayesian net-
work is typically expressed using Bayes’ rule, where the posterior probability of a given network
structure G (i.e., the set of conditional dependencies) after having observed data D is given by

P(G|D) =
P(D|G)P(G)

P(D)
.

Since P(D) is the same for all structures, we see that P(G|D) ∝ P(D|G)P(G). The prior over
networks P(G) can be used to incorporate prior knowledge about the existence of specific edges
(Bernard and Hartemink, 2005) or the overall topology of the network (e.g., sparse); often, prior
knowledge is not available and P(Θ) is assumed uniform. The marginal likelihood P(D|G) is further
defined in terms of the parameters Θi of the conditional probability distributions (CPDs) between a
variable and its parents P(xi|πi,Θi). The entire set of parameters Θi for all variables is simply Θ.

P(D|G) =
∫
P(D|Θ,G)P(Θ|G)dΘ. (1)

One might be interested in inferring the values of Θ given a particular network, but we will be
focusing on learning the network itself, or the set of conditional dependencies. In computer science,
this task is often referred to as structure learning; in statistics, it is often called model selection.
More detailed reviews of structure learning of Bayesian networks can be found in Buntine (1996),
Chrisman (1998), Krause (1998), and Murphy (2001).

For the remainder of this section, we review the most common approaches to inferring dynamic
Bayesian networks, thereby setting the stage for what changes we will need to make in the following
section to handle inference in the non-stationary setting. For brevity, we will focus on dynamic
Bayesian networks with discrete variables, though the ideas could also be applied to networks of
continuous variables. Details specific to structure learning of Bayesian networks with continuous
variables can be found in Hofmann and Tresp (1995) and Margaritis (2005).
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2.1 Evaluating the Marginal Likelihood P(D|G)

Evaluation of the marginal likelihood in Equation (1) can be performed either approximately or
exactly. The marginal likelihood can be approximated with the Akaike information criterion (AIC),
the Bayesian information criterion (BIC) (Friedman et al., 1998), or the minimum description
length (MDL) (Lam and Bacchus, 1994; Suzuki, 1996) metric. Each of these metrics suggests
how model complexity should be penalized. For example, the AIC metric penalizes free parame-
ters less strongly than the BIC metric; therefore, a Bayesian network learned using the AIC metric
would be likely be more dense than a Bayesian network learned using the BIC metric.

Alternatively, if a conjugate prior is placed on Θ which is then marginalized out, the value of
P(D|G) can be computed exactly. Assuming that Θ parameterizes multinomially distributed condi-
tional probability distributions, one can place a conjugate Dirichlet prior on the parameters Θ and
then marginalize them out to obtain the Bayesian-Dirichlet (BD) metric. The BD metric can be
further modified so that all of the networks that represent the same set of conditional independence
relationships have the same probability; this is called the Bayesian-Dirichlet equivalent (BDe) met-
ric (Heckerman et al., 1995). By using a Dirichlet prior and marginalizing over all values of Θ, the
BD and BDe metrics inherently penalize more complex models, so a prior on the network P(G)
may not always be necessary. The primary advantage of the BD family of metrics is that the evalu-
ation of P(D|G) is exact and can be computed in closed form. However, if the assumption that the
parameters of CPDs are multinomially distributed is incorrect, these metrics might not find the true
network of conditional dependencies.

Since we will be modifying it later in this paper, we show the closed-form expression for the
BDe metric below:

P(D|G) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)
Γ(αi j+Ni j)

ri
∏
k=1

Γ(αi jk+Ni jk)
Γ(αi jk)

(2)

where qi is the number of configurations of the parent set πi, ri is the number of discrete states
of variable xi, Ni jk is the number of times xi took on the value k given the parent configuration j,
Ni j = ∑ri

k=1Ni jk, and αi j and αi jk are Dirichlet hyper-parameters on various entries in Θ. If αi jk is
set to α/(qiri) (essentially a uniform Dirichlet prior), we get a special case of the BDe metric: the
uniform BDe metric (BDeu), whose parameter priors are all controlled by a single hyperparameter
α.

2.2 Deciding Between Search or Sampling Strategies

Once a form of the marginal likelihood P(D|G) is defined and a method for evaluating it is chosen,
one must decide whether the objective is to identify the best network or to capture the uncertainty
over the space of all posterior networks. Search methods may be used to find the best network or
set of networks (i.e., a mode in the space of all networks), while sampling methods may be used to
estimate posterior quantities from the space of all networks.

Search methods may be exact or heuristic, but exact search for Bayesian networks is compu-
tationally infeasible for more than about 30 variables because the number of possible networks
is super-exponential in the number of variables. In fact, identifying the highest scoring Bayesian
network has been shown to be NP-Hard (Chickering et al., 1994). If the maximum number of
parents for any variable is limited to some constant pmax, the total number of valid networks be-
comes exponential in the number of variables; however, finding the best network is still NP-Hard
(for pmax ≥ 2). Therefore, heuristic searches are often employed, including greedy hill-climbing,
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simulated annealing (Heckerman et al., 1995), the K2 algorithm (Chickering et al., 1995), genetic al-
gorithms (Larrañaga et al., 1996), and even ant colony optimization (de Campos et al., 2002). Most
heuristic searches perform well in a variety of settings, with greedy hill-climbing and simulated
annealing being the most commonly used techniques.

A different approach from search is the use of sampling techniques (Madigan et al., 1995; Giu-
dici et al., 1999; Tarantola, 2004). If the best network is all that is desired, heuristic searches will
typically find it more quickly than sampling techniques. However, sampling methods allow the
probability or importance of individual edges to be evaluated over all possible networks. In set-
tings where many modes are expected, sampling techniques will more accurately capture posterior
probabilities regarding various properties of the network. The primary disadvantage of sampling
methods in comparison to search methods is that they often take longer before accurate results
become available.

A common sampling technique often used in this setting is the Metropolis-Hastings algorithm,
which is a Markov chain Monte Carlo (MCMC) method. The M-H acceptance probability for
moving from state x to state x′ is shown below, where each state is a DBN.

α(x,x′) =min
{

1,
p(D|x′)
p(D|x)

×
p(x′ → x)
p(x→ x′)

}

=min













1,
p(D|x′)
p(D|x)
︸ ︷︷ ︸

likelihood ratio

×
∑M′ p(M′)p(x|x′,M′)

∑M p(M)p(x′|x,M)
︸ ︷︷ ︸

proposal ratio













(3)

where M is the move type that allows for a transition from state x to x′ and M′ is the reverse move
type for a transition from state x′ back to state x. While multiple moves may result in a transition
from state x to state x′ (and vice versa), typically there is only a single move for each transition.
In such a case, the sums over M and M′ each only include one term, and the proposal ratio can be
split into two terms: one is the ratio of the proposal probabilities for move types and the other is the
ratio of selecting a particular state given the current state and the move type. The choice of scoring
metric determines the likelihoods, and p(M′) and p(M) are often chosen a priori to be equivalent
or simple to calculate.

2.3 Determining the Move Set

Once a search or sampling strategy has been selected, one must determine how to move through
the space of all networks. A move set defines a set of local traversal operators for moving from
a particular state (i.e., a network) to nearby states. The set of states that can be reached from
the current one is often called the local neighborhood of that state. The values of p(x′|x,M) and
p(x|x′,M) in the proposal ratio are defined by the move set.

Ideally, the move set includes changes that allow posterior modes to be frequently visited. For
example, it is reasonable to assume that networks that differ by a single edge will have similar
likelihoods. A well-designed move set results in fast convergence since less time is spent in the low
probability regions of the state space. For example, with traditional Bayesian networks, Madigan
et al. (1995) proposed that the move set be: add an edge and delete an edge. However, it was later
shown by Giudici and Castelo (2003) that the convergence rate could be increased with the addition
of another move to the move set: reverse an edge.
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Figure 1: An example nsDBN with labeled components (namely, transition times t1 and t2 and edge
change sets Δg1 and Δg2). Edges that are gained from the previous epoch are shown as
thicker lines and edges that will be lost in the next epoch are shown as dashed lines. Note
that the network at each epoch is actually a DBN drawn in compact form, where each
edge represents a statistical dependence between a node at time t and its parent at the
previous time t−1.

3. Learning Non-Stationary Dynamic Bayesian Networks

While DBNs are excellent models for describing dependencies between time-series random vari-
ables, they cannot represent or reason about how these dependencies might change over time. In
contrast, our nsDBN model is capable of characterizing dependencies between temporally observed
variables, as well as reasoning about whether and how those dependencies change. Because DBNs
are well studied and well understood, we have chosen to introduce the details of our nsDBN model
by building upon the existing DBN model. Therefore, we use this section to detail how the structure
learning procedure for DBNs needs to be modified and extended to account for non-stationarity
when learning a non-stationary DBN.

Assume that we observe the state of n random variables at N discrete times. Call this multivari-
ate time-series data D, and further assume that it is generated according to a non-stationary process,
which is unknown. The process is non-stationary in the sense that the network of conditional de-
pendencies prevailing at any given time is itself changing over time. We call the initial (dynamic)
network of conditional dependencies G1 and subsequent networks are called G2,G3, . . . ,Gm. We
define Δgi to be the set of edges that change (either added or deleted) between Gi and Gi+1. The
number of edge changes specified in Δgi is si. We define the transition time ti to be the time at which
Gi is replaced by Gi+1 in the data-generation process. We call the period of time between consecu-
tive transition times—during which a single network of conditional dependencies is operative—an
epoch. So we say that G1 prevails during the first epoch, G2 prevails during the second epoch, and
so forth. We will refer to the entire series of prevailing networks as the structure of the nsDBN.
Figure 1 shows an example nsDBN with the components labeled.

3.1 Updating the Marginal Likelihood and Incorporating Priors

Since we wish to estimate a set of networks instead of one network we must derive a new expression
for the marginal likelihood. Consider the simplest case where m = 2 and the transition time t1 at
which the structure of the nsDBN evolves from network G1 to network G2 is known. We would like
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to find the networks G1 and G2 that have the highest probability given the observed time-series data
D and prior. Thus, we want to find the networks that maximize the expression below:

P(G1,G2|D, t1) =
P(D|G1,G2, t1)P(G1,G2|t1)

P(D|t1)
∝ P(D|G1,G2, t1)P(G1,G2|t1).

To maximize the marginal likelihood P(D|G1,G2, t1) in the above expression, one approach might
be to estimate a different network for each epoch. Unfortunately, if the number of observations in
each epoch is small, accurate reconstruction of the correct structure may be difficult or impossible
(Friedman and Yakhini, 1996; Smith et al., 2003). Additionally, learning each network separately
might lead to predictions that are vastly different during each epoch. If prior knowledge about the
problem dictates that the networks will not vary dramatically across adjacent epochs, information
about the networks learned in adjacent epochs can be leveraged to increase the accuracy of the
network learned in the current epoch.

Expanding the simple formulation to multiple epochs, assume there exist m different epochs
with transition times T = {t1, . . . , tm−1}. The network Gi+1 prevailing in epoch i+ 1 differs from
network Gi prevailing in epoch i by a set of edge changes we call Δgi. We would like to determine
the sequence of networks G1, . . . ,Gm that maximize the posterior given below:

P(G1, . . . ,Gm|D,T ) ∝ P(D|G1, . . . ,Gm,T )P(G1, . . . ,Gm|T ). (4)

Since each network differs from the previous one by a set of edge changes, we can rewrite the prior
and obtain the expression below:

P(G1, . . . ,Gm|T ) = P(G1,Δg1, . . . ,Δgm−1|T ).

By writing the objective function this way, we rephrase the problem as finding the initial network
and m− 1 sets of edge changes that best describe the data. Unfortunately, the search space for
finding the best structure is still super-exponential (in n) for the initial network and the task of
identifying the other networks is exponential (in both m and n). However, using this formulation, it
is easy to place some constraints on the search space to reduce the number of valid structures. If we
specify that the maximum number of parents for any variable is pmax and, through priors, require
that the maximum number of edge changes for any Δgi is smax, the search space for finding the best
structure becomes exponential (in n) for the initial network and exponential (in m and smax) for the
other networks.

We assume the prior over networks can be further split into components describing the initial
network and subsequent edge changes, shown below:

P(G1,Δg1, . . . ,Δgm−1|T ) = P(G1)P(Δg1, . . . ,Δgm−1|T ).

leading to the final form of the posterior

P(G1,Δg1, . . . ,Δgm−1|D,T ) ∝ P(D|G1,Δg1, . . . ,Δgm−1,T )P(G1)P(Δg1, . . . ,Δgm−1|T ). (5)

As in the stationary setting, if prior knowledge about particular edges or overall topology is avail-
able, an informative prior can be placed on P(G1). In the context of the simulations and experiments
in this paper, we had no prior knowledge about the network; thus, we assumed a uniform prior on
P(G1). We do, however, place some prior assumptions on the ways in which edges change in the
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structure. First, we assume that the networks evolve smoothly over time. To encode this prior
knowledge, we place a truncated geometric prior with parameter p = 1− e−λs on the number of
changes (si) in each edge change set (Δgi), with the distribution truncated for si > smax. For the
problems we explore, the truncation has no noticeable effect since smax is chosen to be large. The
updated posterior for the structure is given below:

P(G1,Δg1, . . . ,Δgm−1|D,T ) ∝ P(D|G1, . . . ,Gm,T )∏
i

(

1− e−λs
)(

e−λs
)si

1−
(

e−λs
)smax+1

∝ P(D|G1, . . . ,Gm,T )∏
i

(

e−λs
)si

∝ P(D|G1, . . . ,Gm,T )e−λss,

where s = ∑i si. Therefore, a (truncated) geometric prior on each si is essentially equivalent to a
(truncated) geometric prior on the sufficient statistic s, the total number of edge changes.

When the transition times are a priori unknown, we would like to estimate them. The posterior
in this setting becomes

P(G1,Δg1, . . . ,Δgm−1,T |D) ∝ P(D|G1, . . . ,Gm,T )P(G1,Δg1, . . . ,Δgm−1,T )
= P(D|G1, . . . ,Gm,T )P(G1)P(Δg1, . . . ,Δgm−1,T )
= P(D|G1, . . . ,Gm,T )P(G1)P(Δg1, . . . ,Δgm−1)P(T ).

We assume that the joint prior over the evolutionary behavior of the network and the locations of
transition times can be decomposed into two independent components. We continue to use the
previous geometric prior with parameter p = 1− e−λs on the total number of edge changes. Any
choice for P(T ) can be made, but for the purposes of this paper, we have no prior knowledge about
the transition times; therefore, we assume a uniform prior on T so that all settings of transition times
are equally likely for a given value of m.

Finally, when neither the transition times nor the number of epochs are known a priori, both
the number and times of transitions must be estimated a posteriori. If prior knowledge dictates that
the networks evolve slowly over time (i.e., a transition does not occur at every observation), we can
include this knowledge by placing a non-uniform prior on m, for example a (truncated) geometric
prior with parameter p = 1− eλm on the number of epochs m, with the distribution truncated for
m > N. A geometric prior on the number of epochs is equivalent to a geometric prior on epoch
lengths (see Appendix A).

The form of the geometric prior was chosen for convenience since under a log transformation,
the likelihood (and prior) calculations reduce to: log(likelihood)− λss− λmm. In general, large
values of λm encode the strong prior belief that the structure changes slowly (i.e., few epochs exist)
and large values of λs encode the strong prior belief that the structure changes smoothly (i.e., few
edge changes exist).

Fortunately, the likelihood component of the posterior does not change whether we know the
transition times a priori or not. Therefore, any uncertainty about the transition times can be incor-
porated into the evaluation of the prior, leaving the evaluation of the likelihood unchanged.

3.2 Evaluating the New Marginal Likelihood

Now that a new likelihood has been defined, we must decide on which method to use for evaluation
and how to modify it to account for multiple structures. Any of the previously mentioned metrics
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can be modified to account for non-stationarity, but we chose to extend the BDe metric because it is
exact and because edges are the only representation of conditional dependencies that are left after
the parameters have been marginalized away. This provides a useful paradigm for non-stationarity
that is both simple to define and easy to analyze.

The BDe metric needs to be modified when learning an nsDBN because in Equation (2), Ni j
and Ni jk are calculated for a particular parent set over the entire data set D. However, in an nsDBN,
a node may have multiple parent sets operative at different times. The calculation for Ni j and Ni jk
must therefore be modified to specify the intervals during which each parent set is operative. Note
that an interval may include several epochs. An epoch is defined between adjacent transition times
while an interval is defined as the union of consecutive epochs during which a particular parent set
is operative (which may include all epochs).

For each node i, the parent set πi in the BDe metric is replaced by a set of parent sets πih, where
h indexes the interval Ih during which parent set πih is operative for node i. Letting pi be the number
of such intervals and qih be the number of configurations of πih results in the expression below:

P(D|G1, . . . ,Gm,T ) ∝
n

∏
i=1

pi

∏
h=1

qih

∏
j=1

Γ(αi j(Ih))
Γ(αi j(Ih)+Ni j(Ih))

ri
∏
k=1

Γ(αi jk(Ih)+Ni jk(Ih))
Γ(αi jk(Ih))

where the counts Ni jk and pseudocounts αi jk have been modified to apply only to the data in each
interval Ih. The modified BDe metric will be referred to as nsBDe. Given that |Ih| = th+1− th,
we set αi jk(Ih) = (αi jk|Ih|)/N (e.g., proportional to the length of the interval during which that
particular parent set is operative). If αi jk is set everywhere to α/(qiri) as in the BDeu metric, then
we generalize the BDeu metric to nsBDeu, and the parameter priors are again all controlled by a
single hyperparameter α.

The derivation of the BDe metric requires seven assumptions: multinomial sample, parameter
independence, likelihood modularity, parameter modularity, Dirichlet distribution for parameters,
complete data, likelihood equivalence, and structure possibility (Heckerman et al., 1995). To ex-
tend the BDe metric to account for non-stationary behavior, we must extend only the parameter
independence assumption.

Parameter independence is split into local parameter independence and global parameter inde-
pendence. Letting G represent an individual network, global parameter independence is represented
as p(ΘG|G) = ∏n

i=1 p(Θi|G). In other words, the conditional probabilities can be decomposed by
variable. Local parameter independence is represented as p(Θi|G)=∏

qi
j=1 p(Θi j|G); the conditional

probabilities for each variable are decomposable by parent configuration.
For nsDBNs, we also need to assume parameter independence across intervals. Parameter in-

dependence is thus split into three assumptions. The updated parameter independence assumptions
are defined below, where G represents an nsDBN structure, or set of networks.
Global parameter independence: The conditional probabilities are decomposable by variable:

p(ΘG|G) =
n

∏
i=1

p(Θi|G).

Interval parameter independence: The conditional probabilities for each variable are decomposable
by interval:

p(Θi|G) =
pi

∏
h=1

p(Θih|G).
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Local parameter independence: The conditional probabilities for each variable for each interval are
decomposable by parent configuration:

p(Θih|G) =
qih

∏
j=1

p(Θih j|G).

3.3 Using a Sampling Strategy and Choosing a New Move Set

We decide to take a sampling approach rather than using heuristic search because the posterior over
structures includes many modes. In particular, when the transition times are not known a priori, the
posterior is highly multimodal because structures with slightly different transition times likely have
similar posterior probabilities. Additionally, sampling offers the further benefit of allowing us to
evaluate interesting posterior quantities, such as when are the most likely times at which transitions
occur—a question that would be difficult to answer in the context of heuristic search.

Because the number of possible nsDBN structures is so large (significantly greater than the
number of possible DBNs), we must be careful about what is included in the move set. To provide
quick convergence, we want to ensure that every move in the move set efficiently jumps between
posterior modes. Therefore, the majority of the next section is devoted to describing effective move
sets under different levels of uncertainty.

4. Settings

Each of the following subsections demonstrates a method for calculating an nsDBN under a variety
of settings that differ in terms of the level of uncertainty about the number and times of transitions.
The different settings will be abbreviated according to the type of uncertainty: whether the number
of transitions is known (KN) or unknown (UN) and whether the transition times themselves are
known (KT) or unknown (UT). Figure 2 shows plate diagrams relating the DBN model to the three
different settings of the nsDBN model, described in the following subsections.

4.1 Known Number and Known Times of Transitions (KNKT)

In the KNKT setting, we know all of the transition times a priori; therefore, we only need to
identify the most likely initial network G1 and sets of edge changes Δg1, . . . ,Δgm−1. Thus, we wish
to maximize Equation (5).

To create a move set that results in an effectively mixing chain, we consider which types of
local moves result in jumps between posterior modes. As mentioned earlier, networks that differ
by a single edge will probably have similar likelihoods. Therefore, the move set includes a single
edge addition or deletion to G1. Each of these moves results in the structural difference of a single
edge over all observations. One can also consider adding or deleting an edge in a particular Δgi;
this results in the structural difference of a single edge for all observations after ti. Finally, we
consider moving an edge from one Δgi to another, which results in the structural difference of a
single edge for all observations between ti and t j. These moves are listed as M1–M5 in Table 1,
along with the various proposal probabilities defined in the Metropolis-Hastings acceptance ratio
shown in Equation (3).
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Figure 2: Plate diagrams relating DBNs to nsDBNs under each setting. Gray circles represent quan-
tities that are known a priori while white circles represent those that are unknown. Non-
stationary DBNs may have multiple networks (m, indexed by j) and multiple different
parent sets for each variable (pi for variable i, indexed by h). In the KNKT setting, the
transition times t j are known a priori, but they must be estimated in the two other set-
tings. In the KNUT setting, the number of epochs m is still known, but the transition
times themselves are not. Finally, in the UNUT setting, even the number of epochs is
unknown; instead a truncated geometric prior is placed on m.

4.2 Known Number But Unknown Times of Transitions (KNUT)

Knowing in advance the times at which all the transitions occur, as was assumed in the previous
subsection, is often unrealistic. To relax this assumption, we now assume that while m is known, the
set T is not given a priori but must also be estimated. Thus, rather than maximizing Equation (5),
we maximize the expression below:

P(G1,Δg1, . . . ,Δgm−1,T |D).

Structures with the same edge sets but slightly different transition times will probably have similar
likelihoods. Therefore, we can add a new move that proposes a local shift to one of the transition
times: let d be some small positive integer and let the new time t ′i be drawn from a discrete uniform
distribution t ′i ∼DU(ti−d, ti+d) with the constraint that ti−1 < t ′i < ti+1. Initially, we set the m−1
transition times so that the epochs are roughly equal in length. This placement allows the transition
times ample room to locally shift without “bumping” into each other too early in the sampling
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procedure. The complete move set for this setting includes all of the moves described previously as
well as this new local shift move, listed as M6 in Table 1.

As with the last setting, the number of epochs does not change; therefore, only the prior on the
number of edge changes s is used.

4.3 Unknown Number and Unknown Times of Transitions (UNUT)

In the most general UNUT setting, both the transition times T and the number of transitions are
unknown and must be estimated. While this is the most interesting setting, it is also the most
difficult. Since the move set from the KNUT setting provides a solution to this problem when m
is known, a simple approach would be to try various values of m and then determine which value
of m seems optimal. However, this approach is theoretically unsatisfying and would be incredibly
slow. Instead, we will further augment the move set to allow the number of transitions to change.
Since both the number of edge changes s and the number of epochs m are allowed to vary, we need
to incorporate both priors mentioned in Section 3.1 when evaluating the posterior.

To allow the number of epochs m to change during sampling, we introduce merge and split
operations to the move set. For the merge operation, two adjacent edge sets (Δgi and Δgi+1) are
combined to create a new edge set. The transition time of the new edge set is selected to be the mean
of the previous locations weighted by the size of each edge set: t ′i = (siti+ si+1ti+1)/(si+ si+1). For
the split operation, an edge set Δgi is randomly chosen and randomly partitioned into two new edge
sets Δg′i and Δg′i+1 with all subsequent edge sets re-indexed appropriately. Each new transition time
is selected as described above. The move set is completed with the inclusion of the add transition
time and delete transition time operations. These moves are similar to the split and merge operations
except they also increase or decrease s, the total number of edge changes in the structure. The four
additional moves are listed asM7–M10 in Table 1.

4.4 MCMC Sampler Implementation Details

In practice, the sampler is designed so that the proposal ratio p(M′)
p(M)

p(x|x′,M′)
p(x′|x,M) is exactly 1 for most

moves. For example, if either move M1 or move M2 is randomly selected, the sampling procedure
is as follows: random variables xi and x j are selected, if the edge xi → x j exists in G1, it is deleted,
otherwise it is added (subject to the maximum of pmax parents constraint). We know that the max-
imal number of edges in G1 is npmax (due to the maximum parent constraint) and we let E1 be the
current number of edges in G1. If we are making move M1, the probability that we select a legal
edge to add is Pa = npmax−E1

npmax . The probability of making the reverse move (from x′ back to x) is
Pd = E1+1

npmax . The resulting proposal ratio is thus:

Pd
Pa

p(x|x′,M′
2)

p(x′|x,M1)
=

E1+1
npmax−E1

npmax−E1
E1+1

= 1.

A similar approach can be applied to the other moves.
This paradigm also handles boundary cases: if G1 is complete, then P(M1) = 0; if G1 is empty,

then P(M2) = 0; if si = smax∀i, then P(M3) = 0; if si = 1∀i, then P(M4) = 0; etc.
The relative proposal probabilities between different moves are designed so that all pairs of

complementary moves (a move and its reverse move) are equally likely. Under the KNKT setting,
Pa+Pd = Pae+Pde = 2Pme. Under the KNUT setting, Pa+Pd = Pae+Pde = 2Pme = 2Pst . Finally,
under the UNUT setting, Pa+Pd = Pae+Pde = 2Pme = 2Pst = Pm+Ps = Pag+Pdg.
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Move type M Proposal p(M′)
p(M)

p(x|x′,M′)
p(x′|x,M)probability

(M1) add edge to G1 Pa Pd
Pa

(E1+1)−1
(npmax−E1)−1

= npmax−E1
E1+1

(M2) delete edge from G1 Pd Pa
Pd

(npmax−E1+1)−1

E−1
1

= E1
npmax−E1+1

(M3) add edge to Δgi Pae Pde
Pae

m−1(Si+1)−1
m−1(Smax−Si)−1

= Smax−Si
Si+1

(M4) delete edge from Δgi Pde Pae
Pde

m−1(Smax−Si+1)−1

m−1S−1i
= Si

Smax−Si+1

(M5) move edge from Δgi to Δgj Pme 1 (m−1)−1(∑i Si)−1
(m−1)−1(∑i Si)−1

= 1

(M6) locally shift ti Pst 1 (2d+1)−1
(2d+1)−1 = 1

(M7) merge Δgi and Δgi+1 Pm Ps
Pm

(m−1)−12(Si+Si+1)−1(Si+Si+1Si
)
−1

(m−1)−1 = 2
(Si+Si+1)(Si+Si+1Si

)

(M8) split Δgi Ps Pm
Ps

(m−1)−1

(m−1)−1(Si/2)−1(Six)
−1 = (Si/2)

(Si
x
)

(M9) create new Δgi Pag
Pdg
Pag

(m+1)−1
(N−m)−1n−2 =

(N−m)n2
m+1

(M10) delete Δgi Pdg
Pag
Pdg

(N−m−1)−1n−2
m−1 = m

(N−m−1)n2

K
N
K
T K
N
U
T

U
N
U
T

1

Table 1: The move sets under different settings. E1 is the total number of edges in G1, pmax is the
maximum parent set size, smax is the maximum number of edge changes allowed in a single
transition time, and si is the number of edge changes in the set Δgi. The proposal ratio is
the product of the last two columns. The KNKT setting uses moves M1–M5, KNUT uses
movesM1–M6, and UNUT uses movesM1–M10, in each case with the proposal probabili-
ties appropriately normalized to add to 1.

5. Results on Simulated and Real Data Sets

Here we examine both the speed and accuracy of our sampling algorithm under all three settings
and on both simulated and real data sets. We want to solve real-world problems, but accurate ground
truths are often not available to assess performance; therefore, we must rely on simulation studies
to provide representative performance estimates for the real problems of interest.

We have studied the performance characteristics of our algorithm in simulation studies that vary
by several orders of magnitude in number of observations, number of variables, number of epochs,
and network density. In each case, we perform simulations with multiple data sets multiple times
with multiple chains to help ensure our results are robust to simulation artifacts. For brevity, we
only present a few simulation results here; the broader set of experiments we have conducted yield
similar results.

All experiments were run on a 3.6GHz dual-core Intel Xeon machine with 4 GB of RAM.

5.1 Small Simulated Data Set

To evaluate the effectiveness of our method, we first apply it to a small, simulated data set. The first
experiment is on a simulated ten node network with 1020 observations and six single-edge changes
between seven epochs, where the length of each epoch varies between 20 and 400 observations. The
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Figure 3: nsDBN structure learning with known numbers of transitions. A: True non-stationary
data-generation process. The structure evolves gradually from the network at the left la-
beledG1 to the network at the right labeledG7. The epochs in which the various networks
are active are shown in the horizontal bars, roughly to scale. The horizontal bars repre-
sent the segmentation of the 1020 observations, with the transition times labeled below.
When these times are known to the algorithm (the KNKT setting), the recovered nsDBN
structure is exactly the true structure. B: When the times of the transitions are not known
(the KNUT setting), the algorithm learns the model-averaged nsDBN structure shown
(selecting edges that occur in greater than fifty percent of the sampled structures). The
learned networks and most likely transition times are highly accurate (only missing two
edges in G1 and all predicted transition times close to the truth).

true structure is shown in Figure 3A. We chose a small network with features biologically relevant
to genetic regulatory networks: a feedback loop, a variable with at least three parents, a pathway of
length six, and the inclusion of observed variables that do not even participate in the network.

5.1.1 KNKT SETTING

In this simple setting, the sampler rapidly converges to the correct solution. We generate a data set
using the structure in Figure 3A, and run our sampler for 100,000 iterations, with the first 25,000
samples thrown out for burn-in.

To obtain a consensus (model averaged) structure prediction, an edge is considered present at a
particular time if the posterior probability of the edge is greater than 0.5. The value of λm has no
effect in this setting, and the value of λs is varied between 0.1 and 50. The predicted structure is
exactly identical to the true structure shown in Figure 3A for a broad range of values, 0.5≤ λs ≤ 10,
indicating robust and accurate learning.

5.1.2 KNUT SETTING

In this setting, transition times are unknown and must be estimated a posteriori. The prior on m
remains unused, and for the prior on s, the value of λs is again varied between 0.1 and 50.
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KNUT Setting

Figure 4: Posterior probability of transition times when learning an nsDBN in the KNUT setting.
The blue triangles on the baseline represent the true transition times and the red dots
represent one standard deviation from the mean probability, which is drawn as a black
line. The variance estimates were obtained using multiple chains. The highly probable
transition times correspond closely with the true transition times.

Again, we generate a data set using the structure from Figure 3A and run the sampler for 200,000
iterations, with the first 50,000 samples thrown out for burn-in. More samples are collected in the
KNUT setting because we expect that convergence will be slower given the larger space of nsDBNs
to explore.

The predicted consensus structure is shown in Figure 3B for λs = 5; this choice of λs provides
the most accurate predictions. The estimated structure and transition times are very close to the
truth. All edges are correct, with the exception of two missing edges in G1, and the predicted
transition times are all within 10 of the true transition times. We can also examine the posterior
probabilities of transition times over all sampled structures. This is shown in Figure 4. The blue
triangles on the baseline represent the true transition times, and spikes represent transition times
that frequently occurred in the sampled structures. While the highest probability regions do occur
near the true transition times, some uncertainty exists about the exact locations of t3 and t4 since the
fourth epoch is exceedingly short.

To obtain more accurate measures of the posterior quantities of interest (such as the locations
of transition times), we generate samples from multiple chains; we use 25 in the KNUT setting.
Combining the samples from several chains allows us to estimate both the probability of a transition
occurring at a certain time and the variance of that estimate. The red dots in Figure 4 represent one
standard deviation above and below the estimated mean probability of a transition occurring at a
particular time. We discovered that the speed of convergence under the KNKT and KNUT settings
were very similar for a given m. This unexpected result implies that the posterior over transition
times is rather smooth; therefore, the mixing rate is not greatly affected when sampling transition
times.
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5.1.3 UNUT SETTING

Finally, we consider the UNUT setting where the number and times of transitions are both unknown.
We examine the accuracy of our method in this setting using several values of λs and λm. We use
the range 1 ≤ λs ≤ 5 because we know from the previous settings that the most accurate solutions
were obtained using a prior within this range; the range 1 ≤ λm ≤ 50 is selected to provide a wide
range of estimates for the prior on m since we have no previous knowledge of what it should be.

Again, we generate a data set using the structure from Figure 3A and run the sampler for 300,000
iterations, with the first 75,000 samples thrown out for burn-in. We collect samples from 25 chains
in this setting.

Figure 5 shows the posterior probabilities of transition times for various settings of λs and λm.
As expected, when λm increases, the number of peaks decreases. Essentially, when λm is large,
only the few transition times that best characterize the non-stationary behavior of the data will be
identified. On the other hand, when λm is very small, noises within the data begin to be identified
as transition times, leading to poor estimates of transition times.

We can also examine the posterior on the number of epochs, as shown in Figure 6. The largest
peak can be used to provide an estimate of m. A smaller λm results in more predicted epochs and
less confidence about the most probable value of m.

Finally, since we know what the true structure is, we can obtain a precision-recall curve for each
value of λs and λm. The precision-recall curves are shown at the top of Figure 7. To calculate these
values, we obtained individual precision and recall estimates for each network at each observation
and averaged them over all observations. Therefore, the reported precision and recall values can be
viewed as the average precision and average recall over all observations.

One way to identify the best parameter settings for λs and λm is to examine the best F1-measure
(the harmonic mean of the precision and recall) for each. The table in Figure 7 shows the best F1-
measures and reveals λs = 5 and λm = 1 as best for this data, although nearly all choices achieve an
F1-measure above 0.9.

5.2 Larger Simulated Data Set

To evaluate the scalability of our technique in the most difficult UNUT setting, we also simulate
data from a 100 variable network with an average of 50 edges over five epochs spanning 4800
observations, with one to three edges changing between each epoch. We generate 10 different data
sets from the model and acquire 25 chains from each data set. For each chain, we take 800,000
samples, with the first 200,000 samples thrown out for burn-in.

The posterior probabilities of transition times and the number of epochs (corresponding to Fig-
ures 5 and 6) for one of the simulated data sets are shown in Figure 8. The significantly sharper
prediction for the posterior probabilities of transitions occurring at specific times is most likely due
to having more observations and, thus, more confident estimates. The number of epochs with the
highest posterior probability is five for all choices of priors, which is exactly the true number of
epochs for this data set.

Additionally, the precision-recall curves and F1-measures are shown in Figure 9, revealing the
λs= 1 and λm= 5 assignments to be best for this data, although all choices achieve excellent results.

3664



LEARNING NON-STATIONARY DYNAMIC BAYESIAN NETWORKS

UNUT Setting

Figure 5: The posterior probabilities of transition times from the sampled structures in the UNUT
setting for various values of λs and λm. As in Figure 4, the blue triangles on the baseline
represent the true transition times and the red dots represent one standard deviation from
the mean probability obtained from several runs, which is drawn as a black line. Only the
(λs,λm) values of (1,1) and (1,2) seem to result in poor estimates of the true transition
times.

5.3 DrosophilaMuscle Development Gene Regulatory Networks

Having achieved excellent results even in the hardest UNUT setting across ten different data sets
generated from two different simulated networks—one with 10 variables and the other with 100—
we are confident enough in the usefulness of our model to analyze some real data.
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UNUT Setting

Figure 6: The posterior probabilities of the number of epochs for various values of λs and λm. The
x-axes range from 1 to 10 and the y-axes from 0 to 1 for all of the plots except those
marked with a star. The starred plots show predictions with significantly more epochs
than the truth. The posterior estimates on the number of epochs m are closest to the true
value of 7 when λm is 1 or 2.

In this subsection, we apply our method to identify non-stationary networks using Drosophila
development gene expression data from Arbeitman et al. (2002). This data contains expression
measurements of 4028 Drosophila genes over 66 time steps throughout development and growth
during the embryonic, larval, pupal, and adult stages of life. Zhao et al. (2006) focused on 19 genes
involved in muscle development and learned a single network over all 66 time steps with this data.
Using the same data, Guo et al. (2007) learned a time-varying undirected network over a subset of
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UNUT Setting

λs

1 2 3 4 5
0.4341 0.9423 0.9469 0.9738 0.9912 1
0.6760 0.9562 0.9553 0.9906 0.9909 2
0.9206 0.9553 0.9729 0.9731 0.9905 5 λm

0.9264 0.9550 0.9657 0.9829 0.9791 10
0.8804 0.8806 0.9042 0.8922 0.8807 50

Figure 7: Top: Precision-recall curves for various values of λs and λm under the UNUT setting. The
most accurate estimates for the structure of the nsDBN arise when λs = 5 and λm = 1.
Bottom: Corresponding F1-measures for the precision-recall curves. F1-measures over
0.9 are shaded; darker shades indicate values closer to 1, and the highest value is shown
in bold.
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UNUT Setting

Figure 8: The posterior probabilities of transition times and number of epochs from one of the
larger (100 variables, 5 epochs, and 4800 observations) simulated data sets under the
UNUT setting for various values of λs and λm. The axes are the same for all plots. Top:
The blue triangles on the baseline represent the true transition times and the red dots
represent one standard deviation from the mean probability obtained from several runs,
which is drawn as a black line.
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UNUT Setting

λs

1 3 5
0.9489 0.9510 0.9468 1
0.9377 0.9521 0.9356 2 λm

0.9531 0.9459 0.9398 5

Figure 9: Top: Precision-recall curves for several values of λs and λm under the larger 100 variable
simulation. Bottom: Corresponding F1-measures for the precision-recall curves. F1-
measures over 0.9 are shaded; the highest value is shown in bold.

11 of the 19 genes identified by Zhao et al. (2006). To facilitate comparison with as many existing
methods as possible, we apply our method to the data describing the expression of the same 11
genes, preprocessing the data in the same way as described by Zhao et al. (2006). Unfortunately,
no other techniques predict non-stationary directed networks, so our comparisons are made against
the stationary directed network predicted by Zhao et al. (2006) and the non-stationary undirected
network predicted by Guo et al. (2007).

We collect 50,000 samples and throw out the first 10,000 for burn-in; we then repeat this process
for 25 chains. We need fewer samples in this problem compared to previous data sets because there
are relatively few variables and observations.
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Figure 10 shows how our predicted structure compares to those reported by Zhao et al. (2006)
and Guo et al. (2007). The nsDBN in Figure 10Cwas learned using the KNKT setting with transition
times defined at the borders between the embryonic, larval, pupal, and adult stages.

While all three predictions share many edges, certain similarities between our prediction and
one or both of the other two predictions are of special interest. In all three predictions, a cluster
seems to form around myo61f, msp-300, up, mhc, prm, and mlc1. All of these genes except up are
in the myosin family, which contains genes involved in muscle contraction. Within the directed
predictions, msp-300 primarily serves as a hub gene that regulates the other myosin family genes. It
is interesting to note that the undirected method predicts connections between mlc1, prm, and mhc
while neither directed method makes these predictions. Since msp-300 seems to serve as a regulator
to these genes, the method of Guo et al. (2007) may be unable to distinguish between direct and
indirect interactions, due to its undirected nature and reliance on correlations.

Two interesting temporal similarities arise when comparing our predictions to those from Guo
et al. (2007). First, an interaction between eve and actn arise at the beginning of the pupal stage in
both methods. Second, the connection between msp-300 and up is lost in the adult network. Note
that the loss of this edge actually characterizes the progression to the adult stage from the pupal
stage in our prediction, while the method from Guo et al. (2007) combines the two stages. The
estimation of a combined pupal/adult stage may simply be due to predicting the loss of the edge
between msp-300 and up earlier in development than our method.

Despite the similarities, some notable differences exist between our prediction and the other
two predictions. First, we predict interactions from myo61f to both prm and up, neither of which
is predicted in the other methods, suggesting a greater role for myo61f during muscle development.
Also, we do not predict any interactions with twi. During muscle development in Drosophila, twi
acts as a regulator of mef2 which in turn regulates some myosin family genes, including mlc1 and
mhc (Sandmann et al., 2006; Elgar et al., 2008); our prediction of no connection to twi mirrors
this biological behavior. Finally, we note that in our predicted structure, actn never connects as a
regulator (parent) to any other genes, unlike in the network predicted by Zhao et al. (2006). Since
actn (actinin) only binds actin, we do not expect it to regulate other muscle development genes,
even indirectly.

If we transition to the UNUT setting, we can also examine the posterior probabilities of tran-
sition times and epochs. These plots are shown in Figure 11A and 11B, respectively. The tran-
sition times with high posterior probabilities correspond well to the embryonic→larval and the
larval→pupal transitions, but a posterior peak occurs well before the supposed time of the
pupal→adult transition; this reveals that the gene expression program governing the transition to
adult morphology is active well before the fly emerges from the pupa, as would clearly be expected.
Also, we see that the most probable number of epochs is three to four, mirroring closely the total
number of developmental stages.

5.4 Simulated Data Set Similar to the Drosophila Data Set

To evaluate the accuracy of a recovered nsDBN on a problem of exactly the same size as the pre-
dicted Drosophila muscle development network, we simulate a non-stationary time-series with the
same number of nodes and a similar level of connectivity as the Drosophila data set. We generate
data from an nsDBN with 66 observations and transition times at 30, 40, and 58 to mirror the num-
ber of observations in embryonic, larval, pupal, and adult stages of the experimental fly data. Since
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Figure 10: Comparison of computationally predicted Drosophila muscle development networks.
A: The directed network reported by Zhao et al. (2006). B: The undirected networks
reported by Guo et al. (2007). C: The nsDBN structure learned under the KNKT setting
with λs = 2. Only the edges that occurred in greater than 50 percent of the samples are
shown, with thicker edges representing connections that occurred more frequently.

         




 









































Figure 11: Learning nsDBN structure in the UNUT setting using the Drosophila muscle develop-
ment data. A: Posterior probabilities of transition times using λm = λs = 2. The blue
triangles on the baseline represent the borders of embryonic, larval, pupal, and adult
stages. B: Posterior probability of the number of epochs. The high weight for 3 and 4
epochs closely matches the true number of developmental stages.

it is difficult to estimate the amount of noise in the experimental data, we also simulate noise at
various signal-to-noise ratios, from 4:1 down to 1:1. Finally, since many biological processes have
more variables than observations, we examine the effect of increasing the number of experimental
replicates as a possible means to overcome this challenge.
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Figure 12: An nsDBN was learned on simulated data that mimicked the number of nodes, connec-
tivity, and transition behavior of the experimental fly data. This allowed us to estimate
the accuracy of learned nsDBNs on a problem of this size. A: Precision-recall curves for
increasing values of the signal to noise ratio in the data (using one replicate). B: Pre-
cision recall curves for an increasing number of experimental replicates (using an SNR
of 2:1). A greater signal to noise ratio and a greater number of experimental replicates
both result in better performance, as expected.

As discussed earlier, to obtain posterior estimates of quantities of interest, such as the number
of epochs or transition times, we generate many samples from several chains; averaging over chains
provides a more efficient exploration of the sample space. To incorporate replicates into the posterior
calculations, we generate samples from multiple chains (25) for each set of replicates. Since the
underlying data generation process is the same for each replicate, we simply average over all the
chains. The results of these simulations are summarized in Figure 12.

As expected, as the signal-to-noise ratio of the data increases, the greater the accuracy in the
learned nsDBNs as reflected in the F1-measures: 1:1 is 0.734, 2:1 is 0.850, 3:1 is 0.875, and 4:1 is
0.950. Additionally, increasing the number of replicates also increases prediction accuracy: one is
0.869, two is 0.924, three is 0.945, and four is 0.956. This demonstrates the importance of multiple
replicates for biological data with many variables but few observations.

This simulation study allows us to explore how much a relatively small data set and noise affect
the predictions from our algorithm on a problem of similar size as the Drosophila muscle devel-
opment network. From the results in Figure 12, we see that learning an nsDBN on a problem of
the same scale as the Drosophila data set results in accurate network reconstruction, even in the
presence of substantial noise. Therefore, we can surmise that any inaccuracies in our predicted
Drosophila muscle development network would not arise due to the use of a dataset of that size,
but might arise from an exceptionally high level of noise in the data (or inappropriate modeling
assumptions).
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5.5 Neural Information Flow Networks in Songbirds

Our goal is to learn neural information flow networks in the songbird brain. Such networks repre-
sent the transmission of information between different regions of the brain. Like roads, the anatom-
ical connectivity of a brain indicates potential pathways along which information can travel. Like
traffic, neural information flow networks represent the dynamic utilization of these pathways. By
identifying the neural information flow networks in songbirds during auditory stimuli, we hope to
understand how sounds are stored and processed in the brain.

In this experiment, eight electrodes were placed into the vocal nuclei of six female zebra finches.
Voltage changes were recorded from populations of neurons while the birds were provided with four
different two-second auditory stimuli, each presented twenty times. The resulting voltages were
post-processed with an RMS transformation and binned to 5 ms; this interval was chosen because
it takes 5–10 ms for a neural signal to propagate through one synaptic connection (Kimpo et al.,
2003). We analyze data recorded from electrodes for two seconds pre-stimulus, two seconds during
stimulus, and two seconds post-stimulus. We learn an nsDBN for two of the birds over six seconds
for two different stimuli using all repetitions; this data set contains 8 variables and nearly 25,000
observations for each bird and each stimulus.




































      













      












      













      




















     




     

          

 

Figure 13: Posterior results of learning nsDBNs under the UNUT setting for two birds presented
with two different stimuli (white noise and song). A: Posterior transition time probabili-
ties. Transitions are consistently predicted near the stimulus onset (2 seconds) and offset
(4 seconds). B: Posterior estimates of the number of epochs. The estimated number of
epochs is three or four, with strong support for the value four when the bird is presented
with a song.

The posterior transition time probabilities and the posterior number of epochs for two birds
presented with two different stimuli under the UNUT setting (λs= λm= 2) can be seen in Figure 13.
Note how the estimated transition times correspond closely with the times of the stimulus onset and
offset and how the posterior estimate of the number of epochs is around three or four; taken together,
these statistics imply that different networks predominate in the pre-stimulus, during stimulus, and
post-stimulus time periods.
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The posterior estimates consistently differ when the bird is listening to white noise versus song.
When listening to a song, an additional transition is predicted 300–400 ms after the onset of a
song but not after the onset of white noise. This implies that the bird further analyzes a sound
after recognizing it (e.g., hearing a known song), but performs no further analysis when it does not
recognize a sound (e.g., hearing white noise).

Previous analysis of this data assumed that any changes in the neural information flow network
of a songbird listening to sound occurred only at sound onset and offset (Smith et al., 2006). Only
by appropriately modeling the neural information flow networks as nsDBNs are we able to learn
that this assumption is not accurate.

Further analysis and investigation of this data is left to future work.

5.6 Performance and Scalability

Due to the use of efficient data structures in the sampler implementation, the computational time
needed to update the likelihood is essentially the same for all moves. Therefore, the runtimes of
the algorithm under the KNKT, KNUT, and UNUT settings do not differ for a given number of
samples. Nevertheless, one typically wants more samples in settings with increased uncertainty to
ensure proper convergence.

For the small ten variable simulated data set, the sample collection process for each chain takes
about 10 seconds per 100,000 samples, which translates to 10 seconds for the KNKT setting, 20
seconds for the KNUT setting, and 30 seconds for the UNUT setting. Fortunately, all runs can
easily be executed in parallel. Sample collection for the Drosophila data set and the similarly sized
simulated data set takes only a few seconds for each chain under all settings.

For the larger 100 variable simulated data set, sample collection takes about 2 minutes per
100,000 samples. The increased runtime is primarily due to the larger number of variables, so
defining the neighborhood for each move takes more time. Due to intelligent caching schemes, the
number of observations affects runtime in only a sublinear fashion (provided that enough memory
is available).

Surprisingly, one of the largest contributors to running time is the actual recording of the MCMC
samples. For example, each sample in the larger simulated data set can be represented by a 10,000
by 4,800 binary matrix of indicators for individual edges at every point in time. A full recording of
each sample is therefore very time consuming: just recording each sample in the larger simulated
data set leads to an increased runtime of about 50 minutes per 100,000 samples. We can alleviate
this problem in several ways. First, because only a small number of those 48 million values actually
change between samples, each sample can be represented and output in a compressed fashion;
however, the same amount of processing still must occur after the sample collection completes.
A better option is to only record the posterior quantities of interest. For example, recording just
the transition times and number of epochs adds only a few seconds to the runtime on the larger
simulated data set.

6. Discussion

Non-stationary dynamic Bayesian networks provide a useful framework for learning Bayesian net-
works when the generating processes are non-stationary. Using the move sets described in this
paper, nsDBN learning is efficient even for networks of 100 variables, is generalizable to situations
of varying uncertainty (KNKT, KNUT, and UNUT), and is robust (i.e., not very sensitive) to the
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choice of hyper-parameters over a large range of values. Additionally, by using a sampling-based
approach, our method allows us to assess a confidence for each predicted edge—an advantage that
neither Zhao et al. (2006) nor Guo et al. (2007) share.

We have demonstrated the feasibility of learning an nsDBN in all three settings using simulated
data sets of various numbers of transition times, observations, variables, epochs, and connection
densities. Additionally, we have identified nsDBNs in the KNKT and UNUT settings using biologi-
cal gene expression data. TheDrosophilamuscle development network we predict is consistent with
the predictions from other techniques and conforms to many known biological interactions from the
literature. The predicted transition times and number of epochs also correspond to the known times
of large developmental changes. Although each connection on the predicted Drosophila muscle de-
velopment network is difficult to verify, simulated experiments of a similar scale demonstrate highly
accurate predictions, even with moderately noisy data and one replicate.

While we focus on certain aspects of the model in this paper, many of our decisions are choices
rather than restrictions. For example, we present results using a Markov lag of one, but any Markov
lag could be used. Additionally, we use the BDe score metric, but any score metric or conditional
independence test can be used instead; however, any score metric which does not integrate over
the non-structural parameters would require an augmented sampling procedure. The assumption
of discrete data is not necessary; our method easily extends to continuous data, provided that an
appropriate scoring metric (like BG) is adapted.

A discrete view of time is necessary to our approach, but many continuous-time data sets can
be transformed into discrete-time ones without significant loss of information. The use of directed
graphs is also necessary, and desired, but undirected estimates can be obtained through moralization
of directed estimates. Although we choose simple priors to learn smoothly evolving networks,
nearly any priors would be easy to incorporate; in particular, incorporating expert knowledge about
the problem domain would be an ideal method for defining priors.

For problems of more than a few variables, the use of MCMC sampling is essential since EM
techniques would not converge in any reasonable time frame given such a large sample space. One
of our key discoveries for increasing convergence is the reformulation of the problem from learning
multiple networks to learning a network and changes to that network. This parameterization pro-
vides an intuitive means for defining evolving networks and allows us to define move sets with good
convergence properties. Our particular choices of the move sets are not the only possible ones, but
we have taken extra care to ensure that they work well on the types of problems we examine in this
paper.

The proposed sampling algorithm scales well to problems with hundreds of variables and thou-
sands of observations, but we are not certain how well it will scale to problems that are orders of
magnitude larger. When obtaining sample runs takes days instead of minutes or hours, it may be-
come desirable to obtain faster estimates, even if they are approximate. Variational methods are one
alternative to MCMC sampling approaches, often obtaining faster estimates at the cost of decreased
accuracy (Beal and Ghahramani, 2006). For the scale of problems in this paper, the run times and
convergence rates of our MCMC sampling algorithm were good enough that we did not have to
resort to variational approximations. However, if we wish to explore much larger data sets in the
future, we may need to develop a variational algorithm to obtain results in a reasonable time frame.

Non-stationary DBNs offer all of the advantages of DBNs (identifying directed, potentially
non-linear interactions between variables in multivariate time-series) and are additionally able to
identify non-stationarities in the interactions between variables. The sampling algorithm presented
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here allows one to estimate the strength of individual edges as well as posterior distributions of and
quantities of interest. In future work, we hope to analyze data from other fields that have traditionally
used DBNs and instead use nsDBNs to identify and model previously unknown or uncharacterized
non-stationary behavior.

Another direction that could be explored in the future is nsDBN learning with latent variables.
Following an EM approach like in Friedman (1997) would be the first step, but one would also need
to consider how to connect hidden variables across epochs and how to incorporate different numbers
of hidden variables at different epochs. Learning non-stationary networks with latent variables
seems to present a vexing challenge in the general case, but might be feasible in simple cases when
enough data is available.
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Appendix A.

While we decided to place a (truncated) geometric prior on the number of epochsm, other priors may
be considered. Talih and Hengartner (2005) chose to model epoch lengths as i.i.d. geometric random
variables. Here, we prove that a geometrically distributed prior on epoch lengths is equivalent to a
geometrically distributed prior on the number of epochs.

Letting li be the length of epoch i and N be the total number of observations, we can write a
geometrically distributed prior on epoch lengths as:

m

∏
i=1

(1− p)li−1p = pm
m

∏
i=1

(1− p)li−1

= pm(1− p)∑
m
i=1 li−1

= pm(1− p)N−m

=

(
p

1− p

)m
(1− p)N .

Since N is the same for every nsDBN, we see that the geometrically distributed prior is simply
a function of the number of epochs m. Compare this to a geometrically distributed prior on the
number of epochs, shown below:

(1−q)m−1q = (1−q)m
q

1−q
= A(1−q)m.

where A is a constant that is the same for all nsDBNs. Therefore, a geometrically distributed prior
on epoch lengths with success probability p= 1−q

2−q < 1/2 is equivalent to a geometrically distributed
prior on the number of epochs with success probability q. In this paper, we assume that q takes the
form q= 1− e−λ, allowing for a more intuitive control of the prior by simply changing λ.
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