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Abstract
We present a general method for explaining individual predictions of classification models. The
method is based on fundamental concepts from coalitional game theory and predictions are ex-
plained with contributions of individual feature values. We overcome the method’s initial exponen-
tial time complexity with a sampling-based approximation. In the experimental part of the paper we
use the developed method on models generated by several well-known machine learning algorithms
on both synthetic and real-world data sets. The results demonstrate that the method is efficient and
that the explanations are intuitive and useful.
Keywords: data postprocessing, classification, explanation, visualization

1. Introduction

Acquisition of knowledge from data is the quintessential task of machine learning. The data are
often noisy, inconsistent, and incomplete, so various preprocessing methods are used before the
appropriate machine learning algorithm is applied. The knowledge we extract this way might not
be suitable for immediate use and one or more data postprocessing methods could be applied as
well. Data postprocessing includes the integration, filtering, evaluation, and explanation of acquired
knowledge. The latter is the topic of this paper.

To introduce the reader with some of the concepts used in this paper, we start with a simple
illustrative example of an explanation for a model’s prediction (see Fig. 1). We use Naive Bayes
because its prediction can, due to the assumption of conditional independence, easily be transformed
into contributions of individual feature values - a vector of numbers, one for each feature value,
which indicates how much each feature value contributed to the Naive Bayes model’s prediction.
This can be done by simply applying the logarithm to the model’s equation (see, for example,
Kononenko and Kukar, 2007; Becker et al., 1997).

In our example, the contributions of the three feature values can be interpreted as follows. The
prior probability of a Titanic passenger’s survival is 32% and the model predicts a 67% chance of
survival. The fact that this passenger was female is the sole and largest contributor to the increased
chance of survival. Being a passenger from the third class and an adult both speak against survival,
the latter only slightly. The actual class label for this instance is ”yes”, so the classification is
correct. This is a trivial example, but providing the end-user with such an explanation on top of a
prediction, makes the prediction easier to understand and to trust. The latter is crucial in situations

c©2010 Erik Štrumbelj and Igor Kononenko.
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where important and sensitive decisions are made. One such example is medicine, where medical
practitioners are known to be reluctant to use machine learning models, despite their often superior
performance (Kononenko, 2001). The inherent ability of explaining its decisions is one of the
main reasons for the frequent use of the Naive Bayes classifier in medical diagnosis and prognosis
(Kononenko, 2001). The approach used to explain the decision in Fig. 1 is specific to Naive Bayes,
but can we design an explanation method which works for any type of classifier? In this paper we
address this question and propose a method for explaining the predictions of classification models,
which can be applied to any classifier in a uniform way.

Figure 1: An instance from the well-known Titanic data set with the Naive Bayes model’s predic-
tion and an explanation in the form of contributions of individual feature values. A copy
of the Titanic data set can be found at http://www.ailab.si/orange/datasets.psp.

1.1 Related Work

Before addressing general explanation methods, we list a few model-specific methods to emphasize
two things. First, most models have model-specific explanation methods. And second, providing an
explanation in the form of contributions of feature values is a common approach. Note that many
more model-specific explanation methods exist and this is far from being a complete reference.
Similar to Naive Bayes, other machine learning models also have an inherent explanation. For
example, a decision tree’s prediction is made by following a decision rule from the root to the leaf,
which contains the instance. Decision rules and Bayesian networks are also examples of transparent
classifiers. Nomograms are a way of visualizing contributions of feature values and were applied to
Naive Bayes (Možina et al., 2004) and, in a limited way (linear kernel functions), to SVM (Jakulin
et al., 2005). Other related work focusses on explaining the SVM model, most recently in the
form of visualization (Poulet, 2004; Hamel, 2006) and rule-extraction (Martens et al., 2007). The
ExplainD framework (Szafron et al., 2006) provides explanations for additive classifiers in the form
of contributions. Breiman provided additional tools for showing how individual features contribute
to the predictions of his Random Forests (Breiman, 2001). The explanation and interpretation of
artificial neural networks, which are arguably one of the least transparent models, has also received
a lot of attention, especially in the form of rule extraction (Towell and Shavlik, 1993; Andrews et al.,
1995; Nayak, 2009).

So, why do we even need a general explanation method? It is not difficult to think of a rea-
sonable scenario where a general explanation method would be useful. For example, imagine a
user using a classifier and a corresponding explanation method. At some point the model might
be replaced with a better performing model of a different type, which usually means that the ex-
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planation method also has to be modified or replaced. The user then has to invest time and effort
into adapting to the new explanation method. This can be avoided by using a general explanation
method. Overall, a good general explanation method reduces the dependence between the user-end
and the underlying machine learning methods, which makes work with machine learning models
more user-friendly. This is especially desirable in commercial applications and applications of ma-
chine learning in fields outside of machine learning, such as medicine, marketing, etc. An effective
and efficient general explanation method would also be a useful tool for comparing how a model
predicts different instances and how different models predict the same instance.

As far as the authors are aware, there exist two other general explanation methods for explaining
a model’s prediction: the work by Robnik-Šikonja and Kononenko (2008) and the work by Lemaire
et al. (2008). While there are several differences between the two methods, both explain a prediction
with contributions of feature values and both use the same basic approach. A feature value’s contri-
bution is defined as the difference between the model’s initial prediction and its average prediction
across perturbations of the corresponding feature. In other words, we look at how the prediction
would change if we ”ignore” the feature value. This myopic approach can lead to serious errors
if the feature values are conditionally dependent, which is especially evident when a disjunctive
concept (or any other form of redundancy) is present. We can use a simple example to illustrate
how these methods work. Imagine we ask someone who is knowledgeable in boolean logic What
will the result of (1 OR 1) be?. It will be one, of course. Now we mask the first value and ask
again What will the result of (something OR 1) be?. It will still be one. So, it does not matter if
the person knows or does not know the first value - the result does not change. Hence, we conclude
that the first value is irrelevant for that persons decision regarding whether the result will be 1 or
0. Symmetrically, we can conclude that the second value is also irrelevant for the persons decision
making process. Therefore, both values are irrelevant. This is, of course, an incorrect explanation
of how these two values contribute to the persons decision.

Further details and examples of where existing methods would fail can be found in our previous
work (Štrumbelj et al., 2009), where we suggest observing the changes across all possible subsets
of features values. While this effectively deals with the shortcomings of previous methods, it suffers
from an exponential time complexity.

To summarize, we have existing general explanation methods, which sacrifice a part of their
effectiveness for efficiency, and we know that generating effective contributions requires observing
the power set of all features, which is far from efficient. The contribution of this paper and its im-
provement over our previous work is twofold. First, we provide a rigorous theoretical analysis of our
explanation method and link it with known concepts from game theory, thus formalizing some of its
desirable properties. And second, we propose an efficient sampling-based approximation method,
which overcomes the exponential time complexity and does not require retraining the classifier.

The remainder of this paper is organized as follows. Section 2 introduces some basic concepts
from classification and coalitional game theory. In Section 3 we provide the theoretical foundations,
the approximation method, and a simple illustrative example. Section 4 covers the experimental part
of our work. With Section 5 we conclude the paper and provide ideas for future work.

2. Preliminaries

First, we introduce some basic concepts from classification and coalitional game theory, which are
used in the formal description of our explanation method.
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2.1 Classification

In machine learning classification is a form of supervised learning where the objective is to predict
the class label for unlabelled input instances, each described by feature values from a feature space.
Predictions are based on background knowledge and knowledge extracted (that is, learned) from a
sample of labelled instances (usually in the form of a training set).

Definition 1 The feature space A is the cartesian product of n features (represented with the set
N = {1,2, ...,n}): A = A1×A2× ...×An, where each feature Ai is a finite set of feature values.

Remark 1 With this definition of a feature space we limit ourselves to finite (that is, discrete) fea-
tures. However, we later show that this restriction does not apply to the approximation method,
which can handle both discrete and continuous features.

To formally describe situations where feature values are ignored, we define a subspace AS =
A′
1×A′

2× ...×A′
n, where A′

i = Ai if i ∈ S and A′
i = {ε} otherwise. Therefore, given a set S ⊂ N, AS

is a feature subspace, where features not in S are ”ignored” (AN = A). Instances from a subspace
have one or more components unknown as indicated by ε. Now we define a classifier.

Definition 2 A classifier, f , is a mapping from a feature space to a normalized |C|-dimensional
space f : A → [0,1]|C|, where C is a finite set of labels.

Remark 2 We use a more general definition of a classifier to include classifiers which assign a
rank or score to each class label. However, in practice, we mostly deal with two special cases:
classifiers in the traditional sense (for each vector, one of the components is 1 and the rest are 0)
and probabilistic classifiers (for each vector, the vector components always add up to 1 and are
therefore a probability distribution over the class label state space).

2.2 Coalitional Game Theory

The following concepts from coalitional game theory are used in the formalization of our method,
starting with the definition of a coalitional game.

Definition 3 A coalitional form game is a tuple 〈N,v〉, where N = {1,2, ...,n} is a finite set of n
players, and v : 2N →ℜ is a characteristic function such that v(∅) = 0.

Subsets of N are coalitions and N is referred to as the grand coalition of all players. Function v
describes the worth of each coalition. We usually assume that the grand coalition forms and the goal
is to split its worth v(N) among the players in a ”fair” way. Therefore, the value (that is, solution)
is an operator φ which assigns to 〈N,v〉 a vector of payoffs φ(v) = (φ1, ...,φn) ∈ℜn. For each game
with at least one player there are infinitely many solutions, some of which are more ”fair” than
others. The following four statements are attempts at axiomatizing the notion of ”fairness” of a
solution φ and are key for the axiomatic characterization of the Shapley value.

Axiom 1 ∑
i∈N

φi(v) = v(N). (efficiency axiom)

Axiom 2 If for two players i and j v(S∪ {i}) = v(S∪ { j}) holds for every S, where S ⊂ N and
i, j /∈ S, then φi(v) = φ j(v)). (symmetry axiom)
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Axiom 3 If v(S∪ {i}) = v(S) holds for every S, where S ⊂ N and i /∈ S, then φi(v) = 0. (dummy
axiom)

Axiom 4 For any pair of games v,w : φ(v+w) = φ(v)+φ(w), where (v+w)(S) = v(S)+w(S) for
all S. (additivity axiom)

Theorem 1 For the game 〈N,v〉 there exists a unique solution φ, which satisfies axioms 1 to 4 and
it is the Shapley value:

Shi(v) = ∑
S⊆N\{i},s=|S|

(n− s−1)!s!
n!

(v(S∪{i})− v(S)), i= 1, ...,n.

Proof For a detailed proof of this theorem refer to Shapley’s paper (1953).

The Shapley value has a wide range of applicability as illustrated in a recent survey paper by
Moretti and Patrone (2008), which is dedicated entirely to this unique solution concept and its
applications. From the few applications of the Shapley value in machine learning, we would like
to bring to the readers attention the work of Keinan et al. (2004), who apply the Shapley value to
function localization in biological and artificial networks. Their MSA framework is later used and
adapted into a method for feature selection (Cohen et al., 2007).

3. Explaining Individual Predictions

In this section we provide the theoretical background. We start with a description of the intuition
behind the method and then link it with coalitional game theory.

3.1 Definition of the Explanation Method

Let N = {1,2, ...,n} be a set representing n features, f a classifier, and x = (x1,x2, ...,xn) ∈ A an
instance from the feature space. First, we choose a class label. We usually chose the predicted class
label, but we may choose any other class label that is of interest to us and explain the prediction
from that perspective (for example, in the introductory example in Fig. 1 we could have chosen
”survival = no” instead). Let c be the chosen class label and let fc(x) be the prediction component
which corresponds to c. Our goal is to explain how the given feature values contribute to the
prediction difference between the classifiers prediction for this instance and the expected prediction
if no feature values are given (that is, if all feature values are ”ignored”). The prediction difference
can be generalized to an arbitrary subset of features S⊆ N.

Definition 4 The prediction difference Δ(S) when only values of features represented in S are
known, is defined as follows:

Δ(S) =
1

|AN\S|
∑

y∈AN\S
fc(τ(x,y,S))−

1
|AN |

∑
y∈AN

fc(y), (1)

τ(x,y,S) = (z1,z2, ...,zn), zi =
{

xi ; i ∈ S
yi ; i /∈ S.

5
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Remark 3 In our previous work (Štrumbelj et al., 2009) we used a different definition: Δ(S) =
f ∗c (S)− f ∗c (∅), where f ∗(W ) is obtained by retraining the classifier only on features in W and
re-classifying the instance (similar to the wrappers approach in feature selection Kohavi and John
1997). With this retraining approach we avoid the combinatorial explosion of going through all
possible perturbations of ”ignored” feature’s values, but introduce other issues. However, the ex-
ponential complexity of going through all subsets of N still remains.

The expression Δ(S) is the difference between the expected prediction when we know only those
values of x, whose features are in S, and the expected prediction when no feature values are known.
Note that we assume uniform distribution of feature values. Therefore, we make no assumption
about the prior relevance of individual feature values. In other words, we are equally interested in
each feature value’s contribution. The main shortcoming of existing general explanation methods
is that they do not take into account all the potential dependencies and interactions between feature
values. To avoid this issue, we implicitly define interactions by defining that each prediction dif-
ference Δ(S) is composed of 2N contributions of interactions (that is, each subset of feature values
might contribute something):

Δ(S) = ∑
W⊆S

I (W ), S⊆ N. (2)

Assuming I (∅) = 0 (that is, an interaction of nothing always contributes 0) yields a recursive
definition. Therefore, function I , which describes the interactions, always exists and is uniquely
defined for a given N and function Δ:

I (S) = Δ(S)− ∑
W⊂S

I (W ), S⊆ N. (3)

Now we distribute the interaction contributions among the n feature values. For each interaction
the involved feature values can be treated as equally responsible for the interaction as the interaction
would otherwise not exist. Therefore, we define a feature value’s contribution ϕi by assigning it an
equal share of each interaction it is involved in

ϕi(Δ) = ∑
W⊆N\{i}

I (W ∪{i})
|W ∪{i}|

, i= 1,2, ...,n. (4)

It is not surprising that we manage in some way to uniquely quantify all the possible interactions,
because we explore the entire power set of the involved feature values. So, two questions arise: Can
we make this approach computationally feasible? and What are the advantages of this approach
over other possible divisions of contributions?. We now address both of these issues, starting with
the latter.

Theorem 2 〈N = {1,2, ...,n},Δ〉 is a coalitional form game and ϕ(Δ) = (ϕ1,ϕ2, ...,ϕn) corre-
sponds to the game’s Shapley value Sh(Δ).

Proof Following the definition of Δ we get that Δ(∅) = 0, so the explanation of the classifier’s
prediction can be treated as a coalitional form game 〈N,Δ〉. Now we provide an elementary proof
that the contributions of individual feature values correspond to the Shapley value for the game
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〈N,Δ〉. The recursive definition of I given in Eq. (3) can be transformed into its non-recursive
form:

I (S) = ∑
W⊆S

((−1)|S|−|W |Δ(W )). (5)

Eq. (5) can be proven by induction. We combine Eq. (4) and Eq. (5) into the following
non-recursive formulation of the contribution of a feature value:

ϕi(Δ) = ∑
W⊆N\{i}

∑
Q⊆(W∪{i})

((−1)|W∪{i}|−|Q|Δ(Q))

|W ∪{i}|
. (6)

Let us examine the number of times Δ(S∪{i}), S ⊆ N, i /∈ S , appears on the right-hand side of
Eq. (6). LetMΔ(S∪{i}) be the number of all such appearances and k= n− |S|−1. The term Δ(S∪{i})
appears when S ⊆W and only once for each such W . For W , where S ⊆W and |W | = |S|+ a,
Δ(S∪{i}) appears with an alternating sign, depending on the parity of a, and there are exactly

(k
a
)

suchW in the sum in Eq. (6), because we can use any combination of a additional elements from
the remaining k elements that are not already in the set S. If we write all such terms up toW = N
and take into account that each interaction I (W ) is divided by |W |, we get the following series:

The treatment is similar for Δ(S), i /∈ S where we get MΔ(S) = −V (n,k). The series V (n,k) can
be expressed with the beta function:

(1− x)k =

(

k
0

)

−

(

k
1

)

x+

(

k
2

)

x2− ...±

(

k
k

)

xk

Z 1

0
xn−k−1(1− x)k dx=

Z 1

0
(

(

k
0

)

xn−k−1−
(

k
1

)

xn−k + ...±

(

k
n−1

)

xn−1)dx

B(n− k,k+1) =

(k
0
)

n− k
−

(k
1
)

n− k+1
+ ...±

(k
k
)

n
=V (n,k).

Using B(p,q) = Γ(p)Γ(q)
Γ(p+q) , we get V (n,k) = (n−k−1)!k!

n! . Therefore:

ϕi(Δ) = ∑
S⊆N\{i}

V (n,n− s−1) ·Δ(S∪{i})− ∑
S⊆N\{i}

V (n,n− s−1) ·Δ(S) =

= ∑
S⊆N\{i}

(n− s−1)!s!
n!

· (Δ(S∪{i})−Δ(S)).

So, the explanation method can be interpreted as follows. The instance’s feature values form a
coalition which causes a change in the classifier’s prediction. We divide this change amongst the
feature values in a way that is fair to their contributions across all possible sub-coalitions. Now
that we have established that the contributions correspond to the Shapley value, we take another
look at its axiomatization. Axioms 1 to 3 and their interpretation in the context of our explanation
method are of particular interest. The 1st axiom corresponds to our decomposition in Eq. (2) - the
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sum of all n contributions in an instance’s explanation is equal to the difference in prediction Δ(N).
Therefore, the contributions are implicitly normalized, which makes them easier to compare across
different instances and different models. According to the 2nd axiom, if two features values have an
identical influence on the prediction they are assigned contributions of equal size. The 3rd axiom
says that if a feature has no influence on the prediction it is assigned a contribution of 0. When
viewed together, these properties ensure that any effect the features might have on the classifiers
output will be reflected in the generated contributions, which effectively deals with the issues of
previous general explanation methods.

3.1.1 AN ILLUSTRATIVE EXAMPLE

In the introduction we used a simple boolean logic example to illustrate the shortcomings of ex-
isting general explanation methods. We concluded that in the expression (1 OR 1) both values are
irrelevant and contribute nothing to the result being 1. This error results from not observing all
the possible subsets of features. With the same example we illustrate how our explanation method
works. We write N = {1,2}, A = {0,1}×{0,1}, and x= (1,1). In other words, we are explaining
the classifier’s prediction for the expression (1 OR 1). Following the steps described in Section 3,
we use Eq. (1) to calculate the Δ−terms. Intuitively, Δ(S) is the difference between the classifiers
expected prediction if only values of features in S are known and the expected prediction if no values
are known. If the value of at least one of the two features is known, we can predict, with certainty,
that the result is 1. If both values are unknown (that is, masked) one can predict that the probability
of the result being 1 is 34 . Therefore, Δ(1) = Δ(2) = Δ(1,2) = 1− 3

4 = 1
4 and Δ(∅) = 3

4 −
3
4 = 0.

Now we can calculate the interactions. I (1) = Δ(1) = 1
4 and I (2) = Δ(2) = 1

4 . When observed
together, the two features contribute less than their individual contributions would suggest, which
results in a negative interaction: I (1,2) = Δ(1,2)− (I (1) + I (2)) = − 1

4 . Finally, we divide the
interactions to get the final contributions: ϕ1 = I (1)+ I (1,2)

2 = 1
8 and ϕ2 = I (2)+ I (1,2)

2 = 1
8 . The

generated contributions reveal that both features contribute the same amount towards the prediction
being 1 and the contributions sum up to the initial difference between the prediction for this instance
and the prior belief.

3.2 An Approximation

We have shown that the generated contributions, ϕi, are effective in relating how individual fea-
ture values influence the classifier’s prediction. Now we provide an efficient approximation. The
approximation method is based on a well known alternative formulation of the Shapley value. Let
π(N) be the set of all ordered permutations of N. Let Prei(O) be the set of players which are pre-
decessors of player i in the order O ∈ π(N). A feature value’s contribution can now be expressed
as:

ϕi(Δ) =
1
n! ∑

O∈π(N)

(

Δ(Prei(O)∪{i})−Δ(Prei(O))
)

, i= 1, ...,n. (7)

Eq. (7) is the a well-known alternative formulation of the Shapley value. An algorithm for the
computation of the Shapley value, which is based on Eq. (7), was presented by Castro et al. (2008).
However, in our case, the exponential time complexity is still hidden in our definition of Δ (see
Eq. (1)). If we use the alternative definition used in our previous work (see Remark 3), we can
compute function Δ(S), for a given S, in polynomial time (assuming that the learning algorithm has
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a polynomial time complexity). However, this requires retraining the classifier for each S ⊆ N, so
the method would no longer be independent of the learning algorithm and we would also require
the training set that the original classifier was trained on. To avoid this and still achieve an efficient
explanation method, we extend the sampling algorithm in the following way. We use a different,
but equivalent formulation of Eq. (1). While the sum in this equation redundantly counts each
f (τ(x,y,S)) term |AS| times (instead of just once) it is equivalent to Eq. (1) and simplifies the
sampling procedure:

Δ(S) =
1
|A | ∑y∈A

( f (τ(x,y,S))− f (y)) . (8)

We replace occurrences of Δ in Eq. (7) with Eq. (8):

ϕi(Δ) =
1

n! · |A | ∑
O∈π(N)

∑
y∈A

(

f (τ(x,y,Prei(O)∪{i}))− f (τ(x,y,Prei(O)))
)

.

We use the following sampling procedure. Our sampling population is π(N)×A and each
order/instance pair defines one sample XO,y∈A = f (τ(x,y,Prei(O)∪ {i}))− f (τ(x,y,Prei(O))). If
some features are continuous, we have an infinite population, but the properties of the sampling
procedure do not change. If we draw a sample completely at random then all samples have an
equal probability of being drawn ( 1

n!·|A | ) and E[XO,y∈A ] = ϕi. Now consider the case where m such
samples are drawn (with replacement) and observe the random variable ϕ̂i = 1

m ∑
m
j=1Xj, where Xj is

the j−th sample. According to the central limit theorem, ϕ̂i is approximately normally distributed
with mean ϕi and variance σ2i

m , where σ
2
i is the population variance for the i−th feature. Therefore,

ϕ̂i is an unbiased and consistent estimator of ϕi. The computation is summarized in Algorithm 1.

Algorithm 1 Approximating the contribution of the i-th feature’s value, ϕi, for instance x ∈ A .
determine m, the desired number of samples
ϕi ← 0
for j = 1 to m do
choose a random permutation of features O ∈ π(N)
choose a random instance y ∈ A

v1 ← f (τ(x,y,Prei(O)∪{i}))
v2 ← f (τ(x,y,Prei(O)))
ϕi ← ϕi+(v1− v2)

end for
ϕi ←

ϕi
m

{v1 and v2 are the classifier’s predictions for two instances, which are constructed by taking
instance y and then changing the value of each feature which appears before the i-th feature in
order O (for v1 this includes the i−th feature) to that feature’s value in x. Therefore, these two
instances only differ in the value of the i−th feature.}
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3.2.1 ERROR/SPEED TRADEOFF

We have established an unbiased estimator of the contribution. Now we investigate the relationship
between the number of samples we draw and the approximation error. For each ϕi, the number
of samples we need to draw to achieve the desired error, depends only on the population variance
σ2i . In practice, σ2i is usually unknown, but has an upper bound, which is reached if the population
is uniformly distributed among its two extreme values. According to Eq. (1), the maximum and
minimum value of a single sample are 1 and −1, respectively, so σ2i ≤ 1. Let the tuple 〈1−α,e〉
be a description of the desired error restriction and P(|ϕi− ϕ̂i| < e) = 1−α the condition, which
has to be fulfilled to satisfy the restriction. For any given 〈1−α,e〉, there is a constant number
of samples we need to satisfy the restriction: mi(〈1−α,e〉) =

Z21−α·σ2

e2 , where Z21−α is the Z-score,
which corresponds to the 1−α confidence interval. For example, we want 99% of the approximated
contributions to be less than 0.01 away from their actual values and we assume worst-case variance
σ2i = 1, for each i ∈ N. Therefore, we have to draw approximately 65000 samples per feature,
regardless of how large the feature space is. The variances are much lower in practice, as we show
in the next section.

For each feature value, the number of samples mi(〈1−α,e〉) is a linear function of the sample
variance σ2i . The key to minimizing the number of samples is to estimate the sample variance σ2i and
draw the appropriate number of samples. This estimation can be done during the sampling process,
by providing confidence intervals for the required number of samples, based on our estimation of
variance on the samples we already took. While this will improve running times, it will not have
any effect on the time complexity of the method, so we delegate this to further work. The optimal
(minimal) number of samples we need for the entire explanation is: mmin(〈1−α,e〉) = n · Z

2
1−α·σ

2

e2 ,
where σ2 = 1

n ∑
n
i=1σ

2
i . Therefore, the number n ·σ2, where σ2 is estimated across several instances,

gives a complete description of how complex a model’s prediction is to explain (that is, proportional
to how many samples we need).

A note on the method’s time complexity. When explaining an instance, the sampling process
has to be repeated for each of the n feature values. Therefore, for a given error and confidence level,
the time complexity of the explanation is O(n ·T (A)), where function T (A) describes the instance
classification time of the model on A . For most machine learning models T (A) ≤ n.

4. Empirical Results

The evaluation of the approximation method is straightforward as we focus only on approximation
errors and running times. We use a variety of different classifiers both to illustrate that it is indeed
a general explanation method and to investigate how the method behaves with different types of
classification models. The following models are used: a decision tree (DT), a Naive Bayes (NB),
a SVM with polynomial kernel (SVM), a multi-layer perceptron artificial neural network (ANN),
Breiman’s random forests algorithm (RF), logistic regression (logREG), and ADABoost boosting
with either Naive Bayes (bstNB) or a decision tree (bstDT) as the weak learner. All experiments
were done on an off-the-shelf laptop computer (2GHz dual core CPU, 2GB RAM), the explanation
method is a straightforward Java implementation of the equations presented in this paper, and the
classifiers were imported from the Weka machine learning software (http://www.cs.waikato.
ac.nz/˜ml/weka/index.html).

10



EXPLAINING INDIVIDUAL CLASSIFICATIONS

model # instances # features (n) max(σ2i ) max(σ2) n· max(σ2)
CondInd 2000 8 0.25 0.06 0.48
Xor 2000 6 0.32 0.16 0.96
Group 2000 4 0.30 0.16 0.64
Cross 2000 4 0.43 0.14 0.92
Chess 2000 4 0.44 0.22 0.88
Sphere 2000 5 0.21 0.13 0.65
Disjunct 2000 5 0.10 0.06 0.30
Random 2000 4 0.19 0.12 0.48
Oncology 849 13 0.16 0.08 1.04
Annealing 798 38 0.08 0.02 0.76
Arrhythymia 452 279 0.03 10−3 0.28
Breast cancer 286 9 0.22 0.10 0.90
Hepatitis 155 19 0.20 0.05 0.95
Ionosphere 351 34 0.20 0.04 1.36
Iris 150 4 0.23 0.10 0.40
Monks1 432 6 0.29 0.12 0.72
Monks2 432 6 0.31 0.27 1.62
Monks3 432 6 0.20 0.07 0.42
Mushroom 8124 22 0.24 0.05 1.10
Nursery 12960 8 0.22 0.03 0.24
Soybean 307 35 0.20 0.01 0.35
Thyroid 7200 21 0.18 0.02 0.42
Zoo 101 17 0.25 0.02 0.14

Table 1: List of data sets used in our experiments. The variance of the most complex feature value
and the variance of most complex model to explain are included.

The list of data sets used in our experiments can be found in Table 1. The first 8 data sets are
synthetic data sets, designed specifically for testing explanation methods (see Robnik-Šikonja and
Kononenko, 2008; Štrumbelj et al., 2009). The synthetic data sets contain the following concepts:
conditionally independent features (CondInd), the xor problem (Xor, Cross, Chess), irrelevant fea-
tures only (Random), disjunction (Disjunct, Sphere), and spatially clustered class values (Group).
The Oncology data set is a real-world oncology data set provided by the Institute of Oncology,
Ljubljana. To conserve space, we do not provide all the details about this data set, but we do use an
instance from it as an illustrative example. Those interested in a more detailed description of this
data set and how our previous explanation method is successfully applied in practice can refer to
our previous work (Štrumbelj et al., 2009). The remaining 14 data sets are from the UCI machine
learning repository (Asuncion and Newman, 2009).

The goal of our first experiment is to illustrate how approximated contributions converge to the
actual values. The fact that they do is already evident from the theoretical analysis. However, the
reader might find useful this additional information about the behavior of the approximation error.
The following procedure is used. For each data set we use half of the instances for training and
half for testing the explanation method. For each data set/classifier pair, we train the classifier on
the training set and use both the explanation method and its approximation on each test instance.
For the approximation method the latter part is repeated several times, each time with a different
setting of how many samples are drawn per feature. Only synthetic data sets were used in this
procedure, because the smaller number of features allows us to compute the actual contributions.
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Figure 2: Mean, 99th-percentile, and maximum errors for several data set/classifier pairs and across
different settings of how many samples are drawn per feature. Note that the error is the
absolute difference between the approximated and actual contribution of a feature’s value.
The maximum error is the largest such observed difference across all instances.

Some of the results of this experiment are shown in Fig. 2. We can see that it only takes about a
thousand of samples per feature to achieve a reasonably low approximation error. When over 10000
samples are drawn, all the contributions across all features and all test instances are very close to the
actual contributions. From the discussion of the approximation error, we can see that the number
of samples depends on the variance in the model’s output, which in turn directly depends on how
much the model has learned. Therefore, it takes only a few samples for a good approximation when
explaining a model which has acquired little or no knowledge. This might be either due to the model
not being able to learn the concepts behind the data set or because there are no concepts to learn.
A few such examples are the Naive Bayes model on the Group data set (model’s accuracy: 0.32,
relative freq. of majority class: 0.33), the Decision Tree on Monks2 (acc. 0.65 , rel. freq. 0.67), and
Logistic Regression on the Random data set (acc. 0.5 , rel. freq. 0.5). On the other hand, if a model
successfully learns from the data set, it requires more samples to explain. For example, Naive Bayes
on CondInd (acc. 0.92 , rel. freq. 0.50) and a Decision Tree on Sphere (acc. 0.80 , rel. freq. 0.50).
In some cases a model acquires incorrect knowledge or over-fits the data set. One such example is
the ANN model, which was allowed to over-fit the Random data set (acc. 0.5 , rel. freq. 0.5). In
this case the method explains what the model has learned, regardless of whether the knowledge is
correct or not. And although the explanations would not tell us much about the concepts behind
the data set (we conclude from the model’s performance, that it’s knowledge is useless), they would
reveal what the model has learned, which is the purpose of an explanation method.

In our second experiment we measure sample variances and classification running times. These
will provide insight into how much time is needed for a good approximation. We use the same
procedure as before, on all data sets, using only the approximation method. We draw 50000 samples
per feature. Therefore, the total number of samples for each data set/classifier pair is: 50000n times
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Figure 3: Visualization of explanation running times across all data set/classifier pairs.

the number of test instances, which is sufficient for a good estimate of classification times and
variances. The maximum σ2i in Table 1 reveal that the crisp features of synthetic data sets have
higher variance and are more difficult to explain than features from real-world data sets. Explaining
the prediction of the ANN model for an instance Monks2 is the most complex explanation (that
is, requires the most samples - see Fig. 2), which is understandable given the complexity of the
Monks2 concept (class label = 1 iff exactly two feature values are 1). Note that most maximum
values are achieved when explaining ANN.

From the data gathered in our second experiment, we generate Fig. 3, which shows the time
needed to provide an explanation with the desired error 〈99%,0.01〉. For smaller data sets (smaller in
the number of features) the explanation is generated almost instantly. For larger data sets, generating
an explanation takes less than a minute, with the exception of bstNB on a few data sets and the ANN
model on the Mushroom data set. These two models require more time for a single classification.

The Arrhythmia data set, with its 279 features, is an example of a data set, where the explanation
can not be generated in some sensible time. For example, it takes more than an hour to generate
an explanation for a prediction of the bstNB model. The explanation method is therefore less ap-
propriate for explaining models which are built on several hundred features or more. Arguably,
providing a comprehensible explanation involving a hundred or more features is a problem in its
own right and even inherently transparend models become less comprehensible with such a large
number of features. However, the focus of this paper is on providing an effective and general expla-
nation method, which is computationally feasible on the majority of data sets we encounter. Also
note that large data sets are often reduced to a smaller number of features in the preprocessing step
of data acquisition before a learning algorithm is applied. Therefore, when considering the number
of features the explanation method can still handle, we need not count irrelevant features, which are
not included in the final model.

4.1 Example Explanation

Unlike running times and approximation errors, the usefulness and intuitiveness of the generated
explanations is a more subjective matter. In this section we try to illustrate the usefulness of the
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(a) NB model (b) bstDT model

Figure 4: The boosting model correctly learns the concepts of the Monks1 data set, while Naive
Bayes does not and misclassifies this instance.

method’s explanations with several examples. When interpreting the explanations, we take into
account both the magnitude and the sign of the contribution. If a feature-value has a larger contribu-
tion than another it has a larger influence on the model’s prediction. If a feature-value’s contribution
has a positive sign, it contributes towards increasing the model’s output (probability, score, rank,
...). A negative sign, on the other hand, means that the feature-value contributes towards decreas-
ing the model’s output. An additional advantage of the generated contributions is that they sum
up to the difference between the model’s output prediction and the model’s expected output, given
no information about the values of the features. Therefore, we can discern how much the model’s
output moves when given the feature values for the instance, which features are responsible for this
change, and the magnitude of an individual feature-value’s influence. These examples show how
the explanations can be interpreted. They were generated for various classification models and data
sets, to show the advantage of having a general explanation method.

The first pair of examples (see Fig. 4) are explanations for an instance from the first of the
well-known Monks data sets. For this data set the class label is 1 iff attr1 and attr2 are equal
or attr5 equals 1. The other 3 features are irrelevant. The NB model, due to its assumption of
conditional independence, does not learn the importance of equality between the first two features
and misclassifies the instance. However, both NB and bstDT learn the importance of the fifth feature
and explanations reveal that value 2 for the fifth feature speaks against class 1.

The second pair of examples (see Fig. 5) is from the Zoo data set. Both models predict that
the instance represents a bird. Why? The explanations reveal that DT predicts this animal is a bird,
because it has feathers. The more complex RF model predicts its a bird, because it has two legs,
but also because the animal is toothless, with feathers, without hair, etc... These first two pairs of
examples illustrate how the explanations reflect what the model has learnt and how we can compare
explanations from different classifiers.

In our experiments we are not interested in the prediction quality of the classifiers and do not put
much effort into optimizing their performance. Some examples of underfitting and overfitting are
actually desirable as they allow us to inspect if the explanation method reveals what the classifier
has (or has not) learned. For example, Fig. 6(a) shows the explanation of the logREG model’s
prediction for an instance from the Xor data set. Logistic regression is unable to learn the exclusive-
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(a) DT model (b) RF model

Figure 5: Explanations for an instance from the Zoo data set. The DT model uses a single feature,
while several feature values influence the RT model. Feature values with contributions
≤ 0.01 have been removed for clarity.

or concept of this data set (for this data set the class label is the odd parity bit for the first three
feature values) and the explanation is appropriate. On the other hand, SVM manages to overfit the
Random data set and finds concepts where there are none (see Fig. 6(b)).

Fig. 7(a) is an explanation for ANN’s prediction for the introductory instance from the Titanic
data set (see Fig. 1). Our explanation for the NB model’s prediction (Fig. 7(b)) is very similar to the
inherent explanation (taking into account that a logarithm is applied in the inherent explanation).
The ANN model, on the other hand, predicts a lower chance of survival, because being a passenger
from the 3rd class has a much higher negative contribution for ANN.

Our final example illustrates how the method can be used in real-world situations. Fig. 8 is an
explanation for RT’s prediction regarding whether breast cancer will (class = 1) or will not (class
= 2) recur for this patient. According to RF it is more likely that cancer will not recur and the
explanation indicates that this is mostly due to a low number of positive lymph nodes (nLymph).
The lack of lymphovascular invasion (LVI) or tissue invasion (invasive) also contributes positively.
A high ratio of removed lymph nodes was positive (posRatio) has the only significant negative
contribution. Oncologists found this type of explanation very useful.

5. Conclusion

In the introductive section, we asked if an efficient and effective general explanation method for
classifiers’ predictions can be made. In conclusion, we can answer yes. Using only the input and
output of a classifier we decompose the changes in its prediction into contributions of individual
feature values. These contributions correspond to known concepts from coalitional game theory.
Unlike with existing methods, the resulting theoretical properties of the proposed method guarantee
that no matter which concepts the classifier learns, the generated contributions will reveal the influ-
ence of feature values. Therefore, the method can effectively be used on any classifier. As we show
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(a) logREG model (b) SVM model

Figure 6: The left hand side explanation indicates that the feature values have no significant influ-
ence on the logREG model on the Xor data set. The right hand side explanation shows
how SVM overfits the Random data set.

(a) ANN model (b) NB model

Figure 7: Two explanations for the Titanic instance from the introduction. The left hand side ex-
planation is for the ANN model. The right hand side explanation is for the NB model.

Figure 8: An explanation or the RF model’s prediction for a patient from the Oncology data set.
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on several examples, the method can be used to visually inspect models’ predictions and compare
the predictions of different models.

The proposed approximation method successfully deals with the initial exponential time com-
plexity, makes the method efficient, and feasible for practical use. As part of further work we intend
to research whether we can efficiently not only compute the contributions, which already reflect
the interactions, but also highlight (at least) the most important individual interactions as well. A
minor issue left to further work is extending the approximation with an algorithm for optimizing the
number of samples we take. It would also be interesting to explore the possibility of applying the
same principles to the explanation of regression models.
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Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley value based on
sampling. Computers and Operations Research, 2008. (in print, doi: 10.1016/j.cor.2008.04.004).

Shay Cohen, Gideon Dror, and Eytan Ruppin. Feature selection via coalitional game theory. Neural
Computation, 19(7):1939–1961, 2007.

Lutz Hamel. Visualization of support vector machines with unsupervised learning. In Computa-
tional Intelligence in Bioinformatics and Computational Biology, pages 1–8. IEEE, 2006.

Aleks Jakulin, Martin Možina, Janez Demšar, Ivan Bratko, and Blaž Zupan. Nomograms for vi-
sualizing support vector machines. In KDD ’05: Proceeding of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, pages 108–117, New York,
NY, USA, 2005. ACM. ISBN 1-59593-135-X.

Alon Keinan, Ben Sandbank, Claus C. Hilgetag, Isaac Meilijson, and Eytan Ruppin. Fair attribution
of functional contribution in artificial and biological networks. Neural Computation, 16(9):1887–
1915, 2004.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence
journal, 97(1–2):273–324, 1997.

Igor Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective.
Artificial Intelligence in Medicine, 23:89–109, 2001.

Igor Kononenko and Matjaz Kukar. Machine Learning and Data Mining: Introduction to Principles
and Algorithms. Horwood publ., 2007.

17
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Abstract
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is
widely used in machine learning, neuroscience, signal processing, and statistics. This paper fo-
cuses on the large-scale matrix factorization problem that consists of learning the basis set in order
to adapt it to specific data. Variations of this problem include dictionary learning in signal pro-
cessing, non-negative matrix factorization and sparse principal component analysis. In this paper,
we propose to address these tasks with a new online optimization algorithm, based on stochastic
approximations, which scales up gracefully to large data sets with millions of training samples, and
extends naturally to various matrix factorization formulations, making it suitable for a wide range
of learning problems. A proof of convergence is presented, along with experiments with natural
images and genomic data demonstrating that it leads to state-of-the-art performance in terms of
speed and optimization for both small and large data sets.
Keywords: basis pursuit, dictionary learning, matrix factorization, online learning, sparse cod-
ing, sparse principal component analysis, stochastic approximations, stochastic optimization, non-
negative matrix factorization

1. Introduction

The linear decomposition of a signal using a few atoms of a learned dictionary instead of a pre-
defined one—based on wavelets (Mallat, 1999) for example—has recently led to state-of-the-art
results in numerous low-level signal processing tasks such as image denoising (Elad and Aharon,
2006; Mairal et al., 2008b), texture synthesis (Peyré, 2009) and audio processing (Grosse et al.,
2007; Févotte et al., 2009; Zibulevsky and Pearlmutter, 2001), as well as higher-level tasks such as
image classification (Raina et al., 2007; Mairal et al., 2008a, 2009b; Bradley and Bagnell, 2009;
Yang et al., 2009), showing that sparse learned models are well adapted to natural signals. Unlike
decompositions based on principal component analysis and its variants, these models do not im-

c©2010 Julien Mairal, Francis Bach, Jean Ponce and Guillermo Sapiro.
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pose that the basis vectors be orthogonal, allowing more flexibility to adapt the representation to
the data.1 In machine learning and statistics, slightly different matrix factorization problems are
formulated in order to obtain a few interpretable basis elements from a set of data vectors. This in-
cludes non-negative matrix factorization and its variants (Lee and Seung, 2001; Hoyer, 2002, 2004;
Lin, 2007), and sparse principal component analysis (Zou et al., 2006; d’Aspremont et al., 2007,
2008; Witten et al., 2009; Zass and Shashua, 2007). As shown in this paper, these problems have
strong similarities; even though we first focus on the problem of dictionary learning, the algorithm
we propose is able to address all of them. While learning the dictionary has proven to be critical to
achieve (or improve upon) state-of-the-art results in signal and image processing, effectively solv-
ing the corresponding optimization problem is a significant computational challenge, particularly in
the context of large-scale data sets that may include millions of training samples. Addressing this
challenge and designing a generic algorithm which is capable of efficiently handling various matrix
factorization problems, is the topic of this paper.

Concretely, consider a signal x in Rm. We say that it admits a sparse approximation over a
dictionary D in Rm×k, with k columns referred to as atoms, when one can find a linear combination
of a “few” atoms from D that is “close” to the signal x. Experiments have shown that modelling a
signal with such a sparse decomposition (sparse coding) is very effective in many signal processing
applications (Chen et al., 1999). For natural images, predefined dictionaries based on various types
of wavelets (Mallat, 1999) have also been used for this task. However, learning the dictionary
instead of using off-the-shelf bases has been shown to dramatically improve signal reconstruction
(Elad and Aharon, 2006). Although some of the learned dictionary elements may sometimes “look
like” wavelets (or Gabor filters), they are tuned to the input images or signals, leading to much better
results in practice.

Most recent algorithms for dictionary learning (Olshausen and Field, 1997; Engan et al., 1999;
Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007) are iterative batch procedures,
accessing the whole training set at each iteration in order to minimize a cost function under some
constraints, and cannot efficiently deal with very large training sets (Bottou and Bousquet, 2008),
or dynamic training data changing over time, such as video sequences. To address these issues, we
propose an online approach that processes the signals, one at a time, or in mini-batches. This is
particularly important in the context of image and video processing (Protter and Elad, 2009; Mairal
et al., 2008c), where it is common to learn dictionaries adapted to small patches, with training
data that may include several millions of these patches (roughly one per pixel and per frame). In
this setting, online techniques based on stochastic approximations are an attractive alternative to
batch methods (see, e.g., Bottou, 1998; Kushner and Yin, 2003; Shalev-Shwartz et al., 2009). For
example, first-order stochastic gradient descent with projections on the constraint set (Kushner and
Yin, 2003) is sometimes used for dictionary learning (see Aharon and Elad, 2008; Kavukcuoglu
et al., 2008 for instance). We show in this paper that it is possible to go further and exploit the
specific structure of sparse coding in the design of an optimization procedure tuned to this problem,
with low memory consumption and lower computational cost than classical batch algorithms. As
demonstrated by our experiments, it scales up gracefully to large data sets with millions of training
samples, is easy to use, and is faster than competitive methods.

The paper is structured as follows: Section 2 presents the dictionary learning problem. The
proposed method is introduced in Section 3, with a proof of convergence in Section 4. Section 5

1. Note that the terminology “basis” is slightly abusive here since the elements of the dictionary are not necessarily
linearly independent and the set can be overcomplete—that is, have more elements than the signal dimension.
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extends our algorithm to various matrix factorization problems that generalize dictionary learning,
and Section 6 is devoted to experimental results, demonstrating that our algorithm is suited to a wide
class of learning problems.

1.1 Contributions

This paper makes four main contributions:

• We cast in Section 2 the dictionary learning problem as the optimization of a smooth non-
convex objective function over a convex set, minimizing the (desired) expected cost when the
training set size goes to infinity, and propose in Section 3 an iterative online algorithm that
solves this problem by efficiently minimizing at each step a quadratic surrogate function of
the empirical cost over the set of constraints. This method is shown in Section 4 to converge
almost surely to a stationary point of the objective function.

• As shown experimentally in Section 6, our algorithm is significantly faster than previous ap-
proaches to dictionary learning on both small and large data sets of natural images. To demon-
strate that it is adapted to difficult, large-scale image-processing tasks, we learn a dictionary
on a 12-Megapixel photograph and use it for inpainting—that is, filling some holes in the
image.

• We show in Sections 5 and 6 that our approach is suitable to large-scale matrix factorization
problems such as non-negative matrix factorization and sparse principal component analysis,
while being still effective on small data sets.

• To extend our algorithm to several matrix factorization problems, we propose in Appendix
B efficient procedures for projecting onto two convex sets, which can be useful for other
applications that are beyond the scope of this paper.

1.2 Notation

We define for p≥ 1 the !p norm of a vector x in Rm as ||x||p
!
= (∑m

i=1 |x[i]|p)1/p, where x[i] denotes
the i-th coordinate of x and ||x||∞

!
=maxi=1,...,m |x[i]|= limp→∞ ||x||p. We also define the !0 pseudo-

norm as the sparsity measure which counts the number of nonzero elements in a vector:2 ||x||0
!
=

#{i s.t. x[i] %= 0}= limp→0+(∑m
i=1 |x[i]|p). We denote the Frobenius norm of a matrix X in Rm×n by

||X||F
!
= (∑m

i=1∑
n
j=1X[i, j]2)1/2. For a sequence of vectors (or matrices) xt and scalars ut , we write

xt = O(ut) when there exists a constant K > 0 so that for all t, ||xt ||2 ≤ Kut . Note that for finite-
dimensional vector spaces, the choice of norm is essentially irrelevant (all norms are equivalent).
Given two matrices A in Rm1×n1 and B in Rm2×n2 , A⊗B denotes the Kronecker product between A
and B, defined as the matrix in Rm1m2×n1n2 , defined by blocks of sizes m2×n2 equal to A[i, j]B. For
more details and properties of the Kronecker product, see Golub and Van Loan (1996), and Magnus
and Neudecker (1999).

2. Note that it would be more proper to write ||x||00 instead of ||x||0 to be consistent with the traditional notation ||x||p.
However, for the sake of simplicity, we will keep this notation unchanged.
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2. Problem Statement

Classical dictionary learning techniques for sparse representation (Olshausen and Field, 1997; En-
gan et al., 1999; Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007) consider a
finite training set of signals X= [x1, . . . ,xn] in Rm×n and optimize the empirical cost function

fn(D)
!
=
1
n

n

∑
i=1

!(xi,D), (1)

where D in Rm×k is the dictionary, each column representing a basis vector, and ! is a loss function
such that !(x,D) should be small if D is “good” at representing the signal x in a sparse fashion.
The number of samples n is usually large, whereas the signal dimension m is relatively small, for
example, m= 100 for 10×10 image patches, and n≥ 100,000 for typical image processing appli-
cations. In general, we also have k( n (e.g., k = 200 for n= 100,000), but each signal only uses a
few elements of D in its representation, say 10 for instance. Note that, in this setting, overcomplete
dictionaries with k > m are allowed. As others (see for example Lee et al., 2007), we define !(x,D)
as the optimal value of the !1 sparse coding problem:

!(x,D)
!
= min

α∈Rk

1
2
||x−Dα||22+λ||α||1, (2)

where λ is a regularization parameter. This problem is also known as basis pursuit (Chen et al.,
1999), or the Lasso (Tibshirani, 1996).3 It is well known that !1 regularization yields a sparse
solution for α, but there is no direct analytic link between the value of λ and the corresponding
effective sparsity ||α||0. To prevent D from having arbitrarily large values (which would lead to
arbitrarily small values of α), it is common to constrain its columns d1, . . . ,dk to have an !2-norm
less than or equal to one. We will call C the convex set of matrices verifying this constraint:

C
!
= {D ∈ R

m×k s.t. ∀ j = 1, . . . ,k, dTj d j ≤ 1}.

Note that the problem of minimizing the empirical cost fn(D) is not convex with respect to D. It
can be rewritten as a joint optimization problem with respect to the dictionary D and the coefficients
α= [α1, . . . ,αn] in Rk×n of the sparse decompositions, which is not jointly convex, but convex with
respect to each of the two variables D and α when the other one is fixed:

min
D∈C ,α∈Rk×n

n

∑
i=1

(1
2
||xi−Dαi||22+λ||αi||1

)

. (4)

This can be rewritten as a matrix factorization problem with a sparsity penalty:

min
D∈C ,α∈Rk×n

1
2
||X−Dα||2F +λ||α||1,1,

3. To be more precise, the original formulation of the Lasso is a constrained version of Eq. (2), with a constraint on the
!1-norm of α:

min
α∈Rk

1
2
||x−Dα||22 s.t. ||α||1 ≤ T. (3)

Both formulations are equivalent in the sense that for every λ> 0 (respectively every T > 0), there exists a scalar T
(respectively λ) so that Equations (2) and (3) admit the same solutions.
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where, as before, X = [x1, . . . ,xn] is the matrix of data vectors, and ||α||1,1 denotes the !1 norm of
the matrix α—that is, the sum of the magnitude of its coefficients. A natural approach to solving
this problem is to alternate between the two variables, minimizing over one while keeping the other
one fixed, as proposed by Lee et al. (2007) (see also Engan et al. 1999 and Aharon et al. 2006, who
use !0 rather than !1 penalties, or Zou et al. 2006 for the problem of sparse principal component
analysis).4 Since the computation of the coefficients vectors αi dominates the cost of each iteration
in this block-coordinate descent approach, a second-order optimization technique can be used to
accurately estimate D at each step when α is fixed.

As pointed out by Bottou and Bousquet (2008), however, one is usually not interested in the
minimization of the empirical cost fn(D) with high precision, but instead in the minimization of the
expected cost

f (D)
!
= Ex[!(x,D)] = lim

n→∞
fn(D) a.s.,

where the expectation (which is supposed finite) is taken relative to the (unknown) probability dis-
tribution p(x) of the data.5 In particular, given a finite training set, one should not spend too much
effort on accurately minimizing the empirical cost, since it is only an approximation of the ex-
pected cost. An “inaccurate” solution may indeed have the same or better expected cost than a
“well-optimized” one. Bottou and Bousquet (2008) further show that stochastic gradient algorithms,
whose rate of convergence is very poor in conventional optimization terms, may in fact in certain
settings be shown both theoretically and empirically to be faster in reaching a solution with low
expected cost than second-order batch methods. With large training sets, the risk of overfitting is
lower, but classical optimization techniques may become impractical in terms of speed or memory
requirements.

In the case of dictionary learning, the classical projected first-order projected stochastic gradient
descent algorithm (as used by Aharon and Elad 2008; Kavukcuoglu et al. 2008 for instance) consists
of a sequence of updates of D:

Dt =ΠC

[

Dt−1−δt∇D!(xt ,Dt−1)
]

,

where Dt is the estimate of the optimal dictionary at iteration t, δt is the gradient step, ΠC is the
orthogonal projector onto C , and the vectors xt are i.i.d. samples of the (unknown) distribution p(x).
Even though it is often difficult to obtain such i.i.d. samples, the vectors xt are in practice obtained
by cycling on a randomly permuted training set. As shown in Section 6, we have observed that
this method can be competitive in terms of speed compared to batch methods when the training set
is large and when δt is carefully chosen. In particular, good results are obtained using a learning
rate of the form δt

!
= a/(t+b), where a and b have to be well chosen in a data set-dependent way.

Note that first-order stochastic gradient descent has also been used for other matrix factorization
problems (see Koren et al., 2009 and references therein).

The optimization method we present in the next section falls into the class of online algorithms
based on stochastic approximations, processing one sample at a time (or a mini-batch), but further
exploits the specific structure of the problem to efficiently solve it by sequentially minimizing a
quadratic local surrogate of the expected cost. As shown in Section 3.5, it uses second-order infor-
mation of the cost function, allowing the optimization without any explicit learning rate tuning.

4. In our setting, as in Lee et al. (2007), we have preferred to use the convex !1 norm, that has empirically proven to be
better behaved in general than the !0 pseudo-norm for dictionary learning.

5. We use “a.s.” to denote almost sure convergence.
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3. Online Dictionary Learning

We present in this section the basic components of our online algorithm for dictionary learning
(Sections 3.1–3.3), as well as a few minor variants which speed up our implementation in practice
(Section 3.4) and an interpretation in terms of a Kalman algorithm (Section 3.5).

3.1 Algorithm Outline

Our procedure is summarized in Algorithm 1. Assuming that the training set is composed of
i.i.d. samples of a distribution p(x), its inner loop draws one element xt at a time, as in stochastic
gradient descent, and alternates classical sparse coding steps for computing the decomposition αt
of xt over the dictionary Dt−1 obtained at the previous iteration, with dictionary update steps where
the new dictionary Dt is computed by minimizing over C the function

f̂t(D)
!
=
1
t

t

∑
i=1

(1
2
||xi−Dαi||22+λ||αi||1

)

, (5)

and the vectors αi for i < t have been computed during the previous steps of the algorithm. The
motivation behind this approach is twofold:

• The function f̂t , which is quadratic in D, aggregates the past information with a few sufficient
statistics obtained during the previous steps of the algorithm, namely the vectors αi, and it is
easy to show that it upperbounds the empirical cost ft(Dt) from Eq. (1). One key aspect of
our convergence analysis will be to show that f̂t(Dt) and ft(Dt) converge almost surely to the
same limit, and thus that f̂t acts as a surrogate for ft .

• Since f̂t is close to f̂t−1 for large values of t, so are Dt and Dt−1, under suitable assumptions,
which makes it efficient to use Dt−1 as warm restart for computing Dt .

3.2 Sparse Coding

The sparse coding problem of Eq. (2) with fixed dictionary is an !1-regularized linear least-squares
problem. A number of recent methods for solving this type of problems are based on coordinate
descent with soft thresholding (Fu, 1998; Friedman et al., 2007; Wu and Lange, 2008). When the
columns of the dictionary have low correlation, we have observed that these simple methods are
very efficient. However, the columns of learned dictionaries are in general highly correlated, and
we have empirically observed that these algorithms become much slower in this setting. This has
led us to use instead the LARS-Lasso algorithm, a homotopy method (Osborne et al., 2000; Efron
et al., 2004) that provides the whole regularization path—that is, the solutions for all possible values
of λ. With an efficient Cholesky-based implementation (see Efron et al., 2004; Zou and Hastie,
2005) for brief descriptions of such implementations), it has proven experimentally at least as fast
as approaches based on soft thresholding, while providing the solution with a higher accuracy and
being more robust as well since it does not require an arbitrary stopping criterion.

3.3 Dictionary Update

Our algorithm for updating the dictionary uses block-coordinate descent with warm restarts (see
Bertsekas, 1999). One of its main advantages is that it is parameter free and does not require any
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Algorithm 1 Online dictionary learning.
Require: x ∈ Rm ∼ p(x) (random variable and an algorithm to draw i.i.d samples of p), λ ∈ R

(regularization parameter), D0 ∈ Rm×k (initial dictionary), T (number of iterations).
1: A0 ∈ Rk×k ← 0, B0 ∈ Rm×k ← 0 (reset the “past” information).
2: for t = 1 to T do
3: Draw xt from p(x).
4: Sparse coding: compute using LARS

αt
!
= argmin

α∈Rk

1
2
||xt−Dt−1α||22+λ||α||1.

5: At ← At−1+αtαTt .
6: Bt ← Bt−1+xtαTt .
7: Compute Dt using Algorithm 2, with Dt−1 as warm restart, so that

Dt
!
= argmin

D∈C

1
t

t

∑
i=1

(1
2
||xi−Dαi||22+λ||αi||1

)

,

= argmin
D∈C

1
t

(1
2
Tr(DTDAt)−Tr(DTBt)

)

. (6)

8: end for
9: Return DT (learned dictionary).

Algorithm 2 Dictionary Update.
Require: D= [d1, . . . ,dk] ∈ Rm×k (input dictionary),

A= [a1, . . . ,ak] ∈ Rk×k

B= [b1, . . . ,bk] ∈ Rm×k

1: repeat
2: for j = 1 to k do
3: Update the j-th column to optimize for (6):

u j ←
1

A[ j, j]
(b j−Da j)+d j,

d j ←
1

max(||u j||2,1)
u j.

(7)

4: end for
5: until convergence
6: Return D (updated dictionary).

learning rate tuning. Moreover, the procedure does not require to store all the vectors xi and αi, but
only the matrices At = ∑ti=1αiα

T
i in Rk×k and Bt = ∑ti=1 xiαTi in Rm×k. Concretely, Algorithm 2

sequentially updates each column of D. A simple calculation shows that solving (6) with respect
to the j-th column d j, while keeping the other ones fixed under the constraint dTj d j ≤ 1, amounts
to an orthogonal projection of the vector u j defined in Eq. (7), onto the constraint set, namely
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the !2-ball here, which is solved by Eq. (7). Since the convex optimization problem (6) admits
separable constraints in the updated blocks (columns), convergence to a global optimum is guaran-
teed (Bertsekas, 1999). In practice, the vectors αi are sparse and the coefficients of the matrix At
are often concentrated on the diagonal, which makes the block-coordinate descent more efficient.6
After a few iterations of our algorithm, using the value of Dt−1 as a warm restart for computing Dt
becomes effective, and a single iteration of Algorithm 2 has empirically found to be sufficient to
achieve convergence of the dictionary update step. Other approaches have been proposed to up-
date D: For instance, Lee et al. (2007) suggest using a Newton method on the dual of Eq. (6), but
this requires inverting a k× k matrix at each Newton iteration, which is impractical for an online
algorithm.

3.4 Optimizing the Algorithm

We have presented so far the basic building blocks of our algorithm. This section discusses a few
simple improvements that significantly enhance its performance.

3.4.1 HANDLING FIXED-SIZE DATA SETS

In practice, although it may be very large, the size of the training set often has a predefined finite
size (of course this may not be the case when the data must be treated on the fly like a video stream
for example). In this situation, the same data points may be examined several times, and it is very
common in online algorithms to simulate an i.i.d. sampling of p(x) by cycling over a randomly
permuted training set (see Bottou and Bousquet, 2008 and references therein). This method works
experimentally well in our setting but, when the training set is small enough, it is possible to further
speed up convergence: In Algorithm 1, the matricesAt and Bt carry all the information from the past
coefficients α1, . . . ,αt . Suppose that at time t0, a signal x is drawn and the vector αt0 is computed. If
the same signal x is drawn again at time t > t0, then it is natural to replace the “old” information αt0
by the new vector αt in the matrices At and Bt—that is, At ← At−1 +αtαTt −αt0α

T
t0 and Bt ←

Bt−1+xtαTt −xtαTt0 . In this setting, which requires storing all the past coefficients αt0 , this method
amounts to a block-coordinate descent for the problem of minimizing Eq. (4). When dealing with
large but finite sized training sets, storing all coefficients αi is impractical, but it is still possible to
partially exploit the same idea, by removing the information from At and Bt that is older than two
epochs (cycles through the data), through the use of two auxiliary matrices A′

t and B′
t of size k× k

and m×k respectively. These two matrices should be built with the same rules as At and Bt , except
that at the end of an epoch, At and Bt are respectively replaced by A′

t and B′
t , while A′

t and B′
t are

set to 0. Thanks to this strategy, At and Bt do not carry any coefficients αi older than two epochs.

3.4.2 SCALING THE “PAST” DATA

At each iteration, the “new” information αt that is added to the matrices At and Bt has the same
weight as the “old” one. A simple and natural modification to the algorithm is to rescale the “old”
information so that newer coefficients αt have more weight, which is classical in online learning.
For instance, Neal and Hinton (1998) present an online algorithm for EM, where sufficient statistics
are aggregated over time, and an exponential decay is used to forget out-of-date statistics. In this

6. We have observed that this is true when the columns of D are not too correlated. When a group of columns in D are
highly correlated, the coefficients of the matrix At concentrate instead on the corresponding principal submatrices
of At .
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paper, we propose to replace lines 5 and 6 of Algorithm 1 by

At ← βtAt−1+αtα
T
t ,

Bt ← βtBt−1+xtαTt ,

where βt
!
=

(

1− 1
t
)ρ, and ρ is a new parameter. In practice, one can apply this strategy after a few

iterations, once At is well-conditioned. Tuning ρ improves the convergence rate, when the training
sets are large, even though, as shown in Section 6, it is not critical. To understand better the effect
of this modification, note that Eq. (6) becomes

Dt
!
= argmin

D∈C

1
∑tj=1( j/t)ρ

t

∑
i=1

( i
t

)ρ(1
2
||xi−Dαi||22+λ||αi||1

)

,

= argmin
D∈C

1
∑tj=1( j/t)ρ

(1
2
Tr(DTDAt)−Tr(DTBt)

)

.

When ρ = 0, we obtain the original version of the algorithm. Of course, different strategies and
heuristics could also be investigated. In practice, this parameter ρ is useful for large data sets only
(n ≥ 100000). For smaller data sets, we have not observed a better performance when using this
extension.

3.4.3 MINI-BATCH EXTENSION

In practice, we can also improve the convergence speed of our algorithm by drawing η> 1 signals
at each iteration instead of a single one, which is a classical heuristic in stochastic gradient descent
algorithms. In our case, this is further motivated by the fact that the complexity of computing η
vectors αi is not linear in η. A Cholesky-based implementation of LARS-Lasso for decomposing a
single signal has a complexity ofO(kms+ks2), where s is the number of nonzero coefficients. When
decomposing η signals, it is possible to pre-compute the GrammatrixDTt Dt and the total complexity
becomes O(k2m+η(km+ks2)), which is much cheaper than η times the previous complexity when
η is large enough and s is small. Let us denote by xt,1, . . . ,xt,η the signals drawn at iteration t. We
can now replace lines 5 and 6 of Algorithm 1 by

At ← At−1+
1
η

η

∑
i=1

αt,iαTt,i,

Bt ← Bt−1+
1
η

η

∑
i=1
xt,iαTt,i.

3.4.4 SLOWING DOWN THE FIRST ITERATIONS

As in the case of stochastic gradient descent, the first iterations of our algorithm may update the
parameters with large steps, immediately leading to large deviations from the initial dictionary.
To prevent this phenomenon, classical implementations of stochastic gradient descent use gradient
steps of the form a/(t+b), where b “reduces” the step size. An initialization of the form A0 = t0I
and B0 = t0D0 with t0 ≥ 0 also slows down the first steps of our algorithm by forcing the solution of
the dictionary update to stay close to D0. As shown in Section 6, we have observed that our method
does not require this extension to achieve good results in general.
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3.4.5 PURGING THE DICTIONARY FROM UNUSED ATOMS

Every dictionary learning technique sometimes encounters situations where some of the dictionary
atoms are never (or very seldom) used, which typically happens with a very bad initialization. A
common practice is to replace these during the optimization by randomly chosen elements of the
training set, which solves in practice the problem in most cases. For more difficult and highly
regularized cases, it is also possible to choose a continuation strategy consisting of starting from an
easier, less regularized problem, and gradually increasing λ. This continuation method has not been
used in this paper.

3.5 Link with Second-order Stochastic Gradient Descent

For unconstrained learning problems with twice differentiable expected cost, the second-order stochas-
tic gradient descent algorithm (see Bottou and Bousquet, 2008 and references therein) improves
upon its first-order version, by replacing the learning rate by the inverse of the Hessian. When this
matrix can be computed or approximated efficiently, this method usually yields a faster convergence
speed and removes the problem of tuning the learning rate. However, it cannot be applied easily
to constrained optimization problems and requires at every iteration an inverse of the Hessian. For
these two reasons, it cannot be used for the dictionary learning problem, but nevertheless it shares
some similarities with our algorithm, which we illustrate with the example of a different problem.

Suppose that two major modifications are brought to our original formulation: (i) the vectors αt
are independent of the dictionary D—that is, they are drawn at the same time as xt ; (ii) the op-
timization is unconstrained—that is, C = Rm×k. This setting leads to the least-square estimation
problem

min
D∈Rm×k

E(x,α)

[

||x−Dα||22
]

, (8)

which is of course different from the original dictionary learning formulation. Nonetheless, it is
possible to address Eq. (8) with our method and show that it amounts to using the recursive formula

Dt ← Dt−1+(xt−Dt−1αt)αTt
( t

∑
i=1

αiαTi
)−1

,

which is equivalent to a second-order stochastic gradient descent algorithm: The gradient obtained
at (xt ,αt) is the term−(xt−Dt−1αt)αTt , and the sequence (1/t)∑ti=1αiαTi converges to the Hessian
of the objective function. Such sequence of updates admit a fast implementation called Kalman
algorithm (see Kushner and Yin, 2003 and references therein).

4. Convergence Analysis

The main tools used in our proofs are the convergence of empirical processes (Van der Vaart, 1998)
and, following Bottou (1998), the convergence of quasi-martingales (Fisk, 1965). Our analysis is
limited to the basic version of the algorithm, although it can in principle be carried over to the
optimized versions discussed in Section 3.4. Before proving our main result, let us first discuss the
(reasonable) assumptions under which our analysis holds.
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4.1 Assumptions

(A) The data admits a distribution with compact support K. Assuming a compact support for
the data is natural in audio, image, and video processing applications, where it is imposed by the
data acquisition process.
(B) The quadratic surrogate functions f̂t are strictly convex with lower-bounded Hessians. We
assume that the smallest eigenvalue of the positive semi-definite matrix 1

t At defined in Algorithm 1
is greater than or equal to some constant κ1. As a consequence, At is invertible and f̂t is strictly
convex with Hessian I⊗ 2

t At . This hypothesis is in practice verified experimentally after a few it-
erations of the algorithm when the initial dictionary is reasonable, consisting for example of a few
elements from the training set, or any common dictionary, such as DCT (bases of cosines products)
or wavelets (Mallat, 1999). Note that it is easy to enforce this assumption by adding a term κ1

2 ||D||
2
F

to the objective function, which is equivalent to replacing the positive semi-definite matrix 1
t At by

1
t At +κ1I. We have omitted for simplicity this penalization in our analysis.
(C) A particular sufficient condition for the uniqueness of the sparse coding solution is satis-
fied. Before presenting this assumption, let us briefly recall classical optimality conditions for the
!1 decomposition problem in Eq. (2) (Fuchs, 2005). For x in K and D in C , α in Rk is a solution of
Eq. (2) if and only if

dTj (x−Dα) = λsign(α[ j]) if α[ j] %= 0,
|dTj (x−Dα)|≤ λ otherwise.

(9)

Let α" be such a solution. Denoting by Λ the set of indices j such that |dTj (x−Dα")| = λ, and DΛ
the matrix composed of the columns from D restricted to the set Λ, it is easy to see from Eq. (9) that
the solution α" is necessary unique if (DTΛDΛ) is invertible and that

α"
Λ = (DTΛDΛ)−1(DTΛx−λεΛ), (10)

where α"
Λ is the vector containing the values of α" corresponding to the setΛ and εΛ[ j] is equal to the

sign of α"
Λ[ j] for all j. With this preliminary uniqueness condition in hand, we can now formulate

our assumption: We assume that there exists κ2 > 0 such that, for all x in K and all dictionaries D
in the subset of C considered by our algorithm, the smallest eigenvalue of DTΛDΛ is greater than
or equal to κ2. This guarantees the invertibility of (DTΛDΛ) and therefore the uniqueness of the
solution of Eq. (2). It is of course easy to build a dictionary D for which this assumption fails.
However, having DTΛDΛ invertible is a common assumption in linear regression and in methods
such as the LARS algorithm aimed at solving Eq. (2) (Efron et al., 2004). It is also possible to
enforce this condition using an elastic net penalization (Zou and Hastie, 2005), replacing ||α||1 by
||α||1+ κ2

2 ||α||
2
2 and thus improving the numerical stability of homotopy algorithms, which is the

choice made by Zou et al. (2006). Again, we have omitted this penalization in our analysis.

4.2 Main Results

Given assumptions (A)–(C), let us now show that our algorithm converges to a stationary point
of the objective function. Since this paper is dealing with non-convex optimization, neither our
algorithm nor any one in the literature is guaranteed to find the global optimum of the optimization
problem. However, such stationary points have often been found to be empirically good enough
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for practical applications, for example, for image restoration (Elad and Aharon, 2006; Mairal et al.,
2008b).

Our first result (Proposition 2 below) states that given (A)–(C), f (Dt) converges almost surely
and f (Dt)− f̂t(Dt) converges almost surely to 0, meaning that f̂t acts as a converging surrogate
of f . First, we prove a lemma to show that Dt−Dt−1 = O(1/t). It does not ensure the convergence
of Dt , but guarantees the convergence of the positive sum ∑∞

t=1 ||Dt −Dt−1||2F , a classical condition
in gradient descent convergence proofs (Bertsekas, 1999).

Lemma 1 [Asymptotic variations of Dt].
Assume (A)–(C). Then,

Dt+1−Dt = O
(1
t

)

a.s.

Proof This proof is inspired by Prop 4.32 of Bonnans and Shapiro (2000) on the Lipschitz regularity
of solutions of optimization problems. Using assumption (B), for all t, the surrogate f̂t is strictly
convex with a Hessian lower-bounded by κ1. Then, a short calculation shows that it verifies the
second-order growth condition

f̂t(Dt+1)− f̂t(Dt) ≥ κ1||Dt+1−Dt ||2F . (11)

Moreover,

f̂t(Dt+1)− f̂t(Dt) = f̂t(Dt+1)− f̂t+1(Dt+1)+ f̂t+1(Dt+1)− f̂t+1(Dt)+ f̂t+1(Dt)− f̂t(Dt)
≤ f̂t(Dt+1)− f̂t+1(Dt+1)+ f̂t+1(Dt)− f̂t(Dt),

where we have used that f̂t+1(Dt+1)− f̂t+1(Dt) ≤ 0 because Dt+1 minimizes f̂t+1 on C . Since
f̂t(D) = 1

t (
1
2 Tr(D

TDAt)−Tr(DTBt)), and ||D||F ≤
√
k, it is possible to show that f̂t − f̂t+1 is Lip-

schitz with constant ct = (1/t)(||Bt+1−Bt ||F +
√
k||At+1−At ||F), which gives

f̂t(Dt+1)− f̂t(Dt) ≤ ct ||Dt+1−Dt ||F . (12)

From Eq. (11) and (12), we obtain

||Dt+1−Dt ||F ≤
ct
κ1

.

Assumptions (A), (C) and Eq. (10) ensure that the vectors αi and xi are bounded with probability
one and therefore ct = O(1/t) a.s.

We can now state and prove our first proposition, which shows that we are indeed minimizing a
smooth function.

Proposition 2 [Regularity of f ].
Assume (A) to (C). For x in the support K of the probability distribution p, and D in the feasible
set C , let us define

α"(x,D) = argmin
α∈Rk

1
2
||x−Dα||22+λ||α||1. (13)

Then,
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1. the function ! defined in Eq. (2) is continuously differentiable and

∇D!(x,D) = −(x−Dα"(x,D))α"(x,D)T .

2. f is continuously differentiable and ∇ f (D) = Ex
[

∇D!(x,D)
]

;

3. ∇ f (D) is Lipschitz on C .

Proof Assumption (A) ensures that the vectors α" are bounded for x in K and D in C . Therefore,
one can restrict the optimization problem (13) to a compact subset of Rk. Under assumption (C),
the solution of Eq. (13) is unique and α" is well-defined. Theorem 5 in Appendix A from Bonnans
and Shapiro (1998) can be applied and gives us directly the first statement. Since K is compact, and
! is continuously differentiable, the second statement follows immediately.

To prove the third claim, we will show that for all x in K, α"(x, .) is Lipschitz with a constant in-
dependent of x,7 which is a sufficient condition for ∇ f to be Lipschitz. First, the function optimized
in Eq. (13) is continuous in α, D, x and has a unique minimum, implying that α" is continuous in x
and D.

Consider a matrixD in C and x in K and denote by α" the vector α"(x,D), and again by Λ the set
of indices j such that |dTj (x−Dα")| = λ. Since dTj (x−Dα") is continuous in D and x, there exists
an open neighborhoodV around (x,D) such that for all (x′,D′) inV , and j /∈Λ, |dTj

′
(x′−D′α"′)|< λ

and α"′[ j] = 0, where α"′ = α"(x′,D′).
Denoting by UΛ the matrix composed of the columns of a matrix U corresponding to the index

set Λ and similarly by uΛ the vector composed of the values of a vector u corresponding to Λ, we
consider the function !̃

!̃(x,DΛ,αΛ)
!
=
1
2
||x−DΛαΛ||22+λ||αΛ||1,

Assumption (C) tells us that !̃(x,DΛ, .) is strictly convex with a Hessian lower-bounded by κ2. Let
us consider (x′,D′) in V . A simple calculation shows that

!̃(x,DΛ,α"
Λ
′)− !̃(x,DΛ,α"

Λ) ≥ κ2||α"
Λ
′ −α"

Λ||22.

Moreover, it is easy to show that !̃(x,DΛ, .)− !̃(x′,D′
Λ, .) is Lipschitz with constant e1||DΛ−D′

Λ||F +
e2||x−x′||2, where e1,e2 are constants independent of D,D′,x,x′ and then, one can show that

||α"′ −α"||2 = ||α"
Λ
′ −α"

Λ||2 ≤
1
κ2

(

e1||D−D′||F + e2||x−x′||2
)

.

Therefore, α" is locally Lipschitz. Since K×C is compact, α" is uniformly Lipschitz on K×C ,
which concludes the proof.

Now that we have shown that f is a smooth function, we can state our first result showing that
the sequence of functions f̂t acts asymptotically as a surrogate of f and that f (Dt) converges almost
surely in the following proposition.

7. From now on, for a vector x in Rm, α"(x, .) denotes the function that associates to a matrix D verifying Assump-
tion (C), the optimal solution α"(x,D). For simplicity, we will use these slightly abusive notation in the rest of the
paper.
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Proposition 3 [Convergence of f (Dt) and of the surrogate function]. Let f̂t denote the surrogate
function defined in Eq. (5). Assume (A) to (C). Then,

1. f̂t(Dt) converges almost surely;

2. f (Dt)− f̂t(Dt) converges almost surely to 0;

3. f (Dt) converges almost surely.

Proof Part of this proof is inspired by Bottou (1998). We prove the convergence of the se-
quence f̂t(Dt) by showing that the stochastic positive process

ut
!
= f̂t(Dt) ≥ 0,

is a quasi-martingale and use Theorem 6 from Fisk (1965) (see Appendix A), which states that if
the sum of the “positive” variations of ut are bounded, ut is a quasi-martingale, which converges
with probability one (see Theorem 6 for details). Computing the variations of ut , we obtain

ut+1−ut = f̂t+1(Dt+1)− f̂t(Dt)
= f̂t+1(Dt+1)− f̂t+1(Dt)+ f̂t+1(Dt)− f̂t(Dt)

= f̂t+1(Dt+1)− f̂t+1(Dt)+
!(xt+1,Dt)− ft(Dt)

t+1
+
ft(Dt)− f̂t(Dt)

t+1
,

(14)

using the fact that f̂t+1(Dt) = 1
t+1!(xt+1,Dt)+ t

t+1 f̂t(Dt). Since Dt+1 minimizes f̂t+1 on C and Dt is
in C , f̂t+1(Dt+1)− f̂t+1(Dt) ≤ 0. Since the surrogate f̂t upperbounds the empirical cost ft , we also
have ft(Dt)− f̂t(Dt) ≤ 0. To use Theorem 6, we consider the filtration of the past information Ft
and take the expectation of Eq. (14) conditioned on Ft , obtaining the following bound

E[ut+1−ut |Ft ] ≤
E[!(xt+1,Dt)|Ft ]− ft(Dt)

t+1

≤
f (Dt)− ft(Dt)

t+1

≤
|| f − ft ||∞
t+1

,

For a specific matrix D, the central-limit theorem states that E[
√
t( f (Dt)− ft(Dt))] is bounded.

However, we need here a stronger result on empirical processes to show that E[
√
t|| f − ft ||∞] is

bounded. To do so, we use the Lemma 7 in Appendix A, which is a corollary of Donsker theorem
(see Van der Vaart, 1998, chap. 19.2). It is easy to show that in our case, all the hypotheses are
verified, namely, !(x, .) is uniformly Lipschitz and bounded since it is continuously differentiable
on a compact set, the set C ⊂ Rm×k is bounded, and Ex[!(x,D)2] exists and is uniformly bounded.
Therefore, Lemma 7 applies and there exists a constant κ> 0 such that

E[E[ut+1−ut |Ft ]+] ≤
κ

t 32
.

Therefore, defining δt as in Theorem 6, we have
∞

∑
t=1

E[δt(ut+1−ut)] =
∞

∑
t=1

E[E[ut+1−ut |Ft ]+] < +∞.
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Thus, we can apply Theorem 6, which proves that ut converges almost surely and that
∞

∑
t=1

|E[ut+1−ut |Ft ]| < +∞ a.s.

Using Eq. (14) we can show that it implies the almost sure convergence of the positive sum

∞

∑
t=1

f̂t(Dt)− ft(Dt)
t+1

.

Using Lemma 1 and the fact that the functions ft and f̂t are bounded and Lipschitz, with a constant
independent of t, it is easy to show that the hypotheses of Lemma 8 in Appendix A are satisfied.
Therefore

ft(Dt)− f̂t(Dt) −→
t→+∞

0 a.s.

Since f̂t(Dt) converges almost surely, this shows that ft(Dt) converges in probability to the same
limit. Note that we have in addition || ft − f ||∞ →t→+∞ 0 a.s. (see Van der Vaart, 1998, Theorem
19.4 (Glivenko-Cantelli)). Therefore,

f (Dt)− f̂t(Dt) −→
t→+∞

0 a.s.

and f (Dt) converges almost surely, which proves the second and third points.

With Proposition 3 in hand, we can now prove our final and strongest result, namely that first-
order necessary optimality conditions are verified asymptotically with probability one.

Proposition 4 [Convergence to a stationary point]. Under assumptions (A) to (C), the distance
between Dt and the set of stationary points of the dictionary learning problem converges almost
surely to 0 when t tends to infinity.

Proof Since the sequences of matrices At ,Bt are in a compact set, it is possible to extract converg-
ing subsequences. Let us assume for a moment that these sequences converge respectively to two
matrices A∞ and B∞. In that case, Dt converges to a matrix D∞ in C . Let U be a matrix in Rm×k.
Since f̂t upperbounds ft on Rm×k, for all t,

f̂t(Dt +U) ≥ ft(Dt +U).

Taking the limit when t tends to infinity,

f̂∞(D∞+U) ≥ f (D∞+U).

Let ht > 0 be a sequence that converges to 0. Using a first order Taylor expansion, and using the
fact that ∇ f is Lipschitz and f̂∞(D∞) = f (D∞) a.s., we have

f (D∞)+Tr(htUT∇ f̂∞(D∞))+o(htU) ≥ f (D∞)+Tr(htUT∇ f (D∞))+o(htU),

and it follows that
Tr

( 1
||U||F

UT∇ f̂∞(D∞)
)

≥ Tr
( 1
||Ut ||F

UT∇ f (D∞)
)

,
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Since this inequality is true for allU,∇ f̂∞(D∞) =∇ f (D∞). A first-order necessary optimality condi-
tion for D∞ being an optimum of f̂∞ is that −∇ f̂∞ is in the normal cone of the set C at D∞ (Borwein
and Lewis, 2006). Therefore, this first-order necessary conditions is verified for f at D∞ as well.
Since At ,Bt are asymptotically close to their accumulation points,−∇ f (Dt) is asymptotically close
the normal cone at Dt and these first-order optimality conditions are verified asymptotically with
probability one.

5. Extensions to Matrix Factorization

In this section, we present variations of the basic online algorithm to address different optimization
problems. We first present different possible regularization terms for α and D, which can be used
with our algorithm, and then detail some specific cases such as non-negative matrix factorization,
sparse principal component analysis, constrained sparse coding, and simultaneous sparse coding.

5.1 Using Different Regularizers for α

In various applications, different priors for the coefficients αmay lead to different regularizersψ(α).
As long as the assumptions of Section 4.1 are verified, our algorithm can be used with:

• Positivity constraints on α that are added to the !1-regularization. The homotopy method
presented in Efron et al. (2004) is able to handle such constraints.

• The Tikhonov regularization, ψ(α) = λ1
2 ||α||

2
2, which does not lead to sparse solutions.

• The elastic net (Zou and Hastie, 2005), ψ(α) = λ1||α||1+ λ2
2 ||α||

2
2, leading to a formulation

relatively close to Zou et al. (2006).

• The group Lasso (Yuan and Lin, 2006; Turlach et al., 2005; Bach, 2008), ψ(α) =∑s
i=1 ||αi||2,

where αi is a vector corresponding to a group of variables.

Non-convex regularizers such as the !0 pseudo-norm, !p pseudo-norm with p < 1 can be used as
well. However, as with any classical dictionary learning techniques exploiting non-convex regular-
izers (e.g., Olshausen and Field, 1997; Engan et al., 1999; Aharon et al., 2006), there is no theoretical
convergence results in these cases. Note also that convex smooth approximation of sparse regulariz-
ers (Bradley and Bagnell, 2009), or structured sparsity-inducing regularizers (Jenatton et al., 2009a;
Jacob et al., 2009) could be used as well even though we have not tested them.

5.2 Using Different Constraint Sets for D

In the previous subsection, we have claimed that our algorithm could be used with different regu-
larization terms on α. For the dictionary learning problem, we have considered an !2-regularization
on D by forcing its columns to have less than unit !2-norm. We have shown that with this constraint
set, the dictionary update step can be solved efficiently using a block-coordinate descent approach.
Updating the j-th column of D, when keeping the other ones fixed is solved by orthogonally pro-
jecting the vector u j = d j + (1/A[ j, j])(b j−Da j) on the constraint set C , which in the classical
dictionary learning case amounts to a projection of u j on the !2-ball.
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It is easy to show that this procedure can be extended to different convex constraint sets C ′

as long as the constraints are a union of independent constraints on each column of D and the
orthogonal projections of the vectors u j onto the set C ′ can be done efficiently. Examples of different
sets C ′ that we propose as an alternative to C are

• The “non-negative” constraints:

C ′ = {D ∈ R
m×k s.t. ∀ j = 1, . . . ,k, ||d j||2 ≤ 1 and d j ≥ 0}.

• The “elastic-net” constraints:

C ′ !
= {D ∈ R

m×k s.t. ∀ j = 1, . . . ,k, ||d j||22+ γ||d j||1 ≤ 1}.

These constraints induce sparsity in the dictionary D (in addition to the sparsity-inducing reg-
ularizer on the vectors αi). By analogy with the regularization proposed by Zou and Hastie
(2005), we call these constraints “elastic-net constraints.” Here, γ is a new parameter, con-
trolling the sparsity of the dictionary D. Adding a non-negativity constraint is also possible in
this case. Note that the presence of the !2 regularization is important here. It has been shown
by Bach et al. (2008) that using the !1-norm only in such problems lead to trivial solutions
when k is large enough. The combination of !1 and !2 constraints has also been proposed re-
cently for the problem of matrix factorization byWitten et al. (2009), but in a slightly different
setting.

• The “fused lasso” (Tibshirani et al., 2005) constraints. When one is looking for a dictionary
whose columns are sparse and piecewise-constant, a fused lasso regularization can be used.
For a vector u in Rm, we consider the !1-norm of the consecutive differences of u denoted by

FL(u) !
=

m

∑
i=2

|u[i]−u[i−1]|,

and define the “fused lasso” constraint set

C ′ !
= {D ∈ R

m×k s.t. ∀ j = 1, . . . ,k, ||d j||22+ γ1||d j||1+ γ2 FL(d j) ≤ 1}.

This kind of regularization has proven to be useful for exploiting genomic data such as CGH
arrays (Tibshirani and Wang, 2008).

In all these settings, replacing the projections of the vectors u j onto the !2-ball by the projections
onto the new constraints, our algorithm is still guaranteed to converge and find a stationary point
of the optimization problem. The orthogonal projection onto the “non negative” ball is simple
(additional thresholding) but the projection onto the two other sets is slightly more involved. In
Appendix B, we propose two algorithms for efficiently solving these problems. The first one is
presented in Section B.1 and computes the projection of a vector onto the elastic-net constraint
in linear time, by extending the efficient projection onto the !1-ball from Maculan and de Paula
(1989) and Duchi et al. (2008). The second one is a homotopy method, which solves the projection
on the fused lasso constraint set in O(ks), where s is the number of piecewise-constant parts in the
solution. This method also solves efficiently the fused lasso signal approximation problem presented
in Friedman et al. (2007):

min
u∈Rn

1
2
||b−u||22+ γ1||u||1+ γ2 FL(u)+ γ3||u||22.
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Being able to solve this problem efficiently has also numerous applications, which are beyond the
scope of this paper. For instance, it allows us to use the fast algorithm of Nesterov (2007) for solving
the more general fused lasso problem (Tibshirani et al., 2005). Note that the proposed method could
be used as well with more complex constraints for the columns of D, which we have not tested in
this paper, addressing for instance the problem of structured sparse PCA (Jenatton et al., 2009b).

Now that we have presented a few possible regularizers for α and D, that can be used within
our algorithm, we focus on a few classical problems which can be formulated as dictionary learning
problems with specific combinations of such regularizers.

5.3 Non Negative Matrix Factorization

Given a matrix X = [x1, . . . ,xn] in Rm×n, Lee and Seung (2001) have proposed the non negative
matrix factorization problem (NMF), which consists of minimizing the following cost

min
D∈C ,α∈Rk×n

n

∑
i=1

1
2
||xi−Dαi||22 s.t. D≥ 0, ∀ i, αi ≥ 0.

With this formulation, the matrix D and the vectors αi are forced to have non negative components,
which leads to sparse solutions. When applied to images, such as faces, Lee and Seung (2001) have
shown that the learned features are more localized than the ones learned with a classical singular
value decomposition. As for dictionary learning, classical approaches for addressing this problem
are batch algorithms, such as the multiplicative update rules of Lee and Seung (2001), or the pro-
jected gradient descent algorithm of Lin (2007).

Following this line of research, Hoyer (2002, 2004) has proposed non negative sparse coding
(NNSC), which extends non-negative matrix factorization by adding a sparsity-inducing penalty to
the objective function to further control the sparsity of the vectors αi:

min
D∈C ,α∈Rk×n

n

∑
i=1

(1
2
||xi−Dαi||22+λ

k

∑
j=1

αi[ j]
)

s.t. D≥ 0, ∀ i, αi ≥ 0.

When λ= 0, this formulation is equivalent to NMF. The only difference with the dictionary learning
problem is that non-negativity constraints are imposed on D and the vectors αi. A simple modifica-
tion of our algorithm, presented above, allows us to handle these constraints, while guaranteeing to
find a stationary point of the optimization problem. Moreover, our approach can work in the setting
when n is large.

5.4 Sparse Principal Component Analysis

Principal component analysis (PCA) is a classical tool for data analysis, which can be interpreted
as a method for finding orthogonal directions maximizing the variance of the data, or as a low-
rank matrix approximation method. Jolliffe et al. (2003), Zou et al. (2006), d’Aspremont et al.
(2007), d’Aspremont et al. (2008), Witten et al. (2009) and Zass and Shashua (2007) have proposed
different formulations for sparse principal component analysis (SPCA), which extends PCA by
estimating sparse vectors maximizing the variance of the data, some of these formulations enforcing
orthogonality between the sparse components, whereas some do not. In this paper, we formulate
SPCA as a sparse matrix factorization which is equivalent to the dictionary learning problem with

36



ONLINE LEARNING FOR MATRIX FACTORIZATION AND SPARSE CODING

eventually sparsity constraints on the dictionary—that is, we use the !1-regularization term for α
and the “elastic-net” constraint for D (as used in a penalty term by Zou et al. 2006):

min
α∈Rk×n

n

∑
i=1

(1
2
||xi−Dαi||22+λ||αi||1

)

s.t. ∀ j = 1, . . . ,k, ||d j||22+ γ||d j||1 ≤ 1.

As detailed above, our dictionary update procedure amounts to successive orthogonal projection of
the vectors u j on the constraint set. More precisely, the update of d j becomes

u j ←
1

A[ j, j]
(b j−Da j)+d j,

d j ← argmin
d∈Rm

||u j−d||22 s.t. ||d||22+ γ||d||1 ≤ 1,

which can be solved in linear time using Algorithm 3 presented in Appendix B. In addition to that,
our SPCA method can be used with fused Lasso constraints as well.

5.5 Constrained Sparse Coding

Constrained sparse coding problems are often encountered in the literature, and lead to different
loss functions such as

!′(x,D) = min
α∈Rk

||x−Dα||22 s.t. ||α||1 ≤ T, (15)

or
!′′(x,D) = min

α∈Rk
||α||1 s.t. ||x−Dα||22 ≤ ε, (16)

where T and ε are pre-defined thresholds. Even though these loss functions lead to equivalent
optimization problems in the sense that for given x,D and λ, there exist ε and T such that !(x,D),
!′(x,D) and !′′(x,D) admit the same solution α", the problems of learning D using !, !′ of !′′ are
not equivalent. For instance, using !′′ has proven experimentally to be particularly well adapted to
image denoising (Elad and Aharon, 2006; Mairal et al., 2008b).

For all T , the same analysis as for ! can be carried for !′, and the simple modification which
consists of computing αt using Eq. (15) in the sparse coding step leads to the minimization of the
expected cost minD∈C Ex[!′(x,D)].

Handling the case !′′ is a bit different. We propose to use the same strategy as for !′—that is,
using our algorithm but computing αt solving Eq. (16). Even though our analysis does not apply
since we do not have a quadratic surrogate of the expected cost, experimental evidence shows that
this approach is efficient in practice.

5.6 Simultaneous Sparse Coding

In some situations, the signals xi are not i.i.d samples of an unknown probability distribution, but
are structured in groups (which are however independent from each other), and one may want to ad-
dress the problem of simultaneous sparse coding, which appears also in the literature under various
names such as group sparsity or grouped variable selection (Cotter et al., 2005; Turlach et al., 2005;
Yuan and Lin, 2006; Obozinski et al., 2009, 2008; Zhang et al., 2008; Tropp et al., 2006; Tropp,
2006). Let X= [x1, . . . ,xq] ∈ Rm×q be a set of signals. Suppose one wants to obtain sparse decom-
positions of the signals on the dictionary D that share the same active set (non-zero coefficients).
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Let α= [α1, . . . ,αq] in Rk×q be the matrix composed of the coefficients. One way of imposing this
joint sparsity is to penalize the number of non-zero rows of α. A classical convex relaxation of this
joint sparsity measure is to consider the !1,2-norm on the matrix α

||α||1,2
!
=

k

∑
j=1

||α j||2,

where α j is the j-th row of α. In that setting, the !1,2-norm of α is the !1-norm of the !2-norm of
the rows of α.

The problem of jointly decomposing the signals xi can be written as a !1,2-sparse decomposition
problem, which is a subcase of the group Lasso (Turlach et al., 2005; Yuan and Lin, 2006; Bach,
2008), by defining the cost function

!′′′(X,D) = min
α∈Rk×q

1
2
||X−Dα||2F +λ||α||1,2,

which can be computed using a block-coordinate descent approach (Friedman et al., 2007) or an
active set method (Roth and Fischer, 2008).

Suppose now that we are able to draw groups of signalsXi, i= 1, . . . ,nwhich have bounded size
and are independent from each other and identically distributed, one can learn an adapted dictionary
by solving the optimization problem

min
D∈C

lim
n→∞

1
n

n

∑
i=1

!′′′(Xi,D).

Being able to solve this optimization problem is important for many applications. For instance, in
Mairal et al. (2009c), state-of-the-art results in image denoising and demosaicking are achieved with
this formulation. The extension of our algorithm to this case is relatively easy, computing at each
sparse coding step a matrix of coefficients α, and keeping the updates of At and Bt unchanged.

All of the variants of this section have been implemented. Next section evaluates some of
them experimentally. An efficient C++ implementation with a Matlab interface of these variants is
available on the Willow project-team web page http://www.di.ens.fr/willow/SPAMS/.

6. Experimental Validation

In this section, we present experiments on natural images and genomic data to demonstrate the effi-
ciency of our method for dictionary learning, non-negative matrix factorization, and sparse principal
component analysis.

6.1 Performance Evaluation for Dictionary Learning

For our experiments, we have randomly selected 1.25× 106 patches from images in the Pascal
VOC’06 image database (Everingham et al., 2006), which is composed of varied natural images;
106 of these are kept for training, and the rest for testing. We used these patches to create three data
sets A, B, and C with increasing patch and dictionary sizes representing various settings which are
typical in image processing applications: We have centered and normalized the patches to have unit
!2-norm and used the regularization parameter λ = 1.2/

√
m in all of our experiments. The 1/

√
m
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Data set Signal size m Nb k of atoms Type
A 8×8= 64 256 b&w
B 12×12×3= 432 512 color
C 16×16= 256 1024 b&w

term is a classical normalization factor (Bickel et al., 2009), and the constant 1.2 has shown to yield
about 10 nonzero coefficients for data set A and 40 for data sets B and C in these experiments.
We have implemented the proposed algorithm in C++ with a Matlab interface. All the results
presented in this section use the refinements from Section 3.4 since this has lead empirically to
speed improvements. Although our implementation is multithreaded, our experiments have been
run for simplicity on a single-CPU, single-core 2.66Ghz machine.

The first parameter to tune is η, the number of signals drawn at each iteration. Trying different
powers of 2 for this variable has shown that η = 512 was a good choice (lowest objective function
values on the training set—empirically, this setting also yields the lowest values on the test set).
Even though this parameter is fairly easy to tune since values of 64, 128, 256 and 1024 have given
very similar performances, the difference with the choice η= 1 is significant.

Our implementation can be used in both the online setting it is intended for, and in a regular
batch mode where it uses the entire data set at each iteration. We have also implemented a first-
order stochastic gradient descent algorithm that shares most of its code with our algorithm, except
for the dictionary update step. This setting allows us to draw meaningful comparisons between our
algorithm and its batch and stochastic gradient alternatives, which would have been difficult other-
wise. For example, comparing our algorithm to the Matlab implementation of the batch approach
from Lee et al. (2007) developed by its authors would have been unfair since our C++ program has
a built-in speed advantage.8 To measure and compare the performances of the three tested meth-
ods, we have plotted the value of the objective function on the test set, acting as a surrogate of the
expected cost, as a function of the corresponding training time.

6.1.1 ONLINE VS. BATCH

The left column of Figure 1 compares the online and batch settings of our implementation. The full
training set consists of 106 samples. The online version of our algorithm draws samples from the
entire set, and we have run its batch version on the full data set as well as subsets of size 104 and
105 (see Figure 1). The online setting systematically outperforms its batch counterpart for every
training set size and desired precision. We use a logarithmic scale for the computation time, which
shows that in many situations, the difference in performance can be dramatic. Similar experiments
have given similar results on smaller data sets. Our algorithm uses all the speed-ups from Section
3.4. The parameter ρ was chosen by trying the values 0,5,10,15,20,25, and t0 by trying different
powers of 10. We have selected (t0 = 0.001,ρ = 15), which has given the best performance in
terms of objective function evaluated on the training set for the three data sets. We have plotted
three curves for our method: OL1 corresponds to the optimal setting (t0 = 0.001,ρ = 15). Even
though tuning two parameters might seem cumbersome, we have plotted two other curves showing
that, on the contrary, our method is very easy to use. The curve OL2, corresponding to the setting

8. Both LARS and the feature-sign algorithm (Lee et al., 2007) require a large number of low-level operations which
are not well optimized in Matlab. We have indeed observed that our C++ implementation of LARS is up to 50 times
faster than the Matlab implementation of the feature-sign algorithm of Lee et al. (2007) for our experiments.
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(t0 = 0.001,ρ = 10), is very difficult to distinguish from the first curve and we have observed a
similar behavior with the setting (t0 = 0.001,ρ = 20). showing that our method is robust to the
choice of the parameter ρ. We have also observed that the parameter ρ is useful for large data sets
only. When using smaller ones (n≤ 100,000), it did not bring any benefit.

Moreover, the curve OL3 is obtained without using a tuned parameter t0—that is, ρ = 15 and
t0 = 0, and shows that its influence is very limited since very good results are obtained without using
it. On the other hand, we have observed that using a parameter t0 too big, could slightly slow down
our algorithm during the first epoch (cycle on the training set).

6.1.2 COMPARISON WITH STOCHASTIC GRADIENT DESCENT

Our experiments have shown that obtaining good performance with stochastic gradient descent
requires using both the mini-batch heuristic and carefully choosing a learning rate of the form
a/(ηt+ b). To give the fairest comparison possible, we have thus optimized these parameters. As
for our algorithm, sampling η values among powers of 2 (as before) has shown that η= 512 was a
good value and gives a significant better performance than η= 1.

In an earlier version of this work (Mairal et al., 2009a), we have proposed a strategy for our
method which does not require any parameter tuning except the mini-batch η and compared it with
the stochastic gradient descent algorithm (SGD) with a learning rate of the form a/(ηt). While our
method has improved in performance using the new parameter ρ, SGD has also proven to provide
much better results when using a learning rate of the form a/(ηt+b) instead of a/(ηt), at the cost
of an extra parameter b to tune. Using the learning rate a/(ηt) with a high value for a results indeed
in too large initial steps of the algorithm increasing dramatically the value of the objective function,
and a small value of a leads to bad asymptotic results, while a learning rate of the form a/(ηt+b)
is a good compromise.

We have tried different powers of 10 for a and b. First selected the couple (a = 100,000,b =
100,000) and then refined it, trying the values 100,000× 2i for i = −3, . . . ,3. Finally, we have
selected (a= 200,000,b= 400,000). As shown on the right column of Figure 1, this setting repre-
sented by the curve SG1 leads to similar results as our method. The curve SG2 corresponds to the
parameters (a = 400,000,b = 400,000) and shows that increasing slightly the parameter a makes
the curves worse than the others during the first iterations (see for instance the curve between 1 and
102 seconds for data set A), but still lead to good asymptotic results. The curve SG3 corresponds
to a situation where a and b are slightly too small (a= 50,000,b= 100,000). It is as good as SG1
for data sets A and B, but asymptotically slightly below the others for data set C. All the curves
are obtained as the average of three experiments with different initializations. Interestingly, even
though the problem is not convex, the different initializations have led to very similar values of the
objective function and the variance of the experiments was always insignificant after 10 seconds of
computations.

6.2 Non Negative Matrix Factorization and Non Negative Sparse Coding

In this section, we compare our method with the classical algorithm of Lee and Seung (2001) for
NMF and the non-negative sparse coding algorithm of Hoyer (2002) for NNSC. The experiments
have been carried out on three data sets with different sizes:

• Data set D is composed of n = 2,429 face images of size m = 19× 19 pixels from the the
MIT-CBCL Face Database #1 (Sung, 1996).
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Figure 1: Left: Comparison between our method and the batch approach for dictionary learning.
Right: Comparison between our method and stochastic gradient descent. The results are
reported for three data sets as a function of computation time on a logarithmic scale. Note
that the times of computation that are less than 0.1s are not reported. See text for details.
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• Data set E is composed of n = 2,414 face images of size m = 192× 168 pixels from the
Extended Yale B Database (Georghiades et al., 2001; Lee et al., 2005).

• Data set F is composed of n= 100,000 natural image patches of size m= 16×16 pixels from
the Pascal VOC’06 image database (Everingham et al., 2006).

We have used the Matlab implementations of NMF and NNSC of P. Hoyer, which are freely avail-
able at http://www.cs.helsinki.fi/u/phoyer/software.html. Even though our C++ imple-
mentation has a built-in advantage in terms of speed over these Matlab implementations, most of
the computational time of NMF and NNSC is spent on large matrix multiplications, which are typ-
ically well optimized in Matlab. All the experiments have been run for simplicity on a single-CPU,
single-core 2.4GHz machine, without using the parameters ρ and t0 presented in Section 3.4—that
is, ρ= 0 and t0 = 0. As in Section 6.1, a minibatch of size η= 512 is chosen. Following the original
experiment of Lee and Seung (2001) on data set D, we have chosen to learn k= 49 basis vectors for
the face images data sets D and E, and we have chosen k = 64 for data set F. Each input vector is
normalized to have unit !2-norm.

The experiments we present in this section compare the value of the objective function on the
data sets obtained with the different algorithms as a function of the computation time. Since our
algorithm learns the matrix D but does not provide the matrix α, the computation times reported for
our approach include two steps: First, we run our algorithm to obtain D. Second, we run one sparse
coding step over all the input vectors to obtain α. Figure 2 presents the results for NMF and NNSC.
The gradient step for the algorithm of Hoyer (2002) was optimized for the best performance and λ
was set to 1√

m . Both D and α were initialized randomly. The values reported are those obtained for
more than 0.1s of computation. Since the random initialization provides an objective value which
is by far greater than the value obtained at convergence, the curves are all truncated to present
significant objective values. All the results are obtained using the average of 3 experiments with
different initializations. As shown on Figure 2, our algorithm provides a significant improvement in
terms of speed compared to the other tested methods, even though the results for NMF and NNSC
could be improved a bit using a C++ implementation.

6.3 Sparse Principal Component Analysis

We present here the application of our method addressing SPCA with various types of data: faces,
natural image patches, and genomic data.

6.3.1 FACES AND NATURAL PATCHES

In this section, we compare qualitatively the results obtained by PCA, NMF, our dictionary learning
and our sparse principal component analysis algorithm on the data sets used in Section 6.2. For
dictionary learning, PCA and SPCA, the input vectors are first centered and normalized to have a
unit norm. Visual results are presented on figures 3, 4 and 5, respectively for the data sets D, E and F.
The parameter λ for dictionary learning and SPCA was set so that the decomposition of each input
signal has approximately 10 nonzero coefficients. The results for SPCA are presented for various
values of the parameter γ, yielding different levels of sparsity. The scalar τ indicates the percentage
of nonzero values of the dictionary.

Each image is composed of k small images each representing one learned feature vector. Nega-
tive values are blue, positive values are red and the zero values are represented in white. Confirming
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Figure 2: Left: Comparison between our method and the approach of Lee and Seung (2001) for
NMF. Right: Comparison between our method and the approach of Hoyer (2002) for
NNSC. The value of the objective function is reported for three data sets as a function of
computation time on a logarithmic scale.
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earlier observations from Lee and Seung (2001), PCA systematically produces features spread out
over the images, whereas NMF produces more localized features on the face databases D and E.
However, neither PCA, nor NMF are able to learn localized features on the set of natural patches F.
On the other hand, the dictionary learning technique is able to learn localized features on data set F,
and SPCA is the only tested method that allows controlling the level of sparsity among the learned
matrices.

6.3.2 GENOMIC DATA

This experiment follows Witten et al. (2009) and demonstrates that our matrix decomposition tech-
nique can be used for analyzing genomic data. Gene expression measurements and DNA copy
number changes (comparative genomic hybridization CGH) are two popular types of data in ge-
nomic research, which can be used to characterize a set of abnormal tissue samples for instance.
When these two types of data are available, a recent line of research tries to analyze the correla-
tion between them—that is, to determine sets of expression genes which are correlated with sets
of chromosomal gains or losses (see Witten et al., 2009 and references therein). Let us suppose
that for n tissue samples, we have a matrix X in Rn×p of gene expression measurements and a ma-
trix Y in Rn×q of CGH measurements. In order to analyze the correlation between these two sets of
data, recent works have suggested the use of canonical correlation analysis (Hotelling, 1936), which
solves9

min
u∈Rp,v∈Rq

cov(Xu,Yv) s.t. ||Xu||2 ≤ 1 and ||Yv||2 ≤ 1.

When X and Y are centered and normalized, it has been further shown that with this type of data,
good results can be obtained by treating the covariance matrices XTX and YTY as diagonal, leading
to a rank-one matrix decomposition problem

min
u∈Rp,v∈Rq

||XTY−uvT ||2F s.t. ||u||2 ≤ 1, and ||v||2 ≤ 1.

Furthermore, as shown by Witten et al. (2009), this method can benefit from sparse regularizers
such as the !1 norm for the gene expression measurements and a fused lasso for the CGH arrays,
which are classical choices used for these data. The formulation we have chosen is slightly different
from the one used by Witten et al. (2009) and can be addressed using our algorithm:

min
u∈Rp,v∈Rq

||YTX−vuT ||2F +λ||u||2 s.t. ||v||22+ γ1||v||1+ γ2 FL(v) ≤ 1. (17)

In order to assess the effectivity of our method, we have conducted the same experiment as Witten
et al. (2009) using the breast cancer data set described by Chin et al. (2006), consisting of q= 2,148
gene expression measurements and p= 16,962 CGH measurements for n= 89 tissue samples. The
matrix decomposition problem of Eq. (17) was addressed once for each of the 23 chromosomes, us-
ing each time the CGH data available for the corresponding chromosome, and the gene expression
of all genes. Following the original choice of Witten et al. (2009), we have selected a regulariza-
tion parameter λ resulting in about 25 non-zero coefficients in u, and selected γ1 = γ2 = 1, which
results in sparse and piecewise-constant vectors v. The original matrices (X,Y) are divided into a
training set (Xtr,Ytr) formed with 3/4 of the n samples, keeping the rest (Xte,Yte) for testing. This

9. Note that when more than one couple of factors are needed, two sequences u1,u2, . . . and v1,v2, . . . of factors can be
obtained recursively subject to orthogonality constraints of the sequences Xu1,Xu2, . . . and Yv1,Yv2, . . ..
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(a) PCA (b) SPCA, τ= 70%

(c) NMF (d) SPCA, τ= 30%

(e) Dictionary Learning (f) SPCA, τ= 10%

Figure 3: Results obtained by PCA, NMF, dictionary learning, SPCA for data set D.
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(a) PCA (b) SPCA, τ= 70%

(c) NMF (d) SPCA, τ= 30%

(e) Dictionary Learning (f) SPCA, τ= 10%

Figure 4: Results obtained by PCA, NMF, dictionary learning, SPCA for data set E.
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(a) PCA (b) SPCA, τ= 70%

(c) NMF (d) SPCA, τ= 30%

(e) Dictionary Learning (f) SPCA, τ= 10%

Figure 5: Results obtained by PCA, NMF, dictionary learning, SPCA for data set F.
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experiment is repeated for 10 random splits, for each chromosome a couple of factors (u,v) are
computed, and the correlations corr(Xtru,Ytrv) and corr(Xteu,Ytev) are reported on Figure 6. The
average standard deviation of the experiments results was 0.0339 for the training set and 0.1391 for
the test set.

Comparing with the original curves reported by Witten et al. (2009) for their penalized matrix
decomposition (PMD) algorithm, our method exhibits in general a performance similar as PMD.10
Nevertheless, the purpose of this section is more to demonstrate that our method can be used with
genomic data than comparing it carefully with PMD. To draw substantial conclusions about the
performance of both methods, more experiments would of course be needed.
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Figure 6: SPCA was applied to the covariance matrix obtained from the breast cancer data (Chin
et al., 2006). A fused lasso regularization is used for the CGH data. 3/4 of the n samples
are used as a training set, keeping the rest for testing. Average correlations from 10
random splits are reported for each of the 23 chromosomes, for PMD (Witten et al., 2009)
and our method denoted by OL.

10. The curves for PMD were generated with the R software package available at http://cran.r-project.org/web/
packages/PMA/index.html and a script provided by Witten et al. (2009).
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Figure 7: Inpainting example on a 12-Megapixel image. Top: Damaged and restored images. Bot-
tom: Zooming on the damaged and restored images. Note that the pictures presented here
have been scaled down for display. (Best seen in color).

6.4 Application to Large-Scale Image Processing

We demonstrate in this section that our algorithm can be used for a difficult large-scale image
processing task, namely, removing the text (inpainting) from the damaged 12-Megapixel image
of Figure 7. Using a multi-threaded version of our implementation, we have learned a dictionary
with 256 elements from the roughly 7× 106 undamaged 12× 12 color patches in the image with
two epochs in about 8 minutes on a 2.4GHz machine with eight cores. Once the dictionary has been
learned, the text is removed using the sparse coding technique for inpainting of Mairal et al. (2008b).
Our intent here is of course not to evaluate our learning procedure in inpainting tasks, which would
require a thorough comparison with state-the-art techniques on standard data sets. Instead, we just
wish to demonstrate that it can indeed be applied to a realistic, non-trivial image processing task on
a large image. Indeed, to the best of our knowledge, this is the first time that dictionary learning
is used for image restoration on such large-scale data. For comparison, the dictionaries used for
inpainting in Mairal et al. (2008b) are learned (in batch mode) on 200,000 patches only.
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7. Conclusion

We have introduced in this paper a new stochastic online algorithm for learning dictionaries adapted
to sparse coding tasks, and proven its convergence. Experiments demonstrate that it is significantly
faster than batch alternatives such as Engan et al. (1999), Aharon et al. (2006) and Lee et al. (2007)
on large data sets that may contain millions of training examples, yet it does not require a careful
learning rate tuning like regular stochastic gradient descent methods. Moreover, we have extended
it to other matrix factorization problems such as non negative matrix factorization, and we have pro-
posed a formulation for sparse principal component analysis which can be solved efficiently using
our method. Our approach has already shown to be useful for image restoration tasks such as de-
noising (Mairal et al., 2009c); more experiments are of course needed to better assess its promise in
bioinformatics and signal processing. Beyond this, we plan to use the proposed learning framework
for sparse coding in computationally demanding video restoration tasks (Protter and Elad, 2009),
with dynamic data sets whose size is not fixed, and extending this framework to different loss func-
tions (Mairal et al., 2009b) to address discriminative tasks such as image classification, which are
more sensitive to overfitting than reconstructive ones.
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Appendix A. Theorems and Useful Lemmas

We provide in this section a few theorems and lemmas from the optimization and probability litera-
ture, which are used in this paper.

Theorem 5 [Corollary of Theorem 4.1 from Bonnans and Shapiro (1998), due to Danskin
(1967)].
Let f :Rp×Rq→R. Suppose that for all x∈Rp the function f (x, .) is differentiable, and that f and
∇u f (x,u) the derivative of f (x, .) are continuous onRp×Rq. Let v(u) be the optimal value function
v(u) =minx∈C f (x,u), where C is a compact subset of Rp. Then v(u) is directionally differentiable.
Furthermore, if for u0 ∈ Rq, f (.,u0) has a unique minimizer x0 then v(u) is differentiable in u0 and
∇uv(u0) = ∇u f (x0,u0).

Theorem 6 [Sufficient condition of convergence for a stochastic process, see Bottou (1998) and
references therein (Métivier, 1983; Fisk, 1965)].
Let (Ω,F ,P) be a measurable probability space, ut , for t ≥ 0, be the realization of a stochastic
process and Ft be the filtration determined by the past information at time t. Let

δt =

{

1 if E[ut+1−ut |Ft ] > 0,
0 otherwise.
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If for all t, ut ≥ 0 and ∑∞
t=1E[δt(ut+1−ut)] <∞, then ut is a quasi-martingale and converges almost

surely. Moreover,
∞

∑
t=1

|E[ut+1−ut |Ft ]| < +∞ a.s.

Lemma 7 [A corollary of Donsker theorem see Van der Vaart, 1998, chap. 19.2, lemma 19.36
and example 19.7].
Let F = { fθ : χ→ R,θ ∈Θ} be a set of measurable functions indexed by a bounded subset Θ of Rd.
Suppose that there exists a constant K such that

| fθ1(x)− fθ2(x)|≤ K||θ1−θ2||2,

for every θ1 and θ2 in Θ and x in χ. Then, F is P-Donsker (see Van der Vaart, 1998, chap. 19.2).
For any f in F, Let us define Pn f , P f and Gn f as

Pn f =
1
n

n

∑
i=1

f (Xi), P f = EX [ f (X)], Gn f =
√
n(Pn f −P f ).

Let us also suppose that for all f , P f 2 < δ2 and || f ||∞ <M and that the random elements X1,X2, . . .
are Borel-measurable. Then, we have

EP||Gn||F = O(1),

where ||Gn||F = sup f∈F |Gn f |. For a more general variant of this lemma and additional explana-
tions and examples, see Van der Vaart (1998).

Lemma 8 [A simple lemma on positive converging sums].
Let an, bn be two real sequences such that for all n, an ≥ 0,bn ≥ 0, ∑∞

n=1 an = ∞, ∑∞
n=1 anbn < ∞,

∃K > 0 s.t. |bn+1−bn| < Kan. Then, limn→+∞ bn = 0.

Proof The proof is similar to Bertsekas (1999, prop 1.2.4).

Appendix B. Efficient Projections Algorithms

In this section, we address the problem of efficiently projecting a vector onto two sets of constraints,
which allows us to extend our algorithm to various other formulations.

B.1 A Linear-time Projection on the Elastic-Net Constraint

Let b be a vector of Rm. We consider the problem of projecting this vector onto the elastic-net
constraint set:

min
u∈Rm

1
2
||b−u||22 s.t. ||u||1+

γ
2
||u||22 ≤ τ. (18)

To solve efficiently the case γ > 0, we propose Algorithm 3, which extends Maculan and de Paula
(1989) and Duchi et al. (2008), and the following lemma which shows that it solves our problem.

Lemma 9 [Projection onto the elastic-net constraint set].
For b in Rm, γ≥ 0 and τ> 0, Algorithm 3 solves Eq. (18).
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Proof First, if b is a feasible point of (18), then b is a solution. We suppose therefore that it is not
the case—that is,||b||1+ γ

2 ||b||
2
2 > τ. Let us define the Lagrangian of (18)

L(u,λ) =
1
2
||b−u||22+λ

(

||u||1+
γ
2
||u||22− τ

)

.

For a fixed λ, minimizing the Lagrangian with respect to u admits a closed-form solution u"(λ), and
a simple calculation shows that, for all j,

u"(λ)[ j] =
sign(b[ j])(|b[ j]|−λ)+

1+λγ
.

Eq. (18) is a convex optimization problem. Since Slater’s conditions are verified and strong duality
holds, it is equivalent to the dual problem

max
λ≥0

L(u"(λ),λ).

Since λ = 0 is not a solution, denoting by λ" the solution, the complementary slackness condition
implies that

||u"(λ")||1+
γ
2
||u"(λ")||22 = τ. (19)

Using the closed form of u"(λ) is possible to show that the function λ→ ||u"(λ)||1+ γ
2 ||u

"(λ)||22,
is strictly decreasing with λ and thus Eq. (19) is a necessary and sufficient condition of optimality
for λ. After a short calculation, one can show that this optimality condition is equivalent to

1
(1+λγ)2 ∑j∈S(λ)

(

|b[ j]|+ γ
2
|b[ j]|2−λ

(

1+
γλ
2

)

)

= τ,

where S(λ) = { j s.t. |b[ j]|≥ λ}. Suppose that S(λ") is known, then λ" can be computed in closed-
form. To find S(λ"), it is then sufficient to find the index k such that S(λ") = S(|b[k]|), which is the
solution of

max
k∈{1,...,m}

|b[k]| s.t. 1
(1+ |b[k]|γ)2 ∑

j∈S(|b[k]|)

(

|b[ j]|+ γ
2
|b[ j]|2− |b[k]|

(

1+
γ|b[k]|
2

)

)

< τ.

Lines 4 to 14 of Algorithm 3 are a modification of Duchi et al. (2008) to address this problem.
A similar proof as Duchi et al. (2008) shows the convergence to the solution of this optimization
problem in O(m) in the average case, and lines 15 to 18 of Algorithm 3) compute λ" after that S(λ")
has been identified. Note that setting γ to 0 leads exactly to the algorithm of Duchi et al. (2008).

As for the dictionary learning problem, a simple modification to Algorithm 3 allows us to handle
the non-negative case, replacing the scalars |b[ j]| by max(b[ j],0) in the algorithm.

B.2 A Homotopy Method for Solving the Fused Lasso Signal Approximation

Let b be a vector of Rm. We define, following Friedman et al. (2007), the fused lasso signal approx-
imation problem P (γ1,γ2,γ3):

min
u∈Rm

1
2
||b−u||22+ γ1||u||1+ γ2 FL(u)+

γ3
2
||u||22, (20)
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Algorithm 3 Efficient projection on the elastic-net constraint.
Require: τ ∈ R; γ ∈ R; b ∈ Rm;
1: if ||b||1+ γ

2 ||b||
2
2 ≤ τ then

2: Return u← b.
3: else
4: U ← {1, . . . ,m}; s← 0; ρ← 0.
5: whileU %= /0 do
6: Pick k ∈U at random.
7: PartitionU :

G= { j ∈U s.t. |b[ j]|≥ |b[k]|},
L= { j ∈U s.t. |b[ j]| < |b[k]|}.

8: Δρ← |G|; Δs← ∑ j∈G |b[ j]|+ γ
2 |b[ j]|

2.
9: if s+Δs− (ρ+Δρ)(1+ γ

2 |b[k]|)|b[k]| < τ(1+ γ|b[k]|)2 then
10: s← s+Δs;ρ← Δρ;U ← L.
11: else
12: U ← G\{k}.
13: end if
14: end while
15: a← γ2τ+ γ

2ρ,
16: b← 2γτ+ρ,
17: c← τ− s,
18: λ← −b+

√
b2−4ac
2a

19:

∀ j = 1, . . . ,n,u[ j] ← sign(b[ j])(|b[ j]|−λ)+

1+λγ

20: Return u.
21: end if

the only difference with Friedman et al. (2007) being the addition of the last quadratic term. The
method we propose to this problem is a homotopy, which solves P (τγ1,τγ2,τγ3) for all possible
values of τ. In particular, for all ε, it provides the solution of the constrained problem

min
u∈Rm

1
2
||b−u||22 s.t. γ1||u||1+ γ2 FL(u)+

γ3
2
||u||22 ≤ ε. (21)

The algorithm relies on the following lemma

Lemma 10 Let u"(γ1,γ2,γ3) be the solution of Eq. (20), for specific values of γ1,γ2,γ3. Then

• u"(γ1,γ2,γ3) = 1
1+γ3u

"(γ1,γ2,0).

• For all i, u"(γ1,γ2,0)[i] = sign(u"(0,γ2,0)[i])max(|u"(0,γ2,0)[i]|−λ1,0)—that is, u"(γ1,γ2,0)
can be obtained by soft thresholding of u"(0,γ2,0).
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The first point can be shown by short calculation. The second one is proven in Friedman et al.
(2007) by considering subgradient optimality conditions. This lemma shows that if one knows the
solution of P (0,γ2,0), then P (γ1,γ2,γ3) can be obtained in linear time.

It is therefore natural to consider the simplified problem

min
u∈Rm

1
2
||b−u||22+ γ2 FL(u). (22)

With the change of variable v[1] = u[1] and v[i] = u[i]−u[i−1] for i> 1, this problem can be recast
as a weighted Lasso

min
v∈Rm

1
2
||b−Dv||22+

m

∑
i=1

wi|v[i]|, (23)

where w1 = 0 and wi = γ2 for i > 1, and D[i, j] = 1 if i ≥ j and 0 otherwise. We propose to use
LARS (Efron et al., 2004) and exploit the specific structure of the matrix D to make this approach
efficient, by noticing that:

• For a vectorw inRm, computing e=Dw requiresO(m) operations instead ofO(m2), by using
the recursive formula e[1] = w[1], e[i+1] = w[i]+ e[i].

• For a vector w in Rn, computing e = DTw requires O(m) operations instead of O(m2), by
using the recursive formula e[n] = w[n], e[i−1] = w[i−1]+ e[i].

• Let Γ= {a1, . . . ,ap} be an active set and suppose a1 < .. . < ap. Then (DTΓDΓ)−1 admits the
closed form value

(DTΓDΓ)−1 =



















c1 −c1 0 . . . 0 0
−c1 c1+ c2 −c2 . . . 0 0
0 −c2 c2+ c3 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . cp−2+ cp−1 −cp−1
0 0 0 . . . −cp−1 cp−1+ cp



















,

where cp = 1
n+1−ap and ci =

1
ai+1−ai for i< p.

This allows the implementation of this homotopy method without using matrix inversion or Cholesky
factorization, solving Eq. (23) in O(ms) operations, where s is the number of non-zero values of the
optimal solution v.11

Adapting this method for solving Eq. (21) requires following the regularization path of the
problems P (0,τγ2,0) for all values of τ, which provides as well the regularization path of the prob-
lem P (τλ1,τλ2,τλ3) and stops whenever the constraint becomes unsatisfied. This procedure still
requires O(ms) operations.

Note that in the case γ1 = 0 and γ3 = 0, when only the fused-lasso term is present in Eq (20),
the same approach has been proposed in a previous work by Harchaoui and Lévy-Leduc (2008),
and Harchaoui (2008) to solve Eq. (22), with the same tricks for improving the efficiency of the
procedure.

11. To be more precise, s is the number of kinks of the regularization path. In practice, s is roughly the same as the
number of non-zero values of the optimal solution v.
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Abstract
The principle of parsimony also known as “Ockham’s razor” has inspired many theories of model
selection. Yet such theories, all making arguments in favor of parsimony, are based on very different
premises and have developed distinct methodologies to derive algorithms. We have organized chal-
lenges and edited a special issue of JMLR and several conference proceedings around the theme of
model selection. In this editorial, we revisit the problem of avoiding overfitting in light of the latest
results. We note the remarkable convergence of theories as different as Bayesian theory, Minimum
Description Length, bias/variance tradeoff, Structural Risk Minimization, and regularization, in
some approaches. We also present new and interesting examples of the complementarity of theo-
ries leading to hybrid algorithms, neither frequentist, nor Bayesian, or perhaps both frequentist and
Bayesian!
Keywords: model selection, ensemble methods, multilevel inference, multilevel optimization,
performance prediction, bias-variance tradeoff, Bayesian priors, structural risk minimization, guar-
anteed risk minimization, over-fitting, regularization, minimum description length

1. Introduction

The problem of learning is often decomposed into the tasks of fitting parameters to some training
data, and then selecting the best model using heuristic or principled methods, collectively referred
to as model selection methods. Model selection methods range from simple yet powerful cross-
validation based methods to the optimization of cost functions penalized for model complexity,
derived from performance bounds or Bayesian priors.
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This paper is not intended as a general review of the state-of-the-art in model selection nor a
tutorial; instead it is a synthesis of the collection of papers that we have assembled. It also provides
a unifying perspective on Bayesian and frequentist methodologies used in various model selection
methods. We highlight a new trend in research on model selection that blends these approaches.

The reader is expected to have some basic knowledge of familiar learning machines (linear mod-
els, neural networks, tree classifiers and kernel methods) and elementary notions of learning theory
(bias/variance tradeoff, model capacity or complexity, performance bounds). Novice readers are
directed to the companion paper (Guyon, 2009), which reviews basic learning machines, common
model selection techniques, and provides elements of learning theory.

When we started organizing workshops and competitions around the problem of model selection
(of which this collection of papers is the product), both theoreticians and practitioners welcomed us
with some scepticism; model selection being often viewed as somewhat “old hat”. Some think that
the problem is solved, others that it is not a problem at all! For Bayesian theoreticians, the prob-
lem of model selection is circumvented by averaging all models over the posterior distribution. For
risk minimization theoreticians (called “frequentists” by the Bayesians) the problem is solved by
minimizing performance bounds. For practitioners, the problem is solved using cross-validation.
However, looking more closely, most theoretically grounded methods of solving or circumventing
model selection have at least one hyper-parameter left somewhere, which ends up being optimized
by cross-validation. Cross-validation seems to be the universally accepted ultimate remedy. But it
has its dark sides: (a) there is no consensus on how to choose the fraction of examples reserved
training and for validation; (b) the overall learning problem may be prone to over-fitting the cross-
validation error (Cawley and Talbot, 2009). Therefore, from our point of view, the problem of
optimally dividing the learning problem into multiple levels of inference and optimally allocat-
ing training data to these various levels remains unsolved, motivating our efforts. From the novel
contributions we have gathered, we are pleased to see that researchers are going beyond the usual
Bayesian/frequentist divide to provide new creative solutions to those problems: we see the emer-
gence of multi-level optimization methods, which are both Bayesian and frequentist. How can that
be? Read on!

After explaining in Section 2 our notational conventions, we briefly review a range of different
Bayesian and frequentist approaches to model selection in Section 3, which we then unify in Sec-
tion 4 under the framework of multi-level optimization. Section 5 then presents the advances made
by the authors of papers that we have edited. In Section 6, we open a discussion on advanced topics
and open problems. To facilitate reading, a glossary is appended; throughout the paper, words
found in the glossary are indicated in boldface.

2. Notations and Conventions

In its broadest sense, model selection designates an ensemble of techniques used to select a model,
that best explains some data or phenomena, or best predicts future data, observations or the con-
sequences of actions. This broad definition encompasses both scientific and statistical modeling.
In this paper, we address only the problem of statistical modeling and are mostly concerned with
supervised learning from independently and identically distributed (i.i.d.) data. Extensions to
unsupervised learning and non i.i.d. cases will be discussed in Section 6.

The goal of supervised learning is to predict a target variable y ∈ Y , which may be continuous
(regression ) or categorical or binary (classification ). The predictions are made using observations
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x from a domain X , often a vectorial space of dimension n, the number of features. The data pairs
{x,y} are independently and identically distributed according to an unknown (but fixed) distribution
P(x,y) . A number m of pairs drawn from that distribution are given, forming the training data D=
{(xk,yk),k = 1, ...m}. We will denote by X = [xki], k = 1, ...m, i= 1, ...n, the matrix of dimensions
(m,n) whose rows are the training patterns and whose columns are the features. Finally, we denote
by y the column vector of dimensions (m,1) containing the target values yk.

There are several formulations of the supervised learning problem:

• Function approximation (induction) methods seek a function f (called model or learning
machine) belonging to a model class F , which minimizes a specified risk functional (or max-
imizes a certain utility). The goal is to minimize an expected risk R[ f ] =

R

L( f (x),y) dP(x,y),
also called generalization error, where L( f (x),y) is a loss function (often a negative log like-
lihood) measuring the discrepancy between f (x) and y. Since P(x,y) is unknown, only esti-
mates of R[ f ] can be computed, which we call evaluation functions or estimators. Function
approximation methods differ in the choice of evaluation function and optimization algo-
rithm and include risk minimization, PAC leaning, maximum likelihood optimization,
andMAP learning.

• Bayesian and ensemble methods make predictions according to model averages that are
convex combinations of models f ∈ F , that is, which belong to the convex closure of the
model class F ∗. Such methods differ in the type of model averaging performed. Bayesian
learningmethods approximate Ef (y|x) =

R

f∈F f (x) dP( f ), an expectation taken over a class
of models F , using an unknown probability distribution P( f ) over the models. Starting from
a “prior”, our knowledge of this distribution is refined into a “posterior” when we see some
data. Bagging ensemble methods approximate ED( f (x,D)), where f (x,D) is a function from
the model class F , trained with m examples and ED(·) is the mathematical expectation over
all training sets of size m. The key point in these methods is to generate a diverse set of
functions, each providing a different perspective over the problem at hand, the ensemble thus
forming a concensus view.

• Transduction methods make direct predictions of y given x and X , bypassing the modeling
step. We do not address such methods in this paper.

The desired properties of the chosen predictor include: good generalization performance, fast
training/prediction, and ease of interpretation of the predictions. Even though all of these aspects
are important in practice, we will essentially focus on the first aspect: obtaining the best possible
generalization performance. Some of the other aspects of model selection will be discussed in
Section 6.

The parametrization of f differentiates the problem of model selection from the general ma-
chine learning problem. Instead of parameterizing f with one set of parameters, the model se-
lection framework distinguishes between parameters and hyper-parameters. We adopt the simpli-
fied notation f (x;α,θ) for a model of parameters α and hyper-parameters θ. It should be un-
derstood that different models may be parameterized differently. Hence by f (x;αθ) we really
mean f (x;α(θ),θ) or fθ(x;α). For instance, for a linear model f (x,w) = wTx, α = w; for a ker-
nel method f (x,α) = ∑kαkK(x,xk), α = [αk]. The hyper-parameters may include indicators of
presence or absence of features, choice of preprocessing methods,, choice of algorithm or model
sub-class (e.g., linear models, neural networks, kernel methods, etc.), algorithm or model sub-class
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parameters (e.g., number of layers and units per layer in a neural network, maximum degree of a
polynomial, bandwidth of a kernel), choice of post-processing, etc. We also refer to the parame-
ters of the prior P( f ) in Bayesian/MAP learning and the parameters of the regularizer Ω[ f ] in
risk minimization as hyper-parameters even if the resulting predictor is not an explicit function
of those parameters, because they are used in the process of learning. In what follows, we relate
the problem of model selection to that of hyper-parameter selection, taken in is broadest sense and
encompassing all the cases mentioned above.

We refer to the adjustment of the model parameters α as the first level of inference. When
data are split in several subsets for the purpose of training and evaluating models, we call mtr the
number of training examples used to adjust α. If the hyper-parameters θ are adjusted from a subset
of data of size mva, we call the examples used to adjust them at this second level of inference the
“validation sample”. Finally we call mte the number of test examples used to evaluate the final
model. The corresponding empirical estimates of the expected risk R[ f ], denoted Rtr[ f ], Rva[ f ], and
Rte[ f ], will be called respectively training error, validation error, and test error.

3. The Many Faces of Model Selection

In this section, we track model selection from various angles to finally reduce it to the unified view
of multilevel inference.

3.1 Is Model Selection “Really” a Problem?

It is legitimate to first question whether the distinction between parameters and hyper-parameters
is relevant. Splitting the learning problem into two levels of inference may be convenient for con-
ducting experiments. For example, combinations of preprocessing, feature selection, and post-
processing are easily performed by fixing θ and training α with off-the-shelf programs. But, the
distinction between parameters and hyper-parameters is more fundamental. For instance, in the
model class of kernel methods f (x) = ∑kαkK(x,xk;θ), why couldn’t we treat both α and θ as
regular parameters?

One common argument is that, for fixed values of θ, the problem of learning α can be formu-
lated as a convex optimization problem, with a single unique solution, for which powerful math-
ematical programming packages are available, while the overall optimization of α and θ in non-
convex. Another compelling argument is that, splitting the learning problem into several levels
might also benefit to the performance of the learning machine by “alleviating” (but not eliminat-
ing) the problem of over-fitting. Consider for example the Gaussian redial basis function kernel
K(x,xk;θ) = exp(−‖x− xk‖2/θ2). The function f (x) = ∑m

k=1αkK(x,xk;θ) is a universal approx-
imator if θ is let to vary and if the sum runs over the training examples. If both α and θ are
optimized simultaneously, solutions with a small value of θ2 might be picked, having zero training
error but possibly very poor generalization performance. The model class F to which f belongs
has infinite capacity C(F ). In contrast, for a fixed value of the hyper-parameter θo, the model
f (x) = ∑m

k=1αkK(x,xk;θo) is linear in its parameters αk and has a finite capacity, bounded by m.
In addition, the capacity of f (x) = ∑m

k=1α
o
kK(x,xok ;θ) of parameter θ for fixed values αo

k and xok
is very low (to see that, note that very few examples can be learned without error by just varying
the kernel width, given fixed vectors xok and fixed parameters αo

k). Hence, using multiple levels of
inference may reduce over-fitting, while still searching for solutions in a model class of universal
approximators.
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This last idea has been taken one step further in the method of structural risk minimization (Vap-
nik, 1979), by introducing new hyper-parameters in learning problems, which initially did not have
any. Consider for instance the class of linear models f (x) = ∑n

i=1wixi. It is possible to introduce
hyper-parameters by imposing a structure in parameter space. A classical example is the structure
‖w‖2 ≤ A, where ‖w‖ denotes the Euclidean norm and A is a positive hyper-parameter. For increas-
ing values of A the space of parameters is organized in nested subsets. Vapnik (1998) proves for
Support Vector Machines (SVM) and Bartlett (1997) for neural networks that tighter performance
bounds are obtained by increasing A. The newly introduced parameter allows us to monitor the
bias/variance tradeoff. Using a Lagrange multiplier, the problem may be replaced by that of min-
imizing a regularized risk functional Rreg = Rtr + γ‖w‖2, γ > 0, where the training loss function
is the so-called “hinge loss” (see e.g., Hastie et al., 2000). The same regularizer ‖w‖2 is used in
ridge regression (Hoerl, 1962), “weight decay” neural networks (Werbos, 1988), regularized radial-
basis function networks (Poggio and Girosi, 1990), Gaussian processes (MacKay, 1992), together
with the square loss function. Instead of the Euclidean norm or 2-norm, the 1-norm regularizer
‖w‖1 = ∑i |wi| is used in LASSO (Tibshirani, 1994) and 1-norm versions of SVMs (see e.g., Zhu
et al., 2003), logistic regression (Friedman et al., 2009), and Boosting (Rosset et al., 2004). Weston
et al. (2003) have proposed a 0-norm regularizer ‖w‖0 = ∑i 1(wi), where 1(x) = 1, if x '= 0 and 0
otherwise.

Interestingly, each method stems from a different theoretical justification (some are Bayesian,
some are frequentist and some a a little bit of both like PAC-Bayesian bounds, see, for example,
Seeger, 2003, for a review), showing a beautiful example of theory convergence (Guyon, 2009).
Either way, for a fixed value of the hyper-parameter A or γ the complexity of the learning problem
is lower than that of the original problem. We can optimize A or γ at a second level of inference, for
instance by cross-validation.

3.2 Bayesian Model Selection

In the Bayesian framework, there is no model selection per se, since learning does not involve
searching for an optimum function, but averaging over a posterior distribution. For example, if the
model class F consists of models f (x;α,θ), the Bayesian assumption is that the parameters α and
hyper-parameters θ of the model used to generate the data are drawn from a prior P(α,θ). After
observing some data D the predictions should be made according to:

Eα,θ(y|x,D) =
Z Z

f (x;α,θ) P(α,θ|D) dα dθ .

Hence there is no selection of a single model, but a summation over models in the model class F ,
weighed by P(α,θ|D). The problem is to integrate over P(α,θ|D).1 A two-level decomposition
can be made by factorizing P(α,θ|D) as P(α,θ|D) = P(α|θ,D)P(θ|D):

Eα,θ(y|x,D) =
Z

(

Z

f (x;α,θ)P(α|θ,D) dα
)

P(θ|D) dθ . (1)

Bayesian model selection decomposes the prior P(α,θ) into parameter prior P(α|θ) and a
“hyper-prior” P(θ). InMAP learning, the type-II likelihood (also called the “evidence”) P(D|θ) =

1. The calculation of the integral in closed form may be impossible to carry out; in this case, variational approxima-
tions are made or numerical simulations are performed, sampling from P(α,θ|D), and replacing the integral by the
summation over a finite number of models.
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∑αP(D|α,θ)P(α|θ) is maximized with respect to the hyper-parameters θ (therefore assuming a
flat prior for θ), while the “regular” parameters α are obtained by maximizing the posterior α∗ =
argmaxαP(α|θ,D) = argmaxαP(D|α,θ)P(α|θ).2

3.3 Frequentist Model Selection

While Bayesians view probabilities as being realized in the idea of “prior” and “posterior” knowl-
edge of distributions, frequentists define probability in terms of frequencies of occurrence of events.
In this section, the “frequentist” approach is equated with risk minimization.

There are obvious ties between the problem of model selection and that of performance pre-
diction. Performance prediction is the problem of estimating the expected risk or generalization
error R[ f ]. Model selection is the problem of adjusting the capacity or complexity of the models
to the available amount of training data to avoid either under-fitting or over-fitting. Solving the
performance prediction problem would also solve the model selection problem, but model selec-
tion is an easier problem. If we find an ordering index r[ f ] such that for all pairs of functions
r[ f1] < r[ f2] ⇒ R[ f1] < R[ f2], then the index allows us to correctly carry out model selection. The-
oretical performance bounds providing a guaranteed risk have been proposed as ranking indices
(Vapnik, 1998). Arguably, the tightness of the bound is of secondary importance in obtaining a
good ranking index. Bounds of the form r[ f ] = Rtr[ f ] + ε(C/mtr), where C characterizes the ca-
pacity or complexity of the model class, penalizes complex models, but the penalty vanishes as
mtr → ∞. Some learning algorithms, for example, SVMs (Boser et al., 1992) or boosting (Freund
and Schapire, 1996), optimize a guaranteed risk rather than the empirical risk Rtr[ f ], and therefore
provide some guarantee of good generalization. Algorithms derived in this way have an embedded
model selection mechanism. Other closely related penalty-based methods include Bayesian MAP
learning and regularization.

Many models (and particularly compound models including feature selection, preprocessing,
learning machine, and post-processing) are not associated with known performance bounds. Com-
mon practice among frequentists is to split available training data into mtr training examples to
adjust parameters and mva validation examples to adjust hyper-parameters. In an effort to reduce
variance, the validation error Rva[ f ] may be averaged over many data splits, leading to a cross-
validation (CV) estimator RCV [ f ]. The most widely used CV method is K-fold cross-validation.
It consists in partitioning training data into K * (mtr +mva)/mva disjoint subsets of roughly equal
sizes (up to rounding errors), each corresponding to one validation set (the complement being used
as training set). In stratified cross-validation, the class proportions of the full data sets are respected
in all subsets. The variance of the results may be reduced by performing Q times K-fold cross-
validation and averaging the results of the Q runs. Another popular method consists in holding out
a single example at a time for validation purposes. The resulting cross-validation error is referred
to as “leave-one-out” error RLOO[ f ]. Some preliminary study design is necessary to determine the
sufficient amount of test data to obtain a good estimate of the generalization error (Langford, 2005),
the sufficient amount of training data to attain desired generalization performances, and an adequate
split of the training data between training and validation set. See Guyon (2009) for a discussion of
these issues.

2. In some Bayesian formulations of multi-layer Perceptrons, the evidence framework maximizes over θ but
marginalises over the weights, rather than maximizing, so in this case the MAP can apply to the parameters or
the hyper-parameters or both.
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4. Multi-level Inference: A Unifying View of Model Selection

What is common among the various views of model selection is the idea of multiple levels of infer-
ence, each level corresponding to one set of parameters or hyper-parameters. Consider a two-level
case for a model class f (x;α,θ) parameterized by one set of parameters α and one set of hyper-
parameters θ. From the frequentist (risk minimization) point of view, instead of jointly optimizing
a risk functional with respect to all parameters α and θ, one creates a hierarchy of optimization
problems:3

f ∗∗ = argminθR2[ f ∗,D] , such that f ∗ = argminαR1[ f ,D] (2)

where R1 and R2 are first and second level risk functionals.
From the Bayesian point of view, the goal is to estimate the integral of Equation 1. There are

striking similarities between the two approaches. To make the similarity more obvious, we can
rewrite Equation 1 to make it look more like Equation 2, using the notation f ∗∗ for Eα,θ(y|x,D):

f ∗∗ =
Z

f ∗ e−R2 dθ , such that f ∗ =
Z

f e−R1 dα (3)

where R1 = − lnP(α|θ,D) and R2 = − lnP(θ|D). Note that in Bayesian multi-level inference f ∗
and f ∗∗ do not belong to F but to F ∗, the closure of F under convex combinations.

More generally, we define a multi-level inference problem as a learning problem organized into
a hierarchy of learning problems. Formally, consider a machine learning toolkit which includes a
choice of learning machines A [B,R], where B is a model space of functions f (x;θ), of parameters
θ and R is an evaluation function (e.g., a risk functional or a negative log posterior). We think
of A [B,R] not as a procedure, but as an “object”, in the sense of object oriented programming,
equipped with a method “train”, which processes data according to a training algorithm:4

f ∗∗ = train(A [B,R2],D); (4)

This framework embodies the second level of inference of both Equations 2 and 3. The solution
f ∗∗ belongs to B∗, the convex closure of B . To implement the first level of inference, we will
consider that B is itself a learning machine and not just a model space. Its model space F includes
functions f (x;θ,α) of variable parameters α (θ is fixed), which are adjusted by the “train” method
of B :

f ∗ = train(B[F ,R1],D); (5)

The solution f ∗ belongs to F ∗, the convex closure of F . The method “train” of A should call
the method “train” of B as a subroutine, because of the nested nature of the learning problems of
Equations 2 and 3. Notice that it is possible that different subsets of the data D are used at the
different levels of inference.

We easily see two obvious extensions:

(i) Multi-level inference: Equation 4 and 5 are formally equivalent, so this formalism can be
extended to more than two levels of inference.

3. It would be more correct if the argmin was assigned to parameters not functions, since the search domain is over
parameters, and write θ∗∗ = argminθ R2[ f ∗,D] , such that α∗ = argminαR1[ f ,D], f ∗ = f (x,α∗), but we adopt a
shorthand to emphasize the similarities between the frequentist and Bayesian approaches.

4. We adopt a Matlab-style notation: the first argument is the object of which the function is a method; the function
“train” is overloaded, there is one for each algorithm. The notations are inspired and adapted from the conventions
of the Spider package and the CLOP packages (Saffari and Guyon, 2006).
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(ii) Ensemble methods: The method “train” returns either a single model or a linear combination
of models, so the formalism can include all ensemble methods.

We propose in the next section a new classification of multi-level inferencemethods, orthogonal
to the classical Bayesian versus frequentist divide, referring to the way in which data are processed
rather than the means by which they are processed.

5. Advances in Multi-level Inference

We dedicate this section to reviewing the methods proposed in the collection of papers that we have
edited. We categorize multi-level inference modules, each implementing one level of inference, into
filter, wrapper, and embedded methods, borrowing from the conventional classification of feature
selection methods (Kohavi and John, 1997; Blum and Langley, 1997; Guyon et al., 2006a). Filters
are methods for narrowing down the model space, without training the learning machine. Such
methods include preprocessing, feature construction, kernel design, architecture design, choice of
prior or regularizers, choice of a noise model, and filter methods for feature selection. They consti-
tute the highest level of inference5. Wrapper methods consider the learning machine as a black-box
capable of learning from examples and making predictions once trained. They operate with a search
algorithm in hyper-parameter space (for example grid search or stochastic search) and an evalua-
tion function assessing the trained learning machine performances (for example the cross-validation
error or the Bayesian evidence). They are the middle-ware of multi-level inference. Embedded
methods are similar to wrappers, but they exploit the knowledge of the learning machine algorithm
to make the search more efficient and eventually jointly optimize parameters and hyper-parameters,
using multi-level optimization algorithms. They are usually used at the lowest level of inference.

5.1 Filters

Filter methods include a broad class of techniques aiming to reduce the model space F prior to
training the learning machine. Such techniques may use “prior knowledge” or “domain knowledge”,
data from prior studies or from R&R (repeatability and reproducibility ) studies, and even the
training data themselves. But they do not produce the final model used to make predictions. Several
examples of filter methods are found in the collection of papers we have edited:

Preprocessing and feature construction. An important part of machine learning is to find a good
data representation, but choosing an appropriate data representation is very domain depen-
dent. In benchmark experiments, it has often been found that generating a large number of
low-level features yields better result than hand-crafting a few features incorporating a lot
of expert knowledge (Guyon et al., 2007). The feature set can then be pruned by feature
selection. In the challenges we have organized (Clopinet, 2004-2009) the data were gen-
erally already preprocessed to facilitate the work of the participants. However, additional
normalizations, space dimensionality reduction and discretization were often performed by
the participants. Of all space dimensionality reduction methods Principal Component Anal-
ysis (PCA) remains the most widely used. Several top-ranking participants to challenges
we organized used PCA, including Neal and Zhang (2006), winners of the NIPS 2003 fea-
ture selection challenge, and Lutz (2006), winner of the WCCI 2006 performance prediction

5. Preprocessing is often thought of as a “low-level” operation. However, with respect to model selection, the selection
of preprocessing happens generally in the “outer loop” of selection, hence it is at the highest level.
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challenge. Clustering is also a popular preprocessing method of dimensionality reduction,
championed by Saeed (2009) who used a Bernoulli mixture model as an input to an artificial
neural network. In his paper on data grid models Boullé (2009) proposes a new method of
data discretization. It can be used directly as part of a learning machine based on data grids
(stepwise constant predictors) or as a preprocessing to other learning machines, such as the
Naı̈ve Bayes classifier. Of particular interest in this paper is the use of data dependent priors.

Designing kernels and model architectures. Special purpose neural network architectures imple-
menting the idea of “weight sharing” such as Time Delay Neural Networks (Waibel, 1988) or
two-dimensional convolutional networks (LeCun et al., 1989) have proved to be very effec-
tive in speech and image processing. More recently a wide variety of special purpose kernels
have been proposed to incorporate domain knowledge in kernel learning algorithms. Exam-
ples include kernels invariant under various transforms (Simard et al., 1993; Pozdnoukhov
and Bengio, 2006), string matching kernels (Watkins, 2000), and other sequence and tree ker-
nels (Vishwanathan and Smola, 2003). Along these lines, in our collection of papers, Chloé
Agathe Azencott and Pierre Baldi have proposed two-dimensional kernels for high-thoughput
screening (Azencott and Baldi, 2009). Design effort has also be put into general purpose ker-
nels. For instance, in the paper of Adankon and Cheriet (2009) , the SVM regularization
hyper-parameterC (box-constraint) is incorporated in the kernel function. This facilitates the
task of multi-level inference algorithms.

Defining regularizers or priors. Designing priors P( f ) or regularizers Ω[ f ] or structuring pa-
rameter space into parameters and several levels of hyper-parameters can also be thought of
as a filter method. Most priors commonly used do not embed domain knowledge, they just
enforce Ockham’s razor by favoring simple (smooth) functions or eliminating irrelevant fea-
tures. Priors are also often chosen out of convenience to facilitate the closed-form calculation
of Bayesian integrals (for instance the use of so-called “conjugate priors”, see e.g., Neal and
Zhang, 2006). The 2-norm regularizer Ω[ f ] = ‖ f‖2

H
for kernel ridge regression, Support

Vector Machines (SVM) and Least-Square Support Vector Machines (LSSVM) have been
applied with success by many top-ranking participants of the challenges we organized. Gavin
Cawley was co-winner of the WCCI 2006 performance prediction challenge using LSSVMs
(Cawley, 2006). Another very successful regularizer is the Automatic Relevance Determi-
nation (ARD) prior. This regularizer was used in the winning entry of Radford Neal in the
NIPS 2003 feature selection challenge (Neal and Zhang, 2006). Gavin Cawley also made top
ranking reference entries in the IJCNN 2007 ALvsPK challenge (Cawley and Talbot, 2007b)
using a similar ARD prior. For linear models, the 1-norm regularizer ‖w‖ is also popular
(see e.g., Pranckeviciene and Somorjai, 2009), but this has not been quite as successful in
challenges as the 2-norm regularizer or the ARD prior.

Noise modeling. While the prior (or the regularizer) embeds our prior or domain knowledge of the
model class, the likelihood (or the loss function) embeds our prior knowledge of the noise
model on the predicted variable y. In regression, the square loss corresponds to Gaussian
noise model, but other choices are possible. For instance, recently, Gavin Cawley and Nicola
Talbot implemented Poisson regression for kernel machines (Cawley et al., 2007). For clas-
sification, the many loss functions proposed do not necessarily correspond to a noise model,
they are often just bounding the 0/1 loss and are used for computational convenience. In the
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Bayesian framework, an sigmoidal function is often used (like the logistic or probit functions)
to map the output of a discriminant function f (xk) to probabilities pk. Assuming target values
yk ∈ {0,1}, the likelihood Πk pykk (1− pk)1−yk corresponds to the cross-entropy cost function
∑k yk ln pk+(1−yk) ln(1− pk). A clever piece-wise S-shaped function, flat on the asymptotes,
was used in Chu et al. (2006) to implement sparsity for a Bayesian SVM algorithm. Noise
modeling is not limited to noise models for the target y, it also concerns modeling noise on
the input variables x. Many authors have incorporated noise models on x as part of the kernel
design, for example, by enforcing invariance (Simard et al., 1993; Pozdnoukhov and Bengio,
2006). A simple but effective means of using a noise model is to generate additional training
data by distorting given training examples. Additional “unsupervised” data is often useful to
fit a noise model on the input variables x. Repeatability and reproducibility (R&R) studies
may also provide data to fit a noise model.

Feature selection filters. Feature selection, as a filter method, allows us to reduce the dimension-
ality of the feature space, to ease the computations performed by learning machines. This
is often a necessary step for computationally expensive algorithms such as neural networks.
Radford Neal for instance, used filters based on univariate statistical tests to prune the fea-
ture space before applying his Bayesian neural network algorithm (Neal and Zhang, 2006).
Univariate filters were also widely used in the KDD cup 2009, which involved classification
tasks on a very large database, to cut down computations (Guyon et al., 2009b). Feature
selection filters are not limited to univariate filters. Markov blanket methods, for instance,
provide powerful feature selection filters (Aliferis et al., 2003). A review of filters for feature
selection can be found in Guyon et al. (2006a, Chapter 3).

5.2 Wrappers

Wrapper methods consider learning machines as black boxes capable of internally adjusting their
parameters α given some data D and some hyper-parameter values θ. No knowledge either of the
architecture, of the learning machines, or of their learning algorithm should be required to use a
wrapper. Wrappers are applicable to selecting a classifier from amongst a finite set of learning
machines (θ is then a discrete index), or an infinite set (for continuous values of θ). Wrappers can
also be used to build ensembles of learning machines, including Bayesian ensembles. Wrappers
use a search algorithm or a sampling algorithm to explore hyper-parameter space and an evaluation
function (a risk functional RD[ f (θ)], a posterior probability P( f (θ)|D), or any model selection index
r[ f (θ)]) to assess the performance of the sample of trained learning machines , and, either select
one single best machine or create an ensemble of machine voting to make predictions.

Search and sampling algorithms. Because the learning machines in the wrapper setting are “black
boxes”, we cannot sample directly from the posterior distribution P( f (θ)|D) (or according to
exp−RD[ f (θ)] or exp−r[ f (θ)]). We can only compute the evaluation function for given
values of θ for which we run the learning algorithm of f (θ), which internally adjusts its
parameters α. A search strategy defines which hyper-parameter values will be considered
and in which order (in case a halting criterion ends the search prematurely). Gavin Caw-
ley, in his challenge winning entries, used the Nelder-Mead simplex algorithm (Cawley and
Talbot, 2007a). Monte-Carlo Markov Chain MCMC methods are used in Bayesian mod-
eling to sample the posterior probability and have given good results in challenges (Neal
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and Zhang, 2006). The resulting ensemble is a simple average of the sampled functions
F(x) = (1/s)∑s

i=1 f (x|θk). Wrappers for feature selection use all sort of techniques, but se-
quential forward selection or backward elimination methods are most popular (Guyon et al.,
2006a, Chapter 4). Other stochastic search methods include biologically inspired methods
such as genetic algorithms and particle swarm optimization. Good results have been obtained
with this last method in challenges (H. J. Escalante, 2009), showing that extensive search does
not necessarily yield over-fit solutions, if some regularization mechanism is used. The authors
of that paper rely for that purpose on weight decay and early stopping. Frequentist ensemble
methods, including Random Forests (Breiman, 2001) and Logitboost (Friedman et al., 2000)
also gave good results in challenges (Lutz, 2006; Tuv et al., 2009; Dahinden, 2009).

Evaluation functions. For Bayesian approaches, the standard evaluation function is the “evidence”,
that is the marginal likelihood (also called type-II likelihood) (Neal and Zhang, 2006), or, in
other words, the likelihood at the second level of inference. For frequentist approaches, the
most frequently used evaluation function is the cross-validation estimator. Specifically, K-
fold cross-validation is most often used (H. J. Escalante, 2009; Dahinden, 2009; Lutz, 2006;
Reunanen, 2007). The values K = 10 or K = 5 are typically used by practitioners regardless
of the difficulty of the problem (error rate, number of examples, number of variables). Com-
putational considerations motivate this choice, but the authors report a relative insensitivity
of the result in that range of values of K. The leave-one-out (LOO) estimator is also used, but
due to its high variance, it should rather be avoided, except for computational reasons (see in
Section 5.3 cases in which the LOO error is inexpensive to compute). These estimators may
be poor predictors of the actual learning machine performances, but they are decent model se-
lection indices, provided that the same data splits are used to compute the evaluation function
for all models. For bagging methods (like Random Forests, Breiman, 2001), the bootstrap
estimator is a natural choice: the “out-of-bag” samples, which are those samples not used
for training, are used to predict performance. Using empirical estimators at the second level
on inference poses the problem of possibly over-fitting them. Some authors advocate using
evaluation functions based on prediction risk bounds: Koo and Kil (2008) and Claeskens
et al. (2008) derive in this way information criteria for regression models (respectively called
“modulus of continuity information criterion” or MCIC and “kernel regression information
criterion” or KRIC) and Claeskens et al. (2008) and Pranckeviciene and Somorjai (2009)
propose information criteria for classification problems (respectively called “support vector
machine information criterion” SVMIC and “transvariation intensity”). The effectiveness of
these new criteria is compared empirically in the papers to the classical “Akaike information
criterion” or AIC (Akaike, 1973) and the “Bayesian information criterion” or BIC (Schwarz,
1978).

5.3 Embedded Methods

Embedded methods are similar to wrappers. They need an evaluation function and a search strategy
to explore hyper-parameter space. But, unlike wrapper methods, they exploit specific features of
the learning machine architecture and/or learning algorithm to perform multi-level inference. It is
easy to appreciate that knowledge of the nature and structure of a learning machine can allow us to
search hyper-parameter space in a more efficient way. For instance, the function f (x;α,θ) may be
differentiable with respect to hyper-parameters θ and it may be possible to use gradient descent to
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optimize an evaluation function r[ f ]. Embedded methods have been attracting substantial attention
within the machine learning community in the past few years because of the mathematical elegance
of some of the new proposed methods.

Bayesian embedded methods. In the Bayesian framework, the embedded search, sampling or
summation over parameters and hyper-parameters is handled in an elegant and consistent
way by defining priors both for parameters and hyper-parameters, and computing the poste-
rior, perhaps in two steps, as indicated in Equation 3. Of course, it is more easily said than
done and the art is to find methods to carry out this integration, particularly when it is ana-
lytically intractable. Variational methods are often used to tackle that problem. Variational
methods convert a complex problem into a simpler problem, but the simplification introduces
additional “variational” parameters, which must then be optimized, hence introducing another
level of inference. Typically, the posterior is bounded from above by a family of functions
parameterized by given variational parameters. Optimizing the variational parameters yields
the best approximation of the posterior (see e.g., Seeger, 2008). Bayesian pragmatists opti-
mize the evidence (also called type-II likelihood or marginal likelihood) at the second level
of inference, but non-purists sometimes have a last recourse to cross-validation. The contri-
butions of Boullé (2007, 2009) stand out in that respect because they propose model selection
methods for classification and regression, which have no last recourse to cross-validation, yet
performed well in recent benchmarks (Guyon et al., 2008a, 2009b). Such methods have been
recently extended to the less studied problem of rank regression (Hue and Boullé, 2007). The
methods used are Bayesian in spirit, but make use of original data-dependent priors.

Regularized functionals. In the frequentist framework, the choice of a prior is replaced by the
choice of a regularized functional. Those are two-part evaluation functions including the
empirical risk (or the negative log-likelihood) and a regularizer (or a prior). For kernel meth-
ods, a 2-norm regularizer is often used, yielding the classical penalized functional Rreg[ f ] =
Remp[ f ]+ γ‖ f‖2F . Pranckeviciene and Somorjai (2009) explore the possibilities offered by a
1-norm regularizer. Such approaches provide an embedded method of feature selection, since
the constraints thus imposed on the weight vector drive some weights to exactly zero. We
emphasized in the introduction that, in some cases, decomposing the inference problem into
multiple levels allows us to conveniently regain the convexity of the optimization problem
involved in learning. Ye et al. (2008) propose a multiple kernel learning (MKL) method, in
which the optimal kernel matrix is obtained as a linear combination of pre-specified kernel
matrices, which can be brought back to a convex program. Few approaches are fully embed-
ded and a wrapper is often used at the last level of inference. For instance, in kernel methods,
the kernel parameters may be optimized by gradient descent on the regularized functional,
but then the regularization parameter is selected by cross-validation. One approach is to use
a bound on the generalization error at the second level of inference. For instance, Guermeur
(2007) proposes such a bound for the multi-class SVM, which can be used to choose the
values of the “soft margin parameter” C and the kernel parameters. Cross-validation may be
preferred by practitioners because it has performed consistently well in benchmarks (Guyon
et al., 2006b). This motivated Kunapuli et al. (2009) to integrate the search for optimal pa-
rameters and hyper-parameters into a multi-level optimization program, using a regularized
functional at the lower level, and cross-validation at the upper level. Another way of inte-
grating a second level of inference performed by cross-validation and the optimization of
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a regularized functional at the first level of inference is to use a closed-form expression of
the leave-one-out error (or a bound) and optimize it by gradient descent or another classi-
cal optimization algorithm. Such virtual leave-one-out estimators, requiring training a single
classifier on all the data (see e.g., Cawley and Talbot, 2007a; Debruyne et al., 2–8, in the
collection of papers we have assembled).

6. Advanced Topics and Open Problems

We have left aside many important aspects of model selection, which, space permitting, would
deserve a longer treatment. We briefly discuss them in this section.

6.1 Ensemble Methods

In Section 4, we have made an argument in favor of unifyingmodel selection and ensemble methods,
stemming either from a Bayesian or frequentist perspective, in the common framework of multi-
level optimization. In Sections 5.1, 5.2, and 5.3, we have given examples of model selection and
ensemble methods following filter, wrapper or embedded strategies. While this categorization
has the advantage of erasing the dogmatic origins of algorithms, it blurs some of the important
differences between model selection and ensemble methods. Ensemble methods can be thought of
as a way of circumventing model selection by voting among models rather than choosing a single
model. Recent challenges results have proved their effectiveness (Guyon et al., 2009b). Arguably,
model selection algorithms will remain important in applications where model simplicity and data
understanding prevail, but ever increasing computer power has brought ensemble methods to the
forefront of multi-level inference techniques. For that reason, we would like to single out those
papers of our collection that have proposed or applied ensemble methods:

Lutz (2006) used boosted shallow decision trees for his winning entries in two consecutive
challenges. Boosted decision trees have often ended up among the top ranking methods in other
challenges (Guyon et al., 2006a, 2009b). The particular implementation of Lutz of the Logitboost
algorithm (Friedman et al., 2000) use a “shrinkage” regularization hyper-parameter, which seems to
be key to attain good performance, and is adjusted by cross-validation as well as the total number of
base learners. Dahinden (2009) successfully applied the Random Forest (RF) algorithm (Breiman,
2001) in the performance prediction challenge (Guyon et al., 2006b). She demonstrated that with
minor adaptations (adjustment of the bias value for improved handling of unbalanced classes), the
RF algorithm can be applied without requiring user intervention. RF continues to be a popular and
successful method in challenges (Guyon et al., 2009b). The top ranking models use very large en-
sembles of hundreds of trees. One of the unique features of RF algorithms is that they subsample
both the training examples and the features to build base learners. Using random subsets of fea-
tures seems to be a winning strategy, which was applied by others to ensembles of trees using both
boosting and bagging (Tuv et al., 2009) and to other base learners (Nikulin, 2009). Boullé (2007)
also adopts the idea of creating ensembles using base learners constructed with different subsets
of features. Their base learner is the naı̈ve Bayes classifier and, instead of using random subsets,
they select subsets with a forward-backward method, using a maximum A Posteriori (MAP) eval-
uation function (hence not requiring cross-validation). The base learners are then combined with
an weighting scheme based on an information theoretic criterion, instead on weighting the mod-
els with the posterior probability as in Bayesian model averaging. This basically boils down to
using the logarithm of the posterior probabilities instead of the posterior probabilities themselves
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for weighting the models. The weights have an interpretation in terms of model compressibility.
The authors show that this strategy outperforms Bayesian model averaging on several benchmark
data sets. This can be understood by the observation that when the posterior distribution is sharply
peaked around the posterior mode, averaging is almost the same as selecting the MAP model. Ro-
bustness is introduced by performing a more balanced weighting of the base learners. In contrast
with the methods we just mentioned, which choose identical base learners (trees of naı̈ve Bayes),
other successful challenge participants have built heterogeneous ensembles of learning machines
(including, for example, linear models, kernel methods, trees, naı̈ve Bayes, and neural networks),
using cross-validation to evaluate their candidates for inclusion in the ensemble (Wichard, 2007;
IBM team, 2009). While Wichard (2007) evaluates classifiers independently, IBM team (2009) uses
a forward selection method, adding a new candidate in the ensemble based on the new performance
of the ensemble.

6.2 PAC Bayes Approaches

Unifying Bayesian and frequentist model selection procedures under the umbrella of multi-level
inference may shed new light on correspondences between methods and have a practical impact on
the design of toolboxes incorporating model selection algorithms. But there are yet more synergies
to be exploited between the Bayesian and the frequentist framework. In this section, we would like
to capture the spirit of the PAC Bayes approach and outline possible fruitful directions of research.

The PAC learning framework (Probably Approximately Correct), introduced by Valiant (1984)
and later recognized to closely resemble the approach of the Russian school popularized in the US
by Vapnik (1979), has become the beacon of frequentist learning theoretic approaches. It quantifies
the generalization performance (the Correct aspect) of a learning machine via performance bounds
(the Approximate aspect) holding in probability (the Probable aspect):

Prob
[

(R[ f ]−Remp[ f ]) ≤ ε(δ)
]

≥ (1−δ) ,

In this equation, the confidence interval ε(δ) (Approximate aspect) bounds, with probability
(1−δ) (Probable aspect),the difference between the expected risk or generalization error R[ f ] and
the empirical risk6 Remp[ f ] (Correct aspect). Recently, many bounds have been proposed to quantify
the generalization performance of algorithms (see e.g., Langford, 2005, for a review). The idea of
deriving new algorithms, which optimize a bound ε(δ) (guaranteed risk optimization) has been
popularized by the success of SVMs (Boser et al., 1992) and boosting (Freund and Schapire, 1996).

The PAC framework is rooted in the frequentist philosophy of defining probability in terms of
frequencies of occurrence of events and bounding differences between mathematical expectations
and frequencies of events, which vanish with increasingly large sample sizes (law of large numbers).
Yet, since the pioneering work of Haussler et al. (1994), many authors have proposed so-called
PAC-Bayes bounds. Such bounds assess the performance of existing Bayesian algorithms (see
e.g., Seeger, 2003), or are used to derive new Bayesian algorithms optimizing a guaranteed risk
functional (see Germain et al. 2009 and references therein).

This is an important paradigm shift, which bridges the gap between the frequentist structural
risk minimization approach to model selection (Vapnik, 1998) and the Bayesian prior approach.

6. at the first level of inference, this would be the training error Rtr[ f ]; at the second level of inference this may be the
validation error Rva[ f ]
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It erases the need for assuming that the model used to fit the data comes from a concept space of
functions that generated the data. Instead, priors may be used to provide a “structure” on a chosen
model space (called hypothesis space to distinguish it from the concept space), which does not
necessarily coincide with the concept space, of which we often know nothing. Reciprocally, we can
interpret structures imposed on a hypothesis space as our prior belief that certain models are going
to perform better than others (see, for instance, the examples at the end of Section 3.1).

This opens the door to also regularizing the second level of inference by using performance
bounds on the cross-validation error, as was done for instance in Cawley and Talbot (2007a) and
Guyon (2009).

6.3 Open Problems

• Domain knowledge: From the earliest embodiments of Okcham’s razor using the number
of free parameters to modern techniques of regularization and bi-level optimization, model
selection has come a long way. The problem of finding the right structure remains, the rights
prior or the right regularizer. Hence know-how and domain knowledge are still required. But
in a recent challenge we organized called “agnostic learning vs. prior knowledge” (Guyon
et al., 2008b) it appeared that the relatively small incremental improvements gained with prior
knowledge came at the expense of important human effort. In many domains, collecting more
data is less costly than hiring a domain expert. Hence there is pressure towards improving
machine learning toolboxes and, in particular equipping them with model selection tools. For
the competitions we organized (Clopinet, 2004-2009), we made a toolbox available with state-
of-the-art models (Saffari and Guyon, 2006), which we progressively augmented with the best
performing methods. The Particle Swarm Optimization (PSO) model selection method can
find the best models in the toolbox and reproduce the results of the challenges (H. J. Escalante,
2009). Much remains to be done to incorporate filter and wrapper model selection algorithms
in machine learning toolboxes.

• Unsupervised learning: Multi-level optimization and model selection are also central prob-
lems for unsupervised learning. When no target variable is available as “teaching signal”
one can still define regularized risk functionals and multi-level optimization problems (Smola
et al., 2001). Hyper-parameters (e.g., “number of clusters”) can be adjusted by optimizing a
second level objective such as model stability (Ben-Hur et al., 2002), which is an erzatz of
cross-validation. The primary difficulty with model selection for unsupervised learning is to
validate the selected model. To this day, there is no consensus on how to benchmark methods,
hence it is very difficult to quantify progress in this field. This is why we have so far shied
away from evaluating unsupervised learning algorithms, but this remains on our agenda.

• Semi-supervised learning: Very little has been done for model selection in semi-supervised
learning problems, in which only some training instances come with target values. Semi-
supervised tasks can be challenging for traditional model selection methods, such as cross-
validation, because the number of labeled data is often very small. Schuurmans and Southey
(2001) used the unlabeled data to test the consistency of a model, by defining a metric over
the hypothesis space. Similarly, Madani et al. (2005) introduced the co-validation method,
which uses the disagreement of various models on the predictions over the unlabeled data as
a model selection tool. In some cases there is no performance gain by using the unlabeled
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data for training (Singh et al., 2008). Deciding whether all or part of the unlabeled data should
be used for training (data selection) may also be considered a model selection problem.

• Non i.i.d. data: The problem of non i.i.d. data raises a number of other questions because
if there are significant differences between the distribution of the training and the test data,
the cross-validation estimator may be worthless. For instance, in causal discovery problems,
training data come from a “natural” distribution while test data come from a different “manip-
ulated” distribution (resulting from some manipulations of the system by an external agent,
like clamping a given variable to given values). Several causal graphs may be consistent with
the “natural distribution” (not just with the training data, with the true unknown distribution),
but yield very different predictions of manipulated data. Rather selecting a single model, it
make more sense to select a model class. We have started a program of data exchange and
benchmarks to evaluate solutions to such problems (Guyon et al., 2008a, 2009a).

• Computational considerations: The selection of the model best suited to a given application
is a multi-dimensional problem in which prediction performance is only one of the dimen-
sions. Speed of model building and processing efficiency of deployed models are also impor-
tant considerations. Model selection algorithms (or ensemble methods) which often require
many models to be trained (e.g., wrapper methods with extensive search strategies and using
cross-validation to validate models) may be unable to build solutions in a timely manner. At
the expense of some acceptable loss in prediction performance, methods using greedy search
strategies (like forward selection methods) and single-pass evaluation functions (requiring
the training of only a single model to evaluate a given hyper-parameter choice), may consid-
erably cut the training time. Greedy search methods include forward selection and backward
elimination methods. Single-pass evaluation functions include penalized training error func-
tionals (regularized functionals, MAP estimates) and virtual-leave-one-out estimators. The
latter allows users to compute the leave-one-out-error at almost no additional computational
expense than training a single predictor on all the training data (see e.g., Guyon et al., 2006a,
Chapter 2, for a review). Other tricks-of-the-trade include following regularization paths
to sample the hyper-parameter space more effectively (Rosset and Zhu, 2006; Hastie et al.,
2004). For some models, the evaluation function is piecewise linear between a few discon-
tinuous changes occurring for a few finite hyper-parameter values. The whole path can be
reconstructed from only the values of the evaluation function at those given points. Finally,
Reunanen (2007) proposed clever ways of organizing nested cross-validation evaluations in
multiple level of inference model selection using cross-indexing. The author also explored
the idea of spending more time to refine the evaluation of the most promising models. Further
work needs to be put into model selection methods, which simultaneously address multiple
objectives, including optimizing prediction performance and computational cost.

7. Conclusion

In the past twenty years, much effort has been expended towards finding the best regularized func-
tionals. The many embodiments of Ockham’s razor in machine learning have converged towards
similar regularizers. Yet, the problem of model selection remains because we need to optimize the
regularization parameter(s) and often we need to select among various preprocessings, learning ma-
chines, and post-processings. In the proceedings of three of the challenges we organized around the
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problem of model selection, we have collected a large number of papers, which testify to the vivid
activity of the field. Several researchers do not hesitate to propose heretic approaches transcending
the usual “frequentist” or Bayesian dogma. We have seen the idea of using the Bayesian machin-
ery to design regularizers with “data-dependent priors” emerge (Boullé, 2007, 2009), much like a
few years ago data-dependent performance bounds (Bartlett, 1997; Vapnik, 1998) and PAC-Bayes
bounds (Haussler et al., 1994; Seeger, 2003) revolutionized the “frequentist” camp, up to then very
fond of uniform convergence bounds and the VC-dimension (Vapnik and Chervonenkis, 1971). We
have also seen the introduction of regularization of cross-validation estimators using Bayesian pri-
ors (Cawley and Talbot, 2007a). Ensemble methods may be thought of as a way of circumventing
model selection. Rather, we think of model selection and ensemble methods as two options to
perform multi-level inference, which can be formalized in a unified way.

Within this general framework, we have categorized approaches into filter, wrapper and embed-
ded methods. These methods complement each other and we hope that in a not too distant future,
they will be integrated into a consistent methodology: Filters first can prune model space; Wrappers
can perform an outer level model selection to select pre/post processings and feature subsets; Em-
bedded methods can perform an inner level hyper-parameter selection integrated within a bi-level
optimization program. We conclude that we are moving towards a unified framework for model
selection and there is a beneficial synergy between methods, both from a theoretical and from a
practical perspective.
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Appendix A. Glossary

Automatic Relevance Determination (ARD) prior. The ARD prior was invented for neural net-
works (MacKay, 1992): all network input variables and all neuron outputs (internal features)
are weighed by a scaling factor κi, before being independently weighted by the network con-
nections. A hyper-prior must be chosen to favor small values of the κi, which makes the
influence of irrelevant variables or features naturally fade away. For kernel methods, ARD
falls under the same framework as the ‖ f‖2

H
regularizer, for a special class of kernels using

variable (feature) scaling factors. For instance, the ARD prior is implemented by defining the
Gaussian kernel (for positive hyper-parameters κi):

K(xh,xk) = exp

{

−
n

∑
j=1

κi(xh, j− xk, j)2
}

instead of the regular Gaussian kernel K(xh,xk) = exp
{

−κ‖xh−xk‖2
}

.

Base learner. In an ensemble method, the individual learning machines that are part of the ensem-
ble.
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Bagging. Bagging stands for bootstrap aggregating. Bagging is a parallel ensemble method (all
base learners are built independently from training data subsets). Several data subsets of
size m are drawn independently with replacement from the training set of m examples. On
average each subset thus built contains approximately 2/3 of the training examples. The en-
semble predictions are made by averaging the predictions of the baser learners. The ensemble
approximates ED( f (x,D)), where f (x,D) is a function from the model class F, trained with
m examples and ED(.) is the mathematical expectation over all training sets of size m. The
rationale comes from the bias/variance decomposition of the generalization error. The
“out-of-bag” samples (samples not used for learning for each data subset drawn for training)
may be used to create a bootstrap prediction of performance.

Bayesian learning. Under the Bayesian framework, it is assumed that the data were generated
from a double random process: (1) a model is first drawn according to a prior distribution
in a concept space; (2) data are produced using the model. In the particular case of super-
vised learning, as for maximum likelihood learning, a three-part data generative model is
assumed: P(x), f ∈F , and a zero-mean noise model. But, it is also assumed that the function
f was drawn according to a prior distribution P( f ). This allows us to compute the probability
of an output y given an input x, P(y|x) =

R

f∈F P(y|x, f )dP( f ), or its mathematical expecta-
tion E(y|x) =

R

f∈F f (x)dP( f ), averaging out the noise. After training data D are observed,
the prior P( f ) is replaced by the posterior P( f |D). The mathematical expectation of y given
x is estimated as: E(y|x,D) =

R

f∈F f (x)dP( f |D). Hence, learning consists of calculating the
posterior distribution P( f |D) and integrating over it. The predictions are made according to
E(y|x,D), a function not necessarily belonging to F . In the case of classification, E(y|x,D)
does not take values in Y (although thresholding the output just takes care of the problem).
If we want a model in F , we can use the Gibbs algorithm, which picks one sample in F ac-
cording to the posterior distribution P( f |D), or use theMAP learning approach. In Bayesian
learning, analytically integrating over the posterior distribution is often impossible and the
integral may be approximated by finite sum of models, weighted by positive coefficients (see
variational methods) or by sampling models from the posterior distribution (seeWeighted
majority algorithm andMonte-Carlo Markov Chain or MCMC). The resulting estimators
of Ê(y|x,D) are convex combinations of functions in F and, in that sense, Bayesian learning
is similar to ensemble methods.

Bias/variance decomposition. In the case of a least-square loss, the bias/variance decomposition
is given by ED[( f (x;D)−E[y|x])2] = (ED[ f (x;D)]−E(y|x))2+ED[( f (x;D)−ED[ f (x;D)])2].
The second term (the “variance” of the estimator f (x,D)) vanishes if f (x;D) equals ED[ f (x;D).
The motivates the idea of using an approximation of ED[ f (x;D) as a predictor. In bagging
the approximation is obtained by averaging over functions trained from m examples drawn at
random with replacement from the training set D (bootstrap method). The method works best
if F is not biased (i.e., contains E(y|x)). Most models with low bias have a high variance and
vice versa, hence the well-known bias/variance tradeoff.

Concept space. A space of data generative models from which the data are drawn. Not to be
confused withmodel space or hypothesis space.

Empirical risk. An estimator of the expected risk that is the average of the loss over a finite
number of examples drawn according to P(x,y): Remp = (1/m)∑m

k=1L( f (xk),yk).
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Ensemble methods. Methods of building predictors using multiple base learners, which vote to
make predictions. Predictions of y are made using a convex combination of functions f j ∈ F :
F(x) = ∑ j p j f j(x), where p j are positive coefficients. The two most prominent ensemble
methods are bagging (Breiman, 1996) and boosting (Freund and Schapire, 1996). Bagging
is a parallel ensemble method (all trees are built independently from training data subsets),
while boosting is a serial ensemble method (trees complementing each other are progres-
sively added to decrease the residual error). Random Forests (RF) (Breiman, 2001) are a
variant of bagging methods in which both features and examples are subsampled. Boosting
methods come in various flavors including Adaboost, Gentleboost, and Logitboost. The orig-
inal algorithm builds successive models (called “weak learners”) by resampling data in a way
that emphasizes examples that have proved hardest to learn. Newer versions use a weighting
scheme instead of resampling (Friedman, 2000).

Expected risk. The mathematical expectation of a risk functional over the unknown probability
distribution P(x,y): R[ f ] =

R

L( f (x),y) dP(x,y). Also called generalization error.

Generalization error. See expected risk.

Greedy search strategy. A search strategy, which does not revisit partial decisions already made,
is called “greedy”. Examples include forward selection and backward elimination in feature
selection.

Guaranteed risk. A bound on the expected risk. See PAC learning and Structural Risk Mini-
mization (SRM).

Hypothesis space. A space of models, which are fit to data, not necessarily identical to the concept
space (which is often unknown).

Loss function. A function L( f (x),y), which measures the discrepancy between target values y and
model predictions f (x). Examples include the square loss (y− f (x))2 for regression of the
0/1 loss 1[ f (x) '= y] for classification).

MAP learning. Maximum a posteriori (MAP) learning shares the same framework as Bayesian
learning, but it is further assumed that the posterior P( f |D) is concentrated and that E(y|x,D)
can be approximated by f ∗(x), with f ∗ = argmax f P( f |D) = argmax f P(D| f )P( f ) =
argmin f − lnP(D| f )− lnP( f ). If we assume a uniform prior, we are brought back to maxi-
mum likelihood learning. If both P(D| f ) and P( f ) are exponentially distributed (P(y|x, f ) =
exp−L( f (x),y) and P( f ) = exp−Ω[ f ]), then MAP learning is equivalent to the minimiza-
tion of a regularized risk functional.

Maximum likelihood learning. It is assumed that the data were generated by an input distribution
P(x), a function f from amodel space F coinciding with the concept space, and a zero-mean
noise model. For regression, for instance, if Gaussian noise ε∼N (0,σ2) is assumed, y is dis-
tributed according to P(y|x, f ) =N ( f (x),σ2). In the simplest case, P(x) and the noise model
are not subject to training (the values of x are fixed and the noise model is known). Learn-
ing then consists in searching for the function f ∗, which maximizes the likelihood P(D| f ),
or equivalently (since P(x) is not subject to training) f ∗ =argmax f P(y|X , f ) =argmin f −
lnP(y|X , f ). With the i.i.d. assumption, f ∗ =argmax f Πm

k=1P(yk|xk, f ) =argmin f ∑m
k=1−
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lnP(yk|xk, f ). For distributions belonging to the exponential family P(y|x, f ) =
exp{−L( f (x),y)}, the maximum likelihood method is equivalent to the method of mini-
mizing the empirical risk. In the case of Gaussian noise, this corresponds to the method of
least squares.

Model space. A space of predictive models, which are fit to data. Synonym of hypothesis space.
For Bayesian models, also generally coincides with the concept space, but not for frequen-
tists.

Monte-Carlo Markov Chain (MCMC) method. To approximate Bayesian integrals one can sam-
ple from the posterior distribution P( f |D) following a Monte-Carlo Markov chain (MCMC),
then make predictions according to Ê(y|x,D) = ∑ j f j(x). In a MCMC, at each step new can-
didate models f j ∈ F are considered, in a local neighborhood of the model selected at the
previous step. The new model is accepted if it provides a better fit to the data according to the
posterior distribution or, if not, a random decision is made to accept it, following the Gibbs
distribution (better models having a greater chance of acceptance).

Over-fitting avoidance. Model selection is traditionally associated with the so-called problem of
over-fitting avoidance. Over-fitting means fitting the training examples well (i.e., obtaining
large model likelihood or low empirical risk values, computed from training data), but gen-
eralizing poorly on new test examples. Over-fitting is usually blamed on too large a large
number of free parameters to be estimated, relative to the available number of training ex-
amples. The most basic model selection strategy is therefore to restrict the number of free
parameters according to “strict necessity”. This heuristic strategy is usually traced back in
history to the principle known as Ockham’s razor “Plurilitas non est ponenda sin necessitate”
(William of Ockham, 14th century). In other words, of two theories providing similarly good
predictions, the simplest one should be preferred, that is, shave off unnecessary parameters.
Most modern model selection strategies claim some affiliation with Ockham’s razor, but the
number of free parameters is replaced by a measure of capacity or complexity of the model
class, C[F ]. Intuitively, model classes with large C[F ] may include the correct model, but it
is hard to find. In this case, even models with a low training error may have a large gener-
alization error (high “variance”; over-fitting problem). Conversely, model classes with small
C[F ] may yield “biased” models, that is, with both high training and generalization error
(under-fitting). See bias/variance decomposition..

PAC learning. The “probably approximately correct” (PAC) learning procedures, seek a function
minimizing a guaranteed risk Rgua[ f ] = Remp[ f ]+ ε(C,δ) such that with (high) probability
(1−δ), R[ f ] ≤ Rgua[ f ]. C is a measure of capacity or complexity.

Regularizers and regularization. The regularization method consists of replacing the minimiza-
tion of the empirical risk Remp[ f ] by that of Rreg[ f ] = Remp +Ω[ f ]. A regularizer Ω[ f ]
is a functional penalizing “complex” functions. If both Rtr[ f ] and Ω[ f ] are convex, there
is a unique minimum of Rreg[ f ] with respect to f . In MAP learning, − lnP( f ) can be
thought of as a regularizer. One particularly successful regularizer is the 2-norm regular-
izer ‖ f‖2

H
for model functions f (x) = ∑m

k=1αkK(x,xk) belonging to a Reproducing Kernel
Hilbert Space H (kernel methods). In the particular case of the linear model f (x) = w · x,
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we have ‖ f‖2
H

= ‖w‖2, a commonly used regularized found in many algorithms includ-
ing ridge regression (Hoerl, 1962) and SVMs (Boser et al., 1992). In the general case,
‖ f‖2

H
= fK−1f = αTKα, where f = [ f (xk)]mk=1 is the vector of predictions of the training

examples, α = [αk]mk=1 and K = [K(xh,xk], h = 1, ...m k = 1, ...m. Due to the duality be-
tween RKHS and stochastic processes (Wahba, 1990), the functions in the RKHS can also
be explained as a family of random variables in a Gaussian process, assuming a prior P( f )
proportional to exp(−γ‖ f‖H ) = exp(−γfK−1f) and the kernel matrix K is interpreted as a
covariance matrix K(xh,xk) =cov[ f (xk), f (xk)].

Risk minimization. Given a model space or hypothesis space F of functions y = f (x), and a
loss function L( f (x),y), we want to find the function f ∗ ∈ F that minimizes the expected
risk R[ f ] =

R

L( f (x),y) dP(x,y). Since P(x,y) is unknown, only estimations of R[ f ] can be
computed. The simplest estimator is the average of the loss over a finite number of exam-
ples drawn according to P(x,y) called the empirical risk: Remp = (1/m)∑m

k=1L( f (xk),yk).
The minimization of the empirical risk is the basis of many machine learning approaches
to selecting f ∗, but minimizing regularized risk functionals is often preferred. See regular-
ization. Also, related are the PAC learning procedures and the method of Structural Risk
Minimization (SRM).

Search strategy. There are optimal search strategies, which guarantee that the optimum of the
evaluation function will be found, including the exhaustive searchmethod, for discrete hyper-
parameter spaces. The popular grid search method for continuous hyper-parameter spaces
performs an exhaustive search, up to a certain precision. A related stochastic search method
is uniform sampling. Uniformly sampling parameter space may be computationally expensive
and inefficient. If we use a non-uniform distribution G(θ) to sample hyper-parameter space,
which resembles P( f (θ)|D), the search can be made more efficient. This idea is exploited in
rejection sampling and importance sampling: according to these methods a Bayesian ensem-
ble F(x) = ∑k wk f (x;θk) would use weight wk proportional to P( f (θ)|D)/G(θ). Because of
the computational burden of (near) optimum strategies, other strategies are often employed,
usually yielding only a local optimum. These include sequential search strategies such as
coordinate ascent or descent (making small steps along coordinate axes) or pattern search
(Momma and Bennett, 2002) (making local steps according to a certain pattern), which, by
accepting only moves that improve the evaluation function, find the local optimum nearest
to the starting point. Some stochastic search methods accept moves not necessarily improv-
ing the value of the evaluation function, like simulated annealing or Markov chain Monte
Carlo (MCMC) methods. Both methods accept all moves improving the evaluation function
and some moves that do not, for example, with probability exp−Δr/T , where T is a posi-
tive parameter (T=1 for MCMC and progressively diminishes for simulated annealing). Such
stochastic methods search hyper-parameter space more intensively and do not become stuck
in the nearest local optimum of the evaluation function.

Semi-supervised learning. In semi-supervised learning, in addition to the labeled data, the learn-
ing machine is given a (possibly large) set of unlabeled data. Such unlabeled data may be
used for training or model selection.

Structural Risk Minimization. Themethod of Structural RiskMinimization (SRM) provides aeans
of building regularized risk functionals (see Regularization), using the idea of guaranteed
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risk minimization, but not requiring the calculation of the model class capacity or complex-
ity, which is often unknown or hard to compute. In the risk minimization framework, it is not
assumed that the model space includes a function or “concept”, which generated the data (see
concept space and hypothesis space).

Supervised learning. Learning with teaching signal or target y.

Under-fitting. While over-fitting is the problem of learning the training data too well the expense
of a large generalization error, under-fitting is the problem of having a too weak model not
even capable of learning the training data and also generalizing poorly.

Unsupervised learning. Learning in the absence of teaching signal or target y.

Weighted majority algorithm. To approximate Bayesian integrals one can draw samples f j uni-
formly from the model space of functions F and make predictions according to Ê(y|x,D) =
∑ j P( f j|D) f j(x).
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Abstract
We consider a sequential version of the classical bin packing problem in which items are received
one by one. Before the size of the next item is revealed, the decision maker needs to decide whether
the next item is packed in the currently open bin or the bin is closed and a new bin is opened. If
the new item does not fit, it is lost. If a bin is closed, the remaining free space in the bin accounts
for a loss. The goal of the decision maker is to minimize the loss accumulated over n periods. We
present an algorithm that has a cumulative loss not much larger than any strategy in a finite class
of reference strategies for any sequence of items. Special attention is payed to reference strategies
that use a fixed threshold at each step to decide whether a new bin is opened. Some positive and
negative results are presented for this case.
Keywords: bin packing, on-line learning, prediction with expert advice

1. Introduction

In the classical off-line bin packing problem, an algorithm receives items (also called pieces) of size
x1,x2, . . . , xn ∈ (0,1]. We have an infinite number of bins, each with capacity 1, and every item is to
be assigned to a bin. Further, the sum of the sizes of the items (also denoted by xt) assigned to any
bin cannot exceed its capacity. A bin is empty if no item is assigned to it, otherwise, it is used. The
goal of the algorithm is to minimize the number of used bins. This is one of the classical NP-hard
problems and heuristic and approximation algorithms have been investigated thoroughly, see, for
example, Coffman et al. (1997).

Another well-studied version of the problem is the so-called on-line bin packing problem. Here
items arrive one by one and each item xt must be assigned to a bin (with free space at least xt)
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immediately, without any knowledge of the next pieces. In this setting the goal is the same as in
the off-line problem, that is, the number of used bins is to be minimized, see, for example, Seiden
(2002).

In both the off-line and on-line problems the algorithm has access to the bins in arbitrary or-
der. In this paper we abandon this assumption and introduce a more restricted version that we call
sequential bin packing. In this setting items arrive one by one (just like in the on-line problem)
but in each round the algorithm has only two possible choices: assign the given item to the (only)
open bin or to the “next” empty bin (in this case this will be the new open bin), and items cannot
be assigned anymore to closed bins. An algorithm thus determines a sequence of binary decisions
i1, . . . , in where it = 0 means that the next item is assigned to the open bin and it = 1 means that a
new bin is opened and the next item is assigned to that bin. Of course, if it = 0, then it may happen
that the item xt does not fit in the open bin. In that case the item is “lost.” If the decision is it = 1 then
the remaining empty space in the last closed bin is counted as a loss. The measure of performance
we use is the total sum of all lost items and wasted empty space.

Just as in the original bin packing problem, we may distinguish off-line and on-line versions
of the sequential bin packing problem. In the off-line sequential bin packing problem the entire
sequence x1, . . . ,xn is known to the algorithm at the outset. Note that unlike in the classical bin
packing problem, the order of the items is relevant. This problem turns out to be computationally
significantly easier than its non-sequential counterpart. In Section 3 we present a simple algorithm
with running time of O(n2) that minimizes the total loss in the off-line sequential bin packing
problem.

Much more interesting is the on-line variant of the sequential bin packing problem. Here the
items xt are revealed one by one, after the corresponding decision it has been made. In other words,
each decision has to be made without any knowledge on the size of the item. Formulated this way,
the problem is reminiscent of an on-line prediction problem, see Cesa-Bianchi and Lugosi (2006).
However, unlike in standard formulations of on-line prediction, here the loss the predictor suffers
depends not only on the outcome xt and decision it but also on the “state” defined by the fullness of
the open bin.

Our goal is to extend the usual bin packing problems to situations in which one can handle only
one bin at a time, and items must be processed immediately so they cannot wait for bin changes.
To motivate the on-line sequential model, one may imagine a simple revenue management problem
in which a decision maker has a unit storage capacity at his disposal. A certain product arrives in
packages of different size and after each arrival, it has to be decided whether the stored packages
are shipped or not. (Storage of the product is costly.) If the stored goods are shipped, the entire
storage capacity becomes available again. If they are not shipped one waits for the arrival of the
next package. However, if the next package is too large to fit in the remaining open space, it is lost
(it will be stored in another warehouse).

In another example of application, a sensor collects measurements that can be compressed to
variable size (these are the items). The sensor communicates its measurements by sending frames
of some fixed size (bins). Since it has limited memory, it cannot store more data than one frame.
To save energy, the sensor must maximize its throughput (the proportion of useful data in each
frame) and at the same time minimize data loss (this trade-off is reflected in the definition of the
loss function).

Just like in on-line prediction, we compare the performance of an algorithm with the best in
a pool of reference algorithms (experts). Given a set of N reference strategies, we construct a
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randomized algorithm for the sequential on-line bin packing problem that achieves a cumulative
loss (measured as the sum of the total wasted capacity and lost items) that is less than the total loss
of the best strategy in the class (determined in hindsight) plus a quantity of the order of n2/3 ln1/3N.

Arguably the most natural comparison class contains all algorithms that use a fixed threshold
to decide whether a new bin is opened. In other words, reference predictors are parameterized by
a real number p ∈ (0,1]. An expert with parameter p simply decides to open a new bin whenever
the remaining free space in the open bin is less than p. We call such an expert a constant-threshold
strategy. First we point out that obtaining uniform regret bounds for this class is difficult. We
present some impossibility results in relation to this problem. We also offer some data-dependent
bounds for an algorithm designed to compete with the best of all constant-threshold strategies, and
show that if item sizes are jittered with a certain noise then a uniform regret bound of the order of
n2/3 ln1/3 n may be achieved .

The principal difficulty of the problem lies in the fact that each action of the decision maker takes
the problem in a new “state” (determined by the remaining empty space in the open bin) which has
an effect on future losses. Moreover, the state of the algorithm is typically different from the state
of the experts which makes comparison difficult. In related work, Merhav et al. (2002) considered
a similar setup in which the loss function has a “memory,” that is, the loss of a predictor depends on
the loss of past actions. Furthermore, Even-Dar et al. (2005) and Yu et al. (2009) considered the MDP
case where the adversarial reward function changes according to some fixed stochastic dynamics.
However, there are several main additional difficulties in the present case. First, unlike in Merhav
et al. (2002), but similarly to Even-Dar et al. (2005) and Yu et al. (2009), the loss function has an
unbounded memory as the state may depend on an arbitrarily long sequence of past predictions.
Second, the state space is infinite (the [0,1) interval) and the class of experts we compare to is also
infinite, in contrast to both of the above papers. However, the special properties of the bin packing
problem make it possible to design a prediction strategy with small regret.

Note that the MDP setting of Even-Dar et al. (2005) and Yu et al. (2009) would be a too pes-
simistic approach to our problem, as in our case there is a strong connection between the rewards in
different states, thus the absolute adversarial reward function results in an overestimated worst case.
Also, in the present case, state transitions are deterministically given by the outcome, the previous
state, and the action of the decision maker, while in the setup of Even-Dar et al. (2005) and Yu et al.
(2009) transitions are stochastic and depend only on the state and the decision of the algorithm, but
not on the reward (or on the underlying individual sequence generating the reward).

We also mention here the similar on-line bin packing with rejection problemwhere the algorithm
has an opportunity to reject some items and the loss function is the sum of the number of the used
bins and the “costs” of the rejected items, see He and Dósa (2005).1 However, instead of the number
of used bins, we use the sum of idle capacities (missed or free spaces) in the used bins to measure
the loss.

The following example may help explain the difference between various versions of the prob-
lem.

Example 1 Let the sequence of the items be 〈0.4,0.5,0.2, 0.5,0.5,0.3,0.5,0.1〉. Then the cumula-
tive loss of the optimal off-line bin packing is 0 and it is 0.4 in the case of sequential off-line bin
packing (see Figure 1). In the sequential case the third item (0.2) has been rejected.

1. In sequential bin packing we assume that the cost of the items coincides with their size. In this case the optimal
solution of bin-packing with rejection is trivially to reject all items.
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Figure 1: The difference between the optimal solutions for the off-line and sequential off-line prob-
lems.

The rest of the paper is organized as follows. In Section 2 the problem is defined formally.
In Section 3 the complexity of the off-line sequential bin packing problem is analyzed. The main
results of the paper are presented in Sections 4 and 5.

2. Setup

We use a terminology borrowed from the theory of on-line prediction with expert advice. Thus, we
call the sequential decisions of the on-line algorithm predictions and we use forecaster as a synonym
for algorithm.

We denote by It ∈ {0,1} the action of the forecaster at time t (i.e., when t−1 items have been
received). Action 0 means that the next item will be assigned to the open bin and action 1 represents
the fact that a new bin is opened and the next item is assigned to the next empty bin. Note that
we assume that we start with an open empty bin, thus for any reasonable algorithm, I1 = 0, and we
will restrict our attention to such algorithms. The sequence of decisions up to time t is denoted by
It ∈ {0,1}t .

Denote by ŝt ∈ [0,1) the free space in the open (last) bin at time t ≥ 1, that is, after having placed
the items x1,x2, . . . ,xt according to the sequence It of actions. This is the state of the forecaster.
More precisely, the state of the forecaster is defined, recursively, as follows: As at the beginning we
have an empty bin, ŝ0 = 1. For t = 1,2, . . . ,n,

• ŝt = 1− xt , when the algorithm assigns the item to the next empty bin (i.e., It = 1);

• ŝt = ŝt−1, when the assigned item does not fit in the open bin (i.e., It = 0 and ŝt−1 < xt);

• ŝt = ŝt−1− xt , when the assigned item fits in the open bin (i.e., It = 0 and ŝt−1 ≥ xt).

This may be written in a more compact form:

ŝt = ŝt(It ,xt , ŝt−1)
= It(1− xt)+(1− It)(ŝt−1− I{ŝt−1≥xt}xt)

where I{·} denotes the indicator function of the event in brackets, that is, it equals 1 if the event is
true and 0 otherwise. The loss suffered by the forecaster at round t is

!(It ,xt | ŝt−1),
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where the loss function ! is defined by

!(0,x | s) =

{
0, if s≥ x;
x, otherwise

(1)

and
!(1,x | s) = s . (2)

The goal of the forecaster is to minimize its cumulative loss defined by

L̂t = LIt ,t =
t

∑
s=1

!(Is,xs | ŝs−1) .

In the off-line version of the problem, the entire sequence x1, . . . ,xn is given and the solution is the
optimal sequence I∗n of actions

I∗n = argmin
In∈{0,1}n

LIn,n .

In the on-line version of the problem the forecaster does not know the size of the next items, and the
sequence of items can be completely arbitrary. We allow the forecaster to randomize its decisions,
that is, at each time instance t, It is allowed to depend on a random variableUt whereU1, . . . ,Un are
i.i.d. uniformly distributed random variables in [0,1].

Since we allow the forecaster to randomize, it is important to clarify that the entire sequence
of items are determined before the forecaster starts making decisions, that is, x1, . . . ,xn ∈ (0,1] are
fixed and cannot depend on the randomizing variables. (This is the so-called oblivious adversary
model known in the theory of sequential prediction, see, for example, Cesa-Bianchi and Lugosi
2006.)

The performance of a sequential on-line algorithm is measured by its cumulative loss. It is
natural to compare it to the cumulative loss of the off-line solution I∗n. However, it is easy to see
that in general it is impossible to achieve an on-line performance that is comparable to the optimal
solution. (This is in contrast with the non-sequential counterpart of the bin packing problem in
which there exist on-line algorithms for which the number of used bins is within a constant factor
of that of the optimal solution, see Seiden 2002.)

So in order to measure the performance of a sequential on-line algorithm in a meaningful way,
we adopt an approach extensively used in on-line prediction (the so-called “experts” framework).
We define a set of reference forecasters, the so-called experts. The performance of the algorithm is
evaluated relative to this set of experts, and the goal is to perform asymptotically as well as the best
expert from the reference class.

Formally, let fE,t ∈ {0,1} be the decision of an expert E at round t, where E ∈ E and E is the
set of the experts. This set may be finite or infinite, we consider both cases below. Similarly, we
denote the state of expert E with sE,t after the t-th item has been revealed. Then the loss of expert E
at round t is

!( fE,t ,xt | sE,t−1)

and the cumulative loss of expert E is

LE,n =
n

∑
t=1

!( fE,t ,xt | sE,t−1).
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SEQUENTIAL ON-LINE BIN PACKING PROBLEM WITH EXPERT ADVICE

Parameters: set E of experts, state space S = [0,1), action space A = {0,1}, non-
negative loss function ! : (A× (0,1]|S) → [0,1), number n of items.
Initialization: ŝ0 = 1 and sE,0 = 1 for all E ∈ E .
For each round t = 1, . . . ,n,

(a) each expert forms its action fE,t ∈ A ;

(b) the forecaster observes the actions of the experts and forms its own decision
It ∈ A ;

(c) the next item xt ∈ (0,1] is revealed;

(d) the algorithm incurs loss !(It ,xt | ŝt−1) and each expert E ∈ E incurs loss
!( fE,t ,xt | sE,t−1). The states of the experts and the algorithm are updated.

Figure 2: Sequential on-line bin packing problem with expert advice.

The goal of the algorithm is to perform almost as well as the best expert from the reference class E
(determined in hindsight). Ideally, the normalized difference of the cumulative losses (the so-called
regret) should vanish as n grows, that is, one wishes to achieve

limsup
n→∞

1
n
(L̂n− inf

E∈E
LE,n) ≤ 0

with probability one, regardless of the sequence of items. This property is called Hannan consis-
tency, see Hannan (1957). The model of sequential on-line bin packing with expert advice is given
in Figure 2.

In Sections 4 and 5 we design sequential on-line bin packing algorithms. In Section 4 we assume
that the class E of experts is finite. For this case we establish a uniform regret bound, regardless of
the class and the sequence of items. In Section 5 we consider the (infinite) class of experts defined
by constant-threshold strategies. This case turns out to be considerably more difficult. We show
that algorithms, similar (in some sense) to the one developed for the finite expert classes, cannot
work in general in this situation. We provide a data-dependent regret bound for a generalization
of the finite-expert algorithm of Section 4, which, in accordance with the previous result, does not
guarantee consistency in general. However, we show that if the item sizes are jittered with certain
noise, the regret of the algorithm vanishes uniformly regardless of the original sequence of items.

But before turning to the on-line problem, we show how the off-line problem can be solved by
a simple quadratic-time algorithm.

3. Sequential Off-line Bin Packing

As it is well known, most variants of the bin packing problem are NP-hard, including bin packing
with rejection, see He and Dósa (2005), and maximum resource bin packing, see Boyar et al. (2006).
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In this section we show that the sequential bin packing problem is significantly easier. Indeed, we
offer an algorithm to find the optimal sequential strategy with time complexity O(n2) where n is the
number of the items.

The key property is that after the t-th item has been received, the 2t possible sequences of
decisions cannot lead to more than t different states.

Lemma 1 For any fixed sequence of items x1,x2, . . . ,xn and for every 1≤ t ≤ n,

|St |≤ t,

where
St = {s : s= sIt ,t ,It ∈ {0,1}t}

and sIt ,t is the state reached after receiving items x1, . . . ,xt with the decision sequence It .

Proof The proof goes by induction. Note that since I1 = 0, we always have sI1,1 = 1− x1, and
therefore |S1| = 1. Now assume that |St−1| ≤ t − 1. At time t, the state of every sequence of
decisions with It = 0 belongs to the set S ′

t = {s′ : s′ = s− I{s≥xt}xt ,s ∈ St−1} and the state of those
with It = 1 becomes 1− xt . Therefore,

|St |≤ |S ′
t |+1≤ |St−1|+1≤ t

as desired.

To describe a computationally efficient algorithm to compute I∗n, we set up a graph with the set
of possible states as a vertex set (there areO(n2) of them by Lemma 1) and we show that the shortest
path on this graph yields the optimal solution of the sequential off-line bin packing problem.

To formalize the problem, consider a finite directed acyclic graph with a set of vertices V =
{v1, . . . ,v|V |} and a set of edges E={e1, . . . ,e|E|}. Each vertex vk = v(sk, tk) of the graph is defined
by a time index tk and a state sk ∈ Stk and corresponds to state sk reachable after tk steps. To show
the latter dependence, we will write vk ∈ Stk . Two vertices (vi,v j) are connected by an edge if and
only if vi ∈ St−1, v j ∈ St and state v j is reachable from state vi. That is, by choosing either action
0 or action 1 in state vi, the new state becomes v j after item xt has been placed. Each edge has a
label and a weight: the label corresponds to the action (zero or one) and the weight equals the loss,
depending on the initial state, the action, and the size of the item. Figure 3 shows the proposed
graph. Moreover a sink vertex v|V | is introduced that is connected with all vertices in Sn. These
edges have weight equal to the loss of the final states. These losses only depend on the initial state
of the edges. More precisely, for (vi,v|V |) the loss is 1− si, where vi ∈ Sn.

Notice that there is a one to one correspondence between paths from v1 to v|V | and possible
sequences of actions of length n. Furthermore, the total weight of each path (calculated as the sum
of the weights on the edges of the path) is equal to the loss of the corresponding sequence of actions.
Thus, if we find a path with minimal total weight from v1 to v|V |, we also find the optimal sequence
of actions for the off-line bin packing problem. It is well known that this can be done inO(|V |+ |E|)
time.2

Now by Lemma 1, |V | ≤ n(n+ 1)/2+ 1, where the additional vertex accounts for the sink.
Moreover it is easy to see that |E|≤ n(n−1)+n= n2. Hence the total time complexity of finding
the off-line solution is O(n2).

2. Here we assume the simplified computational model that referring to each vertex (and edge) requires a constant
number of operations. In a more refined computational model this may be scaled with an extra log |V | factor.
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v1 v2

v3

v4

v5

v6 . . .

. . .

. . .
0/!(0,x1 |s1)

1/!(1,x1 |s1 )

0/!(0,x2 |s2)

1/!(1,x2 |s3)

0/!(0,x2 |s3 )

1/!(1,x2 |s2 )

Figure 3: The graph corresponding to the off-line sequential bin packing problem.

4. Sequential On-line Bin Packing

In this section we study the sequential on-line bin packing problem with expert advice, as described
in Section 2. We deal with two special cases. First we consider finite classes of experts (i.e.,
reference algorithms) without any assumption on the form or structure of the experts. We construct
a randomized algorithm that, with large probability, achieves a cumulative loss not larger than that
of the best expert plus O(n2/3 ln1/3N) where N = |E | is the number of experts.

The following simple lemma is a key ingredient of the results of this section. It shows that in
sequential on-line bin packing the cumulative loss is not sensitive to the initial states in the sense
that the cumulative loss depends on the initial state in a minor way.

Lemma 2 Let i1, . . . , im ∈ {0,1} be a fixed sequence of decisions and let x1, . . . ,xm ∈ (0,1] be a
sequence of items. Let s0,s′0 ∈ [0,1) be two different initial states. Finally, let s0, . . . ,sm and s′0, . . . ,s′m
denote the sequences of states generated by i1, . . . , im and x1, . . . ,xm starting from initial states s0
and s′0, respectively. Then

∣∣∣∣∣

m

∑
t=1

!(it ,xt | s′t−1)−
m

∑
t=1

!(it ,xt | st−1)

∣∣∣∣∣
≤ s′0+ s0 ≤ 2 .

Proof Let m′ denote the smallest index for which im′ = 1. Note that st−1 = s′t−1 for all t > m′.
Therefore, we have

m

∑
t=1

!(it ,xt | s′t−1)−
m

∑
t=1

!(it ,xt | st−1)

=
m′

∑
t=1

!(it ,xt | s′t−1)−
m′

∑
t=1

!(it ,xt | st−1)

=
m′−1

∑
t=1

!(0,xt | s′t−1)−
m′−1

∑
t=1

!(0,xt | st−1)+ !(1,xm′ | s′m′−1)− !(1,xm′ | sm′−1) .
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Now using the definition of the loss (see Equations 1 and 2), we write

m

∑
t=1

!(it ,xt | s′t−1)−
m

∑
t=1

!(it ,xt | st−1)

=
m′−1

∑
t=1

xt(I{s′t−1<xt}− I{st−1<xt})+ s′m′−1− sm′−1

≤
m′−1

∑
t=1

xt(1− I{st−1<xt})+ s′m′−1− sm′−1

≤
m′−1

∑
t=1

xt(1− I{st−1<xt})+ s′0

≤ s0+ s′0

where the next-to-last inequality holds because s′m′−1 ≤ s′0 and sm′−1 ≥ 0, and the last inequality
follows from the fact that

0≤ sm′−1 = sm′−2− I{sm′−2≥xm′−1}xm′−1

= sm′−3− I{sm′−3≥xm′−2}xm′−2− I{sm′−2≥xm′−1}xm′−1

= s0−
m′−1

∑
t=1

I{st−1≥xt}xt .

Similarly,
m

∑
t=1

!(it ,xt | st−1)−
m

∑
t=1

!(it ,xt | s′t−1) ≤ s′0+ s0

and the statement follows.

The following example shows that the upper bound of the lemma is tight.

Example 2 Let x1 = s0, s′0 < s0, and m′ = 2. Then

m

∑
t=1

!(it ,xt | s′t−1)−
m

∑
t=1

!(it ,xt | st−1)

= !(0,x1 | s′0)+ !(1,x2 | s′1)−
(
!(0,x1 | s0)+ !(1,x2 | s1)

)

= !(0,s0 | s′0)+ !(1,x2 | s′0)−
(
!(0,s0 | s0)+ !(1,x2 | 0)

)

= s0+ s′0− (0+0) .

Now we consider the on-line sequential bin packing problem when the goal of the algorithm is
to keep its cumulative loss close to the best in a finite set of experts. In other words, we assume
that the class of experts is finite, say |E | = N, but we do not assume any additional structure of the
experts. The ideas presented here will be used in Section 5 when we consider the infinite class of
constant-threshold experts.

The proposed algorithm partitions the time period t = 1, . . . ,n into segments of length m where
m < n is a positive integer whose value will be specified later. This way we obtain n′ = ,n/m-
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segments of length m, and, if m does not divide n, an extra segment of length less than m. At the
beginning of each segment, the algorithm selects an expert randomly, according to an exponentially
weighted average distribution. During the entire segment, the algorithm follows the advice of the
selected expert. By changing actions so rarely, the algorithm achieves a certain synchronization
with the chosen expert, since the effect of the difference in the initial states is minor, according to
Lemma 2. (A similar idea was used in Merhav et al. (2002) in a different context.) The algorithm
is described in Figure 4. Recall that each expert E ∈ E recommends an action fE,t ∈ {0,1} at every
time instance t = 1, . . . ,n. Since we haveN experts, we may identifyE with the set {1, . . . ,N}. Thus,
experts will be indexed by the positive integers i∈ {1, . . . ,N}. At the beginning of each segment, the
algorithm chooses expert i randomly, with probability pi,t , where the distribution pt = (p1,t , . . . , pN,t)
is specified in the algorithm. The random selection is made independently for each segment.

The following theorem establishes a performance bound of the algorithm. Recall that L̂n denotes
the cumulative loss of the algorithm while Li,n is that of expert i.

Theorem 3 Let n, N ≥ 1, η > 0, 1 ≤ m ≤ n, and δ ∈ (0,1). For any sequence x1, . . . ,xn ∈ (0,1]
of items, the cumulative loss L̂n of the randomized strategy defined in Figure 4 satisfies for all
i= 1, . . . ,N, with probability at least 1−δ,

L̂n ≤ Li,n+
m
η
ln

1
wi,0

+
nη
8

+

√
nm
2
ln
1
δ

+
2n
m

+2m.

In particular, choosing wi,0 = 1/N for all i= 1, . . . ,N, m= (16n/ ln(N/δ))1/3 and η=
√
8m lnN/n,

one has

L̂n− min
i=1,...,N

Li,n ≤
3
3√2
n2/3 ln1/3

N
δ

+4
(

2n
ln(N/δ)

)1/3
.

Proof We introduce an auxiliary quantity, the so-called hypothetical loss, defined as the loss the
algorithm would suffer if it had been in the same state as the selected expert. This hypothetical
loss does not depend on previous decisions of the algorithm. More precisely, the true loss of the
algorithm at time instance t is !(It ,xt | ŝt) and its hypothetic loss is !(It ,xt | sJt ,t). Introducing the
notation

!i,t = !( fi,t ,xt | si,t) ,

the hypothetical loss of the algorithm is just

!(It ,xt | sJt ,t) = !( fJt ,t ,xt | sJt ,t) = !Jt ,t .

Now it follows by a well-known result of randomized on-line prediction (see, e.g., Lemma 5.1 and
Corollary 4.2 in Cesa-Bianchi and Lugosi, 2006) that the hypothetical loss of the sequential on-line
bin packing algorithm satisfies simultaneously for all i= 1, . . . ,N, with probability at least 1−δ,

n

∑
t=1

!Jt ,t ≤
n

∑
t=1

!i,t +m

(
1
η
ln

1
wi,0

+
n′η
8

+

√
n′
2
ln
1
δ

)

+m , (3)

where n′ = , nm- and the last m term comes from bounding the difference on the last, not necessarily
complete segment. Now we may decompose the regret relative to expert i as follows:

L̂n−Li,n =

(

L̂n−
n

∑
t=1

!Jt ,t

)

+

(
n

∑
t=1

!Jt ,t −Li,n

)

.
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SEQUENTIAL ON-LINE BIN PACKING ALGORITHM

Parameters: Real number η> 0 and m ∈ N+.
Initialization: ŝ0 = 1, si,0 = 1 and wi,0 > 0 are set arbitrarily for i= 1, . . . ,N such that
w1,0+w2,0+ · · ·+wN,0 = 1.
For each round t = 1, . . . ,n,

(a) If ((t−1) mod m) = 0 then

– calculate the updated probability distribution

pi,t =
wi,t−1

∑N
j=1wj,t−1

for i= 1, . . . ,N;
– randomly select an expert Jt ∈ {1, . . . ,N} according to the probability dis-
tribution pt = (p1,t , . . . , pN,t);

otherwise, let Jt = Jt−1.

(b) Follow the chosen expert: It = fJt ,t .

(c) The size of next item xt ∈ (0,1] is revealed.

(d) The algorithm incurs loss
!(It ,xt | ŝt−1)

and each expert i incurs loss !( fi,t ,xt | si,t−1). The states of the experts and the
algorithm are changed.

(e) Update the weights
wi,t = wi,t−1e−η!( fi,t ,xt |si,t−1)

for all i ∈ {1, . . . ,N}.

Figure 4: Sequential on-line bin packing algorithm.

The second term on the right-hand side is bounded using (3). To bound the first term, observe that
by Lemma 2,

L̂n−
n

∑
t=1

!Jt ,t =
n

∑
t=1

!(It ,xt | ŝt−1)−
n

∑
t=1

!(It ,xt | sJt−1,t−1)

≤ m+
n′−1

∑
s=0

m

∑
t=1

(
!(Ism+t ,xsm+t | ŝsm+t−1)− !(Ism+t ,xsm+t | sJsm+t−1,sm+t−1)

)

≤ m+2n′

where in the first inequality we bounded the difference on the last segment separately.
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5. Constant-threshold Experts

In this section we address the sequential on-line bin packing problem when the goal is to perform
almost as well as the best in the class of all constant-threshold strategies. Recall that a constant-
threshold strategy is parameterized by a number p ∈ (0,1] and it opens a new bin if and only if the
remaining empty space in the bin is less than p. More precisely, if the state of the algorithm defined
by expert with parameter p is sp,t−1, then at time t the expert’s advice is I{sp,t−1<p}. To simplify
notation, we will refer to each expert with its parameter, and, similarly to the previous section, fp,t
and sp,t will denote the decision of expert p at time t, and its state after the decision, respectively.

The difficulty in this setup is that there are uncountably many constant-threshold experts. The
simplest possibility is to discretize the class. For example, by considering the set of constant-
threshold experts with values of p in the set {1/N,2/N, . . . ,1} and using the randomized algorithm
described in the previous section, we immediately obtain that the cumulative regret of the algorithm,
when compared to the best constant-threshold expert with p in this set is bounded byO(n2/3 ln1/3N)
with high probability. It is natural to suspect that if N is large, the loss of the best discretized
constant-threshold expert is not much larger than that corresponding to the best (unrestricted) value
of p∈ (0,1]. However, this is not true in general. The next lemma shows that any such discretization
is doomed to failure, at least in the worst-case sense. We denote by Lp,n the cumulative loss of the
constant-threshold expert indexed by p ∈ (0,1].

Lemma 4 For all n such that n/4 is a positive integer and 1/2< a< b≤ 1 there exists a sequence
x1, . . . ,xn of items such that

sup
p∈(a,b]

Lp,n < inf
p/∈(a,b]

Lp,n−
n
4

+3

for any values of the initial states sp,0 ∈ [p,1], p ∈ (0,1].3

Proof Given 1/2 ≤ a < b ≤ 1, we construct a sequence with the announced property. The first
fourth of the sequence is defined by x1 = 1−a and x2 = · · · = xn/4 = 1. If an expert asks for a new
bin after the first item then it suffers no loss for t = 2, . . . ,n/4, thus the cumulative loss up to time
n/4 is bounded as Lp,n/4 ≤ 1. Note that any expert with parameter p > a is such, as the first item
always fits the actual bin, as by the conditions of the lemma 1−a≤ a< p≤ sp,0, but then the empty
space becomes s0,p− (1− a) ≤ a < p, and so expert p opens a new bin. In case of an expert with
parameter q≤ a, it depends on the initial state if the expert opens a new bin. If the actual bin is left
open after the first item then the expert suffers loss Lq,n/4 = n/4− 1. In particular, if sq,0 = 1 then
after the first item expert q moves to state sq,1 = a and leaves the bin open. Thus, after time n/4 an
expert either suffers loss at least n/4−1 (then the parameter of the expert is at most a), or it suffers
loss at most 1, but then it is in the state sp,n/4 = 1. Now for the second forth of the sequence repeat
the first one, that is, let xn/4+1 = 1−a, xn/4+2 = · · · = xn/2 = 1. By the above argument we can see
that if an expert with parameter q≤ a does not suffer large loss up to time n/4 then it starts with an
empty bin and suffers a large loss in the second fourth of the segment. Thus, Lq,n/2 ≥ n/4− 1 for
any q≤ a. On the other hand, for any expert p> a we have Lp,n/2 < 2 and sp,n/2 = 1.

3. Note that for any expert p ∈ (0,1], sp,t ∈ [p,1] for all t ≥ 1 regardless of the initial state, and so it is natural to restrict
the initial state to [p,1], as well.
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After this point of time, let xn/2+1 = 1− b, xn/2+2 = b and repeat this pair of items n/4 times.
After receiving xn/2+1 = 1−b, every expert with parameter p ∈ (a,b] keeps the bin open and there-
fore does not suffer any loss after receiving the next item. On the other hand, experts with parameter
r > b close the bin, suffer loss b, and after xn/2+2 = b is received, once again they close the bin and
suffer loss 1− b (here we used the fact that r > 1− b since we assumed b > 1/2. Thus, between
periods n/2+1 and n, all experts with p ∈ (a,b] suffer zero loss while experts with parameter r> b
suffer loss n/4.

Summarizing, for the sequence

1−a, 1,1, . . . ,1︸ ︷︷ ︸
n/4−1 periods

,1−a, 1,1, . . . ,1︸ ︷︷ ︸
n/4−1 periods

,1−b,b,1−b,b . . . ,1−b,b︸ ︷︷ ︸
n/2 periods

,

we have

Lp,n






< 2 if p ∈ (a,b]
≥ n/4−1 if p≤ a
≥ n/4 if p> b.

Lemma 4 implies that one cannot expect a small regret with respect to all possible constant-
threshold experts. This is true for any algorithm that, as the one proposed in the previous section,
divides time into segments and on each segment chooses a constant-threshold expert and acts as
the chosen expert during the following segment. Recall that this segmentation was necessary to
make sure that the state of the algorithm gets synchronized with the chosen one. The statement is
formalized below.

Theorem 5 Consider any sequential on-line bin packing algorithm that divides time into segments
of lengths m1,m2, . . . ,mk ≥ 3 (where∑k

i=1mi = n) such that, at the beginning of each segment mi, the
algorithm chooses (in a possibly randomized way) a parameter pi ∈ (0,1] and follows this expert
during the segment, that is, It = I{ŝt−1<pi} for all t = ∑i−1

j=1mj + 1, . . . ,∑i
j=1mj. Then there exists

a sequence of items x1, . . . ,xn such that the loss of the algorithm satisfies, with probability at least
1/2,

L̂n ≥ inf
p∈(0,1]

Lp,n+
n
4
−6k .

Proof We construct the sequence of items using the sequence shown in the proof of Lemma 4 as a
building block. At time 1, divide the interval (0,1] into 2k subintervals of equal length and choose
one of these intervals uniformly at random. Denote the end points of this interval by (A1,B1]. Then
during the first segment we define the items by

1−A1, 1,1, . . . ,1︸ ︷︷ ︸
,m1/4-−1 periods

,1−A1, 1,1, . . . ,1︸ ︷︷ ︸
,m1/4-−1 periods

,1−B1,B1,1−B1,B1 . . . ,1−B1,B1︸ ︷︷ ︸
,m1/2- periods

.

If m1 is not divisible by 4, we may define the remaining (at most three) items arbitrarily. Then,
according to Lemma 4, if the algorithm does not choose an expert to follow from the interval (A1,B1]
then its loss is larger by at least m14 −6 than that of any expert in (A1,B1]. (The extra 3 come from
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the possibility that m1 is not divisible by 4.) However, no matter how the algorithm chooses the
expert to follow, the probability that it finds the correct subinterval is 1/(2k).

To continue the construction, we now divide the interval (A1,B1] into 2k intervals of equal length
and choose one at random, say (A2,B2]. We define the next items similarly to the first segment, but
now we make sure that the optimal constant-threshold expert falls in the interval (A2,B2], that is,
the items of the second segment are defined by

1−A2, 1,1, . . . ,1︸ ︷︷ ︸
,m2/4-−1 periods

,1−A2, 1,1, . . . ,1︸ ︷︷ ︸
,m2/4-−1 periods

,1−B2,B2,1−B2,B2 . . . ,1−B2,B2︸ ︷︷ ︸
,m2/2- periods

.

As before, if m2 is not divisible by 4, we may define the remaining (at most three) items arbitrarily.
Once again, the excess loss of the algorithm, when compared to the best constant-threshold expert,
is at least m24 −6 with probability 1/(2k).

We may continue the same randomized construction of the item sizes in the same manner,
always dividing the previously chosen interval into 2k equal pieces, choosing one at random, and
constructing the item sequence so that experts in the chosen interval are significantly better than any
other expert.

By the union bound, the probability that the forecaster never chooses the correct interval is at
least 1/2, so with probability at least 1/2,

L̂n− inf
p∈(0,1]

Lp,n ≥
k

∑
i=1

(mi
4
−6

)
=
n
4
−6k

as desired.

The theorem above shows that if one uses a segmentation for synchronization purposes, one
cannot expect nontrivial regret bounds that hold uniformly over all possible sequences of items and
for all constant-threshold experts, unless the number of segments is proportional to n. It seems
unlikely that without such synchronization one may achieve o(n) regret. Unfortunately, we do not
have a formal proof for arbitrary algorithms (that do not divide time into segments).

However, one may still obtain meaningful regret bounds that depend on the data. We derive
such a bound next. We also show that under some natural restrictions on the item sizes, this result
allows us to derive regret bounds that hold uniformly over all constant-threshold experts.

In order to understand the structure of the problem of constant-threshold experts, it is important
to observe that on any sequence of n items, experts can exhibit only a finite number of different be-
haviors. In a sense, the “effective” number of experts is not too large and this fact may be exploited
by an algorithm.

For t = 1, . . . ,n we call two experts t-indistinguishable (with respect to the sequence of items
x1, . . . ,xt−1) if their decision sequences are identical up to time t (note that any two experts are
1-indistinguishable, as all experts p start with a decision fp,1 = 0). This property defines a nat-
ural partitioning of the class of experts into maximal t-indistinguishable sets, where any two ex-
perts that belong to the same set are t-indistinguishable, and experts from different sets are not
t-indistinguishable. Obviously, there are no more than 2t maximal t-indistinguishable sets. This
bound, although finite, is still too large to be useful. However, it turns out that the number of
maximal t-indistinguishable sets only grows at most quadratically with t.
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The first step in proving this fact is the next lemma that shows that the maximal t-indistinguishable
expert sets are intervals.

Lemma 6 Let 1 ≥ p > r > 0 be such that expert p and expert r are t-indistinguishable. Then
for any p > q > r expert q is t-indistinguishable from both experts p and r. Thus, the maximal
t-indistinguishable expert sets form subintervals of (0,1].

Proof By the assumption of the lemma the decision sequences of experts p and r coincide, that is,

fp,u = fr,u and sp,u = sr,u

for all u= 1,2, . . . , t. Let t1, t2, . . . denote the time instances when expert p (or expert r) assigns the
next item to the next empty bin (i.e., fp,u = 1 for u= t1, t2, . . .). If expert q also decides 1 at time tk
for some k, then it will decide 0 for t = tk+1, . . . , tk+1−1 since so does expert p and p> q, and will
decide 1 at time tk+1 as q> r. Thus the decision sequence of expert q coincides with that of expert
p and r for time instances tk + 1, . . . , tk+1 in this case. Since all experts start with the empty bin at
time 0, the statement of the lemma follows by induction.

Based on the lemma we can identify the t-indistinguishable sets by their end points. Let Qt =
{q1,t , . . . ,qNt ,t} denote the set of the end points after receiving t− 1 items, where Nt = |Qt | is the
number of maximal t-indistinguishable sets, and q0,t = 0 < q1,t < q2,t < · · · < qNt ,t = 1. Then the
t-indistinguishable sets are (qk−1,t ,qk,t ] for k = 1, . . . ,Nt . The next result shows that the number of
maximal t-indistinguishable sets cannot grow too fast.

Lemma 7 The number of the maximal t-indistinguishable sets is at most quadratic in the number
of the items t. More precisely, Nt ≤ 1+ t(t−1)/2 for any 1≤ t ≤ n.

Proof The proof is by induction. First, N1 = 1 (and Q1 = {1}) since the first decision of each
expert is 1. Now assume that Nt ≤ 1+ t(t− 1)/2 for some 1 ≤ t ≤ n− 1. When the next item xt
arrives, an expert p with state s decides 1 in the next step if and only if 0 ≤ s− xt < p. There-
fore, as each expert belonging to the same indistinguishable set has the same state, the k-th max-
imal (t − 1)-indistinguishable interval with state s is split into two subintervals if and only if
qk−1,t−1 < s− xt ≤ qk,t−1 (experts in this interval with parameters larger than s− xt will form one
subset, and the ones with parameter at most s− xt will form the other one). As the number of
possible states after t decisions (the number of different possible values of s− xt) is at most t by
Lemma 1, it follows that at most t intervals can be split, and so Nt+1 ≤Nt +t ≤ 1+t(t+1)/2, where
the second inequality holds by the induction hypothesis.

Lemma 7 shows that the “effective” number of constant-threshold experts is not too large. This
fact makes it possible to apply our earlier algorithm for the case of finite expert classes with reason-
able computational complexity. However, note that the number of “distinguishable” experts, that is,
the number of the maximal indistinguishable sets, constantly grows with time, and each indistin-
guishable set contains a continuum number of experts. Therefore we need to redefine the algorithm
carefully. This may be done by a two-level random choice of the experts: first we choose an indis-
tinguishable expert set, then we pick one expert from this set randomly. The resulting algorithm is
given in Figure 5.
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GYÖRGY, LUGOSI AND OTTUCSÁK

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM WITH CONSTANT-THRESHOLD
EXPERTS

Parameters: η> 0 and m ∈ N+.
Initialization: w0,1 = 1, N1 = 1, Q1 = {1}, s1,0 = 1 and ŝ0 = 1.
For each round t = 1, . . . ,n,

(a) If ((t−1) mod m) = 0 then

– for i= 1, . . . ,Nt , compute the probabilities

pi,t =
wi,t−1

∑Nt
j=1wj,t−1

;

– randomly select an interval Jt ∈ {1, . . . ,Nt} according to the probability
distribution pt = (p1,t , . . . , pNt ,t);

– choose an expert pt uniformly from the interval (qJt−1,t ,qJt ,t ];

otherwise, let pt = pt−1.

(b) Follow the decision of expert pt : It = fpt ,t .

(c) xt ∈ (0,1], the size of the next item is revealed.

(d) The algorithm incurs loss !(It ,xt | ŝt−1) and each expert p ∈ (0,1] incurs loss
!( fp,t ,xt | sp,t−1), where p ∈ [0,1).

(e) Compute the state ŝt of the algorithm by (1), and calculate the auxiliary weights
and states of the expert sets for all i= 1, . . . ,Nt by

w̃i,t = wi,t−1e−η!( fi,t ,xt |si,t−1)

s̃i,t = fi,t(1− xt)+(1− fi,t)(si,t− I{si,t≥xt}xt).

(f) Update the end points of the intervals:

Qt+1 = Qt ∪
Nt[

i=1
{s̃i,t : qi−1,t < s̃i,t ≤ qi,t}

and Nt+1 = |Qt+1|.

(g) Assign the new states and weights to the (t+1)-indistinguishable sets

si,t+1 = s̃ j,t and wi,t+1 = w̃ j,t
qi,t+1−qi−1,t+1
q j,t −q j−1,t

for all i= 1, . . . ,Nt+1 and j = 1, . . . ,Nt such that q j−1,t < qi,t+1 ≤ q j,t .

Figure 5: Sequential on-line bin packing algorithm with constant-threshold experts.
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Up to step (e) the algorithm is essentially the same as in the case of finitely many experts.
The two-level random choice of the expert is performed in step (a). In step (f) we update the t-
indistinguishable sets, and usually introduce new indistinguishable expert sets. Because of these
new expert sets, the update of the weights wi,t and the states si,t are performed in two steps, (e) and
(g), where the actual update is made in step (e), and reordering of these quantities according to the
new indistinguishable sets is performed in step (g) together with the introduction of the weights and
states for the newly formed expert sets. (Note that in step (g) the factor (qi,t+1− qi−1,t+1)/(q j,t −
q j−1,t) is the proportion of the lengths of the indistinguishable intervals expert qi,t+1 belongs to at
times t+1 and t.)

The performance and complexity of the algorithm is given in the next theorem.

Theorem 8 Let n ≥ 1, η > 0, 1 ≤ m ≤ n, and δ ∈ (0,1). For any sequence x1, . . . ,xn ∈ (0,1] of
items, the cumulative loss L̂n of the randomized strategy defined above satisfies for all p ∈ (0,1],
with probability at least 1−δ,

L̂n ≤ Lp,n+
m
η
ln
1
lp,n

+
nη
8

+

√
nm
2
ln
1
δ

+
2n
m

+2m

where lp,n is the length of the maximal n-indistinguishable interval that contains p. Moreover, the
algorithm can be implemented with time complexity O(n3) and space complexity O(n2).

Remark 9 (i) By choosing m∼ n1/3 and η∼ n−1/3, the regret bound is of the order of n2/3 ln(1/lp,n).
Note that the constant ln(1/lp,n) reflects the difficulty of the problem (similarly to, for example, the
notion of margin in classification, lp,n measures the freedom in choosing an optimal decision bound-
ary, that is, an optimal threshold). If the indistinguishable interval containing the optimal experts is
small, then the problem is hard (and the corresponding penalty term in the bound is large). On the
other hand, as Nn ≤ 1+ n(n− 1)/2, if the classes of indistinguishable experts are more or less of
uniform size, then the corresponding term in the bound is of the order of lnn. We show below that
this is always the case if there is a certain randomness in the item sizes.

(ii) The way of splitting the weight between new maximal indistinguishable classes in step (g)
could be modified in many different ways. For example, instead of assigning weights proportionally
to the length of the new intervals, one could simply give half of the weight to both new classes.
In this case, instead of the term ln(1/lp∗,n) for the optimal expert p∗, we would get in the bound
the number of splits performed until reaching the optimal maximal n-indistinguishable class. The
hardness of the problem comes from the fact that the partitioning of the experts into maximal indis-
tinguishable classes is not known in advance. If we knew it, we could just simply apply the algorithm
of Theorem 3 to the resulting Nn experts (as in Theorem 4.1 of Cesa-Bianchi and Lugosi, 2006) to
obtain a uniformly good bound over all constant-threshold experts.

Proof It is easy to see that the two-level choice of the expert pt ensures that the algorithm is the
same as for the finite expert class with the experts defined by Qn with initial weights wi,0 = lqi,n,n =
qi,n−qi−1,n for the n-indistinguishable expert class containing qi,n. Thus, Theorem 3 can be used to
bound the regret, where the number of experts is Nt .

For the second part note that the algorithm has to store the states, the intervals, the weights and
the probabilities, each on the order of O(n2) based on Lemma 7. Concerning time complexity, the
algorithm has to update the weights and states in each round (requiring O(n2) computations per

105
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round), and has to compute the probabilities once in every m step, which requires O(n3/m) compu-
tations. Thus the time complexity of the algorithm is O(n3).

Next we use Theorem 8 to show that, for many natural sequences of items, the algorithm above
guarantees a small regret uniformly for all constant-threshold experts. In particular, we show that
if item sizes are jittered by random noise, then the algorithm shown above has a small regret
with respect to all constant-threshold experts (it is well-known that, for general systems, intro-
ducing such random perturbations often reduces the sensitivity, and hence results in a more uni-
form performance, for different values of the input). To this end, we simply need to show that
n-indistinguishable intervals cannot be too short. We consider a simple model when the item sizes
are noisy versions of an arbitrary fixed sequence. For simplicity we assume that the noise is uni-
formly distributed but the result remains true under more general circumstances. For illustration
purposes the simplified model is sufficient.

Theorem 10 Let y1, . . . ,yn ∈ (0,1] be arbitrary and define the item sizes by

xt =






yt +σt if yt +σt ∈ (0,1]
1 if yt +σt > 1
0 if yt +σt ≤ 0

where σ1, . . . ,σn are independent random variables, uniformly distributed on the interval [−ε,ε]
for some ε > 0. If the algorithm of Figure 5 is used with parameters m = (16n/ ln(n5/εδ))1/3 and
η=

√
8m ln(n5/ε)/n, then with probability at least 1−δ−1/(4n), one has

L̂n− min
p∈(0,1]

Lp,n ≤
3
3√2
n2/3 ln1/3

n5

εδ
+4

(
2n

ln(n5/εδ)

)1/3
. (4)

Proof The result follows directly from Theorem 8 if we show that the length of the shortest maximal
n-indistinguishable interval is at most ε/n5 with probability at least 1−1/(4n) (with respect to the
distribution of the random noise). A very crude bounding suffices to show this. Simply recall from
the proof of Lemma 7 that, at time t, a maximal t-indistinguishable interval (p,q) is split if and only
if xt ∈ (s+ p,s+q)where s denotes the state of a corresponding constant-threshold expert. Note that
(s+ p,s+ q) ⊆ (0,1), since xt = 0 or xt = 1 cannot split any maximal t-indistinguishable interval,
but any such interval can be split by an appropriately chosen xt . At time t there are at most t2/2
different maximal t-indistinguishable intervals and at most t different states, so by the union bound,
the probability that there exists a maximal t-indistinguishable interval of length at most ε/n5 that is
split at time t is bounded by t3/2 times the probability that xt ∈ (s+ p,s+q) for a fixed interval with
q− p≤ ε/n5. Because of the assumption on how xt is generated, the latter probability is bounded by
(q− p)/(2ε)≤ 1/(2n5) (the truncation of xt at 0 and 1 has no effect, because (s+ p,s+q)⊆ (0,1)).
Hence, the probability that there exists a maximal t-indistinguishable interval of length at most ε/n5
that is split at time t is no more than t3/2 ·1/(2n5) ≤ 1/(4n2). Thus, using the union bound again,
the probability that during the n rounds of the game there exists any maximal t-indistinguishable
interval of length at most ε/n5 that is split is at most 1/(4n), and therefore, with probability at least
1−1/(4n), all maximal n-indistinguishable intervals have length at least ε/n5, as desired.
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Remark 11 (i) The theorem above shows that, for example, if ε = Ω(n−a) for some a > 0 (i.e., if
the noise level is not too small), then the regret with respect to the best constant-threshold expert is
O(n2/3 ln1/3 n).

(ii) A similar model can be obtained, if, instead of having perturbed item sizes, the experts
observe the free space in their bins with some noise. Thus, instead of sp,t−1, expert p observes
sp,t−1 + σp,t truncated to the interval [0,1], and makes decision fp,t based on this value. As in
the case of Theorem 10, we assume that the noise is independent over time, that is, the random
ensembles {σp,t}p∈(0,1] are independent for all t. If each component is identical, that is, σp,t = σt
for all p ∈ (0,1], then essentially the same argument applies as in the previous theorem, and so
(4) holds if the sequence σ1, . . . ,σn satisfies the assumptions of Theorem 10. On the other hand,
if the components of the vectors are also independent, then the problem becomes more difficult, as
the t-indistinguishable classes may not be disjoint intervals anymore. An intermediate assumption
on the noise that still guarantees that (4) holds for this scenario is that σp,t = σq,t if p and q
are t-indistinguishable. Then the same argument as in Theorem 10 works with the only difference
(omitting the effects of truncation to [0,1]) that here we have to estimate the probability that xt ∈
(s+ p+σt,q,s+q+σt,q) for a fixed xt instead of estimating the probability that xt ∈ (s+ p,s+q)
with a randomized xt . However, it is easy to see that the same bound holds in both cases.

Finally, we present a simple example that reveals that the loss of the best expert can be arbitrarily
far from that of the optimal sequential off-line packing.

Example 3 Let the sequence of items be

〈 ε,1−ε,ε,1−ε, . . . ,ε,1−ε︸ ︷︷ ︸
2k

,ε,1,1, . . . ,1︸ ︷︷ ︸
k

〉,

where the number of items is n = 3k+ 1 and 0 < ε < 1/2. An optimal sequential off-line packing
is achieved if we drop any of the ε terms; then the total loss is ε. In contrast to this, the loss of any
constant-threshold expert is 1− ε+ k independently of the choice of the parameter p. Namely, if
p≤ 1−ε then the loss is 0 for the first 2k items, but after the algorithm is stuck and suffers k+1−ε
loss. If p > 1− ε, then the loss is k for the first 2k items and after that 1− ε for the rest of the
sequence.

6. Conclusions

In this paper we provide an extension of the classical bin packing problems to an on-line sequential
scenario. In this setting items are received one by one, and before the size of the next item is
revealed, the decision maker needs to decide whether the next item is packed in the currently open
bin or the bin is closed and a new bin is opened. If the new item does not fit, it is lost. If a bin is
closed, the remaining free space in the bin accounts for a loss. The goal of the decision maker is to
minimize the loss accumulated over n periods.

We give an algorithm that has a cumulative loss not much larger than any finite set of reference
algorithms. We also study in detail the case when the class of reference strategies contains all
constant-threshold experts. We prove some negative results, showing that it is hard to compete with
the overall best constant-threshold expert if no assumption is imposed on the item sizes. We also
derive data-dependent regret bounds and show that under some mild assumptions on the data the
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cumulative loss can be made not much larger than that of any strategy that uses a fixed threshold
at each step to decide whether a new bin is opened. An interesting aspect of the problem is that
the loss function has an (unbounded) memory. The presented solutions rely on the fact that one
can “synchronize” the loss function in the sense that no matter in what state an algorithm is started,
its loss may change only by a small additive constant. The result for constant-threshold experts is
obtained by a covering of the uncountable set of constant-threshold experts such that the cardinality
of the chosen finite set of experts grows only quadratically with the sequence length. The approach
in the paper can easily be extended to any control problem where the loss function has such a
synchronizable property.
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Abstract

In this paper, we investigate the problem of binary classification with a reject option in which one
can withhold the decision of classifying an observation at a cost lower than that of misclassifi-
cation. Since the natural loss function is non-convex so that empirical risk minimization easily
becomes infeasible, the paper proposes minimizing convex risks based on surrogate convex loss
functions. A necessary and sufficient condition for infinite sample consistency (both risks share the
same minimizer) is provided. Moreover, we show that the excess risk can be bounded through the
excess surrogate risk under appropriate conditions. These bounds can be tightened by a generalized
margin condition. The impact of the results is illustrated on several commonly used surrogate loss
functions.

Keywords: classification, convex surrogate loss, empirical risk minimization, generalized margin
condition, reject option

1. Introduction

In binary classification, one observes independent realizations (X1,Y1), . . . ,(Xn,Yn) of the random
pair (X ,Y ) where X ∈ X and Y ∈ Y = {−1,1}. The goal is to learn from these training data a clas-
sification rule g : X #→ Y that classifies an observation X into the two classes. It is recognized that
in many applications the consequences of misclassification can be substantial. In such situations,
a less specific response that reserves the right of not making a decision, sometimes referred to as
a reject option (see, e.g., Herbei and Wegkamp, 2006), may even be more preferable than risking
misclassification. This, for example, is typical in medical studies where screening of a certain dis-
ease can be done based on relatively inexpensive clinical measures. If the classification based on
these measurements are satisfactory, nothing further needs to be done. But in the event that there are
ambiguities, it would be more desirable to take a rejection option and seek more expensive studies
to identify a subject’s disease status. Similar approaches are often adopted in DNA sequencing or
genotyping applications, where the rejection option is commonly referred to as a “no-call”. Similar
problems have attracted much attention in various application fields and also received increasing
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amount of interest more recently in machine learning literature. See Ripley (1996) and Bartlett and
Wegkamp (2008) and references therein.

To accommodate the reject option, we now seek a classification rule g : X → Ỹ where Ỹ =
{−1,1,0} is an augmented response space and g(X) = 0 indicates that no definitive classification
will be made for X or a reject option is taken. To measure the performance of a classification
rule, we employ the following loss function that generalizes the usual 0-1 loss to account for reject
option:

![g(X),Y ] =






1 if g(X) &= Y and g(X) &= 0
d if g(X) = 0
0 if g(X) = Y

.

In other words, an ambiguous response (g(X) = 0) incurs a loss of d whereas misclassification
incurs a loss of 1. Note that d is necessarily smaller than 1/2. Otherwise, rather than taking a
rejection option with a loss d, we can always flip a fair coin to randomly assign ±1 as the value of
g(X), which incurs an average loss of 1/2 ≤ d. For this reason, we shall assume that d < 1/2 in
what follows.

For any classification rule g : X → Ỹ , the risk function is then given by R(g) = E(![g(X),Y ])
where the expectation is taken over the joint distribution of X and Y . It is not hard to show that the
optimal classification rule g∗ := argminR(g) is given by (see, e.g., Bartlett and Wegkamp, 2008)

g∗(X) =






1 if η(X) > 1−d
0 if d ≤ η(X) ≤ 1−d
−1 if η(X) < d

where η(X) = P(Y = 1|X). The corresponding risk is

R∗ := infR(g) = R(g∗) = E(min{η(X),1−η(X),d}) .

Thus, the performance of any classification rule g : X → Ỹ can be measured by the excess risk
ΔR(g) := R(g)−R∗.

Appealing to the general empirical risk minimization strategy, one could attempt to derive a
classification rule from the training data by minimizing the empirical risk

Rn(g) =
1
n

n

∑
i=1

![g(Xi),Yi].

Similar to the usual 0-1 loss, however, ! is not convex in g; and direct minimization of Rn is typically
an NP-hard problem. A common remedy is to consider a surrogate convex loss function. To this
end, let φ : R #→ R be a convex function. Denote by

Q( f ) = E[φ(Y f (X))]

the corresponding risk for a discriminant function f : X #→ R. Let f̂n be the minimizer of

Qn( f ) =
1
n

n

∑
i=1

φ(Yi f (Xi))
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over a certain functional space F consisting of functions that map from X to R. f̂n can be conve-
niently converted to a classification ruleC( f̂n;δ) as follows:

C( f (X);δ) =






1 if f (X) > δ
0 if | f (X)|≤ δ
−1 if f (X) < −δ

where δ> 0 is a parameter that as we shall see plays a critical role in determining the performance
ofC( f̂n,δ).

In this paper, we investigate the statistical properties of this general convex risk minimization
technique. To what extent C( f̂n,δ) mimics the optimal classification rule g∗ plays a critical role in
the success of this technique. Let f ∗φ be the minimizer of Q( f ). We shall assume throughout the
paper that f ∗φ is uniquely defined. Typically f ∗φ reflects the limiting behavior of f̂n when F is rich
enough and there are infinitely many training data. Therefore the first question is whether or not f ∗φ
can be used to recover the optimal rule g∗. A surrogate loss function φ that satisfies this property
is often called infinite sample consistent (see, e.g., Zhang, 2004) or classification calibrated (see,
e.g., Bartlett, Jordan and McAuliffe, 2006). A second question further concerns the relationship
between the excess risk ΔR[C( f ,δ)] and the excess φ risk ΔQ( f ) = Q( f )− infQ( f ): Can we find
an increasing function ρ : R #→ R such that for all f ,

ΔR[C( f ,δ)] ≤ ρ(ΔQ( f )) ? (1)

Clearly the infinite sample consistency of φ implies that ρ(0) = 0. Such a bound on the excess risk
provides useful tools in bounding the excess risk of f̂n. In particular, (1) indicates that

ΔR[C( f̂n,δ)] ≤ ρ
(
ΔQ( f̂n)

)
= ρ

[
ΔQ( f̄ )+

(
Q( f̂n)−Q( f̄ )

)]
,

where f̄ = argmin f∈F Q( f ). The first term ΔQ( f̄ ) on the right-hand side exhibits the approximation
error of functional class F whereas the second term Q( f̂n)−Q( f̄ ) is the estimation error.

In the case when there is no reject option, these problems have been well investigated in recent
years (Lin, 2002; Zhang, 2004; Bartlett, Jordan and McAuliffe, 2006). In this paper, we establish
similar results when there is a reject option. The most significant difference between the two situa-
tions, with or without the reject option, is the role of δ. As we shall see, for some loss functions such
as least squares, exponential or logistic, a good choice of δ yields classifiers that are infinite sample
consistent. For other loss functions, however, such as the hinge loss, no matter how δ is chosen, the
classification ruleC( f ,δ) cannot be infinite sample consistent.

The remainder of the paper is organized as follows. We first examine in Section 2 the infinite
sample consistency for classification with reject option. After establishing a general result, we
consider its implication on several commonly used loss functions. In Section 3, we establish bounds
on the excess risk in the form of (1), followed by applications to the popular loss functions. We also
show that under an additional assumption on the behavior of η(X) near d and 1− d as in Herbei
and Wegkamp (2006), generalizing the condition in the case of d = 1/2 of Mammen and Tsybakov
(1999) and Tsybakov (2004), the bound (1) can be tightened considerably. Section 4 discusses
rates of convergence of the empirical risk minimizer f̂n that minimizes the empirical risk Qn( f )
over a bounded class F . Section 5 considers extension to asymmetric loss where one type of
misclassification may be more costly than the other. All proofs are relegated to Section 6.
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2. Infinite Sample Consistency

We first give a general result on the infinite sample consistency of the classification ruleC( f ∗φ ,δ).

Theorem 1 Assume that φ is convex. Then the classification rule C( f ∗φ ,δ) for some δ> 0 is infinite
sample consistent, that is, C( f ∗φ ,δ) = g∗ if and only if φ′(δ) and φ′(−δ) both exist, φ′(δ) < 0, and

φ′(δ)
φ′(δ)+φ′(−δ)

= d. (2)

When there is no reject option, it is known that the necessary and sufficient condition for the
infinite sample consistency is that φ is differentiable at 0 and φ′(0) < 0 (see, e.g., Bartlett, Jordan
and McAuliffe, 2006). As indicated by Theorem 1, the differentiability of φ at ±δ plays a more
prominent role in the general case when there is a reject option.

From Theorem 1 it is also evident that the infinite sample consistency depends on both φ and
the choice of thresholding parameter δ. Observe that for any δ1 < δ2,

φ′(−δ2) ≤ φ′(−δ1) ≤ φ′(δ1) ≤ φ′(δ2),

which implies that the left-hand side of (2) is a decreasing function of δ. If φ is strictly convex,
then it is strictly decreasing; and therefore there is at most one value of δ that satisfies (2). In other
words, for strictly convex φ, there is at most one thresholding parameter δ such that C( f ∗φ ,δ) = g∗.
On the other hand, if φ is twice differentiable such that φ′(0) < 0 and φ′(z) ≥ 0 as z→ +∞, then
for any d < 1/2, there always exists a δ > 0 such that (2) holds. This is because the left-hand side
of (2) is a decreasing function of δ, which approaches its supremum 1/2 when δ ↓ 0 and 0 when δ
increases. Moreover, the twice differentiability of φ ensures that the left-hand side of (2) is also a
continuous function of δ. The following is therefore a direct consequence of Theorem 1:

Corollary 2 If φ is strictly convex, then either there is a unique δ > 0 such that C( f ∗φ ,δ) is infinite
sample consistent; or C( f ∗φ ,δ) is not infinite sample consistent for any δ> 0. In addition to convex-
ity, if φ is twice differentiable such that φ′(0) < 0 and φ′(z) ≥ 0 as z→ +∞, then there always exists
a δ> 0 such that C( f ∗φ ,δ) is infinite sample consistent.

Theorem 1 provides a general guideline on how to choose δ for common choices of convex
losses. Below we look at several concrete examples.

2.1 Least Squares Loss

We first examine the least squares loss φ(z) = (1− z)2. Observe that

φ′(δ)
φ′(−δ)+φ′(δ)

=
1−δ
2

.

All conditions of Theorem 1 are met if and only if δ= 1−2d.

Corollary 3 For the least squares loss,

C( f ∗φ ,1−2d) = g∗.
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2.2 Exponential Loss

Exponential loss, φ(z) = exp(−z), is connected with boosting (Friedman, Hastie and Tibshirani,
2000). Because

φ′(δ)
φ′(−δ)+φ′(δ)

=
1

1+ exp(2δ)
,

Therefore all conditions of Theorem 1 are met if and only if

δ=
1
2
log

(
1
d
−1

)
.

Corollary 4 For the exponential loss,

C
(
f ∗φ ,
1
2
log

(
1
d
−1

))
= g∗.

2.3 Logistic Loss

Logisitic regression employs loss φ(z) = ln(1+ exp(−z)). Similar to before,

φ′(δ)
φ′(−δ)+φ′(δ)

=
1

1+ exp(δ)
,

which suggests that all conditions of Theorem 1 are met if

δ= log
(
1
d
−1

)
.

Corollary 5 For the logistic loss,

C
(
f ∗φ , log

(
1
d
−1

))
= g∗.

2.4 Squared Hinge Loss

Squared hinge loss, φ(z) = (1− z)2+, is another popular choice for which

φ′(δ)
φ′(−δ)+φ′(δ)

=
1−δ
2

.

Similar to the least squares loss, we have the following corollary.

Corollary 6 For the squared hinge loss,

C
(
f ∗φ ,1−2d

)
= g∗.
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2.5 Distance Weighted Discrimination

Marron, Todd and Ahn (2007) recently introduced the so-called distance weighted discrimination
method where the following loss function (see, e.g., Bartlett, Jordan and McAuliffe, 2006) is used

φ(z) =

{ 1
z if z≥ γ
1
γ

(
2− z

γ

)
if z< γ

, (3)

where γ> 0 is a constant. It is not hard to see that φ is convex. Moreover,

φ′(z) =

{
−1/z2 if z≥ γ
−1/γ2 if z< γ

.

Thus,
φ′(δ)

φ′(−δ)+φ′(δ)
=

{
1/2 if δ< γ

1/δ2
1/δ2+1/γ2 if δ> γ

.

In other words, we have the following result for the distance weighted discrimination loss.

Corollary 7 For the loss (3),
C

(
f ∗φ , [(1−d)/d]1/2 γ

)
= g∗.

2.6 Hinge Loss

The popular support vector machine employs the hinge loss, φ(z) = (1− z)+. The hinge loss is
differentiable everywhere except 1. Therefore

φ′(δ)
φ′(−δ)+φ′(δ)

=

{ 1
2 if 0< δ< 1
0 if δ> 1 .

Because 0 < d < 1/2, there does not exist a δ such that all conditions of Theorem 1 are met. As a
matter of fact, for any δ > 0, C( f ∗φ ,δ) &= g∗. Motivated by this observation, Bartlett and Wegkamp
(2008) introduce the following modification to the hinge loss:

φ(z) =






1−az if z≤ 0
1− z if 0< z≤ 1
0 if z> 1

, (4)

where a> 1. Note that with this modification,
φ′(δ)

φ′(−δ)+φ′(δ)
=

{
1/(a+1) if 0< δ< 1
0 if δ> 1 .

Therefore, we have the following corollary.

Corollary 8 For the modified hinge loss (4) and any δ< 1, if a= (1−d)/d, then

C
(
f ∗φ ,δ

)
= g∗.

It is interesting to note that for the examples we considered previously, a specific choice of δ
is needed to ensure the infinite sample consistent. Whereas for the modified hinge loss, a range
of choice of δ can serve the same purpose. However, as we shall see in the next section, different
choices of δ for the modified hinge loss may result in slightly different bound on the excess risk
with δ= 1/2 appearing to be more preferable in that it yields the smallest upper bound of the excess
risk.
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3. Excess Risk

We now turn to the excess risk ΔR [C( f ,δ)] and show how it can be bounded through the excess φ
risk

ΔQ( f ) := Q( f )−Q( f ∗φ ).

Recall that the infinite sample consistency established in the previous section means that ΔQ( f ) = 0
implies throughout this section that ΔR(C( f ,δ)) = 0. For brevity, we shall assume implicitly that δ
is chosen in accordance with Theorem 1 to ensure infinite sample consistency. Write

Qη(X)(z) = η(X)φ(z)+(1−η(X))φ(−z).

By definition,
Qη(X)( f ∗φ (X)) = inf

z
Qη(X)(z).

Denote
ΔQη( f ) = Qη( f )−Qη( f ∗φ )

where we suppress the dependence of η, f and f ∗φ on X for brevity.

Theorem 9 Assume that φ is convex, φ′(δ) and φ′(−δ) both exist, φ′(δ) < 0, and (2) holds. In
addition, suppose that there exist constants C > 0 and s≥ 1 such that

|η−d|s ≤ CsΔQη(−δ);
|(1−η)−d|s ≤ CsΔQη(δ).

Then
ΔR [C( f ,δ)] ≤ 2C [ΔQ( f )]1/s . (5)

It is immediate from Theorem 9 that ΔQ( f̂n) →p 0 implies ΔR( f̂n) →p 0. In other words, con-
sistency in terms of φ risk implies the consistency in terms of loss !. It is worth noting that the
constant in the upper bound can be tightened under stronger conditions.

Theorem 10 In addition to the assumptions of Theorem 9, assume that

(2η−1)s+ ≤ CsΔQη(−δ);
(1−2η)s+ ≤ CsΔQη(δ).

Then
ΔR [C( f ,δ)] ≤C [ΔQ( f )]1/s .

We can improve the bounds even further by the following margin condition. Assume that for
some α≥ 0 and A≥ 1

P{|η(X)− z|≤ t}≤ Atα (6)

for all 0 ≤ t < d at z = d and z = 1− d. This assumption was introduced in Herbei and Wegkamp
(2006) and generalizes the margin condition of Mammen and Tsybakov (1999) and Tsybakov
(2004). It is always met for α = 0 and A = 1. The other extreme is for α→ +∞ - the case where
η(X) stays away from d and 1−d with probability one.

117



YUAN AND WEGKAMP

Theorem 11 In addition to the assumptions of Theorem 9, assume that (6) holds for some α ≥ 0
and A≥ 1. Then, for some K depending on A and α,

ΔR [C( f ,δ)] ≤ K [ΔQ( f )]1/(s+β−βs) , (7)

where β= α/(1+α).

In case α = 0, the exponent 1/(s+β−βs) is 1/s on the right hand side in (7) above, and the
situation is as in Theorem 9. For α→ +∞, the bound (7) improves upon the one in Theorem 9 as
the exponent 1/(s+β−βs) converges to 1.

We now examine the consequences of Theorems 9, 10 and 11 on several common loss functions.

3.1 Least Squares

Note that for the least squares loss

ΔQη( f ) = (2η−1− f )2.

Simple algebraic manipulations show that

ΔQη(−δ) = 4|η−d|2;
ΔQη(δ) = 4|(1−η)−d|2.

Therefore, by Theorems 9 and 11,

Corollary 12 For the least squares loss,

ΔR[C( f ,1−2d)] ≤ [ΔQ( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

ΔR[C( f ,1−2d)] ≤ K [ΔQ( f )]
1+α
2+α

for some constant K > 0.

3.2 Exponential Loss

An application of Taylor expansion yields (see, e.g., Zhang, 2004)

ΔQη( f ) ≥ 2
(
η−

1
1+ exp(−2 f )

)2
.

Therefore,

ΔQη(−δ) ≥ 2|η−d|2;
ΔQη(δ) ≥ 2|(1−η)−d|2.

Therefore, by Theorems 9 and 11,
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Corollary 13 For the exponential loss,

ΔR
[
C

(
f ,
1
2
log

(
1
d
−1

))]
≤
√
2 [ΔQ( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

ΔR
[
C

(
f ,
1
2
log

(
1
d
−1

))]
≤ K [ΔQ( f )]

1+α
2+α

for some constant K > 0.

3.3 Logistic Loss

Similar to exponential loss, an application of Taylor expansion yields

ΔQη( f ) ≥ 2
(
η−

1
1+ exp(− f )

)2
.

Therefore,

ΔQη(−δ) ≥ 2|η−d|2;
ΔQη(δ) ≥ 2|(1−η)−d|2.

Therefore, by Theorems 9 and 11,

Corollary 14 For the logistic loss,

ΔR
[
C

(
f , log

(
1
d
−1

))]
≤
√
2 [ΔQ( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

ΔR
[
C

(
f , log

(
1
d
−1

))]
≤ K [ΔQ( f )]

1+α
2+α

for some constant K > 0.

3.4 Squared Hinge Loss

Simple algebraic derivation shows

ΔQη( f ) = (2η−1− f )2−η( f −1)2+− (1−η)( f +1)2−.

Therefore,

ΔQη(−δ) = 4|η−d|2;
ΔQη(δ) = 4|(1−η)−d|2.

By Theorems 9 and 11,

Corollary 15 For the squared hinge loss,

ΔR [C( f ,1−2d)] ≤ [ΔQ( f )]1/2 .

Furthermore, if the margin condition (6) holds, then

ΔR[C( f ,1−2d)] ≤ K [ΔQ( f )]
1+α
2+α

for some constant K > 0.
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3.5 Distance Weighted Discrimination

Observe that

Qη(z) =






η
z + (1−η)z

γ2 + 2(1−η)
γ if z≥ γ

2
γ + z

γ2 (1−2η) if |z| < γ
2η
γ − ηz

γ2 −
1−η
z if z≤−γ

.

Hence
infQη(z) =

2
γ

(√
η(1−η)+min{η,1−η}

)

and

f ∗φ =






(η/(1−η))1/2 γ if η> 1/2
any value in [−γ,γ] if η= 1/2
((1−η)/η)1/2 γ if η< 1/2

.

Recall that δ= ((1−d)/d)1/2γ. Then

ΔQη(δ) ≥
(
η
δ

+
(1−η)δ

γ2
−2

√
η(1−η)/γ

)

=

((η
δ

)1/2
−

(
(1−η)δ

γ2

)1/2)2

=
ηδ
γ2

((
d

1−d

)1/2
−

(
1−η
η

)1/2)2

=
ηδ
γ2

((
d

1−d

)1/2
+

(
1−η
η

)1/2)−2(
d

1−d
−
1−η
η

)2

=
δ

γ2(1−d)2

[(
d

1−d

)1/2
η1/2+(1−η)1/2

]−2

(1−η−d)2.

Observe that (
d

1−d

)1/2
η1/2+(1−η)1/2 ≤ (1−d)−1/2.

Thus,
(1−η−d)2 ≤ γ(1−d)1/2d1/2ΔQη(δ).

Similarly,
(η−d)2 ≤ γ(1−d)1/2d1/2ΔQη(−δ).

From Theorems 9 and 11, we conclude that

Corollary 16 For the distance weighted discrimination loss,

ΔR
[
C( f ,((1−d)/d)1/2γ)

]
≤ γ1/2(1−d)1/4d1/4[ΔQ( f )]1/2.

Furthermore, if the margin condition (6) holds, then

ΔR
[
C( f ,((1−d)/d)1/2γ)

]
≤ K [ΔQ( f )]

1+α
2+α

for some constant K > 0.
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3.6 Hinge Loss with Rejection Option

As shown by Bartlett and Wegkamp (2008), for the modified hinge loss (4),

argmin
z

Qη(z) =






−1 if η≤ d
0 if d < η< 1−d
1 if η> 1−d

.

Simple algebraic manipulations lead to

ΔQη(−δ) =






(1−δ)(d−η)/d if η≤ d
(η−d)δ/d if d < η< 1−d
1− (1−η)/d+(η−d)δ/d if η> 1−d

,

and

ΔQη(δ) =






1−η/d+(1−η−d)δ/d if η≤ d
(1−η−d)δ/d if d < η< 1−d
(δ−1)(1−η−d)/d if η> 1−d

.

Therefore,

min{δ,1−δ}
d

|η−d| ≤ ΔQη(−δ);

min{δ,1−δ}
d

|(1−η)−d| ≤ ΔQη(δ).

Furthermore,

min{δ,1−δ}
d

(2η−1)+ ≤ ΔQη(−δ);

min{δ,1−δ}
d

(1−2η)+ ≤ ΔQη(δ).

From Theorems 10 and 11, we conclude that

Corollary 17 For the modified hinge loss and any δ< 1,

ΔR[C( f ,δ)] ≤
d

min{δ,1−δ}
ΔQ( f ). (8)

Furthermore, if the margin condition (6) holds, then

ΔR[C( f ,δ)] ≤ KΔQ( f ) (9)

for some constant K > 0.

Notice that the corollary also suggests that δ = 1/2 yields the best constant 2d in the upper
bound. A similar result has also been recently established by Bartlett and Wegkamp (2008). It is
also interesting to see that (8) cannot be further improved by the generalized margin condition (6)
as the bounds (8) and (9) only differ by a constant.
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4. Rates of Convergence for Empirical Risk Minimizers

In this section we briefly review the possible rates of convergence for minimizers of the empirical
risk Qn( f ) = (1/n)∑n

i=1 φ(Yi f (Xi)) over a convex class of discriminant functions F ; and show
the implications of the excess risk bounds obtained in the previous section. The analysis of the
generalized hinge loss is complicated and is treated in detail in Wegkamp (2007) and Bartlett and
Wegkamp (2008). The other loss functions φ considered in this paper have in common that the
modulus of convexity of Q,

δ(ε) = inf
{
Q( f )+Q(g)

2
−Q

(
f +g
2

)
: E[( f −g)2(X)] ≥ ε2

}

satisfies δ(ε) ≥ cε2 for some c> 0 and that, for some L< ∞,

|φ(x)−φ(x′)|≤ L|x− x′| for all x,x′ ∈ R.

We have the following result that imposes a restriction on the 1/n-covering number
Nn = N(1/n,L∞,F ), the cardinality of the set of closed balls with radius 1/n in L∞ needed to
cover F .

Theorem 18 Assume that | f |≤ B for all f ∈ F and let 0< γ< 1. With probability at least 1− γ,

Q( f̂n) ≤ inf
f∈F

Q( f )+
3L
n

+8
(
L2

2c
+
B
6

)
log(Nn/γ)

n

Together with the excess risk bounds from Theorems 9 and 11, we have

Corollary 19 Under the assumptions of Theorems 9 and 18, we have, with probability at least 1−γ,

ΔR(C( f̂n,δ)) ≤ 2C
{
inf
f∈F

ΔQ( f )+
3L
n

+8
(
L2

2c
+
LB
3

)
log(Nn/γ)

n

}1/s

.

Furthermore, if the generalized margin condition (6) holds, then with probability at least 1− γ,

ΔR(C( f̂n,δ)) ≤ K
{
inf
f∈F

ΔQ( f )+
3L
n

+8
(
L2

2c
+
LB
3

)
log(Nn/γ)

n

}1/(s+β−βs)

for some constant K > 0.

In the special case where F consists of linear combinations

fλ(x) =
M

∑
j=1

λ j f j(x)

of simple discriminant functions (decision stumps) f1, . . . , fM with ∑M
j=1 |λ j| ≤ B and | f j| ≤ 1, we

obtain the rate (M logn/n)1/(s+β−βs). We can view B as a tuning parameter here, and if the functions
f j are near orthogonal in the sense that

max
1≤i&= j≤M

E[ fi(X) f j(X)]
√

E[ f 2i (X)]E[ f 2j (X)]
≤

c
|λ0|0

for some small c > 0, a small modification of Theorem 1 in Wegkamp (2007) shows that we
also adapt to the unknown sparsity of the minimizer λ0 of Q(fλ) over λ in that the rate becomes
(|λ0|0 logn/n)1/(s+β−βs) for suitably chosen B= B(n).
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5. Asymmetric Loss

We have focused thus far on the case where misclassifying from one class to the other, either g(X) =
1 whileY =−1 or g(X) =−1 whileY = 1, is assigned the same loss. In many applications, however,
one type of misclassification may incur a heavier loss than the other. Such situations naturally arise
in risk management or medical diagonsis. To this end, the following loss function can be adopted
in place of !:

!θ[g(X),Y ] =






1 if g(X) = −1 and Y = 1
θ if g(X) = 1 and Y = −1
d if g(X) = 0
0 if g(X) = Y

.

We shall assume that θ < 1 without loss of generality. It can be shown that the rejection option
is only available if d < θ/(1+ θ) (see, e.g., Herbei and Wegkamp, 2006), which we shall assume
throughout the section. When this holds, the corresponding Bayes rule is given by (see, e.g., Herbei
and Wegkamp, 2006)

g∗θ(X) =






1 if η(X) > 1−d/θ
0 if d ≤ η(X) ≤ 1−d/θ
−1 if η(X) < d

.

Instead ofC( f̂n,δ), an asymmetrically truncated classification rule, f̂n,C( f̂n;δ1,δ2), can be used
for our purpose here where

C( f (X);δ1,δ2) =






1 if f (X) > δ1
0 if −δ2 ≤ f (X) ≤ δ1
−1 if f (X) < −δ2

.

The behavior of the asymmetically truncated classification rule C( f̂n;δ1,δ2) can be studied in a
similar fashion as before. In particular, we have the following results in parallel to Theorems 1 and
9.

Theorem 20 Assume that φ is convex. Then C( f ∗φ ,δ1,δ2) for some δ1,δ2 > 0 is infinite sample
consistent, that is, C( f ∗φ ,δ1,δ2) = g∗θ if and only if φ′(±δ1) and φ′(±δ2) exist; φ′(δ1),φ′(δ2) < 0;
and

φ′(δ1)
φ′(−δ1)+φ′(δ1)

=
d
θ
;

φ′(δ2)
φ′(−δ2)+φ′(δ2)

= d.

Furthermore, if C( f ∗φ ,δ1,δ2) is infinite sample consistent and

|θ(1−η)−d|s ≤ CsΔQη(δ1);
|η−d|s ≤ CsΔQη(−δ2),

then
ΔRθ[C( f ,δ1,δ2)] ≤ 2C[ΔQ( f )]1/s,

where ΔRθ(g) = Rθ(g)−Rθ(g∗θ) and Rθ(g) = E[!θ(g(X),Y )].

Theorem 20 can be proved in the same fashion as Theorems 1 and 9 and is therefore omitted for
brevity.
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6. Proofs

Proof of Theorem 1. We first show the “if” part. Recall that

Q( f ) = E[φ(Y f (X))]

= E(E [φ(Y f (X))|X ])

= E [η(X)φ( f (X))+(1−η(X))φ(− f (X))] .

With slight abuse of notation, write

Qη(X)( f (X)) = η(X)φ( f (X))+(1−η(X))φ(− f (X)).

Then f ∗φ (X) minimizes Qη(X)(·).
We now proceed by separately considering three different scenarios: (a) η(X) < d; (b) η(X) >

1−d; and (c) d < η(X) < 1−d. For brevity, we shall abbreviate the dependence of η and f ∗φ on X
in the reminder of the proof when no confusion occurs.

First consider the case when η< d. Recall that φ′(−δ) < φ′(δ) < 0, and

φ′(δ)
φ′(−δ)+φ′(δ)

= d.

Therefore,
ηφ′(−δ)− (1−η)φ′(δ) > 0.

By the convexity of φ, for any z> 0,

φ(z−δ)−φ(−δ) ≥ φ′(−δ)z;
φ(−z+δ)−φ(δ) ≥ −φ′(δ)z.

Hence
Qη(z−δ)−Qη(−δ) ≥

[
ηφ′(−δ)− (1−η)φ′(δ)

]
z> 0,

which implies that f ∗φ ≤−δ.
It now suffices to show that f ∗φ &=−δ. By the definition of φ′(−δ) and φ′(δ), for any ε> 0, there

exists a ζ> 0 such that for any 0< z< ζ,

φ(−z−δ)−φ(−δ)
−z

≥ φ′(−δ)− ε;

φ(z+δ)−φ(δ)
z

≤ φ′(δ)+ ε.

Therefore for any 0< z< ζ,

Qη(−z−δ)−Qη(−δ) = η [φ(−z−δ)−φ(−δ)]+(1−η) [φ(z+δ)−φ(δ)]

≤ −η
[
φ′(−δ)− ε

]
z+(1−η)

[
φ′(δ)+ ε

]
z

=
([

(1−η)φ′(δ)−ηφ′(−δ)
]
+ ε

)
z.

Recall that (1−η)φ′(δ)−ηφ′(−δ)< 0. By setting ε small enough, we can ensure that (1−η)φ′(δ)−
ηφ′(−δ)+ ε remains negative. Hence

Qη(−z−δ) < Qη(−δ),
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which implies that f ∗φ &= −δ.
Now consider the case when η > 1− d. Observe that Qη(z) = Q1−η(−z). From the previous

discussion,
f ∗φ = argmin

z
Qη(z) = −argmin

z
Q1−η(−z) > δ.

At last, consider the case when d < η< 1−d. Observe that in this case,

ηφ′(δ)− (1−η)φ′(−δ) > 0;
ηφ′(−δ)− (1−η)φ′(δ) < 0.

Hence for any z> 0,

Qη(z+δ)−Qη(δ) ≥
[
ηφ′(δ)− (1−η)φ′(−δ)

]
z> 0,

which implies that f ∗φ ≤ δ. Similarly,

Qη(−z−δ)−Qη(−δ) ≥
[
−ηφ′(−δ)+(1−η)φ′(δ)

]
z> 0,

which implies that f ∗φ ≥−δ. In summary, f ∗φ ∈ [−δ,δ].
We now consider the “only if” part. Let [a−,b−] and [a+,b+] be the subdifferential of φ at

−δ and δ respectively. We need to show that a− = b−, a+ = b+ and a+/(a+ + a−) = d. We
begin by showing that b+ ≤ 0. Assume the contrary. The infinite sample consistency implies that
for any η > 1− d, f ∗φ > δ. Because b+ > 0, we have φ( f ∗φ ) > φ(δ). Together with the fact that
Qη( f ∗φ ) < Qη(δ), this implies that φ(− f ∗φ ) < φ(−δ). Subsequently, we have a− > 0. The convexity
of φ also suggests that a− ≤ a+ ≤ b− ≤ b+. Because

φ( f ∗φ )−φ(δ) ≥ b+( f ∗φ −δ);
φ(−δ)−φ(− f ∗φ ) ≤ a−( f ∗φ −δ),

we have
Qη( f ∗φ )−Qη(δ) ≥ (ηb+− (1−η)a−)( f ∗φ −δ) > 0.

This contradiction suggests that b+ ≤ 0.
Given that a− ≤ a+ ≤ b− ≤ b+ ≤ 0, we have |a−|≥ |a+|≥ |b−|≥ |b+|, which implies that

b+

a− +b+
≤

a+

b− +a+
.

It suffices to show that
b+

a− +b+
≥ d and

a+

b− +a+
≤ d.

Assume the contrary. First consider the case when b+/(a− +b+) < d. Let η be such that
b+/(a− +b+) < η< d. By definition, for any f < −δ,

φ( f )−φ(−δ) ≥ a−( f +δ);
φ(− f )−φ(δ) ≥ b+(− f −δ).

Hence
Qη( f )−Qη(−δ) ≥ [ηa−− (1−η)b+]( f +δ) > 0,
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which implies that argminQη(z)≥−δ. This contradicts with the infinite sample consistency. There-
fore, b+/(a− +b+) ≥ d. Next we deal with the case of a+/(b− +a+) > d. Let η be such that
a+/(b− +a+) > η > d. Following a similar argument as before, one can show that Q1−η( f )−
Q1−η(δ) > 0 for any f > δ, which implies that argminQη(z) ≤ δ. This again contradicts infinite
sample consistency because 1−η< 1−d. Therefore, a+/(b− +a+) ≤ d.

The proof is now concluded.

Proof of Theorem 9. Recall that

Qη( f ) = ηφ( f )+(1−η)φ(− f ).

Similarly, write
Rη[C( f ,δ)] = η!(C( f ,δ),1)+(1−η)!(C( f ,δ),−1).

Also write ΔQη( f ) = Qη( f )− infQη( f ) and ΔRη( f ) = Rη( f )− infRη( f ). It suffices to show that

ΔRη[C( f ,δ)] ≤ 2C [ΔQη( f )]1/s . (10)

The theorem can be deduced from (10) by Jensen’s inequality:

ΔR[C( f ,δ)] = E
[
ΔRη(X)[C( f (X),δ)]

]

≤ 2CE
[
ΔQη(X)( f (X))

]1/s

≤ 2C
(
E

[
ΔQη(X)( f (X))

])1/s

= 2C [ΔQ( f )]1/s .

To show (10), we consider separately the different combinations of values of η and f . For
brevity, we shall abbreviate their dependence on X in what follows.

Case 1. η< d and f < −δ. As shown before, in this case f ∗φ (X) < −δ. Thus,

ΔRη[C( f ,δ)] = 0≤C [ΔQη( f )]1/s .

Case 2. η< d and | f | < δ. Observe that

Qη( f )−Qη(−δ) ≥
[
ηφ′(−δ)− (1−η)φ′(δ)

]
( f +δ) =

−φ′(δ)
d

(d−η)( f +δ) ≥ 0.

Together with the fact thatCsΔQη(−δ) ≥ |η−d|s, we have

ΔQη( f ) ≥ ΔQη(−δ) ≥C−s|η−d|s.

Note that
ΔRη[C( f ,δ)] = d−η.

We have
ΔRη[C( f ,δ)] ≤C [ΔQη( f )]1/s .
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Case 3. η< d and f > δ. Observe that

Qη( f )−Qη(δ) ≥
[
ηφ′(δ)− (1−η)φ′(−δ)

]
( f −δ) =

−φ′(δ)
d

(1−η−d)( f −δ) ≥ 0.

Together with the facts that d < 1/2 andCsΔQη(δ) ≥ |1−η−d|s, we have

ΔQη( f ) ≥ ΔQη(δ) ≥C−s|1−η−d|s ≥ (2C)−s |1−2η|s.

Note that
ΔRη[C( f ,δ)] = 1−2η.

Therefore,
ΔRη[C( f ,δ)] ≤ 2C [ΔQη( f )]1/s .

Case 4. d < η< 1−d and f < −δ. Following a similar argument as before,

Qη( f )−Qη(−δ) ≥
−φ′(δ)
d

(d−η)( f +δ) ≥ 0.

Therefore,
ΔQη( f ) ≥ ΔQη(−δ) ≥C−s|η−d|s,

which, together with the fact that ΔRη[C( f ,δ)] = η−d, implies that

ΔRη[C( f ,δ)] ≤C [ΔQη( f )]1/s .

Case 5. d < η< 1−d and | f | < δ. In this case,

ΔRη[C( f ,δ)] = 0≤C [ΔQη( f )]1/s .

Case 6. d < η< 1−d and f > δ. Observe that

Qη( f )−Qη(δ) ≥
−φ′(δ)
d

(1−η−d)( f −δ) ≥ 0.

Hence
ΔQη( f ) ≥ ΔQη(δ) ≥C−s|1−η−d|s,

which, together with the fact that ΔRη[C( f ,δ)] = 1−η−d, implies that

ΔRη[C( f ,δ)] ≤C [ΔQη( f )]1/s .

Case 7. η > 1− d. Observe that Rη[C( f ,δ)] = R1−η[C(− f ,δ)], and Qη( f ) = Q1−η(− f ). Because
1−η< d, from Cases 1, 2 and 3, we have

ΔRη[C( f ,δ)] = ΔR1−η[C(− f ,δ)]

≤ 2C [ΔQ1−η(− f )]1/s

= 2C [ΔQη( f )]1/s .

The proof is therefore completed.
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Proof of Theorem 10. The proof follows from the same argument as that of Theorem 9. The only
difference takes place in Case 3 where under the current assumptions

ΔRη( f ) = 1−2η≤C [ΔQη(δ)]
1/s .

Proof of Theorem 11. The last part of the proof is based on the proof of Theorem 3 in Bartlett,
Jordan and McAuliffe (2006). Let g=C( f ,δ) be the classification rule with reject option based on
f : X → R and set g∗ =C( f ∗φ ,δ). We have shown above that under the assumptions of Theorem 9,

|d−η|1{g &= g∗}(1{g= −1}+1{g∗ = −1}) ≤C [ΔQη( f )]1/s

|1−d−η|1{g &= g∗}(1{g= 1}+1{g∗ = 1}) ≤C [ΔQη( f )]1/s .

Moreover, Lemma 1 in Herbei and Wegkamp (2006) states that

ΔR(g) = E [|d−η(X)|1{g(X) &= g∗(X)}(1{g(X) = −1}+1{g∗(X) = −1})] (11)
+E [|1−d−η(X)|1{g(X) &= g∗(X)}(1{g(X) = 1}+1{g∗(X) = 1})] .

Hence, for any ε> 0,

ΔR(g)
= E [|d−η(X)|1{d−η(X)|≤ ε}1{g(X) &= g∗(X)}(1{g(X) = −1}+1{g∗(X) = −1})]
+E [|d−η(X)|1{d−η(X)| > ε}1{g(X) &= g∗(X)}(1{g(X) = −1}+1{g∗(X) = −1})]
+E [|1−d−η(X)|1{|1−d−η(X)|≤ ε}1{g(X) &= g∗(X)}(1{g(X) = 1}+1{g∗(X) = 1})]
+E [|1−d−η(X)|1{|1−d−η(X)| > ε}1{g(X) &= g∗(X)}(1{g(X) = 1}+1{g∗(X) = 1})]
≤ 2εP{g∗(X) &= g(X)}+2ε1−sΔQ( f )

where we used (11) and the inequality |x|1{|x|≥ ε}≤ |x|rε1−r for r ≥ 1. Using the bound

P{g(X) &= g∗(X)}≤
[
2(8A)1/αΔR(g)

]β

from the proof of Lemma 4 of Herbei and Wegkamp (2006), and choosing

ε= c [ΔR(g)]1−β

with c= [2(8A)1/α]β/4 readily gives the desired claim with K = 4Cc1−s.

Proof of Theorem 18. Recall that f̄ ∈F minimizes Q( f ) over f ∈F . Let h(y f (x)) = φ(y f (x))−
φ(y f̄ (x)). Since

Q( f )+Q( f̄ )
2

≥ Q
(
f + f̄
2

)
+ cE

[
( f − f̄ )2(X)

]

≥ Q( f̄ )+ cE
[
( f − f̄ )2(X)

]
,

we have

E
[
h2(Y f (X))

]
≤ L2E

[
( f − f̄ )2(X)

]

≤
L2

2c
{Q( f )−Q( f̄ )}

=
L2

2c
E [h(Y f (X))] ,
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see, for example, Bartlett, Jordan and McAuliffe (2006). Since f̂n minimizes Qn( f ), we have

Q( f̂n)−Q( f̄ ) = Ph(y f̂n(x))
= 2Pnh(Y f̂n(X))+(P−2Pn)h(Y f̂n(X))

≤ 2Pnh(Y f̄ (X))+(P−2Pn)h(Y f̂n(X))

≤ sup
f∈F

(P−2Pn)h(Y f (X))

where Ph(Y f (X)) = E[h(Y f (X))] and Pnh(Y f (X)) = (1/n)∑n
i=1 h(Yi f (Xi)) for any f ∈ F . Next

we observe that

sup
f∈F

(P−2Pn)h(Y f (X)) ≤
3L
n

+max
f∈Fn

(P−2Pn)h(Y f (X))

where Fn is the minimal 1/n-net of F . By Bernstein’s inequality, we get

P

{

sup
f∈Fn

(P−2Pn)h(Y f (X)) ≥ t

}

≤ Nn exp
[
−

n{t+Ph(Y f (X))}2/8
Ph2(Y f (X))+(2LB){t+Ph(Y f (X))}/6

]

≤ Nn exp

[

−
nt
8

(
L2

2c
+
LB
3

)−1]

and the conclusion follows easily.
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Abstract

There are many different methods used by classification tree algorithms when missing data occur in
the predictors, but few studies have been done comparing their appropriateness and performance.
This paper provides both analytic and Monte Carlo evidence regarding the effectiveness of six
popular missing data methods for classification trees applied to binary response data. We show that
in the context of classification trees, the relationship between the missingness and the dependent
variable, as well as the existence or non-existence of missing values in the testing data, are the most
helpful criteria to distinguish different missing data methods. In particular, separate class is clearly
the best method to use when the testing set has missing values and the missingness is related to
the response variable. A real data set related to modeling bankruptcy of a firm is then analyzed.
The paper concludes with discussion of adaptation of these results to logistic regression, and other
potential generalizations.

Keywords: classification tree, missing data, separate class, RPART, C4.5, CART

1. Classification Trees and the Problem of Missing Data

Classification trees are a supervised learning method appropriate for data where the response vari-
able is categorical. The simple methodology behind classification trees is to recursively split data
based upon the predictors that best distinguish the response variable classes. There are, of course,
many subtleties, such as the choice of criterion function used to pick the best split variable, stopping
rules, pruning rules, and so on. In this study, we mostly rely on the built-in features of the tree algo-
rithms C4.5 and RPART to implement tree methods. Details about classification trees can be found
in various references, for example, Breiman, Friedman, Olshen, and Stone (1998) and Quinlan
(1993). Classification trees are computationally efficient, can handle mixed variables (continuous
and discrete) easily and the rules generated by them are relatively easy to interpret and understand.
Classification trees are highly flexible, and naturally uncover interaction effects among the inde-
pendent variables. Classification trees are also popular because they can easily be incorporated into
learning ensembles or larger learning systems as base learners.

c©2010 Yufeng Ding and Jeffrey S. Simonoff.



DING AND SIMONOFF

Like most statistics or machine learning methods, “base form” classification trees are designed
assuming that data are complete. That is, all of the values in the data matrix, with the rows being the
observations (instances) and the columns being the variables (attributes), are observed. However,
missing data (meaning that some of the values in the data matrix are not observed) is a very common
problem, and for this reason classification trees have to, and do, have ways of dealing with missing
data in the predictors. (In supervised learning, an observation with missing response value has no
information about the underlying relationship, and must be omitted. There is, however, research in
the field of semi-supervised learning methods that tries to handle the situation where the response
value is missing, for example, Wang and Shen 2007.)

Although there are many different ways of dealing with missing data in classification trees,
there are relatively few studies in the literature about the appropriateness and performance of these
missing data methods. Moreover, most of these studies limited their coverage to the simplest miss-
ing data scenario, namely, missing completely at random (MCAR), while our study shows that the
missing data generating process is one of the two crucial criteria in determining the best missing
data method. The other crucial criterion is whether or not the testing set is complete. The following
two subsections describe in more detail these two criteria.

1.1 Different Types of Missing Data Generating Process

Data originate according to the data generating process (DGP) under which the data matrix is “gen-
erated” according to the probabilistic relationships between the variables. We can think of the
missingness itself as a random variable, realized as the matrix of the missingness indicator Im. Im is
generated according to the missingness generating process (MGP), which governs the relationship
between Im and the variables in the data matrix. Im has the same dimension as the original data
matrix, with each entry equal to 0 if the corresponding original data value is observed and 1 if the
corresponding original data value is not observed (missing). Note that an Im value not only can be
related to its corresponding original data value, but can also be related to other variables of the same
observation.

Depending on the relationship between Im and the original data, Rubin (1976) and Little and Ru-
bin (2002) categorize the missingness into three different types. If Im is dependent upon the missing
values (the unobserved original data values), then the missingness pattern is called “not missing at
random” (NMAR). Otherwise, the missingness pattern is called “missing at random” (MAR). As a
special case of MAR, when the missingness is also not dependent on the observed values (that is,
is independent of all data values), the missingness pattern is called “missing completely at random”
(MCAR). The definition of MCAR is rather restrictive, which makes MCAR unlikely in reality. For
example, in the bankruptcy data discussed later in the paper, there is evidence that after the Enron
scandal in 2001, when both government and the public became more wary about financial reporting
misconduct, missingness of values in financial statement data was related to the well-being of the
company, and thus other values in the data. This makes intuitive sense because when scrutinized, a
company is more likely to have trouble reporting their financial data if there were problems. Thus,
focusing on the MCAR case is a major limitation that will be avoided in this paper. In fact, this
paper shows that the categorization of MCAR, MAR and NMAR itself is not appropriate for the
missing data problem in classification trees, as well as in another supervised learning context (at
least with respect to prediction), although it has been shown to be helpful with likelihood-based or
Bayesian analysis.
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Missingness is related to
Missing Observed Response
values Predictors Variable LR Three-Letter

1 No No No MCAR −−−
2 No Yes No MAR −X−
3 Yes No No NMAR M−−
4 Yes Yes No NMAR M X−
5 No No Yes MAR −−Y
6 No Yes Yes MAR −X Y
7 Yes No Yes NMAR M−Y
8 Yes Yes Yes NMAR M X Y

Table 1: Eight missingness patterns investigated in this study and their correspondence to the cate-
gorization MCAR, MAR and NMAR defined by Rubin (1976) and Little and Rubin (2002)
(the LR column). The column Three-Letter shows the notation that is used in this paper.

In this paper, we investigate eight different missingness patterns, depending on the relationship
between the missingness and three types of variables, the observed predictors, the unobserved pre-
dictors (the missing values) and the response variable. The relationship is conditional upon other
factors, for example, missingness is not dependent upon the missing values means that the miss-
ingness is conditionally independent of the missing values given the observed predictors and/or
the response variable. Table 1 shows their correspondence with the MCAR/MAR/NMAR catego-
rization as well as the three-letter notation we use in this paper. The three letters indicate if the
missingness is conditionally dependent on the missing values (M), on other predictors (X) and on
the response variable (Y), respectively. As will be shown, the dependence of the missingness on the
response variable (the letter Y) is the one that affects the choice of best missingness data method.
Later in the paper, some derived notations are also used. For example, ∗X∗ means the union of
−X−, −XY, MX− and MXY, that is, the missingness is dependent upon the observed predictors,
and it may or may not be related to the missing values and/or the response variable.

1.2 Scenarios Where the Testing Data May or May Not Be Complete

There are essentially two stages of applying classification trees, the training phase where the his-
torical data (training set) are used to construct the tree, and the testing phase where the tree is put
into use and applied to testing data. Similar to most other studies, this study deals with the scenario
where missing data occur in the training set, but the testing set may or may not have missing values.
One basic assumption is, of course, that the DGP (as well as MGP if the testing set also contains
missing values) is the same for both the training set and the testing set.

While it would probably typically be the case that the testing data would also have missing val-
ues (generated by the same process that generated them in the training set), it should be noted that in
certain circumstances a testing set without missing values could be expected. For example, consider
a problem involving prediction of bankruptcy from various financial ratios. If the training set comes
from a publicly available database, there could be missing values corresponding to information that
was not supplied by various companies. If the goal is to use these publicly available data to try
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to predict bankruptcy from ratios from one’s own company, it would be expected that all of the
necessary information for prediction would be available, and thus the test set would be complete.

This study shows that when the missingness is dependent upon the response variable and the
test set has missing values, separate class is the best missing data method to use. In other situations,
the choice is not as clear, but some insights on effective choices are provided. The rest of paper
provides detailed theoretical and empirical analysis and is organized as follows. Section 2 gives a
brief introduction to the previous research on this topic. This is followed by discussion of the design
of this study and findings in Section 3. The generality of the results are then tested on real data sets
in Section 4. A brief extension of the results to logistic regression is presented in Section 5. We
conclude with discussion of these results and future work in Section 6.

2. Previous Research

There have been several studies of missing data and classification trees in the literature. Liu, White,
Thompson, and Bramer (1997) gave a general description of the problem, but did not discuss solu-
tions. Saar-Tsechansky and Provost (2007) discussed various missing data methods in classification
trees and proposed a cost-sensitive approach to the missing data problem for the scenario when miss-
ing data occur only at the testing phase, which is different from the problem studied here (where
missing values occur in the training phase).

Kim and Yates (2003) conducted a simulation study of seven popular missing value methods
but did not find any dominant method. Feelders (1999) compared the performance of surrogate split
and imputation and found the imputation methods to work better. (These methods, and the methods
described below, are described more fully in the next section.) Batista and Monard (2003) compared
four different missing data methods, and found that 10 nearest neighbor imputation outperformed
other methods in most cases. In the context of cost sensitive classification trees, Zhang, Qin, Ling,
and Sheng (2005) studied four different missing data methods based on their performances on five
data sets with artificially generated random missing values. They concluded that the internal node
method (the decision rules for the observations with the next split variable missing will be made
at the (internal) node) is better than the other three methods examined. Fujikawa and Ho (2002)
compared several imputation methods based on preliminary clustering algorithms to probabilistic
split on simulations based on several real data sets and found comparable performance. A weakness
of all of the above studies is that they focused only on the restrictive MCAR situation.

Other studies examined both MAR and NMAR missingness. Kalousis and Hilario (2000) used
simulations from real data sets to examine the properties of seven algorithms: two rule inducers, a
nearest neighbor method, two decision tree inducers, a naive Bayes inducer, and linear discriminant
analysis. They found that the naive Bayes method was by far most resilient to missing data, in
the sense that its properties changed the least when the missing rate was increased (note that this
resilience is related to, but not the same as, its overall predictive performance). They also found
that the deleterious effects of missing data are more serious if a given amount of missing values are
spread over several variables, rather than concentrated in a few.

Twala (2009) used computer simulations based on real data sets to compare the properties of
different missing value methods, including using complete cases, single imputation of missing val-
ues, likelihood-based multiple imputation (where missing values are imputed several times, and
the results of fitting trees to the different generated data sets are combined), probabilistic split, and
surrogate split. He studied MAR, MCAR, and NMAR missingness generating processes, although
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dependence of missingness on the response variable was not examined. Multiple imputation was
found to be most effective, with probabilistic split also performing reasonably well, although little
difference was found between methods when the proportion of missing values was low. As would
be expected, MCAR missingness caused the least problems for methods, while NMAR missingness
caused the most, and as was also found by Kalousis and Hilario (2000), missingness spread over
several predictors is more serious than if it is concentrated in only one. Twala, Jones, and Hand
(2008) proposed a method closely related to creating a separate class for missing values, and found
that its performance was competitive with that of likelihood-based multiple imputation.

The study described in the next section extends these previous studies in several ways. First,
theoretical analyses are provided for simple situations that help explain observed empirical perfor-
mance. We then extend these analyses to more complex situations and data sets (including large
ones) using Monte Carlo simulations based on generated and real data sets. The importance of
whether missing is dependent on the response variable, which has been ignored in previous studies
on classification trees yet turns out to be of crucial importance, is a fundamental aspect of these
results. The generality of the conclusions is finally tested using real data sets and application to
logistic regression.

3. The Effectiveness of Missing Data Methods

The recursive nature of classification trees makes them almost impossible to analyze analytically in
the general case beyond 2×2 tables (where there is only one binary predictor and a binary response
variable). On the other hand, trees built on 2×2 tables, which can be thought of as “stumps” with
a binary split, can be considered as degenerate classification trees, with a classification tree being
built (recursively) as a hierarchy of these degenerate trees. Therefore, analyzing 2×2 tables can
result in important insights for more general cases. We then build on the 2×2 analyses using Monte
Carlo simulation, where factors that might have impact on performance are incrementally added,
in order to see the effect of each factor. The factors include variation in both the data generating
process (DGP) and the missing data generating process (MGP), the number and type of predictors
in the data, the number of predictors that contain missing values, and the number of observations
with missing data.

This study examines six different missing data methods: probabilistic split, complete case
method, grand mode/mean imputation, separate class, surrogate split, and complete variable method.
Probabilistic split is the default method of C4.5 (Quinlan, 1993). In the training phase, observations
with values observed on the split variable are split first. The ones with missing values are then put
into each of the child nodes with a weight given as the proportion of non-missing instances in the
child. In the testing phase, an observation with a missing value on a split variable will be associated
with all of the children using probabilities, which are the weights recorded in the training phase.
The complete case method deletes all observations that contain missing values in any of the predic-
tors in the training phase. If the testing set also contains missing values, the complete case method
is not applicable and thus some other method has to be used. In the simulations, we use C4.5 to
realize the complete case method. In the training phase, we manually delete all of the observations
with missing values and then run C4.5 on the pre-processed remaining complete data. In the testing
phase, the default missing data method, probabilistic split, is used. Grand mode imputation imputes
the missing value with the grand mode of that variable if it is categorical. Grand mean is used
if the variable is continuous. The separate class method treats the missing values as a new class
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(category) of the predictor. This is trivial to apply when the original variable is categorical, where
we can create a new category called “missing”. To apply the separate class method to a numerical
variable, we give all of the missing values a single extremely large value that is obviously outside of
the original data range. This creates the needed separation between the nonmissing values and the
missing values, implying that any split that involves the variable with missing values will put all of
the missing observations into the same branch of the tree. Surrogate split is the default method of
CART (realized using RPART in this study; Breiman et al. 1998 and Therneau and Atkinson 1997).
It finds and uses a surrogate variable (or several surrogates in order) within a node if the variable
for the next split contains missing values. In the testing phase, if a split variable contains missing
values, the surrogate variables in the training phase are used instead. The complete variable method
simply deletes all variables that contain missing values.

Before we start presenting results, we define a performance measure that is appropriate for mea-
suring the impact of missing data. Accuracy, calculated as the percentage of correctly classified
observations, is often used to measure the performance of classification trees. Since it can be af-
fected by both the data structure (some data are intrinsically easier to classify than others) and by
the missing data, this is not necessarily a good summary of the impact of missing data. In this study,
we define a measure called relative accuracy (RelAcc), calculated as

RelAcc=
Accuracy with missing data

Accuracy with original full data
.

This can be thought of as a standardized accuracy, as RelAccmeasures the accuracy achievable with
missing values relative to that achievable with the original full data.

3.1 Analytical Results

In the following consistency theorems, the data are assumed to reflect the DGP exactly, and therefore
the training set and the testing set are exactly the same. Several of the theorems are for 2×2 tables,
and in those cases stopping and pruning rules are not relevant, since the only question is whether or
not the one possible split is made. The proofs are thus dependent on the underlying parameters of
the DGP and MGP, rather than on data randomly generated from them. It is important to recognize
that these results are only designed to be illustrative of the results found in the much more realistic
simulation analyses to follow. Proofs of all of the results are given in the appendix.

Before presenting the theorems, we define some terms to avoid possible confusion. First, a
partition of the data refers to the grouping of the observations defined by the classification tree’s
splitting rules. Note that it is possible for two different trees on the same data set to define the same
partition. For example, suppose that there are only two binary explanatory variables, X1 and X2, and
one tree splits on X1 then X2 while another tree splits on X2 then X1. In this case, these two trees
have different structures, but they can lead to the same partition of the data. Secondly, the set of
rules defined by a classification tree consists of the rules defined by the tree leaves on each of the
groups (the partition) of the data.

3.1.1 WHEN THE TEST SET IS FULLY OBSERVED WITH NO MISSING VALUES

We start with Theorems 1 to 3 that apply to the complete case method. Theorems 4 and 5 apply to
probabilistic split and mode imputation, respectively. Proofs of the theorems can be found in the
appendix.
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Theorem 1 Complete Case Method: If the MGP is conditionally independent of Y given X, then
the tree built on the data containing missing values using the complete case method gives the same
set of rules as the tree built on the original full data set.

Theorem 2 Complete Case Method: If the partition of the data defined by the tree built on the
incomplete data is not changed from the one defined by the tree built on the original full data, the
loss in accuracy when the testing set is complete is bounded above by PM, where PM is the missing
rate, defined as the percentage of observations that contain missing values.

Theorem 3 Complete Case Method: If the partition of the data defined by the tree built on the
incomplete data is not changed from the one defined by the tree built on the original full data, the
relative accuracy when the testing set is complete is bounded below by

RelAccmin =
1−PM
1+PM

,

where PM is the missing rate. Notice that the tree structure itself could change as long as it gives
the same final partition of the data.

There are similar results in regression analyses as in Theorem 1. In regression analyses, when
the missingness is independent of the response variable, by using only the complete observations,
the parameter estimators are all unbiased (Allison, 2001). This implies that in theory, when the
missingness is independent of the response variable, using complete cases only is not a bad approach
on average. However, in practice, as will be seen later, deleting observations with missing values
can cause severe loss in information, and thus has generally poor performance.

Theorem 4 Probabilistic Split: In a 2×2 data table, if the MGP is independent of either Y or X,
given the other variable, then the following results hold for probabilistic split.

1. If X is not informative in terms of classification, that is, the majority classes of Y for different
X values are the same, then probabilistic split will give the same rule as the one that would
be obtained from the original full data;

2. If probabilistic split shows that X is informative in terms of classification, that is, the majority
classes of Y for different X values are different, then it finds the same rule as the one that
would be obtained from the original full data;

3. The absolute accuracy when the testing set is complete is bounded below by 0.5. Since the
original full data accuracy is at most 1, the relative accuracy is also bounded below by 0.5.

Theorem 5 Mode Imputation: If the MGP is independent of Y , given X, then the same results hold
for mode imputation as for probabilistic split under the conditions of Theorem 4.

Theorems 1, 2 and 3 (for the complete case method) are true for general data sets. Theorems
4 and 5 are for 2×2 tables only but they imply that probabilistic split and mode imputation have
advantages over the complete case method, which can have very poor performance (as will be shown
in Figure 1).
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Moreover, with 2×2 tables, the complete variable method will always have a higher than 0.5
accuracy since by ignoring the only predictor, we will always classify all of the data to the overall
majority class and achieve at least 0.5 accuracy, and thus at least 0.5 relative accuracy. Together
with Theorems 4 and 5, as well as the evidence to be shown in Figure 1, this is an indication that
classification trees tend not to be hurt much by missing values, since trees built on 2×2 tables can
be considered as degenerate classification trees and more complex trees are composites of these
degenerate trees. The performance of a classification tree is the average (weighted by the number
of observations at each leaf) over the degenerate trees at the leaf level, and, as will be seen later in
the simulations, can often be quite good.

Surrogate split is not applicable to 2×2 tables because there are no other predictors. For 2×2
table problems with a complete testing set, separate class is essentially the same as the complete case
method, because as long as the data are split according to the predictor (and it is very likely that this
will be so), the separate class method builds separate rules for the observations with missing values;
when the testing set is complete, the rules that are used in the testing phase are exactly the ones built
on the complete observations. When there is more than one predictor, however, the creation of the
“separate class” will save the observations with missing values from being deleted and affect the
tree building process. It will very likely lead to a change in the tree structure. This, as will be seen,
tends to have a favorable impact on the performance accuracy.

Figure 1 illustrates the lower bound calculated in Theorem 3. The illustration is achieved by
Monte Carlo simulation of 2×2 tables. A 2×2 table with missing values has only eight cells, that is,
eight different value combinations of the binary variables X , Y and M, where M is the missingness
indicator such that M = 0 if X is observed and M = 1 if X is missing. There is one constraint, that
the sum of the eight cell probabilities must equal one. Therefore, this table is determined by seven
parameters. In the simulation, for each 2× 2 table, the following seven parameters (probabilities)
are randomly and independently generated from a uniform distribution between (0,1): (1)P(X = 1),
(2)P(Y = 1|X = 0), (3)P(Y = 1|X = 1), (4)P(M = 1|X = 0,Y = 0), (5)P(M = 1|X = 0,Y = 1),
(6)P(M = 1|X = 1,Y = 0) and (7)P(M = 1|X = 1,Y = 1). Here we assume the data tables reflect
the true underlying DGP and MGP without random variation, and thus the expected performance
of the classification trees can be derived using the parameters. In this simulation, sets of the seven
parameters are generated (but no data sets are generated using these parameters) repeatedly, and the
relative accuracy of each missing data method on each parameter set is determined. One million
sets of parameters are generated for each missingness pattern.

In Figure 1, the plot on the left is a scatter plot of relative accuracy versus missing rate for
each Monte Carlo replication for the complete case method when the MGP depends on the response
variable. The lower bound is clearly shown. We can see that when the missing rate is high, the
lower bound can reduce to almost zero (implying that not only relative accuracy, but accuracy itself,
can approach zero). This perhaps somewhat counterintuitive result can occur in the following way.
Imagine the extreme case where almost all cases are positive and (virtually) all of the positive cases
have missing predictor value at the training phase; in this situation the resultant rule will be to
classify everything as negative. When this rule is applied to a complete testing set with almost all
positive cases, the accuracy will be almost zero. The graph on the right is the quantile version of the
scatter plot on the left. The lines shown in the quantile plot are the theoretical lower bound, the 10th,
20th, 30th, 40th and 50th percentile lines from the lowest to the highest. Higher percentile lines are
the same as the 50th percentile (median) line, which is already the horizontal line at RelAcc= 1. The
percentile lines are constructed by connecting the corresponding percentiles in a moving window
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Figure 1: Scatter plot and the corresponding quantile plot of the complete testing set RelAcc vs.
missing rate of the complete case method when the MGP is dependent on the response
variable. Recall that “∗∗Y” means the MGP is conditionally dependent on the response
variable but no restriction on the relationship between the MGP and other variables, miss-
ing or observed, is assumed. Each point in the scatter plot represents the result on one of
the simulated data tables.

of data from the left to the right. Due to space limitations, we do not show quantile plots of other
missing data methods and/or under different scenarios, but in all of the other plots, the quantile lines
are all higher (that is, the quantile plot in Figure 1 shows the worst case scenario). The plots show
that the missing data problem, when the missing rate is not too high, may not be as serious as we
might have thought. For example, when 40% of the observations contain missing data, 80% of the
time the expected relative accuracy is higher than 90%, and 90% of the time the expected relative
accuracy is higher than 80%.

3.1.2 WHEN THE TEST SET HAS MISSING VALUES

Theorem 6 Separate Class: In 2×2 data tables, if missing values occur in both the training set
and the testing set, then the separate class method achieves the best possible performance.

In the Monte Carlo simulation of the 2× 2 tables, the head-to-head comparison between the
separate class method and other missing data methods confirmed the uniform dominance of the sep-
arate class when the test set also contains missing values, regardless whether the MGP is dependent
on the response variable or not. However, as shown in Figure 2, when the MGP is independent of
the response variable, separate class never performances better than the performance on the original
full data, indicated by relative accuracies less than one. This means that separate class is not gaining
from the missingness. On the other hand, when the MGP is dependent on the response variable, a
fairly large percentage of the time the relative accuracy of the separate class method is larger than
one (the quantiles shown are from the 10th to the 90th percentile with increment 10 percent). This
means that trees based on the separate class method can improve on predictive performance com-
pared to the situation where there are no missing data. Our simulations show that other methods
can also gain from the missingness when the MGP is dependent on the response variable, but not as
frequently as the separate class method and the gains are in general not as large. We follow up on
this behavior in more detail in the next section, but the simple explanation is that since missingness
depends on the response variable, the tree algorithm can use the presence of missing data in an ob-
servation to improve prediction of the response for that observation. Duda, Hart, and Stork (2001)
and Hand (1997) briefly mentioned this possibility in the classification context, but did not give any
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Figure 2: Scatter plot of the separate class method with incomplete testing set. Each point in the
scatter plot represents the result on one of the simulated data tables.

supporting evidence. Theorem 6 makes a fairly strong statement in the simple situation, and it will
be seen to be strongly indicative of the results in more general cases.

3.2 Monte Carlo Simulations of General Data Sets

In this section extensions of the simulations in the last section are summarized.

3.2.1 AN OVERVIEW OF THE SIMULATION

The following simulations are carried out.

1. 2×2 tables, missing values occur in the only predictor.

2. Up to seven binary predictors, missing values occur in only one predictor.

3. Eight binary predictors, missing values occur in two of them.

4. Twelve binary predictors, missing values occur in six of them.

5. Eight continuous predictors, missing values occur in two of them.

6. Twelve continuous predictors, missing values occur in six of them.

Two different scenarios of each of the last four simulations listed above were performed. In
the first scenario, the six complete predictors are all independent of the missing ones, while in the
second scenario three of the six complete predictors are related to the missing ones. Therefore, ten
simulations were done in total.

In each of the simulations, 5000 sets of DGPs are simulated in order to cover a wide range of
different-structured data sets so that a generalizable inference from the simulation is possible. For
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Figure 3: A summary of the tree performance on the simulated original full data.

each DGP, eight different MGPs are simulated to cover different types of missingness patterns. For
each data set, the variables are generated sequentially in the order of the predictors, the response
and the missingness. The probabilities associated with the binary response variable and the binary
missingness variable are generated using conditional logit functions. The predictors may or may not
be correlated with each other. Details about the simulations implementation can be found in Ding
and Simonoff (2008). For each set of DGP/MGP, several different sample sizes are simulated to
see any possible learning curve effect, since it was shown by Perlich, Provost, and Simonoff (2003)
that sample size is an important factor in the effectiveness of classification trees. Figure 3 shows
the distribution of the tree performance on the simulated original full data, as measured by accuracy
and area under the ROC curve (AUC). As we can see, there is broad coverage of the entire range of
strength of the underlying relationship. Also, as expected, the out-of-sample performance (on the
test set) is generally worse than the in-sample performance (on the training set). When the in-sample
AUC is close to 0.5, a tree is likely to not split and as a result, any missing data method will not
actually be applied, resulting in equivalent performance over all of them. To make the comparisons
more meaningful, we exclude the cases where the in-sample AUC is below 0.7. Lower thresholds
for exclusion (0.55 and 0.6) yield very similar results.

Of the six missing data methods covered by this study, five of them, namely, complete case
method, probabilistic split, separate class, imputation and complete variable method, are realized
using C4.5. These methods are always comparable. However, surrogate split is carried out using
RPART, which makes it less comparable to the other methods because of differences between RPART
and C4.5 other than the missing data methods. To remedy this problem, we tuned the RPART param-
eters (primarily the parameter “cp”) so that it gives balanced results compared to C4.5 when applied
to the original full data (i.e., each has a similar probability of outperforming the other), and special
attention is given when comparing RPART with other methods. The out-of-sample performances of
each pair of missing data methods were compared based on both t-tests and nonparametric tests;
each difference discussed in the following sections was strongly statistically significant.
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Figure 4: A summary of the order of six missing data methods when tested on a new complete
testing set. The Y axis is the percentage of times each method is the best (including being
tied with other methods; therefore the percentages do not sum up to one).

3.2.2 THE TWO FACTORS THAT DETERMINE THE PERFORMANCE OF DIFFERENT MISSING
DATA METHODS

The simulations make clear that the dependence relationship between the missingness and the re-
sponse variable is the most informative factor in differentiating different missing data methods, and
thus is most helpful in determining the appropriateness of the methods. This can be clearly seen in
Figures 4 and 5 (these figures refer to the case with twelve continuous predictors, six of which are
subject to missing values, but results for other situations were broadly similar). The left column in
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Figure 5: A summary of the order of six missing data methods when tested on a new incomplete
testing set. The Y axis is the percentage of times each method is the best (including being
tied with other methods).

the pictures shows the results when the missingness is independent of the response variable and the
right column shows the results when the missingness is dependent on the response variable. We can
see that there are clear differences between the two columns, but within each column there is essen-
tially no difference. This also says the categorization of MCAR/MAR/NMAR (which is based upon
the dependence relationship between the missingness and missing values, and does not distinguish
the dependence of the missingness on other Xs and on Y ) is not helpful in this context.
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Figure 6: Plot of the case-wise missing rate MR2 versus the value-wise missing rate MR1 in the
simulations using the 36 real data sets.

Comparison of the right columns of Figures 4 and 5 shows that whether or not there are missing
values in the testing set is the second important criterion in differentiating between the methods.
The separate class method is strongly dominant when the testing set contains missing values and
the missingness is related to the response variable. The reason for this is that when missing data
exist in both the training phase and the testing phase, they become part of the data and the MGP
becomes an essential part of the DGP. This, of course, requires the assumption that the MGP (as well
as the DGP) is the same in both the training phase and the testing phase. Under this scenario, if the
missingness is related to the response variable, then there is information about the response variable
in the missingness, which should be helpful when making predictions. Separate class, by taking the
missingness directly as an “observed” variable, uses the information in the missingness about the
response variable most effectively and thus is the best method to use. As a matter of fact, as can
be seen in the bottom rows of Figures 7 and 8 (which give average relative accuracies separated by
missing rate), the average relative accuracy of separate class under this situation is larger than one,
indicating, on average, a better performance than with the original full data.

On the other hand, when the missing data only occur in the training phase and the testing set does
not have missing values, or when the missingness is not related to and carries no information about
the response variable, the existence of missing values is a nuisance. Its only effect is to obscure the
underlying DGP and thus would most likely reduce a tree’s performance. In this case, simulations
show probabilistic split to be the dominantly best method. However, we don’t see this dominance
later in results based on real data sets. More discussion of this point will follow in Section 4.

3.2.3 MISSING RATE EFFECT

There are two ways of defining the missing rate: the percentage of predictor values that are missing
from the data set (the value-wise missing rate, termed hereMR1), and the percentage of observations
that contain missing values (the case-wise missing rate, termed here MR2). If there is only one
predictor, as is the case with 2×2 tables, then the two definitions are the same. We have seen
earlier in the theoretical analyses that the missing rate has a clear impact on the performance of the
missing data methods. In the simulations, there is also evidence of a relationship between relative
performance and missing rate, whichever definition is used to define the missing rate.

144



AN INVESTIGATION OF MISSING DATA METHODS FOR CLASSIFICATION TREES

P P
P

100 500 2000 10000

0
20

40
60

80
100

Winning Pct / MGP: MXY / MR1<0.15

Sample size

Win
nin

g p
ct o

f ea
ch 

me
tho

d

C
C C

S

S

S

M
M M

T
T

T

D
D D

P P
P

100 500 2000 10000

0
20

40
60

80
100

Winning Pct / MGP: MXY / 0.2<MR1<0.3

Sample size

Win
nin

g p
ct o

f ea
ch 

me
tho

d

C
C

C

S

S

S

M M M

T
T T

D
D

D

P P

P

100 500 2000 10000

0
20

40
60

80
100

Winning pct / MGP: MXY / MR1>0.35

Sample size

Win
nin

g P
ct o

f ea
ch 

me
tho

d

C

C
C

S

S

S

M

M M

T
T TD D

D

P P P

100 500 2000 10000

0.7
0.8

0.9
1.0

1.1
1.2

Mean RelAcc / MGP: MXY / MR1<0.15

Sample size

Re
lati

ve 
Acc

ura
cy

C C C

S S S
M M MT T TD

D D
P

P P

100 500 2000 10000

0.7
0.8

0.9
1.0

1.1
1.2

Mean RelAcc / MGP: MXY / 0.2<MR1<0.3

Sample size

Re
lati

ve 
Acc

ura
cy

C
C

C

S
S S

M M
M

T T T
D

D D
P P P

100 500 2000 10000

0.7
0.8

0.9
1.0

1.1
1.2

Mean RelAcc / MGP: MXY / MR1>0.35

Sample size

Re
lati

ve 
Acc

ura
cy

C C

S
S S

M
M M

T T T
D D D

Figure 7: A comparison of the low, median and high missing rate situations. The top row shows the
comparison in terms of winning percentage and the bottom row shows the comparison of
the absolute performance of each missing data method.

Figure 6 shows the relationship between MR1 and MR2 in the simulations with 12 continuous
predictors and 6 of them with missing values. Notice that in this setting, MR1 is naturally between
0 and 0.5 (since half of the predictors can have missing values). MR2 values are considerably larger
thanMR1 values, as would be expected.

The simulations clearly show that the relative performance of different missing data methods is
very consistent regardless of the missing rate (see the top row of Figure 7). However, the bottom
row of Figure 7 shows that the absolute performance of the complete case method and the mean
imputation method deteriorate as the missing rate gets higher. It also shows that separate class
method performs best when the missing rate is neither too high or too low, although this effect is
relatively small. Interestingly, the relative accuracy of the other missing data methods is very close
to one regardless of the missing rate, indicating that they can almost achieve the same accuracy as
if the data are complete without missing values.

A final effect connected to missing rate relates to results in earlier papers (Kalousis and Hilario,
2000; Twala, 2009) that suggested that missingness over several predictors is more problematic than
missingness concentrated in a few predictors. This pattern was not evident here (e.g., in comparing
the results for 8 predictors with 2 having missing values to those for 12 predictors with 6 having
missing values), but it should be noted that the comparisons here are based on relative performance
between methods, not absolute performance. That is, even if absolute performance deteriorates in
the presence of missingness over multiple predictors, this is less important to the data analyst than
is relative performance between methods (since a method must be chosen), and with respect to the
latter criterion the observed patterns are reasonably stable.
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Figure 8: A comparison of the low, median and high original full data AUC situations. The top
row shows the comparison in terms of winning percentage and the bottom row shows the
comparison of the absolute performance of each missing data method.

3.2.4 THE IMPACT OF THE ORIGINAL FULL DATA AUC

Figure 8 shows that the original full data AUC primarily has an impact on the performance of
separate class method. When the original full data AUC is higher, the loss in information due to
missing values is less likely to be compensated by the information in the missingness, and thus
separate class method deteriorates in performance (see the bottom row of Figure 8). When the
original AUC is very high, although separate class still does a little better on average, it loses the
dominance over the other methods.

Another observation is that the missing data methods other than separate class have fairly stable
relative accuracy, with complete case and mean imputation consistently being the poorest perform-
ers (see the graphs in the bottom rows of both Figure 7 and Figure 8). This is true regardless of
the AUC or the missing rate, even when the missingness does not depend on the response variable
and there are no missing data in the testing set where, in theory, the complete case method can
eventually recover the DGP.

4. Performance On Real Data Sets

In this section, we show that most of the previously described results hold when using real data
sets. Moreover, we propose a method of determining the best missing data method to use when
analyzing a real data set. Unlike in the previous sections, in these simulations based on real data,
default settings of C4.5 are used and RPART is tuned (primarily using its parameter “cp”) to get
similar performance on the original full data as C4.5. Therefore, in particular, the effect of pruning
is present. In Section 4.1, we show the results on 36 data sets that were originally complete. In
Section 4.2, we propose a way to determine the best missing data method to use when facing real
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Missingness is related to
Missing Observed Response
values Predictors Variable LR Three-Letter
No No No MCAR −−−
No No Yes MAR −−Y
Yes No No NMAR M−−

Table 2: Three missingness patterns used in simulations based on real data sets. The LR column
shows the categorization according to Rubin (1976) and Little and Rubin (2002). The
Three-Letter column shows the categorization used in this paper.

data sets that contain missing values (since in that case the true missingness generating process is
not known by the data analyst).

4.1 Results on Real Data Sets with Simulated Missing Values

The same 36 data sets as in Perlich, Provost, and Simonoff (2003) are used here (except for Cover-
type and Patent, which are too big for RPART to handle; in those cases a random subset of 100,000
observations for each of them was used as the “true” underlying data set). They are either complete
or were made complete by Perlich et al. (2003). Missing values with different missingness patterns
were generated for the purpose of this study. According to the earlier results, the only important
factor in the missingness generating process is the relationship between the missingness and the
response variable. Therefore, two missingness patterns are included. In one of them, missingness is
independent of all of the variables (including the response variable). In the other one, missingness is
related to the response variable, but independent of all of the predictors. These two missingness pat-
terns can be categorized as missing completely at random (MCAR) and missing at random (MAR),
respectively. To account for this categorization of MGPs, the third type of missingness, not missing
at random (NMAR), is also included. In the NMAR case, missingness is made dependent upon the
missing values but not on the response variable (see Table 2). To maximize the possible effect of
missing values, the first split variable of the original full data is chosen as the variable that contains
missing values. It can be either numeric or categorical (binary or multi-categorical). Ten new data
sets with missing values are generated for each combination of data set, training set size, and miss-
ingness pattern combination, with the missing rate chosen randomly for each. The performance of
the missing data methods is measured out-of-sample, on a hold out test sample.

The same six missing data methods, namely, the complete case method, the complete vari-
able method, probabilistic split, grand mode/mean imputation, surrogate split and the separate class
method are applied. All of them are realized using C4.5 except for surrogate split, which is realized
using RPART. C4.5 is run with its default settings. To make surrogate split comparable to the other
missing data methods, the RPART parameters are tuned for each data set and each sample size so that
RPART and C4.5 have comparable in sample performance on the original full data (by comparable
performance we mean the average in sample original full data accuracies are similar to each other).
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Figure 9: A tally of the relative out-of-sample performance measured in accuracy of all of the miss-
ing data methods on the 36 data sets.

4.1.1 THE TWO FACTORS AND THE BEST MISSING DATA METHOD

Consistent with the earlier results, the two factors that differentiate the performance of different
missing data methods are whether the testing set is complete and whether the missingness is depen-
dent upon the response variable. Figure 9 summarizes the relative out-of-sample performance in
terms of accuracy of all of the missing data methods under different situations. In the graph, each
bar represents one missing data method. Since the complete case method is consistently the worst
method, it is omitted in the comparisons. Within each bar, the blank block shows the frequency
that the missing data method has comparable performance with others. The shadowed block on
the bottom shows the frequency that the missing data method has worse performance than others.
The line-shadowed blocks on the top show the frequency that the missing data method has better
performance than others, with the vertically line-shadowed block further indicating that the missing
data method has better performance than with the original full data.

As was seen in the previous section, when missingness is related to the response variable and the
test set contains missing values (the graph at the bottom right corner of Figure 9), the separate class
method is dominant and in almost half of the cases, its performance is even better than the full data
performance. Interestingly, the middle plot on the right shows that the separate class method still
has an edge over the others (sometimes even over the original full data) when the test set contains
missing values and the missingness is dependent upon the predictor but conditionally independent
of the response variable. This is probably due to the indirect relationship between the missingness
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and the response variable because both the missingness and the response variable are related to the
predictor.

However, the dominance of probabilistic split is not observed in these real data sets. One pos-
sible reason could be the effect of pruning, which is used in these real data sets. The other two
methods realized using C4.5 (imputation and separate class) both work with “filled-in” data sets,
while probabilistic split takes the missing values as-is. Given this, we speculate that the branches
with missing values are more likely to be pruned under probabilistic split, which causes it to lose
predictive power. Another possible reason could be the competition from surrogate split, which is
realized using RPART. Although we tried to tune RPART for each data set and each sample size,
RPART and C4.5 are still two different algorithms. Different features of RPART and C4.5, other than
the missing data methods, may cause RPART to outperform C4.5. Complete variable method per-
forms a bit worse than the others, presumably because in these simulations the initial split variable
on the full data was used as the variable with missing values.

In addition to accuracy, AUC was also tested as an alternative performance measure. We also
examined the use of bagging (bootstrap aggregating) to reduce the variability of classification trees
(discussion of bagging can be found in many sources, for example, Hastie et al. 2001). The learning
curve effect (that is, the relationship between effectiveness and sample size) is also examined. We
see patterns consistent with those in the simulated data sets. That is, the relative performance of the
missing data methods is fairly consistent across different sample sizes.

4.1.2 THE EFFECT OF MISSING RATE

Figure 10 shows the distribution of the generated missing rates in these simulations. Recall that
missing values occur in one variable, so this missing rate is the percentage of observations that have
missing values, that is,MR2 as defined earlier. Figure 11 shows a comparison between the case when
the missing rate is low (MR2 < 0.2) and the case when the missing rate is high (MR2 > 0.8). For
brevity, only the result when the MGP is dependent on the response variable is shown; differences
between the low and high missing rate situations for other MGP’s are similar. Since the missing
rate is chosen at random, some of the original data sets do not have any generated data sets with
simulated missing values with low missing rate, while for others we do not have any with high
missing rate, which accounts for the “no data” category in the figures. Also, when the missing rate
is high, the complete case method is obviously much worse than other missing data methods, and is
therefore omitted from the comparison in that situation.

By comparing the graphs in Figures 11 with the corresponding ones in Figure 9, we can see
some of the effects of missing rate. First, when the missing rate is lower than 0.2, the complete case
method has comparable performance to other methods other than the complete variable method.
This is unsurprising, as in this situation the complete case method does not lose much information
from omitted observations. Secondly, the complete variable method has the worst performance
when the missing rate is low, presumably (as noted earlier) because the complete variable method
omits the most important explanatory variable in these simulations.

Moreover, in both the low and high missing rate cases, when the missingness depends on the
response and the testing set is incomplete, the dominance of the separate class is not as strong as it
is in Figure 9. This indicates that separate class works best when the missing rate is moderate. If
the missing rate is too low, there might not be enough observations in the category of “missing” for
the separate class method to be as effective. On the other hand, if the missing rate is very high, the
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Distribution of missing rates in the simulation on 36 real data sets
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Figure 10: The distribution of missing rate in the simulation on 36 real data sets.

Figure 11: A comparison of the relative out-of-sample performance with low and high missing
rates. Shown here, as an example, is the relative performance when the missingness is
dependent upon the response variable. The left column is for the cases where the test
set is fully observed and the right column for the cases where the test set has missing
values. Top row shows the cases with low missing rate (MR2 < 0.2) and bottom row
shows the cases with high missing rate (MR2 > 0.8)

.

information gained by separate class may not be enough to compensate for the lost information in
the missing values, making all of the methods more comparable. This observation is consistent with
Figure 2, where it is very clear that separate class gains the most when the missing rate is around
50%, as well as Figure 7, where the bottom row shows that separate class has better performance
when the missing rate is neither too high or too low.
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Figure 12: A tally of the missing data methods performance differentiation by data separability
(measured by AUC).

4.1.3 IMPACT OF THE DATA SEPARABILITY, MEASURED BY ORIGINAL FULL DATA AUC

The experiment with these 36 data sets also shows that data separability (measured by AUC) is in-
formative about the performance differentiation between different missing data methods (see Figure
12). In the graph, each vertical bar represents one of the 36 data sets, which are ordered from left to
right according to their maximum full data AUC (as calculated by Perlich et al. 2003) from small-
est to the greatest. The X-axis label shows the AUCs of the data sets. The height of each black bar
shows the percentage of time when all of the missing data methods have mostly tied performance on
the data set. The percentage is calculated as follows. There are three simulated missingness patterns
(MCAR, NMAR and missingness depending onY ), four different testing sets (complete training set,
complete new test set, incomplete training set and incomplete new test set) and four performance
measures (accuracy, AUC and their bagged versions). This yields 48 measurement blocks for each
data set. The performances of all of the missing data methods are compared within each block. If
within a block, all of the missing data methods have very similar performance, the block is marked
as mostly tied. Otherwise, the block is marked as having at least one method performing differently.
The percentage is the proportion of the 48 blocks that are marked as mostly tied.

Figure 12 shows that when data separability is very high, as indicated by an AUC very close
to 1 (the right end of the graph), the performances of different missing data methods are more
likely to be tied. This is presumably due to the fact that strong signals in the data are less likely
to be affected by missing data. The last data set (Nurse) is an exception because there is only one
useful predictor. Since we picked the most significant predictor to create missing values in, when
the complete variable method is used, the only useful predictor was always deleted and thus the
complete variable method always had worse performance than others. As a result, on this data set,
none of the measurement blocks is marked as mostly tied. This is consistent with the observations
made in Figure 8.
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4.2 A Real Data Set With Missing Values

We now present a real data example with naturally occurred missing values. In this example, we
try to model a company’s bankruptcy status given its key financial statement items. The data are
annual financial statement data and the predictions are sequential. That is, we build the tree on one
year’s data and then test its performance on the following year’s data. For example, we build a tree
on 1987’s data and test its performance on 1988’s data, then build a tree on 1988’s data and test it
on 1989 data, and so on.

The data are retrieved from Compustat North America (a database of U.S. and Canadian funda-
mental and market information on more than 24,000 active and inactive publicly held companies).
Following Altman and Sabato (2005), twelve variables from the data base are used as potential pre-
dictors: Current Assets, Current Liabilities, Assets, Sales, Operating Income Before Depreciation,
Retained Earnings, Net Income, Operating Income After Depreciation, Working Capital, Liabili-
ties, Stockholder’s Equity and year. The response variable, bankruptcy status, is determined using
two footnote variables, the footnote for Sales and the footnote for Assets. Companies with remarks
corresponding to “Reflects the adoption of fresh-start accounting upon emerging from Chapter 11
bankruptcy” or “Company in bankruptcy or liquidation” are marked as bankruptcy. The data in-
clude all active companies, and span 19 years from 1987 to 2005. There are 177560 observations
in the original retrieved data, but 76504 of the observations have no data except for the company
identifications, and are removed from the data set, resulting in 99056 observations. There are 19238
(19.4%) observations containing missing values and there are 56820 (4.8%) missing data values.

According to the results in Sections 3 and 4.1, there are two criteria that differentiate the per-
formance of different missing data methods, that is, whether or not there are missing values in the
testing set and whether or not the missingness depends on the response variable. In the bankruptcy
data, there are missing values in every year’s data, and thus missing values in each testing data set.
To assess the dependence of the missingness on the response variable, the following test is carried
out. First, we define twelve new binary missingness indicators corresponding to the original twelve
predictors. Each indicator takes on value 1 if the original value for the associated variable is missing
and 0 if the original value is observed for that observation. We then build a tree for each year’s data
using the indicators as the predictors and the original response variable, the bankruptcy status, as
the response variable. From 1987 to 2000, the tree makes no split, indicating the tree algorithm is
not able to establish a relationship between the missingness and the response variable. From 2001
to 2005, the classification tree consistently splits on the missingness indicators of Sales and Re-
tained Earnings. This indicates that the missingness of these predictors has information about the
response variable in these years, and the MGP across the years is fairly consistent in missingness in
sales and retained earnings being related to bankruptcy status. However, the AUC values calculated
from the trees built with the missingness indicators are not very high, all being between 0.5 and 0.6.
Therefore, the relationship is not a very strong one.

Given these observations and the fact that the sample sizes are fairly large, we would make
the following propositions based on our earlier conclusions. First, from 1988 to 2001 (since the
tree tested on 2001 data is built on 2000 data), different missing data methods should have simi-
lar performance, with no clear winners. However, from year 2002 to year 2005, the separate class
method should have better performance than the others (but perhaps not much better since the rela-
tionship between missingness and the response is not very strong). The actual relative performance
of different missing data methods is shown in Figure 13. Since surrogate split is realized using

152



AN INVESTIGATION OF MISSING DATA METHODS FOR CLASSIFICATION TREES

rpart accuracy, missingness indep of response

year

Ac
cu

rac
y

1988 1990 1992 1994 1996 1998 2000

0.9
80

0.9
90

1.0
00

C4.5 accuracy, missingness indep of response

year

Ac
cu

rac
y

1988 1990 1992 1994 1996 1998 2000

0.9
80

0.9
90

1.0
00

rpart accuracy, missingness dep on response

year

Ac
cu

rac
y

2002 2003 2004 2005

0.9
80

0.9
90

1.0
00

C4.5 accuracy, missingness dep on response

year
Ac

cu
rac

y

2002 2003 2004 2005

0.9
80

0.9
90

1.0
00

rpart TP, missingness indep of response

year

Tr
ue

 P
os

itiv
e R

ate

1988 1990 1992 1994 1996 1998 2000

0.0
0.1

0.2
0.3

0.4
0.5

C4.5 TP, missingness indep of response

year

Tr
ue

 P
os

itiv
e R

ate

1988 1990 1992 1994 1996 1998 2000

0.0
0.1

0.2
0.3

0.4
0.5

rpart TP, missingness dep on response

year

Tr
ue

 P
os

itiv
e R

ate

2002 2003 2004 2005

0.0
0.1

0.2
0.3

0.4
0.5

C4.5 TP, missingness dep on response

year

Tr
ue

 P
os

itiv
e R

ate

2002 2003 2004 2005

0.0
0.1

0.2
0.3

0.4
0.5

Figure 13: The relative performance of all of the missing data methods on the bankruptcy data.
The left column gives methods using RPART (and includes all of the methods except
for probabilistic split) and the right column gives methods using C4.5 (and includes all
of the methods except for surrogate split). The top rows are performance in terms of
accuracy while the bottom rows are in terms of true positive rate.

RPART while probabilistic split is realized using C4.5, we run all of the other methods using both
RPART and C4.5 so that we can compare both surrogate split and probabilistic split with all of the
other methods. In Figure 13, the plots on the left are the results from RPART, which include all of
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the missing data methods except for probabilistic split. The plots on the right are the results from
C4.5, which include all of the missing data methods except for surrogate split. The performances
of methods common to both plots are slightly different because of differences between C4.5 and
RPART in splitting and pruning rules. Both the accuracy and the true positive rates are shown. Since
the number of actual bankruptcy cases in the data is small, the accuracy is always very high. The
true positive rate is defined as

TP=
Number of correctly predicted bankruptcy cases

Actual number of bankruptcy cases
.

The graphs in the first and the second rows are for accuracies, with the first row for the first time
period from 1988 to 2001 and the second row for the second time period from 2002 to 2005. The
graphs in the third and the fourth rows are for true positive rates, with the third row for the first time
period from 1988 to 2001 and the fourth row for the second time period from 2002 to 2005. It is
apparent that in the first time period, there are no clear winners. However, in the second time period,
separate class is a little better than the others, in line with expectations.

5. Extension To Logistic Regression

One obvious observation from this study is that when missing values occur in both the model build-
ing and model application stages, it should be considered as part of the data generating process
rather than a separate mechanism. That is, taking the missingness into consideration can improve
predictive performance, sometimes significantly. This should also apply to other supervised learn-
ing methodologies, non-parametric or parametric, when predictive performance is concerned. We
present here the results from a real data analysis study involving logistic regression, similar to the
one presented in Section 4.1. Missing values are generated the same way as in Section 4.1 and
then logistic regression models (without variable selection) with different ways of handling missing
data are applied to those data sets. Finally a tally is made on the relative performances of different
missing data methods. Results measured in accuracy, bagged accuracy, AUC and bagged AUC are
almost identical to each other; results in terms of accuracy are shown in Figure 14.

Included in the study are five ways of handling missing data: using only complete cases (com-
plete case method), including a missingness dummy variable in the explanatory variable (dummy
method, sometimes called the missing-indicator method),1 building separate models for data with
values missing and data without missing values (by-group method),2 imputing missing values with
grand mean/mode (imputation method), and only using predictors without missing values (complete
variable method). Note that the methods using a dummy variable and building separate models for

1. If explanatory variable X1 has missing values, then we create a missingness dummy variableM1 that has value 1 if X1
is observed and 0 otherwise. Then M1 and X1 ∗M1 are both used as explanatory variables. The result of this set-up
is that the effect of X1 is fit on the observations with X1 observed but a single mean value is fit to the observations
with X1 missing. All of the observations, with or without X1 values, have the same coefficients for all of the other
explanatory variables. Jones (1996) showed that this method can result in biased coefficient estimates in regression
modeling, but did not address the question of predictive accuracy that is the focus here.

2. The biggest difference between the by-group method and the dummy method is whether the explanatory variables,
other than the one containing missing values, have different coefficients or not. The by-group method fits two separate
models to observations with and without missing values. Therefore, even if an explanatory variable is fully observed,
its coefficient would most likely be different for fully observed observations and for observations with missing values.
The dummymethod, on the other hand, fits a single model to the entire data set so that variables that are fully observed
will have the same coefficients whether an observation has missing values or not.
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Figure 14: A tally of the relative out-of-sample performance with logistic regression measured in
accuracy of all of the missing data methods on the 36 data sets.

observations with and without missing values each are analogous to the separate class method for
trees. The most obvious observation is that when missingness is related to the response variable and
missingness occurs in the test set, the dummy method and the by-group method dominate the other
methods; in fact, more than a third of the time, they perform better than logistic regression on the
original full data. Comparing Figure 14 with Figure 9, we see a clear similarity, in that the meth-
ods using a separate class model missingness directly, and thus use the information contained in the
missingness about the response variable most efficiently. This suggests that the result that predictive
performance of supervised learning methods is driven by the dependence (or lack of dependence)
on the response variable is not limited to trees, but is rather a general phenomenon.

6. Conclusion And Future Study

The main conclusions from this study are as follows:

1. The two most important criteria that differentiate the performance of different missing data
methods are whether or not the testing set is complete and whether or not the missingness
depends on the response variable. There is strong evidence, both analytically and empirically,
that separate class is the best missing data method to use when the testing data also contains
missing values and the missingness is dependent upon the response variable.
In practice, one way to detect the dependence of missingness on the response variable is to try
building a model, with a classification tree being a natural choice, of the response variable on
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the missingness indicators (which equals to 1 if the corresponding original value is missing
and 0 otherwise). If such a model supports a relationship, then it is an indication that the
missingness is related to the response variable.

2. The performance of classification trees is on average not too negatively affected by missing
values, except for the complete case method and the mean imputation method, which are
sensitive to different missing rates. Separate class tend to perform better when the missing
rate is neither too high nor too low, trading off between information loss due to missing values
and information gain from the informative MGP.

3. The original full data AUC has an impact on the performance of separate class method. The
higher the original AUC, the more severe the information loss due to missing value, and thus
relatively the worse the performance of the separate class method.

The consistency of these results across the theoretical analyses, simulations from the artificial data,
and simulations based on real data provides strong support for their general validity.

The findings here also have implications beyond analysis of the data at hand. For example, since
missingness that is dependent on the response variable can actually improve predictive performance,
it is clear that expending time, effort, and money to recover the missing values is potentially a poor
way to allocate resources. Another interesting implication of these results is related to data disclo-
sure limitation. It is clear that any masking of values must be done in a way that is independent of
the response variables of interest (or any predictors highly related to such variables), since otherwise
data disclosure using regression-type methods (Palley and Simonoff, 1987) could actually increase.

Classification trees are designed for the situation where the response variable is categorical, not
just binary; it would be interesting to see how these results carry over to that situation. Tree-based
methodologies for the situation with a numerical response have also been developed (i.e., regression
trees), and the problems of missing data occur in that context also. Investigating such trees would
be a natural extension of this paper. In this paper, we focused on base form classification trees
using C4.5 and RPART, although bagging was included in the study. It would be worthwhile to see
how the performance of different missing data methods is affected by different tree features such as
stopping and pruning or when techniques such as cross-validation, tree ensembles, etc. are used.

Moreover, as was shown in Section 5, the relationship between the missingness and the response
variable can be helpful in prediction when missingness occurs in both the training data and the
testing data in situations other than classification trees. This is very likely true for other supervised
learning methods, and thus testing more learning methods would also be a natural extension to this
study.
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P(Y = 0|X = 0,with Missing Data) > T > T
P(Y = 0|X = 1,with Missing Data) > T ≤ T
P(Y=0|X=0) P(Y=0|X=1)

> T > T 1 P(X=0,Y=0)+P(X=1,Y=1)
P(Y=0)

> T ≤ T P(Y=0)
P(X=0,Y=0)+P(X=1,Y=1) 1

≤ T > T P(Y=0)
P(X=0,Y=1)+P(X=1,Y=0)

P(X=0,Y=0)+P(X=1,Y=1)
P(X=0,Y=1)+P(X=1,Y=0)

≤ T ≤ T P(Y=0)
P(Y=1)

P(X=0,Y=0)+P(X=1,Y=1)
P(Y=1)

P(Y = 0|X = 0,with Missing Data) ≤ T ≤ T
P(Y = 0|X = 1,with Missing Data) > T ≤ T
P(Y=0|X=0) P(Y=0|X=1)

> T > T P(X=0,Y=1)+P(X=1,Y=0)
P(Y=0)

P(Y=1)
P(Y=0)

> T ≤ T P(X=0,Y=1)+P(X=1,Y=0)
P(X=0,Y=0)+P(X=1,Y=1)

P(Y=1)
P(X=0,Y=0)+P(X=1,Y=1)

≤ T > T 1 P(Y=1)
P(X=0,Y=1)+P(X=1,Y=0)

≤ T ≤ T P(X=0,Y=1)+P(X=1,Y=0)
P(Y=1) 1

Table 3: RelAcc of tree built on data with missing values and tested on the original full data set
when there is no variation from true DGP

Appendix A. Proofs of the Theorems

The relative accuracy (RelAcc) when there are missing values in the training set but not in the testing
set can be summarized into Table 3, where T is the threshold value (an observation will be classified
as class 0 if the predicted probability for it to be 0 is greater than T ). The value of T reflects the
misclassification cost. It is taken as 0.5 reflecting an equal misclassification cost. In Table 3, the
columns show different rules given by the classification trees when there are missing values, and the
rows show actual DGP’s. The entries are the RelAcc values under different scenarios. For example,
all of the entries on the diagonal are one’s because the rules given by the classification trees when
there are missing values are the same as the true DGP’s and thus the accuracy achieved by the trees
are the same with or without the missing values and thus RelAcc = 1. Cell (1,2), for example,
shows that if the true DGP is P(Y = 0|X = 0) > T and P(Y = 0|X = 1) > T but the classification
tree gives rule P(Y = 0|X = 0) > T and P(Y = 0|X = 1) ≤ T when there are missing values, that
is, P(Y = 0|X = 0,with missing value) > T and P(Y = 0|X = 1with missing value) ≤ T , then the
relative accuracy is determined to be

P(X = 0,Y = 0)+P(X = 1,Y = 1)
P(Y = 0)

.

Proof of Theorem 1 : The expected performance of the complete case method when the missing-
ness does not depend on the response variable and the testing set is complete.
Proof
First, we define A as the case-wise missingness indicator which equals 1 if the observation
contains missing values in one or more of the predictors or 0 if the observation does not
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contain missing values in any of the predictors. Y is the response variable and X is the vector
of the predictors.
If only the complete cases are used, if P(Y |A = 0,X) = P(Y |X), then only the diagonal in
Table 3 can be achieved, and thus there is no loss in accuracy.
This condition will be satisfied if and only if the MGP is conditionally independent ofY given
X , that is, P(A= 0|X ,Y ) = P(A= 0|X).

1. “P(Y |A= 0,X) = P(Y |X) ⇒ P(A= 0|X ,Y ) = P(A= 0|X)”

P(A=0|X,Y)= P(A=0,X ,Y )
P(X ,Y )

=P(Y |A=0,X)P(A=0,X)
P(X ,Y )

=P(Y |X)P(A=0,X)
P(Y |X)P(X)

=P(A= 0|X)

2. “P(Y |A= 0,X) = P(Y |X) ⇐ P(A= 0|X ,Y ) = P(A= 0|X)”

P(Y|A=0,X)= P(A=0,X ,Y )
P(A=0,X)

=P(A=0|X ,Y )P(X ,Y )
P(A=0,X)

=P(A=0|X)P(X ,Y )
P(A=0|X)P(X)

=P(X ,Y )
P(X)

=P(Y |X)

Proof of Theorems 2 and 3 : The expected performance of the complete case method when the
missingness depends on the response variable and the testing set is complete.
We first observe the following lemmas.

Lemma 7 For the partition defined by the tree built on the original full data (and not changed
by missing values), let the kth section contain Pk proportion of data and within the partition,
the majority class have proportion Pkm j. Note that ∑

K
k=1Pk = 1, while the full data set accu-

racy, that is, the accuracy achievable with the full data set, is ∑k PkPkm j.)

The rule for the kth section will be classifying it as the majority class of the section. The
impact of missing data on its rule is to either leave it unchanged or make it classify the data
as the minority class instead of the majority class.
The smallest missing rate needed in kth section to change the rule is P(A= 1|k) = 2Pkm j−1,
where A is defined as in Theorem 1, that is, it is the case-wise indicator, which takes value
1 if the observation contains missing value or 0 otherwise. If the rule is changed the loss in
accuracy within that section is 2Pkm j−1.
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Proof
We assume the partition of the data is not changed by the missing values. The structure of the
trees need not to be the same because different trees may lead to the same partition of data.
For any k, to make the rule of the kth section change, we need to observe more minority class
cases than the majority ones within that section. To achieve this in the most efficient way,
we only make the majority ones missing. Originally, there are Pkm j majorities and 1−Pkm j
minorities. Only when there are Pkm j− (1−Pkm j) = 2Pkm j−1 majorities missing will it become
less than the minorities, so this is the smallest missing rate we need to make the rule change.
After the rule is changed, only 1−Pkm j of the data, that is, the minorities, will be correctly
classified. Therefore, the loss in accuracy is Pkm j− (1−Pkm j) = 2Pkm j−1.

Lemma 8 For a given data set and the partition defined by the tree built on the full data set
(which is not changed by the missing values), the largest loss in accuracy is ∑k 2Pkm j−1. The
smallest missing rate needed to achieve this is also ∑k 2Pkm j−1.

Proof
The largest loss is achieved if and only if the rules are changed in every section of data in the
partition. The result then follows from Lemma 7.

Lemma 9 For a certain missing rate, say Pm, the largest effect it can have on the classifica-
tion accuracy of any data that won’t be split is Pm itself.
In this case, the data set has its majority proportion Pmj = 1

2(1+Pm).

Proof
Similar to the proof of Lemma 7, for missing values to have an impact on the classification
rule, it has to switch the order status of the majority and minority. To achieve this, it has to
be that Pmj− (1−Pmj) ≤ Pm. We know that once the rule is changed, the loss in accuracy is
Pmj− (1−Pmj). Therefore, the largest loss is Pm when the equality holds. In this case, we
have Pmj = 1

2(1+Pm).

We now prove Theorem 2.
Proof
For any data set, once it is partitioned and the partition is not changed by missing values,
the rules in different sections of data are independent of each other, so we can look at them
separately.
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Suppose the data are partitioned into K segments, in which some contain missing data and
the others do not. Let K0 be the set of sections whose rules are changed by missing data and
K1 be the set of all other sections. Also let the kth segment (k= 1 . . .K) contain proportion Pk
of the data. We have ∑K

k=1Pk = 1.
Assume that the kth segment (k ∈ K0) contains proportion Pkm of missing data. Then we have

∑
k∈K0

PkmPk ≤ Pm.

For the kth segment (k ∈ K0), by Lemma 9, the largest possible loss in accuracy is Pkm and it
occurs if and only if Pkm j = 1

2(1+Pkm). Therefore, the possible loss for the entire data set is

∑
k∈K0

PkmPk ≤ Pm,

the largest loss being achieved when the equality holds. In that case, the rules in all of the
categories that contain missing values are changed and the maximum loss is Pm.

We now prove Theorem 3.
Proof
Assuming the partitions of data are not changed by the missing values, we have

RelAcc =
∑K
k=1Pkm jPk−∑k∈K0 (loss in accuracy in k

th segment)
∑K
k=1Pkm jPk

= 1− ∑k∈K0 (loss in accuracy in k
th segment)

∑K
k=1Pkm jPk

= 1− ∑k∈K0 (loss in accuracy in k
th segment)

∑k∈K0 P
k
m jPk +∑k∈K1 P

k
m jPk

This is an increasing function of ∑k∈K1 P
k
m jPk in the denominator, which is independent of

other factors; setting it to zero minimize the relative accuracy, so

RelAcc ≤ 1− ∑k∈K0 (loss in accuracy in k
th segment)

∑k∈K0 P
k
m jPk

Denote the numerator ∑k∈K0 (loss in accuracy in k
th segment) as a. Now, from the proof of

Theorem 2, the numerator a≤ Pm and the denominator ∑k∈K0 P
k
m jPk = 1

2(1+a). So,

RelAcc ≤ 1−
a

1
2(1+a)
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This is a decreasing function of a and subject to a ≤ Pm. Therefore, the minimum RelAcc is
achieved when a= Pm. This gives

RelAcc ≤ 1−
Pm

1
2(1+Pm)

=
1−Pm
1+Pm

Proof of Theorem 4 : Some properties of probabilistic split when the missingness does not depend
on both the predictor and the response variable.
Proof

1. Part 1
• If theMGP is independent ofY given X , that is, P(M|X ,Y )=P(M|X) then P(Y |M,X)=
P(Y |X) by the proof of Theorem 1.
The rules given by probabilistic split when there are missing values are as follows:

P(Y = 0|X = 0,Prob split)
= P(Y = 0|M = 0,X = 0)P(M = 0)+P(Y = 0|M = 1)P(M = 1)
= P(Y = 0|X = 0)P(M = 0)+P(Y = 0|M = 1)P(M = 1)
= P(Y = 0|X = 0)P(M = 0)

+[P(Y = 0,X = 0|M = 1)+P(Y = 0,X = 1|M = 1)]P(M = 1)
= P(Y = 0|X = 0)P(M = 0)

+[P(Y = 0|M = 1,X = 0)P(X = 0|M = 1)
+P(Y = 0|M = 1,X = 1)P(X = 1|M = 1)]P(M = 1)

= P(Y = 0|X = 0)P(M = 0)+ [P(Y = 0|X = 0)P(X = 0|M = 1)
+P(Y = 0|X = 1)P(X = 1|M = 1)]P(M = 1)

= P(Y = 0|X = 0)P(M = 0)+P(Y = 0|X = 0)P(M = 1,X = 0)
+P(Y = 0|X = 1)P(M = 1,X = 1)

= P(Y = 0|X = 0)[P(M = 0)+P(M = 1,X = 0)]
+P(Y = 0|X = 1)P(M = 1,X = 1)
and following the similar route, we can get
P(Y = 0|X = 1,Prob split)

= P(Y = 0|X = 1)[P(M = 0)+P(M = 1,X = 1)]
+P(Y = 0|X = 0)P(M = 1,X = 0).

Note that

P(M = 0)+P(M = 1,X = 1)+P(M = 1,X = 0) = 1.
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Therefore, both P(Y = 0|X = 0,Prob split) andP(Y = 0|X = 1,Prob split) are
weighted averages of P(Y = 0|X = 0) and P(Y = 0|X = 1).
It follows that if both P(Y = 0|X = 0) and P(Y = 0|X = 1) are greater (less) than
0.5, then both P(Y = 0|X = 0,Prob split) and P(Y = 0|X = 1,Prob split) are also
greater (less) than 0.5.

• If the MGP is independent of X given Y , without loss of generality, we prove the
case when P(Y = 0|X = 0) > T = 0.5 and P(Y = 0|X = 1) > T = 0.5.

P(Y = 0|X = 0,Prob split)

=
P(M = 0,X = 0,Y = 0)

P(M = 0,X = 0)
P(M = 0)+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1,Y = 0)

=
P(M = 0|Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1,X = 0,Y = 0)+P(M = 1,X = 1,Y = 0)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1,X = 0|Y = 0)P(Y = 0)
+P(M = 1,X = 1|Y = 0)P(Y = 0)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1|Y = 0)P(X = 0|Y = 0)P(Y = 0)
+P(M = 1|Y = 0)P(X = 1|Y = 0)P(Y = 0)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1|Y = 0)P(Y = 0|X = 0)P(X = 0)
+P(M = 1|Y = 0)P(Y = 0|X = 1)P(X = 1)

> T [
P(M = 0|Y = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1|Y = 0)P(X = 0)+P(M = 1|Y = 0)P(X = 1)]

= T [
P(M = 0|Y = 0)P(M = 0)

P(M = 0,X = 0)
+P(M = 1|Y = 0)]

> T (P(M = 0|Y = 0)+P(M = 1|Y = 0))
= T

A similar argument gives P(Y = 0|X = 1,Prob split) > T .
2. Part 2

• If the MGP is independent of Y given X , then from the proof of part 1,

P(Y = 0|X = 0,Prob split)
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= P(Y = 0|X = 0)(P(M = 0)+P(M = 1,X = 0))
+P(Y = 0|X = 1)P(M = 1,X = 1)

and

P(Y = 0|X = 1,Prob split)
= P(Y = 0|X = 1)(P(M = 0)+P(M = 1,X = 1))

+P(Y = 0|X = 0)P(M = 1,X = 0).

Taking the difference, we get

P(Y = 0|X = 0,Prob split)−P(Y = 0|X = 1,Prob split)
= P(Y = 0|X = 0)(P(M = 0)+P(M = 1,X = 0))

+P(Y = 0|X = 1)P(M = 1,X = 1)
−[P(Y = 0|X = 1)(P(M = 0)+P(M = 1,X = 1))
+P(Y = 0|X = 0)P(M = 1,X = 0)]

= P(Y = 0|X = 0)P(M = 0)−P(Y = 0|X = 1)P(M = 0)
= (P(Y = 0|X = 0)−P(Y = 0|X = 1))P(M = 0).

Without loss of generality, assume P(Y = 0|X = 0,Prob split) > T and P(Y =
0|X = 1,Prob split) < T . It then follows that P(Y = 0|X = 0) > P(Y = 0|X = 1).
There are three possibilities:
(a) P(Y = 0|X = 0) > T > P(Y = 0|X = 1)
(b) T > P(Y = 0|X = 0) > P(Y = 0|X = 1)
(c) P(Y = 0|X = 0) > P(Y = 0|X = 1) > T
Conditions (b) and (c) are not possible because in these two cases, X is actually
not informative and by Part 1, probabilistic split will show they are not informative.
Therefore, it holds that P(Y = 0|X = 0) > T > P(Y = 0|X = 1).

• If the MGP is independent of X given Y , that is, P(M|X ,Y ) = P(M|Y ), we have
P(Y = 0|X = 0,Prob split)

=
P(M = 0,X = 0,Y = 0)

P(M = 0,X = 0)
P(M = 0)+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0|X = 0,Y = 0)P(X = 0,Y = 0)+P(M = 0|X = 0,Y = 1)P(X = 0,Y = 1)
+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|Y = 0)P(X = 0,Y = 0)P(M = 0)

P(M = 0|Y = 0)P(X = 0,Y = 0)+P(M = 0|Y = 1)P(X = 0,Y = 1)
+P(Y = 0|M = 1)P(M = 1)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 0)+P(M = 0|Y = 1)P(Y = 1|X = 0)
+P(Y = 0|M = 1)P(M = 1),

and following the same route, we have
P(Y = 0|X = 1,Prob split)

=
P(M = 0|Y = 0)P(Y = 0|X = 1)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 1)+P(M = 0|Y = 1)P(Y = 1|X = 1)
+P(Y = 0|M = 1)P(M = 1).
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Therefore,

P(Y = 0|X = 0,Prob split)−P(Y = 0|X = 1,Prob split)

=
P(M = 0|Y = 0)P(Y = 0|X = 0)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 0)+P(M = 0|Y = 1)P(Y = 1|X = 0)

−
P(M = 0|Y = 0)P(Y = 0|X = 1)P(M = 0)

P(M = 0|Y = 0)P(Y = 0|X = 1)+P(M = 0|Y = 1)P(Y = 1|X = 1)
= [P(Y = 0|X = 0)P(M = 0|Y = 0)P(Y = 0|X = 1)

+P(Y = 0|X = 0)P(M = 0|Y = 1)P(Y = 1|X = 1)
−P(Y = 0|X = 1)P(M = 0|Y = 0)P(Y = 0|X = 0)

−P(Y = 0|X = 1)P(M = 0|Y = 1)P(Y = 1|X = 0)]
P(M = 0|Y = 0)P(M = 0)

D1D2

= [P(Y = 0|X = 0)−P(Y = 0|X = 1)]
P(M = 0|Y = 1)P(M = 0|Y = 0)P(M = 0)

D1D2
= [P(Y = 0|X = 0)−P(Y = 0|X = 1)]K

where
D1 = P(M = 0|Y = 0)P(Y = 0|X = 0)+P(M = 0|Y = 1)P(Y = 1|X = 0),

D2 = P(M = 0|Y = 0)P(Y = 0|X = 1)+P(M = 0|Y = 1)P(Y = 1|X = 1)

and
K =

P(M = 0|Y = 1)P(M = 0|Y = 0)P(M = 0)
D1D2

.

Since K is always positive as long as there are different Y values observed, we can
see that the probabilistic split preserves the order of the conditional probability of
Y given X .
Now, without loss of generality, assume P(Y = 0|X = 0,Prob split) > T and P(Y =
0|X = 1,Prob split) < T . It follows that P(Y = 0|X = 0) >P(Y = 0|X = 1) because
probabilistic split preserves the correct order. There are three possibilities:
(a) P(Y = 0|X = 0) > T > P(Y = 0|X = 1)
(b) T > P(Y = 0|X = 0) > P(Y = 0|X = 1)
(c) P(Y = 0|X = 0) > P(Y = 0|X = 1) > T
Conditions (b) and (c) are not possible because in these two cases, X is actually not
informative and by the earlier result in Part 1, probabilistic split will show they are
not informative. Therefore, it holds that P(Y = 0|X = 0) > T > P(Y = 0|X = 1).

3. Part 3
The results of Part 1 and Part 2 lead to the simplification of Table 3 into Table 4.
Without loss of generality, we provide the proof only for the case when P(Y = 0|X =
0) > T and P(Y = 0|X = 1) ≤ T but P(Y = 0|X = 0, prob split) > T and P(Y = 0|X =
1, prob split) > T , where RelAcc is

RelAcc=
P(Y = 0)

P(X = 0,Y = 0)+P(X = 1,Y = 1)
.

It suffices to show that P(Y = 0) > 0.5
• IfM is independent of Y given X ,

P(Y = 0)
= P(X = 0,Y = 0)+P(X = 1,Y = 0)
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Simplified > T > T ≤ T ≤ T
possibilities > T ≤ T > T ≤ T
Full data

> T > T 1 — — —
> T ≤ T P(Y=0)

P(X=0,Y=0)+P(X=1,Y=1) 1 — P(Y=1)
P(X=0,Y=0)+P(X=1,Y=1)

≤ T > T P(Y=0)
P(X=0,Y=1)+P(X=1,Y=0) — 1 P(Y=1)

P(X=0,Y=1)+P(X=1,Y=0)
≤ T ≤ T — — — 1

Table 4: RelAcc with a 2×2 table of probabilistic split when the missingness is independent of
either X or Y or both

= P(M = 0,X = 0,Y = 0)+P(M = 1,X = 0,Y = 0)
+P(Y = 0|X = 1)P(X = 1)

= P(Y = 0|M = 0,X = 0)P(M = 0,X = 0)
+P(Y = 0|M = 1,X = 0)P(M = 1,X = 0)+P(Y = 0|X = 1)P(X = 1)

=1 P(Y = 0|X = 0)P(M = 0,X = 0)+P(Y = 0|X = 0)P(M = 1,X = 0)
+P(Y = 0|X = 1)P(X = 1)

>2 P(Y = 0|X = 0)P(M = 1,X = 0)+P(Y = 0|X = 1)P(M = 0,X = 0)
+P(Y = 0|X = 1)P(X = 1)

= P(Y = 0|X = 1)(P(M = 0)+P(M = 1,X = 1))
+P(Y = 0|X = 0)P(M = 1,X = 0)

= P(Y = 0|X = 1, prob split)
> 0.5

where 1 follows because P(Y |M,X) = P(Y |X) and 2 follows because P(Y = 0|X =
0) > T ≥ P(Y = 0|X = 1). Therefore,

P(Y = 0)
P(X = 0,Y = 0)+P(X = 1,Y = 1)

> P(Y = 0) > 0.5

• IfM is independent of X given Y ,

P(Y = 0) = P(M = 0,Y = 0)+P(M = 1,Y = 0)

and by assumption,

P(Y = 0|X = 1, prob split)
= P(Y = 0|M = 0,X = 1)P(M = 0)+P(M = 1,Y = 0)
> 0.5

If P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0), then P(Y = 0) > P(Y =
0|X = 1, prob split) > 0.5, it suffices to show

P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0).
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By the earlier results in Part 2, probabilistic split preserves the order of conditional
probabilities of Y given X when the missingness is conditionally independent of X
given Y , that is, in this case, since

P(Y = 0|X = 0) > T ≥ P(Y = 0|X = 1),

we have

P(Y = 0|X = 0,Prob split)−P(Y = 0|X = 1,Prob split)
= P(Y = 0|M = 0,X = 0)P(M = 0)+P(Y = 0|M = 1)P(M = 1)

−(P(Y = 0|M = 0,X = 1)P(M = 0)+P(Y = 0|M = 1)P(M = 1))
= (P(Y = 0|M = 0,X = 0)−P(Y = 0|M = 0,X = 1))P(M = 0)
> 0.

That is, P(Y = 0|M = 0,X = 0) > P(Y = 0|M = 0,X = 1). We then have
P(Y = 0|M = 0,X = 0) > P(Y = 0|M = 0,X = 1)

⇒ P(Y = 0|M = 0,X = 0)P(M = 0,X = 0)
> P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)

⇒ P(M = 0,X = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)
⇒ P(M = 0,X = 0,Y = 0)+P(M = 0,X = 1,Y = 0)

> P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)+P(M = 0,X = 1,Y = 0)
⇒ P(M = 0,Y = 0)

> P(Y = 0|M = 0,X = 1)P(M = 0,X = 0)+P(Y = 0|M = 0,X = 1)P(M = 0,X = 1)
⇒ P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)(P(M = 0,X = 0)+P(M = 0,X = 1)
⇒ P(M = 0,Y = 0) > P(Y = 0|M = 0,X = 1)P(M = 0)

Proof of Theorem 5 : Some properties of the mode imputation when the missingness does not
depend on the response variable.
Proof
Without loss of generality, we assume that P(X = 0|M = 0) > P(X = 1|M = 0), that is, there
are more X=0 cases observed than X=1 ones. As a result, all of the missing X values will
be labeled as X=0, the observed mode. Then the decision rules when the mode imputation is
used can be written as

P(Y = 0|X = 0, Imp)

=
P(M = 0,X = 0,Y = 0)+P(M = 1,Y = 0)

P(M = 0,X = 0)+P(M = 1)

=
P(M = 0,X = 0,Y = 0)+P(M = 1,X = 0,Y = 0)+P(M = 1,X = 1,Y = 0)

P(M = 0,X = 0)+P(M = 1)

=
P(X = 0,Y = 0)+P(M = 1,X = 1,Y = 0)

P(X = 0)+P(M = 1,X = 1)

=
P(X = 0,Y = 0)+P(Y = 0|M = 1,X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)
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=
P(Y = 0|X = 0)P(X = 0)+P(Y = 0|X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)
P(Y = 0|X = 1, Imp)

= P(Y = 0|M = 0,X = 1)
= P(Y = 0|X = 1)

1. Note that P(Y = 0|X = 0, Imp) is a weighted average of P(Y = 0|X = 0) and P(Y =
0|X = 1). Therefore, if they are both larger (or smaller) than 0.5, P(Y = 0|X = 0, Imp)
will also be, and thus it gives the same rule as P(Y = 0|X = 0). Moreover, P(Y = 0|X =
1, Imp) = P(Y = 0|X = 1), so it also gives the correct rule.

2. Suppose

P(Y = 0|X = 0, Imp) > 0.5
P(Y = 0|X = 1, Imp) < 0.5,

then P(Y = 0|X = 1) = P(Y = 0|X = 1, Imp) < 0.5, which is always correct. Moreover,
note that P(Y = 0|X = 0, Imp) is a weighted average of P(Y = 0|X = 0) and P(Y =
0|X = 1). Since P(Y = 0|X = 0, Imp) > 0.5 and P(Y = 0|X = 1) < 0.5, we must have
P(Y = 0|X = 0) > 0.5. Therefore, P(Y = 0|X = 0, Imp) gives the correct rule.

3. Again the possibilities simplify to Table 4. Without loss of generality, we prove the
situation when both P(Y = 0|X = 0, Imp) and P(Y = 0|X = 1, Imp) are greater than 0.5,
that is

P(Y = 0|X = 0, Imp)

=
P(Y = 0|X = 0)P(X = 0)+P(Y = 0|X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)
> 0.5

P(Y = 0|X = 1, Imp)
= P(Y = 0|X = 1)
> 0.5

Under the assumption that P(X = 0|M = 0) > P(X = 1|M = 0), the missing values have
an effect only if P(Y = 0|X = 0) < 0.5 and P(Y = 0|X = 1) > 0.5. In this case, the
relative accuracy is P(Y=0)

P(X=0,Y=1)+P(X=1,Y=0) . This is the cell of the 3
rd row and the 1st

column in Table 4.
But,

P(Y = 0)
P(X = 0,Y = 1)+P(X = 1,Y = 0)

> P(Y = 0)
= P(X = 0,Y = 0)+P(X = 1,Y = 0)
>1 0.5(P(X = 0)+P(M = 1,X = 1))−P(Y = 0|X = 1)P(M = 1,X = 1)

+P(X = 1,Y = 0)
= 0.5(P(X = 0)+P(M = 1,X = 1))+P(Y = 0|X = 1)(P(X = 1)−P(M = 1,X = 1))
= 0.5(1−P(M = 0,X = 1))+P(Y = 0|X = 1)P(M = 0,X = 1)
= 0.5−0.5P(M = 0,X = 1))+P(Y = 0|X = 1)P(M = 0,X = 1)
>2 0.5−0.5P(M = 0,X = 1))+0.5P(M = 0,X = 1)
> 0.5,
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where 1 follows because

P(Y = 0|X = 0, Imp)

=
P(Y = 0|X = 0)P(X = 0)+P(Y = 0|X = 1)P(M = 1,X = 1)

P(X = 0)+P(M = 1,X = 1)
> 0.5.

By rearranging terms,

P(Y = 0|X = 0)P(X = 0)
= P(X = 0,Y = 0)
> 0.5(P(X = 0)+P(M = 1,X = 1))−P(Y = 0|X = 1)P(M = 1,X = 1),

where 2 follows because P(Y=0|X=1)=P(Y=0|X=1,Imp)>0.5.

Proof of Theorem 6 : The dominance of the separate class method when there are missing val-
ues in both the training set and the testing set and the missingness depends on the response
variable.
Proof
When there are missing data in X in both the training set and the testing set, the finest partition
of the data will be X = 0, X = 1 and X is missing. The best rule we can derive is to classify
the majority class in each of these three partitions. This is achieved by using the separate
class method.
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Abstract
We present an algorithmic framework for learning local causal structure around target variables of
interest in the form of direct causes/effects and Markov blankets applicable to very large data sets
with relatively small samples. The selected feature sets can be used for causal discovery and clas-
sification. The framework (Generalized Local Learning, or GLL) can be instantiated in numerous
ways, giving rise to both existing state-of-the-art as well as novel algorithms. The resulting algo-
rithms are sound under well-defined sufficient conditions. In a first set of experiments we evaluate
several algorithms derived from this framework in terms of predictivity and feature set parsimony
and compare to other local causal discovery methods and to state-of-the-art non-causal feature se-
lection methods using real data. A second set of experimental evaluations compares the algorithms
in terms of ability to induce local causal neighborhoods using simulated and resimulated data and
examines the relation of predictivity with causal induction performance.

Our experiments demonstrate, consistently with causal feature selection theory, that local causal
feature selection methods (under broad assumptions encompassing appropriate family of distribu-
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tions, types of classifiers, and loss functions) exhibit strong feature set parsimony, high predictivity
and local causal interpretability. Although non-causal feature selection methods are often used in
practice to shed light on causal relationships, we find that they cannot be interpreted causally even
when they achieve excellent predictivity. Therefore we conclude that only local causal techniques
should be used when insight into causal structure is sought.

In a companion paper we examine in depth the behavior of GLL algorithms, provide extensions,
and show how local techniques can be used for scalable and accurate global causal graph learning.
Keywords: local causal discovery, Markov blanket induction, feature selection, classification,
causal structure learning, learning of Bayesian networks

1. Introduction

This paper addresses the problem of how to learn local causal structure around a target variable of
interest using observational data. We focus on two specific types of local discovery: (a) identifica-
tion of variables that are direct causes or direct effects of the target, and (b) discovery of Markov
blankets. A Markov Blanket of a variable T is a minimal variable subset conditioned on which all
other variables are probabilistically independent of T .

Discovery of local causal relationships is significant because it plays a central role in causal
discovery and classification, because of its scalability benefits, and because by naturally bridging
causation with predictivity, it provides significant benefits in feature selection for classification.
More specifically, solving the local causal induction problem helps understanding how natural and
artificial systems work; it helps identify what interventions to pursue in order for these systems
to exhibit desired behaviors; under certain assumptions, it provides minimal feature sets required
for classification of a chosen response variable with maximum predictivity; and finally local causal
discovery can form the basis of efficient algorithms for learning the global causal structure of all
variables in the data.

The paper is organized as follows: Section 2 provides necessary background material. The
section summarizes related prior work in feature selection and causal discovery; reviews recent
results that connect causality with predictivity; explains the central role of local causal discovery
for achieving scalable global causal induction; reviews prior methods for local causal and Markov
blanket discovery and published applications; finally it introduces the open problems that are the
focus of the present report. Section 3 provides formal concepts and definitions used in the paper.
Section 4 provides a general algorithmic framework, Generalized Local Learning (GLL), which can
be instantiated in many different ways yielding sound algorithms for local causal discovery and fea-
ture selection. Section 5 evaluates a multitude of algorithmic instantiations and parameterizations
from GLL and compares them to state-of-the-art local causal discovery and feature selection meth-
ods in terms of classification performance, feature set parsimony, and execution time in many real
data sets. Section 6 evaluates and compares new and state-of-the-art algorithms in terms of ability
to induce correct local neighborhoods using simulated data from known networks and resimulated
data from real-life data sets. Section 7 discusses the experimental findings and their significance.

The experiments presented here support the conclusion that local structural learning in the
form of Markov blanket and local neighborhood induction is a theoretically well-motivated and
empirically robust learning framework that can serve as a powerful tool for data analysis geared
toward classification and causal discovery. At the same time several existing open problems of-
fer possibilities for non-trivial theoretical and practical discoveries making it an exciting field of
research. A companion paper (part II of the present work) studies the GLL algorithm properties

172



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

empirically and theoretically, introduces algorithmic extensions, and connects local to global causal
graph learning (Aliferis et al., 2010). An online supplement to the present work is available at
http://www.nyuinformatics.org/downloads/supplements/JMLR2009/index.html. In ad-
dition to supplementary tables and figures, the supplement provides all software and data needed to
reproduce the analyses of the present paper.

2. Background

In the present section we provide a brief review of feature selection and causal discovery research,
summarize theoretical results motivating this work, present methods to speed-up scalability of dis-
covery, give desiderata for local algorithms, review prior methods for Markov blanket and local
neighborhood induction, and finally discuss open problems and focus of this paper.

2.1 Brief Review of Feature Selection and Causal Discovery Research

Variable selection for predictive modeling (also called feature selection) has received considerable
attention during the last three decades both in statistics and in machine learning (Guyon and Elisse-
eff, 2003; Kohavi and John, 1997). Intuitively, variable selection for prediction aims to select only
a subset of variables for constructing a diagnostic or predictive model for a given classification or
regression task. The reasons to perform variable selection include (a) improving the model predic-
tivity and addressing the curse-of-dimensionality, (b) reducing the cost of observing, storing, and
using the predictive variables, and finally, (c) gaining an understanding of the underlying process
that generates the data. The problem of variable selection is more pressing than ever, due to the re-
cent emergence of extremely large data sets, sometimes involving tens to hundreds of thousands of
variables and exhibiting a very small sample-to-variable ratio. Such data sets are common in gene
expression array studies, proteomics, computational biology, text categorization, information re-
trieval, image classification, business data analytics, consumer profile analysis, temporal modeling,
and other domains and data-mining applications.

There are many different ways to define the variable selection problem depending on the needs
of the analysis. Often however, the feature selection problem for classification/prediction is defined
as identifying the minimum-size subset of variables that exhibit the maximal predictive performance
(Guyon and Elisseeff, 2003). Variable selection methods can be broadly categorized into wrappers
(i.e., heuristic search in the space of all possible variable subsets using a classifier of choice to
assess each subset’s predictive information), or filters (i.e., not using the classifier per se to select
features, but instead applying statistical criteria to first select features and then build the classifier
with the best features). In addition, there exist learners that perform embedded variable selection,
that is, that attempt to simultaneously maximize classification performance while minimizing the
number of variables used. For example, shrinkage regression methods introduce a bias into the
parameter estimation regression procedure that imposes a penalty on the size of the parameters.
The parameters that are close to zero are essentially filtered-out from the predictive model.

A variety of embedded variable selection methods have been recently introduced. These meth-
ods are linked to a statement of the classification or regression problem as an optimization problem
with specified loss and penalty functions. These techniques usually fall into a few broad classes:
One class of methods uses the L2-norm penalty (also known as ridge penalty), for example, the re-
cursive feature elimination (RFE) method is based on the L2-norm formulation of SVM classifica-
tion problem (Rakotomamonjy, 2003; Guyon et al., 2002). Other methods are based on the L1-norm
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penalty (also known as lasso penalty), for example, feature selection via solution of the L1-norm
formulation of SVM classification problem (Zhu et al., 2004; Fung and Mangasarian, 2004) and
penalized least squares with lasso penalty on the regression coefficients (Tibshirani, 1996). A third
set of methods is based on convex combinations of the L1- and L2-norm penalties, for example,
feature selection using the doubly SVM formulation (Wang et al., 2006) and penalized least squares
with elastic net penalty (Zou and Hastie, 2005). A fourth set uses the L0-norm penalty, for example,
feature selection via approximate solution of the L0-norm formulation of SVM classification prob-
lem (Weston et al., 2003). Finally other methods use other penalties, for example, smoothly clipped
absolute deviation penalty (Fan and Li, 2001).

Despite the recent emphasis on mathematically sophisticated methods such as the ones men-
tioned, the majority of feature selection methods in the literature and in practice are heuristic in
nature in the sense that in most cases it is unknown what consists an optimal feature selection solu-
tion independently of the class of models fitted, and under which conditions an algorithm will output
such an optimal solution.

Typical variable selection approaches also include forward, backward, forward-backward, local
and stochastic search wrappers (Guyon and Elisseeff, 2003; Kohavi and John, 1997; Caruana and
Freitag, 1994). The most common family of filter algorithms ranks the variables according to a
score and then selects for inclusion the top k variables (Guyon and Elisseeff, 2003). The score of
each variable is often the univariate (pairwise) association with the outcome variable T for different
measures of associations such as the signal-to-noise ratio, the G2 statistic and others. Information-
theoretic (estimated mutual information) scores and multivariate scores, such as the weights re-
ceived by a Support Vector Machine, have also been suggested (Guyon and Elisseeff, 2003; Guyon
et al., 2002). Excellent recent reviews of feature selection can be found in Guyon et al. (2006a),
Guyon and Elisseeff (2003) and Liu and Motoda (1998).

An emerging successful but also principled filtering approach in variable selection, and the one
largely followed in this paper, is based on identifying the Markov blanket of the response (“target”)
variable T . The Markov blanket of T (denoted as MB(T )) is defined as a minimal set conditioned
on which all other measured variables become independent of T (more details in Section 3).

While classification is often useful for recognizing or predicting the behavior of a system, in
many problem-solving activities one needs to change the behavior of the system (i.e., to “manipu-
late it”). In such cases, knowledge of the causal relations among the various parts of the system is
necessary. Indeed, in order to design new drugs and therapies, institutional policies, or economic
strategies, one needs to know how the diseased organism, the institution, or the economy work. Of-
ten, heuristic methods based on multivariate or univariate associations and prediction accuracy are
used to induce causation, for example, consider as causally “related” the features that have a strong
association with T . Such heuristics may lead to several pitfalls and erroneous inductions, as we
will show in the present paper. For principled causal discovery with known theoretical properties
a causal theory is needed and classification is not, in general, sufficient (Spirtes et al., 2000; Pearl,
2000; Glymour and Cooper, 1999). Consider the classical epidemiologic example of the tar-stained
finger of the heavy smoker: it does predict important outcomes (e.g., increased likelihood for heart
attack and lung cancer). However, eliminating the yellow stain by washing the finger does not alter
these outcomes. While experiments can help discover causal structure, quite often experimentation
is impossible, impractical, or unethical. For example, it is unethical to force people to smoke and it
is currently impossible to manipulate most genes in humans in order to discover which genes cause
disease and how they interact in doing so. Moreover, the discoveries anticipated due to the explosive
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growth of biomedical and other data cannot be made in any reasonable amount of time using solely
the classical experimental approach where a single gene, protein, treatment, or intervention is at-
tempted each time, since the space of needed experiments is immense. It is clear that computational
methods are needed to catalyze the discovery process.

Fortunately, relatively recently (1980’s), it was shown that it is possible to soundly infer causal
relations from observational data in many practical cases (Spirtes et al., 2000; Pearl, 2000; Glymour
and Cooper, 1999; Pearl, 1988). Since then, algorithms that infer such causal relations have been
developed that can greatly reduce the number of experiments required to discover the causal struc-
ture. Several empirical studies have verified their applicability (Tsamardinos et al., 2003b; Spirtes
et al., 2000; Glymour and Cooper, 1999; Aliferis and Cooper, 1994).

One of the most common methods to model and induce causal relations is by learning causal
Bayesian networks (Neapolitan, 2004; Spirtes et al., 2000; Pearl, 2000). A special, important and
quite broad class of such networks is the family of faithful networks intuitively defined as those
whose probabilistic properties, and specifically the dependencies and independencies, are a direct
function of their structure (Spirtes et al., 2000). Cooper and Herskovits were the first to devise a
score measuring the fit of a network structure to the data based on Bayesian statistics, and used
it to learn the highest score network structure (Cooper and Herskovits, 1992). Heckerman and his
colleagues studied theoretically the properties of the various scoring metrics as they pertain to causal
discovery (Glymour and Cooper, 1999; Heckerman, 1995; Heckerman et al., 1995). Heckerman also
recently showed that Bayesian-scoring methods also assume (implicitly) faithfulness, see Chapter
4 of Glymour and Cooper (1999). Another prototypical method for learning causal relationships
by inducing causal Bayesian networks is the constraint-based approach as exemplified in the PC
algorithm by Spirtes et al. (2000). The PC induces causal relations by assuming faithfulness and
by performing tests of independence. A network with a structure consistent with the results of the
tests of independence is returned. Several other methods for learning networks have been devised
subsequently (Chickering, 2003; Moore and Wong, 2003; Cheng et al., 2002a; Friedman et al.,
1999b).

There may be many different networks that fit the data equally well, even in the sample limit, and
that exhibit the same dependencies and independencies and are thus statistically equivalent. These
networks belong to the same Markov equivalence class of causal graphs and contain the same causal
edges but may disagree on the direction of some of them, that is, whether A causes B or vice-versa
(Chickering, 2002; Spirtes et al., 2000). An essential graph is a graph where the directed edges
represent the causal relations on which all equivalent networks agree upon their directionality and
all the remaining edges are undirected. Causal discovery by employing causal Bayesian networks
is based on the following principles. The PC (Spirtes et al., 2000), Greedy Equivalence Search
(Chickering, 2003) and other prototypical or state-of-the-art Bayesian network-learning algorithms
provide theoretical guarantees, that under certain conditions such as faithfulness they will converge
to a network that is statistically indistinguishable from the true, causal, data-generating network, if
there is such. Thus, if the conditions hold the existence of all and the direction of some of the causal
relations can be induced by these methods and graphically identified in the essential graph of the
learnt network.

A typical condition of the aforementioned methods is causal sufficiency (Spirtes et al., 2000).
This condition requires that for every pair of measured variables all their common direct causes
are also measured. In other words, there are no hidden, unmeasured confounders for any pair of
variables. Algorithms, such as the FCI, that in some cases can discover causal relationships in the
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presence of hidden confounding variables and selection bias, have also been designed (see Spirtes
et al. 2000 and Chapter 6 of Glymour and Cooper 1999).

As it was mentioned above, using observational data alone (even a sample of an infinite size),
one can infer only a Markov equivalence class of causal graphs, which may be inadequate for
causal discovery. For example, it is not possible to distinguish with observational data any of these
two graphs that belong to the same Markov equivalence class: X → Y and X ← Y . However,
experimental data can distinguish between these graphs. For example, if we manipulate X and see
no change in the distribution of Y , we can conclude that the data-generative graph is not X → Y .
This principle is exploited by active learning algorithms. Generally speaking, causal discovery with
active learning can be described as follows: learn an approximation of a causal network structure
from available data (which is initially only observational data), select and perform an experiment
that maximizes some utility function, augment data and possibly current best causal network with
the result of experiment, and repeat the above steps until some termination criterion is met.

Cooper and Yoo (1999) proposed a Bayesian scoring metric that can incorporate both observa-
tional and experimental data. Using a similar metric (Tong and Koller, 2001) designed an algorithm
to select experiments that reduce the entropy of probability of alternative edge orientations. A simi-
lar but more general algorithm has been proposed in Murphy (2001) where the expected information
gain of a new experiment is calculated and the experiment with the largest information gain is se-
lected. Both above methods were designed for discrete data distributions. Pournara and Wernisch
(2004) proposed another active learning algorithm that uses a loss function defined in terms of the
size of transition sequence equivalence class of networks (Tian and Pearl, 2001) and can handle
continuous data. Meganck et al. (2006) have introduced an active learning algorithm that is based
on a general decision theoretic framework that allows to assign costs to each experiment and each
measurement. It is also worthwhile to mention the GEEVE system of Yoo and Cooper (2004) that
recommends which experiments to perform to discover gene-regulation pathway. This instance of
causal active learning allows to incorporate preferences of the experimenter. Recent work has also
provided theoretical bounds and related algorithms to minimize the number of experiments needed
to infer causal structure (Eberhardt et al., 2006, 2005).

2.2 Synopsis of Theoretical Results Motivating Present Research

A key question that has been investigated in the feature selection literature is which family of meth-
ods is more advantageous: filters or wrappers. A second one is what are the “relevant” features?
The latter question presumably is important because “relevant” features should be important for dis-
covery and so several definitions appeared defining relevancy (Guyon and Elisseeff, 2003; Kohavi
and John, 1997). Finally, how can we design optimal and efficient feature selection algorithms?
Fundamental theoretical results connecting Markov blanket induction for feature selection and local
causal discovery to standard notions of relevance were given in Tsamardinos and Aliferis (2003).
The latter paper provides a technical account and together with Spirtes et al. (2000), Pearl (2000),
Kohavi and John (1997) and Pearl (1988) they constitute the core theoretical framework underpin-
ning the present work. Here we provide a very concise description of the results in Tsamardinos and
Aliferis (2003) since they partially answer these questions and pave the way to principled feature
selection:

1. Relevance cannot be defined independently of the learner and the model-performance metric
(e.g., the loss function used) in a way that the relevant features are the solution to the feature
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selection problem. The quest for a universally applicable notion of relevancy for prediction is
futile.

2. Wrappers are subject to the No-Free Lunch Theorem for optimization: averaged out on all
possible problems any wrapper algorithm will do as well as a random search in the space of
feature subsets. Therefore, there cannot be a wrapper that is a priori more efficient than any
other (i.e., without taking into account the learner and model-performance metric). The quest
for a universally efficient wrapper is futile as well.

3. Any filter algorithm can be viewed as the implementation of a definition of relevancy. Because
of #1, there is no filter algorithm that is universally optimal, independently of the learner and
model-performance metric.

4. Because of #2, wrappers cannot guarantee universal efficiency and because of #3, filters can-
not guarantee universal optimality and in that respect, neither approach is superior to the
other.

5. Under the conditions that (i) the learner that constructs the classification model can actually
learn the distribution P(T |MB(T )) and (ii) that the loss function is such that perfect estimation
of the probability distribution of T is required with the smallest number of variables, the
Markov blanket of T is the optimal solution to the feature selection problem.

6. Sound Markov blanket induction algorithms exist for faithful distributions.

7. In faithful distributions and under the conditions of #5, the strongly/weakly/irrelevant taxon-
omy of variables (Kohavi and John, 1997) can be mapped naturally to causal graph properties.
Informally stated, strongly relevant features were defined by Kohavi and John (1997) to be
features that contain information about the target not found in other variables; weakly relevant
features are informative but redundant; irrelevant features are not informative (for formal defi-
nitions see Section 3). Under the causal interpretation of this taxonomy of relevancy, strongly
relevant features are the members of the Markov blanket of the target variable, weakly rele-
vant features are all variables with an undirected path to T which are not themselves members
of MB(T ), and irrelevant features are variables with no undirected path to the target.

8. Since in faithful distributions theMB(T ) contains the direct causes and direct effects of T , and
since state-of-the-art MB(T ) algorithms output the spouses separately from the direct causes
and direct effects, inducing the MB(T ) not only solves the feature selection problem but also
a form of local causal discovery problem.

Figure 1 provides a summary of the connection between causal structure and predictivity.
We will refer to algorithms that perform feature selection by formal causal induction as causal

feature selection and algorithms that do not as non-causal. As highly complementary to the above
results we would add the arguments in favor of causal feature selection presented in Guyon et al.
(2007) and recent theoretical (Hardin et al., 2004) and empirical (Statnikov et al., 2006) results that
show that under the same sufficient conditions that make Markov blanket the optimal solution to
the feature selection and local causal discovery problem, state-of-the-art methods such as ranking
features by SVM weights (RFE being a prototypical algorithm Guyon et al. 2002) do not return the
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Figure 1: Relationship between causal structure and predictivity in faithful distributions. Cyan
variables are members of Markov blanket of T . They are depicted inside the red dotted square
(i.e., variables that have undirected path to target T and that are predictive of T given the remaining
variables which makes them strongly relevant). Markov blanket variables include direct causes of T
(C,D), direct effects (F), and “spouses” of T (i.e., direct causes of the direct effects of T ) (G). Grey
variables are non-members of Markov blanket of T that have undirected path to T . They are not
predictive of T given the remaining variables but they are predictive given a subset of the remaining
variables (which makes them weakly relevant). Light-gray variables are variables that do not have
an undirected path to T . They are not predictive of T given any subset of the remaining variables,
thus they are irrelevant.

correct causal neighborhood and are not minimal, that is, do not solve the feature selection problem)
even in the large sample limit.

The above theoretical results also suggest that one should not attempt to define and identify the
relevant features for prediction, when discovery is the goal of the analysis. Instead, we argue that
a set of features with well-defined causal semantics should be identified instead: for example, the
MB(T ), the set of direct causes and direct effects of T , the set of all (direct and indirect) causes of
T , and so on.

We will investigate limitations of prominent non-causal feature selection algorithms in the com-
panion paper (Aliferis et al., 2010).

2.3 Methods to Speed-up Discovery: Local Discovery as a Critical Tool for Scalability

As appealing as causal discovery may be for understanding a domain, predicting effects of inter-
vention, and pursuing principled feature selection for classification, a major problem up until recent
years has been scalability. The PC algorithm is worst-case exponential (Spirtes et al., 2000) and
in practical settings it cannot typically handle more than a hundred variables. The FCI algorithm
is similarly worst-case intractable (Spirtes et al., 2000) and does not handle more than a couple of
dozen of variables practically. Learning Bayesian networks with Bayesian scoring techniques is
NP-Hard (Chickering et al., 1994). Heuristic hill-climbing techniques such as the Sparse Candidate
Algorithm (Friedman et al., 1999b) do not provide guaranteed correct solutions, neither they are
very efficient (they can cope with a few hundred variables at the most in practical applications).
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With the advent of massive data sets in biology, medicine, information retrieval, the WWW,
finance, economics, and so on, scalability has become a critical requirement for practical algorithms.
In early 2000’s predictions about the feasibility of causal discovery in high-dimensional data were
bleak (Silverstein et al., 2000). A variety of methods to scale up causal discovery have been devised
to address the problem:

1. Learn the full graph but focus on special types of distributions;

2. Exploit domain knowledge to speed-up learning;

3. Abandon the effort to learn the full causal graph and instead develop methods that find a
portion of the true arcs (not specific to some target variable);

4. Abandon the effort to learn the full causal graph and instead develop methods that learn the
local neighborhood of a specific target variable directly;

5. Abandon the effort to learn the fully oriented causal graph and instead develop methods that
learn the unoriented graph;

6. Induce constrains of the possible relationships among variables and then learn the full causal
graph.

Techniques #1 and #2 were introduced in Chow and Liu (1968) for learning tree-like graphs and
Naı̈ve-Bayes graphs (Duda and Hart, 1973), while modern versions are exemplified in (i) TAN/BAN
classifiers that relax the Naı̈ve-Bayes structure (Cheng and Greiner, 2001, 1999; Friedman et al.,
1997), (ii) efficient complete model averaging of Naı̈ve-Bayes classifiers (Dash and Cooper, 2002),
and (iii) algorithm TPDA which restricts the class of distributions so that learning becomes from
worst-case intractable to solvable in 4th degree polynomial time to the number of variables (and
quadratic if prior knowledge about the ordering of variables is known) (Cheng et al., 2002a). Tech-
nique #3 was introduced by Cooper (1997) and replaced learning the complete graph by learning
only a small portion of the edges (not pre-specified by the user but determined by the discovery
method). Techniques #4− 6 pertain to local learning: Technique #4 seeks to learn the complete
causal neighbourhood around a target variable provided by the user (Aliferis et al., 2003a; Tsamardi-
nos et al., 2003b). We emphasize that local learning (technique #4) is not the same as technique #3
(incomplete learning) although inventors of incomplete methods often call them ‘local’. Technique
#5 abandons directionality and learns only a fully connected but undirected graph by using local
learning methods (Tsamardinos et al., 2006; Brown et al., 2005). Often post-processing with ad-
ditional algorithms can provide directionality. The latter can also be obtained by domain-specific
criteria or experimentation. Finally, technique #6 uses local learning to restrict the search space for
full-graph induction algorithms (Tsamardinos et al., 2006; Aliferis and Tsamardinos, 2002b).

In the present paper we explore methods to learn local causal neighborhoods and test them in
high-dimensional data sets. In the companion paper (Aliferis et al., 2010) we provide a framework
for building global graphs using the local methods. Incomplete learning (technique #3) is not pur-
sued because it is redundant in light of the other (complete) local and global learning approaches.
Figure 2 provides a visual reference guide to the kinds of causal discovery problems the methods in
the present work are able to address by starting from local causal discovery.
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Figure 2: Five types of causal discovery from local (types 1, 2), to global (4, 5) and intermediate
(3). Specialized algorithms that solve type 2 (local causes and effects) can become building blocks
for relatively efficiently solving all other types of causal discovery as well (see text for details).

2.4 Desiderata for Local Algorithms, Brief Review of Prior Methods for Markov Blanket
and Local Neighborhood Induction

An ideal local learning algorithm should have three characteristics: (a) well-defined properties, es-
pecially broadly applicable conditions that guarantee correctness, (b) good performance in practical
distributions and corresponding data sets, including ones with small sample and many features, and
finally (c) scalability in terms of running time. We briefly review progress made in the field toward
these goals.

Firm theoretical foundations of Bayesian networks were laid down by Pearl and his co-authors
(Pearl, 1988). Furthermore, all local learning methods exploit either the constraint-based frame-
work for causal discovery developed by Spirtes, Glymour, Schienes, Pearl, and Verma and their
co-authors (Spirtes et al., 2000; Pearl, 2000; Pearl and Verma, 1991) or the Bayesian search-and-
score Bayesian network learning framework introduced by Cooper and Herskovits (1992). The
relevant key contributions were covered in Section 2.1 and will not be repeated here.

While the above foundations were introduced and developed in the span of at least the last 30
years, local learning is no more than 10 years old. Specialized Markov blanket learning meth-
ods were first introduced in 1996 (Koller and Sahami, 1996), incomplete causal methods in 1997
(Cooper, 1997), and local causal discovery methods (for targeted complete induction of direct
causes and effects) were first introduced in 2002 and 2003 (Tsamardinos et al., 2003b; Aliferis
and Tsamardinos, 2002a). In 1996, Koller et al. introduced a heuristic algorithm for inducing the
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Markov blanket from data and tested the algorithm in simulated, real text, and other types of data
from the UCI repository (Koller and Sahami, 1996). In 1997 Cooper and colleagues introduced
and applied the heuristic method K2MB for finding the Markov blanket of a target variable in the
task of predicting pneumonia mortality (Cooper, 1997). In 1997 Cooper introduced an incomplete
method for causal discovery (Cooper et al., 1997). The algorithm was able to circumvent lack of
scalability of global methods by returning a subset of arcs from the full network. To avoid notational
confusion we point out that the algorithm was termed LCD (local causal discovery) despite being
an incomplete rather than local algorithm as local algorithms are defined in the present paper (i.e.,
focused on some user-specified target variable or localized region of the network). A revision of the
algorithm termed LCD2 was presented in Mani and Cooper (1999).

In 1999 Margaritis and Thrun introduced the GS algorithm with the intent to induce the Markov
blanket for the purpose of speeding up global network learning (i.e., not for feature selection) (Mar-
garitis and Thrun, 1999). GS was the first published sound Markov blanket induction algorithm.
The weak heuristic used by GS combined with the need to condition on at least as many variables
simultaneously as the Markov blanket size makes it impractical for many typical data sets since the
required sample grows exponentially to the size of the Markov blanket. This in turn forces the algo-
rithm to stop its execution prematurely (before it identifies the complete Markov blanket) because
it cannot grow the conditioning set while performing reliable tests of independence. Evaluations of
GS by its inventors were performed in data sets with a few dozen variables leaving the potential of
scalability largely unexplored.

In 2001 Cheng et al. applied the TPDA algorithm (a global BN learner) (Cheng et al., 2002a)
to learn the Markov blanket of the target variable in the Thrombin data set in order to solve a
prediction problem of drug effectiveness on the basis of molecular characteristics (Cheng et al.,
2002b). Because TPDA could not be run with more than a few hundred variables efficiently, they
pre-selected 200 variables (out of 139,351 total) using univariate filtering. Although this procedure
in general will not find the true Markov blanket (because otherwise-unconnected with the target
spouses can be missed, many true parents and children may not be in the first 200 variables, and
many non-Markov blanket members cannot be eliminated), the resulting classifier performed very
well winning the 2001 KDD Cup competition.

Friedman et al. proposed a simple Bootstrap procedure for determining membership in the
Markov blanket for small sample situations (Friedman et al., 1999a). The Markov blanket in this
method is to be extracted from the full Bayesian network learned by the SCA (Sparse Candidate
Algorithm) learner (Friedman et al., 1999b).

In 2002 and 2003 Tsamardinos, Aliferis, et al. presented a modified version of GS, termed
IAMB and several variants of the latter that through use of a better inclusion heuristic than GS and
optional post-processing of the tentative and final output of the local algorithm with global learners
would achieve true scalability to data sets with many thousands of variables and applicability in
modest (but not very small) samples (Tsamardinos et al., 2003a; Aliferis et al., 2002). IAMB and
several variants were tested both in the high-dimensional Thrombin data set (Aliferis et al., 2002)
and in data sets simulated from both existing and random Bayesian networks (Tsamardinos et al.,
2003a). The former study found that IAMB scales to high-dimensional data sets. The latter study
compared IAMB and its variants to GS, Koller-Sahami, and PC and concluded that IAMB variants
on average perform best in the data sets tested.

In 2003 Tsamardinos and Aliferis presented a full theoretical analysis explaining relevance as
defined by Kohavi and John (1997) in terms of Markov blanket and causal connectivity (Tsamardi-

181



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

nos and Aliferis, 2003). They also provided theoretical results about the strengths and weaknesses
of filter versus wrapper algorithms, the impossibility of a universal definition of relevance, and the
optimality of Markov blanket as a solution to the feature selection problem in formal terms. These
results were summarized in Section 2.2.

The extension of Sparse Candidate Algorithm to create a local-to-global learning strategy was
first introduced in Aliferis and Tsamardinos (2002b) and led to the MMHC algorithm introduced
and evaluated in Tsamardinos et al. (2006). MMHC was shown in Tsamardinos et al. (2006) to
achieve best-of-class performance in quality and scalability compared to most state-of-the-art global
network learning algorithms.

In 2002 Aliferis et al. also introduced parallel and distributed versions of the IAMB family
of algorithms (Aliferis et al., 2002). These serve as the precursor of the parallel and distributed
local neighborhood learning method presented in the companion paper (Aliferis et al., 2010). The
precursor of the GLL framework was also introduced by Aliferis and Tsamardinos in 2002 for the
explicit purpose of reducing the sample size requirements of IAMB-style algorithms (Aliferis and
Tsamardinos, 2002a).

In 2003 Aliferis et al. introduced algorithm HITON1 Aliferis et al., and Tsamardinos et al.
introduced algorithmsMMPC andMMMB (Aliferis et al., 2003a; Tsamardinos et al., 2003b). These
are the first concrete algorithms that would find sets of direct causes or direct effects and Markov
blankets in a scalable and efficient manner. HITON was tested in 5 biomedical data sets spanning
clinical, text, genomic, structural and proteomic data and compared against several feature selection
methods with excellent results in parsimony and classification accuracy (Aliferis et al., 2003a).
MMPC was tested in data simulated from human-derived Bayesian networks with excellent results
in quality and scalability. MMMBwas tested in the same data sets and compared to prior algorithms
such as Koller-Sahami algorithm and IAMB variants with superior results in the quality of Markov
blankets. These benchmarking and comparative evaluation experiments provided evidence that the
local learning approach held not only theoretical but also practical potential.

HITON-PC, HITON-MB, MMPC, and MMMB algorithms lacked so-called “symmetry correc-
tion” (Tsamardinos et al., 2006), however HITON used a wrapping post-processing that at least in
principle removed this type of false positives. The symmetry correction was introduced in 2005 and
2006 by Tsamardinos et al. in the context of the introduction of MMHC (Tsamardinos et al., 2006,
2005). Peña et al. also published work pointing to the need for a symmetry correction in MMPC
(Peña et al., 2005b).

HITON was applied in 2005 to understand physician decisions and guideline compliance in the
diagnosis of melanomas (Sboner and Aliferis, 2005). HITON has been applied for the discovery
of biomarkers in human cancer data using microarrays and mass spectrometry and is also imple-
mented in the GEMS and FAST-AIMS systems for the automated analysis of microarray and mass
spectrometry data respectively (Statnikov et al., 2005b; Fananapazir et al., 2005). In a recent ex-
tensive comparison of biomarker selection algorithms (Aliferis et al., 2006a,b) it was found that
HITON outperforms 16 state-of-the-art representatives from all major biomarker algorithmic fam-
ilies in terms of combined classification performance and feature set parsimony. This evaluation
used 9 human cancer data sets (gene expression microarray and mass spectrometry) in 10 diagnos-
tic and outcome (i.e., survival) prediction classification tasks. In addition to the above real data,
resimulation was also used to create two gold standard network structures, one re-engineered from

1. From the Greek word “Xιτών” meaning “cloak”, and pronounced <hee tó n>.
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human lung cancer data and one from yeast data. Several applications of HITON in text categoriza-
tion have been published where the algorithm was used to understand complex “black box” SVM
models and convert complex models to Boolean queries usable by Boolean interfaces of Medline
(Aphinyanaphongs and Aliferis, 2004), to examine the consistency of editorial policies in published
journals (Aphinyanaphongs et al., 2006), and to predict drug-drug interactions (Duda et al., 2005).
HITON was also compared with excellent results to manual and machine feature selection in the
domain of early graft failure in patients with liver transplantations (Hoot et al., 2005).

In 2003 Frey et al. explored the idea of using decision tree induction to indirectly approximate
the Markov blanket (Frey et al., 2003). They produced promising results, however a main problem
with the method was that it requires a threshold parameter that cannot be optimized easily. Further-
more, as we show in the companion paper (Aliferis et al., 2010) decision tree induction is subject to
synthesis and does not select only the Markov blanket members.

In 2004Mani et al. introduced BLCD-MB, which resembles IAMB but using a Bayesian scoring
metric rather than conditional independence testing (Mani and Cooper, 2004). The algorithm was
applied with promising results in infant mortality data (Mani and Cooper, 2004).

A method for learning regions around target variables by recursive application of MMPC or
other local learning methods was introduced in Tsamardinos et al. (2003c). Peña et al. applied
interleaved MMPC for learning regions in the domain of bioinformatics (Peña et al., 2005a).

In 2006 Gevaert et al. applied K2MB for the purpose of learning classifiers that could be used
for prognosis of breast cancer from microarray and clinical data (Gevaert et al., 2006) . Univariate
filtering was used to select 232 genes before applying K2MB.

Other recent efforts in learning Markov blankets include the following algorithms: PCX, which
post-processes the output of PC (Bai et al., 2004); KIAMB, which addresses some violations of
faithfulness using a stochastic extension to IAMB (Peña et al., 2007); FAST-IAMB, which speeds
up IAMB (Yaramakala and Margaritis, 2005); and MBFS, which is a PC-style algorithm that returns
a graph over Markov blanket members (Ramsey, 2006).

2.5 Open Problems and Focus of Paper

The focus of the present paper is to describe state-of-the-art algorithms for inducing direct causes
and effects of a response variable or its Markov blanket using a novel cohesive framework that can
help in the analysis, understanding, improvement, application (including configuration / parameter-
ization) and dissemination of the algorithms. We furthermore study comparative performance in
terms of predictivity and parsimony of state-of-the-art local causal algorithms; we compare them to
non-causal algorithms in real and simulated data sets using the same criteria; and show how novel
algorithms can be obtained. A second major hypothesis (and set of experiments in the present pa-
per) is that non-causal feature selection methods may yield predictively optimal feature sets while
from a causal perspective their output is unreliable. Testing this hypothesis has tremendous implica-
tions in many areas (e.g., analysis of biomedical molecular data) where highly predictive variables
(biomarkers) of phenotype (e.g., disease or clinical outcome) are often interpreted as being causally
implicated for the phenotype and great resources are invested in pursuing these markers for new
drug development and other research.

In the second part of our work (Aliferis et al., 2010) we address gaps in the theoretical under-
standing of local causal discovery algorithms and provide empirical and theoretical analyses of their
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behavior as well as several extensions including algorithms for learning the full causal graph using
a divide-and-conquer local learning approach.

3. Notation and Definitions

In the present paper we use Bayesian networks as the language in which to represent data generating
processes and causal relationships. We thus first formally define causal Bayesian networks. Recall
that in a directed acyclic graph (DAG), a node A is the parent of B (B is the child of A) if there is
a direct edge from A to B, A is the ancestor of B (B is the descendant of A) if there is a direct path
from A to B. “Nodes”, “features”, and “variables” will be used interchangeably.

3.1 Notation

We will denote variables with uppercase letters X ,Y,Z, values with lowercase letters, x,y,z, and sets
of variables or values with boldface uppercase or lowercase respectively. A “target” (i.e., response)
variable is denoted as T unless stated otherwise.

Definition 1 Conditional Independence. Two variables X and Y are conditionally independent
given Z, denoted as I(X ,Y |Z), iff P(X = x,Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z), for
all values x,y,z of X ,Y,Z respectively, such that P(Z = z) > 0.

Definition 2 Bayesian network 〈V ,G,J〉. Let V be a set of variables and J be a joint probability
distribution over all possible instantiations of V . Let G be a directed acyclic graph (DAG) such
that all nodes of G correspond one-to-one to members of V . We require that for every node A ∈ V ,
A is probabilistically independent of all non-descendants of A, given the parents of A (i.e., Markov
Condition holds). Then we call the triplet 〈V ,G,J〉 a Bayesian network (abbreviated as “BN”), or
equivalently a belief network or probabilistic network (Neapolitan, 1990).

Definition 3 Operational criterion for causation. Assume that a variable A can be forced by a
hypothetical experimenter to take values ai. If the experimenter assigns values to A according to a
uniformly random distribution over values of A, and then observes P(B|A= ai) (= P(B|A= a j) for
some i and j, (and within a time window dt), then variable A is a cause of variable B (within dt).

We note that randomization of values of A serves to eliminate any combined causative influ-
ences on both A and B. We also note that universally acceptable definitions of causation have eluded
scientists and philosophers for centuries. Indeed the provided criterion is not a proper definition,
because it examines one cause at a time (thus multiple causation can be missed), it assumes that a
hypothetical experiment is feasible even when in practice this is not attainable, and the notion of
“forcing” variables to take values presupposes a special kind of causative primitive that is formally
undefined. Despite these limitations, the above criterion closely matches the notion of a Random-
ized Controlled Experiment which is a de facto standard for causation in many fields of science, and
following common practice in the field (Glymour and Cooper, 1999) will serve operationally the
purposes of the present paper.

Definition 4 Direct and indirect causation. Assume that a variable A is a cause of variable B
according to the operational criterion for causation in definition 3. A is an indirect cause for B
with respect to a set of variables V , iff A is not a cause of B for some instantiation of values of
V \{A,B}, otherwise A is a direct cause of B.
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Definition 5 Causal probabilistic network (a.k.a. causal Bayesian network). A causal probabilis-
tic network (abbreviated as “CPN”) 〈V ,G,J〉 is the Bayesian network 〈V ,G,J〉 with the additional
semantics that if there is an edge A→ B in G then A directly causes B (for all A,B ∈ V ) (Spirtes
et al., 2000).

Definition 6 Faithfulness. A directed acyclic graph G is faithful to a joint probability distribution J
over variable set V iff every independence present in J is entailed by G and the Markov Condition.
A distribution J is faithful iff there exists a directed acyclic graph G such that G is faithful to J
(Spirtes et al., 2000; Glymour and Cooper, 1999).

It follows from the Markov Condition that in a CPN C = 〈V ,G,J〉 every conditional indepen-
dence entailed by the graph G is also present in the probability distribution J encoded by C. Thus,
together faithfulness and the causal Markov Condition establish a close relationship between a
causal graph G and some empirical or theoretical probability distribution J. Hence we can asso-
ciate statistical properties of the sample data with causal properties of the graph of the CPN. The
d-separation criterion determines all independencies entailed by the Markov Condition and a graph
G.

Definition 7 d-separation, d-connection. A collider on a path p is a node with two incoming edges
that belong to p. A path between X and Y given a conditioning set Z is open, if (i) every collider
of p is in Z or has a descendant in Z, and (ii) no other nodes on p are in Z. If a path is not open,
then it is blocked. Two variables X and Y are d-separated given a conditioning set Z in a BN or
CPN C iff every path between X, Y is blocked (Pearl, 1988).

Property 1 Two variables X and Y are d-separated given a conditioning set Z in a faithful BN or
CPN iff I(X ,Y |Z) (Spirtes et al., 2000). It follows, that if they are d-connected, they are condition-
ally dependent.

Thus, in a faithful CPN, d-separation captures all conditional dependence and independence
relations that are encoded in the graph.

Definition 8 Markov blanket of T , denoted as MB(T ). A set MB(T ) is a minimal set of features
with the following property: for every variable subsetS with no variables in MB(T ), I(S,T |MB(T )).
In Pearl’s terminology this is called the Markov Boundary (Pearl, 1988).

Property 2 The MB(T ) of any variable T in a faithful BN or a CPN is unique (Tsamardinos et al.,
2003b) (also directly derived from Pearl and Verma 1991 and Pearl and Verma 1990).

Property 3 The MB(T ) in a faithful CPN is the set of parents, children, and parents of children
(i.e., “spouses”) of T (Pearl, 2000, 1988).

Definition 9 Causal sufficiency. For every pair of measured variables, all their common causes
are also measured.

Definition 10 Feature selection problem. Given a sample S of instantiations of variable set V

drawn from distribution D, a classifier induction algorithm C and a loss function L, find: smallest
subset of variables F ⊆ V such that F minimizes expected loss L(M,D) in distribution D where M
is the classifier model (induced by C from sample S projected on F ).

185



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS

In the above definition, we mean “exact” minimization of L(M,D). In other words, out of all
possible subsets of variable set V , we are interested in subsets F ⊆V that satisfy the following two
criteria: (i) F minimizes L(M,D) and (ii) there is no subset F ∗ ⊆ V such that |F ∗| < |F | and F ∗

also minimizes L(M,D).

Definition 11 Wrapper feature selection algorithm. An algorithm that tries to solve the Feature
Selection problem by searching in the space of feature subsets and evaluating each one with a user-
specified classifier and loss function estimator.

Definition 12 Filter feature selection algorithm. An algorithm designed to solve the Feature Se-
lection problem by looking at properties of the data and not by applying a classifier to estimate
expected loss for different feature subsets.

Definition 13 Causal feature selection algorithm. An algorithm designed to solve the Feature
Selection problem by (directly or indirectly) inducing causal structure and by exploiting formal
connections between causation and predictivity.

Definition 14 Non-causal feature selection algorithm. An algorithm that tries to solve the Feature
Selection problem without reference to the causal structure that underlies the data.

Definition 15 Irrelevant, strongly relevant, weakly relevant, relevant feature (with respect to tar-
get variable T ). A variable set I that conditioned on every subset of the remaining variables does
not carry predictive information about T is irrelevant to T . Variables that are not irrelevant are
called relevant. Relevant variables are strongly relevant if they are predictive for T given the re-
maining variables, while a variable is weakly relevant if it is non-predictive for T given the remain-
ing variables (i.e., it is not strongly relevant) but it is predictive given some subset of the remaining
variables.

4. A General Framework for Local Learning

In this section we present a formal general framework for learning local causal structure. Such a
framework enables a systematic exploration of a family of related but not identical algorithms which
can be seen as instantiations of the same broad algorithmic principles encapsulated in the frame-
work. Also, the framework allows us to think about formal conditions for correctness not only at
the algorithm level but also at the level of algorithm family. We are thus able to identify two dis-
tinct sets of assumptions for correctness: the more general set of assumptions (admissibility rules)
applies to the generative algorithms and provides a set of flexible rules for constructing numerous
algorithmic instantiations each one of which is guaranteed to be correct provided that in addition a
more specific and fixed set of assumptions hold (i.e., specific sufficient conditions for correctness of
the algorithms that are instantiations of the generative framework).

We consider the following two problems of local learning:

Problem 1 Given a set of variables V following distribution P, a sample D drawn from P, and a
target variable of interest T ∈ V : determine the direct causes and direct effects of T .

Problem 2 Given a set of variables V following distribution P, a sample D drawn from P, and a
target variable of interest T ∈ V : determine the direct causes, direct effects, and the direct causes
of the direct effects of T .

186



LOCAL CAUSAL AND MARKOV BLANKET INDUCTION PART I

From the work of Spirtes et al. (2000) and Pearl (2000, 1988) we know that when the data are
observational, causal sufficiency holds for the variables V , and the distribution P is faithful to a
causal Bayesian network, then the direct causes, direct effects, and direct causes of the direct effects
of T , correspond to the parents, children, and spouses of T respectively in that network.

Thus, in the context of the above assumptions, Problem 1 seeks to identify the parents and
children set of T in a Bayesian network G faithful to P; we will denote this subset as PCG(T ).
There may be several networks that faithfully capture distribution P, however, as we have shown
in Tsamardinos et al. (2003b) (also directly derived from Pearl and Verma 1991, 1990) PCG(T ) =
PCG′(T ), for any two networks G and G′ faithful to the same distribution. So, the set of parents
and children of T is unique among all Bayesian networks faithful to the same distribution and so we
will drop the superscript and denote it simply as PC(T ). Notice that, a node may be a parent of T
in one network and a child of T in another, for example, the graphs X ← T and X → T may both be
faithful to the same distribution. However, the set of parents and children of T , that is, {X}, remains
the same in both networks. Finally, by Theorem 4 in Tsamardinos et al. (2003b) we know that the
Markov blanketMB(T ) is unique in all networks faithful to the same distribution. Therefore, under
the assumptions of the existence of a causal Bayesian network that faithfully captures P and causal
sufficiency of V , the problems above can be recast as follows:

Problem 3 Given a set of variables V following distribution P, a sample D drawn from P, and a
target variable of interest T ∈ V : determine the PC(T ).

Problem 4 Given a set of variables V following distribution P, a sample D drawn from P, and a
target variable of interest T ∈ V : determine the MB(T ).

Problem 1 is geared toward local causal discovery, while Problem 2 is oriented toward causal
feature selection for classification. The solutions to these problems can form the basis for solving
several other related local discovery problems, such as learning the unoriented set of causal relations
(skeleton of a Bayesian network), a region of interest of a given depth of d edges around T , or further
analyze the data to discover the orientation of the causal relations.

The Generalized Local Learning (GLL) framework consists of two main types of algorithms:
GLL-PC (GLL Parent and Children) for Problem 1 and GLL-MB for Problem 2.

4.1 Discovery of the PC(T ) Set

Identification of the PC(T ) set is based on the following theorem in Spirtes et al. (2000):

Theorem 1 In a faithful BN 〈V ,G,P〉 there is an edge between the pair of nodes X ∈V and Y ∈V

iff ¬I(X ,Y |Z), for all Z ⊆ V \{X ,Y}.

Any variable X that does have an edge with T belongs to the PC(T ). Thus, the theorem gives
rise to an immediate algorithm for identifying PC(T ): for any variable X ∈ V \ {T}, and all Z ⊆
V \ {X ,T}, test whether I(X ,T |Z). If such a Z exists for which I(X ,T |Z), then X /∈ PC(T ),
otherwise X ∈ PC(T ). This algorithm is equivalent to a “localized version” of SGS (Spirtes et al.,
2000). The problem of course is that the algorithm is very inefficient because it tests all subsets of
the variables and thus does not scale beyond problems of trivial size. The order of complexity is
O(|V |2|V |−2). The general framework presented below attempts to characterize not only the above
algorithm but also efficient implementations of the theorem that maintain soundness.
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There are several observations that lead to more efficient but still sound algorithms. First notice
that, once a subset Z ⊆ V \ {X ,T} has been found s.t. I(X ,T |Z) there is no need to perform any
other test of the form I(X ,T |Z ′): we know that X /∈ PC(T ). Thus, the sooner we identify good
candidate subsets Z that can render the variables conditionally independent from T , the fewer tests
will be necessary.

Second, to determine whether X ∈ PC(T ) there is no need to test whether ¬I(X ,T |Z) for all
subsetsZ ⊆V \{X ,T} but only for all subsetsZ ′ ⊆ParentsG(T )\{X} and allZ ′ ⊆ParentsG(X)\
{T} where G is any network faithful to the distribution. To see this, let us first assume that there is
no edge between X and T . Notice that either X is a non-descendant of T or T is a non-descendant
of X since the network is acyclic and they cannot be both descendants of each other. If X is a
non-descendant of T in G, then by the Markov Condition we know that there is a subset Z of
ParentsG(T ) = ParentsG(T ) \ {X} (the equality because we assume no edge between T and X)
such that I(X ,T |Z). Similarly, if T is a non-descendant of X in G then there is Z ⊆ ParentsG(X)\
{T} such that I(X ,T |Z). Conversely, if there is an edge X → T or T → X , then the dependence
¬I(X ,T |Z) holds for allZ ⊆V \{X ,T} (by the theorem), thus also holds for allZ ⊆ParentsG(T )\
{X} or Z ⊆ ParentsG(X)\{T}. We just proved that:

Proposition 1 In a faithful BN 〈V ,G,P〉 there is an edge between the pair of nodes X ∈ V and
T ∈ V iff ¬I(X ,T |Z), for all Z ⊆ ParentsG(X)\{T} and Z ⊆ ParentsG(T )\{X}.

Since the networks in most practical problems are relatively sparse, if we knew the sets
ParentsG(T ) and ParentsG(X) then the number of subsets that would need to be checked for con-
ditional independence for each X ∈ PC(T ) is significantly smaller: |2|V \{T,X}||, |2|ParentsG(X)||+
|2|ParentsG(T )||. Of course, we do not know the sets ParentsG(T ) and ParentsG(X) but one could
work with any superset of them as shown by the following proposition:

Proposition 2 In a faithful BN 〈V ,G,P〉 there is an edge between the pair of nodes X ∈ V and
T ∈ V iff ¬I(X ,T |Z), for all Z ⊆S and Z ⊆S′, where ParentsG(X)\{T}⊆S ⊆ V \{X ,T} and
ParentsG(X)\{T}⊆ S′ ⊆ V \{X ,T}.

Proof If there is an edge between the pair of nodes X and T then ¬I(X ,T |Z), for all subsets
Z ⊆ V \{X ,T} (by Theorem 1) and so ¬I(X ,T |Z) for all Z ⊆ S and Z ⊆ S′ too. Conversely, if
there is no edge between the pair of nodes X and T , then I(X ,T |Z), for some Z ⊆ ParentsG(X) =
ParentsG(X)\{T}⊆ S or Z ⊆ ParentsG(T ) = ParentsG(T )\{X}⊆ S′ (by Proposition 1).

Now, the sets ParentsG(X) and ParentsG(T ) depend on the specific network G that we are
trying to learn. As we mentioned however, there may be several such statistically equivalent net-
works among which we cannot differentiate from the data, forming an equivalence class. Thus, it is
preferable to work with supersets of ParentsG(T ) and ParentsG(X) that do not depend on a specific
network member of the class: these supersets are the sets PC(T ) and PC(X).

Let us suppose that we have available a superset of PC(T ) called TPC(T ) (tentative PC). For
any node X ∈ TPC(T ) if I(X ,T |Z) for someZ ⊆ TPC(T )\{X ,T}, then by Proposition 2, we know
that X has no edge with T , that is, X /∈ PC(T ). So, X should also be removed from TPC(T ) to obtain
a better approximation of PC(T ). If however, ¬I(X ,T |Z) for all Z ⊆ TPC(T ) \ {X ,T}, then it is
still possible that X /∈ PC(T ) because there may be a set Z ⊆ PC(X) where Z ! PC(T ) for which
I(X ,T |Z).
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Figure 3: PC(T ) = {A},PC(X) = {A,B},X /∈ PC(T ). Notice that, there is no subset of PC(T )
that makes T conditionally independent of X : ¬I(X ,T |Ø),¬I(X ,T |A). However, there is a subset
of PC(X) for which X and T become conditionally independent: I(X ,T |{A,B}). The Extended
PC(T ) (see Definition 16 in this section) is EPC(T ) = {A,X}.

Is there actually a case, where X cannot be made independent of T by conditioning on some
subset of PC(T )? We know that all non-descendants of T can be made independent of T conditioned
on a subset of its parents, thus, if there is such an X it has to be a descendant of T . Figure 3 shows
such a case. These situations are rare in practice as indicated by our empirical results in Sections 5
and 6, which implies that by conditioning on all subsets of TPC(T ) one will approximate PC(T )
quite closely.

Definition 16 We call the Extended PC(T ), denoted as EPC(T ), the set PC(T ) union the set of
variables X for which ¬I(X ,T |Z), for all Z ⊆ PC(T )\{X}.

The previous results allow us to start building algorithms that operate locally around T in order to
find PC(T ) efficiently and soundly. Consider first the sketch of the algorithm below:

Algorithm 1

1: Find a superset TPC(T ) of PC(T )
2: for each variable X ∈ TPC(T ) do
3: if ∃Z ⊆ TPC(T )\{X}, s.t. I(X ,T |Z) then
4: remove X from TPC(T )
5: end if
6: end for
7: Return TPC(T )

This algorithm will output TPC(T ) ⊆ EPC(T ). To ensure we end up with the exact PC(T ) we can
use the following pruning algorithm:

Algorithm 2

1: for all X ∈ TPC(T ) do {returned from Algorithm 1}
2: if T /∈ TPC(X) then
3: remove X from TPC(T ) {TPC(X) is obtained by running Algorithm 1}
4: end if
5: end for
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Figure 4: High-level outline and main components (underlined) of GLL-PC algorithm.

In essence, the second algorithm checks for every X ∈ TPC(T ) whether the symmetrical relation
holds: T ∈ TPC(X). If the symmetry is broken, we know that X /∈ PC(T ) since the parents-and-
children relation is symmetrical.

What is the complexity of the above algorithms? In Algorithm 1 if step 1 is performed by an
Oracle with constant cost, and with TPC(T ) equal to PC(T ), then the first algorithm requires an
order of O(|V |2|PC(T )|) tests. The second algorithm will require an order of O(|V |2|PC(X)|) tests for
each X in TPC(T ). Two observations to notice are: (i) the complexity order of the first algorithm
depends linearly on the size of the problem |V |, exponentially on |PC(T )|, which is a structural
property of the problem, and how close TPC(T ) is to PC(T ) and (ii) the second algorithm requires
multiple times the time of the first algorithm for minimal returns in quality of learning, that is, just to
take care of the scenario in Figure 3 and remove the variables EPC(T )\PC(T ) (i.e., X in Figure 3).

Since an Oracle is not available the complexity of both algorithms strongly depends on how
close approximation of the PC(T ) is and how efficiently this approximation is found. The simplest
strategy for example is to set TPC(T ) = V , essentially getting the local version of the algorithm SGS
described above. In general any heuristic method that returns a superset of PC(T ) is admissible,
that is, it could lead to sound algorithms.

Also notice that in the first algorithm the identification of the members of the TPC(T ) (step 1)
and the removal of variables from it (step 3) can be interleaved. TPC(T ) can grow gradually by one,
many variables, or all members of it at a time before it satisfies the requirement that is a superset of
PC(T ). The requirement for the algorithm to be sound is that, in the end, all tests I(X ,T |Z) for all
subsets Z of PC(T )\{X} have been performed.

Given the above, the components of Generalized Local Learning GLL-PC, that is, an algorithm
for PC(T ) identification based on the above principles are the following: an inclusion heuristic func-
tion to prioritize variables for consideration as members of TPC(T ) and include them in TPC(T )
according to established priority. The second component of the framework is an elimination strat-
egy, which eliminates variables from the TPC(T ) set. An interleaving strategy is the third compo-
nent and it iterates between inclusion and elimination until a stopping criterion is satisfied. Finally
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the fourth component is the check that the symmetry requirement mentioned above is satisfied. See
Figure 4 for details. The main algorithm calls an internally defined subroutine that induces parents
and children of T without symmetry correction (i.e., returns a set which is a subset of EPC(T )
and a superset of PC(T )). Note that in all references to TPC(T ) hereafter, due to generality of the
stated algorithms and the process of convergence of TPC(T ) to PC(T ), TPC(T ) stands for just an
approximation to PC(T ).

Also notice that the term “priority queue” in the schema of Figure 4 indicates an abstract data
structure that satisfies the requirement that its elements are ranked by some priority function so that
the highest-priority element is extracted first. TPC(T ) in step 1a of the GLL-PC-nonsym subroutine
will typically be instantiated with the empty set when no prior knowledge about membership in
PC(T ) exists. When the user does have prior knowledge indicating that X is a member of PC(T ),
TPC(T ) can be instantiated to contain X . This prior knowledge may come from domain knowledge,
experiments, or may be the result of running GLL-PC on variable X and finding that T is in PC(X)
when conducting local-to-global learning (Aliferis et al., 2009; Tsamardinos et al., 2006).

Steps #2,3,4 in GLL-PC-nonsym can be instantiated in various ways. Obeying a set of specific
rules generates what we call “admissible” instantiations. These admissibility rules are given in
Figure 5.

Theorem 2 When the following sufficient conditions hold:

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency in V

any algorithmic instantiation of GLL-PC in compliance with the admissibility rules #1−#3 above
will return the direct causes and direct effects of T .

The proof is provided in the Appendix.
We note that the algorithm schema does not address various optimizations and does not address

the issue of statistical decisions in finite sample. These will be discussed later. We also note that
initialization of TPC(T ) in step 1a of the GLL-PC-nonsym function is arbitrary because correctness
(unlike efficiency) of the algorithm is not affected by the initial contents of TPC(T ).

We next instantiate the GLL-PC schema to derive two pre-existing algorithms, interleaved
HITON-PC with symmetry correction and MMPC with symmetry correction (Tsamardinos et al.,
2006; Aliferis et al., 2003a; Tsamardinos et al., 2003b). Figure 6 depicts the instantiations needed
to obtain interleaved HITON-PC.

The interleaved HITON-PC with symmetry correction algorithm starts with an empty set of can-
didates, then ranks variables for priority for inclusion in the candidate set by univariate association.
It discards variables with zero univariate association. It then accepts each variable into TPC(T ). If
any variable inside the candidate set becomes independent of the response variable T given some
subset of the candidate set, then the algorithm removes that variable from the candidate set and never
considers it again. In other words, the algorithm attempts to eliminate weakly relevant features from
the TPC(T ) every time the TPC(T ) receives a new member. Iterations of insertion and elimination
stop when there are no more variables to examine for inclusion. Once iterating has stopped, the
candidate set is filtered using symmetry criterion. Finally, the candidate set is output. Because the
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Figure 5: GLL-PC admissibility rules.








 



                
 

  
 



  
    




 
 





Figure 6: Interleaved HITON-PC with symmetry correction as an instance of GLL-PC.

admissibility criteria are obeyed, the algorithm is guaranteed to be correct when the assumptions of
Theorem 2 hold.

Below we prove that that admissibility rules are obeyed in interleaved HITON-PC with symme-
try under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T ) members have non-zero univariate associa-
tion with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.
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Figure 7: Bayesian network used to trace the algorithms.




  

   
 


 

 


 

 


 

   
 


 

   
 


 

 


 

 


 

   
 


 

   
    



Table 1: Trace of GLL-PC-nonsym(T ) during execution of interleaved HITON-PC algorithm.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and thus eligible
variables (i.e., members of PC(T )) outside TPC(T ) could only be previously discarded from
OPEN or TPC(T ). Neither case can happen because of admissibility rules #1,#2 respectively.
Similarly all variables in TPC(T ) that can be removed are removed because of admissibility
rule #2.

A trace of the algorithm is provided below for data coming out of the example BN of the Fig-
ure 7. We assume that the network is faithful and so the conditional dependencies and indepen-
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dencies can be read off the graph directly using the d-separation criterion. Consider that we want
to find parents and children of the target variable T using interleaved HITON-PC with symmetry.
Table 1 gives a complete trace of step 1 of the instantiated GLL-PC algorithm, that is, execution of
GLL-PC-nonsym subroutine for variable T . The Roman numbers in the table refer to iterations of
steps 2 and 3 in GLL-PC-nonsym.

Thus we have TPC(T ) = {D,E,A,B} by the end of GLL-PC-nonsym subroutine, so U =
{D,E,A,B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-nonsym for all
X ∈ U :

• GLL-PC-nonsym(D) → {T,F}

• GLL-PC-nonsym(E) → {T,F}

• GLL-PC-nonsym(A) → {T,G,C,B}

• GLL-PC-nonsym(B) → {A,C}

and then check symmetry requirement. Since T /∈ GLL-PC-nonsym(B), the variable B is removed
from U . Finally, the GLL-PC algorithm returns U = {D,E,A} in step 4.

Figure 8 shows how algorithm MMPC is obtained from GLL-PC. MMPC is also guaranteed
to be sound when the conditions of Theorem 2 hold. Interleaving consists of iterations of just
the inclusion heuristic function until OPEN is empty. The heuristic inserts into TPC(T ) the next
variable F that maximizes the minimum association of variables in OPEN with T given all subsets
of TPC(T ). In the algorithm, this minimum association of X with T conditioned over all subsets
of Z is denoted by MinZAssoc(X ,T |Z). The intuition is that we accept next the variable that
despite our best efforts to be made conditionally independent of T (i.e., conditioned on all subsets
of our current estimate TPC(T )) is still highly associated with T . The two main differences of
the MMPC algorithm from interleaved HITON-PC are the more complicated inclusion heuristic
function and the absence of interleaving of the inclusion-exclusion phases before all variables have
been processed by the inclusion heuristic function. A set of optimizations and caching operations
render the algorithm efficient; for complete details see Tsamardinos et al. (2006, 2003b).

Below we prove that admissibility rules are obeyed in MMPC with symmetry under the assump-
tions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T ) members have non-zero conditional associ-
ation with T in faithful distributions.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and thus eligible
variables (i.e., members of PC(T )) outside TPC(T ) could only be previously discarded from
OPEN or TPC(T ). Neither case can happen because of admissibility rules #1, #2 respectively.
Similarly all variables in TPC(T ) that can be removed are removed because of admissibility
rule #2.

We now introduce a new algorithm, semi-interleaved HITON-PC with symmetry correction,
see Figure 9. Semi-interleaved HITON-PC operates like interleaved HITON-PC with one major
difference: it does not perform a full variable elimination in TPC(T ) with each TPC(T ) expansion.
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Figure 8: MMPC with symmetry correction as an instance of GLL-PC.








 




             

 
  
 



  
   
     
 


  




 
 





Figure 9: Semi-interleaved HITON-PC with symmetry correction as an instance of GLL-PC.

On the contrary, once a new variable is selected for inclusion, it attempts to eliminate it and if
successful it discards it without further attempted eliminations. If it is not eliminated, it is added
to the end of the TPC(T ) and new candidates for inclusion are sought. Because the admissibility
criteria are obeyed the algorithm is guaranteed to be correct under the assumptions of Theorem 2.

Below we prove that admissibility rules are obeyed in semi-interleaved HITON-PC with sym-
metry under the assumptions of Theorem 2:

1. Rule #1 (inclusion) is obeyed because all PC(T ) members have non-zero univariate associa-
tion with T in faithful distributions.
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Table 2: Trace of GLL-PC-nonsym(T ) during execution of semi-interleaved HITON-PC algorithm.

2. Rule #2 (elimination) is directly implemented so it holds.

3. Rule #3 (termination) is obeyed because termination requires empty OPEN and thus eligible
variables (i.e., members of PC(T )) outside TPC(T ) could only be previously discarded from
OPEN or TPC(T ). Neither case can happen because of admissibility rules #1,#2 respectively.
Similarly all variables in TPC(T ) that can be removed are removed because of admissibility
rule #2.

A trace of the algorithm is provided below for data coming out of the example faithful BN of
the Figure 7. Consider that we want to find parents and children of the target variable T using semi-
interleaved HITON-PC with symmetry. Table 2 gives a complete trace of step 1 of the instantiated
GLL-PC algorithm, that is, execution of GLL-PC-nonsym subroutine for variable T. The Roman
numbers in the table refer to iterations of steps 2 and 3 in GLL-PC-nonsym.

Thus we have TPC(T ) = {D,E,A,B} by the end of GLL-PC-nonsym subroutine, so U =
{D,E,A,B} in step 1 of GLL-PC. Next, in steps 2 and 3 we first run GLL-PC-nonsym for all
X ∈ U :

• GLL-PC-nonsym(D) → {T,F}

• GLL-PC-nonsym(E) → {T,F}

• GLL-PC-nonsym(A) → {T,G,C,B}

• GLL-PC-nonsym(B) → {A,C}
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and then check symmetry requirement. Since T ∈ GLL-PC-nonsym(B), the variable B is removed
from U . Finally, the GLL-PC algorithm returns U = {D,E,A} in step 4.

4.2 Discovery of theMB(T ) Set

As mentioned in Section 3 the MB(T ) contains all information sufficient for the determination of
the conditional distribution of T : P(T |MB(T )) = P(T |V \ {T}) and further, it coincides with the
parents, children and spouses of T in any network faithful to the distribution (if any) under causal
sufficiency. The previous subsection described a general family of algorithms to obtain the PC(T )
set, and so in order to find the MB(T ) one needs in addition to PC(T ), to also identify the spouses
of T .

First notice that, approximatingMB(T )with PC(T ) and missing the spouse nodes may in theory
discard very informative nodes. For example, suppose that X and T are two uniformly randomly
chosen numbers in [0,1] and that Y = min(1,X +T ). Then, the only faithful network representing
the joint distribution is X →Y ← T , where X is the spouse of T . In predicting T , the spouse node X
may reduce the uncertainty completely: conditioned on Y , T may become completely determined
(when both X and T are less than 0.5). Thus, it theoretically makes sense to develop algorithms
that identify the spouses in addition to the PC(T ), even though later in Section 5 we empirically
determine that within the scope of distributions and problems tried, the PC(T ) resulted in feature
subsets almost as predictive as the fullMB(T ). In the companion paper (Aliferis et al., 2010) we also
provide possible reasons explaining the good performance of PC(T ) versusMB(T ) for classification
in practical tasks.

The theorem on which the algorithms in this family are based to discover the MB(T ) is the fol-
lowing:

Theorem 3 In a faithful BN 〈V ,G,P〉, if for a triple of nodes X ,T,Y in G,X ∈ PC(Y ), Y ∈ PC(T ),
and X /∈ PC(T ), then X →Y ← T is a subgraph of G iff ¬I(X ,T |Z ∪{Y}), for all Z ⊆ V \{X ,T}
(Spirtes et al., 2000).

We distinguish two cases: (i) X is a spouse of T but it is also a parent or child, for example,
X → T → Y and also X → Y . In this case, we cannot use the theorem above to identify Y as a
collider and X as a spouse. But at the same time we do not have to: X ∈ PC(T ) and so it will be
identified by GLL-PC. (ii) X ∈ MB(T ) \PC(T ) in which case we can use the theorem to locally
discover the subgraph X → Y ← T and determine that X should be included inMB(T ).

We now introduce the GLL-MB in Figure 10. The admissibility requirement is simply to use an
admissible GLL-PC instantiation.

For the identification of PC(T ) any method of GLL-PC can be used. Also, in step 5a we know
such a Z exist since X /∈ PC(T ) (by Theorem 1); this Z has been previously determined and is
cached during the call to GLL-PC.

Theorem 4 When the following sufficient conditions hold

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;
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Figure 10: GLL-MB: Generalized Local Learning - Markov Blanket algorithm.

c. Causal sufficiency in V

any algorithmic instantiation of GLL-MB in compliance with the admissibility rule will return
MB(T ) (with no need for step 6).

The proof is provided in the Appendix.
A new Markov blanket algorithm, semi-interleaved HITON-MB, can be obtained by instantiat-

ing GLL-MB (Figure 10) with the semi-interleaved HITON-PC algorithm with symmetry correction
for GLL-PC.

Semi-interleaved HITON-MB is guaranteed to be correct under the assumptions of Theorem 4,
hence the only proof of correctness needed is the proof of correctness for semi-interleaved HITON-
PC with symmetry (which was provided earlier).

A trace of the semi-interleaved HITON-MB algorithm for data coming out of the example faith-
ful BN of the Figure 7 follows below. Please refer to Figure 10 for step numbers. Consider that we
want to find Markov blanket of T . In step 1, we find PC(T ) = {D,E,A}. Then in step 2 we find
PC(X) for all X ∈ PC(T ):

• PC(D) = {T,F},

• PC(E) = {T,F},

• PC(A) = {T,G,C,B},

In step 3 we initialize TMB(T ) ← {D,E,A}. The set S in step 4 contains the following variables:
{F,G,C,B}. In step 5 we loop over all members of S to find spouses of T . Let us consider each
variable separately:

• Loop for X =F : In step 5a we retrieve a subsetZ = {D,E} that renders X =F independent of
T . In step 5b we loop over all potential common children of F and T , that is,Y =D andY =E.
When we consider Y = D, we find that X = F is independent of T given Z ∪ {Y} = {D,E}
and thus do not include F in TMB(T ) in step 5d. When we consider Y = E, we also do not
include F in TMB(T ) in step 5d.
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• Loop for X = G: In step 5a we retrieve a subset Z = Ø that renders X = G independent of
T . In step 5b we loop over all potential common children of G and T , that is, variable Y = A.
We find that X = G is dependent on T given Z ∪{Y} = {A} and thus include G in TMB(T )
in step 5d.

• Loop for X = C: In step 5a we retrieve a subset Z = Ø that renders X = C independent of
T . In step 5b we loop over all potential common children ofC and T , that is, variable Y = A.
We find that X =C is dependent on T given Z ∪ {Y} = {A} and thus include C in TMB(T )
in step 5d.

• Loop for X = B: In step 5a we retrieve a subsetZ = {A,C} that renders X = B independent of
T . In step 5b we loop over all potential common children of B and T , that is, variable Y = A.
We find that X = B is independent of T given Z ∪{Y} = {A,C} and thus do not include G in
TMB(T ) in step 5d.

By the end of step 5, we have TMB(T ) = {D,E,A,G,C}. Notice that it is the true MB(T ). In
step 6 we perform wrapping to remove members of TMB(T ) that are redundant for classification.
Let us assume that we used a backward wrapping procedure that led to removal of variable G,
for example because omitting this variable does not increase classification loss. Thus, we have
TMB(T ) = {D,E,A,C} in step 7 when the algorithm terminates.

The above algorithm specifications and proofs demonstrate that it is relatively straightforward to
derive correct algorithms and prove their correctness using the GLL framework. It is also straight-
forward to derive relaxed versions (for example non-symmetry corrected versions of interleaved and
semi-interleaved HITON and MMPC) which trade-off correctness for improved tractability.

4.3 Computational Complexity

The complexity of all algorithms presented depends on the time for the tests of independence and
measures of associations. For theG2 test of independence for discrete variables, for example, we use
in reported experiments an implementation linear to the sample size and exponential to the number
of variables in the conditional set. However, because the latter number is small in practice, tests
are relatively efficient. Faster implementations exist that only take time n log(n) to the number n of
training instances, independent of the size of the conditioning set. Also, advanced data structures
(Moore and Wong, 2003) can be employed to improve the time complexity (see Tsamardinos et al.
2006 for details on the implementation of the tests). In reported experiments we also implement the
measure of association Assoc(X ,T |Z) to be the negative p-value returned by the test I(X ,T |Z) and
so it takes exactly the same time to compute as a test of independence. In the following discussion,
we consider the complexity of the algorithms in terms of the number of tests and measures of
association they perform.

The number of tests of the GLL-PC algorithm in Figure 4 depends on several factors. These
are the inclusion heuristic efficiency in approximating the PC(T ), the time required by the inclu-
sion heuristic, and the size of the PC(T ) which is a structural property of the problem to solve.
Interleaved-HITON-PC (algorithm in Figure 6) for example, will sort the variables using |V | mea-
sures of associations. Subsequently, it will perform a test I(X ,T |Z) for all subsets of the largest
TPC(T ) in any iteration of interleaving of the inclusion-exclusion steps. With appropriate caching a
test will never have to be repeated. Thus, assuming the largest size of the TPC(T ) is in the order of
the PC(T ), the complexity of the GLL-PC-nonsym subroutine is O(|V |2|PC(T )|). In step 3, it will
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execute the GLL-PC-nonsym subroutine again for all X ∈ TPC(T ). Assuming each neighborhood
of X is about the same as the PC(T ), when checking the symmetry condition, the algorithm will
perform another O(|V ||PC(T )|2|PC(T )|)tests.

To identify MB(T ) by the GLL-MB algorithm in Figure 10 we first need to initialize subset S.
Assuming all neighborhoods are about the same size (i.e., equal to |PC(T )|), the total complexity to
find the set S is O(|V ||PC(T )|22|PC(T )|) since we call GLL-PC for each member of the PC(T ). In
fact, several optimizations can reduce this order to O(|V ||PC(T )|2|PC(T )|) but we will not elaborate
further in this paper. In step 5, in the worst case we perform a single test for each node in S and
each node in PC(T ) for a total of at most O(|PC(T )|2) tests (the subset Z in step 5a is cached
and retrieved). So the order of the algorithm is O(|V ||PC(T )|22|PC(T )|) tests given the structural
assumptions above.

All other algorithmic instantiations of the template in this section have similar complexity.
At this point it is worth noting a number of polynomial approximation algorithms in the liter-

ature that increase efficiency without sacrificing quality to a large degree. The identification of a
subset Z in step 3 of the GLL-PC-nonsym subroutine as described in algorithm instantiations of
GLL-PC is a step exponential to the size of the TPC(T ); however, one could attempt to discover it
in a greedy fashion, for example by starting with the empty set and adding toZ the variable decreas-
ing the association with T the most. These ideas started with the TPDA algorithm (Cheng et al.,
2002a) and were further explored in Brown et al. (2005). Similar improvements can be applicable
to inclusion strategy.

For the above analysis we assumed that all tests I(X ,T |Z) can or should be performed and
return the correct results. However, in the next sub-section we discuss how the statistical decisions
of independence or dependence are made; these decisions severely affect the complexity of the
algorithms as well.

4.4 Dealing with Statistical Decisions

The quality of the algorithms in practice highly depends on their ability to statistically determine
whether I(X ,T |Z) or ¬I(X ,T |Z) (equivalently whether Assoc(X ,T |Z) is zero or non-zero) for a
pair of variables X and T and a set of variables Z. The test I(X ,T |Z) is implemented as a statistical
hypothesis test with null hypothesis H0: X and T are independent givenZ. A p-value corresponding
to this test statistic’s distribution expresses the probability of seeing the same or more extreme (i.e.,
indicative of dependence) test statistic values when sampling from distributions where H0 is true.
If the p-value is lower than a given threshold (i.e., significance level “alpha”) α, then we consider
the independence hypothesis to be improbable and reject it. Thus, for a sufficiently low p-value we
accept dependence. If however, the p-value is not low enough to provide confidence in rejecting H0
then there are two possibilities:

a) H0 actually holds, that is, the variables are indeed conditionally independent.

b) H0 does not hold, the variables are conditionally dependent but we cannot confidently reject
H0.

The reasons for b) are that either the dependence is weak relatively to the available sample to
be detected (in order words, we have low probability to reject the null hypothesis H0 when it does
not hold, that is, low statistical power), or we are using the wrong statistical test for this type of
dependency. In essence, we would like to distinguish between the following cases:
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a) I(X ,T |Z) holds with high-probability

b) ¬I(X ,T |Z) holds with high-probability

c) Undetermined case given the available sample

To deal with case c) in our implementations we take the following approach, introduced by
Spirtes et al. (2000): we consider that we are facing case c) if there is no sufficient power according
to a reliability criterion. In our implementations this criterion depends on parameter h-ps. The
criterion dictates that if and only if we have at least h-ps sample instances per number of cells (i.e.,
number of parameters to be estimated) in the contingency tables for the discrete statistical tests then
the test is reliable.

Once a test is deemed unreliable an algorithm needs to decide how to handle the corresponding
statistical decision. For example, the PC algorithm for global causal discovery (Spirtes et al., 2000)
considers that given no other evidence, all variables are dependent with each other. That is, a pair of
variables is always connected by an edge in the graph unless a subset Z is discovered that renders
them conditionally independent.

The implementations of GLL instantiations in the present paper do not perform an unreliable
test either. However, ignoring unreliable tests with 0-order conditioning test (i.e., univariate tests)
is equivalent to assuming I(X ,T |Z) whereas ignoring unreliable tests with higher-order condition-
ing test (i.e., conditioning sets with 1 or more conditioning variables) is equivalent to assuming
¬I(X ,T |Z) as far as this unreliable test is concerned (because the final judgment on independence,
is deferred to reliable, typically lower-order tests). Thus, given no evidence of dependence, we
assume the unreliable tests to return I(X ,T |Z). The different treatment of the PC implementa-
tion leads to problems as discussed in Tsamardinos et al. (2006) pointing to the importance of this
implementation aspect of the algorithms.

Another practical implementation issue arises when prior knowledge, experiments, or domain
substantive knowledge ensures that a variable X is in PC(T ) or that X is not in PC(T ). In such
cases the algorithm can be modified to “lock” X inside or outside TPC(T ) respectively in order to
avoid the possibility that errors in statistical decisions will counter previously validated knowledge
and possibly propagate more statistical decision errors.

In addition to h-ps, a second restriction on the conditioning set size is provided by parameter
max-k. This parameter places an absolute limit on the number of elements in a conditioning set
size, without reference to available sample size. As such max-k participates in the reliability judg-
ment but also restricts the computational complexity of the algorithms by trading off computational
complexity for fit to data.

Specifically first consider that more variables than the actual PC(T ) could be output by the
algorithm. A variable X that becomes independent of T only when we condition on Z, with |Z| >
max-k could enter the TPC(T ) and will not be removed afterwards. For example, if max-k = 1,
then variable F in Figure 7 cannot be d-separated from T given any Z with |Z| ≤ 1. Thus, the
reliability criterion may increase the number of tests performed, since these depend on the size of
the TPC(T ). On the other hand, the criterion forces certain tests not to be performed, specifically
those whose conditioning set Z size is larger than max-k. Thus, since only

(TPC(T )
max-k

)

subsets are
tested out of all possible 2|TPC(T )| ones, the complexity of the algorithm GLL-PC-nonsym now
becomes O(|V ||TPC(T )|max-k), that is, polynomial of order max-k.
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The parameters h-ps and max-k are user-specified or, alternatively, optimized automatically by
cross-validation, or optimized for a whole domain. The role and importance of these two parameters,
especially with respect to quality of statistical decisions, is explored in detail in the companion
paper (Aliferis et al., 2010). Finally, because the quality of statistical decisions is not addressed in
the proofs of correctness provided earlier, it was implicitly assumed that whenever sufficient sample
size is provided to the algorithms statistical decisions are reliable.

A recent treatment that specifically addresses the role of statistical decisions in finite sample
is presented in Tsamardinos and Brown (2008a). In this work, a bound of the p-value of the ex-
istence of an edge is provided; the bound can be used to control the False Discovery Rate of the
identification of the PC(T ) or all the edges in a network.

5. Comparative Evaluation of Local Causal and Non-Causal Feature Selection
Algorithms in Terms of Feature Selection Parsimony and Classification Accuracy

In the present section we examine the ability of GLL algorithms to discover compact sets of features
with as high classification performance as possible for each data set and compare them with other
local causal structure discovery methods as well as non-causal feature selection methods.

In order to avoid bias in error estimation we apply nested N-fold cross-validation. The inner
loop is used to try different parameters for the feature selection and classifier methods while the
outer loop tests the best configuration on an independent test set. Details are given in Statnikov
et al. (2005b), Dudoit and van der Laan (2003) and Scheffer (1999).

All experiments discussed in this section and elsewhere in this paper were conducted on ACCRE
(Advanced Computing Center for Research and Education) High Performance Computing system
at Vanderbilt University. The ACCRE system consists of 924 x86 processors (the majority of which
2 GHz) and 668 PowerPC processors (2.2 GHz) running 32 and 64-bit Linux OS. The overall
computational capacity of the cluster is approximately 6 TFLOPS. For preliminary and exploratory
experiments we used a smaller cluster of eight 3.2 GHz x86 processors.

The evaluated algorithms are listed in the Appendix Tables 5-7. They were chosen on the basis
of prior independently published results showing their state-of-the-art performance and applicabil-
ity to the range of domains represented in the evaluation data sets. We compare several versions
of GLL, including parents and children (PC) and Markov blanket (MB) inducers. Whenever we
refer to HITON-PC algorithm in this paper, we mean semi-interleaved HITON-PC without sym-
metry correction, unless mentioned otherwise. Also, other GLL algorithms evaluated do not have
symmetry correction unless mentioned otherwise. Finally, unless otherwise noted, GLL-MB does
not implement a wrapping step.

Tables 8-9 in the Appendix present the evaluation data sets. The data sets were chosen on the
basis of being representative of a wide range of problem domains (biology, medicine, economics,
ecology, digit recognition, text categorization, and computational biology) in which feature selec-
tion is essential. These data sets are challenging since they have a large number of features with
small-to-large sample sizes. Several data sets used in prior feature selection and classification chal-
lenges were included. All data sets have a single binary target variable.

To perform imputation in data sets with missing values, we applied a non-parametric nearest
neighbor method (Batista and Monard, 2003). Specifically, this method imputes each missing value
of a variable with the present value of the same variable in the most similar instance according to
Euclidian distance metric. Discretization in non-sparse continuous data sets was performed by a
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univariate method (Liu et al., 2002) implemented in Causal Explorer (Aliferis et al., 2003b). For a
given continuous variable, the method considers many binary and ternary discretization thresholds
(by means of a sliding window) and chooses the one that maximizes statistical association with the
target variable. In sparse continuous data sets, discretization was performed by assigning value 1
to all non-zero values. All variables in each data set were also normalized to be in [0, 1] range
to facilitate classification by SVM and KNN. All computations of statistics for the preprocessing
steps were performed based on training data only to ensure unbiased classification error estimation.
Statistical comparison between algorithms was done using two-sided permutation test (with 10,000
permutations) at 5% alpha level (Good, 2000). The null hypothesis of this test is that algorithms
perform the same.

Both polynomial SVMs and KNN were used for building classifiers from each selected feature
set. In complementary experiments, the native classifier for each one of several feature selection
methods (LARS-EN, L0, and RFVS) was used and its performance was compared against classifiers
induced by SVMs and KNN. For SVMs, the misclassification cost C and kernel degree d were
optimized over values [1, 10, 100] and [1, 2, 3, 4], respectively. For KNN, the number of nearest
neighbors k was optimized over values [1,...,min(1000, number of instances in the training set)].
All optimization was conducted in nested cross-validation using training data only, while the testing
data was used only once to obtain an error estimate for the final classifier. We used the libSVM
implementation of SVM classifiers (Fan et al., 2005) and our own implementation of KNN.

We note that use of SVMs and KNN does not imply that GLL methods are designed to be
filters for these two algorithms only, or that the algorithm comparison results narrowly apply to
these two classifiers. Rather as explained in Section 2.2, GLL algorithms provide performance
guarantees as long as the classifier used has universal approximator properties. SVMs and KNN are
two exemplars of practical and scalable such methods in wide use. We also emphasize that selecting
features with a wrapper or embedded feature selection method that is not SVM or KNN specific
is not affected by the inductive bias mismatch because such mismatch is affecting performance
only when the classifier used is “handicapped” relative to the native classifier (Tsamardinos and
Aliferis, 2003; Kohavi and John, 1997). We provide experimental data substantiating this point in
the Appendix Table 10 (and Table S1 in the online supplement) where we compare classification
performance of RFVS, LARS-EN, and L0 with features selected by each corresponding method to
the classification performance of SVMs and KNN using the same features. It is shown that SVM
predictivity matches, whereas KNN predictivity compares favorably, with the classifiers that are
native to each feature selector. On the other hand, the choice of SVMs and KNN provides several
advantages to the research design of the evaluation: (a) the same classifiers can be used with all
data sets removing a possible confounder in the evaluation; (b) they can be used without feature
selection (i.e., full variable set) to give a reference point of predictivity under no feature selection
(that in practice is as good as empirically optimal predictivity especially when using SVMs); (c)
they can be used when sample size is smaller than number of variables; (d) prior evidence suggests
that they are suitable classifiers for the domains; (e) they can be executed in tractable time using
nested cross-validation as required by our protocol.

In all cases when an algorithm had not terminated within 2 days of single-CPU time per run
on a single training set (including optimization of the feature selector parameters) and in order to
make the experimental comparison feasible with all methods and data sets in the study, we deemed
it to be impractical and terminated it. While the practicality of spending more than two days of
single-CPU time on a single training set can be debated, we believe that use of slower algorithms in
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Figure 11: Causal Feature Selection Returns More Compact Feature Sets Than Non-Causal Feature
Selection—Comparison of each algorithmic family with semi-interleaved HITON-PC with G2 test.
HITON-PC is executed with 9 different configurations: {max-k = 1, α = 0.05}, {max-k = 2,α =
0.05}, {max-k = 3,α = 0.05}, {max-k = 4,α = 0.05}, {max-k = 1,α = 0.01}, {max-k = 2,α =
0.01}, {max-k = 3,α = 0.01}, {max-k = 4,α = 0.01}, and a configuration that selects one of the
above parameterizations by nested cross-validation. Results shown are averaged across all real
data sets where both HITON-PC with G2 test and an algorithmic family under consideration are
applicable and terminate within 2 days of single-CPU time per run on a single training set. Multiple
points for each algorithm correspond to different parameterizations/configurations. See Appendix
Tables 5- 7 for detailed list of algorithms. The left graph has x-axis (proportion of selected features)
ranging from 0 to 1 and y-axis (classification performance AUC) ranging from 0.5 to 1. The right
graph has the same data, but the axes are magnified to see the details better. This figure is continued
in Figures 12 and 13.

practice is problematic due to the following reasons: (i) in the context of N-fold cross-validation the
total running time is at least N times longer (i.e., >20 days single-CPU time); (ii) the analyst does
not know whether the algorithm will terminate within a reasonable amount of time, and (iii) when
quantification of uncertainty about various parameters (e.g., estimating variance in error estimates
via bootstrapping) is needed the analysis becomes prohibitive regardless of analyst flexibility and
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Figure 12: Continued from Figure 11.

computational resources. When comparing a pair of algorithms we consider only the data sets where
both algorithms terminate within the allotted time.

We evaluate the algorithms using the following metrics:

1. Number of features selected;

2. Proportion of features selected relative to the original number of features (i.e., prior to feature
selection);

3. Classification performance measured as area under ROC curve (AUC) (Fawcett, 2003);

4. Feature selection time in minutes.2

Figure 11 compares each evaluated algorithm to semi-interleaved HITON-PC with G2 test as
a reference performance for GLL, in the two-dimensional space defined by proportion of selected
features and classification performance by SVM (results for KNN are similar and are available in

2. In all cases we used the implementations provided by the authors of methods, or state-of-the-art implementations, and
thus reported time should be considered representative of what practitioners can expect in real-life with equipment
and data similar to the ones used in the present study. However, we note that running times should be interpreted
as indicative only since numerous implementation details and possible optimizations as well as computer platform
discrepancies can affect results.
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Figure 13: Continued from Figure 12.

Table S5 in the online supplement). As can be seen in the figure (and also in Figure S1 of the online
supplement), GLL algorithms typically return much more compact sets than other methods. More
compact results are provided by versions that induce the PC set rather than the MB for obvious
reasons. Out of GLL methods, the most compact sets are returned when the Z-test is applicable
(continuous data) compared to G2 test (discrete or discretized data). As seen in Tables S2-S3 in
the online supplement, depending on the parameterization of GLL, compactness varies. However,
regardless of configuration, both GLL and other local causal methods (i.e., IAMB, BLCD-MB,
FAST-IAMB, K2MB) with the exception of Koller-Sahami are typically more compact than non-
causal feature selection methods (i.e., univariate methods with backward wrapping, RFE, RELIEF,
Random Forest-based Variable Selection, L0, and LARS-EN). Forward stepwise selection and some
configurations of LARS-EN, Random Forest-based Variable Selection, and RFE are often very par-
simonious, however their parsimony varies greatly across data sets. Notice that whenever an algo-
rithm variant employed statistical comparison among feature sets (in particular non-causal ones),
it improved compactness (Figure S1 and Tables S2-S3 in the online supplement). Table 3 gives
statistical comparisons of compactness between one reference GLL algorithm (semi-interleaved
HITON-PC with G2 test and cross-validation-based optimization of the algorithm parameters) and
43 non-GLL algorithms and variants (including no feature selection). In 21 cases the GLL refer-
ence method gives statistically significantly more compact sets compared to all other methods, in 16
cases parsimony is not statistically distinguishable, and in 6 cases HITON-PC gives less compact
feature sets. These 6 cases correspond strictly to non-GLL causal feature selection algorithms and
at the expense of severe predictive suboptimality (0.06 to 0.10 AUC) relative to the reference GLL
method (see Tables S4-S5 in the online supplement).

5.1 Compactness Versus Classification Performance

Compactness is only one of the two requirements for solving the feature selection problem. A
maximally compact algorithm that does not achieve optimal predictivity does not solve the feature
selection problem. Figure 11 examines the trade-off of compactness and SVM predictivity (results
for KNN are similar and available in Table S5 in the online supplement). The best possible point
for each graph is at the upper left corner. For ease of visualization the results are plotted for each
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Table 3: Statistical comparison via permutation test (Good, 2000) of 43 non-GLL algorithms (in-
cluding no feature selection) to the reference GLL algorithm (semi-interleaved HITON-PC with
G2 test and cross-validation-based optimization of the algorithm parameters by SVM classifier) in
terms of SVM predictivity and parsimony. Each non-GLL algorithm compared to HITON-PC in
each row is denoted by “Other”. Bolded p-values are statistically significant at 5% alpha.

algorithmic family separately. To avoid overfitting and to examine robustness of various methods to
parameterization we did not select the best performing configuration, but plotted all of them. Notice
that some algorithms did not run on all 13 real data sets (i.e., algorithms with Fisher’s Z-test are
applicable only to continuous data, while some algorithms did not terminate within 2 days of single-
CPU time per run on a single training set). For such cases, we plotted results only for data sets where
the algorithms were applicable and the results for HITON-PC correspond to the same data sets. As
can be seen, GLL algorithms that induce PC sets dominate both other causal and non-causal feature
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selection algorithms. This is also substantiated in Table 3 (and Table S7 in the online supplement
that provides results for KNN classifier) that gives statistical comparisons of predictivity between
the reference GLL algorithm and all 43 non-GLL algorithms and variants (including no feature
selection). In 9 cases the GLL reference method gives statistically significantly more predictive
sets compared to all other methods, in 33 cases predictivity is not statistically distinguishable, and
in 1 case GLL gives less predictive feature sets (however the magnitude of the GLL suboptimal
predictivity is only 0.018 AUC on average, whereas the difference in compactness is more than
33% features selected on average).

The overall performance patterns of combined predictivity and parsimony are highly consistent
with Markov blanket induction theory (Section 2.2) which predicts maximum compactness and
optimal classification performance when using the MB. Different instantiations of the GLL method
give different trade-offs between predictivity and parsimony (details and statistical comparisons to
the reference method are provided in online supplement Tables S2-S6 and S8).

In the companion paper (Aliferis et al., 2010), we examine in detail conditions under which PC
induction can give optimal classification performance (the empirical illustration is provided in Fig-
ure 13). The comparison of HITON-PC with G2 test and HITON-PC with Z-test reveals that both
statistics perform similarly, while the latter (where it is applicable) does not require discretization
of continuous data that can simplify data analysis significantly (see Figure 12 and statistical com-
parisons in Table S9 in the online supplement). In Table S10 of the online supplement we provide
statistical comparisons of non-GLL causal feature selection methods in terms of predictivity and
parsimony. K2MB, BLCD-MB, IAMB, and FAST-IAMB rather unexpectedly perform statistically
indistinguishably in terms of predictivity and parsimony. Since BLCD-MB differs from K2MB by
an additional backward elimination step, this implies that this step rarely results in elimination of
features in the real data sets tested.

5.2 Analysis of Running Times

Table S6 in the online supplement gives detailed running times for all feature selection experiments.
Major observations include that: (i) univariate methods, RELIEF, RFE, LARS-EN are in general
the fastest ones, (ii) Koller-Sahami is probably the slowest method since it does not terminate on
several data sets within the allotted time limit, (iii) FAST-IAMB is two orders of magnitude faster
than IAMB on the average, and (iv) GLL algorithms are practical for very high-dimensional data
(e.g., in the Thrombin data set with > 100,000 features GLL-PC requires 10 to 52 minutes single-
CPU time depending on fixed-parameter configuration, and less than 3 hours when GLL-PC is
automatically optimized by cross-validation).

In conclusion, the GLL reference algorithm dominates most feature selection methods in predic-
tivity and compactness. Some non-GLL causal methods are more parsimonious than the reference
GLL method at the expense of severe classification suboptimality. One univariate method exhibits
slightly higher predictivity but with severe disadvantage in parsimony. No feature selection method
achieves equal or better compactness with equal or better classification performance than GLL.

6. Comparative Evaluation of Markov Blanket Induction, Local Causal
Neighborhood and Other Non-Causal Algorithms for Local Structure Discovery

In the present section we study the ability of GLL algorithms to discover local causal structure
(in the form of parent and children sets and Markov blankets) and compare them with other local
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structure discovery methods as well as non-causal feature selection. While many researchers ap-
ply feature selection techniques strictly to improve the cost and effectiveness of classification, in
many fields researchers routinely apply feature selection in order to gain insights about the causal
structure of the domain. A frequently encountered example is in bioinformatics where a plethora of
feature selection methods are applied in high-throughput genomic and proteomic data to discover
biomarkers suitable for new drug development, personalizing medical treatments, and orienting sub-
sequent experimentation (Zhou et al., 2002; Li et al., 2001; Holmes et al., 2000; Eisen et al., 1998).
It is thus necessary to test the appropriateness of various feature selection techniques for causal
discovery, not just classification.

In order to compare the performance of the tested techniques for causal discovery, we simulate
data from known Bayesian networks and also use resimulation, whereby real data is used to elicit a
causal network and then data is simulated from the obtained network (see Table 11 in the Appendix).
For each network, we randomly select 10 different targets and generate 5 samples (except for sample
size 5,000 where one sample is generated) to reduce variability due to sampling.3 An independent
sample of 5,000 instances is used for evaluation of classification performance.

In order to avoid overfitting of the results to the method used to induce the causal network,
an algorithm with different inductive bias is used than the algorithms tested. In our case we use
SCA (Friedman et al., 1999b). We note that SCA has greatly different inductive bias from the GLL
variants and thus the comparison (provided that the causal generative model is a Bayesian network)
is not unduly biased toward them, while still allowing induction of a credible causal graphical model.
Specifically, the inductive biases of the two methods can be described as follows: SCA performs
global, heuristically constrained, Bayesian search-and-score, greedy TABU iterative search for a
Bayesian network that has maximum-a-posteriori probability given the data under uninformative
prior on all possible network structures. GLL algorithms induce a local causal neighborhood, under
the distributional assumption of faithfulness and causal sufficiency, employing statistical tests of
conditional independence, and preferring to assume a variable is in the local neighborhood whenever
a conditional test is not applicable due to small sample (provided that a univariate association exists,
otherwise independence is the default) in order to minimize false negative risk of losing a true
member and overall risk of false positives and false negatives if true network is not dense. More
about the inductive bias of GLL can be found in Aliferis et al. (2010).

We obtained two resimulated networks as follows: (a) Lung Cancer network: We randomly
selected 799 genes and a phenotype target (cancer versus normal tissue indicator) from human gene
expression data of Bhattacharjee et al. (2001). Then we discretized continuous gene expression
data and applied SCA to elicit network structure. (b) Gene network: It was obtained from a subset
of variables of yeast gene expression data of Spellman et al. (1998) that contained 800 randomly
selected genes and a target variable denoting cell cycle state. Continuous gene expression data was
also discretized and SCA was applied to learn network. This research design follows Friedman et al.
(2000).

Furthermore, we note that additional factors not captured in the simulation or resimulation pro-
cess make real-life discovery potentially harder than in our experiments. Such factors include for
example, deviations of faithfulness, existence of temporal and cellular aggregation effects, unmea-

3. For networks Lung Cancer andGene, we also add an eleventh target that corresponds to the natural response variable:
lung cancer diagnosis and cell cycle state, respectively. For networkMunin we use only 6 targets because of extreme
probability distributions of the majority of variables that do not allow variability in the finite sample of size 500 and
even 5000. Because of the same reason, we did not experiment with sample size 200 in theMunin network.
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sured variables, and various measurement, normalization, and noise artifacts. However evaluations
with simulated and resimulated data yield comparative performances that are still highly informative
since if a method cannot induce the correct structure from relatively easier settings, it is unlikely that
in harder real-life situations it will perform any better. In other words successful causal structure dis-
covery performance in simulated and resimulated networks represents at a minimum “gate-keeper”
level performance that will filter the more promising from the less promising methods (Spirtes et al.,
2000). Finally, as Spirtes et al. (2000) note the behavior of constraint-based algorithms is partic-
ularly complex and theoretical analyses are very difficult to perform. The same is true for several
other modern feature selection methods. Hence, simulation experiments are necessary in order to
gain a deeper understanding of the strengths and limitations of many state-of-the-art algorithms.
The evaluated algorithms are provided in Appendix Table 12.

We evaluate the algorithms using the following metrics:

1. Graph distance. This metric calculates the average shortest unoriented graph distance of
each variable returned by an algorithm to the local neighborhood of target, normalized by the
average such distance of all variables in the graph. The rationale is to normalize the score
to allow for comparisons across data sets and to correct the score for randomly choosing
variables. The score is a non-negative number and has the following interpretation: value 0
means that current feature set is a subset of the true local neighborhood of the target, values
less than 1 are better than random selection in the specific network, values equal to 1 are as
good as random selection in the specific network and values higher than 1 are worse than
random selection. The metric is computed using Dijkstra’s shortest path algorithm.

2. Euclidean distance from the perfect sensitivity and specificity (in the ROC space) for discov-
ery of local neighborhood of the target variable. This is computed as in Tsamardinos et al.
(2003b) and provides a loss function-neutral combination of sensitivity and specificity.

3. Proportion of false positives and proportion of false negatives.

4. Classification performance using polynomial SVM and KNN classifiers with parameters opti-
mized by nested cross-validation (misclassification costC and kernel degree d for SVMs and
number of nearest neighbors k for KNN) on an independently sampled test data set with large
sample (n=5000). The performance is measured by AUC (Fawcett, 2003) on binary tasks and
proportion of correct classifications on multiclass tasks.

5. Feature selection time in minutes. All caveats regarding interpretation of running times stated
in Section 5 apply here as well.

We note that the causal discovery evaluations emphasize local discovery of direct causes and
direct effects and this choice is supported by several reasons. First, in many domains searching
for direct causes and effects is natural (e.g., biological pathway discovery). Second, for non-causal
feature selection methods, a natural causal interpretation of their output is being among the direct
causes and direct effects (or the Markov blanket) of the target. Consider for example clustering
or differential gene expression in bioinformatics where if Gene1 clusters with Gene2, or if Gene3
is more strongly differentially expressed with respect to some phenotype than Gene4 then Gene1
and Gene2 are interpreted to be members of the same pathway (i.e., in close proximity in the gene
regulatory/causal network), and Gene 3 is interpreted to be more likely to determine the phenotype
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than Gene4. Similar interpretations abound for other non-causal feature selection methods. We
notice that if a method is locally causally inconsistent then it is very unlikely that it will be globally
causally consistent either. The logic of this argument is that algorithms either return global or local
causal knowledge. If an algorithm outputs a global causal graph and this is incorrect, then this
implies that locally it will be wrong for at least some variables. Conversely, if the global graph is
correct then locally it is correct as well. If algorithm B outputs a correct local causal set (e.g., direct
causes and direct effects) then we can “piece together” these sets and obtain a correct global graph.
Finally, if an algorithm outputs an incorrect non-empty local causal set, this implies that B returns
non-causes as direct causes or remote causes as direct causes (and the same for effects). Thus, it is
not possible to construct the full causal graph strictly from knowledge provided by the algorithm.
As a result, local causal consistency is necessary for global consistency as well.

A second reason for focusing on local causal discovery is that it is much harder in practice than
indirect causal discovery in highly interconnected causal networks. In our bioinformatics example,
because cancer affects many pathways, it is trivial to find genes affected by cancer, since a large
proportion (e.g., half) of the measured genes are expected to be affected. However, it is vastly
harder to find the chain of events that leads from occurrence of cancer to Gene1 becoming under-
or over-expressed. In such settings, discovery of remote causation is not particularly hard, neither it
is particularly interesting. Conversely, when one has a locally correct causal discovery algorithm as
elucidated in Section 2, global causal learners can be relatively easily constructed.

Finally, in our evaluations we do not examine quality of causal orientation of the algorithms
output for several reasons: First, while GLL algorithms’ output can be oriented by constraint-based
or other post-processing, non-causal feature selection methods do not readily admit orientation.
Second, orientation is not needed when target T is a terminal variable as is often the case in the real
data. Third, oriented local causal discovery is harder than unoriented one (Ramsey et al., 2006),
and it makes sense to examine the ability of the feature selection algorithms for causal discovery in
tasks of incremental difficulty, especially since as we will see most of the non-causal algorithms do
not perform well even when seeking unoriented causality. Fourth, orientation information can be
obtained subsequently by experiments or knowledge-based post-processing and in many practical
settings it is not the primary obstacle to causal discovery.

6.1 Superiority of Causal Over Non-Causal Feature Selection Methods for Causal Discovery

Causal methods achieve, consistently under a variety of conditions and across all metrics employed,
superior causal discovery performance than non-causal feature selection methods in our experi-
ments. Figures 14(a) and 15 compare semi-interleaved HITON-PC to HITON-MB, RFE, UAF, L0,
and LARS-EN in terms of graph distance and for different sample sizes. Other GLL instantiations
such as Interleaved-HITON-PC, MMPC, and Interleaved-MMPC perform similarly to HITON-PC
(data in Table S12 in the online supplement). We apply HITON-PC as is and also with a variable
pre-filtering step such that only variables that pass a test of univariate association with the target at
5% False Discovery Rate (FDR) threshold are input into the algorithm (Benjamini and Yekutieli,
2001; Benjamini and Hochberg, 1995). Motivation and analysis of incorporating FDR in GLL is
provided in Aliferis et al. (2010).

As can be seen, in all samples HITON-PC variants return features closely localized near the
target while HITON-MB requires relatively larger sample size to localize well. The distance is
smaller as sample size grows. Methods such as univariate filtering localize features well in some
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Figure 14: Performance of feature selection algorithms in 9 simulated and resimulated data sets: (a)
graph distance, (b) classification performance of polynomial SVM classifiers. The smaller is causal
graph distance and the larger is classification performance, the better is the algorithm. The results
are given for training sample sizes = 200, 500, and 5000. The bars denote maximum and minimum
performance over multiple training samples of each size (data is available only for sample sizes 200
and 500). The metrics reported in the figure are averaged over all data sets, selected targets, and
multiple samples of each size. L0 did not terminate within 2 days (per target) for sample size 5000.
Please see text for more details.

data sets and badly in others. As sample size grows, localization of univariate filtering deteriorates.
Methods L0, and LARS-EN exhibit a reverse-localization bias (i.e., preferentially select features
away from the target). Performance of RFE varies greatly across data sets in its ability to localize
features and this is independent of sample size. A “bull’s eye” plot for Insurance10 data set is
provided in Figure 16. A localization example for Insurance10 data set is shown in Figure 17. The
presented visualization examples are representative of the relative performance of causal versus non-
causal algorithms. Table 4 provides p-values (via a permutation test at 5% alpha) for the differences
of localization among algorithms.

Tables S13-S16 and Figure S2(a)-(d) in the online supplement compare the same algorithms in
terms of (a) Euclidian distance from the point of perfect sensitivity and specificity, (b) proportion
of false negatives, (c) proportion of false positives, and (d) running time in minutes. Consistent
with the results presented in the main text, local causal discovery algorithms strongly outperform
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Figure 15: Causal graph distance results for training sample sizes = 200, 500 and 5000. The results
reported in the figure are averaged over all selected targets. Lighter cells correspond to smaller
(better) values of graph distance; darker cells correspond to larger (worse) values of graph distance.
L0 did not terminate within 2 days (per target) for sample size 5000.

non-causal feature selection methods in ability to find the direct causes and effects of the target
variable.

6.2 Classification Performance is Misleading for Causal Discovery

Despite causally wrong outputs (i.e., failing to return the Markov blanket or parents and children
set), several non-causal feature selection methods achieve comparable classification performance
with causal algorithms in the simulated data. Figure 14(b) (and Tables S17-S18 and Figure S2(e)
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Figure 16: Visualization of graph distances for Insurance10 network and sample size 5000 by “bull’s
eye” plot. For each method, results for 10 randomly selected targets are shown. The closer are points
to the origin, the better is ability for local causal discovery. Results for GLL method HITON-PC-
FDR are highlighted with red; results for baseline methods are highlighted with green.

Figure 17: An example of poor localization by a baseline method and good localization by a GLL
method. Left: Graph of the adjacency matrix of Insurance10 network. Target variable is shown
with red. HITON-PC discovers all 5 members of the parents and children set and a false positive
variable #177 that is located close to the true neighborhood (discovered variables are shown with
blue bolded circles). RFE discovers 4 out of 5 members of the PC set and introduces many false
positives scattered throughout the network (discovered variables are shown with yellow circles).
Right: A magnified area of the Insurance10 network close to the target variable.
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Table 4: Statistical comparison between semi-interleaved HITON-PC with G2 test (with and w/o
FDR correction) and other methods in terms of graph distance. Bolded p-values are statistically
significant at 5% alpha.

in the online supplement) shows the average AUC and proportion of correct classifications. This
phenomenon is related to information redundancy of features in relation to the target in non-sparse
causal processes. In addition, it is facilitated by the relative insensitivity of state-of-the-art classifiers
to irrelevant and redundant features. Good classification performance is thus greatly misleading as
a criterion for quality of causal hypotheses generated by non-causal feature selection algorithms.

In conclusion, the results in the present section strongly undermine the hope that non-causal
feature selection methods can be used as good heuristics for causal discovery. The idea that non-
causal feature selection can be used for causal discovery should be viewed with caution (Guyon
et al., 2007). Whole research programs are, in many domains, built on experiments motivated by
causal hypotheses that were generated by non-causal feature selection results (Zhou et al., 2002; Li
et al., 2001; Holmes et al., 2000; Eisen et al., 1998) and this seems an unfortunate and inadvisable
practice, in light of existence of principled causal algorithms. On the other hand, generalized local
learning algorithms in simulated and resimulated experiments show great potential for local causal
discovery.

7. Discussion

In the present section we discuss main findings of this research, state limitations and outline open
problems, and give an overview of problems addressed in the companion paper.
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7.1 Main Findings

Our experimental evaluation shows that GLL algorithms typically attain the theoretically expected
benefits of strong feature set parsimony without loss of performance relative to the best classification
attained by any method used in the experiments. The wide range of data sets and algorithms used
shows that the sufficient conditions stated in the proofs for correctness for GLL are likely to hold
and/or that violations may be small or well tolerated.

The second major result from our experiments is that we showed that use of non-causal feature
selection methods for learning causality although very widespread, is generally inadvisable. We
used resimulated and simulated data and showed that causally-motivated feature selection meth-
ods connect local causal discovery with feature selection for classification consistent with recent
theoretical work. Feature selection algorithms that are not causal have a tendency to return highly
predictive feature sets that are scattered all over the network, or that are in the periphery of the net-
work, and cannot be otherwise interpreted in a way that makes useful and consistent causal sense.
We strongly caution practitioners to use principled causal discovery algorithms whenever available
and to not substitute causal discovery methods with predictive/non-causal feature selection ones for
reasons of convenience or due to non familiarity with such methods. Practical software widely ex-
ists that can be used to apply state-of-the-art causal methods including the methods studied in the
present paper that is available for download from the online supplement.

Finally, the theoretical framework that is based in large part on faithfulness and other assump-
tions summarized in Sections 2 and 3 is a valuable frame of reference both conceptually and algo-
rithmically. However, we do not consider it to be an absolute and immutable measure by which
to judge all new and existing algorithms. Our data shows that algorithms that are not deemed cor-
rect under the more general assumptions of the framework (e.g., algorithms that do not employ
symmetry correction, or algorithms that use PC(T ) instead ofMB(T ) for feature selection for clas-
sification) offer in many real data sets same predictive quality and better computational tractability
than the sound algorithms. This is a reflection of several factors. One of them is the existence of
distributions that are special classes of faithful ones and are easier to analyze (e.g., where sym-
metry correction is not required, or in other words where EPC(T ) = PC(T )). A second factor is
mitigating circumstances for violations of assumptions (Aliferis et al., 2010). A third factor is that
practical implementations of sound algorithms are statistically imperfect (in other words, a theo-
retical assumption that conveniently leads to a proof of correctness, for example that a conditional
test of independence is correct, does not entail immediate or flawless practical feasibility since all
such tests admit errors in practice). An alternative set of assumptions for correctness may require
vaguely ‘sufficient sample size’ disregarding the practical difficulty of determining whether in any
given analysis this requirement is met. As a result, practical implementations may claim soundness
without being demonstrably sound in applied settings. We address the small-sample behavior of
GLL algorithms with empirical analysis in the companion paper (Aliferis et al., 2010).

7.2 Limitations and Open Problems

A possible critique of the present work is that Markov blanket features may not work well with a
plethora of classifiers, distributions and loss functions. Indeed, a feature selector that is uniformly
optimal is not attainable as shown by the results in Tsamardinos and Aliferis (2003), and several
(possibly infinite) conceivable classifiers will fail to capture the information in the selected features.
Our focus was to examine if the GLL framework has merit in the sense of whether GLL instantia-
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tions when applied and compared to reasonable state-of-the-art baseline feature selectors in many
complex data sets from typical analysis domains and with practical classifiers, loss function and
sample sizes, yield good performance consistent with the theoretical claims of GLL.

Another possibility we would like to address is that best predictivity achieved in our experiments
for each data set may not be optimal since some classifier other than SVMs and KNN may yield
better predictivity. We believe that this possibility is remote for the following reason: Evidence from
earlier published work where we have applied instances of GLL with classifiers such as ANNs,
Decision Trees, Simple Bayes, as well as SVMs and KNN supports that the choice of classifier
matters very little in practice and similar predictivity/parsimony patterns as the ones reported here
were found (Aliferis et al., 2003a). On the other hand, the use of SVMs and KNN as classifiers
uniformly across our experiments confers many benefits explained in Section 5. To further support
the use of these classifiers we provide additional experimental results in Appendix Table 10 where
we use features extracted from embedded or wrapper-based feature selectors (L0, RFVS, LARS-
EN) and compare SVMs and KNN to classifiers native to the above embedded and wrapper-based
methods. We found that SVMs and KNN achieve predictivity comparable to the classifiers from the
aforementioned feature selectors.

Additional strong evidence in favor of our conclusions that GLL algorithms yield highly predic-
tive and parsimonious feature sets is given by the simulated and resimulated data experiments where
both the data-generative model and optimal feature sets are known. In those experiments the true
Markov blanket is directly given by the model and does constitute the gold standard for the smallest
and optimally informative feature set for common loss functions in the sense that it contains all
information available for predicting the target. The experiments showed that the GLL algorithms
identify this Markov blanket very well and better than the baseline comparison algorithms.

Although the GLL framework and the studied instantiations and implementations are theoret-
ically well motivated and empirically robust in many practical data analysis domains, as demon-
strated in our experiments, as with all machine learning methods they should be expected to not
perform well in quality or efficiency in certain distributions. Such distributions may include cases
where the Markov blanket is very large and thus the combinatorics of the elimination phase makes it
too slow. Another case can be when extreme non-linearities render the PC(T ) members “invisible”
to the algorithm (because univariate association with the target is zero). Another possibility for hurt-
ing efficiency arises when excessive synthesis of information exists such that the true members of
PC(T ) are not considered before other weakly relevant variables enter the TPC(T ). Also when cer-
tain types of deterministic relationships exist or more broadly target information equivalence (i.e.,
special types of violations of faithfulness), many Markov blankets may exist and the algorithms
will return a predictively optimal feature set but both causal localization and optimal parsimony
may be lost (Statnikov, 2008). The practical importance of these possibilities needs to be assessed
domain-by-domain.

Some of the adverse situations described in the limitations sub-section can be addressed by
relaxing the algorithm operation (e.g., for very large Markov blankets the analyst can set max-
k to a very small number and achieve faster execution but incur some false positives). In some
domains, violation of assumptions are mitigated by other factors (e.g., Aliferis et al. 2010 describes
how connectivity can make extremely epistatic parents visible to the algorithms). These and other
situations constitute open research areas and very recent research efforts attempt to address these
issues. For example, Statnikov (2008) provides algorithms that address multiplicity of Markov
blankets and Tsamardinos and Brown (2008b) introduce a method for kernel mapping of extremely
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non-linear functions to a faithful feature space that can be used to do feature selection via GLL in
the transformed feature space.

Although the emphasis of the present work was in classification, Markov blanket theory applies
equally well to regression and thus the GLL framework can be used for regression problems as well.
An empirical analysis of performance of regression-oriented GLL instantiations and comparisons
to state-of-the-art methods were not pursued here however.

7.3 Further Problems Addressed in the Companion Paper

While the theory motivating local learning and especially Markov blanket induction for feature
selection has wide implications, it is far from complete. To begin with, all theoretical arguments to-
date apply to the large sample case. While the theory implies that the large-sample Markov blanket
and the corresponding classifiers fitted from large sample, are predictively optimal, it is not known
to what extend learning from small samples affects the optimality of Markov blanket based feature
selection. More specifically, it is not clear how often in small samples and real-life distributions
the true Markov blanket (i.e., obtained from the data-generative process) gives an optimal classifier
when the latter is fitted from small samples with state-of-the-art classifiers. Similarly, we do not
know whether the estimated Markov blanket gives an optimal classifier when the latter is fitted from
small samples or even when it is fitted from the large sample. Related to the above for practical
applications, we do not know how fast is convergence of the estimated Markov blanket/classifier to
true Markov blanket/optimal classification as a function of sample size, for the available state-of-
the-art Markov blanket inducing algorithms. In the second part of our work (Aliferis et al., 2010)
we examine these issues. We also provide explanations why counter-intuitively relaxed versions of
some algorithms that trade-off computational efficiency for theoretical soundness tend to outperform
sound versions in some domains. Moreover, we systematically study the factors that influence the
quality and number of statistical decisions, explain the inductive bias of the algorithms, show how
non-causal feature selection methods can be understood in light of Markov blanket induction theory,
and address divide-and-conquer local to global causal graph learning strategies.

Appendix A.

This Appendix provides proofs of theorems and additional tables referenced in the paper.

A.1 Proof of Theorem 2

Consider the algorithm in Figure 4. First notice, that as we mentioned above, when conditions (a)
and (c) hold the direct causes and direct effects of T will coincide with the parents and children of
T in the causal Bayesian network G that faithfully captures the distribution (Spirtes et al., 2000). As
we have shown in Section 4 and in Tsamardinos et al. (2003b), the PCG(T ) = PC(T ) is unique in
all networks faithfully capturing the distribution.

First we show that the algorithm will terminate, that is that the termination criterion of admis-
sibility rule #3 will be met. The criterion requires that no variable eligible for inclusion will fail to
enter TPC(T ) and that no variable that can be eliminated from TPC(T ) is left inside. Indeed be-
cause (a) due to admissibility rule #1 all eligible variables in OPEN are identified, (b) V is finite and
OPEN instantiated to V \ {T}, and (c) termination will not happen before all eligible members of
OPEN are moved from OPEN to TPC(T ), the first part of the termination criterion will be satisfied.
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The second part of the termination criterion will also be satisfied because of admissibility rule #2
which examines for removal all variables and discards the ones that can be removed.

Lemma 1 The output of GLL-PC-nonsym TPC(T ) is such that: PC(T ) ⊆ TPC(T ) ⊆ EPC(T ).

Proof Let us assume that X ∈ PC(T ) and show that X ∈ TPC(T ) by the end of GLL-PC-nonsym.
By admissibility rule #3, X will never fail to enter TPC(T ) by the end of GLL-PC-nonsym. By The-
orem 1, for all Z ⊆ V \ {X}, ¬I(X ,T |Z) and so the elimination strategy because of admissibility
rule #2 will never remove X from TPC(T ) by the end of GLL-PC-nonsym.

Now, let us assume that X ∈ TPC(T ) by the end of GLL-PC-nonsym and show that X ∈EPC(T ).
Let us assume the opposite, that is, that X /∈ EPC(T ) and so by definition I(X ,T |Z), for some
Z ⊆ PC(T )\{X}. By the same argument as in the previous paragraph, we know that at some point
before termination of the algorithm, in step 4, TPC(T ) will contain the PC(T ). Since X /∈ EPC(T ),
the elimination strategy will find that I(X ,T |Z), for some Z ⊆ PC(T ) \ {X} and remove X from
TPC(T ) contrary to what we assumed. Thus, X ∈ EPC(T ) by the end of GLL-PC-nonsym.

Lemma 2 If X ∈ EPC(T )\PC(T ), then T /∈ EPC(X)\PC(X)

Proof Let us assume that X ∈ EPC(T )\PC(T ). For every network G faithful to the distribution P
ParentsG(T ) ⊆ PCG(T ) = PC(T ). X has to be a descendant of T in every network G faithful to the
distribution because if it is not a descendant, then there is a subset Z of T ’s parents s.t., I(X ,T |Z)
(by the Markov Condition). Since X ∈ EPC(T ) \PC(T ), we know that by definition ¬I(X ,T |Z),
for all Z ⊆ PC(T )\{X}. By the same argument, if also T ∈ EPC(X)\PC(X), T would have to be
a descendant of X in the every network G which is impossible since the networks are acyclic. So,
T /∈ EPC(X)\PC(X).

Let us assume that X ∈ PC(T ). By Lemma 1, X ∈ TPC(T ) by the end of GLL-PC-nonsym.
Since also T ∈ PC(X), substituting X for T , we also have that by the end of GLL-PC-nonsym,
T ∈ TPC(X). So, X will not be removed from U by the symmetry requirement of GLL-PC either,
and will be in the final output of the algorithm.

Conversely, let us assume that X /∈ PC(T ) and show X /∈ U at termination of algorithm GLL-
PC. If X never enters TPC(T ) by the inclusion heuristic, the proof is done. Similarly, if X enters but
is later removed from TPC(T ) by the exclusion strategy, the proof is done too. So, let us assume
that X enters TPC(T ) at some point and by the end of GLL-PC-nonsym(T ) is not removed by
the exclusion strategy. By Lemma 1, we get that by the end of GLL-PC-nonsym, X ∈ EPC(T )
and since we assumed X /∈ PC(T ), we get that X ∈ EPC(T ) \PC(T ). By Lemma 2, we get that
T /∈ EPC(X)\PC(X). Since also T /∈ PC(X), we get that T /∈ EPC(X). Step 3 of GLL-PC will thus
eliminate X from U .

A.2 Proof of Theorem 4

Since we assume faithful Bayesian networks, d-separation in the graph of such a network is equiv-
alent to independence and can be used interchangeably (Spirtes et al., 2000).
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Method Additional Information Reference
No feature selection

RFE (recursive feature
elimination SVM-based
method)

• reduction by 50% at each iteration, best performing feature
subset is returned (Guyon et al., 2002)
• reduction by 20% at each iteration, best performing feature
subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

UAF-KruskalWallis-SVM
(univariate ranking by
Kruskal-Wallis statistic and
feature selection with SVM
backward wrapper)

• reduction by 50% at each iteration, best performing feature
subset is returned (Statnikov et al., 2005a;

Hollander and Wolfe, 1999)• reduction by 20% at each iteration, best performing feature
subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

UAF-Signal2Noise-SVM
(univariate ranking by
signal-to-noise statistic and
feature selection with SVM
backward wrapper)

• reduction by 50% at each iteration, best performing feature
subset is returned (Guyon et al., 2006b;

Statnikov et al., 2005a;
Furey et al., 2000)• reduction by 20% at each iteration, best performing feature

subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

UAF-Neal-SVM (univariate
ranking by Radford Neal’s
statistic and feature
selection with SVM
backward wrapper)

• reduction by 50% at each iteration, best performing feature
subset is returned Chapter 10 in Guyon et al.

(2006a)• reduction by 20% at each iteration, best performing feature
subset is returned
• reduction by 50% at each iteration, statistically same as
best performing feature subset is returned
• reduction by 20% at each iteration, statistically same as
best performing feature subset is returned

Random Forest Variable
Selection (RFVS)

• best performing feature subset is returned (Diaz-Uriarte and
Alvarez de Andres, 2006;
Breiman, 2001)

• statistically same as best performing feature subset is re-
turned

Table 5: Algorithms used in evaluation on real data sets. When statistical comparison was performed
inside a wrapper, we used a non-parametric method by DeLong et al. (1988). The only exception
is Random Forest-based Variable Selection (RFVS), where we used a method recommended by its
authors (Diaz-Uriarte and Alvarez de Andres, 2006). For GLL algorithms (i.e., variants of HITON-
PC, HITON-MB, MMPC, MMMB) we experimented with both G2 and Fisher’s Z-test whenever
the latter was applicable. This table is continued in Tables 6 and 7.

If X ∈ MB(T ), we show X ∈ TMB(T ) in the end. If X ∈ MB(T ) and X ∈ PC(T ), it will be
included in the TMB(T ) in step 3, will not be removed afterwards and will be included in the final
output.

If X ∈MB(T )\PC(T ) then X will be included in S since if X is a spouse of T , there exists Y
(by definition of spouse) s.t., X ∈ PC(Y ), Y ∈ PC(T ) and X /∈ PC(T ). For that Y , by Theorem 3 we
know that ¬I(X ,T |Z ∪{Y}), for all Z ⊆ V \{X ,T} and so the test in step 5c will succeed and X
will be included in TMB(T ) in the end.
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Method Additional Information Reference
LARS-Elastic Net
(LARS-EN)

• best performing feature subset is returned (Zou and Hastie, 2005)
• statistically same as best performing feature subset is re-
turned

RELIEF (with backward
wrapping by SVM)

• Number of neighbors = 1, reduction by 50% at each itera-
tion, best performing feature subset is returned

(Kononenko, 1994; Kira
and Rendell, 1992)

• Number of neighbors = 1, reduction by 20% at each itera-
tion, best performing feature subset is returned
• Number of neighbors = 5, reduction by 50% at each itera-
tion, best performing feature subset is returned
• Number of neighbors = 5, reduction by 20% at each itera-
tion, best performing feature subset is returned
• Number of neighbors = 1, reduction by 50% at each iter-
ation, statistically same as best performing feature subset is
returned
• Number of neighbors = 1, reduction by 20% at each iter-
ation, statistically same as best performing feature subset is
returned
• Number of neighbors = 5, reduction by 50% at each iter-
ation, statistically same as best performing feature subset is
returned
• Number of neighbors = 5, reduction by 20% at each iter-
ation, statistically same as best performing feature subset is
returned

L0-norm (Weston et al., 2003)
Forward Stepwise Selection using SVM classifier for wrapping (Caruana and Freitag, 1994)

Koller-Sahami (with
backward wrapping by
SVM)

• k = 0, best performing feature subset is returned

(Koller and Sahami, 1996)

• k = 1, best performing feature subset is returned
• k = 2, best performing feature subset is returned
• k = 0, statistically same as best performing feature subset
is returned
• k = 1, statistically same as best performing feature subset
is returned
• k = 2, statistically same as best performing feature subset
is returned

IAMB

• G2 test and a= 0.05 (Tsamardinos and Aliferis,
2003; Tsamardinos et al.,
2003a)

• G2 test and a= 0.01
• mutual information criterion with threshold=0.01

K2MB (Cooper et al., 1997; Cooper
and Herskovits, 1992)

Table 6: Continued from Table 5.

Conversely, if X /∈MB(T ) we show that X /∈ TMB(T ) by the end of the algorithm. Let Z be the
subset in step 5a, s.t., I(X ,T |Z) (i.e., Z d-separates X and T ). Then, Z blocks all paths from X to
T . For the test in step 5c to succeed a node Y must exist that opens a new path, previously closed
by Z, from X to T . Since by conditioning on an additional node a path opens, Y has to be a collider
(by the d-separation definition) or a descendant of a collider on a path from X to T . In addition, this
path must have length two edges since all nodes in S are the parents and children of the PC(T ) but
without belonging in PC(T ). Thus, for the test in step 5c to succeed there has to be a path of length
two from X to T with a collider in-between, that is, X has to be a spouse of T . Since X /∈MB(T )
the test will fail for all Y and X /∈ TMB(T ) by the end of the algorithm.
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Method Additional Information Reference
BLCD-MB (Mani and Cooper, 2004)
FAST-IAMB G2 test and a= 0.05 (Yaramakala and Margari-

tis, 2005)

HITON-PC
(semi-interleaved)

• max-k = 4 and a= 0.05

Novel algorithm

• max-k = 3 and a= 0.05
• max-k = 2 and a= 0.05
• max-k = 1 and a= 0.05
• max-k = 4 and a= 0.01
• max-k = 3 and a= 0.01
• max-k = 2 and a= 0.01
• max-k = 1 and a= 0.01
• max-k and a selected by cross-validation

Interleaved HITON-PC

• max-k = 4 and a= 0.05

(Aliferis et al., 2003a)

• max-k = 3 and a= 0.05
• max-k = 2 and a= 0.05
• max-k = 1 and a= 0.05
• max-k = 4 and a= 0.01
• max-k = 3 and a= 0.01
• max-k = 2 and a= 0.01
• max-k = 1 and a= 0.01
• max-k and a selected by cross-validation

MMPC

• max-k = 4 and a= 0.05

(Tsamardinos et al., 2006,
2003b)

• max-k = 3 and a= 0.05
• max-k = 2 and a= 0.05
• max-k = 1 and a= 0.05
• max-k = 4 and a= 0.01
• max-k = 3 and a= 0.01
• max-k = 2 and a= 0.01
• max-k = 1 and a= 0.01
• max-k and a selected by cross-validation

Interleaved MMPC

• max-k = 4 and a= 0.05

Novel algorithm

• max-k = 3 and a= 0.05
• max-k = 2 and a= 0.05
• max-k = 1 and a= 0.05
• max-k = 4 and a= 0.01
• max-k = 3 and a= 0.01
• max-k = 2 and a= 0.01
• max-k = 1 and a= 0.01
• max-k and a selected by cross-validation

HITON-MB
(semi-interleaved)

• max-k = 3 and a= 0.05 Novel algorithm
• max-k = 3 and a= 0.01

MMMB • max-k = 3 and a= 0.05 (Tsamardinos et al., 2003b)
• max-k = 3 and a= 0.01

Table 7: Continued from Table 6.
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Table 10: Classification performance (AUC) for polynomial SVMs and classifiers native to LARS-
EN, L0, and RFVS feature selection algorithms induced with features selected by the latter three
methods. In cells marked with “T”, the corresponding feature selection method did not terminate
within the allotted time.












   

   

   

   

   

   

   

   

   

Table 11: Simulated and resimulated data sets used for experiments. Lung Cancer network is res-
imulated from human lung cancer gene expression data (Bhattacharjee et al., 2001) using SCA
algorithm (Friedman et al., 1999b). Gene network is resimulated from yeast cell cycle gene expres-
sion data (Spellman et al., 1998) using SCA algorithm. More details about data sets are provided in
Tsamardinos et al. (2006).
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Table 12: Algorithms used in local causal discovery experiments with simulated and resimulated
data.
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Abstract
In part I of this work we introduced and evaluated the Generalized Local Learning (GLL) frame-
work for producing local causal and Markov blanket induction algorithms. In the present sec-
ond part we analyze the behavior of GLL algorithms and provide extensions to the core methods.
Specifically, we investigate the empirical convergence of GLL to the true local neighborhood as
a function of sample size. Moreover, we study how predictivity improves with increasing sample
size. Then we investigate how sensitive are the algorithms to multiple statistical testing, especially
in the presence of many irrelevant features. Next we discuss the role of the algorithm parameters
and also show that Markov blanket and causal graph concepts can be used to understand deviations
from optimality of state-of-the-art non-causal algorithms. The present paper also introduces the
following extensions to the core GLL framework: parallel and distributed versions of GLL algo-
rithms, versions with false discovery rate control, strategies for constructing novel heuristics for
specific domains, and divide-and-conquer local-to-global learning (LGL) strategies. We test the
generality of the LGL approach by deriving a novel LGL-based algorithm that compares favorably
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to the state-of-the-art global learning algorithms. In addition, we investigate the use of non-causal
feature selection methods to facilitate global learning. Open problems and future research paths
related to local and local-to-global causal learning are discussed.

Keywords: local causal discovery, Markov blanket induction, feature selection, classification,
causal structure learning, learning of Bayesian networks

1. Introduction

The present paper constitutes the second part of the study of Generalized Local Learning (GLL)
which provides a unified framework for discovering local causal structure around a target variable
of interest using observational data under broad assumptions. GLL supports local discovery of vari-
ables that are direct causes or direct effects of the target and of the Markov blanket of the target. In
the first part of the work (Aliferis et al., 2010) we introduced GLL and explained the importance
of local causal discovery both for identification of highly predictive and parsimonious feature sets
(feature selection problem), and for scaling up causal discovery. We then evaluated GLL instantia-
tions against a plethora of state-of-the-art alternatives in many real, simulated and resimulated data
sets. The main conclusions were that GLL algorithms achieved excellent predictivity, compactness
and ability to learn local neighborhoods. Moreover, state-of-the-art non-causal feature selection
methods often achieve excellent predictivity but are misleading in terms of causal discovery.

In the present paper we provide several extensions to GLL, study its properties, and extend
to global graph learning using GLL as the core method. Because of the close relationship with
Aliferis et al. (2010) we do not repeat here background material, technical definitions, or algorithm
specifications. These are found in Aliferis et al. (2010), Sections 2-4.

The paper is organized as follows: Section 2 studies the empirical convergence of GLL in-
stantiations to the true local neighborhood and to optimal predictivity as a function of sample
size. Section 3 studies the effects of multiple statistical testing and the sensitivity of GLL algo-
rithms to large numbers of irrelevant features. Section 4 provides a theoretical analysis of GLL
algorithms with respect to determinants of statistical decisions, heuristic efficiency and construc-
tion of inclusion heuristic functions, reasons for good performance of direct causes and effects
instead of induced Markov blanket, and reduced sensitivity to error estimation problems that af-
fect wrappers and traditional filters. Section 5 covers two algorithmic extensions, parallel process-
ing and False Discovery Rate pre-filtering. Section 6 investigates the use of local learners like
GLL for global learning and provides a general local-to-global learning framework. In that sec-
tion we also derive a new algorithm HHC and compare it to the previously described MMHC,
and show the potential of local induction variable ordering for tractability and quality improve-
ments. Section 7 uses causal feature selection theory to shed light on limitations of established
and newer feature selection methods and the inappropriateness of causally interpreting their output.
Section 8 concludes with a discussion of the findings of the present paper and several open prob-
lems. An appendix and an online supplement (http://www.nyuinformatics.org/downloads/
supplements/JMLR2009/index.html) provide additional results, as well as code and data sets
that can be used to replicate the experiments.
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2. Empirical Convergence and Comparison of Theoretical to Estimated Markov
Blanket

As explained in Aliferis et al. (2010), arguments about the suitability of Markov blanket induc-
tion for feature selection for classification are based on large sample results, with convergence of
small sample performance to the theoretical optimum being unknown. In the present section we
use simulated data sets from published Bayesian networks to produce an empirical evaluation of
classification performance convergence with respect to training sample size of two types of clas-
sifiers: one that uses the estimated Markov blanket (MB(T )) or parents and children set (PC(T ))
and one that uses the true MB(T ) or PC(T ) set (obtained from the known generative network). We
use polynomial SVMs and KNN to fit each classifier type from three training sample sizes: 200,
500 and 5,000 samples. We note that GLL algorithms provide predictive and optimality guarantees
for universal approximator classifiers and SVMs and KNN are used here as exemplars of this class
of algorithms. In Aliferis et al. (2010) we also discuss more generally suitable classifiers, distribu-
tions and loss functions for GLL instantiations. An independent sample of 5,000 instances is used
as evaluation test for classification performance (measured by AUC for binary and proportion of
correct classifications for multiclass classification tasks). We use data sets sampled from 9 different
Bayesian networks (See Table 15 in the Appendix). For each Bayesian network, we randomly se-
lect 10 different targets and generate 5 samples (except for sample size 5,000 where one sample is
generated) to reduce variability due to sampling.1 An independent sample of 5,000 instances is used
as evaluation test for classification performance. Several local causal induction algorithms are used
(including algorithms that induce direct causes/direct effects, and Markov blankets), and are com-
pared to several non-causal algorithms to obtain reference points for baseline performance: RFE,
UAF (univariate association filtering), L0, and LARS-EN (see Table 16 in the Appendix for the
list of all algorithms). Classifier parameters (misclassification cost C and degree d for polynomial
SVMs and number of neighbors K for KNN) are optimized by nested cross-validation following the
same methodology as in Aliferis et al. (2010).

Results are presented in Figure 1 (and more details are given in Tables S19 and S20 of the
online supplement). The main conclusions follow. Note that similar patterns are present when KNN
is used instead of SVMs (with the only difference that convergence is slightly slower for KNN than
for SVMs). For brevity we discuss here the SVM results only.

(a) Classification performance of the true parents and children and Markov blanket feature sets
are not statistically significantly different at the 0.05 alpha level in sample 200 (p-value =
0.1440) and are statistically significantly different for larger samples (p-values = 0.0098 and
<0.0001 for sample sizes 500 and 5,000, respectively). The difference in SVM classification
performance between using the PC(T ) and MB(T ) sets however does not exceed 0.02 AUC
in favor of the MB(T ) set. This means that even when the true PC(T ) and MB(T ) sets are
known in the tested data, fitting classifiers from small data using the PC(T ) set is as good as
using theMB(T ) set. In large sample,MB(T ) features have a small predictive advantage over
PC(T ) features.

1. For networks Lung Cancer andGene, we also add an eleventh target that corresponds to the natural response variable:
lung cancer diagnosis and cell cycle state, respectively. For networkMunin we use only 6 targets because of extreme
probability distributions of the majority of variables that do not allow variability in the finite sample of size 500 and
even 5000. Because of the same reason, we did not experiment with sample size 200 in theMunin network.
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Figure 1: Classification performance of polynomial SVM (left) and KNN (right) classifiers in 9
simulated and resimulated data sets. Results are given for training sample sizes = 200,
500, and 5000. “True-PC” and “True-MB” correspond to the true PC(T ) and MB(T )
feature sets obtained from the known generative network. The bars denote maximum and
minimum performance over multiple training samples of each size (data is available only
for sample sizes 200 and 500). The performances reported in the figure are averaged over
all data sets, selected targets, and multiple samples of each size. L0 did not terminate
within the allotted time limit for sample size 5000.

(b) In small samples, feature selection increases classification performance for all tested classifier
types (i.e., both when we know the PC(T ) or MB(T ) sets and when we estimate them from
data) over using all features. This advantage becomes smaller but does not vanish in large
sample. The difference in SVM classification performance between an average feature selec-
tion method and using all features is statistically significant at the 0.05 alpha level (p-values
= <0.0001, 0.0028, <0.0001 for sample sizes 200, 500, and 5,000, respectively).
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(c) The true PC(T ) or true MB(T ) features set when fitted from sample size of 200 has a small
(0.02-0.03 AUC/proportion of correct classifications for SVM) advantage over the estimated
PC(T ) or MB(T ) features fitted from small sample. This difference is statistically signif-
icant at the 0.05 alpha level with p-values 0.0144 and <0.0001 for the PC(T ) and MB(T )
classifiers, respectively. Very quickly (as sample size becomes 500), this advantage becomes
insignificant (0.01 point of AUC/proportion of correct classifications for SVM) with corre-
sponding p-values 0.4708 and 0.0506 for the PC(T ) andMB(T ) classifiers, respectively. This
implies that predictivity of estimatedMB(T ) and PC(T ) sets converge to the optimal one very
quickly with respect to sample size.

(d) Classifiers for estimated MB(T )/PC(T ) sets fitted from small sample and classifiers for the
trueMB(T )/PC(T ) sets fitted from small sample have indistinguishable performance in sam-
ple size 500 (as shown in (c) above); then performance increases in sample size 5,000 for both
types of classifiers (p-values ranging from <0.0001 to 0.0174 with AUC increases between
0.01 and 0.04). We thus conclude that fitting the right classifier parameters to the identified
features is less sample efficient than identifying the right feature set.

(e) Some of the non-causal feature selection methods (e.g., L0, LARS-EN) tend to compare less
favorably in small sample to their large sample performance compared to GLL algorithms.

3. Multiple Statistical Tests and Insensitivity to Irrelevant Variables

In this section we focus our attention to a subtle but an important problem facing many feature and
causal discovery algorithms operating in very high dimensional spaces, namely the problem of mul-
tiple statistical comparisons, which is exacerbated when many irrelevant features are present. We
will show that GLL algorithms have inherent control to false positives due to multiple comparisons
while the same is not true for other non-causal feature selection methods tested.

Briefly stated, when conducting n statistical tests with an error type I level α (i.e., statistical sig-
nificance level, that is probability that a truly null hypothesis is rejected, thus falsely concluding that
a statistical difference or association or dependence exists when in reality it does not) it is expected
that α ·n false positives will occur on average. Consider a common analysis situation in bioinformat-
ics research where a researcher conducts one test per variable (i.e., single nucleotide polymorphism
(SNP)) in an assay with 10,000 SNP probes in total. 10,000 such tests need be conducted to see
whether univariately each SNP probe is differentially present in two or more phenotype categories.
If the researcher uses α equal to 5%, then under the null hypothesis (i.e., all 10,000 SNPs are not
truly differentially expressed) the analysis will yield 500 false positive SNP probes. Standard statis-
tical practice involves addressing the problem via one of two basic approaches. The first approach,
the classic Bonferroni correction (Casella and Berger, 2002), adjusts the α by replacing it by α/n so
that in our example the 5% false positive rate is preserved for each feature selected by the multiple
tests. This approach preserves the desired α, but reduces the power to detect statistically significant
features (namely the features that are truly differentially expressed and detectable at α but non-
detectable at α/n), hence creates false negatives that were not present before the correction. The
second approach, False Discovery Rate (FDR) control (Benjamini and Yekutieli, 2001; Benjamini
and Hochberg, 1995), trades off false positives and false negatives by ensuring not that each feature
passing the chosen p-value threshold preserves the original α, but that from the all features found
to be significant (i.e., for which the null hypothesis is rejected) a desired proportion will be false
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Table 1: Classification performance (AUC) of polynomial SVM estimated on 5,000 sample
independent testing set for features selected by HITON-PC with parameter max-
k={0,1,2,3,4} on different training sample sizes {100,200,500,1000,2000,5000}. The
color of each table cell denotes strength of predictivity with yellow (light) corresponding
to low classification performance and red (dark) to high classification performance.

positives on average. In our example, FDR methods may, for example, allow the researcher to en-
sure that on average no more than 10 out of 100 SNPs selected are false positives. This is highly
useful in exploratory analysis of high-dimensional data where subsequent experimentation can sort
out false positives easily but where false negatives have high cost.

Constraint-based causal methods employ, in large data sets and depending on connectivity and
inclusion heuristic efficiency, many thousands of statistical tests of independence and are thus ex-
pected a priori to be particularly sensitive to the multiple testing problem. We note that, rather not
obviously at first, testing under the null hypothesis does not only occur when irrelevant features ex-
ist but also whenever we test weakly relevant features conditioned on a set of variables that blocks
all paths connecting it with the target. Other feature selection methods do not explicitly conduct sta-
tistical tests of independence but may also be sensitive to many irrelevant features as we will show.
In the present section we first systematically explore empirically and then examine theoretically the
degree of sensitivity of GLL algorithms to irrelevant features, how they address the multiple test-
ing problem, and how other feature selection and causal discovery algorithms compare along these
dimensions.

In the first set of experiments we run only semi-interleaved HITON-PC without symmetry cor-
rection on two networks and variants. The networks, described in Aliferis et al. (2010), are the
Lung Cancer resimulated network and the Alarm10 network. The former is chosen for its higher
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Table 2: Number of false negatives in the parents and children set for features selected by
HITON-PC with parameter max-k={0,1,2,3,4} on different training sample sizes
{100,200,500,1000,2000,5000}. For Version 4 of the network the parents and children
set is empty since there are no relevant variables. The color of each table cell denotes num-
ber of false negatives with yellow (light) corresponding to smaller values and red (dark) to
larger ones.

connectivity whereas the latter is designed to have lower connectivity. In the Lung Cancer network
we focused our attention on the natural target variable; this target has 26 members of the parents
and children set and 18 spouses, 14 irrelevant variables, and 741 weakly relevant ones. We created
four versions of this network: Version 1 contains the original network (total number of variables
800). In Version 2 we augment the original network with 7990 irrelevant variables (total number of
variables 8790). Version 3 is the same as Version 2, except for 10% of values of the target are ran-
domly flipped to weaken the signal (total number of variables 8790). Finally, Version 4 is same as
Version 2, except that there are only irrelevant variables and the target (total number of variables is
8790−741−18−26= 8005). The tiled Alarm10 has also four corresponding versions but its target
was chosen randomly and it has only 6 members of the parents and children set and no spouses. In
both networks (and their variants) we create irrelevant variables by randomly permuting values of
weakly and strongly variables so that the distribution of each variable values is realistic. With these
8 data set versions we can systematically examine the effects of presence of irrelevant variables,
strength of predictive signal of features for the target, network connectivity and of the values of the
GLL max-k parameter (Aliferis et al., 2010).

We run HITON-PC and build SVM classifiers for all networks and variants, varying sample size
and themax-k parameter, and measure AUC, false negatives, false positives that are weakly relevant,
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Table 3: Number of false positives (within weakly relevant variables) in the parents and children
set for features selected by HITON-PC with parameter max-k={0,1,2,3,4} on different
training sample sizes {100,200,500,1000,2000,5000}. For Version 4 of the network there
are no weakly relevant variables. The color of each table cell denotes number of false
positives with yellow (light) corresponding to smaller values and red (dark) to larger ones.

false positives that are irrelevant and total false positives. To ensure that our results are not affected
by variability in small samples, we generate 10 random samples of each size and average results.

Tables 1– 5 provide evidence for the following conclusions:

(a) Classification performance is mildly or not affected by false positives and false negatives
(Table 1). When many false negatives are present, predictivity is compensated by the few
remaining strong relevant features plus strongly predictive weakly relevant ones. This im-
plies that classification performance cannot be used to inform us about the presence of false
positives/negatives.

(b) As expected, false negatives are reduced as sample size grows (because power increases),
however they also increase as max-k grows, because the number of tests increases as max-k
grows and thus overall power decreases (Table 2).

(c) When no irrelevant features are present, as sample size grows the number of false positives
that are weakly relevant increases ifmax-k is not sufficient to block paths from/to each weakly
relevant to/from the target. As max-k increases the false positives decrease to the point that
they vanish (Table 3). Overall, both false negatives and false positives vanish given enough
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Table 4: Number of false positives in the parents and children set for features selected by
HITON-PC with parameter max-k={0,1,2,3,4} on different training sample sizes
{100,200,500,1000,2000,5000}. The color of each table cell denotes number of false
positives with yellow (light) corresponding to smaller values and red (dark) to larger ones.

sample size and sufficient (but not excessive) max-k, (i.e., sample size ≥ 2,000, max-k=2)
(Tables 2 and 4).

(d) When irrelevant features are present, as sample size grows the number of false positives that
are weakly relevant increases if max-k is not sufficient to block paths from/to each weakly
relevant to/from the target. As max-k increases, the false positives decrease to the point that
they vanish (Table 3). False positives due to irrelevant features (Table 5) quickly vanish as
max-k becomes 2 or higher and this holds as long as sample size is larger than 200. False
negatives are not affected by presence of irrelevant features (Table 2). Thus, overall, with
enough sample size and right value of max-k, both false negatives and false positives vanish
(Tables 2 and 4).

(e) When the predictive signal is weaker, both false negatives are increased and false positives
within weakly relevant variables are decreased for a given sample size (because power is
smaller) (Tables 2 and 3). However false positive irrelevant variables (Table 5) are increased.
This is due to the fact that fewer features enter the TPC(T ) set thus leading to fewer tests
that can be performed hence smaller capacity to remove irrelevant false positives. As previ-
ously with enough sample and right max-k, false positives and negatives are fully eliminated
(Tables 2 and 4).

(f) When the data consists only of irrelevant features, false positives (irrelevant) are reduced as
max-k increases for all sample sizes (Table 5). There is a very small persistent residual number
of false positives regardless of how small the sample is or how big the max-k. These phenom-
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Table 5: Number of false positives (within irrelevant variables) in the parents and children set for
features selected by HITON-PC with parameter max-k={0,1,2,3,4} on different training
sample sizes {100,200,500,1000,2000,5000}. The color of each table cell denotes num-
ber of false positives with yellow (light) corresponding to smaller values and red (dark) to
larger ones.

ena happen because the algorithm needs a sufficient number of elements in the TPC(T ) set
(i.e., tentative parents and children of T ) in order to execute conditional independence tests
and remove the false positive irrelevant features.

(g) The above trends are remarkably consistent in both networks suggesting that different redun-
dancy and connectivity do not affect the above algorithm behavior.

In the second set of experiments we compare empirically in the above two networks (four vari-
ants for each as previously) and 6 sample sizes the following algorithms: semi-interleaved HITON-
PC, MMPC, a version of HITON-PC where we pre-filter features by Benjamini FDR control (at
FDR rate threshold of 5%) (Benjamini and Yekutieli, 2001), the true PC(T ) set extracted from the
data generating network (denoted as “True-PC” in Table 6), UAF (univariate association filtering)
with Bonferroni correction, UAF with Benjamini FDR control, uncorrected UAF, “wrapped” UAF,
RFE, and LARS-EN. Tables 6–9 provide support for the following conclusions:

(h) Due to strength of signal and redundancy of predictors, AUC reaches the theoretical maximum
(provided by the generative network) very quickly and for all methods (Table 6).

(i) When no irrelevant features are present and in the stronger signal setting, simple and FDR-
corrected UAF (but not wrapped UAF) has the least false negatives in very small samples
(Table 7). As sample size grows all methods reduce their false negatives (Table 7). GLL
methods pick up the strongly relevant features without false positives and reach near perfect
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Table 7: Number of false negatives in the parents and children set for selected features. HITON-PC,
HITON-PC- FDR, and MMPC are applied withmax-k=2. For Version 4 of the network the
parents and children set is empty since there are no relevant variables. The color of each
table cell denotes number of false negatives with yellow (light) corresponding to smaller
values and red (dark) to larger ones.

separation (i.e., 1-2 false negatives and zero false positives) at sample size 1,000 and higher
(Table 8). No other method simultaneously minimizes false positives and false negatives as
GLL.

(j) In the setting of strong signal with irrelevant features, simple UAF has the least false negatives
in very small samples (Table 7) and the largest number of false positives (Table 8).

(k) When the predictive signal is weaker, false negatives are increased and weakly relevant false
positives are decreased for a given sample size compared to the stronger signal case (Tables 7
and 8). Simple UAF is again most sensitive in terms of detecting strongly relevant features
in smaller samples until sample size 1,000-2,000 where UAF-Bonferroni and UAF-FDR and
GLL match the false negative rates (Table 7). As previously, GLL (with HITON-PC and
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Table 8: Number of false positives (within weakly relevant variables) in the parents and children
set for selected features. HITON-PC, HITON-PC-FDR, and MMPC are applied with max-
k=2. For Version 4 of the network there are no weakly relevant variables. The color of each
table cell denotes number of false positives with yellow (light) corresponding to smaller
values and red (dark) to larger ones.

MMPC performing similarly) achieves excellent false positive rates better than those by FDR
not only for weakly relevant but also for irrelevant features.

(l) HITON-PC augmented with FDR pre-filtering behaves almost identically as regular HITON-
PC except for the case with only irrelevant features in the data where HITON-PC without
FDR admits a few false positives (Table 9).

(m) State-of-the-art feature selection methods are prone to select very large numbers of irrelevant
features (Table 9).

In conclusion, HITON-PC and by extension GLL algorithms (since the same fundamental mech-
anisms for variable inclusion and elimination are shared because of the GLL-PC template and ad-
missibility requirements), have a very strong built-in capacity to control for false positives due to
multiple comparisons. False positives due to multiple comparisons quickly vanish for max-k 1 or
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higher regardless of sample size. Given enough sample size (∼1,000 or more in the data tested), and
by choosing 5% as the nominal α for all conditioning independence tests executed, the algorithm
fully eliminates irrelevant features from its output without incurring a penalty in false negatives,
even when irrelevant features are the majority among observed features. Parameter max-k controls
the false positives due to both weakly relevant and irrelevant features. The false positive rate in
this worst-case situation is in the presented experiments ∼5/8,000 = 0.000625 which is much better
than what the conservative Bonferroni-adjusted α guarantees, and without incurring false negatives
(as both Bonferroni and FDR methods do). Both established feature selectors such as variants of
UAF and newer ones are very sensitive to irrelevant features and produce large numbers of false
positives. Given the attractive characteristics of FDR-augmented HITON-PC, we evaluate it with
real data sets in Section 5.

4. Theoretical Analysis of GLL

In the present section we provide a theoretical analysis of the Generalized Local Learning algo-
rithms.

4.1 Determinants of Quality of Statistical Decisions and Computational Tractability.
Parameters max-k and h-ps

On a rather superficial level when conditioning sets are large enough, statistical tests become less
reliable. For example, as explained in Aliferis et al. (2010), cells in contingency tables used to
calculate p-values of discrete tests of independence (such as the widely-used G2 or X2 test) become
scarcely populated and this leads to unreliable test results. This motivates the heuristic practice of
considering as unreliable and not executing a test in which the sample size is less than: (“number
of cells to be fitted” · h-ps), with parameter h-ps set to 10 by default in the PC algorithm (Spirtes
et al., 2000) and 5 in GLL instantiations. Recall from Aliferis et al. (2010) that h-ps stands for
“heuristic power size” and denotes the smallest sample size per cell in the contingency table of a
reliable conditional test of independence. Moreover, when the conditioning set size is large enough
to block all paths between a weekly relevant variable and the target, there is no need to exceed this
conditioning set size because the resulting tests are redundant and the operation of the algorithm
becomes unnecessarily slow. Thus it seems reasonable that we would wish to restrict the condition-
ing set size to not exceed this sufficient blocking size. This is accomplished by setting the value of
parameter max-k. We will see however that max-k has a much more elaborate function than simply
“trimming away” excessive computations.

In reality things are significantly more complicated because, as first pointed out by Spirtes
et al. (2000), statistical reliability of a single test is a misleading concept in the context of com-
plex constraint-based algorithms such as GLL. Standard statistical considerations of the type of
testing a hypothesis once do not carry over well to the constraint-based algorithm setting. Similarly,
running time is also a complex function of direct or indirect restrictions placed on number of tests
and the number of variables with which to build such tests (i.e., the size of TPC(T )).

We first explain what happens when running semi-interleaved HITON-PC in faithful distribu-
tions (same arguments can be generalized to other GLL-PC and GLL-MB versions). Consider first
that in the case of a strongly relevant feature S, when conducting just one test I(S,T |Ø) for the pur-
poses of inclusion of S in TPC(T ), regardless of how small power is, we should always execute this
test because the worst that can happen is that we fail to include S in TPC(T ), whereas if we do not
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execute the test and assume independence by default, we will surely miss it. In the context of many
tests however, the notion of single-test reliability for S no longer applies. For example, when we
consider a test that has the potential to reject S from TPC(T ) (where it was placed previously by a
different test), by allowing the conditioning test size to grow large, the power is reduced (assuming
monotonic association of S through the potentially multiple paths connecting S with T ). Hence, we
need to preserve the combined power (i.e., combination of individual powers of all tests applied to
S) in order to not eliminate S from TPC(T ). Although these tests are highly correlated and com-
bined power is larger than the product of powers of the same set of tests performed on independent
samples, still the more tests are executed the smaller the combined power and the larger the pos-
sibility of falsely eliminating S becomes. The parameter h-ps partially controls power because the
larger it is, the smaller number of tests (that would eliminate S) are executed. However h-ps should
not be too large either because a strongly relevant S will not be included in TPC(T ) in the first place.
Parameter max-k also controls in part the number of tests allowed. Max-k does not fully determine
the number of tests because it specifies the dimensionality of allowed tests, not their total number.
As max-k grows, more tests for eliminating S from TPC(T ) are executed, thus the combined power
drops. In summary, for a given distribution the number of tests performed is affected by h-ps, max-k
and the size of TPC(T ).

So far the discussion has centered on one type of conditional independence test, that is, tests
where the candidate member of PC(T ), X , is a strongly relevant feature (type 1). This is the first
of four types of conditional tests. The other three are: conditional independence tests where the
candidate member of PC(T ), X , is a weakly relevant feature and some paths with T are not blocked
by the conditioning set (type 2a), conditional independence tests where the candidate member of
PC(T ), X , is a weakly relevant feature and all paths with T are blocked by the conditioning set
(type 2b), and finally conditional independence tests where the candidate member of PC(T ), X , is
an irrelevant feature (type 3).

The quality of conditional tests of the first type is determined by the power of the association of
X with T given the conditioning set. Since not one but potentially many such tests are conducted,
the combined power of all such tests determines whether X will be selected and stay in the TPC(T )
set. For example, variable X (a true member of PC(T )) will be considered for inclusion in TPC(T )
by HITON-PC with probability = power of detecting ¬I(X ,T ) given the available sample size and
test employed. However for X to stay in TPC(T ) until the algorithm terminates, and assuming
B, C have entered TPC(T ), none of the tests I(X ,T |B), I(X ,T |C), I(X ,T |{B,C}) must conclude
independence. The power or each one of these tests can be lower or higher than the power of
I(X ,T ) and the combined power can quickly diminish, however several mitigating factors prevent
this from happening. First, when using linear tests under common distributional assumptions such
as multivariate normality, the necessary sample size to achieve desired level of power grows linearly
to number of variables in the conditional set. Second, as explained earlier, conditional independence
tests of the same variable and T in the same sample are highly correlated. Third, controlling the
number of members of TPC(T ) by a good heuristic inclusion function reduces the total number
of tests; such control occurs indirectly by putting first the true members of PC(T ) or members
that block many variables. Fourth, the order of executing the tests and constructing conditioning
sets is important for reducing the number of tests performed on strongly relevant variables. This is
exemplified in semi-interleaved HITON-PC where new entrants in TPC(T ) are tested before current
TPC(T ) members thus if the heuristic inclusion function is a good one, strongly relevant members
are tested a smaller number of times at the elimination phase.
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Returning our attention to the quality of statistical decisions for weakly relevant variables, we
observe that when a conditioning set does not block all paths to/from T either for inclusion or
for elimination purposes (type 2a), we are sampling under the alternative hypothesis (i.e., there
exists association) and the determining factor for failing to reject the weakly relevant feature is
the combined power which is determined by the same factors as elaborated for strongly relevant
variables previously. The combined probability for rejection may be small for similar reasons as
type 1 conditional independence tests (albeit higher than for strongly relevant features due to the
fact that under a good inclusion heuristic weakly relevant features enter TPC(T ) later than strongly
relevant ones and thus more tests are applied on each weakly relevant than on each strongly relevant
feature on average).

However, when the conditioning set blocks all paths from/to T (type 2b), then we sample under
the null hypothesis and the determining factor shifts from the combined power to the combined
α (i.e., statistical significance). Given that the α for each conditional test is typically low (i.e.,
5% or smaller) and that as the number of tests under the null increases, the combined α drops up
to exponentially fast, and eliminating weakly relevant features occurs with high probability as the
number of applied tests increases. In HITON-PC, the smaller is h-ps, the easier it is to include a
weakly relevant feature (based on univariate association heuristic), whereas max-k does not affect
this function. In terms of rejecting a weakly relevant feature in TPC(T ), the larger max-k and the
smaller h-ps become, the easier it is to eliminate a weakly relevant feature.

The quality of statistical decisions for type 3 of conditional independence tests, that is for irrel-
evant variables, is determined by the combined α since we always test under the null hypothesis.
Because the combined α drops fast as the number of tests applied to each irrelevant variable (and
these tests are abundant when even a handful of variables have been admitted in TPC(T )), the com-
bined probability for admitting and not rejecting irrelevant variables is exceedingly small. However
when no strongly (and thus no weakly) relevant feature exists, conditioning sets inside the TPC(T )
set become smaller as irrelevant variables are eliminated from it with the end result of leaving a
small number of “residual” irrelevant features in the final output as evidenced in the simulation
experiments of Section 3. By pre-filtering variables with an FDR filter (Benjamini and Yekutieli,
2001; Benjamini and Hochberg, 1995), we not only gain the security that if the data consists exclu-
sively of irrelevant variables fewer or no false positives will be returned, but also we can use max-k
to control sensitivity and specificity trading weakly relevant false positives for strongly relevant true
positives and vice versa (i.e., without worrying about adversely trading off irrelevant features).

Finally, the total number of tests is determined by both parameters h-ps and max-k, in a non-
monotonic manner. That is, whenever h-ps is extremely large it effectively disallows most tests and
the algorithm quickly terminates returning the empty set regardless of max-k. For medium/small
values of h-ps, more tests are executed, more variables enter TPC(T ), and many tests are executed
before TPC(T ) is finalized. Max-k modifies this number by potentially restricting the number of
tests. When h-ps is very small, tests are allowed with very large conditioning tests and as long as
max-k does not disallow them, the total number of tests grow very large.
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Figure 2: Efficiency of HITON-PC versus MMPC.

4.2 Efficiency and Heuristic Robustness of HITON-PC Versus MMPC

Figure 2 presents the number and cost2 (proportional to time) of conditional independence tests
performed by semi-interleaved HITON-PC versus MMPC in the 2,000-sample data set from the
Alarm10 and Lung Cancer networks. As can be seen, HITON-PC performs fewer tests on average
while achieving the same performance as MMPC. We notice that the max-min association heuristic
closely reflects the logic behind the combined probability for error for the weakly relevant features.
MMPC when testing under the alternative hypothesis (i.e., strongly relevant features, or unblocked
weakly relevant ones) requires measuring all relevant associations, whereas HITON requires just
the univariate ones for inclusion purposes. However semi-interleaved HITON tries to eliminate
the newly included variable immediately upon inclusion and thus effectively conducts a similar
number of tests as MMPC. Both algorithms when testing under the null hypothesis (irrelevant or
fully-blocked weakly relevant features) on average execute the same number of tests. The max-
min association inclusion heuristic is a priori more prone to basing its decisions for inclusion in
TPC(T ) on less statistically reliable criteria. This is because the more associations are considered
and the larger the conditioning sets are, the higher variance in the minimum association estimates
is expected, making the maximum of such associations over all variables considered more prone
to sampling error (i.e., it is likely to be overfitted to the sample). Because of better robustness of
the univariate association relative to the weakest association over many conditional associations true
members of PC(T )may enter the TPC(T ) set earlier. However both HITON-PC and MMPC exhibit
similar performance in real and simulated data sets, demonstrating that the theoretical problem with
max-min association is in practice very rare.

4.3 Synthesis and Problems for Inclusion Heuristics; Constructing New Inclusion Heuristics

A problem when inducing local neighborhoods and particularly Markov blankets is that of informa-
tion synthesis. The problem consists of a variable X that is not in PC(T ) having higher association
(univariate or conditional on some subsets) with T than members of PC(T ) (for a concrete example
see Figure 13). We will call such variables, synthesis variables. Synthesis variables were identified

2. The cost of a conditional independence test is calculated as the number of variables participating in it (excluding
target variable). For example, univariate tests have cost = 1, tests with conditioning on two variables have cost = 3.
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as major problems for algorithms such as IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos
et al., 2003a) or GS (Margaritis and Thrun, 1999) that induce Markov blankets and do so by condi-
tioning in their inclusion phase on all variables in the tentative MB(T ). Because of the requirement
to condition on all variables in the tentative MB(T ), the sample requirements grow exponentially
fast to the size of the tentativeMB(T ) and thus it is absolutely imperative to keep out of it synthesis
variables since they unnecessarily increase the sample requirements to the point that the algorithm
may need to stop executing conditional independence tests (and either halt or output the tentative
MB(T ) as best but flawed estimate of the trueMB(T )).

With regards to GLL algorithms, most efficient operation is achieved when the variables that
alone or in combination have the property that block the largest fraction of weakly relevant variables,
enter first in TPC(T ) (even if they are not strongly relevant themselves). Synthesis variables may or
may not have this property, so synthesis may or may not be a problem for a specific GLL algorithm
based on characteristics of the specific data in hand.

Construction of new inclusion heuristics may be required in difficult cases where the univari-
ate and max-min heuristics do not work well leading to very slow processing time and very large
TPC(T ) sets, in order to make operation of local learning tractable. In practice, both the univariate
and max-min association heuristics work very well with real and simulated data sets, so we do not
pursue here implementation and testing new heuristics in artificial problems, although we recog-
nize the possibility of such need in future problematic data distributions. We outline here, in broad
strokes, general strategies for creating new inclusion heuristics for such cases:

1. Random heuristic search informed by standard heuristic values. This strategy is based on
using one of the usual heuristics to rank candidate variables and making selection decisions
based on random selection of a candidate variable with probability proportional to the original
heuristic value. This enables using the older heuristic as a starting point but allowing occa-
sionally deviations from it to explore the possibility that lower-ranked candidates may have
better potential as blocking variables. A simulated-annealing determination of probability of
selection (or other efficient stochastic search algorithms) can be pursued as well.

2. Constructing new heuristic functions by observing blocking capability (in terms of candidate
variables blocked by conditioning sets in which V is a member) or probability of a vari-
able V to remain in TPC(T ). The empirical observations can be collected from a variety of
tractable sources: either from a single incomplete run of the algorithm (i.e., without waiting
to terminate), or in other data sets characteristic of the domain, or in multiple runs on smaller
(randomly chosen) subsets of the original feature set. The new heuristic function F can be
constructed as the conditional probability:

F(Vi) = P(Vi ∈ TPC(T )|h(Vi))

where h(Vi) is the original heuristic value of variable Vi, or the proportion of candidates
blocked by a conditioning set containing Vi:

F(Vi) =
M

∑
k=1

Nk(Vi)/M

where Nk(Vi) is the number of candidate variables blocked by a conditioning set that contains
variable Vi in trial k.
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3. Exploiting known domain structure. When properties of the causal structure of the data gen-
erating structure and/or distributional characteristics are known, one can use this information
alone or in conjunction with the previous two strategies to derive more efficient heuristics.

We note that developing an inclusion heuristic that leads to efficient execution of GLL is not
always feasible since the very problem of finding the features with direct edges with the target is
intractable in the worst case (e.g., consider a graph that is fully connected). In some cases, as we will
show in Section 6, it is possible to transform an intractable local learning problem into a tractable
one by employing a global learning strategy (i.e., exploiting asymmetries in connectivity).

4.4 Inductive Bias of GLL

Informally the inductive bias of GLL is that it seeks a balance of false negatives for strongly relevant
variables with false positives for weakly relevant and irrelevant variables. The main regulating
parameters (for standard inclusion heuristics, elimination and interleaving strategies) are h-ps and
max-k. In practice, the algorithms tested in our work to date reveal higher sensitivity to max-k and
thus at first approximation we treat optimization of this parameter as having higher priority. Smaller
max-k empirically decreases false negatives and increases false positives overall. Larger max-k
increases the false negatives and decreases the false positives. GLL in moderate to large samples
achieves small numbers of false negatives and small numbers of false positives. In very small
samples GLL prefers false positive errors than false negative ones when max-k is small. This occurs
because given some evidence in favor of PC(T ) membership (provided by lower-dimensional and
thus more sample efficient) tests of a variable X but no reliable proof to the contrary (provided by
omitted higher-dimensional and thus unreliable tests), the algorithm outputs X as member of PC(T ).
A similar behavior exists for theMB(T ) versions (with respect toMB(T ) membership). Notice that
as max-k grows many more tests can be executed provided that a liberal h-ps is chosen, and these
tests can be used to eliminate both weakly relevant as well as strongly relevant features in TPC(T ).
The choice of a more liberal h-ps default value in GLL (compared to the more stringent value in the
published implementation of PC algorithm) allows a more effective control of the tradeoff between
false positives and false negatives in small samples by changing values of max-k.

By contrast, the SGS and PC algorithms (Spirtes et al., 2000) given no evidence in favor of
membership of X in PC(T ) and no reliable proof to the contrary, assumes that X has a common
edge with T . IAMB (Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a) to the contrary,
given some reliable evidence in favor of a variable X belonging to MB(T ) but no reliable proof to
the contrary, outputs X as member ofMB(T ) if X is in the tentative Markov blanket TMB(T ) and is
agnostic with respect to membership in MB(T ) if X is outside TMB(T ). Bayesian scoring methods
in small samples are dominated by their priors and typically they prefer sparse networks which lead
to fewer false positives and more false negatives.

4.5 Reasons for Good Performance of Non-Symmetry Corrected Algorithms

The empirical evaluations in part I of this work (Aliferis et al., 2010) have shown that the addition of
symmetry correction adds little to quality, while it detracts from computational efficiency. Evidently
very often EPC(T ) ≈ PC(T ) in real-life distributions and targets of interest. In addition, due to
imperfect power to detect and return strongly relevant features, applying symmetry correction leads
to reduced power and increased false negatives.
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Figure 3: Scenarios explaining good empirical performance of PC(T ) set for classification.

4.6 Reasons for Good Performance of the PC(T ) Set Instead of theMB(T ) Set for
Classification

According to the theoretical results summarized in Aliferis et al. (2010), under broad assumptions
spouses are needed for optimal classification performance. Given that in the majority of data sets
tested in Aliferis et al. (2010) as well as the experiments in Section 2 of the present paper, when the
set of parents and children is used instead ofMB(T ) it produces equal or almost equal performance,
more compact feature sets and faster feature selection times than inducting the fullMB(T ) (i.e., both
PC(T ) and MB(T ) estimated under the same assumptions of the theory that predicts that MB(T )
is needed for optimal feature selection). In this sub-section we provide likely explanations for the
empirically excellent performance of substituting the set PC(T ) in place ofMB(T ) for classification
(apart from the obvious possibility that spouses may be much fewer and with smaller predictive
value than parents and children). Figure 3 describes visually five plausible scenarios explaining the
phenomenon.

The first scenario corresponds to the situation whereby the target variable T does not have
children (and thus no spouses) by virtue of domain constraints. Such situations happen when the
target variable is a variable preceded in time by all other variables (e.g., patient outcome on the
basis of earlier observations); or when naturally the target variable cannot have children (e.g., the
target being meaning category of a text document as a function of patterns of presence/absence
of words in the text). The second scenario describes the situation where a child is not observed
(hidden) in the data set and thus the spouse B cannot be made informative for the target and thus
it can neither be detected nor can it enhance a classifier built from the data. The third scenario
describes the situation where a spouse has connecting paths to the target but these cannot be blocked
simultaneously because of small sample size and/or choice of max-k. Hence GLL-PC could admit
the spouse D as a member of PC(T ). The fourth scenario simply shows a case where a spouse is
also a child (or parent) and thus will be a member of PC(T ) as well as MB(T ). Finally the fifth
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scenario shows that an unmeasured variable may make a spouse appear as having a direct edge to
or from the target (and thus are detectable by GLL-PC).

We note that in practical data analysis and evaluations when both PC(T ) and MB(T ) are in-
duced and are found to have similar classification performance, typically MB(T ) is much larger
than PC(T ). However this may be a reflection of the inductive bias of GLL which prefers to admit
potential false positives if they cannot be shown for sample size reasons to be independent of the
target.

Finally note that explanations #1, 2, 3, and 4 are special cases of the assumptions of the Markov
blanket induction theory and thus they do not refute these assumptions (whereas #5 violates causal
sufficiency). In the discussion section we consider additional situations with violations of GLL
assumptions.

4.7 Error Estimation Problems in Wrapping and Standard Filters Due to Small Sample Size.
GLL Filtering is Less Sensitive to Error Estimation Difficulties and Robust to Small
Samples

Wrapping has been praised as a feature selection methodology for its ability to tailor the feature
selection to the inductive bias of the classifier(s) of choice as well as to the loss function of interest
(Kohavi and John, 1997). Occasionally, this property will work against the analysis (see Section 7
for example for how it can jeopardize causal discovery). On the other hand, wrapping has been
criticized for its very large computational cost as well as on the grounds that it is subject to No
Free Lunch Theorem limitations (i.e., a priori all wrappers are equally good, making it hard to find
the right wrapper for the distribution, loss function and classifier(s) of interest) (Tsamardinos and
Aliferis, 2003). In the present section we explain what we believe is perhaps the most serious prac-
tical shortcoming of wrapping feature selection methods, namely that they rely on error estimation
procedures that are often unreliable because of small sample sizes. The difficulties that will be
presented here help explain the sometimes poor performance of some of the feature selection algo-
rithms in the evaluation part (Aliferis et al., 2010). In contrast, we will show that GLL filtering is
resistant to these problems.

Recall that the critical point when applying error estimators is to have a sufficiently small vari-
ance and to be unbiased or to correct for any bias, as for example is the case of the (biased) Bootstrap
estimator. Consider an idealized example where a greedy (steepest-descent) backward selection
wrapper algorithm is applied on faithful data that contains 5 irrelevant features I1, . . . , I5 and one
strongly relevant feature S.

Assume that in reality the optimal feature set consisting of only the strongly relevant feature S
gives a predictor model with true error measured by AUC is 0.75 in the large sample (i.e., in the
distribution where the data is sampled from). For all practical unbiased error estimators, because of
variability in the estimates of error due to small sample sizes, and because of potential sensitivity
of the classifier employed to irrelevant features, some subsets that contain S will have error esti-
mates in small sample situations that are larger and some smaller than the true AUC of 0.75. The
backward wrapping starts by eliminating one variable at a time producing feature sets and corre-
sponding predictor models and by eliminating the feature that decreases error the most relative to
the starting model that contains all features. As a result, a feature set can be chosen, not because
the error is truly decreased if we remove any more features, but because the error estimates vary
and the backward wrapper (naively) does not take this into account. If the wrapper is configured
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Table 10: Trace of semi-interleaved HITON-PC without symmetry correction (i.e., GLL-PC-
nonsym subroutine) showing insensitivity to error estimation difficulties that affect wrap-
pers.

to employ statistical significance tests each time it compares estimates of error between pairs of
feature sets and corresponding classifiers, because statistical tests of error estimate differences are
often underpowered (which is another manifestation of the large variance in error estimates) such
tests will often fail to reveal true differences. Thus the wrapper can falsely conclude that two mod-
els have same error when in reality they do not. This will entail choosing wrongly the smallest of
the two and eliminating valuable features. Also due to multiple comparisons, such an algorithm
will falsely conclude for a proportion of feature sets that a difference in predictor model perfor-
mance is statistically significant thus continuing removal of relevant features when they should not
be removed.

We emphasize that this problem is not present in wrapper methods only. In traditional feature
ranking methods, the above problem is also present but often ignored in the sense that many studies
on feature ranking algorithms produce a performance-to-feature-number plot, with performance
estimated on a single data set. However the practical data analysis problem of how to select a specific
number of features that achieves at most some desired error is left unspecified and in fact subject
to the same error estimation difficulty that applies to wrapping. Moreover, in recent algorithms
such as RFE, the problem is acknowledged implicitly in the applied examples provided by the
authors of the method, since feature sets are reduced by for example 50% in each iteration of the
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algorithm creating a new subset of features examined by cross-validation by the algorithm (Guyon
et al., 2002). This is done to reduce overfitting of selected feature set to the data because of the
large variability of error estimates. As evidenced by the evaluations presented in Aliferis et al.
(2010), it is possible to improve on traditional wrapping, ranking and RFE selection by applying
statistical tests of difference of error estimates, or by increasing/decreasing the granularity of feature
selection (i.e., proportion of features removed at each iteration). Still the produced feature sets are
not optimal in parsimony. The numbers of strongly relevant, weakly relevant and irrelevant features
is not critical to the existence of the problem, neither is the type of wrapper (forward, backward,
forward-backward, GA, etc.) as long as some basic requirements are met: error estimation is not
perfect but subject to sampling variability due to small sample, and enough features exist in data for
enough error estimate comparisons to be spurious.

Contrary to the above, GLL filtering relies little on error estimation3 and uses robust mecha-
nisms to control false negatives and false positives separately for strongly relevant, weakly relevant
and irrelevant features respectively. In Table 10 we give a concrete demonstration of how semi-
interleaved HITON-PC (without symmetry correction for simplicity) is less prone to errors in the
same example. The critical observation is for an irrelevant feature to enter TPC(T ) and stay in it,
it has to survive multiple (i.e., 2|TPC(T )|) tests of conditional independence and each such test has
probability 1−α to leave the irrelevant feature in TPC(T ). The total probability of failing to reject
the irrelevant variable thus grows up to exponentially small to the number of tests performed and is
independent of the sample size. In our simplified example with just one strongly irrelevant feature
inside TPC(T ), each irrelevant feature has probability of entering and staying in TPC(T ) of at most
α2 = 0.0025. This is true regardless of whether sample size is 10,000 samples or just 10 samples.

5. Algorithmic Extensions to GLL

In the present section we introduce algorithmic extensions to the Generalized Local Learning algo-
rithms: parallel and distributed local learning and FDR pre-filtering.

5.1 Parallel and Distributed Local Learning

Following ideas for parallelizing the IAMB algorithm for MB(T ) estimation (Aliferis et al., 2002),
we introduce a coarse-grain parallelization of GLL-PC that addresses two problems: (a) the data
does not fit into fast memory (RAM), and (b) even if the data fits, we wish to speedup execution
time by parallel processing. We allow for the possibility that the user may have access to just one
node or, alternatively, may have access to several nodes arranged in a parallel cluster. The algo-
rithm presented can return PC(T ) and can run with any instantiation of GLL-PC. The algorithm
is designed to be correct provided that no symmetry correction is required (i.e., in distributions
where EPC(T ) ≡ PC(T )). Correct parallel/distributed versions in distributions where symmetry
correction is needed can also be obtained as can algorithms that parallelizeMB(T ) induction. In the
present paper we only discuss parallel GLL-PC without symmetry correction because of its concep-

3. Notice that some reliance on error estimation exists in domains where a suitable max-k and α are not known and need
be optimized by cross-validation. The corresponding number of parameterizations is very small however (typically
at the order of 10 combined parameter configurations) and thus error estimation is less likely to lead the algorithm
astray. The same is true for the optional wrapping step in GLL-MB which selects features from a highly reduced set
compared to the original feature set (notice that this wrapping step is seldom needed in practice and is reserved for
higher sample settings).
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Figure 4: Chunked Parallel GLL-PC algorithm (not symmetry corrected).

tual and implementation simplicity and speed, because it can be used for both causal discovery and
prediction, and because as demonstrated empirically (Aliferis et al., 2010), many real distributions
behave consistently with being “symmetrical” (i.e., EPC(T ) ≡ PC(T )).
Chunked Parallel GLL-PC algorithm (not symmetry corrected): This algorithm assumes that

one has access to several nodes and that the data can fit to the available memory once distributed,
while it may or may not fit to a single node. Initially the algorithm divides the input data D into ch
chunks Ci such that every Ci includes all cases, but only a subset Vi of the variable set V plus T .
For simplicity we assume that each chunk has an equal number of features (that can be determined,
for example, by the maximum size that can be processed in fast memory or the number of available
computer nodes in a parallel implementation). Variations where unequal variable allocations are
employed can be easily obtained in similar fashion. Then GLL-PC-nonsym is run on each chunk
(as indicated by the extra input argumentCi) returning ChunkPCi(T ) (i.e., parents and children of T
in chunk Ci). Next, GLL-PC-nonsym is run on one node with the union ∪iChunkPCi(T ), it obtains
a local neighborhood L, and terminates by outputting L. Figure 4 gives the parallel GLL-PC high-
level pseudo-code. Step #2 is the parallel step.

We note that a potential problem with chunked GLL-PC is that the tentative neighborhood in
some chunk(s) may grow very large (up to the size of the chunk in the worst case) while the true
neighborhood across all variables may be very small. This creates the possibility of overflow both
in the sense of data not fitting in a single node and in the sense of not having enough sample size to
perform reliable statistical inferences.

Theorem 1 Chunked parallel GLL-PC without symmetry correction is sound given the sufficient
conditions for soundness of GLL-PC and the requirement that in the generating distribution P,
PC(T ) is the same as the Extended PC(T ) (see definition of EPC(T ) in Aliferis et al. 2010).

Proof In each chunk, GLL-PC-nonsym will identify all true members of PC(T ) that are in the
chunk (because these can never be rendered independent of T , according to Theorem 1 in Aliferis
et al. 2010) and some false positives which cannot be eliminated without conditioning on PC(T )
members that belong to another chunk. Thus in step #3, GLL-PC-nonsym is executed on a superset
of PC(T ). By definition, all non-members of PC(T ) can be rendered independent of T conditioned
on some subset of PC(T ) as long as PC(T ) ≡ EPC(T ). Since PC(T ) ≡ EPC(T ), the identified
PC(T ) will be correct.

The complexity of Chunked Parallel GLL-PC without symmetry correction is in the worst case
exponentially slower than running GLL-PC on all data. This is because the complexity of GLL-PC

259



ALIFERIS, STATNIKOV, TSAMARDINOS, MANI AND KOUTSOUKOS




































































































































































Figure 5: Results of application of single-CPU and parallel versions of semi-interleaved HITON-
PC on the four largest real data sets (Ohsumed, ACPJ Etiology, Thrombin, and Nova).
Average results over 4 data sets are shown. The following versions of HITON-PC are
used: HITON-PC4 (max-k=4, α=0.05), HITON-PC3 (max-k=3, α=0.05), HITON-PC2
(max-k=2, α=0.05), HITON-PC1 (max-k=1, α=0.05).

is worst-case exponential to the size of TPC(T ) and while TPC(T ) in all data can be very small,
in some chunks TPC(T ) can be as large as the chunk itself. When however local neighborhoods
in each chunk are smaller than the global TPC(T ) and since GLL-PC is worst-case exponential,
the algorithm can also be exponentially faster than running GLL-PC on all data. This is in sharp
contrast with parallel IAMB where both the speedup is linear to the number of chunks in the best
case (upper bound on the speed-up factor is ch) and worst-case running time is a small constant
multiple of running the algorithm on all data (Aliferis et al., 2002).
Chunked Distributed GLL:When we run the algorithm with data already distributed, the data

splitting and transfer step #1 (as well as associated transfer cost) is omitted. Typically we will need
to link the distributed data using a suitable common key. For example consider a large organiza-
tion wishing to analyze data in order to find determinants of production costs overall many and
geographically dispersed branches, each with its own local data set and different recorded features.
An appropriate key might be time label of observations. Another example is hospital patient data
distributed among numerous local databases in different units and labs of the hospital, where patient
id is a suitable key.
Chunked GLL with single CPU: This variant assumes access to one CPU only and addresses

the problem of data not fitting in the fast memory. By processing parts of the data sequentially and
obtaining a small superset of PC(T ) each time, a much larger data set than what fits in fast memory
can be analyzed.
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Figure 6: Results of application of semi-interleaved HITON-PC with and without FDR correction

on 13 real data sets. Average results over the data sets are shown. The following ver-
sions of HITON-PC are used: HITON-PC4 (max-k=4, α=0.05), HITON-PC3 (max-k=3,
α=0.05), HITON-PC2 (max-k=2, α=0.05), HITON-PC1 (max-k=1, α=0.05), HITON-PC
opt (max-k and α are optimized over values {1,2,3,4} and {0.05,0.01}, respectively, by
cross-validation to maximize SVM classification performance).

We now apply a parallel version of semi-interleaved HITON-PC on the four largest real data
sets (Ohsumed, ACPJ Etiology, Thrombin, and Nova) of the empirical evaluation in Aliferis et al.
(2010). We use 10 CPU’s on the ACCRE cluster described in Aliferis et al. (2010). As can be seen
in Figure 5 the parallel version achieves the same parsimony and classification performance as the
single-CPU application with speedup for three out of four versions of HITON-PC (see Figure 5).
P-values from the permutation test of the null hypothesis that single-CPU and parallel GLL-PC
algorithms achieve the same performance are 0.7468 (for SVM classification), 0.4950 (for KNN
classification), 0.2408 (for proportion of selected features), and 0.6374 (for running time in min-
utes). We note that running times for HITON-PC algorithm in this subsection are less than in the
remainder of the paper because these experiments were executed on the most recent version of the
ACCRE cluster.

5.2 FDR pre-Filtering

As explained in Section 3, in simulated and resimulated data sets with weak-signal/small sample
and in all-irrelevant features situations, removing features using false discovery rate control can
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Figure 7: Graph distances averaged over all 9 simulated and resimulated data sets, all selected tar-
gets in each data set, and multiple samples of a given size. The following versions of semi-
interleaved HITON-PC with FDR correction are used: HITON-PC4-FDR (max-k=4,
α=0.05), HITON-PC3-FDR (max-k=3, α=0.05), HITON-PC2-FDR (max-k=2, α=0.05),
and HITON-PC1-FDR (max-k=1, α=0.05). “Best causal” is the best causal feature selec-
tion algorithm among techniques that do not incorporate FDR. “Best non-causal” is the
best non-causal feature selection algorithm. See Aliferis et al. (2010) for a detailed list of
algorithms.

improve the number of false positives in HITON-PC and MMPC. We applied HITON-PC with
FDR pre-filtering in all real data sets of Aliferis et al. (2010). As can be seen in Figure 6, this
enhancement does not entail improvements in parsimony, classification performance or running
time in the data sets tested. P-values from the permutation test of the null hypothesis that GLL-PC
algorithms with and without FDR correction achieve the same performance are 0.5254 (for SVM
classification), 0.3698 (for KNN classification), 0.9426 (for proportion of selected features), and
0.3776 (for running time in minutes). Since however the algorithm exhibits small sensitivity to
false positives due to multiple comparisons when many irrelevant features are expected and few
relevant features are present, we recommend pre-filtering with FDR. Alternatively, if one gets a few
variables combined with error estimates consistent with uninformative classifier, then re-running
standard GLL with FDR pre-processing can be tried.

When evaluating local causal discovery performance in the simulated data of Aliferis et al.
(2010), semi-interleaved HITON-PC with FDR pre-processing achieves dramatically better perfor-
mance than other algorithms including other HITON and MMPC variants with respect to graph
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Figure 8: Local-to-Global Learning (LGL) algorithmic schema.


















Figure 9: MMHC global learning algorithm as an instance of LGL.







             










Figure 10: HHC global learning algorithm as an instance of LGL.

distance score, which indicates average causal proximity to the target of the returned variables.
Specifically, in large sample (N=5,000) HITON-PC with FDR correction achieves up to 5-fold re-
duction in the graph distance score relative to the best non-FDR filtered causal algorithm and up to
9-fold reduction compared to the best non-causal algorithm. In small sample (N=200) the reduction
in both cases is 2-fold. P-values from the permutation test of the null hypothesis that the best non-
causal algorithm performs the same as the average HITON-PC with FDR correction are <0.0001
for sample sizes 200, 500, and 5,000. P-values for comparison with the best causal algorithm are
<0.0001, 0.0030, and <0.0001 for sample sizes 200, 500, and 5000, respectively. See Figure 7.
This improvement incurs only a very small decrease in sensitivity as evidenced by small concurrent
increases in false negatives.

6. Spanning Local to Global Learning

In the present section we investigate the use of local learning methods (such as GLL) for global
learning in a divide-and-conquer fashion. We remind that a major motivation for pursuing local
causal learning methods is scaling up causal discovery and causal feature selection as explained
in Aliferis et al. (2010). Although similar concepts can be used for region learning, we will not
address this type of discovery problem here. The main points of the present section are that (a) the
local-to-global framework can be instantiated in several ways with excellent empirical results; (b)
an important previously unnoticed factor is the variable order in which to execute local learning,
and (c) trying to use non-causal feature selection in order to facilitate global learning (instead of
causal local learning) is not as a promising strategy as previously thought.
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6.1 General Concepts

A precursor to the main idea behind the local-to-global learning approach can be found in SCA
(Friedman et al., 1999), where a heuristic approximation of the local causes of every variable con-
straints the space of search of the standard greedy search-and-score Bayesian algorithm for global
learning increasing thus computational efficiency. Given powerful methods for finding local neigh-
borhoods, provided by the GLL framework, one can circumvent the need for uniform connectivity
(as well as user knowledge of that connectivity) and avoid the application of inefficient heuristics
employed in SCA thus improving on quality and speed of execution. Figure 8 provides the gen-
eral algorithmic schema term LGL (for local-to-global learning). Steps #1-3 can be instantiated
in numerous ways. If an admissible GLL-PC (as defined in Section 4 of Aliferis et al. 2010) is
used in step #1, and step #2 is consistent with the results of GLL-PC for all variables, and a sound
orientation scheme in step #3, then the total algorithm is trivially sound under the assumptions of
correctness of GLL-PC. These are the admissibility requirements for the LGL template. It follows
that:

Proposition 1 Under the following sufficient conditions we obtain correctly oriented causal graph
with any admissible instantiation of LGL:

a. There is a causal Bayesian network faithful to the data distribution P;

b. The determination of variable independence from the sample data D is correct;

c. Causal sufficiency in V .

The recently-introduced algorithmMMHC is an instance of the LGL framework (Tsamardinos et al.,
2006). Figure 9 shows how MMHC instantiates LGL. MMHC is not sound with respect to orien-
tation because greedy steepest-ascent search is not a sound search strategy for search-and-score
global learning. Despite being theoretically not sound the algorithm works very well in practice
and in an extensive empirical evaluation it was shown to outperform in speed and quality several
state-of-the-art algorithms (Greedy Search, GES, OR, PC, TPDA, and SCA) (Tsamardinos et al.,
2006).

6.2 A New Instantiation of LGL: HHC

To demonstrate the generality and robustness of the LGL framework we provide here as an in-
stantiation of LGL, a new global learning algorithm termed HHC (see Figure 10), and compare it
empirically to the state-of-the-art MMHC algorithm. We also show that the two algorithms are not
identical in edge quality or computational efficiency, with the new algorithm being at least as good
on average as MMHC.

Table 11 presents results for missing/extra edges in undirected skeleton, number of statistical
tests for construction of skeleton, structural Hamming distance (SHD), Bayesian score, and execu-
tion time on 9 of the largest data sets used for the evaluation of MMHC. Since the data sets were
simulated from known networks, the algorithm output can be compared to the true structure. As can
be seen, in all 9 data sets, HHC performs equally well with MMHC in terms of SHD and Bayesian
score. In 8 out of 9 data sets it performs from 10% to 50% fewer tests, and in one data set (Link)
it performs >10 times the tests performed by MMHC resulting in running 35% slower in terms of
execution time. Because MMHC was found to be superior to a number of other algorithms for the
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Table 11: Comparison of HHC and MMHC global learning algorithms. Both algorithms were ex-
ecuted on a random sample of size 1000, using default parameters of MMHC as imple-
mented in Causal Explorer (i.e., G2 test for conditional independence, α = 0.05,max-k
= 10, Dirichlet weight = 10, BDeu priors).

data sets tested, HHC’s better performance over MMHC in 8 out of 9 data sets (in terms of number
of statistical tests for skeleton construction) and similar performance in 9 out of 9 data sets (in terms
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Figure 11: Two examples where the variable ordering for local learning can make execution of the
LGL algorithm from quadratic to exponential-time.

of quality metrics) translates also to excellent performance of HHC relative to Greedy Search, GES,
OR, PC, TPDA, and SCA (Tsamardinos et al., 2006).

6.3 Importance of Variable Prioritization for Quality and Efficiency

An important parameter of local-to-global learning previously unnoticed in algorithms such as SCA
and MMHC is the ordering of variables when executing the local causal discovery variable-by-
variable (i.e., not in parallel). We will assume that results are shared among local learning runs
of GLL-PC, that is when we start learning PC(X) by GLL-PC rather than starting with an empty
TPC(X) set, we start with all variables Y : X ∈ PC(Y ). This constitutes a sound instantiation of
the GLL-PC algorithm template as explained in Aliferis et al. (2010). Figure 11 gives two extreme
examples where the right order can “make-or-break” an LGL algorithm.

In Figure 11(a) it is straightforward (and left to the reader to verify) that an order of local
learning < X1,X2, . . . ,X100,Y > without symmetry correction (the latter being a reasonable choice
as we have seen) requires a quadratic number of conditional independence tests (CITs) for the
unoriented graph to be correctly learned. However, the order of local learning<Y,X1,X2, . . . ,X100 >
requires up to an exponential number of CITs as max-k and sample are allowed to grow without
bounds. Even with modest max-k values, the number of CITs is higher-order polynomial and thus
intractable. Even when Y is not in the beginning but as long as a non-trivial number of X’s are after
it in the ordering, the algorithm will be intractable or at least very slow. The latter setting occurs in
the majority of runs of the algorithm with random orderings.

In Table 12 we provide data from a simulation experiment showing the above in concrete terms
and exploring the effects of limited sample and connectivity at the same time. As can be seen, under
fixed sample, running HHC with order from larger to smaller connectivity, as long as the sample
is enough for the number of parents to be learned (i.e., number of parents is ≤ 20), increases run
time by more than 100-fold. However because sample is fixed, as the number of parents grows the
number of conditional independence tests equalizes between the two strategies because CITs that
have too large conditioning sets for the fixed sample size are not executed. Although the number
of CITs is self-limiting under these conditions, quality (in terms of number of missing edges, that
is, number of undiscovered parents of T ) drops very fast as the number of parents increases. The
random ordering strategy trades off quality for execution time with the wrong (larger-to-smaller
connectivity) ordering, however in all instances the right ordering offers better quality and 2 to
100-fold faster execution that random ordering.
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Table 12: Results of simulation experiment with HHC algorithm. The graphical structure is de-
picted on Figure 11(a). HHC was run on a random sample of size 1,000 with G2 test for
conditional independence, α=0.05, max-k = 5, Dirichlet weight = 10, BDeu priors.

A more dramatic difference exists for the structure in Figure 11(b) where Y is a parent of all
X’s. Here the number of tests required to find the parent (Y ) of each Xi is quadratic to the number
of variables with the right ordering (low-to-high connectivity) whereas an exponential number is
needed with the wrong ordering (large-to-small connectivity). Because the sample requirements
are constant to the number of children of Y , quality is affected very little and there is no self-
restricting effect of the number of CITs, opposite to what holds for causal structure in Figure 11(a).
Hence the number of CITs grows exponentially larger for the large-to-small connectivity ordering
versus the opposite ordering and a similar trend is also present for the average random ordering in
full concordance with our theoretical expectations. See Table 13 for results of related simulation
experiments.

These results show that in some cases, it is possible to transform an intractable local learning
problem into a tractable one by employing a global learning strategy (i.e., by exploiting asymmetries
in connectivity). Thus the variable order in local-to-global learning may have promise for substantial
speedup and improved quality in real-life data sets (assuming the order of connectivity is known or
can be estimated). However the optimal order is a priori unknown for some domain. Can we use
local variable connectivity as a proxy to optimal order in real data? The next experiment assumes
the existence of an oracle that gives the true local connectivity for each variable. The experiment
examines empirically the effect of three orders (low-to-high connectivity, lexicographical (random)
order, and high-to-low connectivity order) on the quality of learning and number of CITs in the
MMHC evaluation data sets. It also compares the sensitivity of HHC to order.

As can be seen in Figure 12, the order does have an effect on computational efficiency however
not nearly as dramatic in the majority of these more realistic data sets compared to the simpler
structures of Figure 11. An exception is the Link data set in which low-to-high connectivity allows
HHC to run 17 times faster than lexicographical (random) order and 27 times faster than high-to-low
connectivity order. For the majority of cases, running these algorithms with lexicographical (i.e.,
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Table 13: Results of simulation experiment with HHC algorithm. The graphical structure is de-
picted on Figure 11(b). HHC was run on a random sample of size 1,000 with G2 test for
conditional independence, α=0.05, max-k=5, Dirichlet weight = 10, BDeu priors. Empty
cells correspond to experiments when the algorithm did not terminate within 10,000,000
CITs.

random) order is very robust and does not affect quality adversely but affects run time and number
of CITs to a small degree (details in Table S21 in the online supplement).

Thus, while connectivity affects which variable order is optimal in LGL algorithms, ranking
by local connectivity does not exactly correspond to the optimal order. Figure S3 in the online
supplement shows the number of CITs plotted against true local connectivity in each one of the 9
data sets used in this section. Related to the above, Figure S4 in the supplement also shows the
distribution of true local connectivity in each data set. Consistent trends indicating the shape of the
distributions by which the degree of local connectivity may determine an advantage of orderings
low-to-high to high-to-low connectivity are not apparent in these data sets.

We hypothesize that more robust criteria for the effect of variable ordering in LGL algorithms
can be devised. For example, the number or total cost of CITs required to locally learn the neigh-
borhood of each variable. Such criteria are also more likely to be available or to be approximated
well during practical execution of an algorithm than true connectivity. A variant of HHC, algorithm
HHC-OO (standing for HHC with optimal order) (Aliferis and Statnikov, 2008) orders variables
dynamically according to heuristic approximations to the total number of CITs for each variable.
We also conjecture that the strategy for piecing together the local learning results strongly interacts
with the local variable ordering to determine the tradeoff between the quality and efficiency of LGL
algorithms. Evaluation of these hypotheses is outside the scope of the present paper.

6.4 Using non-Causal Feature Selection for Global Learning

In recent years several researchers have proposed that because modern feature selection methods
can deal with large dimensionality/small sample data sets, they could also be used to speed up or
approximate large scale causal discovery (e.g., Kohane et al. 2003 use univariate feature selection to
build so-called “relevance networks”), or hybrid methods can be employed that use feature selection
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Figure 12: Number of CITs required for skeleton construction during execution of HHC expressed
as % points and normalized within each data set to lexicographical order. Data for three
orderings of variables is shown on the figure: low-to-high connectivity, lexicographical,
and high-to-low connectivity orders. HHC was executed with same parameters as in
Table 11. More detailed results are provided in Table 11 and Table S21 in the online
supplement.

as a pre-processing to build a skeleton and then an orientation algorithm like Greedy Search in the
spirit of MMHC and LGL (Schmidt et al., 2007). The results of Aliferis et al. (2010) contradict
this postulate because they show that non-causal feature selection does not give locally correct
results. However it is still conceivable that orientation-and-repair post-processing algorithms (e.g.,
with Bayesian search-and-score) can still provide a high quality final causal graph. We test this
hypothesis by examining several such hybrid methods using respectively RFE, LARS-EN and UAF
post-processed by Greedy TABU Bayesian search-and-score. We use simulated data sets from 5
out of 9 Bayesian networks employed earlier in the present section. This is because the other 4
networks cannot be used for reliable training and testing of the underlying classifier since they have
several variables with very unbalanced distributions. As shown in Table 14, the hypothesis is not
corroborated by the experimental results. In particular, Greedy Search with feature selection-based
skeleton, exhibits substantial drops in quality of the returned networks (measured by structural
hamming distance Tsamardinos et al., 2006) and typically more than one order of magnitude longer
running times compared to HHC with lexicographical (random) variable ordering. On the basis
of these findings, which are consistent with the results in Aliferis et al. (2010), we do not find
encouraging evidence that non-causal feature selection can be used as an adjunct to global causal
discovery. Strong evidence exists however in favor of using principled local causal methods instead,
within the frameworks of LGL.
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Table 14: Results for hybrid methods using RFE, LARS-EN and UAF.

7. Using Causal Graphs and Markov Blanket Theory as a Conceptual Analysis
Framework for Feature Selection Methods

In the present section we show that by adopting a causal structural perspective founded on the
theoretical results outlined in Aliferis et al. (2010), several strengths and weaknesses and general
performance characteristics of non-causal feature selection algorithms become apparent and our em-
pirical findings in Aliferis et al. (2010) can be better understood. We review several established and
state-of-the-art methods both from a feature selection perspective (e.g., does the algorithm exhibit
false positives and false negatives relative to minimal feature set that yields optimal predictivity?)
and from a causal discovery perspective (is the output of the algorithm causally sound?). With re-
spect to the latter for reasons elucidated in Aliferis et al. (2010), we focus on localization of causal
inferences (i.e., whether the feature selection output is locally causally correct), and when this is not
obtained, we examine whether some other useful causal inference can be made.
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Figure 13: Limitations of univariate feature selection explained using a causal graph perspective.
Strength of univariate association with the target variable T is measured in a fixed sample
of size 10,000 by the negative p-value of a G2-test and depicted next to each variable.







Figure 14: Example showing that Principal Component Analysis yields redundant features.

7.1 Univariate Association Filtering

Figure 13 shows the causal structure of a data-generating process. The causal structure is pa-
rameterized as shown in Appendix Figure 19. This structure and parameterization entails that
association(B,T ) < association(C,T ). Because of synthesis of information along two paths how-
ever, association(A,T ) > association(C,T ) and association(A,T ) > association(E,T ). The exam-
ple illustrates that from the feature selection perspective the optimal predictor set (i.e., the Markov
blanket) for predicting or classifying the target T is {C,D,E,F}. However, because univariate asso-
ciations of non-MB(T ) members can be higher than those of members, false positives are incurred
when selecting features using univariate association-based filters. Furthermore, spouses without
connecting path to the target will have zero univariate association and thus will not be selected at
all by univariate filtering. The embedded table shows the false positives and false negatives (rela-
tive to the gold standard set MB(T )) at each possible threshold for variable inclusion. In all cases
predictivity is suboptimal.

From the causal discovery perspective, the example makes evident that non-causally relevant
features such as A and B can be selected with higher ranking than causally relevant ones such as D
and E. Association synthesis thus forbids an interpretation of the higher-ranked causal variables as
more direct causes (or effects) than lower-ranked features even when all of them are causal. Worse
yet, even without synthesis, an arbitrarily large number of non-causal features can be selected before
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Figure 15: Example showing that Principal Component Analysis yields locally causally inconsis-
tent results.

truly causal ones are selected. To see why this is the case consider that between C and B there may
be arbitrarily many variables arranged in a chain so that their association with T is larger than that
of both true cause D and true effect E.

7.2 Principal Component Analysis

As can be seen in Figure 14, the principal component defined by the diagonal (Y −X = 0) perfectly
separates the two target classes and will be chosen by a PCA procedure since it explains maxi-
mum proportion of variance in the data. While projecting the original data on this single dimension
reduces dimensionality of the classification problem, from the perspective of finding the original
features that are important and non-redundant the method leads to false positives (since the coeffi-
cients of both Y and X are equal in the depicted Principal Component, indicating that both features
are deemed equally necessary).

The example in Figure 15 shows that PCA is not sound for causal discovery. As shown in the
figure, X is a direct cause of T and Y is not causal for T but confounded by X . Application of
causal learning via the usual assumptions and procedures reveals that X is a direct cause or effect
of T and that Y is not directly causally linked with T (the requisite conditional independence tests
are depicted). However, an optimal procedure for Principal Component classification will select the
second principal component PC2 which achieves perfect classification. However both X and Y have
equal coefficients in each principal component. Hence PCA may select both redundant features and
non-causal features.

7.3 Feature Selection Using SVMWeights

A fundamental weakness of the maximum-gap inductive bias, as employed in SVMs, is its local
causal inconsistency. Consider a scenario (Figure 16) similar to the previous sub-section where
we wish to discover the direct causes of a response variable T , from observations about variables
X , Y , T . Assume for simplicity that T is a terminal variable and thus X and Y precede it in time.
For example, T can be a clinical phenotype and X , Y can be gene expression values. The causal
process that generates the data is seen in the upper right corner of Figure 16. As can be seen in the
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Figure 16: Example showing that SVM weight-based feature selection yields locally causally in-
consistent results and redundant features.

left part of the figure, the SVM classifier can perfectly predict T using X and Y as predictors. In
doing so it prefers the classifier with gap G1 to the classifier with smaller gap G2. The preferred
classifier assigns non-zero (and in fact equal) weights to both X , Y thereby admitting Y in the
local causal neighborhood if selected variables are interpreted causally. However, X renders Y
independent from T and not vice versa. More generally, in distributions where the Causal Markov
Condition holds, SVMs will occasionally fail to detect that Y is not a local cause of T . Sound causal
discovery algorithms do not face this problem, however. In addition, the preference for maximum
gap classifier biases in favor of assigning non-zero weights to redundant features (Y in the example).

On the positive side, theoretical results show that SVMs in the large sample will assign zero
weights to irrelevant variables (Hardin et al., 2004). Despite this theoretical good property, in the
experiments of Aliferis et al. (2010) it was found that in realistic finite sample weights of irrelevant
variables are non-zero. In the work of Statnikov et al. (2006) it was found that weights of irrelevant
features occasionally exceed those of weakly relevant features and furthermore that SVM weights
are also susceptible to assigning larger weights to synthesis features rather than direct causes and
effects.

7.4 Wrapping

One of the widely-cited advantages of wrapping as a feature selection method is that it allows to
tailor the selection of features to the inductive bias of the classifier (Kohavi and John, 1997). We
show here how this property when combined with rich connectivity may yield causally misleading
results. Consider the generative process of Figure 17. The target T is a quadratic function of its
true causes A, B. Variables X , Y are effects of A, B respectively with similar non-linear functional
relationships. A causal discovery procedure such as HITON-PC given enough sample and a suitable
statistical test of independence will discover {A,B} as the correct set of direct causes and direct
effects. Consider however a practitioner who attacks the problem of learning a good classifier for
T and reducing the necessary feature set using wrapping instead. If, as would normally be the
case, the analyst starts with a simpler model class before proceeding to consider more complex
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Figure 17: Example showing that wrapping, by tailoring feature selection to the classifier inductive
bias may produce causally misleading results.







    

   
   

   

    
    

  

  
  







Figure 18: Example showing that connectivity may mitigate violations of faithfulness. Dashed line
indicates a highly non-linear function (XOR). The left part shows the causal structure,
while the right part shows its parameterization.

ones, assuming that noise components e2, and e3 are small enough then the linear classifier would
perform very well with {X ,Y} as predictors and a wrapper tailored to the linear inductive bias would
eliminate A and B.

In small networks with a few variables and limited connectivity the above possibility is small,
however in large networks with thousands of variables and rich connectivity as well as with massive
information redundancy (e.g., biological networks) such “variable replacement” is entirely feasible
and thus tailoring feature selection to a classifier’s inductive bias (as wrapping does) can be an
obstacle to sound causal discovery.

7.5 Connectivity and Priors Compensating for Violations of Faithfulness - Learning XOR
Parents Using Univariate Association in GLL and Other Algorithms

A violation of faithfulness where constraint-based algorithms are expected to fail is when the target
is an extremely non-linear function of its parents. A prototypical example is when T is the parity
(XOR) of its parents A and B. Conventional wisdom, based on the truth table of the XOR func-
tion, dictates that first-order effects are zero and, as a result, the parents cannot be detected by the
inclusion heuristic of the algorithm (i.e., HITON-PC or MMPC). As shown in Figure 18 however,
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connectivity among variables can mitigate this difficulty. In the figure, variables X and Y can have
non-zero univariate association with T , even though in textbook descriptions of parity where par-
ents are unconnected and with 50% prior probability each for being 0 or 1, univariate association
vanishes. An example parameterization that allows for this effect is given in the figure as well. This
counter-intuitive phenomenon occurs because when X and Y are common effects of A, knowing the
value of X is informative about A and thus about Y . Therefore the joint values of {X ,Y} are con-
strained and this creates univariate association of X and Y with T . Similarly, conditional association
of X with T given Y is non zero. The phenomenon is not restricted to parity (or other extremely
non-linear) functions in which the parity parents are connected in the network. Figure 20 in the
Appendix shows an example where skewed priors on the unconnected parity parents X , Y lead to
non-zero univariate association of X and Y with the target T .

The phenomenon described in this sub-section does not only apply to GLL algorithms but ex-
tends to other feature selectors as well. For example, the success of univariate filtering as feature
selector, which has been documented in many domains (Guyon et al., 2006), can in part be explained
via connectivity effects that allow univariate association to detect complex non-linear relationships
of selected features with the target variable.

The discussion in this section is complemented by analysis of embedded feature selection in
decision tree induction and of RELIEF in the online supplement Figures S5 and S6 (omitted here
due to space limitations). It is shown that these algorithms can admit false positives and false
negatives both predictively and causally with respect to the target variable neighborhood.

8. Discussion and Open Problems

In this section we present a thorough discussion of results, outline open problems and future direc-
tions, and provide a conclusion.

8.1 Discussion of Results

The algorithms presented, and their applied evaluation and theoretical analysis clarify many of
the initially open questions discussed in Aliferis et al. (2010) and point to several new research
directions. We showed that in empirical tests with 9 simulated data sets, GLL convergence to
optimal performance is very fast with respect to sample size both in the sense of producing feature
sets that have equal predictivity as the true MB(T ) and PC(T ) sets, and in the sense of achieving
near optimal predictivity even at moderate samples sizes. These results corroborate the empirically
good performance of GLL instantiations in real data sets (Aliferis et al., 2010).

An unexpected and important finding was that GLL algorithms exhibit strong intrinsic control
of false positives due not only to weakly relevant but also due to irrelevant features. This control
is empirically better in the tested data sets than what formal state-of-the-art FDR control provides
except in the rare case when the data consists exclusively of irrelevant features. In Statnikov et al.
(2010) we show that GLL can discover differentially expressed genes when the sample size is so
small that FDR does not yield any gene. The same cannot be said for other feature selection methods
that were found to be particularly prone to false positives due to both irrelevant and weakly relevant
features. On the other hand, it needs to be noted that classical FDR methods do not control at all
weakly relevant false positives (as GLL does). A simple pre-filtering of GLL algorithms with an
FDR control method eliminates false positives in all cases tested and yields the best algorithm for
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local causal learning among tested algorithms. We expect that other algorithms for example PC and
MMHC will benefit from such an FDR prefiltering as well.

Within the GLL framework both the max-k and h-ps parameters control the false positives and
false negatives tradeoff, through control of combined power and combined significance levels. We
examined via targeted experiments and theoretical discussion the complex determination of quality
of statistical decisions in GLL algorithms (aspects of which are shared by previous global constraint-
based algorithms). Having two parameters to control quality of statistical decisions confers advan-
tages since they can regulate different aspects of such decisions, and trade-off statistical quality with
computational complexity.

Our efforts to explain the good predictive performance of the estimated PC(T ) set compared to
the estimated MB(T ) set focused on producing explanations consistent with sufficient assumptions
for Markov blanket optimality so that the good performance of the PC(T ) set would not be wrongly
construed as entailing rejection of the theoretical assumptions, or as inability to infer the correct
MB(T ) when the assumptions hold in the data. This is because both the results of our simulated
experiments in Aliferis et al. (2010) as well as previously published experiments (Tsamardinos et al.,
2003b) show that GLL algorithms estimate very well the MB(T ) and PC(T ) sets.

We also used a causal graph point of view and Markov blanket concepts to understand a variety
of non-causal feature selection algorithms. This approach provides a cohesive and fresh perspective
into the behavior of several algorithms for feature selection. We made this point by showing that
the theory readily reveals why prominent feature selection methods exhibit many false positives and
why they cannot be used for sound causal discovery. This complements the findings of Aliferis
et al. (2010) that demonstrate empirical feature selection and causal discovery suboptimality for
many state-of-the-art non-causal feature selection methods.

We discussed in detail a fundamental statistical weakness of wrapping, namely that it is prone
to errors due to imperfect error estimation. This is especially the case when sample size is small
whereby practical unbiased error estimators have large variance. The same problem applies im-
plicitly to widely-used feature selection approaches such as ranking by univariate association and
selecting the first k features. We showed why GLL algorithms are less sensitive to this shortcoming.
In general our results show that GLL instantiations are robust enough to apply across a wide variety
of domains.

Established feature selection criteria in statistics such as the AIC (Akaike Information Criterion)
bare some resemblance to Markov blanket feature selection in the sense that AIC does not require
classification error estimation. Specifically, AIC balances the number of features (parameters) with
the likelihood of the data given a model: AIC = 2k−2log(L), where k is the number of parameters
and L is the likelihood function. Model selection is driven by optimizing AIC. A critical difference
however is that Markov blanket induction does not require a generative model of the data to be
calculated (but relies on conditional independence tests). Given that inducing a generative model is
in general harder than finding features that cannot be rendered independent of the target, and given
that many recent powerful classifiers do not build generative models (e.g., SVMs) it follows that
the Markov blanket induction approach has a corresponding advantage over AIC. Markov blanket
induction is less model-dependent than AIC for the same reason. Note that similarly the GLL algo-
rithms by not attempting to induce edge directionality (a task harder than edge detection, Ramsey
et al., 2006) except when absolutely necessary they avoid incurring errors in edge detection pro-
duced by false conclusions about directionality (since one type of discovery affects the other). As
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a result, Markov blanket induction via the GLL framework has advantages over eliciting Markov
blankets by using methods that require global or local orientation.

The extensive evaluation of GLL algorithms in Aliferis et al. (2010) shows that the sufficient
conditions stated in the proofs for correctness are likely to hold often, or that violations may be
small. In some cases we showed that the algorithms may not fail when the assumptions are violated.
Due to the critical role of non-faithfulness as a major source of possible failure we discuss it here
in more detail. Faithfulness is violated in a variety of situations (Spirtes et al., 2000), notably in
practice when (a) extremely non-linear or deterministic functions exist, when (b) causality cannot
be localized, and when (c) variables share the same information for a response (target variable).
Practical examples, respectively, are extreme epistasis in genetics, non-local causation in quantum
mechanics, and gene-phenotype information redundancy in gene expression microarrays. For many
additional reasons see Spirtes et al. (2000) and Meek (1995).

However, we showed that even in prototypical non-faithful functions such as XOR, the existence
of unbalanced priors or the existence of connectivity among XOR parent variables of the target can
make such parent variables visible again to the GLL algorithms as well as other feature selectors
(e.g., univariate association filtering). We believe that this finding may have broad implications of
which we mention a few. First, it explains in part the success of univariate feature selection methods
in many domains since univariate filtering can pick up features that are involved in extremely non-
linear functions. Second, other algorithms that are typically thought to not be able to learn such
functions, such as Genetic Algorithms (Sharpe, 2000) in many situations may be able to do just that.
In addition, to the extent that biological systems have evolved by evolutionary processes similar
to genetic algorithms, truly extreme epistatic functions may not be as rare as previously thought.
Recent proposals that suggest that such functions (i.e., biological systems) can be learned (i.e.,
evolved) by GAs (i.e., by evolution) through multiple objective optimization may be too pessimistic
(Lenski et al., 2003). Third, previous postulates that randomized experiments (e.g., in biology,
medicine and psychology) because they examine one causal factor at a time are thus unable to
detect parity-like functions, may also be pessimistic (Aliferis and Cooper, 1998).

Returning to non-local causality, we point out that cognitively it is advantageous to modularize
causal knowledge in order to reduce the connectivity of causal graphs and thus to control learning
complexity (as well as to increase ability to store and process such knowledge with limited cognitive
resources). We may thus be facing in both natural as well as artificial systems a selection bias
(relative to all possible theoretical distributions) where causal systems and models of those are
highly modular because it is easier to create and handle such systems and their models. Indeed
in most known macroscopic causal processes (e.g., biological pathways, medicine, engineering,
economics, social networks) causal systems are highly modular and thus local.

For all of the above reasons faithfulness is a very reasonable a priori, and powerful in prac-
tice, distributional assumption. At the same time at least some violations can be tolerated well by
causal algorithms that are designed to use it and existing research addresses violations systemati-
cally, for example extensions of standard causal discovery algorithms capable of addressing target
information equivalency (Statnikov, 2008).

The exploration of parallel and distributed techniques in the present paper showed that GLL is
amenable to parallelized and distributed local causal discovery and feature selection. We estab-
lished empirically the potential of parallelization for speeding up processing time without loss of
quality. The presented parallel algorithm can also be used for distributed feature selection and causal
discovery in a principled manner. Many more algorithms (namely that induce Markov blankets and
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admit symmetry correction when needed) can be constructed following the approach introduced in
parallel and distributed IAMB for Markov blanket induction (Aliferis et al., 2002). In contrast to
parallel IAMB however, parallel GLL-PC can be exponentially faster (or slower) than induction in
the full data. This is a very interesting future research direction.

In exploring the transition from local-to-global strategies we showed that the local-to-global
learning framework LGL can be instantiated in several ways. We examined one new instantiation of
local-to-global learning, algorithm HHC. Although in most real data tested a random variable order
is as good as perfectly-informed ordering by local connectivity, we showed in the present paper
something previously unnoticed, namely that in some cases the right order of local neighborhood
learning can entail exponential time vs. low-order polynomial time execution of local-to-global
algorithms. This finding has a subtle implication: if the right ordering can be found for local
learning, the resulting global learning of all variables can be faster than the local learning targeted
at just one variable. Thus, just as local learning can speed up global learning the reverse may also
be true.

On the other hand, our results showed that the idea that non-causal feature selection methods
could help in addressing scalability of formal causal algorithms may be misplaced in light of the
failure of non-causal feature selection methods to induce causality and given that highly scalable
and sound methods such as GLL algorithms do exist. Several tested algorithms where non-causal
feature selection is used to elicit a skeleton which is then oriented and refined by formal causal
global methods are very slow and typically produce lower-quality graphs than LGL instantiations
relying on sound local causal methods.

8.2 Open Problems and Future Directions

The results presented in Aliferis et al. (2010) and in the present paper merely scratch the surface of
causal feature selection algorithms, local causal learning, and local-to-global learning. We briefly
discuss here a few salient opportunities for moving this exciting area forward.

An assumption that is probably too strong for soundness of MB(T ) induction is that of causal
sufficiency. For example, we conjecture without formal proof, that the algorithms should attain
soundness even if the causal sufficiency is localized among the target and the members of its Markov
blanket. Even when this local causal sufficiency is violated, predictive optimality among measured
variables may not be compromised in many practical situations (although the usual causal interpre-
tation of the found features is affected). Characterizing localized versions of faithfulness and causal
sufficiency is an area that is likely to give a better understanding of existing algorithms and possibly
lead to improvements. Examining and dealing with the effects of temporal aggregation, sampling
(e.g., cellular) aggregation, feedback loops, and limited local causality on feasibility of local causal
discovery will be helpful in determining the space of practical usefulness of the GLL framework.

A previously underemphasized important parameter for false negatives control is the order of
conditional independence tests used for elimination (i.e., part of the elimination strategy in the
GLL-PC schema). In general, the earlier time that strongly relevant variables are being examined
for elimination, the better the chances for avoiding a false negative conditional independence test re-
sult since the combined power is larger. This is accomplished implicitly in HITON-PC and MMHC
by using heuristics that include strongly relevant features first in TPC(T ) and then in both semi-
interleaved HITON-PC and MMHC, where new candidates are considered for elimination first and
where conditioning sets are constructed with stronger candidates for PC(T ) first. Systematic study
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of such prioritization schemes may yield performance benefits over existing GLL instantiations.
Other areas that may yield improved performance is selective or full model averaging to address in-
stability ofMB(T ) estimation in small samples and optimizing alpha thresholds and FDR thresholds
either for a domain or a data set, possibly separately for each variable.

In general, the treatment of determination of unreliable tests by means of the heuristic rule and
parameter h-ps in GLL instantiations can be improved by incorporating formal power-size analysis
whenever possible. More broadly, removing the requirement for a uniform sample size requirement
across independence tests of same order (but different response function) is likely to yield improved
algorithms. Other statistical issues such as improved statistical handling of structural zeros for
discrete statistics, improved statistical tests that combine discrete and continuous data, handling
“forced” covariates (i.e., variables that need to remain in TPC(T ) or TMB(T ) so that a particular
effect is controlled for) are also worth exploring. Related to proper statistical testing is the issue
of optimal discretization, not for classification as has been explored before in the literature, but for
causal discovery (for a study toward that direction see Fu 2005). Other statistical extensions are
to adapt the GLL method for survival analysis, or other time-to-event analyses without discretizing
outcomes and with ability to handle observation censoring.

Exploitation of prior knowledge and development of methods to exploit prior causal knowledge
(e.g., variable ordering, forced edges, forbidden edges, known size of local neighborhoods, known
directionalities/structure and degree of connectivity, etc.) may yield greatly improved methods.
Comparisons of knowledge-enhanced to pure data-driven instantiations will then be very informa-
tive.

An obvious possibility not examined in the present work is using GLL methods for regression.
Another natural line of future research is to study situations where a loss function does not require
exact knowledge of the conditional probability P(T |MB(T )) in which a promising strategy is to
use a wrapping post-processing step to remove unnecessary features thus tailoring the final feature
set to a loss function less stringent than the ones that typically guarantee soundness for GLL-MB
algorithms.

Different distributional assumptions, for example monotone DAG faithfulness to make GLL
and LGL algorithms faster (for a first attempt see Brown et al. 2005) may provide algorithms that
tradeoff well quality for speed in specific domains.

Although we did not address the issue in this work, post-processing the results of GLL and LGL
output using algorithms that detect hidden variables and orient edges is an obvious direction for
research.

The study of convergence behavior of GLL and of false discovery rate control were either em-
pirical or qualitative in the present paper. Derivation of mathematical analyses of convergence to the
optimal MB(T ) and optimal classifier (as function of sample size), of effects of synthesis, of how
common synthesis is, of combined power and alpha for specific distributions will be very interest-
ing, especially as other components of the framework (for example handling of unreliable tests) are
also formalized.

Developing methods that handle efficiently very large neighborhoods with hundreds of features
and small sample size, as well as developing methods for special-purpose causal structures (e.g.,
genome-wide association studies) is also an area where significant improvements can be made.

The skeleton phase of LGL is a form of dynamic programming and this explains its efficiency
and soundness and probably leaves reduced opportunity for dramatic efficiency improvements. One
possible avenue would be the exploration of different strategies for linking together the local skele-
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Figure 19: Parameterization of the network in Figure 13.

ton results (step #2 in LGL schema). Both MMHC and HHC use an “OR” strategy but many
alternative approaches can be devised. Furthermore, the edge orientation step may be greatly im-
proved over the use of greedy search-and-score. Numerous other obvious instantiations of LGL (for
instance combining GLL-PC versions with global algorithms such as GES, and TPDA) can also
be implemented with substantial potential for good empirical performance. Moreover, methods to
automatically identify optimal variable prioritization for local learning can yield improvements in
certain distributions and we outlined related research directions in Section 6.3.

Finally, extending the framework to address broader definitions of feature selection is partic-
ularly important. Examples include finding: all sets that give desired trade-off between feature
number and predictivity; all sets with smallest cost that give highest predictivity (i.e., when differ-
ent observation costs apply for each variable); and all sets that optimize arbitrary multi-attribute
utility/loss functions.

8.3 Conclusions

The empirical and theoretical results presented in the present paper and its companion paper (Alif-
eris et al., 2010) support the notion that local causal learning in the form of Markov blanket and local
neighborhood induction is a theoretically well-motivated and empirically robust learning methodol-
ogy as embodied in the Generalized Local Learning framework. Generalized Local Learning yields
algorithms with excellent performance in data analysis geared toward classification and causal dis-
covery. Local-to-global learning strategies have the potential to enhance large-scale causal dis-
covery. Several existing open problems offer possibilities for non-trivial theoretical and practical
discoveries, making this an exciting field of research.

Appendix A.

This Appendix provides additional tables and figures referenced in the paper.
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Table 15: Simulated and resimulated data sets used for experiments. The Lung Cancer network is
resimulated from human lung cancer gene expression data (Bhattacharjee et al., 2001)
using the SCA algorithm (Friedman et al., 1999). The Gene network is resimulated from
yeast cell cycle gene expression data (Spellman et al., 1998) using SCA algorithm. More
details about data sets are provided in Tsamardinos et al. (2006).

 

 

 

 

 

 

 

 

 

 

 

 

 




Table 16: Algorithms used in local causal discovery experiments with simulated and resimulated
data.
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Figure 20: In this example, T = XOR(X ,Y ). The priors of X and Y are given in the table. Both X
and Y have very strong univariate association with T despite being XOR parents and in
the absence of connectivity.
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Abstract
We study the problem of learning an optimal Bayesian network in a constrained search space;
skeletons are compelled to be subgraphs of a given undirected graph called the super-structure.
The previously derived constrained optimal search (COS) remains limited even for sparse super-
structures. To extend its feasibility, we propose to divide the super-structure into several clusters
and perform an optimal search on each of them. Further, to ensure acyclicity, we introduce the
concept of ancestral constraints (ACs) and derive an optimal algorithm satisfying a given set of
ACs. Finally, we theoretically derive the necessary and sufficient sets of ACs to be considered for
finding an optimal constrained graph. Empirical evaluations demonstrate that our algorithm can
learn optimal Bayesian networks for some graphs containing several hundreds of vertices, and even
for super-structures having a high average degree (up to four), which is a drastic improvement in
feasibility over the previous optimal algorithm. Learnt networks are shown to largely outperform
state-of-the-art heuristic algorithms both in terms of score and structural hamming distance.
Keywords: Bayesian networks, structure learning, constrained optimal search

1. Introduction

Although structure learning is a fundamental task for building Bayesian networks (BNs), when
minimizing a score function, the computational complexity often prevents us from finding optimal
BN structures (Perrier et al., 2008). With currently available exact algorithms (Koivisto et al., 2004;
Ott et al., 2004; Silander et al., 2006; Singh et al., 2005) and a decomposable score like BDeu,
the computational complexity remains exponential, and therefore, such algorithms are intractable
for BNs with more than around 30 vertices given our actual computational capacity. For larger
systems, heuristic searches like greedy hill-climbing search (HC) or customized versions of this
search are employed in practice (Tsamardinos et al., 2006).

Recently, Tsamardinos et al. (2006) proposed an algorithm called max-min hill-climbing
(MMHC) that combines an independence test (IT) approach with a score-based search strategy:
first, an undirected graph is built based on an IT approach, and then, a constrained greedy hill-
climbing search returns a local optimum of the score function. Thus, MMHC can be considered as
a constrained search, a concept introduced by Friedman et al. (1999) together with the sparse can-
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didate (SC) algorithm. Such algorithms have been empirically shown to outperform unconstrained
greedy hill-climbing (Friedman et al., 1999; Tsamardinos et al., 2006). Based on the success of con-
strained approaches, Perrier et al. (2008) proposed an algorithm that can learn an optimal BN when
an undirected graph is given as a structural constraint. Perrier et al. (2008) defined this undirected
graph as a super-structure; the skeleton of every graph considered is compelled to be a subgraph
of the super-structure. This algorithm can learn optimal BNs containing up to 50 vertices when the
average degree of the super-structure is around two, that is, a sparse structural constraint is assumed.
However, its feasibility remains limited.

Independently, Friedman et al. (1999) suggested that when the structural constraint is a directed
graph (in the case of SC), an optimal search can be carried out on the cluster tree extracted from
the constraint. This cluster-based approach could potentially increase the feasibility of optimal
searches; nevertheless, the algorithm proposed in Friedman et al. (1999) requires to be given a
directed graph-based constraint and to extract a cluster tree. For the latter, a large cluster might be
generated, preventing an optimal search from being carried out.

Another potential approach is to search the best BN by checking the network obtained by with-
drawing edges in cycles one-by-one, beginning from an initial network which is build by connecting
children and their optimal parents with directed edges without checking acyclicity as in B&B al-
gorithm (de Campos et al., 2009). However, children in the best BN are often selected as the best
parents without considering acyclicity if the size of a given data set is sufficient. Thus, for the
estimation of the best BN of more than hundred vertices and sufficient data samples, the initial net-
work may contain hundreds of small cycles, and it is impossible to check these cycles in the search
process.

In this study, we take up the concept of a super-structure constraint and propose a cluster-based
search algorithm that can learn an optimal BN given the constraint. Therefore, unlike in Friedman
et al. (1999), our algorithm uses an undirected graph as the structural constraint. In addition, we use
a different cluster decomposition that enables us to consider more complex cases. As Tsamardinos
et al. (2006) and Perrier et al. (2008) showed, good approximations of the true super-structure can
be obtained by an IT approach like the max-min parent-children (MMPC) method (Tsamardinos et
al., 2006).

If the super-structure is divided into clusters of moderate size (around 30 vertices), a constrained
optimal search can be applied on each cluster. Then, to find a globally optimal graph, one could con-
sider all patterns of directions for the edges between clusters and apply a constrained optimal search
on each cluster for every pattern of directions independently and return the best result found. We
theorize this idea by introducing ancestral constraints; further, we derive the necessary and sufficient
ancestral constrains that we must consider to find an optimal network and introduce a pruning tech-
nique to skip superfluous cases. Finally, we develop a super-structure constrained optimal algorithm
that extends the size of networks that we can consider by more than one order.

The performance of our algorithm is evaluated on the Alarm, Insurance, and Child networks
(Beinlich et al., 1989; Binder et al., 1997; Cowell et al., 1999) extended by the tiling method
(Tsamardinos et al., 2006) to obtain networks having several hundreds of vertices. Experiments
show that our algorithm clearly outperforms MMHC and HC with the TABU search extension.
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2. Related Works

Given data D for a set of random variables V , learning an optimal BN using a decomposable score
like BDeu involves finding a directed acyclic graph (DAG) N∗ such that

N∗ = argmin
N ∑

v∈V
s(v,PaN(v);D), (1)

where PaN(v) ⊆V is a set of parents for a vertex v in network N and s(v,PaN(v);D) is the value of
the score function for v in N. Hereafter, we omit the subscript N for Pa and D for s. In this section,
we introduce some structure learning algorithms to show the motivation of our research.

2.1 Optimal search

Although finding a global optimum, that is, a solution of (1), is NP-hard, several optimal algorithms
have been developed (Koivisto et al., 2004; Ott et al., 2004; Silander et al., 2006; Singh et al., 2005).
The time complexity has been successfully reduced to O(n2n), where n is the number of vertices in
BN (i.e., |V | = n).

2.2 Hill-climbing

For learning a larger system, heuristic algorithms must be used. Greedy hill-climbing (HC) is one of
the most commonly used algorithms in practice. HC only finds local optima, and upgraded versions
of this base algorithm have been extensively studied, leading to some improvement in the score and
structure of the results (e.g., by using a TABU list).

2.3 Sparse Candidate

To improve HC, Friedman et al. (1999) limited the maximum number of parents and restricted the
set of candidate parents for each vertex. They established SC algorithm and introduced the concept
of constraining the search space of score-based approaches.

2.4 Max-min Hill-climbing

MMHC is a hybrid method combining an IT approach and a score-based search strategy. Tsamardi-
nos et al. (2006) showed that on average, MMHC outperforms other heuristic approaches including
SC and HC.

2.5 Constrained Optimal Search

In SC and MMHC, the learnt structures are local optima. Perrier et al. (2008) extended the optimal
algorithm of Ott et al. (2004) and established a constrained optimal search (COS) that learns an
optimal BN structure whose skeleton is a subgraph of a given undirected graph G = (V,E) called
the super-structure, that is, COS aims to find N∗

G, the solution of (1), while constraining PaN(v) to
be included in N (v), where N (v) is the neighborhood of v in G. Although using a super-structure
increases the feasibility of optimal searches, COS is still limited when the super-structure is dense
(high average degree).
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2.6 Optimal Search with Cluster Tree

Friedman et al. (1999) suggested the possibility of optimally searching acyclic subgraphs of a di-
graph constructed by connecting each vertex and its pre-selected candidate parents with directed
edges without checking acyclicity. Here, unlike MMHC and COS, the structural constraint is rep-
resented by a directed graph. An algorithm would proceed by converting the digraph into a cluster
tree, where clusters are densely connected subgraphs. Then, it would perform an optimal search on
each cluster for every ordering of the vertices contained in the separators of clusters. However, due
to the difficulty of building a minimal cluster tree, large clusters can make the search impractical.

2.7 B&B Algorithm

Recently, de Campos et al. (2009) proposed an optimal branch-and-bound algorithm. This algo-
rithm constructs an initial directed graph by linking every vertex to its optimal parents although this
might create directed cycles. Then, it tries to search every possible case in which the direction of
one edge comprising each directed cycle is constrained for keeping acyclicity, and finds optimal
parents under the constraints iteratively until DAGs are obtained. After the completion of the full
search, the optimal solution is finally given by the best DAG found. In addition, for score functions
decomposable into penalization and fitting components, optimal parents under the constraints are
further effectively computed using a branch-and-bound technique that was originally proposed by
Suzuki et al. (1996). This method is interesting in that it is original and allows the development
of an anytime search that returns the best current solution found and an upper bound to the global
optimum. When the sample size is small, few directed cycles occur in the initial directed graph
and updated graphs because information criteria tend to select a smaller parent set for each vertex
in small sample data (Dojer, 2006). However, for a large sample size, due to the occurrence of a
large number of directed cycles, the complexity of this method can be practically worse than classic
optimal searches.

Thereafter, we will consider the same problem as in the COS approach, that is, to find N∗
G, an

optimal BN constrained by the super-structure G = (V,E), an undirected graph. In our case, we
propose a cluster-based search to reduce the complexity drastically; here, clusters are of a different
nature from the ones in Friedman et al. (1999), as shown in the next section.

3. Edge Constrained Optimal Search

In this section, we describe procedures of the proposed algorithm in a bottom-up manner. Under
the assumption that the skeleton is separated to small subgraphs, we first describe the definition
of ancestral constraints for each subgraph and consider an algorithm to learn an optimal BN on a
subgraph under some ancestral constrains. We then explain the procedures in order to efficiently
build up an optimal BN on the skeleton by using information of optimal BN on each subgraph under
the conditions of ancestral constraints to be considered.

3.1 Ancestrally Constrained Optimal Search for A Cluster

Hereafter, we assume that we are given a set of edges E− ⊂ E such that the undirected graph
G− = (V,E \E−) is not connected.
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Figure 1: An example of a super-structure to illustrate the definitions we have introduced. The
edges of E− are dashed and they define a cluster C (gray). δ indicated by arrows is one
of the 32 TDMs possible over EC that defines V in

C,δ = {v1,v2} and Vout
C,δ = {u1,u2}.

Definition 1 (cluster and cluster edges) Let C = (VC,EC) be a maximal connected component of
G−. We refer to C as a cluster and call EC ⊂ E− containing all and only the edges incident to a
vertex in VC the set of cluster edges for C.

Definition 2 (tentative direction map) Given a set of edges EC, we define a tentative direction
map (TDM) δ on EC as a set of pairs {(e,d),e ∈ EC and d ∈ {←,→}} such that for ∀e ∈ EC, there
uniquely exists d such that (e,d)∈ δ. In other words, δ associates a unique direction with each edge
in EC.

In the following sections, we show that by successively considering every possible δ on E− and
learning the optimal BN on each cluster independently we can reconstruct N∗

G. However, to avoid
creating cycles over several clusters, our method has to consider all the possible ancestral constraints
for a cluster, a notion that we introduce hereafter.

Definition 3 (in-vertex and out-vertex) Considering a cluster C and a TDM δ on EC, we define
V in
C,δ and V

out
C,δ as V

in
C,δ = {v ∈ V \VC | ∃va ∈ VC,({v,va},→) ∈ δ} and Vout

C,δ = {v ∈ VC | ∃va ∈ V \
VC,({v,va},→) ∈ δ}, respectively. We drop the subscripts C and δ when there is no ambiguity. We
call v ∈V in

C,δ an in-vertex and v ∈V
out
C,δ , an out-vertex.

Figure 1 illustrates the previously introduced definitions. In this section, we assume C and δ to
remain constant.

Definition 4 (ancestral constraints) An ancestral constraint (AC) is a pair (v,u) with v ∈V in
C,δ and

u ∈Vout
C,δ that is used to disable v as an ancestor of u. Let A be a set of ancestral constraints (ACS),
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and A(v) be the set of all out-vertices ui such that (v,ui) ∈ A . We say that A is a nested ancestral
constraint set (NACS) if and only if for any va and vb in V in

C,δ, A(va) ⊆ A(vb) or A(va) ⊇ A(vb)
holds. Finally, given two ACSs A and B , if ∀v ∈V in

C,δ, we have that A(v) ⊆ B(v), and we say that B
is stronger than or equal to A and denote this relation as A ≤ B .

Finally, we recall the definition of a topological ordering and some notions related to it.

Definition 5 (π-linearity and A-linearity) Given an ordering π (i.e., a bijection of [|1,n|] in V ),
we say that it is a topological ordering of a BN N if for every v, Pa(v) is included in Pπ(v) = {u ∈
V | π−1(u) < π−1(v)}, the set of the predecessors of v; in such a case, N is said to be π-linear. Given
an ACS A and a BN N, we say that N is A-linear if and only if it respects all ACs in A . In addition,
in the case of a NACS, there exists a topological ordering π of N such that ∀v ∈V in

C,δ and ∀u ∈A(v),
π−1(u) < π−1(v) holds.

For notational brevity, if π−1(u) < π−1(v) holds for two vertices v and u, we hereafter write
u≺π v. Using the previous definitions, we can now prove the validity of our approach.

Theorem 1 There exists δ∗ on E− and NACSs A∗
i for every cluster Ci of G− coherent with a global

optimal BN N∗
G. In other words, we can obtain N∗

G by considering the separately obtained optimal
BN for every cluster, NACS, and TDM possible.

Proof We consider an optimal DAG N∗
G and one of its topological orderings π∗. There exists a

unique TDM δ∗ coherent with π∗. From δ∗, we define for every cluster Ci the ACS A∗
i such that

∀v ∈ V in
Ci,δ∗ ,A

∗
i (v) = Pπ∗(v)∩Vout

Ci,δ∗ . A∗
i are definitely NACSs since for every va and vb ∈ V in

Ci,δ∗
if va ≺π∗ vb, then by definition, A∗

i (va) ⊆ A∗
i (vb). Further, the subgraphs N∗

i of N∗
G on the sets

Vi =VCi ∪V in
Ci,δ∗ are A

∗
i -linear (because the definition of A∗

i is based on π∗). Furthermore, each N∗
i is

an optimal graph onVCi∪V in
Ci,δ∗ given the constraints of δ

∗ and A∗
i (otherwise, we could build a DAG

having a lower score than N∗
G). Therefore, if we independently compute an optimal BN for every

cluster, for every TDM and every NACS, and return the best combination, we can build a globally
optimal BN on V .

From Theorem 1, the ACS to be considered is limited to only NACS, and N∗
G can be obtained

by searching the best combination of an optimal BN separately obtained on every cluster and for
every NACS and every TDM. Figure 2 shows the flowchart of the search strategy of our approach.
First, an optimal BN and its score on every cluster for every NACS and every TDM are computed.
Then, by using this information, an optimal BN and its score on a cluster obtained by merging two
clusters are computed for every NACS and every TDM. After the repeated computation of optimal
BNs and scores on merged clusters, an optimal BN and its score on a single cluster covering the
super-structure are finally obtained. The details and validity of the algorithms shown in the flowchart
are discussed in later sections.

The fundamental step involves learning an optimal BN on a cluster C for a given δ and A ; we
call this algorithm ancestrally constrained optimal search (ACOS). To describe it, we need to recall
some functions defined in optimal search algorithm by Ott et al. (2004); however, we prefer to use
the notations introduced by Perrier et al. (2008) for the sake of simplicity.
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Pruning constrained search (Algorithm 3):

an op!mal BN and its score for every cluster, 

every NACS, and every TDM are computed

Merged cluster (Algorithm 4):

An op!mal BN of a merged cluster 

and its score for every NACS and 

every TDM are computed

Construct Fs and Fp (Algorithm 1);

Ancestrally constrained op!mal 

search (Algorithm 2)

Super-structure is decomposed 

into small subgraphs called 

clusters (Sec!on 3.4)

Cluster Assembler (Algorithm 5):

Clusters are assembled into a single 

cluster and an op!mal BN for the single 

cluster and its score are obtained

An op!mal BN on the super-structure and 

its score are obtained

Call for computa!on

Call for computa!on

Figure 2: Flowchart of algorithms for the computation of an optimal BN on a super-structure. The
details of these algorithms are discussed in later sections.

Definition 6 (Perrier et al. 2008) For every v∈V and every X ⊆N (v), we define Fp(v,X) as being
the best parent set for v included in X and Fs(v,X) as the associated score:

Fs(v,X) = min
Pa⊆X

s(v,Pa),

Fp(v,X) = arg min
Pa⊆X

s(v,Pa).

Further, considering a cluster C, δ, and A , for every X ⊆ VC, we define ŝA(X) to be the best score
possible for a DAG over X∪V in

C,δ that satisfiesA (the scores of the vertices inV in are not considered),
and !A(X) to be the last element of a topological ordering (restricted to X) of an optimal DAG over
X ∪V in

C,δ that satisfies A (given the constraints). Later, the subscript A is omitted.

We first introduce an algorithm described in Perrier et al. (2008) that calculates Fs and Fp using
dynamic programming and then explain how we adapt the calculation of ŝ and ! to satisfy the TDM
and the NACS.

Algorithm 1: Calculate Fs and Fp (Perrier et al., 2008)
Input: Score function s and super-structure G
Output: Functions Fp and Fs

1. Set Fs(v,ø) = s(v,ø) and Fp = ø for all v ∈V .
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2. For all v ∈V and all X(0= ø) ⊆N (v)\{v}, compute

u∗ = argmin
u∈X

Fs(v,X \{u}),

Fs(v,X) = min{s(v,X),F(v,X \{u∗})},

Fp(v,X) =

{

X if s(v,X) ≤ Fs(v,X \{u∗})
Fp(v,X \u∗) otherwise .

Note that the in-vertices are considered differently in our algorithm; they either have no parents or
fixed parents, and can only be parents of few vertices in VC depending on A . Thus, although the
DAGs considered in the following algorithm are optimal on X ∪V in

C,δ, the score of v ∈ V in
C,δ (that

is fixed depending on δ) is not counted in ŝ(X) since it is the same for every DAG irrespective of
whether it is optimal or not.

From Theorem 1, the only orderings π such that u ≺π v for every v ∈ V in
C,δ and u ∈ A(v) are to

be considered. Therefore, for w ∈ VC and v ∈ V in
C,δ, v can be a parent of w if and only if v ≺π w,

implying u≺π w for every u ∈ A(v). Therefore, we do not need to consider v ∈V in
C,δ in our ordering

since we can infer whether v can be a parent of w by checking if it is ordered after all nodes in
A(v). We define for every X ⊆ VC the associate set PC(X) = X ∪ {v ∈ V in

C,δ | A(v) ⊆ X}; in other
words, for a given topological ordering π over X , the possible parents in X ∪V in

C,δ of w ∈ X are in
PC(Pπ(w))∩N (w). Using this result, we can present ACOS:

Algorithm 2: AncestrallyConstrainedOptimalSearch
Input: ClusterC, TDM δ, NACS A , super-structure G, and functions Fp and Fs (previously
computed)
Output: Optimal BN under A , δ, G, and its score, ŝ(VC)

1. Set ŝ(ø) = ∞ and !(ø) = ø.

2. For all X (0= ø) ⊆VC, do:

(a) Compute !(X) = argminv∈X{Fs(v,PC(X \{v})∩N (v))+ ŝ(X \{v})}.
(b) Define ŝ(X) as the minimal score obtained during the previous step.

3. Construct N∗, an optimal A-linear BN over VC, using Fp and !, and return N∗ and its score
ŝ(VC).

In Algorithm 2, the computation of Fs and Fp is carried out during preprocessing because it does
not depend on δ and A . Step 3 can be completed in linear time in n and is presented in Perrier et al.
(2008). To prove the correctness of ACOS, we explain the computation of ! in step (a).

Theorem 2 Given C, δ, and A , ACOS constructs an optimal constrained BN over VC ∪V in
C,δ.

Proof First, we recursively show on the size of X that the computation of ! and ŝ in Algorithm 2
respects their definition. Since the initialization in step 1 is correct, let us consider X 0= ø such
that for ∀Y ⊂ X , ŝ(Y ) and !(Y ) are well defined. For any v ∈ X , we would like to find the score
of the best DAG having v as a sink (i.e., v is the last element of a topological ordering over X).
In that configuration, all nodes in X \ {v} are predecessors of v, and therefore, they are potential
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Figure 3: If this graph is the best A-linear DAG with A = {(v1,u1)}, since both v1 and v2 are not
ancestors of u1 and u2, its strongest NACS isB withB(v1)=B(v2)= {u1,u2}. Therefore,
this graph is optimal for all seven NACSs included between A and B .

parents. Moreover, as stated previously, w ∈ V in
C,δ such that A(w) ⊆ X \ {v} can also be a parent

of v while satisfying ACs. Consequently, after adding the structural constraint G, the best score
for v is Fs(v,PC(X \ {v})∩N (v)). Finally, since v cannot be a parent of any nodes in X \ {v},
the best score over this set is ŝ(X \ {v}). Thus, step (a) of Algorithm 2 finds the best sink for
X and correctly defines !(X) and ŝ(X). Finally, as explained in Perrier et al. (2008), we can re-
build an optimal ordering π∗ over VC by using ! and obtain an optimal DAG by assigning ∀v ∈ VC,
Pa(v) = Fp(v,PC(Pπ∗(v))∩N (v)).

3.2 Pruning

Following Theorem 1, we know that ACOS has to be computed only for all NACSs. Although the
number of NACSs can be shown to be less than O(|EC|!) (because all NACSs can be generated
through orderings of V in

C,δ ∪V
out
C,δ ), it is experimentally worse than exponential in the number of

cluster edges. Fortunately, different NACSs frequently lead to the same optimal networks, and
many NACS do not need to be considered. For the cluster C and TDM δ shown in Figure 1,
Figure 3 shows an optimal BN N under NACSA = {(v1,u1)}. Since both v1 and v2 are not ancestors
of u1 and u2, its strongest NACS is B = {(v1,u1),(v1,u2),(v2,u2),(v2,u2)}. Therefore, N is an
optimal BN of seven NACSs between A and B: {(v1,u1)}, {(v1,u1),(v2,u1)}, {(v1,u1),(v1,u2)},
{(v1,u1),(v1,u2),(v2,u1)}, {(v1,u1),(v1,u2),(v2,u2)}, {(v1,u1),(v2,u1),(v2,u2)}, {(v1,u1),(v1,u2),
(v2,u2),(v2,u2)}. The next lemma formally describes this observation.

Lemma 1 Let A be a NACS and B , an ACS such that B ≥ A and that an optimal A-linear DAG
N∗ is also B-linear. Then, ∀A ′ such that A ≤ A ′ ≤ B , N∗ is also an optimal A ′-linear DAG.

Proof Since A ′ is more restrictive than A , an optimal A ′-linear DAG N′∗ verifies that s(N′∗) ≥
s(N∗). However, since N∗ is B-linear, it is alsoA ′-linear; therefore, it is optimal and s(N′∗) = s(N∗).
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By browsing the space of NACS in an order verifying that ∀i and j if Ai ≤A j then i≤ j, and by
using the previous lemma as a pruning criterion, we can considerably reduce the number of NACSs
to which ACOS is applied. For a givenC and δ, we consider a score-and-network (SN) map SC,δ as
a list containing pairs of optimal scores and networks generated by every NACS, not to be pruned.
We denote the set of SC,δ for all TDM as SC.

Algorithm 3: PruningConstrainedSearch
Input: ClusterC and TDM δ
Output: SN maps SC,δ

1. Initialize an empty set of NACSsU and an empty SN map SC,δ.

2. For every NACS Ai (ordered such that j ≤ k if A j ≤ Ak), do:

(a) If Ai ∈U , i++ and restart step (a).
(b) Otherwise, learn N∗, an optimal Ai-linear DAG of score s∗, using Algorithm 2.
(c) Let B be the ACS containing all ACs satisfied in N∗.
(d) ∀A ′ such that Ai ≤ A ′ ≤ B , add A ′ inU .
(e) Add the pair (N∗,s∗) to SC,δ.

For enumerating ordered NACSs, see Appendix A. The following theorem shows the correctness of
PruningConstrainedSearch.

Theorem 3 For every NACS A , there is an optimal DAG in SC,δ.

Proof This is trivial since from Lemma 1, we have already found an optimal DAG N∗ for the NACS
A ′ that are pruned (added toU in step (d)).

3.3 Assembling Clusters

Next, we describe how the results of two clusters C1 and C2 are combined. The algorithm given
below builds a set of SN maps SC for the merged clusterC out of SC1 and SC2 (with VC =VC1 ∪VC2).

Algorithm 4: MergeCluster
Input: Clusters C1 and C2 and sets of SN maps SC1 and SC2
Output: Merged clusterC and set of SN maps SC

1. Define C = (VC1 ∪VC2 ,EC1 ∪EC2 ∪ (EC1 ∩EC2))

2. For every TDM δ of EC, do:

(a) For every pair of TDM δ1 and δ2 of EC1 and EC2 that satisfy the following conditions:
Condition i ∀(e,d) ∈ δ, then (e,d) ∈ δi (i= 1 or 2),
Condition ii ∀e ∈ EC1 ∩EC2 , (e,d) ∈ δ1 if and only if (e,d) ∈ δ2,
i. For every pair of optimal networks and scores (N∗

1 ,s∗1) and (N∗
2 ,s∗2) of SC1,δ1 and

SC2,δ2 , respectively, do:
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A. Define N∗ = N∗
1 ∪N∗

2 and s∗ = s∗1+ s∗2
B. If there exists a directed cycle in N∗, restart step i with the next pair.
C. Let A be the ACS containing all ACs satisfied in N∗.
D. If there exists an optimal A-linear network in SC,δ that has a score smaller

than s∗, restart step i with the next pair.
E. Add the pair (N∗,s∗) to SC,δ.
F. Remove every pair (N′,s′) of SC,δ such that N′ is A-linear and s′ > s∗.

The next theorem shows that SC,δ contains an optimal BN and its score for every NACS onC.

Theorem 4 If for every pair of TDMs δ1 and δ2 and for every NACS, SC1,δ1 and SC2,δ2 contain pairs
of an optimal BN and its score, then SC,δ constructed by Algorithm 4 contains a pair of an optimal
BN and its score for every NACS.

Proof First, we show that for every NACS A over C, we can build an optimal A-linear BN by
merging two optimal networks on C1 and C2 for some NACSs A1 and A2. To do so, for a given
TDM δ, let us consider a NACS A for C, an optimal A-linear BN N∗ of score s∗ and one of its
topological orderings π∗ defined over VC (that is also in agreement with δ and A). i is used instead
of 1 and 2. We define π∗i the ordering of the vertices in VCi derived from π∗. Further, we call δi
the TDM of ECi derived from π∗i ; we have that δ1 and δ2 verify trivially conditions (i) and (ii)
stated in step (a) of Algorithm 4. Finally, we define Ai as a NACS for Ci such that for ∀v ∈ V in

Ci,δi ,
Ai(v) = Pπi(v)∩Vout

Ci,δi . Given an optimal Ai-linear network of SCi,δi N
∗
i and its score s∗i , let us con-

sider the graph N′ = N∗
1 ∪N∗

2 . This graph is acyclic since it is π∗-linear by construction. Further, its
score s′ = s∗1+ s∗2 is minimal for A-linear; otherwise, one of the N∗

i graphs would not be optimal.
Therefore, although N′ might be different from N∗, they both have the same score. Therefore, since
Algorithm 4 considers every coherent pair δ1 and δ2 (that verify conditions (i) and (ii)) and every
pair of NACS, SC,δ is correctly constructed.

Given the previous algorithm, we simply need to merge all the clusters to obtain an optimal
DAG N∗

G and its score, as explained in the following algorithm.

Algorithm 5: ClusterAssembler
Input: Set of all clusters C
Output: Optimal BN N∗

G and its score s∗

1. ∀C ∈ C , compute SC using Algorithm 3 for every δ.

2. While |C | > 1, do:

(a) Select a pair of clustersC1 andC2 such that |(EC1 ∪EC2)\ (EC1 ∩EC2)| is minimal.
(b) Compute the clusterC and SC by mergingC1 andC2 using Algorithm 4.
(c) Remove C1 and C2 from C , and add C to C .

3. Since G is the last element in C , return N∗
G and s∗, the sole pair stored in SG,ø.
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Figure 4: An example of super-structure shrinkage. A block C = (VC,EC) (gray) can be separated
from the rest of the super-structure by the removal of a cut-vertex v∈VC. Arrows indicate
the unique TDM δX for X = {a1,a2}.

The correctness of Algorithm 5 is directly derived from Theorem 4. In (a), although we do not prove
that the complexity is minimal by merging the clusters that imply less cluster edges for the merged
cluster at each step, we decided to use this heuristic. This is because the complexity depends on the
number of cluster edges in Algorithm 4; therefore, it is faster to always manipulate a cluster with a
small number of cluster edges.

3.4 Preprocessings

In this section, we describe a preprocessing that can drastically reduce the time complexity of our
method and the heuristic we used to select the edges in E−.

3.4.1 SUPER-STRUCTURE SHRINKAGE

First, we introduce the notions of a block and a block tree of an undirected graph. Their formal
definitions are described in Diestel (2005). A block is a biconnected subgraph of the undirected
graph, and vertices in the intersection of blocks are called cut-vertices, that is, the removal of cut-
vertices separates blocks. A block tree is a tree comprised of blocks as vertices and cut-vertices as
edges. We here show leaves of a block tree of the super-structure can be removed if their size is
small. Let us consider the case shown in Figure 4 where a blockC= (VC,EC) of the super-structure
G can be separated by withdrawing a cut-vertex v ∈VC and thatC is of a moderate size (|VC| < 30).
Then, all edges (v,w), where w 0∈ VC, are considered as cluster edges; because only v is connected
to cluster edges, no cycle can be created while merging an optimal DAG N∗

C over VC with another
cluster; otherwise, it would imply that there is a cycle in N∗

C. Therefore, there is no need of AC and
we propose to process this case in a different manner. For every TDM δ, we learn an optimal DAG
N∗
δ and its score s

∗
δ over VC. Then, we replace C by a single vertex v̂ in G to obtain the condensed

super-structure Ĝ. For every candidate parent set X of v̂ in Ĝ (i.e., ∀X ⊆N (v)\VC), there exists the
unique TDM δX corresponding to C. For example, if a candidate parent set X is set to {a1,a2} in

296



OPTIMAL SEARCH ON CLUSTERED STRUCTURAL CONSTRAINT

Figure 4, unique TDM δX for cluster edges (v,a1), (v,a2), (v,a3), and (v,a4) is indicated by arrows.
Using this observation, we redefine Fs on v̂ to be F̂s(v̂,X) = s∗δX and Fp to be F̂p(v̂,X) = N∗

δX
; here,

F̂p is used not only to store the optimal parent set of v in X ∪ (VC ∩N (v)) but also to save the
optimal network over C. We can repeat this technique to shrink every small subgraph separated by
the removal of a single vertex in G during preprocessing. This can lead to a drastic reduction of
complexity in some real cases, as discussed later.

3.4.2 PARTITIONING THE SUPER-STRUCTURE INTO CLUSTERS

To apply our algorithm, we need to select a set of edges E− that separates the super-structure into
small strongly connected subgraphs (clusters) having balanced numbers of vertices while minimiz-
ing the number of cluster edges for each cluster. Such a problem is called graph partitioning. In
our case, we employed an algorithm based on edge betweenness centrality that works efficiently for
practical networks (Newman et al., 2004).

3.5 Resulting Algorithm

We summarize all results presented thus far in the following algorithm that learns a super-structure
constrained optimal network and its score.

Algorithm 6: EdgeConstrainedOptimalSearch (ECOS)
Input: Super-structure G= (V,E) and data D
Output: Optimal constrained BN N∗

G and its score s∗

1. ∀v ∈V and ∀X ⊆N (v) compute Fs(v,X) and Fp(v,X).

2. Shrink every block possible in G to obtain a shrunk super-structure Ĝ and the functions F̂s
and F̂p.

3. Select E− using the graph partitioning algorithm and obtain the set of all clusters C .

4. ∀C ∈ C and ∀δ; apply Algorithm 3 and obtain the set of SN maps SC.

5. Merge all clusters using Algorithm 5 to obtain N̂∗
G and its score s∗.

6. Expand the subgraphs shrunk during step 2 to obtain N∗
G.

Note that after the expansion of shrunk subgraphs, s∗ does not change as the scores for these sub-
graphs are packed in F̂s.

3.6 Complexity

In this last section, although it is hardly feasible to derive the complexity of Algorithm 6 in a general
case because it strongly depends on the topology of the super-structure used, we propose an upper
bound of the complexity depending on a few characteristics of G. Subsequently, we describe some
practical generic structures to which ECOS can or cannot be profitably applied. We then present
an empirical evaluation of the algorithm over randomly generated networks and real networks, with
promising results being found for the latter.

Considering step 1 of ECOS, after defining the maximal degree of G as m=max
v∈V

|N (v)|, we
obtain that the number of scores calculated is upper bounded by O(n2m). This is actually the main
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reason for using a structural constraint because the functions Fp and Fs can be computed in a lin-
ear time for bounded degree structures (m < 30). Actually, this is feasible even for large m if an
additional constraint on the number of parents c is added, the complexity becoming O(nmc).

Next, if n1 is the size of the largest cluster that has been shrunk (this is a tunable parameter),
and considering that at maximum, the number of cluster edges of a shrunk block m′ is m− 1 and
the number of TDM is 2m′ , given the exponential complexity of calculating ŝ and !, we find that the
complexity of step 2 is bounded by O(b2m−12n1), where b is the number of blocks shrunk. In other
words, if n1 is tuned suitably, step 2 has negligible complexity as compared to the subsequent steps.
Similarly, step 3 is negligible since its complexity is only polynomial in n (O(mn3)).

However, step 4 requires a more detailed analysis. Given E−, we define n2 = maxC∈C |VC|, the
size of the largest cluster, and k=maxC∈C |EC|, the largest number of cluster edges. The complexity
of ACOS is trivially bounded by O(2n2). Further, because the number of NACS is less than the
number of permutations over V in∪Vout for a given TDM, we have that for every cluster, ACOS is
applied at maximum k!2k times. We derive an upper bound complexity for step 4 as O(q2n2k!2k),
where q is the number of obtained clusters. Note, however, that the factorial term experimentally
appears to be largely overestimated and that ACOS may actually be computed only O(βk) times for
some β> 2.

Finally, at worst, step 5 involves trying every pair of entries in two SN map sets; with the
maximum size of cluster edges of merged clusters K, the complexity might theoretically be as bad
as O(q(K!2K)2). However, in practice, because a major part of NACS was pruned in step 4, many
pairs are pruned in step 5, and because all superfluous values of the SN maps are eliminated in
Algorithm 4, its complexity is closer to O(qβk).

Following those rough upper bounds, we can derive some generic super-structures that are fea-
sible for any number of vertices while not being naı̈ve. For example, considering step 2, any super-
structure whose block tree contains only small blocks (less than 30 vertices) is feasible. Otherwise,
we can consider all the networks that can be generated by the following method:

• Generate an undirected graph G0 of low maximal degree (m< 10).

• Replace every vertex vi by a small graphCi (up to 20 or slightly more) and randomly connect
all edges connected to vi in G0 to vertices inCi.

If ECOS can select all edges between clusters for such networks while defining E−, the search
should finish in reasonable time even for larger networks (up to several hundreds of vertices). Con-
versely, if a super-structure contains a large clique (containing more than 30 vertices), ECOS cannot
finish as other optimal searches. To conclude, our algorithm may be a decisive breakthrough in
some real cases where neither optimal searches nor COS can be applied because of a large number
of vertices or a high average degree.

4. Experimental Evaluation

We conduct two types of numerical experiments for evaluating the performance of ECOS. In the for-
mer experiment, the practical time complexity of ECOS is estimated by the comparison with COS,
using random networks of various sizes. In order to show the performance on practically structured
networks, we then apply ECOS to the synthetically generated large scale network from Alarm, In-
surance, and Child networks in the latter experiment. The performance of ECOS is compared with
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n\ m̃ 2 2.5 3 3.5
10 100 100 100 100
20 100 100 100 100
30 100 100 100 100
50 100 100 95 40
75 100 100 61 0
100 100 100 4 0

Table 1: Number of times the computation finished within one day for a random graph of n vertices
and average degree m̃.

Algorithm m̃ 2 2.5 3 3.5

ECOS δm̃ 1.06 1.08 1.15 1.25
nmax(m̃) 355 273 151 93

COS δm̃ 1.50 1.63 1.74 1.81
nmax(m̃) 51 43 38 35

Table 2: Values of coefficients δm̃ and nmax(m̃) of ECOS and COS for average degree of super-
structure m̃. δm̃ is the estimated base of exponential time complexity and nmax(m̃) is the
feasible size of the super-structure for computation.

those of MMHC and greedy hill-climbing. All the computations in the following experiments were
performed on machines having 3.0 GHz Intel Xeon processors with a Core microarchitecture (only
one core was used for each experiment).

4.1 Benefit in Terms of Complexity

In the first series of experiments, we aimed to evaluate the average complexity of ECOS depending
on n and m̃, the average degree of G. Since the feasibility of ECOS depends on the pruning of
the search space, the theoretical derivation of the practical time complexity is difficult. Here, we
hypothesize that the average complexity is in the form of O(δnm̃), and then estimate δm̃. Let tm̃,n be
the time required for a network of n vertices and average degree m̃. Under our assumption of time
complexity, tm̃,n is given by

tm̃,n = const ·δnm̃, (2)

where const indicates the dependency of the implementation and machine specifications. From
Equation (2), we have that δm̃ = exp(1n(log tm̃,n− logconst)). Because logconst

n can be ignored for
large n, δm̃ can be estimated by exp( log tm̃,m

n ). For ∀m̃ ∈ {2,2.5,3,3.5} and
∀n ∈ {10,20,30,50,75,100}, we generate 100 random networks and we apply ECOS using 1,000
artificially generated samples in each case. We compute the average time t̃m̃,n that is required and
calculate δm̃,n = exp( log(t̃m̃,n)

n ). If our hypothesis is correct, δm̃,n should converge to δm̃ while n in-
creases. However, to keep the computation manageable, we stop the calculation if it requires more
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Network No. of vertices No. of edges
Alarm1 37 46
Alarm3 111 149
Alarm5 185 253
Alarm10 370 498
Insurance1 27 52
Insurance3 81 163
Insurance5 135 268
Insurance10 270 536
Child1 20 25
Child3 60 79
Child5 100 126
Child10 200 257

Table 3: Characteristics of the real networks considered in the computational experiment.

than one day. Hence, we probably underestimate δm̃ slightly; nevertheless, here, we attempt to
derive the exponential nature of the average complexity and not the real value of the constants. Fur-
ther, the following results are sufficient to obtain a rough estimate. The number of times we finished
the calculation for each pair of parameters is listed in Table 1. Due to the small ratio of finished
experiments for m̃ = 3 and 3.5, we selected the values δ3,75, δ3.5,50 for δ3 and δ3.5 , respectively.
Further, for every average degree, we evaluated the maximal number of vertices nmax(m̃) feasible
from the value of δm̃ calculated as proposed in Perrier et al. (2008).

Table 2 lists the values of δm̃ and nmax(m̃) for ECOS and COS. We should note that nmax(m̃) of
ECOS for m̃= 3 and 3.5 is overestimated since in this case, δm̃ is underestimated because only the
computations that finished were used to calculate it. In practice, nmax(m̃) of ECOS for m̃= 3 and
3.5 are respectively around 75 and 50 from the results listed in Table 1; therefore, we can clearly see
the practical advantage of ECOS over COS, and the improvement in terms of feasibility achieved by
our method. In addition, we should emphasize that random networks penalize the results of ECOS
because they do not have a logical partitioning. In real cases, we can hope that super-structures can
be efficiently partitioned, enabling better performances for ECOS.

4.2 Case Study

We considered four networks whose characteristics are summarized in Table 3; those networks
were generated from Alarm, Insurance, and Child networks by the tiling algorithm (Tsamardinos
et al., 2006). We compare the performances of ECOS to those of the following state-of-the-art
greedy algorithms: MMHC and greedy hill-climbing (HC), both using a TABU search extension;
the TABU list size was set to 100 as in Tsamardinos et al. (2006). COS is not included in this
evaluation because COS and ECOS are learning the same networks (or at least networks having the
same score, that is, the best one possible given the structural constraint). Further, COS cannot be
applied to such large networks when using such high values for α (cf. Perrier et al. 2008). The
super-structures were generated in two different ways: the true skeleton was given or a skeleton was
inferred by using MMPC (Tsamardinos et al., 2006) implemented in the Causal Explorer System
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Model Sample Size α Coverage Average Degree

Alarm5

1000

true 1.00 ±0.00 2.74±0.00
0.01 0.77 ±0.00 2.29±0.00
0.02 0.78 ±0.00 2.40±0.00
0.05 0.80 ±0.00 2.67±0.00

10000

true 1.00 ±0.00 2.74±0.00
0.01 0.94 ±0.00 2.67±0.00
0.02 0.94 ±0.00 2.77±0.00
0.05 0.95 ±0.00 3.01±0.00

Alarm10

1000

true 1.00 ±0.00 2.69±0.00
0.01 0.78 ±0.00 2.34±0.00
0.02 0.80 ±0.00 2.49±0.00
0.05 0.81 ±0.00 2.87±0.00

10000

true 1.00 ±0.00 2.69±0.00
0.01 0.95 ±0.00 2.70±0.00
0.02 0.95 ±0.00 2.84±0.00
0.05 0.96 ±0.00 3.14±0.00

Insurance5

1000

true 1.00 ±0.00 3.97±0.00
0.01 0.64 ±0.00 2.97±0.00
0.02 0.66 ±0.00 3.15±0.01
0.05 0.68 ±0.00 3.52±0.01

10000

true 1.00 ±0.00 3.97±0.00
0.01 0.80 ±0.00 3.43±0.00
0.02 0.81 ±0.00 3.53±0.00
0.05 0.83 ±0.00 3.73±0.01

Insurance10

1000

true 1.00 ±0.00 3.97±0.00
0.01 0.64 ±0.00 3.00±0.00
0.02 0.66 ±0.00 3.22±0.00
0.05 0.67 ±0.00 3.63±0.01

10000

true 1.00 ±0.00 3.97±0.00
0.01 0.80 ±0.00 3.46±0.00
0.02 0.81 ±0.00 3.57±0.00
0.05 0.82 ±0.00 3.81±0.01

Child5

1000

true 1.00 ±0.00 2.52±0.00
0.01 0.84 ±0.00 2.32±0.00
0.02 0.86 ±0.00 2.39±0.00
0.05 0.88 ±0.00 2.50±0.00

10000

true 1.00 ±0.00 2.52±0.00
0.01 1.00 ±0.00 2.53±0.00
0.02 1.00 ±0.00 2.55±0.00
0.05 1.00 ±0.00 2.57±0.00

Child10

1000

true 1.00 ±0.00 2.57±0.00
0.01 0.82 ±0.00 2.3±0.00
0.02 0.84 ±0.00 2.38±0.00
0.05 0.87 ±0.00 2.510±0.00

10000

true 1.00 ±0.00 2.57±0.00
0.01 0.99 ±0.00 2.58±0.00
0.02 0.99 ±0.00 2.61±0.00
0.05 0.99 ±0.00 2.65±0.00

Table 4: Coverage and average degree of super-structures for each experimental condition (mean±
standard deviation).

(Aliferis et al., 2003) with a significance level α ∈ {0.01,0.02,0.05}. Ten data sets of 500, 1,000,
and 10,000 samples were synthetically generated from each BN considered. Here, we evaluate and
discuss the cases of Alarm5, Alarm10, Insurance5, Insurance10, Child5, and Child10 with 1,000
and 10,000 samples. The results of all the cases including the remaining ones are summarized in
the supplemental material. To help evaluate the quality of the super-structures learnt by MMPC, we
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Figure 5: BDeu scores for ten data sets of Alarm10 with 10,000 samples.
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Figure 6: Values of SHD for ten data sets of Alarm10 with 10,000 samples.

summarized the ratio of true edges learnt (this ratio is called coverage) and the average degree of
the super-structures in Table 4.

For every experimental condition, the algorithms are compared both in terms of score (we used
the negative BDeu score, that is, smaller values are better) and structural hamming distance (SHD,
Tsamardinos et al. 2006) that counts the number of differences in the completed partially DAG
(CPDAG, Chikdering 2002) of the true network and the learnt one.

Figures 5 and 6 respectively show BDeu and SHD scores of ECOS, MMHC, and HC for ten
data sets of Alarm10 with 10,000 samples given the true skeleton and super-structures inferred
by MMPC with α = 0.01, 0.02, and 0.05. In order to clarify the relation between the results of
ECOS, MMHC, and HC for each data set, results from the same data set are linked up. In addition,
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the scaling of the plots for the four conditions are the same, and therefore, the results of HC are
the same for the four structural constraints considered. For the true skeleton and super-structures
obtained with α = 0.01, all ten computations of ECOS finished within two days and ECOS gives
the best scores in all the data sets both in terms of BDeu and SHD. In terms of BDeu, HC usually
performs better than MMHC, whereas it is the opposite in terms of SHD.

For α= 0.02, only two computations of ECOS finished within two days; nonetheless, the com-
puted scores are better than those of MMHC and HC both in terms of BDeu and SHD. For the
super-structures of α = 0.05, no computations of ECOS finished within two days. However, every
time ECOS finished, it gave better results than both HC and MMHC. With regard to the structural
constraint, the best results were obtained when the true skeleton was known. Further, for α= 0.01,
MMHC is better than HC for two data sets; but for α = 0.02, it is better for one data set; and
α = 0.05, it is better for no data sets. Because the coverage of super-structures with α = 0.01 for
Alarm10 with 10,000 samples is already maximal, as shown in Table 4, super-structures for higher
α contain more false-positive edges, which worsens the results of MMHC. We observe the same
results in terms of SHD as well.

BDeu and SHD scores for all the experiments are summarized in Tables 5 and 6; for each
experimental setup, the best result is in bold and the best result without the knowledge of the true
skeleton is underlined. The numbers in parentheses for ECOS represent the number of times ECOS
could finish within ten data sets in two days. The cases in which no computation finished are
indicated by “none”. Note that all computations of MMHC and HC finished in two days. BDeu and
SHD scores of the finished computations are averaged and rounded off to the nearest integer.

While HC outperforms MMHC in BDeu, MMHC outperforms HC in SHD, which agrees with
the results in Tsamardinos et al. (2006). A comparison of the results of MMHC and HC suggests that
a structural constraint helps to find networks with smaller SHD. However, this should not mislead
us into thinking that minimizing a score function is not a good method to learn a graph having a
small SHD. In fact, ECOS returns considerably better results than both MMHC and HC in terms
of SHD, strongly illustrating the validity of score-based approaches and also the use of a structural
constraint.

One could argue that it is possible to increase the quality of the results returned by MMHC by
using a larger α. However, as we can see in Table 6, although the score improves with higher α,
it is not always the case with the SHD. This is expected because MMHC converges to HC with an
increasing α; hence, it is essential in the greedy case to properly select α. On the other hand, ECOS
converges to OS for increasing significance levels. Although in rare cases, SHD slightly worsens
with an increasing α, we should generally use as large a significance level as possible when applying
ECOS, while ensuring that the algorithm finishes.

The average running time for the experiments in seconds (rounded off to the nearest integer) are
summarized in Table 7. All the algorithms except for MMPC are implemented in Java. For ECOS
and MMHC, the running time of MMPC is also included. Among the experiments performed till
the end, ECOS requires the maximum computational time (around 34 hours) in Insurance10 with
10,000 samples and the true skeleton. The maximum memory space (10 GB) was required by
ECOS during Insurance10 with 1,000 samples and α = 0.01. Fortunately, for all experimental
setups, ECOS outperformed the other two methods both in BDeu and SHD. Although it stopped for
some α> 0.01, our algorithm is still better with α= 0.01 than MMHC with α= 0.05.
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Model Sample
α

Algorithm
Size ECOS MMHC HC

Alarm5

1000

true 61753±376(10) 63294±477 62380±420
0.01 62111±347(10) 63128±428 62380±420
0.02 62015±364(10) 63041±489 62380±420
0.05 61920±387(10) 62959±458 62380±420

10000

true 487734±1109(10) 494611±1986 496108±1104
0.01 488807±1312(10) 495708±2212 496108±1104
0.02 488418±1137(10) 495373±2269 496108±1104
0.05 488182±1132(10) 495359±2638 496108±1104

Alarm10

1000

true 123725±481(10) 126863±857 125156±585
0.01 124406±706(10) 126673±833 125156±585
0.02 124243±750(10) 126456±869 125156±585
0.05 none 126375±831 125156±585

10000

true 975343±943(10) 999973±8022 991888±2144
0.01 976860±1464(10) 1000644±9143 991888±2144
0.02 976150±1404(2) 1000388±8109 991888±2144
0.05 none 1001610±6726 991888±2144

Insurance5

1000

true 81148±341(10) 81551±427 81955±407
0.01 81529±351(10) 81973±458 81955±407
0.02 81449±358(10) 81911±458 81955±407
0.05 81376±338(10) 81862±433 81955±407

10000

true 677374±864(10) 684990±3162 681516±1892
0.01 681584±1707(10) 688579±3521 681516±1892
0.02 680666±1418(10) 687627±2945 681516±1892
0.05 680201±1452(8) 686908±3196 681516±1892

Insurance10

1000

true 162311±453(10) 164039±455 164034±571
0.01 162949±517(10) 164557±711 164034±571
0.02 162890±505(10) 164541±712 164034±571
0.05 162309±46(2) 164541±759 164034±571

10000

true 1354655±768(10) 1371312±3374 1364486±2957
0.01 1361266±1222(10) 1376795±2990 1364486±2957
0.02 1360571±1040(10) 1376111±2542 1364486±2957
0.05 1360627±955(2) 1375645±3224 1364486±2957

Child5

1000

true 71622±324(10) 72057±344 72335±396
0.01 71651±333(10) 72096±368 72335±396
0.02 71648±330(10) 72114±376 72335±396
0.05 71644±329(10) 72059±385 72335±396

10000

true 637783±321(10) 640908±941 644218±2614
0.01 637783±321(10) 640908±941 644218±2614
0.02 637783±321(10) 640908±941 644218±2614
0.05 637783±321(10) 640908±941 644218±2614

Child10

1000

true 142541±250(10) 143847±409 143905±398
0.01 142604±256(10) 143902±415 143905±398
0.02 142590±252(10) 143885±407 143905±398
0.05 142582±255(10) 143896±391 143905±398

10000

true 1271035±684(10) 1277877±2824 1283630±3796
0.01 1271089±690(10) 1278050±2987 1283630±3796
0.02 1271072±683(10) 1277878±2823 1283630±3796
0.05 1271054±685(10) 1277931±2863 1283630±3796

Table 5: Comparison of ECOS, MMHC, and HC in terms of BDeu score (mean ± standard devia-
tion; smaller value is better). “none” refers to the case in which no computations finished.
The best score in each case is in bold font; the best score for each data sample without
the knowledge of the true skeleton is underlined. The numbers in parentheses for ECOS
represent the number of times ECOS could finish within ten data sets in two days.
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Model Sample
α

Algorithm
Size ECOS MMHC HC

Alarm5

1000

true 125±10(10) 163±6 215±8
0.01 164±6(10) 177±4 215±8
0.02 164±5(10) 177±4 215±8
0.05 161±5(10) 176±5 215±8

10000

true 21±2(10) 96±15 231±12
0.01 31±2(10) 100±10 231±12
0.02 30±2(10) 101±10 231±12
0.05 30±2(10) 102±9 231±12

Alarm10

1000

true 248±9(10) 321±8 421±15
0.01 317±8(10) 355±13 421±15
0.02 313±9(10) 353±10 421±15
0.05 none 354±11 421±15

10000

true 40±3(10) 215±17 447±22
0.01 54±3(10) 219±16 447±22
0.02 54±4(2) 220±15 447±22
0.05 none 226±12 447±22

Insurance5

1000

true 196±8(10) 205±9 246±8
0.01 207±7(10) 217±5 246±8
0.02 206±7(10) 217±4 246±8
0.05 206±8(10) 217±4 246±8

10000

true 88±1(10) 137±9 184±11
0.01 99±4(10) 146±11 184±11
0.02 99±6(10) 146±9 184±11
0.05 100±6(8) 146±11 184±11

Insurance10

1000

true 378±21(10) 424±11 502±10
0.01 398±21(10) 441±11 502±10
0.02 399±22(10) 441±11 502±10
0.05 376±24(2) 444±9 502±10

10000

true 174±5(10) 280±22 381±23
0.01 198±9(10) 296±21 381±23
0.02 198±12(10) 295±20 381±23
0.05 197±17(2) 295±22 381±23

Child5

1000

true 60±7(10) 70±7 82±8
0.01 71±6(10) 80±5 82±8
0.02 70±6(10) 79±5 82±8
0.05 70±6(10) 78±4 82±8

10000

true 1±0(10) 31±9 43±10
0.01 1±0(10) 31±9 43±10
0.02 1±0(10) 31±9 43±10
0.05 1±0(10) 31±9 43±10

Child10

1000

true 145±9(10) 171±6 182±5
0.01 167±8(10) 188±5 182±5
0.02 165±8(10) 186±6 182±5
0.05 163±8(10) 184±6 182±5

10000

true 8±0(10) 88±16 128±17
0.01 10±3(10) 87±18 128±17
0.02 9±3(10) 87±17 128±17
0.05 8±0(10) 87±18 128±17

Table 6: Comparison of ECOS, MMHC, and HC in terms of SHD (mean ± standard deviation;
smaller value is better). “none” refers to the case in which no computations finished.
The best score in each case is in bold font; the best score for each data sample without
the knowledge of the true skeleton is underlined. The numbers in parentheses for ECOS
represent the number of times ECOS could finish within ten data sets in two days.
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Model Sample
α

Algorithm
Size ECOS MMHC HC

Alarm5

1000

true 3231 ±1184 (10) 5 ±0 280 ±31
0.01 532 ±441 (10) 36 ±0 280 ±31
0.02 7617 ±22514 (10) 81 ±0 280 ±31
0.05 8830 ±13741 (10) 100 ±0 280 ±31

10000

true 19020 ±4363 (10) 10 ±1 517 ±47
0.01 22921 ±43349 (10) 116 ±1 517 ±47
0.02 37424 ±48662 (10) 74 ±1 517 ±47
0.05 92718 ±117691 (10) 91 ±1 517 ±47

Alarm10

1000

true 11653 ±584 (10) 24 ±3 3620 ±339
0.01 1920 ±1330 (10) 63 ±1 3620 ±339
0.02 51627 ±91273 (10) 99 ±1 3620 ±339
0.05 none (0) 61 ±1 3620 ±339

10000

true 22914 ±1088 (10) 30 ±2 6009 ±1422
0.01 5800 ±4545 (10) 138 ±3 6009 ±1422
0.02 122665 ±155955 (2) 131 ±5 6009 ±1422
0.05 none (0) 112 ±3 6009 ±1422

Insurance5

1000

true 7474 ±452 (10) 5 ±0 84 ±28
0.01 2117 ±1778 (10) 95 ±0 84 ±28
0.02 2841 ±3421 (10) 41 ±0 84 ±28
0.05 47408 ±76941 (10) 88 ±0 84 ±28

10000

true 9807 ±426 (10) 20 ±4 286 ±99
0.01 8281 ±14925 (10) 22 ±1 286 ±99
0.02 38154 ±43336 (10) 70 ±3 286 ±99
0.05 67546 ±80972 (8) 93 ±2 286 ±99

Insurance10

1000

true 30976 ±4846 (10) 15 ±2 832 ±72
0.01 5679 ±8074 (10) 77 ±1 832 ±72
0.02 22177 ±19628 (10) 18 ±1 832 ±72
0.05 88391 ±113694 (2) 94 ±2 832 ±72

10000

true 123589 ±6232 (10) 48 ±12 2479 ±570
0.01 63683 ±66898 (10) 64 ±6 2479 ±570
0.02 85244 ±101769 (10) 82 ±1 2479 ±570
0.05 14093 ±12510 (2) 103 ±7 2479 ±570

Child5

1000

true 4 ±0 (10) 3 ±0 71 ±14
0.01 67 ±0 (10) 68 ±0 71 ±14
0.02 8 ±0 (10) 8 ±0 71 ±14
0.05 110 ±1 (10) 109 ±0 71 ±14

10000

true 9 ±0 (10) 8 ±0 217 ±16
0.01 90 ±0 (10) 89 ±0 217 ±16
0.02 51 ±1 (10) 50 ±0 217 ±16
0.05 25 ±1 (10) 23 ±0 217 ±16

Child10

1000

true 16 ±0 (10) 9 ±1 799 ±129
0.01 102 ±1 (10) 97 ±0 799 ±129
0.02 77 ±2 (10) 73 ±0 799 ±129
0.05 94 ±2 (10) 89 ±0 799 ±129

10000

true 26 ±0 (10) 22 ±1 1729 ±147
0.01 73 ±2 (10) 71 ±1 1729 ±147
0.02 118 ±2 (10) 118 ±1 1729 ±147
0.05 73 ±1 (10) 74 ±0 1729 ±147

Table 7: Running time of ECOS, MMHC, and HC for each experimental condition in seconds
(mean ± standard deviation). The numbers in the second parentheses for ECOS repre-
sent the number of times ECOS could finish in ten data sets within two days.
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5. Discussion and Conclusion

We presented a new BN learning algorithm that finds the optimal network given a structural con-
straint, the super-structure. Our algorithm decomposes the super-structure into several clusters and
computes optimal networks on each cluster for every ancestral constraint in order to ensure acyclic
networks. Experimental evaluations using extended Alarm, Insurance, and Child networks show
that our algorithm outperforms state-of-the-art greedy algorithms such as MMHC and HC with a
TABU search extension both in terms of the BDeu score and SHD.

It may be possible to develop methods to further increase the feasibility of ECOS; we suggest
some ready-to-apply tunings that should make our algorithm faster. First, the algorithm is highly
parallelizable since each call to ACOS can be made independently. Further, one could apply a
similar shrinkage technique to the interior nodes of the block tree as well if they are of a small size.
The algorithm may also benefit from using ECOS recursively instead of ACOS or applying a COS
search on the unbreakable clusters rather than a full OS (as is the current case with ACOS). Finally,
limiting the maximal size of parent sets by a constant c, as proposed in Section 3.6, improves the
feasibility of ECOS because it may also reduce the number of TDMs to consider in some cases. In
terms of quality of the learnt network, the best improvements may be realized by developing better
algorithms to learn super-structures; in fact, improvements in speed may also be obtained.

If there exist many edges between strongly connected components in the skeleton, the clusters
obtained have too many cluster edges; this is usually the main bottleneck of our algorithm that limits
its the feasibility. We should emphasize the fact that IT approaches add false-positive edges to the
skeleton according to the specified significance level when learning the super-structure. Therefore,
although the true skeleton may be well structured (i.e., the true skeleton can be clustered with a small
number of cluster edges), the false-positive edges tend to be cluster edges and limit the feasibility
of ECOS. For example, the super-structure of Insurance10 obtained with α = 0.05 has a smaller
average degree than the true skeleton; however, our algorithm did not finish the computation in two
days. In addition, since the current version of ECOS depends on a super-structure estimated by the
conditional independence test (MMPC), a causal relationship violating faithfulness, for example,
XOR parents, can be missed.

We now consider whether our method is practically different from the one suggested by Fried-
man et al. (1999) and whether it is more efficient. Although we can argue that our method has been
implemented and tested practically, it is also obvious that both strategies are different since ECOS
can be applied on a skeleton that is not only decomposable in cluster trees but also decomposable
in cluster graphs. For example, we converted the true skeleton of Alarm5 into a cluster tree. The
true skeleton was decomposed into nine clusters, the largest of them containing 34 vertices and 20
cluster edges. This is not computable for an optimal search, and therefore, the method proposed by
Friedman et al. (1999) would not be able to consider this case; such a case motivated us to relax the
tree structure condition between clusters. Following the experimental results, we conclude that our
approach, that is, decomposing the search on every cluster, succeeded in scaling-up the constrained
optimal search.
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Appendix A.

Given a cluster C and a TDM δ (i.e., the corresponding V in
C,δ and V

out
C,δ sets), we define for every

possible NACS A .

Definition 7 (NACS template) The NACS template of A is a finite list of pairs of positive integers
{(I1,O1), · · · ,(Il,Ol)} such that |Vout

C,δ | ≥ O1 > · · · > Ol ≥ 0 and there are exactly Ik in-vertices vinj
such that |A(vinj )| = Ok.

For example, let us consider the following NACS A with V in
C,δ = {vin1 , . . . ,vin6 } and Vout

C,δ =

{vout , . . . ,vout3 } defined by
A(vin1 ) = {vout1 ,vout2 ,vout3 },
A(vin6 ) = {vout1 ,vout3 ,vout3 },
A(vin2 ) = {vout1 ,vout3 },
A(vin4 ) = {vout3 },
A(vin3 ) = {vout3 },
A(vin5 ) = ø.

Here, we arranged the AC sets by size to illustrate the fact that due to the definition of NACS, two
in-vertices having the same size of ancestral constraint actually have the same ancestral constraint.
The NACS template of A is

{(2,3),(1,2),(2,1),(1,0)}.

Further, following the definition of the NACS template, we have trivially that ∑l
i=1 Ii = |V in

C,δ|. Be-
cause every NACS admits a unique NACS template, templates define a partition of the space of
NACS. Given the template {(I1,O1), · · · ,(Il,Ol)}, there exist

(

|Vout
C,δ |

O1

)

×

(

O1
O2

)

× · · ·×

(

Ol−1
Ol

)

different ways to assign the out-vertices and
(

|V in
C,δ|

I1

)

×

(

|V in
C,δ|− I1
I2

)

× · · ·×

(

|V in
C,δ|−∑l−1

i=1 Ii
Il

)

different ways to assign in-vertices. The product of these two values gives the number of NACSs
corresponding to this template. All these NACSs can be generated by a brute force method that con-
siders every possibility. Next, we introduce an algorithm that generates an ordered list of all NACSs
by considering each template successively, starting from (|V in

C,δ|,0) and ending with (|V in
C,δ|, |V

out
C,δ |).

Algorithm 7: NACS Enumerator
Input: A set of in-vertices V in

C,δ and a set of out-vertices V
out
C,δ

Onput: List of NACSs, L
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1. Initialize an empty list of NACSs L.

2. Initialize a NACS template NT to (|V in
C,δ|,0) and l to 1.

3. While true, do:

(a) Put all the NACSs having NT as template at the end of L.
(b) If NT = {(|V in

C,δ|, |V
out
C,δ |)}, return L.

(c) If l > 1 and Ol−1 = Ol +1, increment Il−1, otherwise insert (1,Ol +1) in NT
immediately before (Il,Ol) and increment l.

(d) Decrement Il and set Ol to 0.
(e) If Il = 0, remove (Il,Ol) from NT and decrement l.

First, we define an order relation for the templates; we say that (Ii,Oi) > (I′j,O′
j) if Oi > O′

j or
Oi =O′

j and Ii > I′j. Then, we say that a NACS template NT is greater than another NT ′ if (I1,O1) >

(I′1,O′
1) or (I j,Oj) = (I′j,O′

j) for every j < k and (Ik,Ok) > (I′k,O′
k). We note that if A1 > A2, then

the template of A1 is greater than that of A2. Therefore, to prove that Algorithm 7 is correct, we
simply need to prove that it considers every template in increasing order, that is, that the loop of step
3 generates the successor of a given template NT . Given the constraint that the sum of all Ik is |V in

C,δ|,
there exist three different cases. If NT is of a size l = 1, then NT = {(|V in

C,δ|,O1)} and the following
template is {(1,O1+1),(|V in

C,δ|−1,0)}, as done in steps (c) and (d). Otherwise, in a similar manner
to the previous case, if Ol−1 0= Ol +1, the next template will be {(I1,O1), · · · ,(Il−1,Ol−1),(1,Ol +
1),(Il−1,0)}, as in Algorithm 7. Finally, in general, Ol−1 = Ol +1 holds, and we simply need to
increment Il−1, decrement Il , and reset Ol to 0. After decrementing Il , it is possible that Il = 0, in
which case the last element should be removed. Since Algorithm 7 accesses the direct successor of
NT at each step starting from the smaller template (|V in

C,δ|,0) until the largest one, we can assert its
correctness.
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1. Introduction

At the heart of many machine learning algorithms is the problem of minimizing a regularized risk
functional. That is, one would like to solve

min
w

J(w) := λΩ(w)+Remp(w), (1)

where Remp(w) :=
1
m

m

∑
i=1

l(xi,yi,w) (2)

is the empirical risk. Moreover, xi ∈ X ⊆ Rd are referred to as training instances and yi ∈ Y are
the corresponding labels. l is a (surrogate) convex loss function measuring the discrepancy be-
tween y and the predictions arising from using w. For instance, w might enter our model via
l(x,y,w) = (〈w,x〉 − y)2, where 〈·, ·〉 denotes the standard Euclidean dot product. Finally, Ω(w)
is a convex function serving the role of a regularizer with regularization constant λ > 0. Typically
Ω is differentiable and cheap to compute. In contrast, the empirical risk term Remp(w) is often
non-differentiable, and almost always computationally expensive to deal with.

For instance, if we consider the problem of predicting binary valued labels y∈ {±1}, we can set
Ω(w) = 1

2 ‖w‖
2
2 (i.e., L2 regularization), and the loss l(x,y,w) to be the binary hinge loss, max(0,1−

y〈w,x〉), thus recovering linear Support Vector Machines (SVMs) (Joachims, 2006). Using the
same regularizer but changing the loss function to l(x,y,w) = log(1+exp(−y〈w,x〉)), yields logistic
regression. Extensions of these loss functions allow us to handle structure in the output space
(Bakir et al., 2007) (also see Appendix A for a comprehensive exposition of many common loss
functions). On the other hand, changing the regularizer Ω(w) to the sparsity inducing ‖w‖1 (i.e.,
L1 regularization) leads to Lasso-type estimation algorithms (Mangasarian, 1965; Tibshirani, 1996;
Candes and Tao, 2005).

If the objective function J is differentiable, for instance in the case of logistic regression, we
can use smooth optimization techniques such as the standard quasi-Newtons methods like BFGS or
its limited memory variant LBFGS (Nocedal and Wright, 1999). These methods are effective and
efficient even when m and d are large (Sha and Pereira, 2003; Minka, 2007). However, it is not
straightforward to extend these algorithms to optimize a non-differentiable objective, for instance,
when dealing with the binary hinge loss (see, e.g., Yu et al., 2008).

When J is non-differentiable, one can use nonsmooth convex optimization techniques such as
the cutting plane method (Kelly, 1960) or its stabilized version the bundle method (Hiriart-Urruty
and Lemaréchal, 1993). The bundle methods not only stabilize the optimization procedure but
make the problem a well-posed one, that is, with unique solution. However, the amount of external
stabilization that needs to be added is a parameter that requires careful tuning.

In this paper, we bypass this stabilization parameter tuning problem by taking a different route.
The resultant algorithm – Bundle Method for Regularized Risk Minimization (BMRM) – has certain
desirable properties: a) it has no parameters to tune, and b) it is applicable to a wide variety of
regularized risk minimization problems. Furthermore, we show that BMRM has an O(1/ε) rate of
convergence for nonsmooth problems and O(log(1/ε)) for smooth problems. This is significantly
tighter than the O(1/ε2) rates provable for standard bundle methods (Lemaréchal et al., 1995). A
related optimizer, SVMstruct (Tsochantaridis et al., 2005), which is widely used in machine learning
applications was also shown to converge at O(1/ε2) rates. Our analysis also applies to SVMstruct,
which we show to be a special case of our solver, and hence tightens its convergence rate to O(1/ε).
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Very briefly, we highlight the two major advantages of our implementation. First, it is com-
pletely modular; new loss functions, regularizers, and solvers can be added with relative ease. Sec-
ond, our architecture allows the empirical risk computation (2) to be easily parallelized. This makes
our solver amenable to large data sets which cannot fit into the memory of a single computer. Our
open source C/C++ implementation is freely available for download.1

The outline of our paper is as follows. In Section 2 we describe BMRM and contrast it with stan-
dard bundle methods. We also prove rates of convergence. In Section 3 we discuss implementation
issues and present principled techniques to control memory usage, as well as to speed up computa-
tion via parallelization. Section 4 puts our work in perspective, and discusses related work. Section
5 is devoted to extensive experimental evaluation, which shows that our implementation is compa-
rable to or better than specialized state-of-the-art solvers on a number of publicly available data sets.
Finally, we conclude our work and discuss related issues in Section 6. In Appendix A we describe
various classes of loss functions organized according to their common traits in computation. Long
proofs are relegated to Appendix B. Before we proceed a brief note about our notation:

1.1 Notation

The indices of elements of a sequence or a set appear in subscript, for example, u1,u2. The i-th
component of a vector u is denoted by u(i). [k] is the shorthand for the set {1,2, . . . ,k}. The Lp norm
is defined as ‖u‖p = (∑d

i=1 |u(i)|p)1/p, for p≥ 1, and we use ‖·‖ to denote ‖·‖2 whenever the context
is clear. 1d and 0d denote the d-dimensional vectors of all ones and zeros respectively.

2. Bundle Methods

The precursor to the bundle methods is the cutting plane method (CPM) (Kelly, 1960). CPM uses
subgradients, which are a generalization of gradients appropriate for convex functions, including
those which are not necessarily smooth. Suppose w′ is a point where a convex function J is finite.
Then a subgradient is the normal vector of any tangential supporting hyperplane of J at w′ (see
Figure 1 for geometric intuition). Formally s′ is called a subgradient of J at w′ if, and only if,

J(w) ≥ J(w′)+
〈

w−w′,s′
〉

∀w. (3)

The set of all subgradients at w′ is called the subdifferential, and is denoted by ∂wJ(w′). If this set is
not empty then J is said to be subdifferentiable at w′. On the other hand, if this set is a singleton then
the function is said to be differentiable at w′. Convex functions are subdifferentiable everywhere in
their domain (Hiriart-Urruty and Lemaréchal, 1993).

As implied by (3), J is bounded from below by its linearization (i.e., first order Taylor approx-
imation) at w′. Given subgradients s1,s2, . . . ,st evaluated at locations w0,w1, . . . ,wt−1, we can state
a tighter (piecewise linear) lower bound for J as follows

J(w) ≥ JCPt (w) := max
1≤i≤t

{J(wi−1)+ 〈w−wi−1,si〉}. (4)

This lower bound forms the basis of the CPM, where at iteration t the set {wi}t−1i=0 is augmented by

wt := argmin
w

JCPt (w).

1. Software available at http://users.rsise.anu.edu.au/˜chteo/BMRM.html.
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This iteratively refines the piecewise linear lower bound JCP and allows us to get close to the mini-
mum of J (see Figure 2 for an illustration).

If w∗ denotes the minimizer of J, then clearly each J(wi) ≥ J(w∗) and hence min0≤i≤t J(wi) ≥
J(w∗). On the other hand, since J ≥ JCPt it follows that J(w∗) ≥ JCPt (wt). In other words, J(w∗)
is sandwiched between min0≤i≤t J(wi) and JCPt (wt) (see Figure 3 for an illustration). The CPM
monitors the monotonically decreasing quantity

εt := min
0≤i≤t

J(wi)− JCPt (wt),

and terminates whenever εt falls below a predefined threshold ε. This ensures that the solution J(wt)
satisfies J(wt) ≤ J(w∗)+ ε.

Figure 1: Geometric intuition of a subgradient. The nonsmooth convex function (solid blue) is only
subdifferentiable at the “kink” points. We illustrate two of its subgradients (dashed green
and red lines) at a “kink” point which are tangential to the function. The normal vectors
to these lines are subgradients.

2.1 Standard Bundle Methods

Although CPM was shown to be convergent (Kelly, 1960), it is well known (see, e.g., Lemaréchal
et al., 1995; Belloni, 2005) that CPM can be very slow when new iterates move too far away from
the previous ones (i.e., causing unstable “zig-zag” behavior in the iterates).

Bundle methods stabilize CPM by augmenting the piecewise linear lower bound (e.g., JCPt (w)
as in (4)) with a prox-function (i.e., proximity control function) which prevents overly large steps in
the iterates (Kiwiel, 1990). Roughly speaking, there are 3 popular types of bundle methods, namely,
proximal (Kiwiel, 1990), trust region (Schramm and Zowe, 1992), and level set (Lemaréchal et al.,
1995).2 All three versions use 12 ‖·‖

2 as their prox-function, but differ in the way they compute the

2. For brevity we will only describe “first-order” bundle methods, and omit discussion about “second-order” variants
such as the bundle-Newton method of Lukšan and Vlček (1998).
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Figure 2: A convex function (blue solid curve) is bounded from below by its linearizations (dashed
lines). The gray area indicates the piecewise linear lower bound obtained by using the
linearizations. We depict a few iterations of the cutting plane method. At each iteration
the piecewise linear lower bound is minimized and a new linearization is added at the
minimizer (red rectangle). As can be seen, adding more linearizations improves the lower
bound.

Figure 3: A convex function (blue solid curve) with three linearizations (dashed lines) evaluated
at three different locations (red squares). The approximation gap ε3 at the end of third
iteration is indicated by the height of the magenta horizontal band, that is, difference
between lowest value of J(w) evaluated so far (lowest black circle) and the minimum of
JCP3 (w) (red diamond).
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new iterate:

proximal: wt := argmin
w

{ ζt2 ‖w− ŵt−1‖2+ JCPt (w)}, (5)

trust region: wt := argmin
w

{JCPt (w) | 12 ‖w− ŵt−1‖2 ≤ κt}, (6)

level set: wt := argmin
w

{ 12 ‖w− ŵt−1‖2 | JCPt (w) ≤ τt},

where ŵt−1 is the current prox-center, and ζt ,κt , and τt are positive trade-off parameters of the
stabilization. Although (5) can be shown to be equivalent to (6) for appropriately chosen ζt and
κt , tuning ζt is rather difficult while a trust region approach can be used for automatically tuning
κt . Consequently the trust region algorithm BT of Schramm and Zowe (1992) is widely used in
practice.

Since our methods (see Section 2.2) are closely related to the proximal bundle method, we
will now describe them in detail. Similar to the CPM the proximal bundle method also builds
a piecewise linear lower bound JCPt (see (4)). In contrast to the CPM, the piecewise linear lower
bound augmented with a stabilization term ζt

2 ‖w− ŵt−1‖2, is minimized to produce the intermediate
iterate w̄t . The approximation gap in this case includes the prox-function:

εt := J(ŵt−1)−
[

JCPt (w̄t)+
ζt
2
‖w̄t − ŵt−1‖2

]

.

If εt is less than the pre-defined threshold ε the algorithm exits. Otherwise, a line search is performed
along the line joining ŵt−1 and w̄t to produce the new iterate wt . If wt results in a sufficient decrease
of the objective function then it is accepted as the new prox-center ŵt ; this is called a serious step.
Otherwise, the prox-center remains the same; this is called a null step. Detailed pseudocode can be
found in Algorithm 1.

If the approximation gap εt is smaller than ε, then this ensures that the solution J(ŵt−1) satisfies
J(ŵt−1)≤ J(w)+ ζt

2 ‖w− ŵt−1‖2+ε for all w. In particular, if J(w∗) denotes the optimum as before,
then J(ŵt−1) ≤ J(w∗)+ ζt

2 ‖w
∗ − ŵt−1‖2+ ε. Contrast this with the approximation guarantee of the

CPM, which does not involve the ζt
2 ‖w

∗ − ŵt−1‖2 term.
Although the positive coefficient ζt is assumed fixed throughout the algorithm, in practice it

must be updated after every iteration to achieve faster convergence, and to guarantee a good quality
solution (Kiwiel, 1990). Same is the case for κt and τt in trust region and level set bundle methods,
respectively. Although the update is not difficult, the procedure relies on other parameters which
require careful tuning (Kiwiel, 1990; Schramm and Zowe, 1992; Lemaréchal et al., 1995).

In the next section, we will describe our method (BMRM) which avoids this problem. There
are two key differences between BMRM and the proximal bundle method: Firstly, BMRM main-
tains a piecewise linear lower bound of Remp(w) instead of J(w). Secondly, the the stabilizer (i.e.,
‖w− ŵt‖2) in proximal bundle method is replaced by the regularizer Ω(w) hence there is no stabi-
lization parameter to tune. As we will see, not only is the implementation straightforward, but the
rates of convergence also improve from O(1/ε3) or O(1/ε2) to O(1/ε).
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Algorithm 1 Proximal Bundle Method
1: input & initialization: ε≥ 0, ρ ∈ (0,1), w0, t ← 0, ŵ0 ← w0
2: loop
3: t ← t+1
4: Compute J(wt−1) and st ∈ ∂wJ(wt−1)
5: Update model JCPt (w) :=max1≤i≤t{J(wi−1)+ 〈w−wi−1,si〉}
6: w̄t ← argminw JCPt (w)+ ζt

2 ‖w− ŵt−1‖2

7: εt ← J(ŵt−1)−
[

JCPt (w̄t)+ ζt
2 ‖w̄t − ŵt−1‖2

]

8: if εt < ε then return w̄t
9: Linesearch: ηt ← argminη∈R J(ŵt−1+η(w̄t− ŵt−1)) (if expensive, set ηt = 1)
10: wt ← ŵt−1+ηt(w̄t− ŵt−1)
11: if J(ŵt−1)− J(wt) ≥ ρεt then
12: SERIOUS STEP: ŵt ← wt
13: else
14: NULL STEP: ŵt ← ŵt−1
15: end if
16: end loop

2.2 Bundle Methods for Regularized Risk Minimization (BMRM)

Define:

(subgradient of Remp) at ∈ ∂wRemp(wt−1),
(offset) bt := Remp(wt−1)−〈wt−1,at〉 ,

(piecewise linear lower bound of Remp) RCPt (w) := max
1≤i≤t

{〈w,ai〉+bi},

(piecewise convex lower bound of J) Jt(w) := λΩ(w)+RCPt (w),

(iterate) wt :=min
w
Jt(w),

(approximation gap) εt := min
0≤i≤t

J(wi)− Jt(wt).

We now describe BMRM (Algorithm 2), and contrast it with the proximal bundle method. At it-
eration t the algorithm builds the lower bound RCPt to the empirical risk Remp. The new iterate wt
is then produced by minimizing Jt which is RCPt augmented with the regularizer Ω; this is the key
difference from the proximal bundle method which uses the ζt

2 ‖w− ŵt−1‖2 prox-function for stabi-
lization. The algorithm repeats until the approximation gap εt is less than the pre-defined threshold
ε. Unlike standard bundle methods there is no notion of a serious or null step in our algorithm.
In fact, our algorithm does not even maintain a prox-center. It can be viewed as a special case of
standard bundle methods where the prox-center is always the origin and never updated (hence every
step is a null step). Furthermore, unlike the proximal bundle method, the approximation guarantees
of our algorithm do not involve the ζt

2 ‖w
∗ −wt‖2 term.

Algorithm 2 is simple and easy to implement as it does not involve a line search. In fact,
whenever efficient (exact) line search is available, it can be used to achieve faster convergence as
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Algorithm 2 BMRM
1: input & initialization: ε≥ 0, w0, t ← 0
2: repeat
3: t ← t+1
4: Compute at ∈ ∂wRemp(wt−1) and bt ← Remp(wt−1)−〈wt−1,at〉
5: Update model: RCPt (w) :=max1≤i≤t{〈w,ai〉+bi}
6: wt ← argminw Jt(w) := λΩ(w)+RCPt (w)
7: εt ←min0≤i≤t J(wi)− Jt(wt)
8: until εt ≤ ε
9: return wt

observed by Franc and Sonnenburg (2008) in the case of linear SVMs with binary hinge loss.3 We
now turn to a variant of BMRM which uses a line search (Algorithm 3); this is a generalization of the
optimized cutting plane algorithm for support vector machines (OCAS) of Franc and Sonnenburg
(2008). This variant first builds RCPt and minimizes Jt to obtain an intermediate iterate wt . Then, it
performs a line search along the line joining wbt−1 and wt to produce wbt which acts like the new prox-
center. Note that wt −wbt−1 is not necessarily a direction of descent; therefore the line search might
return a zero step. Instead of using wbt as the new iterate the algorithm uses the pre-set parameter
θ to generate wct on the line segment joining wbt and wt . Franc and Sonnenburg (2008) report that
setting θ = 0.9 works well in practice. It is easy to see that Algorithm 3 reduces to Algorithm 2
if we set ηt = 1 for all t, and use the same termination criterion. It is worthwhile noting that this
variant is not applicable for structured learning problems such as Max-Margin Markov Networks
(Taskar et al., 2004), because no efficient line search is known for such problems.

A specialized variant of BMRM which handles quadratic regularizers, that is, Ω(w) = 1
2‖w‖

2

was first introduced to the machine learning community by Tsochantaridis et al. (2005) as SVMstruct.
In particular, SVMstruct handles quadratic regularizers Ω(w) = 1

2‖w‖
2 and non-differentiable large

margin loss functions such as (24). Its 1-slack formulation (Joachims et al., 2009) can be shown to
be equivalent to BMRM for this specific type of regularizer and loss function. Somewhat confusingly,
these algorithms are called the cutting plane method even though they are closer in spirit to bundle
methods.

2.3 Dual Problems

In this section, we describe how the sub-problem

wt = argmin
w

Jt(w) := λΩ(w)+ max
1≤i≤t

〈w,ai〉+bi (7)

in Algorithms 2 and 3 is solved via a dual formulation. In fact, we will show that we need not know
Ω(w) at all, instead it is sufficient to work with its Fenchel dual (Hiriart-Urruty and Lemaréchal,
1993):

Definition 1 (Fenchel Dual) Denote by Ω :W → R a convex function on a convex set W . Then
the dual Ω∗ of Ω is defined as

Ω∗(µ) := sup
w∈W

〈w,µ〉−Ω(w). (8)

3. A different optimization method but with identical efficient line search procedure is described in Yu et al. (2008).
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Algorithm 3 BMRM with Line Search
1: input & initialization: ε≥ 0, θ ∈ (0,1], wb0, wc0 ← wb0, t ← 0
2: repeat
3: t ← t+1
4: Compute at ∈ ∂wRemp(wct−1), and bt ← Remp(wct−1)−

〈

wct−1,at
〉

5: Update model: RCPt (w) :=max1≤i≤t{〈w,ai〉+bi}
6: wt ← argminw Jt(w) := λΩ(w)+RCPt (w)
7: Linesearch: ηt ← argminη∈R J(wbt−1+η(wt−wbt−1))
8: wbt ← wbt−1+ηt(wt −wbt−1)
9: wct ← (1−θ)wbt +θwt
10: εt ← J(wbt )− Jt(wt)
11: until εt ≤ ε
12: return wbt

Several choices of regularizers are common. ForW = Rd the squared norm regularizer yields

Ω(w) =
1
2
‖w‖22 and Ω∗(µ) =

1
2
‖µ‖22 .

More generally, for Lp norms one obtains (Boyd and Vandenberghe, 2004; Shalev-Shwartz and
Singer, 2006):

Ω(w) =
1
2
‖w‖2p and Ω∗(µ) =

1
2
‖µ‖2q where

1
p

+
1
q

= 1.

For any positive definite matrix B, we can construct a quadratic form regularizer which allows non-
uniform penalization of the weight vector as:

Ω(w) =
1
2
w/Bw and Ω∗(µ) =

1
2
µ/B−1µ.

For the unnormalized negative entropy, whereW = Rd
+, we have

Ω(w) =∑
i
w(i) logw(i) and Ω∗(µ) =∑

i
expµ(i).

For the normalized negative entropy, whereW = {w | w≥ 0 and ‖w‖1 = 1} is the probability sim-
plex, we have

Ω(w) =∑
i
w(i) logw(i) and Ω∗(µ) = log∑

i
expµ(i).

If Ω is differentiable the w at which the supremum of (8) is attained can be written as w= ∂µΩ∗(µ)
(Boyd and Vandenberghe, 2004). In the sequel we will always assume thatΩ∗ is twice differentiable.
Note that all the regularizers we discussed above are twice differentiable. The following theorem
states the dual problem of (7).
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Theorem 2 Denote by A = [a1, . . . ,at ] the matrix whose columns are the (sub)gradients, and let
b= [b1, . . . ,bt ]. The dual problem of

wt = argmin
w∈Rd

{Jt(w) := max
1≤i≤t

〈w,ai〉+bi+λΩ(w)} is (9)

αt = argmax
α∈Rt

{J∗t (α) := −λΩ∗(−λ−1Aα)+α/b | α≥ 0, ‖α‖1 = 1}. (10)

Furthermore, wt and αt are related by the dual connection wt = ∂Ω∗(−λ−1Aαt).

Proof We rewrite (9) as a constrained optimization problem: minw,ξ λΩ(w) + ξ subject to ξ ≥
〈w,ai〉+ bi for i = 1, . . . , t. By introducing non-negative Lagrange multipliers α and recalling that
1t denotes the t dimensional vector of all ones, the corresponding Lagrangian can be written as

L(w,ξ,α) = λΩ(w)+ξ−α/
(

ξ1t−A/w−b
)

with α≥ 0, (11)

where α≥ 0 denotes that each component of α is non-negative. Taking derivatives with respect to ξ
yields 1 − α/1t = 0. Moreover, minimization of L with respect to w implies solving
maxw

〈

w,−λ−1Aα
〉

−Ω(w) = Ω∗(−λ−1Aα). Plugging both terms back into (11) we eliminate the
primal variables ξ and w.

Since Ω∗ is assumed to be twice differentiable and the constraints of (10) are simple, one can easily
solve (10) with standard smooth optimization methods such as the penalty/barrier methods (No-
cedal and Wright, 1999). Recall that for the square norm regularizer Ω(w) = 1

2 ‖w‖
2
2, commonly

used in SVMs and Gaussian Processes, the Fenchel dual is given byΩ∗(µ) = 1
2 ‖µ‖

2
2. The following

corollary is immediate:

Corollary 3 For quadratic regularization, that is, Ω(w) = 1
2 ‖w‖

2
2, (10) becomes

αt = argmax
α∈Rt

{− 1
2λα

/A/Aα+α/b | α≥ 0, ‖α‖1 = 1}.

This means that for quadratic regularization the dual optimization problem is a quadratic program
(QP) where the number of constraints equals the number of (sub)gradients computed previously.
Since t is typically in the order of 10s to 100s, the resulting QP is very cheap to solve. In fact, we
do not even need to know the (sub)gradients explicitly. All that is required to define the QP are the
inner products between (sub)gradients

〈

ai,a j
〉

.

2.4 Convergence Analysis

While the variants of bundle methods we proposed are intuitively plausible, it remains to be shown
that they have good rates of convergence. In fact, past results, such as those by Tsochantaridis
et al. (2005) suggest a slow O(1/ε2) rate of convergence. In this section we tighten their results and
show anO(1/ε) rate of convergence for nonsmooth loss functions andO(log(1/ε)) rates for smooth
loss functions under mild assumptions. More concretely we prove the following two convergence
results:

(a) Assume that maxu∈∂wRemp(w) ‖u‖ ≤ G. For regularizers Ω(w) for which
∥
∥∂2µΩ

∗(µ)
∥
∥ ≤ H∗ we

prove O(1/ε) rate of convergence, that is, we show that our algorithm converges to within ε
of the optimal solution in O(1/ε) iterations.
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(b) Under the above conditions, if furthermore
∥
∥∂2wJ(w)

∥
∥≤H, that is, the Hessian of J is bounded,

we can show O(log(1/ε)) rate of convergence.

For our convergence proofs we use a duality argument similar to those put forward in Shalev-
Shwartz and Singer (2006) and Tsochantaridis et al. (2005), both of which share key techniques
with Zhang (2003). Recall that εt denotes our approximation gap, which in turn upper bounds how
far away we are from the optimal solution. In other words, εt ≥ min0≤i≤t J(wi)− J∗, where J∗
denotes the optimum value of the objective function J. The quantity εt−εt+1 can thus be viewed as
the “progress” made towards J∗ in iteration t. The crux of our proof argument lies in showing that
for nonsmooth loss functions the recurrence εt − εt+1 ≥ c · ε2t holds for some appropriately chosen
constant c. The rates follow by invoking a lemma from Abe et al. (2001). In the case of the smooth
losses we show that εt − εt+1 ≥ c′ · εt thus implying an O(log(1/ε)) rate of convergence.

In order to show the required recurrence, we first observe that by strong duality the values of
the primal and dual problems (9) and (10) are equal at optimality. Hence, any progress in Jt+1 can
be computed in the dual. Next, we observe that the solution of the dual problem (10) at iteration
t, denoted by αt , forms a feasible set of parameters for the dual problem (10) at iteration t+ 1 by
means of the parameterization (αt ,0), that is, by padding αt with a 0. The value of the objective
function in this case equals Jt(wt).

To obtain a lower bound on the improvement due to Jt+1(wt+1) we perform a 1-d optimization
along ((1−η)αt ,η) in (10). The constraint η ∈ (0,1) ensures dual feasibility. We will then bound
this improvement in terms of εt . Note that, in general, solving the dual problem (10) results in a
increase which is larger than that obtained via the line search. The 1-d minimization is used only
for analytic tractability. We now state our key theorem and prove it in Appendix B.

Theorem 4 Assume that maxu∈∂wRemp(w) ‖u‖ ≤ G for all w ∈ dom J. Also assume that Ω∗ has
bounded curvature, that is,

∥
∥∂2µΩ

∗(µ)
∥
∥ ≤ H∗ for all µ ∈ {−λ−1∑t+1i=1αiai where αi ≥ 0, ∀i and

∑t+1i=1αi = 1}. In this case we have

εt − εt+1 ≥ εt
2 min(1,λεt/4G

2H∗). (12)

Furthermore, if
∥
∥∂2wJ(w)

∥
∥≤ H, then we have

εt − εt+1 ≥









εt/2 if εt > 4G2H∗/λ

λ/8H∗ if 4G2H∗/λ≥ εt ≥ H/2
λεt/4HH∗ otherwise.

Note that the error keeps on halving initially and settles for a somewhat slower rate of convergence
after that, whenever the Hessian of the overall risk is bounded from above. The reason for the
difference in the convergence bound for differentiable and non-differentiable losses is that in the
former case the gradient of the risk converges to 0 as we approach optimality, whereas in the former
case, no such guarantees hold (e.g., when minimizing |x| the (sub)gradient does not vanish at the
optimum). The dual of many regularizers, for example, norm, squared Lp norm, and the entropic
regularizer have bounded second derivative. See, for example, Shalev-Shwartz and Singer (2006)
for a discussion and details. Thus our condition

∥
∥∂2µΩ

∗(µ)
∥
∥≤ H∗ is not unreasonable. We are now

in a position to state our convergence results. The proof is in Appendix B.
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Theorem 5 Assume that J(w) ≥ 0 for all w. Under the assumptions of Theorem 4 we can give the
following convergence guarantee for Algorithm 2. For any ε < 4G2H∗/λ the algorithm converges
to the desired precision after

n≤ log2
λJ(0)
G2H∗ +

8G2H∗

λε
−1

steps. Furthermore if the Hessian of J(w) is bounded, convergence to any ε ≤ H/2 takes at most
the following number of steps:

n≤ log2
λJ(0)
4G2H∗ +

4H∗

λ
max

[

0,H−8G2H∗/λ
]

+
4HH∗

λ
log(H/2ε).

Several observations are in order: First, note that the number of iterations only depends logarithmi-
cally on how far the initial value J(0) is away from the optimal solution. Compare this to the result
of Tsochantaridis et al. (2005), where the number of iterations is linear in J(0).

Second, we have an O(1/ε) dependence in the number of iterations in the non-differentiable
case, as opposed to the O(1/ε2) rates of Tsochantaridis et al. (2005). In addition to that, the conver-
gence is O(log(1/ε)) for continuously differentiable problems.

Note that whenever Remp is the average over many piecewise linear functions, Remp behaves
essentially like a function with bounded Hessian as long as we are taking large enough steps not to
“notice” the fact that the term is actually nonsmooth.

Remark 6 For Ω(w) = 1
2 ‖w‖

2 the dual Hessian is exactly H∗ = 1. Moreover we know that H ≥ λ
since

∥
∥∂2wJ(w)

∥
∥= λ+

∥
∥∂2wRemp(w)

∥
∥.

Effectively the rate of convergence of the algorithm is governed by upper bounds on the primal and
dual curvature of the objective function. This acts like a condition number of the problem—for
Ω(w) = 1

2w
/Qw the dual is Ω∗(z) = 1

2z
/Q−1z, hence the largest eigenvalues of Q and Q−1 would

have a significant influence on the convergence.
In terms of λ the number of iterations needed for convergence isO(λ−1). In practice the iteration

count does increase with λ, albeit not as badly as predicted. This is likely due to the fact that the
empirical risk Remp is typically rather smooth and has a certain inherent curvature which acts as a
natural regularizer in addition to the regularization afforded by λΩ(w).

For completeness we also state the convergence guarantees for Algorithm 3 and provide a proof
in Appendix B.3.

Theorem 7 Under the assumptions of Theorem 4 Algorithm 3 converges to the desired precision ε
after

n≤
8G2H∗

λε

steps for any ε< 4G2H∗/λ.

3. Implementation Issues

In this section, we discuss the memory and computational issues of the implementation of BMRM.
In addition, we provide two variants of BMRM: one is memory efficient and the other one is paral-
lelized.
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3.1 Solving the BMRM Subproblem (7) with Limited Memory Space

In Section 2.3 we mentioned the dual of subproblem (7) (i.e., (10)) which is usually easier to solve
when the dimensionality d of the problem is larger than the number of iterations t required by
BMRM to reach desired precision ε. Although t is usually in the order of 102, a problem with d
in the order of 106 or higher may use up all memory of a typical machine to store the bundle, that
is, linearizations {(ai,bi)}, before the convergence is achieved.4 Here we describe a principled
technique which controls the memory usage while maintaining convergence guarantees.

Note that at iteration t, before the computation for new iterate wt , Algorithm 2 maintains a
bundle of t (sub)gradients {ai}ti=1 of Remp computed at the locations {wi}

t−1
i=0. Furthermore, the

Lagrange multipliers αt−1 obtained in iteration t − 1 satisfy αt−1 ≥ 0 and ∑t−1i=1α
(i)
t−1 = 1 by the

constraints of (10). We define the aggregated (sub)gradient âI , offset b̂I and Lagrange multiplier
α̂(I)
t−1 as

âI :=
1

α̂(I)
t−1
∑
i∈I
α(i)
t−1ai, b̂I :=

1
α̂(I)
t−1
∑
i∈I
α(i)
t−1bi, and α̂(I)

t−1 :=∑
i∈I
α(i)
t−1,

respectively, where I ⊆ [t− 1] is an index set (Kiwiel, 1983). Clearly, the optimality of (10) at the
end of iteration t− 1 is maintained when a subset

{

(ai,bi,α
(i)
t−1)

}

i∈I
is replaced by the aggregate

(âI, b̂I, α̂
(I)
t−1)) for any I ⊆ [t−1].

To obtain a new iterate wt via (10) with memory space for at most k linearizations, we can,
for example, replace {(ai,bi)}i∈I with (âI, b̂I) where I = [t− k+ 1] and 2 ≤ k ≤ t. Then, we solve
a k-dimensional variant of (10) with A := [âI,at−k+2, . . . ,at ], b := [b̂I,bt−k+2, . . . ,bt ], and α ∈ Rk.
The optimum of this variant will be lower than or equal to that of (10) as the latter has higher
degree of freedom than the former. Nevertheless, solving this variant with 2 ≤ k ≤ t will still
guarantee convergence (recall that our convergence proof only uses k = 2). In the sequel we name
the aforementioned number k as the “bundle size” since it indicates the number of linearizations the
algorithm keeps.

For concreteness, we provide here a memory efficient BMRM variant for the cases whereΩ(w) =
1
2 ‖w‖

2
2 and k = 2. We first see that the dual of subproblem (7) now reads:

η= argmax
0≤η≤1

− 1
2λ
∥
∥â[t−1] +η(at− â[t−1])

∥
∥
2
2+ b̂[t−1] +η(bt− b̂[t−1])

≡ argmax
0≤η≤1

−η
λ â

/
[t−1](at − â[t−1])− η2

2λ

∥
∥
∥at − â/[t−1]

∥
∥
∥

2
+η(bt− b̂[t−1]). (13)

Since (13) is quadratic in η, we can obtain the optimal η by setting the derivative of the objective in
(13) to zero and clipping η in the range [0,1]:

η=min

(

max

(

0,
bt − b̂[t−1] +w/

t−1at +λ‖wt−1‖2

1
λ ‖at +λwt−1‖2

)

,1

)

(14)

4. In practice, we can remove those linearizations {(ai,bi)} whose Lagrange multipliers αi are 0 after solving (10).
Although this heuristic works well and does not affect the convergence guarantee, there is no bound on the minimum
number of linearizations with non-zero Lagrange multipliers needed to achieve convergence.
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where wt−1 = − 1
λ â[t−1] by the dual connection. With the optimal η, we obtain the new primal

iterate wt = (1−η)wt−1− (η/λ)at . Algorithm 4 lists the details. Note that this variant is simple to
implement and does not require a QP solver.

Algorithm 4 BMRM with Aggregation of Previous Linearizations
1: input & initialization: ε≥ 0, w0, t ← 1
2: Compute a1 ∈ ∂wRemp(w0), and b1 ← Remp(w0)−〈w0,a1〉
3: w1 ←− 1

λa1
4: b̂[1] ← b1
5: repeat
6: t ← t+1
7: Compute at ∈ ∂wRemp(wt−1) and bt ← Remp(wt−1)−〈wt−1,at〉
8: Compute η using Eq. (14)
9: wt ← (1−η)wt−1− (η/λ)at
10: b̂[t] ← (1−η)b̂[t−1] +ηbt
11: εt ←min0≤i≤t λ2 ‖wi‖

2+Remp(wi)− λ
2 ‖wt‖

2− b̂[t]
12: until εt ≤ ε

3.2 Parallelization

Algorithms 2, 3, and 4 the evaluation of Remp(w) (and ∂wRemp(w)) is cleanly separated from the
computation of new iterate and the choice of regularizer. If Remp is additively decomposable over
the examples (xi,yi), that is, can be expressed as a sum of some independent loss terms l(xi,yi,w),
then we can parallelize these algorithms easily by splitting the data sets and the computation Remp
over multiple machines. This parallelization scheme not only reduces the computation time but also
allows us to handle data set with size exceeding the memory available on a single machine.

Without loss of generality, we describe a parallelized version of Algorithm 2 here. Assume
there are p slave machines and 1 master machine available. At the beginning, we partition a given
data set D = {(xi,yi)}mi=1 into p disjoint sub-datasets {Di}pi=1 and assign one sub-dataset to each
slave machine. At iteration t, the master first broadcasts the current iterate wt−1 to all p slaves
(e.g., using MPI function MPI::Broadcast Gropp et al. 1999). The slaves then compute the losses
and (sub)gradients on their local sub-datasets in parallel. As soon as the losses and (sub)gradients
computation finished, the master combines the results (e.g., using MPI::AllReduce). With the
combined (sub)gradient and offset, the master computes the new iterate wt as in Algorithms 2 and
3. This process repeats until convergence is achieved. Detailed pseudocode can be found in Algo-
rithm 5.

4. Related Research

The kernel trick is widely used to transform many existing machine learning algorithms into ones
operating on a Reproducing Kernel Hilbert Space (RKHS). One lifts w into an RKHS and replaces
all inner product computations with a positive definite kernel function k(x,x′) ← 〈x,x′〉. Examples
of algorithms which employ the kernel trick (but essentially still solve (1)) include Support Vector
regression (Vapnik et al., 1997), novelty detection (Schölkopf et al., 2001), Huber’s robust regres-
sion, quantile regression (Takeuchi et al., 2006), ordinal regression (Herbrich et al., 2000), rank-
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Algorithm 5 Parallel BMRM
1: input: ε≥ 0, w0, data set D, number of slave machines p
2: initialization: t ← 0, assign sub-dataset Di to slave i, i= 1, . . . , p
3: repeat
4: t ← t+1
5: Master: Broadcast wt−1 to all slaves
6: Slaves: Computes Riemp(wt−1) := ∑(x,y)∈Di l(x,y,wt−1) and a

i
t ∈ ∂wRiemp(wt−1)

7: Master: Aggregate at := 1
|D| ∑

p
i=1 ait and bt :=

1
|D| ∑

p
i=1Riemp(wt−1)−〈wt−1,at〉

8: Master: Update model RCPt (w) :=max1≤ j≤t{
〈

w,a j
〉

+b j}
9: Master: wt ← argminw Jt(w) := λΩ(w)+RCPt (w)
10: Master: εt ←min0≤i≤t J(wi)− Jt(wt)
11: until εt ≤ ε
12: return wt

ing (Crammer and Singer, 2005), maximization of multivariate performance measures (Joachims,
2005), structured estimation (Taskar et al., 2004; Tsochantaridis et al., 2005), Gaussian Process
regression (Williams, 1998), conditional random fields (Lafferty et al., 2001), graphical models
(Cowell et al., 1999), exponential families (Barndorff-Nielsen, 1978), and generalized linear mod-
els (Fahrmeir and Tutz, 1994).

Traditionally, specialized solvers have been developed for solving the kernel version of (1) in
the dual (see, e.g., Chang and Lin, 2001; Joachims, 1999). These algorithms construct the La-
grange dual, and solve for the Lagrange multipliers efficiently. Only recently, research focus has
shifted back to solving (1) in the primal (see, e.g., Chapelle, 2007; Joachims, 2006; Sindhwani and
Keerthi, 2006). This spurt in research interest is due to three main reasons: First, many interesting
problems in diverse areas such as text classification, word-sense disambiguation, and drug design
already employ rich high dimensional data which does not necessarily benefit from the kernel trick.
All these domains are characterized by large data sets (with m in the order of a million) and very
sparse features (e.g., the bag of words representation of a document). Second, efficient factorization
methods (e.g., Fine and Scheinberg, 2001) can be used for a low rank representation of the kernel
matrix thereby effectively rendering the problem linear. Third, approximation methods such as the
Random Feature Map proposed by Rahimi and Recht (2008) can efficiently approximate a infinite
dimensional nonlinear feature map associated to a kernel by a finite dimensional one. Therefore our
focus on the primal optimization problem is not only pertinent but also timely.

The widely used SVMstruct optimizer of Thorsten Joachims5 is closely related to BMRM. While
BMRM can handle many different regularizers and loss functions, SVMstruct is mainly geared towards
square norm regularizers and non-differentiable soft-margin type loss functions. On the other hand,
SVMstruct can handle kernels while BMRM mainly focuses on the primal problem.

Our convergence analysis is closely related to Shalev-Shwartz and Singer (2006) who prove
mistake bounds for online algorithms by lower bounding the progress in the dual. Although not
stated explicitly, essentially the same technique of lower bounding the dual improvement was used
by Tsochantaridis et al. (2005) to show polynomial time convergence of the SVMstruct algorithm.
The main difference however is that Tsochantaridis et al. (2005) only work with a quadratic ob-

5. Software available at http://svmlight.joachims.org/svm_struct.html.
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jective function while the framework proposed by Shalev-Shwartz and Singer (2006) can handle
arbitrary convex functions. In both cases, a weaker analysis led to O(1/ε2) rates of convergence for
nonsmooth loss functions. On the other hand, our results establish a O(1/ε) rate for nonsmooth loss
functions and O(log(1/ε)) rates for smooth loss functions under mild technical assumptions.

Another related work is SVMperf (Joachims, 2006) which solves the SVM with linear kernel in
linear time. SVMperf finds a solution with accuracy ε inO(md/(λε2)) time, where them training pat-
terns xi ∈ Rd . This bound was improved by Shalev-Shwartz et al. (2007) to Õ(1/λδε) for obtaining
an accuracy of ε with confidence 1− δ. Their algorithm, Pegasos, essentially performs stochastic
(sub)gradient descent but projects the solution back onto the L2 ball of radius 1/

√
λ. Note that Pe-

gasos also can be used in an online setting. This, however, only applies whenever the empirical risk
decomposes into individual loss terms (e.g., it is not applicable to multivariate performance scores
Joachims 2005).

The third related strand of research considers gradient descent in the primal with a line search
to choose the optimal step size (see, e.g., Boyd and Vandenberghe, 2004, Section 9.3.1). Under
assumptions of smoothness and strong convexity – that is, the objective function can be upper and
lower bounded by quadratic functions – it can be shown that gradient descent with line search will
converge to an accuracy of ε in O(log(1/ε)) steps. Our solver achieves the same rate guarantees for
smooth functions, under essentially similar technical assumptions.

We would also like to point out connections to subgradient methods (Nedich and Bertsekas,
2000). These algorithms are designed for nonsmooth functions, and essentially choose an arbitrary
element of the subgradient set to perform a gradient descent like update. Let maxu∈∂wJ(w) ‖u‖ ≤
G, and B(w∗,r) denote a ball of radius r centered around the minimizer of J(w). By applying
the analysis of Nedich and Bertsekas (2000) to the regularized risk minimization problem with
Ω(w) := λ

2‖w‖
2, Ratliff et al. (2007) show that subgradient descent with a fixed, but sufficiently

small, stepsize will converge linearly to B(w∗,G/λ).
Finally, several papers (Keerthi and DeCoste, 2005; Chapelle, 2007) advocate the use of Newton-

like methods to solve Support Vector Machines in the “primal”. However, they need to take precau-
tions when dealing with the fact that the soft-margin type of loss functions such as the hinge loss is
only piecewise differentiable. Instead, our method only requires subdifferentials, which always ex-
ist for convex functions, in order to make progress. The large number of and variety of implemented
problems shows the flexibility of our approach.

5. Experiments

In this section, we examine the convergence behavior of BMRM and show that it is versatile enough
to solve a variety of machine learning problems. All our experiments were carried out on a cluster of
24 machines each with a 2.4GHz AMD Dual Core processor and 4GB of RAM. Details of the loss
functions, data sets, competing solvers and experimental objectives are described in the following
subsections.

5.1 Convergence Behavior

We investigated the convergence rate of our method (Algorithm 2) empirically with respect to reg-
ularization constant λ, approximation gap ε, and bundle size k. In addition, we investigated the
speedup gained by parallelizing the empirical risk computation. Finally, we examined empirically
how generalization performance is related to approximation gap. For simplicity, we focused on the

326



BUNDLE METHODS FOR REGULARIZED RISK MINIMIZATION

training of a linear SVM with binary hinge loss:6

min
w
J(w) :=

λ
2
‖w‖2+

1
m

m

∑
i=1
max(0,1− yi 〈w,xi〉). (15)

The experiments were conducted on 6 data sets commonly used in binary classification studies,
namely, adult9, astro-ph, news20-b,7 rcv1, real-sim, and worm. adult9, news20-b, rcv1, and real-
sim are available on the LIBSVM tools website.8 astro-ph (Joachims, 2006) and worm (Franc and
Sonnenburg, 2008) are available upon request from Thorsten Joachims and Soeren Sonnenburg,
respectively. Table 1 summarizes the properties of the data sets.

Data Set #examples m dimension d density %
adult9 48,842 123 11.27
astro-ph 94,856 99,757 0.08
news20-b 19,954 1,355,191 0.03
rcv1 677,399 47,236 0.15
real-sim 72,201 20,958 0.25
worm 1,026,036 804 25.00

Table 1: Properties of the binary classification data sets used in our experiments.

5.1.1 REGULARIZATION CONSTANT λ AND APPROXIMATION GAP ε

As suggested by the convergence analysis, the linear SVM with the nonsmooth binary hinge loss
should converge in O( 1λε) iterations, where λ and ε are two parameters which one normally tunes
during the model selection phase. Therefore, we investigated the scaling behavior of our method
w.r.t. these two parameters. We performed the experiments with unlimited bundle size and with a
heuristic that removes subgradients which remained inactive (i.e., Lagrange multiplier = 0) for 10
or more consecutive iterations.9

Figure 4 shows the approximation gap εt as a function of number of iterations t. As predicted by
our convergence analysis, BMRM converges faster for larger values of λ. Furthermore, the empirical
convergence curves exhibit a O(log(1/ε)) rate instead of the (pessimistic) theoretical rate of O(1ε ),
especially for large values of λ. Interestingly, BMRM converges faster on high-dimensional text data
sets (i.e., astro-ph, news20-b, rcv1, and real-sim) than on lower dimensional data sets (i.e., adult9
and worm).

5.1.2 BUNDLE SIZE

The dual of our method (10) is a concave problem which has dimensionality equal to the number of
iterations executed. In the case of linear SVM, (10) is a QP. Hence, as described in Section 3.1, we
can trade potentially greater bundle improvement for memory efficiency.

6. Similar behavior was observed with other loss functions.
7. The data set is originally named news20; we renamed it to avoid confusion with the multiclass version of the data
set.

8. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.
9. Note that this heuristic does not have any implication in the convergence analysis.
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 4: Approximation gap εt as a function of number of iterations t; for different regularization
constants λ (and unlimited bundle size).

Figure 5 shows the approximation gap εt during the training of linear SVM as a function of the
number of iterations t, for different bundle sizes k ∈ {2,10,50,∞}. In the case of k = ∞, we em-
ployed the same heuristics which remove inactive linearizations as those mentioned in Section 5.1.1.
As expected, the larger k is, the faster the algorithm converges. Although the case k= 2 is the slow-
est, its convergence rate is still faster than the theoretical bound 1

λε .

5.1.3 PARALLELIZATION

When the empirical risk Remp is additively decomposable, the loss and subgradient computation can
be executed concurrently on multiple processors for different subsets of data points.10

We performed experiments for linear SVMs training with parallelized risk computation on the
worm data set. Figure 6(a) shows the wallclock time for the overall training phase (e.g., data loading,
risk computation, and solving the QP) and CPU time for just the risk computation as a function of
number of processors p. Note that the gap between the two curves essentially tells the runtime upper
bound of the sequential part of the algorithm. As expected, both overall and risk computation time
decrease as the number of processors p increases. However, in Figure 6(b), we see two different
speedups.11 The speedup for the risk computation is roughly linear as there is no sequential part in

10. This requires only slight modification to the data loading process and the addition of some parallelization related
code before and after the code segment for empirical risk computation.

11. Speedup Sp = T1
Tp where p is the number of processors and Tq is the runtime of the parallelized algorithm on q

processors.
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 5: Approximation gap εt as a function of number of iterations t; for different bundle sizes k
(and fixed regularization constant λ= 10−4).

it; the speedup of overall computation is approaching a limit12 as well-explained by Amdahl’s law
(Amdahl, 1967).

5.1.4 GENERALIZATION VERSUS APPROXIMATION GAP

Since the problems we are considering are convex, all properly convergent optimizers will converge
to the same solution. Therefore, comparing generalization performance of the final solution is mean-
ingless. But, in real life one is often interested in the speed with which the algorithm achieves good
generalization performance. In this section we study this question. We focus on the generalization
(in terms of accuracy) as a function of approximation gap during training. For this experiment, we
randomly split each of the data sets into training (60%), validation (20%) and testing (20%) sets.

We first obtained the best λ ∈ {2−20, . . . ,20} for each of the data sets using their corresponding
validation sets. With these best λ’s, we (re)trained linear SVMs and recorded the testing accuracy
as well as the approximation gap at every iteration, with termination criterion ε = 10−4. Figure 7
shows the difference between the testing accuracy evaluated at every iteration and that after training,
as a function of approximation gap at each iteration.

From the figure, we see that the testing accuracies for adult9 and worm data sets are less stable
in general and the approximation gap must be reduced to at least 10−3 to reach the 0.5% regime

12. The limit of speedup is the inverse of the sequential fraction of the algorithm such as the QP.
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(a) Risk computation in CPU time (red solid line) and over-
all computation (i.e., data loading + risk computation +
solving the QP) in wallclock time (green dashed line) as
a function of number of processors.

(b) Speedup in risk computation (in CPU time) and overall
computation (in wallclock time) as a function of number of
processors.

Figure 6: CPU and wallclock time for training linear SVM using parallel BMRM on worm data set
with varying number of processors p ∈ {1,2,4,8,16}. In these experiments, regulariza-
tion constant λ= 10−6, and termination criterion ε= 10−4.

of the final testing accuracies; the testing accuracies for the rest of the data sets arrived at the same
regime with approximation gap of 10−2 or lower.

In general, the generalization improved as the approximation gap decreased. The improvement
in generalization became rather insignificant (say, the maximum of changes in testing accuracies is
less than 0.1%) when the approximation gap was further reduced to below some effective threshold
εeff; that said, it is not necessary to continue the optimization when εt ≤ εeff.13 Since εeff (or its
scale) is not known a priori and the asymptotic analysis in Shalev-Schwartz and Srebro (2008)
does not reveal the actual scale of εeff directly applicable in our case, we carried out another set of
experiments to investigate if εeff could be estimated with as little effort as possible: For each data
set, we randomly subsampled 10%, . . . ,50% of the training set as sub-datasets and performed the
same experiment on all sub-datasets. We then determined the largest εeff such that the maximum
changes in testing accuracies is less than 0.1%.

Table 5.1.4 shows the (base 10 logarithm of) εeff for all sub-datasets as well as the full data sets.
It seems that the εeff estimated on a smaller sub-dataset is at most 1 order of magnitude larger than
the actual εeff required on full data set. In addition, we show in the table that the necessary threshold
ε10% required by the sub-datasets and the full data sets to attain the final testing accuracies attained
by the 10% sub-datasets. The observations obey the analysis in Shalev-Schwartz and Srebro (2008)
that for a fixed testing accuracy, approximation gap (i.e., optimization error) can be relaxed when
more data is given.

13. Heuristically, we could terminate the training phase following the early stopping strategy by monitoring the changes
in accuracies on validation set evaluated in some most recent iterations.
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Figure 7: Difference between testing accuracies of intermediate and final models.

5.2 Comparison with Existing Bundle Methods

In this section we compare BMRM with a BT implementation obtained from Schramm and Zowe
(1992).14 We also compare the performance of BMRM (Algorithm 2) and LSBMRM (Algorithm 3).
The multiclass line search used in LSBMRM can be found in Yu et al. (2008).

For binary classification, we solve the linear SVM (15) on the data sets: adult9, astro-ph,
news20-b, rcv1, real-sim, and worm as mentioned in Section 5.1. For multiclass classification,
we solve (Crammer and Singer, 2003):

min
w
J(w) :=

λ
2
‖w‖2+

1
m

m

∑
i=1
max
y′i∈[c]

〈

w,ey′i ⊗ xi− eyi ⊗ xi
〉

+ I(yi 3= y′i), (16)

where c is the number of classes in the problem, ei is the i-th standard basis for Rc, ⊗ denotes
Kronecker product; and I(·) is an indicator function that has value 1 if its argument is evaluated true,
and 0 otherwise. The data sets used in multiclass classification experiments were inex, letter, mnist,
news20-m,15 protein, and usps. inex is available for download on the website of Antoine Bordes16
and the rest can be found on the LIBSVM tools website.17 Table 3 summarizes the properties of
these data sets.

In each of the experiments, we first obtain the optimal weight vector w̄ by running BMRM until
the termination criteria J(wt)− Jt(wt) ≤ 0.01J(wt) is satisfied. Then we run BT, LSBMRM, and

14. The original FORTRAN implementation was automatically converted into C for use in our library.
15. The data set is originally named news20; we renamed it to avoid confusion with the binary version of the data set.
16. Software available at http://webia.lip6.fr/˜bordes/datasets/multiclass/inex.tar.gz.
17. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html.
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10% 20% 30% 40% 50% 100%

adult9
Acc. (%) 84.3 84.7 84.9 85.1 85.1 85.2
log10 εeff -3.90 -3.72 -3.77 -3.88 -3.64 -4.00
log10 ε10% -4.01 -1.18 -1.07 -1.16 -1.27 -1.04

astro-ph
Acc. (%) 96.1 96.6 96.4 96.6 96.8 97.4
log10 εeff -1.48 -1.70 -1.57 -1.49 -1.68 -1.84
log10 ε10% -4.00 -1.15 -1.06 -0.98 -1.02 -0.87

news20-b
Acc. (%) 89.9 92.9 94.3 94.5 95.4 96.6
log10 εeff -2.00 -2.48 -3.87 -1.65 -3.71 -2.84
log10 ε10% -4.02 -0.92 -0.70 -0.80 -0.80 -0.67

rcv1
Acc. (%) 96.9 97.2 97.4 97.2 97.5 97.6
log10 εeff -2.02 -2.40 -1.99 -2.16 -2.34 -2.28
log10 ε10% -4.07 -1.19 -1.30 -1.29 -1.13 -1.11

real-sim
Acc. (%) 95.0 95.9 96.3 96.6 96.6 97.2
log10 εeff -1.74 -1.84 -1.71 -1.99 -1.74 -1.75
log10 ε10% -4.02 -1.04 -0.88 -0.87 -0.85 -0.82

worm
Acc. (%) 98.2 98.2 98.2 98.3 98.3 98.4
log10 εeff -2.43 -2.47 -2.48 -3.62 -2.81 -3.55
log10 ε10% -4.00 -1.38 -1.28 -1.37 -1.28 -1.31

Table 2: The first sub-row in each data set row indicates the testing accuracies of models trained on
the corresponding proportions of the training set. The second sub-row indicates the (base
10 logarithm of) effective threshold such that the maximum difference in testing accuracies
of models with approximation gap smaller than that is less than 0.1%. The third sub-row
indicates the (base 10 logarithm of) threshold necessary for models to attain the testing
accuracy attained by the model trained on the 10% sub-dataset with default ε= 10−4.

Data Set #examples m #classes c dimension d density %
inex 12,107 18 167,295 0.48
letter 20,000 26 16 100.00
mnist 70,000 10 780 19.24
news20-m 19,928 20 62,061 0.13
protein 21,516 3 357 28.31
usps 9,298 10 256 96.70

Table 3: Properties of the multiclass classification data sets used in the experiments.

BMRM until the following termination criteria is satisfied:

J(wt)− J(w̄) ≤ 0.01J(w̄). (17)

Figure 8 shows the number of iterations t required by the three methods on each data set to
satisfy (17) as a function of regularization constant λ ∈

{

10−3,10−4,10−5,10−6
}

. As expected,
LSBMRM, which uses an exact line search, outperformed both BMRM and BT on all data sets. BMRM
performed better than BT on all high dimensional data sets except news20-m but worse on the rest.
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Although BT tunes the stabilization trade-off parameter κt automatically, it still does not guarantee
superiority over BMRM which is considerably simpler. Nevertheless, external stabilization (in BT)
clearly helps speed up the convergence in certain cases.

5.3 Versatility

In the following subsections, we will illustrate some of the applications of BMRM to various machine
learning problems with smooth and non-differentiable loss functions, and with different regularizers.
Our aim is to show that BMRM is versatile enough to be used in a variety of seemingly different
problems. Readers not interested in this aspect of BMRM can safely skip this subsection.

5.3.1 BINARY CLASSIFICATION

In this section, we evaluate the performance of our method BMRM in the training of binary classifier
using linear SVMs (15) and logistic loss:

min
w
J(w) :=

λ
2
‖w‖2+

1
m

m

∑
i=1
log(1+ exp(−yi 〈w,xi〉)),

on the binary classification data sets mentioned in Section 5.1 with split similar to that in Sec-
tion 5.1.4. Since we will compare BMRM with other solvers which use different termination crite-
ria, we consider the CPU time used in reducing the relative difference between the current smallest
objective function value and the optimum:

mini≤t J(wi)− J(w∗)

J(w∗)
,

where wi is the weight vector at time/iteration i, and w∗ is the minimizer obtained by running BMRM
until the approximation gap εt < 10−4. The best λ ∈

{

2−20, . . . ,20
}

for each of the data sets was
determined by evaluating the performance on the corresponding validation set.18

In the case of linear SVMs, we compared BMRM to three publicly available state of the art batch
learning solvers:

1. OCAS (Franc and Sonnenburg, 2008). Since this method is equivalent to LSBMRM with
binary hinge loss, we refer to this software by LSBMRM for naming consistency.

2. LIBLINEAR (Fan et al., 2008) version 1.33 with option “-s 3”.
3. SVMperf (Joachims, 2006) version 2.5 with option “-w 3” and with double precision floating
point numbers.

LIBLINEAR solves the dual problem of linear SVM using a coordinate descent method (Hsieh et al.,
2008). SVMperf was chosen for comparison as it is algorithmically identical to BMRM in this case.
Both LIBLINEAR and SVMperf provide a “shrinking” technique to speed up the algorithms by ignor-
ing some data points which are not likely to affect the objective. Since BMRM does not provide such
shrinking technique, we excluded this option in both LIBLINEAR and SVMperf for a fair comparison.

Figure 9 shows the relative difference in objective value as a function of training time (CPU
seconds) for three methods on various data sets. BMRM is faster than SVMperf on all data sets

18. The corresponding penalty parameter C for LIBLINEAR and OCAS is 1/(mλ), and for SVMperf is 1/(100λ).
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

(g) inex (h) letter (i) mnist

(j) news20-m (k) protein (l) usps

Figure 8: Smallest number of iterations required to satisfy the termination criterion (17) for each
data set and various regularization constants. (BT did not satisfy (17) in the inex and usps
experiments for λ= 10−6 after 6000 iterations.)
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 9: Linear SVMs. Relative primal objective value difference during training.

except news20-b. The performance difference observed here is largely due to the differences in the
implementations (e.g., feature vector representation, QP solver, etc.). Nevertheless, both BMRM and
SVMperf are significantly outperformed by LSBMRM and LIBLINEAR on all data sets, and LIBLINEAR
is almost always faster than LSBMRM. It is clear from the figure that LSBMRM and LIBLINEAR
enjoy progression with “strictly” decreasing objective values; whereas the progress of both BMRM
and SVMperf are hindered by the “stalling” steps (i.e., the flat line segments in the plots). The fact
that LSBMRM is different from BMRM and SVMperf by one additional line search step implies that
the “stalling” steps is the time that BMRM and SVMperf improve the approximation at the regions
which do not help reducing the primal objective function value.

In the case of logistic regression, we compare BMRM to the state of the art trust region Newton
method for logistic regression (Lin et al., 2008) which is also available in the LIBLINEAR package
(option “-s 0”). From Figure 10, we see that LIBLINEAR outperforms BMRM on all data sets and
that BMRM suffers from the same “stalling” phenomenon as observed in the linear SVMs case.

5.3.2 LEARNING THE COST MATRIX FOR GRAPH MATCHING

In computer vision, there are problems which require matching the objects of interest in a pair
of images. These problems are often modeled as attributed graph matching problems where the
(extracted) landmark points xi in the first image x must be matched to the corresponding points x′i′
in the second image x′. Note that we represent the point xi or x′i′ as d-dimensional feature vectors.
The attributed graph matching problem is then cast as a Linear Assignment Problem (LAP) which
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(a) adult9 (b) astro-ph (c) news20-b

(d) real-sim (e) rcv1 (f) worm

Figure 10: Logistic regression. Relative primal objective value difference during training.

can be solved in worst case O(n3) time where n is the number of landmark points (Kuhn, 1955).19
Formally, the LAP reads

max
y∈Y

n

∑
i=1

n

∑
i′=1

yii′Cii′ ,

where Y is the set of all n×n permutation matrices, andCii′ is the cost of matching point xi to point
x′i′ . In the standard setting of graph matching, one way to determine the cost matrixC is as

Cii′ := −
d

∑
k=1

∣
∣
∣x(k)i − x′(k)i′

∣
∣
∣

2
.

Instead of finding more features to describe the points xi and x′i′ that might improve the matching
results, Caetano et al. (2007) propose to learn a weighting to a given set of features that actually
improved the matching results in many cases (Caetano et al., 2008).

In Caetano et al. (2007, 2008) the problem of learning the cost matrix for graph matching is
formulated as a L2 regularized risk minimization with loss function

l(x,x′,y,w) =max
ȳ∈Y

〈

w,φ(x,x′, ȳ)−φ(x,x′,y)
〉

+Δ(ȳ,y), (18)

where the feature map φ is defined as

φ(x,x′,y) = −
n

∑
i=1

n

∑
i′=1

yii′(|x
(1)
i − x′(1)i′ |2, . . . , |x(d)i − x′(d)i′ |2), (19)

19. To achieve better matching results, one could further enforce edge-to-edge matching where edge refers to pair of
landmark points. This additional matching requirement renders the problem as a Quadratic Assignment Problem.
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and the label loss Δ is defined as the normalized Hamming loss

Δ(ȳ,y) = 1−
1
n

n

∑
i=1

n

∑
i′=1

ȳii′yii′ . (20)

By (19) and (20), the argument of (18) becomes

〈

w,φ(x,x′, ȳ)−φ(x,x′,y)
〉

+Δ(ȳ,y) =
n

∑
i=1

n

∑
i′=1

ȳii′C̃ii′ + constant,

where C̃ii′ = −∑d
k=1wk|x

(k)
i − x′(k)i′ |2− yii′/n. Therefore, (18) is exactly a LAP. We refer interested

readers to Caetano et al. (2007, 2008) for more detailed exposition especially on the use of edge
matching (in addition to point matching) which leads to much better performance.

We reproduced the experiment in Caetano et al. (2008) that used BMRM with L2 regularization
on the CMU house data set.20 For this data set, there are 30 hand-labeled landmark points in each
image and the features for those points are the 60-dimensional Shape Context features (Belongie
et al., 2001; Caetano et al., 2008). The experiments evaluated the performance of the method for
training/validation/testing pairs fixed at baselines (separation of frames) 0,10, . . . ,90. Additionally,
we ran the same set of experiments with L1 regularization, that is, Ω(w) = ‖w‖1.21 The matching
performance of the cost matrices augmented with learned weight vectors w’s are compared with the
original non-learning cost matrix, that is, with uniform weight vector w= (1, . . . ,1).

Figure 11 shows the results of the experiments. On the left, we see that the matching perfor-
mance with learned cost matrices are getting more superior to that of non-learning as the baseline
increases. The performance of L1 and L2 regularized learning are quite similar on average. On the
right are the best learned weights for the features using L1 regularization (top) and L2 regulariza-
tion (bottom) for baseline 50. The weights due to L1 regularization is considerably sparser (i.e., 42
non-zeros) than that due to L2 regularization (i.e., 52 non-zeros).

5.3.3 HUMAN ACTION SEGMENTATION AND RECOGNITION

In this section, we consider the problem of joint segmentation and recognition of human action
from a video sequence using the discriminative Semi-Markov Models (SMM) proposed by Shi
et al. (2008). Denote by x= {xi}ni=1 ∈ X a sequence of n video frames, and by y= {(si,ci)}n̄i=1 ∈ Y
the corresponding segment labeling where si is the starting location of the i-th segment which ends
at si+1− 1, ci is the frame label for all frames in the segment, and n̄ ≤ n the number of segments.
For ease of presentation, we append a dummy video frame xn+1 to x and a dummy segment label
(sn̄+1,cn̄+1) to y to mark xn+1 as the last segment.

In SMM, there exists a segment variable for each possible segment (i.e., multiple frames) of
x that model the frame label and the boundaries (or length) of a segment jointly; these segment
variables form a Markov Chain. On the contrary, the Hidden Markov Model (HMM) for the same
video x has one frame label variable yi for each video frame xi. The fact that SMM models multiple
frames as one variable allows one to exploit the structure and information in the problem more
efficiently than in HMM. The structure exploitation is due to the fact that one human action usually

20. This data set consist of a sequence of 111 images of a toy house. Available at http://vasc.ri.cmu.edu/idb/
html/motion/house/index.html.

21. Further description on L1 regularized BMRM can be found in Appendix C.
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Figure 11: Left: Performance on the house data set as the baseline varies. For each baseline, the
minimizer of validation loss is evaluated on all testing examples. The corresponding
mean normalized Hamming losses (as points) and its standard errors (as error bars) are
reported. Right: Feature weights for best models trained with L1 regularization (top)
and L2 regularization (bottom) for baseline 50. Dashed lines indicate the feature weight
value 1.

spans several consecutive frames, and the information exploitation is due to the possibility to extract
features which only become apparent within a segment of several frames.

The discriminative SMM in Shi et al. (2008) is formulated as a regularized risk minimization
problem where the loss function is

l(x,y,w) =max
ȳ∈Y

〈w,φ(x, ȳ)−φ(x,y)〉+Δ(ȳ,y). (21)

The feature map φ is defined as

φ(x,y) =

(
n̄

∑
i=1

φ1(x,si,ci),
n̄

∑
i=1

φ2(x,si,si+1,ci),
n̄

∑
i=1

φ3(x,si,si+1,ci,ci+1)

)

,

where φ1,φ2, and φ3 are some feature functions for the segment boundaries, segments, and adjacent
segments, respectively. Let yi be the frame label for xi according to segment labeling y, the label
loss function Δ is defined as

Δ(ȳ,y) =
n

∑
i=1
I(ȳi 3= yi), (22)

where I(·) is an indicator function as defined in (16). We refer interested readers to Shi et al. (2008)
for more details on the features and the dynamic programming to compute (21) and its subgradient.

We followed the experimental setup of Shi et al. (2008) by running BMRM for this problem with
L2 (i.e.,Ω(w) = 1

2 ‖w‖
2) and L1 (i.e.,Ω(w) = ‖w‖1) regularization, on the Walk-Bend-Draw (WBD)

data sets (Shi et al., 2008) which consists of 18 video sequences with 3 human action classes (i.e.,
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walking, bending, drawing). For this data set, the dimensionality of the image of the feature map φ
is d = 9917.

Table 4 shows the 6 fold cross validation results for our methods (L1 and L2 SMM),22 SVMs
and SVM-HMM (Tsochantaridis et al., 2005). The latter two are adopted from Shi et al. (2008).
SMM outperforms SVM-HMM and SVM as reported in Shi et al. (2008). Amongst L1 and L2
SMMs, the latter performs the best and converged to optimal. Although L1 SMM failed to satisfy
the termination criterion, the performance is comparable to that of L2 SMM even with a 40 times
sparser weight vector (see Figure 12 for the feature weights distributions of L1 and L2 SMMs).

Methods CV mean (std. err.) #iter. CPU seconds nnz(w)
L2 SMM 0.954 (0.006) 231 1129 3690
L1 SMM 0.930 (0.010) 500 2659 84
SVM-HMM 0.870 (0.020) – – –
SVM 0.840 (0.030) – – –

Table 4: Experimental results on WBD data set. The second column indicates the mean and stan-
dard error of the test accuracy (22). The third and fourth columns indicate the number of
iterations and CPU seconds for the training of the final model with the best parameter, and
the last column indicates the number of nonzero in the final weight vector w.

Figure 12: Feature weights for best models trained with L1 regularization (top) and L2 regulariza-
tion (bottom). Dashed lines indicate the feature weight range [±10].

22. We set termination criterion ε= 10−4 and limited the maximum number of iteration to 500.
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6. Discussion and Conclusion

The experiments presented in the paper indicate that BMRM is suitable for a wide variety of machine
learning problems. In fact, the modularity of BMRM not only brings the benefits of parallel and
distributed computation but also makes BMRM a natural test bed for trying out new models/ideas
on any particular problem with less effort, that is, the user is only required to implement the loss
functions and/or regularizers corresponding to different models/ideas.

Nevertheless, we saw in the experiments that BMRM does not guarantee strict improvement
in the primal when the dual is solved instead. This phenomenon could significantly hinder the
performance of BMRM as seen in some of the experiments. Since efficient line search procedure
may not exist for general structured prediction tasks, the trust region philosophy used in BT could
be a potential strategy to alleviate this problem; we leave this to the future work. We also note
that for computationally expensive nonsmooth loss functions, one way to make fuller use of each
loss function evaluation is by updating the model RCPt with two or more linearizations at a non-
diffferentiable location (Frangioni, 1997).

In conclusion, we have presented a variant of standard bundle methods, that is, BMRM, which is
algorithmically simpler and, in some senses, more straightforward for regularized risk minimization
problems than the standard bundle methods. We also showed a O(1/ε) rate of convergence for
nonsmooth objective functions and O(log(1/ε)) rates for smooth objective functions.
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Appendix A. Loss Functions

A multitude of loss functions are commonly used to derive seemingly different algorithms. This
often blurs the similarities as well as subtle differences between them, often for historic reasons:
Each new loss is typically accompanied by at least one publication dedicated to it. In many cases,
the loss is not spelled out explicitly either but instead, it is only given by means of a constrained
optimization problem. A case in point are the papers introducing (binary) hinge loss (Bennett and
Mangasarian, 1992; Cortes and Vapnik, 1995) and structured loss (Taskar et al., 2004; Tsochan-
taridis et al., 2005). Likewise, a geometric description obscures the underlying loss function, as in
novelty detection (Schölkopf et al., 2001).

In this section we give an expository yet unifying presentation of many of those loss functions.
Many of them are well known, while others, such as multivariate ranking, hazard regression, or
Poisson regression are not commonly used in machine learning. Tables 5 and 6 contain a choice
subset of simple scalar and vectorial losses. Our aim is to put the multitude of loss functions in
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an unified framework, and to show how these losses and their (sub)gradients can be computed
efficiently for use in our solver framework.

Note that not all losses, while convex, are continuously differentiable. In this situation we give
a subgradient. While this may not be optimal, the convergence rates of our algorithm do not depend
on which element of the subdifferential we provide: in all cases the first order Taylor approximation
is a lower bound which is tight at the point of expansion.

In this setion, with little abuse of notation, vi is understood as the i-th component of vector v
when v is clearly not an element of a sequence or a set.

A.1 Scalar Loss Functions

It is well known (Wahba, 1997) that the convex optimization problem

min
ξ

ξ subject to y〈w,x〉 ≥ 1−ξ and ξ≥ 0

takes on the value max(0,1− y〈w,x〉). The latter is a convex function in w and x. Likewise, we
may rewrite the ε-insensitive loss, Huber’s robust loss, the quantile regression loss, and the novelty
detection loss in terms of loss functions rather than a constrained optimization problem. In all cases,
〈w,x〉 will play a key role insofar as the loss is convex in terms of the scalar quantity 〈w,x〉. A large
number of loss functions fall into this category, as described in Table 5. Note that not all functions
of this type are continuously differentiable. In this case we adopt the convention that

∂xmax( f (x),g(x)) =

{

∂x f (x) if f (x) ≥ g(x)
∂xg(x) otherwise .

Since we are only interested in obtaining an arbitrary element of the subdifferential this convention
is consistent with our requirements.

Let us discuss the issue of efficient computation. For all scalar losses we may write l(x,y,w) =
l̄(〈w,x〉 ,y), as described in Table 5. In this case a simple application of the chain rule yields that
∂wl(x,y,w) = l̄′(〈w,x〉 ,y) · x. For instance, for squared loss we have

l̄(〈w,x〉 ,y) = 1
2(〈w,x〉− y)2 and l̄′(〈w,x〉 ,y) = 〈w,x〉− y.

Consequently, the derivative of the empirical risk term is given by

∂wRemp(w) =
1
m

m

∑
i=1

l̄′(〈w,xi〉 ,yi) · xi.

This means that if we want to compute l and ∂wl on a large number of observations xi, represented
as matrix X , we can make use of fast linear algebra routines to pre-compute the vectors

f = Xw and g/X where gi = l̄′( fi,yi).

This is possible for any of the loss functions listed in Table 5, and many other similar losses. The
advantage of this unified representation is that implementation of each individual loss can be done in
very little time. The computational infrastructure for computing Xw and g/X is shared. Evaluating
l̄( fi,yi) and l̄′( fi,yi) for all i can be done in O(m) time and it is not time-critical in comparison to
the remaining operations. Algorithm 6 describes the details.
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Algorithm 6 ScalarLoss(w,X ,y)
1: input: Weight vector w, feature matrix X , and labels y
2: Compute f = Xw
3: Compute r = ∑i l̄( fi,yi) and g= l̄′( f ,y)
4: g← g/X
5: return Risk r and gradient g

An important but often neglected issue is worth mentioning. Computing f requires us to right
multiply the matrix X with the vector w while computing g requires the left multiplication of X with
the vector g/. If X is stored in a row major format then Xw can be computed rather efficiently while
g/X is expensive. This is particularly true if X cannot fit in main memory. Converse is the case
when X is stored in column major format. Similar problems are encountered when X is a sparse
matrix and stored in either compressed row format or in compressed column format.

A.2 Structured Loss

In recent years structured estimation has gained substantial popularity in machine learning (Tsochan-
taridis et al., 2005; Taskar et al., 2004; Bakir et al., 2007). At its core it relies on two types of convex
loss functions: logistic loss:

l(x,y,w) = log ∑
y′∈Y

exp
(〈

w,φ(x,y′)
〉)

−〈w,φ(x,y)〉 , (23)

and soft-margin loss:

l(x,y,w) =max
y′∈Y

Γ(y,y′)
〈

w,φ(x,y′)−φ(x,y)
〉

+Δ(y,y′). (24)

Here φ(x,y) is a joint feature map, Δ(y,y′) ≥ 0 describes the cost of misclassifying y by y′, and
Γ(y,y′) ≥ 0 is a scaling term which indicates by how much the large margin property should be en-
forced. For instance, Taskar et al. (2004) choose Γ(y,y′) = 1. On the other hand, Tsochantaridis et al.
(2005) suggest Γ(y,y′) = Δ(y,y′), which reportedly yields better performance. Finally, McAllester
(2007) recently suggested generic functions Γ(y,y′).

The logistic loss can also be interpreted as the negative log-likelihood of a conditional exponen-
tial family model:

p(y|x;w) := exp(〈w,φ(x,y)〉−g(w|x)), (25)

where the normalizing constant g(w|x), often called the log-partition function, reads

g(w|x) := log ∑
y′∈Y

exp
(〈

w,φ(x,y′)
〉)

.

As a consequence of the Hammersley-Clifford theorem (Jordan, 2002) every exponential family
distribution corresponds to a undirected graphical model. In our case this implies that the labels
y factorize according to an undirected graphical model. A large number of problems have been
addressed by this setting, amongst them named entity tagging (Lafferty et al., 2001), sequence
alignment (Tsochantaridis et al., 2005), segmentation (Rätsch et al., 2007) and path planning (Ratliff
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et al., 2006). It is clearly impossible to give examples of all settings in this section, nor would a
brief summary do this field any justice. We therefore refer the reader to the edited volume by Bakir
et al. (2007) and the references therein.

If the underlying graphical model is tractable then efficient inference algorithms based on dy-
namic programming can be used to compute (23) and (24). We discuss intractable graphical models
in Section A.2.1, and now turn our attention to the derivatives of the above structured losses.

When it comes to computing derivatives of the logistic loss, (23), we have

∂wl(x,y,w) =
∑y′ φ(x,y′)exp〈w,φ(x,y′)〉

∑y′ exp〈w,φ(x,y′)〉
−φ(x,y)

= Ey′∼p(y′|x)
[

φ(x,y′)
]

−φ(x,y).

where p(y|x) is the exponential family model (25). In the case of (24) we denote by ȳ(x) the argmax
of the RHS, that is

ȳ(x) := argmax
y′

Γ(y,y′)
〈

w,φ(x,y′)−φ(x,y)
〉

+Δ(y,y′).

This allows us to compute the derivative of l(x,y,w) as

∂wl(x,y,w) = Γ(y, ȳ(x)) [φ(x, ȳ(x))−φ(x,y)] .

In the case where the loss is maximized for more than one distinct value ȳ(x) we may average over
the individual values, since any convex combination of such terms lies in the subdifferential.

Note that (24) majorizes Δ(y,y∗), where y∗ := argmaxy′ 〈w,φ(x,y′)〉 (Tsochantaridis et al., 2005).
This can be seen via the following series of inequalities:

Δ(y,y∗) ≤ Γ(y,y∗)〈w,φ(x,y∗)−φ(x,y)〉+Δ(y,y∗) ≤ l(x,y,w).

The first inequality follows because Γ(y,y∗) ≥ 0 and y∗ maximizes 〈w,φ(x,y′)〉 thus implying that
Γ(y,y∗)〈w,φ(x,y∗)−φ(x,y)〉 ≥ 0. The second inequality follows by definition of the loss.

We conclude this section with a simple lemma which is at the heart of several derivations of
Joachims (2005). While the proof in the original paper is far from trivial, it is straightforward in our
setting:

Lemma 8 Denote by δ(y,y′) a loss and let φ(xi,yi) be a feature map for observations (xi,yi) with
1≤ i≤ m. Moreover, denote by X ,Y the set of all m patterns and labels respectively. Finally let

Φ(X ,Y ) :=
m

∑
i=1

φ(xi,yi) and Δ(Y,Y ′) :=
m

∑
i=1

δ(yi,y′i).

Then the following two losses are equivalent:
m

∑
i=1
max
y′

〈

w,φ(xi,y′)−φ(xi,yi)
〉

+δ(yi,y′) and max
Y ′

〈

w,Φ(X ,Y ′)−Φ(X ,Y )
〉

+Δ(Y,Y ′).

This is immediately obvious, since both feature map and loss decompose, which allows us to per-
form maximization over Y ′ by maximizing each of its m components. In doing so, we showed that
aggregating all data and labels into a single feature map and loss yields results identical to minimiz-
ing the sum over all individual losses. This holds, in particular, for the sample error loss of Joachims
(2005). Also note that this equivalence does not hold whenever Γ(y,y′) is not constant.
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A.2.1 INTRACTABLE MODELS

We now discuss cases where computing l(x,y,w) itself is too expensive. For instance, for intractable
graphical models, the computation of∑y exp〈w,φ(x,y)〉 cannot be computed efficiently. Wainwright
and Jordan (2003) propose the use of a convex majorization of the log-partition function in those
cases. In our setting this means that instead of dealing with

l(x,y,w) = g(w|x)−〈w,φ(x,y)〉 where g(w|x) := log∑
y
exp〈w,φ(x,y)〉

one uses a more easily computable convex upper bound on g via

sup
µ∈MARG(x)

〈w,µ〉+HGauss(µ|x). (26)

Here MARG(x) is an outer bound on the conditional marginal polytope associated with the map
φ(x,y). Moreover, HGauss(µ|x) is an upper bound on the entropy by using a Gaussian with identical
variance. More refined tree decompositions exist, too. The key benefit of our approach is that the
solution µ of the optimization problem (26) can immediately be used as a gradient of the upper
bound. This is computationally rather efficient.

Likewise, note that Taskar et al. (2004) use relaxations when solving structured estimation prob-
lems of the form

l(x,y,w) =max
y′

Γ(y,y′)
〈

w,φ(x,y′)−φ(x,y)
〉

+Δ(y,y′),

by enlarging the domain of maximization with respect to y′. For instance, instead of an integer
programming problem we might relax the setting to a linear program which is much cheaper to
solve. This, again, provides an upper bound on the original loss function.

In summary, we have demonstrated that convex relaxation strategies are well applicable for
bundle methods. In fact, the results of the corresponding optimization procedures can be used
directly for further optimization steps.

A.3 Scalar Multivariate Performance Scores

We now discuss a series of structured loss functions and how they can be implemented efficiently.
For the sake of completeness, we give a concise representation of previous work on multivariate
performance scores and ranking methods. All these loss functions rely on having access to 〈w,x〉,
which can be computed efficiently by using the same operations as in Section A.1.

A.3.1 ROC SCORE

Denote by f = Xw the vector of function values on the training set. It is well known that the area
under the ROC curve is given by

AUC(x,y,w) =
1

m+m−
∑
yi<y j

I(〈w,xi〉 <
〈

w,x j
〉

),

where m+ and m− are the numbers of positive and negative observations respectively, and I(·) is
indicator function. Directly optimizing the cost 1−AUC(x,y,w) is difficult as it is not continuous
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Algorithm 7 ROCScore(X ,y,w)

1: input: Feature matrix X , labels y, and weight vector w
2: initialization: s− = m− and s+ = 0 and l = 0m and c= Xw− 1

2y
3: π← {1, . . . ,m} sorted in ascending order of c
4: for i= 1 to m do
5: if yπi = −1 then
6: lπi ← s+ and s− ← s−−1
7: else
8: lπi ←−s− and s+ ← s+ +1
9: end if
10: end for
11: Rescale l← l/(m+m−) and compute r = 〈l,c〉 and g= l/X .
12: return Risk r and subgradient g

in w. By using max(0,1+
〈

w,xi− x j
〉

) as the surrogate loss function for all pairs (i, j) for which
yi < y j we have the following convex multivariate empirical risk

Remp(w) =
1

m+m−
∑
yi<y j

max(0,1+
〈

w,xi− x j
〉

) =
1

m+m−
∑
yi<y j

max(0,1+ fi− f j). (27)

Obviously, we could compute Remp(w) and its derivative by anO(m2) operation. However Joachims
(2005) shows that both can be computed in O(m logm) time using a sorting operation, which we
now describe.

Denote by c= f − 1
2y an auxiliary variable and let i and j be indices such that yi =−1 and y j = 1.

It follows that ci− c j = 1+ fi− f j. The efficient algorithm is due to the observation that there are
at most m distinct terms ck, k = 1, . . . ,m, each with different frequency lk and sign, appear in (27).
These frequencies lk can be determined by first sorting c in ascending order then scanning through
the labels according to the sorted order of c and keeping running statistics such as the number s− of
negative labels yet to encounter, and the number s+ of positive labels encountered. When visiting
yk, we know ck should appears s+ (or s−) times with positive (or negative) sign in (27) if yk = −1
(or yk = 1). Algorithm 7 spells out explicitly how to compute Remp(w) and its subgradient.

A.3.2 ORDINAL REGRESSION

Essentially the same preference relationships need to hold for ordinal regression. The only differ-
ence is that yi need not take on binary values any more. Instead, we may have an arbitrary number of
different values yi (e.g., 1 corresponding to ’strong reject’ up to 10 corresponding to ’strong accept’,
when it comes to ranking papers for a conference). That is, we now have yi ∈ {1, . . . ,n} rather than
yi ∈ {±1}. Our goal is to find some w such that

〈

w,xi− x j
〉

< 0 whenever yi < y j. Whenever this
relationship is not satisfied, we incur a cost C(yi,y j) for preferring xi to x j. For examples, C(yi,y j)
could be constant, that is,C(yi,y j) = 1 (Joachims, 2006) or linear, that is,C(yi,y j) = y j− yi.

Denote by mi the number of x j for which y j = i. In this case, there are M̄ = m2−∑n
i=1m2i

pairs (yi,y j) for which yi 3= y j; this implies that there are M = M̄/2 pairs (yi,y j) such that yi < y j.
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Normalizing by the total number of comparisons we may write the overall cost of the estimator as

1
M ∑

yi<y j
C(yi,y j)I(〈w,xi〉 >

〈

w,x j
〉

) whereM =
1
2

[

m2−
n

∑
i
m2i

]

.

Using the same convex majorization as above when we were maximizing the ROC score, we obtain
an empirical risk of the form

Remp(w) =
1
M ∑

yi<y j
C(yi,y j)max(0,1+

〈

w,xi− x j
〉

).

Now the goal is to find an efficient algorithm for obtaining the number of times when the individual
losses are nonzero such as to compute both the value and the gradient of Remp(w). The complication
arises from the fact that observations xi with label yi may appear in either side of the inequality
depending on whether y j < yi or y j > yi. This problem can be solved as follows: sort f = Xw in
ascending order and traverse it while keeping track of how many items with a lower value y j are
no more than 1 apart in terms of their value of fi. This way we may compute the count statistics
efficiently. Algorithm 8 describes the details, generalizing the results of Joachims (2006). Again,
its runtime is O(m logm), thus allowing for efficient computation.

A.3.3 PREFERENCE RELATIONS

In general, our loss may be described by means of a set of preference relations j 5 i for arbitrary
pairs (i, j) ∈ {1, . . .m}2 associated with a cost C(i, j) which is incurred whenever i is ranked above
j. This set of preferences may or may not form a partial or a total order on the domain of all
observations. In these cases efficient computations along the lines of Algorithm 8 exist. In general,
this is not the case and we need to rely on the fact that the set P containing all preferences is
sufficiently small that it can be enumerated efficiently. The risk is then given by

1
|P| ∑

(i, j)∈P
C(i, j)I(〈w,xi〉 >

〈

w,x j
〉

).

Again, the same majorization argument as before allows us to write a convex upper bound

Remp(w) =
1
|P| ∑

(i, j)∈P
C(i, j)max

(

0,1+ 〈w,xi〉−
〈

w,x j
〉)

where ∂wRemp(w) =
1
|P| ∑

(i, j)∈P
C(i, j)

{

0 if
〈

w,x j− xi
〉

≥ 1
xi− x j otherwise.

The implementation is straightforward, as given in Algorithm 9.

A.3.4 RANKING

In webpage and document ranking we are often in a situation similar to that described in Sec-
tion A.3.2, however with the difference that we do not only care about objects xi being ranked
according to scores yi but moreover that different degrees of importance are placed on different
documents.
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Algorithm 8 OrdinalRegression(X ,y,w,C)

1: input: Feature matrix X , labels y, weight vector w, and score matrixC
2: initialization: l = 0n and ui = mi ∀i ∈ [n] and r = 0 and g= 0m
3: Compute f = Xw and set c= [ f − 1

2 , f +
1
2 ] ∈ R2m (concatenate the vectors)

4: ComputeM = (m2−∑n
i=1m2i )/2

5: RescaleC←C/M
6: π← {1, . . . ,2m} sorted in ascending order of c
7: for i= 1 to 2m do
8: j = πi mod m
9: if πi ≤ m then
10: for k = 1 to y j−1 do
11: r← r−C(k,y j)ukc j
12: g j ← g j−C(k,y j)uk
13: end for
14: ly j ← ly j +1
15: else
16: for k = y j +1 to n do
17: r← r+C(y j,k)lkc j+m
18: g j ← g j +C(y j,k)lk
19: end for
20: uyj ← uyj −1
21: end if
22: end for
23: g← g/X
24: return: Risk r and subgradient g

Algorithm 9 Preference(X ,w,C,P)

1: input: Feature matrix X , weight vector w, score matrixC, and preference set P
2: initialization: r = 0 and g= 0m
3: Compute f = Xw
4: while (i, j) ∈ P do
5: if f j− fi < 1 then
6: r← r+C(i, j)(1+ fi− f j)
7: gi ← gi+C(i, j) and g j ← g j−C(i, j)
8: end if
9: end while
10: g← g/X
11: return Risk r and subgradient g

The information retrieval literature is full with a large number of different scoring functions.
Examples are criteria such as Normalized Discounted Cumulative Gain (NDCG), Mean Recipro-
cal Rank (MRR), Precision@n, or Expected Rank Utility (ERU). They are used to address the is-
sue of evaluating rankers, search engines or recommender sytems (Voorhees, 2001; Jarvelin and
Kekalainen, 2002; Breese et al., 1998; Basilico and Hofmann, 2004). For instance, in webpage
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Algorithm 10 Ranking(X ,y,w)

1: input: Feature matrix X , relevances y, and weight vector w
2: Compute vectors a and b(y) according to some ranking measure
3: Compute f = Xw
4: Compute elements of matrixCi j = ci f j−bia j
5: π= LinearAssignment(C)
6: r = c/( f (π)− f )+(a−a(π))/b
7: g= c(π−1)− c and g← g/X
8: return Risk r and subgradient g

ranking only the first k retrieved documents that matter, since users are unlikely to look beyond the
first k, say 10, retrieved webpages in an internet search. Le and Smola (2007) show that these scores
can be optimized directly by minimizing the following loss:

l(X ,y,w) =max
π ∑i

ci
〈

w,xπ(i)− xi
〉

+ 〈a−a(π),b(y)〉 . (28)

Here ci is a monotonically decreasing sequence, the documents are assumed to be arranged in or-
der of decreasing relevance, π is a permutation, the vectors a and b(y) depend on the choice of a
particular ranking measure, and a(π) denotes the permutation of a according to π. Pre-computing
f = Xw we may rewrite (28) as

l( f ,y) =max
π

[

c/ f (π)−a(π)/b(y)
]

− c/ f +a/b(y)

and consequently the derivative of l(X ,y,w) with respect to w is given by

∂wl(X ,y,w) = (c(π̄−1)− c)/X where π̄= argmax
π

c/ f (π)−a(π)/b(y).

Here π−1 denotes the inverse permutation, such that π◦π−1 = 1. Finding the permutation maximiz-
ing c/ f (π)−a(π)/b(y) is a linear assignment problem which can be easily solved by the Hungarian
Marriage algorithm, that is, the Kuhn-Munkres algorithm.

The original papers by Kuhn (1955) and Munkres (1957) implied an algorithm with O(m3) cost
in the number of terms. Later, Karp (1980) suggests an algorithm with expected quadratic time in
the size of the assignment problem (ignoring log-factors). Finally, Orlin and Lee (1993) propose a
linear time algorithm for large problems. Since in our case the number of pages is fairly small (in
the order of 50 to 200 per query) the scaling behavior per query is not too important. We used an
existing implementation due to Jonker and Volgenant (1987).

Note also that training sets consist of a collection of ranking problems, that is, we have several
ranking problems of size 50 to 200. By means of parallelization we are able to distribute the work
onto a cluster of workstations, which is able to overcome the issue of the rather costly computation
per collection of queries. Algorithm 10 spells out the steps in detail.

A.3.5 CONTINGENCY TABLE SCORES

Joachims (2005) observed that Fβ scores and related quantities dependent on a contingency table can
also be computed efficiently by means of structured estimation. Such scores depend in general on
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the number of true and false positives and negatives alike. Algorithm 11 shows how a corresponding
empirical risk and subgradient can be computed efficiently. As with the previous losses, here again
we use convex majorization to obtain a tractable optimization problem.

Given a set of labels y and an estimate y′, the numbers of true positives (T+), true negatives
(T−), false positives (F+), and false negatives (F−) are determined according to a contingency table
as follows:

y> 0 y< 0
y′ > 0 T+ F+

y′ < 0 F− T−

In the sequel, we denote by m+ = T+ +F− and m− = T−+F+ the numbers of positives and negative
labels in y, respectively. We note that Fβ score can be computed based on the contingency table
(Joachims, 2005) as

Fβ(T+,T−) =
(1+β2)T+

T+ +m−−T− +β2m+
.

If we want to use 〈w,xi〉 to estimate the label of observation xi, we may use the following
structured loss to “directly” optimize w.r.t. Fβ score (Joachims, 2005):

l(X ,y,w) =max
y′

[

(y′ − y)/ f +Δ(T+,T−)
]

,

where f = Xw, Δ(T+,T−) := 1−Fβ(T+,T−), and (T+,T−) is determined by using y and y′. Since Δ
does not depend on the specific choice of (y,y′) but rather just on which sets they disagree, l can be
maximized as follows: Enumerating all possible m+m− contingency tables in a way such that given
a configuration (T+,T−), T+ (T−) positive (negative) observations xi with largest (lowest) value of
〈w,xi〉 are labeled as positive (negative). This is effectively implemented as a nested loop hence run
in O(m2) time. Algorithm 11 describes the procedure in details.

A.4 Vector Loss Functions

Next we discuss “vector” loss functions, that is, functions where w is best described as a matrix
(denoted byW ) and the loss depends onWx. Here, we have feature vector x ∈ Rd , label y ∈ Rk, and
weight matrixW ∈ Rd×k. We also denote feature matrix X ∈ Rm×d as a matrix of m feature vectors
xi, and stack up the columnsWi ofW as a vector w.

Some of the most relevant cases are multiclass classification using both the exponential families
model and structured estimation, hierarchical models, that is, ontologies, and multivariate regres-
sion. Many of those cases are summarized in Table 6.

A.4.1 UNSTRUCTURED SETTING

The simplest loss is multivariate regression, where l(x,y,W ) = 1
2(y− x/W )/M(y− x/W ). In this

case it is clear that by pre-computing XW subsequent calculations of the loss and its gradient are
significantly accelerated.

A second class of important losses is given by plain multiclass classification problems, for
example, recognizing digits of a postal code or categorizing high-level document categories. In this
case, φ(x,y) is best represented by ey⊗ x (using a linear model). Clearly we may view 〈w,φ(x,y)〉
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Algorithm 11 Fβ(X ,y,w)

1: input: Feature matrix X , labels y, and weight vector w
2: Compute f = Xw
3: π+ ← {i : yi = 1} sorted in descending order of f
4: π− ← {i : yi = −1} sorted in ascending order of f
5: Let p0 = 0 and pi = 2∑m+

k=i fπ+
k
, i= 1, . . . ,m+

6: Let n0 = 0 and ni = 2∑m−
k=i fπ−k , i= 1, . . . ,m−

7: y′ ← −y and r←−∞
8: for i= 0 to m+ do
9: for j = 0 to m− do
10: rtmp = Δ(i, j)− pi+n j
11: if rtmp > r then
12: r← rtmp
13: T+ ← i and T− ← j
14: end if
15: end for
16: end for
17: y′

π+
i
← 1, i= 1, . . . ,T+

18: y′
π−i

←−1, i= 1, . . . ,T−
19: g← (y′ − y)/X
20: return Risk r and subgradient g

as an operation which chooses a column indexed by y from xW , since all labels y correspond to a
different weight vectorWy. Formally we set 〈w,φ(x,y)〉 = [xW ]y. In this case, structured estimation
losses can be rewritten as

l(x,y,W ) =max
y′

Γ(y,y′)
〈

Wy′ −Wy,x
〉

+Δ(y,y′) (29)

and ∂W l(x,y,W ) = Γ(y,y∗)(ey∗ − ey)⊗ x.

Here Γ and Δ are defined as in Section A.2 and y∗ denotes the value of y′ for which the RHS of
(29) is maximized. This means that for unstructured multiclass settings we may simply compute
xW . Since this needs to be performed for all observations xi we may take advantage of fast linear
algebra routines and compute f = XW for efficiency. Likewise note that computing the gradient
over m observations is now a matrix-matrix multiplication, too: denote by G the matrix of rows
of gradients Γ(yi,y∗i )(ey∗i − eyi). Then ∂WRemp(X ,y,W ) = G/X . Note that G is very sparse with at
most two nonzero entries per row, which makes the computation of G/X essentially as expensive
as two matrix vector multiplications. Whenever we have many classes, this may yield significant
computational gains.

Log-likelihood scores of exponential families share similar expansions. We have

l(x,y,W ) = log∑
y′
exp

〈

w,φ(x,y′)
〉

−〈w,φ(x,y)〉 = log∑
y′
exp

〈

Wy′ ,x
〉

−〈Wy,x〉

∂W l(x,y,W ) =
∑y′(ey′ ⊗ x)exp

〈

Wy′ ,x
〉

∑y′ exp
〈

Wy′ ,x
〉 − ey⊗ x.
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The main difference to the soft-margin setting is that the gradients are not sparse in the number of
classes. This means that the computation of gradients is slightly more costly.

A.4.2 ONTOLOGIES

Figure 13: Two ontologies. Left: a binary hierarchy with internal nodes {1, . . . ,7} and labels
{8, . . .15}. Right: a generic directed acyclic graph with internal nodes {1, . . . ,6,12}
and labels {7, . . . ,11,13, . . . ,15}. Note that node 5 has two parents, namely nodes 2 and
3. Moreover, the labels need not be found at the same level of the tree: nodes 14 and 15
are one level lower than the rest of the nodes.

Assume that the labels we want to estimate can be found to belong to a directed acyclic graph
(DAG). For instance, this may be a gene-ontology graph (Ashburner et al., 2000) a patent hierarchy
(Cai and Hofmann, 2004), or a genealogy. In these cases we have a hierarchy of categories to which
an element x may belong. Figure 13 gives two examples of such directed acyclic graphs. The first
example is a binary tree, while the second contains nodes with different numbers of children (e.g.,
node 4 and 12), nodes at different levels having children (e.g., nodes 5 and 12), and nodes which
have more than one parent (e.g., node 5). It is a well known fundamental property of trees that they
have at most as many internal nodes as they have leaf nodes.

It is now our goal to build a classifier which is able to categorize observations according to
which leaf node they belong to (each leaf node is assigned a label y). Denote by k+ 1 the number
of nodes in the DAG including the root node. In this case we may design a feature map φ(y) ∈ Rk

(Cai and Hofmann, 2004) by associating with every label y the vector describing the path from the
root node to y, ignoring the root node itself. For instance, for the first DAG in Figure 13 we have

φ(8) = (1,0,1,0,0,0,1,0,0,0,0,0,0,0) and φ(13) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0)

Whenever several paths are admissible, as in the right DAG of Figure 13 we average over all possible
paths. For example, we have

φ(10) = (0.5,0.5,0,1,0,0,0,0,1,0,0,0,0,0) and φ(15) = (0,1,0,0,1,0,0,0,0,0,0,1,0,0,1).

Also note that the lengths of the paths need not be the same (e.g., to reach 15 it takes a longer path
than to reach 13). Likewise, it is natural to assume that Δ(y,y′), that is, the cost for mislabeling y
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Algorithm 12 Ontology(X ,y,W )

1: input: Feature matrix X ∈ Rm×d , labels y, and weight matrixW ∈ Rd×k

2: initialization: G= 0 ∈ Rm×k and r = 0
3: Compute f = XW and let fi = xiW
4: for i= 1 to m do
5: Let Di be the DAG with edges annotated with the values of fi
6: Traverse Di to find a path y∗ that maximizes the value zy∗ := ∑k

j=1[φ(y∗)] j fi j +Δ(yi,y∗)
7: Gi = φ(y∗)−φ(yi)
8: r← r+ zy∗ − zyi
9: end for
10: g= G/X
11: return Risk r and subgradient g

as y′ will depend on the similarity of the path. In other words, it is likely that the cost for placing x
into the wrong sub-sub-category is less than getting the main category of the object wrong.

To complete the setting, note that for φ(x,y) = φ(y)⊗ x the cost of computing all labels is k
inner products, since the value of 〈w,φ(x,y)〉 for a particular y can be obtained by the sum of the
contributions for the segments of the path. This means that the values for all terms can be computed
by a simple breadth first traversal through the graph. As before, we may make use of vectorization
in our approach, since we may compute xW ∈ Rk to obtain the contributions on all segments of the
DAG before performing the graph traversal. Since we have m patterns xi we may vectorize matters
by pre-computing XW .

Also note that φ(y)−φ(y′) is nonzero only for those edges where the paths for y and y′ differ.
Hence we only change weights on those parts of the graph where the categorization differs. Algo-
rithm 12 describes the subgradient and loss computation for the soft-margin type of loss function.

The same reasoning applies to estimation when using an exponential families model. The only
difference is that we need to compute a soft-max over paths rather than exclusively choosing the
best path over the ontology. Again, a breadth-first recursion suffices: each of the leaves y of the
DAG is associated with a probability p(y|x). To obtain Ey∼p(y|x) [φ(y)] all we need to do is perform
a bottom-up traversal of the DAG summing over all probability weights on the path. Wherever a
node has more than one parent, we distribute the probability weight equally over its parents.

Appendix B. Proofs

This section contains the proofs of Theorems 4, 5, and 7, along with the technical lemmas required
for these.

B.1 Proof of Theorem 4

To show Theorem 4 we need several technical intermediate steps. Let γt := J(wt)−Jt(wt) and recall
that εt :=mint ′≤t J(wt ′)− Jt(wt). The following lemma establishes some useful properties of γt and
εt .
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Lemma 9 We have Jt ′(wt ′) ≤ Jt(wt) ≤ J(w∗) ≤ J(wt) = Jt+1(wt) for all t ′ ≤ t. Furthermore, εt
is monotonically decreasing with εt − εt+1 ≥ Jt+1(wt+1)− Jt(wt) ≥ 0. Also, εt upper bounds the
distance from optimality via γt ≥ εt ≥mint ′≤t J(wt ′)− J(w∗).

Proof Since Jt ′(w)≤ Jt(w)≤ J(w) for all t ′ ≤ t this property also applies to their respective minima.
Moreover, since w∗ minimizes J(w) we have J(w∗) ≤ J(wt). Since Taylor expansions are exact at
the point of expansion J(wt) = Jt+1(wt). The first inequality follows from the definition of εt , and
the fact that Jt is monotonically increasing. Finally, since Jt ′+1(wt ′) = J(wt ′) it is easy to see that
γt ≥ εt =mint ′≤t J(wt ′)− Jt(wt) ≥mint ′≤t J(wt ′)− J(w∗).

Our second technical lemma allows us to bound the maximum value of a concave function provided
that we know its first derivative and a bound on the second derivative.

Lemma 10 Denote by f : [0,1] → R a concave function with f (0) = 0, f ′(0) = l, and | f ′′(x)| ≤
K ∀x ∈ [0,1]. Then we have maxx∈[0,1] f (x) ≥ l

2 min(
l
K ,1).

Proof We first observe that g(x) := lx− K
2 x
2 ≤ f (x) ∀x implies maxx∈[0,1] f (x) ≥maxx∈[0,1] g(x). g

attains the unconstrained maximum l2
2K at x = l

K . Since g is monotonically increasing in [0, lK ], if
l > K we pick x= 1 which yields constrained maximum l− K

2 > l
2 . Taking the minimum over both

maxima proves the claim.

To apply the above result, we need to compute the gradient and Hessian of J∗t+1(α) with respect
to the search direction ((1−η)αt ,η). The following lemma takes care of the gradient:

Lemma 11 Denote by αt the solution of (9) at time instance t. Moreover, denote by Ā = [A,at+1]
and b̄= [b,bt+1] the extended matrices and vectors needed to define the dual problem for step t+1,
and let ᾱ ∈ Rt+1. Then the following holds:

∂ᾱJ∗t+1([αt ,0]) = Ā/wt + b̄ and

[−αt ,1]/
[

Ā/wt + b̄
]

= Jt+1(wt)− Jt(wt) = γt . (30)

Proof By the dual connection ∂Ω∗(−λ−1Aαt) = wt . Hence we have that ∂ᾱ− λΩ∗(−λ−1Āᾱ)+
ᾱ/b̄= Ā/wt + b̄ for ᾱ= [αt ,0]/. This proves the first claim. To see the second part we eliminate ξ
from of the Lagrangian (11) and write the partial Lagrangian

L(w,α) = λΩ(w)+α/
(

A/w+b
)

with α≥ 0.

The result follows by noting that at optimality L(wt ,αt)= Jt(wt) and Jt+1(wt)= λΩ(wt)+〈wt ,at+1〉+
bt+1. Consequently we have

Jt+1(wt)− Jt(wt) = λΩ(wt)+ 〈wt ,at+1〉+bt+1−λΩ(wt)−αt(A/wt +bt).

Rearranging terms proves the claim.

To apply Lemma 10 we also need to bound the second derivative.
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Lemma 12 Under the assumptions of Lemma 11 we have

∂2ᾱJ∗t+1(ᾱ) = −λ−1Ā/∂2Ω∗(−λ−1Āᾱ)Ā (31)
moreover Ā[−αt ,1] = st ∈ ∂wJ(wt). (32)

Proof The first equality is immediate from the chain rule. Next note that ∂wΩ(wt) = −λ−1Aαt by
dual connection. Since at+1 ∈ ∂wRemp(wt) the claim follows from J(w) = Remp(w)+λΩ(w).

This result allows us to express the second derivative of the dual objective function (10) in terms of
the gradient of the risk functional. The idea is that as we approach optimality, the second derivative
will vanish. We will use this fact to argue that for continuously differentiable losses Remp(w) we
enjoy linear convergence throughout.
Proof [Theorem 4] We overload the notation for J∗t+1 by defining the following one dimensional
concave function

J∗t+1(η) := J∗t+1([(1−η)αt ,η]) = −λΩ∗(−λ−1Ā[(1−η)α/
t ,η])+ [(1−η)α/

t ,η]b̄.

Clearly, J∗t+1(0) = Jt(wt). Furthermore, by (30), (31), and (32) it follows that

∂ηJ∗t+1(η)|η=0 = [−αt ,1]/∂ᾱJ∗t+1([αt ,0]) = γt and
∂2ηJ∗t+1(η) = −λ−1[−αt ,1]/Ā/∂2Ω∗(−λ−1Ā[(1−η)αt ,η])Ā[−αt ,1]/

= −λ−1s/t ∂2Ω∗(−λ−1Ā[(1−η)αt ,η])st := r.

By our assumption on ‖∂2Ω∗‖ ≤ H∗ we have

|r|≤ H∗‖st‖2/λ.

Next we need to bound the gradient of J. For this purpose note that ∂wλΩ(wt) = −A/αt and
moreover that ‖αt‖1 = 1. This implies that ∂wλΩ(wt) lies in the convex hull of the past gradients,
at ′ . By our assumption that maxu∈∂wRemp(w) ‖u‖ ≤ G it follows that ‖∂wλΩ(wt)‖ ≤ G. We conclude
that

‖st‖2 ≤ 4G2 and |r|≤ 4G2H∗/λ.

Invoking Lemma 10 on J∗t+1(η)− Jt(wt) shows that

J∗t+1(η)− Jt(wt) ≥ γt
2 min(1,λγt/4G

2H∗).

We now upper bound the LHS of the above inequality as follows:

εt − εt+1 ≥ Jt+1(wt+1)− Jt(wt) ≥ J∗t+1(η)− Jt(wt) ≥ γt
2 min(1,λγt/4G

2H∗). (33)

The first inequality follows from Lemma 9 while the second follows by observing that Jt+1(wt+1) =
J∗t+1(αt+1) ≥ J∗t+1(η). The RHS of the third inequality on the other hand can be lower bounded by
observing that γt ≥ εt , which follows from Lemma 9. This in turn obtains (12).

For the second part note that (12) already yields the εt/2 decrease when εt ≥ 4G2H∗/λ. To show
the other parts we need to show that the gradient of the regularized risk vanishes as we converge
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to the optimal solution. Towards this end, we apply Lemma 10 in the primal.23 This allows us to
bound ‖∂wJ(wt)‖ in terms of γt . Plugging in the first and second derivative of J(wt) we obtain

γt ≥
1
2
‖∂wJ(wt)‖min(1,‖∂wJ(wt)‖/H).

If ‖∂wJ(wt)‖ > H, then γt ≥ 1
2 ‖∂wJ(wt)‖ which in turn yields |r| ≤ 4γ2t H∗/λ. Plugging this into

Lemma 10 yields a lower bound on the improvement of λ/8H∗.
Finally, for ‖∂wJ(wt)‖≤H we have γt ≥‖∂wJ(wt)‖2 /2H, which implies |r|≤ 2HH∗γt/λ. Plug-

ging this into Lemma 10 yields an improvement of λγt/4HH∗ ≥ λεt/4HH∗.
Since both cases cover the remaining range of convergence, the minimummin(λ/8H∗,λεt/4HH∗)

provides a lower bound for the improvement. The crossover point between both terms occurs at
εt = H/2. Rearranging the conditions leads to the (pessimistic) improvement guarantees of the
second claim.

Note that a key step in the above analysis involved bounding r := ∂2ηJ∗t+1(η). For a number of
regularizers tighter bounds can be obtained. The following bounds are essentially due to Shalev-
Shwartz and Singer (2006):

• For squared norm regularization, that is, Ω∗(µ) = 1
2 ‖µ‖

2
2 we have r = ‖∂wJ(wt)‖22.

• For Lp norm regularization, that is, Ω∗(µ) = 1
2 ‖µ‖

2
q we have r ≤ (q−1)‖∂wJ(wt)‖2q.

• For quadratic form regularization with PD matrix B, that is, Ω∗(µ) = 1
2µB

−1µ, we have r =
∂wJ(wt)/B−1∂wJ(wt).

• For unnormalized entropic regularization we have ∂2µΩ∗(µ) = diag
(

eµ(1)
, . . . ,eµ(d)

)

. Hence

we may bound r ≤ ‖∂wJ(wt)‖22 exp(‖µ‖∞). Clearly this bound may be very loose whenever µ
has only very few large coefficients.

• For normalized entropy regularization, that is,Ω∗(µ)= log∑i expµ(i) we have r ≤ ‖∂wJ(wt)‖2∞.

B.2 Proof of Theorem 5

We need the following technical lemma for the proof:

Lemma 13 Let 〈ρ1,ρ2, . . .〉 be a sequence of non-negative numbers satisfying the following recur-
rence, for t ≥ 1: ρt −ρt+1 ≥ c(ρt)2, where c> 0 is a constant. Then for all integers t ≥ 1,

ρt ≤
1

c(t−1+ 1
ρ1c)

.

Furthermore ρt ≤ ρ whenever

t ≥
1
cρ

−
1
ρ1c

+1.

23. Define J̄(η) := J(wt)− J(wt +ηp) where p = − ∂wJ(wt )
‖∂wJ(wt )‖ is the unit-length gradient. We see that

d
dη J̄(η)

∣
∣
∣
η=0

=

[−∂wJ(wt +ηp)/p]|η=0 = ‖∂wJ(wt)‖, and J̄(0) = 0. Hence Lemma 10 is applicable in this case.

356



BUNDLE METHODS FOR REGULARIZED RISK MINIMIZATION

This is Sublemma 5.4 of Abe et al. (2001) which is easily proven by induction. Now we can prove
the main result.
Proof [Theorem 5] For any εt > 4G2H∗/λ it follows from (12) that εt+1 ≤ εt/2. Moreover, ε0 ≤
J(0), since we know that J is non-negative. Hence we need at most log2[λJ(0)/4G2H∗] to achieve
this level of precision. Subsequently we have

εt − εt+1 ≥
λ

8G2H∗ ε
2
t .

Invoking Lemma 13 by setting c= λ
8G2H∗ and ρ1 = 4G2H∗/λ shows that εt ≤ ε after at most 8G2H∗

λε −
1 more steps. This proves the first claim.

To analyze convergence in the second case we need to study two additional phases: for εt ∈
[H/2,4G2H∗/λ]we see constant progress. Hence it takes us 4λ−2[8G2(H∗)2−HH∗λ] steps to cover
this interval. Finally in the third phase we have εt+1 ≤ εt [1−λ/4HH∗]. Starting from εt = H/2 we
need log2[2ε/H]/ log2[1−λ/4HH∗] steps to converge. Expanding the logarithm in the denominator
close to 1 proves the claim.

B.3 Proof of Theorem 7

We first note that the termination criterion of Algorithm 3 is slightly different from that of Algo-
rithm 2. In order to apply the convergence results for Algorithm 2 to Algorithm 3 we redefine the
following notations:

εt := J(wbt )− Jt(wt) (34)
at+1 ∈ ∂wRemp(wct ),
bt+1 := Remp(wct )−〈wt ,at+1〉 ,

where

ηt := argmin
η

J(wbt−1+η(wt−wbt−1)),

wbt := ŵt−1+ηt(w̄t− ŵt−1), and
wct := (1−θ)wbt +θwt .

Then we state and prove the following lemma which is crucial to the application of Lemma 11 in
the proof.

Lemma 14 Jt+1(wt) = λΩ(wt)+ 〈wt ,at+1〉+bt+1
Proof wbt is the optimal value of J on the line joining wt and wbt−1 while wct is a convex combination
of wt and wbt . Moreover by definition of at+1 and bt+1 we have J(wct ) = Jt+1(wct ). Therefore,

J(wct ) = Jt+1(wct ) = λΩ(wct )+ 〈at+1,wct 〉+bt+1 ≥ J(wbt ). (35)

But since Ω is convex

Ω((1−θ)wbt +θwt
︸ ︷︷ ︸

wct

) ≤ (1−θ)Ω(wbt )+θΩ(wt),
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which can be rearranged to

θ(Ω(wbt )−Ω(wt)) ≤Ω(wbt )−Ω(wct ).

Multiplying by λ and adding and subtracting θRemp(wbt ) and θRt(wt) respectively to the above
equation

λθΩ(wbt )+θRemp(wbt )
︸ ︷︷ ︸

θJ(wbt )

−λθΩ(wt)−θRt(wt)
︸ ︷︷ ︸

θJt(wt)

≤λΩ(wbt )+Remp(wbt )
︸ ︷︷ ︸

J(wbt )

−λΩ(wct )

− (1−θ)Remp(wbt )−θRt(wt).

Plugging in (34) obtains

θεt ≤ J(wbt )−λΩ(wct )− (1−θ)Remp(wbt )−θRt(wt). (36)

Putting (35) and (36) together

〈at+1,wct 〉+bt+1 ≥ J(wbt )−λΩ(wct ) ≥ (1−θ)Remp(wbt )+θRt(wt)+θεt .

Since wct = (1−θ)wbt +θwt it follows that

(1−θ)
〈

at+1,wbt
〉

+θ〈at+1,wt〉+bt+1 ≥ (1−θ)Remp(wbt )+θRt(wt)+θεt .

Which can be rearranged to

(1−θ)
(〈

at+1,wbt
〉

−Remp(wbt )
)

+θ(〈at+1,wt〉−Rt(wt))+bt+1 ≥ θεt .

Since
〈

wbt ,at+1
〉

+bt+1 is the Taylor approximation of the convex function Remp aroundwct evaluated
at wbt it follows that Remp(wbt ) ≥

〈

wbt ,at+1
〉

+bt+1. Plugging this into the above equation yields

(1−θ)(−bt+1)+θ(〈wt ,at+1〉−Rt(wt))+bt+1 ≥ θεt .

Dividing by θ> 0 and rearranging yields

〈wt ,at+1〉+bt+1 ≥ Rt(wt)+ εt .

The conclusion of the lemma follows from observing that Rt+1(wt)=max(〈wt ,at+1〉+bt+1,Rt(wt)) =
〈wt ,at+1〉+bt+1 and Jt+1(wt) = λΩ(wt)+Rt+1(wt).

We also need the following two lemmas before we can proceed to the final proof.

Lemma 15 εt − εt+1 ≥ Jt+1(wt+1)− Jt(wt)

Proof

εt − εt+1 = J(wbt )− Jt(wt)− J(wbt+1)+ Jt+1(wt+1)
= (J(wbt )− J(wbt+1))
︸ ︷︷ ︸

≥0

+Jt+1(wt+1)− Jt(wt) (by the definition of wbt )

≥ Jt+1(wt+1)− Jt(wt).
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Lemma 16 Let αt , Ā := [a1, . . . ,at+1], and b̄ := [b1, . . . ,bt+1] be as defined in Lemma 11. Then
under the assumption of Theorem 4 that maxu∈∂wRemp(w) ‖u‖ ≤ G, we have

[−αt ,1]/Ā/Ā[−αt ,1] ≤ 4G2.

Proof By the dual connection, ∂wλΩ(wt) = −Aαt . Also, αt ≥ 0, and ‖αt‖1 = 1 as it is the
optimal solution of (10) at iteration t. It follows that ∂wλΩ(wt) lies in the convex hull of at ′ ∈
∂wRemp(wct ′) ∀t

′ ≤ t. Therefore ‖∂wλΩ(wt)‖ ≤ G. Consequently,

[−αt ,1]/Ā/Ā[−αt ,1] = ‖∂wλΩ(wt)+at+1‖2

= ‖∂wλΩ(wt)‖2+2∂wλΩ(wt)/at+1+‖at+1‖2 ≤ 4G2,

by Cauchy-Schwarz inequality.

Finally, we sketch the proof for Theorem 7.
Proof [Theorem 7] (Sketch) Theorem 4 holds for Algorithm 3 by applying Lemmas 14, 15, and 16
into the first part of the proof. Therefore, for ε< 4G2H∗/λ, (33) reduces to εt−εt+1 ≥ λεt/4G2H∗.
Applying Lemma 13 yields εt ≤ 1

c
(

t−1+ 1
ε1c

) , with c= λ/8G2H∗. Setting 1
c
(

t−1+ 1
ε1c

) = ε, assuming

that ε1 > 0, and solving for n yields n≤ 1
cε = 8G2H∗

λε .

Appendix C. L1 Regularized BMRM

Following our convention, the L1 norm regularized BMRM reads

min
ξ,w

ξ+λ‖w‖1 subject to w
/ai+bi ≤ ξ, i= 1, . . . , t. (37)

An equivalent formulation is

min
ξ,w

ξ subject to w/ai+bi ≤ ξ, i= 1, . . . , t and ‖w‖1 ≤ τ, (38)

where one can show a monotone correspondence between τ and the λ in (37) by comparison of the
KKT conditions for the two problems.

Note that our convergence proof does not apply in this case as the Fenchel dual ofΩ(w) = ‖w‖1
fails to satisfy the strong convexity assumption. Nevertheless, we see that (38) can be easily solved
by CPMwhere the solution must lie in the L1 ball of radius τ. Finally, we note that the L1 regularized
BMRM can be written in a rather standard linear programming (LP) formulation:

min
ξ,u,v

ξ+λ1/d (u+ v)

s.t. a/i u−a/i v+bi ≤ ξ, i= 1, . . . , t
u,v≥ 0,

with the variable of interest w= u− v.
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Abstract
Actor-Critic based approaches were among the first to address reinforcement learning in a gen-
eral setting. Recently, these algorithms have gained renewed interest due to their generality, good
convergence properties, and possible biological relevance. In this paper, we introduce an online
temporal difference based actor-critic algorithm which is proved to converge to a neighborhood
of a local maximum of the average reward. Linear function approximation is used by the critic
in order estimate the value function, and the temporal difference signal, which is passed from the
critic to the actor. The main distinguishing feature of the present convergence proof is that both the
actor and the critic operate on a similar time scale, while in most current convergence proofs they
are required to have very different time scales in order to converge. Moreover, the same temporal
difference signal is used to update the parameters of both the actor and the critic. A limitation of
the proposed approach, compared to results available for two time scale convergence, is that con-
vergence is guaranteed only to a neighborhood of an optimal value, rather to an optimal value itself.
The single time scale and identical temporal difference signal used by the actor and the critic, may
provide a step towards constructing more biologically realistic models of reinforcement learning in
the brain.
Keywords: actor critic, single time scale convergence, temporal difference

1. Introduction

In Reinforcement Learning (RL) an agent attempts to improve its performance over time at a given
task, based on continual interaction with the (usually unknown) environment (Bertsekas and Tsit-
siklis, 1996; Sutton and Barto, 1998). Formally, it is the problem of mapping situations to actions
in order to maximize a given average reward signal. The interaction between the agent and the en-
vironment is modeled mathematically as a Markov Decision Process (MDP). Approaches based on
a direct interaction with the environment, are referred to as simulation based algorithms, and will
form the major focus of this paper.

A well known subclass of RL approaches consists of the so called actor-critic (AC) algorithms
(Sutton and Barto, 1998), where the agent is divided into two components, an actor and a critic.
The critic functions as a value estimator, whereas the actor attempts to select actions based on
the value estimated by the critic. These two components solve their own problems separately but
interactively. Many methods for solving the critic’s value estimation problem, for a fixed policy,
have been proposed, but, arguably, the most widely used is temporal difference (TD) learning. TD
learning was demonstrated to accelerate convergence by trading bias for variance effectively (Singh
and Dayan, 1998), and is often used as a component of AC algorithms.

c©2010 Dotan Di Castro and Ron Meir.
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In general, policy selection may be randomized. When facing problems with a large number of
states or actions (or even continuous state-action problems), effective policy selection may suffer
from several problems, such as slow convergence rate or an inefficient representation of the policy.
A possible approach to policy learning is the so-called policy gradient method (Baxter and Bartlett,
2001; Cao, 2007; Cao and Chen, 1997; Konda and Tsitsiklis, 2003; Marbach and Tsitsiklis, 1998).
Instead of maintaining a separate estimate for the value for each state (or state-action pair), the agent
maintains a parametrized policy function. The policy function is taken to be a differentiable function
of a parameter vector and of the state. Given the performance measure, depending on the agent’s
policy parameters, these parameters are updated using a sampling-based estimate of the gradient
of the average reward. While such approaches can be proved to converge under certain conditions
(Baxter and Bartlett, 2001), they often lead to slow convergence, due to very high variance. A more
general approach based on sensitivity analysis, which includes policy gradient methods as well as
non-parametric average reward functions, has been discussed in depth in the recent manuscript by
Cao (2007).

Several AC algorithms with associated convergence proofs have been proposed recently (a short
review is given in Section 2.2). As far as we are aware, all the convergence results for these algo-
rithms are based on two time scales, specifically, the actor is assumed to update its internal param-
eters on a much slower time scale than the one used by the critic. The intuitive reason for this time
scale separation is clear, since the actor improves its policy based on the critic’s estimates. It can be
expected that rapid change of the policy parameters may not allow the critic to effectively evaluate
the value function, which may lead to instability when used by the actor in order to re-update its
parameters.

The objective of this paper is to propose an online AC algorithm and establish its convergence
under conditions which do not require the separation into two time scales. In this context we note
that recent work by Mokkadem and Pelletier (2006), based on earlier research by Polyak and col-
leagues, has demonstrated that combing the two-time scale approach with the averaging method of
Polyak (1990), can lead to the single time scale convergence at the optimal rate. In these works
the rate of convergence is defined in terms of convergence in distribution, while the present work
focuses on convergence with probability 1. As far as we are aware, no rates of convergence are
currently known for two time scale approaches in the latter, stronger, setting. In fact, our motiva-
tion for the current direction was based on the possible relevance of AC algorithms in a biological
context (Daw et al., 2006), where it would be difficult to justify two very different time scales oper-
ating within the same anatomical structure.1 We refer the reader to DiCastro et al. (2008) for some
preliminary ideas and references related to these issues. Given the weaker conditions assumed on
the time scales, our convergence result is, not surprisingly, somewhat weaker than that provided
recently in Bhatnagar et al. (2008, 2009), as we are not ensured to converge to a local optimum, but
only to a neighborhood of such an optimum. Nevertheless, it is shown that the neighborhood size
can be algorithmically controlled. Further comparative discussion can be found in Section 2.

This paper is organized as follows. In Section 2 we briefly recapitulate current AC algorithms
for which convergence proofs are available. In Section 3, we formally introduce the problem setup.
We begin Section 4 by relating the TD signal to the gradient of the average reward, and then move
on to motivate and derive the main AC algorithm, concluding the section with a convergence proof.
A comparative discussion of the main features of our approach is presented in Section 5, followed

1. Note that the results in Mokkadem and Pelletier (2006), while providing optimal single time scale convergence, still
rely on an underlying two time scale algorithm
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by some simulation results in Section 6. Finally, in Section 7, we discuss the results and point
out possible future work. In order to facilitate the readability of the paper, we have relegated all
technical proofs to appendices.

2. Previous Work

In this section we briefly review some previous work in RL which bears direct relevance to our
work. While many AC algorithms have been introduced over the years, we focus only on those for
which a convergence proof is available, since the main focus of this work is on convergence issues,
rather than on establishing the most practically effective algorithms. See, for example, Peters and
Schaal (2008), for promising applications of AC algorithms in a robotic setting.

2.1 Direct Policy Gradient Algorithms

Direct policy gradient algorithms, employing agents which consist of an actor only, typically esti-
mate a noisy gradient of the average reward, and are relatively close in their characteristics to AC
algorithms. The main difference from the latter is that the agent does not maintain a separate value
estimator for each state, but rather interacts with the environment directly, and in a sense maintains
its value estimate implicitly through a mapping which signifies which path the agent should take in
order to maximize its average reward per stage.

Marbach and Tsitsiklis (1998) suggested an algorithm for non-discounted environments. The
gradient estimate is based on an estimate of the state values which the actor estimates while in-
teracting with the environment. If the actor returns to a sequence of previously visited states, it
re-estimates the states value, not taking into account its previous visits. This approach often results
in large estimation variance.

Baxter and Bartlett (2001) proposed an online algorithm for partially observable MDPs. In
this algorithm, the agent estimates the expected average reward for the non-discounted problems
through an estimate of the value function of a related discounted problem. It was shown that when
the discount factor approaches 1, the related discounted problem approximates the average reward
per stage. Similar to the algorithms of Marbach and Tsitsiklis (1998), it suffers from relatively large
estimation variance. Greensmith et al. (2004) have proposed a method for coping with the large
variance by adding a baseline to the value function estimation.

2.2 Actor Critic Algorithms

As stated in Section 1, the convergence proofs of which we are aware for AC algorithms are based
on two time scale stochastic approximation (Borkar, 1997), where the actor is assumed to operate
on a time scale which is much slower than that used by the critic.

Konda and Borkar (1999) suggested a set of AC algorithms. In two of their algorithms (Algo-
rithms 3 and 6), parametrized policy based actors were used while the critic was based on a lookup
table. Those algorithms and their convergence proofs were specific to the Gibbs policy function in
the actor.

As far as we are aware, Konda and Tsitsiklis (2003) provided the first convergence proof for
an AC algorithm based on function approximation. The information passed from the critic to the
actor is the critic’s action-value function, and the critic’s basis functions, which are explicitly used
by the actor. They provided a convergence proof of their TD(λ) algorithm where λ approaches 1.
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A drawback of the algorithm is that the actor and the critic must share the information regarding
the actor’s parameters. This detailed information sharing is a clear handicap in a biological context,
which was one of the driving forces for the present work.

Finally, Bhatnagar et al. (2008, 2009) recently proposed an AC algorithm which closely resem-
bles our proposed algorithm, and which was developed independently of ours. In this work the
actor uses a parametrized policy function while the critic uses a function approximation for the
state evaluation. The critic passes to the actor the TD(0) signal and based on it the actor estimates
the average reward gradient. A detailed comparison will be provided in Section 5. As pointed out
in Bhatnagar et al. (2008, 2009), their work is the first to provide a convergence proof for an AC
algorithm incorporating bootstrapping (Sutton and Barto, 1998), where bootstrapping refers to a sit-
uation where estimates are updated based on other estimates, rather than on direct measurements (as
in Monte Carlo approaches). This feature applies to our work as well. We also note that Bhatnagar
et al. (2008, 2009) extend their approach to the so-called natural gradient estimator, which has been
shown to lead to improved convergence in supervised learning as well as RL. The present study
focuses on the standard gradient estimate, leaving the extension to natural gradients to future work.

3. The Problem Setup

In this section we describe the formal problem setup, and present a sequence of assumptions and
lemmas which will be used in order to prove convergence of Algorithm 1 in Section 4. These
assumptions and lemmas mainly concern the properties of the controlled Markov chain, which
represents the environment, and the properties of the actor’s parametrized policy function.

3.1 The Dynamics of the Environment and of the Actor

We consider an agent, composed of an actor and a critic, interacting with an environment. We
model the environment as a Markov Decision Process (MDP) (Puterman, 1994) in discrete time
with a finite state set X and an action set U, which may be uncountable. We denote by |X | the
size of the set X . Each selected action u ∈U determines a stochastic matrix P(u) = [P(y|x,u)]x,y∈X
where P(y|x,u) is the transition probability from a state x ∈ X to a state y ∈ X given the control u.
For each state x ∈ X the agent receives a corresponding reward r(x), which may be deterministic
or random. In the present study we assume for simplicity that the reward is deterministic, a benign
assumption which can be easily generalized.

Assumption 1 The rewards, {r(x)}x∈X , are uniformly bounded by a finite constant Br.

The actor maintains a parametrized policy function. A parametrized policy function is a conditional
probability function, denoted by µ(u|x,θ), which maps an observation x ∈ X into a control u ∈U

given a parameter θ ∈ RK . The agent’s goal is to adjust the parameter θ in order to attain maximum
average reward over time. For each θ, we have a Markov Chain (MC) induced by P(y|x,u) and
µ(u|x,θ). The state transitions of the MC are obtained by first generating an action u according
to µ(u|x,θ), and then generating the next state according to {P(y|x,u)}x,y∈X . Thus, the MC has a
transition matrix P(θ) = [P(y|x,θ)]x,y∈X which is given by

P(y|x,θ) =
Z

U
P(y|x,u)dµ(u|x,θ). (1)
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We denote the space of these transition probabilities by P = {P(θ)|θ ∈ RK}, and its closure by
P̄ . The following assumption is needed in the sequel in order to prove the main results (Brémaud,
1999).

Assumption 2 Each MC, P(θ) ∈ P̄ , is aperiodic, recurrent, and irreducible.

As a result of Assumption 2, we have the following lemma regarding the stationary distribution and
a common recurrent state.

Lemma 1 Under Assumption 2 we have:

1. Each MC, P(θ) ∈ P̄ , has a unique stationary distribution, denoted by π(θ), satisfying
π(θ)′P(θ) = π(θ)′.

2. There exists a state, denoted by x∗, which is recurrent for all P(θ) ∈ P̄ .

Proof For the first part see Corollary 4.1 in Gallager (1995). The second part follows trivially from
Assumption 2.

The next technical assumption states that the first and second derivatives of the parametrized policy
function are bounded, and is needed to prove Lemma 3 below.

Assumption 3 The conditional probability function µ(u|x,θ) is twice differentiable. Moreover,
there exist positive constants, Bµ1 and Bµ2 , such that for all x∈ X , u∈U, θ∈RK and k1 ≥ 1, k2 ≤K
we have ∣

∣
∣
∣

∂µ(u|x,θ)
∂θk

∣
∣
∣
∣
≤ Bµ1 ,

∣
∣
∣
∣

∂2µ(u|x,θ)
∂θk1∂θk2

∣
∣
∣
∣
≤ Bµ2 .

A notational comment concerning bounds Throughout the paper we denote upper bounds on dif-
ferent variables by the letter B, with a subscript corresponding to the variable itself. An additional
numerical subscript, 1 or 2, denotes a bound on the first or second derivative of the variable. For
example, B f , B f1 , and Bf2 denote the bounds on the function f and its first and second derivatives
respectively.

3.2 Performance Measures

Next, we define a performance measure for an agent in an environment. The average reward per
stage of an agent which traverses a MC starting from an initial state x ∈ X is defined by

J(x,θ) ! lim
T→∞

E

[

1
T

T−1

∑
n=0

r(xn)

∣
∣
∣
∣
∣
x0 = x,θ

]

,

where E[·|θ] denotes the expectation under the probability measure P(θ), and xn is the state at time
n. The agent’s goal is to find θ ∈ RK which maximizes J(x,θ). The following lemma shows that
under Assumption 2, the average reward per stage does not depend on the initial state; see Bertsekas
(2006), vol. II, Section 4.1.

Lemma 2 Under Assumption 2 and based on Lemma 1, the average reward per stage, J(x,θ), is
independent of the starting state, is denoted by η(θ), and satisfies η(θ) = π(θ)′r.
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Based on Lemma 2, the agent’s goal is to find a parameter vector θ, which maximizes the average
reward per stage η(θ). In the sequel we show how this maximization can be performed by optimiz-
ing η(θ), using ∇θη(θ). A consequence of Assumption 3 and the definition of η(θ) is the following
lemma.

Lemma 3

1. For each x,y∈X , 1≤ i, j≤K, and θ∈RK , the functions ∂P(y|x,θ)/∂θi and ∂2P(y|x,θ)/∂θi∂θ j
are uniformly bounded by BP1 and BP2 respectively.

(a) For each x∈X , 1≤ i, j≤K, and θ∈RK , the functions ∂π(x|θ)/∂θi and ∂2π(x|θ)/∂θi∂θ j
are uniformly bounded by , Bπ1and Bπ2 respectively.

(b) For all 1 ≤ i, j ≤ K, and θ ∈ RK , the functions η(θ), ∂η(θ)/∂θi, ∂2π(x|θ)/∂θi∂θ j are
uniformly bounded by , Bη, Bη1 and Bη2 respectively.

(c) For all x ∈ X and θ ∈ RK , there exists a constant bπ > 0 such that π(x|θ) ≥ bπ.

The proof is technical and is given in Appendix A.1. For later use, we define the random variable
T , which denotes the first return time to the recurrent state x∗. Formally,

T !min{k > 0|x0 = x∗, xk = x∗}.

It is easy to show that under Assumption 2, the average reward per stage can be expressed by

η(θ) = lim
T→∞

E

[

1
T

T−1

∑
n=0

r(xn)

∣
∣
∣
∣
∣
x0 = x∗,θ

]

.

Next, we define the differential value function of state x ∈ X which represents the average differen-
tial reward the agent receives upon starting from a state x and reaching the recurrent state x∗ for the
first time. Mathematically,

h(x,θ) ! E

[
T−1

∑
n=0

(r(xn)−η(θ))

∣
∣
∣
∣
∣
x0 = x,θ

]

.

Abusing notation slightly, we denote h(θ) ! (h(x1,θ), . . . ,h(x|X |,θ)) ∈ R|X |. For each θ ∈ RK and
x ∈ X , h(x,θ), r(x), and η(θ) satisfy Poisson’s equation, as in Theorem 7.4.1 in Bertsekas (2006),
that is,

h(x,θ) = r(x)−η(θ)+ ∑
y∈X

P(y|x,θ)h(y,θ). (2)

Based on the differential value we define the temporal difference (TD) between the states x ∈ X and
y ∈ X (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998),

d(x,y,θ) ! r(x)−η(θ)+h(y,θ)−h(x,θ). (3)

According to common wisdom, the TD is interpreted as a prediction error. The next lemma states
the boundedness of h(x,θ) and its derivatives. The proof is given in Appendix A.2.
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Lemma 4

1. The differential value function, h(x,θ), is bounded and has bounded first and second deriva-
tive. Mathematically, for all x ∈ X , 1≤ i, j ≤ K, and for all θ ∈ RK we have

|h(x,θ)|≤ Bh,
∣
∣
∣
∣

∂h(x,θ)
∂θi

∣
∣
∣
∣
≤ Bh1 ,

∣
∣
∣
∣

∂2h(x,θ)
∂θi∂θ j

∣
∣
∣
∣
≤ Bh2 .

(a) There exists a constant BD such that or all θ ∈ RK we have |d(x,y,θ)| ≤ BD, where
BD = 2(Br +Bh).

3.3 The Critic’s Dynamics

The critic maintains an estimate of the environmental state values. It does so by maintaining a
parametrized function which approximates h(x,θ), and is denoted by h̃(x,w). The function h̃(x,w)
is a function of the state x ∈ X and a parameter w ∈ RL. We note that h(x,θ) is a function of θ, and
is induced by the actor policy µ(u|x,θ), while h̃(x,w) is a function of w. Thus, the critic’s objective
is to find the parameter w which yields the best approximation of h(θ) = (h(x1,θ), . . . ,h(x|X |,θ)), in
a sense to be defined later. We denote this optimal vector by w∗(θ). An illustration of the interplay
between the actor, critic, and the environment is given in Figure 1.

Figure 1: A schematic illustration of the dynamics between the actor, the critic, and the environ-
ment. The actor chooses an action, un, according to the parametrized policy µ(u|x,θ).
As a result, the environment proceeds to the next state according to the transition proba-
bility P(xn+1|xn,un) and provides a reward. Using the TD signal, the critic improves its
estimation for the environment state values while the actor improves its policy.

4. A Single Time Scale Actor Critic Algorithm with Linear Function Approximation

In this section, we present a version of an AC algorithm, along with its convergence proof. The
core of the algorithm is based on (4) below, where the actor’s estimate of ∇θη(θ) is based on the
critic’s estimate of the TD signal d(x,y,θ). The algorithm is composed of three iterates, one for the
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actor and two for the critic. The actor maintains the iterate of the parameter vector θ corresponding
to the policy µ(u|x,θ), where its objective is to find the optimal value of θ, denoted by θ∗, which
maximizes η(θ). The critic maintains the other two iterates. One iterate is used for estimating
the average reward per stage, η(θ), where its estimate is denoted by η̃. The critic’s second iterate
maintains a parameter vector, denoted by w ∈ RL, which is used for the differential value estimate
using a function approximator, denoted by h̃(w). For each θ∈RK , there exists a w∗(θ)which, under
the policy induced by θ, is the optimal w for estimating η̃(w). The critic’s objective is to find the
optimal η̃ and w.

4.1 Using the TD Signal to Estimate the Gradient of the Average Reward

We begin with a theorem which serves as the foundation for the policy gradient algorithm described
in Section 4. The theorem relates the gradient of the average reward per stage, η(θ), to the TD signal.
It was proved in Bhatnagar et al. (2008), and is similar in its structure to other theorems which
connect η(θ) to the Q-value (Konda and Tsitsiklis, 2003), and to the differential value function
(Cao, 2007; Marbach and Tsitsiklis, 1998).

We start with a definition of the likelihood ratio derivative

ψ(x,u,θ) !
∇θµ(u|x,θ)
µ(u|x,θ)

,

where the gradient∇θ is w.r.t.θ, and ψ(x,u,θ)∈RK . The following assumption states that ψ(x,u,θ)
is bounded, and will be used to prove the convergence of algorithm 1.

Assumption 4 For all x ∈ X , u ∈U, and θ ∈ RK, there exists a positive constant, Bψ, such that

‖ψ(x,u,θ)‖2 ≤ Bψ < ∞,

where ‖ ·‖2 is the Euclidean L2 norm.

Based on this, we present the following theorem which relates the gradient of η(θ) to the TD signal.
For completeness, we supply a (straightforward) proof in Appendix B.

Theorem 5 For any arbitrary function f (x), the gradient w.r.t. θ of the average reward per stage
can be expressed by

∇θη(θ) = ∑
x,y∈X

P(x,u,y,θ)ψ(x,u,θ)d(x,y,θ), (4)

where P(x,u,y,θ) is the probability Pr(xn = x,un = u,xn+1 = y) subject to the policy parameter θ.

4.2 The Updates Performed by the Critic and the Actor

We note that the following derivation regarding the critic is similar in some respects to the deriva-
tion in Section 6.3.3 in Bertsekas and Tsitsiklis (1996) and Tsitsiklis and Roy (1997). We define
the following quadratic target function used to evaluate the critic’s performance in assessing the
differential value h(θ),

I(w,θ) !
1
2 ∑x∈X

π(x|θ)
(

h̃(x,w)−h(x,θ)
)2

. (5)

The probabilities {π(x|θ)}x∈X are used in order to provide the proportional weight to the state
estimates, according to the relative number of visits of the agent to the different states.
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Limiting ourselves to the class of linear function approximations in the critic, we consider the
following function for the differential value function

h̃(x,w) = φ(x)′w, (6)

where φ(x) ∈ RL. We define Φ ∈ R|X |×L to be the matrix

Φ!








φ1(x1) φ2(x1) . . . φL(x1)
φ1(x2) φ2(x2) . . . φL(x2)
...

...
...

φ1(x|X |) φ2(x|X |) . . . φL(x|X |)








,

where φ(·) is a column vector. Therefore, we can express (6) in vector form as

h̃(w) =Φw,

where, abusing notation slightly, we set h̃(w) =
(

h̃(x1,w), . . . , h̃(x|X |,w)
)′.

We wish to express (5), and the approximation process, in an appropriate Hilbert space. Define
the matrix Π(θ) to be a diagonal matrix Π(θ) ! diag(π(θ)). Thus, (5) can be expressed as

I(w,θ) =
1
2

∥
∥
∥Π(θ)

1
2 (h(θ)−Φw)

∥
∥
∥

2

2
!
1
2
‖h(θ)−Φw‖2Π(θ) . (7)

In the sequel, we will need the following technical assumption.

Assumption 5

1. The columns of the matrix Φ are independent, that is, they form a basis of dimension L.

(a) The norms of the column vectors of the matrix Φ are bounded above by 1, that is,
‖φk‖2 ≤ 1 for 1≤ k ≤ L.

The parameter w∗(θ), which optimizes (7), can be directly computed, but involves inverting a ma-
trix. Thus, in order to find the right estimate for h̃(w), the following gradient descent (Bertsekas
and Tsitsiklis, 1996) algorithm is suggested,

wn+1 = wn− γn∇wI(wn,θ), (8)

where {γn}∞n=1 is a positive series satisfying the following assumption, which will be used in proving
the convergence of Algorithm 1.

Assumption 6 The positive series {γn}∞n=1 satisfies

∞

∑
n=1

γn = ∞,
∞

∑
n=1

γ2n < ∞.
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Writing the term ∇wI(wn) explicitly yields

∇wI(wn) =Φ′Π(θ)Φwn−Φ′Π(θ)h(θ).

For each θ ∈ RK , the value w∗(θ) is given by setting ∇wI(w,θ) = 0, that is,

w∗(θ) =
(

Φ′Π(θ)Φ
)−1

Φ′Π(θ)h(θ).

Note that Bertsekas and Tsitsiklis (1996) prove that the matrix (Φ′Π(θ)Φ)−1Φ′Π(θ) is a projection
operator into the space spanned byΦw, with respect to the norm ‖·‖Π(θ) . Thus, the explicit gradient
descent procedure (8) is

wn+1 = wn− γnΦ
′Π(θ)(Φwn−h(θ)) . (9)

Using the basis Φ, in order to approximates h(θ), yields an approximation error defined by

εapp (θ) ! inf
w∈RL

‖h(θ)−Φw‖π(θ) = ‖h(θ)−Φw∗ (θ)‖π(θ) .

We can bound this error by
εapp ! sup

θ∈RK
εapp (θ) . (10)

The agent cannot access h(x,θ) directly. Instead, it can interact with the environment in order
to estimate h(x,θ). We denote by ĥn(x) the estimate of h(x,θ) at time step n, thus (9) becomes

wn+1 = wn+ γnΦ′Π(θ)
(

ĥn−Φwn
)

.

This procedure is termed stochastic gradient descent (Bertsekas and Tsitsiklis, 1996).
There exist several estimators for ĥn. One sound method, which performs well in practical prob-

lems (Tesauro, 1995), is the TD(λ) method; see Section 5.3.2 and 6.3.3 in Bertsekas and Tsitsiklis
(1996), or Chapter 6 in Sutton and Barto (1998), where the parameter λ satisfies 0 ≤ λ ≤ 1. This
method devises an estimator which is based on previous estimates of h(w), that is, wn, and is based
also on the environmental reward r (xn). This idea is a type of a bootstrapping algorithm, that is,
using existing estimates and new information in order to build more accurate estimates; see Sutton
and Barto (1998), Section 6.1.

The TD(λ) estimator for ĥn+1 is

ĥn+1 (xn) = (1−λ)
∞

∑
k=0

λkĥ(k)
n+1 (xn) , (11)

where the k-steps predictor is defined by

ĥ(k)
n+1 (xn) =

(
k

∑
m=0

r (xn+m)+ ĥn (xn+k+1)

)

.

The idea of bootstrapping is apparent in (11): the predictor for the differential value of the state
xn at the (n+1)-Th time step, is based partially on the previous estimates through ĥn (xn+k+1), and
partially on new information, that is, the reward r (xn+m). In addition, the parameter λ gives an
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exponential weighting for the different k-step predictors. Thus, choosing the right λ can yield better
estimators.

For the discounted setting, it was proved by Bertsekas and Tsitsiklis (1996) (p. 295) that an
algorithm which implements the TD(λ) estimator (11) online and converges to the right value is the
following one

wn+1 = wn+ γndnen,
en = αλen−1+φ(xn) , (12)

where dn is the temporal difference between the n-th and the (n+1)-th cycle, and en is the so-
called eligibility trace; see Sections 5.3.3 and 6.3.3 in Bertsekas and Tsitsiklis (1996) or Chapter 7
in Sutton and Barto (1998), and the parameter α is the discount factor. The eligibility trace is an
auxiliary variable, which is used in order to implement the idea of (11) as an online algorithm. As
the name implies, the eligibility variable measures how eligible is the TD variable, dn, in (12).

In our setting, the non-discounted case, the analogous equations for the critic, are

wn+1 = wn+ γnd̃ (xn,xn+1,wn)en
d̃ (xn,xn+1,wn) = r(xn)− η̃m+ h̃(xn+1,wm)− h̃(xn,wm)

en = λen−1+φ(xn) .

The actor’s iterate is motivated by Theorem 5. Similarly to the critic, the actor executes a
stochastic gradient ascent step in order to find a local maximum of the average reward per stage
η(θ). Therefore,

θn+1 = θn+ γnψ(xn,un,θn)d̃n(xn,xn+1,wn),

where ψ is defined in Section 4.1. A summary of the algorithm is presented in Algorithm 1.

4.3 Convergence Proof for the AC Algorithm

In the remainder of this section, we state the main theorems related to the convergence of Algo-
rithm 1. We present a sketch of the proof in this section, where the technical details are relegated to
Appendices C and D. The proof is divided into two stages. In the first stage we relate the stochas-
tic approximation to a set of ordinary differential equations (ODE). In the second stage, we find
conditions under which the ODE system converges to a neighborhood of the optimal η(θ).

The ODE approach is a widely used method in the theory of stochastic approximation for in-
vestigating the asymptotic behavior of stochastic iterates, such as (13)-(15). The key idea of the
technique is that the iterate can be decomposed into a mean function and a noise term, such as a
martingale difference noise. As the iterates advance, the effect of the noise weakens due to repeated
averaging. Moreover, since the step size of the iterate decreases (e.g., γn in (13)-(15)), one can
show that asymptotically an interpolation of the iterates converges to a continuous solution of the
ODE. Thus, the first part of the convergence proof is to find the ODE system which describes the
asymptotic behavior of Algorithm 1. This ODE will be presented in Theorem 7. In the second part
we use ideas from the theory of Lyapunov functions in order to characterize the relation between
the constants, |X |, Γη, Γw, etc., which ensure convergence to some neighborhood of the maximum
point satisfying ‖∇θη(θ)‖2 = 0. Theorem 8 states conditions on this convergence.
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Algorithm 1 TD AC Algorithm
Given:

• An MDP with a finite set X of states satisfying Assumption 2.

• An actor with a parametrized policy µ(u|x,θ) satisfying Assumptions 3 and 4.

• A critic with a linear basis for h̃(w), that is, {φ}Li=1, satisfying Assumption 5.

• A set H, a constant Bw, and an operator Ψw according to Definition 6.

• Step parameters Γη and Γw.

• Choose a TD parameter 0≤ λ< 1.

For step n= 0 :

• Initiate the critic and the actor variables: η̃0 = 0 ,w0 = 0, e0 = 0, θ0 = 0.

For each step n= 1,2, . . .
Critic: Calculate the estimated TD and eligibility trace

η̃n+1 = η̃n+ γnΓη (r(xn)− η̃n) (13)
h̃(x,wn) = w′

nφ(x),
d̃ (xn,xn+1,wn) = r(xn)− η̃n+ h̃(xn+1,wn)− h̃(xn,wn),

en = λen−1+φ(xn) .

Set,

wn+1 = wn+ γnΓwd̃ (xn,xn+1,wn)en (14)

Actor:
θn+1 = θn+ γnψ(xn,un,θn)d̃n(xn,xn+1,wn) (15)

Project each component of wm+1 onto H (see Definition 6)

4.3.1 RELATE THE ALGORITHM TO AN ODE

In order to prove the convergence of this algorithm to the related ODE, we need to introduce the
following assumption, which adds constraints to the iteration for w, and will be used in the sequel to
prove Theorem 7. This assumption may seem restrictive at first but in practice it is not. The reason
is that we usually assume the bounds of the constraints to be large enough so the iterates practically
do not reach those bounds. For example, under Assumption 2 and additional mild assumptions, it
is easy to show that h(θ) is uniformly bounded for all θ ∈ RK . As a result, there exist a constant
bounding w∗(θ) for all θ ∈ RK . Choosing constraints larger than this constant will not influence the
algorithm performance.
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Definition 6 Let us denote by {wi}Li=1 the components of w, and choose a positive constant Bw. We
define the set H ⊂ RK×RL to be

H !
{

(θ,w)
∣
∣−∞< θi < ∞, 1≤ i≤ K, −Bw ≤ wj ≤ Bw, 1≤ j ≤ L

}

,

and let Ψw be an operator which projects w onto H, that is, for each Cramer′s1 ≤ j ≤ L, Ψwwj =
max(min(wj,Bw),−Bw).

The following theorem identifies the ODE system which corresponds to Algorithm 1. The detailed
proof is given in Appendix C.

Theorem 7 Define the following functions:

G(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m ,

D(x,u,y)(θ) = π(x)P(u|x,θ)P(y|x,u)ψ(x,u,θ) , x,y ∈ X , u ∈U. (16)
A(θ) = Φ′Π(θ)(M (θ)− I)Φ,

M (θ) = (1−λ)
∞

∑
m=0

λmP(θ)m+1 ,

b(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m (r−η(θ)) .

Then,

1. Algorithm 1 converges to the invariant set of the following set of ODEs












θ̇=∇θη(θ)+ ∑
x,y∈X×X

D(x,u,y)(θ)
(

d(x,y,θ)− d̃(x,y,w)
)

,

ẇ=Ψw [Γw (A(θ)w+b(θ)+G(θ)(η(θ)− η̃))] ,
˙̃η=Γη (η(θ)− η̃) ,

(17)

with probability 1.

(a) The functions in (16) are continuous with respect to θ.

4.3.2 INVESTIGATING THE ODE ASYMPTOTIC BEHAVIOR

Next, we quantify the asymptotic behavior of the system of ODEs in terms of the various algorithmic
parameters. The proof of the theorem appears in Appendix D.

Theorem 8 Consider the constants Γη and Γw as defined in Algorithm 1, and the function approx-
imation bound εapp as defined in (10). Setting

B∇η !
BΔtd1
Γw

+
BΔtd2
Γη

+BΔtd3εapp,

where BΔtd1, BΔtd2, BΔtd3 are a finite constants depending on the MDP and agent parameters. Then,
the ODE system (17) satisfies

liminf
t→∞

‖∇θη(θt)‖ ≤ B∇η.
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Theorem 8 has a simple interpretation. Consider the trajectory η(θt) for large times, corresponding
to the asymptotic behavior of ηn. The result implies that the trajectory visits a neighborhood of
a local maximum infinitely often. Although it may leave the local vicinity of the maximum, it is
guaranteed to return to it infinitely often. This occurs, since once it leaves the vicinity, the gradient
of η points in a direction which has a positive projection on the gradient direction, thereby pushing
the trajectory back to the vicinity of the maximum. It should be noted that in simulation (reported
below) the trajectory usually remains within the vicinity of the local maximum, rarely leaving it.
We also observe that by choosing appropriate values for Γη and Γw we can control the size of the
ball to which the algorithm converges.

The key idea required to prove the Theorem is the following argument. If the trajectory does not
satisfy ‖∇η(θ)‖2 ≤ B∇η, we have η̇(θ) > ε for some positive ε. As a result, we have a monotone
function which increases to infinity, thereby contradicting the boundedness of η(θ). Thus, η(θ)
must visit the set which satisfies ‖∇η(θ)‖2 ≤ B∇η infinitely often.

5. A Comparison to Other Convergence Results

In this section, we point out the main differences between Algorithm 1, the first algorithm proposed
by Bhatnagar et al. (2009) and the algorithms proposed by Konda and Tsitsiklis (2003). The main
dimensions along which we compare the algorithms are the time scale, the type of the TD signal,
and whether the algorithm is on line or off line.

5.1 The Time Scale and Type of Convergence

As was mentioned previously, the algorithms of Bhatnagar et al. (2009) and Konda and Tsitsiklis
(2003) need to operate in two time scales. More precisely, this refers to the following situation.
Denote the time step of the critic’s iteration by γcn and the time step of the actor’s iteration by γan, we
have γcn = o(γan), that is,

lim
n→∞

γcn
γan

= 0.

The use of two time scales stems from the need of the critic to provide an accurate estimate of the
state values, as in the work of Bhatnagar et al. (2009), or the state-action values, as in the work of
Konda and Tsitsiklis (2003) before the actor uses them.

In the algorithm proposed here, a single time scale is used for the three iterates of Algorithm 1.
We have γan = γn for the actor iterate, γc,ηn = Γηγn for the critic’s ηn iterate, and γc,wn = Γwγn for the
critic’s w iterate. Thus,

lim
n→∞

γc,ηn
γan

= Γη,

lim
n→∞

γc,wn
γan

= Γw.

with the ave
Due to the single time scale, Algorithm 1 has the potential to converge faster than algorithms

based on two time scales, since both the actor and the critic may operate on the fast time scale. The
drawback of Algorithm 1 is the fact that convergence to the optimal value cannot be guaranteed, as
was proved by Bhatnagar et al. (2009) and by Konda and Tsitsiklis (2003). Instead, convergence to
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a neighborhood in RK around the optimal value is guaranteed. In order to make the neighborhood
smaller, we need to choose Γη and Γw appropriately, as is stated in Theorem 8.

5.2 The TD Signal, the Information Passed Between the Actor and the Critic, and the
Critic’s Basis

The algorithm presented by Bhatnagar et al. (2009) is essentially a TD(0) algorithm, while the al-
gorithm of Konda and Tsitsiklis (2003) is TD(1), Our algorithm is a TD(λ) for 0≤ λ< 1. A major
difference between the approaches of Bhatnagar et al. (2009) and the present work, as compared to
(Konda and Tsitsiklis, 2003), is the information passed from the critic to the actor. In the former
cases, the information passed is the TD signal, while in the latter case the Q-value is passed. Ad-
ditionally, in Bhatnagar et al. (2009) and in Algorithm 1 the critic’s basis functions do not change
through the simulation, while in Konda and Tsitsiklis (2003) the critic’s basis functions are changed
in each iteration according to the actor’s parameter θ. Finally, we comment that Bhatnagar et al.
(2009) introduced an additional algorithm, based on the so-called natural gradient, which led to
improved convergence speed. In this work we limit ourselves to algorithms based on the regular
gradient, and defer the incorporation of the natural gradient to future work. As stated in Section 1,
our motivation in this work was the derivation of a single time scale online AC algorithm with guar-
anteed convergence, which may be applicable in a biological context. The more complex natural
gradient approach seems more restrictive in this setting.

6. Simulations

We report empirical results applying Algorithm 1 to a set of abstract randomly constructed MDPs
which are termed Average Reward Non-stationary Environment Test-bench or in short GARNET
(Archibald et al., 1995). GARNET problems comprise a class of randomly constructed finite MDPs
serving as a test-bench for control and RL algorithms optimizing the average reward per stage. A
GARNET problem is characterized in our case by four parameters and is denoted by
GARNET(X ,U,B,σ). The parameter X is the number of states in the MDP, U is the number of
actions, B is the branching factor of the MDP, that is, the number of non-zero entries in each line of
the MDP’s transition matrices, and σ is the variance of each transition reward.

We describe how a GARNET problem is generated. When constructing such a problem, we
generate for each state a reward, distributed normally with zero mean and unit variance. For each
state-action the reward is distributed normally with the state’s reward as mean and variance σ2. The
transition matrix for each action is composed of B non-zero terms in each line which sum to one.

We note that a comparison was carried out by Bhatnagar et al. (2009) between their algorithm
and the algorithm of Konda and Tsitsiklis (2003). We therefore compare our results directly to the
more closely related former approach (see also Section 5.2).

We consider the same GARNET problems as those simulated by Bhatnagar et al. (2009). For
completeness, we provide here the details of the simulation. For the critic’s feature vector, we use a
linear function approximation h̃(x,w) = φ(x)′w, where φ(x)∈ {0,1}L, and define l to be the number
nonzero values in φ(x). The nonzero values are chosen uniformly at random, where any two states
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have different feature vectors. The actor’s feature vectors are of size L× |U|, and are constructed as

ξ(x,u) ! (

L×(u−1)
︷ ︸︸ ︷

0, . . . ,0,φ(x),
L×(|U|−u)
︷ ︸︸ ︷

0, . . . ,0 ,

µ(u|x,θ) =
eθ′ξ(x,u)

∑u′∈U eθ
′ξ(x,u′) .

Bhatnagar et al. (2009) reported simulation results for two GARNET problems: GARNET(30,4,2,
0.1) and GARNET(100,10,3,0.1). For the GARNET(30,4,2,0.1) problem, Bhatnagar et al. (2009)
used critic steps γc,wn and γc,ηn , and actor steps γan, where

γc,wn =
100

1000+n2/3
, γc,ηn = 0.95γc,wn , γa,ηn =

1000
100000+n

,

and for GARNET(100,10,3,0.1) the steps were

γc,wn =
105

106+n2/3
, γc,ηn = 0.95γc,wn , γa,ηn =

106

108+n
.

In our simulations we used a single time scale, γn, which was equal to γc,wn as used by Bhatnagar
et al. (2009). The basis parameters for GARNET(30,4,2,0.1) were L = 8 and l = 3, where for
GARNET(100,10,3,0.1) they were L= 20 and l = 5.

In Figures 2 we show results of applying Algorithm 1 (solid line) and algorithm 1 from Bhat-
nagar et al. (2009) (dashed line) on GARNET(30,4,2,0.1) and GARNET(100,10,3,0.1) problems.
Each graph in Figure 2, represents an average of 100 independent simulations. Note that an agent
with a uniform action selection policy will attain an average reward per stage of zero in these prob-
lems. Figure 3 presents similar results for GARNET(30,15,15,0.1). We see from these results that in
all simulations, during the initial phase, Algorithm 1 converges faster than algorithm 1 from Bhat-
nagar et al. (2009). The long term behavior is problem-dependent, as can be seen by comparing
Figures 2 and 3; specifically, in Figure 2 the present algorithm converges to a higher value than
Bhatnagar et al. (2009), while the situation is reversed in Figure 3. We refer the reader to Mokka-
dem and Pelletier (2006) for careful discussion of convergence rates for two time scales algorithms;
a corresponding analysis of convergence rates for single time scale algorithms is currently an open
problem.

The results displayed here suggest a possible avenue for combining both algorithms. More
concretely, using the present approach may lead to faster initial convergence due to the single time
scale setting, which allows both the actor and the critic to evolve rapidly, while switching smoothly
to a two time scales approach as in Bhatnagar et al. (2009) will lead to asymptotic convergence to a
point rather than to a region. This type of approach is reminiscent of the quasi-Newton algorithms
in optimization, and is left for future work. As discussed in Section 5, we do not consider the natural
gradient based algorithms from Bhatnagar et al. (2009) in this comparative study.

7. Discussion and Future Work

We have introduced an algorithm where the information passed from the critic to the actor is the
temporal difference signal, while the critic applies a TD(λ) procedure. A policy gradient approach
was used in order to update the actor’s parameters, based on a critic using linear function approxima-
tion. The main contribution of this work is a convergence proof in a situation where both the actor
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Figure 2: Simulation results applying Algorithm 1 (red solid line) and algorithm 1 from Bhatnagar
et al. (2009) (blue dashed line) on a GARNET(30,4,2,0.1) problem (a) and on GAR-
NET(100,10,3,0.1) problem (b). Standard errors of the mean (suppressed for visibility)
are of the order of 0.04.
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Figure 3: Simulation results applying Algorithm 1 (red solid line) and algorithm 1 from Bhatnagar
et al. (2009) (blue dashed line) on a GARNET(30,15,15,0.1) problem. Standard errors of
the mean (suppressed for visibility) are of the order of 0.018.

and the critic operate on the same time scale. The drawback of the extra flexibility in time scales
is that convergence is only guaranteed to a neighborhood of a local maximum value of the average
reward per stage. However, this neighborhood depends on parameters which may be controlled to
improve convergence.

This work sets the stage for much future work. First, as observed above, the size of the conver-
gence neighborhood is inversely proportional to the step sizes Γw and Γη. In other words, in order
to reduce this neighborhood we need to select larger values of Γw and Γη. This on the other hand
increases the variance of the algorithm. Therefore, further investigation of methods which reduce
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this variance are needed. However, the bounds used throughout are clearly rather loose, and can-
not be effectively used in practical applications. Obviously, improving the bounds, and conducting
careful numerical simulations in order to obtain a better practical understanding of the influence of
the different algorithmic parameters, is called for. In addition, there is clearly room for combining
the advantages of our approach with those of AC algorithms for which convergence to a single point
is guaranteed, as discussed in Section 6,

From a biological point of view, our initial motivation to investigate TD based AC algorithms
stemmed from questions related to the implementation of RL in the mammalian brain. Such a
view is based on an interpretation of the transient activity of the neuromodulator dopamine as a
TD signal (Schultz, 2002). Recent evidence suggested that the dorsal and ventral striatum may
implement the actor and the critic, respectively Daw et al. (2006). We believe that theoretical
models such as those of Bhatnagar et al. (2009) and Algorithm 1 may provide, even if partially, a
firm foundation to theories at the neural level. Some initial attempts in a neural setting (using direct
policy gradient rather than AC based approaches) have been made by Baras and Meir (2007) and
Florian (2007). Such an approach may lead to functional insights as to how an AC paradigm may
be implemented at the cellular level of the basal ganglia and cortex. An initial demonstration was
given by DiCastro et al. (2008). From a theoretical perspective several issues remain open. First,
strengthening Theorem 8 by replacing liminf by lim would clearly be useful. Second, systematically
combining the advantages of single time scale convergence (fast initial dynamics) and two time scale
approaches (convergence to a point) would clearly be beneficial.
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Appendix A. Proofs of Results from Section 3

We present proofs of the main results from section 3.

A.1 Proof of Lemma 3

1. Looking at (1) we see that P(y|x,θ) is a compound function of an integral and a twice differen-
tiable function, µ(y|x,θ), with bounded first and second derivatives according to Assumption
3. Therefore, P(y|x,θ) is a twice differentiable function with bounded first and second deriva-
tives for all θ ∈ RK .
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2. According to Lemma 1, for each θ ∈ RK we have a unique solution to the following non-
homogeneous linear equation system in {π(i|θ)}|X |

i=1,














|X |

∑
i=1

π(i|θ)P( j|i,θ) = π( j|θ), j = 1, . . . , |X |−1,

|X |

∑
i=1

π(i|θ) = 1,

(18)

or in matrix form M(θ)π(θ) = b. By Assumption 2, the equation system (18) is invertible,
therefore, det[M(θ)] > 0. This holds for all P(θ) ∈ P̄, thus, there exists a positive constant,
bM , which uniformly lower bounds det[M(θ)] for all θ ∈ RK .Thus, using Cramer’s rule we
have

π(i|θ) =
Q(i,θ)
det[M(θ)]

,

where Q(i,θ) is a finite polynomial of {P( j|i,θ)}i, j∈X of at most degree |X | and with at most
|X |! terms. Writing ∂π(x|θ)/∂θi explicitly gives

∣
∣
∣
∣

∂π(x|θ)
∂θi

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

det[M(θ)] ∂
∂θi
Q(i,θ)−Q(i,θ) ∂

∂θi
det[M(θ)]

det[M(θ)]2

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

∂
∂θi
Q(i,θ)

det[M(θ)]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

Q(i,θ) ∂
∂θi
det[M(θ)]

det[M(θ)]2

∣
∣
∣
∣
∣

≤
|X | · |X |! ·BP1

bM
+

(|X | · |X |!) ·BP1
b2M

,

which gives the desired bound. Following similar steps we can show the boundedness of the
second derivatives.

3. The average reward per stage, η(θ) is a linear combination of {π(i|θ)}|X |
i=1, with bounded

coefficients by assumption 1. Therefore, using Section 2, η(θ) is twice differentiable with
bounded first and second derivatives for all θ ∈ RK .

4. Since π(x|θ) is the stationary distribution of a recurrent MC, according to Assumption 2 there
is a positive probability to be in each state x ∈ X . This applies to the closure of P . Thus, there
exist a positive constant bπ such that π(x|θ) ≥ bπ.

A.2 Proof of Lemma 4

1. We recall the Poisson Equation (2). We have the following system of linear equations in
{h(x|θ)}x∈X , namely,







h(x|θ) = r(x)−η(θ)+ ∑
y∈X

P(y|x,θ)h(y|θ), ∀x ∈ X ,x -= x∗,

h(x∗|θ) = 0.

or in matrix form N(θ)h(θ) = c. Adding the equation h(x∗|θ) = 0 yields a unique solution
for the system; see Bertsekas (2006), Vol. 1, Prop. 7.4.1. Thus, using Cramer’s rule we have
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h(x|θ) = R(x,θ)/det[N(θ)], where R(x,θ) and det[N(θ)] are polynomial function of entries in
N(θ), which are bounded and have bounded first and second derivatives according to Lemma
3. Continuing in the same steps of Lemma 3 proof, we conclude that h(x|θ) and its two first
derivatives for all x ∈ X and for all θ ∈ RK .

2. Trivially, by (3) and the previous section the result follows.

Appendix B. Proof of Theorem 5

We begin with a Lemma which was proved by Marbach and Tsitsiklis (1998). It relates the gradient
of the average reward per stage to the differential value function.

Lemma 9 The gradient of the average reward per stage can be expressed by

∇θη(θ) = ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)h(y,θ).

For completeness, we present a proof,which will be used in the sequel.
Proof We begin with Poisson’s Equation (2) in vector form

h(θ) = r̄− eη(θ)+P(θ)h(θ),

where e is a column vector of 1’s. Taking the derivative with respect to θ and rearranging yields

e∇θη(θ) = −∇θh(θ)+∇θP(θ)h(θ)+P(θ)∇θh(θ).

Multiplying the left hand side of the last equation by the stationary distribution π(θ)′ yields

∇θη(θ) = −π(θ)′∇θh(θ)+π(θ)′∇θP(θ)h(θ)+π(θ)′P(θ)∇θh(θ)
= −π(θ)′∇θh(θ)+π(θ)′∇θP(θ)h(θ)+π(θ)′∇θh(θ)
= π(θ)′∇θP(θ)h(θ).

Expressing the result explicitly we obtain

∇θη(θ) = ∑
x,y∈X

P(x)∇θP(y|x,θ)h(y,θ)

= ∑
x,y∈X

P(x)∇θ

(

∑
u

(P(y|x,u)µ(u|x,θ))
)

h(y,θ)

= ∑
x,y∈X

P(x)∑
u

(P(y|x,u)∇θµ(u|x,θ))h(y,θ)

= ∑
x,y∈X ,u∈U

P(y|x,u)P(x)∇θµ(u|x,θ)h(y,θ)

= ∑
x,y∈X ,u∈U

P(y|x,u)µ(u|x,θ)P(x)
∇θµ(u|x,θ)
µ(u|x,θ)

h(y,θ)

= ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)h(y,θ).

(19)
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Based on this, we can now prove Theorem 5. We start with the result in (19).

∇θη(θ) = ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)h(y,θ).

= ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(h(y,θ)−h(x,θ)+ r̄(x)−η(θ)+ f (x))

− ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(−h(x,θ)+ r̄(x)−η(θ)+ f (x))

= ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(d(x,y,θ)+ f (x))

− ∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)(−h(x,θ)+ r̄(x)−η(θ)+ f (x))

In order to complete the proof, we show that the second term equals 0. We define F(x,θ) !

−h(x|θ)+ r̄(x)−η(θ)+ f (x) and obtain

∑
x,y∈X ,u∈U

P(x,u,y,θ)ψ(x,u,θ)F(x,θ) =∑
x∈X

π(x,θ)F(x,θ) ∑
u∈U,y∈X

∇θP(y|x,u,θ)

=0.

Appendix C. Proof of Theorem 7

As mentioned earlier, we use Theorem 6.1.1 from Kushner and Yin (1997). We start by describing
the setup of the theorem and the main result. Then, we show that the required assumptions hold in
our case.

C.1 Setup, Assumptions and Theorem 6.1.1 of Kushner and Yin (1997)

In this section we describe briefly but accurately the conditions for Theorem 6.1.1 of Kushner and
Yin (1997) and state the main result. We consider the following stochastic iteration

yn+1 =ΠH [yn+ γnYn],

where Yn is a vector of “observations” at time n, and ΠH is a constraint operator as defined in
Definition 6. Recall that {xn} is a Markov chain. Based on this, define Fn to be the σ-algebra

Fn ! σ{y0,Yi−1,xi |i≤ n}
= σ{y0,Yi−1,xi,yi |i≤ n},

and
F̄n ! σ{y0,Yi−1,yi |i≤ n}.

The difference between the σ-algebras is the sequence {xn}. Define the conditioned average iterate

gn (yn,xn) ! E [Yn |Fn ] ,

and the corresponding martingale difference noise

δMn ! Yn−E [Yn |Fn ] .
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Thus, we can write the iteration as

yn+1 = yn+ γn (gn (yn,xn)+δMn+Zn) ,

where Zn is a reflection term which forces the iterate to the nearest point in the set H whenever the
iterates leaves it (Kushner and Yin, 1997). Next, set

ḡ(y) ! E
[

gn (y,xn)
∣
∣F̄n
]

.

Later, we will see that the sum of the sequence {δMn} converges to 0, and the r.h.s of the iteration
behaves approximately as a the function ḡ(y), which yields the corresponding ODE, that is,

ẏ= ḡ(y) .

The following ODE method will show that the asymptotic behavior of the iteration is equal to the
asymptotic behavior of the corresponding ODE.

Define the auxiliary variable

tn !
n−1

∑
k=0

γk,

and the monotone piecewise constant auxiliary function

m(t) = {n |tn ≤ t < tn+1 } .

The following assumption, taken from Section 6.1 of Kushner and Yin (1997), is required to estab-
lish the basic Theorem. An interpretation of the assumption follows its statement.

Assumption 7 Assume that

1. The coefficients {γn} satisfy ∑∞
n=1 γn = ∞ and limn→∞ γn = 0.

(a) supnE [‖Yn‖] < ∞.

(b) gn (yn,x) is continuous in yn for each x and n.
(c) For each µ> 0 and for some T > 0 there is a continuous function ḡ(·) such that for each

y

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γi (gn (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

)

= 0.

(d) For each µ> 0 and for some T > 0 we have

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γiδMi

∥
∥
∥
∥
∥
≥ µ

)

= 0.

(e) There are measurable and non-negative functions ρ3 (y) and ρn4 (x)such that

‖gn (yn,x)‖ ≤ ρ3 (y)ρn4 (x)

where ρ3 (y) is bounded on each bounded y-set , and for each µ> 0 we have

lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiρn4 (xi) ≥ µ

)

= 0.
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(f) There are measurable and non-negative functions ρ1 (y) and ρn2 (x)such that ρ1 (y) is
bounded on each bounded y-set and

‖gn (y1,x)−gn (y2,x)‖ ≤ ρ1 (y1− y2)ρn2 (x) ,

where
lim
y→0

ρ1 (y) = 0,

and

Pr



limsup
j

m(t j+τ)

∑
i= j

γiρi2 (xi) < ∞



= 1.

The conditions of Assumption 7 are quite general but can be interpreted as follows. Assumptions
7.1-3 are straightforward. Assumption 7.4 is reminiscent of ergodicity, which is used to replace the
state-dependent function gn (·, ·)with the state-independent of state function ḡ(·), whereas Assump-
tion 7.5 states that the martingale difference noise converges to 0 in probability. Assumptions 7.6
and 7.7 ensure that the function gn (·, ·) is not unbounded and satisfies a Lipschitz condition.

The following Theorem, adapted from Kushner and Yin (1997), provides the main convergence
result required. The remainder of this appendix shows that the required conditions in Assumption 7
hold.

Theorem 10 (Adapted from Theorem 6.1.1 in Kushner and Yin 1997) Assume that algorithm 1, and
Assumption 7 hold. Then yn converges to some invariant set of the projected ODE

ẏ=ΠH [ḡ(y)].

Thus, the remainder of this section is devoted to showing that Assumptions 7.1-7.7 are satisfied.
For future purposes, we express Algorithm 1 using the augmented parameter vector yn

yn !
(

θ′n w′
n η̃′n

)′
, θn ∈ R

K , wn ∈ R
L, η̃n ∈ R.

The components of Yn are determined according to (17). The corresponding sub-vectors of ḡ(yn)
will be denoted by

ḡ(yn) =
[

ḡ(θn)
′ ḡ(wn)′ ḡ(η̃n)

′]′ ∈ R
K+L+1,

and similarly

gn (yn,xn) =
[

gn (θn,xn)′ gn (wn,xn)′ gn (η̃n,xn)′
]′
∈ R

K+L+1.

We begin by examining the components of gn (yn,xn) and ḡ(yn). The iterate gn (η̃n,xn) is

gn (η̃n,xn) = E [Γη (r (xn)− η̃n)|Fn] (20)
= Γη (r (xn)− η̃n) ,

and since there is no dependence on xn we have also

ḡ(η̃n) = Γη (η(θ)− η̃n) .
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The iterate gn (wn,xn) is

gn (wn,xn) = E
[

Γwd̃ (xn,xn+1,wn)en
∣
∣Fn
]

= E

[

Γw
∞

∑
k=0

λkφ(xn−k)
(

r (xn)− η̃n+φ(xn+1)′wn−φ(xn)′wn
)

∣
∣
∣
∣
∣
Fn

]

(21)

= Γw
∞

∑
k=0

λkφ(xn−k)

(

r (xn)− η̃n+ ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)′wn

)

,

and the iterate ḡ(wn) is

ḡ(wn) = E
[

gn (wn,xn)| F̄n
]

= E

[

Γw
∞

∑
k=0

λkφ(xn−k)

(

r (xn)− η̃n+ ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)′wn

)∣
∣
∣
∣
∣
F̄

]

= Γw
∞

∑
k=0

λk ∑
x∈X

π(x)φ(x)∑
z∈X

[

Pk
]

xz

×

(

r (z)− η̃n+ ∑
y∈X

P(y|z,θn)φ(z)′wn−φ(y)′wn

)

,

which, following Bertsekas and Tsitsiklis (1996) Section 6.3, can be written in matrix form

ḡ(wn) =Φ′Π(θn)

(

(1−λ)
∞

∑
k=0

λkPk+1− I

)

Φwn+Φ′Π(θn)
∞

∑
k=0

λkPk (r− η̃n) .

With some further algebra we can express this using (16),

ḡ(wn) = A(θn)wn+b(θn)+G(θn)(η(θn)− η̃n) .

Finally, the iterate gn (θn,xn) is

gn (θn,xn) = E
[

d̃ (xn,xn+1,wn)ψ(xn,un,θn)
∣
∣Fn
]

= E [d (xn,xn+1,θn)ψ(xn,un,θn)|Fn] (22)
+E
[(

d̃ (xn,xn+1,wn)−d (xn,xn+1,θn)
)

ψ(xn,un,θn)
∣
∣Fn
]

= E [d (xn,xn+1,θn)ψ(xn,un,θn)|Fn]
+∑
z∈X

P(z|xn)ψ(xn,un,θn)
(

d̃ (xn,z,wn)−d (xn,z,θn)
)

,

and

ḡ(θn) = E
[

d̃ (xn,xn+1,wn)ψ(xn,un,θn)
∣
∣ F̄n
]

= E
[

d (xn,xn+1,θn)ψ(xn,un,θn)| F̄n
]

+E
[(

d̃ (xn,xn+1,wn)−d (xn,xn+1,θn)
)

ψ(xn,un,θn)
∣
∣ F̄n
]

= ∇η(θn)+ ∑
x,y∈X

∑
u∈U

π(x)P(u|x,θn)P(y|x,u)ψ(x,u,θn)

×
(

d̃ (x,y,wn)−d (x,y,θn)
)

.

Next, we show that the required assumptions hold.
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C.2 Satisfying Assumption 7.2

We need to show that supnE [‖Yn‖2] < ∞. Since later we need to show that supnE
[

‖Yn‖22
]

< ∞,
and the proof of the second moment is similar to the proof of the first moment, we consider both
moments here.

Lemma 11 The sequence η̃n is bounded w.p. 1, supnE [‖Yn (η̃n)‖2] < ∞, and
supnE

[

‖Yn (η̃n)‖22
]

< ∞

Proof We can chooseM such that γnΓη < 1 for all n>M. Using Assumption 3 for the boundedness
of the rewards, we have

η̃n+1 = (1− γnΓη)η̃m+ γnΓηr(xn)
≤ (1− γnΓη)η̃n+ γnΓηBr

≤
{

η̃n if η̃n > Br,
Br if η̃n ≤ Br,

≤max{η̃n,Br},

which means that each iterate is bounded above by the previous iterate or by a constant. We denote
this bound by Bη̃. Using similar arguments we can prove that η̃n is bounded below, and the first part
of the lemma is proved. Since η̃n+1 is bounded the second part follows trivially.

Lemma 12 We have supn E
[

‖Yn (wn)‖22
]

< ∞ and supn E [‖Yn (wn)‖2] < ∞

Proof For the first part we have

E
[

‖Yn (wn)‖22
]

= E
[∥
∥Γwd̃ (xn,xn+1,wn)en

∥
∥
2
2

]

= Γ2wE





∥
∥
∥
∥
∥

∞

∑
k=0

λkφ(xn−k)
(

r (xn)− η̃n+φ(xn+1)′wn−φ(xn)′wn
)

∥
∥
∥
∥
∥

2

2





(a)
≤ Γ2wE

[
∞

∑
k=0

λk
∥
∥φ(xn−k)

(

r (xn)− η̃n+φ(xn+1)′wn−φ(xn)′wn
)∥
∥
2

]2

≤ Γ2wE

[

sup
k

∥
∥φ(xn−k)

(

r (xn)− η̃n+φ(xn+1)′wn−φ(xn)′wn
)∥
∥
2

∞

∑
k=0

λk
]2

(b)
≤

4Γ2w
(1−λ)2

‖φ(xn−k)‖22

×
(

|r (xn)|2+ |η̃n|2+‖φ(xn+1)‖22 ‖wn‖
2
2+‖φ(xn)‖22 ‖wn‖

2
2

)

≤
4Γ2w

(1−λ)2
B2φ
(

B2r +B2η̃+2B2φB2w
)

,

where we used the triangle inequality in (a) and the inequality (a+ b)2 ≤ 2a2+ 2b2 in (b). The
bound supnE [‖Yn (wn)‖2] < ∞ follows directly from the Cauchy-Schwartz inequality.
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Lemma 13 We have supn E
[

‖Yn (θn)‖22
]

< ∞ and supn E [‖Yn (θn)‖2] < ∞.The proof proceeds as in
Lemma 12.

Based on Lemmas 11, 12, and 13 we can assert Assumption 7.2

C.3 Satisfying Assumption 7.3

Assumption 7.3 requires the continuity of gn (yn,xn) for each n and xn. Again, we show that this
assumption holds for the three parts of the vector yn.

Lemma 14 The function gn (η̃n,xn) is a continuous function of η̃n for each n and xn.

Proof Since gn (η̃n,xn) = Γη (r (xn)− η̃n) the claim follows.

Lemma 15 The function gn (wn,xn) is a continuous function of η̃n, wn, and θn for each n and xn.

Proof The function is

gn (wn,xn) = Γw
∞

∑
k
λkφ(xn−k)

(

r (xn)− η̃n+ ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)′wn

)

.

The probability transition ∑y∈X P(y|xn,θn) is a function of µ(un|xn,θn). Thus it is continuous in θn
by Assumption 3, and thus gn (wn,xn) is continuous in η̃n and θn and the lemma follows.

Lemma 16 The function gn (θn,xn) is a continuous function of η̃n, wn, and θn for each n and xn.

Proof By definition, the function gn (θn,xn) is

gn (θn,xn) = E
[

d̃ (xn,xn+1,wn)ψ(xn,un,θn)
∣
∣Fn
]

=
∇θµ(un|xn,θn)
µ(un|xn,θn)

(

r (xn)− η̃n+ ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)′wn

)

Using similar arguments to Lemma 15 the claim holds.

C.4 Satisfying Assumption 7.4

In this section we prove the following convergence result: for each µ> 0 and for some T > 0 there
is a continuous function ḡ(·) such that for each y

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γi (gn (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

)

. (23)

We start by showing that there exist independent cycles of the algorithm since the underlying
Markov chain is recurrent and aperiodic. Then, we show that the cycles behave as a martingale,

392



A CONVERGENT ONLINE SINGLE TIME SCALE ACTOR CRITIC ALGORITHM

thus Doob’s inequality can be used. Finally we show that the sum in (23) converges to 0 w.p. 1. We
start investigating the regenerative nature of the process.

Based on Lemma 2, there exists a recurrent state common to all MC(θ), denoted by x∗. We
define the series of hitting times of the recurrent state x∗ by t0 = 0, t1, t2, ..., where tm it the m-th time
the agent hits the state x∗. Mathematically, we can define this series recursively by

tm+1 = inf{n|xn = x∗,n> tm}, t0 = 0,

and Tm ! tm+1− tm. Define the m-th cycle of the algorithm to be the set of times

Tm ! {n|tm−1 ≤ n< tm},

and the corresponding trajectories
Cm ! {xn|n ∈ Tm}.

Define a function, ρ(k), which returns the cycle to which the time k belongs to, that is,

ρ(k) ! {m |k ∈ Tm } .

We notice that based on Lemma 1, and using the Regenerative Cycle Theorem (Brémaud, 1999), the
cycles Cm are independent of each other.

Next, we examine (23), and start by defining the following events:

b(1)
n !

{

ω

∣
∣
∣
∣
∣
sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γi (gi (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

}

,

b(2)
n !

{

ω

∣
∣
∣
∣
∣
sup
j≥n

sup
k≥m( jT )

∥
∥
∥
∥
∥

k

∑
i=m( jT )

γi (gi (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

}

,

b(3)
n !

{

ω

∣
∣
∣
∣
∣
sup
j≥n

∥
∥
∥
∥
∥

∞

∑
i=n

γi (gi (y,xi)− ḡ(y))

∥
∥
∥
∥
∥
≥ µ

}

.

It is easy to show that for each n we have b(1)
n ⊂ b(2)

n , thus,

Pr
(

b(1)
n

)

≤ Pr
(

b(2)
n

)

. (24)

It is easy to verify that the series
{

b(2)
n

}

is a subsequence of
{

b(3)
n

}

. Thus, if we prove that

limn→∞Pr
(

b(3)
n

)

= 0, then limn→∞Pr(bn) = 0, and using (24), Assumption 7.4 holds.

Next, we examine the sum defining the event b(3)
n , by splitting it a sum over cycles and a sum

within each cycle. We can write it as following
∞

∑
i=n

γi (gi (y,xi)− ḡ(y)) =
∞

∑
m=ρ(n)

∑
i∈Tm

γi (gi (y,xi)− ḡ(y)) .

Denote cm ! ∑ j∈Tm γi (gn (y,xi)− ḡ(y)). Therefore, by the Regenerative Cycle Theorem (Brémaud,
1999), cm are independent random variables. Also,

E [cm] = E

[

∑
i∈Tm

γi (gi (y,xi)− ḡ(y))

]

= E

[

E

[

∑
j∈Tm

γi (gn (y,xi)− ḡ(y))

∣
∣
∣
∣
∣
Tm

]]

= 0.
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We argue that cm is square integrable. To prove this we need to show that the second moments of
Tm and (gn (y,xi)− ḡ(y)) are finite.

Lemma 17

1. The first two moments of the random times {Tm} are bounded above by a constant BT , for all
θ ∈ RK and for all m, 1≤ m< ∞.

(a) E
[

(gn (y,xi)− ḡ(y))2
]

≤ Bg

(b) Define γ̄m ! supi∈Tm γi, then ∑
∞
m=0 γ̄

2
m < ∞.

(c) E
[

c2m
]

≤ (BTBg)2.

Proof

1. According to Assumption 2 and Lemma 1, each Markov chain in P̄ is recurrent. Thus, for
each θ ∈ RK there exists a constant B̃T (θ), 0< B̃T (θ) < 1, where for k ≤ |X | we have

P(Tm = k|θm) ≤
(

B̃T (θm)
).k/|X |/

, 1≤ m< ∞, 1≤ k < ∞,

where .a/ is the largest integer which is not greater than a. Otherwise, if for k> |X | we have
B̃T (θm) = 1 then the chain transitions equal 1 which contradicts the aperiodicity of the chains.
Therefore,

E [Tm|θm] =
∞

∑
k=1

kP(Tm = k|θm) ≤
∞

∑
k=1

k
(

B̃T (θm)
).k/|X |/

= BT1(θm) < ∞,

and
E
[

T 2m
∣
∣θm
]

=
∞

∑
k=1

k2P(Tm = k|θm) ≤
∞

∑
k=1

k2
(

B̃T (θm)
).k/|X |/

= BT2(θm) < ∞.

Since the set P̄ is closed, by Assumption 2 the above holds for the closure of P̄ as well. Thus,
there exists a constant BT satisfying BT =max{supθBT1(θ),supθBT2(θ)} < ∞.

(a) The proof proceeds along the same lines as the proofs of lemmas 11, 12, and 13.
(b) The result follows trivially since the sequence {γ̄m} is subsequence of the summable

sequence{γm}.
(c) By definition, for large enough m we have γm ≤ 1. Therefore, we have

E
[

c2m
]

= E





(

∑
j∈Tm

γ j (gn (y,x j)− ḡ(y))

)2




≤ E



|Tm|2
(

sup
j
γ j

)2(

sup
j

(gn (y,x j)− ḡ(y))

)2




≤ B2TB2g.
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Next, we conclude by showing that Assumption 7.4 is satisfied. Define the process dn ! ∑n
m=0 cm.

This process is a martingale since the sequence {cm} is square integrable (by Lemma 17) and satis-
fies E [dm+1|dm] = dm. Using Doob’s martingale inequality2 we have

Pr

(

sup
k≥n

ρ(k)

∑
m=ρ(n)

∑
j∈Tm

γi (gn (y,xi)− ḡ(y)) ≥ µ

)

≤ lim
n→∞

E
[
(

∑∞
m=ρ(n)∑ j∈Tm γ j (gn (y,x j)− ḡ(y))

)2
]

µ2

= lim
n→∞

∑∞
m=ρ(n)E

[
(

∑ j∈Tm γ j (gn (y,x j)− ḡ(y))
)2
]

µ2

≤ lim
n→∞

∞

∑
m=ρ(n)

γ̄2mBgBT/µ2

= 0.

C.5 Satisfying Assumption 7.5

In this section we need to show that for each µ> 0 and for some T > 0 we have

lim
n→∞

Pr

(

sup
j≥n

max
0≤t≤T

∥
∥
∥
∥
∥

m( jT+t)−1

∑
i=m( jT )

γiδMi

∥
∥
∥
∥
∥
≥ µ

)

= 0. (25)

In order to follow the same lines as in Section C.4, we need to show that the second moment of the
martingale difference noise, δMi, is bounded with zero mean. By definition, δMn (·) has zero mean.

Lemma 18 The martingale difference noise, δMn (·), is bounded in the second moment.

Proof The claim is immediate from the fact that

E
[

(δMn)
2
]

= E
[

‖Yn−gn (yn,xn)‖2
]

≤ 2E
[

‖Yn‖2+‖gn (yn,xn)‖2
]

,

and from Lemma 11, Lemma 12, and Lemma 13.

Combining this fact with Lemma 18, and applying the regenerative decomposition of Section C.4,
we conclude that statistically δMn (·) behaves exactly as (gn (y,xi)− ḡ(y)) of Section C.4 and thus
(25) holds.

C.6 Satisfying Assumption 7.6

In this section we need to prove that there are non-negative measurable functions ρ3 (y) and ρn4 (x)
such that

‖gn (yn,x)‖ ≤ ρ3 (yn)ρn4 (x) ,

2. If wn is a martingale sequence then Pr
(

supm≥0 |wn|≥ µ
)

≤ limn→∞E
[

|wn|2
]

/µ2.
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where ρ3 (y) is bounded on each bounded y-set, and for each µ> 0 we have

lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiρn4 (xi) ≥ µ

)

= 0.

The following lemma states a stronger condition for Assumption 7.6. In fact, we choose ρ3(y) to be
a positive constant.

Lemma 19 If ‖gn (y,x)‖ is uniformly bounded for each y, x and n, then Assumption 7.6 is satisfied.

Proof Let us denote the upper bound by the random variable B, that is,

‖gn (y,x)‖ ≤ B, w.p. 1.

Thus

lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiρn4 (xi) ≥ µ

)

≤ lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

m( jτ+τ)−1

∑
i=m( jτ)

γiB≥ µ

)

= lim
τ→0

lim
n→∞

Pr

(

sup
j≥n

B
m( jτ+τ)−1

∑
i=m( jτ)

γi ≥ µ

)

≤ lim
τ→0

Pr(Bτ≥ µ)

= 0.

Based on Lemma 19, we are left with proving that gn (y,x) is uniformly bounded. The following
lemma states so.

Lemma 20 The function gn (y,x) is uniformly bounded for all n.

Proof We examine the components of gn (yn,xn). In (20) we showed that

gn (η̃n,xn) = Γη (r (xn)− η̃n) .

Since both r (xn) and η̃n are bounded by Assumption 1 and Lemma 11 respectively, we have a
uniform bound on gn (η̃n,xn). Recalling (21) we have

gn (wn,xn) = Γw
∞

∑
k=0

λkφ(xn−k)

(

r (xn)− η̃n+ ∑
y∈X

P(y|xn,θn)φ(y)′wn−φ(xn)′wn

)

≤ Γw
1

1−λ
Bφ
(

Br +Bη̃+2BφBw
)

.

Finally, recalling (22) we have

gn (θn,xn) = E
[

d̃ (xn,xn+1,wn)ψ(xn,un,θn)
∣
∣Fn
]

≤
(

Br +Bη̃+2BφBw
)

Bψ.
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C.7 Satisfying Assumption 7.7

In this section we show that there are non-negative measurable functions ρ1 (y) and ρn2 (x) such that
ρ1 (y) is bounded on each bounded y-set and

‖gn (y1,x)−gn (y2,x)‖ ≤ ρ1 (y1− y2)ρn2 (x) (26)

where
lim
y→0

ρ1 (y) = 0, (27)

and for some τ> 0

Pr



limsup
j

m(t j+τ)

∑
i= j

γiρi2 (xi) < ∞



= 1.

From Section C.6 we infer that we can choose ρn2 (x) to be a constant since gn (y,x) is uniformly
bounded. Thus, we need to show the appropriate ρ1 (·) function. The following lemma shows it.

Lemma 21 The following functions satisfy (26) and (27).

1. The function ρ1 (y) = ‖η̃2− η̃1‖ and ρn2 (x) = Γη for gn (η̃,x).

(a) The function ρ1 (y)= 1
1−λB

2
φ

(

∑y∈X Bw ‖P(y|x,θ1)−P(y|x,θ2)‖+‖w1−w2‖
)

and ρn2 (x)=
Γw for gn (w,x).

(b) The function ρ1 (y) =∑y∈X Bw ‖P(y|x,θ1)−P(y|x,θ2)‖ ·Bψ and ρn2 (x) = 1 for gn (θ,x).

Proof

1. Recalling (20) we have for gn (η̃,x)

‖gn (η̃1,x)−gn (η̃2,x)‖ ≤ Γη ‖η̃2− η̃1‖ ,

thus (26) and (27) are satisfied for 1.

2. Recalling (21) we have for gn (w,x)

‖gn (w1,x)−gn (w2,x)‖

≤

∥
∥
∥
∥
∥
Γw

∞

∑
k
λkφ(xn−k)

((

∑
y∈X

P(y|x,θ1)φ(y)′w1−φ(xn)′w1

)

−

(

∑
y∈X

P(y|x,θ2)φ(y)′w2−φ(xn)′w2

))∥
∥
∥
∥
∥

≤
ΓwB2φ
1−λ

(

∑
y∈X

‖P(y|x,θ1)w1−P(y|x,θ2)w2‖+‖w1−w2‖

)

≤
ΓwB2φ
1−λ

(

∑
y∈X

Bw ‖P(y|x,θ1)−P(y|x,θ2)‖+‖w1−w2‖

)
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(a) Trivially, with respect to w (26) and (27) are satisfied. Regarding θ, (26) and (27) are
satisfied if we recall the definition of P(y|x,θ) from (1) and the continuity of µ(u|x,θ)
from Assumption 3.

(b) Recalling (22) we have for gn (θ,x)

‖gn (θ1,x)−gn (θ2,x)‖ =
∥
∥E
[

d̃ (x,y,w1)ψ(x,u,θ1)
∣
∣Fn
]

−E
[

d̃ (x,y,w2)ψ(x,u,θ2)
∣
∣Fn
]∥
∥

≤ ∑
y∈X

Bw ‖P(y|x,θ1)−P(y|x,θ2)‖Bψ.

Using similar arguments to 2, (26) and (27) are satisfied for θ.

Appendix D. Proof of Theorem 8

In this section we find conditions under which Algorithm 1 converges to a neighborhood of a local
maximum. More precisely, we show that liminft→∞ ‖∇η(θ(t))‖2 ≤ εapp+ εdyn, where the approx-
imation error, εapp, measures the error inherent in the critic’s representation, and εdyn is an error
related to the single time scale algorithm. We note that the approximation error depends on the
basis functions chosen for the critic, and in general can be reduced only by choosing a better repre-
sentation basis. The term εdyn is the dynamic error, and this error can be reduced by choosing the
critic’s parameters Γη and Γw appropriately.

We begin by establishing a variant of Lyapunov’s theorem for asymptotic stability,3 where in-
stead of proving asymptotic convergence to a point, we prove convergence to a compact invariant
set. Based on this result, we continue by establishing a bound on a time dependent ODE of the first
order. This result is used to bound the critic’s error in estimating the average reward per stage and
the differential values. Finally, using these results, we establish Theorem 8.

We denote a closed ball of radius y in some normed vector space, (RL,‖ · ‖2), by By, and its
surface by ∂By. Also, we denote by A\B a set, which contains all the members of set A which are
not members of B. Finally, we define the complement of By by Bc

y = RL\By.
The following lemma is similar to Lyapunov’s classic theorem for asymptotic stability; see

Khalil (2002), Theorem 4.1. The main difference is that when the value of the Lyapunov function
is unknown inside a ball, convergence can be established to the ball, rather than to a single point.

Lemma 22 Consider a dynamical system, ẋ = f (x) in a normed vector space, (RL,‖ · ‖), and a
closed ball Br !

{

x
∣
∣x ∈ RL,‖x‖ ≤ r

}

. Suppose that there exists a continuously differentiable scalar
function V (x) such that V (x) > 0 and V̇ (x) < 0 for all x ∈ Bc

r , and V (x) = 0 for x ∈ ∂Br. Then,

limsup
t→∞

‖x(t)‖ ≤ r.

Proof We prove two complementary cases. In the first case, we assume that x(t) never enters
Br. On the set Bc

r , V (x) is a strictly decreasing function in t, and it is bounded below, thus it
converges. We denote this bound by C, and notice that C ≥ 0 since for x ∈ Bc

r , V (x) > 0. We
prove that C = 0 by contradiction. Assume that C > 0. Then, x(t) converge to the invariant set

3. We say that the equilibrium point x= 0 of the system ẋ=f(x) is stable if for each ε> 0 there exists a δ> 0 such that
‖x(0)‖ < δ⇒ ‖x(t)‖ < ε for all t ≥ 0. We say that the point x = 0 is asymptotically stable if it is stable and there
exists a δ> 0 such that ‖x(0)‖ < δ implies limt→∞ x(t) = 0 (Khalil, 2002).
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SC ! {x|V (x) = C,x ∈ Bc
r }. For each x(t) ∈ SC we have V̇ (x) < 0. Thus, V (x) continues to

decrease which contradicts the boundedness from below. As a result, V (x(t)) → 0.
In the second case, let us suppose that at some time, denoted by t0, x(t0) ∈ Br. We argue that

the trajectory never leaves Br. Let us assume that at some time t2, the trajectory x(t) enters the
set ∂Br+ε. Then on this set, we have V (x(t2)) > 0. By the continuity of the trajectory x(t), the
trajectory must go through the set ∂Br. Denote the hitting time of this set by t1. By definition we
have V (x(t1)) = 0. Without loss of generality, we assume that the trajectory in the times t1 < t ≤ t2
is restricted to the set Br+ε/Br. Thus, since V̇ (x(t)) ≤ 0 for x ∈ Br+ε/Br we have

V (x(t2)) =V (x(t1))+
Z t2

t1
V̇ (x(t))dt <V (x(t1)),

which contradicts the fact that V (x(t2)) ≥ V (x(t1)). Since this argument holds for all ε > 0, the
trajectory x(t) never leaves Br.

The following lemma will be applied later to the linear equations (17), and more specifically, to
the ODEs describing the dynamics of η̃ and w. It bounds the difference between an ODE’s state
variables and some time dependent functions.

Lemma 23 Consider the following ODE in a normed space (RL,‖ ·‖2)






d
dt
X (t) =M (t)(X (t)−F1(t))+F2(t),

X(0) = X0,
(28)

where for sufficiently large t .

1. M (t) ∈ RL×L is a continuous matrix which satisfies max‖x‖=1 x′M (t)x≤−γ< 0 for t ∈ R,

2. F1 (t) ∈ RL satisfies ‖dF1(t)/dt‖2 ≤ BF1,

3. F2 (t) ∈ RL satisfies ‖F2(t)‖2 ≤ BF2.

Then, the solution of the ODE satisfies limsupt→0 ‖X(t)−F1 (t)‖2 ≤ (BF1+BF2)/γ.

Proof We express (28) as

d
dt

(X(t)−F1(t)) =M (t)(X(t)−F1 (t))−
d
dt
F1(t)+F2(t), (29)

and define
Z(t) ! (X(t)−F1(t)) , G(t) ! −

d
dt
F1(t)+F2(t).

Therefore, (29) can be written as

Ż(t) =M (t)Z(t)+G(t),

where ‖G(t)‖ ≤ BG ! BF1+BF2. In view of Lemma 22, we consider the function

V (Z) =
1
2

(

‖Z(t)‖22−B2G/γ2
)

.
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Let Br be a ball with a radius r = BG/γ. Thus we have V (Z) > 0 for Z ∈ Bc
r and V (Z) = 0 for

X ∈ ∂Br. In order to satisfy the assumptions of Lemma 22 the condition that V̇ (Z) < 0 needs to be
verified. For ‖Z(t)‖2 > BG/γ we have

V̇ (Z) = (∇XV )′ Ż(t)
= Z(t)′M (t)Z(t)+Z(t)′G(t)

= ‖Z(t)‖22
Z(t)′

‖Z(t)‖2
M (t)

Z(t)
‖Z(t)‖2

+Z(t)′G(t)

≤ ‖Z(t)‖22 max
‖Y (t)‖2=1

Y (t)′M (t)Y (t)+‖Z(t)‖2 ‖G(t)‖2

= ‖Z(t)‖2 (−γ‖Z(t)‖2+BG)

< 0.

As a result, the assumptions of Lemma 22 are valid and the Lemma is proved.

The following lemma shows that the matrix A(θ), defined in (16), satisfies the conditions of Lemma
23. For the following lemmas, we define the weighted norm ‖w‖2Π(θ) ! ‖w′Π(θ)w‖2.

Lemma 24 The following inequalities hold:

1. For any w ∈ RLand for all θ ∈ RK , ‖P(θ)w‖Π(θ) < ‖w‖Π(θ)..

2. The matrixM (θ) satisfies ‖M (θ)w‖Π(θ) < ‖w‖Π(θ) for all θ ∈ RK and w ∈ RL.

3. The matrix Π(θ)(M (θ)− I) satisfies x′Π(θ)(M (θ)− I)x < 0 for all x ∈ RL and for all θ ∈
RK .

4. There exists a positive scalar γ such that w′A(θ)w< −γ for all w′w= 1.

Proof The following proof is similar in many aspects to the proof of Lemma 6.6 of Bertsekas and
Tsitsiklis (1996).

1. By using Jensen’s inequality for the function f (α) = α2 we have
(

∑
y∈X

P(y|x,θ)w(y)

)2

≤ ∑
y∈X

P(y|x,θ)w(y)2 , ∀x ∈ X . (30)

If in Jensen’s inequality we have a strictly convex fiction and non-degenerate probability mea-
sures then the inequality is strict. The function f (α) is strictly convex, and by Assumption 2
the matrix P(θ) is aperiodic, which implies that the matrix P(θ) is not a permutation matrix.
As a result, there exists x0 ∈ X such that the probability measure P(y|x0,θ) is not degenerate,
thus, the inequality in (30) is strict, that is,

(

∑
y∈X

P(y|x0,θ)w(y)

)2

< ∑
y∈X

P(y|x0,θ)w(y)2 . (31)
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Then, we have

‖P(θ)w‖Π(θ) = w′P(θ)′Π(θ)P(θ)w

= ∑
x∈X

π(x|θ)

(

∑
y∈X

P(y|x,θ)w(y)

)2

< ∑
x∈X

π(x|θ)∑
y∈X

P(y|x,θ)w(y)2

= ∑
y∈X

w(y)2 ∑
x∈X

π(x|θ)P(y|x,θ)

= ∑
y∈X

w(y)2π(y|θ)

= ‖w‖Π(θ) ,

where in the inequality we have used (31).

2. Using the triangle inequality and 1 we have

‖M (θ)w‖Π(θ) =

∥
∥
∥
∥
∥
(1−λ)

∞

∑
m=0

λmP(θ)m+1w

∥
∥
∥
∥
∥
Π(θ)

≤ (1−λ)
∞

∑
m=0

λm
∥
∥
∥P(θ)m+1w

∥
∥
∥
Π(θ)

< (1−λ)
∞

∑
m=0

λm ‖w‖Π(θ)

= ‖w‖Π(θ) .

3. By definition

x′Π(θ)M (θ)x = x′Π(θ)1/2Π(θ)1/2M (θ)x

≤
∥
∥
∥Π(θ)1/2 x

∥
∥
∥ ·
∥
∥
∥Π(θ)1/2M (θ)x

∥
∥
∥

= ‖x‖Π(θ) ‖M (θ)x‖Π(θ)

< ‖x‖Π(θ) ‖x‖Π(θ) ·
= x′Π(θ)x,

where in the first inequality we have used the Cauchy-Schwartz inequality, and in the second
inequality we have used 1. Thus, x′Π(θ)(M (θ)− I)x < 0 for all x ∈ R, which implies that
Π(θ)(M (θ)− I) is a negative definite (ND) matrix.4

4. From 3, we know that for all θ ∈ RK and all w ∈ R|X | satisfying w′w = 1, we have
w′Π(θ)(M (θ)− I)w < 0, and by Assumption (2), this is true also for the closure of
{

Π(θ)(M (θ)− I) |θ ∈ RK}. Thus, there exists a positive scalar, γ′, satisfying

w′Π(θ)(M (θ)− I)w≤−γ′ < 0.

4. Usually, a ND matrix is defined for Hermitian matrices, that is, if B is an Hermitian matrix and it satisfies x′Bx < 0
for all x ∈ CK then B is a NSD matrix . We use here a different definition which states that a square matrix B is a ND
matrix if it is real and it satisfies x′Bx< 0 for all x ∈ Rk (Horn and Johnson, 1985).
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By Assumption 5 the rank of the matrix Φ is full, thus there exists a scalar γ such that for all
w ∈ RL, where w′w= 1, we have w′A(θ)w≤−γ< 0.

The following Lemma establishes the boundedness of θ̇.
Lemma 25 There exists a constant Bθ1 ! Bη1+Bψ

(

BD+Br +Bη̃+2BφBw
)

such that ‖θ̇‖2 ≤ Bθ1.
Proof Recalling (17)

∥
∥θ̇
∥
∥
2 =

∥
∥
∥
∥
∥
∇θη(θ)+ ∑

x,y∈X×X ,u∈U
D(x,u,y)(θ)

(

d(x,y,θ)− d̃(x,y,w)
)

∥
∥
∥
∥
∥
2

≤ Bη1+ ∑
x,y∈X×X ,u∈U

∥
∥
∥D(x,u,y)(θ)

∥
∥
∥
2

∥
∥d(x,y,θ)− d̃(x,y,w)

∥
∥
2

≤ Bη1+Bψ
(

BD+Br +Bη̃+2BφBw
)

! Bθ1.

Based on Lemma (25), the following Lemma shows the boundedness of (η(θ(t))− η̃).
Lemma 26 We have

limsup
t→∞

|η(θ(t))− η̃|≤
BΔη
Γη

,

where BΔη ! Bη1Bθ1.
Proof Using the Cauchy-Schwartz inequality we have

|η̇(θ)| = |∇η(θ)′θ̇|
≤ ‖∇η(θ)‖2 ‖θ̇‖2
≤ Bη1Bθ1.

(32)

Recalling the equation for η̃ in (17) we have
˙̃η= Γη (η(θ)− η̃) .

We conclude by applying Lemma 23 and using (32) that

limsup
t→∞

|η(θ(t))− η̃|≤
Bη1Bθ1
Γη

=
BΔη
Γη

. (33)

In (33) we see that the bound on |η(θ)− η̃| is controlled by Γη, where larger values of Γη ensure
smaller values of |η(θ)− η̃|. Next, we bound ‖w∗(θ)−w‖2. We recall the second equation of (17)

ẇ = Ψw [Γw (A(θ)w+b(θ)+G(θ)(η(θ)− η̃))] ,

A(θ) = Φ′Π(θ)(M− I)Φ,

M (θ) = (1−λ)
∞

∑
m=0

λmP(θ)m+1 ,

b(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m (r−η(θ)) ,

G(θ) = Φ′Π(θ)
∞

∑
m=0

λmP(θ)m .
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We can write the equation for ẇ as

ẇ=Ψw [Γw (A(θ)(w−w∗ (θ))+G(θ)(η(θ)− η̃))] ,

where w∗ = −A(θ)−1 b(θ). In order to use Lemma 23, we need to demonstrate the boundedness of
∥
∥ d
dt w

∗
∥
∥. The following lemma does so.

Lemma 27

1. There exists a positive constant, Bb ! 1
1−λ |X |3LBΦBr, such that ‖b(θ)‖2 ≤ Bb.

(a) There exists a positive constant, BG ! 1
1−λ |X |3LBΦ, such that ‖G(θ)‖2 ≤ BG.

(b) There exist positive constants, B̃ = Bπ1 (Br +Bη)Bθ1+BP1 (Br +Bη)Bθ1+Bη1Bθ1 and
Bb1 ! 1

1−λ |X |3BΦBrB̃, such that we have
∥
∥ḃ(θ)

∥
∥
2 ≤ Bb1.

(c) There exist constants bA and BA such that

0< bA ≤ ‖A(θ)‖2 ≤ BA.

(d) There exist a constants BA1 such that

‖A(θ)‖2 ≤ BA1.

(e) We have ∥
∥
∥
∥

d
dt

(

A(θ)−1
)
∥
∥
∥
∥
2
≤ b2ABA1.

(f) There exists a positive constant, Bw1, such that
∥
∥
∥
∥

d
dt
w∗
∥
∥
∥
∥
2
≤ Bw1.

Proof

1. We show that the entries of the vector b(θ) are uniformly bounded in θ, therefore, its norm is
uniformly bounded in θ. Let us look at the i-th entry of the vector b(θ) (we denote by [·] j the
j-th row of a matrix or a vector)

|[b(θ)]i| =

∣
∣
∣
∣
∣

[

Φ′Π(θ)
∞

∑
m=0

λmP(θ)m (r−η(θ))

]

i

∣
∣
∣
∣
∣

≤
∞

∑
m=0

λm
∣
∣
[

Φ′Π(θ)P(θ)m (r−η(θ))
]

i

∣
∣

=
∞

∑
m=0

λm
∣
∣
∣
∣
∣

|X |

∑
l=1

|X |

∑
j=1

|X |

∑
k=1

[

Φ′]
ikΠk j (θ) [P(θ)m] jl (rl−η(θ))

∣
∣
∣
∣
∣

≤
1

1−λ
|X |3BΦBr,

thus ‖b(θ)‖2 ≤
1
1−λ |X |3LBΦBr is uniformly bounded in θ.
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2. The proof is accomplished by similar argument to Section 1.

3. Similarly to Section 1, we show that the entries of the vector ḃ(θ) are uniformly bounded in
θ, therefore, its norm is uniformly bounded in θ. First, we show that the following function
of θ(t) is bounded.

∣
∣
∣
∣

d
dt

(

Πk j (θ) [P(θ)m] jl (rl−η(θ))
)
∣
∣
∣
∣

=
∣
∣
∣∇θ

(

Πk j (θ) [P(θ)m] jl (rl−η(θ))
)

θ̇
∣
∣
∣

≤
∣
∣
∣

(

∇θΠk j (θ)
)

[P(θ)m] jl (rl−η(θ)) θ̇
∣
∣
∣

+
∣
∣
∣Πk j (θ) [∇θP(θ)m] jl (rl−η(θ)) θ̇

∣
∣
∣

+
∣
∣
∣Πk j (θ) [P(θ)m] jl∇θ (rl−η(θ)) θ̇

∣
∣
∣

≤ Bπ1 (Br +Bη) ·Bθ1+BP1 (Br +Bη)Bθ1
+Bη1Bθ1

= B̃,

where we used the triangle and Cauchy-Schwartz inequalities in the first and second inequal-
ities respectively, and Lemmas 3 and 25 in the second inequality. Thus,

∣
∣
[

ḃ(θ)
]

i

∣
∣ =

∣
∣
∣
∣
∣

[

Φ′Π(θ)
∞

∑
m=0

λmP(θ)m (r−η(θ))

]

i

∣
∣
∣
∣
∣

≤
∞

∑
m=0

λm
∣
∣
[

Φ′Π(θ)P(θ)m (r−η(θ))
]

i

∣
∣

=
∞

∑
m=0

λm
∣
∣
∣
∣
∣

|X |

∑
l=1

|X |

∑
j=1

|X |

∑
k=1

[

Φ′]
ik
d
dt

(

Πk j (θ) [P(θ)m] jl (rl−η(θ))
)
∣
∣
∣
∣
∣

≤
1

1−λ
|X |3BΦBrB̃

= Bb1.

4. Since A(θ) satisfies y′A(θ)y < 0 for all nonzero y, it follows that all its eigenvalues are
nonzero. Therefore, the eigenvalues of A(θ)′A(θ) are all positive and real since A(θ)′A(θ)
is a symmetric matrix. Since by Assumption 2 this holds for all θ ∈ RK , there is a global
minimum, bA, and a global maximum, BA, such that

B2A ≥ λmax
(

A(θ)′A(θ)
)

≥ λmin
(

A(θ)′A(θ)
)

≥ b2A, ∀θ ∈ R
K ,

where we denote by λmin (·) and λmax (·) the minimal and maximal eigenvalues of the matrix
respectively. Using Horn and Johnson (1985) section 5.6.6, we have λmax

(

A(θ)′A(θ)
)

=
‖A(θ)‖2, thus, we get an upper bound on the matrix norm. Let us look at the norm of
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∥
∥
∥A(θ)−1

∥
∥
∥
2
,

∥
∥
∥A(θ)−1

∥
∥
∥

2

2
= λmax

(
(

A(θ)−1
)′
A(θ)−1

)

= λmax
(
(

A(θ)′
)−1A(θ)−1

)

= λmax
(
(

A(θ)A(θ)′
)−1
)

= 1/λmin
(

A(θ)A(θ)′
)

= 1/λmin
(
(

A(θ)′A(θ)
)′
)

= 1/λmin
(

A(θ)′A(θ)
)

,

thus, we the lower bound on
∥
∥
∥A(θ)−1

∥
∥
∥
2
is
√

1/λmin
(

A(θ)′A(θ)
)

, that is, bA.

5. Let us look at the i j entry of the matrix d
dt A(θ), where using similar arguments to Section 2

we get
[∣
∣
∣
∣

d
dt
A(θ)

∣
∣
∣
∣

]

i j
=

[∣
∣
∣
∣
∣

d
dt

(

Φ′Π(θ)

(

(1−λ)
∞

∑
m=0

λmP(θ)m+1− I

)

Φ

)∣
∣
∣
∣
∣

]

i j

≤

[∣
∣
∣
∣
∣
Φ′ d
dt

(Π(θ))

(

(1−λ)
∞

∑
m=0

λmP(θ)m+1− I

)

Φ

∣
∣
∣
∣
∣

]

i j

+

[∣
∣
∣
∣
∣
Φ′Π(θ)

d
dt

(

(1−λ)
∞

∑
m=0

λmP(θ)m+1− I

)

Φ

∣
∣
∣
∣
∣

]

i j

≤ BΦBπ1
1

1−λ
BΦ+BΦ

1
(1−λ)2

BP1BΦ.

Since the matrix entries are uniformly bounded in θ, so is the matrix d
dt A(θ)′ ddt A(θ), and

so is the largest eigenvalue of d
dt A(θ)′ ddt A(θ) which implies the uniform boundedness of

∥
∥ d
dt A(θ)

∥
∥
2.

6. For a general invertible square matrix, X (t), we have

0 =
d
dt
I =

d
dt

(

X (t)−1X (t)
)

=
d
dt

(

X (t)−1
)

X (t)+X (t)−1
d
dt

(X (t)) .

Rearranging it we get
d
dt

(

X (t)−1
)

= −X (t)−1
d
dt

(X (t))X (t)−1 .

Using this identity yields
∥
∥
∥
∥

d
dt

(

A(θ)−1
)
∥
∥
∥
∥
2

=

∥
∥
∥
∥
−A(θ)−1

d
dt

(A(θ))A(θ)−1
∥
∥
∥
∥
2

≤
∥
∥
∥A(θ)−1

∥
∥
∥
2
·
∥
∥
∥
∥

d
dt

(A(θ))

∥
∥
∥
∥
2
·
∥
∥
∥−A(θ)−1

∥
∥
∥
2

= b2ABA1.
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7. Examining the norm of d
dt w

∗ yields
∥
∥
∥
∥

d
dt
w∗
∥
∥
∥
∥
2

=

∥
∥
∥
∥

d
dt

(

A(θ)−1 b(θ)
)
∥
∥
∥
∥
2

=

∥
∥
∥
∥

d
dt
A(θ)−1 b(θ)+A(θ)−1

d
dt
b(θ)

∥
∥
∥
∥
2

≤ b2ABA1
1

1−λ
|X |3BΦBr +bAB̃

= Bw1.

We wish to use Lemma 23 for (17), thus, we show that the assumptions of Lemma 23 are valid.

Lemma 28

1. We have
limsup
t→∞

‖w∗(θ(t))−w(t)‖2 ≤
1
Γw

BΔw, (34)

where

BΔw !
Bw1+BG

BΔη
Γη

γ
.

(a) We have

limsup
t→∞

‖h(θ(t))− h̃(w(t))‖∞ ≤
BΔh1
Γw

+
εapp√
bπ

,

where
BΔh ! |X |L(BΔw)2 .

Proof

1. Without loss of generality, we can eliminate the projection operator since we can choose Bw
to be large enough such that w∗(θ) will be inside the bounded space. We takeM (t) = A(θ),
F1 (t) = w∗(θ(t)), and F2 (t) = G(θ)(η(θ)− η̃) . By previous lemmas we can see that the
Assumption 23 holds. By Lemma 27 (6), ‖ẇ∗(θ)‖2 is bounded by Bw1 , by Lemma 26 we
have a bound on |(η(θ)− η̃)|, and by Lemma 24 we have a bound on w′A(θ)w. Using these
bounds and applying Lemma 23 provides the desired result.

(a) Suppressing the time dependence for simplicity and expressing ‖h(θ)− h̃(w)‖∞ using
εapp and the previous result yields

‖h(θ)− h̃(w)‖∞ ≤ ‖h(θ)− h̃(w)‖2
= ‖h(θ)− h̃(w∗)+ h̃(w∗)− h̃(w)‖2
≤ ‖h(θ)− h̃(w∗)‖2+‖h̃(w∗)− h̃(w)‖2

(35)
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For the first term on the r.h.s. of the final equation in (35) we have

‖h(θ)− h̃(w∗)‖2 =
∥
∥
∥

(

Π(θ)−
1
2

)(

Π(θ)
1
2

)
(

h(θ)− h̃(w∗)
)
∥
∥
∥
2

≤
∥
∥
∥Π(θ)−

1
2

∥
∥
∥
2

∥
∥h(θ)− h̃(w∗)

∥
∥
Π(θ)

≤
εapp

(bπ)
1
2

where we use the sub-additivity of the matrix norms in the first inequality, and Lemma 3
and the (10) in the last inequality. For the second term on the r.h.s. of the final equation
in (35) we have

‖h̃(w∗)− h̃(w)‖22 = ‖Φ(w∗(θ)−w)‖22

=
|X |

∑
k=1

(
L

∑
l=1

φl(k)(w∗
l (θ)−wl)

)2

≤
|X |

∑
k=1





(
L

∑
l=1

φ2l (k)

) 1
2
(

L

∑
l=1

(w∗
l (θ)−wl)2

) 1
2




2

≤
|X |

∑
k=1

(
L

∑
l=1

φ2l (k)

)(
L

∑
l=1

(w∗
l (θ)−wl)2

)

≤ |X |L‖w∗(θ)−w‖22
= |X |L(BΔw)2 .

(36)

Combining (34)-(36) yields the desired result.

Using Lemma 28 we can provide a bound on second term of (17).

Lemma 29 We have

limsup
t→∞

∥
∥
∥
∥
∥

∑
x,y∈X×X ,u∈U

D(x,u,y)(θ)
(

d(x,y,θ)− d̃(x,y,w)
)

∥
∥
∥
∥
∥
2

≤
BΔtd1
Γw

+
BΔtd2
Γη

+BΔtd3εapp

where
BΔtd1 =

1
Γw

·2BΨBΔh1, BΔtd2 =
1
Γη

·BΔηBΨ, BΔtd3 =
2BΨ√
bπ

.

Proof Simplifying the notation by suppressing the time dependence, we bound the TD signal in the
limit, that is,

limsup
t→∞

|d(x,y,θ)− d̃(x,y,w)| = limsup
t→∞

|(r(x)−η(θ)+h(y,θ)−h(x,θ))

−
(

r(x)− η̃+ h̃(y,w)− h̃(x,w)
)∣
∣

≤ limsup
t→∞

|η(θ)− η̃|+ limsup
t→∞

2
∥
∥h(θ)− h̃(w)

∥
∥
∞

=
BΔη
Γη

+2
(
BΔh1
Γw

+
εapp√
bπ

)

.
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With some more algebra we have

limsup
t→∞

∥
∥
∥
∥
∥

∑
x,y∈X×X ,u∈U

D(x,u,y)(θ)
(

d(x,y,θ)− d̃(x,y,w)
)

∥
∥
∥
∥
∥

≤ limsup
t→∞

∑
x,y∈X×X ,u∈U

π(x)P(u|x,θn)P(y|x,u)‖ψ(x,u,θn)‖ ·
∣
∣d(x,y,θ)− d̃(x,y,w)

∣
∣

≤ BΨ
(
BΔη
Γη

+2
(
BΔh1
Γw

+
εapp√
bπ

))

=
BΔtd1
Γw

+
BΔtd2
Γη

+BΔtd3εapp.

We see that the term in this bound is adjustable by choosing appropriate Γη and Γw. The concluding
lemma proves the conclusion of Theorem 8.

D.1 Proof of Theorem 8

We define
B∇η !

BΔtd1
Γw

+
BΔtd2
Γη

+BΔtd3εapp.

For an arbitrary δ> 0, define the set

Bδ ! {θ : ‖∇η(θ)‖ ≤ B∇η+δ}.

We claim that the trajectory η(θ) visits Bδ infinitely often. Assume the contrary that

liminf
t→∞

‖∇η(θ)‖2 > B∇η+δ. (37)

Thus, on the set Bc
δ for t large enough we have

η̇(θ) = ∇η(θ) · θ̇

= ∇η(θ) ·

(

∇η(θ)+ ∑
x,y∈X×X

D(x,y)(θ)
(

d(x,y)− d̃(x,y)
)

)

= ‖∇η(θ)‖22+∇η(θ) ·

(

∑
x,y∈X×X

D(x,y)(θ)
(

d(x,y)− d̃(x,y)
)

)

≥ ‖∇η(θ)‖22−‖∇η(θ)‖2

∥
∥
∥
∥
∥
∑

x,y∈X×X
D(x,y)(θ)

(

d(x,y)− d̃(x,y)
)

∥
∥
∥
∥
∥
2

= ‖∇η(θ)‖2
(

‖∇η(θ)‖2−B∇η
)

≥ ‖∇η(θ)‖2
(

B∇η+δ−B∇η
)

> (B∇η+δ)δ.

By (37), there exists a time t0 which for all t > t0 we have η(θ) ∈ Bc
δ . Therefore,

η(∞) = η(t0)+
Z ∞

t0
η̇(θ)dt > η(t0)+

Z ∞

t0
(BD+δ)δdt = ∞,

which contradicts the boundedness of η(θ). Since the claim holds for all δ> 0, the result follows.
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Abstract
We address instance-based learning from a perceptual organization standpoint and present methods
for dimensionality estimation, manifold learning and function approximation. Under our approach,
manifolds in high-dimensional spaces are inferred by estimating geometric relationships among the
input instances. Unlike conventional manifold learning, we do not perform dimensionality reduc-
tion, but instead perform all operations in the original input space. For this purpose we employ
a novel formulation of tensor voting, which allows an N-D implementation. Tensor voting is a
perceptual organization framework that has mostly been applied to computer vision problems. An-
alyzing the estimated local structure at the inputs, we are able to obtain reliable dimensionality
estimates at each instance, instead of a global estimate for the entire data set. Moreover, these
local dimensionality and structure estimates enable us to measure geodesic distances and perform
nonlinear interpolation for data sets with varying density, outliers, perturbation and intersections,
that cannot be handled by state-of-the-art methods. Quantitative results on the estimation of local
manifold structure using ground truth data are presented. In addition, we compare our approach
with several leading methods for manifold learning at the task of measuring geodesic distances.
Finally, we show competitive function approximation results on real data.
Keywords: dimensionality estimation, manifold learning, geodesic distance, function approxima-
tion, high-dimensional processing, tensor voting

1. Introduction

In this paper, we address a subfield of machine learning that operates in continuous domains and
learns from observations that are represented as points in a Euclidean space. This type of learning
is termed instance-based or memory-based learning (Mitchell, 1997). The goal of instance-based
learning is to learn the underlying relationships between observations, which are points in an N-
D continuous space, under the assumption that they lie in a limited part of the space, typically a
manifold, the dimensionality of which is an indication of the degrees of freedom of the underlying
system.

c©2010 Philippos Mordohai and Gérard Medioni.
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Instance-based learning has recently received renewed interest from the machine learning com-
munity, due to its many applications in the fields of pattern recognition, data mining, kinematics,
function approximation and visualization, among others. This interest was sparked by a wave of
new algorithms that advanced the state of the art and are capable of learning nonlinear manifolds
in spaces of very high dimensionality. These include kernel PCA (Schölkopf et al., 1998), locally
linear embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum et al., 2000) and charting
(Brand, 2003), which are reviewed in Section 2. They aim at reducing the dimensionality of the
input space in a way that preserves certain geometric or statistical properties of the data. Isomap,
for instance, attempts to preserve the geodesic distances between all points as the manifold is “un-
folded” and mapped to a space of lower dimension.

Our research focuses on data presented as large sets of observations, possibly containing out-
liers, in high dimensions. We view the problem of learning an unknown function based on these
observations as equivalent to learning a manifold, or manifolds, formed by a set of points. Having
a good estimate of the manifold’s structure, one is able to predict the positions of other points on
it. The first task is to determine the intrinsic dimensionality of the data. This can provide insights
on the complexity of the system that generates the data, the type of model needed to describe it, as
well as the actual degrees of freedom of the system, which are not equal to the dimensionality of the
input space, in general. We also estimate the orientation of a potential manifold that passes through
each point. Dimensionality estimation and structure inference are accomplished simultaneously by
encoding the observations as symmetric, second order, non-negative definite tensors and analyzing
the outputs of tensor voting (Medioni et al., 2000). Since the process that estimates dimensionality
and orientation is performed on the inputs, our approach falls under the “eager learning” category,
according to Mitchell (1997). Unlike other eager approaches, however, ours is not global. This of-
fers considerable advantages when the data become more complex, or when the number of instances
is large.

We take a different path to manifold learning than Roweis and Saul (2000), Tenenbaum et al.
(2000) and Brand (2003). Whereas these methods address the problem as one of dimensionality
reduction, we propose an approach that does not embed the data in a lower dimensional space. Pre-
liminary versions of this approach were published in Mordohai and Medioni (2005) and Mordohai
(2005). A similar methodology was also presented by Dollár et al. (2007a). We compute local
dimensionality estimates, but instead of performing dimensionality reduction, we perform all oper-
ations in the original input space, taking into account the estimated dimensionality of the data. We
also estimate the orientation of the manifold locally and are able to approximate intrinsic or geodesic
distances1 and perform nonlinear interpolation. Since we perform all processing in the input space
we are able to process data sets that are not manifolds globally, or ones with varying intrinsic di-
mensionality. The latter pose no additional difficulties, since we do not use a global estimate for
the dimensionality of the data. Moreover, outliers, boundaries, intersections or disconnected com-
ponents are handled naturally as in 2-D and 3-D (Medioni et al., 2000; Tang and Medioni, 1998).
Quantitative results for the robustness to outliers that outnumber the inliers are presented in Sec-
tions 5 and 6. Once processing under our approach has been completed, dimensionality reduction

1. The requirements for a distance to be geodesic are stricter than those for being intrinsic. Intrinsic distances are
computed on the manifold, while geodesics are based on the gradient of the distance function. For the manifolds we
examine in this paper, these two almost always coincide. See Mémoli and Sapiro (2005) and references therein for
more details.
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can be performed using any of the approaches described in the next section to reduce the storage
requirements, if appropriate and desirable.

Manifold learning serves as the basis for the last part of our work, which addresses function
approximation. As suggested by Poggio and Girosi (1990), function approximation from samples
and hypersurface inference are equivalent. The main assumption is that some form of smoothness
exists in the data and unobserved outputs can be predicted from previously observed outputs for
similar inputs. The distinction between low and high-dimensional spaces is necessary, since highly
specialized methods for low-dimensional cases exist in the literature. Our approach is local, non-
parametric and has a weak prior model of smoothness, which is implemented in the form of votes
that communicate a point’s preferred orientation to its neighbors. This generic prior and the absence
of global computations allow us to address a large class of functions as well as data sets comprising
very large numbers of observations. As most of the local methods reviewed in the next section,
our algorithm is memory-based. This increases flexibility, since we can process data that do not
conform to pre-specified models, but also increases storage requirements, since all samples are kept
in memory.

All processing in our method is performed using tensor voting, which is a computational frame-
work for perceptual organization based on the Gestalt principles of proximity and good continuation
(Medioni et al., 2000). It has mainly been applied to organize generic points into coherent groups
and for computer vision problems that were formulated as perceptual organization tasks. For in-
stance, the problem of stereo vision can be formulated as the organization of potential pixel corre-
spondences into salient surfaces, under the assumption that correct correspondences form coherent
surfaces and wrong ones do not (Mordohai andMedioni, 2006). Salient structures are inferred based
on the support potential correspondences receive from their neighbors in the form of votes, which
are also second order tensors that are cast from each point to all other points within its neighbor-
hood. Each vote conveys the orientation the receiver would have if the voter and receiver were in the
same structure. In Section 3, we present a new implementation of tensor voting that is not limited
to low-dimensional spaces as the original one of Medioni et al. (2000).

The paper is organized as follows: an overview of related work including the algorithms that are
compared with ours is given in the next section; a new implementation of tensor voting applicable
to N-D data is described in Section 3; results in dimensionality estimation are presented in Section
4, while results in local structure estimation are presented in Section 5; our algorithm for estimating
geodesic distances and a quantitative comparison with state of the art methods are shown in Section
6; function approximation is described in Section 7; finally, Section 8 concludes the paper.

2. Related Work

In this section, we present related work in the domains of dimensionality estimation, manifold
learning and multivariate function approximation.

2.1 Dimensionality Estimation

Bruske and Sommer (1998) present an approach for dimensionality estimation where an optimally
topology preserving map (OTPM) is constructed for a subset of the data, which is produced after
vector quantization. Principal Component Analysis (PCA) is then performed for each node of the
OTPM under the assumption that the underlying structure of the data is locally linear. The average of
the number of significant singular values at the nodes is the estimate of the intrinsic dimensionality.
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Kégl (2003) estimates the capacity dimension of a manifold, which is equal to the topological
dimension and does not depend on the distribution of the data, using an efficient approximation
based on packing numbers. The algorithm takes into account dimensionality variations with scale
and is based on a geometric property of the data, rather than successive projections to increasingly
higher-dimensional subspaces until a certain percentage of the data is explained. Raginsky and
Lazebnik (2006) present a family of dimensionality estimators based on the concept of quantization
dimension. The family is parameterized by the distortion exponent and includes the method of Kégl
(2003) when the distortion exponent tends to infinity. The authors show that small values of the
distortion exponent yield estimators that are more robust to noise.

Costa and Hero (2004) estimate the intrinsic dimension of the manifold and the entropy of
the samples using geodesic-minimal-spanning trees. The method, similarly to Isomap (Tenenbaum
et al., 2000), considers global properties of the adjacency graph and thus produces a single global
estimate.

Levina and Bickel (2005) compute maximum likelihood estimates of dimensionality by exam-
ining the number of neighbors included in spheres, the radii of which are selected in such a way
that they contain enough points and that the density of the data contained in them can be assumed
constant. These requirements cause an underestimation of the dimensionality when it is very high.

The difference between our approach and those of Bruske and Sommer (1998), Kégl (2003),
Brand (2003), Weinberger and Saul (2004), Costa and Hero (2004) and Levina and Bickel (2005) is
that it produces reliable dimensionality estimates at the point level. While this is not important for
data sets with constant dimensionality, the ability to estimate local dimensionality reliably becomes
a key factor when dealing with data generated by different unknown processes. Given reliable local
estimates, the data set can be segmented in components with constant dimensionality.

2.2 Manifold Learning

Here, we briefly present recent approaches for learning low dimensional embeddings from points
in high dimensional spaces. Most of them are inspired by linear techniques, such as Principal
Component Analysis (PCA) (Jolliffe, 1986) and Multi-Dimensional Scaling (MDS) (Cox and Cox,
1994), based on the assumption that nonlinear manifolds can be approximated by locally linear
parts.

Schölkopf et al. (1998) propose kernel PCA that extends linear PCA by implicitly mapping
the inputs to a higher-dimensional space via kernels. Conceptually, applying PCA in the high-
dimensional space allows the extraction of principal components that capture more information
than their counterparts in the original space. The mapping to the high-dimensional space does not
need to carried out explicitly, since dot product computations suffice. The choice of kernel is still
an open problem. Weinberger et al. (2004) describe an approach to compute the kernel matrix by
maximizing variance in feature space in the context of dimensionality reduction.

Locally Linear Embedding (LLE) was presented by Roweis and Saul (2000) and Saul and
Roweis (2003). The underlying assumption is that if data lie on a locally linear, low-dimensional
manifold, then each point can be reconstructed from its neighbors with appropriate weights. These
weights should be the same in a low-dimensional space, the dimensionality of which is greater or
equal to the intrinsic dimensionality of the manifold. The LLE algorithm computes the basis of
such a low-dimensional space. The dimensionality of the embedding, however, has to be given as a
parameter, since it cannot always be estimated from the data (Saul and Roweis, 2003). Moreover,
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the output is an embedding of the given data, but not a mapping from the ambient to the embedding
space. Global coordination of the local embeddings, and thus a mapping, can be computed accord-
ing to Teh and Roweis (2003). LLE is not isometric and often fails by mapping distant points close
to each other.

Tenenbaum et al. (2000) propose Isomap, which is an extension of MDS that uses geodesic
instead of Euclidean distances and thus can be applied to nonlinear manifolds. The geodesic dis-
tances between points are approximated by graph distances. Then, MDS is applied on the geodesic
distances to compute an embedding that preserves the property of points to be close or far away
from each other. Isomap can handle points not in the original data set, and perform interpolation.
C-Isomap, a variant of Isomap applicable to data with intrinsic curvature, but known distribution,
and L-Isomap, a faster alternative that only uses a few landmark point for distance computations,
have also been proposed by de Silva and Tenenbaum (2003). Isomap and its variants are limited to
convex data sets.

The Laplacian Eigenmaps algorithm was developed by Belkin and Niyogi (2003). It computes
the normalized graph Laplacian of the adjacency graph of the input data, which is an approximation
of the Laplace-Beltrami operator on the manifold. It exploits locality preserving properties that
were first observed in the field of clustering. The Laplacian Eigenmaps algorithm can be viewed as
a generalization of LLE, since the two become identical when the weights of the graph are chosen
according to the criteria of the latter. Much like LLE, the dimensionality of the manifold also has to
be provided, the computed embeddings are not isometric and a mapping between the two spaces is
not produced. The latter is addressed by He and Niyogi (2004) where a variation of the algorithm
is proposed.

Donoho and Grimes (2003) propose Hessian LLE (HLLE), an approach similar to the above,
which computes the Hessian instead of the Laplacian of the graph. The authors claim that the
Hessian is better suited than the Laplacian in detecting linear patches on the manifold. The major
contribution of this approach is that it proposes a global, isometric method, which, unlike Isomap,
can be applied to non-convex data sets. The requirement to estimate second derivatives from possi-
bly noisy, discrete data makes the algorithm more sensitive to noise than the others reviewed here.

Semidefinite Embedding (SDE) was proposed by Weinberger and Saul (2004, 2006) who ad-
dress the problem of manifold learning by enforcing local isometry. The lengths of the sides of
triangles formed by neighboring points are preserved during the embedding. These constraints can
be expressed in terms of pairwise distances and the optimal embedding can be found by semidefinite
programming. The method is among the most computationally demanding reviewed here, but can
reliably estimate the underlying dimensionality of the inputs by locating the largest gap between the
eigenvalues of the Gram matrix of the outputs. Similarly to our approach, dimensionality estimation
does not require a threshold.

Other research related to ours includes the charting algorithm of Brand (2003). It computes a
pseudo-invertible mapping of the data, as well as the intrinsic dimensionality of the manifold, which
is estimated by examining the rate of growth of the number of points contained in hyper-spheres as
a function of the radius. Linear patches, areas of curvature and noise can be distinguished using the
proposed measure. At a subsequent stage a global coordinate system for the embedding is defined.
This produces a mapping between the input space and the embedding space.

Wang et al. (2005) propose an adaptive version of the local tangent space alignment (LTSA)
of Zhang and Zha (2004), a local dimensionality reduction method that is a variant of LLE. Wang
et al. address a limitation of most of the approaches presented in this section, which is the use of
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a fixed number of neighbors (k) for all points in the data. Inappropriate selection of k can cause
problems at points near boundaries, or if the density of the data is not approximately constant. The
authors propose a method to adapt the neighborhood size according to local criteria and demonstrate
its effectiveness on data sets of varying distribution. Using an appropriate value for k at each point
is important for graph-based methods, since the contributions of each neighbor are typically not
weighted, making the algorithms very sensitive to the selection of k.

In a more recent paper, Sha and Saul (2005) propose Conformal Eigenmaps, an algorithm that
operates on the output of LEE or Laplacian Eigenmaps to produce a conformal embedding, which
preserves angles between edges in the original input space, without incurring a large increase in
computational cost. A similar approach that “stiffens” the inferred manifolds employing a multi-
resolution strategy was proposed by Brand (2005). Both these papers address the limitation of
some of the early algorithms which preserve graph connectivity, but not local structure, during the
embedding.

The most similar method to ours is that of Dollár et al. (2007a) and Dollár et al. (2007b) in which
the data are not embedded in a lower dimensional space. Instead, the local structure of a manifold at
a point is learned from neighboring observations and represented by a set of radial basis functions
(RBFs) centered on K points discovered by K-means clustering. The manifold can then be traversed
by “walking” on its tangent space between and beyond the observations. Representation by RBFs
without dimensionality reduction allows the algorithm to be robust to outliers and be applicable to
non-isometric manifolds. An evaluation of manifold learning using geodesic distance preservation
as a metric, similar to the one of Section 6.1, is presented in Dollár et al. (2007b).

A different approach for intrinsic distance estimation that bypasses learning the structure of the
manifold has been proposed by Mémoli and Sapiro (2005). It approximates intrinsic distances and
geodesics by computing extrinsic Euclidean distances in a thin band that surrounds the points. The
algorithm can handle manifolds in any dimension and of any co-dimension and is more robust to
noise than graph-based methods, such as Isomap, since in the latter the outliers are included in the
graph and perturb the approximation of geodesics.

Souvenir and Pless (2005) present an approach capable of learning multiple, potentially inter-
secting, manifolds of different dimensionality using an expectation maximization (EM) algorithm
with a variant of MDS as the M step. Unlike our approach, however, the number and dimensionality
of the manifolds have to be provided externally.

2.3 Function Approximation

Here we review previous research on function approximation focusing on methods that are appli-
cable to large data sets in high-dimensional spaces. Neural networks are often employed as global
methods for function approximation. Poggio and Girosi (1990) addressed function approximation in
a regularization framework implemented as a three-layer neural network. They view the problem as
hypersurface reconstruction, where the main assumption is that of smoothness. The emphasis is on
the selection of the appropriate approximating functions and optimization algorithm. Other research
based on neural networks includes the work of Sanger (1991) who proposed a tree-structured neural
network, which does not suffer from the exponential growth with dimensionality of the number of
models and parameters that plagued previous approaches. It does, however, require the selection
of an appropriate set of basis functions to approximate a given function. Neural network based
approaches with pre-specified types of models are also proposed by: Barron (1993) who derived
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the bounds for approximation using a superposition of sigmoidal functions; Breiman (1993) who
proposed a simpler and faster model based on hinging hyperplanes; and Saha et al. (1993) who used
RBFs.

Xu et al. (1995) modified the training scheme for the mixture of experts architecture so that
a single-loop EM algorithm is sufficient for optimization. Mitaim and Kosko (2001) approached
the problem within the fuzzy systems framework. They investigated the selection of the shape of
fuzzy sets for an adaptive fuzzy system and concluded that no shape emerges as the best choice.
These approaches, as well as the ones based on neural networks, are global and model-based. They
can achieve good performance, but they require all the inputs to be available at the same time for
training and the selection of an appropriate model that matches the unknown function. If the latter
is complex, the resulting model may have an impractically large number of parameters.

Support Vector Machines (SVMs), besides classification, have also been extensively applied for
regression based on the work of Vapnik (1995). Collobert and Bengio (2001) address a limitation of
the SVM algorithm for regression, which is its increased computational complexity as the number
of samples grows, with a decomposition algorithm. It operates on a working set of the variables,
while keeping fixed variables that are less likely to change.

All the above methods are deterministic and make hard decisions. On the other hand, Bayesian
learning brings the advantages of probabilistic predictions and a significant decrease in the number
of basis functions. Tresp (2000) introduced the Bayesian Committee Machine that is able to handle
large data sets by splitting them in subsets and training an estimator for each. These estimators
are combined with appropriate weights to generate the prediction. What is noteworthy about this
approach is the fact that the positions of query points are taken into account in the design of the
estimator and that performance improves when multiple query points are processed simultaneously.
Tipping (2001) proposed a sparse Bayesian learning approach, which produces probabilistic predic-
tions and automatically detects nuisance parameters, and the Relevance Vector Machine that can be
viewed as stochastic formulation of an SVM. A Bayesian treatment of SVM-based regression can
also be found in the work of Chu et al. (2004). Its advantages include reduced computational com-
plexity over Gaussian Process Regression (GPR), reviewed below, and robustness against outliers.
Inspired by Factor Analysis Regression, Ting et al. (2006) propose a Bayesian regression algorithm
that is robust to ill-conditioned data, detects relevant features and identifies input and output noise.

An approach that has attracted a lot of attention is the use of Gaussian Processes (GPs) for
regression. Williams and Rasmussen (1996) observed that Bayesian analysis of neural networks
is difficult due to complex prior distributions over functions resulting even from simple priors over
weights. Instead, if one uses Gaussian processes as priors over the functions, then Bayesian analysis
can be carried out exactly. Despite the speed up due to GPs, faster implementations were still needed
for practical applications. A sparse greedy GP regression algorithm was presented by Smola and
Bartlett (2001) who approximate the MAP estimate by expanding in terms of a small set of kernels.
Csató and Opper (2002) described an alternative sparse representation for GP regression models. It
operates in an online fashion and maintains a sparse basis which is dynamically updated as more
data become available.

Lawrence et al. (1996) compared a global approach using a multi-layer perceptron with a linear
local approximation model. They found that the local model performed better when the density of
the input data deviated a lot from being uniform. Furthermore, the local model allowed for incre-
mental learning and cross-validation. On the other hand, it showed poorer generalization, slower
performance after training and required more memory, since all input data had to be stored. The
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global model performed better in higher dimensions, where data sparsity becomes a serious prob-
lem for the local alternative. Wedge et al. (2006) bring together the advantages of global and local
approaches using a hybrid network architecture that combines RBFs and sigmoid neural networks.
It first identifies global features of the system before adding local details via the RBFs.

Schaal and Atkeson (1998) proposed a nonparametric, local, incremental learning approach
based on receptive field weighted regression. The approach is truly local since the parameters for
each model and the size and shape of each receptive field are learned independently. The provided
mechanisms for the addition and pruning of local models enable incremental learning as new data
points become available.

Atkeson et al. (1997) survey local weighted learning methods and identify the issues that must
be taken into account. These include the selection of the distance metric, the weighting function,
prediction assessment and robustness to noise. The authors argue that in certain cases no values of
the parameters of a global model can provide a good approximation of the true function. In these
cases, a local approximation using a simpler, even linear model, is a better approach than increasing
the complexity of the global model. Along these lines, Vijayakumar and Schaal (2000) proposed lo-
cally weighted projection regression, an algorithm based on successive univariate regressions along
projections of the data in directions given by the gradient of the underlying function.

We opt for a local approach and address the problem as an extension of manifold learning.
Note, however, that we are not limited to functions that are strictly manifolds. Using tensor voting,
we are able to reliably estimate the normal and tangent space at each sample, as described in the
following section. These estimates allow us to perform nonlinear interpolation and generate outputs
for unobserved inputs, even under severe noise corruption.

3. Tensor Voting in High-Dimensional Spaces

The tensor voting framework, in its preliminary version (Guy and Medioni, 1996), is an imple-
mentation of two Gestalt principles, namely proximity and good continuation, for grouping generic
tokens in 2-D. The 2-D domain has always been the main focus of research in perceptual organi-
zation, beginning with the research of Köhler (1920), Wertheimer (1923) and Koffka (1935). The
generalization of perceptual organization to 3-D is relatively straightforward, since salient group-
ings can be detected by the human visual system in 3-D based on the same principles. Guy and
Medioni (1997) extended tensor voting to three dimensions. The term saliency here refers to struc-
tural saliency, which, according to Shashua and Ullman (1988) is the property of structures to stand
out due to the configuration of local elements. That is, the local elements of the structure are not
salient in isolation, but instead the arrangement of the elements is what makes the structure salient.
The saliency of each element is estimated by accumulating votes cast from its neighbors. Tensor
voting is a pairwise operation in which elements cast and collect votes in local neighborhoods. Each
vote is a tensor and encodes the orientation the receiver would have according to the voter, if the
voter and receiver belonged in the same structure. According to the Gestalt theory, simple figures
are preferable to complex alternatives, if no evidence favors the latter. The evidence in tensor voting
are the position and preferred orientation, if available, of the voter and the position of the receiver.
Given this information, we show examples of votes cast by an oriented voter in 2-D in Figure 1. The
voter V is a point on a horizontal curve and its normal is represented by the orange arrow. (Details
on the representation can be found in Section 3.1). The other points, R1-R4, act as receivers. The
simplest curve, the one with minimum total curvature, that passes through an oriented voter and
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Figure 1: Illustration of tensor voting in 2-D. The voter is an oriented curve element V on a hori-
zontal curve whose normal is represented by the orange arrow. The four receivers R1-R4
collect votes fromV . (In practice, they would also cast votes toV and among themselves,
but this is omitted here.) Each receiver is connected to V by a circular arc which is the
simplest structure that can be inferred from two points, one of which is oriented. The
gray votes at the receivers indicate the curve normal the receivers should have according
to the voter.

a receiver is a circular arc, for which curvature is constant. Therefore, we connect the voter and
receiver by a circular arc which is tangent at the voter and passes through the receiver and define
the vote cast as the normal to this arc at the location of the receiver. The votes shown as gray arrows
in Figure 1 represent the orientations the receivers would have according to the voter V . The mag-
nitude of the votes decays with distance and curvature. It will be defined formally in Section 3.2.
Voting from all possible types of voters, such as surface or curve elements in 3-D, can be derived
from the fundamental case of a curve element voter in 2-D (Medioni et al., 2000). Tensor voting is
based on strictly local computations in the neighborhoods of the inputs. The size of these neighbor-
hoods is controlled by the only critical parameter in the framework: the scale of voting σ. The scale
parameter is introduced in Eq. 3. By determining the size of the neighborhoods, scale regulates the
amount of smoothness and provides a knob to the user for balancing fidelity to the data and noise
reduction.

Regardless of the computational feasibility of an implementation, the same grouping principles
apply to spaces with even higher dimensions. For instance, Tang et al. (2001) observed that pixel
correspondences can be viewed as points in the 8-D space of free parameters of the fundamental
matrix. Correct correspondences align to form a hyperplane in that space, while wrong correspon-
dences are randomly distributed. By applying tensor voting in 8-D, Tang et al. were able to infer
the dominant hyperplane and the desired parameters of the fundamental matrix. Storage and com-
putation requirements, however, soon become prohibitively high as the dimensionality of the space
increases. Even though the applicability of tensor voting as a manifold learning technique seems to
have merit, the generalization of the implementation of Medioni et al. (2000) is not practical, mostly
due to computational complexity and storage requirements in N dimensions. The bottleneck is the
generation and storage of voting fields, the number of which is equal to the dimensionality of the
space.

In this section, we describe the tensor voting framework beginning with data representation
and proceeding to the voting mechanism and vote analysis. The representation and vote analysis
schemes are N-D extensions of the original implementation (Medioni et al., 2000). The novelty of
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(a) Oriented or stick tensor (b) Unoriented or ball tensor (c) Generic tensor

Figure 2: Examples of tensors in 3-D. The tensor on the left has only one non-zero eigenvalue and
encodes a preference for an orientation parallel to the eigenvector corresponding to that
eigenvalue. The eigenvalues of the tensor in the middle are all equal, and thus the tensor
does not encode a preference for a particular orientation. The tensor on the right is a
generic 3-D tensor.

our work is a new formulation of the voting process that is practical for spaces of dimensionality up
to a few hundreds. Efficiency is considerably higher than the preliminary version of this formulation
presented in Mordohai and Medioni (2005), where we focused on dimensionality estimation.

3.1 Data Representation

The representation of a token (a generic data point) is a second order, symmetric, non-negative
definite tensor, which is equivalent to an N×N matrix and an ellipsoid in an N-D space. All tensors
in this paper are second order, symmetric and non-negative definite, so any reference to a tensor
automatically implies these properties. Three examples of tensors, in 3-D, can be seen in Figure 2.
A tensor represents the structure of a manifold going through the point by encoding the normals to
the manifold as eigenvectors of the tensor that correspond to non-zero eigenvalues, and the tangents
as eigenvectors that correspond to zero eigenvalues. (Note that eigenvectors and vectors in general
in this paper are column vectors.) For example, a point in an N-D hyperplane has one normal and
N− 1 tangents, and thus is represented by a tensor with one non-zero eigenvalue associated with
an eigenvector parallel to the hyperplane’s normal. The remaining N− 1 eigenvalues are zero. A
point belonging to a 2-D manifold in N-D is represented by two tangents and N− 2 normals, and
thus is represented by a tensor with two zero eigenvalues associated with the eigenvectors that span
the tangent space of the manifold. The tensor also has N− 2 non-zero, equal eigenvalues whose
corresponding eigenvectors span the manifold’s normal space. Two special cases of tensors are: the
stick tensor that has only one non-zero eigenvalue and represents perfect certainty for a hyperplane
normal to the eigenvector that corresponds to the non-zero eigenvalue; and the ball tensor that has
all eigenvalues equal and non-zero which represents perfect uncertainty in orientation, or, in other
words, just the presence of an unoriented point.

The tensors can be formed by the summation of the direct products (!n!nT ) of the eigenvectors
that span the normal space of the manifold. The tensor at a point on a manifold of dimensionality
d, with!ni being the unit vectors that span the normal space, can be computed as follows:

T =
d

∑
i=1

!ni!nTi . (1)
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An unoriented point can be represented by a ball tensor which contains all possible normals and
is encoded as the N×N identity matrix. Any point on a manifold of known dimensionality and
orientation can be encoded in this representation by appropriately constructed tensors, according to
Eq. 1.

On the other hand, given an N-D second order, symmetric, non-negative definite tensor, the type
of structure encoded in it can be inferred by examining its eigensystem. Any such tensor can be
decomposed as in the following equation:

T=
N

∑
d=1

λdêd êTd =

= (λ1−λ2)ê1êT1 +(λ2−λ3)(ê1êT1 + ê2êT2 )+ ....+λN(ê1êT1 + ê2êT2 + ...+ êNêTN)

=
N−1

∑
d=1

[(λd−λd+1)
d

∑
k=1

êd êTd ]+λN(ê1êT1 + ...+ êNêTN)

(2)

where λd are the eigenvalues in descending order of magnitude and êd are the corresponding eigen-
vectors. The tensor simultaneously encodes all possible types of structure. The confidence, or
saliency in perceptual organization terms, of the type that has d normals is encoded in the differ-
ence λd −λd+1, or λN for the ball tensor. If only one of these eigenvalue differences is not zero,
then the tensor encodes a single type of structure. Otherwise, more than one type can be present at
the location of the tensor, each having a saliency value given by the appropriate difference between
consecutive eigenvalues of λN . An illustration of tensor decomposition in 3-D can be seen in Figure
3.

(a) Generic 3-D tensor (b) Elementary 3-D tensors

Figure 3: Tensor decomposition in 3-D. A generic tensor can be decomposed into the stick, plate
and ball components that have a normal subspace of rank one, two and three respectively.

3.2 The Voting Process

After the inputs have been encoded with tensors, the information they contain is propagated to their
neighbors via a voting operation. Given a tensor at A and a tensor at B, the vote the token at A (the
voter) casts to B (the receiver) has the orientation the receiver would have, if both the voter and
receiver belong to the same structure. The magnitude of the vote is a function of the confidence we
have that the voter and receiver indeed belong to the same structure.
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3.2.1 STICK VOTING

We first examine the case of a voter associated with a stick tensor, that is the normal space is a single
vector in N-D. We claim that, in the absence of other information, the arc of the osculating circle
(the circle that shares the same normal as a curve at the given point) at A that goes through B is
the most likely smooth path between A and B, since it minimizes total curvature. The center of the
circle is denoted by C in Figure 4(a). (For visualization purposes, the illustrations are for the 2-D
and 3-D cases.) In case of straight continuation from A to B, the osculating circle degenerates to
a straight line. Similar use of circular arcs can also be found in Parent and Zucker (1989), Saund
(1992), Sarkar and Boyer (1994) and Yen and Finkel (1998). The vote is also a stick tensor and is
generated as described in Section 3 according to the following equation:

Svote(s,θ,κ) = e−( s
2+cκ2
σ2

)
[

−sin(2θ)
cos(2θ)

]

[−sin(2θ) cos(2θ)], (3)

θ = arcsin(
!vT ê1
‖!v‖

),

s =
θ‖!v‖
sin(θ)

,

κ =
2sin(θ)
‖!v‖

.

In the above equation, s is the length of the arc between the voter and receiver, and κ is its curvature
(which can be computed from the radius AC of the osculating circle in Figure 4(a)), σ is the scale
of voting, and c is a constant, which controls the degree of decay with curvature. The constant c
is a function of the scale and is optimized to make the extension of two orthogonal line segments
to from a right angle equally likely to the completion of the contour with a rounded corner (Guy
and Medioni, 1996). Its value is given by: c = −16log(0.1)×(σ−1)

π2 . The scale σ essentially controls
the range within which tokens can influence other tokens. It can also be viewed as a measure of
smoothness that regulates the inevitable trade-off between over-smoothing and over-fitting. Small
values preserve details better, but are more vulnerable to noise and over-fitting. Large values pro-
duce smoother approximations that are more robust to noise. As shown in Section 7, the results are
very stable with respect to the scale. Note that σ is the only free parameter in the framework.

The vote as defined above is on the plane defined by A, B and the normal at A. Regardless of
the dimensionality of the space, stick vote generation always takes place in a 2-D subspace defined
by the position of the voter and the receiver and the orientation of the voter. (This explains why
Eq. 3 is defined in a 2-D space.) Stick vote computation is identical in any space between 2 and
N dimensions. After the vote has been computed, it has to be transformed to the N-D space and
aligned to the voter by a rotation and translation. For simplicity, we also use the notation:

Svote(A,B,!n) = S(s(A,B,!n),θ(A,B,!n),κ(A,B,!n)) (4)
to denote the stick vote from A to B with!n being the normal at A. s(A,B,!n), θ(A,B,!n) and κ(A,B,!n)
are the resulting values of the parameters of Eq. 3 given A,B and!n.

According to the Gestalt principles we wish to enforce, the magnitude of the vote should be a
function of proximity and smooth continuation. Thus the influence from a point to another attenu-
ates with distance, to minimize interference from unrelated points; and curvature, to favor straight
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continuation over curved alternatives. Moreover, no votes are cast if the receiver is at an angle larger
than 45◦ with respect to the tangent of the osculating circle at the voter. Similar restrictions on re-
gions of influence also appear in Heitger and von der Heydt (1993), Yen and Finkel (1998) and Li
(1998) to prevent high-curvature connections without support from the data. Votes corresponding
to such connections would have been very weak regardless of the restriction since their magni-
tude is attenuated due to curvature. The saliency decay function (Gaussian) of Eq. 3 has infinite
support, but for practical purposes the field is truncated so that negligible votes do not have to be
computed. For all experiments shown here, we limited voting neighborhoods to the extent in which
the magnitude of a vote is more than 3% of the magnitude of the voter. Both truncation beyond
45◦ and truncation beyond a certain distance are not critical choices, but are made to eliminate the
computation of insignificant votes.

3.2.2 N-D FORMULATION OF TENSOR VOTING

We have shown that stick vote computation is identical up to a simple transformation from 2-D
to N-D. Now we turn our attention to votes generated by voters that are not stick tensors. In the
original formulation (Medioni et al., 2000) these votes can be computed by integrating the votes
cast by a rotating stick tensor that spans the normal space of the voting tensor. Since the resulting
integral has no closed form solution, the integration is approximated numerically by taking sample
positions of the rotating stick tensor and adding the votes it generates at each point within the voting
neighborhood. As a result, votes that cover the voting neighborhood are pre-computed and stored in
voting fields. The advantage of this scheme is that all votes are generated based on the stick voting
field. Its computational complexity, however, makes its application in high-dimensional spaces
prohibitive. Voting fields are used as look-up tables to retrieve votes via interpolation between the
pre-computed samples. For instance, a voting field in 10-D with k samples per axis, requires storage
for k10 10× 10 tensors, which need to be computed via numerical integration over 10 variables.
Thus, the use of pre-computed voting fields becomes impractical as dimensionality grows. At the
same time, the probability of using a pre-computed vote decreases.

Here, we present a simplified vote generation scheme that allows the direct computation of
votes from arbitrary tensors in arbitrary dimensions. Storage requirements are limited to storing the
tensors at each sample, since explicit voting fields are not used any more. The advantage of the
novel vote generation scheme is that it does not require integration. As in the original formulation,
the eigenstructure of the vote represents the normal and tangent spaces that the receiver would have,
if the voter and receiver belong in the same smooth structure.

3.2.3 BALL VOTING

For the generation of ball votes, we propose the following direct computation. It is based on the
observation that the vote generated by a ball voter propagates the voter’s preference for a straight
line that connects it to the receiver (Figure 4(b)). The straight line is the simplest and smoothest
continuation from a point to another point in the absence of other information. Thus, the vote
generated by a ball voter is a tensor that spans the (N−1)-D normal space of the line and has one
zero eigenvalue associated with the eigenvector that is parallel to the line. Its magnitude is a function
of only the distance between the two points, since curvature is zero. Taking these observations into
account, the ball vote can be constructed by subtracting the direct product of the unit vector in
the direction from the voter to the receiver from a full rank tensor with equal eigenvalues (i.e., the
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identity matrix). The resulting tensor is attenuated by the same Gaussian weight according to the
distance between the voter and the receiver.

Bvote(s) = e−( s
2
σ2

)
(

I −
!v!vT

‖!vT!v‖

)

(5)

where !v is a unit vector parallel to the line connecting the voter and the receiver and I is the N-D
identity matrix. In this case, s= |!v| and we omit θ and κ since they do not affect the computation.

Along the lines of Equation 4, we define a simpler notation:

Bvote(A,B) = Bvote(s(A,B)) (6)

where s(A,B) = |!v|.

3.2.4 VOTING BY ELEMENTARY TENSORS

To complete the description of vote generation, we need to describe the case of a tensor that has
d equal eigenvalues, where d is not equal to 1 or N. (An example of such a tensor would be a
curve element in 3-D, which has a rank-two normal subspace and a rank-one tangent subspace.)
The description in this section also applies to ball and stick tensors, but we use the above direct
computations, which are faster. Let !v be the vector connecting the voting and receiving points. It
can be decomposed into !vt and !vn in the tangent and normal spaces of the voter respectively. The
new vote generation process is based on the observation that curvature in Eq. 3 is not a factor when
θ is zero, or, in other words, if the voting stick is orthogonal to!vn. We can exploit this by defining
a new basis for the normal space of the voter that includes !vn. The new basis is computed using
the Gramm-Schmidt procedure. The vote is then constructed as the tensor addition of the votes cast
by stick tensors parallel to the new basis vectors. Among those votes, only the one generated by
the stick tensor parallel to!vn is not parallel to the normal space of the voter and curvature has to be
considered. All other votes are a function of the length of !vt only. See Figure 5 for an illustration
in 3-D. Analytically, the vote is computed as the summation of d stick votes cast by the new basis
of the normal space. Let NS denote the normal space of the voter and let!bi, i ∈ [1,d] be a basis for
it with!b1 being parallel to !vn. If Svote(A,B,!b) is the function that generates the stick vote from a

(a) Stick voting (b) Ball voting

Figure 4: Vote generation for a stick and a ball voter. The votes are functions of the position of the
voter A and receiver B and the tensor of the voter.
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Figure 5: Vote generation for generic tensors. The voter here is a tensor with a 2-D normal subspace
in 3-D. The vector connecting the voter and receiver is decomposed into!vn and!vt that lie
in the normal and tangent space of the voter. A new basis that includes !vn is defined for
the normal space and each basis component casts a stick vote. Only the vote generated
by the orientation parallel to!vn is not parallel to the normal space. Tensor addition of the
stick votes produces the combined vote.

unit stick tensor at A parallel to!b to the receiver B, then the vote from a generic tensor with normal
space N is given by:

Vvote(A,B,Te,d) = Svote(A,B,!b1)+ ∑
i∈[2,d]

Svote(A,B,!bi). (7)

In the above equation, Te,d denotes the elementary voting tensor with d equal non-zero eigenvalues.
On the right-hand side, all the terms are pure stick tensors parallel to the voters, except the first
one which is affected by the curvature of the path connecting the voter and receiver. Therefore,
the computation of the last d−1 terms is equivalent to applying the Gaussian weight to the voting
sticks and adding them at the position of the receiver. Only one vote requires a full computation of
orientation and magnitude. This makes the proposed scheme computationally inexpensive.

3.2.5 THE VOTING PROCESS

During the voting process (Algorithm 1), each point casts a vote to all its neighbors within the
voting neighborhood. If the voters are not pure elementary tensors, that is if more than one saliency
value is non-zero, they are decomposed before voting according to Eq. 2. Then, each component
votes separately and the vote is weighted by λd −λd+1, except the ball component whose vote is
weighted by λN . Besides the voting tensor T, points also have a receiving tensor R that acts as vote
accumulator. Votes are accumulated at each point by tensor addition, which is equivalent to matrix
addition.

3.3 Vote Analysis

Vote analysis takes place after voting to determine the most likely type of structure and the orienta-
tion at each point. There are N+ 1 types of structure in an N-D space ranging from 0-D points to
N-D hypervolumes.

The eigensystem of the receiving tensor R is computed once at the end of the voting process and
the tensor is decomposed as in Eq. 2. The estimate of local intrinsic dimensionality is given by the
maximum gap in the eigenvalues. Quantitative results on dimensionality estimation are presented
in Section 4. In general, if the maximum eigenvalue gap is λd−λd+1, the estimated local intrinsic
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Algorithm 1 The Voting Process
1. Initialization
Read M input points Pi and initial conditions, if available.
for all i ∈ [1,M] do
Initialize Ti according to initial conditions or set equal to the identity I .
Compute Ti’s eigensystem (λ(i)

d , ê(i)d ).
Set vote accumulator Ri ← 0

end for
Initialize Approximate Nearest Neighbor (ANN) k-d tree (Arya et al., 1998) for fast neighbor
retrieval.

2. Voting
for all i ∈ [1,M] do
for all Pj in Pi’s neighborhood do
if λ1−λ2 > 0 then
Compute stick vote Svote(Pi,Pj, ê(i)1 ) from Pi to Pj according to Eq. 4.

end if
if λN > 0 then
Compute ball vote Bvote(Pi,Pj) from Pi to Pj according to Eq. 6.

end if
for d = 2 to N−1 do
if λd−λd+1 > 0 then
Compute vote Vvote(Pi,Pj,T(i)

e,d) according to Eq. 7.
end if

end for
Add votes to Pj’s accumulator

R j ←R j +(λ1−λ2)Svote(Pi,Pj, ê1)+(λN)Bvote(Pi,Pj)

+ ∑
d∈[2,N−1]

(λd−λd+1)Vvote(Pi,Pj,T(i)
e,d)

end for
end for

3. Vote Analysis
for all i ∈ [1,M] do
Compute eigensystem of Ri (Eq. 2) to determine dimensionality and orientation.
Ti ← Ri

end for

dimensionality is N− d, and the manifold has d normals and N− d tangents. Moreover, the first
d eigenvectors that correspond to the largest eigenvalues are the normals to the manifold, and the
remaining eigenvectors are the tangents. Outliers can be detected since all their eigenvalues are
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small and no preferred structure type emerges. This happens because they are more isolated than
inliers, thus they do not receive votes that consistently support any salient structure. Our past and
current research has demonstrated that tensor voting is very robust against outliers.

This vote accumulation and analysis method does not optimize any explicit objective function,
especially not a global one. Dimensionality emerges from the accumulation of votes, but it is
not a equal to the average, nor the median, nor the majority of the dimensionalities of the voters.
For instance, the accumulation of votes from elements of two or more intersecting curves in 2-D
results in a rank-two normal space at the junction. If one restricts the analysis to the estimates of
orientation, tensor voting can be viewed as a method for maximizing an objective at each point.
The weighted (tensor) sum of all votes received is up to a constant equivalent to the weighted mean
in the space of symmetric, non-negative definite, second-order tensors. This can be thought of
as the tensor that maximizes the consensus among the incoming votes. In that sense, assuming
dimensionality is provided by some other process, the estimated orientation at each point is the
maximum likelihood estimate given the incoming votes. It should be pointed out here, that the sum
is used for all subsequent computations, since the magnitude of the eigenvalues and the of the gaps
between them are measures of saliency.

In all subsequent sections, the eigensystem of the accumulator tensor is used as the voter during
subsequent processing steps described in the following sections.

Figure 6: 20,000 points sampled from the “Swiss Roll” data set in 3-D.

4. Dimensionality Estimation

In this section, we present experimental results in dimensionality estimation. According to Section
3.3, the intrinsic dimensionality at each point can be found as the maximum gap in the eigenvalues
of the tensor after votes from its neighboring points have been collected. All inputs consist of
unoriented points since no orientation information is provided and are encoded as ball tensors.

4.1 Swiss Roll

The first experiment is on the “Swiss Roll” data set, which is frequently used in the literature and is
available at http://isomap.stanford.edu/. It contains 20,000 points on a 2-D manifold in 3-D
(Figure 6). We sample two random variables from independent uniform distributions to generate
Swiss rolls with as many as 20,000 points, as in Tenenbaum et al. (2000), and as few as 1,250
points. We present quantitative results for 10 different instances of 1,250, 5,000 and 20,000 points
in Table 1 as a function of σ. The first column for each set of results shows the percentage of points
with correct dimensionality estimates, that is for which λ1−λ2 is the maximal eigenvalue gap. The
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Points 1250 5000 20000
σ DE NN Time DE NN Time DE NN Time
1 0.5% 1.6 0.2 4.3% 3.6 0.4 22.3% 11.2 3.8
2 4.2% 3.7 0.2 22.3% 11.1 0.8 67.9% 40.8 5.4
4 21.5% 11.0 0.2 70.0% 40.7 0.8 98.0% 156.3 12.3
8 64.5% 38.3 0.2 96.9% 148.9 2.6 99.9% 587.2 36.9
12 87.4% 83.4 0.4 99.3% 324.7 5.0 99.9% 1285.4 77.4
16 94.3% 182.4 0.7 99.5% 715.7 10.1 99.8% 2838.0 164.8
20 94.9% 302.6 1.0 99.2% 1179.4 16.5 99.5% 4700.9 268.7
30 91.0% 703.6 2.3 97.0% 2750.8 37.4 97.6% 10966.5 615.2
40 83.6% 1071.7 3.6 86.7% 4271.5 57.7 87.7% 16998.2 947.3

Table 1: Rate of correct dimensionality estimation (DE), average number of neighbors per point and
execution times (in seconds) as functions of σ and the number of samples for the “Swiss
Roll” data set. All experiments have been repeated 10 times on random samplings of the
Swiss Roll function. Note that the range of scales includes extreme values as evidenced
by the very high and very low numbers of neighbors in several cases.

second column shows the average number of nearest neighbors included in the voting neighborhood
of each point. The third column shows processing times of a single-threaded C++ implementation
running on an Intell Pentium 4 processor at 2.50GHz. We have also repeated the experiment on 10
instances of 500 points from the Swiss Roll using the same values of the scale. Meaningful results
are obtained for σ> 8. The peak of correct dimensionality estimation is at 80.3% for σ= 20.

A conclusion that can be drawn from Table 1 is that the accuracy is high and stable for a large
range of values of σ, as long as a few neighbors are included in each neighborhood. The majority of
neighborhoods being empty is an indication of inappropriate scale selection. Performance degrades
as scale increases and the neighborhoods become too large to capture the curvature of the manifold.
This robustness to large variations in parameter selection are due to the weighting of the votes
according to Eqs. 3, 5 and 7 and alleviates the need for extensive parameter tuning.

4.2 Structures with Varying Dimensionality

The second data set is in 4-D and contains points sampled from three structures: a line, a 2-D cone
and a 3-D hyper-sphere. The hyper-sphere is a structure with three degrees of freedom. It cannot be
unfolded unless we remove a small part from it. Figure 7(a) shows the first three dimensions of the
data. The data set contains a total 135,864 points, which are encoded as ball tensors. Tensor voting
is performed with σ= 200. Figures 7(b-d) show the points classified according to their dimension-
ality. Methods based on dimensionality reduction or methods that estimate a single dimensionality
estimate for the data set would fail for this data set because of the presence of structures with dif-
ferent dimensionalities and because the hyper-sphere cannot be unfolded.
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(a) Input (b) 1-D points

(c) 2-D points (d) 3-D points

Figure 7: Data of varying dimensionality in 4-D. (The first three dimensions of the input and the
classified points are shown.) Note that the hyper-sphere is empty in 4-D, but appears as a
full sphere when visualized in 3-D.

4.3 Data in High Dimensions

The data sets for this experiment were generated by sampling a few thousand points from a low-
dimensional space (3- or 4-D) and mapping them to a medium dimensional space (14- to 16-D)
using linear and quadratic functions. The generated points were then rotated and embedded in a
50- to 150-D space. Outliers drawn from a uniform distribution inside the bounding box of the
data were added to the data set. The percentage of correct point-wise dimensionality estimates after
tensor voting can be seen in Table 2.

Intrinsic Linear Quadratic Space Dimensionality
Dimensionality Mappings Mappings Dimensions Estimation (%)

4 10 6 50 93.6
3 8 6 100 97.4
4 10 6 100 93.9
3 8 6 150 97.3

Table 2: Rate of correct dimensionality estimation for high dimensional data.
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5. Manifold Learning

In this section we show quantitative results on estimating manifold orientation for various data sets.

Points 1250 5000 20000
σ Orientation Error Orientation Error Orientation Error
1 47.2 28.1 3.1
2 28.7 3.5 0.4
4 4.9 0.9 0.5
8 2.0 1.3 1.1
12 2.5 2.0 1.9
16 3.5 3.1 3.0
20 5.4 4.8 4.7
30 16.9 15.0 14.9
40 28.3 26.2 25.9

Table 3: Error (in degrees) in surface normal orientation estimation as a function of σ and the
number of samples for the “Swiss Roll” data set. The error reported is the (unsigned)
angle between the eigenvector corresponding to the largest eigenvalue of the estimated
tensor at each point and the ground truth surface normal. See also Table 1 for processing
times and the average number of points in each neighborhood.

5.1 Swiss Roll

We begin this section by completing the presentation of our experiments on the Swiss Roll data sets
described in the previous section. Here we show the accuracy of normal estimation, regardless of
whether the dimensionality was estimated correctly, for the experiments of Table 1. Table 3 is a
complement to Table 1, which contains information on the average number of points in the voting
neighborhoods and processing time that is not repeated here. The error reported is the (unsigned)
angle between the eigenvector corresponding to the largest eigenvalue of the estimated tensor at
each point and the ground truth surface normal. These results are over 10 different samplings for
each number of points reported in the table.

For comparison, we also estimated the orientation at each point of the Swiss Roll using local
PCA computed on the point’s k nearest neighbors. We performed an exhaustive search over k, but
only report the best results here. As for tensor voting, orientation accuracy was measured on 10
instances of each data set. The lowest errors for 1,250, 5,000 and 20,000 points are 2.51◦, 1.16◦
and 0.56◦ for values of k equal to 9, 10 and 13 respectively. These errors are approximately 20%
larger than the lowest errors achieved by tensor voting, which are shown in bold in Table 3. It
should be noted, that, unlike tensor voting, local PCA cannot be used to refine these estimates or
take advantage of existing orientation estimates that may be available at the inputs.

We observe that accuracy using tensor voting is very high for a large range of scales and im-
proves, as expected, with higher data density. Random values (around 45◦) result when the neigh-
borhood does not contain enough points for normal estimation. See Mitra et al. (2004) and Lalonde
et al. (2005) for an analysis of the 3-D case based on the Gershgorin Circle Theorem that provides
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(a) Cylinder (b) Sphere (c) Noisy sphere

Figure 8: Data sets used in Sections 5 and 6.

bounds for the eigenvalues of square matrices. The authors show how noise and curvature affect
the estimation of curve and surface normals under some assumptions about the distribution of the
points. The conclusions are that for large neighborhood sizes, errors caused by curvature dominate,
while for small neighborhood sizes, errors due to noise dominate. (There is no noise in the data for
this experiment.)

5.2 Spherical and Cylindrical Sections

Here, we present quantitative results on simple data sets in 3-D for which ground truth can be
analytically computed. In Section 6, we process the same data with state of the art manifold learning
algorithms and compare their results against ours. The two data sets are a section of a cylinder and
a section of a sphere shown in Figure 8. The cylindrical section spans 150◦ and consists of 1000
points. The spherical section spans 90◦ × 90◦ and consists of 900 points. Both are approximately
uniformly sampled. The points are represented by ball tensors, assuming no information about
their orientation. In the first part of the experiment, we compute local dimensionality and normal
orientation as a function of scale. The results are presented in Tables 4 and 5. The results show that
if the scale is not too small, dimensionality estimation is very reliable. For all scales the orientation
errors are below 0.4o.

The same experiments were performed for the spherical section in the presence of outliers.
Quantitative results are shown in the following tables for a number of outliers that ranges from 900
(equal to the inliers) to 5000. The latter data set is shown in Figure 8(c). The outliers are drawn
from a uniform distribution inside an extended bounding box of the data. Note that performance
was evaluated only on the points that belong to the sphere and not the outliers. Larger values of
the scale prove to be more robust to noise, as expected. The smallest values of the scale result
in voting neighborhoods that include less than 10 points, which are insufficient. Taking this into
account, performance is still good even with wrong parameter selection. Also note that one could
reject the outliers by thresholding, since they have smaller eigenvalues than the inliers, and perform
tensor voting again to obtain even better estimates of structure and dimensionality. Even a single
pass of tensor voting, however, turns out to be very effective, especially considering that no other
method can handle such a large number of outliers. Foregoing the low-dimensional embedding is
a main reason that allows our method to perform well in the presence of noise, since embedding
random outliers in a low-dimensional space would make their influence more detrimental. This is
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σ Average Orientation Dimensionality
Neighbors Error (◦) Estimation (%)

10 5 0.06 4
20 9 0.07 90
30 9 0.08 90
40 12 0.09 90
50 20 0.10 100
60 20 0.11 100
70 23 0.12 100
80 25 0.12 100
90 30 0.13 100
100 34 0.14 100

Table 4: Results on the cylinder data set. Shown in the first column is σ, in the second is the average
number of neighbors that cast votes to each point, in the third the average error in degrees
of the estimated normals, and in the fourth the accuracy of dimensionality estimation.

σ Average Orientation Dimensionality
Neighbors Error (◦) Estimation (%)

10 5 0.20 44
20 9 0.23 65
30 11 0.24 93
40 20 0.26 94
50 21 0.27 94
60 23 0.29 94
70 26 0.31 94
80 32 0.34 94
90 36 0.36 94
100 39 0.38 97

Table 5: Results on the sphere data set. The columns are the same as in Table 4.

due to the structure imposed to them by the mapping, which makes the outliers less random, and
due to the increase in their density in the low-dimensional space compared to that in the original
high-dimensional space.

5.3 Data with Non-uniform Density

We also conducted two experiments on functions proposed in Wang et al. (2005). The key difficulty
with these functions is the non-uniform density of the data. In the first example we attempt to
estimate the tangent at the samples of:

xi = [cos(ti) sin(ti)]T ti ∈ [0,π], ti+1− ti = 0.1(0.001+ |cos(ti)|) (8)
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Outliers 900 3000 5000
σ
10
20
30
40
50
60
70
80
90
100

OE DE
1.15 44
0.93 65
0.88 92
0.88 93
0.90 93
0.93 94
0.97 94
1.00 94
1.04 95
1.07 97

OE DE
3.68 41
2.95 52
2.63 88
2.49 90
2.41 92
2.38 93
2.38 93
2.38 94
2.38 95
2.39 95

OE DE
6.04 39
4.73 59
4.15 85
3.85 88
3.63 91
3.50 93
3.43 93
3.38 94
3.34 94
3.31 95

Table 6: Results on the sphere data set contaminated by noise. OE: error in normal estimation in
degrees, DE: percentage of correct dimensionality estimation.

(a) Samples from Eq. 8 (b) Samples from Eq. 9

Figure 9: Input data for the two experiments proposed by Wang et al. (2005).

where the distance between consecutive samples is far from uniform. See Figure 9(a) for the inputs
and the second column of Table 7 for quantitative results on tangent estimation for 152 points as a
function of scale.

In the second example, which is also taken from Wang et al. (2005), points are uniformly sam-
pled on the t-axis from the [-6, 6] interval. The output is produced by the following function:

xi = [ti 10e−t
2
i ]. (9)

The points, as can be seen in Figure 9(b), are not uniformly spaced. The quantitative results on
tangent estimation accuracy for 180 and 360 samples from the same interval are reported in the last
two columns of Table 7. Naturally, as the sampling becomes denser, the quality of the approximation
improves. What should be emphasized here is the stability of the results as a function of σ. Even
with as few as 5 or 6 neighbors included in the voting neighborhood, the tangent at each point is
estimated quite accurately.
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σ Eq. 8 Eq. 9 Eq. 9
152 points 180 points 360 points

10 0.60 4.52 2.45
20 0.32 3.37 1.89
30 0.36 2.92 1.61
40 0.40 2.68 1.43
50 0.44 2.48 1.22
60 0.48 2.48 1.08
70 0.51 2.18 0.95
80 0.54 2.18 0.83
90 0.58 2.02 0.68
100 0.61 2.03 0.57

Table 7: Error in degrees for tangent estimation for the functions of Eq. 8 and Eq. 9.

6. Geodesic Distances and Nonlinear Interpolation

In this section, we present an algorithm that can interpolate, and thus produce new points, on the
manifold and is also able to evaluate geodesic distances between points. Both of these capabilities
are useful tools for many applications. The key concept is that the intrinsic distance between any
two points on a manifold can be approximated by taking small steps on the manifold, collecting
votes, estimating the local tangent space and advancing on it until the destination is reached. Such
processes have been reported in Mordohai (2005), Dollár et al. (2007a) and Dollár et al. (2007b).

Processing begins by learning the manifold structure, as in the previous section, usually starting
from unoriented points that are represented by ball tensors. Then, we select a starting point that has
to be on the manifold and a target point or a desired direction from the starting point. At each step,
we can project the desired direction on the tangent space of the current point and create a new point
at a small distance. The tangent space of the new point is computed by collecting votes from the
neighboring points, as in regular tensor voting. Note that the tensors used here are no longer balls,
but the ones resulting from the previous pass of tensor voting, according to Algorithm 1, step 3.
The desired direction is then projected on the tangent space of the new point and so forth until the
destination is reached. The process is illustrated in Figure 10, where we start from point A and wish
to reach B. We project!t, the vector from A to B, on the estimated tangent space of A and obtain its
projection !p. Then, we take a small step along !p to point A1, on which we collect votes to obtain
an estimate of its tangent space. The desired direction is then projected on the tangent space of
each new point until the destination is reached within ε. The geodesic distance between A and B is
approximated by measuring the length of the path. In the process, we have also generated a number
of new points on the manifold, which may be a desirable by-product for some applications.

There are certain configurations that cannot be handled by the algorithm described above with-
out additional precautions. One such configuration is when the source or destination point or both
are in deep concavities which attract the desired direction if the step from A to A1 is not large enough
to move the path outside the concave region. A multi-scale implementation of the above scheme
can overcome this problem. A few intermediate points can be marked using a large value for the
step and then used as intermediate destinations with a finer step size. Under this scheme, the path
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Figure 10: Nonlinear interpolation on the tangent space of a manifold.

converges to the destination and the geodesic distance is approximated accurately using a small step
size. A second failure mode of the simple algorithm is for cases where the desired direction may
vanish. This may occur in a manifold such as the “Swiss Roll” (Figure 6) if the destination lies on
the normal space of the current point. Adding memory or inertia to the system when the desired
direction vanishes, effectively addresses this situation. It should be noted that our algorithm does
not handle holes and boundaries properly at its current stage of development.

6.1 Comparison with State-of-the-Art algorithms

The first experiment on manifold distance estimation is a quantitative evaluation against some of
the most widely used algorithms of the literature. For the results reported in Table 8, we learn the
local structure of the cylinder and sphere manifolds of the previous section using tensor voting.
We also compute embeddings using LLE (Roweis and Saul, 2000), Isomap (Tenenbaum et al.,
2000), Laplacian eigenmaps (Belkin and Niyogi, 2003), HLLE (Donoho and Grimes, 2003) and
SDE (Weinberger and Saul, 2004). Matlab implementations for these methods can be downloaded
from the following internet locations.

• LLE from http://www.cs.toronto.edu/˜roweis/lle/code.html

• Isomap from http://isomap.stanford.edu/

• Laplacian Eigenmaps from http://people.cs.uchicago.edu/˜misha/ManifoldLearning/
index.html

• HLLE from http://basis.stanford.edu/HLLE and

• SDE from http://www.seas.upenn.edu/˜kilianw/sde/download.htm.

We are grateful to the authors for making the code for their methods available to the community.
We have also made our software publicly available at:

http://iris.usc.edu/˜medioni/download/download.htm.
The experiment is performed as follows. We randomly select 5000 pairs of points on each

manifold and attempt to measure the geodesic distance between the points of each pair in the input
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space using tensor voting and in the embedding space using the other five methods. The estimated
distances are compared to the ground truth: rΔθ for the sphere and

√

(rΔθ)2+(Δz)2 for the cylin-
der. Among the above approaches, only Isomap and SDE produce isometric embeddings, and only
Isomap preserves the absolute distances between the input and the embedding space. To make the
evaluation fair, we compute a uniform scale that minimizes the error between the computed dis-
tances and the ground truth for all methods, except Isomap for which it is not necessary. Thus,
perfect distance ratios would be awarded a perfect rating in the evaluation, even if the absolute
magnitudes of the distances are meaningless in the embedding space. For all the algorithms, we
tried a wide range for the number of neighbors, K. In some cases, we were not able to produce
good embeddings of the data for any value of K. This occurred more frequently for the cylinder,
probably due to its data density not being perfectly uniform. Errors above 20% indicate very poor
performance, which is also confirmed by visual inspection of the embeddings.

Even though among the other approaches only Isomap and SDE produce isometric embeddings,
while the rest produce embeddings that only preserve local structure, we think that the evaluation of
the quality of manifold learning based on the computation of pairwise distances is a fair measure for
the performance of all algorithms, since high quality manifold learning should minimize distortions.
The distances on which we evaluate the different algorithms are both large and small, with the latter
measuring the presence of local distortions. Quantitative results, in the form of the average absolute
difference between the estimated and the ground truth distances as a percentage of the latter, are
presented in Tables 8-10, along with the parameter that achieves the best performance for each
method. In the case of tensor voting, the same scale was used for both learning the manifold and
computing distances.

We also apply our method in the presence of 900, 3000 and 5000 outliers, while the inliers
for the sphere and the cylinder data sets are 900 and 1000 respectively. The outliers are generated
according to a uniform distribution. The error rates using tensor voting for the sphere are 0.39%,
0.47% and 0.53% respectively. The rates for the cylinder are 0.77%, 1.17% and 1.22%. Compared
with the noise free case, these results demonstrate that our approach degrades slowly in the presence
of outliers. The best performance achieved by any other method is 3.54% on the sphere data set with
900 outliers by Isomap. Complete results are shown in Table 9. In many cases, we were unable to
achieve useful embeddings for data sets with outliers. We were not able to perform this experiment

Data Set Sphere Cylinder
K Err(%) K Err(%)

LLE 18 5.08 6 26.52
Isomap 6 1.98 30 0.35
Laplacian Eigenmaps 16 11.03 10 29.36
HLLE 12 3.89 40 26.81
SDE 2 5.14 6 25.57
TV (σ) 60 0.34 50 0.62

Table 8: Error rates in distance measurement between pairs of points on the manifolds. The best re-
sult of each method is reported along with the number of neighbors used for the embedding
(K), or the scale σ in the case of tensor voting (TV).
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Data Set Sphere Cylinder
900 outliers 900 outliers

K Err(%) K Err(%)
LLE 40 60.74 6 15.40
Isomap 18 3.54 14 11.41
Laplacian Eigenmaps 6 13.97 14 27.98
HLLE 30 8.73 30 23.67
SDE N/A N/A
TV (σ) 70 0.39 100 0.77

Table 9: Error rates in distance measurement between pairs of points on the manifolds under outlier
corruption. The best result of each method is reported along with the number of neighbors
used for the embedding (K), or the scale σ in the case of tensor voting (TV). Note that
HLLE fails to compute an embedding for small values of K, while SDE fails at both
examples for all choices of K.

Data Set σ Error rate
Sphere (3000 outliers) 80 0.47
Sphere (5000 outliers) 100 0.53
Cylinder (3000 outliers) 100 1.17
Cylinder (5000 outliers) 100 1.22

Table 10: Error rates for our approach for the experiment of Section 6.1 in the presence of 3000
and 5000 outliers.

in the presence of more than 3000 outliers with any graph-based method, probably because the
graph structure is severely corrupted by the outliers.

6.2 Data Sets with Varying Dimensionality and Intersections

For the final experiment of this section, we create synthetic data in 3-D that were embedded in
higher dimensions. The first data set consists of a line and a cone. The points are embedded in
50-D by three orthonormal 50-D vectors and initialized as ball tensors. Tensor voting is performed
in the 50-D space and a path from point A on the line to point B on the cone is interpolated as
in the previous experiment, making sure that it belongs to the local tangent space, which changes
dimensionality from one to two. The data is re-projected back to 3-D for visualization in Figure
11(a).

In the second part of the experiment, we generate an intersecting S-shaped surface and a plane
(a total of 11,000 points) and 30,000 outliers from a uniform distribution, and embed them in a 30-D
space. Without explicitly removing the noise, we interpolate between two points on the S (A and B)
and a point on the S and a point on the plane (C and D) and create the paths shown in Figure 11(b) re-
projected in 3-D. The first path is curved, while the second jumps frommanifold to manifold without
deviating from the optimal path. (The outliers are not shown for clarity.) Processing time for 41,000
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(a) Line and cone (b) S and plane

Figure 11: Nonlinear interpolation in 50-D with varying dimensionality (a) and 30-D with inter-
secting manifolds under noise corruption (b).

points in 30-D is 2 min. and 40 sec. on a Pentium 4 at 2.8GHz using voting neighborhoods that
included an average of 44 points.

7. Generation of Unobserved Samples and Nonparametric Function Approximation

In this section, we build upon the results of the previous section to address function approximation.
A common practice is to treat functions with multiple outputs as multiple single-output functions.
We adopt this scheme here, even though nothing prohibits us from directly approximating multiple-
input multiple-output functions. We assume that observations in N-D that include values for the
input and output variables are available for training. The difference with the examples of the pre-
vious sections is that the queries are given as input vectors with unknown output values, and thus
are of lower dimensionality than the voting space. The required module to convert this problem to
that of Section 6 is one that can find a point on the manifold that corresponds to an input similar to
the query. Then, in order to predict the output y of the function for an unknown input !x, under the
assumption of local smoothness, we move on the manifold formed by the training samples until we
reach the point corresponding to the given input coordinates. To ensure that we always remain on
the manifold, we need to start from a point on it and proceed as in the previous section.

One way to find a suitable starting point is to find the nearest neighbor of !x in the input space,
which has fewer dimensions than the joint input-output (voting) space. Then, we can compute the
desired direction in the low dimensional space and project it to the input-output space. If many
outputs are possible for a given input (if the data have not been generated by a function in the
strict sense), we have to either find neighbors at each branch of the function and produce multiple
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Figure 12: Interpolation to obtain output value for unknown input point Ai. Bi is the nearest neigh-
bor in the input space and corresponds to B in the joint input-output space. We can
march from B on the manifold to arrive at the desired solution A that projects on Ai in
the input space.

outputs, or use other information, such as the previous state of the system, to pursue only one of the
alternatives. One could find multiple nearest neighbors, run the proposed algorithm starting from
each of them and produce a multi-valued answer with a probability associated with each potential
output value.

Figure 12 provides a simple illustration. We begin with a point Ai in the input space. We
proceed by finding its nearest neighbor among the projections of the training data on the input space
Bi. (Even if Bi is not the nearest neighbor the scheme still works but possibly requires more steps.)
The sample B in the input-output space that corresponds to Bi is the starting point on the manifold.
The desired direction is the projection of the AiBi vector on the tangent space of B. Now, we are
in the case described in Section 6, where the starting point and the desired direction are known.
Processing stops when the input coordinates of the point on the path from B are within ε of Ai. The
corresponding point A in the input-output space is the desired interpolated sample.

As in all the experiments presented in this paper, the input points are encoded as ball tensors,
since we assume that we have no knowledge of their orientation. We first attempt to approximate
the following function, proposed by Schaal and Atkeson (1998):

y= max{e−10x
2
1 e−50x

2
2 1.25e−5(x

2
1+x22)}. (10)

1681 samples of y are generated by uniformly sampling the [−1,1]× [−1,1] square. We perform
four experiments with increasing degree of difficulty. In all cases, after voting on the given inputs,
we generate new samples by interpolating between the input points. The four configurations and
noise conditions were:

• In the first experiment, we performed all operations with noise free data in 3-D.

• For the second experiment, we added 8405 outliers (five times more than the inliers) drawn
from a uniform distribution in a 2×2×2 cube containing the data.

• For the third experiment, we added Gaussian noise with variance 0.01 to the coordinates of
all points while adding the same number of outliers as above.
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(a) Noise free inputs (b) Inputs with outliers

(c) Interpolated points with (d) Interpolated points with
outliers and perturbation outliers and perturbation in 60-D

Figure 13: Inputs and interpolated points for Eq. 10. The top row shows the noise-free inputs and
the noisy input set where only 20% of the points are inliers. The bottom row shows the
points generated in 3-D and 60-D respectively. In both cases the inputs were contami-
nated with outliers and Gaussian noise.

• Finally, we embedded the perturbed data (and the outliers) in a 60-D space, before voting and
nonlinear interpolation.

The noise-free and noisy input, as well as the generated points can be seen in Figure 13. We
computed the mean square error between the outputs generated by our method and Eq. 10 nor-
malized by the variance of the noise-free data. The NMSE for all cases is reported in Table 11.
Robustness against outliers is due to the fact that the inliers form a consistent surface and thus re-
ceive votes that support the correct local structure from other inliers. Outliers, on the other hand,
are random and do not form any structure. They cast and receive inconsistent votes and therefore
neither develop a preference for a certain manifold nor significantly disrupt the structure estimates
at the inliers. They can be removed by simple thresholding since all their eigenvalues are small and
almost equal, but this is not done here. Note that performance in 60-D is actually better since the
interference by outliers is reduced as the dimensionality of the space increases. Tensor voting is also
robust against perturbation of the coordinates as long as it is not biased to favor a certain direction.
If the perturbation is zero-mean, its effects on individual votes are essentially canceled out, because
they only contribute to the ball component of the accumulated tensor at each point, causing small
errors in orientation estimation.
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Experiment NMSE
Noise-free 0.0041
Outliers 0.0170
Outliers & N(0, 0.01) 0.0349
Outliers & N(0, 0.01) in 60-D 0.0241

Table 11: Normalized MSE for the interpolated points of Eq. 10 under different noise conditions.

7.1 Results on Real Data

The final experiments are on real data taken from the University of California at Irvine Machine
Learning Repository (Newman et al., 1998) available online at
http://www.ics.uci.edu/˜mlearn/MLRepository.html and the University of Toronto DELVE
archive (http://www.cs.toronto.edu/˜delve)(Rasmussen et al., 1996). We used the “abalone”,
“Boston housing” and “Computer activity” data sets. These data sets were selected because they
contain data from a single class in spaces of 9, 14 and 22 dimensions respectively. In each case one
variable is treated as the output and all others as inputs. Most of the input variables are continu-
ous, but vary widely in magnitude. Since our method is based on distance relationships between
the samples, we re-scaled the data so that the ratio of maximum to minimum standard deviation of
the variables was approximately 10 : 1, instead of the original, which for several cases exceeded
1000 : 1. We split the data in training and test sets and perform tensor voting on the training data to
learn the structure of the manifold. For each test sample, we begin by finding the average position
of a few nearest neighbors in the (N− 1)-D input space and then follow a path on the estimated
manifold in N-D until the desired input coordinates are reached. The value of the output variable
when the input variables are equal to the query is the estimate returned by our method.

In the case of the “abalone” data, we follow common practice and map the first variable from M
for male, F for female and I for infant to (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. The resulting
space is 12-D, with the last variable being the one we attempt to estimate. Again, we scale the data
so that the variances of different variables are comparable. Following most authors, we divide the
4177 samples in training and test sets containing 3000 and 1177 samples respectively. Our results
after 10 runs of the experiment with randomly selected training and test sets and a comparison with
a number of other published results on the same data can be seen in Table 12. We also applied our
algorithm to the “Boston housing” data set, which has been extensively used as a benchmark. It
contains 506 samples of house prices as a function of 13 variables. We use training and test sets
containing 481 and 25 points respectively. Due to the small size of the test set, we repeated the
experiment 20 times always using as queries points that had not been included in the test set before,
thus using virtually all points for queries. Error rates can be seen in Table 12. Finally, we used the
“computer activity” data set from the DELVE archive (Rasmussen et al., 1996). It contains 8192
observations in a 22-D space. We used 2000 samples for training and the rest for testing.

In summary, our algorithm achieves what we think is satisfactory performance despite the fact
that the data sets contain insufficient samples to describe complex manifolds. The sparseness of the
data under-uses the capability of our approach to handle complex nonlinear manifolds. We observed
that for certain query points there are very few similar samples in the training set. In the absence of
enough samples, our algorithm may not improve the initial solution given by the nearest neighbors
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of the point. These errors cause the ranking of our results in terms of RMS to be worse than in terms
of mean absolute error (MAE) in Table 12.

Abalone Housing Computer
MAE RMS MAE RMS MAE RMS

BCM (Tresp, 2000) - - - 3.100 - -
GPR1 (Tresp, 2000) - - - 3.013 - -
RVM (Tipping, 2001) - - - 8.04 - -
SVM (Tipping, 2001) - - - 7.46 - -
Sparse GPR (Smola and Bartlett,
2001)

1.785 - - - - -

GPR2 (Smola and Bartlett, 2001) 1.782 - - - - -
Online GPR (Schwaighofer and
Tresp, 2003)

- 2.111 - - - -

BCM2 (Schwaighofer and Tresp,
2003)

- 2.111 - - - -

Inductive SRM (Schwaighofer and
Tresp, 2003)

- 2.109 - - - -

Transductive SRM (Schwaighofer
and Tresp, 2003)

- 2.109 - - - -

SVR (Chu et al., 2004) 1.421 2.141 2.13 3.205 2.28 3.715
BSVR (Chu et al., 2004) 1.464 2.134 2.19 3.513 2.33 4.194
GPR-ARD (Chu et al., 2004) 1.493 2.134 2.01 2.884 1.686 2.362
BSVR-ARD (Chu et al., 2004) 1.454 2.119 1.86 2.645 1.687 2.408
Tensor voting 1.630 2.500 1.272 1.860 1.970 2.815

Table 12: Mean Absolute Error (MAE) and Root Mean squared Error (RMS) for benchmark data
sets. Unless otherwise noted, training and testing is performed with 3000 and 1177 sam-
ples for “abalone”, 481 and 25 for “Boston housing” and 2000 and 6192 for “computer
activity”, respectively. Results by other methods were not generated by us. BCM is the
Bayesian committee machine of Tresp (2000) and GPR1 is Gaussian process regression
implemented by Tresp. 400 samples are used for training for “Boston housing” for BCM
and GPR1. RVM is the relevance vector machine of Tipping (2001) and SVM is a sup-
port vector machine implemented by Tipping. Sparse GPR is the algorithm of Smola and
Bartlett (2001) and GPR2 is their implementation of Gaussian process regression. 4000
samples are used for training for the “abalone” data set for Sparse GPR and GPR2. Online
GPR is the algorithm of Csató and Opper (2002), BCM2 is the Bayesian committee ma-
chine implemented by Schwaighofer and Tresp (2003), while inductive and transductive
SRM are algorithms from the same paper. The number of training and testing samples
is not provided by the authors for Online GPR, BCM2, inductive and transductive SRM.
SVR is the support vector regression of Vapnik (1995), BSVR is Bayesian support vector
regression of Chu et al. (2004), GPR-ARD is Gaussian process regression using the ARD
Gaussian covariance function and BSVR-ARD is BSVR using the ARD function (Chu
et al., 2004).
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8. Discussion

We have presented an approach for dimensionality estimation, manifold learning and function ap-
proximation that offers certain advantages over the state of the art. Tensor voting may on the surface
look similar to other local, instance-based learning algorithms that propagate information from point
to point, but the fact that the votes are tensors and not scalars allows them to convey considerably
more information. The properties of the tensor representation, which can handle the simultaneous
presence of multiple orientations and structure types, allow the reliable inference of the normal and
tangent space at each point. In addition, tensor voting is very robust against outliers, as demon-
strated for the 2-D and 3-D case in numerous publications including Tang and Medioni (1998) and
Medioni et al. (2000). This property holds in higher dimensions, where random noise is even more
scattered. See for instance the results presented in Table 11.

It should also be noted that the votes attenuate with distance and curvature. This is a more
intuitive formulation than using the k nearest neighbors with equal weights, since some of them
may be too far, or belong to a different part of the manifold. For both tensor voting and the methods
presented in Section 2, however, the distance metric in the input space has to be meaningful. Our
method is less sensitive to a somewhat incorrect selection of the distance metric since all neighbors
do not contribute equally. After this choice has been made, the only free parameter in our approach
is σ, the scale of voting. Small values tend to preserve details better, while large values are more
robust to noise. The scale can be selected automatically by randomly sampling a few points before
voting and making sure that enough points are included in their voting neighborhoods. Our results
show that sensitivity with respect to scale is small, as shown in Tables 1, 3, 4-6 and 7. The number of
points that can be considered sufficient is a function of the dimensionality of the space, the intrinsic
dimensionality of the data, as well as noise and curvature. The two latter factors have been analyzed
by Mitra et al. (2004) and Lalonde et al. (2005), using the Gershgorin Circle Theorem, for the case
of curves in 2-D and surfaces in 3-D under mild restrictions on data distribution. To the best of our
knowledge no similar analysis has been done for manifolds with co-dimension other than one or in
high-dimensional spaces. A thorough investigation of these issues is among the objectives of our
future research.

Our algorithms fail when the available observations do not suffice to represent the manifold,
as for instance in the face with varying pose and illumination data set of Tenenbaum et al. (2000),
where 698 instances represent a manifold in 4096-D. Global methods may be more successful in
such situations. The number of sufficient samples for tensor voting cannot be easily predicted
from the dimensionality of the space, since it also depends on the complexity (curvature) of the
underlying manifolds. (See also the discussion above.) For instance, 486 samples in 14-D turn out
to be sufficient for the “Boston housing” function approximation experiment. Nevertheless, in many
practical cases the challenges are the over-abundance of data and the need for efficient processing
of large data sets. Tensor voting is a well suited framework for such cases, since it can efficiently
process hundreds of thousands of points in spaces of up to a few hundred dimensions.

Another important advantage of tensor voting is the absence of global computations, which
makes time complexity O(NMlogM), where N is the dimensionality of the space and M is the
number of points. This property enables us to process data sets with very large number of points.
Computation time does not become impractical as the number of points grows, assuming that more
points are added to the data set in such a way that the density remains constant. In this case,
the number of votes cast per point remains constant and time requirements grow linearly. Com-
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plexity is adversely affected by the dimensionality of the space N, since eigen-decomposition of
N×N tensors has to be performed resulting in a complexity that is cubic with respect to N due to
the eigensystem computations that are O(N3). For most practical purposes, however, the number
of points has to be considerably larger2 than the dimensionality of the space (M ( N) to allow
structure inference. The complexity for a nearest neighbor query using the ANN k-d tree (Arya
et al., 1998) is O(NlogM) and one query is required for each voter. Thus the total complexity is
O(NMlogM+MN3) ≈ O(NMlogM). Computational complexity, therefore, is reasonable with re-
spect to the largest parameter, which for our methods to work has to beM. Table 1 shows the effect
of data set and neighborhood size on processing time. Notice that time is linear with respect to
the average number of points in each neighborhood, as expected. Space requirements for M N×N
tensors are O(MN2).

In terms of dimensionality estimation, we are able to obtain accurate estimates at the point level.
Moreover, since the dimensionality is found as the maximum gap in the eigenvalues of the tensor
at each point, no thresholds are needed. Under most other approaches, the dimensionality has to be
provided, or, at best, an average intrinsic dimensionality is estimated for the entire data set, as in
Bruske and Sommer (1998), Brand (2003), Kégl (2003), Weinberger and Saul (2004) and Costa and
Hero (2004).

The novelty of our approach regarding manifold learning is that it is not based on dimension-
ality reduction. Instead, we perform tasks such as geodesic distance measurement and nonlinear
interpolation in the input space. Experimental results show that we can perform these tasks in the
presence of outlier noise at high accuracy, even without explicitly removing the outliers from the
data. This choice also broadens the range of data sets we can process. While isometric embed-
dings can be achieved for a certain class of manifolds, we are able to process non-flat manifolds and
even non-manifolds. The last experiment of Section 6 demonstrates our ability to work with data
sets of varying dimensionality or with intersecting manifolds. To the best of our knowledge, this
is impossible with any other method. If dimensionality reduction is desired due to its considerable
reduction in storage requirements, a dimensionality reduction method, such as Roweis and Saul
(2000), Tenenbaum et al. (2000), Belkin and Niyogi (2003), Brand (2003), Donoho and Grimes
(2003) and Weinberger and Saul (2006), can be used after tensor voting. The benefits of this pro-
cess are in the form of noise robustness and smooth component identification, with respect to both
dimensionality and orientation, via tensor voting followed by memory savings via dimensionality
reduction.

We have also presented, in Section 7, a local nonparametric approach for function approximation
that combines the advantages of local methods with the efficient representation and information
propagation of tensor voting. Local function approximation methods are more flexible in the type of
functions they can approximate, since the properties of the function are allowed to vary throughout
the space. Our approach, in particular, has no parameters that have to be selected, such as the number
and type of local models to be used, besides the scale of voting. Its drawback, in line with other
local methods, is higher memory requirements. We have shown that we can process challenging
examples from the literature under very adverse noise conditions. As shown in the example of Eq.
10, even when more than 80% of the samples are outliers and the inliers are corrupted by noise in
the form of perturbation, we are still able to correctly predict unobserved outputs. We have also
shown in Table 12 promising results on publicly available data sets, despite the fact that they are not

2. While in principal three points are sufficient to define a surface, 10 points are sufficient to define a 9-D manifold and
so forth, one or two orders of magnitude more points are required for practical applications in our experience.
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well suited for our approach, since the number of observations they contain is hardly sufficient to
define the manifold.

As mentioned above, an issue we do not fully address here is that of the selection of an appro-
priate distance metric. We assume that the Euclidean distance in the input coordinate system is a
meaningful distance metric. This is not the case if the coordinates are not of the same type. On the
other hand, a metric such as the Mahalanobis distance is not necessarily appropriate in all cases,
since the data typically lie in a limited part of the input space and scaling all dimensions, including
the redundant ones, to achieve equal variance would be detrimental. For the experiments shown in
Section 7, we apply heuristic scaling of the coordinates when necessary. We intend to develop a
systematic way based on cross-validation that automatically scales the coordinates by maximizing
prediction performance for the observations that have been left out.

Our future research will focus on addressing the limitations of our current algorithm and extend-
ing its capabilities. An interpolation mechanism that takes into account holes and boundaries during
geodesic distance approximation should be implemented. Additionally, in the area of function ap-
proximation, the issue of approximating functions with multiple branches for the same input value,
which often appear in practical applications, has to be handled more rigorously. We also intend
to develop an online, incremental version of our approach, possibly including a forgetting and an
updating module, that will be able to process data as they are collected, instead of requiring the en-
tire data set to proceed. Potential applications of our work include challenging real problems, such
as the study of direct and inverse kinematics where there are typically large numbers of samples
in spaces of up to a few hundred dimensions. Function approximation for complex functions, for
which global models would become very complicated, is another area where our methods could be
effective. Finally, one can view the proposed approach as learning data from a single class, which
can serve as the groundwork for an approach for pattern recognition, data mining, supervised and
unsupervised classification.
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Abstract
Nonlinear dimensionality reduction methods are often used to visualize high-dimensional data, al-
though the existing methods have been designed for other related tasks such as manifold learning.
It has been difficult to assess the quality of visualizations since the task has not been well-defined.
We give a rigorous definition for a specific visualization task, resulting in quantifiable goodness
measures and new visualization methods. The task is information retrieval given the visualization:
to find similar data based on the similarities shown on the display. The fundamental tradeoff be-
tween precision and recall of information retrieval can then be quantified in visualizations as well.
The user needs to give the relative cost of missing similar points vs. retrieving dissimilar points,
after which the total cost can be measured. We then introduce a new method NeRV (neighbor
retrieval visualizer) which produces an optimal visualization by minimizing the cost. We further
derive a variant for supervised visualization; class information is taken rigorously into account
when computing the similarity relationships. We show empirically that the unsupervised version
outperforms existing unsupervised dimensionality reduction methods in the visualization task, and
the supervised version outperforms existing supervised methods.
Keywords: information retrieval, manifold learning, multidimensional scaling, nonlinear dimen-
sionality reduction, visualization

1. Introduction

Visualization of high-dimensional data sets is one of the traditional applications of nonlinear di-
mensionality reduction methods. In high-dimensional data, such as experimental data where each
dimension corresponds to a different measured variable, dependencies between different dimensions
often restrict the data points to a manifold whose dimensionality is much lower than the dimension-
ality of the data space. Many methods are designed for manifold learning, that is, to find and unfold
the lower-dimensional manifold. There has been a research boom in manifold learning since 2000,
and there now exist many methods that are known to unfold at least certain kinds of manifolds suc-
cessfully. Some of the successful methods include isomap (Tenenbaum et al., 2000), locally linear
embedding (LLE; Roweis and Saul, 2000), Laplacian eigenmap (LE; Belkin and Niyogi, 2002a),
and maximum variance unfolding (MVU; Weinberger and Saul, 2006).
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It has turned out that the manifold learning methods are not necessarily good for information
visualization. Several methods had severe difficulties when the output dimensionality was fixed
to two for visualization purposes (Venna and Kaski, 2007a). This is natural since they have been
designed to find a manifold, not to compress it into a lower dimensionality.

In this paper we discuss the specific visualization task of projecting the data to points on a two-
dimensional display. Note that this task is different from manifold learning, in case the inherent
dimensionality of the manifold is higher than two and the manifold cannot be represented perfectly
in two dimensions. As the representation is necessarily imperfect, defining and using a measure
of goodness of the representation is crucial. However, in spite of the large amount of research
into methods for extracting manifolds, there has been very little discussion on what a good two-
dimensional representation should be like and how the goodness should be measured. In a recent
survey of 69 papers on dimensionality reduction from years 2000–2006 (Venna, 2007) it was found
that 28 (≈ 40%) of the papers only presented visualizations of toy or real data sets as a proof of
quality. Most of the more quantitative approaches were based on one of two strategies. The first is
to measure preservation of all pairwise distances or the order of all pairwise distances. Examples of
this approach include the multidimensional scaling (MDS)-type cost functions like Sammon’s cost
and Stress, methods that relate the distances in the input space to the output space, and various cor-
relation measures that assess the preservation of all pairwise distances. The other common quality
assurance strategy is to classify the data in the low-dimensional space and report the classification
performance.

The problem with using the above approaches to measure visualization performance is that their
connection to visualization is unclear and indirect at best. Unless the purpose of the visualization
is to help with a classification task, it is not obvious what the classification accuracy of a projection
reveals about its goodness as a visualization. Preservation of pairwise distances, the other widely
adopted principle, is a well-defined goal; it is a reasonable goal if the analyst wishes to use the
visualization to assess distances between selected pairs of data points, but we argue that this is not
the typical way how an analyst would use a visualization, at least in the early stages of analysis when
no hypothesis about the data has yet been formed. Most approaches including ours are based on
pairwise distances at heart, but we take into account the context of each pairwise distance, yielding
a more natural way of evaluating visualization performance; the resulting method has a natural and
rigorous interpretation which we discuss below and in the following sections.

In this paper we make rigorous the specific information visualization task of projecting a high-
dimensional data set onto a two-dimensional plane for visualizing similarity relationships. This task
has a very natural mapping into an information retrieval task as will be discussed in Section 2. The
conceptualization as information retrieval explicitly reveals the necessary tradeoff between preci-
sion and recall, of making true similarities visible and avoiding false similarities. The tradeoff can
be quantified exactly once costs have been assigned to each of the two error types, and once the total
cost has been defined, it can be optimized as will be discussed in Section 3. We then show that the
resulting method, called NeRV for neighbor retrieval visualizer, can be further extended to super-
vised visualization, and that both the unsupervised and supervised methods empirically outperform
their alternatives. NeRV includes the previous method called stochastic neighbor embedding (SNE;
Hinton and Roweis, 2002) as a special case where the tradeoff is set so that only recall is maximized;
thus we give a new information retrieval interpretation to SNE.
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This paper extends our earlier conference paper (Venna and Kaski, 2007b) which introduced
the ideas in a preliminary form with preliminary experiments. The current paper gives the full
justification and comprehensive experiments, and also introduces the supervised version of NeRV.

2. Visualization as Information Retrieval

In this section we define formally the specific visualization task; this is a novel formalization of
visualization as an information retrieval task. We first give the definition for a simplified setup in
Section 2.1, and then generalize it in Section 2.2.

2.1 Similarity Visualization with Binary Neighborhood Relationships

In the following we first define the specific visualization task and a cost function for it; we then
show that the cost function is related to the traditional information retrieval measures precision and
recall.

2.1.1 TASK DEFINITION: SIMILARITY VISUALIZATION

Let {xi}Ni=1 be a set of input data samples, and let each sample i have an input neighborhood Pi,
consisting of samples that are close to i. Typically, Pi might consist of all input samples (other than
i itself) that fall within some radius of i, or alternatively Pi might consist of a fixed number of input
samples most similar to i. In either case, let ri be the size of the set Pi.

The goal of similarity visualization is to produce low-dimensional output coordinates {yi}Ni=1
for the input data, usable in visual information retrieval. Given any sample i as a query, in visual
information retrieval samples are retrieved based on the visualization; the retrieved result is a set
Qi of samples that are close to yi in the visualization; we call Qi the output neighborhood. The Qi
typically consists of all input samples j (other than i itself) whose visualization coordinates y j are
within some radius of yi in the visualization, or alternatively Qi might consist of a fixed number
of input samples whose output coordinates are nearest to yi. In either case, let ki be the number
of points in the set Qi. The number of points in Qi may be different from the number of points in
Pi; for example, if many points have been placed close to yi in the visualization, then retrieving all
points within a certain radius of yi might yield too many retrieved points, compared to how many
are neighbors in the input space. Figure 1 illustrates the setup.

The remaining question is what is a good visualization, that is, what is the cost function. Denote
the number of samples that are in both Qi and Pi by NTP,i (true positives), samples that are in Qi but
not in Pi by NFP,i (false positives), and samples that are in Pi but not Qi by NMISS,i (misses). Assume
the user has assigned a cost CFP for each false positive and CMISS for each miss. The total cost Ei
for query i, summed over all data points, then is

Ei = NFP,iCFP +NMISS,iCMISS . (1)

2.1.2 RELATIONSHIP TO PRECISION AND RECALL

The cost function of similarity visualization (1) bears a close relationship to the traditional measures
of information retrieval, precision and recall. If we allowCMISS to be a function of the total number
of relevant points r, more specificallyCMISS(ri) =C′

MISS/ri, and take the cost per retrieved point by
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Figure 1: Diagram of the types of errors in visualization.

dividing by ki, the total cost becomes

E(ki,ri) =
1
ki
E(ri) =

1
ki

(NFP,iCFP +NMISS,iCMISS(ri))

= CFP
NFP,i
ki

+
C′
MISS
ki

NMISS,i
ri

= CFP(1−precision(i))+
C′
MISS
ki

(1− recall(i)) .

The traditional definition of precision for a single query is

precision(i) =
NTP,i
ki

= 1−
NFP,i
ki

,

and recall is
recall(i) =

NTP,i
ri

= 1−
NMISS,i
ri

.

Hence, fixing the costs CFP and CMISS and minimizing (1) corresponds to maximizing a specific
weighted combination of precision and recall.

Finally, to assess performance of the full visualization the cost needs to be averaged over all
samples (queries) which yields mean precision and recall of the visualization.

2.1.3 DISCUSSION

Given a high-dimensional data set, it is generally not possible to show all the similarity relation-
ships within the data on a low-dimensional display; therefore, all linear or nonlinear dimensionality
reduction methods need to make a tradeoff about which kinds of similarity relationships they aim
to show on the display. Equation (1) fixes the tradeoff given the costs of the two kinds of errors.
Figure 2 illustrates this tradeoff (computed with methods introduced in Section 3) with a toy ex-
ample where a three-dimensional sphere surface is visualized in two dimensions. If we take some
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query point in the visualization and retrieve a set of points close-by in the visualization, in display
A such retrieval yields few false positives but many misses, whereas in display B the retrieval yields
few misses but many false positives. The tradeoff can also be seen in the (mean) precision-recall
curves for the two visualizations, where the number of retrieved points is varied to yield the curve.
Visualization A reaches higher values of precision, but the precision drops much before high recall
is reached. Visualization B has lower precision at the left end of the curve, but precision does not
drop as much even when high recall is reached.

Note that in order to quantify the tradeoff, both precision and recall need to be used. This
requires a rich enough retrieval model, in the sense that the number of retrieved points can be
different from the number of relevant points, so that precision and recall get different values. It is
well-known in information retrieval that if the numbers of relevant and retrieved items (here points)
are equal, precision and recall become equal. The recent “local continuity” criterion (Equation
9 in Chen and Buja, 2009) is simply precision/recall under this constraint; we thus give a novel
information retrieval interpretation of it as a side result. Such a criterion is useful but it gives
only a limited view of the quality of visualizations, because it corresponds to a limited retrieval
model and cannot fully quantify the precision-recall tradeoff. In this paper we will use fixed-radius
neighborhoods (defined more precisely in Section 2.2) in the visualizations, which naturally yields
differing numbers of retrieved and relevant points.

The simple visualization setup presented in this section is a novel formulation of visualization
and useful as a clearly defined starting point. However, for practical use it has a shortcoming: the
overly simple binary fixed-size neighborhoods do not take into account grades of relevance. The
cost function does not penalize violating the original similarity ordering of neighbor samples; and
the cost function penalizes all neighborhood violations with the same cost. Next we will introduce
a more practical visualization setup.

2.2 Similarity Visualization with Continuous Neighborhood Relationships

We generalize the simple binary neighborhood case by defining probabilistic neighborhoods both in
the (i) input and (ii) output spaces, and (iii) replacing the binary precision and recall measures with
probabilistic ones. It will finally be shown that for binary neighborhoods, interpreted as a constant
high probability of being a neighbor within the neighborhood set and a constant low probability
elsewhere, the measures reduce to the standard precision and recall.

2.2.1 PROBABILISTIC MODEL OF RETRIEVAL

We start by defining the neighborhood in the output space, and do that by defining a probability
distribution over the neighbor points. Such a distribution is interpretable as a model about how the
user does the retrieval given the visualization display.

Given the location of the query point on the display, yi, suppose that the user selects one point
at a time for inspection. Denote by q j|i the probability that the user chooses y j. If we can define
such probabilities, they will define a probabilistic model of retrieval for the neighbors of yi.

The form of q j|i can be defined by a few axiomatic choices and a few arbitrary ones. Since the
q j|i are a probability distribution over j for each i, they must be nonnegative and sum to one over
j; therefore we can represent them as q j|i = exp(− fi, j)/∑k %=i exp(− fi,k) where fi, j ∈ R. The fi, j
should be an increasing function of distance (dissimilarity) between yi and y j; we further assume
that fi, j depends only on yi and y j and not on the other points yk. It remains to choose the form of
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Figure 2: Demonstration of the tradeoff between false positives and misses. Top left: A three-
dimensional data set sampled from the surface of a sphere; only the front hemisphere
is shown for clarity. The glyph shapes (size, elongation, and angle) show the three-
dimensional coordinates of each point; the colors in the online version show the same
information. Bottom: Two embeddings of the data set. In the embedding A, the sphere
has been cut open and folded out. This embedding eliminates false positives, but there
are some misses because points on different sides of the tear end up far away from each
other. In contrast, the embedding B minimizes the number of misses by simply squashing
the sphere flat; this results in a large number of false positives because points on opposite
sides of the sphere are mapped close to each other. Top right: mean precision-mean recall
curves with input neighborhood size r= 75, as a function of the output neighborhood size
k, for the two projections. The embedding A has better precision (yielding higher values
at the left end of the curve) whereas the embedding B has better recall (yielding higher
values at the right end of the curve).
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fi, j. In general there should not be any reason to favor any particular neighbor point, and hence the
form should not depend on j. It could depend on i, however; we assume it has a simple quadratic
form fi, j = ||yi−y j||2/σ2

i where ||yi−y j|| is the Euclidean distance and the positive multiplier 1/σ2
i

allows the function to grow at an individual rate for each i. This yields the definition

q j|i =
exp(−

‖yi−y j‖2

σ2
i

)

∑k %=i exp(−‖yi−yk‖2

σ2
i

)
. (2)

2.2.2 PROBABILISTIC MODEL OF RELEVANCE

We extend the simple binary neighborhoods of input data samples to probabilistic neighborhoods
as follows. Suppose that if the user was choosing the neighbors of a query point i in the original
data space, she would choose point j with probability p j|i. The p j|i define a probabilistic model of
relevance for the original data, and are equivalent to a neighborhood around i: the higher the chance
of choosing this neighbor, the larger its relevance to i.

We define the probability p j|i analogously to q j|i, as

p j|i =
exp(−

d(xi,x j)2

σ2
i

)

∑k %=i exp(− d(xi,xk)2

σ2
i

)
, (3)

where d(·, ·) is a suitable difference measure in the original data, and xi refers to the point in the
original data that is represented by yi in the visualization. Some data sets may provide the values of
d(·, ·) directly; otherwise the analyst can choose a difference measure suitable for the data feature
vectors. Later in this paper we will use both the simple Euclidean distance and a more complicated
distance measure that incorporates additional information about the data.

Given known values of d(·, ·), the above definition of the neighborhood p j|i can be motivated by
the same arguments as q j|i. That is, the given form of p j|i is a good choice if no other information
about the original neighborhoods is available. Other choices are possible too; in particular, if the
data directly includes neighbor probabilities, they can simply be used as the p j|i. Likewise, if more
accurate models of user behavior are available, they can be plugged in place of q j|i. The forms of
p j|i and q j|i need not be the same.

For each point i, the scaling parameter σi controls how quickly the probabilities p j|i fall off
with distance. These parameters could be fixed by prior knowledge, but without such knowledge it
is reasonable to set the σi by specifying how much flexibility there should be about the choice of
neighbors. That is, we set σi to a value that makes the entropy of the p·|i distribution equal to logk,
where k is a rough upper limit for the number of relevant neighbors, set by the user. We use the
same relative scale σi both in the input and output spaces (Equations 2 and 3).

2.2.3 COST FUNCTIONS

The remaining task is to measure how well the retrieval done in the output space, given the visual-
ization, matches the true relevances defined in the input space. Both were above defined in terms of
distributions, and a natural candidate for the measure is the Kullback-Leibler divergence, defined as

D(pi,qi) =∑
j %=i
p j|i log

p j|i
q j|i
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where pi and qi are the neighbor distributions for a particular point i, in the input space and in the
visualization respectively. For the particular probability distributions defined above the Kullback-
Leibler divergence turns out to be intimately related to precision and recall. Specifically, for any
query i, the Kullback-Leibler divergence D(pi,qi) is a generalization of recall, and D(qi, pi) is
a generalization of precision; for simple “binary” neighborhood definitions, the Kullback-Leibler
divergences and the precision-recall measures become equivalent. The proof is in Appendix A.

We call D(qi, pi) smoothed precision and D(pi,qi) smoothed recall. To evaluate a complete
visualization rather than a single query, we define aggregate measures in the standard fashion: mean
smoothed precision is defined as Ei[D(qi, pi)] and mean smoothed recall as Ei[D(pi,qi)], where E

denotes expectation and the means are taken over queries (data points i).
Mean smoothed precision and recall are analogous to mean precision and recall in that we

cannot in general reach the optimum of both simultaneously. We return to Figure 2 which illustrates
the tradeoff for nonlinear projections of a three-dimensional sphere surface. The subfigure A was
created by maximizing mean smoothed precision; the sphere has been cut open and folded out,
which minimizes the number of false positives but also incurs some misses because some points
located on opposite edges of the point cloud were originally close to each other on the sphere. The
subfigure B was created by maximizing mean smoothed recall; the sphere is squashed flat, which
minimizes the number of misses, as all the points that were close to each other in the original data
are close to each other in the visualization. However, there are then a large number of false positives
because opposite sides of the sphere have been mapped on top of each other, so that many points
that appear close to each other in the visualization are actually originally far away from each other.

2.2.4 EASIER-TO-INTERPRET ALTERNATIVE GOODNESS MEASURES

Mean smoothed precision and recall are rigorous and well-motivated measures of visualization per-
formance, but they have one practical shortcoming for human analysts: the errors have no upper
bound, and the scale will tend to depend on the data set. The measures are very useful for compar-
ing several visualizations of the same data, and will turn out to be useful as optimization criteria,
but we would additionally like to have measures where the plain numbers are easily interpretable.
We address this by introducing mean rank-based smoothed precision and recall: simply replace the
distances in the definitions of p j|i and q j|i with ranks, so that the probability for the nearest neighbor
uses a distance of 1, the probability for the second nearest neighbor a distance of 2, and so on. This
imposes an upper bound on the error because the worst case scenario is that the ranks in the data set
are reversed in the visualization. Dividing the errors by their upper bounds gives us measures that lie
in the interval [0,1] regardless of the data and are thus much easier to interpret. The downside is that
substituting ranks for distances makes the measures disregard much of the neighborhood structure in
the data, so we suggest using mean rank-based smoothed precision and recall as easier-to-interpret,
but less discriminating complements to, rather than replacements of, mean smoothed precision and
recall.

3. Neighborhood Retrieval Visualizer (NeRV)

In Section 2 we defined similarity visualization as an information retrieval task. The quality of
a visualization can be measured by the two loss functions, mean smoothed precision and recall.
These measures generalize the straightforward precision and recall measures to non-binary neigh-
borhoods. They have the further advantage of being continuous and differentiable functions of the
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output visualization coordinates. It is then easy to use the measures as optimization criteria for a
visualization method. We now introduce a visualization algorithm that optimizes visual information
retrieval performance. We call the algorithm the neighborhood retrieval visualizer (NeRV).

As demonstrated in Figure 2, precision and recall cannot in general be minimized simultane-
ously, and the user has to choose which loss function (average smoothed precision or recall) is more
important, by assigning a cost for misses and a cost for false positives. Once these costs have been
assigned, the visualization task is simply to minimize the total cost. In practice the relative cost of
false positives to misses is given as a parameter λ. The NeRV cost function then becomes

ENeRV = λEi[D(pi,qi)]+(1−λ)Ei[D(qi, pi)]

∝ λ∑
i
∑
j %=i
p j|i log

p j|i
q j|i

+(1−λ)∑
i
∑
j %=i
q j|i log

q j|i
p j|i

(4)

where, for example, setting λ to 0.1 indicates that the user considers an error in precision
(1−0.1)/0.1 = 9 times as expensive as a similar error in recall.

To optimize the cost function (4) with respect to the output coordinates yi of each data point,
we use a standard conjugate gradient algorithm. The computational complexity of each iteration
is O(dn2), where n is the number of data points and d the dimension of the projection. (In our
earlier conference paper a coarse approximate algorithm was required for speed; this turned out
to be unnecessary, and the O(dn2) complexity does not require any approximation.) Note that if
a pairwise distance matrix in the input space is not directly provided as data, it can as usual be
computed from input features; this is a one-time computation done at the start of the algorithm and
takes O(Dn2) time, where D is the input dimensionality.

In general, NeRV optimizes a user-defined cost which forms a tradeoff between mean smoothed
precision and mean smoothed recall. If we set λ= 1 in Equation (4), we obtain the cost function of
stochastic neighbor embedding (SNE; see Hinton and Roweis, 2002). Hence we get as a side result
a new interpretation of SNE as a method that maximizes mean smoothed recall.

3.0.5 PRACTICAL ADVICE ON OPTIMIZATION

After computing the distance matrix from the input data, we scale the input distances so that the
average distance is equal to 1. We use a random projection onto the unit square as a starting point
for the algorithm. Even this simple choice has turned out to give better results than alternatives; a
more intelligent initialization, such as projecting the data using principal component analysis, can
of course also be used.

To speed up convergence and avoid local minima, we apply a further initialization step: we run
ten rounds of conjugate gradient (two conjugate gradient steps per round), and after each round
decrease the neighborhood scaling parameters σi used in Equations (2) and (3). Initially, we set the
σi to half the diameter of the input data. We decrease them linearly so that the final value makes
the entropy of the p j|i distribution equal to an effective number of neighbors k, which is the choice
recommended in Section 2.2. This initialization step has the same complexity O(dn2) per iteration
as the rest of the algorithm. After this initialization phase we perform twenty standard conjugate
gradient steps.
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4. Using NeRV for Unsupervised Visualization

It is easy to apply NeRV for unsupervised dimensionality reduction. As in any unsupervised anal-
ysis, the analyst first chooses a suitable unsupervised similarity or distance measure for the input
data; for vector-valued input data this can be the standard Euclidean distance (which we will use
here), or it can be some other measure suggested by domain knowledge. Once the analyst has spec-
ified the relative importance of precision and recall by choosing a value for λ, the NeRV algorithm
computes the embedding based on the distances it is given.

In this section we will make extensive experiments comparing the performance of NeRV with
other dimensionality reduction methods on unsupervised visualization of several data sets, including
both benchmark data sets and real-life bioinformatics data sets. In the following subsections, we
describe the comparison methods and data sets, briefly discuss the experimental methodology, and
present the results.

4.1 Comparison Methods for Unsupervised Visualization

For the task of unsupervised visualization we compare the performance of NeRV with the follow-
ing unsupervised nonlinear dimensionality reduction methods: principal component analysis (PCA;
Hotelling, 1933), metric multidimensional scaling (MDS; see Borg and Groenen, 1997), locally lin-
ear embedding (LLE; Roweis and Saul, 2000), Laplacian eigenmap (LE; Belkin and Niyogi, 2002a),
Hessian-based locally linear embedding (HLLE; Donoho and Grimes, 2003), isomap (Tenenbaum
et al., 2000), curvilinear component analysis (CCA; Demartines and Hérault, 1997), curvilinear dis-
tance analysis (CDA; Lee et al., 2004), maximum variance unfolding (MVU; Weinberger and Saul,
2006), landmark maximum variance unfolding (LMVU; Weinberger et al., 2005), and our previous
method local MDS (LMDS; Venna and Kaski, 2006).

Principal component analysis (PCA; Hotelling, 1933) finds linear projections that maximally
preserve the variance in the data. More technically, the projection directions can be found by solving
for the eigenvalues and eigenvectors of the covariance matrix Cx of the input data points. The
eigenvectors corresponding to the two or three largest eigenvalues are collected into a matrix A, and
the data points xi can then be visualized by projecting them with yi = Axi, where yi is the obtained
low-dimensional representation of xi. PCA is very closely related to linear multidimensional scaling
(linear MDS, also called classical scaling; Torgerson, 1952; Gower, 1966), which tries to find low-
dimensional coordinates preserving squared distances. It can be shown (Gower, 1966) that when
the dimensionality of the sought solutions is the same and the distance measure is Euclidean, the
projection of the original data to the PCA subspace equals the configuration of points found by
linear MDS. This implies that PCA tries to preserve the squared distances between data points, and
that linear MDS finds a solution that is a linear projection of the original data.

Traditional multidimensional scaling (MDS; see Borg and Groenen, 1997) exists in several dif-
ferent variants, but they all have a common goal: to find a configuration of output coordinates that
preserves the pairwise distance matrix of the input data. For the comparison experiments we chose
metric MDS which is the simplest nonlinear MDS method; its cost function (Kruskal, 1964), called
the raw stress, is

E =∑
i, j

(d(xi,x j)−d(yi,y j))2, (5)

460



DIMENSIONALITY REDUCTION FOR VISUALIZATION

where d(xi,x j) is the distance of points xi and x j in the input space and d(yi,y j) is the distance of
their corresponding representations (locations) yi and y j in the output space. This cost function is
minimized with respect to the representations yi.

Isomap (Tenenbaum et al., 2000) is an interesting variant of MDS, which again finds a config-
uration of output coordinates matching a given distance matrix. The difference is that Isomap does
not compute pairwise input-space distances as simple Euclidean distances but as geodesic distances
along the manifold of the data (technically, along a graph formed by connecting all k-nearest neigh-
bors). Given these geodesic distances the output coordinates are found by standard linear MDS.
When output coordinates are found for such input distances, the manifold structure in the original
data becomes unfolded; it has been shown (Bernstein et al., 2000) that this algorithm is asymptot-
ically able to recover certain types of manifolds. We used the isomap implementation available at
http://isomap.stanford.edu in the experiments.

Curvilinear component analysis (CCA; Demartines and Hérault, 1997) is a variant of MDS that
tries to preserve only distances between points that are near each other in the visualization. This is
achieved by weighting each term in the MDS cost function (5) by a coefficient that depends on the
corresponding pairwise distance in the visualization. In the implementation we use, the coefficient
is simply a step function that equals 1 if the distance is below a predetermined threshold and 0 if it
is larger.

Curvilinear distance analysis (CDA; Lee et al., 2000, 2004) is an extension of CCA. The idea is
to replace the Euclidean distances in the original space with geodesic distances in the same manner
as in the isomap algorithm. Otherwise the algorithm stays the same.

Local MDS (LMDS; Venna and Kaski, 2006) is our earlier method, an extension of CCA that
focuses on local proximities with a tunable cost function tradeoff. It can be seen as a first step in the
development of the ideas of NeRV.

The locally linear embedding (LLE; Roweis and Saul, 2000) algorithm is based on the assump-
tion that the data manifold is smooth enough and is sampled densely enough, such that each data
point lies close to a locally linear subspace on the manifold. LLE makes a locally linear approx-
imation of the whole data manifold: LLE first estimates a local coordinate system for each data
point, by calculating linear coefficients that reconstruct the data point as well as possible from its k
nearest neighbors. To unfold the manifold, LLE finds low-dimensional coordinates that preserve the
previously estimated local coordinate systems as well as possible. Technically, LLE first minimizes
the reconstruction error E(W) = ∑i ‖xi−∑ jWi, jx j‖2 with respect to the coefficientsWi, j, under the
constraints that Wi, j = 0 if i and j are not neighbors, and ∑ jWi, j = 1. Given the weights, the low-
dimensional configuration of points is next found by minimizing E(Y) = ∑i ‖yi−∑ jWi, jy j‖2 with
respect to the low-dimensional representation yi of each data point.

The Laplacian eigenmap (LE; see Belkin and Niyogi, 2002a) uses a graph embedding approach.
An undirected k-nearest-neighbor graph is formed, where each data point is a vertex. Points i and j
are connected by an edge with weightWi, j = 1 if j is among the k nearest neighbors of i, otherwise
the edge weight is set to zero; this simple weighting method has been found to work well in practice
(Belkin and Niyogi, 2002b). To find a low-dimensional embedding of the graph, the algorithm tries
to put points that are connected in the graph as close to each other as possible and does not care what
happens to the other points. Technically, it minimizes 1

2 ∑i, j ‖yi− y j‖2Wi, j = yTLy with respect to
the low-dimensional point locations yi, where L = D−W is the graph Laplacian and D is a diagonal
matrix with elements Dii = ∑ jWi, j. However, this cost function has an undesirable trivial solution:
putting all points in the same position would minimize the cost. This can be avoided by adding suit-
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able constraints. In practice the low-dimensional configuration is found by solving the generalized
eigenvalue problem Ly = λDy (Belkin and Niyogi, 2002a). The smallest eigenvalue corresponds
to the trivial solution, but the eigenvectors corresponding to the next smallest eigenvalues give the
Laplacian eigenmap solution.

The Laplacian eigenmap algorithm reduces to solving a generalized eigenvalue problem because
the cost function that is minimized is a quadratic form involving the Laplacian matrix L. The
Hessian-based locally linear embedding (HLLE; Donoho and Grimes, 2003) algorithm is similar,
but the Laplacian L is replaced by the Hessian H.

The maximum variance unfolding algorithm (MVU; Weinberger and Saul, 2006) expresses di-
mensionality reduction as a semidefinite programming problem. One way of unfolding a folded flag
is to pull its four corners apart, but not so hard as to tear the flag. MVU applies this idea to projecting
a manifold: the projection maximizes variance (pulling apart) while preserving distances between
neighbors (no tears). The constraint of local distance preservation can be expressed in terms of the
Gram matrix K of the mapping. Maximizing the variance of the mapping is equivalent to maxi-
mizing the trace of K under a set of constraints, which, it turns out, can be done using semidefinite
programming.

A notable disadvantage of MVU is the time required to solve a semidefinite program for n×n
matrices when the number of data points n is large. Landmark MVU (LMVU; Weinberger et al.,
2005) addresses this issue by significantly reducing the size of the semidefinite programming prob-
lem. Like LLE, LMVU assumes that the data manifold is sufficiently smooth and densely sampled
that it is locally approximately linear. Instead of embedding all the data points directly as MVU
does, LMVU randomly chooses m) n inputs as so-called landmarks. Because of the local linear-
ity assumption, the other data points can be approximately reconstructed from the landmarks using
a linear transformation. It follows that the Gram matrix K can be approximated using the m×m
submatrix of inner products between landmarks. Hence we only need to optimize over m×m matri-
ces, a much smaller semidefinite program. Other recent approaches for speeding up MVU include
matrix factorization based on a graph Laplacian (Weinberger et al., 2007).

In addition to the above comparison methods, other recent work on dimensionality reduction in-
cludes minimum volume embedding (MVE; Shaw and Jebara, 2007), which is similar to MVU, but
where MVU maximizes the whole trace of the Gram matrix (the sum of all eigenvalues), MVE max-
imizes the sum of the first few eigenvalues and minimizes the sum of the rest, in order to preserve
the largest amount of eigenspectrum energy in the few dimensions that remain after dimensionality
reduction. In practice, a variational upper bound of the resulting criterion is optimized.

Very recently, a number of unsupervised methods have been compared by van der Maaten et al.
(2009) in terms of classification accuracy and our old criteria trustworthiness-continuity.

4.2 Data Sets for Unsupervised Visualization

We used two synthetic benchmark data sets and four real-life data sets for our experiments.
The plain s-curve data set is an artificial set sampled from an S-shaped two-dimensional surface

embedded in three-dimensional space. An almost perfect two-dimensional representation should be
possible for a non-linear dimensionality reduction method, so this data set works as a sanity check.

The noisy s-curve data set is otherwise identical to the plain s-curve data set, but significant
spherical normally distributed noise has been added to each data point. The result is a cloud of
points where the original S-shape is difficult to discern by visual inspection.
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The faces data set consists of ten different face images of 40 different people, for a total of 400
images. For a given subject, the images vary in terms of lighting and facial expressions. The size of
each image is 64×64 pixels, with 256 grey levels per pixel. The data set is available for download
at http://www.cs.toronto.edu/˜roweis/data.html.

The mouse gene expression data set is a collection of gene expression profiles from different
mouse tissues (Su et al., 2002). Expression of over 13,000 mouse genes had been measured in
45 tissues. We used an extremely simple filtering method, similar to that originally used by Su
et al. (2002), to select the genes for visualization. Of the mouse genes clearly expressed (average
difference in Affymetrix chips, AD > 200) in at least one of the 45 tissues (dimensions), a random
sample of 1600 genes (points) was selected. After this the variance in each tissue was normalized
to unity.

The gene expression compendium data set is a large collection of human gene expression arrays
(http://dags.stanford.edu/cancer; Segal et al., 2004). Since the current implementations of
all methods do not tolerate missing data we removed samples with missing values altogether. First
we removed genes that were missing from more than 300 arrays. Then we removed the arrays
for which values were still missing. This resulted in a data set containing 1278 points and 1339
dimensions.

The sea-water temperature time series data set (Liitiäinen and Lendasse, 2007) is a time series
of weekly temperature measurements of sea water over several years. Each data point is a time
window of 52 weeks, which is shifted one week forward for the next data point. Altogether there
are 823 data points and 52 dimensions.

4.3 Methodology for the Unsupervised Experiments

The performance of NeRV was compared with 11 unsupervised dimensionality reduction methods
described in Section 4.1, namely principal component analysis (PCA), metric multidimensional
scaling (here simply denoted MDS), locally linear embedding (LLE), Laplacian eigenmap (LE),
Hessian-based locally linear embedding (HLLE), isomap, curvilinear component analysis (CCA),
curvilinear distance analysis (CDA), maximum variance unfolding (MVU), landmark maximum
variance unfolding (LMVU), and local MDS (LMDS). LLE, LE, HLLE, MVU, LMVU and isomap
were computed with code from their developers; MDS, CCA and CDA used our code.

4.3.1 GOODNESS MEASURES

We used four pairs of performance measures to compare the methods. The first pair is mean
smoothed precision-mean smoothed recall, that is, our new measures of visualization quality. The
scale of input neighborhoods was fixed to 20 relevant neighbors (see Section 2.2).

Although we feel, as explained in Section 2, that smoothed precision and smoothed recall are
more sophisticated measures of visualization performance than precision and recall, we have also
plotted standard mean precision-mean recall curves. The curves were plotted by fixing the 20
nearest neighbors of a point in the original data as the set of relevant items, and then varying the
number of neighbors retrieved from the visualization between 1 and 100, plotting mean precision
and recall for each number.

Our third pair of measures are the rank-based variants of our new measures, mean rank-based
smoothed precision-mean rank-based smoothed recall. Recall that we introduced the rank-based
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variants as easier-to-interpret, but less discriminating, alternatives to mean smoothed precision and
mean smoothed recall. The scale of input neighborhoods was again fixed to 20 relevant neighbors.

Our fourth pair of measures is trustworthiness-continuity (Kaski et al., 2003). The intuitive
motivation behind these measures was the same trade-off between precision and recall as in this
paper, but the measures were defined in a more ad hoc way. At the time we did not have the
clear connection to information retrieval which makes NeRV particularly attractive, and we did
not optimize the measures. Trustworthiness and continuity can, however, now be used as partly
independent measures of visualization quality. To compute the trustworthiness and continuity, we
used neighborhoods of each point containing the 20 nearest neighbors.

As a fifth measure, when data classes are available, we use classification error given the display,
with a standard k-nearest neighbor classifier where we set k = 5.

4.3.2 CHOICE OF PARAMETERS

Whenever we needed to choose a parameter for any method, we used the same criterion, namely the
F-measure computed from the new rank-based measures. That is, we chose the parameter yielding
the largest value of 2(P ·R)/(P+R) where P and R are the mean rank-based smoothed precision
and recall.

Many of the methods have a parameter k denoting the number of nearest neighbors for con-
structing a neighborhood graph; for each method and each data set we tested values of k ranging
from 4 to 20, and chose the value that produced the best F-measure. (For MVU and LMVU we used
a smaller parameter range to save computational time. For MVU k ranged from 4 to 6; for LMVU
k ranged from 3 to 9.) The exceptions are local MDS (LMDS), one of our own earlier methods, and
NeRV, for which we simply set k to 20 without optimizing it.

Methods that may have local optima were run five times with different random initializations
and the best run (again, in terms of the F-measure) was selected.

4.4 Results of Unsupervised Visualization

We will next show visualizations for a few sets, and measure quantitatively the results of several.
We begin by showing an example of a NeRV visualization for the plain S-curve data set in Figure 3.
Later in this section we will show a NeRV visualization of a synthetic face data set (Figure 8), and in
Section 4.6 of the faces data set of real face images (Figure 11). The quantitative results are spread
across four figures (Figures 4–7), each of which contains results for one pair of measures and all six
data sets.

We first show the curves of mean smoothed precision-mean smoothed recall, that is, the loss
functions associated with our formalization of visualization as information retrieval. The results
are shown in Figure 4. NeRV and local MDS (LMDS) form curves parameterized by λ, which
ranges from 0 to 1.0 for NeRV and from 0 to 0.9 for LMDS. NeRV was clearly the best-performing
method on all six data sets, which is of course to be expected since NeRV directly optimizes a linear
combination of these measures. LMDS has a relatively good mean smoothed precision, but does
not perform as well in terms of mean smoothed recall. Simple metric MDS also stands out as a
consistently reasonably good method.

Because we formulated visualization as an information retrieval task, it is natural to also try
existing measures of information retrieval performance, that is, mean precision and mean recall,
even though they do not take into account grades of relevance as discussed in Section 2.1. Standard
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Original data NeRV visualization

Figure 3: Left: Plain S-curve data set. The glyph shapes (size, elongation, and angle) show the
three-dimensional coordinates of each point; the colors in the online version show the
same information. Right: NeRV visualization (here λ= 0.8).

mean precision-mean recall curves are shown in Figure 5; for NeRV and LMDS, we show the curve
for a single λ value picked by the F-measure as described in Section 4.3. Even with these coarse
measures, NeRV shows excellent performance: NeRV is best on four data sets in terms of the area
under the curve, CDA and CCA are each best on one data set.

Next, we plot our easier-to-interpret but less discriminating alternative measures of visualization
performance. The curves ofmean rank-based smoothed precision-mean rank-based smoothed recall
are shown in Figure 6. These measures lie between 0 and 1, and may hence be easier to compare
between data sets. With these measures, NeRV again performs best on all data sets; LMDS also
performs well, especially on the seawater temperature data.

Finally, we plot the curves of trustworthiness-continuity, shown in Figure 7. The results are
fairly similar to the new rank-based measures: once again NeRV performs best on all data sets and
LMDS also performs well, especially on the seawater temperature data.

4.4.1 EXPERIMENT WITH A KNOWN UNDERLYING MANIFOLD

To further test how well the methods are able to recover the neighborhood structure inherent in the
data we studied a synthetic face data set where a known underlying manifold defines the relevant
items (neighbors) of each point. The SculptFaces data contains 698 synthetic images of a face (sized
64×64 pixels each). The pose and direction of lighting have been changed in a systematic way to
create a manifold in the image space (http://web.mit.edu/cocosci/isomap/datasets.html;
Tenenbaum et al., 2000). We used the raw pixel data as input features.

The pose and lighting parameters used to generate the images are available. These parameters
define the manifold of the faces embedded in the very high-dimensional image space. For any face
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Figure 4: Mean smoothed precision-mean smoothed recall plotted for all six data sets. For clarity,
only a few of the best-performing methods are shown for each data set. We have actually
plotted −1·(mean smoothed precision) and −1·(mean smoothed recall) to maintain visual
consistency with the plots for other measures: in each plot, the best performing methods
appear in the top right corner.

image, the relevant other faces are the ones that are neighbors with respect to the pose and lighting
parameters; we defined the ground truth neighborhoods using Euclidean distances in the pose and
lighting space, and we fixed the scale of the ground truth neighborhoods to 20 relevant neighbors
(see Section 2.2).
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Figure 5: Mean precision-mean recall curves plotted for all six data sets. For clarity, only the best
methods (with largest area under curve) are shown for each data set. In each plot, the best
performance is in the top right corner. For NeRV and LMDS, a single λ value picked with
the F-measure is shown.

We ran all methods for this data as in all experiments in this section, and then calculated four
performance curves (mean smoothed precision-mean smoothed recall, mean precision-mean re-
call, mean rank-based smoothed precision-mean rank-based smoothed recall, and trustworthiness-
continuity) using the neighborhoods in pose and lighting space as the ground truth. The results are
shown in Figure 8. In spite of the very high dimensionality of the input space and the reduction of
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Figure 6: Mean rank-based smoothed precision-mean rank-based smoothed recall plotted for all six
data sets. For clarity, only a few of the best performing methods are shown for each data
set. We have actually plotted 1−(mean rank-based smoothed precision) and 1−(mean
rank-based smoothed recall) to maintain visual consistency with the plots for other mea-
sures: in each plot, the best performance is in the top right corner.

the manifold dimension from three to two, NeRV was able to recover the structure well. NeRV is
the best according to both of our proposed measures of visualization performance, mean smoothed
precision and recall; MDS and local MDS also perform well. In terms of the simple mean precision
and mean recall NeRV is the second best with CDA being slightly better. In terms of the rank-based
measures, NeRV is the best in terms of precision; LE and MDS attain the best mean rank-based
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Figure 7: Trustworthiness-continuity plotted for all six data sets. For clarity, only a few of the best
performing methods are shown for each data set. In each plot, the best performance is in
the top right corner.

smoothed recall; and local MDS and CDA also perform well. When performance was measured
with trustworthiness and continuity, NeRV was the best in terms of trustworthiness while MVU and
Isomap attained the highest continuity.

Overall, NeRV was the best in these unsupervised visualization tasks, although it was not the
best in all, and in some tasks it had tough competition.
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Figure 8: Top: Sample projections of the SculptFaces data set (NeRV vs. the best alternative).
Bottom: How well were the ground truth neighbors in pose-lighting space retrieved from
the image data, evaluated by four pairs of measures. The measures were computed the
same way as before, as described in Section 4.3, but here taking the known pose and
lighting information as the input data. Only the best performing methods are shown for
clarity.

4.5 Comparison by Unsupervised Classification

For the data sets where a classification of samples is available, we additionally follow a traditional
way to evaluate visualizations: we measure how well samples can be classified based on the visual-
ization.
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Data set Dimensions Classes
Letter 16 26

Phoneme 20 13
Landsat 36 6
TIMIT 12 41

Table 1: The data sets used in the unsupervised classification experiments.

Here all methods are unsupervised, that is, class labels of samples are not used in computing the
visualization. The parameters of methods are again chosen as described in Section 4.3.2. Methods
are evaluated by k-nearest neighbor classification accuracy (with k = 5), that is, each sample in the
visualization is classified by majority vote of its k nearest neighbors in the visualization, and the
classification is compared to the ground truth label.

We use four benchmark data sets, all of which include class labels, to compare the performances
of the methods. The data sets are summarized in Table 1. For all data sets we used a randomly
chosen subset of 1500 samples in the experiments, to save computation time.

The letter recognition data set (denoted Letter) is from the UCI Machine Learning Repository
(Blake and Merz, 1998); it is a 16-dimensional data set with 26 classes, which are 4×4 images of
the 26 capital letters of the alphabet. These letters are based on 20 different fonts which have been
distorted to produce the final images.

The phoneme data set (denoted Phoneme) is taken from LVQ-PAK (Kohonen et al., 1996) and
consists of phoneme samples represented by a 20-dimensional vector of features plus a class label
indicating which phoneme is actually represented. There are a total of 13 classes.

The landsat satellite data set (denoted Landsat) is from UCI Machine Learning Repository
(Blake and Merz, 1998). Each data point is a 36-dimensional vector, corresponding to a 3 × 3
satellite image measured in four spectral bands; the class label of the point indicates the terrain type
in the image (6 possibilitities, for example red soil).

The TIMIT data set is taken from the DARPA TIMIT speech database (TIMIT). It is similar
to the phoneme data from LVQ-PAK but the feature vectors are 12-dimensional and there are 41
classes in total.

The resulting classification error rates are shown in Table 2. NeRV is best on two out of four
data sets and second best on a third set (there our old method LocalMDS is best). CDA is best on
one.

4.6 NeRV, Joint Probabilities, and t-Distributions

Very recently, based on stochastic neighbor embedding (SNE), van der Maaten and Hinton (2008)
have proposed a modified method called t-SNE, which has performed well in unsupervised exper-
iments. The t-SNE makes two changes compared to SNE; in this section we describe the changes
and show that the same changes can be made to NeRV, yielding a variant that we call t-NeRV. We
then provide a new information retrieval interpretation for t-NeRV and t-SNE.

We start by analyzing the differences between t-SNE and the original stochastic neighbor em-
bedding. The original SNE minimizes the sum of Kullback-Leibler divergences

∑
i
∑
j %=i
p j|i log

p j|i
q j|i
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Letter Phoneme Landsat TIMIT
Eigenmap 0.914 0.121 0.168 0.674
LLE n/a 0.118 0.212 0.722
Isomap 0.847 0.134 0.156 0.721
MVU 0.763 0.155 0.153 0.699
LMVU 0.819 0.208 0.151 0.787
MDS 0.823 0.189 0.151 0.705
CDA 0.336 0.118 0.141 0.643
CCA 0.422 0.098 0.143 0.633
NeRV 0.532 0.079 0.139 0.626
LocalMDS 0.499 0.118 0.128 0.637

Table 2: Error rates of k-nearest neighbor classification based on the visualization, for unsupervised
visualization methods. The best results for each data set are in bold; n/a denotes that LLE
did not yield a result for the Letter data. NeRV attains the lowest error rate for two data
sets and second lowest error rate for one data set.

where p j|i and q j|i are defined by Equations (3) and (2). We showed in Section 2.2 that this cost
function has an information retrieval interpretation: it corresponds to mean smoothed recall of re-
trieving neighbors of query points. The t-SNE method makes two changes which we discuss below.

4.6.1 COST FUNCTION BASED ON JOINT PROBABILITIES

The first change in t-SNE is to the cost function: t-SNE minimizes a “symmetric version” of the
cost function, defined as

∑
i
∑
j %=i
pi, j log

pi, j
qi, j

where the pi, j and qi, j are now joint probabilities over both i and j, so that ∑i, j pi, j = 1 and similarly
for qi, j. The term “symmetric” comes from the fact that the joint probabilities are defined in a
specific way for which pi, j = p j,i and qi, j = q j,i; note that this need not be the case for all definitions
of the joint probabilities.

4.6.2 DEFINITIONS OF THE JOINT PROBABILITIES

The second change in t-SNE is that the joint probabilities are defined in a manner which does not
yield quite the same conditional probabilities as in Equations (3) and (2). The joint probabilities are
defined as

pi, j =
1
2n

(pi| j + p j|i) (6)

where pi| j and p j|i are computed by Equation (3) and n is the total number of data points in the data
set, and

qi, j =
(1+ ||yi−y j||2)−1

∑k %=l(1+ ||yk−yl||2)−1 . (7)

The former equation is intended to ensure that, in the input space, even outlier points will have some
other points as neighbors. The latter equation means that, in the visualization, the joint probability
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falls off according to a (normalized) t-distribution with one degree of freedom, which is intended
to help with a crowding problem: because the volume of a small-dimensional neighborhood grows
slower than the volume of a high-dimensional one, the neighborhood ends up stretched in the visu-
alization so that moderately distant point pairs are placed too far apart. This tends to cause clumping
of the data in the center of the visualization. Since the t-distribution has heavier tails than a Gaus-
sian, using such a distribution for the qi, j makes the visualization less affected by the placement of
the moderately distant point pairs, and hence better able to focus on other features of the data.

4.6.3 NEW METHOD: T-NERV

We can easily apply the above-described changes to the cost function in NeRV; we call the resulting
variant t-NeRV. We define the cost function as

Et-NeRV = λ∑
i
∑
j %=i
pi, j log

pi, j
qi, j

+(1−λ)∑
i
∑
j %=i
qi, j log

qi, j
pi, j

= λD(p,q)+(1−λ)D(q, p) (8)

where p and q are the joint distributions over i and j defined by the pi, j and the qi, j, and the individual
joint probabilities are given by Equations (6) and (7).

It can be shown that this changed cost function again has a natural information retrieval interpre-
tation: it corresponds to the tradeoff between smoothed precision and smoothed recall of a two-step
information retrieval task, where an analyst looks at a visualization and (step 1) picks a query point
and then (step 2) picks a neighbor for the query point. The probability of picking a query point i
depends on how many other points are close to it (that is, it depends on ∑ j qi, j), and the probability
of picking a neighbor depends as usual on the relative closenesses of the neighbors to the query.
Both choices are done based on the visualization, and the choices are compared by smoothed pre-
cision and smoothed recall to the relevant pairs of queries and neighbors that are defined based on
the input space. The parameter λ again controls the tradeoff between precision and recall.

The connection between the D(p,q) and the recall of the two-step retrieval task can be shown
by a similar proof as in Appendix A, the main difference being that conditional distributions p j|i
and q j|i are replaced by joint distributions pi, j and qi, j, and the sums then go over both i and j. The
connection between D(q, p) and precision can be shown analogously.

As a special case, setting λ = 1 in the above cost function, that is, optimizing only smoothed
recall of the two-step retrieval task, yields the cost function of t-SNE. We therefore provide a novel
information retrieval interpretation of t-SNE as a method that maximizes recall of query points and
their neighbors.

The main conceptual difference between NeRV and t-NeRV is that in t-NeRV the probability
of picking a query point in the visualization and in the input space depends on the densities in the
visualization and input space respectively; in NeRV all potential query points are treated equally.
Which treatment of query points should be used depends on the task of the analyst. Additionally,
NeRV and t-NeRV have differences in the technical forms of the probabilities, that is, whether
t-distributions or Gaussians are used etc.

The t-NeRV method can be optimized with respect to visualization coordinates yi of points, by
conjugate gradient optimization as in NeRV; the computational complexity is also the same.

4.6.4 COMPARISON

We briefly compare t-NeRV and NeRV on the Faces data set. The setup is the same as in the previous
comparison experiments (Figures 4–7). For t-NeRV we use the effective number of neighbors k= 40
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to compute the joint probabilities pi, j; this corresponds to the perplexity value used by the authors
of t-SNE (van der Maaten and Hinton, 2008).

Figure 9 shows the results for the four unsupervised evaluation criteria. According to the mean
smoothed precision and mean smoothed recall measures, t-NeRV does worse in terms of recall.
The rank-based measures indicate a similar result; however, there t-NeRV does fairly well in terms
of mean rank-based smoothed precision. The trustworthiness-continuity curves are similar to the
rank-based measures. The curves of mean precision versus mean recall show that t-NeRV does
achieve better precision for small values of recall (i.e., for small retrieved neighborhoods), while
NeRV does slightly better for larger retrieved neighborhoods. These measures correspond to the
information retrieval interpretation of NeRV which is slightly different from that of t-NeRV, as
discussed above. Figure 9 E shows mean smoothed precision/recall in the t-NeRV sense, where
t-NeRV naturally performs relatively better.

Lastly, we computed k-nearest neighbor classification error rate (using k = 5) with respect to
the identity of the persons in the images. NeRV (with λ = 0.3) attained an error rate of 0.394 and
t-NeRV (with λ= 0.8) an error rate of 0.226. Here t-NeRV is better; this may be because it avoids
the problem of crowding samples near the center of the visualization.

Figures 10-12 show example visualizations of the faces data set. First we show a well-performing
comparison method (CDA; Figure 10); it has arranged the faces well in terms of keeping images of
the same person in a single area; however, the areas of each person are diffuse and close to other
persons, hence there is no strong separation between persons on the display. NeRV, here optimized
to maximize precision, makes clearly tighter clusters of each person (Figure 11), which yields better
retrieval of neighbor face images. However, NeRV has here placed several persons close to each
other in the center of the visualization. The t-NeRV visualization, again optimized to maximize
precision (Figure 12) has lessened this behavior, placing the clusters of faces more evenly.

Overall, t-NeRV is a useful alternative formulation of NeRV, and may be useful for data sets
especially where crowding near the center of the visualization is an issue.

5. Using NeRV for Supervised Visualization

In this section we show how to use NeRV for supervised visualization. The key idea is simple: NeRV
can be computed based on any input-space distances d(xi,x j), not only the standard Euclidean
distances. All that is required for supervised visualization is to compute the input-space distances in
a supervised manner. The distances are then plugged into the NeRV algorithm and the visualization
proceeds as usual. Note that doing the visualization modularly in two steps is an advantage, since it
will be later possible to easily change the algorithm used in either step if desired.

Conveniently, rigorous methods exist for learning a supervised metric from labeled data sam-
ples. Learning of supervised metrics has recently been extensively studied for classification pur-
poses and for some semi-supervised tasks, with both simple linear approaches and complicated
nonlinear ones; see, for instance, works by Xing et al. (2003), Chang and Yeung (2004), Globerson
and Roweis (2006) and Weinberger et al. (2006). Any such metric can in principle be used to com-
pute distances for NeRV. Here we use an early one, which is flexible and can be directly plugged
in the NeRV, namely the learning metric (Kaski et al., 2001; Kaski and Sinkkonen, 2004; Peltonen
et al., 2004) which was originally proposed for data exploration tasks.

We will call NeRV computed with the supervised distances “supervised NeRV” (SNeRV). The
information retrieval interpretation of NeRV carries over to SNeRV. Under certain parameter set-
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Figure 9: Comparison of NeRV and t-NeRV on the Faces data set according to the four goodness
measures described in Section 4.3 (A-D), and for mean smoothed precision/recall corre-
sponding to the information retrieval interpretation of t-NeRV (E; first and second terms
of Eqn. 8).

tings SNeRV can be seen as a new, supervised version of stochastic neighbor embedding, but more
generally it manages a flexible tradeoff between precision and recall of the information retrieval just
like the unsupervised NeRV does.

SNeRV has the useful property that it can directly compute embeddings for unlabeled training
points as well as labeled ones. By contrast, some supervised nonlinear dimensionality reduction
methods (Geng et al., 2005; Liu et al., 2005; Song et al., 2008) only give embeddings for labeled
points; for unlabeled points, the mapping is approximated for instance by interpolation or by training
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Figure 10: Example visualization of the Faces data set with CDA.

a neural network. Such approximation is not needed for SNeRV. (On the other hand, a trained neural
network can embed not only unlabeled training points, but also previously unseen new points; if
such generalization is desired, the same kinds of approximate mappings can be learned for SNeRV.)

In the next subsections we present the details of the distance computation, and then describe
experimental comparisons showing that SNeRV outperforms several existing supervised methods.

5.1 Supervised Distances for NeRV

The input-space distances for SNeRV are computed using learning metrics (Kaski et al., 2001;
Kaski and Sinkkonen, 2004; Peltonen et al., 2004). It is a formalism particularly suited for so-
called “supervised unsupervised learning” where the final goal is still to make discoveries as in
unsupervised learning, but the metric helps to focus the analysis by emphasizing useful features
and, moreover, does that locally, differently for different samples. Learning metrics have previously
been applied to clustering and visualization.

In brief, the learning metric is a Riemannian topology-preserving metric that measures dis-
tances in terms of changes in the class distribution. The class distribution is estimated through
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Figure 11: Example visualization of the Faces data set with NeRV, here maximizing precision
(tradeoff parameter λ= 0).

conditional density estimation from labeled samples. Topology preservation helps in generalizing
to new points, since class information cannot override the input space topology. In this metric, we
can compute input-space distances between any two data points, and hence visualize the points with
NeRV, whether they have known labels or not.

5.1.1 DEFINITION

The learning metric is a so-called Riemannian metric. Such a metric is defined in a local manner;
between two (infinitesimally) close-by points it has a simple form, and this simple form is extended
through path integrals to global distances.

In the learning metric, the squared distance between two close-by points x1 and x2 is given by
the quadratic form

dL(x1,x2)
2 = (x1 −x2)

TJ(x1)(x1 −x2). (9)
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Figure 12: Example visualization of the Faces data set with t-NeRV, here maximizing precision
(tradeoff parameter λ= 0).

Here J(x) is the Fisher information matrix which describes the local dependency of the conditional
class distribution on the input features, that is,

J(x) =∑
c
p(c|x)

(

∂
∂x log p(c|x)

)(

∂
∂x log p(c|x)

)T
.

Here the c are the classes and the p(c|x) are the conditional class probabilities at point x. The
idea is that the local distances grow the most along directions where the conditional class distribu-
tion p(c|x) changes the most. It can be shown that the quadratic form (9) is, for close-by points,
equivalent to the Kullback-Leibler divergence D(p(c|x1), p(c|x2)).

The general distance dL(x1,x2) between two far-away points x1 and x2 is defined in the standard
fashion of Riemannian metrics: the distance is the minimal path integral over local distances, where
the minimum is taken over all possible paths connecting x1 and x2. Notice that in a Riemannian
metric, the straight path may not yield the minimum distance.
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Learning metrics defined in the above manner satisfy the three criteria required of any metric:
the distances dL are nonnegative, symmetric, and satisfy the triangle inequality. Because the learning
metric distances are defined as minimal path integrals they preserve the topology of the input space;
roughly speaking, if the distance between two points is small, then there must be a path between
them where distances are small along the entire path.

5.1.2 PRACTICAL COMPUTATION

In order to compute local distances using the Fisher information matrices J(x), we need an esti-
mate for the conditional probability distributions p(c|x). We learn the distributions by optimizing
a discriminative mixture of labeled Gaussian densities for the data (Peltonen et al., 2004). The
conditional density estimate is of the form

p̂(c|x) =
∑K
k=1βck exp(−||x−mk||2/2σ2)

∑K
k=1 exp(−||x−mk||2/2σ2)

(10)

where the number of Gaussians K, the centroids mk, the class probabilities βck and the Gaussian
width σ (standard deviation) are parameters of the estimate; we require that the βck are nonnegative
and that ∑cβck = 1 for all k. The mk and βck are optimized by a conjugate gradient algorithm to
maximize the conditional class likelihood, and K and σ are chosen by internal cross-validation (see
Section 5.3).

Given the Fisher matrices, we next need to compute the global distances between all point pairs.
In most cases the minimal path integrals in the global distance definition cannot be computed ana-
lytically, and we use a graph-based approximation. We first form a fully connected graph between
all known data points, where the path between each pair of points is approximated by a straight
line. For these straight paths, the path integral can be computed by piecewise approximation (see
Peltonen et al., 2004, for details; we use T = 10 pieces in all experiments). We could then use graph
search (Floyd’s algorithm) to find the shortest paths in the graph and use the shortest path distances
as the learning metric distances. This graph approximation would take O(n3) time where n is the
number of data points; note that this would not be excessive since a similar graph computation is
needed in methods like isomap. However, in our experiments the straight line paths yielded about
equally good results, so we simply use them, which takes only O(n2) time. Therefore SNeRV as a
whole took only O(n2) time just like NeRV.

5.2 Comparison Methods for Supervised Visualization

For each data set to be visualized, the choice of supervised vs. unsupervised visualization is up to
the analyst; in general, supervised embedding will preserve differences between classes better but at
the expense of within-class details. In the experiments of this section we concentrate on comparing
performances of supervised methods; we will compare SNeRV to three recent supervised nonlinear
embedding methods.

Multiple relational embedding (MRE; Memisevic and Hinton, 2005) was proposed as an ex-
tension of stochastic neighbor embedding (Hinton and Roweis, 2002). MRE minimizes a sum of
mismatches, measured by Kullback-Leibler divergence, between neighborhoods in the embedding
and several different input neighborhoods: typically one of the input neighborhoods is derived from
the input-space coordinates and the others are derived from auxiliary information such as labels.
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MRE is able to use unlabeled data; for unlabeled points, divergences that involve neighborhoods
based on labels are simply left out of the cost function.

Colored maximum variance unfolding (Song et al., 2008) is an extension of the unsupervised
maximum variance unfolding. It maximizes the dependency between the embedding coordinates
and the labels according to the Hilbert-Schmidt independence criterion, which is based on a cross-
covariance operator. This leads to constrained optimization of the output kernel. Because of these
details the method is also called maximum unfolding via Hilbert-Schmidt independence criterion
(MUHSIC); we use this abbreviation.

Supervised isomap (S-Isomap; Geng et al., 2005) is an extension of the unsupervised isomap.
The only difference to unsupervised isomap is a new definition of the input-space distances: roughly
speaking, distances between points in different classes will grow faster than distances between
same-class points. The actual embedding is done in the same way as in unsupervised isomap (de-
scribed in Section 4.1). Other supervised extensions of isomap have been introduced by Li and Guo
(2006) and Gu and Xu (2007).

Parametric embedding (PE; Iwata et al., 2007) represents the embedded data with a Gaussian
mixture model with all Gaussians having the same covariances in the embedding space, and attempts
to preserve the topology of the original data by minimizing a sum of Kullback-Leibler divergences.

Neighbourhood component analysis (NCA; Goldberger et al., 2005; see also Kaski and Pel-
tonen, 2003, Peltonen and Kaski, 2005) is a linear and non-parametric dimensionality reduction
method which learns a Mahalanobis distance measure such that, in the transformed space, k-nearest
neighbor classification achieves the maximum accuracy.

5.3 Methodology for the Supervised Experiments

We used the four benchmark data sets having class information (Letter, Phoneme, Landsat, and
TIMIT described in Section 4.5) to compare supervised NeRV and the five supervised visualization
methods described in Section 5.2, namely multiple relational embedding (MRE), colored maximum
variance unfolding (MUHSIC), supervised isomap (S-Isomap), parametric embedding (PE), and
neighbourhood component analysis (NCA). We used a standard 10-fold cross-validation setup: in
each fold we reserve one of the subsets for testing and use the rest of the data for training. For each
data set, we use SNeRV and the comparison methods to find 2-dimensional visualizations.

In principle we could evaluate the results as in Section 4.3 for the unsupervised experiments,
that is, by mean smoothed precision and recall; the only difference would be to use the supervised
learning metric for the evaluation. However, unlike SNeRV, the other methods have not been for-
mulated using the same supervised metrics. To make an unbiased comparison of the methods, we
resort to a simple indirect evaluation: we evaluate the performance of the four methods by class pre-
diction accuracy of the resulting visualizations. Although it is an indirect measure, the accuracy is a
reasonable choice for unbiased comparison and has been used in several supervised dimensionality
reduction papers. In more detail, we provide test point locations during training but not their labels;
after the methods have computed their visualization results, we classify the test points by running
a k-nearest neighbor classifier (k = 5) on the embedded data, and evaluate the classification error
rates of the methods.

We use a standard internal 10-fold validation strategy to choose all parameters which are not
optimized by their respective algorithms: each training set is subdivided into 10 folds where 9/10 of
data is used for learning and 1/10 for validation; we learn visualizations with the different parameter
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values; the values that yielded the best classification accuracy for the embedded validation points
are then chosen and used to compute the final visualization for the whole training data.

We ran two versions of SNeRV using λ= 0.1 and λ= 0.3. The scaling parameters σi were set
by fixing the entropy of the input neighborhoods as described in Section 2.2. Here we specified the
rough upper limit for the number of relevant neighbors as 0.5 · n/K where n is the number of data
points and K is the number of mixture components used to estimate the metric; this choice roughly
means that for well-separated mixture components, each data point will on average consider half
of the data points from the same mixture component as relevant neighbors. A simplified validation
sufficed for the number K and width σ of Gaussians: we did not need to run the embedding step but
picked the values that gave best conditional class likelihood for validation points in the input space.
For S-Isomap we chose its parameter α and its number of nearest neighbors using the validation sets,
and trained a generalized radial basis function network to project new points, as suggested by Geng
et al. (2005). For MUHSIC, the parameters are the regularization parameter ν, number of nearest
neighbors, and number of eigenvectors in the graph Laplacian, and we used linear interpolation to
project new points as suggested by the MUHSIC authors. For MRE the only free parameter is its
neighborhood smoothness parameter σMRE . For the PE one needs to provide a conditional density
estimate: we used the same one that SNeRV uses (see Equation 10) to obtain a comparison as
unbiased as possible. Neighbourhood component analysis is a non-parametric method, therefore
we did not need to choose any parameters for it.

5.4 Results of Supervised Visualization

Figure 13 shows the average error rate over the 10 folds as well as the standard deviation. The best
two methods are SNeRV and PE, which give good results in all data sets. On two of the data sets
(Letter and TIMIT) SNeRV is clearly the best; on the other two data sets (Phoneme and Landsat)
SNeRV is about as good as the best of the remaining methods (S-Isomap and parametric embedding,
respectively). MRE is clearly worse than the other methods, whereas MUHSIC and NCA results
depend on the data set: on Letter they are the second and third worst methods after MRE, while in
the other data sets they are not far from the best methods.

The value of the tradeoff parameter λ did not affect the performance of SNeRV much; both
λ= 0.1 and λ= 0.3 produced good projections.

To evaluate whether the best method on each data set is statistically significantly better than the
next best one, we performed a paired t-test of the performances across the 10 cross-validation folds
(Table 3). The two best methods compared are always SNeRV and parametric embedding, except
for the Phoneme data set for which the two best methods are SNeRV and S-Isomap. For the Letter
and the TIMIT data sets SNeRV is significantly better than the next best method, while for the other
two data sets the difference is not significant. In summary, all the significant differences are in favor
of SNeRV.

Figure 14 presents sample visualizations of the letter recognition data set; projection results are
shown for one of the 10 cross-validation folds, including both training and test points. Although
there is some overlap, in general SNeRV shows distinct clusters of classes—for example, the letter
“M” is a well separated cluster in the top of the figure.

Parametric embedding also manages to separate some letters, such as “A” and “I”, but there
is a severe overlap of classes in the center of the figure. In S-Isomap we see that there are a few
very well separated clusters of classes, like the letters “W” and “N”, but there is a large area with
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Figure 13: Performance of the supervised nonlinear embedding methods in each benchmark data
set. The results are average classification error rates over 10 cross-validation folds
(smaller is better), and the standard deviations are shown with error bars.

Data set Best method Second best p-value
Letter SNeRV (λ= 0.1) PE 1.8 ·10−6

Phoneme S-Isomap SNeRV (λ= 0.3) 0.54
Landsat SNeRV (λ= 0.3) PE 0.28
TIMIT SNeRV (λ= 0.1) PE 3.4 ·10−3

Table 3: Statistical significance of the difference between the two best methods. The p-values are
from a paired t-test of the 10-fold cross-validation results; statistically significant winners
have been boldfaced.

overlapping classes near the center of the right edge of the figure. This overlap is worse than in
SNeRV but still roughly comparable; by contrast, MUHSIC, MRE and NCA performed poorly on
this data set, leaving most classes severely overlapped.

6. Conclusions and Discussion

By formulating the task of nonlinear projection for information visualization as an information re-
trieval task, we have derived a rigorously motivated pair of measures for visualization performance,
mean smoothed precision andmean smoothed recall. We showed that these new measures are exten-
sions of two traditional information retrieval measures: mean smoothed precision can be interpreted
as a more sophisticated extension of mean precision, the proportion of false positives in the neigh-
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Figure 14: Visualizations of the letter recognition data set by all supervised methods.

borhood retrieved from the visualization. Analogously, mean smoothed recall is an extension of
mean recall, the proportion of misses incurred by the retrieved neighborhood.

We introduced an algorithm called neighbor retrieval visualizer (NeRV) that optimizes the total
cost, interpretable as a tradeoff between mean smoothed precision and mean smoothed recall. The
tradeoff is governed by a parameter λ set by the user according to the desired cost of a miss relative
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to the desired cost of a false positive. The earlier method stochastic neighbor embedding is obtained
as a special case when λ= 1, optimizing mean smoothed recall.

We showed that NeRV can be used for both unsupervised and supervised visualization. For
unsupervised visualization, we simply use fixed input distances; for supervised visualization we
learn a supervised distance metric for the input space and plug the resulting input distances to the
NeRV algorithm. In the latter case the key idea is to use supervision (labeled data) in a way that
does not override the input feature space; we use a topology-preserving class-discriminative metric
called the learning metric for the input space.

In unsupervised visualization, NeRV outperformed alternatives for most of the six data sets we
tried, for four different pairs of measures, and was overall the best method. NeRV also performed
well in a comparison by unsupervised classification. Many of the best manifold extraction meth-
ods perform surprisingly poorly, most likely because they have not been designed to reduce the
dimensionality below the intrinsic dimensionality of the data manifold. In visualization, however,
we generally have no choice but to reduce the dimensionality of the data to two or three, even if
its intrinsic dimensionality is higher. NeRV is designed to find a mapping that is, in a well-defined
sense, optimal for a certain type of visualization regardless of the intrinsic dimensionality of the
data.

In supervised visualization, the supervised version of NeRV performed as well as or better than
the best alternative method Parametric embedding; this shows that the plug-in learning metrics work
well in incorporating supervision.

6.1 Discussion

NeRV models relevance using probability distributions, which makes sense if the total “amount”
of relevance for any query is normalized to a fixed sum. Such normalization is desirable for any
relevance measure, because for any query (point of interest) the relevance of a retrieved neighbor
point should depend on its proximity relative to the proximities of other points, rather than on its
absolute distance from the query point. (Our previous method, local MDS, can be thought of as an
attempt to approximate NeRV without the normalization.)

The Kullback-Leibler divergences in NeRV are natural choices for measuring the difference
between two probability distributions, but in principle other divergence measures could be used as
well. The notions of neighbor retrieval and a probabilistic relevance model are the crucial parts of
NeRV, not the specific divergence measure.

Our notion of plug-in supervised metrics could in principle be used with other methods too;
other unsupervised embedding algorithms that work based on a distance matrix can also be turned
into supervised versions, by plugging in learning metric distances into the distance matrix. We
performed an initial experiment with Sammon’s mapping (Peltonen et al., 2004); a similar idea
for isomap appeared later (Weng et al., 2005). However, we believe that NeRV is an especially
attractive choice for the embedding step since it has the information retrieval interpretation and it
performed well empirically.

An implementation of the NeRV and local MDS algorithms as well as the mean smoothed
precision-mean smoothed recall measures is available at http://www.cis.hut.fi/projects/
mi/software/dredviz
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Appendix A. Proof of the Connection between the Probabilistic Cost Functions and
Precision and Recall

In Section 2.2 we introduced Kullback-Leibler divergences as cost functions for visual neighbor
retrieval, based on probability distributions qi and pi which generalize the relevance model implicit
in precision and recall. We will next show that in the simple case of “binary neighborhoods” the
cost functions reduce to precision and recall. By “binary neighborhoods” we mean that, in both the
input space and the visualization, (i) the point of interest has some number of relevant neighbors
and all the other points are completely irrelevant, and (ii) the points that are relevant are all equally
relevant.

In the probabilistic model the binary neighborhoods can be interpreted as follows. Let i be the
point of interest, and let Pi be the set of relevant neighbors for point i in the input space. Pi can
be the set of all points (other than i itself) falling inside some fixed radius from point i in the input
space, or it can be the set containing some fixed number of points nearest to i in the input space. In
either case, let ri be the size of Pi.

We define that the relevant neighbors of the point of interest i have an equal non-zero probability
of being chosen, and all the other points have a near-zero probability of being chosen. In other
words, we define

p∗j|i =

{

ai ≡ 1−δ
ri , if point j is in Pi

bi ≡ δ
N−ri−1 , otherwise.

Here N is the total number of data points, and 0 < δ) 0.5 gives the irrelevant points a very small
probability.

Similarly, let Qi be the set of neighbors for point i in the visualization. Again, Qi can be the set
of all points (other than i itself) falling inside some fixed radius from point i in the visualization, or
it can be the set containing some fixed number of points nearest to i in the visualization. In either
case, let ki be the size of Qi. Note that the sizes of Qi and Pi can be different, that is, ki can be
different from ri.

We define the probability of choosing a neighbor from the visualization as

q∗j|i =

{

ci ≡ 1−δ
ki , if point j is in Qi

di ≡ δ
N−ki−1 , otherwise.

Consider the Kullback-Leibler divergence D(p∗i ,q∗i ) for any fixed i. We now show that mini-
mizing this divergence is equivalent to maximizing recall where point i is the query. The divergence
is a sum over elements p∗j|i log

p∗j|i
q∗j|i

, thus the sum can be divided into four parts depending on which
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value p∗j|i takes (two possibilities) and which value q∗j|i takes (two possibilities). We get

D(p∗i ,q∗i ) = ∑
j %=i,p∗j|i=ai,q

∗
j|i=ci

(

ai log
ai
ci

)

+ ∑
j %=i,p∗j|i=ai,q

∗
j|i=di

(

ai log
ai
di

)

+ ∑
j %=i,p∗j|i=bi,q

∗
j|i=ci

(

bi log
bi
ci

)

+ ∑
j %=i,p∗j|i=bi,q

∗
j|i=di

(

bi log
bi
di

)

=

(

ai log
ai
ci

)

NTP,i+

(

ai log
ai
di

)

NMISS,i+

(

bi log
bi
ci

)

NFP,i+

(

bi log
bi
di

)

NTN,i

where on the last line the terms inside parentheses are simply constant coefficients. Here NTP,i is
the number of true positives for this query, that is, points for which the probability is high in both
the data and the visualization. The number of misses, that is, the number of points that have a low
probability in the visualization although the probability in the data is high, is NMISS,i. The number
of false positives (high probability in the visualization, low in the data) is NFP,i. Finally the number
of true negatives (low probability in both the visualization and the data) is NTN,i.

It is straightforward to check that if δ is very small, then the coefficients for the misses and false
positives dominate the divergence. This yields

D(p∗i ,q∗i ) ≈ NMISS,i

(

ai log
ai
di

)

+NFP,i

(

bi log
bi
ci

)

= NMISS,i
1−δ
ri

(

log
(N− ki−1)

δ
+ log

(1−δ)
ri

)

+NFP,i
δ

N− ri−1

(

log
δ

N− ri−1
− log

(1−δ)
ki

)

= NMISS,i
1−δ
ri

(

log
(N− ki−1)

ri
+ log

(1−δ)
δ

)

+NFP,i
δ

N− ri−1

(

log
ki

N− ri−1
− log

(1−δ)
δ

)

. (11)

Because the terms log[(1−δ)/δ] dominate the other logarithmic terms, (11) further simplifies to

D(p∗i ,q∗i ) ≈
(

NMISS,i
1−δ
ri

−NFP,i
δ

N− ri−1

)

log
(1−δ)
δ

≈ NMISS,i
1−δ
ri

log
(1−δ)
δ

=
NMISS,i
ri

C

whereC is a constant that only depends on δ and not on i. Hence if we minimized this cost function,
we would be maximizing the recall of the query, which is defined as

recall(i) =
NTP,i
ri

= 1−
NMISS,i
ri

.

We can analogously show that for any fixed i, minimizing D(q∗i , p∗i ) is equivalent to maximizing
precision of the corresponding query.

Because D(q∗i , p∗i ) and D(p∗i ,q∗i ) are equivalent to precision and recall, and pi and qi can be
seen as more sophisticated generalizations of p∗i and q∗i , we interpret D(qi, pi) and D(pi,qi) as more
sophisticated generalizations of precision and recall.
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Abstract
A variational level set method is developed for the supervised classification problem. Nonlinear
classifier decision boundaries are obtained by minimizing an energy functional that is composed of
an empirical risk term with a margin-based loss and a geometric regularization term new to machine
learning: the surface area of the decision boundary. This geometric level set classifier is analyzed
in terms of consistency and complexity through the calculation of its ε-entropy. For multicategory
classification, an efficient scheme is developed using a logarithmic number of decision functions
in the number of classes rather than the typical linear number of decision functions. Geometric
level set classification yields performance results on benchmark data sets that are competitive with
well-established methods.
Keywords: level set methods, nonlinear classification, geometric regularization, consistency, com-
plexity

1. Introduction

Variational level set methods, pioneered by Osher and Sethian (1988), have found application in
fluid mechanics, computational geometry, image processing and computer vision, computer graph-
ics, materials science, and numerous other fields, but have heretofore found little application in
machine learning. The goal of this paper is to introduce a level set approach to the archetypal ma-
chine learning problem of supervised classification. We propose an implicit level set representation
for classifier decision boundaries, a margin-based objective regularized by a surface area penalty,
and an Euler-Lagrange descent optimization algorithm for training.

Several well-developed techniques for supervised discriminative learning exist in the literature,
including the perceptron algorithm (Rosenblatt, 1958), logistic regression (Efron, 1975), and sup-
port vector machines (SVMs) (Vapnik, 1995). All of these approaches, in their basic form, produce
linear decision boundaries. Nonlinear boundaries in the input space can be obtained by mapping the
input space to a feature space of higher (possibly infinite) dimension by taking nonlinear functions
of the input variables. Learning algorithms are then applied to the new higher-dimensional feature
space by treating each dimension linearly. They retain the efficiency of the input lower-dimensional
space for particular sets of nonlinear functions that admit the kernel trick (Schölkopf and Smola,
2002).

As an alternative to kernel methods for generalizing linear methods, we propose finding non-
linear decision boundaries directly in the input space. We propose an energy functional for clas-
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sification that is composed of an empirical risk term that uses a margin-based loss function and a
complexity term that is the length of the decision boundary for a two-dimensional input space and
the surface area of the decision boundary more generally. The empirical risk term is standard in
many classification methods. What is new in this work is the measurement of decision boundary
complexity by surface area, an inherently geometric quantity, and the idea of using variational level
set methods for optimization in discriminative learning.

We use the term contour to refer to a one-dimensional curve in a two-dimensional space, a two-
dimensional surface in a three-dimensional space, and generally a D−1 dimensional hypersurface
in a D-dimensional space. Classifier decision boundaries partition the input space into regions cor-
responding to the different class labels. If the region corresponding to one class label is composed
of several unconnected pieces, then the corresponding decision boundary is composed of several un-
connected pieces; we refer to this entire collection of decision boundaries as the contour. The level
set representation is a flexible, implicit representation for contours that does not require knowing
the number of disjoint pieces in advance. The contour is represented by a smooth, Lipschitz contin-
uous, scalar-valued function, known as the level set function, whose domain is the input space. The
contour is implicitly specified as the zero level set of the level set function.

Level set methods entail not only the representation, but also the minimization of an energy
functional whose argument is the contour.1 For example, in foreground-background image seg-
mentation, a popular energy functional is mean squared error of image intensity with two different
‘true’ image intensities inside the contour and outside the contour. Minimizing this energy produces
a good segmentation when the two regions differ in image intensity. In order to perform the min-
imization, a gradient descent approach is used. The first variation of the functional is found using
the calculus of variations; starting from an initial contour, a gradient flow is followed iteratively to
converge to a minimum. This procedure is known as curve evolution or contour evolution.

The connection between level set methods (particularly for image segmentation) and classifica-
tion has been noticed before, but to the best of our knowledge, there has been little prior work in this
area. Boczko et al. (2006) only hint at the idea of using level set methods for classification. Tom-
czyk and Szczepaniak (2005) do not consider fully general input spaces. Specifically, examples in
the training and test sets must be pixels in an image with the data vector containing the spatial index
of the pixel along with other variables. Cai and Sowmya (2007) do consider general feature spaces,
but have a very different energy functional than our margin-based loss functional. Theirs is based
on counts of training examples in grid cells and is similar to the mean squared error functional for
image segmentation described earlier. Their learning is also based on one-class classification rather
than standard discriminative classification, which is the framework we follow. Yip et al. (2006) use
variational level set methods for density-based clustering in general feature spaces, rather than for
learning classifiers.

Cremers et al. (2007) dichotomize image segmentation approaches into those that use spatially
continuous representations and those that use spatially discrete representations, with level set meth-
ods being the main spatially continuous approaches. There have been methods using discrete rep-
resentations that bear some ties to our methods. An example of a spatially discrete approach uses
normalized graph cuts (Shi and Malik, 2000), a technique that has been used extensively in unsu-
pervised learning for general features unrelated to images as well. Normalized decision boundary
surface area is implicitly penalized in this discrete setting. Geometric notions of complexity in su-

1. In the image segmentation literature, variational energy minimization approaches often go by the name active con-
tours, whether implemented using level set methods or not.
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pervised classification tied to decision boundary surface area have been suggested by Ho and Basu
(2002), but also defined in a discrete way related to graph cuts. In contrast, the continuous formula-
tion we employ using level sets involves very different mathematical foundations, including explicit
minimization of a criterion involving surface area. Moreover, the continuous framework—and in
particular the natural way in which level set functions enter into the criterion—lead to new gradient
descent algorithms to determine optimal decision boundaries. By embedding our criterion in a con-
tinuous setting, the surface area complexity term is defined intrinsically rather than being defined in
terms of the graph of available training examples.

There are some other methods in the literature for finding nonlinear decision boundaries directly
in the input space related to image segmentation, but these methods use neither contour evolution
for optimization, nor the surface area of the decision boundary as a complexity term, as in the
level set classification method proposed in this paper. A connection is drawn between classification
and level set image segmentation in Scott and Nowak (2006) and Willett and Nowak (2007), but
the formulation is through decision trees, not contour evolution. Tomczyk (2005), Tomczyk and
Szczepaniak (2006), and Tomczyk et al. (2007) present a simulated annealing formulation given
the name adaptive potential active hypercontours for finding nonlinear decision boundaries in both
the classification and clustering problems; their work considers the use of radial basis functions in
representing the decision boundary. Pölzlbauer et al. (2008) construct nonlinear decision boundaries
in the input space from connected linear segments. In some ways, their approach is similar to active
contours methods in image segmentation such as snakes that do not use the level set representation:
changes in topology of the decision boundary in the optimization are difficult to handle. (The
implicit level set representation takes care of topology changes naturally.)

The theory of classification with Lipschitz functions was discussed by von Luxburg and Bous-
quet (2004). As mentioned previously, level set functions are Lipschitz functions and the spe-
cific level set function that we use, the signed distance function, has a unit Lipschitz constant.
Von Luxburg and Bousquet minimize the Lipschitz constant, whereas in our formulation, the Lip-
schitz constant is fixed. The von Luxburg and Bousquet formulation requires the specification of
a subspace of Lipschitz functions over which to optimize in order to prevent overfitting, but does
not resolve the question of how to select this subspace. The surface area penalty that we propose
provides a natural specification for subspaces of signed distance functions.

The maximum allowable surface area parameterizes nested subspaces. We calculate the ε-
entropy (Kolmogorov and Tihomirov, 1961) of these signed distance function subspaces and use
the result to characterize geometric level set classification theoretically. In particular, we look at the
consistency and convergence of level set classifiers as the size of the training set grows. We also
look at the Rademacher complexity (Koltchinskii, 2001; Bartlett and Mendelson, 2002) of level set
classifiers.

For the multicategory classification problem with M > 2 classes, typically binary classification
methods are extended using the one-against-all construction (Hsu and Lin, 2002). The one-against-
all scheme represents the classifier with M decision functions. We propose a more parsimonious
representation of the multicategory level set classifier that uses log2M decision functions.2 A col-
lection of log2M level set functions can implicitly specify M regions using a binary encoding like
a Venn diagram (Vese and Chan, 2002). This proposed logarithmic multicategory classification is

2. It is certainly possible to use one-against-all with the proposed level set classification methodology. In fact, there are
M-category level set methods that use M level set functions (Samson et al., 2000; Paragios and Deriche, 2002), but
they are less parsimonious than the approach we follow.
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new, as there is no logarithmic formulation forM-category classification in the machine learning lit-
erature. The energy functional that is minimized has a multicategory empirical risk term and surface
area penalties on log2M contours.

The level set representation of classifier decision boundaries, the surface area regularization
term, the logarithmic multicategory classification scheme, and other contributions of this paper are
not only interesting academically, but also practically. We compare the classification performance
of geometric level set classification on several binary and multicategory data sets from the UCI
Repository and find the results to be competitive with many classifiers used in practice.

Level set methods are usually implemented on a discretized grid, that is the values of the level
set function are maintained and updated on a grid. In physics and image processing applications,
it nearly always suffices to work in two- or three-dimensional spaces. In classification problems,
however, the input data space can be high-dimensional. Implementation of level set methods for
large input space dimension becomes cumbersome due to the need to store and update a grid of that
large dimension. One way to address this practical limitation is to represent the level set function
by a superposition of radial basis functions (RBFs) instead of on a grid (Cecil et al., 2004; Slabaugh
et al., 2007; Gelas et al., 2007). We follow this implementation strategy in obtaining classification
results.

In Section 2, we detail geometric level set classification in the binary case, giving the objective
to be minimized and the contour evolution to perform the minimization. In Section 3, we pro-
vide theoretical analysis of the binary level set classifier given in Section 2. The main result is
the calculation of the ε-entropy of the space of level set classifiers as a function of the maximum
allowable decision boundary surface area; this result is then applied to characterize consistency and
complexity. Section 4 goes over multicategory level set classification. In Section 5, we describe the
RBF level set implementation and use that implementation to compare the classification test perfor-
mance of geometric level set classification to the performance of several other classifiers. Section 6
concludes and provides a summary of the work.

2. Binary Geometric Level Set Classification

In the standard binary classification problem, we are given training data {(x1,y1), . . . ,(xn,yn)}
with data vectors xi ∈ Ω ⊂ RD and class labels yi ∈ {+1,−1} drawn according to some unknown
probability density function pX,Y (x,y) and we would like to learn a classifier ŷ : Ω → {+1,−1}
that classifies previously unseen data vectors well. A popular approach specifies the classifier as
ŷ(x) = sign(ϕ(x)), where ϕ is a scalar-valued function. This function is obtained by minimizing the
empirical risk over a model class F :

min
ϕ∈F

n

∑
i=1
L(yiϕ(xi)). (1)

A wide variety of margin-based loss functions L are employed in different classification methods,
including the logistic loss in logistic regression, the hinge loss in the SVM, and the exponential loss
in boosting: Llogistic(z) = log(1+ e−z), Lhinge(z) =max{0,1− z}, and Lexponential(z) = e−z (Bartlett
et al., 2006; Lin, 2004). The loss function on which classifiers are typically evaluated is the mis-
classification zero-one loss: Lzero-one(z) = step(−z), where step is the Heaviside unit step function.

Limiting the model class is a way to control the complexity of the learned classifier in order
to increase its generalization ability. This is the central idea of the structural risk minimization

494



CLASSIFICATION USING GEOMETRIC LEVEL SETS

principle (Vapnik, 1995). A model subclass can be specified directly through a constraint in the
optimization by taking F to be the subclass in (1). Alternatively, it may be specified through a
regularization term J with weight λ:

min
ϕ∈F

n

∑
i=1
L(yiϕ(xi))+λJ(ϕ), (2)

where F indicates a broader class within which the subclass is delineated by J(ϕ).
We propose a geometric regularization term novel to machine learning, the surface area of the

decision boundary:
J(ϕ) =

I

ϕ=0

ds, (3)

where ds is an infinitesimal surface area element on the decision boundary. Decision boundaries
that shatter more points are more tortuous than decision boundaries that shatter fewer points. The
regularization functional (3) promotes smooth, less tortuous decision boundaries. It is experimen-
tally shown in Varshney and Willsky (2008) that with this regularization term, there is an inverse
relationship between the regularization parameter λ and the Vapnik-Chervonenkis (VC) dimension
of the classifier. An analytical discussion of complexity is provided in Section 3.3. The empiri-
cal risk term and regularization term must be properly balanced as the regularization term by itself
drives the decision boundary to be a set of infinitesimal hyperspheres.

We now describe how to find a classifier that minimizes (2) with the new regularization term
(3) using the level set methodology. As mentioned in Section 1, the level set approach implicitly
represents a (D− 1)-dimensional contour C in a D-dimensional space Ω by a scalar-valued, Lips-
chitz continuous function ϕ known as the level set function (Osher and Fedkiw, 2003). The contour
is the zero level set of ϕ. Contour C partitions Ω into the regions R and R c, which can be simply
connected, multiply connected, or composed of several components. The level set function ϕ(x)
satisfies the properties: ϕ(x) < 0 for x ∈ R , ϕ(x) > 0 for x ∈ R c, and ϕ(x) = 0 for x on the contour
C.

The level set function is often specialized to be the signed distance function, including in our
work. The magnitude of the signed distance function at a point equals its distance toC, and its sign
indicates whether it is in R or R c. The signed distance function satisfies the additional constraint
that ‖∇ϕ(x)‖ = 1 and has Lipschitz constant equal to one. Illustrating the representation, a contour
in a D = 2-dimensional space and its corresponding signed distance function are shown in Figure 1.
For classification, we take F to be the set of all signed distance functions on the domain Ω in (2).

The general form of objective functionals in variational level set methods is

E(C) =
Z

R
gr(x)dx+

I

C
gb(C(s))ds, (4)

where gr is a region-based function and gb is a boundary-based function. Note that the integral in the
region-based functional is over R , which is determined by C. Region-based functionals may also
be integrals over R c, in place of or in addition to integrals over R . In contour evolution, starting
from some initial contour, the minimum of (4) is approached iteratively via a flow in the negative
gradient direction. If we parameterize the iterations of the flow with a time parameter t, then it may
be shown using the calculus of variations that the flow ofC that implements the gradient descent is

∂C
∂t

= −grn− (gbκ−〈∇gb,n〉)n, (5)
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(a) (b) (c)

Figure 1: An illustration of the signed distance function representation of a contour with D = 2.
The contour is shown in (a), its signed distance function is shown by shading in (b), and
as a surface plot marked with the zero level set in (c).

Figure 2: Iterations of an illustrative curve evolution proceeding from left to right. The top row
shows the curve and the bottom row shows the corresponding signed distance function.

where n is the outward unit normal to C, and κ is its mean curvature (Caselles et al., 1997; Osher
and Fedkiw, 2003). The mean curvature of a surface is an extrinsic measure of curvature from
differential geometry that is the average of the principal curvatures. If the region-based function is
integrated over R c, then the sign of the first term in (5) is reversed.

The flow of the contour corresponds to a flow of the signed distance function. The unit normal
to the contour is ∇ϕ in terms of the signed distance function and the mean curvature is ∇2ϕ. The
level set flow corresponding to (5) is

∂ϕ(x)

∂t
= −gr(x)∇ϕ(x)−

(

gb(x)∇2ϕ(x)−〈∇gb(x),∇ϕ(x)〉
)

∇ϕ(x). (6)

Figure 2 illustrates iterations of contour evolution.
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For the classification problem, we have the following energy functional to be minimized:

E(ϕ) =
n

∑
i=1
L(yiϕ(xi))+λ

I

C
ds. (7)

The surface area regularization is a boundary-based functional with gb = 1 and the margin-based
loss can be expressed as a region-based functional with gr incorporating L(yiϕ(xi)). Applying (4)–
(6) to this energy functional yields the gradient descent flow

∂ϕ(x)

∂t

∣

∣

∣

∣

x=xi

=

{

L(yiϕ(xi))∇ϕ(xi)−λ∇2ϕ(xi)∇ϕ(xi), ϕ(xi) < 0
−L(yiϕ(xi))∇ϕ(xi)−λ∇2ϕ(xi)∇ϕ(xi), ϕ(xi) > 0

. (8)

In doing the contour evolution, note that we never compute the surface area of the decision boundary,
which is oftentimes intractable, but just its gradient descent flow.

The derivative (8) does not take the constraint ‖∇ϕ‖ = 1 into account: the result of updating a
signed distance function using (8) is not a signed distance function. Frequent reinitialization of the
level set function as a signed distance function is important because (7) depends on the magnitude
of ϕ, not just its sign. This reinitialization is done iteratively using (Sussman et al., 1994):

∂ϕ(x)

∂t
= sign(ϕ(x))(1−‖∇ϕ(x)‖).

With linear margin-based classifiers, including the original primal formulation of the SVM,
the concept of margin is equivalent to Euclidean distance from the decision boundary in the input
space. With kernel methods, however, this equivalence is lost; the quantity referred to as the margin,
yϕ(x), is not the same as distance from x to the decision boundary in the input space. As discussed
by Akaho (2004), oftentimes it is of interest to maximize the minimum distance to the decision
boundary in the input space among all of the training examples. With the signed distance function
representation, the margin yϕ(x) is equivalent to Euclidean distance from the decision boundary and
hence is a satisfying nonlinear generalization to linear margin-based methods.

We now present two synthetic examples to illustrate this approach and its behavior. In both
examples, there are n = 1000 points in the training set with D = 2. The first example has 502 points
with label yi = −1 and 498 points with label yi = +1 and is separable by an elliptical decision
boundary. The second example has 400 points with label yi =−1 and 600 points with label yi = +1
and is not separable by a simple shape, but has the −1 labeled points in a strip.

In these two examples, in the other examples in the rest of the paper, and in the performance
results of Section 5.2, we use the logistic loss function for L in the objective (7). In these two
examples, the surface area penalty has weight λ= 0.5; the value λ= 0.5 is a default parameter value
that gives good performance with a variety of data sets regardless of their dimensionality D and can
be used if one does not wish to optimize λ using cross-validation. Contour evolution minimization
requires an initial decision boundary. In the portion of Ω where there are no training examples,
we set the initial decision boundary to be a uniform grid of small components; this small seed
initialization is common in level set methods. In the part ofΩ where there are training examples, we
use the locations and labels of the training examples to set the initial decision boundary. We assign
a positive value to the initial signed distance function in locations of positively labeled examples
and a negative value in locations of negatively labeled examples. The initial decision boundaries for
the two examples are shown in the top left panels of Figure 3 and Figure 4.
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Figure 3: Curve evolution iterations with λ = 0.5 for an example training set proceeding in raster
scan order starting from the top left. The magenta × markers indicate class label −1 and
the black + markers indicate class label +1. The blue line is the decision boundary.

Two intermediate iterations and the final decision boundary are also shown in Figure 3 and Fig-
ure 4. Solutions are as expected: an elliptical decision boundary and a strip-like decision boundary
have been recovered. In the final decision boundaries of both examples, there is a small curved piece
of the decision boundary in the top right corner of Ω where there are no training examples. This
piece is an artifact of the initialization and the regularization term, and does not affect classifier
performance. (The corner piece of the decision boundary is a minimal surface, a surface of zero
mean curvature, which is a critical point of the surface area regularization functional (3), but not the
global minimum. It is not important, assuming we have a representative training set.)

For a visual comparison of the effect of the surface area penalty weight, we show the solution
decision boundaries of the geometric level set classifier for two other values of λ, 0.005 and 0.05,
with the data set used in the example of Figure 4. As can be seen in comparing this figure with the
bottom right panel of Figure 4, the smaller the value of λ, the longer and more tortuous the decision
boundary. Small values of λ lead to overfitting.
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Figure 4: Curve evolution iterations with λ = 0.5 for an example training set proceeding in raster
scan order starting from the top left. The magenta × markers indicate class label −1 and
the black + markers indicate class label +1. The blue line is the decision boundary.

In this section, we have described the basic method for nonlinear margin-based binary classi-
fication based on level set methods and illustrated its operation on two synthetic data sets. The
next two sections build upon this core binary level set classification in two directions: theoretical
analysis, and multicategory classification.

3. Consistency and Complexity Analysis

In this section, we provide analytical characterizations of the consistency and complexity of the level
set classifier with surface area regularization described in Section 2. The main tool used in these
characterizations is ε-entropy. Once we have an expression for the ε-entropy of the set of geometric
level set classifiers, we can then apply consistency and complexity results from learning theory that
are based on it. The beginning of this section is devoted to finding the ε-entropy of the space of
signed distance functions with a surface area constraint with respect to the uniform or L∞ metric on
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(a) (b)

Figure 5: Solution decision boundaries with (a) λ= 0.005 and (b) λ= 0.05 for an example training
set. The magenta × markers indicate class label −1 and the black + markers indicate
class label +1. The blue line is the decision boundary.

functions. The end of the section gives results on classifier consistency and complexity. The main
findings are that level set classifiers are consistent, and that complexity is monotonically related to
the surface area constraint, and thus the regularization term can be used to prevent underfitting and
overfitting.

3.1 ε-Entropy

The ε-covering number of a metric space is the minimal number of sets with radius not exceeding
ε required to cover that space. The ε-entropy is the base-two logarithm of the ε-covering number.
These quantities are useful values in characterizing learning (Kulkarni, 1989; Williamson et al.,
2001; Lin, 2004; von Luxburg and Bousquet, 2004; Steinwart, 2005; Bartlett et al., 2006). Kol-
mogorov and Tihomirov (1961), Dudley (1974, 1979), and others provide ε-entropy calculations
for various classes of functions and various classes of sets, but the particular class we are consid-
ering, signed distance functions with a constraint on the surface area of the zero level set, does
not appear in the literature. The second and third examples in Section 2 of Kolmogorov and Ti-
homirov (1961) are related, and the general approach we take for obtaining the ε-entropy of level
set classifiers is similar to those two examples.

In classification, it is always possible to scale and shift the data and this is often done in practice.
Without losing much generality and dispensing with some bothersome bookkeeping, we consider
signed distance functions defined on the unit hypercube, that is Ω = [0,1]D, and we employ the
uniform or L∞ metric, ρ∞(ϕ1,ϕ2) = supx∈Ω |ϕ1(x)−ϕ2(x)|. We denote the set of all signed distance
functions whose zero level set has surface area less than s by Fs, its ε-covering number with respect
to the uniform metric as Nρ∞,ε(Fs), and its ε-entropy as Hρ∞,ε(Fs). We begin with the D = 1 case
and then come to general D.

Figure 6a shows a signed distance function over the unit interval. Due to the ‖∇ϕ‖ = 1 con-
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Figure 6: A D = 1-dimensional signed distance function in Ω= [0,1] is shown in (a), marked with
its zero level set. The ε-corridor with ε = 1

12 that contains the signed distance function
is shown in (b), shaded in gray. The ε-corridor of (b), whose center line has three zero
crossings is shown in (c), again shaded in gray, along with an ε-corridor whose center
line has two zero crossings, shaded in green with stripes, and an ε-corridor whose center
line has one zero crossing, shaded in red with dots.

straint, its slope is either+1 or−1 almost everywhere. The slope changes sign exactly once between
two consecutive points in the zero level set. The signed distance function takes values in the range
between positive and negative one.3 In the D = 1 context, by surface area we mean the number of
points in the zero level set, for example three in Figure 6a.

In finding Hρ∞,ε(Fs), we will use sets known as ε-corridors, which are particular balls of radius
ε measured using ρ∞ in the space of signed distance functions. We use the terminology of Kol-
mogorov and Tihomirov (or translator Hewitt), but our definition is slightly different than theirs. An
ε-corridor is a strip of height 2ε for all x. Let us define ν= *ε−1+. At x = 0, the bottom and top of
a corridor are at 2 jε and 2( j +1)ε respectively for some integer j, where −ν ≤ 2 j < ν. The slope
of the corridor is either +1 or −1 for all x and the slope can only change at values of x that are
multiples of ε. Additionally, the center line of the ε-corridor is a signed distance function, changing
slope halfway between consecutive points in its zero level set and only there. The ε-corridor in
which the signed distance function of Figure 6a falls is indicated in Figure 6b. Other ε-corridors are
shown in Figure 6c.

By construction, each signed distance function is a member of exactly one ε-corridor. This is
because since at x = 0 the bottom and top of ε-corridors are at consecutive integer multiples of 2ε
and since the center line of the corridor is a signed distance function, each signed distance function
starts in one ε-corridor at x = 0 and does not escape from it in the interval (0,1]. Also, an ε-corridor
whose center line has s points in its zero level set contains only signed distance functions with at
least s points in their zero level sets.

3. There are several ways to define the signed distance function in the degenerate cases (R =Ω, R c = /0) and (R = /0,
R c = Ω), including the assignments −∞ and +∞, or −1 and +1 (Delfour and Zolésio, 2001). For our purposes, it
suffices to say that we have chosen a unique function for the R =Ω case and a unique function for the R c =Ω case.
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Theorem 1 The ε-entropy of the set of signed distance functions defined over Ω = [0,1] with zero
level set having less than s points is:

Hρ∞,ε(Fs) = log2

(

s

∑
k=1

(
⌈

ε−1
⌉

−1
k−1

)

)

+1.

Proof Since ε-corridors only change slope at multiples of ε, we can divide the abscissa into ν pieces.
(Each piece has width ε except the last one if ε−1 is not an integer.) In each of the ν subintervals, the
center line of a corridor is either wholly positive or wholly negative. Enumerating the full set of ε-
corridors is equivalent to enumerating binary strings of length ν. Thus, without a constraint s, there
are 2ν ε-corridors. Since, by construction, ε-corridors tile the space of signed distance functions,
Nρ∞,ε(F ) = 2ν.

With the s constraint on ε-corridors, the enumeration is equivalent to twice the number of com-
positions of the positive integer ν by a sum of s or less positive integers. Twice because for every
composition, there is one version in which the first subinterval of the corridor center is positive and
one version in which it is negative. As an example, the red corridor in Figure 6c can be composed
with two positive integers (5+7), the green corridor by three (7+4+1), and the gray corridor by
four (1+ 4+ 4+ 3). The number of compositions of ν by k positive integers is

(ν−1
k−1

)

. Note that
the zero-crossings are unordered for this enumeration and that the set Fs includes all of the signed
distance functions with surface area smaller than s as well. Therefore:

Nρ∞,ε(Fs) = 2
s

∑
k=1

(

ν−1
k−1

)

.

The result then follows because Hρ∞,ε(Fs) = log2Nρ∞,ε(Fs).

The combinatorial formula in Theorem 1 is difficult to work with, so we give a highly accurate
approximation.

Theorem 2 The ε-entropy of the set of signed distance functions defined over Ω = [0,1] with zero
level set having less than s points is:

Hρ∞,ε(Fs) ≈
⌈

ε−1
⌉

+ log2Φ

(

2s−
⌈

ε−1
⌉

√

*ε−1+−1

)

,

where Φ is the standard Gaussian cumulative distribution function (cdf).

Proof Note that for a binomial random variable Z with (ν− 1) Bernoulli trials having success
probability 1

2 :

Pr[Z < z] = 2−ν ·2
z

∑
k=1

(

ν−1
k−1

)

,

and that Nρ∞,ε(Fs) = 2νPr[Z < s]. The result follows from the de Moivre-Laplace theorem and
continuity correction, which are used to approximate the binomial distribution with the Gaussian
distribution.
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The central limit theorem tells us that the approximation works well when the Bernoulli suc-
cess probability is one half, which it is in our case, and when the number of trials is large, which
corresponds to small ε. The continuous approximation is better in the middle of the domain, when
s ≈ ν/2, than in the tails. However, in the tails, the calculation of the exact expression in Theorem 1
is tractable. Since Φ is a cdf taking values in the range zero to one, log2Φ is nonpositive. The
surface area constraint only serves to reduce the ε-entropy.

The ε-entropy calculation in Theorem 1 and Theorem 2 is for the D = 1 case. We now discuss
the case with general D. Recall that Ω = [0,1]D. Once again, we construct ε-corridors that tile the
space of signed distance functions. In the one-dimensional case, the ultimate object of interest for
enumeration is a string of length ν with binary labels. In the two-dimensional case, the correspond-
ing object is a ν-by-ν grid of ε-by-ε squares with binary labels, and in general a D-dimensional
Cartesian grid of hypercubes of volume εD, ν on each side. The surface area of the zero level set
is the number of interior faces in the Cartesian grid whose adjoining εD hypercubes have different
binary labels.

Theorem 3 The ε-entropy of the set of signed distance functions defined over Ω= [0,1]D with zero
level set having surface area less than s is:

Hρ∞,ε(Fs) ≈
⌈

ε−1
⌉D

+ log2Φ





2s−D
(⌈

ε−1
⌉

−1
)⌈

ε−1
⌉D−1−1

√

D(*ε−1+−1)*ε−1+D−1



 ,

where Φ is the standard Gaussian cdf.

Proof In the one-dimensional case, it is easy to see that the number of segments is ν and the number
of interior faces is ν− 1. For a general D-dimensional Cartesian grid with ν hypercubes on each
side, the number of hypercubes is νD and the number of interior faces is D(ν−1)νD−1. The result
follows by substituting νD for ν and D(ν−1)νD−1 for ν−1 in Theorem 2.

Theorem 2 is a special case of Theorem 3 with D = 1. It is common to find the dimension of
the space D in the exponent of ε−1 in ε-entropy calculations as we do here.

The ε-entropy calculation for level set classifiers given here enables us to analytically character-
ize their consistency properties as the size of the training set goes to infinity in Section 3.2 through
ε-entropy-based classifier consistency results. The calculation also enables us to characterize the
Rademacher complexity of level set classifiers in Section 3.3 through ε-entropy-based complexity
results.

3.2 Consistency

In the binary classification problem, with training set of size n drawn from pX,Y (x,y), a consistent
classifier is one whose probability of error converges in the limit as n goes to infinity to the probabil-
ity of error of the Bayes optimal decision rule. The optimal decision rule to minimize the probability
of error is ŷ∗(x) = sign(pY |X(Y = 1|X = x)− 1

2). Introducing notation, let the probability of error
achieved by this decision rule be R∗. Also denote the probability of error of a level set classifier
sign(ϕ(n)) learned from a training set of size n as R(sign(ϕ(n))). For consistency, it is required that
R(sign(ϕ(n)))−R∗ converge in probability to zero.
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The learned classifier sign(ϕ(n))minimizes the energy functional (7), and consequently the prop-
erties of R(sign(ϕ(n))) are affected by both the margin-based loss function L and by the regulariza-
tion term. Lin (2004), Steinwart (2005), and Bartlett et al. (2006) have given conditions on the
loss function necessary for a margin-based classifier to be consistent. Common margin-based loss
functions including the logistic loss and exponential loss meet the conditions. Lin calls a loss func-
tion that meets the necessary conditions Fisher-consistent. Fisher consistency of the loss function
is not enough, however, to imply consistency of the classifier overall. The regularization term must
also be analyzed; since the regularization term based on surface area we introduce is new, so is the
following analysis.

Concentrating on the surface area regularization, we adapt Theorem 4.1 of Lin, which is based
on ε-entropy. The analysis is based on the method of sieves, where sieves Fn are an increasing
sequence of subspaces of a function space F . In our case, F is the set of signed distance functions
on Ω and the sieves, Fs(n), are subsets of signed distance functions whose zero level sets have
surface area less than s(n), that is

H

ϕ=0 ds < s(n). Such a constraint is related to the regularization
expression E(ϕ) given in (7) through the method of Lagrange multipliers, with λ inversely related
to s(n). In the following, the function s(n) is increasing in n and thus the conclusions of the theorem
provide asymptotic results on consistency as the strength of the regularization term decreases as
more training samples are made available. The sieve estimate is:

ϕ(n) = arg min
ϕ∈Fs(n)

n

∑
i=1
L(yiϕ(xi)). (9)

Having found Hρ∞,ε(Fs) in Section 3.1, we can apply Theorem 4.1 of Lin (2004), yielding the
following theorem.

Theorem 4 Let L be a Fisher-consistent loss function in (9); let ϕ̃ = argminϕ∈F E[L(Yϕ(X))],
where F is the space of signed distance functions on [0,1]D; and let Fs(n) be a sequence of sieves.
Then for sieve estimate ϕ(n), we have4

R(sign(ϕ(n)))−R∗ = OP

(

max
{

n−τ, inf
ϕ∈Fs(n)

Z

(ϕ(x)− ϕ̃(x))2pX(x)dx
})

,

where

τ=











1
3 , D = 1
1
4 −

log logn
2logn , D = 2

1
2D , D ≥ 3

.

Proof The result is a direct application of Theorem 4.1 of Lin (2004), which is in turn an appli-
cation of Theorem 1 of Shen and Wong (1994). In order to apply this theorem, we need to note
two things. First, that signed distance functions on [0,1]D are bounded (by a value of 1) in the L∞
norm. Second, that there exists an A such that Hρ∞,ε(Fs) ≤ Aε−D. Based on Theorem 3, we see
that Hρ∞,ε(Fs) ≤ νD because the logarithm of the cdf is nonpositive. Since ν = *ε−1+, if ε−1 is an
integer, then Hρ∞,ε(Fs) ≤ ε−D and otherwise there exists an A such that Hρ∞,ε(Fs) ≤ Aε−D.

4. The notation Zn = OP(ζn) means that the random variable Zn is bounded in probability at the rate ζn (van der Vaart,
1998).
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Clearly n−τ goes to zero as n goes to infinity. Also, infϕ∈Fs(n)

R

(ϕ(x)− ϕ̃(x))2pX(x)dx goes to
zero when s(n) is large enough so that the surface area constraint is no longer applicable.5 Thus,
level set classifiers are consistent.

3.3 Rademacher Complexity

The principal idea of the structural risk minimization principle is that the generalization error is
the sum of an empirical risk term and a capacity term (Vapnik, 1995). The two terms should be
sensibly balanced in order to achieve low generalization error. Here, we use the ε-entropy of signed
distance functions constrained in decision boundary surface area to characterize the capacity term.
In particular, we look at the Rademacher complexity of Fs as a function of s (Koltchinskii, 2001;
Bartlett and Mendelson, 2002).

The Rademacher average of a class F , denoted R̂n(F ), satisfies (von Luxburg and Bousquet,
2004):

R̂n(F ) ≤ 2ε+
4
√
2√
n

Z ∞

ε
4

√

Hρ2,n,ε′(F )dε′,

where ρ2,n(ϕ1,ϕ2) =
√

1
n ∑

n
i=1(ϕ1(xi)−ϕ2(xi))2 is the empirical !2 metric. We found Hρ∞,ε(Fs) for

signed distance functions with surface area less than s in Section 3.1, and Hρ2,n,ε(F ) ≤ Hρ∞,ε(F ).
Thus, we can characterize the complexity of level set classifiers via the Rademacher capacity term
(von Luxburg and Bousquet, 2004):

CRad(Fs,n) = 2ε+
4
√
2√
n

Z ∞

ε
4

√

Hρ∞,ε′(F )dε′. (10)

With Ω = [0,1]D, the upper limit of the integral in (10) is one rather than infinity because ε cannot
be greater than one.

In Figure 7, we plot CRad as a function of s for three values of D, and fixed ε and n. Having a
fixed εmodels the discretized grid implementation of level set methods. As the value of s increases,
decision boundaries with more area are available. Decision boundaries with large surface area are
more complex than smoother decision boundaries with small surface area. Hence the complexity
term increases as a function of s. We have also empirically found the same relationship between
the VC dimension and the surface area penalty (Varshney and Willsky, 2008). Consequently, the
surface area penalty can be used to control the complexity of the classifier, and prevent underfitting
and overfitting. The Rademacher capacity term may be used in setting the regularization parameter
λ.

4. Multicategory Geometric Level Set Classification

Thus far, we have considered binary classification. In this section, we extend level set classification
to the multicategory case with M > 2 classes labeled y ∈ {1, . . . ,M}. We represent the decision
boundaries using m = *log2M+ signed distance functions {ϕ1(x), . . . ,ϕm(x)}. Using such a set
of level set functions we can represent 2m regions {R1,R2, . . . ,R2m} through a binary encoding

5. For a given ε, there is a maximum possible surface area; the constraint is no longer applicable when the constraint is
larger than this maximum possible surface area. Also note that s and λ are inversely related.
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Figure 7: The Rademacher capacity term (10) as a function of s for signed distance functions on
Ω = [0,1]D with surface area less than s with (a) D = 2, (b) D = 3, and (c) D = 4. The
values of ε and n are fixed at 0.01 and 1000 respectively.

(Vese and Chan, 2002). Thus, for x ∈ R1, (ϕ1(x) < 0)∧ · · ·∧ (ϕm(x) < 0); for x ∈ R2, (ϕ1(x) <
0)∧ · · ·∧ (ϕm−1(x) < 0)∧ (ϕm > 0); and for x ∈ R2m , (ϕ1(x) > 0)∧ · · ·∧ (ϕm(x) > 0).

This binary encoding specifies the regions, but in order to apply margin-based loss functions,
we also need a value for margin. In binary classification, the special encoding y ∈ {−1,+1} al-
lows yϕ(x) to be the argument to the loss function. For multicategory classification, the argu-
ment to the loss function is through functions ψy(x), which are also specified through a binary en-
coding: ψ1(x) = max{+ϕ1(x), . . . ,+ϕm(x)}, ψ2(x) = max{+ϕ1(x), . . . ,+ϕm−1(x),−ϕm(x)}, and
ψ2m(x) =max{−ϕ1(x), . . . ,−ϕm(x)}. Then, theM-ary level set classification energy functional we
propose is

E(ϕ1, . . . ,ϕm) =
n

∑
i=1
L(ψyi(xi))+

λ
m

m

∑
j=1

I

ϕ j=0

ds. (11)

The same margin-based loss functions used in the binary case, such as the hinge and logistic loss
functions, may be used in the multicategory case (Zou et al., 2006, 2008). The regularization term
included in (11) is the sum of the surface areas of the zero level sets of the m signed distance
functions.

The gradient descent flows for the m signed distance functions are

∂ϕ1(x)

∂t

∣

∣

∣

∣

x=xi

=

{

L(ψyi(xi))∇ϕ1(xi)− λ
m∇

2ϕ1(xi)∇ϕ1(xi), ϕ1(xi) < 0
−L(ψyi(xi))∇ϕ1(xi)− λ

m∇
2ϕ1(xi)∇ϕ1(xi), ϕ1(xi) > 0

...

∂ϕm(x)

∂t

∣

∣

∣

∣

x=xi

=

{

L(ψyi(xi))∇ϕm(xi)− λ
m∇

2ϕm(xi)∇ϕm(xi), ϕm(xi) < 0
−L(ψyi(xi))∇ϕm(xi)− λ

m∇
2ϕm(xi)∇ϕm(xi), ϕm(xi) > 0

.

In the case M = 2 and m = 1, the energy functional and gradient flow revert back to binary level set
classification described in Section 2.

The proposed multicategory classifier is different from the commonly used technique known as
one-against-all (Hsu and Lin, 2002), which constructs anM-ary classifier fromM binary classifiers,
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both because it treats allM classes simultaneously in the objective and because the decision regions
are represented by a logarithmic rather than linear number of decision functions. Zou et al. (2006)
also treat all M classes simultaneously in the objective, but their multicategory kernel machines use
M decision functions. In fact, to the best of our knowledge, there is no M-ary classifier represen-
tation in the literature using as few as *log2M+ decision functions. Methods that combine binary
classifier outputs using error-correcting codes make use of a logarithmic number of binary classi-
fiers with a larger multiplicative constant, such as *10logM+ or *15logM+ (Rifkin and Klautau,
2004; Allwein et al., 2000).

We give an example showing multicategory level set classification with M = 4 and D = 2. The
data set has 250 points for each of the four class labels yi = 1, yi = 2, yi = 3, and yi = 4. The
classes are not perfectly separable by simple boundaries. With four classes, we use m = 2 signed
distance functions. Figure 8 shows the evolution of the two contours, the magenta and cyan curves.
The final decision region for class y = 1 is the portion inside both the magenta and cyan curves,
and coincides with the training examples with class label 1. The final decision region for class 2 is
the region inside the magenta curve but outside the cyan curve, the final decision region for class
3 is the region inside the cyan curve, but outside the magenta curve, and the final decision region
for class 4 is outside both curves. The final decision boundaries are fairly smooth and partition the
space with small training error.

5. Implementation and Classification Results

In this section, we describe how to implement geometric level set classification practically using
RBFs and give classification performance results when applied to several real binary and multicat-
egory data sets.

5.1 Radial Basis Function Level Set Method

There have been many developments in level set methods since the original work of Osher and
Sethian (1988). One development in particular is to represent the level set function by a superposi-
tion of RBFs instead of on a grid (Cecil et al., 2004; Slabaugh et al., 2007; Gelas et al., 2007). Grid-
based representation of the level set function is not amenable to classification in high-dimensional
input spaces because the memory and computational requirements are exponential in the dimension
of the input space. A nonparametric RBF representation, however, is tractable for classification.
The RBF level set method we use to minimize the energy functionals (7) and (11) for binary and
multicategory margin-based classification is most similar to that described by Gelas et al. (2007) for
image processing.

The starting point of the RBF level set approach is describing the level set function ϕ(x) via a
strictly positive definite6 RBF K(·) as follows:

ϕ(x) =
n

∑
i=1

αiK(‖x−xi‖) . (12)

The zero level set of ϕ defined in this way is the contour C. For the classification problem, we take
the centers xi to be the data vectors of the training set. Then, constructing an n× n matrix H with

6. A more complete discussion including conditionally positive definite RBFs would add a polynomial term to (12), to
span the null space of the RBF (Wendland, 2005).
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Figure 8: Curve evolution iterations with λ = 0.5 for multicategory classification proceeding in
raster scan order. The red × markers indicate class label 1, the black + markers indicate
class label 2, the blue3markers indicate class label 3, and the yellow4markers indicate
class label 4. The magenta and cyan lines are the zero level sets of the m = 2 signed
distance functions and together make up the decision boundary.
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elements {H}i j = K(‖xi −x j‖), and letting ααα be the vector of coefficients in (12), we have:






ϕ(x1)
...

ϕ(xn)






= Hααα.

To minimize an energy functional ofC, the level set optimization is over the coefficients ααα with
H fixed. In order to perform contour evolution with the RBF representation, a time parameter t is
introduced like in Section 2, giving:

Hdααα
dt

=











∂ϕ(x)
∂t

∣

∣

∣

x=x1...
∂ϕ(x)
∂t

∣

∣

∣

x=xn











. (13)

For the binary margin-based classification problem with surface area regularization that we are inter-
ested in solving, we substitute the gradient flow (8) into the right side of (13). For the multicategory
classification problem, we have m level set functions as discussed in Section 4 and each one has a
gradient flow to be substituted into an expression like (13).

The iteration for the contour evolution is then:

ααα(k+1) = ααα(k)− τH−1











∂ϕ(k)(x)
∂t

∣

∣

∣

x=x1...
∂ϕ(k)(x)

∂t

∣

∣

∣

x=xn











, (14)

where τ is a small step size and ϕ(k) comes from ααα(k). We normalize ααα according to the !1-norm
after every iteration.

The RBF-represented level set function is not a signed distance function. However, as discussed
by Gelas et al. (2007), normalizing the coefficient vector αααwith respect to the !1-norm after every it-
eration of (14) has a similar effect as reinitializing the level set function as a signed distance function.
The Lipschitz constant of the level set function is constrained by this normalization. The analysis
of Section 3 applies with minor modification for level set functions with a given Lipschitz constant
and surface area constraint. The RBF level set approach is similar to kernel machines with the RBF
kernel in the sense that the decision function is represented by a linear combination of RBFs. How-
ever, kernel methods in the literature minimize a reproducing kernel Hilbert space squared norm
for regularization, whereas the geometric level set classifier minimizes decision boundary surface
area for regularization. The regularization term and consequently inductive bias of the geometric
level set classifier is new and different compared to existing kernel methods. The solution decision
boundary is the zero level set of a function of the form given in (12). Of course this representation
does not capture all possible functions, but, given that we use a number of RBFs equal to the num-
ber of training examples, the granularity of this representation is well-matched to the data. This is
similar to the situation found in other contexts such as kernel machines using RBFs.

We initialize the decision boundary with ααα = n(H−1y)/‖H−1y‖1, where y is a vector of the n
class labels in the training set. Figure 9 shows this initialization and following RBF-implemented
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Figure 9: Curve evolution iterations with RBF implementation and λ= 0.5 for example training set
proceeding in raster scan order. The magenta × markers indicate class label −1 and the
black + markers indicate class label +1. The blue line is the decision boundary.

contour evolution on the elliptically-separable data set presented in Section 2. The initial decision
boundary is tortuous. It is smoothed out by the surface area penalty during the course of the contour
evolution, thereby improving the generalization of the learned classifier as desired. To initialize the
m vectors ααα in M category classification, we use m length n vectors of positive and negative ones
constructed from the binary encoding instead of y.

5.2 Classification Results

We give classifier performance results on benchmark data sets from the UCI Machine Learning
Repository (Asuncion and Newman, 2007) for geometric level set classification and compare them
to the performance of several other classifiers, concluding that level set classification is a compet-
itive technique. We present the tenfold cross-validation classification error performance with RBF
level set implementation on four binary data sets: Pima Indians Diabetes (n = 768, D = 8), Wis-
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Figure 10: Tenfold cross-validation training error (blue line with triangle markers) and test error
(red line with circle markers) for the (a) Pima, and (b) WDBC data sets as a function of
the regularization parameter λ on a logarithmic scale.

consin Diagnostic Breast Cancer (n = 569, D = 30), BUPA Liver Disorders (n = 345, D = 6) and
Johns Hopkins University Ionosphere (n = 351, D = 34), and four multicategory data sets: Wine
Recognition (n = 178,M = 3, D = 13), Iris (n = 150,M = 3, D = 4), Glass Identification (n = 214,
M = 6, D = 9), and Image Segmentation (n = 2310,M = 7, D = 19). For the binary data sets, there
is m = 1 level set function, for the wine and iris data sets m = 2 level set functions, and for the glass
and segmentation data sets m = 3 level set functions.

We shift and scale the data so that each of the input dimensions has zero mean and unit variance,
use the RBF K(‖x− xi‖) = e−‖x−xi‖2 , the logistic loss function, τ = 1/m, and the initialization
ααα = n(H−1y)/‖H−1y‖1. First, we look at classification error as a function of λ. Figure 10 shows
the tenfold cross-validation training and test errors for the Pima and WDBC data sets; other data
sets yield similar plots. The plots show evidence of the structural risk minimization principle and
complexity analysis given in Section 3.3. For small λ (corresponding to large surface area constraint
s), the model class is too complex and we see that although the training error is zero, the test error
is not minimal due to overfitting. For large λ, the model class is not complex enough; the training
error is large and the test error is not minimal due to underfitting. There is an intermediate value of
λ that achieves the minimal test error. However, we notice that the test error is fairly insensitive to
the value of λ. The test error does not change much over the plotted range.

In Table 1, we report the tenfold cross-validation test error (as a percentage) on the eight data
sets and compare the performance to nine other classifiers.7 On each of the ten folds, we set λ using
cross-validation. Specifically, we perform fivefold cross-validation on the nine tenths of the full data
set that is the training data for that fold. We select the λ from the set of values {0.2,0.4,0.8,1.6,3.2}
that minimizes the fivefold cross-validation test error. The performance results of the nine other

7. For lower-dimensional data sets (up to about D = 12), it is possible to use optimal dyadic decision trees (Scott and
Nowak, 2006; Blanchard et al., 2007). We found that the results using such trees are not significantly better than
those obtained using the C4.4 and C4.5 decision trees (which could be applied to all of the data sets without concern
for dimensionality).
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Data Set (M,D) NB BN kNN C4.4 C4.5 NBT SVM RBN LLS GLS
Pima (2,8) 23.69 25.64 27.86 27.33 26.17 25.64 22.66 24.60 29.94 25.94
WDBC (2,30) 7.02 4.92 3.68 7.20 6.85 7.21 2.28 5.79 6.50 4.04
Liver (2,6) 44.61 43.75 41.75 31.01 31.29 33.87 41.72 35.65 37.39 37.61
Ionos. (2,34) 17.38 10.54 17.38 8.54 8.54 10.27 11.40 7.38 13.11 13.67
Wine (3,13) 3.37 1.11 5.00 6.14 6.14 3.37 1.67 1.70 5.03 3.92
Iris (3,4) 4.00 7.33 4.67 4.00 4.00 6.00 4.00 4.67 3.33 6.00
Glass (6,9) 50.52 25.24 29.89 33.68 34.13 24.78 42.49 34.50 38.77 36.95
Segm. (7,19) 18.93 9.60 5.20 4.27 4.27 5.67 8.07 13.07 14.40 4.03

Table 1: Tenfold cross-validation error percentage of geometric level set classifier (GLS) with RBF
level set implementation on several data sets compared to error percentages of various
other classifiers reported in Cai and Sowmya (2007). The other classifiers are: naı̈ve Bayes
classifier (NB), Bayes net classifier (BN), k-nearest neighbor with inverse distance weight-
ing (kNN), C4.4 decision tree (C4.4), C4.5 decision tree (C4.5), naı̈ve Bayes tree classifier
(NBT), SVM with polynomial kernel (SVM), radial basis function network (RBN), and
learning level set classifier (LLS) of Cai and Sowmya (2007).

classifiers are as given by Cai and Sowmya (2007), who report the same tenfold cross-validation
test error that we do for the geometric level set classifier. Details about parameter settings for the
other nine classifiers may be found in Cai and Sowmya (2007).

The geometric level set classifier outperforms each of the other classifiers at least once among
the four binary data sets, and is generally competitive overall. Level set classification is also com-
petitive on the multicategory data sets. In fact, it gives the smallest error among all of the classifiers
on the segmentation data set. The proposed classifier is competitive for data sets of both small and
large dimensionality D; there is no apparent relationship between D and the performance of the
geometric level set classifier in comparison to other methods.

6. Conclusion

Level set methods are powerful computational techniques that have not yet been widely adopted
in machine learning. Our main goal with this contribution is to open a conduit between the appli-
cation area of learning and the computational technique of level set methods. Towards that end,
we have developed a nonlinear, nonparametric classifier based on level set methods that minimizes
margin-based empirical risk in both the binary and multicategory cases, and is regularized by a geo-
metric complexity penalty novel to classification. This approach is an alternative to kernel machines
for learning nonlinear decision boundaries in the input space and is in some ways a more natural
generalization of linear methods.

The variational level set formulation is flexible in allowing the inclusion of various geometric
priors defined in the input space. The surface area regularization term is one such example, but oth-
ers may also be included. Another example is an energy functional that measures feature relevance
using the partial derivative of the signed distance function (Domeniconi et al., 2005), and can be
used for !1-regularized feature subset selection as discussed in Varshney and Willsky (2008).
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We have provided an analysis of the classifier by characterizing its ε-entropy. This characteri-
zation leads to results on consistency and complexity. We have described a multicategory level set
classification procedure with a logarithmic number of decision functions, rather than the linear num-
ber that is typical in classification and decision making, through a binary encoding made possible
by the level set representation.

It is a known fact that with finite training data, no one classification method is best for all data
sets. Performance of classifiers may vary quite a bit depending on the data characteristics because
of differing inductive biases. The classifier presented in this paper provides a new option when
choosing a classifier. The results on standard data sets indicate that the level set classifier is com-
petitive with other state-of-the-art classifiers. It would be interesting to systematically find domains
in the space of data set characteristics for which the geometric level set classifier outperforms other
classifiers (Ho and Basu, 2002).
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Gregory G. Slabaugh, H. Quynh Dinh, and Gözde B. Unal. A variational approach to the evolution
of radial basis functions for image segmentation. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, June 2007.

Ingo Steinwart. Consistency of support vector machines and other regularized kernel classifiers.
IEEE Transactions on Information Theory, 51(1):128–142, January 2005.

Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for computing solutions to
incompressible two-phase flow. Journal of Computational Physics, 114(1):146–159, September
1994.

515



VARSHNEY AND WILLSKY

Arkadiusz Tomczyk. Active hypercontours and contextual classification. In Halina Kwasnicka
and Marcin Paprzycki, editors, Proceedings of the 5th International Conference on Intelligent
Systems Design and Applications, pages 256–261, Wroclaw, Poland, September 2005.

Arkadiusz Tomczyk and Piotr S. Szczepaniak. On the relationship between active contours and
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Abstract
In this paper we develop a new approach to sparse principal component analysis (sparse PCA).
We propose two single-unit and two block optimization formulations of the sparse PCA problem,
aimed at extracting a single sparse dominant principal component of a data matrix, or more com-
ponents at once, respectively. While the initial formulations involve nonconvex functions, and are
therefore computationally intractable, we rewrite them into the form of an optimization program
involving maximization of a convex function on a compact set. The dimension of the search space
is decreased enormously if the data matrix has many more columns (variables) than rows. We then
propose and analyze a simple gradient method suited for the task. It appears that our algorithm
has best convergence properties in the case when either the objective function or the feasible set
are strongly convex, which is the case with our single-unit formulations and can be enforced in
the block case. Finally, we demonstrate numerically on a set of random and gene expression test
problems that our approach outperforms existing algorithms both in quality of the obtained solution
and in computational speed.
Keywords: sparse PCA, power method, gradient ascent, strongly convex sets, block algorithms

1. Introduction

Principal component analysis (PCA) is a well established tool for making sense of high dimensional
data by reducing it to a smaller dimension. It has applications virtually in all areas of science—
machine learning, image processing, engineering, genetics, neurocomputing, chemistry, meteorol-
ogy, control theory, computer networks—to name just a few—where large data sets are encountered.
It is important that having reduced dimension, the essential characteristics of the data are retained.
If A∈Rp×n is a matrix encoding p samples of n variables, with n being large, PCA aims at finding a
few linear combinations of these variables, called principal components, which point in orthogonal
directions explaining as much of the variance in the data as possible. If the variables contained in
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the columns of A are centered, then the classical PCA can be written in terms of the scaled sample
covariance matrix Σ= ATA as follows:

Find z∗ = arg max
zT z≤1

zTΣz. (1)

Extracting one component amounts to computing the dominant eigenvector of Σ (or, equiva-
lently, dominant right singular vector of A). Full PCA involves the computation of the singular
value decomposition (SVD) of A. Principal components are, in general, combinations of all the
input variables, that is, the loading vector z∗ is not expected to have many zero coefficients. In most
applications, however, the original variables have concrete physical meaning and PCA then appears
especially interpretable if the extracted components are composed only from a small number of the
original variables. In the case of gene expression data, for instance, each variable represents the
expression level of a particular gene. A good analysis tool for biological interpretation should be
capable to highlight “simple” structures in the genome—structures expected to involve a few genes
only—that explain a significant amount of the specific biological processes encoded in the data.
Components that are linear combinations of a small number of variables are, quite naturally, usually
easier to interpret. It is clear, however, that with this additional goal, some of the explained variance
has to be sacrificed. The objective of sparse principal component analysis (sparse PCA) is to find a
reasonable trade-off between these conflicting goals. One would like to explain as much variability
in the data as possible, using components constructed from as few variables as possible. This is the
classical trade-off between statistical fidelity and interpretability.

For about a decade, sparse PCA has been a topic of active research. Historically, the first sug-
gested approaches were based on ad-hoc methods involving post-processing of the components
obtained from classical PCA. For example, Jolliffe (1995) consider using various rotation tech-
niques to find sparse loading vectors in the subspace identified by PCA. Cadima and Jolliffe (1995)
proposed to simply set to zero the PCA loadings which are in absolute value smaller than some
threshold constant.

In recent years, more involved approaches have been put forward—approaches that consider
the conflicting goals of explaining variability and achieving representation sparsity simultaneously.
These methods usually cast the sparse PCA problem in the form of an optimization program, aiming
at maximizing explained variance penalized for the number of non-zero loadings. For instance, the
SCoTLASS algorithm proposed by Jolliffe et al. (2003) aims at maximizing the Rayleigh quotient
of the covariance matrix of the data under the !1-norm based Lasso penalty (Tibshirani, 1996). Zou
et al. (2006) formulate sparse PCA as a regression-type optimization problem and impose the Lasso
penalty on the regression coefficients. d’Aspremont et al. (2007) in their DSPCA algorithm exploit
convex optimization tools to solve a convex relaxation of the sparse PCA problem. Shen and Huang
(2008) adapt the singular value decomposition (SVD) to compute low-rank matrix approximations
of the data matrix under various sparsity-inducing penalties. Greedy methods, which are typical for
combinatorial problems, have been investigated by Moghaddam et al. (2006). Finally, d’Aspremont
et al. (2008) proposed a greedy heuristic accompanied with a certificate of optimality.

In many applications, several components need to be identified. The traditional approach con-
sists of incorporating an existing single-unit algorithm in a deflation scheme, and computing the
desired number of components sequentially (see, e.g., d’Aspremont et al. 2007). In the case of
Rayleigh quotient maximization it is well-known that computing several components at once in-
stead of computing them one-by-one by deflation with the classical power method might present
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better convergence whenever the largest eigenvalues of the underlying matrix are close to each
other (see, e.g., Parlett 1980). Therefore, block approaches for sparse PCA are expected to be more
efficient on ill-posed problems.

In this paper we consider two single-unit (Section 2.1 and 2.2) and two block formulations (Sec-
tion 2.3 and 2.4) of sparse PCA, aimed at extracting m sparse principal components, with m= 1 in
the former case and p ≥ m > 1 in the latter. Each of these two groups comes in two variants, de-
pending on the type of penalty we use to enforce sparsity—either !1 or !0 (cardinality).1 Although
we assume a direct access to the data matrix A, these formulations also hold when only the covari-
ance matrix Σ is available, provided that a factorization of the form Σ = ATA is identified (e.g., by
eigenvalue decomposition or by Cholesky decomposition).

While our basic formulations involve maximization of a nonconvex function on a space of di-
mension involving n, we construct reformulations that cast the problem into the form of maximiza-
tion of a convex function on the unit Euclidean sphere in Rp (in the m = 1 case) or the Stiefel
manifold2 in Rp×m (in the m> 1 case). The advantage of the reformulation becomes apparent when
trying to solve problems with many variables (n' p), since we manage to avoid searching a space
of large dimension.3 At the same time, due to the convexity of the new cost function we are able to
propose and analyze the iteration-complexity of a simple gradient-type scheme, which appears to
be well suited for problems of this form. In particular, we study (Section 3) a first-order method for
solving an optimization problem of the form

f ∗ =max
x∈Q

f (x), (P)

where Q is a compact subset of a finite-dimensional vector space and f is convex. It appears that
our method has best theoretical convergence properties when either f or Q are strongly convex,
which is the case in the single unit case (unit ball is strongly convex) and can be enforced in the
block case by adding a strongly convex regularizing term to the objective function, constant on the
feasible set. We do not, however, prove any results concerning the quality of the obtained solution.
Even the goal of obtaining a local maximizer is in general unattainable, and we must be content
with convergence to a stationary point.

In the particular case when Q is the unit Euclidean ball in Rp and f (x) = xTCx for some p× p
symmetric positive definite matrix C, our gradient scheme specializes to the power method, which
aims at maximizing the Rayleigh quotient

R(x) =
xTCx
xT x

and thus at computing the largest eigenvalue, and the corresponding eigenvector, ofC.
By applying our general gradient scheme to our sparse PCA reformulations of the form (P), we

obtain algorithms (Section 4) with per-iteration computational cost O(npm).
We demonstrate on random Gaussian (Section 5.1) and gene expression data related to breast

cancer (Section 5.2) that our methods are very efficient in practice. While achieving a balance be-
tween the explained variance and sparsity which is the same as or superior to the existing methods,

1. Our single-unit cardinality-penalized formulation is identical to that of d’Aspremont et al. (2008).
2. Stiefel manifold is the set of rectangular matrices with orthonormal columns.
3. Note that in the case p> n, it is recommended to factor the covariance matrix as Σ= ATA with A ∈ Rn×n, such that
the dimension p in the reformulations equals at most n.
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they are faster, often converging before some of the other algorithms manage to initialize. Addition-
ally, in the case of gene expression data our approach seems to extract components with strongest
biological content.

1.1 Notation

For convenience of the reader, and at the expense of redundancy, some of the less standard notation
below is also introduced at the appropriate place in the text where it is used. Parameters m≤ p≤ n
are actual values of dimensions of spaces used in the paper. In the definitions below, we use these
actual values (i.e., n, p and m) if the corresponding object we define is used in the text exclusively
with them; otherwise we make use of the dummy variables k (representing p or n in the text) and l
(representing m, p or n in the text).

Given a vector y ∈ Rk, its jth coordinate is denoted by y j. With an abuse of notation, we may
use subscripts to indicate a sequence of vectors, such as y1,y2, . . . ,yl . In that case the jth coordinates
of these vectors are denoted by y1 j,y2 j, . . . ,yl j. By yi we refer to the ith column of Y ∈ Rk×l .
Consequently, the element of Y at position (i, j) can be written as yi j.

By E we refer to a finite-dimensional vector space; E∗ is its conjugate space, that is, the space
of all linear functionals on E. By 〈s,x〉 we denote the action of s ∈ E∗ on x ∈ E. For a self-adjoint
positive definite linear operator G : E→ E∗ we define a pair of norms on E and E∗ as follows

‖x‖ def
= 〈Gx,x〉1/2, x ∈ E,

‖s‖∗
def
= 〈s,G−1s〉1/2, s ∈ E∗.

(2)

Although the theory in Section 3 is developed in this general setting, the sparse PCA applications
considered in this paper require either the choice E = E∗ = Rp (see Section 3.3 and problems (8)
and (13) in Section 2) or E= E∗ =Rp×m (see Section 3.4 and problems (16) and (20) in Section 2).
In both cases we will let G be the corresponding identity operator for which we obtain

〈x,y〉 =∑
i
xiyi, ‖x‖ = 〈x,x〉1/2 =

(

∑
i
x2i

)1/2

= ‖x‖2, x,y ∈ Rp, and

〈X ,Y 〉 = TrXTY, ‖X‖ = 〈X ,X〉1/2 =

(

∑
i j
x2i j

)1/2

= ‖X‖F , X ,Y ∈ Rp×m.

Thus in the vector setting we work with the standard Euclidean norm and in the matrix setting
with the Frobenius norm. The symbol Tr denotes the trace of its argument.

Furthermore, for z ∈ Rn we write ‖z‖1 = ∑i |zi| (!1 norm) and by ‖z‖0 (!0 “norm”) we refer
to the number of nonzero coefficients, or cardinality, of z. By Sp we refer to the space of all
p× p symmetric matrices; Sp+ (resp. S

p
++) refers to the positive semidefinite (resp. definite) cone.

Eigenvalues of matrix Y are denoted by λi(Y ), largest eigenvalue by λmax(Y ). Analogous notation
with the symbol σ refers to singular values.

By Bk = {y ∈Rk | yT y≤ 1} (resp. S k = {y ∈Rk | yT y= 1}) we refer to the unit Euclidean ball
(resp. sphere) in Rk. If we write B and S , then these are the corresponding objects in E. The space
of n×m matrices with unit-norm columns will be denoted by

[S n]m = {Y ∈ Rn×m | Diag(YTY ) = Im},
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where Diag(·) represents the diagonal matrix obtained by extracting the diagonal of the argument.
Stiefel manifold is the set of rectangular matrices of fixed size with orthonormal columns:

S pm = {Y ∈ Rp×m | YTY = Im}.

For t ∈ R we will further write sign(t) for the sign of the argument and t+ =max{0, t}.

2. Some Formulations of the Sparse PCA Problem

In this section we propose four formulations of the sparse PCA problem, all in the form of the
general optimization framework (P). The first two deal with the single-unit sparse PCA problem
and the remaining two are their generalizations to the block case.

2.1 Single-unit Sparse PCA via !1-Penalty

Let us consider the optimization problem

φ!1(γ)
def
= max

z∈Bn

√

zTΣz− γ‖z‖1, (3)

with sparsity-controlling parameter γ≥ 0 and sample covariance matrix Σ= ATA.
The solution z∗(γ) of (3) in the case γ= 0 is equal to the right singular vector corresponding to

σmax(A), the largest singular value of A. It is the first principal component of the data matrix A. The
optimal value of the problem is thus equal to

φ!1(0) = (λmax(ATA))1/2 = σmax(A).

Note that there is no reason to expect this vector to be sparse. On the other hand, for large enough
γ, we will necessarily have z∗(γ) = 0, obtaining maximal sparsity. Indeed, since

max
z-=0

‖Az‖2
‖z‖1

=max
z-=0

‖∑i ziai‖2
‖z‖1

≤max
z-=0

∑i |zi|‖ai‖2
∑i |zi|

=max
i

‖ai‖2 = ‖ai∗‖2,

we get ‖Az‖2− γ‖z‖1 < 0 for all nonzero vectors z whenever γ is chosen to be strictly bigger than
‖ai∗‖2. From now on we will assume that

γ< ‖ai∗‖2. (4)

Note that there is a trade-off between the value ‖Az∗(γ)‖2 and the sparsity of the solution z∗(γ).
The penalty parameter γ is introduced to “continuously” interpolate between the two extreme cases
described above, with values in the interval [0,‖ai∗‖2). It depends on the particular application
whether sparsity is valued more than the explained variance, or vice versa, and to what extent. Due
to these considerations, we will consider the solution of (3) to be a sparse principal component of
A.

2.1.1 REFORMULATION

The reader will observe that the objective function in (3) is not convex, nor concave, and that the
feasible set is of a high dimension if p. n. It turns out that these shortcomings are overcome by
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considering the following reformulation:

φ!1(γ) =max
z∈Bn

‖Az‖2− γ‖z‖1

=max
z∈Bn

max
x∈B p

xTAz− γ‖z‖1 (5)

=max
x∈B p

max
z∈Bn

n

∑
i=1

zi(aTi x)− γ|zi|

=max
x∈B p

max
z′∈Bn

n

∑
i=1

|z′i|(|aTi x|− γ), (6)

where zi = sign(aTi x)z′i. In view of (4), there is some x ∈ Bn for which aTi x > γ. Fixing such x,
solving the inner maximization problem for z′ and then translating back to z, we obtain the closed-
form solution

z∗i = z∗i (γ) =
sign(aTi x)[|aTi x|− γ]+
√

∑n
k=1[|aTk x|− γ]2+

, i= 1, . . . ,n. (7)

Problem (6) can therefore be written in the form

φ2!1(γ) =max
x∈S p

n

∑
i=1

[|aTi x|− γ]2+. (8)

Note that the objective function is differentiable and convex, and hence all local and global maxima
must lie on the boundary, that is, on the unit Euclidean sphere S p. Also, in the case when p. n,
formulation (8) requires to search a space of a much lower dimension than the initial problem (3).

2.1.2 SPARSITY

In view of (7), an optimal solution x∗ of (8) defines a sparsity pattern of the vector z∗. In fact, the
coefficients of z∗ indexed by

I = {i | |aTi x∗| > γ}

are active while all others must be zero. Geometrically, active indices correspond to the defining
hyperplanes of the polytope

D = {x ∈ Rp | |aTi x|≤ 1}

that are (strictly) crossed by the line joining the origin and the point x∗/γ. Note that it is possible to
say something about the sparsity of the solution even without the knowledge of x∗:

γ≥ ‖ai‖2 ⇒ z∗i (γ) = 0, i= 1, . . . ,n. (9)

2.2 Single-unit Sparse PCA via Cardinality Penalty

Instead of the !1-penalization, the authors of d’Aspremont et al. (2008) consider the formulation

φ!0(γ)
def
= max

z∈Bn
zTΣz− γ ‖z‖0, (10)

which directly penalizes the number of nonzero components (cardinality) of the vector z.
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2.2.1 REFORMULATION

The reasoning of the previous section suggests the reformulation

φ!0(γ) =max
x∈B p

max
z∈Bn

(xTAz)2− γ‖z‖0, (11)

where the maximization with respect to z ∈ Bn for a fixed x ∈ B p has the closed form solution

z∗i = z∗i (γ) =
[sign((aTi x)2− γ)]+aTi x

√

∑n
k=1[sign((aTk x)2− γ)]+(aTk x)2

, i= 1, . . . ,n. (12)

In analogy with the !1 case, this derivation assumes that

γ< ‖ai∗‖22,

so that there is x ∈ Bn such that (aTi x)2− γ> 0. Otherwise z∗ = 0 is optimal. Formula (12) is easily
obtained by analyzing (11) separately for fixed cardinality values of z. Hence, problem (10) can be
cast in the following form

φ!0(γ) =max
x∈S p

n

∑
i=1

[(aTi x)2− γ]+. (13)

Again, the objective function is convex, albeit nonsmooth, and the new search space is of particular
interest if p. n. A different derivation of (13) for the n = p case can be found in d’Aspremont
et al. (2008).

2.2.2 SPARSITY

Given a solution x∗ of (13), the set of active indices of z∗ is given by

I = {i | (aTi x∗)2 > γ}.

Geometrically, active indices correspond to the defining hyperplanes of the polytope

D = {x ∈ Rp | |aTi x|≤ 1}

that are (strictly) crossed by the line joining the origin and the point x∗/√γ. As in the !1 case, we
have

γ≥ ‖ai‖22 ⇒ z∗i (γ) = 0, i= 1, . . . ,n. (14)

2.3 Block Sparse PCA via !1-Penalty

Consider the following block generalization of (5),

φ!1,m(γ)
def
= max

X∈S pm
Z∈[Sn]m

Tr(XTAZN)−
m

∑
j=1

γ j
n

∑
i=1

|zi j|, (15)

where the m-dimensional vector γ = [γ1, . . . ,γm]T is nonnegative and N = Diag(µ1, . . . ,µm), with
positive entries on the diagonal. The dimension m corresponds to the number of extracted compo-
nents and is assumed to be smaller or equal to the rank of the data matrix, that is, m ≤ Rank(A).
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Each parameter γ j controls the sparsity of the corresponding component. It will be shown below that
under some conditions on the parameters µj, the case γ= 0 recovers PCA. In that particular instance,
any solution Z∗ of (15) has orthonormal columns, although this is not explicitly enforced. For pos-
itive γ j, the columns of Z∗ are not expected to be orthogonal anymore. Most existing algorithms
for computing several sparse principal components, for example, Zou et al. (2006), d’Aspremont
et al. (2007) and Shen and Huang (2008), also do not impose orthogonal loading directions. Si-
multaneously enforcing sparsity and orthogonality seems to be a hard (and perhaps questionable)
task.

2.3.1 REFORMULATION

Since problem (15) is completely decoupled in the columns of Z, that is,

φ!1,m(γ) = max
X∈S pm

m

∑
j=1
max
z j∈Sn

µjxTj Az j− γ j‖z j‖1,

the closed-form solution (7) of (5) is easily adapted to the block formulation (15):

z∗i j = z∗i j(γ j) =
sign(aTi x j)[µj|aTi x j|− γ j]+
√

∑n
k=1[µj|aTk x j|− γ j]2+

.

This leads to the reformulation

φ2!1,m(γ) = max
X∈S pm

m

∑
j=1

n

∑
i=1

[µj|aTi x j|− γ j]2+, (16)

which maximizes a convex function f : Rp×m → R on the Stiefel manifold S pm.

2.3.2 SPARSITY

A solution X∗ of (16) again defines the sparsity pattern of the matrix Z∗: the entry z∗i j is active if

µj|aTi x∗j | > γ j,

and equal to zero otherwise. For all γ j > µj max
i

‖ai‖2, the trivial solution Z∗ = 0 is optimal.

2.3.3 BLOCK PCA

For γ= 0, problem (16) can be equivalently written in the form

φ2!1,m(0) = max
X∈S pm

Tr(XTAATXN2), (17)

which has been well studied (see, e.g., Brockett 1991 and Absil et al. 2008). The solutions of
(17) span the dominant m-dimensional invariant subspace of the matrix AAT . Furthermore, if the
parameters µj are all distinct, the columns of X∗ are the m dominant eigenvectors of AAT , that is,
the m dominant left-eigenvectors of the data matrix A. The columns of the solution Z∗ of (15) are
thus the m dominant right singular vectors of A, that is, the PCA loading vectors. Such a matrix N
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with distinct diagonal elements enforces the objective function in (17) to have isolated maximizers.
In fact, if N = Im, any point X∗U with X∗ a solution of (17) and U ∈ Smm is also a solution of (17).
In the case of sparse PCA, that is, γ> 0, the penalty term already ensures isolated maximizers, such
that the diagonal elements of N do not have to be distinct. However, as it will be briefly illustrated
in the forthcoming numerical experiments (Section 5), having distinct elements on the diagonal of
N pushes towards sparse loading vectors that are more orthogonal.

2.4 Block Sparse PCA via Cardinality Penalty

The single-unit cardinality-penalized case can also be naturally extended to the block case:

φ!0,m(γ)
def
= max

X∈S pm
Z∈[Sn]m

Tr(Diag(XTAZN)2)−
m

∑
j=1

γ j‖z j‖0, (18)

where the sparsity inducing vector γ = [γ1, . . . ,γm]T is nonnegative and N = Diag(µ1, . . . ,µm) with
positive entries on the diagonal. In the case γ= 0, problem (20) is equivalent to (17), and therefore
corresponds to PCA, provided that all µj are distinct.

2.4.1 REFORMULATION

Again, this block formulation is completely decoupled in the columns of Z,

φ!0,m(γ) = max
X∈S pm

m

∑
j=1
max
z j∈Sn

(µjxTj Az j)2− γ j‖z j‖0,

so that the solution (12) of the single unit case provides the optimal columns zi:

z∗i j = z∗i j(γ j) =
[sign((µjaTi x j)2− γ j)]+µjaTi x j

√

∑n
k=1[sign((µjaTk x j)2− γ j)]+µ2j(aTk x j)2

. (19)

The reformulation of problem (18) is thus

φ!0,m(γ) = max
X∈S pm

m

∑
j=1

n

∑
i=1

[(µjaTi x j)2− γ j]+, (20)

which maximizes a convex function f : Rp×m → R on the Stiefel manifold S pm.

2.4.2 SPARSITY

For a solution X∗ of (20), the active entries z∗i j of Z∗ are given by the condition

(µjaTi x∗j)2 > γ j.

Hence for all γ j > µ2j maxi ‖ai‖22, the optimal solution of (18) is Z∗ = 0.
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3. A Gradient Method for Maximizing Convex Functions

By E we denote an arbitrary finite-dimensional vector space; E∗ is its conjugate, that is, the space
of all linear functionals on E. We equip these spaces with norms given by (2).

In this section we propose and analyze a simple gradient-type method for maximizing a convex
function f : E→ R on a compact set Q :

f ∗ =max
x∈Q

f (x). (21)

Unless explicitly stated otherwise, we will not assume f to be differentiable. By f ′(x)we denote
any subgradient of function f at x. By ∂ f (x) we denote its subdifferential.

At any point x ∈ Q we introduce some measure for the first-order optimality conditions:

Δ(x) def= max
y∈Q

〈 f ′(x),y− x〉.

It is clear that
Δ(x) ≥ 0, (22)

with equality only at those points x where the gradient f ′(x) belongs to the normal cone to the set
Conv(Q ) at x.4

3.1 Algorithm

Consider the following simple algorithmic scheme.

Algorithm 1: Gradient scheme
input : x0 ∈ Q

output: xk (approximate solution of (21))
begin

k←− 0
repeat

xk+1 ∈ Argmax{ f (xk)+ 〈 f ′(xk),y− xk〉 | y ∈ Q }
k←− k+1

until a stopping criterion is satisfied
end

Note that for example in the special case Q = rS def
= {x ∈ E | ‖x‖ = r} or

Q = rB def
= {x ∈ E | ‖x‖ ≤ r}, the main step of Algorithm 1 can be written in an explicit form:

xk+1 = r
G−1 f ′(xk)
‖ f ′(xk)‖∗

. (23)

4. The normal cone to the set Conv(Q ) at x ∈ Q is smaller than the normal cone to the set Q . Therefore, the optimality
condition Δ(x) = 0 is stronger than the standard one.
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3.2 Analysis

Our first convergence result is straightforward. Denote Δk
def
= min

0≤i≤k
Δ(xi).

Theorem 1 Let sequence {xk}∞k=0 be generated by Algorithm 1 as applied to a convex function f .
Then the sequence { f (xk)}∞k=0 is monotonically increasing and limk→∞

Δ(xk) = 0. Moreover,

Δk ≤
f ∗ − f (x0)
k+1

.

Proof From convexity of f we immediately get

f (xk+1) ≥ f (xk)+ 〈 f ′(xk),xk+1− xk〉 = f (xk)+Δ(xk),

and therefore, f (xk+1) ≥ f (xk) for all k. By summing up these inequalities for k = 0,1, . . . ,N− 1,
we obtain

f ∗ − f (x0) ≥ f (xk)− f (x0) ≥
k

∑
i=0

Δ(xi),

and the result follows.

For a sharper analysis, we need some technical assumptions on f and Q .

Assumption 1 The norms of the subgradients of f are bounded from below on Q by a positive
constant, that is,

δ f
def
= min

x∈Q
f ′(x)∈∂ f (x)

‖ f ′(x)‖∗ > 0.

This assumption is not too binding because of the following result.

Proposition 2 Assume that there exists a point x′ -∈ Q such that f (x′) < f (x) for all x ∈ Q . Then

δ f ≥
[

min
x∈Q

f (x)− f (x′)
]

/

[

max
x∈Q

‖x− x′‖
]

> 0.

Proof Because f is convex, for any x ∈ Q we have

0< f (x)− f (x′) ≤ 〈 f ′(x),x− x′〉 ≤ ‖ f ′(x)‖∗‖x− x′‖.

For our next convergence result we need to assume either strong convexity of f or strong con-
vexity of the set Conv(Q ).

Assumption 2 Function f is strongly convex, that is, there exists a constant σ f > 0 such that for
any x,y ∈ E

f (y) ≥ f (x)+ 〈 f ′(x),y− x〉+
σ f

2
‖y− x‖2. (24)
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Note that convex functions satisfy inequality (24) with convexity parameter σ f = 0.

Assumption 3 The set Conv(Q ) is strongly convex, that is, there is a constant σQ > 0 such that
for any x,y ∈ Conv(Q ) and α ∈ [0,1] the following inclusion holds:

αx+(1−α)y+
σQ
2
α(1−α)‖x− y‖2S ⊂ Conv(Q ). (25)

Note that any set Q satisfies inclusion (25) with convexity parameter σQ = 0.
It can be shown (see Appendix A), that level sets of strongly convex functions with Lips-

chitz continuous gradient are again strongly convex. An example of such a function is the simple
quadratic x 4→ ‖x‖2. The level sets of this function correspond to Euclidean balls of varying sizes.

As we will see in Theorem 4, a better analysis of Algorithm 1 is possible if Conv(Q ), the
convex hull of the feasible set of problem (21), is strongly convex. Note that in the case of the
two formulations (8) and (13) of the sparse PCA problem, the feasible set Q is the unit Euclidean
sphere. Since the convex hull of the unit sphere is the unit ball, which is a strongly convex set, the
feasible set of our sparse PCA formulations satisfies Assumption 3.

In the special case Q = rS for some r> 0, there is a simple proof that Assumption 3 holds with
σQ = 1

r . Indeed, for any x,y ∈ E and α ∈ [0,1], we have

‖αx+(1−α)y‖2 = α2‖x‖2+(1−α)2‖y‖2+2α(1−α)〈Gx,y〉

= α‖x‖2+(1−α)‖y‖2−α(1−α)‖x− y‖2.

Thus, for x,y ∈ rS we obtain

‖αx+(1−α)y‖ =
[

r2−α(1−α)‖x− y‖2
]1/2 ≤ r−

1
2r
α(1−α)‖x− y‖2.

Hence, we can take σQ = 1
r .

The relevance of Assumption 3 is justified by the following technical observation.

Proposition 3 If f is convex, then for any two subsequent iterates xk,xk+1 of Algorithm 1

Δ(xk) ≥
σQ
2

‖ f ′(xk)‖∗‖xk+1− xk‖2.

Proof We have noted in (22) that for convex f we have Δ(xk) ≥ 0. We can thus concentrate on the
situation when σQ > 0 and f ′(xk) -= 0. Note that

〈 f ′(xk),xk+1− y〉 ≥ 0 for all y ∈ Conv(Q ).

We will use this inequality with

y= yα
def
= xk +α(xk+1− xk)+

σQ
2
α(1−α)‖xk+1− xk‖2

G−1 f ′(xk)
‖ f ′(xk)‖∗

, α ∈ [0,1].

In view of (25), yα ∈ Conv(Q ), and therefore

0≥ 〈 f ′(xk),yα− xk+1〉 = (1−α)〈 f ′(xk),xk− xk+1〉+
σQ
2
α(1−α)‖xk+1− xk‖2‖ f ′(xk)‖∗.

Since α is an arbitrary value from [0,1], the result follows.

We are now ready to refine our analysis of Algorithm 1.
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Theorem 4 (Stepsize Convergence) Let f be convex (σ f ≥ 0), and let either Assumption 2 (σ f > 0)
or Assumptions 1 (δ f > 0) and 3 (δQ > 0) be satisfied. If {xk} is the sequence of points generated
by Algorithm 1, then

∞

∑
k=0

‖xk+1− xk‖2 ≤
2( f ∗ − f (x0))
σQ δ f +σ f

. (26)

Proof Since f is convex, Proposition 3 gives

f (xk+1)− f (xk) ≥ Δ(xk)+
σ f

2
‖xk+1− xk‖2 ≥

1
2
(σQ δ f +σ f )‖xk+1− xk‖2.

The additional assumptions of the theorem ensure that σQ δ f + δ f > 0. It remains to add the in-
equalities up for k ≥ 0.

Theorem 4 gives an upper estimate on the number of iterations it takes for Algorithm 1 to
produce a step of small size. Indeed,

k ≥
2( f ∗ − f (x0))
σQ δ f +σ f

1
ε2

−1 ⇒ min
0≤i≤k

‖xi+1− xi‖ ≤ ε.

It can be illustrated on simple examples that it is not in general possible to guarantee that the
algorithm will produce iterates converging to a local maximizer. However, Theorem 4 guarantees
that the set of the limit points is connected, and that all of them satisfy the first-order optimality
condition. Also notice that, started from a local minimizer, the method will not move away.

3.2.1 TERMINATION

A reasonable stopping criterion for Algorithm 1 is the following: terminate once the relative change
of the objective function becomes small:

f (xk+1)− f (xk)
f (xk)

≤ ε, or equivalently, f (xk+1) ≤ (1+ ε) f (xk).

3.3 Maximization with Spherical Constraints

Consider E= E∗ = Rp with G= Ip and 〈s,x〉 = ∑i sixi, and let

Q = rS p = {x ∈ Rp | ‖x‖ = r}.

Problem (21) takes on the form
f ∗ = max

x∈rS p
f (x). (27)

Since Q is strongly convex (σQ = 1
r ), Theorem 4 is meaningful for any convex function f (σ f ≥ 0).

The main step of Algorithm 1 can be written down explicitly (see (23)):

xk+1 = r
f ′(xk)

‖ f ′(xk)‖2
.

The following examples illustrate the connection of Algorithm 1 to classical methods.
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Example 5 (Power Method) In the special case of a quadratic objective function f (x) = 1
2x

TCx
for some C ∈ Sp++ on the unit sphere (r = 1), we have

f ∗ = 1
2λmax(C),

and Algorithm 1 is equivalent to the power iteration method for computing the largest eigenvalue of
C (Golub and Van Loan, 1996). Hence for Q = S p, we can think of our scheme as a generalization
of the power method. Indeed, our algorithm performs the following iteration:

xk+1 =
Cxk
‖Cxk‖

, k ≥ 0.

Note that both δ f and σ f are equal to the smallest eigenvalue of C, and hence the right-hand side
of (26) is equal to

λmax(C)− xT0Cx0
2λmin(C)

. (28)

Example 6 (Shifted Power Method) If C is not positive semidefinite in the previous example, the
objective function is not convex and our results are not applicable. However, this complication can
be circumvented by instead running the algorithm with the shifted quadratic function

f̂ (x) =
1
2
xT (C+ωIp)x,

where ω > 0 satisfies Ĉ = ωIp +C ∈ Sp++. On the feasible set, this change only adds a constant
term to the objective function. The method, however, produces different sequence of iterates. Note
that the constants δ f and σ f are also affected and, correspondingly, the estimate (28).

The example above illustrates an easy “trick” to turn a convex convex objective function into a
strongly convex one: one simply adds to the original objective function a strongly convex function
that is constant on the boundary of the feasible set. The two formulations are equivalent since the
objective functions differ only by a constant on the domain of interest. However, there is a clear
trade-off. If the second term dominates the first term (say, by choosing very large ω), the algorithm
will tend to treat the objective as a quadratic, and will hence tend to terminate in fewer iterations,
nearer to the starting iterate. In the limit case, the method will not move away from the initial iterate.

3.4 Maximization with Orthonormality Constraints

Consider E = E∗ = Rp×m, the space of p×m real matrices, with m ≤ p. Note that for m = 1 we
recover the setting of the previous section. We assume this space is equipped with the trace inner
product: 〈X ,Y 〉 = Tr(XTY ). The induced norm, denoted by ‖X‖F

def
= 〈X ,X〉1/2, is the Frobenius

norm (we let G be the identity operator). We can now consider various feasible sets, the simplest
being a ball or a sphere. Due to nature of applications in this paper, let us concentrate on the situation
when Q is a special subset of the sphere with radius r =

√
m, the Stiefel manifold:

Q = S pm = {X ∈ Rp×m | XTX = Im}.

Problem (21) then takes on the following form:

f ∗ = max
X∈S pm

f (X).
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Using the duality of the nuclear and spectral matrix norms and Proposition 7 below it can be shown
that Conv(Q ) is equal to the unit spectral ball. It can be then further deduced that this set is not
strongly convex (σQ = 0) and as a consequence, Theorem 4 is meaningful only if f is strongly
convex (σ f > 0). Of course, Theorem 1 applies also in the σ f = 0 case.

At every iteration, Algorithm 1 needs to maximize a linear function over the Stiefel manifold.
In the text that follows, it will be convenient to use the symbol Polar(C) for theU factor of the polar
decomposition of matrixC ∈ Rp×m:

C =UP, U ∈ S pm, P ∈ Sm+.

The complexity of the polar decomposition is O(pm2), with p ≥ m. In view of the Proposition 7,
the main step of Algorithm 1 can be written in the form

xk+1 = Polar( f ′(xk)).

Proposition 7 Let C ∈ Rp×m, with m≤ p, and denote by σi(C), i= 1, . . . ,m, the singular values of
C. Then

max
X∈S pm

〈C,X〉 =
m

∑
i=1

σi(C) (= ‖C‖∗ = Tr[(CTC)1/2]), (29)

with maximizer X∗ = Polar(C). If C is of full rank, then Polar(C) =C(CTC)−1/2.

Proof Existence of the polar factorization in the nonsquare case is covered by Theorem 7.3.2 in
Horn and Johnson (1985). LetC =VΣWT be the singular value decomposition (SVD) of A; that is,
V is p× p orthonormal,W is m×m orthonormal, and Σ is p×m diagonal with values σi(A) on the
diagonal. Then

max
X∈S pm

〈C,X〉 = max
X∈S pm

〈VΣWT ,X〉

= max
X∈S pm

〈Σ,VTXW 〉

= max
Z∈S pm

〈Σ,Z〉 = max
Z∈S pm

m

∑
i=1

σi(C)zii ≤
m

∑
i
σi(C).

The third equality follows since the function X 4→ VTXW maps S pm onto itself. Both factors of the
polar decomposition ofC can be easily read-off from the SVD. Indeed, if we letV ′ be the submatrix
of V consisting of its first m columns and Σ′ be the principal m×m submatrix of Σ, that is, a
diagonal matrix with values σi(C) on its diagonal, then C = V ′Σ′WT = (V ′WT )(WΣ′WT ) and we
can putU =V ′WT and P=WΣ′WT . To establish (29) it remains to note that

〈C,U〉 = TrP=∑
i
λi(P) =∑

i
σi(P) = Tr(PTP)1/2 = Tr(CTC)1/2 =∑

i
σi(C).

Finally, since CTC = PUTUP = P2, we have P = (CTC)1/2, and in the full rank case we obtain
X∗ =U =CP−1 =C(CTC)−1/2.

Note that the block sparse PCA formulations (16) and (20) conform to this setting. Here is one
more example:
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Example 8 (Rectangular Procrustes Problem) Let C,X ∈ Rp×m and D ∈ Rp×p and consider the
following problem:

min{‖C−DX‖2F | XTX = Im}. (30)

Since ‖C−DX‖2F = ‖C‖2F +〈DX ,DX〉−2〈CD,X〉, by a similar shifting technique as in the previous
example we can cast problem (30) in the following form

max{ω‖X‖2F −〈DX ,DX〉+2〈CD,X〉 | XTX = Im}.

For ω > 0 large enough, the new objective function will be strongly convex. In this case our algo-
rithm becomes similar to the gradient method proposed in Fraikin et al. (2008).

The standard Procrustes problem in the literature is a special case of (30) with p= m.

4. Algorithms for Sparse PCA

The solutions of the sparse PCA formulations of Section 2 provide locally optimal patterns of zeros
and nonzeros for a vector z ∈ S n (in the single-unit case) or a matrix Z ∈ [S n]m (in the block case).
The sparsity-inducing penalty term used in these formulations biases however the values assigned
to the nonzero entries, which should be readjusted by considering the sole objective of maximum
variance. An algorithm for sparse PCA combines thus a method that identifies a “good” pattern of
sparsity with a method that fills the active entries. In the sequel, we discuss the general block sparse
PCA problem. The single-unit case is recovered in the particular case m= 1.

4.1 Methods for Pattern-finding

The application of our general method (Algorithm 1) to the four sparse PCA formulations of Sec-
tion 2, that is, (8), (13), (16) and (20), leads to Algorithms 2, 3, 4 and 5 below, that provide a
locally optimal pattern of sparsity for a matrix Z ∈ [S n]m. This pattern is defined as a binary matrix
P ∈ {0,1}n×m such that pi j = 1 if the loading zi j is active and pi j = 0 otherwise. So P is an indi-
cator of the coefficients of Z that are zeroed by our method. The computational complexity of the
single-unit algorithms (Algorithms 2 and 3) is O(np) operations per iteration. The block algorithms
(Algorithms 4 and 5) have complexity O(npm) per iteration.

These algorithms need to be initialized at a point for which the associated sparsity pattern has
at least one active element. In case of the single-unit algorithms, such an initial iterate x ∈ S p is
chosen parallel to the column of A with the largest norm, that is,

x=
ai∗

‖ai∗‖2
, where i∗ = argmax

i
‖ai‖2. (31)

For the block algorithms, a suitable initial iterate X ∈ S
p
m is constructed in a block-wise manner as

X = [x|X⊥], where x is the unit-norm vector (31) and X⊥ ∈ S
p
m−1 is orthogonal to x, that is, xTX⊥ = 0.

The nonnegative parameters γ have to be chosen below the upper bounds derived in Section 2
and which are summarized in Table 1. Increasing the value of these parameters leads to solutions of
smaller cardinality. There is however not explicit relationship between γ and the resulting cardinal-
ity. Since the proposed algorithms are fast, one can afford some trials and errors to reach a targeted
cardinality. We however see it as an advantage not to enforce a fixed cardinality, since this informa-
tion is often unknown a priori. As illustrated in the forthcoming numerical experiments (Section 5),
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Algorithm 2 Single-unit !1 γ≤maxi ‖ai‖2
Algorithm 3 Single-unit !0 γ≤maxi ‖ai‖22
Algorithm 4 Block !1 γ j ≤ µjmaxi ‖ai‖2
Algorithm 5 Block !0 γ j ≤ µ2jmaxi ‖ai‖22

Table 1: Theoretical upper-bounds on the sparsity parameters γ.

our algorithms are able to recover cardinalities that are best adapted to the model that underlies the
data.

As previously explained, the parameters µj required by the block algorithms can be either iden-
tical (e.g., equal to one) or distinct (e.g., µj = 1

j ). Since distinct µj leads to orthogonal loading
vectors in the PCA case (i.e., γ = 0), they are expected to push towards orthogonality also in the
sparse PCA case. Nevertheless, unless otherwise stated, the technical parameters µj will be set to
one in what follows.

Let us finally mention that the input matrix A of these algorithms can be the data matrix itself as
well as any matrix such that the factorization Σ= ATA of the covariance matrix holds. This property
is very valuable when there is no access to the data and only the covariance matrix is available, or
when the number of samples is greater than the number of variables. In this last case, the dimension
p can be reduced to at most n by computing an eigenvalue decomposition or a Cholesky decompo-
sition of the covariance matrix, for instance.

Algorithm 2: Single-unit sparse PCA method based on the !1-penalty (8)
input : Data matrix A ∈ Rp×n

Sparsity-controlling parameter γ≥ 0
Initial iterate x ∈ S p

output: A locally optimal sparsity pattern P
begin
repeat

x←− ∑n
i=1[|aTi x|− γ]+ sign(aTi x)ai

x←− x
‖x‖

until a stopping criterion is satisfied

Construct vector P ∈ {0,1}n such that
{

pi = 1 if |aTi x| > γ
pi = 0 otherwise.

end

4.2 Post-processing

Once a “good” sparsity pattern P has been identified, the active entries of Z still have to be filled.
To this end, we consider the optimization problem,

(X∗,Z∗) def= arg max
X∈S pm
Z∈[Sn]m

ZP′=0

Tr(XTAZN), (32)
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Algorithm 3: Single-unit sparse PCA algorithm based on the !0-penalty (13)
input : Data matrix A ∈ Rp×n

Sparsity-controlling parameter γ≥ 0
Initial iterate x ∈ S p

output: A locally optimal sparsity pattern P
begin
repeat

x←− ∑n
i=1[sign((aTi x)2− γ)]+ aTi x ai

x←− x
‖x‖

until a stopping criterion is satisfied

Construct vector P ∈ {0,1}n such that
{

pi = 1 if (aTi x)2 > γ
pi = 0 otherwise.

end

Algorithm 4: Block sparse PCA algorithm based on the !1-penalty (16)
input : Data matrix A ∈ Rp×n

Sparsity-controlling vector [γ1, . . .γm]T ≥ 0
Parameters µ1, . . . ,µm > 0
Initial iterate X ∈ S

p
m

output: A locally optimal sparsity pattern P
begin
repeat
for j = 1, . . . ,m do

x j ←− ∑n
i=1µj[µj|aTi x j|− γ j]+ sign(aTi x)ai

X ←− Polar(X)
until a stopping criterion is satisfied

Construct matrix P ∈ {0,1}n×m such that
{

pi j = 1 if µj|aTi x j| > γ j
pi j = 0 otherwise.

end

where P′ ∈ {0,1}n×m is the complement of P, ZP′ denotes the entries of Z that are constrained to
zero and N = Diag(µ1, . . . ,µm) with strictly positive µi. Problem (32) assigns the active part of the
loading vectors Z to maximize the variance explained by the resulting components. Without loss of
generality, each column of P is assumed to contain active elements.

In the single-unit case m= 1, an explicit solution of (32) is available,

X∗ = u,
Z∗P = v and Z∗P′ = 0, (33)

where σuvT with σ> 0, u∈B p and v∈B‖P‖0 is a rank one singular value decomposition of the ma-
trix AP, that corresponds to the submatrix of A containing the columns related to the active entries.
The post-processing (33) is equivalent to the variational renormalization proposed by Moghaddam
et al. (2006).
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Algorithm 5: Block sparse PCA algorithm based on the !0-penalty (20)
input : Data matrix A ∈ Rp×n

Sparsity-controlling vector [γ1, . . .γm]T ≥ 0
Parameters µ1, . . . ,µm > 0
Initial iterate X ∈ S

p
m

output: A locally optimal sparsity pattern P
begin
repeat
for j = 1, . . . ,m do

x j ←− ∑n
i=1µ2j [sign((µjaTi x j)2− γ j)]+ aTi x j ai

X ←− Polar(X)
until a stopping criterion is satisfied

Construct matrix P ∈ {0,1}n×m such that
{

pi j = 1 if (µjaTi x j)2 > γ j
pi j = 0 otherwise.

end

Although an exact solution of (32) is hard to compute in the block case m > 1, a local max-
imizer can be efficiently computed by optimizing alternatively with respect to one variable while
keeping the other ones fixed. The following lemmas provide an explicit solution to each of these
subproblems.

Lemma 9 For a fixed Z ∈ [S n]m, a solution X∗ of

max
X∈S pm

Tr(XTAZN)

is provided by the U factor of the polar decomposition of the product AZN.

Proof See Proposition 7.

Lemma 10 The solution
Z∗ def= arg max

Z∈[Sn]m

ZP′=0

Tr(XTAZN), (34)

is at any point X ∈ S
p
m defined by the two conditions Z∗P = (ATXND)P and Z∗P′ = 0, where D is a

positive diagonal matrix that normalizes each column of Z∗ to unit norm, that is,

D = Diag(NXTAATXN)−
1
2 .

Proof The Lagrangian of the optimization problem (34) is

L(Z,Λ1,Λ2) = Tr(XTAZN)−Tr(Λ1(ZTZ− Im))−Tr(ΛT2 Z),
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where the Lagrangian multipliers Λ1 ∈ Rm×m and Λ2 ∈ Rn×m have the following properties: Λ1 is
an invertible diagonal matrix and (Λ2)P = 0. The first order optimality conditions of (34) are thus

ATXN−2ZΛ1−Λ2 = 0
Diag(ZTZ) = Im

ZP = 0.

Hence, any stationary point Z∗ of (34) satisfies Z∗P = (ATXND)P and Z∗P′ = 0, where D is a diag-
onal matrix that normalizes the columns of Z∗ to unit norm. The second order optimality con-
dition imposes the diagonal matrix D to be positive. Such a D is unique and given by D =
Diag(NXTAATXN)−

1
2 .

The alternating optimization scheme is summarized in Algorithm 6, which computes a local
solution of (32). A judicious initialization is provided by an accumulation point of the algorithm for
pattern-finding, that is, Algorithms 4 and 5.

Algorithm 6: Alternating optimization scheme for solving (32)
input : Data matrix A ∈ Rp×n

Sparsity pattern P ∈ {0,1}n×m
Matrix N = Diag(µ1, . . . ,µm)
Initial iterate X ∈ S

p
m

output: A local minimizer (X ,Z) of (32)
begin
repeat

Z←− ATXN
Z←− Z Diag(ZTZ)−

1
2

ZP̄ ←− 0
X ←− Polar(AZN)

until a stopping criterion is satisfied
end

It should be noted that Algorithm 6 is a postprocessing heuristic that, strictly speaking, is re-
quired only for the !1 block formulation (Algorithm 4). In fact, since the cardinality penalty only
depends on the sparsity pattern P and not on the actual values assigned to ZP, a solution (X∗,Z∗) of
Algorithms 3 or 5 is also a local maximizer of (32) for the resulting pattern P. This explicit solution
provides a good alternative to Algorithm 6. In the single unit case with !1 penalty (Algorithm 2),
the solution (33) is available.

4.3 Sparse PCA Algorithms

To sum up, in this paper we propose four sparse PCA algorithms, each combining a method to
identify a “good” sparsity pattern with a method to fill the active entries of the m loading vectors.
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They are summarized in Table 2. The MATLAB code of these GPower5 algorithms is available on
the authors’ websites.6

Computation of P Computation of ZP
GPower!1 Algorithm 2 Equation (33)
GPower!0 Algorithm 3 Equation (12)
GPower!1,m Algorithm 4 Algorithm 6
GPower!0,m Algorithm 5 Equation (19)

Table 2: New algorithms for sparse PCA.

4.4 Deflation Scheme

For the sake of completeness, we recall a classical deflation process for computing m sparse princi-
pal components with a single-unit algorithm (d’Aspremont et al., 2007). Let z ∈ Rn be a unit-norm
sparse loading vector of the data A. Subsequent directions can be sequentially obtained by comput-
ing a dominant sparse component of the residual matrix A− xzT , where x = Az is the vector that
solves

min
x∈Rp

‖A− xzT‖F .

Further deflation techniques for sparse PCA have been proposed by Mackey (2008).

4.5 Connection with Existing Sparse PCA Methods

As previously mentioned, our !0-based single-unit algorithm GPower!0 rests on the same reformu-
lation (13) as the greedy algorithm proposed by d’Aspremont et al. (2008).

There is also a clear connection between both single-unit algorithms GPower!1 and GPower!0
and the rSVD algorithms of Shen and Huang (2008), which solve the optimization problems

min
z∈Rn
x∈S p

‖A− xzT‖2F +2γ‖z‖1 and min
z∈Rn
x∈S p

‖A− xzT‖2F + γ‖z‖0

by alternating optimization over one variable (either x or z) while fixing the other one. It can
be shown that an update on x amounts to the iterations of Algorithms 2 and 3, depending on the
penalty type. Although rSVD and GPower were derived differently, it turns out that, except for the
initialization and post-processing phases, the algorithms are identical. There are, however, several
benefits to our approach: 1) we are able to analyze convergence properties of the method, 2) we
show that the core algorithm can be derived as a special case of a generalization of the power
method (and hence more applications are possible), 3) we give generalizations from single unit case
to block case, 4) our approach uncovers the possibility of a very useful initialization technique, 5) we
equip the method with a practical postprocessing phase, 6) we provide a link with the formulation
of d’Aspremont et al. (2008).

5. Our algorithms are named GPower where the “G” stands for generalized or gradient.
6. Websites are http://www.inma.ucl.ac.be/˜richtarik and http://www.montefiore.ulg.ac.be/˜journee.
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5. Numerical Experiments

In this section, we evaluate the proposed power algorithms against existing sparse PCA methods.
Three competing methods are considered in this study: a greedy scheme aimed at computing a
local maximizer of (10) (Approximate Greedy Search Algorithm, d’Aspremont et al. (2008)), the
SPCA algorithm (Zou et al., 2006) and the sPCA-rSVD algorithm (Shen and Huang, 2008). We do
not include the DSPCA algorithm (d’Aspremont et al., 2007) in our numerical study. This method
solves a convex relaxation of the sparse PCA problem and has a large per-iteration computational
complexity of O(n3) compared to the other methods. Table 3 lists the considered algorithms.

GPower!1 Single-unit sparse PCA via !1-penalty
GPower!0 Single-unit sparse PCA via !0-penalty
GPower!1,m Block sparse PCA via !1-penalty
GPower!0,m Block sparse PCA via !0-penalty
Greedy Greedy method
SPCA SPCA algorithm
rSVD!1 sPCA-rSVD algorithm with an !1-penalty (“soft thresholding”)
rSVD!0 sPCA-rSVD algorithm with an !0-penalty (“hard thresholding”)

Table 3: Sparse PCA algorithms we compare in this section.

These algorithms are compared on random data (Sections 5.1 and 5.2) as well as on real data
(Sections 5.3 and 5.4). All numerical experiments are performed in MATLAB. The parameter ε in
the stopping criterion of the GPower algorithms has been fixed to 10−4. MATLAB implementations
of the SPCA algorithm and the greedy algorithm have been rendered available by Zou et al. (2006)
and d’Aspremont et al. (2008). We have, however, implemented the sPCA-rSVD algorithm on our
own (Algorithm 1 in Shen and Huang 2008), and use it with the same stopping criterion as for the
GPower algorithms. This algorithm initializes with the best rank-one approximation of the data
matrix. This is done by a first run of the algorithm with the sparsity-inducing parameter γ that is set
to zero.

Given a data matrix A ∈ Rp×n, the considered sparse PCA algorithms provide m unit-norm
sparse loading vectors stored in the matrix Z ∈ [S n]m. The samples of the associated components
are provided by the m columns of the product AZ. The variance explained by these m components
is an important comparison criterion of the algorithms. In the simple case m = 1, the variance
explained by the component Az is

Var(z) = zTATAz.

When z corresponds to the first principal loading vector, the variance is Var(z) = σmax(A)2. In the
case m > 1, the derived components are likely to be correlated. Hence, summing up the variance
explained individually by each of the components overestimates the variance explained simultane-
ously by all the components. This motivates the notion of adjusted variance proposed by Zou et al.
(2006). The adjusted variance of the m components Y = AZ is defined as

AdjVar Z = TrR2,

where Y = QR is the QR decomposition of the components sample matrix Y (Q ∈ S
p
m and R is an

m×m upper triangular matrix).
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5.1 Random Data Drawn from a Sparse PCA Model

In this section, we follow the procedure proposed by Shen and Huang (2008) to generate random
data with a covariance matrix having sparse eigenvectors. To this end, a covariance matrix is first
synthesized through the eigenvalue decomposition Σ = VDVT , where the first m columns of V ∈
Rn×n are pre-specified sparse orthonormal vectors. A data matrix A ∈ Rp×n is then generated by
drawing p samples from a zero-mean normal distribution with covariance matrix Σ, that is, A ∼
N(0,Σ).

Consider a setup with n= 500,m= 2 and p= 50, where the two orthonormal eigenvectors are
specified as follows

{

v1i = 1√
10 for i= 1, . . . ,10,

v1i = 0 otherwise,

{

v2i = 1√
10 for i= 11, . . . ,20,

v2i = 0 otherwise,

The remaining eigenvectors v j, j > 2, are chosen arbitrarily, and the eigenvalues are fixed at the
following values







d11 = 400
d22 = 300
d j j = 1, for j = 3, . . . ,500.

We generate 500 data matrices A ∈ Rp×n and employ the four GPower algorithms as well as
Greedy to compute two unit-norm sparse loading vectors z1,z2 ∈ R500, which are hoped to be close
to v1 and v2. We consider the model underlying the data to be successfully identified (or recovered)
when both quantities |vT1 z1| and |vT2 z2| are greater than 0.99.

Two simple alternative strategies are compared for choosing the sparsity-inducing parameters γ1
and γ2 required by the GPower algorithms. First, we choose them uniformly at random, between the
theoretical bounds. Second, we fix them to reasonable a priori values; in particular, the midpoints
of the corresponding admissible interval. For the block algorithm GPower!1,m, the parameter γ2
is fixed at 10 percent of the corresponding upper bound. This value was chosen by limited trial
and error to give good results for the particular data analyzed. We do not intend to suggest that
this is a recommended choice in general. The values of the sparsity-inducing parameters for the
!0-based GPower algorithms are systematically chosen as the squares of the values chosen for their
!1 counterparts. More details on the selection of γ1 and γ2 are provided in Table 4. Concerning the
parameters µ1 and µ2 used by the block algorithms, both situations µ1 = µ2 and µ1 > µ2 have been
considered. Note that Greedy requires to specify the targeted cardinalities as an input, that is, ten
nonzeros entries for both loading vectors.

In Table 5, we provide the average of the scalar products |zT1 z2|, |vT1 z1| and |vT2 z2| for 500 data
matrices with the covariance matrix Σ. The proportion of successful identification of the vectors
v1 and v2 is also given. The table shows that the GPower algorithms are robust with respect to the
choice of the sparsity inducing parameters γ. Good values of γ1 and γ2 are easily found by trial
and error. The chances of recovery of the sparse model underlying the data are rather good, and
some versions of the algorithms successfully recover the sparse model even when the parameters γ
are chosen at random. The GPower algorithms do not appear to be as successful as Greedy, which
managed to correctly identify vectors v1 and v2 in all tests. Note that while the latter method requires
the exact knowledge of the cardinality of each component, the GPower algorithms find the sparse
model that fits the data best without this information. This property of the GPower algorithms is
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Algorithm Random Fixed
GPower!1 γ1 uniform distrib. on [0,maxi ‖ai‖2]

γ2 uniform distrib. on [0,maxi ‖a′i‖2]
γ1 = 1

2 maxi ‖ai‖2
γ2 = 1

2 maxi ‖a
′
i‖2

GPower!0
√
γ1 uniform distrib. on [0,maxi ‖ai‖2]√
γ2 uniform distrib. on [0,maxi ‖a′i‖2]

γ1 = 1
4 maxi ‖ai‖

2
2

γ2 = 1
4 maxi ‖a

′
i‖22

GPower!1,m
with µ1 = µ2 = 1

γ1 uniform distrib. on [0,maxi ‖ai‖2]
γ2 uniform distrib. on [0,maxi ‖ai‖2]

γ1 = 1
2 maxi ‖ai‖2

γ2 = 1
10 maxi ‖ai‖2

GPower!0,m
with µ1 = µ2 = 1

√
γ1 uniform distrib. on [0,maxi ‖ai‖2]√
γ2 uniform distrib. on [0,maxi ‖ai‖2]

γ1 = 1
4 maxi ‖ai‖

2
2

γ2 = 1
100 maxi ‖ai‖

2
2

GPower!1,m
with µ1 = 1 and µ2 = 0.5

γ1 uniform distrib. on [0,maxi ‖ai‖2]
γ2 uniform distrib. on [0, 12 maxi ‖ai‖2]

γ1 = 1
2 maxi ‖ai‖2

γ2 = 1
20 maxi ‖ai‖2

GPower!0,m
with µ1 = 1 and µ2 = 0.5

√
γ1 uniform distrib. on [0,maxi ‖ai‖2]√
γ2 uniform distrib. on [0, 12 maxi ‖ai‖2]

γ1 = 1
4 maxi ‖ai‖

2
2

γ2 = 1
400 maxi ‖ai‖

2
2

Table 4: Details on the random and fixed choices of the sparsity-inducing parameters γ1 and γ2
leading to the results displayed in Table 5. Matrix A′ used in the case of the single-unit
algorithms denotes the residual matrix after one deflation step.

valuable in real-data settings, where little or nothing is known a priori about the cardinality of the
components.

Looking at the values reported in Table 5, we observe that the block GPower algorithms are
more likely to obtain loading vectors that are “more orthogonal” when using parameters µj which
are distinct.

Algorithm γ |zT1 z2| |vT1 z1| |vT2 z2| Chance of success
GPower!1 random 15.8 10−3 0.9693 0.9042 0.71
GPower!0 random 15.7 10−3 0.9612 0.8990 0.69
GPower!1,m with µ1 = µ2 = 1 random 10.1 10−3 0.8370 0.2855 0.06
GPower!0,m with µ1 = µ2 = 1 random 9.2 10−3 0.8345 0.3109 0.07
GPower!1,m with µ1 = 1 and µ2 = 0.5 random 1.8 10−4 0.8300 0.3191 0.09
GPower!0,m with µ1 = 1 and µ2 = 0.5 random 1.5 10−4 0.8501 0.3001 0.09
GPower!1 fixed 0 0.9998 0.9997 1
GPower!0 fixed 0 0.9998 0.9997 1
GPower!1,m with µ1 = µ2 = 1 fixed 4.25 10−2 0.9636 0.8114 0.63
GPower!0,m with µ1 = µ2 = 1 fixed 3.77 10−2 0.9663 0.7990 0.67
GPower!1,m with µ1 = 1 and µ2 = 0.5 fixed 1.8 10−3 0.9875 0.9548 0.89
GPower!0,m with µ1 = 1 and µ2 = 0.5 fixed 6.7 10−5 0.9937 0.9654 0.96
PCA – 0 0.9110 0.9063 0
Greedy – 0 0.9998 0.9997 1

Table 5: Average of the quantities |zT1 z2|, |vT1 z1|, |vT2 z2| and proportion of successful identifications
of the two dominant sparse eigenvectors of Σ by extracting two sparse principal com-
ponents from 500 data matrices. The Greedy algorithm requires prior knowledge of the
cardinalities of each component, while the GPower algorithms are very likely to identify
the underlying sparse model without this information.
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Table 5 does not include results for the SPCA algorithm because of our limited experience
with it and the absence of such experiments in the literature. However, in view of the connections
developed in Section 4.5, we do expect that the rSVD methods will exhibit similar flexibility to
sparsity parameter tuning.

5.2 Random Data without Underlying Sparse PCA Model

All random data matrices A∈Rp×n considered in this section are generated according to a Gaussian
distribution, with zero mean and unit variance.

5.2.1 TRADE-OFF CURVES

Let us first compare the single-unit algorithms, which provide a unit-norm sparse loading vector
z ∈ Rn. We first plot the variance explained by the extracted component against the cardinality of
the resulting loading vector z. For each algorithm, the sparsity-inducing parameter is incrementally
increased to obtain loading vectors z with a cardinality that decreases from n to 1. The results dis-
played in Figure 1 are averages of computations on 100 random matrices with dimensions p= 100
and n = 300. The considered sparse PCA methods aggregate in two groups: GPower!1 , GPower!0 ,
Greedy and rSVD!0 outperform the SPCA and rSVD!1 . It seems that these latter methods perform
worse because of the !1 penalty term used in them. If one, however, post-processes the active part
of z according to (33), as we do in GPower!1 , all sparse PCA methods reach the same performance.
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Group 1: GPower!1 , GPower!0 , Greedy, rSVD!0

Group 2: SPCA, rSVD!0

Figure 1: Trade-off curves between explained variance and cardinality. The vertical axis is the
ratio Var(zsPCA)/Var(zPCA), where the loading vector zsPCA is computed by sparse PCA
and zPCA is the first principal loading vector. The considered algorithms aggregate in two
groups: GPower!1 , GPower!0 , Greedy and rSVD!0 (top curve), and SPCA and rSVD!1

(bottom curve). For a fixed cardinality value, the methods of the first group explain more
variance.
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5.2.2 CONTROLLING SPARSITY WITH γ

Among the considered methods, the greedy approach is the only one to directly control the cardi-
nality of the solution, that is, the desired cardinality is an input of the algorithm. The other methods
require a parameter controlling the trade-off between variance and cardinality. Increasing this pa-
rameter leads to solutions with smaller cardinality, but the resulting number of nonzero elements can
not be precisely predicted. In Figure 2, we plot the average relationship between the parameter γ
and the resulting cardinality of the loading vector z for the two algorithms GPower!1 and GPower!0 .
In view of (9) (resp. (14)), the entries i of the loading vector z obtained by the GPower!1 (resp.
GPower!0) algorithm satisfying

‖ai‖2 ≤ γ (resp. ‖ai‖22 ≤ γ) (35)

have to be zero. Taking into account the distribution of the norms of the columns of A, this provides
for every γ a theoretical upper bound on the expected cardinality of the resulting vector z.
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Figure 2: Dependence of cardinality on the value of the sparsity-inducing parameter γ. In case of
the GPower!1 algorithm, the horizontal axis shows γ/‖ai∗‖2, whereas for the GPower!0
algorithm, we use √γ/‖ai∗‖2. The theoretical upper bound is therefore identical for both
methods. The plots are averages based on 100 test problems of size p= 100 and n= 300.

5.2.3 GREEDY VERSUS THE REST

From the experiments reported above, Greedy and the GPower methods appear to have similar
performance in terms of quality of the obtained solution. Moreover, Greedy computes a full path of
solutions up to a chosen cardinality, and does not have to deal with the issue of tuning the sparsity
parameter γ. The price of this significant advantage of Greedy is its heavy computational load.
In order to compare the empirical computational complexities of different algorithms, we display
in Figure 3 the average time required to extract one sparse component from Gaussian matrices of
dimensions p = 100 and n = 300. One immediately notices that the greedy method slows down
significantly as cardinality increases, whereas the speed of the other considered algorithms does not
depend on cardinality. Since on average Greedy is much slower than the other methods, even for
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low cardinalities, and because we aim at large-scale applications where the computational load of
Greedy would be prohibitive, we discard it from the following numerical experiments.
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Figure 3: The computational complexity of Greedy grows significantly with cardinality of the
resulting loading vector. The speed of the other methods is unaffected by the car-
dinality target. The single dashed line is representative of the speed of the methods
GPower!1 ,GPower!0 ,SPCA, rSVD!0 , rSVD!0 in this test.

5.2.4 SPEED AND SCALING TEST

In Tables 6 and 7 we compare the speed of the remaining algorithms. Table 6 deals with problems
with a fixed aspect ratio n/p= 10, whereas in Table 7, p is fixed at 500, and exponentially increasing
values of n are considered. For the GPower!1 method, the sparsity inducing parameter γ was set to
10% of the upper bound γmax = ‖ai∗‖2. For the GPower!0 method, γ was set to 1% of γmax = ‖ai∗‖22
in order to aim for solutions of comparable cardinalities (see (35)). These two parameters have also
been used for the rSVD!1 and the rSVD!0 methods, respectively. Concerning SPCA, the sparsity
parameter has been chosen by trial and error to get, on average, solutions with similar cardinalities
as obtained by the other methods. The values displayed in Tables 6 and 7 correspond to the average
running times of the algorithms on 100 test instances for each problem size. In both tables, the new
methods GPower!1 and GPower!0 are the fastest. The difference in speed between GPower!1 and
GPower!0 results from different approaches to fill the active part of z: GPower!1 requires to compute
a rank-one approximation of a submatrix of A (see Equation (33)), whereas the explicit solution (12)
is available to GPower!0 . The linear complexity of the algorithms in the problem size n is clearly
visible in Table 7.

5.2.5 DIFFERENT CONVERGENCE MECHANISMS

Figure 4 illustrates how the trade-off between explained variance and sparsity evolves in the time
of computation for the two methods GPower!1 and rSVD!1 . In case of the GPower!1 algorithm, the
initialization point (31) provides a good approximation of the final cardinality. This method then
works on maximizing the variance while keeping the sparsity at a low level throughout. The rSVD!1
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p×n 100×1000 250×2500 500×5000 750×7500 1000×10000
GPower!1 0.10 0.86 2.45 4.28 5.86
GPower!0 0.03 0.42 1.21 2.07 2.85
SPCA 0.24 2.92 14.5 40.7 82.2
rSVD!1 0.19 2.42 3.97 7.51 9.59
rSVD!0 0.18 2.14 3.85 6.94 8.34

Table 6: Average computational time for the extraction of one component (in seconds).

p×n 500×1000 500×2000 500×4000 500×8000 500×16000
GPower!1 0.42 0.92 2.00 4.00 8.54
GPower!0 0.18 0.42 0.96 2.14 4.55
SPCA 5.20 7.20 12.0 22.6 44.7
rSVD!1 1.05 2.12 3.63 7.43 14.4
rSVD!0 1.02 1.97 3.45 6.58 13.2

Table 7: Average computational time for the extraction of one component (in seconds).

algorithm, in contrast, works in two steps. First, it maximizes the variance, without enforcing
sparsity. This corresponds to computing the first principal component and requires thus a first run of
the algorithm with random initialization and a sparsity inducing parameter set at zero. In the second
run, this parameter is set to a positive value and the method works to rapidly decrease cardinality
at the expense of only a modest decrease in explained variance. So, the new algorithm GPower!1
performs faster primarily because it combines the two phases into one, simultaneously optimizing
the trade-off between variance and sparsity.
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Figure 4: Evolution of explained variance (left) and cardinality (right) in time for the methods
GPower!1 and rSVD!1 run on a test problem of size p = 250 and n = 2500. The rSVD!1

algorithm first solves unconstrained PCA, whereas GPower!1 immediately optimizes the
trade-off between variance and sparsity.
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5.2.6 EXTRACTING MORE COMPONENTS

Similar numerical experiments, which include the methods GPower!1,m and GPower!0,m, have been
conducted for the extraction of more than one component. A deflation scheme is used by the non-
block methods to sequentially compute m components. These experiments lead to similar conclu-
sions as in the single-unit case, that is, the methods GPower!1 , GPower!0 , GPower!1,m, GPower!0,m
and rSVD!0 outperform the SPCA and rSVD!1 approaches in terms of variance explained at a fixed
cardinality. Again, these last two methods can be improved by postprocessing the resulting loading
vectors with Algorithm 6, as it is done for GPower!1,m. The average running times for problems
of various sizes are listed in Table 8. The new power-like methods are significantly faster on all
instances.

p×n 50×500 100×1000 250×2500 500×5000 750×7500
GPower!1 0.22 0.56 4.62 12.6 20.4
GPower!0 0.06 0.17 2.15 6.16 10.3
GPower!1,m 0.09 0.28 3.50 12.4 23.0
GPower!0,m 0.05 0.14 2.39 7.7 12.4
SPCA 0.61 1.47 13.4 48.3 113.3
rSVD!1 0.29 1.12 7.72 22.6 46.1
rSVD!0 0.28 1.03 7.21 20.7 41.2

Table 8: Average computational time for the extraction of m= 5 components (in seconds).

5.2.7 COST AND BENEFITS OF THE POST-PROCESSING PHASE

Figure 5 illustrates the evolution of the relative increase of computational time as well as the relative
improvement in terms of explained variance due to the post-processing phase for increasing values
of γ. Only methods with iterative post-processing algorithms are considered, that is, GPower!1 (left-
hand plot) and GPower!1,m (right-hand plot). In the single unit case, the post-processing phase,
which amounts to a rank-one SVD of the truncated data matrix AP, becomes less costly as the level
of sparsity increases. As expected, the improvement of variance increases when γ gets larger, that is,
when the !1-penalty biases more and more the values assigned to the non-zero entries of the vector
z. A similar observation holds in the block case, excepted that the relative excess of computational
time took by the post-processing increases with γ. This difference with the single-unit case results
from the fact that the post-processing in the block case deals with sparse matrices of possibly large
dimension, whereas in the single-unit case the problem is easily rewritten in terms of a full vector
with a dimension that equals the number of nonzero elements. Overall, the postprocessing uses less
that 10% of the time needed by the main routine, to improve the explained variance by up to 30%.

5.3 Pitprops Data

The “pitprops” data, which stores 180 observations of 13 variables, has been a standard benchmark
to evaluate algorithms for sparse PCA (see, e.g., Jolliffe et al. 2003; Zou et al. 2006; Moghaddam
et al. 2006; Shen and Huang 2008). Following these previous studies, we use the GPower algorithms
to compute six sparse principal components of the data. For such more-samples-than-variables
settings, it is customary to first factor the covariance matrix as Σ = ATA with A ∈ R13×13, such
that the dimension p is virtually reduced to 13. This operation can be readily done through the
eigenvalue decomposition of Σ.
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Figure 5: Effects of post-processing in the case of the algorithms GPower!1 (left-hand plot) and
GPower!1,m (right-hand plot) for increasing values of γ. In both plots, the horizontal axis
is the percent increase of variance achieved by the postprocessing phase and the vertical
axis is the percent increase in computational time due to post-processing. For GPower!1 ,
several problem sizes are considered, whereas the curves forGPower!1,m relate to matrices
of dimension 500-by-5000 for several numbers m of extracted components. Each curve
is an average on 25 random Gaussian data matrices.

In Table 9, we provide the total cardinality and the proportion of adjusted variance explained by
six components computed with SPCA, rSVD!1 , Greedy as well as our GPower algorithms. The re-
sults concerning SPCA, rSVD!1 , Greedy correspond to the patterns of zeros and nonzeros proposed
by Zou et al. (2006), Shen and Huang (2008) and Moghaddam et al. (2006), respectively. For fair
comparison, the pattern related to SPCA and rSVD!1 have been post-processed with the approach
proposed in Section 4.2. Concerning the Gpower algorithms, we fix the six parameters γ j at the
same ratio of their respective upper-bounds. For the block algorithm GPower!1,m, experiments have
been conducted in both cases “identical µj” and “distinct µj”.

Table 9 illustrates that better patterns can be identified with the GPower algorithms, that is,
patterns that explain more variance with the same cardinality (and sometimes even with a smaller
one). These results are furthermore likely to be improved by a fine tuning of the six parameters γ j
(i.e., by choosing them independently from each others).

5.4 Analysis of Gene Expression Data

Gene expression data results from DNA microarrays and provide the expression level of thousands
of genes across several hundreds of experiments. The interpretation of these huge databases remains
a challenge. Of particular interest is the identification of genes that are systematically coexpressed
under similar experimental conditions. We refer to Riva et al. (2005) and references therein for more
details on microarrays and gene expression data. PCA has been intensively applied in this context
(e.g., Alter et al. 2003). Further methods for dimension reduction, such as independent component
analysis (Liebermeister, 2002) or nonnegative matrix factorization (Brunet et al., 2004), have also
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Method Parameters Total cardinality Prop. of explained variance
rSVD!1 see Shen and Huang (2008) 25 0.7924
SPCA see Zou et al. (2006) 18 0.7680
Greedy cardinalities: 6-2-3-1-1-1 14 0.7150

cardinalities: 5-2-2-1-1-1 12 0.5406
GPower!1 γ j/γ̄ j = 0.22, for j = 1, . . . ,6 25 0.8083

γ j/γ̄ j = 0.28 18 0.7674
γ j/γ̄ j = 0.30 15 0.7542
γ j/γ̄ j = 0.40 13 0.7172
γ j/γ̄ j = 0.50 11 0.6042

GPower!1,m γ j/γ̄ j = 0.17, for j = 1, . . . ,6 25 0.7733
with µj = 1 γ j/γ̄ j = 0.25 17 0.7708

γ j/γ̄ j = 0.3 14 0.7508
γ j/γ̄ j = 0.4 13 0.7076
γ j/γ̄ j = 0.45 11 0.6603

GPower!1,m γ j/γ̄ j = 0.18, for j = 1, . . . ,6 25 0.8111
γ j/γ̄ j = 0.25 18 0.7849

with µj = 1
j γ j/γ̄ j = 0.30 15 0.7610

γ j/γ̄ j = 0.35 13 0.7323
γ j/γ̄ j = 0.40 12 0.6656

Table 9: Extraction of 6 components from the pitprops data. For GPower!1 , one defines the upper-
bounds γ̄ j =maxi ‖a

( j)
i ‖2, where A( j) is the residual data matrix after j−1 deflation steps.

For GPower!1,m, the upper-bounds are γ̄ j = µjmaxi ‖ai‖2.

been used on gene expression data. Sparse PCA, which extracts components involving a few genes
only, is expected to enhance interpretation.

5.4.1 DATA SETS

The results below focus on four major data sets related to breast cancer. They are briefly detailed
in Table 10.7 Each sparse PCA algorithm computes ten components from these data sets, that is,
m= 10.

Study Samples (p) Genes (n) Reference
Vijver 295 13319 van de Vijver et al. (2002)
Wang 285 14913 Wang et al. (2005)
Naderi 135 8278 Naderi et al. (2007)
JRH-2 101 14223 Sotiriou et al. (2006)

Table 10: Breast cancer cohorts.

7. The normalized data sets have been kindly provided by Andrew Teschendorff.
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5.4.2 SPEED

The average computational time required by the sparse PCA algorithms on each data set is displayed
in Table 11. The indicated times are averages on all the computations performed to obtain cardinality
ranging from n down to 1.

Vijver Wang Naderi JRH-2
GPower!1 5.92 5.33 2.15 2.69
GPower!0 4.86 4.93 1.33 1.73
GPower!1,m 5.40 4.37 1.77 1.14
GPower!0,m 5.61 7.21 2.25 1.47
SPCA 77.7 82.1 26.7 11.2
rSVD!1 10.19 9.97 3.96 4.43
rSVD!0 9.51 9.23 3.46 3.61

Table 11: Average computational times (in seconds) for the extraction of m= 10 components.

5.4.3 TRADE-OFF CURVES

Figure 6 plots the proportion of adjusted variance versus the cardinality for the “Vijver” data set. The
other data sets have similar plots. As for the random test problems, this performance criterion does
not discriminate among the different algorithms. All methods have in fact the same performance,
provided that the SPCA and rSVD!1 approaches are used with postprocessing by Algorithm 6.
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Figure 6: Trade-off curves between explained variance and cardinality for the “Vijver” data set.
The vertical axis is the ratio AdjVar(ZsPCA)/AdjVar(ZPCA), where the loading vectors
ZsPCA are computed by sparse PCA and ZPCA are the m first principal loading vectors.

5.4.4 INTERPRETABILITY

A more interesting performance criterion is to estimate the biological interpretability of the ex-
tracted components. The pathway enrichment index (PEI) proposed by Teschendorff et al. (2007)
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measures the statistical significance of the overlap between two kinds of gene sets. The first sets
are inferred from the computed components by retaining the most expressed genes, whereas the
second sets result from biological knowledge. For instance, metabolic pathways provide sets of
genes known to participate together when a certain biological function is required. An alternative
is given by the regulatory motifs: genes tagged with an identical motif are likely to be coexpressed.
One expects sparse PCA methods to recover some of these biologically significant sets. Table 12
displays the PEI based on 536 metabolic pathways related to cancer. The PEI is the fraction of these
536 sets presenting a statistically significant overlap with the genes inferred from the sparse princi-
pal components. The values in Table 12 correspond to the largest PEI obtained among all possible
cardinalities. Similarly, Table 13 is based on 173 motifs. More details on the selected pathways and
motifs can be found in Teschendorff et al. (2007). This analysis clearly indicates that the sparse PCA
methods perform much better than PCA in this context. Furthermore, the new GPower algorithms,
and especially the block formulations, provide largest PEI values for both types of biological infor-
mation. In terms of biological interpretability, they systematically outperform previously published
algorithms.

Vijver Wang Naderi JRH-2
PCA 0.0728 0.0466 0.0149 0.0690
GPower!1 0.1493 0.1026 0.0728 0.1250
GPower!1 0.1250 0.1250 0.0672 0.1026
GPower!1,m 0.1418 0.1250 0.1026 0.1381
GPower!0,m 0.1362 0.1287 0.1007 0.1250
SPCA 0.1362 0.1007 0.0840 0.1007
rSVD!1 0.1213 0.1175 0.0914 0.0914
rSVD!0 0.1175 0.0970 0.0634 0.1063

Table 12: PEI-values based on a set of 536 cancer-related pathways.

Vijver Wang Naderi JRH-2
PCA 0.0347 0 0.0289 0.0405
GPower!1 0.1850 0.0867 0.0983 0.1792
GPower!0 0.1676 0.0809 0.0925 0.1908
GPower!1,m 0.1908 0.1156 0.1329 0.1850
GPower!0,m 0.1850 0.1098 0.1329 0.1734
SPCA 0.1734 0.0925 0.0809 0.1214
rSVD!1 0.1387 0.0809 0.1214 0.1503
rSVD!0 0.1445 0.0867 0.0867 0.1850

Table 13: PEI-values based on a set of 173 motif-regulatory gene sets.

6. Conclusion

We have proposed two single-unit and two block formulations of the sparse PCA problem and
constructed reformulations with several favorable properties. First, the reformulated problems are
of the form of maximization of a convex function on a compact set, with the feasible set being either
a unit Euclidean sphere or the Stiefel manifold. This structure allows for the design and iteration
complexity analysis of a simple gradient scheme which applied to our sparse PCA setting results in
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four new algorithms for computing sparse principal components of a matrix A ∈Rp×n. Second, our
algorithms appear to be faster if either the objective function or the feasible set are strongly convex,
which holds in the single-unit case and can be enforced in the block case. Third, the dimension of
the feasible sets does not depend on n but on p and on the number m of components to be extracted.
This is a highly desirable property if p. n. Last but not least, on random and real-life biological
data, our methods systematically outperform the existing algorithms both in speed and trade-off
performance. Finally, in the case of the biological data, the components obtained by our block
algorithms deliver the richest biological interpretation as compared to the components extracted by
the other methods.
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Appendix A.

In this appendix we characterize a class of functions with strongly convex level sets. First we need
to collect some basic preliminary facts. All the inequalities of Proposition 11 are well-known in the
literature.

Proposition 11 (i) If f is a strongly convex function with convexity parameter σ f , then for all
x,y and 0≤ α≤ 1,

f (αx+(1−α)y) ≤ α f (x)+(1−α) f (y)−
σ f

2
α(1−α)‖x− y‖2. (36)

(ii) If f is a convex differentiable function and its gradient is Lipschitz continuous with constant
L f , then for all x and h,

f (x+h) ≤ f (x)+ 〈 f ′(x),h〉+
Lf
2
‖h‖2, (37)

and
‖ f ′(x)‖∗ ≤

√

2Lf ( f (x)− f∗), (38)

where f∗
def
= minx∈E f (x).

We are now ready for the main result of this section.
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Theorem 12 (Strongly Convex Level Sets) Let f : E→ R be a nonnegative strongly convex func-
tion with convexity parameter σ f > 0. Also assume f has a Lipschitz continuous gradient with
Lipschitz constant L f > 0. Then for any ω> 0, the set

Qω
def
= {x | f (x) ≤ ω}

is strongly convex with convexity parameter

σQω =
σ f

√

2ωLf
.

Proof Consider any x,y∈Qω, scalar 0≤α≤ 1 and let zα =αx+(1−α)y. Notice that by convexity,
f (zα) ≤ ω. For any u ∈ E,

f (zα+u)(37)
≤ f (zα)+ 〈 f ′(zα),u〉+

Lf
2
‖u‖2

≤ f (zα)+‖ f ′(zα)‖‖u‖+
Lf
2
‖u‖2

(38)
≤ f (zα)+

√

2Lf f (zα)‖u‖+
Lf
2
‖u‖2

=

(

√

f (zα)+
√

Lf
2 ‖u‖

)2

(36)
≤

(

√

ω−β+
√

Lf
2 ‖u‖

)2
,

where
β=

σ f

2
α(1−α)‖x− y‖2. (39)

In view of (25), it remains to show that the last displayed expression is bounded above by ω when-
ever u is of the form

u=
σQω
2
α(1−α)‖x− y‖2s=

σ f

2
√

2ωLf
α(1−α)‖x− y‖2s, (40)

for some s ∈ S . However, this follows directly from concavity of the scalar function g(t) =
√
t:

√

ω−β= g(ω−β) ≤ g(ω)−〈g′(ω),β〉

=
√
ω−

β
2
√
ω

(39)
≤
√
ω−

σ f

4
√
ω
α(1−α)‖x− y‖2

(40)
≤
√
ω−

√

Lf
2
‖u‖.
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Example 13 Let f (x) = ‖x‖2. Note that σ f = Lf = 2. If we let ω= r2, then

Qω = {x | f (x) ≤ ω} = {x | ‖x‖ ≤ r} = r ·B.

We have shown before (see the discussion immediately following Assumption 3), that the strong
convexity parameter of this set is σQω = 1

r . Note that we recover this as a special case of Theorem 12:

σQω =
σ f

√

2ωLf
=
1
r
.
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Abstract
Convolution kernels for trees provide simple means for learning with tree-structured data. The
computation time of tree kernels is quadratic in the size of the trees, since all pairs of nodes need
to be compared. Thus, large parse trees, obtained from HTML documents or structured network
data, render convolution kernels inapplicable. In this article, we propose an effective approximation
technique for parse tree kernels. The approximate tree kernels (ATKs) limit kernel computation to
a sparse subset of relevant subtrees and discard redundant structures, such that training and testing
of kernel-based learning methods are significantly accelerated. We devise linear programming ap-
proaches for identifying such subsets for supervised and unsupervised learning tasks, respectively.
Empirically, the approximate tree kernels attain run-time improvements up to three orders of mag-
nitude while preserving the predictive accuracy of regular tree kernels. For unsupervised tasks, the
approximate tree kernels even lead to more accurate predictions by identifying relevant dimensions
in feature space.
Keywords: tree kernels, approximation, kernel methods, convolution kernels

1. Introduction

Learning from tree-structured data is an elementary problem in machine learning, as trees arise
naturally in many real-world applications. Exemplary applications involve parse trees in natural
language processing, HTML documents in information retrieval, molecule structures in computa-
tional chemistry, and structured network data in computer security (e.g., Manning and Schütze,
1999; Kashima and Koyanagi, 2002; Moschitti, 2006b; Cilia and Moschitti, 2007; Düssel et al.,
2008; Rieck et al., 2008; Bockermann et al., 2009).

c©2010 Konrad Rieck, Tammo Krueger, Ulf Brefeld and Klaus-Robert Müller.
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In general, trees carry hierarchical information reflecting the underlying dependency structure
of a domain at hand—an appropriate representation of which is often indispensable for learning ac-
curate prediction models. For instance, shallow representations of trees such as flat feature vectors
often fail to capture the underlying dependencies. Thus, the prevalent tools for learning with struc-
tured data are kernel functions, which implicitly assess pairwise similarities of structured objects
and thereby avoid explicit representations (see Müller et al., 2001; Schölkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004). Kernel functions for structured data can be constructed using
the convolution of local kernels defined over sub-structures (Haussler, 1999). A prominent exam-
ple for such a convolution is the parse tree kernel proposed by Collins and Duffy (2002) which
determines the similarity of trees by counting shared subtrees.

The computation of parse tree kernels, however, is inherently quadratic in the number of tree
nodes, as it builds on dynamic programming to compute the contribution of shared subtrees. Allo-
cating and updating tables for dynamic programming is feasible for small tree sizes, say less than
200 nodes, so that tree kernels have been widely applied in natural language processing, for exam-
ple, for question classification (Zhang and Lee, 2003) and parse tree reranking (Collins and Duffy,
2002). Figure 1(a) shows an exemplary parse tree of natural language text. Large trees involve
computations that exhaust available resources in terms of memory and run-time. For example, the
computation of a parse tree kernel for two HTML documents comprising 10,000 nodes each, re-
quires about 1 gigabyte of memory and takes over 100 seconds on a recent computer system. Given
that kernel computations are performed millions of times in large-scale learning, it is evident that
regular tree kernels are an inappropriate choice in many learning tasks.









 

 



 

 

(a) Parse tree for a sentence



 

 



 

 

 

 

 

(b) Parse tree for a HTTP request

Figure 1: Parse trees for natural language text and the HTTP network protocol.

The limitation of regular tree kernels becomes apparent when considering learning tasks based
on formal grammars, such as web spam detection. In web spam detection one seeks to find arrays
of linked fraudulent web pages, so-called link farms, that deteriorate the performance of search
engines by manipulating search results (e.g., Wu and Davison, 2005; Drost and Scheffer, 2005;
Castillo et al., 2006). Besides being densely linked, these web pages share an important property:
they are generated automatically according to templates. Hence, a promising approach for web
spam detection is the analysis of structure in web pages using parse trees of HTML documents.
Unfortunately, HTML documents can grow almost arbitrarily large and render the computation of
conventional tree kernels impossible.
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Moreover, tree-structured data also arises as part of unsupervised learning problems, such as
clustering and anomaly detection. For instance, a critical task in computer security is the automatic
detection of novel network attacks (Eskin et al., 2002). Current detection techniques fail to cope
with the increasing amount and diversity of network threats, as they depend on manually generated
detection rules. As an alternative, one-class learning methods have been successfully employed
for identifying anomalies in the context of intrusion detection (e.g., Eskin et al., 2002; Kruegel
and Vigna, 2003; Rieck and Laskov, 2007). Due to the already mentioned run-time constraints
these approaches focus on shallow features, although efficient methods for extracting syntactical
structure from network data are available (e.g., Pang et al., 2006; Borisov et al., 2007; Wondracek
et al., 2008). Similar to natural language, network protocols are defined in terms of grammars and
individual communication can be represented as parse trees, see Figure 1(b).

To alleviate the limitations of regular tree kernels, we propose approximate tree kernels (ATKs)
which approximate the kernel computation and thereby allow for efficient learning with arbitrary
sized trees in supervised and in unsupervised settings. The efficacy gained by approximate tree
kernels rests on a two-stage process: A sparse set of relevant subtrees rooted at appropriate gram-
mar symbols is determined from a small sample of trees, prior to subsequent training and testing
processes. By decoupling the selection of symbols from the kernel computation, both, run-time
and memory requirements are significantly reduced. In the supervised setting, the subset of sym-
bols is optimized with respect to its ability to discriminate between the involved classes, while for
the unsupervised setting the optimization is performed with respect to node occurrences in order
to minimize the expected run-time. The corresponding optimization problems are translated into
linear programs that can be efficiently solved with standard techniques.

Experiments conducted on question classification, web spam detection and network intrusion
detection demonstrate the expressiveness and efficiency of our novel approximate kernels. Through-
out all our experiments, approximate tree kernels are significantly faster than regular convolution
kernels. Depending on the size of the trees, we observe run-time and memory improvements up to
3 orders of magnitude. Furthermore, the approximate tree kernels not only consistently yield the
same predictive performance as regular tree kernels, but even outperform their exact counterparts in
some tasks by identifying informative dimensions in feature space.

The remainder of this article is organized as follows. We introduce regular parse tree kernels in
Section 2 and present our main contribution, the approximate tree kernels, in Section 3. We study
the characteristics of approximate kernels on artificial data in Section 4 and report on real-world
applications in Section 5. Finally, Section 6 concludes.

2. Kernels for Parse Trees

Let G = (S,P,s) be a grammar with production rules P and a start symbol s defined over a set S
of non-terminal and terminal symbols (Hopcroft and Motwani, 2001). A tree X is called a parse
tree of G if X is derived by assembling productions p ∈ P such that every node x ∈ X is labeled
with a symbol !(x) ∈ S. To navigate in a parse tree, we address the i-th child of a node x by xi and
denote the number of children by |x|. The number of nodes in X is indicated by |X | and the set of
all possible trees is given by X .

A kernel k : X ×X → R is a symmetric and positive semi-definite function, which implicitly
computes an inner product in a reproducing kernel Hilbert space (Vapnik, 1995). A generic tech-
nique for defining kernel functions over structured data is the convolution of local kernels defined
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Shared subtrees

Figure 2: Shared subtrees in two parse trees. The numbers in brackets indicate the number of
occurrences for each shared subtree pair.

over sub-structures (Haussler, 1999). Collins and Duffy (2002) apply this concept to parse trees by
counting shared subtrees. Given two parse trees X and Z, their parse tree kernel is given by

k(X ,Z) = ∑
x∈X
∑
z∈Z

c(x,z), (1)

where the counting function c recursively determines the number of shared subtrees rooted in the
tree nodes x and z.

The function c is defined as c(x,z) = 0 if x and z are not derived from the same production and
c(x,z) = λ if x and z are leave nodes of the same production. In all other cases, the definition of the
counting function c follows a recursive rule given by

c(x,z) = λ
|x|

∏
i=1

(1+ c(xi,zi)) . (2)

The trade-off parameter 0 < λ ≤ 1 balances the contribution of subtrees, such that small values of
λ decay the contribution of lower nodes in large subtrees (see Collins and Duffy, 2002). Figure 2
illustrates two simple parse trees and the corresponding shared subtrees.

Several extensions and refinements of the parse tree kernel have been proposed in the literature
to increase its expressiveness for specific learning tasks. For example, setting the constant term in
the product of Equation (2) to zero restricts the counting function to take only complete subtrees
into account (Vishwanathan and Smola, 2003). Kashima and Koyanagi (2002) extend the counting
function to generic trees—not necessarily derived from a grammar—by considering ordered subsets
of child nodes for computing the kernel. Further extensions to the counting function proposed by
Moschitti (2006b) allow for controlling the vertical as well as the horizontal contribution of subtree
counts. Moreover, Moschitti and Zanzotto (2007) extend the parse tree kernel to operate on pairs
of trees for deriving relations between sentences in tasks such as textual entailment recognition.
However, all of the above mentioned extensions depend on dynamic programming over all pairs of
nodes and thus yield prohibitive run-time and memory requirements if large trees are considered.

Selecting discriminative subtrees for tree kernels has been first studied by Suzuki et al. (2004)
in the domain of natural language processing. A feature selection procedure based on statistical
tests is embedded in the dynamic programming, such that relevant substructures are identified dur-
ing computation of the parse tree kernel (see also Suzuki and Isozaki, 2005). While this procedure
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significantly improves the expressiveness of corresponding tree kernels, the entanglement of fea-
ture selection and dynamic programming unfortunately prevents any improvement of run-time and
memory requirements over regular tree kernels.

First steps toward run-time improvement of tree kernels have been devised byMoschitti (2006a),
who introduces an alternative algorithm limiting computation to node pairs with matching grammar
symbols. Although this extension reduces the run-time, it does not alleviate prohibitive memory
requirements, as counts for all possible node pairs need to be stored. Also note, that for large trees
with |X | & |S|, only a minor speed-up is gained, since only a small fraction of node pairs can be
discarded from the kernel computation. Nevertheless, this algorithm is an efficient approach when
learning with small trees as in natural language processing.

3. Approximate Tree Kernels

The previous section argues that the computation of regular tree kernels using dynamic program-
ming is infeasible for large tree structures. In this section we introduce approximate tree kernels to
significantly decrease this computational burden. Our approximation of tree kernels is based on the
observation that trees often contain redundant parts that are not only irrelevant for the learning task
but also slow-down the kernel computation unnecessarily. As an example for redundancy in trees
let us consider the task of web spam detection. While few HTML elements, such as header and
meta tags, are indicative for web spam templates, the majority of formatting tags is irrelevant and
may even harm performance. We exploit this observation by restricting the kernel computation to a
sparse set of subtrees rooted in only a few grammar symbols.

In general, selecting relevant subtrees for the kernel computation requires efficient means for
enumerating subtrees. The amount of generic subtrees contained in a single parse tree is exponential
in the number of nodes and thus intractable for large tree structures. Consequently, we refrain from
exhaustive enumeration and limit the selection to subtrees rooted at particular grammar symbols.
We introduce a selection function ω : S→ {0,1}, which controls whether subtrees rooted in nodes
with the symbol s ∈ S contribute to the convolution (ω(s) = 1) or not (ω(s) = 0). By means of ω,
approximate tree kernels are defined as follows.

Definition 1 Given a selection function ω : S→ {0,1}, the approximate tree kernel is defined as

k̂ω(X ,Z) =∑
s∈S

ω(s) ∑
x∈X

!(x)=s

∑
z∈Z

!(z)=s

c̃(x,z), (3)

where the approximate counting function c̃ is defined as (i) c̃(x,z) = 0 if x and z are not derived
from the same production, (ii) c̃(x,z) = 0 if x or z has not been selected, that is, ω(!(x)) = 0 or
ω(!(z)) = 0, and (iii) c(x,z) = λ if x and z are leave nodes of the same production. In all other
cases, the approximate counting function c̃ is defined as

c̃(x,z) = λ
|x|

∏
i=1

(1+ c̃(xi,zi)) .

For the task at hand, the selection function ω needs to be adapted to the tree data before the resulting
approximate tree kernel can be applied together with learning algorithms. Note that the exact parse
tree kernel in Equation (1) is obtained as a special case of Equation (3) if ω(s) = 1 for all symbols
s ∈ S. Irrespectively of the actual choice of ω, Proposition 2 shows that the approximate kernel k̂ is
a valid kernel function.
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Proposition 2 The approximate tree kernel in Definition 1 is a kernel function.

Proof Let φ(X) be the vector of frequencies of all subtrees occurring in X as defined by Collins and
Duffy (2002). Then, by definition, k̂ω can always be written as

k̂ω(X ,Z) = 〈Pωφ(X),Pωφ(Z)〉,

where Pω projects the dimensions of φ(X) on the subtrees rooted in symbols selected by ω. For any
ω, the projection Pω is independent of the actual X and Z, and hence k̂ω is a valid kernel.

Proposition 2 allows to view approximate tree kernels as feature selection techniques. If the
selection function effectively identifies relevant symbols, the dimensionality of the feature space is
reduced and the kernel provides access to a refined data representation. We will address this point in
Section 4 and 5 where we study eigendecompositions in the induced features spaces. Additionally,
we note that the approximate tree kernel realizes a run-time speed-up by a factor of qω, which
depends on the number of selected symbols inω and the amount of subtrees rooted at these symbols.
For two particular trees X ,Z we can state the following simple proposition.

Proposition 3 The approximate tree kernel k̂ω(X ,Z) can be computed qω times faster than k(X ,Z).

Proof Let #s(X) denote the occurrences of nodes x∈X with !(x) = s. Then the speed-up qω realized
by k̂ω is lower bounded by

qω ≥
∑s∈S #s(X)#s(Z)

∑s∈Sω(s)#s(X)#s(Z)
(4)

as all nodes with identical symbols in X and Z are paired. For the trivial case where for all elements
ω(s) = 1, the factor qω equals 1 and the run-time is identical to the parse tree kernel. In all other
cases qω > 1 holds since at least one symbol is discarded from the denominator in Equation (4).

The quality of k̂ω and also qω depend on the actual choice of ω. If the selection function ω
discards redundant and irrelevant subtrees from the kernel computation the approximate kernel can
not only be computed faster but also preserves the discriminative expressiveness of the regular tree
kernel. Sections 3.1 and 3.2 deal with adaptingω for supervised and unsupervised learning tasks, re-
spectively. Although, the resulting optimization problems are quadratic in the number of instances,
selecting symbols can be performed on a small fraction of the data prior to the actual learning pro-
cess; hence, performance gains achieved in the latter are not affected by the initial selection process.
We show in Section 5 that reasonable approximations can be achieved for moderate sample sizes.

3.1 The Supervised Setting

In the supervised setting, we are given n labeled parse trees (X1,y1), . . . ,(Xn,yn) with yi ∈ Y . For
binary classification we may have Y = {−1,1}while a multi-class scenario with κ classes gives rise
to the set Y = {1,2, . . . ,κ}. In the supervised case, the aim of the approximation is to preserve the
discriminative power of the regular kernel by selecting a sparse but expressive subset of grammar
symbols. We first note that Y with elements [Yi j]i, j=1,...,n given by

Yi j = [[yi = y j]]− [[yi += y j]], (5)
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represents an optimal kernel matrix where [[u]] is an indicator function returning 1 if u is true and
0 otherwise. For binary classification problems, Equation (5) can also be computed by the outer
product Y = yyT, where y= (y1, . . . ,yn)T.

Inspired by kernel target alignment (Cristianini et al., 2001), a simple measure of the similarity
of the approximate kernel K̂ω = [k̂ω(Xi,Xj)]i, j=1,...,n and the optimal Y is provided by the Frobenius
inner product 〈·, ·〉F that is defined as 〈A,B〉F = ∑i j ai jbi j. We have,

〈Y, K̂ω〉F = ∑
yi=y j

k̂i j− ∑
yi +=y j

k̂i j. (6)

The right hand side of Equation (6) measures the within class (first term) and the between class
(second term) similarity. Approximate kernels that discriminate well between the involved classes
realize large values of 〈Y, K̂ω〉F , hence maximizing Equation (6) with respect to ω suffices for
finding approximate kernels with high discriminative power.

We arrive at the following integer linear program that has to be maximized with respect to ω to
align K̂ω to the labels y,

max
ω∈{0,1}|S|

n

∑
i, j=1
i += j

yiy jk̂ω(Xi,Xj). (7)

Note that we exclude diagonal elements, that is, k̂ω(Xi,Xi), from Equation (7), as the large self-
similarity induced by the parse tree kernel impacts numerical stability on large tree structures (see
Collins and Duffy, 2002).

Optimizing Equation (7) directly will inevitably reproduce the regular convolution kernel as all
subtrees contribute positively to the kernel computation. As a remedy, we restrict the number of
supporting symbols of the approximation by a pre-defined constant N. Moreover, instead of opti-
mizing the integer program directly, we propose to use a relaxed variant thereof, where a threshold
is used to discretize ω. Consequently, we obtain the following relaxed linear program that can be
solved with standard solvers.

Optimization Problem 1 (Supervised Setting) Given a labeled training sample of size n and let
N ∈ N. The optimal selection function ω∗ can be computed by solving

ω∗ = argmax
ω∈[0,1]|S|

n

∑
i, j=1
i += j

yiy j∑
s∈S

ω(s) ∑
x∈Xi

!(x)=s

∑
z∈Xj
!(z)=s

c̃(x,z)

subject to ∑
s∈S

ω(s) ≤ N,

(8)

where the counting function c̃ is given in Definition (3).

3.2 The Unsupervised Setting

Optimization Problem 1 identifies N symbols providing the highest discriminative power given a
labeled training set. In the absence of labels, for instance in an anomaly detection task, the opera-
tional goal needs to be changed. In these cases, the only accessible information for finding ω are
the tree structures themselves. Large trees are often characterized by redundant substructures that
strongly impact run-time performance while encoding only little information. Moreover, syntactical
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structure present in all trees of a data set do not provide any information suitable for learning. As a
consequence, we seek a selection of symbols using a constraint on the expected run-time and thereby
implicitly discard redundant and costly structures with small contribution to the kernel value.

Given unlabeled parse trees X1,X2, . . . ,Xn, we introduce a function f (s) which measures the
average frequency of node comparisons for the symbol s in the training set, defined as

f (s) =
1
n2

n

∑
i, j=1

#s(Xi)#s(Xj). (9)

Using the average comparison frequency f , we bound the expected run-time of the approximate
kernel by ρ ∈ (0,1], the ratio of expected node comparisons with respect to the exact parse tree ker-
nel. The following optimization problem details the computation of the optimal ω∗ for unsupervised
settings.

Optimization Problem 2 (Unsupervised Setting) Given an unlabeled training sample of size n
and a comparison ratio ρ ∈ (0,1].

ω∗ = argmax
ω∈[0,1]|S|

n

∑
i, j=1
i += j

∑
s∈S

ω(s) ∑
x∈Xi

!(x)=s

∑
z∈Xj
!(z)=s

c̃(x,z)

subject to ∑s∈Sω(s) f (s)
∑s∈S f (s)

≤ ρ,

(10)

where the counting function c̃ is given in Definition 3 and f defined as in Equation (9).

The optimal selection function ω∗ gives rise to a tree kernel that approximates the regular kernel
as close as possible, while on average considering a fraction of ρ node pairs for computing the sim-
ilarities. Analogously to the supervised setting, we solve the relaxed variant of the integer program
and use a threshold to discretize the resulting ω.

3.3 Extensions

The supervised and unsupervised formulations in Optimization Problem 1 and 2 build on different
constraints for determining a selection of appropriate symbols. Depending on the learning task at
hand, these constraints are exchangeable, such that approximate tree kernels in supervised settings
may also be restricted to the ratio ρ of expected node comparisons and the unsupervised formulation
can be alternatively conditioned on a fixed number of symbols N. Both constraints may even be
applied jointly to limit expected run-time and the number of selected symbols. For our presentation,
we have chosen a constraint on the number of symbols in the supervised setting, as it provides
an intuitive measure for the degree of approximation. By contrast, we employ a constraint on the
expected number of node comparisons in the unsupervised formulation, as in the absence of labels,
it is easier to bound the run-time, irrespective of the number of selected symbols.

Further extensions incorporating prior knowledge into the proposed approximations are straight
forward. For instance, the approximation procedure can be refined using logical compounds based
on conjunctions and disjunctions of symbols. If the activation of symbol s j requires the activation
of s j+1, the constraint ω(s j)−ω(s j+1) = 0 can be included in Equation (8) and (10). A conjunction
(AND) of m symbols can then be efficiently encoded by m−1 additional constraints as

∀m−1j=1 ω(s j)−ω(s j+1) = 0.
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For a disjunction (OR) of symbols s j, . . . ,s j+m the following constraint guarantees that at least one
representative of the group is active in the solution

ω(s j)+ω(s j+1)+ . . .+ω(s j+m) ≥ 1. (11)

Alternatively, Equation (11) can be turned into an exclusive disjunction (XOR) of symbols by chang-
ing the inequality into an equality constraint.

3.4 Implementation

A standard technique for computing tree kernels is dynamic programming, where a table of |X |× |Z|
elements is used to store the counts of subtrees during recursive evaluations. The kernel computa-
tion is then carried out in either a systematic or a structural fashion, where intermediate results are
stored in the table as sketched in Figure 3. The systematic variant processes the subtrees with as-
cending height, such that at a particular height, all counts for lower subtrees can be looked up in
the table (Shawe-Taylor and Cristianini, 2004). For the structural variant, the dynamic program-
ming table acts as a cache, which stores previous results when computing the recursive counting
directly (Moschitti, 2006a). This latter approach has the advantage that only matching subtrees are
considered and mismatching nodes do not contribute to the run-time as in the systematic variant.

x

z

1

2

3

1

2

3 ...

...

h(z)

h(x)

(a) Systematic mode

x

z

1

2

3

1

2

3 ...

...

h(z)

h(x)

(b) Structural mode

Figure 3: Dynamic programming for tree kernels. The convolution of subtree counts is computed
in a systematic (Shawe-Taylor and Cristianini, 2004) or structural manner (Moschitti,
2006a). The term h(x) denotes the height of the subtree rooted in x ∈ X .

We now provide details on an implementation of approximate tree kernels using the structural
approach. The inputs of our implementation are parse trees X , Z and a selection function ω which
has been determined in advance using the supervised or unsupervised approximation (Optimization
Problems 1 and 2). The implementation proceeds by first generating pairs of matching nodes from
the trees X ,Z, similarly to the algorithm proposed by Moschitti (2006a). However, pairs whose
symbols are not selected by ω are omitted. The computation of the tree kernel is then carried out
by looping over the node pairs and counting the number of shared subtrees rooted at each pair. An
exemplary implementation of the approximate kernel is given in Algorithms 1, 2 and 3.
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Algorithm 1 Approximate Tree Kernel
1: function KERNEL(X ,Z,ω)
2: L← GENERATEPAIRS(X ,Z,ω)
3: k← 0
4: for (x,z) ← L do " Loop over selected pairs of nodes
5: k← k+COUNT(x,z)
6: return k

Algorithm 1 realizes a generic tree kernel, which determines the number of shared subtrees by
looping over a list of node pairs. Algorithm 2 shows the corresponding analogue of the counting
function in Equation (2) which is called during each iteration of the loop. While the standard
implementation of the parse tree kernel (e.g., Shawe-Taylor and Cristianini, 2004; Moschitti, 2006a)
uses a dynamic programming table to store the contribution of subtree counts, we employ a hash
table denoted by H. A hash table guarantees constant reading and writing of intermediate results
yet it grows with the number of selected node pairs and thereby reduces memory in comparison to a
standard table of all possible pairs. Note that if all symbols in ω are selected, H realizes the standard
dynamic programming approach.

Algorithm 2 Counting Function
1: function COUNT(x,z)
2: if x and z have different productions then
3: return 0
4: if x or z is a leaf node then
5: return λ
6: if (x,z) stored in hash table H then
7: return H(x,z) " Read dynamic programming cell
8: c← 1
9: for i← 1 to |x| do
10: c← c · (1+COUNT(xi,zi))
11: H(x,z) ← λc "Write dynamic programming cell
12: return H(x,z)

Algorithm 3 implements the function for generating pairs of nodes with selected symbols. The
function first sorts the tree nodes using a predefined order in line 2–3. For our implementation
we apply a standard lexicographic sorting on the symbols of nodes. Algorithm 3 then proceeds
by generating a set of matching node pairs L, satisfying the invariant that included pairs (x,z) ∈ L
have matching symbols (i.e., !(x) = !(z)) and are selected via ω (i.e., ω(x) = 1). The generation
of pairs is realized analogously to merging sorted arrays (see Knuth, 1973). The function removes
elements from the lists of sorted nodes NX and NZ in parallel until a matching and selected pair (x,z)
is discovered. With a slight abuse of notation, all available node pairs (a,b) with label !(x) are then
added to L and removed from NX and NZ in lines 12–14 of Algorithm 3.
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Algorithm 3 Node Pair Generation

1: function GENERATEPAIRS(X ,Z,ω)
2: NX ← SORTNODES(X)
3: NZ ← SORTNODES(Z)
4: while NX and NZ not empty do
5: x← head of NX
6: z← head of NZ
7: if !(x) < !(z) or ω(x) = 0 then
8: remove x from NX " x mismatches or not selected
9: else if !(x) > !(z) or ω(z) = 0 then
10: remove z from NZ " y mismatches or not selected
11: else
12: N ← {(a,b) ∈ NX ×NZ with label !(x)}
13: L← L ∪ N " Add all pairs with label !(x)
14: remove N from NX and NZ
15: return L

3.5 Application Setup

In contrast to previous work on feature selection for tree kernels (see Suzuki et al., 2004), the
efficiency of our approximate tree kernels is rooted in decoupling the selection of symbols from
later application of the learned kernel function. In particular, our tree kernels are applied in a two-
stage process as detailed in the following.

1. Selection stage. In the first stage, a sparse selection ω of grammar symbols is determined on
a sample of tree data, where depending on the learning setting either Optimization Problem 1
or 2 is solved by linear programming. As solving both problems involves computing exact
tree kernels, the selection is optimized on a small fraction of the trees. To limit memory
requirements, the sample may be further filtered to contain only trees of reasonable sizes.

2. Application stage. In the subsequent application stage, the approximate tree kernels are em-
ployed together with learning algorithms using the efficient implementation detailed in the
previous section. The optimized ω reduces the run-time and memory requirements of the
kernel computation, such that learning with trees of almost arbitrary size becomes feasible.

The approximate tree kernels involve the parameter λ as defined in Equation (2). The parameter
controls the contribution of subtrees; values close to zero emphasize shallow subtrees and λ = 1
corresponds to a uniform weighting of all subtrees. To avoid repeatedly solving Optimization Prob-
lem 1 or 2 for different values of λ, we fix λ= 1 in the selection stage and perform model selection
only in the application stage for λ ∈ [10−4,100]. This procedure ensures that the approximate tree
kernels are first determined over equally weighted subtrees, hence allowing for an unbiased opti-
mization in the selection phase. A potential refinement of λ is postponed to the application stage to
exploit performance gains of the approximate tree kernel. Note that if prior knowledge is available,
this may be reflected by a different choice of λ in the selection stage.
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4. Experiments on Artificial Data

Before studying the expressiveness and performance of approximate tree kernels in real-word ap-
plications, we aim at gaining insights into the approximation process. We thus conduct experiments
using artificial data generated by the following probabilistic grammar, where A,B,C,D denote non-
terminal symbols and a,b terminal symbols. The start symbol is S.

S [1.0]
−−−−−−−−−→ A B (*1)

A [0.2|0.2|0.6]
−−−−−−−−−→ A A | C D | a (*2)

B [0.2|0.2|0.6]
−−−−−−−−−→ B B | D C | b (*3)

C [0.3|0.3|0.3]
−−−−−−−−−→ A B | A | B (*4)

D [0.3|0.3|0.3]
−−−−−−−−−→ B A | A | B (*5)

Parse trees are generated from the above grammar by applying the rule S→ AB and randomly
choosing matching production rules according to their probabilities until all branches end in terminal
nodes. Recursions are included in (*2)–(*5) to ensure that symbols occur at different positions and
depths in the parse trees.

4.1 A Supervised Learning Task

To generate a simple supervised classification task, we assign the first rule in (*4) as an indicator
of the positive class and the first rule in (*5) as one of the negative class. We then prepare our
data set, such that one but not two of the rules are contained in each parse tree. That is, positive
examples possess the rule C→ AB and negative instances exhibit the rule D→ BA. Note that due
to the symmetric design of the production rules, the two classes can not be distinguished from the
symbolsC and D alone but from the respective production rules.

Using this setup, we generate training, validation, and test sets consisting of 500 positive and
negative trees each. We then apply the two-stage process detailed in Section 3.5: First, the selection
function ω is adapted by solving Optimization Problem 1 using a sample of 250 randomly drawn
trees from the training set. Second, a Support Vector Machine (SVM) is trained on the training data
and applied to the test set, where the optimal regularization parameter of the SVM and the depth
parameter λ are selected using the validation set. We report on averages over 10 repetitions and
error bars indicate standard errors.

The classification performance of the SVM for the two kernel functions is depicted in Figure 4,
where the number of selected symbols N for the approximate kernel is given on the x-axis and the
attained area under the ROC curve (AUC) is shown on the y-axis. The parse tree kernel (PTK) leads
to a perfect discrimination between the two classes, yet the approximate tree kernel (ATK) performs
equally well, irrespectively of the number of selected symbols. That is, the approximation captures
the discriminant subtrees rooted at either the symbolC orD in all settings. This selection of discrim-
inative subtrees is also reflected in the optimal value of the depth parameter λ determined during
the model selection. While for the exact tree kernel the optimal λ is 10−2, the approximate kernel
yields best results with λ= 10−3, thus putting emphasis on shallow subtrees and the discriminative
production rules rooted at C and D.

To analyze the feature space induced by the selection of subtrees, we perform a kernel principle
component analysis (PCA) (see Schölkopf et al., 1998; Braun et al., 2008) for the exact and the
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Figure 4: Classification performance and kernel PCA plot for the supervised toy data.

approximate tree kernel. Figure 4(b) shows the sorted magnitudes of the principal components in
feature space. Although the differences are marginal, comparing the spectra allows for viewing the
approximate kernel as a denoised variant of the regular parse tree kernel. The variance of smaller
components is shifted towards leading principle components, resulting in a dimensionality reduction
in feature space (see Mika et al., 1999).

4.2 An Unsupervised Learning Task

In order to obtain an unsupervised learning task, we modify the artificial grammar to reflect the
notion of anomaly detection. First, we incorporate redundancy into the grammar by increasing the
probability of irrelevant production rules in (*4)–(*5) as follows

C [0.1|0.4|0.4]
−−−−−−−−−→ A B | A | B (*4)

D [0.1|0.4|0.4]
−−−−−−−−−→ B A | A | B (*5)

Second, we sample the parse trees such that training, validation, and testing sets contain 99%
positive and 1% negative instances each, thus matching the anomaly detection scenario. We pursue
the same two-stage procedure as in the previous section but first solve Optimization Problem 2
for adapting the approximate tree kernel to the unlabeled data and then employ a one-class SVM
(Schölkopf et al., 1999) for training and testing.

Figure 5(a) shows the detection performance for the parse tree kernel and the approximate tree
kernel for varying values of ρ. The parse tree kernel reaches an AUC value of 57%. Surprisingly, we
observe a substantial gain in performance for the approximate kernel, leading to an almost perfect
separation of the two classes for ρ = 0.3. Moreover, for the approximate kernel shallow subtrees
are sufficient for detection of anomalies which is indicated by an optimal λ= 10−3, whereas for the
exact kernel subtrees of all depths need to be considered due to an optimal λ= 1.

The high detection performances can be explained by considering a kernel PCA of the two
tree kernels in Figure 5(b). The redundant production rules introduce irrelevant and noisy dimen-
sions into the feature space induced by the parse tree kernel. Clearly, for ρ = 0.3, the approximate
tree kernel effectively reduces the intrinsic dimensionality by shifting the variance towards leading
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Figure 5: Detection performance and kernel PCA plot for the unsupervised toy data.

components. Compared to the exact kernel, the resulting eigenspectrum of the approximate kernel
possesses more explanatory and fewer noisy components.

5. Real-world Experiments

We now proceed to study the expressiveness, stability, and run-time performance of approximate
tree kernels in real-world applications, namely supervised learning tasks dealing with question clas-
sification and web spam detection, respectively, and an unsupervised learning task on intrusion
detection for HTTP and FTP traffic. In all experiments we employ the exact parse tree kernel and
state-of-the-art implementations as baseline methods.

• Question Classification. Question classification is an important step for automatic answer-
ing of questions (Voorhees, 2004). The task is to categorize a user-supplied question into
predefined semantic categories. We employ the data collection by Li and Roth (2002) con-
sisting of 6,000 English questions assigned to six classes (abbreviation, entity, description,
human, location, numeric value). Each question is transformed to a respective parse tree us-
ing the MEI Parser1 (Charniak, 1999). For simplicity, we learn a discrimination between the
category “entity” (1,339 instances) and all other categories using a two-class Support Vector
Machine (SVM).

• Web Spam Detection. Web spam refers to fraudulent HTML documents, which yield high
ranks in search engines through massive amounts of links. The detection of so-called link
farms is essential for providing proper search results and protecting users from fraud. We use
the web spam data as described by Castillo et al. (2006). The collection consists of HTML
documents from normal and spam websites in the UK. All sites are examined by humans and
manually annotated. We use a fault-tolerant HTML parser2 to obtain parse trees from HTML
documents. From the top 20 sites of both classes we sample 5,000 parse trees covering 974
web spam documents and 4,026 normal HTML pages. Again, we use a two-class SVM as the
underlying learning algorithm.

1. Maximum-Entropy-Inspired Parser, see ftp://ftp.cs.brown.edu/pub/nlparser.
2. Beautiful Soup Parser, see http://www.crummy.com/software/BeautifulSoup.
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• Intrusion Detection. Intrusion detection aims to automatically identify unknown attacks in
network traffic. As labels for such data are hard to obtain, unsupervised learning has been
a major focus in intrusion detection research (e.g., Eskin et al., 2002; Kruegel and Vigna,
2003; Rieck and Laskov, 2007; Laskov et al., 2008). Thus, for our experiments we employ
a one-class SVM (Schölkopf et al., 1999) in the variant of Tax and Duin (1999) to detect
anomalies in network traffic of the protocols HTTP and FTP. Network traffic for HTTP is
recorded at the Fraunhofer FIRST institute, while FTP traffic is obtained from the Lawrence
Berkeley National Laboratory 3 (see Paxson and Pang, 2003). Both traffic traces cover a
period of 10 days. Attacks are additionally injected into the traffic using popular hacking
tools.4 The network data is converted to parse trees using the protocol grammars provided in
the specifications (see Fielding et al., 1999; Postel and Reynolds, 1985). From the generated
parse trees for each protocol we sample 5,000 instances and add 89 attacks for HTTP and
62 for FTP, respectively. This setting is similar to the data sets used in the DARPA intrusion
detection evaluation (Lippmann et al., 2000).

Figure 6 shows the distribution of tree sizes in terms of nodes for each of the three learning
tasks. For question classification, the largest tree comprises 113 nodes, while several parse trees in
the web spam and intrusion detection data consist of more than 5,000 nodes.

For each learning task, we pursue the two-stage procedure described in Section 3.5 and conduct
the following experimental procedure: parse trees are randomly drawn from each data set and split
into training, validation and test partitions consisting of 1,000 trees each. If not stated otherwise,
we first draw 250 instances at random from the training set for the selection stage, where we solve
Optimization Problem 1 or 2 with fixed λ = 1. In the application stage, the resulting approximate
kernels are then compared to exact kernels using SVMs as underlying learning methods. Model
selection is performed for the regularization parameter of the SVM and the depth parameter λ. We
measure the area under the ROC curve of the resulting classifiers and report on averages over 10
repetitions with error bars indicate standard errors. In all experiments we make use of the LIBSVM
library developed by Chang and Lin (2000).

5.1 Results for Question Classification

We first study the expressiveness of the approximate tree kernel and the exact parse tree kernel
for the question classification task. We thus vary the number of selected symbols in Optimization
Problem 1 and report on the achieved classification performance for the approximate tree kernel for
varying N and the exact tree kernel in Figure 7(a).

As expected, the approximation becomes more accurate for increasing values of N, meaning
that the more symbols are included in the approximation, the better is the resulting discrimination.
However, the curve saturates to the performance of the regular parse tree kernel for selecting 7 and
more symbols. The selected symbols are NP, VP, PP, S1, SBARQ, SQ, and TERM. The symbols NP,
PP, and VP capture the coarse semantics of the considered text, while SBARQ and SQ correspond to
the typical structure of questions. Finally, the symbol TERM corresponds to terminal symbols and
contains the actual sequence of tokens including interrogative pronouns. The optimal depth λ for
the approximate kernel is again lower with 10−2 in comparison to the optimal value of 10−1 for the
exact kernel, as discriminative substructures are close to the selected symbols.

3. LBNL-FTP-PKT, http://www-nrg.ee.lbl.gov/anonymized-traces.html.
4. Metasploit Framework, see http://www.metasploit.org.
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(d) Intrusion detection (FTP)

Figure 6: Tree sizes for question classification, web spam detection and intrusion detection.
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Figure 7: Classification performance and kernel PCA plot for the question classification task.

Figure 7(b) shows the eigenspectra of the parse tree kernel and its approximate variant with the
above 7 selected symbols. Even though the proposed kernel is only an approximation of the regular
tree kernel, their eigenspectra are nearly identical. That is, the approximate tree kernel leads to a
nearly identical feature space to its exact counterpart.

The above experiments demonstrate the ability of the approximation to select discriminative
symbols, yet it is not clear how the expressiveness of the approximate kernels depends on the re-
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Figure 8: Stability plot for the question classification task.

duced sample size in the selection stage. To examine this issue, we keep N = 7 fixed and vary the
amount of data supplied for adapting the approximate tree kernel. Figure 8(a) displays the assign-
ments of the selection function ω, where the size of the provided data is shown on the x-axis and
the IDs of the grammar symbols are listed on the y-axis. The intensity of each point reflects the
average number of times the corresponding symbol has been chosen in five repetitions. The selec-
tion remains stable for sample sizes of 150 parse trees, where consistently the correct 7 symbols are
identified. Even if label noise is injected in the data, the approximation remains stable if at least 150
trees are considered for the selection as depicted in Figure 8(b) and 8(c).

The results on question classification show that exploiting the redundancy in parse trees can be
beneficial even when dealing with small trees. Approximate tree kernels identify a simplified rep-
resentation that proves robust against label noise and leads to the same classification rate compared
to regular parse tree kernels.

5.2 Results for Web Spam Detection

We now study approximate tree kernels for web spam detection. Unfortunately, training SVMs
using the exact parse tree kernel proves intractable for many large trees in the data due to their
excessive memory requirements. We thus exclude trees from the web spam data set with more than
1,500 nodes for the following experiments. Again, we vary the number of symbols to be selected
and measure the corresponding AUC value over 10 repetitions.

The results are shown in Figure 9(a). The approximation is consistently on par with the regular
parse tree kernel for four and more selected labels, as the differences in this interval are not signifi-
cant. However, the best result is obtained for selecting only two symbols. The approximation picks
the tags HTML and BODY. We credit this finding to the usage of templates in spam websites inducing
a strict order of high-level tags in the documents. In particular, header and meta tags occurring
in subtrees below the HTML tag are effective for detecting spam templates. As a consequence, the
optimal λ = 10−1 for the approximate kernel effectively captures discriminative features reflecting
web spam templates rooted at the HTML and BODY tag. The eigendecomposition of the two kernels
in Figure 9(b) hardly show any differences. As for the question classification task, the exact and
approximate tree kernels share the same expressiveness.

Figure 10 shows the stability of the selection function for varying amounts of data considered in
the selection stage where N is fixed to 2. The selection saturates for samples containing at least 120
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Figure 9: Classification performance and kernel PCA plot for the web spam detection task.
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Figure 10: Stability plot for the web spam detection task.

parse trees and the two symbols HTML and BODY are chosen consistently. Moreover, the selection
of symbols for web spam detection proves robust against label noise. Even for a noise ratio of
10% which corresponds to flipping every tenth label, the same symbols are selected. This result
confirms the property of web spam to be generated from templates which provides a strong feature
for discrimination even in presence of label noise.

5.3 Results for Intrusion Detection

In this section, we study the expressiveness of approximate kernels for unsupervised intrusion de-
tection. Since label information is not available, we adapt the selection function to the data using
Optimization Problem 2. The resulting approximate tree kernels are then employed together with a
one-class SVM for the detection of attacks in HTTP and FTP parse trees. To determine the impact
of the approximation on the detection performance, we vary the number of expected node compar-
isons, that is, variable ρ in Optimization Problem 2. We again exclude trees comprising more than
1,500 nodes due to prohibitive memory requirements for the exact tree kernel.

Figures 11 (HTTP) and 12 (FTP) show the observed detection rates on the left for the approx-
imate and the exact tree kernel. Clearly, the approximate tree kernel performs identically to its
exact counterpart if the ratio of node comparisons ρ equals 100%. However, when the number of
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Figure 11: Detection performance and analysis of the intrusion detection task (HTTP).
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Figure 12: Detection performance and analysis of the intrusion detection task (FTP).

comparisons is restricted to only a fraction, the approximate kernel significantly outperforms the
exact parse tree kernel and leads to a superior detection rate. The approximate tree kernel realizes
an AUC improvement of 1% for HTTP data. For the FTP protocol, the differences are more severe:
the approximate kernel outperforms its exact counterpart and yields an AUC improvement of 20%.
The optimal depth parameter λ for the approximate kernel is 10−2 for HTTP and 10−2 for FTP,
while the exact tree kernel requires λ = 10−1 in the optimal setting. This result demonstrates that
the approximation identifies relevant grammar symbols by focusing on shallow subtrees comprising
discriminative patterns.

These gains in performance can be explained by looking at the respective eigenspectra, de-
picted in Figures 11(b) and 12(b). Compared to the regular kernel, the approximate kernel yields
remarkably fewer noisy components. This is particularly the case for FTP traffic. Moreover, the
variance is shifted toward only a few leading components. The approximate tree kernel performs a
dimensionality reduction by suppressing noisy and redundant parts of the feature space. For HTTP
traffic, such redundancy is for instance induced by common web browsers like Internet Explorer
and Mozilla Firefox whose header attributes constitute a good portion of the resulting parse trees.
This syntactical information is delusive in the context of intrusion detection and hence their removal
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improves the detection performance. Note that the observed gain in performance is achieved using
only less than 10% of the grammar symbols. That is, the approximation is not only more accurate
than the exact parse tree kernel but also concisely represented.

5.4 Run-time Performance

As we have seen in the previous sections, approximate kernels can lead to a concise description of
the task at hand by selecting discriminative substructures in data. In this section we compare the run-
time and memory requirements of the approximate tree kernel with state-of-the-art implementations
of the exact tree kernels. We first measure the time for selection, training, and testing phases using
SVMs as underlying learning methods. For all data sets, we use 250 randomly drawn trees in the
selection stage where training and test sets consist of 1,000 instances each. Again, we exclude large
trees with more than 1,500 nodes because of excessive memory requirements.

Selection stage on 250 parse trees
Question classification 17s ±0
Web spam detection 144s ±28
Intrusion detection (HTTP) 43s ±7
Intrusion detection (FTP) 31s ±2

Table 1: Selection stage prior to training and testing phase.

The run-time for the selection of symbols prior to application of the SVMs are presented in
Table 1. For all three data sets, a selection is determined in less than 3 minutes, demonstrating the
advantage of phrasing the selection as a simple linear program. Table 5.4 lists the training and testing
times using the approximate tree kernel (ATK) and a fast implementation for the exact tree kernel
(PTK2) devised by Moschitti (2006a). As expected, the size of the trees influences the observed
results. For the small trees in the question classification task we record run-time improvements by
a factor of 1.7 while larger trees in the other tasks give rise to speed-up factors between 2.8−13.8.
Note that the total run-time of the application stage is only marginally affected by the initial selection
stage that is performed only once prior to the learning process. For example, in the task of web spam
detection a speed-up of roughly 10 is attained for the full experimental evaluation, as the selection
is performed once, whereas 25 runs of training and testing are necessary for model selection.

However, the interpretability of the results reported in Table 5.4 is limited because parse trees
containing more than 1,500 nodes have been excluded from the experiment and the true performance
gain induced by approximate tree kernels cannot be estimated. Moreover, the reported training and
testing times refer to a particular learning method and cannot be transferred to other methods and
applications, such as clustering and regression tasks. To address these issues, we study the run-time
performance and memory consumption of tree kernels explicitly—independently of a particular
learning method. Notice that for these experiments we include parse trees of all sizes. As baselines,
we include a standard implementation of the parse tree kernel (PTK1) detailed by Shawe-Taylor and
Cristianini (2004) and the improved variant (PTK2) proposed by Moschitti (2006a).

For each kernel, we estimate the average run-time and memory requirements by computing ker-
nels between reference trees of fixed sizes and 100 randomly drawn trees. We also consider the
worst-case scenario for each data set, which occurs if kernels are computed between identical parse
trees, thus realizing the maximal number of matching node pairs. We focus in our experiments on
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ATK PTK2 Speed-up
Training time on 1,000 parse trees
Question classification 42s ±4 72s ±7 1.7×
Web spam detection 111s ±17 1,487s ±435 13.4×
Intrusion detection (HTTP) 123s ±20 349s ±80 2.8×
Intrusion detection (FTP) 125s ±14 517s ±129 5.8×
Testing time on 1,000 parse trees
Question classification 40s ±4 70s ±2 1.8×
Web spam detection 112s ±18 1,542s ±471 13.8×
Intrusion detection (HTTP) 81s ±14 225s ±71 2.8×
Intrusion detection (FTP) 107s ±15 455s ±112 4.1×

Table 2: Training and testing time of SVMs using the exact and the approximate tree kernel.

the learning tasks of web spam and intrusion detection (HTTP), where results for question classifi-
cation and FTP are analogous.
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Figure 13: Run-times for web spam (WS) and intrusion detection (ID).

Figure 13 illustrates the run-time performance of the approximate and the two exact tree kernels.
The run-time is given in milliseconds (ms) per kernel computation on the y-axis and the size of the
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considered trees is shown on the x-axis. Both axes are presented in log-scale. Although the im-
proved variant by Moschitti (PTK2) is significantly faster than the standard implementation, neither
of the two show compelling run-times in both tasks. For both implementations of the regular tree
kernel, a single kernel computation can take more than 10 seconds, thus rendering large-scale ap-
plications infeasible. By contrast, the approximate tree kernel computes similarities between trees
up to three orders of magnitude faster and yields a worst-case computation time of less than 40 ms
for the web spam detection task and less than 20 ms for the intrusion detection task. The worst-case
analysis shows that the exact tree kernel scales quadratically in the number of nodes whereas the
approximate tree kernel is computed in sub-quadratic time in the size of the trees.
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Figure 14: Memory requirements for web spam (WS) and intrusion detection (ID).

Figure 14 reports on average and worst-case memory requirements for the web spam detection
and intrusion detection task. The memory consumption in kilobytes is depicted on the y-axis and
the size of the considered trees is shown on the x-axis. Both axes are given in logarithmic scale.
In all figures, the curves of the approximate kernel are significantly below the variants of the parse
tree kernel. The allocated memory for the regular tree kernel exceeds 1 gigabytes in both learning
tasks, which is clearly prohibitive for a single kernel computation. In contrast the approximate tree
kernel requires at most 800 kilobytes. For the worst-case estimation, the memory consumption of
the exact kernel scales quadratically in the number of tree nodes while the approximate tree kernel
scales sub-quadratically due to the sparse selection of symbols.
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6. Conclusions

Learning with large trees render regular parse tree kernels inapplicable due to quadratic run-time
and memory requirements. As a remedy, we propose to approximate regular tree kernels. Our
approach splits into a selection and an application stage. In the selection stage, the computation of
tree kernels is narrowed to a sparse subset of subtrees rooted in appropriate grammar symbols. The
symbols are chosen according to their discriminative power for supervised settings and to minimize
the expected number of node comparisons for unsupervised settings, respectively. We derive linear
programming approaches to identify such symbols, where the resulting optimization problems can
be solved with standard techniques. In the subsequent application stage, learning algorithms benefit
from the initial selection because run-time and memory requirements for the kernel computation are
significantly reduced.

We evaluate the approximate trees kernels with SVMs as underlying learning algorithms for
question classification, web spam detection and intrusion detection. In all experiments, the approx-
imate tree kernels not only replicate the predictive performances of exact kernels but also provide
concise representations by operating on only 2–10% of the available grammar symbols. The result-
ing approximate kernels lead to significant improvements in terms of run-time and memory require-
ments. For large trees, the approximation reduces a single kernel computation from 1 gigabyte to
less than 800 kilobytes, accompanied by run-time improvements up to three orders of magnitude.
We also observe improvements for parse trees generated for sentences in natural language, however,
at a smaller scale. The most dramatic results are obtained for intrusion detection. Here, a kernel
PCA shows that approximate tree kernels effectively identify relevant dimensions in feature space
and discard redundant and noisy subspaces from the kernel computation. Consequently, the approx-
imate kernels perform more efficiently and more accurately than their exact counterparts achieving
AUC improvements of up to 20%.

To the best of our knowledge, we present the first efficient approach to learning with large trees
containing thousands of nodes. In view of the many large-scale applications comprising structured
data , the presented work provides means for efficient and accurate learning with large structures.
Although we focus on classification, approximate tree kernels are easily leveraged to other kernel-
based learning tasks, such as regression and clustering, using the introduced techniques. Moreover,
the devised approximate tree kernels build on the concept of convolution over local kernel functions.
Our future work will focus on transferring attained performance gains to the framework of convo-
lution kernels, aiming at rendering learning with various types of complex structured data feasible
in large-scale applications.
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Abstract
The problem is sequence prediction in the following setting. A sequence x1, . . . ,xn, . . . of discrete-
valued observations is generated according to some unknown probabilistic law (measure) µ. After
observing each outcome, it is required to give the conditional probabilities of the next observation.
The measure µ belongs to an arbitrary but known class C of stochastic process measures. We are
interested in predictors ρ whose conditional probabilities converge (in some sense) to the “true”
µ-conditional probabilities, if any µ∈ C is chosen to generate the sequence. The contribution of
this work is in characterizing the families C for which such predictors exist, and in providing a
specific and simple form in which to look for a solution. We show that if any predictor works,
then there exists a Bayesian predictor, whose prior is discrete, and which works too. We also find
several sufficient and necessary conditions for the existence of a predictor, in terms of topological
characterizations of the family C , as well as in terms of local behaviour of the measures in C , which
in some cases lead to procedures for constructing such predictors.

It should be emphasized that the framework is completely general: the stochastic processes
considered are not required to be i.i.d., stationary, or to belong to any parametric or countable
family.
Keywords: sequence prediction, time series, online prediction, Bayesian prediction

1. Introduction

Given a sequence x1, . . . ,xn of observations xi ∈ X , where X is a finite set, we want to predict
what are the probabilities of observing xn+1 = x for each x ∈ X , or, more generally, probabilities
of observing different xn+1, . . . ,xn+h, before xn+1 is revealed, after which the process continues.
It is assumed that the sequence is generated by some unknown stochastic process µ, a probability
measure on the space of one-way infinite sequences X∞. The goal is to have a predictor whose
predicted probabilities converge (in a certain sense) to the correct ones (that is, to µ-conditional
probabilities). In general this goal is impossible to achieve if nothing is known about the measure µ
generating the sequence. In other words, one cannot have a predictor whose error goes to zero for
any measure µ. The problem becomes tractable if we assume that the measure µ generating the data
belongs to some known class C . The questions addressed in this work are a part of the following
general problem: given an arbitrary set C of measures, how can we find a predictor that performs
well when the data is generated by any µ∈ C , and whether it is possible to find such a predictor at
all. An example of a generic property of a class C that allows for construction of a predictor, is that
C is countable. Clearly, this condition is very strong. An example, important from the applications
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point of view, of a class C of measures for which predictors are known, is the class of all stationary
measures. The general question, however, is very far from being answered.

The contribution of this work to solving this question is, first, in that we provide a specific
form in which to look for a predictor. More precisely, we show that if a predictor that predicts
every µ ∈ C exists, then such a predictor can also be obtained as a weighted sum of countably
many elements of C . This result can also be viewed as a justification of the Bayesian approach
to sequence prediction: if there exists a predictor which predicts well every measure in the class,
then there exists a Bayesian predictor (with a rather simple prior) that has this property too. In this
respect it is important to note that the result obtained about such a Bayesian predictor is pointwise
(holds for every µ in C ), and stretches far beyond the set its prior is concentrated on. Next, we derive
some characterizations of families C for which a predictor exist. We first analyze what is furnished
by the notion of separability, when a suitable topology can be found: we find that it is a sufficient
but not always a necessary condition. We then derive some sufficient conditions for the existence of
a predictor which are based on local (truncated to the first n observation) behaviour of measures in
the class C . Necessary conditions cannot be obtained in this way (as we demonstrate), but sufficient
conditions, along with rates of convergence and construction of predictors, can be found.

The motivation for studying predictors for arbitrary classes C of processes is two-fold. First
of all, prediction is a basic ingredient for constructing intelligent systems. Indeed, in order to be
able to find optimal behaviour in an unknown environment, an intelligent agent must be able, at the
very least, to predict how the environment is going to behave (or, to be more precise, how relevant
parts of the environment are going to behave). Since the response of the environment may in general
depend on the actions of the agent, this response is necessarily non-stationary for explorative agents.
Therefore, one cannot readily use prediction methods developed for stationary environments, but
rather has to find predictors for the classes of processes that can appear as a possible response of the
environment.

Apart from this, the problem of prediction itself has numerous applications in such diverse
fields as data compression, market analysis, bioinformatics, and many others. It seems clear that
prediction methods constructed for one application cannot be expected to be optimal when applied
to another. Therefore, an important question is how to develop specific prediction algorithms for
each of the domains.

1.1 Prior Work

As it was mentioned, if the class C of measures is countable (that is, if C can be represented as
C := {µk : k ∈ N}), then there exists a predictor which performs well for any µ∈ C . Such a predic-
tor can be obtained as a Bayesian mixture ρS := ∑k∈Nwkµk, where wk are summable positive real
weights, and it has very strong predictive properties; in particular, ρS predicts every µ∈ C in total
variation distance, as follows from the result of Blackwell and Dubins (1962). Total variation dis-
tance measures the difference in (predicted and true) conditional probabilities of all future events,
that is, not only the probabilities of the next observations, but also of observations that are arbitrary
far off in the future (see formal definitions below). In the context of sequence prediction the mea-
sure ρS was first studied by Solomonoff (1978). Since then, the idea of taking a convex combination
of a finite or countable class of measures (or predictors) to obtain a predictor permeates most of
the research on sequential prediction (see, for example, Cesa-Bianchi and Lugosi, 2006) and more
general learning problems (Hutter, 2005; Ryabko and Hutter, 2008a). In practice it is clear that, on
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the one hand, countable models are not sufficient, since already the class µp, p ∈ [0,1] of Bernoulli
i.i.d. processes, where p is the probability of 0, is not countable. On the other hand, prediction in
total variation can be too strong to require; predicting probabilities of the next observation may be
sufficient, maybe even not on every step but in the Cesaro sense. A key observation here is that a
predictor ρS = ∑wkµk may be a good predictor not only when the data is generated by one of the
processes µk, k ∈ N, but when it comes from a much larger class. Let us consider this point in more
detail. Fix for simplicity X = {0,1}. The Laplace predictor

λ(xn+1 = 0|x1, . . . ,xn) =
#{i≤ n : xi = 0}+1

n+ |X |
(1)

predicts any Bernoulli i.i.d. process: although convergence in total variation distance of conditional
probabilities does not hold, predicted probabilities of the next outcome converge to the correct ones.
Moreover, generalizing the Laplace predictor, a predictor λk can be constructed for the class Mk of
all k-order Markov measures, for any given k. As was found by Ryabko (1988), the combination
ρR := ∑wkλk is a good predictor not only for the set ∪k∈NMk of all finite-memory processes, but
also for any measure µ coming from a much larger class: that of all stationary measures on X∞.
Here prediction is possible only in the Cesaro sense (more precisely, ρR predicts every stationary
process in expected time-average Kullback-Leibler divergence, see definitions below). The Laplace
predictor itself can be obtained as a Bayes mixture over all Bernoulli i.i.d. measures with uniform
prior on the parameter p (the probability of 0). However, as was observed in Hutter (2007) (and
as is easy to see), the same (asymptotic) predictive properties are possessed by a Bayes mixture
with a countably supported prior which is dense in [0,1] (e.g., taking ρ := ∑wkδk where δk,k ∈ N

ranges over all Bernoulli i.i.d. measures with rational probability of 0). For a given k, the set of
k-order Markov processes is parametrized by finitely many [0,1]-valued parameters. Taking a dense
subset of the values of these parameters, and a mixture of the corresponding measures, results in a
predictor for the class of k-order Markov processes. Mixing over these (for all k ∈ N) yields, as in
Ryabko (1988), a predictor for the class of all stationary processes. Thus, for the mentioned classes
of processes, a predictor can be obtained as a Bayes mixture of countably many measures in the
class. An additional reason why this kind of analysis is interesting is because of the difficulties
arising in trying to construct Bayesian predictors for classes of processes that can not be easily
parametrized. Indeed, a natural way to obtain a predictor for a class C of stochastic processes is to
take a Bayesian mixture of the class. To do this, one needs to define the structure of a probability
space on C . If the class C is well parametrized, as is the case with the set of all Bernoulli i.i.d.
process, then one can integrate with respect to the parametrization. In general, when the problem
lacks a natural parametrization, although one can define the structure of the probability space on the
set of (all) stochastic process measures in many different ways, the results one can obtain will then
be with probability 1 with respect to the prior distribution (see, for example, Jackson et al., 1999).
Pointwise consistency cannot be assured (see, for example, Diaconis and Freedman, 1986) in this
case, meaning that some (well-defined) Bayesian predictors are not consistent on some (large) subset
of C . Results with prior probability 1 can be hard to interpret if one is not sure that the structure of
the probability space defined on the set C is indeed a natural one for the problem at hand (whereas
if one does have a natural parametrization, then usually results for every value of the parameter
can be obtained, as in the case with Bernoulli i.i.d. processes mentioned above). The results of the
present work show that when a predictor exists it can indeed be given as a Bayesian predictor, which
predicts every (and not almost every) measure in the class, while its support is only a countable set.
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A related question is formulated as a question about two individual measures, rather than about
a class of measures and a predictor. Namely, one can ask under which conditions one stochastic
process predicts another. In Blackwell and Dubins (1962) it was shown that if one measure is
absolutely continuous with respect to another, than the latter predicts the former (the conditional
probabilities converge in a very strong sense). In Ryabko and Hutter (2007, 2008b) a weaker form
of convergence of probabilities (in particular, convergence of expected average KL divergence) is
obtained under weaker assumptions.

1.2 The Results

First, we show that if there is a predictor that performs well for every measure coming from a
class C of processes, then a predictor can also be obtained as a convex combination ∑k∈Nwkµk
for some µk ∈ C and some wk > 0, k ∈ N. This holds if the prediction quality is measured by
either total variation distance, or expected average KL divergence: one measure of performance
that is very strong, the other rather weak. The analysis for the total variation case relies on the
fact that if ρ predicts µ in total variation distance, then µ is absolutely continuous with respect to
ρ, so that ρ(x1..n)/µ(x1..n) converges to a positive number with µ-probability 1 and with a positive
ρ-probability. However, if we settle for a weaker measure of performance, such as expected average
KL divergence, measures µ∈ C are typically singular with respect to a predictor ρ. Nevertheless,
since ρ predicts µwe can show that ρ(x1..n)/µ(x1..n) decreases subexponentially with n (with high
probability or in expectation); then we can use this ratio as an analogue of the density for each
time step n, and find a convex combination of countably many measures from C that has desired
predictive properties for each n. Combining these predictors for all n results in a predictor that
predicts every µ∈ C in average KL divergence. The proof techniques developed have a potential
to be used in solving other questions concerning sequence prediction, in particular, the general
question of how to find a predictor for an arbitrary class C of measures.

We then exhibit some sufficient conditions on the class C , under which a predictor for all mea-
sures in C exists. It is important to note that none of these conditions relies on a parametrization of
any kind. The conditions presented are of two types: conditions on asymptotic behaviour of mea-
sures in C , and on their local (restricted to first n observations) behaviour. Conditions of the first
type concern separability of C with respect to the total variation distance and the expected average
KL divergence. We show that in the case of total variation separability is a necessary and sufficient
condition for the existence of a predictor, whereas in the case of expected average KL divergence it
is sufficient but is not necessary.

The conditions of the second kind concern the “capacity” of the sets C n := {µn : µ∈ C}, n ∈ N,
where µn is the measure µ restricted to the first n observations. Intuitively, if C n is small (in some
sense), then prediction is possible. We measure the capacity of C n in two ways. The first way is
to find the maximum probability given to each sequence x1, . . . ,xn by some measure in the class,
and then take a sum over x1, . . . ,xn. Denoting the obtained quantity cn, one can show that it grows
polynomially in n for some important classes of processes, such as i.i.d. or Markov processes.
We show that, in general, if cn grows subexponentially then a predictor exists that predicts any
measure in C in expected average KL divergence. On the other hand, exponentially growing cn are
not sufficient for prediction. A more refined way to measure the capacity of C n is using a concept
of channel capacity from information theory, which was developed for a closely related problem
of finding optimal codes for a class of sources. We extend corresponding results from information
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theory to show that sublinear growth of channel capacity is sufficient for the existence of a predictor,
in the sense of expected average divergence. Moreover, the obtained bounds on the divergence are
optimal up to an additive logarithmic term.

The rest of the paper is organized as follows. Section 2 introduces the notation and definitions.
In Section 3 we show that if any predictor works than there is a Bayesian one that works, while
in Section 4 we provide several characterizations of predictable classes of processes. Section 4.1
is concerned with separability, while Section 4.2 analyzes conditions based on local behaviour of
measures. Finally, Section 5 provides outlook and discussion.

As running examples that illustrate the results of each section we use countable classes of mea-
sures, the family of all Bernoulli i.i.d. processes, and that of all stationary processes.

2. Preliminaries

Let X be a finite set. The notation x1..n is used for x1, . . . ,xn. We consider stochastic processes
(probability measures) on (X∞,F ), where F is the sigma-field generated by the cylinder sets [x1..n],
xi ∈ X ,n ∈ N, where [x1..n] is the set of all infinite sequences that start with x1..n. Since we are
only interested in those measures on (X∞,F ) which are probability measures (the measure of X∞

equals 1), we call them simply measures. For a finite set A denote |A| its cardinality. We use Eµ for
expectation with respect to a measure µ.

Next we introduce the criteria of the quality of prediction used in this paper. For two measures
µ and ρ we are interested in how different the µ- and ρ-conditional probabilities are, given a data
sample x1..n. Introduce the (conditional) total variation distance

v(µ,ρ,x1..n) := sup
A∈F

|µ(A|x1..n)−ρ(A|x1..n)|.

Definition 1 We say that ρ predicts µ in total variation if

v(µ,ρ,x1..n) → 0 µ-a.s.

This convergence is rather strong. In particular, it means that ρ-conditional probabilities of arbitrary
far-off events converge to µ-conditional probabilities. Moreover, ρ predicts µ in total variation if
Blackwell and Dubins (1962) and only if Kalai and Lehrer (1994) µ is absolutely continuous with
respect to ρ:

Theorem 2 (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) If ρ, µ are arbitrary proba-
bility measures on (X∞,F ), then ρ predicts µ in total variation if and only if µ is absolutely contin-
uous with respect to ρ.

Thus, for a class C of measures there is a predictor ρ that predicts every µ∈ C in total variation
if and only if every µ ∈ C has a density with respect to ρ. Although such sets of processes are
rather large, they do not include even such basic examples as the set of all Bernoulli i.i.d. processes.
That is, there is no ρ that would predict in total variation every Bernoulli i.i.d. process measure
δp, p ∈ [0,1], where p is the probability of 0. Therefore, perhaps for many (if not most) practical
applications this measure of the quality of prediction is too strong, and one is interested in weaker
measures of performance.
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For two measures µ and ρ introduce the expected cumulative Kullback-Leibler divergence (KL
divergence) as

dn(µ,ρ) := Eµ
n

∑
t=1
∑
a∈X

µ(xt = a|x1..t−1) log
µ(xt = a|x1..t−1)
ρ(xt = a|x1..t−1)

.

In words, we take the expected (over data) average (over time) KL divergence between µ- and ρ-
conditional (on the past data) probability distributions of the next outcome.

Definition 3 We say that ρ predicts µ in expected average KL divergence if

1
n
dn(µ,ρ) → 0.

This measure of performance is much weaker, in the sense that it requires good predictions only one
step ahead, and not on every step but only on average; also, the convergence is not with probability 1,
but in expectation. With prediction quality so measured, predictors exist for relatively large classes
of measures; most notably, Ryabko (1988) provides a predictor which predicts every stationary
process in expected average KL divergence. A simple but useful identity that we will need (in the
context of sequence prediction introduced also by Ryabko, 1988) is the following

dn(µ,ρ) = − ∑
x1..n∈X n

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

, (2)

where on the right-hand side we have simply the KL divergence between measures µand ρ restricted
to the first n observations.

Thus, the results of this work will be established with respect to two very different measures
of prediction quality, one of which is very strong and the other rather weak. This suggests that the
facts established reflect some fundamental properties of the problem of prediction, rather than those
pertinent to particular measures of performance. On the other hand, it remains open to extend the
results below to different measures of performance.

3. Fully Nonparametric Bayes Predictors

In this section we show that if there is a predictor that predicts every µ in some class C , then there
is a Bayesian mixture of countably many elements from C that predicts every µ ∈ C too. This
is established for the two notions of prediction quality that were introduced: total variation and
expected average KL divergence. After the theorems we present some examples of families of
measures for which predictors exist.

Theorem 4 Let C be a set of probability measures on (X∞,F ). If there is a measure ρ such that ρ
predicts every µ∈ C in total variation, then there is a sequence µk ∈ C , k ∈ N such that the measure
ν := ∑k∈Nwkµk predicts every µ∈ C in total variation, where wk are any positive weights that sum
to 1.

This relatively simple fact can be proven in different ways, relying on the mentioned equivalence
(Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) of the statements “ρ predicts µ in total
variation distance” and “µ is absolutely continuous with respect to ρ.” The proof presented below
is not the shortest possible, but it uses ideas and techniques that are then generalized to the case
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of prediction in expected average KL-divergence, which is more involved, since in all interesting
cases all measures µ∈ C are singular with respect to any predictor that predicts all of them. Another
proof of Theorem 4 can be obtained from Theorem 7 in the next section. Yet another way would
be to derive it from algebraic properties of the relation of absolute continuity, given in Plesner and
Rokhlin (1946).
Proof We break the (relatively easy) proof of this theorem into three steps, which will make the
proof of the next theorem more understandable.
Step 1: densities. For any µ∈ C , since ρ predicts µ in total variation, by Theorem 2, µ has a density
(Radon-Nikodym derivative) fµ with respect to ρ. Thus, for the (measurable) set Tµ of all sequences
x1,x2, ... ∈ X∞ on which fµ(x1,2,...) > 0 (the limit limn→∞

ρ(x1..n)
µ(x1..n) exists and is finite and positive) we

have µ(Tµ) = 1 and ρ(Tµ) > 0. Next we will construct a sequence of measures µk ∈ C , k ∈ N such
that the union of the sets Tµk has probability 1 with respect to every µ∈ C , and will show that this is
a sequence of measures whose existence is asserted in the theorem statement.

Step 2: a countable cover and the resulting predictor. Let εk := 2−k and let m1 := supµ∈C ρ(Tµ).
Clearly, m1 > 0. Find any µ1 ∈ C such that ρ(Tµ1)≥m1−ε1, and let T1 = Tµ1 . For k> 1 definemk :=
supµ∈C ρ(Tµ\Tk−1). If mk = 0 then define Tk := Tk−1, otherwise find any µk such that ρ(Tµk\Tk−1) ≥
mk− εk, and let Tk := Tk−1∪Tµk . Define the predictor ν as ν := ∑k∈Nwkµk.

Step 3: ν predicts every µ∈ C . Since the sets T1, T2\T1, . . . ,Tk\Tk−1, . . . are disjoint, we must
have ρ(Tk\Tk−1) → 0, so that mk → 0 (since mk ≤ ρ(Tk\Tk−1)+ εk → 0). Let

T := ∪k∈NTk.

Fix any µ∈ C . Suppose that µ(Tµ\T ) > 0. Since µ is absolutely continuous with respect to ρ, we
must have ρ(Tµ\T ) > 0. Then for every k > 1 we have

mk = sup
µ′∈C

ρ(Tµ′\Tk−1) ≥ ρ(Tµ\Tk−1) ≥ ρ(Tµ\T ) > 0,

which contradicts mk → 0. Thus, we have shown that

µ(T ∩Tµ) = 1. (3)

Let us show that every µ∈ C is absolutely continuous with respect to ν. Indeed, fix any µ∈ C

and suppose µ(A) > 0 for some A ∈ F . Then from (3) we have µ(A∩ T ) > 0, and, by absolute
continuity of µwith respect to ρ, also ρ(A∩T ) > 0. Since T = ∪k∈NTk, we must have ρ(A∩Tk) > 0
for some k ∈ N. Since on the set Tk the measure µk has non-zero density fµk with respect to ρ, we
must have µk(A∩Tk) > 0. (Indeed, µk(A∩Tk) =

R

A∩Tk fµkdρ> 0.) Hence,

ν(A∩Tk) ≥ wkµk(A∩Tk) > 0,

so that ν(A) > 0. Thus, µ is absolutely continuous with respect to ν, and so, by Theorem 2, ν pre-
dicts µ in total variation distance.

Thus, examples of families C for which there is a ρ that predicts every µ∈ C in total variation,
are limited to families of measures which have a density with respect to some measure ρ. On the
one hand, from statistical point of view, such families are rather large: the assumption that the
probabilistic law in question has a density with respect to some (nice) measure is a standard one
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in statistics. It should also be mentioned that such families can easily be uncountable. On the
other hand, even such basic examples as the set of all Bernoulli i.i.d. measures does not allow for a
predictor that predicts every measure in total variation. Indeed, all these processes are singular with
respect to one another; in particular, each of the non-overlapping sets Tp of all sequences which
have limiting fraction p of 0s has probability 1 with respect to one of the measures and 0 with
respect to all others; since there are uncountably many of these measures, there is no measure ρ
with respect to which they all would have a density (since such a measure should have ρ(Tp) > 0 for
all p) . As it was mentioned, predicting in total variation distance means predicting with arbitrarily
growing horizon (Kalai and Lehrer, 1994), while prediction in expected average KL divergence is
only concerned with the probabilities of the next observation, and only on time and data average.
For the latter measure of prediction quality, consistent predictors exist not only for the class of all
Bernoulli processes, but also for the class of all stationary processes (Ryabko, 1988). The next
theorem establishes the result similar to Theorem 4 for expected average KL divergence.

Theorem 5 Let C be a set of probability measures on (X∞,F ). If there is a measure ρ such that ρ
predicts every µ∈ C in expected average KL divergence, then there exist a sequence µk ∈ C , k ∈ N

and a sequence wk > 0,k ∈ N, such that ∑k,∈Nwk = 1, and the measure ν := ∑k∈Nwkµk predicts
every µ∈ C in expected average KL divergence.

A difference worth noting with respect to the formulation of Theorem 4 (apart from a different
measure of divergence) is in that in the latter the weights wk can be chosen arbitrarily, while in
Theorem 5 this is not the case. In general, the statement “∑k∈Nwkνk predicts µ in expected average
KL divergence for some choice of wk, k ∈ N” does not imply “∑k∈Nw′

kνk predicts µ in expected
average KL divergence for every summable sequence of positive w′

k,k ∈ N,” while the implication
trivially holds true if the expected average KL divergence is replaced by the total variation. This
is illustrated in the last example of this section. An interesting related question (which is beyond
the scope of this paper) is how to chose the weights to optimize the behaviour of a predictor before
asymptotic.

The idea of the proof of Theorem 5 is as follows. For every µ and every n we consider the
sets Tnµ of those x1..n on which µ is greater than ρ. These sets have to have (from some n on) a
high probability with respect to µ. Then since ρ predicts µ in expected average KL divergence, the
ρ-probability of these sets cannot decrease exponentially fast (that is, it has to be quite large). (The
sequences µ(x1..n)/ρ(x1..n), n ∈ N will play the role of densities of the proof of Theorem 4, and the
sets Tnµ the role of sets Tµ on which the density is non-zero.) We then use, for each given n, the
same scheme to cover the set X n with countably many Tnµ , as was used in the proof of Theorem 4 to
construct a countable covering of the set X∞ , obtaining for each n a predictor νn. Then the predictor
ν is obtained as ∑n∈Nwnνn, where the weights decrease subexponentially. The latter fact ensures
that, although the weights depend on n, they still play no role asymptotically. The technically most
involved part of the proof is to show that the sets Tnµ in asymptotic have sufficiently large weights
in those countable covers that we construct for each n. This is used to demonstrate the implication
“if a set has a high µ probability, then its ρ-probability does not decrease too fast, provided some
regularity conditions.” The proof is broken into the same steps as the (simpler) proof of Theorem 4,
to make the analogy explicit and the proof more understandable.
Proof Define the weights wk := wk−2, where w is the normalizer 6/π2.
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Step 1: densities. Define the sets

Tnµ :=
{

x1..n ∈ X n : µ(x1..n) ≥
1
n
ρ(x1..n)

}

. (4)

Using Markov’s inequality, we derive

µ(X n\Tnµ ) = µ
(

ρ(x1..n)
µ(x1..n)

> n
)

≤
1
n
Eµ
ρ(x1..n)
µ(x1..n)

=
1
n
, (5)

so that µ(Tnµ ) → 1. (Note that if µ is singular with respect to ρ, as is typically the case, then ρ(x1..n)
µ(x1..n)

converges to 0 µ-a.e. and one can replace 1n in (4) by 1, while still having µ(T
n
µ ) → 1.)

Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn
1 := maxµ∈C ρ(Tnµ ) (since X n are

finite all suprema are reached). Find any µn1 such that ρn1(Tnµn1) = mn
1 and let Tn1 := Tnµn1 . For k > 1,

let mn
k := maxµ∈C ρ(Tnµ \Tnk−1). If mn

k > 0, let µnk be any µ∈ C such that ρ(Tnµnk\T
n
k−1) = mn

k , and let
Tnk := Tnk−1∪T

n
µnk
; otherwise let Tnk := Tnk−1. Observe that (for each n) there is only a finite number

of positive mn
k , since the set X n is finite; let Kn be the largest index k such that mn

k > 0. Let

νn :=
Kn
∑
k=1

wkµnk .

As a result of this construction, for every n ∈ N every k ≤ Kn and every x1..n ∈ Tnk using (4) we
obtain

νn(x1..n) ≥ wk
1
n
ρ(x1..n). (6)

Step 2: the resulting predictor. Finally, define

ν :=
1
2
γ+

1
2 ∑n∈N

wnνn, (7)

where γ is the i.i.d. measure with equal probabilities of all x ∈ X (that is, γ(x1..n) = |X |−n for every
n ∈ N and every x1..n ∈ X n). We will show that ν predicts every µ∈ C , and then in the end of the
proof (Step r) we will show how to replace γ by a combination of a countable set of elements of C
(in fact, γ is just a regularizer which ensures that ν-probability of any word is never too close to 0).

Step 3: ν predicts every µ∈ C . Fix any µ∈ C . Introduce the parameters εnµ ∈ (0,1), n ∈ N, to
be defined later, and let jnµ := 1/εnµ. Observe that ρ(Tnk \Tnk−1) ≥ ρ(Tnk+1\T

n
k ), for any k > 1 and any

n∈N, by definition of these sets. Since the sets Tnk \Tnk−1, k∈N are disjoint, we obtain ρ(Tnk \Tnk−1)≤
1/k. Hence, ρ(Tnµ \Tnj ) ≤ εnµ for some j ≤ jnµ, since otherwise mn

j =maxµ∈C ρ(Tnµ \Tnjnµ) > εnµ so that
ρ(Tnjnµ+1\T

n
jnµ) > εnµ = 1/ jnµ, which is a contradiction. Thus,

ρ(Tnµ \Tnjnµ) ≤ εnµ. (8)
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We can upper-bound µ(Tnµ \Tnjnµ) as follows. First, observe that

dn(µ,ρ) = − ∑
x1..n∈Tnµ ∩Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

− ∑
x1..n∈Tnµ \Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

− ∑
x1..n∈X n\Tnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

= I+ II+ III. (9)

Then, from (4) we get
I ≥− logn. (10)

Observe that for every n ∈ N and every set A⊂ X n, using Jensen’s inequality we can obtain

− ∑
x1..n∈A

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

= −µ(A) ∑
x1..n∈A

1
µ(A)

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

≥−µ(A) log
ρ(A)

µ(A)
≥−µ(A) logρ(A)−

1
2
. (11)

Thus, from (11) and (8) we get

II ≥−µ(Tnµ \Tnjnµ) logρ(T
n
µ \Tnjnµ)−1/2≥−µ(Tnµ \Tnjnµ) logε

n
µ−1/2. (12)

Furthermore,

III ≥ ∑
x1..n∈X n\Tnµ

µ(x1..n) logµ(x1..n) ≥ µ(X n\Tnµ ) log
µ(X n\Tnµ )

|X n\Tnµ |

≥−
1
2
−µ(X n\Tnµ )n log |X |≥−

1
2
− log |X |, (13)

where in the second inequality we have used the fact that entropy is maximized when all events are
equiprobable, in the third one we used |X n\Tnµ | ≤ |X |n, while the last inequality follows from (5).
Combining (9) with the bounds (10), (12) and (13) we obtain

dn(µ,ρ) ≥− logn−µ(Tnµ \Tnjnµ) logε
n
µ−1− log |X |,

so that
µ(Tnµ \Tnjnµ) ≤

1
− logεnµ

(

dn(µ,ρ)+ logn+1+ log |X |
)

. (14)

Since dn(µ,ρ) = o(n), we can define the parameters εnµ in such a way that − logεnµ = o(n) while
at the same time the bound (14) gives µ(Tnµ \Tnjnµ) = o(1). Fix such a choice of εnµ. Then, using
µ(Tnµ ) → 1, we can conclude

µ(X n\Tnjnµ) ≤ µ(X n\Tnµ )+µ(Tnµ \Tnjnµ) = o(1). (15)
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We proceed with the proof of dn(µ,ν) = o(n). For any x1..n ∈ Tnjnµ we have

ν(x1..n) ≥
1
2
wnνn(x1..n) ≥

1
2
wnwjnµ

1
n
ρ(x1..n) =

wnw
2n

(εnµ)
2ρ(x1..n), (16)

where the first inequality follows from (7), the second from (6), and in the equality we have used
wjnµ = w/( jnµ)2 and jnµ = 1/εµn. Next we use the decomposition

dn(µ,ν) = − ∑
x1..n∈Tnjnµ

µ(x1..n) log
ν(x1..n)
µ(x1..n)

− ∑
x1..n∈X n\Tnjnµ

µ(x1..n) log
ν(x1..n)
µ(x1..n)

= I+ II. (17)

From (16) we find

I ≤− log
(wnw
2n

(εnµ)
2
)

− ∑
x1..n∈Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)

= (1+3logn−2logεnµ−2logw)+



dn(µ,ρ)+ ∑
x1..n∈X n\Tnjnµ

µ(x1..n) log
ρ(x1..n)
µ(x1..n)





≤ o(n)− ∑
x1..n∈X n\Tnjnµ

µ(x1..n) logµ(x1..n)

≤ o(n)+µ(X n\Tnjnµ)n log |X | = o(n), (18)

where in the second inequality we have used− logεnµ= o(n) and dn(µ,ρ) = o(n), in the last inequal-
ity we have again used the fact that the entropy is maximized when all events are equiprobable, while
the last equality follows from (15). Moreover, from (7) we find

II ≤ log2− ∑
x1..n∈X n\Tnjnµ

µ(x1..n) log
γ(x1..n)
µ(x1..n)

≤ 1+nµ(X n\Tnjnµ) log |X | = o(n), (19)

where in the last inequality we have used γ(x1..n) = |X |−n and µ(x1..n) ≤ 1, and the last equality
follows from (15).

From (17), (18) and (19) we conclude 1ndn(ν,µ) → 0.
Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in the definition of ν (7),

can be replaced by a convex combination of a countably many elements from C . Indeed, for each
n ∈ N, denote

An := {x1..n ∈ X n : ∃µ∈ C µ(x1..n) ,= 0},

and let for each x1..n ∈ X n the measure µx1..n be any measure from C such that
µx1..n(x1..n) ≥ 1

2 supµ∈C µ(x1..n). Define

γ′n(x′1..n) :=
1

|An| ∑
x1..n∈An

µx1..n(x
′
1..n),

for each x′1..n ∈ An, n ∈ N, and let γ′ := ∑k∈Nwkγ′k. For every µ∈ C we have

γ′(x1..n) ≥ wn|An|−1µx1..n(x1..n) ≥
1
2
wn|X |−nµ(x1..n)
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for every n ∈ N and every x1..n ∈ An, which clearly suffices to establish the bound II = o(n) as
in (19).

Example: countable classes of measures. A very simple but rich example of a class C that satisfies
the conditions of both the theorems above, is any countable family C = {µk : k ∈ N} of measures.
In this case, any mixture predictor ρ := ∑k∈Nwkµk predicts all µ ∈ C both in total variation and
in expected average KL divergence. A particular instance, that has gained much attention in the
literature, is the family of all computable measures. Although countable, this family of processes
is rather rich. The problem of predicting all computable measures was introduced in Solomonoff
(1978), where a mixture predictor was proposed.
Example: Bernoulli i.i.d. processes. Consider the class CB = {µp : p ∈ [0,1]} of all Bernoulli i.i.d.
processes: µp(xk = 0) = p independently for all k ∈ N. Clearly, this family is uncountable. More-
over, each set

Tp := {x ∈ X∞ : the limiting fraction of 0s in x equals p},

has probability 1 with respect to µp and probability 0 with respect to any µp′ : p′ ,= p. Since the
sets Tp, p ∈ [0,1] are non-overlapping, there is no measure ρ for which ρ(Tp) > 0 for all p ∈ [0,1].
That is, there is no measure ρ with respect to which all µp are absolutely continuous. Therefore,
by Theorem 2, a predictor that predicts any µ∈ CB in total variation does not exist, demonstrating
that this notion of prediction is rather strong. However, we know (e.g., Krichevsky, 1993) that the
Laplace predictor (1) predicts every Bernoulli i.i.d. process in expected average KL divergence (and
not only). Hence, Theorem 4 implies that there is a countable mixture predictor for this family too.
Let us find such a predictor. Let µq : q∈Q be the family of all Bernoulli i.i.d. measures with rational
probability of 0, and let ρ := ∑q∈Qwqµq, where wq are arbitrary positive weights that sum to 1. Let
µp be any Bernoulli i.i.d. process. Let h(p,q) denote the divergence p log(p/q)+ (1− p) log(1−
p/1−q). For each ε we can find a q ∈ Q such that h(p,q) < ε. Then

1
n
dn(µp,ρ) =

1
n
Eµp log

logµp(x1..n)
logρ(x1..n)

≤
1
n
Eµp log

logµp(x1..n)
wq logµq(x1..n)

= −
logwq
n

+h(p,q) ≤ ε+o(1). (20)

Since this holds for each ε, we conclude that 1ndn(µp,ρ)→ 0 and ρ predicts every µ∈ CB in expected
average KL divergence.
Example: stationary processes. In Ryabko (1988) a predictor ρR was constructed which predicts
every stationary process ρ ∈ CS in expected average KL divergence. (This predictor is obtained as
a mixture of predictors for k-order Markov sources, for all k ∈ N.) Therefore, Theorem 5 implies
that there is also a countable mixture predictor for this family of processes. Such a predictor can be
constructed as follows (the proof in this example is based on the proof in Ryabko and Astola, 2006,
Appendix 1). Observe that the family Ck of k-order stationary binary-valued Markov processes
is parametrized by 2k [0,1]-valued parameters: probability of observing 0 after observing x1..k,
for each x1..k ∈ X k. For each k ∈ N let µkq, q ∈ Q2k be the (countable) family of all stationary k-
order Markov processes with rational values of all the parameters. We will show that any predictor
ν := ∑k∈N∑q∈Q2k wkwqµ

k
q, where wk, k ∈ N and wq,q ∈ Q2k , k ∈ N are any sequences of positive

real weights that sum to 1, predicts every stationary µ∈ CS in expected average KL divergence. For
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µ∈ CS and k ∈ N define the k-order conditional Shannon entropy hk(µ) := Eµ logµ(xk+1|x1..k). We
have hk+1(µ) ≥ hk(µ) for every k ∈ N and µ∈ CS, and the limit

h∞(µ) := lim
k→∞

hk(µ) (21)

is called the limit Shannon entropy; see, for example, Gallager (1968). Fix some µ∈ CS. It is easy
to see that for every ε > 0 and every k ∈ N we can find a k-order stationary Markov measure µkqε ,
qε ∈ Q2

k with rational values of the parameters, such that

Eµ log
µ(xk+1|x1..k)
µkqε(xk+1|x1..k)

< ε. (22)

We have

1
n
dn(µ,ν) ≤−

logwkwqε
n

+
1
n
dn(µ,µkqε)

= O(k/n)+
1
n
Eµ logµ(x1..n)−

1
n
Eµ logµkqε(x1..n)

= o(1)+h∞(µ)−
1
n
Eµ

n

∑
k=1
logµkqε(xt |x1..t−1)

= o(1)+h∞(µ)−
1
n
Eµ

k

∑
t=1
logµkqε(xt |x1..t−1)−

n− k
n
Eµ logµkqε(xk+1|x1..k)

≤ o(1)+h∞(µ)−
n− k
n

(hk(µ)− ε), (23)

where the first inequality is derived analogously to (20), the first equality follows from (2), the
second equality follows from the Shannon-McMillan-Breiman theorem (e.g., Gallager, 1968), that
states that 1n logµ(x1..n) → h∞(µ) in expectation (and a.s.) for every µ∈ CS, and (2); in the third
equality we have used the fact that µkqε is k-order Markov and µ is stationary, whereas the last
inequality follows from (22). Finally, since the choice of k and ε was arbitrary, from (23) and (21)
we obtain limn→∞

1
ndn(µ,ν) = 0.

Example: weights may matter. Finally, we provide an example that illustrates the difference between
the formulations of Theorems 4 and 5: in the latter the weights are not arbitrary. We will construct a
sequence of measures νk,k ∈ N, a measure µ, and two sequences of positive weights wk and w′

k with
∑k∈Nwk = ∑k∈Nw′

k = 1, for which ν := ∑k∈Nwkνk predicts µ in expected average KL divergence,
but ν′ :=∑k∈Nw′

kνk does not. Let νk be a deterministic measure that first outputs k 0s and then only
1s, k ∈ N. Let wk = w/k2 with w = 6/π2 and w′

k = 2−k. Finally, let µ be a deterministic measure
that outputs only 0s. We have dn(µ,ν) = − log(∑k≥n wk) ≤ − log(wn−2) = o(n), but dn(µ,ν′) =
− log(∑k≥n w′

k) = − log(2−n+1) = n−1 ,= o(n), proving the claim.

4. Characterizing Predictable Classes

Knowing that a mixture of a countable subset gives a predictor if there is one, a notion that naturally
comes to mind, when trying to characterize families of processes for which a predictor exists, is
separability. Can we say that there is a predictor for a class C of measures if and only if C is
separable? Of course, to talk about separability we need a suitable topology on the space of all
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measures, or at least on C . If the formulated questions were to have a positive answer, we would
need a different topology for each of the notions of predictive quality that we consider. Sometimes
these measures of predictive quality indeed define a nice enough structure of a probability space, but
sometimes they do not. The question whether there exists a topology on C , separability with respect
to which is equivalent to the existence of a predictor, is already more vague and less appealing.
Nonetheless, in the case of total variation distance we obviously have a candidate topology: that
of total variation distance, and indeed separability with respect to this topology is equivalent to the
existence of a predictor, as the next theorem shows. This theorem also implies Theorem 4, thereby
providing an alternative proof for the latter. In the case of expected average KL divergence the
situation is different. While one can introduce a topology based on it, separability with respect to
this topology turns out to be a sufficient but not a necessary condition for the existence of a predictor,
as is shown in Theorem 9.

4.1 Separability

Definition 6 (unconditional total variation distance) Introduce the (unconditional) total varia-
tion distance

v(µ,ρ) := sup
A∈F

|µ(A)−ρ(A)|.

Theorem 7 Let C be a set of probability measures on (X∞,F ). There is a measure ρ such that ρ
predicts every µ∈ C in total variation if and only if C is separable with respect to the topology of
total variation distance. In this case, any measure ν of the form ν= ∑∞

k=1wkµk, where {µk : k ∈ N}
is any dense countable subset of C and wk are any positive weights that sum to 1, predicts every
µ∈ C in total variation.

Proof Sufficiency and the mixture predictor. Let C be separable in total variation distance, and let
D = {νk : k ∈ N} be its dense countable subset. We have to show that ν := ∑k∈Nwkνk, where wk
are any positive real weights that sum to 1, predicts every µ∈ C in total variation. To do this, it is
enough to show that µ(A) > 0 implies ν(A) > 0 for every A ∈ F and every µ∈ C . Indeed, let A be
such that µ(A) = ε > 0. Since D is dense in C , there is a k ∈ N such that v(µ,νk) < ε/2. Hence
νk(A) ≥ µ(A)− v(µ,νk) ≥ ε/2 and ν(A) ≥ wkνk(A) ≥ wkε/2> 0.

Necessity. For any µ∈ C , since ρ predicts µ in total variation, µ has a density (Radon-Nikodym
derivative) fµ with respect to ρ. We can define L1 distance with respect to ρ as Lρ1(µ,ν) =

R

X∞ | fµ−
fν|dρ. The set of all measures that have a density with respect to ρ, is separable with respect to
this distance (for example, a dense countable subset can be constructed based on measures whose
densities are step-functions, that take only rational values, see, e.g., Kolmogorov and Fomin, 1975);
therefore, its subset C is also separable. Let D be any dense countable subset of C . Thus, for every
µ∈ C and every ε there is a µ′ ∈D such that Lρ1(µ,µ′) < ε. For every measurable set A we have

|µ(A)−µ′(A)| =
∣

∣

∣

∣

Z

A
fµdρ−

Z

A
fµ′dρ

∣

∣

∣

∣

≤
Z

A
| fµ− fµ′ |dρ≤

Z

X∞
| fµ− fµ′ |dρ< ε.

Therefore, v(µ,µ′) = supA∈F |µ(A)−µ′(A)|< ε, and the set C is separable in total variation distance.
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Definition 8 (asymptotic KL “distance” D) Define asymptotic expected average KL divergence
between measures µ and ρ as

D(µ,ρ) = limsup
n→∞

1
n
dn(µ,ρ). (24)

Theorem 9 For any set C of probability measures on (X∞,F ), separability with respect to the
asymptotic expected average KL divergence D is a sufficient but not a necessary condition for the
existence of a predictor:

(i) If there exists a countable set D := {νk : k ∈ N} ⊂ C , such that for every µ∈ C and every
ε > 0 there is a measure µ′ ∈ D , such that D(µ,µ′) < ε, then every measure ν of the form
ν = ∑∞

k=1wkµk, where wk are any positive weights that sum to 1, predicts every µ ∈ C in
expected average KL divergence.

(ii) There is an uncountable set C of measures, and a measure ν, such that ν predicts every µ∈ C

in expected average KL divergence, but µ1 ,= µ2 implies D(µ1,µ2) = ∞ for every µ1,µ2 ∈ C ;
in particular, C is not separable with respect to D.

Proof (i) Fix µ∈ C . For every ε> 0 pick k ∈ N such that D(µ,νk) < ε. We have

dn(µ,ν) = Eµ log
µ(x1..n)
ν(x1..n)

≤ Eµ log
µ(x1..n)

wkνk(x1..n)
= − logwk +dn(µ,νk) ≤ nε+o(n).

Since this holds for every ε, we conclude 1ndn(µ,ν) → 0.
(ii) Let C be the set of all deterministic sequences (measures concentrated on just one sequence)

such that the number of 0s in the first n symbols is less than
√
n. Clearly, this set is uncountable. It

is easy to check that µ1 ,= µ2 implies D(µ1,µ2) = ∞ for every µ1,µ2 ∈ C , but the predictor ν, given
by ν(xn = 0) := 1/n independently for different n, predicts every µ∈ C in expected average KL
divergence.

Examples. Basically, the examples of the preceding section carry over here. Indeed, the example
of countable families is trivially also an example of separable (with respect to either of the consid-
ered topologies) family. For Bernoulli i.i.d. and k-order Markov processes, the (countable) sets of
processes that have rational values of the parameters, considered in the previous section, are dense
both in the topology of the parametrization and with respect to the asymptotic average divergence
D. It is also easy to check from the arguments presented in the corresponding example of Section 3,
that the family of all k-order stationary Markov processes with rational values of the parameters,
where we take all k ∈ N, is dense with respect to D in the set CS of all stationary processes, so that
CS is separable with respect to D. Thus, the sufficient but not necessary condition of separability is
satisfied in this case. On the other hand, neither of these latter families is separable with respect to
the topology of total variation distance.

4.2 Conditions Based on the Local Behaviour of Measures

Next we provide some sufficient conditions for the existence of a predictor based on local charac-
teristics of the class of measures, that is, measures truncated to the first n observations. First of all,
it must be noted that necessary and sufficient conditions cannot be obtained this way. The basic
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example is that of a family C0 of all deterministic sequences that are 0 from some time on. This
is a countable class of measures which is very easy to predict. Yet, the class of measures on X n,
obtained by truncating all measures in C0 to the first n observations, coincides with what would be
obtained by truncating all deterministic measures to the first n observations, the latter class being
obviously not predictable at all (see also examples below). Nevertheless, considering this kind of
local behaviour of measures, one can obtain not only sufficient conditions for the existence of a
predictor, but also rates of convergence of the prediction error. It also gives some ideas of how to
construct predictors, for the cases when the sufficient conditions obtained are met.

For a class C of stochastic processes and a sequence x1..n ∈ X n introduce the coefficients

cx1..n(C ) := sup
µ∈C

µ(x1..n).

Define also the normalizer
cn(C ) := ∑

x1..n∈X n
cx1..n(C ).

Definition 10 (NML estimate) The normalized maximum likelihood estimator λ is defined (e.g.,
Krichevsky, 1993) as

λC (x1..n) :=
1

cn(C )
cx1..n(C ),

for each x1..n ∈ X n.

The family λC (x1..n) (indexed by n) in general does not immediately define a stochastic process
over X∞ (λC are not consistent for different n); thus, in particular, using average KL divergence for
measuring prediction quality would not make sense, since

dn(µ(·|x1..n−1),λC (·|x1..n−1))

can be negative, as the following example shows.
Example: negative dn for NML estimates. Let the processes µi, i∈ {1, . . . ,4} be defined on the steps
n= 1,2 as follows. µ1(00) = µ2(01) = µ4(11) = 1, while µ3(01) = µ3(00) = 1/2. We have λC (1) =
λC (0) = 1/2, while λC (00) = λC (01) = λC (11) = 1/3. If we define λC (x|y) = λC (yx)/λC (y), we
obtain λC (1|0) = λC (0|0) = 2/3. Then d2(µ3(·|0),λC (·|0)) = log3/4< 0.

Yet, by taking an appropriate mixture, it is still possible to construct a predictor (a stochastic
process) based on λ, that predicts all the measures in the class.

Definition 11 (predictor ρc) Let w := 6/π2 and let wk := w
k2 . Define a measure µk as follows.

On the first k steps it is defined as λC , and for n > k it outputs only zeros with probability 1; so,
µk(x1..k) = λC (x1..k) and µk(xn = 0) = 1 for n> k. Define the measure ρc as

ρc =
∞

∑
k=1

wkµk.

Thus, we have taken the normalized maximum likelihood estimates λn for each n and continued
them arbitrarily (actually, by a deterministic sequence) to obtain a sequence of measures on (X∞,F )
that can be summed.

596



PREDICTORS FOR ARBITRARY FAMILIES OF PROCESSES

Theorem 12 For any set C of probability measures on (X∞,F ), the predictor ρc defined above
satisfies

1
n
dn(µ,ρc) ≤

logcn(C )

n
+O

(

logn
n

)

; (25)

in particular, if
logcn(C ) = o(n), (26)

then ρc predicts every µ∈ C in expected average KL divergence.

Proof Indeed,

1
n
dn(µ,ρc) =

1
n
E log µ(x1..n)

ρc(x1..n)
≤
1
n
E log µ(x1..n)

wnµn(x1..n)

≤
1
n
log

cn(C )

wn
=
1
n
(logcn(C )+2logn+ logw). (27)

Example: i.i.d., finite-memory. To illustrate the applicability of the theorem we first consider the
class of i.i.d. processes CB over the binary alphabet X = {0,1}. It is easy to see that, for each
x1, . . . ,xn,

sup
µ∈CB

µ(x1..n) = (k/n)k(1− k/n)n−k,

where k = #{i≤ n : xi = 0} is the number of 0s in x1, . . . ,xn. For the constants cn(C ) we can derive

cn(C) = ∑
x1..n∈X n

sup
µ∈CB

µ(x1..n) = ∑
x1..n∈X n

(k/n)k(1− k/n)n−k

=
n

∑
k=0

(

n
k

)

(k/n)k(1− k/n)n−k ≤
n

∑
k=0

n

∑
t=0

(

n
k

)

(k/n)t(1− k/n)n−t = n+1,

so that cn(C) ≤ n+1.
In general, for the class Ck of processes with memory k over a finite space X we can get poly-

nomial cn(C ) (see, for example, Krichevsky, 1993, and also Ryabko and Hutter, 2007). Thus, with
respect to finite-memory processes, the conditions of Theorem 12 leave ample space for the growth
of cn(C ), since (26) allows subexponential growth of cn(C ). Moreover, these conditions are tight,
as the following example shows.
Example: exponential coefficients are not sufficient. Observe that the condition (26) cannot be
relaxed further, in the sense that exponential coefficients cn are not sufficient for prediction. Indeed,
for the class of all deterministic processes (that is, each process from the class produces some fixed
sequence of observations with probability 1) we have cn = 2n, while obviously for this class a
predictor does not exist.
Example: stationary processes. For the set of all stationary processes we can obtain cn(C) ≥ 2n/n
(as is easy to see by considering periodic n-order Markov processes, for each n ∈ N), so that the
conditions of Theorem 12 are not satisfied. This cannot be fixed, since uniform rates of convergence
cannot be obtained for this family of processes, as was shown in Ryabko (1988).
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4.2.1 OPTIMAL RATES OF CONVERGENCE

A natural question that arises with respect to the bound (25) is whether it can be matched by a lower
bound. This question is closely related to the optimality of the normalized maximum likelihood
estimates used in the construction of the predictor. In general, since NML estimates are not optimal,
neither are the rates of convergence in (25). To obtain (close to) optimal rates one has to consider a
different measure of capacity.

To do so, we make the following connection to a problem in information theory. Let P (X∞) be
the set of all stochastic processes (probability measures) on the space (X∞,F ), and let P (X ) be the
set of probability distributions over a (finite) set X . For a class C of measures we are interested in a
predictor that has a small (or minimal) worst-case (with respect to the class C ) probability of error.
Thus, we are interested in the quantity

inf
ρ∈P (X∞)

sup
µ∈C

D(µ,ρ), (28)

where the infimum is taken over all stochastic processes ρ, andD is the asymptotic expected average
KL divergence (24). (In particular, we are interested in the conditions under which the quantity (28)
equals zero.) This problem has been studied for the case when the probability measures are over
a finite set X , and D is replaced simply by the KL divergence d between the measures. Thus, the
problem was to find the probability measure ρ (if it exists) on which the following minimax is
attained

R(A) := inf
ρ∈P (X )

sup
µ∈A

d(µ,ρ), (29)

where A⊂P (X ). This problem is closely related to the problem of finding the best code for the class
of sources A, which was its original motivation. The normalized maximum likelihood distribution
considered above does not in general lead to the optimum solution for this problem. The optimum
solution is obtained through the result that relates the minimax (29) to the so-called channel capacity.

Definition 13 (Channel capacity) For a set A of measures on a finite set X the channel capacity of
A is defined as

C(A) := sup
P∈P0(A)

∑
µ∈S(P)

P(µ)d(µ,ρP),

where P0(A) is the set of all probability distributions on A that have a finite support, S(P) is the
(finite) support of a distribution P ∈ P0(A), and ρP = ∑µ∈S(P)P(µ)µ.

It is shown in Ryabko (1979) and Gallager (1976 (revised 1979) thatC(A) =R(A), thus reducing the
problem of finding a minimax to an optimization problem. For probability measures over infinite
spaces this result (R(A) =C(A)) was generalized by Haussler (1997), but the divergence between
probability distributions is measured by KL divergence (and not asymptotic average KL divergence),
which gives infinite R(A), for example, already for the class of i.i.d. processes.

However, truncating measures in a class C to the first n observations, we can use the results
about channel capacity to analyze the predictive properties of the class. Moreover, the rates of
convergence that can be obtained along these lines are close to optimal. In order to pass from
measures minimizing the divergence for each individual n to a process that minimizes the divergence
for all n we use the same idea as when constructing the process ρc.
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Theorem 14 Let C be a set of measures on (X∞,F ), and let C n be the class of measures from C

restricted to X n. There exists a measure ρC such that

1
n
dn(µ,ρC) ≤

C(C n)

n
+O

(

logn
n

)

;

in particular, if C(C n)/n→ 0, then ρC predicts every µ∈ C in expected average KL divergence.
Moreover, for any measure ρC and every ε> 0 there exists µ∈ C such that

1
n
dn(µ,ρC) ≥

C(C n)

n
− ε.

Proof As shown in Gallager (1976 (revised 1979), for each n there exists a sequence νnk , k ∈ N of
measures on X n such that

lim
k→∞

sup
µ∈C n

dn(µ,νnk) →C(C n).

For each n ∈ N find an index kn such that

| sup
µ∈C n

dn(µ,νnkn)−C(C n)|≤ 1.

Define the measure ρn as follows. On the first n symbols it coincides with νnkn and ρn(xm = 0) =

1 for m > n. Finally, set ρC = ∑∞
n=1wnρn, where wk = w

n2 ,w = 6/π2. We have to show that
limn→∞

1
ndn(µ,ρC) = 0 for every µ∈ C . Indeed, similarly to (27), we have

1
n
dn(µ,ρC) =

1
n
Eµ log

µ(x1..n)
ρC(x1..n)

≤
logw−1

k
n

+
1
n
Eµ log

µ(x1..n)
ρn(x1..n)

≤
logw+2logn

n
+
1
n
dn(µ,ρn)

≤ o(1)+
C(C n)

n
.

The second statement follows from the fact (Ryabko, 1979; Gallager, 1976 (revised 1979) that
C(C n) = R(C n) (cf. (29)).

Thus, if the channel capacity C(C n) grows sublinearly, a predictor can be constructed for the
class of processes C . In this case the problem of constructing the predictor is reduced to finding the
channel capacities for different n and finding the corresponding measures on which they are attained
or approached.
Examples. For the class of all Bernoulli i.i.d. processes, the channel capacity C(C n

B) is known to
be O(logn) (Krichevsky, 1993). For the family of all stationary processes it is O(n), so that the
conditions of Theorem 14 are satisfied for the former but not for the latter.

We also remark that the requirement of a sublinear channel capacity cannot be relaxed, in the
sense that a linear channel capacity is not sufficient for prediction, since it is the maximal possible
capacity for a set of measures on X n, achieved, for example, on the set of all measures, or on the set
of all deterministic sequences.
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5. Discussion

The first possible extension of the results of the paper that comes to mind is to find out whether
the same holds for other measures of performance, such as prediction in KL divergence without
time-averaging, or with probability 1 rather then in expectation, or with respect to other measures
of prediction error, such as absolute distance. (See Ryabko and Hutter, 2007 for a discussion of
different measures of performance and relations between them.) Maybe the same results can be
obtained in more general formulations, for example, using f -divergences of Csiszar (1967).

More generally, the questions we addressed in this work are a part of a larger problem: given
an arbitrary class C of stochastic processes, find the best predictor for it. We have considered two
subproblems: first, in which form to look for a predictor if one exists. Here we have shown that
if any predictor works then a Bayesian one works too. The second one is to characterize families
of processes for which a predictor exists. Here we have analyzed what the notion of separability
furnishes in this respect, as well as identified some simple sufficient conditions based on the local
behaviour of measures in the class. Another approach would be to identify the conditions which
two measures µ and ρ have to satisfy in order for ρ to predict µ. For prediction in total variation
such conditions have been identified (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994) and, in
particular, in the context of the present work, they turn out to be very useful. Kalai and Lehrer (1994)
also provide some characterization for the case of a weaker notion of prediction: difference between
conditional probabilities of the next (several) outcomes (weak merging of opinions). In Ryabko and
Hutter (2008b) some sufficient conditions are found for the case of prediction in expected average
KL divergence, and prediction in average KL divergence with probability 1. Of course, another
very natural approach to the general problem posed above is to try and find predictors (in the form
of algorithms) for some particular classes of processes which are of practical interest. Towards
this end, we have found a rather simple form that some solution to this question has if a solution
exists: a Bayesian predictor whose prior is concentrated on a countable set. We have also identified
some sufficient conditions under which a predictor can actually be constructed (e.g., using NML
estimates). However, the larger question of how to construct an optimal predictor for an arbitrary
given family of processes, remains open.

Taking an even more general perspective, one can consider the problem of finding the best
response to the actions of a (stochastic) environment, which itself responds to the actions of a
learner. Allowing into consideration environments that change their behaviour in response to the
action of the learner, clearly makes the problem much more difficult, but it also dramatically extends
the range of applications. For this general problem one can pose the same questions: given a set C
of environments, how can we construct a learner that is (asymptotically) optimal if any environment
from C is chosen to generate the data? One can consider Bayesian learners for this formulation too
(Hutter, 2005); it would be interesting to find out whether one can show that, when there is a learner
which is optimal in every environment from C , then there is a Bayesian learner with a countably
supported prior that has this property too.
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Abstract
In multivariate regression models we have the opportunity to look for hidden structure unrelated
to the observed predictors. However, when one fits a model involving such latent variables it is
important to be able to tell if the structure is real, or just an artifact of correlation in the regression
errors. We develop a new statistical test based on random rotations for verifying the existence of
latent variables. The rotations are carefully constructed to rotate orthogonally to the column space
of the regression model. We find that only non-Gaussian latent variables are detectable, a finding
that parallels a well known phenomenon in independent components analysis. We base our test on
a measure of non-Gaussianity in the histogram of the principal eigenvector components instead of
on the eigenvalue. The method finds and verifies some latent dichotomies in the microarray data
from the AGEMAP consortium.
Keywords: independent components analysis, Kronecker covariance, latent variables, projection
pursuit, transposable data

1. Introduction

The problem we consider here is one of verifying statistically that an apparent latent variable is
real. The context is a microarray study, although the ideas are applicable for other high throughput
biological settings, and more generally for problems where a large number of mutually correlated
variables has been observed.

To fix ideas, suppose we have a matrix Y ∈ Rn×N of gene expression data. Each of N genes
has been measured on n microarrays. We can often assume that the n arrays come from statistically
independent trials, but the N genes on any single array have a rich and unknown correlation struc-
ture. There is also an n× p matrix X of predictor variables to relate to the genes (p < n). We are
interested in which of the predictors significantly affect the response.

The motivating context is the AGEMAP project of Zahn et al. (2007) for which n = 40, N =
8932, and p= 3, a project whose primary goal is to find which genes are statistically correlated with
age. The covariate matrix X ∈ Rn×3 has columns for intercept, age, and sex. In matrix form, we
model Y = XB+E where B is a p-by-N matrix of regression coefficients and E is an n-by-N matrix
of Gaussian or approximately Gaussian errors.

The residuals from the linear model showed a sharp dichotomy, splitting the n AGEMAP sub-
jects into two groups. The split could not be explained by the measured variables and it strongly
suggests the presence of a binary latent variable. Binary and other latent variables can arise when
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the microarray data are generated at different times, by different technicians, or at different sites.
Sometimes a suspected latent variable can be confirmed by looking more closely at the data or lab
notes. At that point we might identify the cause and use it as an ordinary regression variable. In
other cases we may not be able to pinpoint the cause, but we still want statistical confirmation that
it is real. When we are confident that the variable is real then it makes sense to use a model that
includes one or more latent variables.

A natural way to test for a latent variable is to compute a singular value decomposition of the
residual matrix Ê = Y −XB̂ and decide that a latent variable is present when the largest singular
value of Ê is sufficiently large. Equivalently, such a test is based on the eigenvalues of the covariance
matrix of the rows of Ê. As we show below, a test based on those eigenvalues cannot work when
the rows of E are correlated Gaussian random vectors. Adding a Gaussian latent variable simply
changes the covariance structure and hence is not detectable. The situation is similar to that faced in
independent components analysis (Hyvarinen et al., 2001) which becomes degenerate for Gaussian
components.

While the eigenvalues offer no possibility to confirm the presence of a latent variable in corre-
lated Gaussian noise, the eigenvectors of the covariance matrix do. Our tests are based on eigen-
vectors, rejecting the null hypothesis when the components of an eigenvector differ significantly
from what we would get with Gaussian errors. Such measures have been derived for exploratory
projection pursuit by Friedman (1987), although it is important to note that Friedman’s measures by
themselves do not measure of statistical significance. We cannot apply standard tests of Gaussianity
such as the Anderson-Darling test, because such tests require an IID sample and the components
of the eigenvector are not IID. Instead we show how to use a test based on random rotations of the
data. When the noise is independent across observations and comes from a multivariate Gaussian
distribution, then under the null hypothesis of no latent variable, random rotations don’t change the
distribution of our test statistic. Importantly, our test is still valid when there are arbitrary correla-
tions between the columns of E.

Rotation tests have been used before, by Langsrud (2005). Our main contribution is to extend
rotation tests to the context of regression for the explicit purpose of detecting latent variables. We
show how to apply rotations orthogonally to a given linear model and we combine rotation tests
with measures of non-Gaussianity of eigenvectors.

Our principal focus is on testing for the presence versus the absence of one latent variable. The
regression model is usually used when we expect no latent variables. The presence of even one
latent variable would make it reasonable to switch to a factor model. We also consider sequential
tests for the correct number of latent variables when there is at least one of them.

The outline of the paper is as follows: Section 2 introduces the AGEMAP data as a motivating
example and introduces the regression model mixing measured and latent predictors. Section 3
develops rotation tests for the existence of latent structure in the residual matrix from a regression.
The tests surveyed in Langsrud (2005) need to be modified in order to rotate orthogonally to the
regression model. We also show that Gaussian latent vectors cannot be detected, and then present
some test statistics for non-Gaussian latent vectors. Section 4 presents numerical simulations on
examples where we know the structure. The test is able to identify large latent variables and we find
that it gives reliable p-values when no latent variables are present. Section 5 discusses fitting and
validating latent variables for the AGEMAP data. Section 6 presents our conclusions.
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2. Background

Here we describe the AGEMAP data and introduce regression models that include both measured
and latent variables.

2.1 The AGEMAP Data

The motivating application arises from the AGEMAP (Zahn et al., 2007) study of aging in mice.
AGEMAP is a large microarray study conducted at the National Institute on Aging and analyzed
in collaboration with the Kim lab in Stanford’s department of developmental biology. The primary
focus of the AGEMAP analysis was to find which genes have expression levels that change with
age.

Mice of ages 1, 6, 16, and 24 months were included. There were five male mice at each age
and five female mice at each age. For each of these 40 mice, 16 microarrays were prepared, one
for each of 16 tissues. The tissues considered were: adrenenal glands, bone marrow, cerebellum,
cerebrum, eye, gonad (ovaries/testis), heart, hippocampus, kidney, liver, lung, muscle, spleen, spinal
cord, striatum, and thymus.

From each of the 40× 16 = 640 microarrays, values for 8932 genes were obtained. The mi-
croarrays had more than 8932 probes, but data from multiple probes corresponding to any single
gene have been averaged.

We arrange the data into tissue specific matrices Y (k) for k = 1, . . . ,16. Each Y (k) has 8932
columns. The matrix Y (k) has nk rows, one for each sample of tissue type k. The values of nk are
unequal due to missing data. We have 32 ≤ nk ≤ 40 and the average sample size is 38.625. The
entry Y (k)

i j is the logarithm of the expression value for mouse i and gene j in tissue k.

2.2 Regression with Measured and Latent Variables

For a single tissue type we can drop the superscript k. Zahn et al. (2007) used multiple regression
analysis to investigate the effects of aging on gene expression. The regression model for gene j is

Yi j = β0 j +β1 jAi+β2 jSi+ εi j, 1≤ i≤ n (1)

where Yi j is log expression, Ai is the age in months of mouse i, and Si is 1 if mouse i is female
and is 0 otherwise. The random error term is denoted by εi j. We write all N regression models
simultaneously as

Y = XB+E

where B is a p by N matrix of regression coefficients and E is an n by N matrix of random noise.
The n by p design matrix X has a column for each covariate.

Now suppose that there is a latent variable taking the value Ui for the array of the ith mouse.
Then adding the latent variable to the regression (1) yields

Yi j = β0 j +β1 jAi+β2 jSi+ γ jUi+ εi j, 1≤ i≤ n,

where both γ j andUi are unknown. In matrix notation we have

Y = XB+UΓ+E (2)
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where U ∈ Rn×1 and Γ ∈ R1×N . If there are ! latent variables then the model remains as shown
in (2), except that nowU ∈ Rn×! and Γ ∈ R!×N .

Each individual regression includes more parameters than observations, having n latent values
Ui and a coefficient γ j. But in aggregate only !(N+ n) parameters are added to the regression for
Nn observations, so the model is not saturated for small !.

2.3 Forcing Identifiability

The latent variable model in (2) is not identifiable. To see why, note that if we were to replace U
by U +Xθ and B by B−θΓ, for some θ ∈ Rp×N then we would get the same residuals. A similar
indeterminacy arises from replacing U by UC and Γ by C−1Γ for an invertible C ∈ Rp×p. We
will sometimes assume that the latent variables U satisfy XTU = 0, UTU = I!, and ΓTΓ = D =
diag(d1, . . . ,d!) where d1 > d2 > · · · > d! > 0. This makes the model identifiable apart from the
signs of the columns ofU . Those can be specified by making the first nonzero value in each column
positive. The existence of a latent term is not affected by identifiability of U , so we won’t have to
force U to be identifiable to detect a latent variable. We will also assume that XTX has full rank p
(this can be easily arranged by removing redundant predictors).

2.4 Noise Model and Estimation

In this section we describe the noise matrix E. One construction would be to assume that the entries
of E are all independent and normally distributed with mean 0 and a different variance for each
gene. We do not believe that the normality assumption causes serious difficulty for the AGEMAP
data. But, assuming zero correlations among genes on the same array is not tenable. We assume
instead that the rows of E are independent draws from the N (0,ΣN) distribution where ΣN ∈ RN×N

is a gene-gene covariance matrix.
We will make frequent use of Kronecker notation. The random matrix S ∼ N (M,A⊗B) if its

elements have a joint normal distribution with E(Si j) =Mi j and Cov(Si j,Skl) = AikB jl for matrices
M, A, and B of appropriate dimensionality.

Our model for the error is that E ∼N (0, In⊗ΣN). Then model (2) may be written as

Y ∼N (XB+UΓ, In⊗ΣN).

The identifiability restrictions of Section 2.3 are as before. It will often be simpler to introduce an
n×N matrix Z with IID N (0,1) entries and note that

Y d
= XB+UΓ+ZΣT/2

N (3)

where Σ1/2N ∈ RN×N satisfies Σ1/2N (Σ1/2N )T = ΣN and Σ
T/2
N is a shorthand for (Σ1/2N )T. Similarly A−T

means (A−1)T for invertible A.
Because of our orthogonality constraint, XTU = 0, the least squares estimate of B is unaffected

by the latent variable. That is B̂ = (XTX)−1XTY . We find that B̂ is normally distributed with
E(B̂) = B and the covariance between β̂i j and β̂kl is ((XTX)−1)ik(ΣN) jl . We summarize this via

B̂∼N (B,(XTX)−1⊗ΣN).

We can estimate the latent term Û Γ̂ from the residual matrix Ê = Y −XB̂. The least squares
estimates correspond to Principal Components Analysis (PCA), and can be gotten from truncating
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the singular value decomposition of Ê to ! terms. This least squares procedure has been described
by Gabriel (1978), who also incorporates column based covariates analogous to the row based ones
in X . Another alternative is to use Independent Components Analysis (ICA). If there is some prior
knowledge about the distribution of the possible latent factors, this knowledge can be used in the
estimation procedure, for example by choosing a particular test statistic to use in Section 3.

3. Rotation Tests for Structure in the Residual Matrix

We have two tasks when dealing with a latent term. The primary task is to determine whether any
latent structure exists in the residual matrix Y −XB̂. A secondary task is to estimate that latent
structure when we believe it exists.

The main complication is that ΣN , the noise covariance, is unknown. When ΣN is known, we
can multiply both sides (3) from the right by (ΣT/2

N )−1 and obtain a model with the same regression
variables, the same number of factors, and errors that are IID N (0,1). Then if n( N classical
methods due first to Gollob (1968) and refined by Mandel (1971) based on nested hypothesis test-
ing, may be applied. If instead n) N the resulting IID N (0,1) errors can be handled by recent
developments in random matrix theory due to Baik and Silverstein (2006) and Paul (2007a). For ex-
ample, in this setting Rao and Edelman (2008) apply an approach based on the Akaike information
criterion (AIC).

Most methods for identifying latent structure only look at the singular values of the residual
matrix Ê. Since the correlation in the residuals is nontrivial and unknown, our setting leads us to
consider other functions of Ê.

We will use the following elementary formula. IfW ∼N (0,Ψ⊗Φ) then

BWCT ∼N (0,(BΨBT)⊗ (CΦCT)), (4)

so long as the product matrix BWCT is well defined.

3.1 Rotations Under the Null Hypothesis

Under the null hypothesis of no latent variable, our error term is E ∼ N (0, I⊗ΣN). For any n× n
orthogonal matrix O, we find that OE ∼N (0, [OIOT]⊗ΣN) = N (0, I⊗ΣN) so that OE d

= E. The
original residual matrix, E, and the rotated residual matrix, OE have the same distribution. This
fact provides our starting point.

We refer to orthogonal matrices as rotations. A stricter usage of the term requires det(O) = 1 but
following Langsrud (2005) we allow det(O) = −1 as well. Such reflections, as they are sometimes
called, also preserve the distribution of E so they are worth including. In a rotation test we compare
some aspect of the data to its value under repeated random rotations of the data. Such rotation
tests are analogous to the more familiar permutation tests. Rotation tests were first introduced
by Wedderburn (1975) and Heiberger (1978). A recent survey appears in Langsrud (2005) who
focuses on multiple testing issues.

Here we give a self-contained derivation of rotation tests for multiple regression. The regression
context requires us to make some modifications to the method.

The data are Y = XB+E with E d
=UΓ+ZΣT/2

N where Zi j are IID N (0,1). The matrix X has
rank p< n and hat matrix H = X(XTX)−1XT. The residual matrix is Ê = (I−H)Y = (I−H)XB+
(I−H)E = (I−H)E. We will apply many random rotations to Ê. This is mathematically equivalent
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to rotating both X and Y each time, and then taking the residuals from the rotated variables, but of
course it is faster to simply rotate the residuals. To prove equivalence:

Proposition 1 For integers n> p> 0 and N ≥ 1, let X ∈Rn×p, Y ∈Rn×N, B∈Rp×N and E ∈Rn×N

satisfy Y = XB+E. Suppose that H = X(XTX)−1XT has rank p. Let O ∈ Rn×n be an orthogonal
matrix. Put Ỹ = OY , X̃ = OX, H̃ = X̃(X̃TX̃)−1X̃T and Ẽ = (I− H̃)Ỹ . Then Ẽ = O(I−H)Y .

Proof The rotated hat matrix satisfies H̃ = OX(XTOTOX)−1XTOT = OHOT. The new residual
is Ẽ = Ỹ − H̃Ỹ . Now H̃Ỹ = OHOTOY = OHY . Finally Ẽ = OY −OHY = O(I−H)Y .

In the regression context, randomly rotating the residuals does not generally preserve their dis-
tribution. First because (I−H)(I−H)T = (I−H), we find that under the null hypothesis (U = 0):

Ê ∼N (0,(I−H)⊗ΣN).

But then, for the rotated residual we have

OÊ ∼N (0, [O(I−H)OT]⊗ΣN),

by Equation (4). These distributions do not usually coincide.
We will fix this problem by restricting attention to a special subset of rotation matrices. The

desired rotations O satisfy OHOT = H (equivalently O(I−H)OT = (I−H)) for then the rota-
tion does not change the distribution of Ê. The rotations we want will fix X but rotate the space
orthogonal to X . Specific construction details follow.

Because H has p eigenvalues equal to 1 and n− p eigenvalues equal to 0 we may write it
as H = Q1QT

1 where Q1 ∈ Rn×p satisfies QT
1Q1 = Ip. Let Q2 ∈ Rn×(n−p) be a matrix such that

Q=
(
Q1 Q2

)
is orthogonal. For our construction, we letO∗ ∈R(n−p)×(n−p) be an orthogonal matrix

and then take
O = Q1QT

1 +Q2O∗QT
2 . (5)

The matrices produced by Equation (5) are orthogonal and satisfy OHOT = H. We summarize as
follows:

Proposition 2 Let Y ∼ N (XB, In⊗ΣN) where X ∈ Rn×p has rank p < n and B ∈ Rp×N. Let Ê =
(I−H)Y where H = X(XTX)−1XT and let Ẽ = OÊ where O satisfies (5). Then both Ê and Ẽ have
the N (0,(I−H)⊗ΣN) distribution.

Proof Let E =Y −XB∼N (0, In⊗ΣN). Then Ê = (I−H)Y = (I−H)E ∼N (0,(I−H)⊗ΣN) as
above. Now suppose that O satisfies (5). Then Ẽ = O(I−H)E ∼N (0, [O(I−H)OT]⊗ΣN). Next

O(I−H)OT =
(
Q1QT

1 +Q2O∗QT
2
)
(I−H)

(
Q1QT

1 +Q2O∗QT
2
)

=
(
Q1QT

1 +Q2O∗QT
2
)
Q2QT

2
(
Q1QT

1 +Q2OT
∗QT

2
)

= Q2O∗O
T
∗QT

2

= I−H,

and so Ẽ d
= Ê.

To complete this section we show that Equation (5) generates all of the desired rotations.
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Proposition 3 Let Q=
(
Q1 Q2

)
∈ Rn×n be an orthogonal matrix, where Q1 ∈ Rn×p for n> p> 0.

Let O ∈ Rn×n be an orthogonal matrix and write H = Q1QT
1 . If OHOT = H then O = Q1O◦QT

1 +
Q2O∗QT

2 where O◦ ∈ Rp×p and O∗ ∈ R(n−p)×(n−p) are orthogonal matrices.

Proof First, any orthogonal matrix O can be written as O = QPQT where

P=

(
P11 P12
P21 P22

)

is orthogonal, and partitioned with P11 ∈ Rp×p, P22 ∈ R(n−p)×(n−p) and so on. We may take P =
QTOQ. Now OHOT = QPQTQ1QT

1QPTQT = FFTwhere

F = QPQTQ1 =
(
Q1 Q2

)
(
P11 P12
P21 P22

)(
QT
1

QT
2

)

Q1 = Q1P11+Q2P21.

Assume that OHOT = H. Then QT
1 OHOTQ1 = Ip so that (QT

1 F)(QT
1 F)T = Ip. But QT

1 F = P11.
Therefore P11PT

11 = Ip, or in other words P11 is an orthogonal matrix. The columns of P11 are unit
vectors and so are those of P. Therefore P21 = 0. Similarly P12 = 0 and P22 is an orthogonal matrix.
Taking O◦ = P11 and O∗ = P22 completes the proof.

From Proposition 3 we see that the suitable rotations take the form O = Q1O◦QT
1 +Q2O∗QT

2 .
In Equation (5), we only use O◦ = Ip. We don’t need to vary that part of the rotation because in our
application we work with

O(I−H) = OQ2QT
2 = (Q1O◦QT

1 +Q2O∗QT
2 )Q2QT

2 = Q2O∗QT
2 .

The choice of O◦ does not affect the value of Ẽ = O(I−H)Y , and so we may simply take O◦ = Ip.

3.2 Testing for the Existence of Structure

Here we construct a test for latent structure in the residual matrix. The null hypothesis is H0 :U = 0
and the alternative is H1 :U -= 0. We will construct a rotation test by modifying the rotation tests
in Langsrud (2005). As in the discussion of the randomization tests in Lehmann and Romano
(2005) we find a group of rotations. It is easy to show that OH = {Q1QT

1 +Q2O∗QT
2 | O∗ ∈

R(n−p)×(n−p),OT
∗ O∗ = In−p} is a group under multiplication, because orthogonal r− p by r− p

matrices are a group. Southworth et al. (2009) give a cautionary note on randomizations without a
group structure.

Proposition 2 allows us to perform a test of the hypothesis as follows: let T : Rn×N → R be any
statistic of the residual matrix. Specific examples are given in Section 3.4. We generate independent
n by n random rotations O1, . . . ,OR−1 uniformly from OH . Then, construct a p-value as

p̂=
1
R

(
1+

R−1

∑
i=1
1{T (OiÊ) ≥ T (Ê)}

)
. (6)

Since under the null hypothesis OiÊ and Ê have the same distribution and since OH is a group, this
gives us a valid p-value. The leading 1 in p̂ counts the observed Ê and prevents us from claiming p̂
below 1/R if we have only seen R rotations (including the original one).
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3.3 Gaussian Alternative

Here we show that when ΣN is unknown, a Gaussian latent variable cannot be detected. This was re-
marked on by Snee (1982) and it is well known in the independent component analysis community;
see Hyvarinen et al. (2001).

To see how the problem manifests, consider the model in (3) with just one latent variable with
entries Ui ∼ N (0,1) independently of Z. The regression model XB is assumed nonrandom. To
focus on essentials we do not initially impose the normalizationUTU = I!.

Proposition 4 For positive integers N, n, and !, let Z∼N (0, In⊗IN) independently ofU ∼N (0, In⊗
I!). Let Γ ∈ R!×N. Then UΓ+ZΣT/2

N
d
= ZΣ̃T/2

N where Σ̃N = ΣN +ΓTΓ.

Proof We only need to show that UΓ+ ZΣT/2
N has the same distribution as ZΣ̃T/2

N . The ma-
trix UΓ+ ZΣT/2

N has independent identically distributed rows from N (0,ΣN + ΓTΓ). Therefore
UΓ+ZΣT/2

N has representation Z̃Σ̃T/2
N where Z̃ ∈ RN×n has IID entries from N (0,1). This Z̃ has

the same distribution as Z.

If we do normalize U then nothing essential changes. We replace U by UC for a random
normalizing matrix C ∈ R!×! that is independent of Z (that is, UC ∼ N (0, In⊗ I!) and UTU =

I). Then we compensate by replacing Γ by C−1Γ and get UΓ+ZΣT/2
N

d
= ZΣ̃N where Σ̃N = ΣN +

ΓTC−TC−1Γ is now random.
The implication of Proposition 4 is that if we don’t know anything about ΣN , or Γ, then a

Gaussian latent variable is impossible to detect. There is no mathematical difference between a
Gaussian latent vector and a changed correlation structure. Put another way, such latent variables
are already well accounted for in the correlation structure.

Latent variables of practical interest typically exhibit non-Gaussian traits like clumping or out-
liers. Also, if a latent variable corresponds to a roughly-linear time trend, then it will be nearly
uniformly distributed if the points are sampled at regular time intervals. Therefore this restriction
still leaves many interesting testing problems.

3.4 Choice of the Test Statistic, T

Since a Gaussian latent variable is covered by the correlation model and is not detectable, any
effective test statistic T must be tuned for non-Gaussian latent variables. A non-Gaussian latent
variable makes for an error termUΓ+ZΣT/2

N that does not have a rotationally invariant distribution.
In principle any function T (E) can be used. However, the choice of T will often be dictated by

what we deem to be interesting structure. Here we describe four different possibilities for T . We
first apply a simplification procedure to reduce E to a vector u(E). Then, we apply a function to
reduce u to a scalar. The end result is a scalar-valued function T (E).

We would like u(E) to be representative of latent structure in E. An obvious choice is the first
left singular vector of E, which corresponds to the first principal component of E. A second choice
is to apply ICA to E, treating the columns as mixtures of n-dimensional sources, and have u(E) be
the first estimated source. In both cases u(E) is a unit vector.

We cannot simply use a test for normality of the components of u(E), such as the Anderson-
Darling test, because the components we get are not independent N (0,1) even under H0.
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Instead, we propose two functions for reducing u= u(E) to a scalar. The first is the L1 norm of
the vector:

TL1(u) =
n

∑
i=1

|ui|.

As a point of reference, for independent ui ∼N (0, 1n) we would get TL1
.
=

√
2n/π. So, the expected

L1 norm of a uniformly distributed n-dimensional unit vector is approximately
√
2n/π .

= 0.798
√
n.

Larger values of TL1 correspond to distributions whose expected absolute value is large compared
to their root mean square. Uniform distributions on [−1,1] or {−1,1} behave this way. Conversely,
small values of TL1 arise from very heavy tailed distributions like the Cauchy which have outliers.

The rotation based p-value (6) is sensitive to large values of TL1 and should therefore catch
dichotomies and light tailed latent variables. To detect heavy tailed alternatives we could use (6)
with 1/TL1 . Because we are potentially interested in both kinds of non-Gaussian latent structure we
take

p̂=
2
R
min

(
1+

R−1

∑
i=1
1{T̃i ≥ T̂}, 1+

R−1

∑
i=1
1{T̃i ≤ T̂}

)
, (7)

where T̂ = T (Ê) and T̃i = T (OiÊ) and T (·) subsumes all the computation in TL1 . The leading 2
in (7) compensates for using the more extreme of two tails.

The second test statistic comes from Exploratory Projection Pursuit (Friedman, 1987). TEPP is a
distance measure on densities, represented as a Legendre-series and then truncated to 4 terms:

TEPP(u) =
4

∑
j=1

(
j+

1
2

)(
EPj(R)

)2

where, Pj is the j-th Legendre polynomial, R is a random variable uniformly distributed over the
discrete set {2Φ(ui)− 1}ni=1, Φ is the cumulative distribution function of the N (0,1) distribution,
and E denotes expectation over the randomness in R. The Legendre polynomials can be computed
using the recurrence relation

P0(x) = 1,
P1(x) = x, and,

( j+1)Pj+1(x) = (2 j+1)xPj(x)− jPj−1(x).

In computing TEPP we use

EPj(R) =
1
n

n

∑
i=1

Pj(2Φ(ui)−1).

TEPP is designed to be close to 0 when the histogram of u looks Gaussian, and it gets bigger the
more “non-Gaussian” u is. The full derivation of TEPP is given by Friedman (1987).

Because only large values of TEPP are interesting we use (6) directly without making a two-tailed
modification.

We can combine PCA or ICA with TEPP(u) or TL1(u) and get four different test statistics. We
write TEPP(E) or TL1(E) when the context dictating PCA or ICA for u is clear. The choice of T is
independent of the procedure for estimating the latent variable. In particular, it is possible to detect
the existence of latent structure in Ê using a PCA-based test statistic and then fit the structure using
ICA. Indeed, in simulations it turns out to be better to use PCA for u. This will be further explored
in Section 4.
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3.5 Identifying the Rank of the Latent Term

When we are able to reject the null hypothesis we conclude that some latent structure exists, but
we do not know the rank ofU . To estimate the number of latent variables we consider a sequential
approach, based on subtracting estimated latent variables and looking for latent structure in the
residuals.

First, we fit the model Ŷ0 = X0B̂0 and get the residual matrix Ê0. The subscripts denote a model
with 0 latent terms. Next, we test for latent structure in Ê0. If we determine that any structure exists,
we fit a single latent variable û1.

At this stage, we treat û1 as a known covariate. We create a new covariate matrix X1 = [X0 û1]
by appending û1 as a column onto the old covariate matrix. Now, we fit the a new model Ŷ1 = X1B̂1
and get a new residual matrix Ê1. We proceed in a sequential matter: test for structure in Êi; upon
identifying structure, fit a single latent variable, treat it as a covariate, and get a new residual matrix
Êi+1. We stop when there is no latent structure in Êi.

In the context of PCA, fitting û2 sequentially after adjusting Ê for û1 is equivalent to fitting û1
and û2 simultaneously. For other estimation methods, this equivalence may not hold. The procedure
we describe is still valid, but there may be some loss in power. If this is a concern, the practitioner
can adjust the testing procedure accordingly.

One has to be careful when testing for more than one latent term. In particular, for some settings
when n) N, it is impossible to consistently estimate the latent variables ûi. When we do not have a
good estimate of ûi, treating it as a known covariate will introduce a potentially serious error. When
this happens, only the p-value for the first term is reliable. This point is illustrated in the example
of Section 4.3, where the error in the p-value distribution was small.

3.6 Caveats

When we reject the null hypothesis, then either there is strong enough latent structure in the data,
or the noise is far from Gaussian. Therefore, rejecting the null hypothesis is necessary to deem
latent structure to be real, but not sufficient. Often there is ambiguity between what constitutes
non-Gaussianity and what can be explained by a latent variable. An outlier can be modeled using a
latent variable that has support on a single observation. Bi-modal noise can be re-cast as a clumping
latent effect.

3.7 Related Work

Rank determination methods have been the subject of much interest in crop science. For a recent
survey see Crossa and Cornelius (2002). Those methods tend to focus on the amount of variance
explained by the first principal component. In an eigen-analysis of Y −XB̂, they focus on the size
of the eigenvalues. There has been considerable difficulty with getting tests to have the right level,
as described for example by dos S Dias and Krzanowski (2003). The core problem is that there is
no good way to count the degrees of freedom for such data sets, despite recent progress in random
matrix theory including El Karoui (2007), Paul (2007b), and Nadler (2007). Owen and Perry (2009)
apply a cross-validation-based approach to rank determination for the truncated SVD and non-
negative matrix factorization. That work requires independent noise, not the correlated noise we
consider here. Efron (2009) uses permutations to test whether some microarrays are independent of
each other.
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4. Empirical Testing

In this section we examine the performance of rotation tests on constructed examples where we
know the answer. Some readers may prefer to read the real data example of Section 5 first. In our
constructed examples, the response satisfies

Y ∼N (XB+UΓ, In⊗ΣN),

with parameters described below.

4.1 Microarray Model

This example is designed to resemble microarray studies. We take p= 2, n= 20 and N = 256. This
value of N is small, to allow a larger number of simulated cases. The matrix X has a first column of
1s. The second column has values 1, . . . ,n. We take B to be a p×N matrix of 0s. Having B= 0 is
no loss of generality, because the analysis works on residuals after regression on X and the residuals
are unaffected by B.

We construct latent variables U ∈ Rn×3. The first latent variable, u1, is the first column of U
and has independent elements distributed as Cauchy random variables. The second latent variable,
u2, has elements which are either −1 or 1 with equal probability. The third latent variable, u3, has
elements that are independent and exponentially distributed with mean 1. Thus, u1 is an “outlier”
effect, u2 is a “clumping” effect, and u3 is some other latent effect.

The latent coefficient matrix, Γ, has independent elements distributed as N (0,1). We do not
think that non-normal Γ would make the signal artificially easy to detect, but taking Gaussian Γ
removes any such worry. As described, U , Γ, and X do not satisfy the identifiability conditions of
Section 2.3. The existence of an unnormalized latent variable implies that a normalized one exists,
and so the testing problem is unaffected.

For ΣN we need a 256× 256 correlation matrix. The true correlation patterns for microarray
data are not known. The sample sizes to date are far too small to allow confident description of the
patterns. Owen (2005) looks at what gene-gene correlations are like in real data. We mimic two
features of microarray data. First, genes are often thought to belong to relatively small clusters.
Second, the mean of the squared estimated off-diagonal sample correlations is often seen to be a
small multiple of 1/n. The value 1/n is very close to what we would expect in the event that all true
correlations were zero. To encode the first property, we take

Σi j =






1 i= j,
ρ 0(i−1)/321 = 0( j−1)/321, & i -= j,
ρ i− j ≡ 0 mod 32, & i -= j,
0 else.

In words, gene i belongs to two clusters: one cluster of 8 genes corresponding to the least-significant
digit of i− 1 in base 32, and one cluster of 32 genes corresponding to the most-significant digit of
i−1 in base 32. Gene i has 38 non-zero correlations with other genes. The value of ρ> 0 is chosen
so that signal is about 30% of the noise:

∑N
i=1∑

N
j=1Σ

2
i j−N

N(N−1)/n
= 0.30.

Thus 38ρ2 = (N−1)/(0.30n) so ρ=
√
0.30(N−1)/(38n) .

= 0.317.
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4.2 Rotation Tests

The true model has three latent variables. We are interested in what happens when testing for the
first, second, third, and fourth latent terms. We look at two different choices for the test statistic:
TEPP in conjunction with PCA, and TEPP in conjunction with ICA. The results are summarized in
ROC curves in Figure 1.

The upper-right panel shows the results from testing the residual matrix after one latent term
has been removed. Here, we see that testing with uPCA results in about 75% of the replicates having
estimated p-values less than 0.2, while testing with uICA, results in about 55%. Generally, the PCA
test gave us higher power. We also found that FastICA can get stuck in a local minimum. This is
what lead to its surprisingly poor performance in the upper left panel. The latent variables of the
randomly-rotated data are more non-Gaussian than the latent variable estimated from the original
data.

The lower-right panel shows the estimated p-values after three latent terms have been fit and
removed from the residual matrix. As expected, the estimated p-values are close to the specified
false-positive rates. Comparing the lower left panel to the others, we see, unsurprisingly that the
smallest latent vector is hardest to detect while the largest is easiest to detect. Finally, testing for
a fourth latent variable gives us a uniform p-value, which is exactly what we want since there are
only three latent terms.

Aword is in order about howwe removed the first latent variable when testing for the presence of
the second. We tried removing vectors as estimated by PCA and also by ICA. There was not much
difference in performance, and PCA has the computational advantage that the estimated second
vector does not change when we remove the first. Therefore when testing for the k’th vector, whether
by ICA or PCA, we always used PCA to remove the first k−1 of them.

4.3 Testing Under and Near the Null Hypothesis

In the previous simulation, the signal-to-noise ratio between the latent effect terms and the random
error is relatively high, and so the p-values for non-existent latent terms are faithful. In this simula-
tion, we demonstrate that the p-values for testing for multiple latent variables are slightly liberal if
the signal strength is too weak, but these p-values are still within tolerable accuracy.

We generate an n×N data matrix Y according to the model

Y = (Nλ)1/2uγT +ZΣT/2
N ,

with n = 20 and N = 200. There is a single latent variable u which has elements equal to −1 or
+1 with equal probability. The coefficient vector γ is a uniformly distributed random unit vector
in RN . The noise covariance ΣN is a diagonal matrix with (ΣN)ii independent from all other entries
and exponentially-distributed with mean 1; Σ1/2N is its square root. The noise variable matrix Z has
IID N (0,1) elements. We choose λ to be a fixed scalar, specified below.

The theory in Section 3.2 tells us that the p-value from a rotation test of a single latent term is
uniformly-distributed when λ = 0. However, it tells us nothing about p-values for a second term.
Regardless of the value of λ, we would like them to be uniformly distributed, so that the test is
faithful to the specified false positive rate. The issue is whether errors in the estimated first latent
vector spoil the test for the second. Results in Onatski (2007) suggest that as the sample size goes
to infinity, p-values from the second and higher terms will be faithful when we fit with PCA. Our
sample size is only 20, so we do an empirical test.
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Figure 1: MULTI-FACTOR ROTATION TESTS WITH PCA AND ICA. We simulate data from a
model with three latent terms and then apply rotation tests for latent structure. The test
statistic is TEPP(u) applied to either the first principal component uPCA, or the first inde-
pendent component uICA (via FastICA) of the residual matrix. The plots show estimated
ROC curves after 0, 1, 2, or 3 principal components have been fit and removed. The x axis
of each plot is the specified false-positive rate. The y axis is the proportion of replicates
with an estimated p-value below that level, using 500 total replicates of the data set. The
plots are discussed further in the text.

For all λ in the set {0,0.5,1,5,10,50,100,500,1000}, we perform the following simulation,
which we repeat 1000 times:

1) Generate data Y as described above.
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Figure 2: TESTING FOR A NON-EXISTENT SECOND TERM. We estimate a factor generated ac-
cording to (Nλ)1/2uγT and then test for a second term. Depending on the factor strength
(which is related to our ability to estimate), the p-values for validating the second term
may be slightly liberal. This seems to be the case for λ ≤ 50. For λ ≥ 100, the p-values
appear to be faithful.

2) Fit a single latent variable û, using the first term in the SVD of Y .
3) Construct the matrix of residuals as Ê = Y − ûûTY .
4) Test for the existence of more latent terms using a PCA-based rotation test using TEPP as our test
statistic and treating û as a known covariate. Record the p-value estimated from 999 random
rotations.

We would like to assess the implications of treating û as a known covariate. When λ is big, this is a
reasonable assumption since the term is easy to estimate, but when λ is small this is not the case.

We summarize the results in Figure 2. We can see that for λ≤ 50, the small p-values are slightly
liberal. When λ ≥ 100, the p-values appear to be faithful. When the first latent variable is strong,
then we have a reliable test for the second.
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Figure 3: CEREBELLUM LATENT VARIABLE. The left plot shows the latent variable estimated for
the cerebellum in each of 39 mice plotted versus the ages of those mice. We can see an
apparent dichotomy that is unrelated to gender. The right plot shows a histogram of the
regression coefficients for the latent variable. The long tail of the histogram indicates that
a large number of genes (about 100) are related to the dichotomy.

5. Latent Variables for the AGEMAP Mice

Now that we have seen how rotation tests work in simulations, we apply them to the data described
in the beginning of the paper. Recall that in the AGEMAP data set there are 16 tissue types and
32–40 mice per tissue with known age and sex. Here we will see patterns that certainly appear
unlikely to be artifacts. Then we verify them by the rotation test.

We fit 16 regression models of gene activation on age and sex with one latent variable, one for
each tissue. The result is that for each tissue type from k = 1, . . . ,16, we have an estimated latent
variables vectorU (k) ∈ Rnk .

The latent variables for tissue 2 (the cerebellum) have a striking pattern. There is one value Û (2)
i

for each of n2 = 39 mice for which a cerebellum array was available. Figure 3 shows that latent
variable plotted versus age and with plot symbols encoding the sex of the mouse. It is clear that the
mice are split into two different groups, one with a high value of the latent variable and one low.

Often when one sees two distinct groups in microarray data, they correspond to male versus
female samples, and certain genes that are sex related, such as on those on the Y chromosome in
males or Xist genes that silence a second X chromosome for females. That cannot be the case here
because the estimated latent variable is orthogonal to both the sex and age variables by construction,
meaning the sum of its coefficients over male samples must equal the negative of the sum over
females.

There are high and low values for the latent variable for the cerebellum. The second panel of
Figure 4 shows the histogram of these latent values. It is clearly bimodal. The other 15 panels in
Figure 4 show the corresponding histograms for the other 15 tissues.
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Figure 4: LATENT VARIABLES BY TISSUE. This figure shows histograms of the latent variables
found in microarray data from 16 mouse tissues. In each histogram the latent variable
values from up to 40 mice are given.

Some of the other histograms have interesting and interpretable structure too. The histograms
for spinal tissue, gonad and striatum all show outliers. The biggest latent effect in these tissues
is that the expression of one mouse was quite different from the other mice and that difference is
reflected in a large number of genes. It is not simply one unusual animal. Three different mice were
the outliers in the three different tissues.

The histogram for the cerebrum shows an apparent dichotomy, similar to but less pronounced
than the one for the cerebellum. For both of these tissues, the latent variable is splitting the mice
into two groups. Both dichotomies are somewhat imbalanced with one group roughly twice as large
as the other. Such an effect would be explainable if the same latent factor were affecting both of
these brain tissues. Figure 5 plots the estimated latent variable from the cerebrum versus that for the
cerebellum. There is one point for each of the 39 mice in which both tissues were measured.
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Figure 5: LATENT VARIABLES OF MICE. This figure plots the latent variable from the cerebrum
versus that from the cerebellum for the 39 mice for which both arrays were available.
There appear to be three kinds of mice in this population.

Figure 5 shows that the apparent dichotomy in the cerebrum is not the same as the one in the
cerebellum. The pattern is not a simple double dichotomy either. Rather there appears to be a
trichotomy. It is visually striking that there are no mice in the upper right hand corner of Figure 5.
The counts of the four corners of Figure 5 are set out in Table 1.

About one third of the mice have the rare cerebellum type, one third have the rare cerebrum type
and the remaining mice the common form for both tissues. Were the types independent we would
expect about one ninth of the mice to be rare for both. A p value based on Fisher’s exact test is
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Count Common cerebellum Rare cerebellum
Rare cerebrum 13 0
Common cerebrum 12 14

Table 1: Counts of mice in the corners of Figure 5.

0.00094. While we can’t be sure that the next mouse won’t be the rare type for both brain parts, the
failure to observe one here is statistically significant.

Although we don’t have laboratory notes to identify the meaning of these groupings, the fact
that the joint behavior of two dichotomies from different tissues forms such an interesting pattern
lends additional support to the rotation results.

We applied rotation tests for all 16 tissues in the AGEMAP data set using two different measures
of non-normality.

We demonstrate the calculation of p-values for the spleen and cerebellum data in Figure 6. The
rotation distributions for the other 15 tissues have approximately the same shape, so we do not
display them here. Instead, we summarize the results in Table 2. The estimated latent variables
for the cerebellum, cerebrum, and eye tissues exhibited dichotomies. This shows up in significantly
high values of TL1 and TEPP. The gonad, spinal cord, and striatum latent variables have clear outliers,
which manifest as a significantly low values of TL1 , and a significantly high values of TEPP. The
spleen latent variable potentially has an outlier at age 5 months, and is found to be marginally
significant according to TEPP, and not significant according to TL1 . The discrepancy is because of
the two- versus one-tailed p-value.

The only case where TL1 and TEPP give drastically different results is with the latent variable
estimated from the hippocampus data. Using TL1 , the variable is nowhere near significant ( p̂ =
0.586), but using TEPP, the variable is unquestionably significant (p̂< 0.001). TEPP finds the skewed
histogram interesting, while TL1 does not. A possible explanation for why the latent variable is
insignificant according to TL1 is this: TL1 is simultaneously measuring presence of outliers and
presence of clumping. Outliers correspond to low values of TL1 , and clumping corresponds to high
values of TL1 . In the hippocampus data, we see both outliers and clumping. The two features
“cancel out”, giving a moderate value of TL1 . TEPP, on the other hand, does not distinguish between
the different kinds of non-Gaussianity. The two features act in tandem to give a high value of the
test statistic.

6. Conclusions

We find that it is possible to test for latent variables in correlated Gaussian noise by a rotation test
using a projection pursuit index applied to the components of the first singular vector, instead of
the usual test based on the size of the largest singular value. This test detects the lack of rotational
invariance of the matrix of errors. The rotations must be done orthogonally to the regression vari-
ables. Testing for one latent variable is theoretically justified and reliable. Testing for additional
terms is possible, but can give somewhat liberal p-values if the signal strength is too weak.

For microarray data, a normal distribution is often a very reasonable model. Some researchers
apply transformations for the explicit purpose of making the data more normally distributed. For
data that is not close to normally distributed a strategy of looking for latent variables by measuring
how non-Gaussian they are is not recommended. It might uncover eigenvectors with especially
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Figure 6: This figure shows histograms of 1000 realizations of the test statistics TL1 and TEPP after
applying random rotations to the estimated latent variable. The top row comes from the
spleen data, and the bottom row from the cerebellum. The dashed line shows the value
of the test statistic at the observed data. In the top-left plot, the area in the right tail is
0.049, giving a two-sided p-value of 0.098. In the top-right plot, the tail area and the
one-sided p-value are equal to 0.045. Formal descriptions of the p-values can be found
in Equations (6) and (7). The latent variable is found to be barely significant at the 0.05
level according to TEPP, but not according to TL1 . In the bottom plots, the observed data
falls at the extreme of the rotation histograms, and is found to be strongly significant in
both cases.

non-Gaussian components but their interpretation is more difficult without a Gaussian background
to compare them to.

Our original interest was to see if thousands of genes could be used to define a genomic “true
age” of a sample of mouse tissue as a latent variable in the residuals from a regression that did not
include age. It turned out that the dominant latent variable bore no resemblance to chronological
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TL1 TEPP
Tissue R2 T p̂ T p̂
Adrenal 0.109 0.7986 0.816 0.0204 0.460
Bone Marrow 0.227 0.8098 0.988 0.0035 0.931
Cerebellum 0.593 0.9464 0.002∗∗ 0.6233 0.001∗∗
Cerebrum 0.520 0.8961 0.002∗∗ 0.4344 0.001∗∗
Eye 0.165 0.8927 0.004∗ 0.2343 0.001∗∗
Gonad 0.197 0.4788 0.002∗∗ 0.3899 0.001∗∗
Heart 0.287 0.7866 0.562 0.0611 0.117
Hippocampus 0.208 0.8222 0.586 0.2281 0.001∗∗
Kidney 0.247 0.7702 0.320 0.0145 0.598
Liver 0.311 0.7758 0.384 0.0608 0.170
Lung 0.169 0.8085 0.944 0.0130 0.625
Muscle 0.318 0.7601 0.172 0.0583 0.121
Spleen 0.328 0.8555 0.098 0.0829 0.045∗
Spinal Cord 0.309 0.4641 0.002∗∗ 0.3864 0.001∗∗
Striatum 0.319 0.5851 0.002∗∗ 0.4020 0.001∗∗
Thymus 0.266 0.8125 0.838 0.0264 0.386

Table 2: Test statistics and p-values from the rotation tests applied to the AGEMAP data. In all
cases, 1000 random rotation were used to construct the a reference histogram, and ap-
proximate p-values were estimated. Significant results at the 0.05 level are marked with
a single asterisk. In instances where the observed test statistic was at the extreme end of
the histogram, we have marked the p-values with two asterisks. In the second column of
the table, we indicate how much of the residual is explained by the latent term. We can
see that high R2 does not necessarily indicate significance according to the rotation test. A
Bonferroni correction for multiple testing would multiply the p-values by 32 and would
find most of the same latent variables significant.

age. We never uncovered a biological explanation for the dichotomies and other latent variables that
we saw. But, the rotation tests confirm that these striking anomalies would not arise from correlated
Gaussian noise. Several of the tissues did not have apparent latent variables. Accordingly results
like those in Table 2 help one focus on where to search for physical causes underlying apparent
latent variables.

It may happen that a latent variable is statistically significant when judged by a rotation test
but only explains a negligible amount of the response variation. This seems unlikely to happen in
practice and did not happen for the AGEMAP data, according to the R2 column in Table 2. But,
when it does happen one can always declare the variable statistically but not practically significant.

It is natural to ask if rotation tests extend to nonlinear models. Our method is strongly geared to
linear models because of the way we construct our rotations, so we see no straightforward extension.
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Abstract
Much recent research has been devoted to learning algorithms for deep architectures such as Deep
Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several
areas, mostly on vision and language data sets. The best results obtained on supervised learning
tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase.
Even though these new algorithms have enabled training deep models, many questions remain as to
the nature of this difficult learning problem. The main question investigated here is the following:
how does unsupervised pre-training work? Answering this questions is important if learning in
deep architectures is to be further improved. We propose several explanatory hypotheses and test
them through extensive simulations. We empirically show the influence of pre-training with respect
to architecture depth, model capacity, and number of training examples. The experiments confirm
and clarify the advantage of unsupervised pre-training. The results suggest that unsupervised pre-
training guides the learning towards basins of attraction of minima that support better generalization
from the training data set; the evidence from these results supports a regularization explanation for
the effect of pre-training.
Keywords: deep architectures, unsupervised pre-training, deep belief networks, stacked denoising
auto-encoders, non-convex optimization

1. Introduction

Deep learning methods aim at learning feature hierarchies with features from higher levels of the
hierarchy formed by the composition of lower level features. They include learning methods for a
wide array of deep architectures (Bengio, 2009 provides a survey), including neural networks with
many hidden layers (Bengio et al., 2007; Ranzato et al., 2007; Vincent et al., 2008; Collobert and
Weston, 2008) and graphical models with many levels of hidden variables (Hinton et al., 2006),
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among others (Zhu et al., 2009; Weston et al., 2008). Theoretical results (Yao, 1985; Håstad, 1986;
Håstad and Goldmann, 1991; Bengio et al., 2006), reviewed and discussed by Bengio and LeCun
(2007), suggest that in order to learn the kind of complicated functions that can represent high-level
abstractions (e.g., in vision, language, and other AI-level tasks), one may need deep architectures.
The recent surge in experimental work in the field seems to support this notion, accumulating evi-
dence that in challenging AI-related tasks—such as computer vision (Bengio et al., 2007; Ranzato
et al., 2007; Larochelle et al., 2007; Ranzato et al., 2008; Lee et al., 2009; Mobahi et al., 2009; Osin-
dero and Hinton, 2008), natural language processing (NLP) (Collobert and Weston, 2008; Weston
et al., 2008), robotics (Hadsell et al., 2008), or information retrieval (Salakhutdinov and Hinton,
2007; Salakhutdinov et al., 2007)—deep learning methods significantly out-perform comparable
but shallow competitors, and often match or beat the state-of-the-art.

These recent demonstrations of the potential of deep learning algorithms were achieved despite
the serious challenge of training models with many layers of adaptive parameters. In virtually all
instances of deep learning, the objective function is a highly non-convex function of the parameters,
with the potential for many distinct local minima in the model parameter space. The principal
difficulty is that not all of these minima provide equivalent generalization errors and, we suggest,
that for deep architectures, the standard training schemes (based on random initialization) tend to
place the parameters in regions of the parameters space that generalize poorly—as was frequently
observed empirically but rarely reported (Bengio and LeCun, 2007).

The breakthrough to effective training strategies for deep architectures came in 2006 with
the algorithms for training deep belief networks (DBN) (Hinton et al., 2006) and stacked auto-
encoders (Ranzato et al., 2007; Bengio et al., 2007), which are all based on a similar approach:
greedy layer-wise unsupervised pre-training followed by supervised fine-tuning. Each layer is pre-
trained with an unsupervised learning algorithm, learning a nonlinear transformation of its input
(the output of the previous layer) that captures the main variations in its input. This unsupervised
pre-training sets the stage for a final training phase where the deep architecture is fine-tuned with
respect to a supervised training criterion with gradient-based optimization. While the improvement
in performance of trained deep models offered by the pre-training strategy is impressive, little is
understood about the mechanisms underlying this success.

The objective of this paper is to explore, through extensive experimentation, how unsupervised
pre-training works to render learning deep architectures more effective and why they appear to
work so much better than traditional neural network training methods. There are a few reasonable
hypotheses why unsupervised pre-training might work. One possibility is that unsupervised pre-
training acts as a kind of network pre-conditioner, putting the parameter values in the appropriate
range for further supervised training. Another possibility, suggested by Bengio et al. (2007), is that
unsupervised pre-training initializes the model to a point in parameter space that somehow renders
the optimization process more effective, in the sense of achieving a lower minimum of the empirical
cost function.

Here, we argue that our experiments support a view of unsupervised pre-training as an unusual
form of regularization: minimizing variance and introducing bias towards configurations of the pa-
rameter space that are useful for unsupervised learning. This perspective places unsupervised pre-
training well within the family of recently developed semi-supervised methods. The unsupervised
pre-training approach is, however, unique among semi-supervised training strategies in that it acts by
defining a particular initialization point for standard supervised training rather than either modifying
the supervised objective function (Barron, 1991) or explicitly imposing constraints on the parame-
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ters throughout training (Lasserre et al., 2006). This type of initialization-as-regularization strategy
has precedence in the neural networks literature, in the shape of the early stopping idea (Sjöberg
and Ljung, 1995; Amari et al., 1997), and in the Hidden Markov Models (HMM) community (Bahl
et al., 1986; Povey and Woodland, 2002) where it was found that first training an HMM as a genera-
tive model was essential (as an initialization step) before fine-tuning it discriminatively. We suggest
that, in the highly non-convex situation of training a deep architecture, defining a particular initial-
ization point implicitly imposes constraints on the parameters in that it specifies which minima (out
of a very large number of possible minima) of the cost function are allowed. In this way, it may
be possible to think of unsupervised pre-training as being related to the approach of Lasserre et al.
(2006).

Another important and distinct property of the unsupervised pre-training strategy is that in the
standard situation of training using stochastic gradient descent, the beneficial generalization effects
due to pre-training do not appear to diminish as the number of labeled examples grows very large.
We argue that this is a consequence of the combination of the non-convexity (multi-modality) of the
objective function and the dependency of the stochastic gradient descent method on example order-
ing. We find that early changes in the parameters have a greater impact on the final region (basin
of attraction of the descent procedure) in which the learner ends up. In particular, unsupervised
pre-training sets the parameter in a region from which better basins of attraction can be reached, in
terms of generalization. Hence, although unsupervised pre-training is a regularizer, it can have a
positive effect on the training objective when the number of training examples is large.

As previously stated, this paper is concerned with an experimental assessment of the various
competing hypotheses regarding the role of unsupervised pre-training in the recent success of deep
learning methods. To this end, we present a series of experiments design to pit these hypotheses
against one another in an attempt to resolve some of the mystery surrounding the effectiveness of
unsupervised pre-training.

In the first set of experiments (in Section 6), we establish the effect of unsupervised pre-training
on improving the generalization error of trained deep architectures. In this section we also exploit
dimensionality reduction techniques to illustrate how unsupervised pre-training affects the location
of minima in parameter space.

In the second set of experiments (in Section 7), we directly compare the two alternative hy-
potheses (pre-training as a pre-conditioner; and pre-training as an optimization scheme) against
the hypothesis that unsupervised pre-training is a regularization strategy. In the final set of experi-
ments, (in Section 8), we explore the role of unsupervised pre-training in the online learning setting,
where the number of available training examples grows very large. In these experiments, we test
key aspects of our hypothesis relating to the topology of the cost function and the role of unsuper-
vised pre-training in manipulating the region of parameter space from which supervised training is
initiated.

Before delving into the experiments, we begin with a more in-depth view of the challenges in
training deep architectures and how we believe unsupervised pre-training works towards overcom-
ing these challenges.
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2. The Challenges of Deep Learning

In this section, we present a perspective on why standard training of deep models through gradient
backpropagation appears to be so difficult. First, it is important to establish what we mean in stating
that training is difficult.

We believe the central challenge in training deep architectures is dealing with the strong depen-
dencies that exist during training between the parameters across layers. One way to conceive the
difficulty of the problem is that we must simultaneously:

1. adapt the lower layers in order to provide adequate input to the final (end of training) setting
of the upper layers

2. adapt the upper layers to make good use of the final (end of training) setting of the lower
layers.

The second problem is easy on its own (i.e., when the final setting of the other layers is known). It is
not clear how difficult is the first one, and we conjecture that a particular difficulty arises when both
sets of layers must be learned jointly, as the gradient of the objective function is limited to a local
measure given the current setting of other parameters. Furthermore, because with enough capacity
the top two layers can easily overfit the training set, training error does not necessarily reveal the
difficulty in optimizing the lower layers. As shown in our experiments here, the standard training
schemes tend to place the parameters in regions of the parameters space that generalize poorly.

A separate but related issue appears if we focus our consideration of traditional training methods
for deep architectures on stochastic gradient descent. A sequence of examples along with an online
gradient descent procedure defines a trajectory in parameter space, which converges in some sense
(the error does not improve anymore, maybe because we are near a local minimum). The hypothesis
is that small perturbations of that trajectory (either by initialization or by changes in which examples
are seen when) have more effect early on. Early in the process of following the stochastic gradient,
changes in the weights tend to increase their magnitude and, consequently, the amount of non-
linearity of the network increases. As this happens, the set of regions accessible by stochastic
gradient descent on samples of the training distribution becomes smaller. Early on in training small
perturbations allow the model parameters to switch from one basin to a nearby one, whereas later
on (typically with larger parameter values), it is unlikely to “escape” from such a basin of attraction.
Hence the early examples can have a larger influence and, in practice, trap the model parameters in
particular regions of parameter space that correspond to the specific and arbitrary ordering of the
training examples.1 An important consequence of this phenomenon is that even in the presence of
a very large (effectively infinite) amounts of supervised data, stochastic gradient descent is subject
to a degree of overfitting to the training data presented early in the training process. In that sense,
unsupervised pre-training interacts intimately with the optimization process, and when the number
of training examples becomes large, its positive effect is seen not only on generalization error but
also on training error.

1. This process seems similar to the “critical period” phenomena observed in neuroscience and psychology (Bornstein,
1987).
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3. Unsupervised Pre-training Acts as a Regularizer

As stated in the introduction, we believe that greedy layer-wise unsupervised pre-training overcomes
the challenges of deep learning by introducing a useful prior to the supervised fine-tuning training
procedure. We claim that the regularization effect is a consequence of the pre-training procedure
establishing an initialization point of the fine-tuning procedure inside a region of parameter space
in which the parameters are henceforth restricted. The parameters are restricted to a relatively small
volume of parameter space that is delineated by the boundary of the local basin of attraction of the
supervised fine-tuning cost function.

The pre-training procedure increases the magnitude of the weights and in standard deep models,
with a sigmoidal nonlinearity, this has the effect of rendering both the function more nonlinear and
the cost function locally more complicated with more topological features such as peaks, troughs
and plateaus. The existence of these topological features renders the parameter space locally more
difficult to travel significant distances via a gradient descent procedure. This is the core of the
restrictive property imposed by the pre-training procedure and hence the basis of its regularizing
properties.

But unsupervised pre-training restricts the parameters to particular regions: those that corre-
spond to capturing structure in the input distribution P(X). To simply state that unsupervised pre-
training is a regularization strategy somewhat undermines the significance of its effectiveness. Not
all regularizers are created equal and, in comparison to standard regularization schemes such as
L1 and L2 parameter penalization, unsupervised pre-training is dramatically effective. We believe
the credit for its success can be attributed to the unsupervised training criteria optimized during
unsupervised pre-training.

During each phase of the greedy unsupervised training strategy, layers are trained to represent
the dominant factors of variation extant in the data. This has the effect of leveraging knowledge
of X to form, at each layer, a representation of X consisting of statistically reliable features of
X that can then be used to predict the output (usually a class label) Y . This perspective places
unsupervised pre-training well within the family of learning strategies collectively know as semi-
supervised methods. As with other recent work demonstrating the effectiveness of semi-supervised
methods in regularizing model parameters, we claim that the effectiveness of the unsupervised pre-
training strategy is limited to the extent that learning P(X) is helpful in learning P(Y |X). Here,
we find transformations of X—learned features—that are predictive of the main factors of variation
in P(X), and when the pre-training strategy is effective,2 some of these learned features of X are
also predictive of Y . In the context of deep learning, the greedy unsupervised strategy may also
have a special function. To some degree it resolves the problem of simultaneously learning the
parameters at all layers (mentioned in Section 2) by introducing a proxy criterion. This proxy
criterion encourages significant factors of variation, present in the input data, to be represented in
intermediate layers.

To clarify this line of reasoning, we can formalize the effect of unsupervised pre-training in
inducing a prior distribution over the parameters. Let us assume that parameters are forced to be
chosen in a bounded region S ⊂ Rd . Let S be split in regions {Rk} that are the basins of attrac-
tion of descent procedures in the training error (note that {Rk} depends on the training set, but the
dependency decreases as the number of examples increases). We have ∪kRk = S and Ri ∩Rj = /0
for i &= j. Let vk =

R

1θ∈Rkdθ be the volume associated with region Rk (where θ are our model’s

2. Acting as a form of (data-dependent) “prior” on the parameters, as we are about to formalize.
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parameters). Let rk be the probability that a purely random initialization (according to our initial-
ization procedure, which factorizes across parameters) lands in Rk, and let πk be the probability that
pre-training (following a random initialization) lands in Rk, that is, ∑k rk = ∑k πk = 1. We can now
take into account the initialization procedure as a regularization term:

regularizer= − logP(θ).

For pre-trained models, the prior is

Ppre−training(θ) =∑
k
1θ∈Rkπk/vk.

For the models without unsupervised pre-training, the prior is

Pno−pre−training(θ) =∑
k
1θ∈Rkrk/vk.

One can verify that Ppre−training(θ ∈ Rk) = πk and Pno−pre−training(θ ∈ Rk) = rk. When πk is tiny, the
penalty is high when θ ∈ Rk, with unsupervised pre-training. The derivative of this regularizer is
zero almost everywhere because we have chosen a uniform prior inside each region Rk. Hence, to
take the regularizer into account, and having a generative model Ppre−training(θ) for θ (i.e., this is
the unsupervised pre-training procedure), it is reasonable to sample an initial θ from it (knowing
that from this point on the penalty will not increase during the iterative minimization of the training
criterion), and this is exactly how the pre-trained models are obtained in our experiments.

Note that this formalization is just an illustration: it is there to simply show how one could
conceptually think of an initialization point as a regularizer and should not be taken as a literal
interpretation of how regularization is explicitly achieved, since we do not have an analytic formula
for computing the πk’s and vk’s. Instead these are implicitly defined by the whole unsupervised
pre-training procedure.

4. Previous Relevant Work

We start with an overview of the literature on semi-supervised learning (SSL), since the SSL frame-
work is essentially the one in which we operate as well.

4.1 Related Semi-Supervised Methods

It has been recognized for some time that generative models are less prone to overfitting than dis-
criminant ones (Ng and Jordan, 2002). Consider input variable X and target variable Y . Whereas a
discriminant model focuses on P(Y |X), a generative model focuses on P(X ,Y ) (often parametrized
as P(X |Y )P(Y )), that is, it also cares about getting P(X) right, which can reduce the freedom of
fitting the data when the ultimate goal is only to predict Y given X .

Exploiting information about P(X) to improve generalization of a classifier has been the driving
idea behind semi-supervised learning (Chapelle et al., 2006). For example, one can use unsupervised
learning to map X into a representation (also called embedding) such that two examples x1 and x2
that belong to the same cluster (or are reachable through a short path going through neighboring ex-
amples in the training set) end up having nearby embeddings. One can then use supervised learning
(e.g., a linear classifier) in that new space and achieve better generalization in many cases (Belkin
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and Niyogi, 2002; Chapelle et al., 2003). A long-standing variant of this approach is the applica-
tion of Principal Components Analysis as a pre-processing step before applying a classifier (on the
projected data). In these models the data is first transformed in a new representation using unsu-
pervised learning, and a supervised classifier is stacked on top, learning to map the data in this new
representation into class predictions.

Instead of having separate unsupervised and supervised components in the model, one can con-
sider models in which P(X) (or P(X ,Y )) and P(Y |X) share parameters (or whose parameters are
connected in some way), and one can trade-off the supervised criterion − logP(Y |X) with the un-
supervised or generative one (− logP(X) or − logP(X ,Y )). It can then be seen that the generative
criterion corresponds to a particular form of prior (Lasserre et al., 2006), namely that the structure of
P(X) is connected to the structure of P(Y |X) in a way that is captured by the shared parametrization.
By controlling how much of the generative criterion is included in the total criterion, one can find a
better trade-off than with a purely generative or a purely discriminative training criterion (Lasserre
et al., 2006; Larochelle and Bengio, 2008).

In the context of deep architectures, a very interesting application of these ideas involves adding
an unsupervised embedding criterion at each layer (or only one intermediate layer) to a traditional
supervised criterion (Weston et al., 2008). This has been shown to be a powerful semi-supervised
learning strategy, and is an alternative to the kind of algorithms described and evaluated in this
paper, which also combine unsupervised learning with supervised learning.

In the context of scarcity of labelled data (and abundance of unlabelled data), deep architectures
have shown promise as well. Salakhutdinov and Hinton (2008) describe a method for learning the
covariance matrix of a Gaussian Process, in which the usage of unlabelled examples for modeling
P(X) improves P(Y |X) quite significantly. Note that such a result is to be expected: with few la-
belled samples, modeling P(X) usually helps. Our results show that even in the context of abundant
labelled data, unsupervised pre-training still has a pronounced positive effect on generalization: a
somewhat surprising conclusion.

4.2 Early Stopping as a Form of Regularization

We stated that pre-training as initialization can be seen as restricting the optimization procedure to
a relatively small volume of parameter space that corresponds to a local basin of attraction of the
supervised cost function. Early stopping can be seen as having a similar effect, by constraining the
optimization procedure to a region of the parameter space that is close to the initial configuration
of parameters. With τ the number of training iterations and η the learning rate used in the update
procedure, τη can be seen as the reciprocal of a regularization parameter. Indeed, restricting either
quantity restricts the area of parameter space reachable from the starting point. In the case of the
optimization of a simple linear model (initialized at the origin) using a quadratic error function and
simple gradient descent, early stopping will have a similar effect to traditional regularization.

Thus, in both pre-training and early stopping, the parameters of the supervised cost function
are constrained to be close to their initial values.3 A more formal treatment of early stopping as
regularization is given by Sjöberg and Ljung (1995) and Amari et al. (1997). There is no equivalent
treatment of pre-training, but this paper sheds some light on the effects of such initialization in the
case of deep architectures.

3. In the case of pre-training the “initial values” of the parameters for the supervised phase are those that were obtained
at the end of pre-training.
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5. Experimental Setup and Methodology

In this section, we describe the setting in which we test the hypothesis introduced in Section 3 and
previously proposed hypotheses. The section includes a description of the deep architectures used,
the data sets and the details necessary to reproduce our results.

5.1 Models

All of the successful methods (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2007; Ranzato et al., 2007; Vincent et al., 2008; Weston et al., 2008; Ranzato et al., 2008; Lee
et al., 2008) in the literature for training deep architectures have something in common: they rely
on an unsupervised learning algorithm that provides a training signal at the level of a single layer.
Most work in two main phases. In a first phase, unsupervised pre-training, all layers are initialized
using this layer-wise unsupervised learning signal. In a second phase, fine-tuning, a global training
criterion (a prediction error, using labels in the case of a supervised task) is minimized. In the
algorithms initially proposed (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007), the
unsupervised pre-training is done in a greedy layer-wise fashion: at stage k, the k-th layer is trained
(with respect to an unsupervised criterion) using as input the output of the previous layer, and while
the previous layers are kept fixed.

We shall consider two deep architectures as representatives of two families of models encoun-
tered in the deep learning literature.

5.1.1 DEEP BELIEF NETWORKS

The first model is the Deep Belief Net (DBN) by Hinton et al. (2006), obtained by training and
stacking several layers of Restricted Boltzmann Machines (RBM) in a greedy manner. Once this
stack of RBMs is trained, it can be used to initialize a multi-layer neural network for classification.

An RBM with n hidden units is a Markov Random Field (MRF) for the joint distribution be-
tween hidden variables hi and observed variables x j such that P(h|x) and P(x|h) factorize, that is,
P(h|x) =∏i P(hi|x) and P(x|h) =∏ j P(x j|h). The sufficient statistics of the MRF are typically hi,
x j and hix j, which gives rise to the following joint distribution:

P(x,h) ∝ eh
′Wx+b′x+c′h

with corresponding parameters θ = (W,b,c) (with ′ denoting transpose, ci associated with hi, b j
with x j, andWi j with hix j). If we restrict hi and x j to be binary units, it is straightforward to show
that

P(x|h) = ∏
j
P(x j|h) with

P(x j = 1|h) = sigmoid(b j +∑
i
Wi jhi).

where sigmoid(a) = 1/(1+exp(−a)) (applied element-wise on a vector a), and P(h|x) also has
a similar form:

P(h|x) = ∏
i
P(hi|x) with

P(hi = 1|x) = sigmoid(ci+∑
j
Wi jx j).
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The RBM form can be generalized to other conditional distributions besides the binomial, including
continuous variables. Welling et al. (2005) describe a generalization of RBM models to conditional
distributions from the exponential family.

RBM models can be trained by approximate stochastic gradient descent. Although P(x) is
not tractable in an RBM, the Contrastive Divergence estimator (Hinton, 2002) is a good stochastic
approximation of ∂ logP(x)

∂θ , in that it very often has the same sign (Bengio and Delalleau, 2009).
A DBN is a multi-layer generative model with layer variables h0 (the input or visible layer),

h1, h2, etc. The top two layers have a joint distribution which is an RBM, and P(hk|hk+1) are
parametrized in the same way as for an RBM. Hence a 2-layer DBN is an RBM, and a stack of RBMs
share parametrization with a corresponding DBN. The contrastive divergence update direction can
be used to initialize each layer of a DBN as an RBM, as follows. Consider the first layer of the DBN
trained as an RBM P1 with hidden layer h1 and visible layer v1. We can train a second RBM P2
that models (in its visible layer) the samples h1 from P1(h1|v1) when v1 is sampled from the training
data set. It can be shown that this maximizes a lower bound on the log-likelihood of the DBN. The
number of layers can be increased greedily, with the newly added top layer trained as an RBM to
model the samples produced by chaining the posteriors P(hk|hk−1) of the lower layers (starting from
h0 from the training data set).

The parameters of a DBN or of a stack of RBMs also correspond to the parameters of a de-
terministic feed-forward multi-layer neural network. The i-th unit of the k-th layer of the neural
network outputs ĥki = sigmoid(cki+∑ jWki jĥk−1, j), using the parameters ck andWk of the k-th layer
of the DBN. Hence, once the stack of RBMs or the DBN is trained, one can use those parameters to
initialize the first layers of a corresponding multi-layer neural network. One or more additional lay-
ers can be added to map the top-level features ĥk to the predictions associated with a target variable
(here the probabilities associated with each class in a classification task). Bengio (2009) provides
more details on RBMs and DBNs, and a survey of related models and deep architectures.

5.1.2 STACKED DENOISING AUTO-ENCODERS

The second model, by Vincent et al. (2008), is the so-called Stacked Denoising Auto-Encoder
(SDAE). It borrows the greedy principle from DBNs, but uses denoising auto-encoders as a building
block for unsupervised modeling. An auto-encoder learns an encoder h(·) and a decoder g(·) whose
composition approaches the identity for examples in the training set, that is, g(h(x))≈ x for x in the
training set.

Assuming that some constraint prevents g(h(·)) from being the identity for arbitrary arguments,
the auto-encoder has to capture statistical structure in the training set in order to minimize recon-
struction error. However, with a high capacity code (h(x) has too many dimensions), a regular
auto-encoder could potentially learn a trivial encoding. Note that there is an intimate connection
between minimizing reconstruction error for auto-encoders and contrastive divergence training for
RBMs, as both can be shown to approximate a log-likelihood gradient (Bengio and Delalleau, 2009).

The denoising auto-encoder (Vincent et al., 2008; Seung, 1998; LeCun, 1987; Gallinari et al.,
1987) is a stochastic variant of the ordinary auto-encoder with the distinctive property that even with
a high capacity model, it cannot learn the identity mapping. A denoising autoencoder is explicitly
trained to denoise a corrupted version of its input. Its training criterion can also be viewed as a
variational lower bound on the likelihood of a specific generative model. It has been shown on an
array of data sets to perform significantly better than ordinary auto-encoders and similarly or better
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than RBMs when stacked into a deep supervised architecture (Vincent et al., 2008). Another way to
prevent regular auto-encoders with more code units than inputs to learn the identity is to restrict the
capacity of the representation by imposing sparsity on the code (Ranzato et al., 2007, 2008).

We now summarize the training algorithm of the Stacked Denoising Auto-Encoders. More de-
tails are given by Vincent et al. (2008). Each denoising auto-encoder operates on its inputs x, either
the raw inputs or the outputs of the previous layer. The denoising auto-encoder is trained to recon-
struct x from a stochastically corrupted (noisy) transformation of it. The output of each denoising
auto-encoder is the “code vector” h(x), not to confuse with the reconstruction obtained by applying
the decoder to that code vector. In our experiments h(x) = sigmoid(b+Wx) is an ordinary neural
network layer, with hidden unit biases b, and weight matrixW . LetC(x) represent a stochastic cor-
ruption of x. As done by Vincent et al. (2008), we setCi(x) = xi or 0, with a random subset (of a fixed
size) selected for zeroing. We have also considered a salt and pepper noise, where we select a ran-
dom subset of a fixed size and setCi(x) =Bernoulli(0.5). The denoised “reconstruction” is obtained
from the noisy input with x̂= sigmoid(c+WTh(C(x))), using biases c and the transpose of the feed-
forward weights W . In the experiments on images, both the raw input xi and its reconstruction x̂i
for a particular pixel i can be interpreted as a Bernoulli probability for that pixel: the probability
of painting the pixel as black at that location. We denote CE(x||x̂) = ∑iCE(xi||x̂i) the sum of the
component-wise cross-entropy between the Bernoulli probability distributions associated with each
element of x and its reconstruction probabilities x̂: CE(x||x̂) = −∑i (xilog x̂i+(1− xi) log(1− x̂i)).
The Bernoulli model only makes sense when the input components and their reconstruction are in
[0,1]; another option is to use a Gaussian model, which corresponds to a Mean Squared Error (MSE)
criterion.

With either DBN or SDAE, an output logistic regression layer is added after unsupervised
training. This layer uses softmax (multinomial logistic regression) units to estimate P(class|x) =
softmaxclass(a), where ai is a linear combination of outputs from the top hidden layer. The whole
network is then trained as usual for multi-layer perceptrons, to minimize the output (negative log-
likelihood) prediction error.

5.2 Data Sets

We experimented on three data sets, with the motivation that our experiments would help understand
previously presented results with deep architectures, which were mostly with the MNIST data set
and variations (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007;
Vincent et al., 2008):

MNIST the digit classification data set by LeCun et al. (1998), containing 60,000 training and
10,000 testing examples of 28x28 handwritten digits in gray-scale.

InfiniteMNIST a data set by Loosli et al. (2007), which is an extension of MNIST from which
one can obtain a quasi-infinite number of examples. The samples are obtained by performing
random elastic deformations of the original MNIST digits. In this data set, there is only one set
of examples, and the models will be compared by their (online) performance on it.

Shapeset is a synthetic data set with a controlled range of geometric invariances. The underlying
task is binary classification of 10× 10 images of triangles and squares. The examples show
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images of shapes with many variations, such as size, orientation and gray-level. The data set
is composed of 50000 training, 10000 validation and 10000 test images.4

5.3 Setup

The models used are

1. Deep Belief Networks containing Bernoulli RBM layers,

2. Stacked Denoising Auto-Encoders with Bernoulli input units, and

3. standard feed-forward multi-layer neural networks,

each with 1–5 hidden layers. Each hidden layer contains the same number of hidden units, which
is a hyperparameter. The other hyperparameters are the unsupervised and supervised learning rates,
the L2 penalty / weight decay,5 and the fraction of stochastically corrupted inputs (for the SDAE).
For MNIST, the number of supervised and unsupervised passes through the data (epochs) is 50 and
50 per layer, respectively. With InfiniteMNIST, we perform 2.5 million unsupervised updates
followed by 7.5 million supervised updates.6 The standard feed-forward networks are trained using
10 million supervised updates. For MNIST, model selection is done by choosing the hyperparameters
that optimize the supervised (classification) error on the validation set. For InfiniteMNIST, we use
the average online error over the last million examples for hyperparameter selection. In all cases,
purely stochastic gradient updates are applied.

The experiments involve the training of deep architectures with a variable number of layers
with and without unsupervised pre-training. For a given layer, weights are initialized using random
samples from uniform[−1/

√
k,1/

√
k], where k is the number of connections that a unit receives

from the previous layer (the fan-in). Either supervised gradient descent or unsupervised pre-training
follows.

In most cases (for MNIST), we first launched a number of experiments using a cross-product of
hyperparameter values7 applied to 10 different random initialization seeds. We then selected the
hyperparameter sets giving the best validation error for each combination of model (with or without
pre-training), number of layers, and number of training iterations. Using these hyper-parameters,
we launched experiments using an additional 400 initialization seeds. For InfiniteMNIST, only
one seed is considered (an arbitrarily chosen value).

In the discussions below we sometimes use the word apparent local minimum to mean the
solution obtained after training, when no further noticeable progress seems achievable by stochastic
gradient descent. It is possible that these are not really near a true local minimum (there could be a
tiny ravine towards significant improvement, not accessible by gradient descent), but it is clear that
these end-points represent regions where gradient descent is stuck. Note also that when we write of
number of layers it is to be understood as the number of hidden layers in the network.

4. The data set can be downloaded from http://www.iro.umontreal.ca/˜lisa/twiki/bin/view.cgi/Public/
ShapesetDataForJMLR.

5. A penalizing term λ||θ||22 is added to the supervised objective, where θ are the weights of the network, and λ is a
hyper-parameter modulating the strength of the penalty.

6. The number of examples was chosen to be as large as possible, while still allowing for the exploration a variety of
hyper-parameters.

7. Number of hidden units ∈ {400,800,1200}; learning rate ∈ {0.1,0.05,0.02,0.01,0.005}; !2 penalty coefficient
λ ∈ {10−4,10−5,10−6,0}; pre-training learning rate ∈ {0.01,0.005,0.002,0.001,0.0005}; corruption probability
∈ {0.0,0.1,0.25,0.4}; tied weights ∈ {yes,no}.
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6. The Effect of Unsupervised Pre-training

We start by a presentation of large-scale simulations that were intended to confirm some of the
previously published results about deep architectures. In the process of analyzing them, we start
making connections to our hypotheses and motivate the experiments that follow.

6.1 Better Generalization

When choosing the number of units per layer, the learning rate and the number of training iterations
to optimize classification error on the validation set, unsupervised pre-training gives substantially
lower test classification error than no pre-training, for the same depth or for smaller depth on various
vision data sets (Ranzato et al., 2007; Bengio et al., 2007; Larochelle et al., 2009, 2007; Vincent
et al., 2008) no larger than the MNIST digit data set (experiments reported from 10,000 to 50,000
training examples).

Such work was performed with only one or a handful of different random initialization seeds,
so one of the goals of this study was to ascertain the effect of the random seed used when initial-
izing ordinary neural networks (deep or shallow) and the pre-training procedure. For this purpose,
between 50 and 400 different seeds were used to obtain the graphics on MNIST.

Figure 1: Effect of depth on performance for a model trained (left) without unsupervised pre-
training and (right) with unsupervised pre-training, for 1 to 5 hidden layers (networks
with 5 layers failed to converge to a solution, without the use of unsupervised pre-
training). Experiments on MNIST. Box plots show the distribution of errors associated
with 400 different initialization seeds (top and bottom quartiles in box, plus outliers be-
yond top and bottom quartiles). Other hyperparameters are optimized away (on the val-
idation set). Increasing depth seems to increase the probability of finding poor apparent
local minima.

Figure 1 shows the resulting distribution of test classification error, obtained with and without
pre-training, as we increase the depth of the network. Figure 2 shows these distributions as his-
tograms in the case of 1 and 4 layers. As can be seen in Figure 1, unsupervised pre-training allows

636



WHY DOES UNSUPERVISED PRE-TRAINING HELP DEEP LEARNING?

classification error to go down steadily as we move from 1 to 4 hidden layers, whereas without
pre-training the error goes up after 2 hidden layers. It should also be noted that we were unable to
effectively train 5-layer models without use of unsupervised pre-training. Not only is the error ob-
tained on average with unsupervised pre-training systematically lower than without the pre-training,
it appears also more robust to the random initialization. With unsupervised pre-training the variance
stays at about the same level up to 4 hidden layers, with the number of bad outliers growing slowly.

Contrast this with the case without pre-training: the variance and number of bad outliers grows
sharply as we increase the number of layers beyond 2. The gain obtained with unsupervised pre-
training is more pronounced as we increase the number of layers, as is the gain in robustness to
random initialization. This can be seen in Figure 2. The increase in error variance and mean for
deeper architectures without pre-training suggests that increasing depth increases the probability
of finding poor apparent local minimawhen starting from random initialization. It is also interest-
ing to note the low variance and small spread of errors obtained with 400 seeds with unsupervised
pre-training: it suggests that unsupervised pre-training is robust with respect to the random
initialization seed (the one used to initialize parameters before pre-training).

Figure 2: Histograms presenting the test errors obtained on MNIST using models trained with or
without pre-training (400 different initializations each). Left: 1 hidden layer. Right: 4
hidden layers.

These experiments show that the variance of final test error with respect to initialization random
seed is larger without pre-training, and this effect is magnified for deeper architectures. It should
however be noted that there is a limit to the success of this technique: performance degrades for 5
layers on this problem.

6.2 Visualization of Features

Figure 3 shows the weights (called filters) of the first layer of the DBN before and after supervised
fine-tuning. For visualizing what units do on the 2nd and 3rd layer, we used the activation maxi-
mization technique described by Erhan et al. (2009): to visualize what a unit responds most to, the
method looks for the bounded input pattern that maximizes the activation of a given unit. This is an
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optimization problem which is solved by performing gradient ascent in the space of the inputs, to
find a local maximum of the activation function. Interestingly, nearly the same maximal activation
input pattern is recovered from most random initializations of the input pattern.

Figure 3: Visualization of filters learned by a DBN trained on InfiniteMNIST. The top figures
contain a visualization of filters after pre-training, while the bottoms ones picture the
same units after supervised fine-tuning; from left to right: units from the 1st, 2nd and 3rd
layers, respectively.

For comparison, we have also visualized the filters of a network for 1–3 layers in which no pre-
training was performed (Figure 4). While the first layer filters do seem to correspond to localized
features, 2nd and 3rd layers are not as interpretable anymore. Qualitatively speaking, filters from
the bottom row of Figure 3 and those from Figure 4 have little in common, which is an interesting
conclusion in itself. In addition, there seems to be more interesting visual structures in the features
learned in networks with unsupervised pre-training.

Several interesting conclusions can be drawn from Figure 3. First, supervised fine-tuning (after
unsupervised pre-training), even with 7.5 million updates, does not change the weights in a signif-
icant way (at least visually): they seem stuck in a certain region of weight space, and the sign of
weights does not change after fine-tuning (hence the same pattern is seen visually). Second, dif-
ferent layers change differently: the first layer changes least, while supervised training has more
effect when performed on the 3rd layer. Such observations are consistent with the predictions made
by our hypothesis: namely that the early dynamics of stochastic gradient descent, the dynamics in-
duced by unsupervised pre-training, can “lock” the training in a region of the parameter space that
is essentially inaccessible for models that are trained in a purely supervised way.

Finally, the features increase in complexity as we add more layers. First layer weights seem
to encode basic stroke-like detectors, second layer weights seem to detect digit parts, while top
layer weights detect entire digits. The features are more complicated as we add more layers, and
displaying only one image for each “feature” does not do justice to the non-linear nature of that
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feature. For example, it does not show the set of patterns on which the feature is highly active (or
highly inactive).

While Figures 3–4 show only the filters obtained on InfiniteMNIST, the visualizations are
similar when applied on MNIST. Likewise, the features obtained with SDAE result in qualitatively
similar conclusions; Erhan et al. (2009) gives more details.

Figure 4: Visualization of filters learned by a network without pre-training, trained on
InfiniteMNIST. The filters are shown after supervised training; from left to right: units
from the 1st, 2nd and 3rd layers, respectively.

6.3 Visualization of Model Trajectories During Learning

Visualizing the learned features allows for a qualitative comparison of the training strategies for
deep architectures. However it is not useful for investigating how these strategies are influenced
by random initialization, as the features learned from multiple initializations look similar. If it
was possible for us to visualize a variety of models at the same time, it would allow us to explore
our hypothesis, and ascertain to what degree and how the set of pre-trained models (for different
random seeds) is far from the set of models without pre-training. Do these two sets cover very
different regions in parameter space? Are parameter trajectories getting stuck in many different
apparent local minima?

Unfortunately, it is not possible to directly compare parameter values of two architectures, be-
cause many permutations of the same parameters give rise to the same model. However, one can
take a functional approximation approach in which we compare the function (from input to output)
represented by each network, rather than comparing the parameters. The function is the infinite
ordered set of output values associated with all possible inputs, and it can be approximated with
a finite number of inputs (preferably plausible ones). To visualize the trajectories followed during
training, we use the following procedure. For a given model, we compute and concatenate all its
outputs on the test set examples as one long vector summarizing where it stands in “function space”.
We get one such vector for each partially trained model (at each training iteration). This allows us
to plot many learning trajectories, one for each initialization seed, with or without pre-training. Us-
ing a dimensionality reduction algorithm we then map these vectors to a two-dimensional space for
visualization.8 Figures 5 and 6 present the results using dimensionality reduction techniques that

8. Note that we can and do project the models with and without pre-training at the same time, so as to visualize them in
the same space.
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focus respectively on local9 and global structure.10 Each point is colored according to the training
iteration, to help follow the trajectory movement.
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Figure 5: 2D visualizations with tSNE of the functions represented by 50 networks with and 50 net-
works without pre-training, as supervised training proceeds over MNIST. See Section 6.3
for an explanation. Color from dark blue to cyan and red indicates a progression in train-
ing iterations (training is longer without pre-training). The plot shows models with 2
hidden layers but results are similar with other depths.

What seems to come out of these visualizations is the following:

1. The pre-trained and not pre-trained models start and stay in different regions of function
space.

2. From the visualization focusing on local structure (Figure 5) we see that all trajectories of
a given type (with pre-training or without) initially move together. However, at some point
(after about 7 epochs) the different trajectories (corresponding to different random seeds)
diverge (slowing down into elongated jets) and never get back close to each other (this is
more true for trajectories of networks without pre-training). This suggests that each trajectory
moves into a different apparent local minimum.11

9. t-Distributed Stochastic Neighbor Embedding, or tSNE, by van der Maaten and Hinton (2008), with the default pa-
rameters available in the public implementation: http://ict.ewi.tudelft.nl/˜lvandermaaten/t-SNE.html.

10. Isomap by Tenenbaum et al. (2000), with one connected component.
11. One may wonder if the divergence points correspond to a turning point in terms of overfitting. As shall be seen in

Figure 8, the test error does not improve much after the 7th epoch, which reinforces this hypothesis.
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Figure 6: 2D visualization with ISOMAP of the functions represented by 50 networks with and
50 networks without pre-training, as supervised training proceeds over MNIST. See Sec-
tion 6.3 for an explanation. Color from dark blue to cyan indicates a progression in
training iterations (training is longer without pre-training). The plot shows models with
2 hidden layers but results are similar with other depths.

3. From the visualization focusing on global structure (Figure 6), we see the pre-trained models
live in a disjoint and much smaller region of space than the not pre-trained models. In fact,
from the standpoint of the functions found without pre-training, the pre-trained solutions
look all the same, and their self-similarity increases (variance across seeds decreases) during
training, while the opposite is observed without pre-training. This is consistent with the
formalization of pre-training from Section 3, in which we described a theoretical justification
for viewing unsupervised pre-training as a regularizer; there, the probabilities of pre-traininig
parameters landing in a basin of attraction is small.

The visualizations of the training trajectories do seem to confirm our suspicions. It is difficult
to guarantee that each trajectory actually does end up in a different local minimum (corresponding
to a different function and not only to different parameters). However, all tests performed (visual
inspection of trajectories in function space, but also estimation of second derivatives in the directions
of all the estimated eigenvectors of the Jacobian not reported in details here) were consistent with
that interpretation.

We have also analyzed models obtained at the end of training, to visualize the training criterion
in the neighborhood of the parameter vector θ∗ obtained. This is achieved by randomly sampling
a direction v (from the stochastic gradient directions) and by plotting the training criterion around
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θ∗ in that direction, that is, at θ = θ∗ +αv, for α ∈ {−2.5,−2.4, . . . ,−0.1,0,0.1, . . .2.4,2.5}, and
v normalized (||v|| = 1). This analysis is visualized in Figure 7. The error curves look close to
quadratic and we seem to be near a local minimum in all directions investigated, as opposed to a
saddle point or a plateau. A more definite answer could be given by computing the full Hessian
eigenspectrum, which would be expensive. Figure 7 also suggests that the error landscape is a bit
flatter in the case of unsupervised pre-training, and flatter for deeper architectures.

Figure 7: Training errors obtained on Shapeset when stepping in parameter space around a con-
verged model in 7 random gradient directions (stepsize of 0.1). Top: no pre-training.
Bottom: with unsupervised pre-training. Left: 1 hidden layer. Middle: 2 hidden lay-
ers. Right: 3 hidden layers. Compare also with Figure 8, where 1-layer networks with
unsupervised pre-training obtain higher training errors.

6.4 Implications

The series of results presented so far show a picture that is consistent with our hypothesis. Better
generalization that seems to be robust to random initializations is indeed achieved by pre-trained
models, which indicates that unsupervised learning of P(X) is helpful in learning P(Y |X). The
function space landscapes that we visualized point to the fact that there are many apparent local
minima. The pre-trained models seem to end up in distinct regions of these error landscapes (and,
implicitly, in different parts of the parameter space). This is both seen from the function space
trajectories and from the fact that the visualizations of the learned features are qualitatively very
different from those obtained by models without pre-training.

7. The Role of Unsupervised Pre-training

The observations so far in this paper confirm that starting the supervised optimization from pre-
trained weights rather than from randomly initialized weights consistently yields better performing
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classifiers on MNIST. To better understand where this advantage came from, it is important to realize
that the supervised objective being optimized is exactly the same in both cases. The gradient-based
optimization procedure is also the same. The only thing that differs is the starting point in parameter
space: either picked at random or obtained after unsupervised pre-training (which also starts from a
random initialization).

Deep architectures, since they are built from the composition of several layers of non-linearities,
yield an error surface that is non-convex and hard to optimize, with the suspected presence of many
local minima (as also shown by the above visualizations). A gradient-based optimization should
thus end in the apparent local minimum of whatever basin of attraction we started from. From
this perspective, the advantage of unsupervised pre-training could be that it puts us in a region of
parameter space where basins of attraction run deeper than when picking starting parameters at
random. The advantage would be due to a better optimization.

Now it might also be the case that unsupervised pre-training puts us in a region of parameter
space in which training error is not necessarily better than when starting at random (or possibly
worse), but which systematically yields better generalization (test error). Such behavior would be
indicative of a regularization effect. Note that the two forms of explanation are not necessarily
mutually exclusive.

Finally, a very simple explanation could be the most obvious one: namely the disparity in the
magnitude of the weights (or more generally, the marginal distribution of the weights) at the start of
the supervised training phase. We shall analyze (and rule out) this hypothesis first.

7.1 Experiment 1: Does Pre-training Provide a Better Conditioning Process for Supervised
Learning?

Typically gradient descent training of the deep model is initialized with randomly assigned weights,
small enough to be in the linear region of the parameter space (close to zero for most neural network
and DBNmodels). It is reasonable to ask if the advantage imparted by having an initial unsupervised
pre-training phase is simply due to the weights being larger and therefore somehow providing a
better “conditioning” of the initial values for the optimization process; we wanted to rule out this
possibility.

By conditioning, we mean the range and marginal distribution from which we draw initial
weights. In other words, could we get the same performance advantage as unsupervised pre-training
if we were still drawing the initial weights independently, but from a more suitable distribution than
the uniform[−1/

√
k,1/

√
k]? To verify this, we performed unsupervised pre-training, and computed

marginal histograms for each layer’s pre-trained weights and biases (one histogram per each layer’s
weights and biases). We then resampled new “initial” random weights and biases according to these
histograms (independently for each parameter), and performed fine-tuning from there. The resulting
parameters have the same marginal statistics as those obtained after unsupervised pre-training, but
not the same joint distribution.

Two scenarios can be imagined. In the first, the initialization from marginals would lead to
significantly better performance than the standard initialization (when no pre-training is used).
This would mean that unsupervised pre-training does provide a better marginal conditioning of
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the weights. In the second scenario, the marginals would lead to performance similar to or worse
than that without pre-training.12

initialization. Uniform Histogram Unsup.pre-tr.
1 layer 1.81±0.07 1.94±0.09 1.41±0.07
2 layers 1.77±0.10 1.69±0.11 1.37±0.09

Table 1: Effect of various initialization strategies on 1 and 2-layer architectures: independent uni-
form densities (one per parameter), independent densities from the marginals after un-
supervised pre-training, or unsupervised pre-training (which samples the parameters in a
highly dependent way so that they collaborate to make up good denoising auto-encoders.)
Experiments on MNIST, numbers are mean and standard deviation of test errors (across
different initialization seeds).

What we observe in Table 1 seems to fall within the first scenario. However, while initializing
the weights to match the marginal distributions at the end of pre-training appears to slightly improve
the generalization error on MNIST for 2 hidden layers, the difference is not significant and it is far
from fully accounting for the discrepancy between the pre-trained and non-pre-trained results.

This experiment constitutes evidence against the preconditioning hypothesis, but does not ex-
clude either the optimization hypothesis or the regularization hypothesis.

7.2 Experiment 2: The Effect of Pre-training on Training Error

The optimization and regularization hypotheses diverge on their prediction on how unsupervised
pre-training should affect the training error: the former predicts that unsupervised pre-training
should result in a lower training error, while the latter predicts the opposite. To ascertain the influ-
ence of these two possible explanatory factors, we looked at the test cost (Negative Log Likelihood
on test data) obtained as a function of the training cost, along the trajectory followed in parameter
space by the optimization procedure. Figure 8 shows 400 of these curves started from a point in
parameter space obtained from random initialization, that is, without pre-training (blue), and 400
started from pre-trained parameters (red).

The experiments were performed for networks with 1, 2 and 3 hidden layers. As can be seen
in Figure 8, while for 1 hidden layer, unsupervised pre-training reaches lower training cost than no
pre-training, hinting towards a better optimization, this is not necessarily the case for the deeper
networks. The remarkable observation is rather that, at a same training cost level, the pre-trained
models systematically yield a lower test cost than the randomly initialized ones. The advantage
appears to be one of better generalization rather than merely a better optimization procedure.

This brings us to the following result: unsupervised pre-training appears to have a similar effect
to that of a good regularizer or a good “prior” on the parameters, even though no explicit regular-
ization term is apparent in the cost being optimized. As we stated in the hypothesis, it might be
reasoned that restricting the possible starting points in parameter space to those that minimize the
unsupervised pre-training criterion (as with the SDAE), does in effect restrict the set of possible

12. We observed that the distribution of weights after unsupervised pre-training is fat-tailed. It is conceivable that sam-
pling from such a distribution in order to initialize a deep architecture might actually hurt the performance of a deep
architecture (compared to random initialization from a uniform distribution).
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Figure 8: Evolution without pre-training (blue) and with pre-training (red) on MNIST of the log of
the test NLL plotted against the log of the train NLL as training proceeds. Each of the
2× 400 curves represents a different initialization. The errors are measured after each
pass over the data. The rightmost points were measured after the first pass of gradient
updates. Since training error tends to decrease during training, the trajectories run from
right (high training error) to left (low training error). Trajectories moving up (as we go
leftward) indicate a form of overfitting. All trajectories are plotted on top of each other.

final configurations for parameter values. Like regularizers in general, unsupervised pre-training (in
this case, with denoising auto-encoders) might thus be seen as decreasing the variance and introduc-
ing a bias (towards parameter configurations suitable for performing denoising). Unlike ordinary
regularizers, unsupervised pre-training does so in a data-dependent manner.

7.3 Experiment 3: The Influence of the Layer Size

Another signature characteristic of regularization is that the effectiveness of regularization increases
as capacity (e.g., the number of hidden units) increases, effectively trading off one constraint on the
model complexity for another. In this experiment we explore the relationship between the number of
units per layer and the effectiveness of unsupervised pre-training. The hypothesis that unsupervised
pre-training acts as a regularizer would suggest that we should see a trend of increasing effectiveness
of unsupervised pre-training as the number of units per layer are increased.

We trained models on MNIST with and without pre-training using increasing layer sizes: 25,
50, 100, 200, 400, 800 units per layer. Results are shown in Figure 9. Qualitatively similar results
were obtained on Shapeset. In the case of SDAE, we were expecting the denoising pre-training
procedure to help classification performance most for large layers; this is because the denoising
pre-training allows useful representations to be learned in the over-complete case, in which a layer
is larger than its input (Vincent et al., 2008). What we observe is a more systematic effect: while
unsupervised pre-training helps for larger layers and deeper networks, it also appears to hurt for too
small networks.

Figure 9 also shows that DBNs behave qualitatively like SDAEs, in the sense that unsupervised
pre-training architectures with smaller layers hurts performance. Experiments on InfiniteMNIST
reveal results that are qualitatively the same. Such an experiment seemingly points to a re-verification
of the regularization hypothesis. In this case, it would seem that unsupervised pre-training acts as an
additional regularizer for both DBN and SDAE models—on top of the regularization provided by
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Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments on MNIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smaller layer sizes
and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-
ization error increases, and it increases more with unsupervised pre-training presumably because of
the extra regularization effect: small networks have a limited capacity already so further restricting
it (or introducing an additional bias) can harm generalization. Such a result seems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input
transformations (in the hidden layers) that are useful at capturing the main variations in the input
distribution P(X). It may be that only a small subset of these variations are relevant for predicting
the class label Y . When the hidden layers are small it is less likely that the transformations for
predicting Y are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1–3 results are consistent with the regularization hypothesis and Experiments 2–3
would appear to directly support the regularization hypothesis over the alternative—that unsuper-
vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Bengio et al. (2007)
constrained the top layer of a deep network to have 20 units and measured the training error of
networks with and without pre-training. The idea was to prevent the networks from overfitting the
training error simply with the top hidden layer, thus to make it clearer whether some optimization
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effect (of the lower layers) was going on. The reported training and test errors were lower for pre-
trained networks. One problem with the experimental paradigm used by Bengio et al. (2007) is their
use of early stopping. This is problematic because, as previously mentioned, early stopping is itself
a regularizer, and it can influence greatly the training error that is obtained. It is conceivable that if
Bengio et al. (2007) had run the models to convergence, the results could have been different. We
needed to verify this.

Figure 10 shows what happens without early stopping. The training error is still higher for
pre-trained networks even though the generalization error is lower. This result now favors the regu-
larization hypothesis against the optimization story. What may have happened is that early stopping
prevented the networks without pre-training from moving too much towards their apparent local
minimum.

Figure 10: For MNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of training. The
top layer is constrained to 20 units.

7.5 Experiment 5: Comparing pre-training to L1 and L2 regularization

An alternative hypothesis would be that classical ways of regularizing could perhaps achieve the
same effect as unsupervised pre-training. We investigated the effect of L1 and L2 regularization
(i.e., adding a ||θ||1 or ||θ||22 term to the supervised objective function) in a network without pre-
training. We found that while in the case of MNIST a small penalty can in principle help, the gain is
nowhere near as large as it is with pre-training. For InfiniteMNIST, the optimal amount of L1 and
L2 regularization is zero.13

13. Which is consistent with the classical view of regularization, in which its effect should diminish as we add more and
more data.
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This is not an entirely surprising finding: not all regularizers are created equal and these results
are consistent with the literature on semi-supervised training that shows that unsupervised learning
can be exploited as a particularly effective form of regularization.

7.6 Summary of Findings: Experiments 1-5

So far, the results obtained from the previous experiments point towards a pretty clear explanation
of the effect of unsupervised pre-training: namely, that its effect is a regularization effect. We have
seen that it is not simply sufficient to sample random weights with the same magnitude: the (data-
dependent) unsupervised initialization is crucial. We have also observed that canonical regularizers
(L1/L2 penalties on the weights) do not achieve the same level of performance.

The most compelling pieces of evidence in support of the regularization hypothesis are Figures
8 and 9. The alternative explanation—that unsupervised pre-training has an optimization effect—
suggested by Bengio et al. (2007) doesn’t seem to be supported by our experimental setup.

8. The Online Learning Setting

Our hypothesis included not only the statistical/phenomenological hypothesis that unsupervised
pre-training acted as a regularizer, but also contains a mechanism for how such behavior arises both
as a consequence of the dynamic nature of training—following a stochastic gradient through two
phases of training and as a consequence of the non-convexity of the supervised objective function.

In our hypothesis, we posited that early examples induce changes in the magnitude of the
weights that increase the amount of non-linearity of the network, which in turn decreases the num-
ber of regions accessible to the stochastic gradient descent procedure. This means that the early
examples (be they pre-training examples or otherwise) determine the basin of attraction for the re-
mainder of training; this also means that the early examples have a disproportionate influence on
the configuration of parameters of the trained models.

One consequence to the hypothesized mechanism is that we would predict that in the online
learning setting with unbounded or very large data sets, the behavior of unsupervised pre-training
would diverge from the behavior of a canonical regularizer (L1/L2). This is because the effectiveness
of a canonical regularizer decreases as the data set grows, whereas the effectiveness of unsupervised
pre-training as a regularizer ismaintained as the data set grows.

Note that stochastic gradient descent in online learning is a stochastic gradient descent optimiza-
tion of the generalization error, so good online error in principle implies that we are optimizing well
the generalization error. Indeed, each gradient ∂L(x,y)∂θ for example (x,y) (with L(x,y) the supervised
loss with input x and label y) sampled from the true generating distribution P(x,y) is an unbiased
Monte-Carlo estimator of the true gradient of generalization error, that is, ∑y

R

x
∂L(x,y)
∂θ P(x,y)dx.

In this section we empirically challenge this aspect of the hypothesis and show that the evidence
does indeed support our hypothesis over what is more typically expected from a regularizer.

8.1 Experiment 6: Effect of Pre-training with Very Large Data Sets

The results presented here are perhaps the most surprising findings of this paper. Figure 11 shows the
online classification error (on the next block of examples, as a moving average) for 6 architectures
that are trained on InfiniteMNIST: 1 and 3-layer DBNs, 1 and 3-layer SDAE, as well as 1 and
3-layer networks without pre-training.
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Figure 11: Comparison between 1 and 3-layer networks trained on InfiniteMNIST. Online classi-
fication error, computed as an average over a block of last 100,000 errors.

We can draw several observations from these experiments. First, 3-layer networks without
pre-training are worse at generalization, compared to the 1-layer equivalent. This confirms the
hypothesis that even in an online setting, optimization of deep networks is harder than shallow
ones. Second, 3-layer SDAE models seem to generalize better than 3-layer DBNs. Finally and
most importantly, the pre-training advantage does not vanish as the number of training examples
increases, on the contrary.

Note that the number of hidden units of each model is a hyperparameter.14 So theoretical results
suggest that 1-layer networks without pre-training should in principle be able to represent the input
distribution as capacity and data grow. Instead, without pre-training, the networks are not able to
take advantage of the additional capacity, which again points towards the optimization explanation.
It is clear, however, that the starting point of the non-convex optimization matters, even for
networks that are seemingly “easier” to optimize (1-layer ones), which supports our hypothesis.

Another experiment that shows the effects of large-scale online stochastic non-convex optimiza-
tion is shown in Figure 12. In the setting of InfiniteMNIST, we compute the error on the training
set, in the same order that we presented the examples to the models. We observe several interesting
results: first, note that both models are better at classifying more recently seen examples. This is a
natural effect of stochastic gradient descent with a constant learning rate (which gives exponentially
more weight to recent examples). Note also that examples at the beginning of training are essen-
tially like test examples for both models, in terms of error. Finally, we observe that the pre-trained

14. This number was chosen individually for each model s.t. the error on the last 1 million examples is minimized. In
practice, this meant 2000 units for 1-layer networks and 1000 units/layer for 3-layer networks.
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Figure 12: Error of 1-layer network with RBM pre-training and without, on the 10 million examples
used for training it. The errors are calculated in the same order (from left to right, above)
as the examples were presented during training. Each error bar corresponds to a block
of consecutive training examples.

model is better across the board on the training set. This fits well with the optimization hypothesis,
since it shows that unsupervised pre-training has an optimization effect.

What happens in this setting is that the training and generalization errors converge as the em-
pirical distribution (defined by the training set) converges to the true data distribution. These results
show that the effectiveness of unsupervised pre-training does not diminish with increasing data set
sizes. This would be unexpected from a superficial understanding of unsupervised pre-training as
a regularization method. However it is entirely consistent with our interpretation, stated in our
hypothesis, of the role of unsupervised pre-training in the online setting with stochastic gradient
descent training on a non-convex objective function.

8.2 Experiment 7: The Effect of Example Ordering

The hypothesized mechanism implies, due to the dynamics of learning—the increase in weight mag-
nitude and non-linearity as training proceeds, as well as the dependence of the basin of attraction on
early data—that, when training with stochastic gradient descent, we should see increased sensitivity
to early examples. In the case of InfiniteMNIST we operate in an online stochastic optimization
regime, where we try to find a local minimum of a highly non-convex objective function. It is then
interesting to study to what extent the outcome of this optimization is influenced by the examples
seen at different points during training, and whether the early examples have a stronger influence
(which would not be the case with a convex objective).

To quantify the variance of the outcome with respect to training samples at different points dur-
ing training, and to compare these variances for models with and without pre-training, we proceeded
with the following experiment. Given a data set with 10 million examples, we vary (by resampling)
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the first million examples (across 10 different random draws, sampling a different set of 1 million
examples each time) and keep the other ones fixed. After training the (10) models, we measure the
variance (across the 10 draws) of the output of the networks on a fixed test set (i.e., we measure the
variance in function space). We then vary the next million examples in the same fashion, and so on,
to see how much each of the ten parts of the training set influenced the final function.

Figure 13: Variance of the output of a trained network with 1 layer. The variance is computed as
a function of the point at which we vary the training samples. Note that the 0.25 mark
corresponds to the start of pre-training.

Figure 13 shows the outcome of such an analysis. The samples at the beginning15 do seem to
influence the output of the networks more than the ones at the end. However, this variance is lower
for the networks that have been pre-trained. In addition to that, one should note that the variance of
pre-trained network at 0.25 (i.e., the variance of the output as a function of the first samples used for
supervised training) is lower than the variance of the supervised network at 0.0. Such results imply
that unsupervised pre-training can be seen as a sort of variance reduction technique, consistent with
a regularization hypothesis. Finally, both networks are more influenced by the last examples used
for optimization, which is simply due to the fact that we use stochastic gradient with a constant
learning rate, where the most recent examples’ gradient has a greater influence.

These results are consistent with what our hypothesis predicts: both the fact that early examples
have greater influence (i.e., the variance is higher) and that pre-trained models seem to reduce this
variance are in agreement with what we would have expected.

15. Which are unsupervised examples, for the red curve, until the 0.25 mark in Figure 13.
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8.3 Experiment 8: Pre-training only k layers

From Figure 11 we can see that unsupervised pre-training makes quite a difference for 3 layers, on
InfiniteMNIST. In Figure 14 we explore the link between depth and unsupervised pre-training in
more detail. The setup is as follows: for both MNIST and InfiniteMNIST we pre-train only the
bottom k layers and randomly initialize the top n− k layers in the usual way. In this experiment,
n= 3 and we vary k from 0 (which corresponds to a network with no pre-training) to k = n (which
corresponds to the normal pre-trained case).

For MNIST, we plot the log(train NLL) vs. log(test NLL) trajectories, where each point corre-
sponds to a measurement after a certain number of epochs. The trajectories go roughly from the
right to left and from top to bottom, corresponding to the lowering of the training and test errors.
We can also see that models overfit from a certain point onwards.

Figure 14: On the left: for MNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of
training. We pre-train the first layer, the first two layers and all three layers using RBMs
and randomly initialize the other layers; we also compare with the network whose layers
are all randomly initialized. On the right: InfiniteMNIST, the online classification
error. We pre-train the first layer, the first two layers or all three layers using denoising
auto-encoders and leave the rest of the network randomly initialized.

For InfiniteMNIST, we simply show the online error. The results are ambiguous w.r.t the
difficulty of optimizing the lower layers versus the higher ones. We would have expected that the
largest incremental benefit came from pre-training the first layer or first two layers. It is true for
the first two layers, but not the first. As we pre-train more layers, the models become better at
generalization. In the case of the finite MNIST, note how the final training error (after the same
number of epochs) becomes worse with pre-training of more layers. This clearly brings additional
support to the regularization explanation.
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9. Discussion and Conclusions

We have shown that unsupervised pre-training adds robustness to a deep architecture. The same set
of results also suggests that increasing the depth of an architecture that is not pre-trained increases
the probability of finding poor apparent local minima. Pre-trained networks give consistently better
generalization. Our visualizations point to the observations that pre-trained networks learn qual-
itatively different features (if networks are visualized in the weight space) compared to networks
without pre-training. Moreover, the trajectories of networks with different initialization seeds seem
to fall into many distinct apparent local minima, which are again different (and seemingly far apart)
depending on whether we use pre-training or not.

We have shown that unsupervised pre-training is not simply a way of getting a good initial
marginal distribution, and that it captures more intricate dependencies between parameters. One of
our findings is that deep networks with unsupervised pre-training seem to exhibit some properties of
a regularizer: with small enough layers, pre-trained deep architectures are systematically worse than
randomly initialized deep architectures. Moreover, when the layers are big enough, the pre-trained
models obtain worse training errors, but better generalization performance. Additionally, we have
re-done an experiment which purportedly showed that unsupervised pre-training can be explained
with an optimization hypothesis and observed a regularization effect instead. We also showed that
classical regularization techniques (such as L1/L2 penalties on the network weights) cannot achieve
the same performance as unsupervised pre-training, and that the effect of unsupervised pre-training
does not go away with more training data, so if unsupervised pre-training is a regularizer, it is
certainly of a rather different kind.

The two unsupervised pre-training strategies considered—denoising auto-encoders and Restricted
Boltzmann Machines—seem to produce qualitatively similar observations. We have observed that,
surprisingly, the pre-training advantage is present even in the case of really large training sets, point-
ing towards the conclusion that the starting point in the non-convex optimization problem is indeed
quite important; a fact confirmed by our visualizations of filters at various levels in the network.
Finally, the other important set of results show that unsupervised pre-training acts like a variance
reduction technique, yet a network with pre-training has a lower training error on a very large data
set, which supports an optimization interpretation of the effect of pre-training.

How do we make sense of all these results? The contradiction between what looks like regular-
ization effects and what looks like optimization effects appears, on the surface, unresolved. Instead
of sticking to these labels, we attempted to draw a hypothesis, described in Section 3 about the
dynamics of learning in an architecture that is trained using two phases (unsupervised pre-training
and supervised fine-tuning), which we believe to be consistent with all the above results.

This hypothesis suggests that there are consequences of the non-convexity of the supervised
objective function, which we observed in various ways throughout our experiments. One of these
consequences is that early examples have a big influence on the outcome of training and this is one
of the reasons why in a large-scale setting the influence of unsupervised pre-training is still present.
Throughout this paper, we have delved on the idea that the basin of attraction induced by the early
examples (in conjunction with unsupervised pre-training) is, for all practical purposes, a basin from
which supervised training does not escape.

This effect can be observed from the various visualizations and performance evaluations that
we made. Unsupervised pre-training, as a regularizer that only influences the starting point of
supervised training, has an effect that, contrary to classical regularizers, does not disappear with

653



ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

more data (at least as far as we can see from our results). Basically, unsupervised pre-training favors
hidden units that compute features of the input X that correspond to major factors of variation in
the true P(X). Assuming that some of these are near features useful at predicting variations in Y ,
unsupervised pre-training sets up the parameters near a solution of low predictive generalization
error.

One of the main messages that our results imply is that the optimization of a non-convex ob-
jective function with stochastic gradient descent presents challenges for analysis, especially in a
regime with large amounts of data. Our analysis so far shows that it is possible for networks that
are trained in such a regime to be influenced more by early examples. This can pose problems in
scenarios where we would like our networks to be able to capture more of the information in later
examples, that is, when training from very large data sets and trying to capture a lot of information
from them.

One interesting realization is that with a small training set, we do not usually put a lot of impor-
tance on minimizing the training error, because overfitting is a major issue; the training error is not
a good way to distinguish between the generalization performance of two models. In that setting,
unsupervised pre-training helps to find apparent local minima that have better generalization error.
With a large training set, as we saw in Figure 12, the empirical and true distributions converge. In
such a scenario, finding a better apparent local minimum will matter and stronger (better) opti-
mization strategies should have a significant impact on generalization when the training set is very
large. Note also that it would be interesting to extend our experimental techniques to the problem
of training deep auto-encoders (with a bottleneck), where previous results (Hinton and Salakhutdi-
nov, 2006) show that not only test error but also training error is greatly reduced by unsupervised
pre-training, which is a strong indicator of an optimization effect. We hypothesize that the pres-
ence of the bottleneck is a crucial element that distinguishes the deep auto-encoders from the deep
classifiers studied here.

In spite of months of CPU time on a cluster devoted to the experiments described here (which
is orders of magnitude more than most previous work in this area), more could certainly be done
to better understand these effects. Our original goal was to have well-controlled experiments with
well understood data sets. It was not to advance a particular algorithm but rather to try to better
understand a phenomenon that has been well documented elsewhere. Nonetheless, our results are
limited by the data sets used and it is plausible that different conclusions could be drawn, should the
same experiments be carried out on other data.

Our results suggest that optimization in deep networks is a complicated problem that is influ-
enced in great part by the early examples during training. Future work should clarify this hypothesis.
If it is true and we want our learners to capture really complicated distributions from very large train-
ing sets, it may mean that we should consider learning algorithms that reduce the effect of the early
examples, allowing parameters to escape from the attractors in which current learning dynamics get
stuck.

The observations reported here suggest more detailed explanations than those already discussed,
which could be tested in future work. We hypothesize that the factors of variation present in the in-
put distribution are disentangled more and more as we go from the input layer to higher-levels of the
feature hierarchy. This is coherent with observations of increasing invariance to geometric transfor-
mations in DBNs trained on images (Goodfellow et al., 2009), as well as by visualizing the varia-
tions in input images generated by sampling from the model (Hinton, 2007; Susskind et al., 2008),
or when considering the preferred input associated with different units at different depths (Lee et al.,
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2009; Erhan et al., 2009). As a result, during early stages of learning, the upper layers (those that
typically learn quickly) would have access to a more robust representation of the input and are less
likely to be hindered by the entangling of factors variations present in the input. If this disentan-
gling hypothesis is correct, it would help to explain how unsupervised pre-training can address the
chicken-and-egg issue explained in Section 2: the lower layers of a supervised deep architecture
need the upper layers to define what they should extract, and vice-versa. Instead, the lower layers
can extract robust and disentangled representations of the factors of variation and the upper layers
select and combine the appropriate factors (sometimes not all at the top hidden layer). Note that
as factors of variation are disentangled, it could also happen that some of them are not propagated
upward (before fine-tuning), because RBMs do not try to represent in their hidden layer input bits
that are independent.

To further explain why smaller hidden layers yield worse performance with pre-training than
without (Figure 9), one may hypothesize further that, for some data sets, the leading factors of
variation present in P(X) (presumably the only ones captured in a smaller layer) are less predictive
of Y than random projections16 can be, precisely because of the hypothesized disentangling effect.
With enough hidden units, unsupervised pre-training may extract among the larger set of learned
features some that are highly predictive of Y (more so than random projections). This additional
hypothesis could be tested by measuring the mutual information between each hidden unit and the
object categories (as done by Lee et al., 2009), as the number of hidden units is varied (like in
Figure 9). It is expected that the unit with the most mutual information will be less informative with
pre-training when the number of hidden units is too small, and more informative with pre-training
when the number of hidden units is large enough.

Under the hypothesis that we have proposed in Section 3, the following result is unaccounted
for: in Figure 8(a), training error is lower with pre-training when there is only one hidden layer,
but worse with more layers. This may be explained by the following additional hypothesis. Al-
though each layer extracts information about Y in some of its features, it is not guaranteed that all
of that information is preserved when moving to higher layers. One may suspect this in particular
for RBMs, which would not encode in their hidden layer any input bits that would be marginally
independent of the others, because these bits would be explained by the visible biases: perfect dis-
entangling of Y from the other factors of variation in X may yield marginally independent bits about
Y . Although supervised fine-tuning should help to bubble up that information towards the output
layer, it might be more difficult to do so for deeper networks, explaining the above-stated feature of
Figure 8. Instead, in the case of a single hidden layer, less information about Y would have been
dropped (if at all), making the job of the supervised output layer easier. This is consistent with
earlier results (Larochelle et al., 2009) showing that for several data sets supervised fine-tuning sig-
nificantly improves classification error, when the output layer only takes input from the top hidden
layer. This hypothesis is also consistent with the observation made here (Figure 1) that unsupervised
pre-training actually does not help (and can hurt) for too deep networks.

In addition to exploring the above hypotheses, future work should include an investigation of
the connection between the results presented in this paper and by Hinton and Salakhutdinov (2006),
where it seems to be hard to obtain a good training reconstruction error with deep auto-encoders (in
an unsupervised setting) without performing pre-training. Other avenues for future work include
the analysis and understanding of deep semi-supervised techniques where one does not separate

16. Meaning the random initialization of hidden layers.
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between the pre-training phase and the supervised phase, such as work by Weston et al. (2008) and
Larochelle and Bengio (2008). Such algorithms fall more squarely into the realm of semi-supervised
methods. We expect that analyses similar to the ones we performed would be potentially harder, but
perhaps revealing as well.

Many open questions remain towards understanding and improving deep architectures. Our
conviction is that devising improved strategies for learning in deep architectures requires a more
profound understanding of the difficulties that we face with them. This work helps with such under-
standing via extensive simulations and puts forward a hypothesis explaining the mechanisms behind
unsupervised pre-training, which is well supported by our results.
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Abstract
In this paper, we present an open source Error-Correcting Output Codes (ECOC) library. The
ECOC framework is a powerful tool to deal with multi-class categorization problems. This li-
brary contains both state-of-the-art coding (one-versus-one, one-versus-all, dense random, sparse
random, DECOC, forest-ECOC, and ECOC-ONE) and decoding designs (hamming, euclidean,
inverse hamming, laplacian, β-density, attenuated, loss-based, probabilistic kernel-based, and loss-
weighted) with the parameters defined by the authors, as well as the option to include your own
coding, decoding, and base classifier.

Keywords: error-correcting output codes, multi-class classification, coding, decoding, open source,
matlab, octave

1. Error-Correcting Output Codes

The Error-Correcting Output Codes (ECOC) framework (Dietterich and Bakiri, 1995) is a simple but
powerful framework to deal with the multi-class categorization problem based on the embedding of
binary classifiers. Given a set of Nc classes, the basis of the ECOC framework consists of designing
a codeword for each of the classes. These codewords encode the membership information of each
class for a given binary problem. Arranging the codewords as rows of a matrix, we obtain a ”coding
matrix” Mc, where Mc ∈ {−1,0,1}Nc×n, being n the length of the codewords codifying each class.
From the point of view of learning, Mc is constructed by considering n binary problems, each one
corresponding to a column of the matrixMc. Each of these binary problems (or dichotomizers) splits
the set of classes in two partitions (coded by +1 or -1 inMc according to their class set membership,
or 0 if the class is not considered by the current binary problem). Then, at the decoding step,
applying the n trained binary classifiers, a code is obtained for each data point in the test set. This
code is compared to the base codewords of each class defined in the matrixMc, and the data point is
assigned to the class with the ”closest” codeword. Several decoding strategies have been proposed
in literature. The reader is referred to Escalera et al. (2008) for a more detailed review. An example
of an ECOC design is described in Fig. 1.

The ECOC designs are independent of the base classifier applied. They involve error-correcting
properties (Dietterich and Bakiri, 1995) and have shown to be able to reduce the bias and variance
produced by the learning algorithm (Kong and Dietterich, 1995). Because of these reasons, ECOCs
have been widely used to deal with multi-class categorization problems.

c©2010 Sergio Escalera, Oriol Pujol and Petia Radeva.
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ECOC coding design for a 4-class problem. White, black, and
grey positions corresponds to the symbols +1, -1, and 0, respec-
tively. Once the four binary problems are learnt, at the decoding
step a new test sample X is tested by the n classifiers. Then, the
new codeword x = {x1, ..,xn} is compared with the class code-
words {C1, ..C4}, classifying the new sample by the class ci which
codeword minimizes the decoding measure.

Figure 1: ECOC design example.

2. Library Algorithms

The ECOCs library is a Matlab/Octave code under the open source GPL license (gpl) with the
implementation of the state-of-the-art coding and decoding ECOC designs. A main function defines
the multi-class data, coding, decoding, and base classifier. A list of parameters are also included in
order to tune the different strategies. In addition to the implemented coding and decoding designs,
which are described in the following section, the user can include his own coding, decoding, and
base classifier as defined in the user guide.

2.1 Implemented Coding Designs

The ECOC designs of the ECOC library cover the state-of-the-art of coding strategies, mainly di-
vided in two main groups: problem-independent approaches, which do not take into account the
distribution of the data to define the coding matrix, and the problem-dependent designs, where in-
formation of the particular domain is used to guide the coding design.

2.1.1 PROBLEM-INDEPENDENT ECOC DESIGNS

• One-versus-all (Rifkin and Klautau, 2004): Nc dichotomizers are learnt for Nc classes, where each
one splits one class from the rest of classes.

• One-versus-one (Nilsson, 1965): n = Nc(Nc− 1)/2 dichotomizers are learnt for Nc classes,
splitting each possible pair of classes.

• Dense Random (Allwein et al., 2002): n= 10 · logNc dichotomizers are suggested to be learnt
for Nc classes, where P(−1) = 1−P(+1), being P(−1) and P(+1) the probability of the symbols
-1 and +1 to appear, respectively. Then, from a set of defined random matrices, the one which
maximizes a decoding measure among all possible rows ofMc is selected.

• Sparse Random (Escalera et al., 2009): n = 15 · logNc dichotomizers are suggested to be
learnt for Nc classes, where P(0) = 1−P(−1)−P(+1), defining a set of random matrices Mc and
selecting the one which maximizes a decoding measure among all possible rows ofMc.
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2.1.2 PROBLEM-DEPENDENT ECOC DESIGNS

• DECOC (Pujol et al., 2006): problem-dependent design that uses n= Nc−1 dichotomizers. The
partitions of the problem are learnt by means of a binary tree structure using exhaustive search or a
SFFS criterion. Finally, each internal node of the tree is embedded as a column inMc.

• Forest-ECOC (Escalera et al., 2007): problem-dependent design that uses n= (Nc−1) ·T di-
chotomizers, where T stands for the number of binary tree structures to be embedded. This approach
extends the variability of the classifiers of the DECOC design by including extra dichotomizers.

• ECOC-ONE (Pujol et al., 2008): problem-dependent design that uses n = 2 ·Nc suggested
dichotomizers. A validation sub-set is used to extend any initial matrix Mc and to increase its
generalization by including new dichotomizers that focus on difficult to split classes.

2.2 Implemented Decoding Designs

The software comes with a complete set of ECOC decoding strategies. The notation used refers to
that used in (Escalera et al., 2008):

• Hamming decoding: HD(x,yi) = ∑n
j=1(1− sign(x j · y

j
i ))/2, being x a test codeword and yi a

codeword fromMc corresponding to classCi.
• Inverse Hamming decoding: IHD(x,yi) = max(Δ−1DT ), where Δ(i1, i2) = HD(yi1 ,yi2), and

D is the vector of Hamming decoding values of the test codeword x for each of the base codewords
yi.

• Euclidean decoding: ED(x,yi) =
√

∑n
j=1(x j− y ji )2.

• Attenuated Euclidean decoding: AED(x,yi) =
√

∑n
j=1 | y

j
i || x j | (x j− y ji )2.

• Loss-based decoding: LB(ρ,yi) = ∑n
j=1L(y

j
i · f j(ρ)), where ρ is a test sample, L is a loss-

function, and f is a real-valued function f : R n → R .
• Probabilistic-based decoding:

PD(yi,x)=−log
(

∏ j∈[1,..,n]:Mc(i, j)&=0P(x j =Mc(i, j)| f j)+K
)

, where K is a constant factor that col-
lects the probability mass dispersed on the invalid codes, and the probability P(x j = Mc(i, j)| f j)
is estimated by means of P(x j = y ji | f j) = 1

1+ey ji (υ j f j+ω j)
, where vectors υ and ω are obtained by

solving an optimization problem (Passerini et al., 2004).
• Laplacian decoding: LAP(x,yi) = αi+1

αi+βi+K , where αi is the number of matched positions be-
tween x and yi, βi is the number of miss-matches without considering the positions coded by 0, and
K is an integer value that codifies the number of classes considered by the classifier.

• Pessimistic β-Density Distribution decoding: accuracy si :
R νi
νi−siψi(ν,αi,βi)dν= 1

3 , where
ψi(ν,αi,βi) = 1

Kν
αi(1− ν)βi , ψi is the β-Density Distribution between a codeword x and a class

codeword yi for class ci, and ν ∈ R : [0,1].

• Loss-Weighted decoding: LW (ρ, i)=∑n
j=1MW (i, j)L(y ji · f (ρ, j)), whereMW (i, j)= H(i, j)

∑nj=1H(i, j) ,

H(i, j) = 1
mi ∑

mi
k=1ϕ(h j(ρik), i, j),ϕ(x j, i, j) =

{

1, if x j = y ji ,
0, otherwise. , mi is the number of training

samples from classCi, and ρik is the kth sample from classCi.
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3. Implementation Details

The ECOCs Library comes with detailed documentation. A user guide describes the usage of the
software. All the strategies and parameters used in the functions and files are described in detail.
The user guide also presents examples of variable setting and execution, including a demo file.

About the computational complexity, the training and testing time depends on the data size,
coding and decoding algorithms, as well as the base classifier used in the ECOC design.
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Abstract
Traditional analysis methods for single-trial classification of electro-encephalography (EEG) focus
on two types of paradigms: phase-locked methods, in which the amplitude of the signal is used as
the feature for classification, that is, event related potentials; and second-order methods, in which
the feature of interest is the power of the signal, that is, event related (de)synchronization. The
process of deciding which paradigm to use is ad hoc and is driven by assumptions regarding the
underlying neural generators. Here we propose a method that provides an unified framework for the
analysis of EEG, combining first and second-order spatial and temporal features based on a bilinear
model. Evaluation of the proposed method on simulated data shows that the technique outperforms
state-of-the art techniques for single-trial classification for a broad range of signal-to-noise ratios.
Evaluations on human EEG—including one benchmark data set from the Brain Computer Interface
(BCI) competition—show statistically significant gains in classification accuracy, with a reduction
in overall classification error from 26%-28% to 19%.
Keywords: regularization, classification, bilinear decomposition, neural signals, brain computer
interface

1. Introduction

The work presented in this paper is motivated by the analysis of functional brain imaging signals
recorded via electroencephalography (EEG). EEG is measured across time and typically at multiple
scalp locations, providing a spatio-temporal data set of the underlying neural activity. In addition,
these measurements are often taken over multiple repetitions or trials, where trials may differ in the
type of stimulus presented, the task given to the subject, or the subject’s response. Analysis of these

c©2010 Christoforos Christoforou, Robert Haralick, Paul Sajda and Lucas C. Parra.
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signals is often expressed as a single-trial classification problem. The goal for the classifier is to
determine from the EEG data which stimulus was presented or how the subject responded. Many
of these classification techniques were originally developed in the context of Brain Computer Inter-
faces (BCI) but are now more widely used to interpret activity associated with neural processing.

In the case of BCI algorithms (Wolpaw et al., 2002; Birbaumer et al., 1999; Blankertz et al.,
2002, 2003) the aim is to decode brain activity on a single-trial basis in order to provide a di-
rect control pathway between a user’s intentions and a computer. Such an interface could provide
“locked in patients” a more direct and natural control over a neuroprosthesis or other computer
applications (Birbaumer et al., 1999). Furthermore, by providing an additional communication
channel for healthy individuals, BCI systems can be used to increase productivity and efficiency in
high-throughput tasks (Gerson et al., 2006; Parra et al., 2008).

Single-trial discriminant analysis has also been used as a research tool to study the neural cor-
relates of behavior. By extracting activity that differs maximally between two experimental condi-
tions, the typically low signal-to-noise ratio of EEG can be overcome. The resulting discriminant
components can be used to identify the spatial origin and time course of stimulus/response spe-
cific activity, while the improved SNR can be leveraged to correlate variability of neural activity
across trials to behavioral variability and behavioral performance (Philiastides et al., 2006; Gerson
et al., 2006; Philiastides and Sajda, 2006) In essence, discriminant analysis adds to the existing set
of multi-variate statistical tools commonly used in neuroscience research (ANOVA, Hoteling T 2,
Wilks’ Λ test, etc.).

1.1 Traditional EEG Analysis

In EEG the signal-to-noise ratio (SNR) of individual channels is low, often at, or below -20dB.
To overcome this limitation, all analysis methods perform some form of averaging, either across
repeated trials, across time, or across electrodes. Traditional EEG analysis averages signals across
many repeated trials for each individual electrode. Typical in this case is to average the measured
potentials following stimulus presentation, thereby canceling uncorrelated noise that is not repro-
ducible from one trial to the next. This averaged activity, called an event related potential (ERP),
captures activity that is time-locked to the stimulus presentation but cancels induced oscillatory
activity that is not locked in phase to the timing of the stimulus. Alternatively, many studies com-
pute the oscillatory activity in specific frequency bands by filtering and squaring the signal prior
to averaging. Induced changes in oscillatory activity are termed event related synchronization or
desynchronization (ERS/ERD) Pfurtscheller and da Silva (1999).

Surprisingly, discriminant analysis methods developed thus far by the machine learning commu-
nity have followed this dichotomy: First order methods in which the amplitude of the EEG signal is
considered to be the feature of interest in classification—corresponding to ERP—and second-order
methods in which the power of the feature is considered to be of importance for classification—
corresponding to ERS/ERD. First order methods include temporal filtering and thresholding (Bir-
baumer et al., 1999), Fisher linear discriminants (Parra et al., 2005; Blankertz et al., 2002), hierarchi-
cal linear classifiers (Gerson et al., 2006) and bilinear discriminant analysis (Dyrholm et al., 2007;
Tomioka and Aihara, 2007). Second-order methods include logistic regression with a quadratic term
(Tomioka et al., 2007) and the well known common spatial patterns method (CSP) (Ramoser et al.,
2000) and its variants: common spatio-spectral patterns (CSSP) (Lemm et al., 2005), and common
sparse spectral spatial patterns (CSSSP) (Dornhege et al., 2006).
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In the past, the process for choosing features for classification has been ad hoc and driven pri-
marily by prior knowledge and/or assumptions regarding the underlying neurophysiology and task.
From a machine-learning point of view, it seems limiting to commit a priori to only one type of fea-
ture. Instead, it would be desirable for the analysis method to extract the relevant neurophysiological
activity de novo with minimal prior expectations.

In this paper we present a new framework that combines both first and second-order features in
the analysis of EEG. Through a bilinear formulation, the method can simultaneously identify spatial
linear components as well as temporal modulation of activity. These spatio-temporal components
are identified such that their first and second-order statistics are maximally different between two
conditions. Further, through the bilinear formulation, the method exploits the spatio-temporal nature
of the EEG signals and provides a reduced parametrization of the high dimensional data space. We
show that a broad set of state-of-the-art EEG analysis methods can be characterized as special
cases under this bilinear framework. Simulated EEG data is then used to evaluate performance of
the different methods under varying signal strengths. We conclude the paper with a performance
comparison on human EEG. In all instances the performance of the present method is comparable
or superior to the existing state-of-the-art.

2. Second-Order Bilinear Discriminant Analysis

To introduce the new method we start by formally defining the classification problem in EEG. We
then present the bilinear model, discuss interpretation in the context of EEG, and establish a link to
current analysis methods. The section concludes with the optimization criterion and regularization
approaches. As the title of this section suggests, we termed our method Second-Order Bilinear
Discriminant Analysis (SOBDA).

2.1 Problem Setting

Suppose that we are given examples of brain activity as a set of trials {Xn,yn}Nn=1,Xn ∈ RD×T ,yn ∈
{−1,1}, where for each example n the matrix Xn corresponds to the EEG signal with D channels
and T time samples and yn indicates the class to which this example corresponds. The class label
may indicated one of two conditions, that is, imagined right or left hand movement, stimulus or
non-stimulus control conditions, etc. Given these examples the task is then to predict the class label
y for a new trial with data X.

2.2 Second-order Bilinear Model

To solve this problem we propose the following discriminant function

f (X;θ) =CTrace
(

U%XV
)

+(1−C)Trace
(

ΛA%XBB%X%A
)

+wo , (1)

where the parameters are θ= {U ∈RD×R,V∈RT ×R,A∈RD×KB∈RT ×T ′ , wo ∈R,Λ∈ diag(K)|
λii ∈ {−1,+1},C ∈ [0,1]. Some of these parameters may be specified using prior knowledge as
will be discussed later. The scalars R, K and T ′ are chosen by the user and denote the rank of
matrix U,V A and B. Typically we use T ′ = T . The goal will be to use the N examples to optimize
these parameters such that the discriminant function takes on positive values for examples with
yn = +1 and negative values for yn = −1. To accomplish this we will use a standard probabilistic
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formalism—logistic regression—which will permit us to incorporate regularization criteria as prior
probabilities on the parameter as will be explained in Sections 2.6 and 2.8.

2.3 Interpretation and Rationale of the Model

The discriminant criterion defined in (1) is the sum of a linear and a quadratic term, each combining
bilinear components of the EEG signal. The first term can be interpreted as a spatio-temporal
projection of the signal that captures the first-order statistics of the signal. Specifically, the columns
ur of U represent R linear projections in space (rows of X). Similarly, each of the R columns of vk
in matrix V represent linear projections in time (columns of X). By re-writing the term as:

Trace(U%XV) = Trace(VU%X) = Trace(W%X) ,

where we defined,W=UV%, it is easy to see that the bilinear projection is a linear combination of
elements of X with a rank-R constraint onW. This expression is linear in X and thus captures di-
rectly the amplitude of the signal. In particular, the polarity of the signal (positive evoked response
versus negative evoked response) will contribute to discrimination if it is consistent across trials.
This term, therefore, captures phase-locked event related potential in the EEG signal. This bilinear
projection reduces the number of model parameters ofW from D×T dimensions to R× (D+T )
which is a significant dimensionality reduction that alleviates the problem of over-fitting in param-
eters estimation given the small training set size. This projection assumes that the generators of
class-dependent variances in the data have a low-rank contribution to each data matrix X. This
holds true in EEG data, where an electrical current source which is spatially static in the brain will
give a rank-one contribution to the spatio-temporal X (Dyrholm and Parra, 2006).

The second term of Equation (1) is the power of spatially and temporally weighted signals and
thus captures the second-order statistics of the signal. As before, each column of matrix A and B
represent components that project the data in space and time respectively. Depending on the struc-
ture one enforces in matrix B, different interpretations of the model can be achieved. In the general
case where no structure on B is assumed, the model captures a linear combination of the elements
of a rank-T ′ second-order matrix of the signal XB(XB)%. In the case where Toeplitz structure is
enforced on B (see Section 2.7), then B defines a temporal filter on the signal and the model captures
powers of the filtered signal. Further, by allowing B to be learned from the data, we may be able to
identify new frequency bands that have so far not been identified in novel experimental paradigms.
The spatial weights A together with the Trace operation ensure that the power is measured, not in
individual electrodes, but in some component space that may reflect activity distributed across sev-
eral electrodes. The diagonal matrix Λ partitions the K spatial components (i.e., K columns of A)
into those that contribute power positively and those that contribute power negatively to the total
sum. Since each column of A measures the power from different sources, then by multiplying the
expression with Λ we capture the difference in power between different spatial components. As
motivation consider the task of distinguishing between imagined left versus right hand movements.
It is known that imagining a movement of the left hand reduces oscillatory activity over the motor
cortex of the right hemisphere, while an imagined right-hand movement reduces oscillations over
the left motor cortex. Each of these cortical areas will be captured by a different spatial distribution
in the EEG. If we limit the columns of A to two, then these columns may capture the power of
oscillatory activity over the right and left motor cortex respectively. One would like one of these
two terms to contribute positively providing evidence of the observation belonging to the first class,
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while the second should contribute negatively, supporting the observations coming from the second
class. This can be achieved with the proper choice of Λ. Finally, the parameter C defines a convex
combination of the first-order term and the second-order term. C= 1 indicates that the discriminant
activity is dominated by the first-order features; C = 0 indicates that the activity is dominated by
second-order features, and any value in between denotes the importance of one component versus
the other.

2.4 Incorporating Prior Knowledge into the Model

Realizing that the parameters of the SOBDA model have a physical meaning (i.e., ur and ar map
the sensor signal to a current-source space, vr are temporal weight on a source signal and br can
be arranged to represent a temporal filter) it becomes intuitive for the experimenter to incorporate
prior knowledge of an experimental setup in the model. If the signal of interest is known to be in
a specific frequency band, one can fix matrix B to capture only the desired frequency band. For
example, B can be fixed to a Toeplitz matrix with coefficients corresponding to an 8Hz-12Hz band-
pass filter, then the second-order term is able to extract power in the alpha-band which is known to be
modulated during motor related tasks. It is often the case that experimenters have a hypothesis about
the temporal profile of the signal of interest, for example the P300 signal or the N170 are known
EEG responses with a positive peak at 300ms or negative peak at 170ms and are associated with
surprise or processing of faces respectively. In such a scenario the experimenter can fix the temporal
profile parameterV to emphasize time samples around the expected location of the peak activity and
optimize over the rest of the parameters. The model also provides the ability to integrate information
from fMRI studies. fMRI has high spatial resolution and can provide locations within the brain that
may be known to participate in the processing during a particular experimental paradigm. This
location information can be incorporated into the present model by fixing the spatial parameters ur
and a to reflect a localized source (often approximated as a current dipole). The remaining temporal
parameters of the model can then be optimized.

2.5 SOBDA as a Generalized EEG Analysis Framework

The present model provides a generic framework that encompasses a number of popular EEG analy-
sis techniques. The following list identifies some of the algorithms and how they relate to the model
used in the SOBDA framework:

• Set C = 1, R = 1 and choose temporal component v to select a time window of interest (i.e.,
set v j = 1 if j is inside the window of interest,v j = 0 otherwise). Learn the spatial filters u.
This exactly corresponds to averaging over time and classifying in the sensor space as in Parra
et al. (2002, 2005)

• Set C = 1 and select some R > 1 and choose the component vectors vr to select multiple
time windows of interest as in 1. Learn for each temporal window the corresponding spatial
vector ur from examples separately and then combine these components by learning a linear
combination of the elements. This corresponds to the multiple window hierarchical classifier
as in Gerson et al. (2006) and Parra et al. (2008)

• SetC= 1, R=D while constraining U to be a diagonal matrix and select, separately for each
channel, the time window vr which is most discriminative. Then train the diagonal terms of
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U resulting in a latency dependent spatial filter (Luo and Sajda, 2006a). Alternatively, in the
first step, use feature selection to find the right set of time windows vr simultaneously for all
channels (Luo and Sajda, 2006b).

• Set C = 1,R = 1 and learn the spatial and temporal components u,v simultaneously. This
reduces to the rank-one bilinear discriminant as in Dyrholm and Parra (2006)

• Select C = 1 and some R > 1 and learn all columns of the spatial and temporal projection
matrixU andV simultaneously. This results in the Bilinear Discriminant Component Analysis
(BDCA) (Dyrholm et al., 2007).

• Set C = 0, K = 2 and fix B to a Toeplitz structure encoding a specific frequency band and
set the diagonal of Λ to be [1− 1]. Then learn the spatial component A. This then reduces
to the logistic regression with a quadratic term (Tomioka et al., 2007) which is related to the
Common Spatial Patters (CSP) algorithm of Ramoser et al. (2000).

• Define X̂ to be the concatenation of X with itself delayed in time by τ samples, where τ is
specified by the user, fix B to a Toeplitz structure,C = 0, and A ∈ R2D×2, learn the matrix A.
This configuration can be related to the Common Spatio-Spectral Pattern algorithm of Lemm
et al. (2005).

2.6 Logistic Regression

To optimize the model parameters U,V,A and B we use a Logistic Regression (LR) formalism. The
probabilistic formalism is particularly convenient when imposing additional statistical properties on
the coefficients such as smoothness or sparseness. In addition, in our experience, linear LR performs
well in strongly overlapping high-dimensional data-sets and is insensitive to outliers, the later being
of particular concern when including quadratic features.

Under the Logistic Regression model the probability that a trial belongs to class y after seeing
data X is given by the class posterior probability

P(y|X;θ) =
1

1+ e−y f (X;θ)
.

With this definition, the discriminant criterion given by the log-odds ratio of the posterior class
probability

log
P(y= +1|X)

P(y= −1|X)
= f (X;θ) ,

is simply the discriminant function which we chose to define in (1) as a sum of linear and quadratic
terms. The Likelihood of observing the N examples under this model is then given by

L(θ) = −
N

∑
n=1
log(1+ e−yn f (Xn;θ)) . (2)

Training consists of maximizing this likelihood using a gradient assent algorithm. Analytic gradi-
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ents of the log likelihood (2) with respect to the various parameters are given by:

∂L(θ)
∂ur

= C
N

∑
n=1

ynπnXnvr ,

∂L(θ)
∂vr

= C
N

∑
n=1

ynπnurXn ,

∂L(θ)
∂ar

= 2(1−C)λr
N

∑
n=1

ynπnXnBB%X%
n ar , (3)

∂L(θ)
∂bt

= 2(1−C)
N

∑
n=1

ynπnX%AΛA%Xbt , (4)

where we define

πn = 1−P(yn|Xn) =
e−yn f (Xn;θ)

1+ e−yn f (Xn;θ)
,

and ui,vi,ai and bi correspond to the ith columns of U,V,A and B respectively.

2.7 Enforcing Structure on B

If matrix B is constrained to have a circular Toeplitz structure then it can be represented as B =
F−1DF, where F denotes the orthonormal Fourier matrix with FH = F−1, and D is a diagonal
complex-valued matrix of Fourier coefficients. In such a case we can re-write Equations (3) and (4)
as

∂L(θ)
∂ar

= 2(1−C)
N

∑
n=1

ynπnXnFHDDHFX%
n ar .

∂L(θ)
∂di

= 2(1−C)
N

∑
n=1

ynπn
(

FX%
n AΛA%XnFH

)

ii
di .

and the parameters are now optimized with respect to Fourier coefficients di = (D)i,i. An iterative
gradient descent optimization procedure can be used to solve the minimization above.

This way of modeling B opens up a new perspective on the capabilities of the model. These
last two equations are equally applicable for any choice of orthonormal basis F. For example, the
columns of F can represent a set of wavelet basis vectors. We note that a wavelet basis can be
thought of as time-frequency representation of the signal; hence, proper selection of a wavelet basis
allows for the method to not only capture the stationary power of the signal, but also the local
changes in power within the T samples of matrix X.

2.8 Regularization

Due to the high dimensional space in which the model lies and the limited samples available during
training (typically in the order of 100), a maximum likelihood estimate of the parameters will over-
train the data and have poor generalization performance. To ensure good generalization performance
additional regularization criteria are required. The probabilistic formulation of Logistic Regression
can incorporate regularization terms as prior probabilities resulting in maximum a posteriori (MAP)
estimates.
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We choose Gaussian process priors (Rasmussen and Williams, 2005) on the various parame-
ters of the model and ensure smoothness by choosing the proper covariance matrices. Spatial and
temporal smoothness is typically a valid assumption in EEG (Penny et al., 2005). Specifically,
the spatial components of the model (i.e., columns of U, and A) follow a normal distribution with
ui ∼ N (0,Ku) , ai ∼ N (0,Ka) where the covariance matrices Ku and Ka define the degree and
form of the smoothness of u and a. This is done through choice of covariance function: Let r be a
spatial or temporal measure in context of X. For instance r is a measure of spatial distance between
data acquisition sensors, or a measure of time difference between two samples in the data. Then
a covariance function k(r) expresses the degree of correlation between any two points with that
given distance. For example, a class of covariance functions that has been suggested for modeling
smoothness in physical processes, the Matérn class, is given by:

kMatérn(r) =
21−ν

Γ(ν)

(√
2νr
l

)ν

B

(√
2νr
1

)

,

where l is a length-scale parameter, and ν is a shape parameter. Parameter l can be roughly though
of as the distance within which points are significantly correlated (Rasmussen and Williams, 2005).
The parameter ν defines the degree of ripple. The covariance matrix K is then built by evaluating
the covariance function

(K)i j = σ2 kMatérn(ri j)

where ri, j denotes the physical distance of sensor-i from sensor- j, and σ2 defines the overall scale
parameter. Similarly, the Gaussian prior can be used on the columns of the temporal matrix V (i.e.,
mv∼N (0,Kv)). The Matérn function was preferred because it allows for a low parametrization of
the covariance matrix (two parameters define the entire covariance), but also because of the physical
and intuitive interpretation of its parameters. Specifically the parameter l is associated with the
physical concept of distance between measurements (either in space or time). This understanding
of the parameters is useful since it allows for an educated search strategy in setting the proper values
for these parameters.

Regularizing logistic regression amounts to minimizing the negative log-likelihood plus the
negative log-priors, which can be written as:

arg min
U,V,A,B,wo

−L(θ)+
1
2

(

R

∑
r=1
u%r K−1

u ur +v%r K−1
v vr +

K

∑
k=1
a%k K−1

a ak +
T ′

∑
t=1
b%t K−1

t bt

)

, (5)

where we ignored constants that have no effect in the optimization. The covariances of these priors
are given byKu,Ka ∈RD×D andKv,Kb ∈RT×T and control the smoothness of the parameter space.
In the case of the spectral regularization we use the identity matrix for the covariance, Kb = σ2I,
since the smoothness assumption does not necessarily hold in the spectral domain.

Following Rasmussen and Williams (2005) the shape parameter was chosen to be ν = 100 for
the spatial components and ν= 2.5 for the temporal components. Reasonable choices for the length-
scale parameter l may be 25ms, 50ms or 100ms and in space 1cm, 2cm, and 3cm. Cross-validation
was used to select among these choices. The overall scale parameters σ were chose to be the same
for space and time components, but allowed to take on separate values for the first and second
order component. We used a line-search procedure in combination with cross-validation to select
appropriate values for σ.
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2.9 Optimization

Optimization (5) is achieved using a coordinate decent type algorithm (Nielsen, 2005) with param-
eters U,V and A,B optimized separately. We obtain analytic expressions for both the gradient and
the Hessian of the function, however, in the optimization only the gradient information is used.1 We
first optimize the parameters U and V, then optimize parameters A and B and finally perform a line
search to determine the value ofC.

Given that the optimization function is non-convex, the gradient decent method only finds local
minima. In fact, the performance of SOBDA is particularly sensitive to the starting conditions of the
spectral parameter d (parameter d enters the model when enforcing a Toeplitz structure on B, see
section 2.7.), while it is quite robust to the choice of initial conditions for the remaining parameters
U, V and A. A common technique in global optimization is to use parameter seeding and multiple
runs of the optimization procedure. For most parameters it was sufficient to try a few random initial
starting points. However, for the spectral parameter we found it important to initialize to a frequency
band that was expected to carry useful information, for example, 8Hz-30Hz. Note that the present
learning task falls into the class of bi-convex optimization problems for which efficient algorithms
have been developed (Floudas, 1997).

3. Results

We evaluated our algorithm on 3300 simulated data sets as well as 6 real EEG recordings, includ-
ing a data set used in the Brain Computer Interface Competitions II (Blankertz et al., 2004). The
simulation aims to quantify the algorithm’s performance on a broad spectrum of conditions and
various noise levels, as well as to compare the extracted spatial, temporal and frequency compo-
nents with ground truth. The evaluation on real data set compares the cross-validation performance
of the proposed method with three popular methods used in EEG analysis and BCI. Results show
that our method outperformed these methods, decreasing the overall classification error rates from
26%-28% to 19%. For the data set of the BCI competition we also report performance results on
the independent test set and compare to the previous results.

The three methods we will compare with are Bilinear Discriminant Component Analysis (BDCA)
(Dyrholm et al., 2007), Common Spatial Patterns (CSP) (Ramoser et al., 2000), and Matrix Logistic
Regression (MLR) (Tomioka et al., 2007). For the evaluation on the 6 real EEG data sets, we further
compare our method to the trace norm regularized Matrix Logistic Regression (sMLR) (Tomioka
and Aihara, 2007). These may be considered current state-of-the art methods in EEG single-trial
analysis. In our evaluation we use a rank one approximation for the BDCA as in Dyrholm et al.
(2007). We implemented CSP following the description of Ramoser et al. (2000). We used two spa-
tial patterns (SP) and employ a logistic regression classifier on the resulting SP. In the case of MLR
we use the rank-2 approximation as described in the corresponding paper (Tomioka et al., 2007).
For sMLR we used the implementation provide in Tomioka and Aihara (2007). Since CSP,MLR
and sMLR require the data to be band-pass filtered to the frequency of interest, data sets where
filtered in the range of 8Hz-30Hz for these two methods. For our algorithm we use rank-1 for the
first-order parameters U and V with R = 1. For the spatial parameter A we set K = 2 allowing
for two spatial patterns, while we enforce a Toeplitz structure on B. We initialize the parameters

1. We discard the Hessian information because of its computational cost and the non-convexity of the optimization
function. The Hessian of a non-convex function would need to be approximated by a positive definite matrix in each
iteration.
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U,V and A by a random assignment. While we initialize the matrix B to encode a band-pass filter
in the range of 8Hz− 30Hz as in the case of CSP, MLR, sMLR. As discussed in Section 2.7, en-
forcing a Toeplitz structure on B implies a representation of B in the form B = F−1DF, where F
denotes the orthonormal Fourier matrix with FH = F−1, and D is a diagonal complex-valued matrix
of Fourier coefficients. In our implementation, we optimize the coefficients of the matrix D instead
of B directly.

3.1 Simulated EEG Data

Simulated data for a two-class problem was generated using standard EEG simulation software
(GmbH, 2006). This software can generate electrode measurements under the assumption of dipolar
current sources in the brain. We used 3 dipoles at three different locations, with one dipole used to
generate evoked response activity, one dipole to generate induced oscillatory activity, and one dipole
to generate unrelated noise/interference. The first dipole’s component simulates a P300 evoked
response potential (ERP) signal. We used a half-sinusoid lasting 125ms with the peak positioned at
300ms after trial-onset and a trial-to-trial Gaussian temporal jitter with standard deviation of 10ms.
The second dipole’s component simulates ERS/ERD in the frequency band of 8Hz to 30Hz. A
variable signal in this frequency band was generated by bandpass filtering an uncorrelated Gaussian
process. The third dipole was used to generate noise in the source space representing brain activity
that is not related to the evoked/induced activity. Electric potentials at D = 31 electrode locations
were generated corresponding to 500ms of EEG signal sampled at 100Hz (T = 50 samples). In
addition to this rank-one noise we added noise to each sensor representing other sources of noise
(muscle activity, skin potentials, inductive noise, amplifier noise, etc.). All noise sources were
white. Trials belonging to the first class (yn = +1) contained the ERP and ERD/ERS source signals
scaled appropriately to achieve a specified SNR for each data set. The second class was generated
by only including the noise with no ERP or ERD/ERS activity. A data set is specified by indicating
the SNR for the ERP component and the SNR for the ERD/ERS component. A total of 500 trials for
each class were generated for each classification problem. The SNR of the ERP component is in the
range of -33dB to -13dB, and in the range of -22dB to -10dB for the oscillatory component. This
is a very broad range in terms of SNR. We note that -20dB translates to the signal being 10 times
smaller than the noise. ERP signals are known to be as low as −20dB so this evaluation captures
some extreme cases of SNR. We generated 35 data sets for each combination of SNR resulting to a
total of 3300 data sets.

3.2 Performance Results on Simulated Data

The simulation results are summarized in Figure 1. The top two rows show the performance of each
of the methods as a function of the SNR. The contours of the classification performance for each
method as a function of the SNR of the first-order and the second-order components are shown. It is
clear that BDCA performance is only affected by the noise in the linear term while CSP and MLR
performance only changes as a function of the second-order component’s SNR. SOBDA however,
uses both first and second-order terms, hence performs well in data sets where at least one of the
components has reasonable SNR. This finding confirms that SOBDA performs well in a broader
range of SNRs than the other three competitive methods. The third row in 1 shows the difference in
classification performance between SOBDA vs (BDCA,CSP,MLR).
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Figure 1: Performance results on simulated data. Second and third row: Probability of correct clas-
sification (Pc) as a function of the component’s SNR. SOBDA equi-performance contours
span larger area in the SNR space than any of the other three algorithms. Third row: Dif-
ference in Pc performance between SOBDA and each of the three methods as a function
of components SNR.

As a decomposition method, SOBDA extracts spatial, temporal and frequency components. The
advantage of simulated data is that we can now compare the extracted information to ground truth.
The component recovered for one of the data sets at −22dB and −15dB is shown in figure 2. The
first row shows the extracted temporal component U and the frequency component d.2 We can see
that the method extracted a temporal component with a peak at 300ms which is exactly the signal
used in the simulation data design. Similarly, the frequency band extracted shows a higher amplitude
in the range of 8Hz-30Hz which is the band used to generate the oscillatory component. The spatial
components extracted and the corresponding dipole used in the model generation are shown in rows
two and three in the figure. It is clear that the topography of the extracted components is similar
for the first and second-order components. The last column of the figure captures the second-order
oscillatory component and the dipole of the rank one noise. Visual inspection allows one to give
neurological interpretations to the extracted components. Further, the results can be used as input to

2. d the vector of diagonal elements of matrix D, such that B= FHDF
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Figure 2: Extracted components on simulated data set with first-order SNR at −22dB and second-
order SNR at −15dB. Top row: Extracted temporal weight of linear term (left) and
frequency weights of quadratic term (right). Center row: Extracted spatial weights. Bot-
tom row: Distribution of electric potentials corresponding to the three dipoles used during
stimulus generation.

a source localization algorithm, or as a guide to reduce the number of electrodes in a brain computer
interface.

3.2.1 GENERIC INITIALIZATION OF FREQUENCY COMPONENT

In the evaluation presented above, we initialized the matrix B to encode a band-pass in the range
of 8Hz - 30Hz as it was the case for CSP and MLR. In this section we demonstrate the ability of
the proposed SOBDA in cases where no initialization information is available. Specifically, we
evaluated the SOBDA algorithm on a simulated data set using the process described above, but this
time we initialize matrix B to a high-pass filter with cut of frequency at 1 Hz. High pass filtering
is a standard preprocessing steps in EEG that removes the DC power. Figure 3 shows the temporal
and frequency component obtained from SOBDA. As it is evident from the figure, the resulting
frequency component has higher weights for frequencies in the band 8Hz-30Hz, which is the band
used to generate the power component in the simulated data. Thus the proposed method is able
optimize the frequency band even in cases where we use a generic initialization of the matrix B.
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Figure 3: Discriminant coefficients on simulated data set with first-order SNR at −22dB and
second-order SNR at −15dB. The Fourier coefficients were initialized to a high-pass
filter with cut off frequency at 1 Hz Left figure: Extracted temporal weight of linear
term.Right figure: Magnitude of the Fourier coefficients in D, such that B= FHDF.

3.3 Human Subject EEG

To evaluate the performance of the proposed method on real data we first applied the algorithm to an
EEG data set that was made available through The BCI Competition 2003 (Blankertz et al., 2004,
Data Set IV). EEG was recorded on 28 channels for a single subject performing “self-paced key
typing”, that is, pressing with the index and little fingers corresponding keys in a self-chosen order
and timing. Key-presses occurred at an average speed of 1 key per second. Trial matrices were
extracted by epoching the data starting 630ms before each key-press. A total of 416 epochs were
recorded, each of length 500ms. For the competition, the first 316 epochs were used for classifier
training, while the remaining 100 epochs were used as a test set. Data was recorded at 1000Hz with
a pass-band between 0.05 and 200Hz, then down sampled to 100Hz sampling rate.

For this experiment, the matrix B was fixed to a Toeplitz structure that encodes a 10Hz-33Hz
bandpass filter and only the parameters U,V,A and w0 were trained. The number of columns of
U and V were set to R = 1 and the number of columns for A was set to K = 2. The selection
of these parameters is motivated by the task at hand. Specifically, we are looking for one ERP
components associated with the readiness potential that is, the slow increase in amplitude before
an actual hand movement. In the case of the second-order term involving the parameter A we set
K = 2 because we are interested in finding the modulation of oscillatory activity associated with
the different movements of the movements of the hands. Hands and fingers are represented in
somato-sensory cortex covering different areas and will hence modulate activity in distinct spatial
profiles. In order to detect the power difference of these two components we set, Λ = [1,0;0,−1],
in agreement with the original approach of Wolpaw et al. (2002).

The temporal filter was selected based on prior knowledge of the relevant frequency band. This
demonstrates the flexibility of our approach to either incorporate prior knowledge when available
or extract it from data otherwise. Regularization parameters where chosen via a five fold-cross
validation procedure as described in Section 2.8.

Benchmark performance was measured on the test set which had not been used during either
training or cross-validation. The number of misclassified trials in the test set was 13 which places
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Figure 4: Results on human EEG for BCI. Top row: Cross-validation performance shown as ROC
curve with area under the curve of 0.96 for the benchmark data set (left) and 0.93 for the
independent test set (right). There were a total of 13 errors on unseen data, which is less
than any of the results previously reported. Bottom row: Scatter plot of the first-order
term vs second-order term of the model, on the training and testing set for the benchmark
data set (’+’ left key, and ’o’ right key). It is clear that the two types of features contain
independent information that can help improve the classification performance.

our method in a new first place ranking, based on the results of the competition (Blankertz et al.,
2004). The receiver-operator characteristic curve (ROC) for cross-validation and for the indepen-
dent test set are shown in Figure 4. The Figure also shows the contribution of the linear and quadratic
terms for every trial for the two types of key-presses.

To further validate our method we performed our own EEG recordings asking subjects now to
respond with the left and right index fingers. We obtain five more data sets with the same number
of electrodes. For each data set and each algorithm we performed 20 repetitions of a five-fold
cross-validation procedure. Each repetition uses a different partitioning of the data. For the cross-
validation evaluation of these data sets, we initialized (but did not fix) matrixB to a Toeplitz structure
that encodes a 10Hz-33Hz bandpass filter and trained over all parameters U,V,A,B and w0.3 The
number of columns ofU andVwere set to 1, where two columns were used forA. This corresponds
to the parameter configuration of R= 1,K = 2 and T ′ = T .

3. We remind the reader that in the actual implementation we optimize the Fourier coefficients D instead of matrix B
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Figure 5: Estimate of the spread of the probability of correct identification from multiple cross-
validation repetitions. Lines show lower quartile, median, and upper quartile values for
each of the methods on all data sets. + symbols represent outliers.

Figure 5 shows performance distribution across these bootstrap repetitions using a standard
boxplot. The mean performance and standard deviation of each data set and algorithm are summa-
rized in table 1. The reduction in the overall classification error is from 26%-28% to 19%. In the
mean, SOBDA outperforms competitive methods in five out of the six data sets, while achieving a
comparable performance on data set 2. The performance optained with SOBDA is comparable to
performance gains that may be obtained by combining existing first and second order methods (e.g.,
CSP and BDCA—data not shown).

Figure 6 shows the extracted components for 3 of the 6 data sets. We note that in all three
cases the extracted components follow the general shape of the pre-motor or readiness potential
(a.k.a. Bereitschafts potential) which known to precede a voluntary muscle movement. In addition,
for two of the data sets, the frequency weightings suggest that alpha band activity also provides
discriminant information for this task. This finding is consistent with the changes in the µ rhythm—
that is, alpha-band activity localized over the motor cortex and associated with motor planning and
execution. This demonstrates the ability of our method to learn first and second-order features
that are consistent with, and can be linked to existing knowledge of the underlying neuronal signal
generators.
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Experiment BDCA CSP MLR SOBDA sMLR
1 0.84 ± 0.011 0.8 ± 0.017 0.82 ± 0.011 0.88±0.013 0.78 ± 0.0089
2 0.69 ± 0.037 0.84±0.017 0.77 ± 0.028 0.83 ± 0.021 0.82 ± 0.012
3 0.63±0.018 0.62 ± 0.016 0.55 ± 0.02 0.63±0.017 0.62 ± 0.015
4 0.72 ± 0.021 0.78 ± 0.015 0.77 ± 0.015 0.79±0.018 0.76 ± 0.021
5 0.64 ± 0.018 0.7 ± 0.022 0.7 ± 0.011 0.78±0.013 0.73 ± 0.0097
6 0.93 ± 0.01 0.7 ± 0.016 0.72 ± 0.01 0.94±0.0089 0.68 ± 0.0056

Mean 0.7412 0.7388 0.7213 0.8068 0.7316

Table 1: Probability of correct identification for the six EEG data sets obtained by each of the
four methods. The last row indicates the percentage of decrease in the classification error
achieved by SOBDA compared to each one of the methods. ± range indicates one standard
deviation for results of multiple cross-validation repetitions.

4. Rank-Selection

In our results, we selected the rank for the parameters U and V to be one (i.e., R = 1) and the
rank for the parameter A to be two (i.e., K = 2). The selection of these parameters was motivated
in Section 3.3. Specifically, in the current experimental paradigm, we are looking for one ERP
components associated with the readiness potential, that is, the slow increase in amplitude before
an actual hand movement. The search for a single component suggests setting R = 1, one spatio-
temporal component. In the case of the second-order term involving the parameter A we set the
K = 2 because we are interested in finding two components corresponding to the two different
spatial profiles of the two classes. To validate our selection for these parameters, we preformed
repeated cross-validation evaluation of our algorithm for different configurations of the parameters
R and K. The parameter R was tested for values {1,2,3,4} while parameter K was tested for {2,4}.
The results of this evaluation are summarized in Figure 7. The Figure 7.a shows the mean cross-
validation performance of the SOBDA algorithm across all real-EEG data sets for all configurations
of the parameters R and K. It is evident from this figure that configuration R= 1, K = 2 corresponds
to the best selection for these parameters on average for these data sets. The Figure 7.b shows
the cross-validation performance of the SOBDA algorithm for each data set separately and for all
configuration of the parameters R and K. The cross-validation procedure can be used to determine
or validate the configuration of parameters R and K in cases were no prior knowledge is available
about the signal of interest.

5. Conclusion

In this paper we presented a new method called Second-Order Bilinear Discriminant Analysis
(SOBDA) for analyzing EEG signals on a single-trial basis. The method combines linear and
quadratic features thus encompassing and extending a number of existing EEG analysis methods.
We evaluated the SOBDA algorithm in both simulated and real human EEG data sets. We show a re-
duction in the classification error on human EEGwhen comparing our method to the state-of-the-art.
The results on simulated data characterize the operational range of these algorithms in terms of SNR
and shows that the proposed algorithm operates well where other methods fail. The parametrization
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Figure 6: Extracted components in EEG for data sets 6, 4, and 3. Left: Temporal weights of linear
component (first column) and and frequency weights of quadratic component (second
column). Right: Spatial weights of linear component (third column) and two spatial
weights for second-order spatial components (fourth and fifth column).
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Figure 7: Cross-validation performance of SOBDA on the six real-EEG data sets used in the evalu-
ation, at various configuration of the parameters R and K. (a) The mean cross-validation
performance across data sets at various configuration of the parameters R andK.(b) Cross-
validation performance for each of the data sets at various configuration of the parameters
R and K.
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of the discriminant criterion is intuitive, allowing one to incorporate prior knowledge as well as to
derive spatial, temporal, and spectral information about the underlying neurological activity.

6. Derivations

In this section we derive the analytic gradient formulas of the negative log-likelihood function de-
fined in (2). In general the gradient with respect to any of the variables can be expressed as:

∂L(θ)
∂θ

= −
N

∑
n=1

∂ log(1+ e−yn f (Xn;θ))
∂θ

= −
N

∑
n=1

1
1+ e−yn f (X;θ)

∂{1+ e−yn f (Xn;θ)}
∂θ

=
N

∑
n=1

yn
e−yn f (X;θ)

1+ e−yn f (X;θ)
∂ f (Xn;θ)

∂θ
,

Now one has to take the specific derivatives with respect to each of the variables in θ is:
The gradient with respect to ur, the rth column of U.

∂{ f (Xn;θ)+w0}
∂ur

= C
∂{TraceU%XnV}

∂ur

= C
∂{∑R

r′=1u%r′Xnvr′}
∂ur

= CXnvr .

The gradient with respect to vr, the rth column of V is:

∂{ f (Xn;θ)+w0}
∂vr

= C
∂{TraceU%XnV}

∂vr

= C
∂{∑R

r′=1u%r′Xnvr′}
∂vr

= Cu%r Xn .

The gradient with respect to ar, the rth column of A is:

∂{ f (Xn;θ)+w0}
∂ar

= (1−C)
∂{TraceA%(XnB)(XnB)%A}

∂ar

= (1−C)
∂{∑K

r′=1λr′a%r′ (XnB)(XnB)%ar′}
∂ar

= 2(1−C)λr(XnB)(XnB)%ar ,
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The gradient with respect to br, the rth column of B is:

∂{ f (Xn;θ)+w0}
∂br

= (1−C)
∂{TraceΛA%(XnB)(XnB)%A}

∂br

= (1−C)
∂{TraceB%X%

n AΛA%XnB}
∂br

= (1−C)
∂{∑K

r′=1b%r′X%
n A%ΛA%Xnbr′}
∂br

= 2(1−C)(X%
n AΛA%Xn)br .
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Abstract

Bagging is a simple way to combine estimates in order to improve their performance. This method,
suggested by Breiman in 1996, proceeds by resampling from the original data set, constructing a
predictor from each subsample, and decide by combining. By bagging an n-sample, the crude near-
est neighbor regression estimate is turned into a consistent weighted nearest neighbor regression
estimate, which is amenable to statistical analysis. Letting the resampling size kn grows appropri-
ately with n, it is shown that this estimate may achieve optimal rate of convergence, independently
from the fact that resampling is done with or without replacement. Since the estimate with the
optimal rate of convergence depends on the unknown distribution of the observations, adaptation
results by data-splitting are presented.

Keywords: bagging, resampling, nearest neighbor estimate, rates of convergence

1. Introduction

Ensemble methods are popular machine learning algorithms which train multiple learners and com-
bine their predictions. The success of ensemble algorithms on many benchmark data sets has raised
considerable interest in understanding why such methods succeed and identifying circumstances in
which they can be expected to produce good results. It is now well known that the generalization
ability of an ensemble can be significantly better than that of a single predictor, and ensemble learn-
ing has therefore been a hot topic during the past years. For a comprehensive review of the domain,
we refer the reader to Dietterich (2000) and the references therein.

c©2010 Gérard Biau, Frédéric Cérou and Arnaud Guyader.
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1.1 Bagging

One of the first and simplest ways to combine predictors in order to improve their performance is
bagging (bootstrap aggregating), suggested by Breiman (1996). This ensemble method proceeds by
generating subsamples from the original data set, constructing a predictor from each resample, and
decide by combining. It is one of the most effective computationally intensive procedures to improve
on unstable estimates or classifiers, especially for large, high dimensional data set problems where
finding a good model in one step is impossible because of the complexity and scale of the problem.
Bagging has attracted much attention and is frequently applied, although its statistical mechanisms
are not yet fully understood and are still under active investigation. Recent theoretical contributions
to bagging and related methodologies include those of Friedman and Hall (2000), Bühlmann and
Yu (2002), Hall and Samworth (2005), Buja and Stuetzle (2006) and Biau and Devroye (2008).

It turns out that Breiman’s bagging principle has a simple application in the context of nearest
neighbor methods. Nearest neighbor predictors are one of the oldest approaches to regression and
classification (Fix and Hodges, 1951, 1952; Cover and Hart, 1967; Cover, 1968a,b; Györfi, 1978;
Venkatesh et al., 1992; Psaltis et al., 1994). A major attraction of nearest neighbor procedures
is their simplicity. For implementation, they require only a measure of distance in the sample
space, along with samples of training data, hence their popularity as a starting point for refinement,
improvement and adaptation to new settings (see for example Devroye et al., 1996, Chap. 19).
Before we formalize the link between bagging and nearest neighbors, some definitions are in order.
Throughout the paper, we suppose that we are given a sample Dn = {(X1,Y1), . . . ,(Xn,Yn)} of
i.i.d. Rd×R-valued random variables with the same distribution as a generic pair (X,Y ) satisfying
EY 2 < ∞. The space Rd is equipped with the standard Euclidean metric. For fixed x ∈ Rd , our
mission is to estimate the regression function r(x) = E[Y |X = x] using the data Dn. With this
respect, we say that a regression function estimate rn(x) is consistent if E[rn(X)− r(X)]2 → 0 as
n→∞. It is universally consistent if this property is true for all distributions of (X,Y )with EY 2 <∞.

1.2 Bagging and Nearest Neighbors

Recall that the 1-nearest neighbor (1-NN) regression estimate sets rn(x) = Y(1)(x) where Y(1)(x) is
the observation of the feature vector X(1)(x) whose Euclidean distance to x is minimal among all
X1, . . . ,Xn. Ties are broken in favor of smallest indices. It is clearly not, in general, a consistent
estimate (Devroye et al., 1996, Chap. 5). However, by bagging, one may turn the 1-NN estimate
into a consistent one, provided that the size of the resamples is sufficiently small.

We proceed as follows, via a randomized basic regression estimate rkn in which 1≤ kn ≤ n is a
parameter. The elementary predictor rkn is the 1-NN rule for a random subsample Sn drawn with (or
without) replacement from {(X1,Y1), . . . ,(Xn,Yn)}, with Card(Sn) = kn. We apply bagging, that is,
we repeat the random sampling an infinite number of times, and take the average of the individual
outcomes. Thus, the bagged regression estimate r!n is defined by

r!n(x) = E
! [rkn(x)] ,

where E! denotes expectation with respect to the resampling distribution, conditionally on the data
set Dn.

The following result, proved in Biau and Devroye (2008), shows that for an appropriate choice
of kn, the bagged version of the 1-NN regression estimate is universally consistent:

Theorem 1 If kn → ∞ and kn/n→ 0, then r!n is universally consistent.

688



BAGGED NEAREST NEIGHBOR ESTIMATE

In this theorem, the fact that resampling is done with or without replacement is irrelevant. Thus, by
bagging, one may turn the crude 1-NN procedure into a consistent one, provided that the size of the
resamples is sufficiently small. To understand the statistical forces driving Theorem 1, recall that
if we let V1 ≥ V2 ≥ . . . ≥ Vn ≥ 0 denote deterministic weights that sum to one, then the regression
estimate

n

∑
i=1
ViY(i)(x),

with (X(1)(x),Y(1)(x)), . . . ,(X(n)(x),Y(n)(x)) the reordering of the data such that

‖x−X(1)(x)‖ ≤ . . . ≤ ‖x−X(n)(x)‖

is called a weighted nearest neighbor regression estimate. It is known to be universally consistent
provided V1→ 0 and ∑i>εnVi → 0 for all ε> 0 as n→∞, see Stone (1977) and Devroye (1981) and
Devroye et al. (1996, Problems 11.7, 11.8). The crux to prove Theorem 1 is to observe that r!n is in
fact a weighted nearest neighbor estimate with

Vi = P(i-th nearest neighbor of x is the 1-NN in a random selection).

Then, a moment’s thought shows that for the “with replacement” sampling

Vi =
(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
,

whereas for sampling “without replacement”, Vi is hypergeometric:

Vi =























(

n− i
kn−1

)

(

n
kn

) , i≤ n− kn+1

0, i> n− kn+1.

The core of the proof of Theorem 1 is then to show that, in both cases, the weights Vi satisfy the
conditions V1 → 0 and ∑i>εnVi → 0 for all ε> 0 as n→∞. These weights have been independently
exhibited by Steele (2009), who also shows on practical examples that substantial reductions in
prediction error are possible by bagging the 1-NN estimate. Note also that this new expression for
the 1-NN bagged estimate makes any Monte-Carlo approach unnecessary to evaluate the estimate.
Indeed, up to now, this predictor was implemented by Monte-Carlo, that is, by repeating the random
sampling T times, and taking the average of the individual outcomes. Formally, if Zt = rkn(x) is the
prediction in the t-th round of bagging, the bagged regression estimate was approximately evaluated
as

r!n(x) ≈
1
T

T

∑
t=1

Zt ,

where Z1, . . . ,ZT are the outcomes in the individual rounds. Clearly, writing the 1-NN bagged
estimate as an (exact) weighted nearest neighbor predictor makes such calculations useless.

On the other hand, the fact that the bagged 1-NN estimate reduces to a weighted nearest neighbor
estimate may seem at first sight somehow disappointing. Indeed, we get the ordinary kn-NN rule
back by the choice

Vi =
{

1/kn if i≤ kn
0 otherwise,
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and, with an appropriate choice of the sequence (kn), this regression estimate is known to have
optimal asymptotic properties (see Györfi et al., 2002, Chap. 6, and the references therein). Thus,
the question is: Why would one care about the bagged nearest neighbor rule then? The answer
is twofold. First, bagging the 1-NN is a very popular technique for regression and classification
in the machine learning community, and most—if not all—empirical studies report practical im-
provements over the traditional kn-NN method. Secondly (and most importantly), analysing 1-NN
bagging is part of a larger project trying to understand the driving forces behind the random forests
estimates, which were defined in Breiman (2001). In short, random forests are some of the most
successful ensemble methods that exhibit performance on the level of boosting and support vector
machines. These learning procedures typically involve a resampling step, which may be interpreted
as a particular 1-NN bagged procedure based on the so-called “layered nearest neighbor” proximi-
ties (Lin and Jeon, 2006; Biau and Devroye, 2008).

Thus, in the present paper, we go one step further in bagging investigation and study the rate
of convergence of E [r!n(X)− r(X)]2 to 0 as n→ ∞. We will start our analysis by stating a compre-
hensive theorem on the rate of convergence of general weighted nearest neighbor estimates (Section
2.1). Then, this result will be particularized to 1-NN bagging, by distinguishing the “with replace-
ment” (Section 2.2) and the “without replacement” (Section 2.3) cases. For the sake of clarity,
technical proofs are postponed to Section 3.

Throughout the document, we will be interested in rate of convergence results for the class F
of (1,C,ρ,σ2)-smooth distributions (X,Y ) such that X has compact support with diameter 2ρ, the
regression function r is Lipschitz with constant C and, for all x ∈ Rd , σ2(x) = V[Y |X = x] ≤ σ2

(the symbol V denotes variance). It is known (see, for example Ibragimov and Khasminskii, 1980,
1981, 1982) that for the class F , the sequence (n−

2
d+2 ) is the optimal minimax rate of convergence.

In particular,

liminf
n→∞

inf
rn

sup
(X,Y )∈F

E[rn(X)− r(X)]2

((ρC)dσ2)
2

d+2 n−
2

d+2
≥ Δ

for some positive constant Δ independent ofC, ρ and σ2. Here the infimum is taken over all estimates
rn, that is, over all square integrable measurable functions of the data. As a striking result, we prove
in Sections 2.2 and 2.3 that, irrespectively of the resampling type, for d ≥ 3 and a suitable choice of
the sequence (kn), the estimate r!n is of optimum rate for the class F , that is

limsup
n→∞

sup
(X,Y )∈F

E[r!n(X)− r(X)]2

((ρC)dσ2)
2

d+2 n−
2

d+2
≤ Λ

for some positive Λ independent of C, ρ and σ2. Since the parameter kn of the estimate with
the optimal rate of convergence depends on the unknown distribution of (X,Y ), especially on the
smoothness of the regression function, we present in Section 2.4 adaptive (i.e., data-dependent)
choices of kn which preserve the minimax optimality of the estimate.

We wish to emphasize that all the results are obtained by letting the resampling size kn grows
with n in such a manner that kn→∞ and kn/n→ 0. These results are of interest because the majority
of bagging experiments employ relatively large resample sizes. In fact, much of the evidence against
the performance of bagged nearest neighbor methods is for full sample size resamples (see the
discussion in Breiman, 1996, paragraph 6.4), except the notable results of Hall and Samworth (2005)
and Steele (2009), who also report encouraging numerical results in the context of regression and
classification.
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2. Rates of Convergence

As an appetizer, we start our analysis of the 1-NN bagged regression estimate from a larger point
of view, by offering a general theorem on the rate of convergence of weighted nearest neighbor
estimates, that is, estimates of the form

rn(x) =
n

∑
i=1
ViY(i)(x)

with nonnegative weights satisfying the constraints ∑n
i=1Vi = 1 and V1 ≥V2 ≥ . . . ≥Vn ≥ 0.

2.1 Weighted Nearest Neighbor Estimates

Let us first recall various topological definitions that will be used in the paper. We first define the
well-known notion of covering numbers which characterize the massiveness of a set (Kolmogorov
and Tihomirov, 1961). As put forward in Kulkarni and Posner (1995), these quantities play a key
role in the context of nearest neighbor analysis. Let B(x,ε) denote the open Euclidean ball in Rd

centered at x of radius ε.

Definition 2 Let A be a subset of Rd. The ε-covering number N (ε) [= N (ε,A)] is defined as the
smallest number of open balls of radius ε that cover the set A . That is

N (ε) = inf

{

r ≥ 1 : ∃x1, . . . ,xr ∈ R
d such that A ⊂

r
[

i=1
B(xi,ε)

}

.

A set A ⊂ Rd is bounded if and only if N (ε) < ∞ for all ε> 0. Note that as a function of ε, N (ε)
is nonincreasing, piecewise-constant and right-continuous. The following discrete function, called
the metric covering radius, can be interpreted as a pseudo-inverse of the function N (ε):

Definition 3 The metric covering radius N −1(r) [= N −1(r,A)] is defined as the smallest radius
such that there exist r balls of this radius which cover the set A . That is

N −1(r) = inf

{

ε> 0 : ∃x1, . . . ,xr ∈ R
d such that A ⊂

r
[

i=1
B(xi,ε)

}

.

We note that N −1(r) is a nonincreasing discrete function of r.
Throughout the paper, we will denote by µ the distribution of X, which will be assumed to be a

bounded random variable. Recall that the support S(µ) of µ is defined as the collection of all x with
µ(B(x,ε)) > 0 for all ε > 0. Letting ρ = N −1(1,S(µ)), we observe that 2ρ is an upper bound on
the diameter of S(µ). We are now in a position to state the main result of this subsection. We let the
symbol ,.- denote the integer part function.

Theorem 4 Let rn(x) = ∑n
i=1ViY(i)(x) be a weighted nearest neighbor estimate of r(x). Suppose

that X is bounded, and set ρ=N −1(1,S(µ)). Suppose in addition that, for all x and x′ ∈ Rd,

σ2(x) = V[Y |X= x] ≤ σ2

and
∣

∣r(x)− r(x′)
∣

∣ ≤C‖x−x′‖,
for some positive constants σ2 and C. Then
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(i) If d = 1,

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1
V 2i +16ρ2C2

n

∑
i=1
Vi
i
n
.

(ii) If d = 2,

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1
V 2i +8ρ2C2

n

∑
i=1
Vi
i
n

[

1+ ln
(n
i

)]

.

(iii) If d ≥ 3,

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1
V 2i +

8ρ2C2

1−2/d

n

∑
i=1
Vi

⌊n
i

⌋−2/d
.

Proof Setting

r̃n(x) =
n

∑
i=1
Vi r(X(i)(x)),

the proof of Theorem 4 will rely on the variance/bias decomposition

E [rn(X)− r(X)]2 = E [rn(X)− r̃n(X)]2+E [r̃n(X)− r(X)]2 . (1)

The first term is easily bounded by noting that, for all x ∈ Rd ,

E [rn(x)− r̃n(x)]2 = E

[

n

∑
i=1
Vi

(

Y(i)(x)− r(X(i)(x))
)

]2

= E

[

n

∑
i=1
V 2i

(

Y(i)(x)− r(X(i)(x))
)2

]

= E

[

n

∑
i=1
V 2i σ2

(

X(i)(x)
)

]

≤ σ2
n

∑
i=1
V 2i . (2)

To analyse the bias term in (1), we will need the following result, which bounds the convergence
rate of the expected i-th nearest neighbor squared distance in terms of the metric covering radii of
the support of the distribution µ of X. Proposition 5 is a generalization of Theorem 1, page 1032
in Kulkarni and Posner (1995), which only reports results for the rate of convergence of the nearest
neighbor. Therefore, this result is interesting by itself.

Proposition 5 Suppose that X is bounded. Then

E‖X(i)(X)−X‖2 ≤ 8i
n

,n/i-

∑
j=1

[

N −1 ( j,S(µ))
]2

.

For any bounded set A in the Euclidean d-space, the covering radius satisfies
N −1(r,A) ≤N −1(1,A)r−1/d (see Kolmogorov and Tihomirov, 1961). Hence the following corol-
lary:
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Corollary 6 Suppose that X is bounded, and set ρ=N −1(1,S(µ)). Then

(i) If d = 1,

E‖X(i)(X)−X‖2 ≤ 16ρ2i
n

.

(ii) If d = 2,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

[

1+ ln
(n
i

)]

.

(iii) If d ≥ 3,

E‖X(i)(X)−X‖2 ≤ 8ρ2,n/i-−
2
d

1−2/d
.

Thus, to prove Theorem 4, it suffices to note from (1) and (2) that

E [rn(X)− r(X)]2 ≤ σ2
n

∑
i=1
V 2i +E [r̃n(X)− r(X)]2 .

Next,

E [r̃n(x)− r(x)]2 = E

[

n

∑
i=1
Vi

(

r(X(i)(x))− r(x)
)

]2

≤ E

[

n

∑
i=1
Vi

∣

∣r(X(i)(x))− r(x)
∣

∣

]2

≤C2E

[

n

∑
i=1
Vi

∥

∥X(i)(x)−x
∥

∥

]2

≤C2
[

n

∑
i=1
ViE‖X(i)(x)−x‖2

]

(by Jensen’s inequality).

Therefore, integrating with respect to the distribution of X, we obtain

E [r̃n(X)− r(X)]2 ≤C2
[

n

∑
i=1
ViE‖X(i)(X)−X‖2

]

,

and the conclusion follows by applying Corollary 6.

Theorem 4 offers a general result, which can be made more precise according to the weights defini-
tion. Taking for example

Vi =
{

1/kn if i≤ kn
0 otherwise,

we get the ordinary kn-NN rule back. Here,
n

∑
i=1
V 2i =

1
kn
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and

n

∑
i=1
Vi

⌊n
i

⌋−2/d
=
1
kn

kn
∑
i=1

⌊n
i

⌋−2/d

≤
1
kn

kn
∑
i=1

⌊

n
kn

⌋−2/d

=

⌊

n
kn

⌋−2/d

≤ ξ

(

n
kn

)−2/d

for some positive ξ. Therefore, in this context, according to Theorem 4, for d ≥ 3, there exists a
sequence (kn) with kn ∝ n

2
d+2 such that

E [rn(X)− r(X)]2 ≤ Λ

(

(ρC)dσ2

n

)

2
d+2

,

for some positive constant Λ independent of ρ, C and σ2. This is exactly Theorem 6.2, page 93
of Györfi et al. (2002), which states that the standard nearest neighbor estimate is of optimum
rate for the class F of (1,C,ρ,σ2)-smooth distributions (X,Y ) such that X has compact support
with covering radius ρ, the regression function r is Lipschitz with constant C and, for all x ∈ Rd ,
σ2(x) = V[Y |X= x]≤ σ2 (note however that the ordinary kn-NN predictor is not optimal for higher
smoothness, see Problem 6.2 in Györfi et al., 2002).

The adaptation of Theorem 4 to the 1-NN bagged regression estimate needs more careful atten-
tion. This will be the topic of the next two Sections.

2.2 Bagging with Replacement

This bagging-type is sometimes called moon-bagging, standing formout of n bootstrap aggregating.
As seen in the introduction, in this case, the weighted nearest neighbor regression estimate takes the
form

r!n(x) =
n

∑
i=1
ViY(i)(x),

where

Vi =
(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
.

From now on, Γ(t) will denote the Gamma function, that is,

Γ(t) =
Z ∞

0
xt−1e−xdx, t > 0.

In order to make full use of Theorem 4, we first need a careful control of the term ∑n
i=1V 2i . This is

done in the next proposition.
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Proposition 7 For i= 1, . . . ,n, let

Vi =
(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
.

Then
n

∑
i=1
V 2i ≤

2kn
n

(

1+
1
n

)2kn
.

The message of Proposition 7 is that, when resampling is done with replacement, the variance term
of the bagged NN estimate is O(kn/n). Let us now turn to the bias term analysis.

Proposition 8 For i= 1, . . . ,n, let

Vi =
(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
.

Then

(i) If d = 1,
n

∑
i=1
Vi
i
n
≤
2
kn

(

1+
1
n

)kn
.

(ii) If d = 2,
n

∑
i=1
Vi
i
n

[

1+ ln
(n
i

)]

≤
2
kn

(

1+
1
n

)kn
[1+ ln(kn+1)] .

(iii) If d ≥ 3,
n

∑
i=1
Vi

⌊n
i

⌋−2/d
≤

1
nkn

+αd

(

1+
1
n

)kn
kn−

2
d ,

where
αd = 2Γ

(

d−2
d

)

Γ

(

d+2
d

)

.

The take-home message here is that, for d ≥ 3, the squared bias is O(k−2/dn ). Finally, putting all the
pieces together, we obtain

Theorem 9 Suppose that X is bounded, and set ρ = N −1(1,S(µ)). Suppose in addition that, for
all x and x′ ∈ Rd,

σ2(x) = V[Y |X= x] ≤ σ2

and
∣

∣r(x)− r(x′)
∣

∣ ≤C‖x−x′‖,

for some positive constants σ2 and C. Then

(i) If d = 1,

E [r!n(X)− r(X)]2 ≤
2σ2kn
n

(

1+
1
n

)2kn
+
32ρ2C2

kn

(

1+
1
n

)kn
.
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(ii) If d = 2,

E [r!n(X)− r(X)]2 ≤
2σ2kn
n

(

1+
1
n

)2kn

+
16ρ2C2

kn

(

1+
1
n

)kn
[1+ ln(kn+1)] .

(iii) If d ≥ 3,

E [r!n(X)− r(X)]2 ≤
2σ2kn
n

(

1+
1
n

)2kn

+
8ρ2C2

1−2/d

[

1
nkn

+αd

(

1+
1
n

)kn
kn−

2
d

]

,

where
αd = 2Γ

(

d−2
d

)

Γ

(

d+2
d

)

.

By balancing the terms in Theorem 9, we are led to the following corollary:

Corollary 10 Under the assumptions of Theorem 9,

(i) If d = 1, there exists a sequence (kn) such that kn → ∞, kn/n→ 0, and

E [r!n(X)− r(X)]2 ≤ Λ
ρCσ√
n

,

for some positive constant Λ independent of ρ, C and σ2.

(ii) If d = 2, there exists a sequence (kn) such that kn → ∞, kn/n→ 0, and

E [r!n(X)− r(X)]2 ≤ (Λ+o(1))ρCσ
√

lnn
n

,

for some positive constant Λ independent of ρ, C and σ2.

(iii) If d ≥ 3, there exists a sequence (kn) with kn ∝ n
d

d+2 such that

E [r!n(X)− r(X)]2 ≤ Λ

(

(ρC)dσ2

n

)

2
d+2

,

for some positive constant Λ independent of ρ, C and σ2.

Two important remarks are in order.

1. First, we note that, for d ≥ 3 and a suitable choice of kn, the bagged 1-NN estimate achieves
both the minimax n−2/(d+2) rate and the optimal order of magnitude ((ρC)dσ2)2/(d+2) in the
constant, for the class F of (1,C,ρ,σ2)-smooth distributions (X,Y ) such that X has compact
support with covering radius ρ, the regression function r is Lipschitz with constantC and, for
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all x ∈ Rd , σ2(x) = V[Y |X= x] ≤ σ2. Seconds, the bound is valid for finite sample sizes, so
that we are in fact able to approach the minimax lower bound not only asymptotically but even
for finite sample sizes. On the other hand, the estimate with the optimal rate of convergence
depends on the unknown distribution of (X,Y ), and especially on the covering radius ρ and
the smoothness of the regression function measured by the constant C. It is to correct this
situation that we present adaptation results in Section 2.4.

2. For d = 1, the obtained rate is not optimal, whereas it is optimal up to a log term for d = 2.
This low-dimensional phenomenon is also known to hold for the traditional kn-NN regression
estimate, which does not achieve the optimal rates in dimensions 1 and 2 (see Problems 6.1
and 6.7 in Györfi et al., 2002, Chap. 3).

2.3 Bagging Without Replacement

We briefly analyse in this subsection the rate of convergence of the bagged 1-NN regression es-
timate, assuming this time that, at each step, the kn observations are distinctly chosen at random
within the sample set Dn. This alternative aggregation scheme is called subagging (for subsample
aggregating) in Bühlmann and Yu (2002). We know that, in this case, the weighted nearest neighbor
regression estimate takes the form

r!n(x) =
n

∑
i=1
ViY(i)(x),

where

Vi =























(

n− i
kn−1

)

(

n
kn

) , i≤ n− kn+1

0, i> n− kn+1.
Due to the fact that there is no repetition in the sampling process, the analysis turns out to be simpler.
To prove Theorem 13 below, we start again by a control of the variance term ∑n

i=1V 2i .

Proposition 11 For i= 1, . . . ,n, let

Vi =























(

n− i
kn−1

)

(

n
kn

) , i≤ n− kn+1

0, i> n− kn+1.

Then
n

∑
i=1
V 2i ≤

kn
n

1
(1− kn/n+1/n)2

.

Thus, as for bagging with replacement, the variance term of the without replacement bagged 1-
NN estimate is O(kn/n). The bias term may be treated by resorting to Theorem 4, via complex
calculations due to the complicate form of the bagging weights. However, a much simpler route
may be followed. Recall that

r̃!n(x) =
n

∑
i=1
Vi r(X(i)(x)),
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and observe that
r̃!n(x) = E

!
[

r(X!
(1)(x))

]

,

where X!
(1)(x) is the nearest neighbor of x in a random subsample Sn drawn without replacement

from {(X1,Y1), . . . ,(Xn,Yn)} with Card(Sn) = kn, and E! denotes expectation with respect to the
resampling distribution, conditionally on the data set Dn. This is the basic ingredient for the proof
of the next proposition.

Proposition 12 Suppose that X is bounded, and set ρ = N −1(1,S(µ)). Suppose in addition that,
for all x and x′ ∈ Rd,

∣

∣r(x)− r(x′)
∣

∣ ≤C‖x−x′‖,

for some positive constant C. Then

(i) If d = 1,

E [r̃!n(X)− r(X)]2 ≤
16ρ2C2

kn
.

(ii) If d = 2,

E [r̃!n(X)− r(X)]2 ≤
8ρ2C2

kn
(1+ lnkn).

(iii) If d ≥ 3,

E [r̃!n(X)− r(X)]2 ≤
8ρ2C2

1−2/d
kn−

2
d .

Thus, for d ≥ 3, E [r̃!n(X)− r(X)]2 =O(k−2/dn ). Combining Proposition 11 and Proposition 12 leads
to the desired theorem:

Theorem 13 Suppose that X is bounded, and set ρ = N −1(1,S(µ)). Suppose in addition that, for
all x and x′ ∈ Rd,

σ2(x) = V[Y |X= x] ≤ σ2

and
∣

∣r(x)− r(x′)
∣

∣ ≤C‖x−x′‖,

for some positive constants σ2 and C. Then

(i) If d = 1,

E [r!n(X)− r(X)]2 ≤
kn
n

σ2

(1− kn/n+1/n)2
+
16ρ2C2

kn
.

(ii) If d = 2,

E [r!n(X)− r(X)]2 ≤
kn
n

σ2

(1− kn/n+1/n)2
+
8ρ2C2

kn
(1+ lnkn).

(iii) If d ≥ 3,

E [r!n(X)− r(X)]2 ≤
kn
n

σ2

(1− kn/n+1/n)2
+
8ρ2C2

1−2/d
k−

2
dn .
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By balancing the variance and bias terms, we obtain the following useful corollary:

Corollary 14 Under the assumptions of Theorem 13,

(i) If d = 1, there exists a sequence (kn) such that kn → ∞, kn/n→ 0, and

E [r!n(X)− r(X)]2 ≤ (Λ+o(1))
ρCσ√
n

,

for some positive constant Λ independent of ρ, C and σ2.

(ii) If d = 2, there exists a sequence (kn) such that kn → ∞, kn/n→ 0, and

E [r!n(X)− r(X)]2 ≤ (Λ+o(1))ρCσ
√

lnn
n

,

for some positive constant Λ independent of ρ, C and σ2.

(iii) If d ≥ 3, there exists a sequence (kn) with kn ∝ n
d

d+2 such that

E [r!n(X)− r(X)]2 ≤ (Λ+o(1))
(

(ρC)dσ2

n

)

2
d+2

,

for some positive constant Λ independent of ρ, C and σ2.

As in bagging with replacement, Corollary 14 expresses the fact that, for d ≥ 3, the without re-
placement bagged 1-NN estimate asymptotically achieves both the minimax n−2/(d+2) rate of con-
vergence and the optimal order of magnitude ((ρC)dσ2)d/(d+2) in the constant, for the class F of
(1,C,ρ,σ2)-smooth distributions (X,Y ).

2.4 Adaptation

In the previous subsections, the parameter kn of the estimate with the optimal rate of convergence
for the class F depends on the unknown distribution of (X,Y ), especially on the smoothness of the
regression function measured by the Lipschitz constant C. In this subsection, we present a data-
dependent way of choosing the resampling size kn and show that, for bounded Y , the estimate with
parameter chosen in such an adaptive way achieves the optimal rate of convergence (irrespectively
of the resampling type). To this aim, we split the sample Dn = {(X1,Y1), . . . ,(Xn,Yn)} in two parts
of size ,n/2- and n−,n/2-, respectively (assuming n≥ 2). The first half is denoted byD"

n (learning
set) and is used to construct the bagged 1-NN estimate r!,n/2-(x,D

"
n) = r!k,,n/2-(x,D

"
n) (for the sake

of clarity, we make the dependence of the estimate upon k explicit). The second half of the sample,
denoted by Dt

n (testing set), is used to choose k by picking k̂n ∈ K = {1, . . . ,,n/2-} to minimize the
empirical risk

1
n−,n/2-

n

∑
i=,n/2-+1

(

Yi− r!k,,n/2-(Xi)
)2

.

Define the estimate
r!n(x) = r!k̂n,,n/2-(x,D

"
n),
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and note that r!n depends on the entire data Dn. If |Y | ≤ L < ∞ almost surely, a straightforward
adaptation of Theorem 7.1 in Györfi et al. (2002) shows that, for any δ> 0,

E[r!n(X)− r(X)]2 ≤ (1+δ) inf
k∈K

E[r!k,,n/2-(X)− r(X)]2+Ξ
lnn
n

,

for some positive constant Ξ depending only on L, d and δ. Immediately from Corollary 10 and
Corollary 14 we can conclude:

Theorem 15 Suppose that |Y | ≤ L almost surely, and let r!n be the bagged 1-NN estimate with k ∈
K = {1, . . . ,,n/2-} chosen by data-splitting, irrespectively of the resampling type. Then
(lnn)(d+2)/(2d)n−1/2 ≤ ρC together with d ≥ 3 implies, for n≥ 2,

E[r!n(X)− r(X)]2 ≤ (Λ+o(1))
(

(ρC)d

n

)

2
d+2

,

for some positive constant Λ which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is bounded from above up to a
constant by the corresponding minimax lower bound for the class F of regression functions, with
the optimal dependence inC and ρ.

3. Proofs

Proofs of the main results are gathered in this section.

3.1 Proof of Proposition 5

All the covering and metric numbers we use in this proof are pertaining to the bounded set S(µ).
Therefore, to lighten notation a bit, we set N (ε) =N (ε,S(µ)) and N −1(r) =N −1(r,S(µ)).

Let X′ be a random variable distributed as and independent of X, and let, for ε> 0,

FX(ε) = P
(

‖X−X′‖ ≤ ε |X
)

be the conditional cumulative distribution function of the Euclidean distance between X and X′. Set
finally

D(i)(X) = ‖X(i)(X)−X‖.

Clearly,

P

(

D2(i)(X) > ε
)

= E
[

P
(

D(i)(X) >
√
ε |X

)]

= E

[

i−1

∑
j=0

(

n
j

)

[

FX
(√

ε
)] j [1−FX

(√
ε
)]n− j

]

. (3)

Take B1, . . . ,BN (
√
ε/2) a

√
ε/2-covering of S(µ), and define an N (

√
ε/2)-partition of S(µ) as fol-

lows. For each " = 1, . . . ,N (
√
ε/2), let

P" = B"−
"−1
[

j=1
B j.
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Then P" ⊂ B" and
N (

√
ε/2)

[

"=1
B" =

N (
√
ε/2)

[

"=1
P",

with Pi∩Pm = /0. Also,
N (

√
ε/2)

∑
"=1

µ(P") = 1.

Thus, letting p" = µ(P"), we may write

FX
(√

ε
)

≥ P(∃ " = 1, . . . ,N (
√
ε/2) : X ∈ P" and X′ ∈ P" |X)

= E

[

N (
√
ε/2)

∑
"=1

1[X∈P"]1[X′∈P"]

∣

∣

∣

∣

∣

X
]

=
N (

√
ε/2)

∑
"=1

p"1[X∈P"].

As a by-product, we remark that, for all ε> 0, FX
(√

ε
)

> 0 almost surely. Moreover

E

[

1
FX

(√
ε
)

]

≤ E

[

1

∑
N (

√
ε/2)

"=1 p"1[X∈P"]

]

= E

[

N (
√
ε/2)

∑
"=1

1
p"
1[X∈P"]

]

,

leading to

E

[

1
FX

(√
ε
)

]

≤N

(√
ε
2

)

. (4)

Consequently, combining inequalities (3), (4) and technical Lemma 16, we obtain

P

(

D2(i)(X) > ε
)

= E

[

1
FX

(√
ε
)

i−1

∑
j=0

(

n
j

)

[

FX
(√

ε
)] j+1 [1−FX

(√
ε
)]n− j

]

≤
i

n+1
E

[

1
FX

(√
ε
)

]

≤
i
n
N

(√
ε
2

)

.

Thus, since P(D2(i)(X) > ε) = 0 for ε> 4[N −1(1)]2, we obtain

E

[

D2(i)(X)
]

=
Z ∞

0
P(D2(i)(X) > ε)dε

=
Z 4[N −1(1)]2

0
P(D2(i)(X) > ε)dε

≤ 4
[

N −1
(⌊n

i

⌋)]2
+
i
n

Z 4[N −1(1)]2

4[N −1(,n/i-)]2
N (

√
ε/2)dε.
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Since N (
√
ε) = j for N −1( j) ≤

√
ε<N −1( j−1), we get

E

[

D2(i)(X)
]

≤ 4
[

N −1
(⌊n

i

⌋)]2
+
4i
n

Z [N −1(1)]2

[N −1(,n/i-)]2
N (

√
ε)dε

≤ 4
[

N −1
(⌊n

i

⌋)]2
+
4i
n

,n/i-

∑
j=2

Z [N −1( j−1)]2

[N −1( j)]2
j dε

= 4
[

N −1
(⌊n

i

⌋)]2

+
4i
n

[

2
[

N −1(1)
]2−

⌊n
i

⌋[

N −1
(⌊n

i

⌋)]2
+

,n/i-−1

∑
j=2

[

N −1( j)
]2

]

≤
8i
n

[

N −1(1)
]2

+
4i
n

[

N −1
(⌊n

i

⌋)]2
+
4i
n

,n/i-−1

∑
j=2

[

N −1( j)
]2

,

where the last statement follows from the inequality

−
4i
n

⌊n
i

⌋

+4≤
4i
n

.

In conclusion, we are led to

E

[

D2(i)(X)
]

≤
8i
n

,n/i-

∑
j=1

[

N −1( j)
]2

,

as desired.

3.2 Proof of Corollary 6

For any bounded set A in the Euclidean d-space, the covering radius satisfies
N −1(r,A)≤N −1(1,A)r−1/d (see Kolmogorov and Tihomirov, 1961). Consequently, using Propo-
sition 5, we obtain

(i) For d = 1,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

,n/i-

∑
j=1

j−2

≤
8ρ2i
n

[

1+
Z ,n/i-

1
x−2dx

]

≤
16ρ2i
n

.

(ii) For d = 2,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

,n/i-

∑
j=1

j−1

≤
8ρ2i
n

[

1+
Z ,n/i-

1
x−1dx

]

≤
8ρ2i
n

[

1+ ln
(n
i

)]

.
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(iii) For d ≥ 3,

E‖X(i)(X)−X‖2 ≤ 8ρ2i
n

,n/i-

∑
j=1

j−
2
d

≤
8ρ2i
n

Z ,n/i-

0
x−

2
d dx

=
8ρ2,n/i-−

2
d

1−2/d
.

In the last statement, we used the inequality i/n≤ 1/,n/i-.

3.3 Proof of Proposition 7

An easy calculation shows that

n

∑
i=1
V 2i =

n

∑
i=1

[

(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
]2

= 2
n−1

∑
i=0

(

1−
i
n

)kn
[

(

1−
i
n

)kn
−

(

1−
i+1
n

)kn
]

−1.

Let the map f : R → R be defined by f (x) = (1− x)kn . Then, by the mean value theorem,

0≤
(

1−
i
n

)kn
−

(

1−
i+1
n

)kn
≤−

1
n
f ′

(

i
n

)

=
kn
n

(

1−
i
n

)kn−1
.

Thus,
n

∑
i=1
V 2i ≤

2kn
n

n−1

∑
i=0

(

1−
i
n

)2kn−1
−1.

In addition, let the map g : R → R be defined by g(x) = (1− x)2kn−1. Observing that
Z 1

0
g(x)dx=

1
2kn

,

we obtain

n

∑
i=1
V 2i ≤ 2kn

[

1
n

n−1

∑
i=0

g
(

i
n

)

−
Z 1

0
g(x)dx

]

= 2kn
n−1

∑
i=0

Z (i+1)/n

i/n

[

g
(

i
n

)

−g(x)
]

dx.

Invoking again the mean value theorem, we may write, for all x ∈ [i/n,(i+1)/n],

0≤ g
(

i
n

)

−g(x) ≤−
1
n
g′

(

i
n

)

.
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Therefore,
n

∑
i=1
V 2i ≤

2kn
n2

n−1

∑
i=0

[

−g′
(

i
n

)]

.

Clearly,
1
n

n−1

∑
i=0

[

−g′
(

i
n

)]

≤−
Z 1−1/n

−1/n
g′(x)dx= g

(

−
1
n

)

−g
(

1−
1
n

)

.

Putting all the pieces together, we finally obtain

n

∑
i=1
V 2i ≤

2kn
n

[

(

1+
1
n

)2kn−1
−

(

1
n

)2kn−1
]

≤
2kn
n

(

1+
1
n

)2kn
.

This concludes the proof of the proposition.

3.4 Proof of Proposition 8

We distinguish between the cases d = 1, d = 2 and d ≥ 3.

(i) If d = 1, for i= 1, . . . ,n, by definition of the Vi’s,

n

∑
i=1
Vi
i
n

=
n

∑
i=1

[

(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
]

i
n
.

Thus

n

∑
i=1
Vi
i
n

=
n

∑
i=1

[

(

1−
i
n

+
1
n

)kn
−

(

1−
i
n

)kn
]

i
n

=
n

∑
i=1

[

kn
∑
j=1

(

kn
j

)

1
n j

(

1−
i
n

)kn− j
]

i
n

=
kn
∑
j=1

(

kn
j

)

1
n j−1

[

1
n

n

∑
i=1

i
n

(

1−
i
n

)kn− j
]

.

For all j = 1, . . . ,kn, we use the inequality

1
n

n

∑
i=1

i
n

(

1−
i
n

)kn− j
≤ 2

Z 1

0
x(1− x)kn− jdx,

which is clearly true for j = kn, without the factor 2 in front of the integral. For j < kn, it is
illustrated in Figure 1, where we have plotted the function f (x) = x(1− x)kn− j. The factor 2
is necessary because f is not monotonic on [0,1].
Consequently,

n

∑
i=1
Vi
i
n
≤ 2

kn
∑
j=1

(

kn
j

)

1
n j−1

Z 1

0
x(1− x)kn− jdx.
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i0+1
n

i0
n

n−1
n

1

1
2n

(

f( i0
n
) + f( i0+1

n
)
)

≤

∫
i0+1

n

i0

n

f(x)dx

Figure 1: Illustration of
1
n

n

∑
i=1

i
n

(

1−
i
n

)kn− j
≤ 2

Z 1

0
x(1− x)kn− jdx.
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Recalling the general formula
Z 1

0
xp−1(1− x)q−1dx=

Γ(p)Γ(q)
Γ(p+q)

, p,q> 0, (5)

we obtain
n

∑
i=1
Vi
i
n
≤ 2

kn
∑
j=1

(

kn
j

)

1
n j−1

Γ(2)Γ(kn− j+1)
Γ(kn− j+3)

= 2
kn
∑
j=1

(

kn
j

)

1
n j−1

1
(kn− j+1)(kn− j+2)

= 2
kn
∑
j=1

(

kn
j−1

)

1
n j−1

1
j(kn− j+2)

= 2
kn−1

∑
j=0

(

kn
j

)

1
n j

1
( j+1)(kn− j+1)

.

Observing finally that ( j+1)(kn− j+1) ≥ kn for all j = 0, . . . ,kn−1, we conclude
n

∑
i=1
Vi
i
n
≤
2
kn

kn−1

∑
j=0

(

kn
j

)

1
n j

≤
2
kn

(

1+
1
n

)kn
.

(ii) For d = 2, a reasoning similar to the one reported in statement (i) above can be followed, to
show that

n

∑
i=1
Vi
i
n

[

1+ ln
(n
i

)]

≤ 2

[

1
kn

(

1+
1
n

)kn

−
kn
∑
j=1

(

kn
j

)

1
n j−1

Z 1

0
x(1− x)kn− j lnxdx

]

. (6)

Denoting by Hn the n-th harmonic number, that is,

Hn = 1+
1
2

+ . . .+
1
n
,

we have, for all m≥ 0 (see for example Gradshteyn and Ryzhik, 2007, Formula (4.253.1)),

−
Z 1

0
x(1− x)m lnxdx=

Hm+2−1
(m+1)(m+2)

.

Thus we may write

−
kn
∑
j=1

(

kn
j

)

1
n j−1

Z 1

0
x(1− x)kn− j lnxdx

=
kn
∑
j=1

(

kn
j

)

1
n j−1

Hkn− j+2−1
(kn− j+1)(kn− j+2)

=
kn−1

∑
j=0

(

kn
j

)

1
n j

Hkn− j+1−1
( j+1)(kn− j+1)

.
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For all j = 0, . . . ,kn−1, we have ( j+1)(kn− j+1) ≥ kn, as well as

Hkn− j+1−1=
1
2

+ . . .+
1

kn− j+1

≤
Z kn− j+1

1

dx
x

= ln(kn− j+1)
≤ ln(kn+1).

Therefore,

−
kn
∑
j=1

(

kn
j

)

1
n j−1

Z 1

0
x(1− x)kn− j lnxdx

≤
ln(kn+1)

kn

kn−1

∑
j=0

(

kn
j

)

1
n j

≤
ln(kn+1)

kn

(

1+
1
n

)kn
. (7)

Combining inequalities (6) and (7) leads to the desired result.

(iii) For d ≥ 3, we note that for all i= 1, . . . ,n−1,

⌊n
i

⌋− 2
d ≤

(

i/n
1− i/n

)
2
d

,

and set consequently

Sn =
1
nkn

+
n−1

∑
i=1

[

(

1−
i−1
n

)kn
−

(

1−
i
n

)kn
]

(

i/n
1− i/n

)
2
d

.

We obtain

Sn =
1
nkn

+
n−1

∑
i=1

[

kn
∑
j=1

(

kn
j

)

1
n j

(

1−
i
n

)kn− j
]

(

i/n
1− i/n

)
2
d

=
1
nkn

+
kn
∑
j=1

(

kn
j

)

1
n j−1

[

1
n

n−1

∑
i=1

(

1−
i
n

)kn− j− 2
d
(

i
n

)
2
d
]

≤
1
nkn

+2
kn
∑
j=1

(

kn
j

)

1
n j−1

Z 1

0
x
2
d (1− x)kn− j− 2

d dx.

Applying formula (5) again, together with the identity

Γ

(

p+
d−2
d

)

= Γ

(

d−2
d

) p

∏
"=1

(

"−
2
d

)

,
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we obtain

Sn ≤
1
nkn

+αd
kn
∑
j=1

(

kn
j

)

1
n j−1

1
(kn− j+1)

kn− j

∏
"=1

(

1−
2
d"

)

(with αd = 2Γ((d−2)/d)Γ((d+2)/d)

=
1
nkn

+αd
kn
∑
j=1

kn!
j!(kn− j+1)!

1
n j−1

kn− j

∏
"=1

(

1−
2
d"

)

=
1
nkn

+αd
kn
∑
j=1

1
n j−1

(

kn
j−1

)

1
j

kn− j

∏
"=1

(

1−
2
d"

)

=
1
nkn

+αd
kn−1

∑
j=0

1
n j

(

kn
j

)

1
j+1

kn− j−1

∏
"=1

(

1−
2
d"

)

.

Thus, by technical Lemma 17,

Sn ≤
1
nkn

+αd
kn−1

∑
j=0

(

kn
j

)

k−
2
dn

n j

≤
1
nkn

+αd

(

1+
1
n

)kn
k−

2
dn .

This concludes the proof of Proposition 8.

3.5 Proof of Proposition 11

We have, for i= 1, . . . ,n− kn+1,

Vi =

(

n− i
kn−1

)

(

n
kn

)

=
kn

n− kn+1

kn−2

∏
j=0

(

1−
i

n− j

)

≤
kn

n− kn+1

kn−2

∏
j=0

(

1−
i
n

)

=
kn

n− kn+1

(

1−
i
n

)kn−1
.

This yields
n

∑
i=1
V 2i ≤

k2n
(n− kn+1)2

n−kn+1

∑
i=1

(

1−
i
n

)2(kn−1)

≤
k2n n

(n− kn+1)2
1
n

n

∑
i=1

(

1−
i
n

)2(kn−1)
.
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Observing finally that

1
n

n

∑
i=1

(

1−
i
n

)2(kn−1)
≤

Z 1

0
(1− x)2(kn−1)dx

=
1

2kn−1
,

we conclude that
n

∑
i=1
V 2i ≤

k2n n
(2kn−1)(n− kn+1)2

≤
kn
n

1
(1− kn/n+1/n)2

.

3.6 Proof of Proposition 12

Recall that

r̃!n(x) =
n

∑
i=1
Vi r(X(i)(x)),

and observe that
r̃!n(x) = E

!
[

r(X!
(1)(x))

]

,

where X!
(1)(x) is the nearest neighbor of x in a random subsample Sn drawn without replacement

from {(X1,Y1), . . . ,(Xn,Yn)} with Card(Sn) = kn, and E! denotes expectation with respect to the
resampling distribution, conditionally on the data set Dn. Consequently, by Jensen’s inequality,

E [r̃!n(x)− r(x)]2 = E

[

E
!
[

r
(

X!
(1)(x)

)

|Dn

]

− r(x)
]2

= E

[

E
!
[

r
(

X!
(1)(x)

)

− r(x) |Dn

]]2

≤ E

[

E
!

[

(

r
(

X!
(1)(x)

)

− r(x)
)2

|Dn

]]

= E

[

r
(

X!
(1)(x)

)

− r(x)
]2

≤C2E‖X!
(1)(x)−x‖

2.

Since Card(Sn) = kn, we conclude by applying Corollary 6, with i= 1 and replacing n by kn.

3.7 Two Technical Lemmas

Lemma 16 For j = 0, . . . ,n−1, let the map ϕn, j(p) be defined by

ϕn, j(p) =

(

n
j

)

p j+1(1− p)n− j, 0≤ p≤ 1.

Then, for all i= 1, . . . ,n,

sup
0≤p≤1

i−1

∑
j=0

ϕn, j(p) ≤
i

n+1
.
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Proof Each map ϕn, j is nonnegative, continuously increasing on the interval [0,( j+ 1)/(n+ 1)]
and decreasing on [( j+ 1)/(n+ 1),1]. Consequently, the supremum of the continuous function
∑i−1
j=0ϕn, j(p) is achieved at some point p! of the interval [1/(n+1), i/(n+1)]. That is,

sup
0≤p≤1

i−1

∑
j=0

ϕn, j(p) =
i−1

∑
j=0

ϕn, j(p!)

= p!

i−1

∑
j=0

(

n
j

)

p j!(1− p!)
n− j

≤ p!

n

∑
j=0

(

n
j

)

p j!(1− p!)
n− j

= p! ≤
i

n+1
.

Lemma 17 For each d ≥ 3, each kn ≥ 1, and j = 0, . . . ,kn−1, we have

1
j+1

kn− j−1

∏
"=1

(

1−
2
d"

)

≤ k−
2
dn .

Proof First, since 0≤ 1− x≤ e−x for all x ∈ [0,1],

kn− j−1

∏
"=1

(

1−
2
d"

)

≤ exp

(

−
2
d

kn− j−1

∑
"=1

1
"

)

.

Thus, using 1+1/2+ . . .+1/p≥ ln(p+1), we deduce

kn− j−1

∏
"=1

(

1−
2
d"

)

≤ (kn− j)−
2
d .

To conclude, we use the fact that, for j = 0, . . . ,kn−1,

1
j+1

(kn− j)−
2
d ≤ k−

2
dn .

To see this, note that the inequality may be written under the equivalent form

(

1−
j
kn

)− 2
d

≤ 1+ j = 1+ kn ·
j
kn

.

The result can easily be deduced from a comparison between the maps ϕ : x 1→ (1− x)−2/d and
ψ : x 1→ 1+ knx on the interval [0,1−1/kn]. Just note that ϕ(0) = ψ(0), ϕ(1−1/kn) = k2/dn ≤ kn =
ψ(1−1/kn) since d ≥ 3, and ϕ is convex while ψ is affine.
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Abstract

!1-regularized logistic regression, also known as sparse logistic regression, is widely used in ma-
chine learning, computer vision, data mining, bioinformatics and neural signal processing. The use
of !1 regularization attributes attractive properties to the classifier, such as feature selection, robust-
ness to noise, and as a result, classifier generality in the context of supervised learning. When a
sparse logistic regression problem has large-scale data in high dimensions, it is computationally ex-
pensive to minimize the non-differentiable !1-norm in the objective function. Motivated by recent
work (Koh et al., 2007; Hale et al., 2008), we propose a novel hybrid algorithm based on combin-
ing two types of optimization iterations: one being very fast and memory friendly while the other
being slower but more accurate. Called hybrid iterative shrinkage (HIS), the resulting algorithm is
comprised of a fixed point continuation phase and an interior point phase. The first phase is based
completely on memory efficient operations such as matrix-vector multiplications, while the second
phase is based on a truncated Newton’s method. Furthermore, we show that various optimization
techniques, including line search and continuation, can significantly accelerate convergence. The
algorithm has global convergence at a geometric rate (a Q-linear rate in optimization terminology).
We present a numerical comparison with several existing algorithms, including an analysis using
benchmark data from the UCI machine learning repository, and show our algorithm is the most
computationally efficient without loss of accuracy.

Keywords: logistic regression, !1 regularization, fixed point continuation, supervised learning,
large scale
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1. Introduction

Logistic regression is an important linear classifier in machine learning and has been widely used
in computer vision (Bishop, 2007), bioinformatics (Tsuruoka et al., 2007), gene classification (Liao
and Chin, 2007), and neural signal processing (Parra et al., 2005; Gerson et al., 2005; Philiastides
and Sajda, 2006). !1-regularized logistic regression or so-called sparse logistic regression (Tibshi-
rani, 1996), where the weight vector of the classifier has a small number of nonzero values, has been
shown to have attractive properties such as feature selection and robustness to noise. For supervised
learning with many features but limited training samples, overfitting to the training data can be a
problem in the absence of proper regularization (Vapnik, 1982, 1988). To reduce overfitting and
obtain a robust classifier, one must find a sparse solution.

Minimizing or limiting the !1-norm of an unknown variable (the weight vector in logistic re-
gression) has long been recognized as a practical avenue for obtaining a sparse solution. The use of
!1 minimization is based on the assumption that the classifier parameters have, a priori, a Laplace
distribution, and can be implemented using maximum-a-posteriori (MAP). The !2-norm is a result
of penalizing the mean of a Gaussian prior, while a !1-norm models a Laplace prior, a distribution
with heavier tails, and penalizes on its median. Such an assumption attributes important properties
to !1-regularized logistic regression in that it tolerates outliers and, therefore, is robust to irrele-
vant features and noise in the data. Since the solution is sparse, the nonzero components in the
solution correspond to useful features for classification; therefore, !1 minimization also performs
feature selection (Littlestone, 1988; Ng, 1998), an important task for data mining and biomedical
data analysis.

1.1 Logistic Regression

The basic form of logistic regression seeks a hyperplane that separates data belonging to two classes.
The inputs are a set of training data X = [x1, · · · ,xm]" ∈ Rm×n, where each row of X is a sample
and samples of either class are assumed to be independently identically distributed, and class labels
b ∈ Rm are of −1/+1 elements. A linear classifier is a hyperplane {x : w"x+ v= 0}, where w ∈ Rn

is a set of weights and v∈R the intercept. The conditional probability for the classifier label b based
on the data, according to the logistic model, takes the following form,

p(bi|xi) =
exp

(

(wTxi+ v)bi
)

1+ exp
(

(wTxi+ v)bi
) , i= 1, ...,m.

The average logistic loss function can be derived from the empirical logistic loss, computed
from the negative log-likelihood of the logistic model associated with all the samples, divided by
number of samples m,

lavg(w,v) =
1
m

m

∑
i=1

θ
(

(wTxi+ v)bi
)

,

where θ is the logistic transfer function: θ(z) := log(1+ exp(−z)). The classifier parameters w and
v can be determined by minimizing the average logistic loss function,

argmin
w,v

lavg(w,v).

Such an optimization can also be interpreted as aMAP estimate for classifier weightsw and intercept
v.
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1.2 !1-Regularized Logistic Regression

The so-called sparse logistic regression has emerged as a popular linear decoder in the field of
machine learning, adding the !1-penalty on the weights w:

argmin
w,v

lavg(w,v)+λ‖w‖1, (1)

where λ is a regularization parameter. It is well-known that !1 minimization tends to give sparse
solutions. The !1 regularization results in logarithmic sample complexity bounds (number of train-
ing samples required to learn a function), making it an effective learner even under an exponential
number of irrelevant features (Ng, 1998, 2004). Furthermore, !1 regularization also has appealing
asymptotic sample-consistency for feature selection (Zhao and Yu, 2007).

Signals arising in the natural world tend to be sparse (Parra et al., 2001). Sparsity also arises
in signals represented in a certain basis, such as the wavelet transform, the Krylov subspace, etc.
Exploiting sparsity in a signal is therefore a natural constraint to employ in algorithm development.
An exact form of sparsity can be sought using the !0 regularization, which explicitly penalizes the
number of nonzero components,

argmin
w,v

lavg(w,v)+λ‖w‖0. (2)

Although theoretically attractive, problem (2) is in general NP-hard (Natarajan, 1995), requiring
an exhaustive search. Due to this computational complexity, !1 regularization has become a pop-
ular alternative, and is subtly different than !0 regularization, in that the !1-norm penalizes large
coefficients/parameters more than small ones.

The idea of adopting the !1 regularization for seeking sparse solutions to optimization problems
has a long history. As early as the 1970’s, Claerbout and Muir first proposed to use !1 to decon-
volve seismic traces (Claerbout and Muir, 1973), where a sparse reflection function was sought
from bandlimited data (Taylor et al., 1979). In the 1980’s, Donoho et al. quantified the ability of
!1 to recover sparse reflectivity functions (Donoho and Stark, 1989; Donoho and Logan, 1992). Af-
ter the 1990s’, there was a dramatic rise of applications using the sparsity-promoting property of
the !1-norm. Sparse model selection was proposed in statistics using LASSO (Tibshirani, 1996),
wherein the proposed soft thresholding is related to wavelet thresholding (Donoho et al., 1995). Ba-
sis pursuit, which aims to extract sparse signal representation from overcomplete dictionaries, also
underwent great development during this time (Donoho and Stark, 1989; Donoho and Logan, 1992;
Chen et al., 1998; Donoho and Huo, 2001; Donoho and Elad, 2003; Donoho, 2006). In recent years,
minimization of the !1-norm has appeared as a key element in the emerging field of compressive
sensing (Candés et al., 2006; Candés and Tao, 2006; Figueiredo et al., 2007; Hale et al., 2008).
!1 minimization also has far reaching impact on various applications such as portfolio optimiza-
tion (Lobo et al., 2007), sparse principle component analysis (d’Aspremont et al., 2005; Zou et al.,
2006), sparse interconnect wiring design (Vandenberghe et al., 1997, 1998), sparse control system
design (Hassibi et al., 1999), and optimization of well-connected sparse graphs (Ghosh and Boyd,
2006). Research on total variation based image processing also shows that minimizing the !1-norm
of the intensity gradient can effectively remove random noise (Rudin et al., 1992). In the realm of
machine learning, !1 regularization exists in various forms of classifiers, including !1-regularized
logistic regression (Tibshirani, 1996), !1-regularized probit regression (Figueiredo and Jain, 2001;
Figueiredo, 2003), !1-regularized support vector machines (Zhu et al., 2004), and !1-regularized
multinomial logistic regression (Krishnapuram et al., 2005).
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1.3 Existing Algorithms for !1-Regularized Logistic Regression

The !1-regularized logistic regression problem (1) is a convex and non-differentiable problem. A
solution always exists but can be non-unique. These characteristics postulate some difficulties in
solving the problem. Generic methods for nondifferentiable convex optimization, such as the el-
lipsoid method and various sub-gradient methods (Shor, 1985; Polyak, 1987), are not designed to
handle instances of (1) with data of very large scale. There has been very active development on nu-
merical algorithms for solving the !1-regularized logistic regression, including LASSO (Tibshirani,
1996), Gl1ce (Lokhorst, 1999), Grafting (Perkins and Theiler, 2003), GenLASSO (Roth, 2004),
and SCGIS (Goodman, 2004). The IRLS-LARS (iteratively reweighted least squares least angle
regression) algorithm uses a quadratic approximation for the average logistic loss function, which
is consequently solved by the LARS (least angle regression) method (Efron et al., 2004; Lee et al.,
2006). The BBR (Bayesian logistic regression) algorithm, described in Eyheramendy et al. (2003),
Madigan et al. (2005), and Genkin et al. (2007), uses a cyclic coordinate descent method for the
Bayesian logistic regression. Glmpath, a solver for !1-regularized generalized linear models using
path following methods, can also handle the logistic regression problem (Park and Hastie, 2007).
MOSEK is a general purpose primal-dual interior point solver, which can solve the !1-regularized
logistic regression by formulating the dual problem, or treating it as a geometric program (Boyd
et al., 2007). SMLR, algorithms for various sparse linear classifiers, can also solve sparse logistic
regression (Krishnapuram et al., 2005). Recently, Koh, Kim, and Boyd proposed an interior-point
method (Koh et al., 2007) for solving (1). Their algorithm takes truncated Newton steps and uses
preconditioned conjugated gradient iterations. This interior-point solver is efficient and provides a
highly accurate solution. The truncated Newton method has fast convergence, but forming and solv-
ing the underlying Newton systems require excessive amounts of memory for large-scale problems,
making solving such large-scale problems prohibitive. A comparison of several of these different
algorithms can be found in Schmidt et al. (2007).

1.4 Our Hybrid Algorithm

In this paper, we propose a hybrid algorithm that is comprised of two phases: the first phase is based
on a new algorithm called iterative shrinkage, inspired by a fixed point continuation (FPC) (Hale
et al., 2008), which is computationally fast and memory friendly; the second phase is a customized
interior point method, devised by Koh et al. (2007).

Figure 1 shows a diagram of our hybrid algorithm, termed Hybrid Iterative Shrinkage (HIS)
algorithm. Our algorithm requires less memory and, on mid/large-scale problems, runs faster than
the interior point method. The iterative shrinkage phase only performs matrix-vector multiplications
in size of X , as well as a very simple shrinkage operation (see (6) below), and therefore requires
minimal memory consumption. By extending the results in Hale et al. (2008), we prove Q-linear
convergence and show that the signs of wopt (hence, the indices of nonzero elements) are obtained
in a finite number of steps, typically much earlier than convergence. Based on the latter result, we
propose a hybrid algorithm that is even faster and results in highly accurate solutions. Specifically,
our algorithm predicts the sign changes in future shrinkage iterations, and when the signs of wk are
likely to be stable, switches to the interior point method and operates on a reduced problem that is
much smaller than the original. The interior point method achieves high accuracy in the solution,
making our hybrid algorithm equally accurate, as will be shown in the Section 4.
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Hybrid Iterative Shrinkage (HIS)

Iterative Shrinkage

Interior Point 

first order
simple and efficient
memory friendly
fast at discovering true dimensions
slow at removing false dimensions

second order
high accuracy in solution
fast at removing false dimensions 
memory consumptive

all dimensions in data

support in the data

true dimensions in solution

Figure 1: A diagram of our proposed hybrid iterative shrinkage (HIS) algorithm. The HIS algorithm
is comprised of two phases: the iterative shrinkage phase and the interior point phase. The
iterative shrinkage is inspired by a fixed point continuation method (Hale et al., 2008),
which is computationally fast and memory friendly. The interior point method is based
on a second-order truncated Newton method, devised by Koh et al. (2007). Our hybrid
approach takes advantage of different computational strengths of the two methods and
uses them for optimal algorithm acceleration while attaining high accuracy. Black dots
indicate the nonzero dimensions, gray dots indicate dimensions that are eliminated, and
the size of the dots show the error that each dimension contributes to the final solution.
Note that the final solution is sparse with an overall small error.
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There are several novel aspects of our hybrid approach. The rationale of the hybrid approach
is based on the observation that the iterative shrinkage phase reduces the algorithm to gradient
projection after a finite number of iterations, which will be described in Section 3.1. We build on
this observation a hybrid approach to take advantage of the two phases of the computation using
two types of numerical methods. In the first phase, inspired by the FPC by Hale et al. (2008),
we customize the iterative shrinkage algorithm for the sparse logistic regression, whose objective
function is not quadratic. In particular, the step length in the iterative shrinkage algorithm is not
constant, unlike the compressive sensing problem. Therefore, we resort to a line search strategy to
avoid computing the Hessian matrix (required for finding the step length for stability). In addition,
the !1 regularization is only applied to the w component and not v in sparse logistic regression. This
change in the model requires a different shrinkage step, as well as a careful treatment in the line
search strategy.

The remainder of the paper is organized as follows. In Section 2, we present the iterative shrink-
age algorithm for sparse logistic regression, and prove its global convergence and Q-linear conver-
gence. In Section 3, we provide the rationale for the hybrid approach, together with a description
of the hybrid algorithm. Numerical results are presented in Section 4. We conclude the paper in
Section 5.

2. Sparse Logistic Regression using Iterative Shrinkage

The iterative shrinkage algorithm used in the first phase is inspired by a fixed point continuation
algorithm by Hale et al. (2008).

2.1 Notation

For simplicity, we define ‖ · ‖ := ‖ · ‖2, as the Euclidean norm. The support of x ∈ Rn is denoted
by supp(x) := {i : xi '= 0}. We use g to denote the gradient of f , that is, g(x) = ∇ f (x), ∀x. For any
index set I ⊆ {1, . . . ,n} (later, we will use index sets E and L), |I| is the cardinality of I and xI is
defined as the sub-vector of x of length |I|, consisting only of components xi, i ∈ I. Similarly, for
any vector-value mapping h, hI(x) denotes the sub-vector of h(x) consisting of hi(x), i ∈ I.

To express the subdifferential of ‖ ·‖1 we will use the signum function and multi-function (i.e.,
set-valued mapping). The signum function of t ∈ R is

sgn(t) :=











+1 t > 0,
0 t = 0,
−1 t < 0;

while the signum multi-function of t ∈ R is

SGN(t) := ∂|t| =











{+1} t > 0,
[−1,1] t = 0,
{−1} t < 0,

which is also the subdifferential of |t|.
For x ∈ Rn, we define sgn(x) ∈ Rn and SGN(x) ⊂ Rn component-wise as (sgn(x))i := sgn(xi)

and (SGN(x))i := SGN(xi), i = 1,2, · · · ,n, respectively. Furthermore, vector operators such as |x|
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and max{x,y} are defined to operate component-wise, analogous with the definitions of sgn and
SGN above. For x,y ∈ Rn, let x+ y ∈ Rn denote the component-wise product of x and y, that is,
(x+ y)i = xiyi. Finally, we let X∗ denote the set of all optimal solutions of problem (3).

2.2 Review of Fixed Point Continuation for !1-minimization

A fixed-point continuation algorithm was proposed in Hale et al. (2008) as a fast algorithm for
large-scale !1-regularized convex optimization problems. The authors considered the following
large-scale !1-regularized minimization problem,

min
x∈Rn

f (x)+λ‖x‖1, (3)

where f :Rn → R is differentiable and convex, but not necessarily strictly convex, and λ> 0. They
devised a fixed-point iterative algorithm and proved its global convergence, including finite con-
vergence for some quantities, and a Q-linear (Quotient-linear) convergence rate without assuming
strict convexity of f or solution uniqueness. Numerically they demonstrated Q-linear convergence
in the quadratic case f (x) = ‖Ax− b‖22, where A is completely dense, and applied their algorithm
to !1-regularized compressed sensing problems. As we will adopt this algorithm for solving our
problem (1), we review some important and useful results here and develop some new insights in
the context of !1-regularized logistic regression.

The rationale for FPC is based on the idea of operator splitting. It is well-known in convex
analysis that minimizing a function in the form of φ(x) = φ1(x) + φ2(x), where both φ1 and φ2
are convex, is equivalent to finding a zero of the subdifferential ∂φ(x), that is, seeking x satisfying
0 ∈ T1(x)+T2(x) for T1 := ∂φ1 and T2 := ∂φ2. We say (I+ τT1) is invertible if y= x+ τT1(x) has a
unique solution x for any given y. For τ> 0, if (I+ τT1) is invertible and T2 is single-valued, then

0 ∈ T1(x)+T2(x) ⇐⇒ 0 ∈ (x+ τT1(x))− (x− τT2(x))
⇐⇒ (I− τT2)x ∈ (I+ τT1)x
⇐⇒ x= (I+ τT1)−1(I− τT2)x. (4)

This gives rise to the forward-backward splitting algorithm in the form of a fixed-point iteration,

xk+1 := (I+ τT1)−1(I− τT2)xk. (5)

Applying (4) to problem (1), where φ1(x) := λ‖x‖1 and φ2(x) := f (x), the authors of Hale et al.
(2008) obtained the following optimality condition of x∗:

x∗ ∈ X∗ ⇐⇒ 0 ∈ g(x∗)+λSGN(x∗) ⇐⇒ x∗ = (I+ τT1)−1(I− τT2)x∗,

where T2(·) = g(·), the gradient of f (·), and (I+ τT1)−1(·) is the shrinkage operator. Therefore, the
fixed-point iteration (5) for solving (3) becomes

xk+1 = s◦h(xk),

which is a composition of two mappings s and h from Rn to Rn.
The gradient descent operator is defined as

h(·) := I(·)− τ∇ f (·).
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The shrinkage operator, on the other hand, can be written as

s(·) = sgn(·)+max{| · |−ν,0}, (6)

where ν= λτ. Shrinkage is also referred to soft-thresholding in the language of wavelet analysis:

(s(y))i =











yi−ν, yi > ν,

0, yi ∈ [−ν,ν],

yi+ν, yi < −ν.

In each iteration, the gradient descent step h reduces f (x) by moving along the negative gradient
direction of f (xk) and the shrinkage step s reduces the !1-norm by “shrinking” the magnitude of each
nonzero component in the input vector.

2.3 Iterative Shrinkage for Sparse Logistic Regression

Recall that in the sparse logistic regression problem (1), the !1 regularization is only applied tow, not
to v. Therefore, we propose a slightly different fixed point iteration. For simplicity of notation, we
define column vectors u= (w;v) ∈ Rn+1 and ci = (ai;bi) ∈ Rn+1, where ai = bxi, for i= 1,2, ...,m.
This reduces (1) to

min
u

lavg(u)+λ‖u1:n‖1,

where lavg = 1
m ∑

m
i=1θ(cTi u), and θ denotes the logistic transfer function θ(z) = log(1+ exp(−z)).

The gradient and Hessian of lavg with respect to u is given by

g(u) ≡ ∇lavg(u) =
1
m

m

∑
i=1

θ′(c"i u)ci,

H(u) ≡ ∇2lavg(u) =
1
m

m

∑
i=1

θ′′(c"i u)cic"i ,

where θ′(z) = −(1+ ez)−1 and θ′′(z) = (2+ e−z+ ez)−1. To guarantee convergence, we require the
step length be bounded by 2(maxuλmaxH(u))−1.

The iterative shrinkage algorithm for sparse logistic regression is

uk+1 = s◦h1:n(uk), for w component,
uk+1 = hn+1(uk), for v component, (7)

which is a composition of two mappings h and s from Rn to Rn, where the gradient operator is

h(·) = ·− τg(·) = ·− τ∇lavg(·).

While the authors in Hale et al. (2008) use a constant step length satisfying

0< τ< 2/λmax{HEE(u) : u ∈Ω},

we employ line search to avoid the expensive calculation of maximum eigenvalues. We will present
the convergence of the iterative shrinkage algorithm in Section 2.4. The details of the line search
algorithm will be discussed in Section 2.5.
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Algorithm 1 Fixed-Point Continuation Algorithm
Require: A = [c"1 ;c"2 ; · · · ;c"m ] ∈ Rm×(n+1), u = (w;v) ∈ Rn+1, f (u) = m−1φ(Au), task:
minu lavg(u)+λ‖u‖1
Initialize u0
while “not converge” do
Armijo-like line search algorithm (Algorithm 2)
k = k+1

end while

2.4 Convergence

Global convergence and finite convergence on certain quantities were proven in Hale et al. (2008)
when the following conditions are met: (i) the optimal solution set X∗ is non-empty, (ii) f ∈C2 and
its Hessian H =∇2 f is positive semi-definite inΩ= {x : ‖x−x∗‖ ≤ ρ}⊂ Rn for ρ> 0, and (iii) the
maximum eigenvalue of H is bounded on Ω by a constant λ̂max and the step length τ is uniformly
less than 2/λ̂max. These conditions are sufficient for the forward operator h(·) to be non-expansive.

Assumption 1 Assume problem (1) has an optimal solution set X∗ '= /0, and there exists a set

Ω= {x : ‖x− x∗‖ ≤ ρ}⊂ R
n

for some x∗ ∈ X∗ and ρ> 0 such that f ∈C2(Ω), H(x) := ∇2 f (x) 4 0 for x ∈Ω and

λ̂max := sup
x∈Ω

λmax(H(x)) < ∞.

For simplicity for the analysis, we choose a constant step length τ in the fixed-point iterations (7):
xk+1 = s(xk− τg(xk)), where ν= τλ, and

τ ∈
(

0,2/λ̂max
)

,

which guarantees that h(·) = I(·)− τg(·) is non-expansive in Ω.

Theorem 1 Under Assumption, the sequence {uk} generated by the fixed-point iterations (7) ap-
plied to problem (1) from any starting point x0 ∈Ω converges to some u∗ ∈U∗ ∩Ω. In addition, for
all but finitely many iterations, we have

uki = u∗i = 0, ∀i ∈ L= {i : |g∗i | < λ,1≤ i≤ n}, (8)

sgn(hi(uk)) = sgn(hi(u∗)) = −
1
λ
g∗i , ∀i ∈ E = {i : |g∗i | = λ,1≤ i≤ n}, (9)

where as long as

ω :=min{ν(1−
|g∗i |
λ

) : i ∈ L} > 0.

The numbers of iterations not satisfying (8) and (9) do not exceed ‖u0−u∗‖2/ω2 and ‖u0−u∗‖2/ν2,
respectively.
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Proof We sketch the proof here. First, the iteration (7) is shown to be non-expansive in !2, that
is, ‖uk − u∗‖ does not increase in k with the assumption on the step length τ. Specifically, in
Assumption, the step length τ is chosen small enough to guarantee that ‖h(uk)−h(u∗)‖ ≤ ‖uk−u∗‖
(in practice, τ is determined, for example, by line search.) On the other hand, through a component-
wise analysis, one can show that no matter what τ is, the shrinkage operator s(·) is always non-
expansive, that is, ‖s(h1:n(uk))−s(h1:n(u∗))‖≤ ‖h1:n(uk)−h1:n(u∗)‖. Therefore, from the definition
of uk+1 in (7), we have

‖uk+1−u∗‖ ≤ ‖uk−u∗‖, (10)

using the fact that u∗ is optimal if and only if u∗ is a fixed point with respect to (7). However, this
non-expansiveness of (7) does not directly give convergence.

Next, {uk} is shown to have a limit point x̄, that is, a subsequence converging to ū, due to the
compactness of Ω and (10). (7) can be proven to converge globally to ū. To show this, we first get

‖[s◦h1:n(ū);hn+1(ū)]− [s◦h1:n(u∗);hn+1(u∗)]‖ = ‖ū−u∗‖,

from the fact that ū is a limit point, and then use this equation to show that ū= [s◦h1:n(ū);hn+1(ū)],
that is, ū is a fixed point with respect to (7), and thus an optimal solution. Repeating the first step
above we have ‖uk+1− ū‖ ≤ ‖uk− ū‖, which extends ū from being the limit of a subsequence to
one of the entire sequence.

Finally, to obtain the finite convergence result, we need to take a closer look at the shrinkage
operator s(·). When (8) does not hold for some iteration k at component i, we have |uk+1i −u∗i |2 ≤
|uki − u∗i |2−ω2, and for (9), we have |uk+1i − u∗i |2 ≤ |uki − u∗i |2− ν2. Obviously, there can be only
a finite number of iterations k in which either (8) or (9) does not hold, and such numbers do not
exceed ‖u0−u∗‖2/ω2 and ‖u0−u∗‖2/ν2, respectively.

A linear convergence result with a certain convergence rate can also be obtained. As long as
HEE(x∗) := [Hi, j(x∗)]i, j∈E has full rank or f (x) is convex quadratic in x, the sequence {xk} converges
to x∗ R-linearly, and {‖xk‖1 + µf (xk)} converges to ‖x∗‖1 + µf (x∗) Q-linearly. Furthermore, if
HEE(x∗) has the full rank, then R-linear convergence can be strengthened to Q-linear convergence
by using the fact that the minimal eigenvalue of HEE at x∗ is strictly greater than 0.

2.5 Line Search

An important element of the iterative shrinkage algorithm is the step length τ at each iteration. To
ensure the stability of the algorithm, we require that the step length satisfy

0< τ< 2/λmax{HEE(u) : u ∈Ω}.

In compressive sensing, where the smooth part of the objective function is quadratic, the step length
is constant. In sparse logistic regression, however, the Hessian matrix changes at each iteration. If
one has to dynamically compute the step length at each iteration, this requires an expensive com-
putation for the Hessian matrix. Therefore, we resort to an “Armijo-like” line search algorithm to
avoid such a computational burden. For large-scale problems, a line search method, if used appro-
priately, can save tremendous CPU time and memory. Convergence of the Armijo-like line search
is not proven in our paper, however heuristic results are obtained through numerical experiments.
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Algorithm 2 Armijo-like Line Search Algorithm
Compute heuristic step length α0
Gradient step: uk− = uk−α0∇lavg(uk)
Shrinkage step: uk+ = s1:n(uk−,λα0)
Obtain search direction: pk = uk+−uk
while “j < max line search attempts” do
if Armijo-like condition is met then
Accept line search step, update uk+1 = uk +α j pk

else
Keep backtracking α j = µα j−1

end if
j = j+1

end while

Let’s denote the objective function for the !1-regularized logistic regression as φ(u) for conve-
nience:

φ(u) = lavg(u)+λ‖u1:n‖1,

where lavg(u) = 1
m ∑

m
i=1θ(cTi u) and θ is the logistic transfer function. A line search method, at each

iteration, computes the step length αk and the search direction pk:

uk+1 = uk +αk pk.

The search direction will be described in Eqn. (12). For our sparse logistic regression, a sequence of
step length candidates are identified, and a decision is made to accept one when certain conditions
are satisfied. We compute a heuristic step length and gradually decrease it until a sufficient decrease
condition is met.

Let’s define the heuristic step length as α0. Ideally the choice of step length α0, would be a
global minimizer of the smooth part of the objective function,

ϕ(α) = lavg(uk +αpk), α> 0,

which is too expensive to evaluate, unlike the quadratic case in compressive sensing. Therefore, an
inexact line search strategy is usually performed in practice to identify a step length that achieves
sufficient decrease in ϕ(α) at minimal cost. Motivated by a similar approach in GPSR (Figueiredo
et al., 2007), we compute the heuristic step length through a minimizer of the quadratic approxima-
tion for ϕ(α),

lavg(uk−α∇lavg(uk)) ≈ lavg(uk)−α∇lavg(uk)T∇lavg(uk)+0.5α2∇lavg(uk)TH(uk)∇lavg(uk).

Differentiating the right-hand side with respect to α and setting the derivative to zero, we obtain

α0 =
∇lavg(ūk)T∇lavg(ūk)

∇lavg(ūk)TH(ūk)∇lavg(ūk)
, (11)

where ūki = 0, if ui = 0 or |gi| < λ and ūk = uk, otherwise. From (11) and the strict positiveness of
θ′′, we can see that the denominator is strictly positive as long as the gradient is nonzero. Compu-
tationally a very useful trick is not to compute the Hessian matrix directly, since we only use the
vector-matrix product between the gradient vector lavg(ūk) and the Hessian matrix H(ūk).
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Based on the heuristic step length α0, we can obtain the search direction pk, which is a combi-
nation of the gradient descent step and the shrinkage step:

uk− = uk−α0∇lavg(uk),
uk+ = s1:n(uk−,λα0),

pk = uk+−uk. (12)

It is easy to verify that sν(y) is the solution to the non-smooth unconstrained minimization
problem min 12‖x− y‖22+λ‖x‖1. This minimization problem is equivalent to the following smooth
constrained optimization problem,

min
1
2
‖x− y‖22+νz, subject to (x,z) ∈Ω := {(x,z) | ‖x‖1 ≤ z},

whose optimality condition is

(s(x,ν)− x)T (y− s(x,ν)+ν(z−‖s(x,ν)‖1) ≥ 0,

for all x ∈ Rn, (y,z) ∈ Ω and ν > 0. Once we substitute u− τg for x, u for y, ‖u1:n‖1 for z and set
ν= λτ, the optimality condition becomes

(s1:n(u− τg,λτ)− (u− τg))T (u− s1:n(u− τg,λτ))+λτ(‖u1:n‖1−‖s1:n(u− τg,λτ)‖1) ≥ 0.

Using the fact u+ = s1:n(u− τg,λτ), p= u+−u, we get

gT p+λ(‖u+
1:n‖1−‖u1:n‖1) ≤−pT p/τ,

which means
∇lavg(uk)

T pk +λ‖uk+1:n‖1−λ‖uk1:n‖1 ≤ 0.
We then geometrically backtrack the step lengths, letting α j = α0, µα0, µ2α0, . . ., until the

following Armijo-like condition is satisfied:

φ(uk +α j pk) ≤Ck +α jΔk.

Notice that the Armijo-like condition for line search stipulates that the step length α j in the search
direction pk should produce a sufficient decrease of the objective function φ(u). Ck is a reference
value with respect to the previous objective values, while the decrease in the objective function is
described as

Δk := ∇lavg(uk)
T pk +λ‖uk+1:n‖1−λ‖uk1:n‖1 ≤ 0.

There are two types of Armijo-like conditions depending on the choice of Ck. One can choose
Ck = φ(uk), which makes the line search monotone. One can also derive a non-monotone line
search, where Ck is a convex combination of the previous value Ck−1 and the function value φ(uk).
We refer interested readers to Wen et al. (2009) for more details.

Figure 2 illustrates the computational speedup using the line search. The top panel shows the
evolution of the objective function as a function of iterations. Tested on the benchmark data from
the UCI repository, we see that our algorithm results in a speedup of 40 (6000 iterations without
line search vs. 150 iterations with line search). The bottom panel shows the step length used in the
algorithm. In the absence of the line search, we require that the step length satisfy τ< 2/λ̂max. For
the Armijo-like line search, we illustrate both the heuristic step length α0 (solid black curve) and
the actual step length after backtracking (dashed red curve). Red asterisk labels the transition points
on the continuation path, a concept we will discuss in the next section. Note that the step lengths
can be on the order of 100 times larger for line search vs. no line search.
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Figure 2: Illustration of the Armijo-like line search, comparing the iterative shrinkage algorithm
with (right column) and without (left column) line search. (a) The objective function of
the iterative shrinkage algorithm without line search, attaining convergence after 6000
iterations. (b) The objective of the iterative shrinkage algorithm with line search, con-
verging at around 150 iterations. The gray bars under the “iteration” axes highlight the
difference between the number of iterations—the gray bar in (a) represents the same num-
ber of iterations as the gray bar in (b). (c) The step length without line search is bounded
by 2/λ̂max to ensure convergence. (d) The step length used in the Armijo-like line search,
(solid black curve) heuristic step length α0 (Eqn. 11), (dashed red curve) actual time
step after backtracking. The transition point on the continuation path is indicated in (red
asterisk). Data used in this numerical experiment are the ionosphere data from the UCI
machine learning data repository (http://archive.ics.uci.edu/ml/datasets/Ionosphere). Pa-
rameters used are utol = 0.001, gtol = 0.01, λ0 = 0.1, λ= 0.001.
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2.6 Continuation Path

A continuation strategy is adopted in our algorithm, by designing a regularization path similar to
that is used in Hale et al. (2008),

λ0 > λ1 > ... > λL−1 = λ̄.

This idea is closely related to the homotopy algorithm in statistics, and has been successfully
applied to the !1-regularized quadratic case, where the fidelity term is f (x) = ‖Ax−b‖22. The ratio-
nale of using such a continuation strategy is due to a fast rate of convergence for large λ. Therefore,
by taking advantage of different convergence rate for a family of regularization parameter λ, if
stopped appropriately, we can speed up the convergence rate of the full path. An intriguing discus-
sion regarding the convergence rate of fixed-point algorithm with λ and ω, the spectral properties of
Hessian, was presented in Hale et al. (2008). In the case of the logistic regression, we have decided
to use the geometric progression for the continuation path. We define

λi = λ0βi−1, for i= 0, ...,L−1,

where λ0 can be calculated based on the ultimate λ̄ we are interested in and the continuation path
length L, that is, λ0 = λ̄/βL−1.

As mentioned earlier, the goal of a continuation strategy is to construct a path with different
rate of convergence, with which we can speed up the whole algorithm. The solution obtained from
a previous subpath associated with λi−1 is used as the initial condition for the next subpath for λi.
Note that we design the path length L and the geometric progression rate β in such a way that the
initial regularization λ0 is fairly large, leading to a sparse solution for the initial path. Therefore, the
initial condition for the whole path, considering the sparsity in solution, is a zero vector.

Another design issue regarding such a continuation strategy is we stop each subpath according
to some criteria, in an endeavor to approximate the solution in the next λ as fast as possible. This
means that a strong convergence is not required in subpath’s except for the final one, and we can vary
the stopping criteria to “tighten” such a convergence as we proceed. The following two stopping
criteria are used:

‖uk+1−uk‖
max(‖uk‖,1)

< utoli,

‖∇lavg(uk)‖∞
λi

−1< gtol.

The first stopping criterion requires that relative change in u be small, while the second one is related
to the optimality condition, defined in Eqn. (13). Theoretically, we would like to vary utoli to attain
a seamless Q-linear convergence path. Such a choice seems to be problem dependent, and probably
even data dependent in practice. It remains an important, yet difficult research topic to study the
properties of different continuation strategies. We have chosen to use a geometric progression for
the tolerance value, utoli = utol0 ∗ γi−1, with utol0 = utol/γL−1. In our numerical simulation, we
use utol = 10−4 and gtol = 0.2.

Figure 3 shows the continuation path using fixed utol and a varying utol following geometric
progression. When we use a fixed utol to ensure strong convergence each for λ along the path, the
solver spends a lot of time evolving slowly. One can see in (a) that the objective function shows a
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fairly flat reduction at earlier stages of the path. Clearly by relaxing the convergence at earlier stages
of the path, we can accelerate the computation, shown in (b). The choice of utol and gtol seems to
be data dependent in our experience, and the result we show in (b) might be suboptimal. Further
optimization of the continuation path can potentially accelerate the computation even more, which
remains an open question for future research.
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     (a)  Fix utol                                           (b)  Vary utol

Figure 3: Illustration of the continuation strategy (a) using a fixed utol = 0.0001 is used for the
stopping criterion, (b) using a varying utol according to geometric progression. Note
that a stronger convergence is not necessary in earlier stages on the continuation path.
By using a varying utol, especially tightening utol as we move along the path, we can
accelerate the fixed point continuation algorithm. Shown is the objective value (black
curve) as a function of iteration, where the transition point on the regularization path is
labeled in (red asterisk). Data used in this experiment has 10000 dimension and 100
samples. A continuation path of length 8, starting from 0.128 and ending at 0.001.

3. Hybrid Iterative Shrinkage (HIS) Algorithm

In this section we describe a hybrid approach called HIS, which uses the iterative shrinkage algo-
rithm described previously to enforce sparsity and identify the support in the data, followed by a
subspace optimization via an interior point method.

3.1 Why A Hybrid Approach?

The hybrid approach is based on an interesting observation for the iterative shrinkage algorithm,
regarding some finite convergence properties. The optimality condition for min f (x)+λ‖x‖1 is the
following

g(x)+λSGN(x) ∈ 0, (13)
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which requires that |gi|≤ λ, for i= 1, ...,n. We define two index sets

L := {i : |g∗i | < λ} and E := {i : |g∗i | = λ},

where g∗ = g(u∗) is constant for all u∗ ∈ X∗ and |g∗i | ≤ λ for all i. Hence, L∩E = /0 and L∪E =
{1, . . . ,n}. The following holds true for all but a finite number of k:

uki = u∗i = 0, ∀i ∈ L,

sgn(hi(uk)) = sgn(hi(u∗)) = −
1
λ
g∗i , ∀i ∈ E.

Assume that the underlying problem is nondegenerate, then L and E equal the sets of zero and
nonzero components in x∗. According to the above finite convergence result, the iterative shrinkage
algorithm obtains L and E, and thus the optimal support and signs of the optimal nonzero compo-
nents, in a finite number of steps.

Corollary 2 Under Assumption 1, after a finite number of iterations, the fixed-point iteration (7)
reduces to gradient projection iterations for minimizing φ(uE) over a constraint set OE, where

φ(uE) := −(g∗E)"uE + f ((uE ;0)), and

OE = {uE ∈ R
|E| :−sgn(g∗E)+uE ≥ 0}.

Specifically, we have uk+1 = (uk+1E ;0) in which

uk+1E := POE
(

ukE − τ∇φ(ukE)
)

,

where POE is the orthogonal projection onto OE, and ∇φ(uE) = −g∗E +gE((uE ;0)).

This corollary, see Corollary 4.6 in Hale et al. (2008), can be directly applied to sparse logistic
regression. The fixed point continuation reduces to the gradient projection after a finite number of
iterations. The proof of this corollary is in general true for the u1:n, that is, the w component in our
problem.

Corollary 2 implies an important fact: there are two phases in the fixed point continuation
algorithm. In the first phase, the number of nonzero elements in the x evolve rapidly, until after a
finite number of iterations, when the support (non-zero elements in a vector) is found. Precisely,
it means that for all k > K, the nonzero entries in uk include all true nonzero entries in u∗ with
the matched signs. However, unless k is large, uk typically also has extra nonzeros. At this point,
the fixed point continuation reduces to the gradient projection, starting the second phase of the
algorithm. In the second phase, the zero elements in the vector stay unaltered, while the magnitude
of the nonzero elements (support) keeps evolving.

The above observation is a general statement for any f that is convex. Recall the quadratic case,
where f = ‖y−Ax‖22, the second phase is very fast in terms of convergence rate. This is due to
the quadratic function, and in an application to compressive sensing, the fixed point continuation
algorithm alone has resulted in super-fast performance for large-scale problems (Hale et al., 2008).
In the case of sparse logistic regression, we have a non-strictly convex f , the average logistic regres-
sion. This results in a fairly slow convergence rate when the algorithm reaches the second phase. In
view of the continuation strategy we have, this greatly affects the speed of the last subpath, with the
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regularization parameter λ̄ of interest. In some sense, we have designed a continuation path that is
super-fast until it reaches the second phase of the final subpath. This is not surprising given that the
fixed point continuation algorithm is based on gradient descent and shrinkage operator. We envision
that by switching to a Newton’s method, we can accelerate the second phase.

Based on this intuition, we are now in a position to describe a hybrid algorithm: a fixed point
continuation plus an interior point truncated Newton method. For the latter part we resort to the
customized interior point in Koh et al. (2007). We modified the source code of the l1logreg software
(written in C), and built an interface to our MATLAB code. This hybrid approach, based on our
observation of the two phases, enables us to attain a good balance of speed and accuracy.

3.2 Interior Point Phase

The second phase of our HIS algorithm used an interior point method developed by Koh et al.
(2007). We directly used a well-developed software package l1logreg1 and modified the source
code to build an interface to MATLAB. We review some key points for the interior point method
here.

In Koh et al. (2007), the authors overcome the difficulty of non-differentiability of the objec-
tive function by transforming the original problem into an equivalent one with linear inequality
constraints,

min
1
m

m

∑
i=1

lavg(wTai+ vbi)+λ1T u

s.t. −ui ≤ wi ≤ ui, i= 1, ...,n.

A logarithmic barrier function, smooth and convex, is further constructed for the bound con-
straints,

ρ(w,u) = −
n

∑
i=1
log(ui+wi)−

n

∑
i=1
log(ui−wi),

defined on the domain {(w,u)∈Rn×Rn||wi|< ui, i= 1, ...,n}. The following optimization problem
can be obtained by augmenting the logarithmic barrier,

ψt(v,w,u) = tlavg(v,w)+ tλ1T u+ρ(w,u),

where t > 0. The resulting objective function is smooth, strictly convex and bounded below, and
therefore has a unique minimizer (v∗(t),w∗(t),u∗(t)). This defines a curve in R×Rn×Rn, param-
eterized by t, called the central path. The optimal solution is also shown to be dual feasible. In
addition, (v∗(t),w∗(t)) is 2n/t-suboptimal.

As a primal interior-point method, the authors computed a sequence of points on the central path,
for an increasing sequence of values of t, and minimized ψt(v,w,u) for each t using a truncated
Newton’s method. The interior point method was customized by the authors in several ways: 1)
the dual feasible point and the associated duality gap was computed in a cheap fashion, 2) the
central path parameter t was updated to achieve a robust convergence when combined with the
preconditioned conjugate gradient (PCG) algorithm, 3) an option for solving the Newton’s system
was given for problems of different scales, where small and medium dense problems were solved by
direct methods (Cholesky factorization), while large problems were solved using iterative methods
(conjugate gradients). Interested readers are referred to Koh et al. (2007) for more details.

1. Software can be downloaded at http://www.stanford.edu/˜boyd/papers/l1_logistic_reg.html.
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3.3 The Hybrid Algorithm

The hybrid algorithm leverages the computational strengths of both the iterative shrinkage solver
and the interior point solver.

Algorithm 3 Hybrid Iterative Shrinkage (HIS) Algorithm
Require: A= [c"1 ;c"2 ; · · · ;c"m ] ∈ Rm×n+1, u= (w;v) ∈ Rn+1, f (u) = m−1φ(Au)
task: minu lavg(u)+λ‖u‖1
Initialize u0
PHASE 1 : ITERATIVE SHRINKAGE
Select λ0 and utol0
while “not converge” do
if “the last continuation path”, i== (L−1) and “transition condition” then
“transit into PHASE 2”

else
Update λi = λi−1β, utoli = utoli−1γ
Compute heuristic step length α0
Gradient descent step: uk− = uk−α0∇lavg(uk)
Shrinkage step: uk+ = s1:n(uk−,λα0)
Obtain line search direction: pk = uk+−uk
while “j < max line search attempts” do
if Armijo-like condition is met then
Accept line search step, update uk+1 = uk +α j pk

else
Keep backtracking α j = µα j−1

end if
j = j+1

end while
end if

end while
PHASE 2 : INTERIOR POINT
Initialize w̃= wnonzero get subproblem minψt(v, w̃,u)
while “not converged” η> ε do
Solve the Newton system : ∇2ψkt (v, w̃,u)[Δv,Δw̃,Δu] = −∇ψkt (v, w̃,u)
Backtracking line search : find the smallest integer j ≥ 0 that satisfies
ψkt (v+α jΔv, w̃+α jΔw̃,u+α jΔu) ≤ ψkt (v, w̃,u)+ cα j∇ψkt (v, w̃,u)T [Δv,Δw̃,Δu]

Update ψk+1t (v, w̃,u) = ψkt (v, w̃,u)+α j(Δv,Δw̃,Δu)
Check dual feasibility
Evaluate duality gap η
k = k+1

end while

In the first phase, we use the iterative shrinkage solver, due to its computational efficiency and
memory friendliness. It is especially beneficial to have a memory friendly solver for the initial
phase when one is dealing with large-scale data sets. Recall that we use a continuation strategy for
the iterative shrinkage phase, where a sequence of λ’s is used along a regularization path. In the
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last subpath where λ is the desired one, we transit to the interior point when the true support of the
vector is found. The corollary in Section 3.1 states that iterative shrinkage recovers the true support
in a finite number of steps. In addition, iterative shrinkage obtains all true nonzero components long
before the true support is obtained. Therefore, as long as the iterative shrinkage seems to stagnate,
which can be observed when the objective function evolves very slowly, it is highly likely that all
true nonzero components are obtained. This indicates that the algorithm is ready for switching to
the interior point.

In practice, we require the following transition condition,

‖uk+1−uk‖
max(‖uk‖,1)

< utolt ,

and extract the nonzero components in w as the input to the interior point solver. By doing so, we
reduce the problem to a subproblem where the dimension is much smaller, and solve the subproblem
using the interior point method.

The resulting hybrid algorithm achieves high computational speed while attaining the same
numerical accuracy as the interior point method, as demonstrated with empirical results in the next
section.

4. Numerical Results

In this section we present numerical results, on a variety of data sets, to demonstrate the benefits of
our hybrid framework in terms of computational efficiency and accuracy.

4.1 Benchmark

We carried out a numerical comparison of the HIS algorithmwith several existing algorithms in liter-
ature for !1-regularized logistic regression. Inspired by a comparison study on this topic by Schmidt
et al. (2007),2 we compared our algorithm with 10 algorithms, including a generalized version of
Gauss-Seidel, Shooting, Grafting, Sub-Gradient, epsL1, Log-Barrier, Log-Norm, SmoothL1, EM,
ProjectionL1 and Interior-Point method. In the numerical study, we replaced the interior point
solver by the one written by Koh et al. (2007). Benchmark data were taken from the publicly avail-
able UCI machine learning repository.3 We used 10 data sets of small to median size (internetad1,
arrhythmia, glass, horsecolic, indiandiabetes, internetad2, ionosphere, madelon, pageblock, spam-
base, spectheart, wine).

All of the methods were run until the same convergence criteria was met, where appropriate,
for instance the step length, change in function value, negative directional derivative, optimality
condition, convergence tolerance is less than 10−6. We treated each algorithm solver as a black
box and evaluated both the computation time and the sparsity (measured by cardinality of solution).
We set an upper limit of 250 iterations, meaning we stop the solver when the number of iteration
exceeds 250. Since different algorithm has different speed for each iterate (usually a Newton step is
more expensive than a gradient descent step), we think the computation time is a more appropriate
evaluation criterion than number of iterations. The ability of the algorithm to find a sparse solution,
measured by the cardinality, was also evaluated in this process.

2. Source code is available at http://www.cs.wisc.edu/˜gfung/GeneralL1.
3. UCI machine learning repository is at http://www.ics.uci.edu/˜mlearn/MLRepository.html.
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Figure 4 shows the benchmark result using data from the UCI machine learning repository. All
numerical results shown are averaged over a regularization path. The parameters for the regulariza-
tion path are calculated according to each data set, where the maximal regularization parameter is
calculated as follows:

λmax =
1
m

∥

∥

m−

m ∑
bi=+1

ai+
m+

m ∑
bi=−1

ai
∥

∥

∞, (14)

wherem− is the number of training samples with label−1 andm+ is the number of training samples
with label +1 (Koh et al., 2007). λmax is an upper bound for the useful range of regularization
parameter. When λ ≥ λmax, the cardinality of the solution will be zero. In this case, we test a
regularization path of length 10, that is, λmax, 0.9λmax, 0.8λmax ... 0.1λmax. Among all the numerical
solvers, our HIS algorithm is the most efficient. HIS achieves comparable cardinality in the solution,
compared to the interior point solver.

We also evaluated the accuracy of the solution by looking at the classification performance using
Kfold cross-validation. Table 1 summaries the accuracy of the solution using the HIS algorithm,
compared to the interior point (IP) algorithm. Clearly, HIS algorithm achieves comparable accuracy
compared to IP, an algorithm that is recognized for its high accuracy.
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Figure 4: Comparison of our hybrid iterative shrinkage (HIS) method with several other existing
methods in literature. Benchmark data were taken from the UCI machine learning reposi-
tory, including 10 publicly available data sets. (a) Distribution of computation time across
10 data sets, (b) Distribution of cardinality for the solution across 10 data sets, averaged
over a regularization path.

4.2 Scaling Result

Numerical experiments were carried out to study how our algorithm scales with the problem size.
For the sake of generality, we used simulated data whose dimension ranges from 64 to 131072. The
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Accuracy Comparison
(Az ∈ [0.5,1.0])

dataname accuracy(HIS) accuarcy(IP)
arrhythmia 0.7363 0.7363
glass 0.6102 0.6102

horsecolic 0.5252 0.5252
ionosphere 0.5756 0.5756
madelon 0.6254 0.6254
spectheart 0.5350 0.5350
wine 0.6102 0.6102

internetad 0.8486 0.8486

Table 1: Comparison of solution accuracy for our hybrid iterative shrinkage (HIS) algorithm and
the interior point (IP) algorithm. Accuracy of the solution was measured by Az value,
resulted from Kfold cross-validation, where Kfold is 10. A regularization path of varying
λ were computed to determine the maximum generalized Az value. The data sets were
taken from the UCI machine learning repository.

data is drawn from a Normal distribution, where the mean of the distribution is shifted by a small
amount for each class (0.1 for samples with label 1, and −0.1 for samples with label −1). The
number of samples is the same for both classes and chosen to be smaller than the dimension of the
data. Experiments for each dimension were carried out on 100 different sets of random data. We
compared the mean and variances of the computation time, and compared our HIS algorithm to the
IP algorithm.

Table 2 summarizes the computational speed for the HIS algorithm and the IP algorithm. It
is noteworthy that the HIS algorithm improves the efficiency of computation, while maintaining
comparable accuracy to the IP algorithm. Figure 5 plots the computation result as a function of
dimension for better illustration. In (a) one can clearly see the speedup we gain from the HIS
algorithm (red), compared to the IP algorithm (blue). We also show the solution quality in (b),
where the weights we get from both solvers, is comparable.

4.3 Regularization Parameter

In general, the regularization parameter λ affects the number of iterations to converge for any solver.
As λ becomes smaller, the cardinality of the solution increases, and the computation time needed
for convergence also increases. Therefore when one seeks a solution with less sparsity (small λ), it
is more computationally expensive.

In practice, when one carries out classification on a set of data, the optimal regularization pa-
rameter is often unknown. Speaking of optimality, we refer to a regularization parameter that results
in the best classification result evaluated using Kfold cross-validation. One would run the algorithm
along a regularization path, λmax, ...,λmin, where λmax is computed by Eqn. (14) and where λmin is
supplied by the user.

Figure 6 shows the evolution of solution along the regularization path, using a small data set
(ionosphere) from the UCI machine learning repository. This explores sparsity of different degrees
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Speed Comparison
(in second)

dimension mean(HIS) std(HIS) mean(IP) std(IP)
64 0.0026 0.00069 0.0043 0.00057
128 0.0025 0.00058 0.0049 0.00037
256 0.0026 0.00075 0.0078 0.00052
512 0.0024 0.00059 0.018 0.0017
1024 0.0023 0.00056 0.029 0.0023
2048 0.0026 0.00064 0.054 0.0026
4096 0.0028 0.00057 0.098 0.0050
8192 0.0030 0.00059 0.19 0.0076
16384 0.0033 0.00055 0.40 0.018
32768 0.0038 0.00055 0.89 0.037
65536 0.0049 0.00054 2.01 0.096
131072 0.0077 0.00056 4.49 0.24

Table 2: Speed comparison of the HIS algorithm with the IP algorithm, based on simulated random
benchmark data. Shown here is the computation speed as a function of dimension. Data
used here are generated by sampling from two Gaussian distributions. Note that in the
simulation, the continuation path used in the iterative shrinkage may or may not be optimal,
which means that the speed profile for the HIS algorithm can be essentially accelerated
even more.
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Figure 5: Comparison for the random benchmark data, between the HIS algorithm and the IP algo-
rithm. (a) Speed profile for these two approaches: (blue curve) shows the speed profile
for the IP algorithm, and (red curve) shows the speed profile for the HIS algorithm as a
function of the data dimension. (b) An example of the solutions using the IP algorithm
(blue) and the HIS algorithm (red).
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Figure 6: Solution w evolves along a regularization path, following a geometric progression from
10−1 to 10−4. Data is ionosphere from UCI machine learning repository. As the λ be-
comes smaller, the cardinality of the solution goes up.

in the solution, and one can determine the optimal sparsity for the data. This is an attractive prop-
erty of this model, where one can search in the feature space the most informative features about
discrimination.

We illustrate the effect of the regularization parameter using real data of large scale. The data
concerns a two alternative force choice task for face versus car discrimination. We used a spik-
ing neuron model of primary visual cortex to map the input into cortical space, and decoded the
resulting spike trains using sparse logistic regression (Shi et al., 2009). The data has 40960 dimen-
sions and 360 samples for each of the two classes. Kfold cross-validation was used to evaluate the
classification performance, where the number of Kfolds is 10 in our simulation.

The speedup of the HIS algorithm compared to the IP algorithm is shown in Figure 7(a), where
blue indicates the computation time of the IP algorithm, and red shows the HIS algorithm. The
HIS algorithm results in a significant speedup over the IP algorithm, without loss of accuracy. Note
that there is an issue of model selection when we apply sparse logistic regression model to the data,
in a sense there exists an optimal level of sparsity that achieves the best classification result. We
ran the model with a sequence of regularization parameters, which resulted in classification result
(evaluated by Az value from Kfold cross-validation). Figure 7(b) illustrates the classification result
as a function of the cardinality of the solution. One can see the bell shape in the curve, which
provides a route to select the optimal sparsity for the solution.
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(a) Time (b) Classification

Figure 7: An example using real data of large scale, n = 40960, m = 360. (a) Computation time
along such a regularization path, where the smaller λ requires more computation time.
Note that the simulation is carried out for each λ separately. (b) Classification perfor-
mance derived from ROC analysis based on Kfold cross-validation. Data used in this
simulation are neural data for a visual discrimination task (Shi et al., 2009).

4.4 Data Sets with Large Dimensions and Samples

We applied the HIS algorithm to some examples of real-world data that have both large dimensions
n and samples m. In this case, we considered text classification using the binary rcv1 data4 (Lewis
et al., 2004), and real-sim data.5

We ran the simulation on an Apple Mac Pro with two 3 GHz Quad-Core Intel processors, and
8 GB of memory. The timing of the simulation was calculated within the Matlab interface. All
the operations were optimized for sparse matrix computation. Table 3 summarizes the numerical
results. For both examples of text classification, we observed a speedup using the HIS algorithm
while attaining the same numerical accuracy, compared with the IP algorithm. The regularization
parameter does affect the computational efficiency, as we have observed in the previous section.

5. Conclusion

We have presented in this paper a computationally efficient algorithm for the !1-regularized logistic
regression, also called the sparse logistic regression. The sparse logistic regression is a widely used
model for binary classification in supervised learning. The !1 regularization leads to sparsity in
the solution, making it a robust classifier for data whose dimensions are larger than the number of

4. Binary rcv1 data is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html#
rcv1.binary.

5. Real-sim data is available at http://www.cs.umass.edu/˜mccallum/code-data.html.
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Text Classification Application
(in second)

rcv1 real-sim
n = 20242 n = 72309
m = 47236 m = 20958

nonzero = 1498952 nonzero = 3709083
λ Time(HIS) Time(IP) Time(HIS) Time(IP)
10−1 0.11 1.93 0.62 6.61
10−2 0.27 1.93 0.62 6.61
10−3 2.08 8.20 5.50 18.45
10−4 5.80 8.66 13.12 19.36

Table 3: Illustration of performance on text classification, where both the dimensions n and samples
m are large-scale. We compare the computational efficiency of the HIS and IP algorithms.
In both cases, the solution accuracy is the same.

samples. Sparsity also provides an attractive avenue for feature selection, useful for various data
mining tasks.

Solving the large-scale sparse logistic regression usually requires expensive computational re-
sources, depending on the specific solver, memory and/or CPU time. The interior point method is so
far the most efficient solver in the literature, but requires expensive memory consumption. We have
presented the HIS algorithm, which couples a fast shrinkage method and a slower but more accurate
interior point method. The iterative shrinkage algorithm has global convergence with a Q-linear
rate. Various techniques such as line search and continuation strategy are used to accelerate the
computation. The shrinkage solver only involves the gradient descent and the shrinkage operator,
both of which are first-order. Based solely on efficient memory operations such as matrix-vector
multiplication, the shrinkage solver serves as the first phase for the algorithm. This reduces the
problem to a subspace whose dimension is smaller than the original problem. The HIS algorithm
then transits into the second phase, using a more accurate interior point solver. We numerically
compare the HIS algorithm with other popular algorithms in the literature, using benchmark data
from the UCI machine learning repository. We show that the HIS algorithm is the most computa-
tionally efficient, while maintaining high accuracy. The HIS algorithm also scales very well with
dimension of the problem, making it attractive for solving large-scale problems.

There are several ways to extend the HIS algorithm. One is to extend it beyond binary classifi-
cation, allowing for multiple classes (Krishnapuram and Hartemink, 2005). The other is to further
improve the regularization path. When applying the HIS algorithm, one will usually explore a range
of sparsity by constructing a regularization path (λmax, λ1, ..., λmin). Usually the smaller the λ,
the more expensive it is to employ the shrinkage algorithm. One can accelerate the computation
using the Bregman regularization, inspired by Yin et al. (2008). The Bregman iterative algorithm
essentially boosts the solution by solving a sequence of optimizations, resulting in a different regu-
larization path. Bregman has also been shown to improve solution quality in the presence of noise
(Burger et al., 2006; Shi and Osher, 2008; Osher et al., 2010). We will discuss such a regularization
path in a future paper.
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Abstract
PyBrain is a versatile machine learning library for Python. Its goal is to provide flexible, easy-
to-use yet still powerful algorithms for machine learning tasks, including a variety of predefined
environments and benchmarks to test and compare algorithms. Implemented algorithms include
Long Short-Term Memory (LSTM), policy gradient methods, (multidimensional) recurrent neural
networks and deep belief networks.
Keywords: Python, neural networks, reinforcement learning, optimization

1. Introduction

PyBrain is a machine learning library written in Python designed to facilitate both the applica-
tion of and research on premier learning algorithms such as LSTM (Hochreiter and Schmidhuber,
1997), deep belief networks, and policy gradient algorithms. Emphasizing both sequential and non-
sequential data and tasks, PyBrain implements many recent learning algorithms and architectures
ranging from areas such as supervised learning and reinforcement learning to direct search / opti-
mization and evolutionary methods.

PyBrain is implemented in Python, with the scientific library SciPy being its only strict de-
pendency. As is typical for programming in Python/SciPy, development time is greatly reduced as
compared to languages such as Java/C++, at the cost of lower speed. PyBrain embodies a composi-
tional setup, which means that it is designed to be able to connect various types of architectures and
algorithms.

PyBrain goes beyond existing Python libraries in breadth in that it provides a toolbox for su-
pervised, unsupervised and reinforcement learning as well as black-box and multi-objective opti-
mization. In addition to standard algorithms (some of which, to the best of our knowledge, are
not available as Python implementations elsewhere) for application-oriented users, it contains ref-

∗. Also at IDSIA, University of Lugano, Galleria 2, Manno-Lugano, 6900, Switzerland.
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erence implementations of a number of algorithms at the bleeding edge of research. Furthermore,
it sets itself apart by its flexibility for composing custom neural networks architectures, ranging
from (multi-dimensional) recurrent networks to restricted Boltzmann machines or convolutional
networks.

2. Library Overview

The library includes different types of training algorithms, trainable architectural components, spe-
cialized data sets and standardized benchmark tasks/environments. The available algorithms gen-
erally function both in sequential and non-sequential settings, and appropriate data handling tools
have been developed for special applications, ranging from reinforcement learning to handwriting
recognition applications. Implemented algorithms and methods come with unit tests in order to
assure correctness and soundness.

In the following, we will provide a short overview of the different features of the library.

Supervised Learning Training algorithms include classical gradient-based methods and exten-
sions both for non-sequential and sequential data. PyBrain also features Gaussian processes,
the evolino algorithm and an SVM wrapper.

Black-Box Optimization / Evolutionary Methods Various black-box optimization algorithms have
been implemented. In addition to traditional evolution strategies, covariance matrix adap-
tation, co-evolitionary and genetic algorithms (including NSGA-II for multi-objective op-
timization), we have included recent new algorithms (not available in other libraries) such
as fitness expectation maximization, natural evolution strategies and policy gradients with
parameter-based exploration.

Reinforcement Learning The reinforcement learning algorithms of PyBrain encompass basic meth-
ods such as Q-learning, SARSA and REINFORCE, but also natural actor-critic, neural-fitted
Q-iteration, recurrent policy gradients, state-dependent exploration and reward-weighted re-
gression.

Architectures Available architectures include standard feedforward neural networks, recurrent neu-
ral networks and LSTM, bi- and multidimensional recurrent neural networks and deep belief
networks. The library puts emphasis on, but is not limited to, (recurrent) neural network
structures arbitrarily structured as a directed acyclic graph of modules and connections.

Compositionality The basic structure of the library enables a compositional approach to machine
learning. Different algorithms and architectures can be connected and composed, and then
used and trained as desired. For example, arbitrarily structured recurrent neural network
graphs can be trained using various different algorithms such as black-box search, policy
gradients and supervised learning. For example, both an LSTM architecture and a deep belief
network, though constituting wildly different architectures, can be trained using the same
gradient implementation (e.g., RPROP).

Tasks and Benchmarks For black-box and multi-objective optimization, standard benchmarks are
included in the library. For reinforcement learning settings, there are classical (PO)MDP
mazes, (non-Markov) (double) pole balancing and various ODE environments based on physics
simulations. In order to make data processing as easy as possible, PyBrain features function-
ality for constructing, serializing and deserializing data sets to files or over network connec-
tions.
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# Load Data Set.
ds = SequentialDataSet.loadFromFile(’parity.mat’)

# Build a recurrent Network.
net = buildNetwork(1, 2, 1, bias=True,

hiddenclass=TanhLayer,
outclass=TanhLayer,
recurrent=True)

recCon = FullConnection(net[’out’], net[’hidden0’])
net.addRecurrentConnection(recCon)
net.sortModules()

# Create a trainer for backprop and train the net.
trainer = BackpropTrainer(net, ds, learningrate=0.05)
trainer.trainEpochs(1000)

Figure 1: Code example for solving the parity problem with a recurrent neural network.

Speed Optimization The development cycle of Python/SciPy is short, especially compared to lan-
guages such as Java/C/C++ and especially in scientific / machine learning settings. However,
this comes at a cost-reduced speed. In order to partially mitigate this potential problem, we
have implemented many parts of the library in C/C++ using SWIG as a bridge. Parallel im-
plementations in both Python and C++ exist for crucial bottleneck elements of the library.
The resulting speedup approaches an equivalent C++ implementation within an order of mag-
nitude, and comes even closer for large architectures.

3. An Illustrative Example

In order to provide a useful example to a novice user, we construct a recurrent network that is able
to solve the parity problem. The network is given a sequence of binary inputs and the corresponding
objective is to determine whether the network has been provided an even or an odd number of 1s so
far. The implemented topology and the corresponding code are shown in Figure 1.

We first construct a feed forward network consisting of a single linear input cell, a layer of two
hidden cells and one output cell. The network also needs a bias, which is connected to the hidden
and output layer. The layers are fully connected with one another.

The network is first created using a ‘convenience’ function. A recurrent connection from the
output unit to the hidden layer is crucial to learn the problem and thus added afterwards.

It should be stressed that the clarity and shortness of this code example is representative for many
algorithms and architectures used in actual problems. Constructing networks for classification,
control or function approximation often requires even fewer lines of code.

4. Concluding Remarks

In PyBrain we emphasize simplicity, compositionality and the ability to combine various architec-
tures and algorithm types. We believe this to be advantageous in the light of recent developments
in sequence processing, deep belief networks, policy gradients and visual processing. Pybrain is
easy to use, and is well-documented, both in code and in documents and tutorials explaining the
use of the basic capabilities of the library. Among machine learning libraries written in Python,
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PyBrain stands out for its combination of breadth, versatility and maturity of development. In order
to further demonstrate its practical applicability to scientific research, we could emphasize that Py-
Brain, so far, has already been used in fourteen scientific peer-reviewed publications, for example,
Sehnke et al. (2008), Rückstieß et al. (2008), Schaul and Schmidhuber (2009), Sun et al. (2009) and
Wierstra et al. (2008).

5. Availability and Requirements

As of the time of writing, PyBrain has reached version 0.3 and both the entire source code and
the documentation are available from the website, www.pybrain.org, under the BSD license. The
available platforms are Mac OS X, Linux and Microsoft Windows. The only strict dependency is
SciPy (www.scipy.org), highly recommended are matplotlib (required for most example scripts)
and setuptools. The documentation includes a quickstart tutorial, installation instructions, tutorials
on advanced topics, and an extensive API reference. Since PyBrain is under active development,
we encourage researchers to contribute their work and provide guidelines for how they can do so.
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Abstract
Leading classification methods such as support vector machines (SVMs) and their counterparts
achieve strong generalization performance by maximizing the margin of separation between data
classes. While the maximum margin approach has achieved promising performance, this article
identifies its sensitivity to affine transformations of the data and to directions with large data spread.
Maximum margin solutions may be misled by the spread of data and preferentially separate classes
along large spread directions. This article corrects these weaknesses by measuring margin not in
the absolute sense but rather only relative to the spread of data in any projection direction. Maxi-
mum relative margin corresponds to a data-dependent regularization on the classification function
while maximum absolute margin corresponds to an !2 norm constraint on the classification func-
tion. Interestingly, the proposed improvements only require simple extensions to existing maximum
margin formulations and preserve the computational efficiency of SVMs. Through the maximiza-
tion of relative margin, surprising performance gains are achieved on real-world problems such
as digit, text classification and on several other benchmark data sets. In addition, risk bounds are
derived for the new formulation based on Rademacher averages.
Keywords: support vector machines, kernel methods, large margin, Rademacher complexity

1. Introduction

In classification problems, the aim is to learn a classifier that generalizes well on future data from
a limited number of training examples. Support vector machines (SVMs) and maximum margin
classifiers (Vapnik, 1995; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004) have
been a particularly successful approach both in theory and in practice. Given a labeled training
set, these return a predictor that accurately labels previously unseen test examples. For simple bi-
nary classification in Euclidean spaces, this predictor is a function f : Rm → {±1} estimated from
observed training data (xi,yi)ni=1 consisting of inputs xi ∈ Rm and outputs yi ∈ {±1}. A linear func-
tion1 f (x) := sign(w#x+b)where w∈Rm,b∈R serves as the decision rule throughout this article.
The parameters of the hyperplane (w,b) are estimated by maximizing the margin (e.g., the distance
between the hyperplanes defined by w#x+b= 1 and w#x+b= −1) while minimizing a weighted
upper bound on the misclassification rate on training data (via so-called slack variables). In practice,
the margin is maximized by minimizing 1

2w
#w plus an upper bound on the misclassification rate.

1. In this article the dot product w#x is used with the understanding that it can be replaced with a generalized inner
product or by using a kernel for generic objects.

c©2010 Pannagadatta K. Shivaswamy and Tony Jebara.
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While maximummargin classification works well in practice, its solution can easily be perturbed
by an (invertible) affine or scaling transformation of the input space. For instance, by transforming
all training and testing inputs by an invertible linear transformation, the SVM solution and its re-
sulting classification performance can be significantly varied. This is worrisome since an adversary
could directly exploit this shortcoming and transform the data to drive performance down; a syn-
thetic example showing this effect will be presented in Section 5. Moreover, this phenomenon is
not limited to an explicit adversarial setting; it can naturally occur in many real world classification
problems, especially in high dimensions. This article will explore such shortcomings in maximum
margin solutions (or equivalently, SVMs in the context of this article) which exclusively measure
margin by the points near the classification boundary regardless of how spread the remaining data is
away from the separating hyperplane. An alternative approach will be followed based on controlling
the spread while maximizing the margin. This helps overcome this bias and produces a formulation
that is affine invariant. The key is to recover a large margin solution while normalizing the margin
by the spread of the data. Thus, margin is measured in a relative sense rather than in the absolute
sense. In addition, theoretical results using Rademacher averages support this intuition. The re-
sulting classifier will be referred to as the relative margin machine (RMM) and was first introduced
by Shivaswamy and Jebara (2009a) with this longer article serving to provide more details, more
thorough empirical evaluation and more theoretical support.

Traditionally, controlling spread has been an important theme in classification problems. For in-
stance, classical linear discriminant analysis (LDA) (Duda et al., 2000) finds projections of the data
so that the inter-class separation is large while within-class scatter is small. However, the spread (or
scatter in this context) is estimated by LDA using only simple first and the second order statistics of
the data. While this is appropriate if class-conditional densities are Gaussian, second-order statis-
tics are inappropriate for many real-world data sets and thus, the classification performance of LDA
is typically weaker than that of SVMs. The estimation of spread should not make second-order
assumptions about the data and should be tied to the margin criterion (Vapnik, 1995). A similar
line of reasoning has been proposed to perform feature selection. Weston et al. (2000) showed that
second order tests and filtering methods on features perform poorly compared to wrapper methods
on SVMs which more reliably remove features that have low discriminative value. In this prior
work, a feature’s contribution to margin is compared to its effect on the radius of the data by com-
puting bounding hyper-spheres rather than simple second-order statistics. Unfortunately, there, only
axis-aligned feature selection was considered. Similarly, ellipsoidal kernel machines (Shivaswamy
and Jebara, 2007) were proposed to normalize data in feature space by estimating bounding hyper-
ellipsoids while avoiding second-order assumptions. Similarly, the radius-margin bound has been
used as a criterion to tune the hyper-parameters of the SVM (Keerthi, 2002). Another criterion based
jointly on ideas from the SVM method as well as Linear Discriminant Analysis has been studied
by Zhang et al. (2005). This technique involves first solving the SVM and then solving an LDA
problem based on the support vectors that were obtained. While these previous methods showed
performance improvements, they relied on multiple-step locally optimal algorithms for interleaving
spread information with margin estimation.

To overcome the limitations of local non-convex optimization schemes, the formulations derived
here will remain convex, will be efficiently solvable and will admit helpful generalization bounds.
A similar method to the RMM was described by Haffner (2001), yet that approach started from a
different overall motivation. In contrast, this article starts with a novel intuition, produces a novel
algorithm and provides novel empirical and theoretical support. Another interesting contact point
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is the second order perceptron framework (Cesa-Bianchi et al., 2005) which parallels some of the
intuitions underlying the RMM. In an on-line setting, the second order perceptron maintains both
a decision rule and a covariance matrix to whiten the data. The mistake bounds it inherits were
shown to be better than those of the classical perceptron algorithm. Alternatively, one may consider
distributions over classifier solutions which provide a different estimate than the maximum margin
setting and have also shown empirical improvements over SVMs (Jaakkola et al., 1999; Herbrich
et al., 2001). In recent papers, Dredze et al. (2008) and Crammer et al. (2009a) consider a distribu-
tion on the perceptron hyperplane. These distribution assumptions permit update rules that resemble
whitening of the data, thus alleviating adversarial affine transformations and producing changes to
the basic maximum margin formulation that are similar in spirit to those the RMM provides. In
addition, recently, a new batch algorithm called the Gaussian margin machine (GMM) (Crammer
et al., 2009b) has been proposed. The GMM maintains a Gaussian distribution over weight vectors
for binary classification and seeks the least informative distribution that correctly classifies train-
ing data. While the GMM is well motivated from a PAC-Bayesian perspective, the optimization
problem itself is expensive involving a log-determinant optimization.

Another alternative route for improving SVM performance includes the use of additional exam-
ples. For instance, unlabeled or test examples may be available in semi-supervised or transductive
formulations of the SVM (Joachims, 1999; Belkin et al., 2005). Alternatively, additional data that
does not belong to any of the classification classes of interest may be available as in the so-called
Universum approach (Weston et al., 2006; Sinz et al., 2008). In principle, these methods also change
the way margin is measured and the way regularization is applied to the learning problem. While
additional data can be helpful in overcoming limitations for many classifiers, this article will be
interested in only the simple binary classification setting. The argument is that, without any ad-
ditional assumptions beyond the simple classification problem, maximizing margin in the absolute
sense may be suboptimal and that maximizing relative margin is a promising alternative.

Further, large margin methods have been successfully applied to a variety of tasks such as pars-
ing (Collins and Roark, 2004; Taskar et al., 2004), matrix factorization (Srebro et al., 2005), struc-
tured prediction (Tsochantaridis et al., 2005), etc.; in fact, the RMM approach could be readily
adapted to such problems. For instance, RMM has been successfully extended to structured predic-
tion problems (Shivaswamy and Jebara, 2009b).

The organization of this article is as follows. Motivation from various perspectives are given in
Section 2. The relative margin machine formulation is detailed in Section 3 and several variants and
implementations are proposed. Generalization bounds for the various function classes are studied
in Section 4. Experimental results are provided in Section 5. Finally, conclusions are presented in
Section 6. Some proofs and otherwise standard results are provided in the Appendix.

1.1 Notation

Throughout this article, boldface letters indicate vectors/matrices. For two vectors u ∈ Rm and
v ∈ Rm, u ≤ v indicates that ui ≤ vi for all i from 1 to m. 1, 0 and I denote the vectors of all ones,
all zeros and the identity matrix respectively; 0 also denotes a matrix of all zeros in some contexts.
The dimensionality of vectors and matrices should be clear from the context.
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2. Motivation

This section provides three different (an intuitive, a probabilistic and an affine transformation based)
motivations for maximizing the margin relative to the data spread.

2.1 Intuitive Motivation with a Two Dimensional Example

Consider the simple two dimensional data set in Figure 1 where the goal is to separate the two classes
of points: triangles and squares. The figure depicts three scaled versions of the two dimensional
problem to illustrate potential problems with the large margin solution.

In the topmost plot in the left column of Figure 1, two possible linear decision boundaries
separating the classes are shown. The red (or dark shade) solution is the SVM estimate while
the green (or light shade) solution is the proposed maximum relative margin alternative. Clearly,
the SVM solution achieves the largest margin possible while separating both classes, yet is this
necessarily the best solution?

Next, consider the same set of points after a scaling transformation in the second and the third
row of Figure 1. Note that all these three problems correspond to the same discrimination problem
up to a scaling factor. With progressive scaling, the SVM increasingly deviates from the maximum
relative margin solution (green), clearly indicating that the SVM decision boundary is sensitive to
affine transformations of the data. Essentially, the SVM produces a family of different solutions as a
result of the scaling. This sensitivity to scaling and affine transformations is worrisome. If the SVM
solution and its generalization accuracy vary with scaling, an adversary may exploit such scaling to
ensure that the SVM performs poorly. Meanwhile, an algorithm producing the maximum relative
margin (green) decision boundary could remain resilient to adversarial scaling.

In the previous example, a direction with a small spread in the data produced a good and affine-
invariant discriminator which maximized relative margin. Unlike the maximum margin solution,
this solution accounts for the spread of the data in various directions. This permits it to recover a
solution which has a large margin relative to the spread in that direction. Such a solution would
otherwise be overlooked by a maximum margin criterion. A small margin in a correspondingly
smaller spread of the data might be better than a large absolute margin with correspondingly larger
data spread. This particular weakness in large margin estimation has only received limited attention
in previous work.

It is helpful to consider the generative model for the above motivating example. Therein, each
class was generated from a one dimensional line distribution with the two classes on two parallel
lines. In this case, the maximum relative margin (green) decision boundary should obtain zero test
error even if it is estimated from a finite number of examples. However, for finite training data,
the SVM solution will make errors and will do so increasingly as the data is scaled further. While
it is possible to anticipate these problems and choose kernels or nonlinear mappings to correct for
them in advance, this is not necessarily practical. The right mapping or kernel is never provided in
advance in realistic settings. Instead, one has to estimate kernels and nonlinear mappings, a difficult
endeavor which can often exacerbate the learning problem. Similarly, simple data preprocessing
(affine whitening to make the data set zero-mean and unit-covariance or scaling to place the data
into a zero-one box) can also fail, possibly because of estimation problems in recovering the correct
transformation (this will be shown in real-world experiments).

The above arguments show that large margin on its own is not enough; it is also necessary to
control the spread of the data after projection. Therefore, maximum margin should be traded-off or
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balanced with the goal of simultaneously minimizing the spread of the projected data, for instance,
by bounding the spread |w#x+ b|. This will allow the linear classifier to recover large margin
solutions not in the absolute sense but rather relative to the spread of the data in that projection
direction.

In the case of a kernel such as the RBF kernel, the points are first mapped to a space so that
all the input examples are unit vectors (i.e., 〈φ(x),φ(x)〉 = 1). Note that the intuitive motivation
proposed here still applies in such cases. No matter how they are mapped initially, a large margin
solution still projects these points to the real line where the margin of separation is maximized.
However, the spread of the projection can still vary significantly among the different projection
directions. Given the above motivation, it is important to achieve a large margin relative to the spread
of the projections even in such situations. Furthermore, experiments will support this intuition with
dramatic improvements on many real problems and with a variety of kernels (including radial basis
function and polynomial kernels).

2.2 Probabilistic Motivation

In this subsection, an informal motivation is provided to illustrate why maximizing relative margin
may be helpful. Suppose (xi,yi)ni=1 are drawn independently and identically (iid) from a distribution
D . A classifierw∈Rm is sought which will produce low error on future unseen examples according
to the decision rule ŷ = sign(w#x). An alternative criterion is that the classifier should produce a
large value of η according to the following expression:

Pr
(x,y)∼D

[

yw#x≥ 0
]

≥ η,

where w ∈ Rm is the classifier. One way to ensure the above constraint is by requiring that the
following inequality hold:

ED [yw#x] ≥
√

η
1−η

√

VD [yw#x]. (1)

A proof of the above claim for a general distribution can be found in Shivaswamy et al. (2006). In
fact, Gaussian margin machines (Crammer et al., 2009b) start with a similar motivation but assume
a Gaussian distribution on the classifier.

According to (1), achieving a low probability of error requires the projections to have a large
mean and a small variance. The mean and variance for the true distribution D may be unavailable,
however, the empirical counterparts of these quantities are available and known to be concentrated.
The above inequality is used as a loose motivation. Instead of precisely finding low variance and
high mean projections, this paper implements this intuition by trading off between large margin and
small projections of the data while correctly classifying most of the examples with a hinge loss.

2.3 Motivation From an Affine Invariance Perspective

Another motivation for maximum relative margin can be made by reformulating the classification
problem altogether. Instead of learning a classifier from data, consider learning an affine transfor-
mation on data such that an a priori fixed classifier performs well. The data will be mapped by an
affine transformation such that it is separated with large margin while it also produces a small ra-
dius. Recall that maximum margin classification and SVMs are motivated by generalization bounds
based on Vapnik-Chervonenkis complexity arguments. These generalization bounds depend on the
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Figure 1: Left: As the data is scaled, the maximum margin SVM solution (red or dark shade) de-
viates from the maximum relative margin solution (green or light shade). Three different
scaling scenarios are shown. Right: The projections of the examples (that is w#x+b) on
the real line for the SVM solution (red or dark shade) and the proposed classifier (green or
light shade) under each scaling scenario. These projections have been drawn on separated
axes for clarity. The absolute margins for the maximum margin solution (red) are 1.24,
1.51 and 2.08 from top to bottom. For the maximum relative margin solution (green)
the absolute margin is merely 0.71. However, the relative margin (the ratio of absolute
margin to the spread of the projections) is 41%, 28%, and 21% for the maximum margin
solution (red) and 100% for the relative margin solution (green). The scale of all axes is
kept locked to permit direct visual comparison.
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ratio of the margin to the radius of the data (Vapnik, 1995). Similarly, Rademacher generalization
bounds (Shawe-Taylor and Cristianini, 2004) also consider the ratio of the trace of the kernel matrix
to the margin. Here the radius of the data refers to an R such that ||x|| ≤ R for all x drawn from a
distribution.

Instead of learning a classification rule, the optimization problem considered in this section will
recover an affine transformation which achieves a large margin from a fixed decision rule while
also achieving small radius. Assume the classification hyperplane is given a priori via the decision
boundaryw#

0 x+b0 = 0 with the two supporting margin hyperplanesw#
0 x+b0 =±ρ. Here,w0 ∈Rm

can be an arbitrary unit vector and b0 is an arbitrary scalar. Consider the problem of mapping all
the training points (by an affine transformation x→Ax+b,A ∈ Rm×m,b ∈ Rm) so that the mapped
points (i.e., Axi + b) satisfy the classification constraints w#

0 x+ b0 = ±ρ while producing small
radius,

√
R. The choice of w0 and b0 is arbitrary since the affine transformation can completely

compensate for it. For brevity, denote by Ã= [A b] and x̃= [x# 1]#. With this notation, the affine
transformation learning problem is formalized by the following optimization:

min
Ã,R,ρ

−ρ+ER (2)

yi(w#
0 Ãx̃i+b0) ≥ ρ, ∀1≤ i≤ n

1
2
(Ãx̃i)#(Ãx̃i) ≤ R ∀1≤ i≤ n.

The parameter E trades off between the radius of the affine transformed data and the margin2 that
will be obtained. The following Lemma shows that this affine transformation learning problem is
basically equivalent to learning a large margin solution with a small spread.

Lemma 1 The solution Ã∗ to (2) is a rank one matrix.

Proof Consider the Lagrangian of the above problem with Lagrange multipliers α,λ,≥ 0:

L(Ã,ρ,R,α,λ) = −ρ+ER−
n

∑
i=1

αi(yi(w#
0 Ãx̃i+b0)−ρ)

+
n

∑
i=1

λi(
1
2
(Ãx̃i)#(Ãx̃i)−R).

Differentiating the above Lagrangian with respect to A gives the following expression:

∂L(Ã,ρ,R,α,λ)

∂Ã
= −

n

∑
i=1

αiyiw0x̃#i + Ã
n

∑
i=1

λix̃ix̃#i . (3)

From (3), at optimum,

Ã∗
n

∑
i=1

λix̃ix̃#i = −
n

∑
i=1

αiyiw0x̃#i .

It is therefore clear that Ã∗ can always be chosen to have rank one since the right hand side of the
expression is just an outer product of two vectors.

2. For brevity, the so-called slack variables have been intentionally omitted since the proof holds in any case.
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Lemma 1 gives further intuition on why one should limit the spread of the recovered classifier.
Learning a transformation matrix Ã so as to maximize the margin while minimizing the radius given
an a priori hyperplane (w0,b0) is no different from learning a classification hyperplane (w,b) with
a large margin as well as a small spread. This is because the rank of the affine transformation Ã∗

is one; thus, Ã∗ merely maps all the points x̃i onto a line achieving a certain margin ρ but also lim-
iting the output or spread. This means that finding an affine transformation which achieves a large
margin and small radius is equivalent to finding a w and b with a large margin and with projections
constrained to remain close to the origin. Thus, the affine transformation learning problem comple-
ments the intuitive arguments in Section 2.1 and also suggests that the learning algorithm should
bound the spread of the data.

3. From Absolute Margin to Relative Margin

This section will provide an upgrade path from the maximum margin classifier (or SVM) to a max-
imum relative margin formulation. Given independent identically distributed examples (xi,yi)ni=1
where xi ∈ Rm and yi ∈ {±1} are drawn from Pr(x,y), the support vector machine primal formula-
tion is as follows:

min
w,b,ξ

1
2
‖w‖2+C

n

∑
i=1

ξi (4)

s.t. yi(w#xi+b) ≥ 1−ξi, ξi ≥ 0 ∀1≤ i≤ n.

The above is an easily solvable quadratic program (QP) and maximizes the margin by minimizing
‖w‖2. Since real data is seldom separable, slack variables (ξi) are used to relax the hard classifi-
cation constraints. Thus, the above formulation maximizes the margin while minimizing an upper
bound on the number of classification errors. The trade-off between the two quantities is controlled
by the parameterC. Equivalently, the following dual of the formulation (4) can be solved:

max
α

n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jx#i x j (5)

s.t.
n

∑
i=1

αiyi = 0

0≤ αi ≤C ∀1≤ i≤ n.

Lemma 2 The formulation in (5) is invariant to a rotation of the inputs.

Proof Replace each xi with Axi where A is a rotation matrix such that A ∈ Rm×m and A#A= I. It
is clear that the dual remains the same.

However, the dual is not the same if A is more general than a rotation matrix, for instance, if it is an
arbitrary affine transformation.

The above classification framework can also handle non-linear classification readily by making
use of Mercer kernels. A kernel function k : Rm×Rm → R replaces the dot products x#i x j in (5).
The kernel function k is such that k(xi,x j) =

〈

φ(xi),φ(x j)
〉

, where φ : Rm → H is a mapping to
a Hilbert space. Thus, solving the SVM dual formulation (5) with a kernel function can give a
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non-linear solution in the input space. In the rest of this article, K ∈ Rn×n denotes the Gram matrix
whose individual entries are given by Ki j = k(xi,x j). When applying Lemma 2 on a kernel defined
feature space, the affine transformation is on φ(xi) and not on xi.

3.1 The Whitened SVM

One way of limiting sensitivity to affine transformations while recovering a large margin solution is
to whiten the data with the covariance matrix prior to estimating the SVM solution. This may also
reduce the bias towards regions of large data spread as discussed in Section 2. Denote by

Σ =
1
n

n

∑
i=1
xix#i −

1
n2

n

∑
i=1
xi

n

∑
j=1
x#j , and µ =

1
n

n

∑
i=1
xi,

the sample covariance and sample mean, respectively. Now, consider the following formulation
called Σ-SVM:

min
w,b,ξ

1−D
2

‖w‖2+
D
2
‖Σ

1
2w‖2+C

n

∑
i=1

ξi (6)

s.t. yi(w#(xi−µ)+b) ≥ 1−ξi, ξi ≥ 0 ∀1≤ i≤ n

where 0 ≤ D ≤ 1 is an additional parameter that trades off between the two regularization terms.
When D = 0, (6) gives back the usual SVM primal (although on translated data). The dual of (6)
can be shown to be:

max
α

n

∑
i=1

αi−
1
2

n

∑
i=1

αiyi(xi−µ)#((1−D)I+DΣ)−1
n

∑
j=1

α jy j(x j−µ) (7)

s.t.
n

∑
i=1

αiyi = 0

0≤ αi ≤C ∀1≤ i≤ n.

It is easy to see that the above formulation (7) is translation invariant and tends to an affine invariant
solution when D tends to one. However, there are some problems with this formulation. First, the
whitening process only considers second order statistics of the input data which may be inappro-
priate for non-Gaussian data sets. Furthermore, there are computational difficulties associated with
whitening. Consider the following term:

(xi−µ)#((1−D)I+DΣ)−1(x j−µ).

When 0< D< 1, it can be shown, by using the Woodbury matrix inversion formula, that the above
term can be kernelized as

k̂(xi,x j) =
1

1−D

(

k(xi,x j)−
K#
i 1
n

−
K#
j 1
n

+
1#K1
n2

)

−
1

1−D

(

(

Ki−
K1
n

)#(

I
n
−
11#
n2

)[

1−D
D

I+K
(

I
n
−
11#
n2

)]−1(

K j−
K1
n

)

)

,
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where Ki is the ith column of K. This implies that the Σ-SVM can be solved merely by solving (5)
after replacing the kernel with k̂(xi,x j) as defined above. Note that the above formula involves a
matrix inversion of size n, making the kernel computation alone O(n3). Even performing whitening
as a preprocessing step in the feature space would involve this matrix inversion which is often
computationally prohibitive.

3.2 Relative Margin Machines

While the above Σ-SVM does address some of the issues of data spread, it made second order
assumptions to recoverΣ and involved a cumbersome matrix inversion. A more direct and efficient
approach to control the spread is possible and will be proposed next.

The SVM will be modified such that the projections on the training examples remain bounded.
A parameter will also be introduced that helps trade off between large margin and small spread of
the projection of the data. This formulation will initially be solved by a quadratically constrained
quadratic program (QCQP) in this section. The dual of this formulation will also be of interest and
yield further geometric intuitions.

Consider the following formulation called the relative margin machine (RMM):

min
w,b

1
2
‖w‖2+C

n

∑
i=1

ξi (8)

s.t. yi(w#xi+b) ≥ 1−ξi, ξi ≥ 0 ∀1≤ i≤ n
1
2
(w#xi+b)2 ≤

B2

2
∀1≤ i≤ n.

This formulation is similar to the SVM primal (4) except for the additional constraints 12(w
#xi+

b)2 ≤ B2
2 . The formulation has one extra parameter B in addition to the SVM parameterC. When B

is large enough, the above QCQP gives the same solution as the SVM. Also note that only settings
of B> 1 are meaningful since a value of B less than one would prevent any training examples from
clearing the margin, that is, none of the examples could satisfy yi(w#xi+b) ≥ 1 otherwise. Let wC
and bC be the solutions obtained by solving the SVM (4) for a particular value ofC. It is clear, then,
that B > maxi |w#

C xi + bC|, makes the constraint on the second line in the formulation (8) inactive
for each i and the solution obtained is the same as the SVM estimate. This gives an upper threshold
for the parameter B so that the RMM solution is not trivially identical to the SVM solution.

As B is decreased, the RMM solution increasingly differs from the SVM solution. Specifically,
with a smaller B, the RMM still finds a large margin solution but with a smaller projection of the
training examples. By trying different B values (within the aforementioned thresholds), different
large relative margin solutions are explored. It is helpful to next consider the dual of the RMM
problem.

The Lagrangian of (8) is given by:

L(w,b,α,λ,β) =
1
2
‖w‖2+C

n

∑
i=1

ξi−
n

∑
i=1

αi
(

yi(w#xi+b)−1+ξi
)

−
n

∑
i=1

βiξi

+
n

∑
i=1

λi

(

1
2
(w#xi+b)2−

1
2
B2

)

,

756



MAXIMUM RELATIVE MARGIN AND DATA-DEPENDENT REGULARIZATION

where α,β,λ ≥ 0 are the Lagrange multipliers corresponding to the constraints. Differentiating
with respect to the primal variables and equating to zero produces:

(I+
n

∑
i=1

λixix#i )w+b
n

∑
i=1

λixi =
n

∑
i=1

αiyixi,

1
λ#1(

n

∑
i=1

αiyi−
n

∑
i=1

λiw#xi) = b,

αi+βi =C ∀1≤ i≤ n.

Denoting by

Σλ =
n

∑
i=1

λixix#i −
1

λ#1

n

∑
i=1

λixi
n

∑
j=1

λ jx#j , and µλ =
1

λ#1

n

∑
i=1

λixi,

the dual of (8) can be shown to be:

max
α,λ

n

∑
i=1

αi−
1
2

n

∑
i=1

αiyi(xi−µλ)#(I+Σλ)−1
n

∑
j=1

α jy j(x j−µλ)+
1
2
B2

n

∑
i=1

λi (9)

s.t. 0≤ αi ≤C λi ≥ 0 ∀1≤ i≤ n.

Moreover, the optimal w can be shown to be:

w= (I+Σλ)−1
n

∑
i=1

αiyi(xi−µλ).

Note that the above formulation is translation invariant since µλ is subtracted from each xi. Σλ

corresponds to a shape matrix (which is potentially low rank) determined by xi’s that have non-zero
λi. From the Karush-Kuhn-Tucker (KKT) conditions of (8) it is clear that λi(12(w

#xi+b)2− B2
2 ) =

0. Consequently λi > 0 implies (12(w
#xi + b)2− B2

2 ) = 0. Notice the similarity in the two dual
formulations in (7) and (9); both formulations look similar except for the choice of µ and Σ which
transform the inputs. The RMM in (9) whitens data with the matrix (I+Σλ) while simultaneously
solving an SVM-like classification problem. While this is similar in spirit to theΣ-SVM, the matrix
(I+Σλ) is being estimated directly to optimize the margin with a small data spread. The Σ-SVM
only whitens data as a preprocessing independently of the margin and the labels. The Σ-SVM is
equivalent to the RMM only in the rare situation when all λi = t for some t which makes the µλ and
Σλ in the RMM and Σ-SVM identical up to a scaling factor.

In practice, the above formulation will not be solved since it is computationally impractical.
Solving (9) requires semi-definite programming (SDP) which prevents the method from scaling
beyond a few hundred data points. Instead, an equivalent optimization will be used which gives
the same solution but only requires quadratic programming. This is achieved by simply replacing
the constraint 12(w

#xi + b)2 ≤ 1
2B

2 with the two equivalent linear constraints: (w#xi + b) ≤ B and
−(w#xi + b) ≤ B. With these linear constraints replacing the quadratic constraint, the problem is
now merely a QP. In the primal, the QP has 4n constraints (including ξ ≥ 0 ) instead of the 2n
constraints in the SVM. Thus, the RMM’s quadratic program has the same order of complexity as
the SVM. In the next section, an efficient implementation of the RMM problem is presented.
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3.3 Fast Implementation

Once the quadratic constraints have been replaced with linear constraints, the RMM is merely a
quadratic program which admits many fast implementation schemes. It is now possible to adapt
previous fast SVM algorithms in the literature to the RMM. In this section, the SVMlight (Joachims,
1998) approach will be adapted to the following RMM optimization problem

min
w,b

1
2
‖w‖2+C

n

∑
i=1

ξi (10)

s.t. yi(w#xi+b) ≥ 1−ξi, ξi ≥ 0 ∀1≤ i≤ n
w#xi+b≤ B ∀1≤ i≤ n
−w#xi−b≤ B ∀1≤ i≤ n.

The dual of (10) can be shown to be the following:

max
α,λ,λ∗

−
1
2

(α•y−λ+λ∗)#K(α•y−λ+λ∗)+α#1−Bλ#1−Bλ∗#1 (11)

s.t. α#y−λ#1+λ∗#1= 0
0≤ α ≤C1
λ,λ∗ ≥ 0,

where the operator • denotes the element-wise product of two vectors.
The QP in (11) is solved in an iterative way. In each step, only a subset of the dual variables are

optimized. For instance, in a particular iteration, take q, r and s (q̃, r̃ and s̃) to be indices of the free
(fixed) variables in α, λ and λ∗ respectively (ensuring that q∪ q̃ = {1,2, . . .n} and q∩ q̃ = /0 and
proceeding similarly for the other two indices). The optimization over the free variables in that step
can then be expressed as:

max
αq,λr,λ∗

s
−
1
2





αq •yq
λr
λ∗
s





#



Kqq −Kqr Kqs
−Krq Krr −Krs
Ksq −Ksr Kss









αq •yq
λr
λ∗
s



 (12)

−
1
2





αq •yq
λr
λ∗
s





#



Kqq̃ −Kqr̃ Kqs̃
−Krq̃ Krr̃ −Krs̃
Ksq̃ −Ksr̃ Kss̃









αq̃ •yq̃
λr̃
λ∗
s̃





+α#
q 1−Bλ#

r 1−Bλ∗#
s 1

s.t. α#
q yq−λ#

r 1+λ∗#
s 1= −α#

q̃ yq̃+λ#
r̃ 1−λ∗#

s̃ 1,
0≤ αq ≤C1,
λr, λ∗

s ≥ 0.

While the first term in the above objective is quadratic in the free variables (over which it is op-
timized), the second term is merely linear. Essentially, the above is a working-set scheme which
iteratively solves the QP over subsets of variables until some termination criteria are achieved. The
following enumerates the termination criteria that will be used in this article. If α,λ,λ∗ and b are
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the current solution (b is determined by the KKT conditions just as with SVMs), then:

∀i s.t. 0< αi <C : b− ε≤ yi− (
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)) ≤ b+ ε

∀i s.t. αi = 0 : yi(
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)+b) ≥ 1− ε

∀i s.t. αi =C : yi(
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)+b) ≤ 1+ ε

∀i s.t. λi > 0 : B− ε≤ (
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)+b) ≤ B+ ε

∀i s.t. λi = 0 : (
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)+b) ≤ B− ε

∀i s.t. λ∗i > 0 : B− ε≤−(
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)+b) ≤ B+ ε

∀i s.t. λ∗i = 0 : − (
n

∑
j=1

(α jy j−λ j +λ∗j)k(xi,x j)+b) ≤ B− ε.

In each step of the algorithm, a small sub-problem of the structure of (12) is solved. To select
the free variables, these conditions are checked to find the worst violating variables both from the
top of the violation list and from the bottom. The selected variables are optimized by solving (12)
while keeping the other variables fixed. Since only a small QP is solved in each step, the cubic time
scaling behavior is circumvented for improved efficiency. A few other book-keeping tricks have
also been adapted from SVMlight to yield other minor improvements.

Denote by p the number of elements chosen in each step of the optimization (i.e., p = |q|+
|r|+ |s|). The QP in each step takes O(p3) and updating the prediction values to compute the KKT
violations takes O(nq) time. Sorting the output values to choose the most violated constraints takes
O(n log(n)) time. Thus, the total time taken in each iteration of the algorithm is O(p3+n log(n)+
nq). Empirical running times are provided in Section 5 for a digit classification problem.

Many other fast SVM solvers could also be adapted to the RMM. Recent advances such as the
cutting plane SVM algorithm (Joachims, 2006), Pegasos (Shalev-Shwartz et al., 2007) and so forth
are also applicable and are deferred for future work.

3.4 Variants of the RMM

It is not always desirable to have a parameter in a formulation that would depend explicitly on the
output from a previous computation as in (10). It is possible to overcome this issue via the following
optimization problem:
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min
w,b,ξ,t≥1

1
2
‖w‖2+C

n

∑
i=1

ξi+Dt (13)

s.t. yi(w#xi+b) ≥ 1−ξi, ξi ≥ 0 ∀1≤ i≤ n,
+(w#xi+b) ≤ t ∀1≤ i≤ n,
− (w#xi+b) ≤ t ∀1≤ i≤ n.

Note that (13) has a parameter D instead of the parameter B in (10). The two optimization
problems are equivalent in the sense that for every value of B in (10), it is possible to have a corre-
sponding D such that both optimization problems give the same solution.

Further, in some situations, a hard constraint bounding the outputs as in (13) can be detrimental
due to outliers. Thus, it might be required to have a relaxation on the bounding constraints as well.
This motivates the following relaxed version of (13):

min
w,b,ξ,t≥1

1
2
‖w‖2+C

n

∑
i=1

ξi+D(t+
ν
n

n

∑
i=1

(τi+ τ∗i )) (14)

s.t. yi(w#xi+b) ≥ 1−ξi, ξi ≥ 0 ∀1≤ i≤ n,
+(w#xi+b) ≤ t+ τi ∀1≤ i≤ n,
− (w#xi+b) ≤ t+ τ∗i ∀1≤ i≤ n.

In the above formulation, ν controls the fraction of outliers. It is not hard to derive the dual of the
above to express it in kernelized form.

4. Risk Bounds

This section provides generalization guarantees for the classifiers of interest (the SVM, Σ-SVM
and RMM) which all produce decision3 boundaries of the form w#x= 0 from a limited number of
examples. In the SVM, the decision boundary is found by minimizing a combination of w#w and
an upper bound on the number of errors. This minimization is equivalent to choosing a function
g(x) = w#x from a set of linear functions with bounded !2 norm. Therefore, with a suitable choice
of E, the SVM solution chooses the function g(·) from the set {x→ w#x| 12w

#w≤ E}.
By measuring the complexity of the function class being explored, it is possible to derive gen-

eralization guarantees and risk bounds. A natural measure of how complex a function class is the
Rademacher complexity which has been fruitful in the derivation of generalization bounds. For
SVMs, such results can be found in Shawe-Taylor and Cristianini (2004). This section continues
in the same spirit and defines the function classes and their corresponding Rademacher complexi-
ties for slightly modified versions of the RMM as well as the Σ-SVM. Furthermore, these will be
used to provide generalization guarantees for both classifiers. The style and content of this section
closely follows that of Shawe-Taylor and Cristianini (2004).

The function classes for the RMM andΣ-SVM will depend on the data. Thus, these both entail
so-called data-dependent regularization which is not quite as straightforward as the function classes
explored by SVMs. In particular, the data involved in defining data-dependent function classes will

3. The bias term is suppressed in this section for brevity.
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be treated differently and referred to as landmarks to distinguish them from the training data. Land-
mark data is used to define the function class while training data is used to select a specific function
from the class. This distinction is important for the following theoretical derivations. However, in
practical implementations, both theΣ-SVM and the RMM may use the training data to both define
the function class and to choose the best function within it. Thus, the distinction between landmark
data and training data is merely a formality for deriving generalization bounds which require inde-
pendent sets of examples for both stages. Ultimately, however, it will be possible to still provide
generalization guarantees that are independent of the particular landmark examples. Details of this
argument are provided in Section 4.6. For this section, however, it is assumed that, in parallel with
the training data, a separate data set of landmarks is provided to define the function class for the
RMM and the Σ-SVM.

4.1 Function Class Definitions

Consider the training data set (xi,yi)ni=1 with xi ∈Rm and yi ∈ {±1} which are drawn independently
and identically distributed (iid) from an unknown underlying distribution P[(x,y)] denoted as D .
The features of the training examples above are denoted by the set S= {x1, . . . ,xn}.

Given a choice of the parameter E in the SVM (where E plays the role of the regularization
parameter), the set of linear functions the SVM considers is:
Definition 3 FE := {x→ w#x| 12w

#w≤ E}.

The RMM maximizes the margin while also limiting the spread of projections on the training data.
It effectively considers the following function class:
Definition 4 H S

E,D := {x→ w#x| D̄2w
#w+ D

2 (w#xi)2 ≤ E ∀1≤ i≤ n}.

Above, take D̄ := 1−D and 0 < D < 1 trades off between large margin and small spread on the
projections.4 Since the above function class depends on the training examples, standard Rademacher
analysis, which is straightforward for the SVM, is no longer applicable. Instead, define another
function class for the RMM using a distinct set of landmark examples.

A set V = {v1, . . . ,vnv} drawn iid from the same distribution P[x], denoted as Dx, is used as
the landmark examples. With these landmark examples, the modified RMM function class can be
written as:
Definition 5 H V

E,D := {x→ w#x| D̄2w
#w+ D

2 (w#vi)2 ≤ E ∀1≤ i≤ nv}.

Finally, function classes that are relevant for the Σ-SVM are considered. These limit the average
projection rather than the maximum projection. The data-dependent function class is defined as
below:
Definition 6 GS

E,D := {x→ w#x| D̄2w
#w+ D

2n ∑
n
i=1(w#xi)2 ≤ E}.

A different landmark set U = {u1, . . . ,un}, again drawn iid from Dx, is used in defining the
corresponding landmark function class:
Definition 7 GU

B,D := {x→ w#x| D̄2w
#w+ D

2n ∑
n
i=1(w#ui)2 ≤ B}.

Note that the parameter E is fixed in H V
E,D but nv may be different from n. In the case of GU

B,D,
the number of landmarks is the same (n) as the number of training examples but the parameter B is
used instead of E. These distinctions are intentional and will be clarified in subsequent sections.
4. Zero and one are excluded from the range of D to avoid degenerate cases.
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4.2 Rademacher Complexity

In this section the Rademacher complexity of the aforementioned function classes are quantified by
bounding the empirical Rademacher complexity. Rademacher complexity measures the richness of
a class of real-valued functions with respect to a probability distribution (Bartlett and Mendelson,
2002; Shawe-Taylor and Cristianini, 2004; Bousquet et al., 2004).

Definition 8 For a sample S = {x1,x2, . . . ,xn} generated by a distribution on x and a real-valued
function class F with domain x, the empirical Rademacher complexity5 of F is

R̂(F ) := Eσ

[

sup
f∈F

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

where σ = {σ1, . . .σn} are independent random variables that take values +1 or −1 with equal
probability. Moreover, the Rademacher complexity of F is: R(F ) := ES

[

R̂(F )
]

.

A stepping stone for quantifying the true Rademacher complexity is obtained by considering its
empirical counterpart.

4.3 Empirical Rademacher Complexity

In this subsection, upper bounds on the empirical Rademacher complexities are derived for the
previously defined function classes. These bounds provide insights on the regularization properties
of the function classes for the sample S= {x1,x2, . . .xn}.

Theorem 9 R̂(FE) ≤ T0 := 2
√
2E
n

√

tr(K), where tr(K) is the trace of the Gram matrix of the ele-
ments in S.

Proof

R̂(FE) = Eσ

[

sup
f∈FE

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σi f (xi)

∣

∣

∣

∣

∣

]

=
2
n
Eσ

[

max
||w||≤

√
2E

∣

∣

∣

∣

∣

w#
n

∑
i=1

σixi

∣

∣

∣

∣

∣

]

≤
2
√
2E
n

Eσ

[∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n

∑
i=1

σixi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

]

=
2
√
2E
n

Eσ





(

n

∑
i=1

σix#i
n

∑
j=1

σ jx j

)
1
2




≤
2
√
2E
n

(

Eσ

[

n

∑
i, j=1

σiσ jx#i x j

])
1
2

=
2
√
2E
n

√

tr(K).

The proof uses Jensen’s inequality on the function
√
· and the fact that σi and σ j are random vari-

ables taking values +1 or −1 with equal probability. Thus, when i 2= j, Eσ[σiσ jx#i xi] = 0 and,
otherwise, Eσ[σiσix#i xi] = Eσ[x#i xi] = x#i xi. The result follows from the linearity of the expecta-
tion operator.

5. The dependence of the empirical Rademacher complexity on n and S is suppressed by writing R̂(F ) for brevity.
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Roughly speaking, by keeping E small, the classifier’s ability to fit arbitrary labels is reduced.
This is one way to motivate a maximum margin strategy. Note that

√

tr(K) is a coarse measure of
the spread of the data. However, most SVM formulations do not directly optimize this term. This
motivates to next consider two new function classes.

Theorem 10 R̂(H V
E,D) ≤ T2(V,S), where for any training set B and landmark6 set A , T2(A ,B) :=

minλ≥0 1
|B| ∑x∈B x

# (

D̄I∑u∈A λu+D∑u∈A λuuu#
)−1 x+ 2E

|B| ∑u∈A λu.

Proof Start with the definition of the empirical Rademacher complexity:

R̂(H V
E,D) = Eσ

[

sup
w: 12 (D̄w#w+D(w#vi)2)≤E

∣

∣

∣

∣

∣

2
n

n

∑
i=1

σi(w#xi)

∣

∣

∣

∣

∣

]

.

Consider the supremum inside the expectation. Depending on the sign of the term inside | · |, the
above corresponds to either a maximization or a minimization. Without loss of generality, consider
the case of maximization. When a minimization is involved, the value of the objective still remains
the same. The supremum is recovered by solving the following optimization problem:

max
w
w#

n

∑
i=1

σixi s.t.
1
2
(D̄w#w+D(w#vi)2) ≤ E ∀1≤ i≤ nv. (15)

Using Lagrange multipliers λ1≥ 0, . . .λnv ≥ 0, the Lagrangian of (15) is: L(w,λ)=−w#∑n
i=1σixi+

∑nv
i=1λi

( 1
2
(

D̄w#w+D(w#vi)2
)

−E
)

. Differentiating this with respect to the primal variable w and
equating it to zero gives: w= Σ

−1
λ,D∑

n
i=1σixi, where Σλ,D := D̄∑nv

i=1λiI+D∑nv
i=1λiviv#i . Substitut-

ing this w in L(w,λ) gives the dual of (15):

min
λ≥0

1
2

n

∑
i=1

σix#i Σ
−1
λ,D

n

∑
j=1

σ jx j +E
nv
∑
i=1

λi.

This permits the following upper bound on the empirical Rademacher complexity since the primal
and the dual objectives are equal at the optimum:

R̂(H V
E,D) =

2
n
Eσ

[

min
λ≥0

1
2

n

∑
i=1

σix#i Σ
−1
λ,D

n

∑
j=1

σ jx j +E
nv
∑
i=1

λi

]

≤min
λ≥0

2
n
Eσ

[

1
2

n

∑
i=1

σix#i Σ
−1
λ,D

n

∑
j=1

σ jx j +E
nv
∑
i=1

λi

]

≤min
λ≥0

1
n

n

∑
i=1
x#i Σ

−1
λ,Dxi+

2
n
E

nv
∑
i=1

λi = T2(V,S).

On line one, the expectation is over the minimizers over λ; this is less than first taking the expecta-
tion and then minimizing over λ in line two. Then, simply recycle the arguments used in Theorem
9 to handle the expectation over σ.

6. T2(A ,B) has been defined on generic sets. When an already defined set, such as V (with a known number nv of
elements) is an argument to T2, λ will be subscripted with i or j.
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Theorem 11 R̂(GU
B,D) ≤ T1(U,S), where for any training set B and landmark set A , T1(A ,B) :=

2
√
2B

|B|

(

∑x∈B x#
(

D̄I+ D
|A | ∑u∈A uu

#
)−1

x
)

1
2
.

Proof The proof is similar to the one for Theorem 10.

Thus, the empirical Rademacher complexities of the function classes of interest are bounded
using the functions T0, T1(U,S) and T2(V,S). For both FE and GU

E,D, the empirical Rademacher
complexity is bounded by a closed-form expression. ForH V

E,D, optimizing over the Lagrange multi-
pliers (i.e., the λ’s) can further reduce the upper bound on empirical Rademacher complexity. This
can yield advantages over both FE and GU

E,D in many situations and the overall shape ofΣλ,D plays
a key role in determining the overall bound; this will be discussed in Section 4.7. Note that the
upper bound T2(V,S) is not a closed-form expression in general but can be evaluated in polynomial
time using semi-definite programming by invoking Schur’s complement lemma as shown by Boyd
and Vandenberghe (2003).

4.4 From Empirical to True Rademacher Complexity

By definition 8, the empirical Rademacher complexity of a function class is dependent on the data
sample, S. In many cases, it is not possible to give exact expressions for the Rademacher com-
plexity since the underlying distribution over the data is unknown. However, it is possible to give
probabilistic upper bounds on the Rademacher complexity. Since the Rademacher complexity is the
expectation of its empirical estimate over the data, by a straightforward application of McDiarmid’s
inequality (Appendix A), it is possible to show the following:

Lemma 12 Fix δ ∈ (0,1). With probability at least 1−δ over draws of the samples S the following
holds for any function class F :

R(F ) ≤ R̂(F )+2
√

ln(2/δ)
2n

(16)

and,

R̂(F ) ≤ R(F )+2
√

ln(2/δ)
2n

. (17)

At this point, the motivation for introducing the landmark sets U and V becomes clear. The in-
equalities (16) and (17) do not hold when the function classF is dependent on the set S. Specifically,
using the sample S instead of the landmarks breaks the required iid assumptions in the derivation
of (16) and (17). Thus neither Lemma 12, nor any of the results in Section 4.5 are sound for the
function classes GS

B,D and H S
E,D.

4.5 Generalization Bounds

This section presents generalization bounds for the three different function classes. The derivation
largely follows the approach of Shawe-Taylor and Cristianini (2004) and, therefore, several details
will be omitted in this article. Recall the theorem from Shawe-Taylor and Cristianini (2004) that
leverages the empirical Rademacher complexity to provide a generalization bound.
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Theorem 13 Let F be a class of functions mapping Z to [0,1]; let {z1, . . . ,zn} be drawn from the
domain Z independently and identically distributed (iid) according to a probability distribution D .
Then, for any fixed δ ∈ (0,1), the following bound holds for any f ∈ F with probability at least
1−δ over random draws of a set of examples of size n:

ED [ f (z)] ≤ Ê[ f (z)]+ R̂(F )+3
√

ln(2/δ)
2n

. (18)

Similarly, under the same conditions as above, with probability at least 1−δ,

Ê[ f (z)] ≤ ED [ f (z)]+ R̂(F )+3
√

ln(2/δ)
2n

. (19)

Inequality (18) can be found in Shawe-Taylor and Cristianini (2004) and inequality (19) is obtained
by a simple modification of the proof in Shawe-Taylor and Cristianini (2004). The following theo-
rem, found in Shawe-Taylor and Cristianini (2004), gives a probabilistic upper bound on the future
error rate based on the empirical error and the function class complexity.

Theorem 14 Fix γ > 0. Let F be the class of functions from Rm× {±1}→ R given by f (x,y) =
−yg(x). Let {(x1,y1), . . . ,(xn,yn)} be drawn iid from a probability distribution D . Then, with
probability at least 1−δ over the samples of size n, the following bound holds:

Pr
D

[y 2= sign(g(x))] ≤ 1
nγ

n

∑
i=1

ξi+
2
γ
R̂(F )+3

√

ln(2/δ)
2n

, (20)

where ξi =max(0,1− yig(xi)) are the so-called slack variables.

The upper bounds that were derived in Section 4.2, namely: T0, T1(U,S) and T2(V,S) can now
be inserted into (20) to give generalization bounds for each class of interest. However, a caveat
remains since a separate set of landmark data was necessary to provide such generalization bounds.
The next section provides steps to eliminate the landmark data set from the bound.

4.6 Stating Bounds Independently of Landmarks

Note that the original function classes were defined using landmark examples. However, it is pos-
sible to eliminate these and state the generalization bounds independent of the landmark examples
on function classes defined on the training data. Landmarks are eliminated from the generalization
bounds in two steps. First, the empirical Rademacher complexities are shown to be concentrated
and, second, the function classes defined using landmarks are shown to be supersets of the original
function classes. One mild and standard assumption will be necessary, namely, that all examples
from the distribution Pr([x]) have a norm bounded above by R with probability one.

4.6.1 CONCENTRATION OF EMPIRICAL RADEMACHER COMPLEXITY

Recall the upper bound T1(U,S) that was derived in Theorem 11. The following bounds show that
these quantities are concentrated.
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Theorem 15
i) With probability at least 1−δ,

T1(U,S) ≤ EU[T1(U,S)]+O

(

1
√
n
√

tr(K)

)

.

ii) With probability at least 1−δ,

T2(V,S) ≤ EV[T1(V,S)]+O

(

1
√nv

√

tr(K)

)

.

Proof McDiarmid’s inequality from Appendix A can be applied to T1(U,S) since it is possible to
compute Lipschitz constants c1,c2, . . . ,cn that correspond to each input of the function. These Lips-
chitz constants all share the same value c which is derived in Appendix B. With this Lipschitz con-
stant, McDiarmid’s inequality (32) is directly applicable and yields: Pr[T1(U,S)−EU[T1(U,S)] ≥
ε] ≤ exp

(

−2ε2/(nc2)
)

Setting the upper bound on probability to δ, the following inequality holds
with probability at least 1−δ:

T1(U,S) ≤ EU[T1(U,S)]+
2
√

ln(1/δ)E
D̄
√
n

(√

n

∑
i=1
x#i xi −

√

n

∑
i=1
x#i xi−

DR2µmax
nD̄+DR2

)

. (21)

The second term above is:

2
√

ln(1/δ)E
D̄
√
n

(√

n

∑
i=1
x#i xi−

√

n

∑
i=1
x#i xi−

DR2µmax
nD̄+DR2

)

=
2
√

ln(1/δ)E
D̄
√
n

DR2µmax/(nD̄+DR2)
√

∑n
i=1 x#i xi+

√

∑n
i=1 x#i xi−

DR2µmax
nD̄+DR2

≤
2
√

ln(1/δ)E
D̄
√
n

DR2µmax/(nD̄+DR2)
√

∑n
i=1 x#i xi

≤
2
√

ln(1/δ)E
D̄
√
n

DR4n

(nD̄+DR2)
√

∑n
i=1 x#i xi

≤
2
√

ln(1/δ)E
D̄
√
n

DR4n

(nD̄)
√

∑n
i=1 x#i xi

= O

(

1
√
n
√

tr(K)

)

.

Here, µmax ≤ nR2 is the largest eigenvalue of the Gram matrix K. The big oh notation refers to the
asymptotic behavior in n. Note that tr(K) also grows with n. Thus, asymptotically, the above term
is better than O(1/

√
n) which is the behavior of (20). So, from (21), with probability at least 1−δ:

T1(U,S) ≤ EU[T1(U,S)]+O
(

1/
√

n tr(K)
)

.

The proof for the second claim is similar since T2(V,S) has the same Lipschitz constants (Ap-
pendix B). The only difference is in the number of elements in V which is reflected in the bound.
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4.6.2 FUNCTION CLASS INCLUSION

At this point, using Equation 20 and Theorem 15, it is possible to state bounds that hold for func-
tions in GU

B,D and H U
B,D but that are independent of U and V otherwise. However, the aim is to state

uniform convergence bounds for functions in GS
B,D and H S

B,D. This is achieved by showing the latter
two sets are subsets of the former two with high probability. It is not enough to show that each
element of one set is inside the other. Since uniform bounds are required for the initial function
classes, one has to prove set-inclusion results.7

Theorem 16 For B= E+ ε where ε= O
(

1√
n

)

, with probability at least 1−2δ GS
E,D ⊆ GU

B,D.

Proof First, note that GS
E,D ⊆ FE/D̄. Thus, FE/D̄ is a bigger class of functions than GS

E,D. More-
over, FE/D̄ is not dependent on data. Now, consider D̄

2w
#w+ D

2 (w#x)2 where w ∈ FE/D̄. For
||x|| ≤ R2, the Cauchy-Schwarz inequality yields supw∈FE/D̄

D̄
2w

#w+ D
2 (w#x)2 ≤ κ where κ =

E/2+DER2/(2D̄). Now, define the function hw :R m→ [0,1], as : hw(x) = ( D̄2w
#w+ D

2 (w#x)2)/κ.
Since the sets S and U are drawn iid from the distribution Dx, it is now possible to apply (18) and
(19) for any w ∈ FE/D̄. Applying (19) to hw(·) on S, ∀w ∈ FE/D̄, with probability at least 1−δ, the
following inequality holds:

EDx [h
w(x)] ≤ 1

n

n

∑
i=1

hw(xi)+2
√

2E
nD̄

√

1
n
tr(K)+3

√

ln(2/δ)
2n

, (22)

where the value of R̂(FE/D̄) has been obtained from Theorem 9. The expectation is over the draw of
S. Similarly, applying (18) to hw(·) on U, with probability at least 1−δ, ∀w ∈ FE/D̄, the following
inequality holds:

1
n

n

∑
i=1

hw(ui) ≤ EDx [h
w(u)]+2

√

2E
nD̄

√

1
n
tr(Ku)+3

√

ln(2/δ)
2n

(23)

where Ku is the Gram matrix of the landmark examples in U. Using the fact that expectations
in (22) and (23) are the same, tr(Ku) ≤ nR2, and the union bound, the following inequality holds
∀w ∈ FE/D̄ with probability at least 1−2δ:

1
n

n

∑
i=1

hw(ui) ≤
1
n

n

∑
i=1

hw(xi)+4R
√

2E
nD̄

+6
√

ln(2/δ)
2n

.

Using the definition of hw(·), with probability at least 1−2δ, ∀w ∈ FE/D̄,

D̄
2
w#w+

D
2n

n

∑
i=1

(w#ui)2 ≤
D̄
2
w#w+

D
2n

n

∑
i=1

(w#xi)2+O

(

1√
n

)

.

Now, suppose, D̄
2w

#w+ D
2n ∑

n
i=1(w#xi)2 ≤ E, which describes the function class GS

E,D. If B is
chosen to be E + ε where ε = O( 1√

n), then, ∀w ∈ FE/D̄, with probability at least 1− 2δ, w#w+
D
2n ∑

n
i=1(w#ui)2≤B. Since FE/D̄ is a superset ofGS

E,D, with probability at least 1−2δ, GS
E,D⊆GU

E,D.

7. The function classes will also be treated as sets of parameters w without introducing additional notation.
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Theorem 17 For nv = O(
√
n), with probability at least 1−2δ, H S

E,D ⊆H V
E,D.

Proof First define the function, gw : Rm → R, as gw(v) = D̄
2w

#w+ D
2 (w#v)2. Define the indicator

random variable I[gw(v)>E] which has a value 1 if gw(v) > E and a value 0 otherwise. By definition,
∀w ∈ H S

E,D, ∀xi ∈ S, I[gw(xi)>E] = 0. Similarly, ∀w ∈ H V
E,D, ∀vi ∈ V, I[gw(vi)>E] = 0. As before,

consider a larger class of functions that is independent of S, namely, FE/D̄. For an iid sample S
from the distribution Dx, applying (18) to the indicator random variables I[gw(x)>E] on the set S,
with probability at least 1−δ,

EDx [I[gw(x)>E]] ≤
1
n

n

∑
i=1
I[gw(xi)>E] +2

√

2E
nD̄

√

1
n
tr(K)+3

√

ln(2/δ)
2n

. (24)

Similarly, applying (19) on the set V, with probability at least 1−δ,

1
nv

nv
∑
i=1
I[gw(vi)>E] ≤ EDx [I[gw(x)>E]]+2

√

2E
nD̄

√

1
nv
tr(Kv)+3

√

ln(2/δ)
2nv

. (25)

Performing a union bound on (24) and (25), using the fact that tr(K) ≤ nR2 and tr(Kv) ≤ nvR2 with
probability at least 1−2δ, ∀w ∈ FE/D̄,

1
nv

nv
∑
i=1
I[gw(vi)>E]−

1
n

n

∑
i=1
I[gw(xi)>E] ≤ 4R

√

2E
nD̄

+3
√

ln(2/δ)
2

(

1√
n

+
1

√nv

)

. (26)

Equating the right hand side of the above inequality to 1
nv , the above inequality can be written more

succinctly as:

P
[

∃w ∈ FE/D̄
1
nv

nv
∑
i=1
I[gw(vi)>E]−

1
n

n

∑
i=1
I[gw(xi)>E]) ≥

1
nv

]

≤2exp



−
2
9

(

1
nv

−4R
√

2E
nD̄

)2

/
(

1√
n

+
1

√nv

)2




The left hand side of the equation above is the probability that there exists a w such that the dif-
ference in the fraction of the number of examples that fall outside D̄

2w
#w+ D

2 (w#x)2 ≤ E over the
random draw of the sets S and V is at least 1nv . Thus, it gives an upper bound on the probability that
H S
E,D is contained in H V

E,D. This is because, if there is a w ∈ H S
E,D that is not in H V

E,D, for such a
w, 1nv ∑

nv
i=1 I[gw(vi)>E] > 1

nv and
1
n ∑

n
i=1 I[gw(xi)>E] = 0. Thus, equating the right hand side of (26) to

1
nv and solving for nv, the result follows. Both an exact value and the asymptotic behavior of nv are
derived in Appendix C.

It is straightforward to write the generalization bounds of Section 4.5 only in terms of S, com-
pletely eliminating the landmark set U from the results in this section. However, the resulting
bounds now have additional factors which further loosen them. In spite of this, in principle, using
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a landmark set and compensating with McDiarmid’s inequality can overcome the difficulties asso-
ciated with a data-dependent hypothesis class and provide important generalization guarantees. In
summary, the following overall bounds can now be provided for the function classes FE , H S

E,D and
GS
E,D. This result is obtained from a union bound of Theorem 14, Theorem 15, Theorem 16 and
Theorem 17.

Theorem 18 Fix γ > 0 and let {(x1,y1), . . . ,(xn,yn)} be drawn iid from a probability distribution
D where ‖x‖ ≤ R .

i) For any g from the function class FE, the following holds with probability at least 1−δ,

Pr
D

[y 2= sign(g(x))] ≤ 1
γn

n

∑
i=1

ξi+3
√

ln(2/δ)
2n

+
4
√
2E
nγ

√

tr(K). (27)

ii) For any g from the function class H S
E,D, the following inequality (a solution of a semi-definite

program) holds for nv = O(
√
n) with probability at least 1−δ,

Pr
D

[y 2= sign(g(x))] ≤ 1
nγ

n

∑
i=1

ξi+3
√

ln(8/δ)
2n

+O

(

1
√nv

√

tr(K)

)

+
2
γ
EV



min
λ≥0

1
n

n

∑
i=1
x#i

(

D̄
nv
∑
j=1

λ jI+D
nv
∑
j=1

λ jv jv#j

)−1

xi+
2E
n

nv
∑
i=1

λi



 . (28)

iii) Similarly, for any g from the function class GS
E,D, the following bound holds for B = E +

O( 1√
n) with probability at least 1−δ,

Pr
D

[y 2= sign(g(x))] ≤ 1
nγ

n

∑
i=1

ξi+3
√

ln(8/δ)
2n

+O

(

1
√
n
√

tr(K)

)

+
4
√
2B
nγ

EU





n

∑
i=1
x#i

(

D̄I+ D
n

n

∑
j=1
u ju#j

)−1

xi





1
2

, (29)

where ξi =max(0,γ− yig(xi)) are the so-called slack variables.

4.7 Discussion of the Bounds

Clearly, all the three bounds, namely (27), (28) and (29) in Theorem (18) have similar asymptotic
behavior in n, so how do they differ? Simple, separable scenarios are considered in this section
to examine these bounds (which will be referred to as the SVM bound, RMM bound and Σ-SVM
bound respectively). For the SVM bound, the quantity of interest is 4

√
2E
nγ

√

tr(K) and, for the Σ-

SVM bound, the quantity of interest is 4
√
2E
nγ̂

√

(

∑n
i=1 x#i

(

D̄I+ D
n ∑

n
j=1u ju#j

)−1
xi

)

. Similarly, for

the RMM bound, the quantity of interest is:

2
γ̂



min
λ≥0

1
n

n

∑
i=1
x#i

(

D̄
nv
∑
j=1

λ jI+D
nv
∑
j=1

λ jv jv#j

)−1

xi+
2E
n

nv
∑
i=1

λi



 .
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Here the expectations over U and V have been dropped for brevity; in fact, this is how these terms
would have appeared without the concentration result (Theorem 15). Moreover, in the latter two
cases, γ has been replaced by γ̂ intentionally.

−5 0 5
−1

0

1

γ

−5 0 5
−1

0

1

γ

Figure 2: Two labellings of the same examples. Circles and squares denote the two classes (posi-
tive and negative). The top case is referred to as toy example 1 and the bottom case is
referred to as toy example 2 in the sequel. The bound for the function class FE does not
distinguish between these two cases.

The differences between the three bounds will be illustrated with a toy example. In Figure 2,
two different labellings of the same data set are shown. The two different labellings of the data
produce completely different classification boundaries. However, in both the cases, the absolute
margin of separation γ remains the same. A similar synthetic setting was explored in the context of
second order perceptron bounds (Cesa-Bianchi et al., 2005).

The margin γ corresponding to the function class F is found by solving the following optimiza-
tion problem:

max
γ,w

γ, s.t. yi(w#xi) ≥ γ,
1
2
w#w≤ E.

This merely recovers the absolute margin γ which is shown in the figure. Similarly, for the function
class G , a margin γ̂ is obtained by solving:

max
γ,w

γ,s.t. yi(w#xi) ≥ γ,
1
2
w#

(

D̄I+ D
n

n

∑
j=1
x jx#j

)

w≤ E.

Through a change of variable, u = Σ
1
2w where Σ =

(

D̄I+ D
n ∑

n
j=1 x jx#j

)

it is easy to see that the
above optimization problem is equivalent to

max
γ,u

γ, s.t. yiu#Σ
− 1
2 xi ≥ γ,

1
2
u#u≤ E.
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toy example 1 toy example 2
SVM bound 0.643 0.643
Σ-SVM bound, D=0 0.643 0.643
Σ-SVM bound, D=0.999 0.859 0.281
RMM bound, D=0 0.643 0.643
RMM bound, D=0.999 1.355 0.315

Table 1: The bound values for the two toy examples. The SVM bound does not distinguish between
the two cases. By exploring D values, it is possible to obtain smaller bound values in both
cases for Σ-SVM and RMM (D= 0 in toy example 1 and D close to one in toy example
2).

Thus, when a linear function is selected from the function class GS
D,E , the margin γ̂ is estimated from

a whitened version of the data. Similarly, for function class H S
E,D, the margin is estimated from a

whitened version of the data where the whitening matrix is modified by Lagrange multipliers.
Thus, in the finite sample case, the bounds differ as demonstrated in the above synthetic prob-

lem. The bound for the function class GS
E,D explores a whitening of the data. Suppose D = 0.999,

the result is a whitening which evens out the spread of the data in all directions. On this whitened
data set, the margin γ̂ appears much larger in toy example 2 since it is large compared to the spread.
This leads to an improvement in the Σ-SVM bound over the usual SVM bound. While such differ-
ences could be compensated for by appropriate a priori normalization of features, this is not always
an easy preprocessing.

Similarly, the RMM bound also considers a whitening of the data however, it shapes the whiten-
ing matrix adaptively by estimating λ. This gives further flexibility and rescales data not only along
principal eigen-directions but in any direction where the margin is large relative to the spread of the
data. By exploring D values, margin can be measured relative to the spread of the data rather than in
the absolute sense. SinceΣ-SVM and RMM are strict generalizations of the SVM, through the use
of a proper validation set, it is almost always possible to obtain improvements. The various bounds
for the toy examples are shown in Table 1.

5. Experiments

In this section, a detailed investigation of the performance of the RMM8 on several synthetic and
real world data sets is provided.

5.1 Synthetic Data Set

First consider a simple two dimensional data set that illustrates the performance differences between
the SVM and the RMM. Since this is a synthetic data set, the best classifier can be constructed
and Bayes optimal results can be reported. Consider sampling data from two different Gaussian
distributions9 corresponding to two different classes. Samples are drawn from the two following

8. Code available at http://www1.cs.columbia.edu/˜pks2103/RMM.
9. Due to such Gaussian assumptions, LDA or generative modeling would be appropriate contenders but are omitted to
focus the discussion on margin-based approaches.
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Figure 3: Two typical synthetic data sets (rescaled inside a 0-1 box) with corresponding SVM and
RMM solutions are shown along with the Bayes optimal solution. The SVM (the RMM)
solution uses the C (C and B) setting that minimized validation error. The RMM produces
an estimate that is significantly closer to the Bayes optimal solution.

Gaussian distributions with equal prior probability:

µ+ =

[

1
1

]

, µ− =

[

19
13

]

, Σ =

[

17 15
15 17

]

.

The Gaussian distributions have different means, yet identical covariance. A total of 100,000 ex-
amples were drawn from each of the Gaussian distributions to create validation and test sets. Large
validation and test sets were used to get accurate estimates of validation and test error.

Due to the synthetic nature of the problem, the Bayes optimal classifier is easily recovered (Duda
et al., 2000) and is given by the following decision boundary

(µ+−µ−)#Σ
−1x−0.5(µ+−µ−)#Σ

−1(µ+ +µ−) = 0. (30)

The above formula uses the true means and covariances of the Gaussian distributions (not empirical
estimates). It is clear that the Bayes optimal solution is a linear decision boundary which is in
the hypothesis class explored by both the RMM and the SVM. Note that the synthetic data was
subsequently normalized to lie withing the zero-one box. This rescaling was taken into account
while constructing the Bayes optimal classifier (30).

VariousC values (and B values) were explored during SVM (RMM) training. The settings with
minimum error rate on the validation set were used to compute test error rates. Furthermore, the test
error rate for the Bayes optimal classifier was computed. Each experiment was repeated fifty times
over random draws of train, test and validation sets. Figure 3 shows an example data set from this
synthetic experiment along with the (cross-validated) SVM, RMM and Bayes optimal classification
boundaries. The SVM decision boundary is biased to separate the data in a direction where it has
large spread. The RMM is less biased by the spread and is visibly closer to the Bayes optimal
solution.

Figure 4 shows the test error rates achieved for the SVM, the RMM and the Bayes optimal
classifier. The SVM performs significantly worse than the RMM, particularly when training data
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Figure 4: Percent test error rates for the SVM, RMM and Bayes optimal classifier as training data
size is increased. The RMM has a statistically significant (at 5% level) advantage over
the SVM until 6400 training examples. Subsequently, the advantage remains though with
less statistical significance.

is scarce. The RMM maintains a statistically significant advantage over the SVM until the number
of training examples grows beyond 6400. With larger training sample size n, regularization plays
a smaller role in the future probability of error. This is clear, for instance, from the bound (27).
The last term goes to zero at O(1/

√
n), the second term (which is the outcome of regularization)

is O(
√

tr(K)/n
√

1/n). Both have an O(1/
√
n) rate. However, the first term in the bound is the

average slack variables divided by the margin which does not go to zero asymptotically with in-
creasing n and eventually dominates the bound. Thus, the SVM and RMM have asymptotically
similar performance but have significant differences in the small sample case.

The effect of scaling, which is a particular affine transformation, was explored next. To explore
the effect of scaling in a controlled manner, first, the projection w recovered by the Bayes optimal
classifier was obtained. An orthogonal vector v (such that w#v = 0) was then obtained. The ex-
amples (training, test and validation) were then projected onto the axes defined by w and v. Each
projection along w was preserved while the projection along v was scaled by a factor s > 1. This
merely elongates the data further along directions orthogonal to w (i.e., along the Bayes optimal
classification boundary). More concisely, given an example x, the following scaling transformation
was applied:

[

w v
]

[

1 0
0 s

]

[

w v
]−1 x. (31)

Figure 5 shows the SVM and RMM test error rate across a range of scaling values s. Here, 100
examples were used to construct the training data. As s grows, the SVM further deviates from the
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Figure 5: Percent test error rates for the SVM, RMM and Bayes optimal classifier as data is scaled
according to (31). The RMM solution remains resilient to scaling while the SVM solu-
tion deteriorates significantly. The advantage of the RMM over the SVM is statistically
significant (at the 1% level).

Bayes optimal classifier and attempts to separate the data along directions of large spread. Mean-
while, the RMM remains resilient to scaling and maintains a low error rate throughout.

To explore the effect of the B parameter, the average validation and test error rate were computed
across many settings of C and B. The setting C = 100 was chosen since it obtained the minimum
error rate on the validation set. The average test error rate of the RMM is shown in Figure 6 at
C = 100 for multiple settings of the B parameter. Starting from the SVM solution on the right (i.e.,
large B) the error rate begins to fall until it attains a minimum and then starts to go increase. A
similar behavior is seen in many real world data sets. Surprisingly, some data sets even exhibit
monotonic reduction in test error as the value of B is decreased. The following section investigates
such real world experiments in more detail.

5.2 Experiments on Digits

Experiments were carried out on three data sets of digits—optical digits from the UCI machine
learning repository (Asuncion and Newman, 2007), USPS digits (LeCun et al., 1989) and MNIST
digits (LeCun et al., 1998). These data sets vary considerably in terms of their number of features
(64 in optical digits, 256 in USPS and 784 in MNIST) and their number of training examples (3823
in optical digits, 7291 in USPS and 60000 in MNIST). In all the multi-class experiments, the one
versus one classification strategy was used. The one versus one strategy trains a classifier for every
combination of two classes. The final prediction for an example is simply the class that is predicted
most often. These results are directly comparable with various methods that have been applied on
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Figure 6: Behavior on the toy data set with C = 100. As the B value is decreased, the error rate
decreases to a reasonably wide minimum before starting to increase.

1 2 3 4 5 6 7 RBF

OPT

SVM 71 57 54 47 40 46 46 51
Σ-SVM 61 48 41 36 35 31 29 47
KLDA 71 57 54 47 40 46 46 45
RMM 71 36 32 31 33 30 29 51

USPS

SVM 145 109 109 103 100 95 93 104
Σ-SVM 132 108 99 94 89 87 90 97
KLDA 132 119 121 117 114 118 117 101
RMM 153 109 94 91 91 90 90 98

1000-MNIST

SVM 696 511 422 380 362 338 332 670
Σ-SVM 671 470 373 341 322 309 303 673
KLDA 1663 848 591 481 430 419 405 1597
RMM 689 342 319 301 298 290 296 613

2/3-MNIST
SVM 552 237 200 183 178 177 164 166
RMM 534 164 148 140 123 129 129 144

Full MNIST
SVM 536 198 170 156 157 141 136 146
RMM 521 146 140 130 119 116 115 129

Table 2: The number of misclassification in three different digit data sets. Various kernels are
explored using the SVM, Σ-SVM, KLDA and RMM methods.

this data set. For a fair comparison, results from contender methods that use special preprocessing
or domain knowledge are not explored in this article.10

10. Additional results are reported in http://yann.lecun.com/exdb/mnist/.

775



SHIVASWAMY AND JEBARA

In all experiments, the digits were first normalized to have unit norm. This eliminates numerical
problems that may arise in kernel functions such as the polynomial kernel k(u,v) = (1+ u#v)d .
Classification results were then examined for various degrees of the polynomial kernel. In addition,
kernel values were further normalized so that the trace of the training Gram matrix was equal to the
number of training examples.

All parameters were tuned by splitting the training data according to an 80:20 ratio with the
larger split being used for training and the smaller split for validation. The process was repeated five
times over random splits to select hyper-parameters (C for the SVM, C and D for the Σ-SVM and
C and B for the RMM). A final classifier was trained for each of the 45 classification problems with
the best parameters found by cross validation using all the training examples in its corresponding
pair of classes.

For the MNIST digits experiment, the Σ-SVM and kernel LDA (KLDA) methods were too
computationally demanding due to their use of matrix inversion. To cater to these methods, a smaller
experiment was conducted with 1000 examples per training. For the larger experiments, the Σ-
SVM and KLDA were excluded. The larger experiment on MNIST involved training on two thirds
of the digits (i.e., training with an average of 8000 examples for each pair of digits) for each binary
classification task. In both these experiments, the remaining training data was used as a validation
set. The classifier that performed best on the validation set was used for testing.

After forming all 45 classifiers (corresponding to each pair of digits), testing was done on the
standard separate test sets available for each of these three benchmark problems (1797 examples
in the case of optical digits, 2007 examples in USPS and 10000 examples in MNIST). The final
prediction for each test example was recovered based on the majority of predictions made by the 45
classifiers on the test example with ties broken uniformly at random.

It is important to note that, on the MNIST test set, an error rate improvement of 0.1% has been
established as statistically significant (Bengio et al., 2007; Decoste and Schölkopf, 2002). This
corresponds to 10 or more test examples being correctly classified by one method over an other.

Table 2 shows results on all three digits data sets for polynomial kernels under varying degrees
as well as for RBF kernels. For each data set, the number of misclassified examples using the
majority voting scheme above is reported. The Σ-SVM typically outperforms the SVM yet the
RMM outperforms both. Interestingly, with higher degree kernels, the Σ-SVM seems to match the
performance of the RMMwhile in most lower-degree kernels, the RMM outperforms both the SVM
and the Σ-SVM convincingly. Since the Σ-SVM is prohibitive to run on large scale data sets due
to the computationally cumbersome matrix inversion, the RMM was clearly the most competitive
method in these experiments in terms of both accuracy and computational efficiency.

The best parameters found by validation in the previous experiments were used in a full-scale
MNIST experiment which does not have a validation set of its own. All 45 pair-wise classifiers
(both SVMs and RMMs) were trained with the previously cross-validated parameters using all the
training examples for each class in MNIST for various kernels. The test results are reported in
Table 2; the RMM advantages persist in this full-scale MNIST experiment.

5.3 Classifying MNIST Digits 3 vs 5

This section presents more detailed results on one particular binary classification problem in the
MNIST digits data set: the classification of digit 3 versus 5. Therein, the RMM has a dramatically
stronger performance than the SVM. The results reported in this section are with polynomial kernels
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Figure 7: Performance on MNIST test set with digits 3 and 5. The number of errors decreases from
15 to 6 as B decreases from the right.

of degree 5. The parameterC was selected as mentioned above. With the selectedC value, an SVM
was first trained over the entire MNIST training set containing the digits 3 and 5. After noting the
maximum absolute value of the output given on all the training examples, B value was reduced in
steps. The number of test errors on the MNIST test set (3 versus 5) was noted. As the B value
is reduced, the number of errors starts to diminish as shown in Figure 7. The number of errors
produced by the SVM was 15. With the RMM, the number of errors dropped to 6 as the B value
approached one. Clearly, as B decreases, the absolute margin is decreased however the test error
rate drops drastically. This empirically suggests that maximizing the relative margin can have a
beneficial effect on the performance of a classifier. Admittedly, this is only one example and is
provided only for illustrative purposes. However, similar behavior was observed in most of the
binary digit classification problems though in some cases the error rate did not go down significantly
with decreasing B values. The generalization behavior on all 45 individual problems is explored in
more detail in Section 5.4.

5.4 All 45 Binary MNIST Problems

This section explores RMM performance on the 45 pairwise digit classification problems in isola-
tion. In these experiments, both C and B values were fixed using validation as in previous sections.
A total of 45 binary classifiers were constructed using all MNIST training digits. The resulting error
rates are shown in Figure 8. On most problems, the RMM obtains a significantly lower error rate
than the SVM and, at times obtains half the error rate.
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Figure 8: Total test errors on all 45 MNIST classification problems. Various classifiers were trained
on the entire MNIST training data set and evaluated on a standardized separate test set.

Method RMM U-SVM
# Universum - 1000 3000 all
Error rate 1.081 1.059 1.037 1.020
Error Std Dev 0.138 0.142 0.149 0.159
p-value 0.402 0.148 0.031

Table 3: Percentage error rates for the RMM and the U-SVM. The rate for the SVM was 1.274 with
a standard deviation of 0.179; this is significantly larger than all other results in the table
(with a p-value of 0.000). The final row reports the p-value of a paired t-test between the
RMM error rate and the U-SVM error rate (corresponding to the Universum size being
considered in that column).

5.4.1 A COMPARISON WITH THE UNIVERSUM METHOD

A new framework known as the Universum (Weston et al., 2006; Sinz et al., 2008) was recently
introduced which maximizes the margin while keeping classifier outputs low on an additional col-
lection of non-examples that do not belong to either class of interest. These additional examples
are known as Universum examples. Like landmarks, these are examples where a classifier’s scalar
predictions are forced to remain small. However, these Universum examples are obtained from any
other distribution other than the one generating the training data. In the RMM, classification outputs
on training examples are bounded; in the Universum, classification outputs on Universum examples
are bounded (albeit with a different loss). The following experiments compare the Universum based
framework with the RMM.
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Figure 9: Percentage improvement of the RMM over the SVM on all 190 binary problems. Signif-
icance tests were performed using a paired t-test at the indicated levels of significance.
On most problems, the RMM shows significant improvement over SVM.

An MNIST experiment was explored for classifying digits 5 vs 8 using 1000 labeled training
examples under the RBF kernel. This setup is identical to the experimental conditions described
in Weston et al. (2006). Examples of the digit 3 served as Universum examples since these were
reported to be the best performing Universum examples in previous work (Weston et al., 2006). The
experiments used the standard implementation of the Universum provided by the authors Weston
et al. (2006) under the default parameter settings (for variables such as ε). The Universum was
compared with the RMM which had access to the same 1000 training examples. Furthermore, 3500
examples were used as a test set and another 3500 examples as a validation set to perform model
selection. All parameter settings for the RMM and the Universum SVM (or U-SVM) as well as the
variance parameter of the RBF kernel were explored over a wide range of values. The parameter
settings that achieved the smallest error on a validation set were then used to evaluate performance
on the test set (and vice-versa). This entire experiment was repeated ten-fold over different random
draws of the various sets. The average test error rates were compiled for both algorithms.
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While the RMM only had access to the 1000 training examples, the U-SVM was also given
a Universum of images of the digit 3. The Universum spanned three different sizes—1000, 3000
and 6131 examples (i.e., all available images of the digit 3 in the MNIST training set). The results
are reported in Table 3. First, observe that both the RMM and the U-SVM improved the baseline
SVM performance significantly (as measured by a paired t-test). With 1000 and 3000 Universum
examples, even though the error rate of the U-SVM was slightly lower, a paired t-test revealed
that it did not achieve statistically significant improvement over the RMM. Statistically significant
advantages for the U-SVM only emerged when all the available images of the digit 3 were used in
the Universum.

Note that there is a slight discrepancy between the errors reported here and those in Weston
et al. (2006) even though both methods used the digit 3 to generate Universum examples. This may
be because the previous authors (Weston et al., 2006) reported the best test error on 1865 examples.
In this article, a more conservative approach is taken where a good model is first selected using
the validation set and then errors are reported on an unseen test set without further tuning. Clearly,
picking the minimum error rate on a test set will give more optimistic results but tuning to the test set
can be potentially misleading. This makes it difficult to directly compare test error rates with those
reported in the previous paper. While the error rate (using all digits 3 as the Universum examples) in
our experiments varied from 0.74% to 1.35%, the authors in Weston et al. (2006) reported an error
rate of 0.62%.

With 1000 training examples, the RMM (as in Equation (8)) has 1000 classification constraints
and 1000 bounding constraints. With 1000 Universum examples, the U-SVM also has 1000 bound-
ing constraints in addition to the classification constraints. It is interesting to note that the RMM,
with no extra data, is not significantly worse than a U-SVM endowed with an additional 1000 or
3000 best-possible Universum examples.

The authors of Weston et al. (2006) observed that Universum examples help most when they
are correlated with the training examples. This, coupled with the results in Table 3 and the fact that
training examples are correlated most with themselves (or with examples from the same distribution
as the training examples), raises the following question: How much of the performance gain with
the U-SVM is due to the extra examples and how much of it is due to its implicit control of the
spread (as with an RMM)? This is left as an open question in this article and as motivation for
further theoretical work.

5.5 Text Classification

In this section, results are reported on the 20 Newsgroups 11 data set. This data set has posts from
20 different Usenet newsgroups. Each post was represented by a vector which counts the number of
words that occurred in the document. In the text classification literature, this is commonly known
as the bag of words representation. Each feature vector was divided by the total number of words in
the document to normalize it.

All 190 binary pairwise classification problems were considered in this experiment. For each
problem, 500 examples were used for training. The remaining examples were divided into a valida-
tion and test set of the same size. Both SVMs and RMMs were trained for various values of their
parameters. After finding the parameter settings that achieved the lowest error on a validation set,

11. This data set is available online at http://people.csail.mit.edu/jrennie/20Newsgroups/.
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the test error was evaluated (and vice-versa). This experiment was repeated ten times for random
draws of the train, validation and test sets.

Figure 9 summarizes the results. For each binary classification problem, a paired t-test was
performed and p-values were obtained. As can be seen from the plot, the RMM outperforms the
SVM significantly in almost 30% of the problems. This experiment once again demonstrates that
an absolute margin does not always result in a small test error.
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Figure 10: Log run time versus log number of examples. The figure shows that the SVM and the
RMM have similar computational requirements overall.
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Data Set SVM KLDA Σ-SVM RMM (C=D) RMM
banana 10.5 ± 0.4 10.8 ± 0.5 10.5 ± 0.4 10.4 ± 0.4 10.4 ± 0.4*
b.cancer 25.3 ± 4.6* 26.6 ± 4.8 28.8 ± 4.6 25.9 ± 4.5 25.4 ± 4.6
diabetes 23.1 ± 1.7 23.2 ± 1.8 24.2 ± 1.9 23.1 ± 1.7 23.0 ± 1.7*
f.solar 32.3 ± 1.8 33.1 ± 1.6 34.6 ± 2.0 32.3 ± 1.8* 32.3 ± 1.8*
German 23.4 ± 2.2 24.1 ± 2.4 25.9 ± 2.4 23.4 ± 2.1 23.2 ± 2.2*
heart 15.5 ± 3.3 15.7 ± 3.2 19.9 ± 3.6 15.4 ± 3.3 15.2 ± 3.1*
image 3.0 ± 0.6 3.1 ± 0.6 3.3 ± 0.7 3.0 ± 0.6 2.9 ± 0.7
ringnorm 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1*
splice 10.9 ± 0.7 10.6 ± 0.7 10.8 ± 0.6 10.8 ± 0.6 10.8 ± 0.6
thyroid 4.7 ± 2.1 4.2 ± 2.1 4.5 ± 2.1 4.2 ± 1.8* 4.2 ± 2.2
titanic 22.3 ± 1.1 22.0 ± 1.3* 23.1 ± 2.2 22.3 ± 1.1 22.3 ± 1.0
twonorm 2.4 ± 0.1* 2.4 ± 0.2 2.5 ± 0.2 2.4 ± 0.1 2.4 ± 0.1
waveform 9.9 ± 0.4 9.9 ± 0.4 10.5 ± 0.5 10.0 ± 0.4 9.7 ± 0.4*
Data Set RBF AB LPAB QPAB ABR
banana 10.8 ± 0.4 12.3 ± 0.7 10.7 ± 0.4 10.9 ± 0.5 10.9 ± 0.4
b.cancer 27.6 ± 4.7 30.4 ± 4.7 26.8 ± 6.1 25.9 ± 4.6 26.5 ± 4.5
diabetes 24.3 ± 1.9 26.5 ± 2.3 24.1 ± 1.9 25.4 ± 2.2 23.8 ± 1.8
f.solar 34.4 ± 1.9 35.7 ± 1.8 34.7 ± 2.0 36.2 ± 1.8 34.2 ± 2.2
German 24.7 ± 2.4 27.5 ± 2.5 24.8 ± 2.2 25.3 ± 2.1 24.3 ± 2.1
heart 17.1 ± 3.3 20.3 ± 3.4 17.5 ± 3.5 17.2 ± 3.4 16.5 ± 3.5
image 3.3 ± 0.7 2.7 ± 0.7 2.8 ± 0.6 2.7 ± 0.6* 2.7 ± 0.6*
ringnorm 1.7 ± 0.2 1.9 ± 0.2 2.2 ± 0.5 1.9 ± 0.2 1.6 ± 0.1
splice 9.9 ± 0.8 10.1 ± 0.5 10.2 ± 1.6 10.1 ± 0.5 9.5 ± 0.6*
thyroid 4.5 ± 2.1 4.4 ± 2.2 4.6 ± 2.2 4.3 ± 2.2 4.5 ± 2.2
titanic 23.3 ± 1.3 22.6 ± 1.2 24.0 ± 4.4 22.7 ± 1.0 22.6 ± 1.2
twonorm 2.8 ± 0.3 3.0 ± 0.3 3.2 ± 0.4 3.0 ± 0.3 2.7 ± 0.2
waveform 10.7 ± 1.1 10.8 ± 0.6 10.5 ± 1.0 10.1 ± 0.5 9.8 ± 0.8

Table 4: UCI results for a number of classification methods. Results are shown for the SVM, reg-
ularized kernel Linear Discriminant Analysis, the Σ-SVM, the RMM, an RBF network,
Adaboost, LP-regularized Adaboost, QP-regularized Adaboost and Regularized Adaboost.
The results have been split into two parts due to lack of space. For each data set, all meth-
ods could be placed on the same row in a larger table. For each data set, the algorithm
which gave the minimum error rate is starred. All other algorithms that were not signifi-
cantly different from (at the 5% significance level based on a paired t-test) the minimum
error rate are in boldface.
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5.6 Benchmark Data Sets

To compare the performance of the RMM with a number of other methods, experiments were per-
formed on several benchmark data sets. In particular, 100 training and test splits of 13 of these
data sets have been previously used in Raetsch et al. (2001); Mika et al. (1999); Cawley and Talbot
(2003).12 The RBF kernel was used in these experiments for all kernel-based methods. To han-
dle the noisy nature of these data sets, the kernelized and relaxed version of the RMM (14) was
used. All the parameters were tuned using cross-validation using a similar setup as in Raetsch et al.
(2001).13 With the chosen values of these parameters, the error rates were first obtained for all 100
test splits using the corresponding training splits. The results are reported in Table 4. Once again,
the RMM exhibits clear performance advantages over other methods.

5.7 Scalability and Run-time

While the asymptotic run time behavior was analyzed in Section 3.3, the run time of the RMM is
also studied empirically in this section. In particular, the classification of MNIST digits 0-4 versus
5-9 with a polynomial kernel of degree five was used to benchmark the algorithms. For both the
RMM and the SVM, the tolerance parameter (εmentioned in Section 3.3) was set to 0.001. The size
of the sub-problem (12) solved was 800 in all the cases. To evaluate how the algorithms scale, the
number of training examples was increased in steps and the training time was noted. Throughout
all the experiments, the C value was set to 1. The SVM was first run on the training examples. The
value of maximum absolute prediction θ was noted. Three different values of B were then tried for
the RMM: B1 = 1+(θ−1)/2, B2 = 1+(θ−1)/4 and B3 = 1+(θ−1)/10. In all experiments, the
run time was noted. The experiment was repeated ten times to get an average run time for each B
value. A log-log plot comparing the number of examples to the average run time is shown in Figure
10. Both the SVM and the RMM run time exhibit similar asymptotic behavior.

6. Conclusions

The article showed that support vector machines and maximum margin classifiers can be sensitive
to affine transformations of the input data and are biased in favor of separating data along directions
with large spread. The relative margin machine was proposed to overcome such problems and op-
timizes the projection direction such that the margin is large only relative to the spread of the data.
By deriving the dual with quadratic constraints, a geometric interpretation was also formulated for
RMMs and led to risk bounds via Rademacher complexity arguments. In practice, the RMM imple-
mentation requires only additional linear constraints that complement the SVM quadratic program
and maintain its efficient run time. Empirically, the RMM and maximum relative margin approach
showed significant improvements in classification accuracy. In addition, an intermediate method
known as Σ-SVM was shown that lies between the SVM and the RMM both conceptually and in
terms of classification performance.

Generalization bounds with Rademacher averages were derived. The SVM’s bound which in-
volves the trace of the kernel matrix was replaced with a more general whitened version of the trace
of the kernel matrix. A proof technique using landmark examples led to Rademacher bounds on an

12. These data sets are available at http://theoval.cmp.uea.ac.uk/˜gcc/matlab/default.html\#benchmarks.
13. The values of the selected parameters and the code for the RMM are available for download at http://www.cs.

columbia.edu/˜pks2103/ucirmm/.

783



SHIVASWAMY AND JEBARA

empirical data-dependent hypothesis space. Furthermore, the bounds were stated independently of
the particular sample of landmarks.

Directions of future work include exploring the connections between maximum relative margin
and generalization bounds based on margin distributions (Schapire et al., 1998; Koltchinskii and
Panchenko, 2002). By bounding outputs, the RMM is potentially finding a better margin distribution
on the training examples. Previous arguments for such an approach were obtained in the context of
voting methods (such as boosting) and may also be relevant here.

Furthermore, the maximization of relative margin is a fairly promising and general concept
which may be compatible with other popular problems that have recently been tackled by the max-
imum margin paradigm. These include regression, ordinal regression, ranking and so forth. These
are valuable and natural extensions for the RMM. Finally, since the constraints that bound the pro-
jections are unsupervised, RMMs can readily apply in semi-supervised and transductive settings.
These are all promising directions for future work.
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Appendix A. McDiarmid’s Inequality

Assume X1,X2, . . . ,Xn are independent random variables from a set X and g : X n → R. If the
function g satisfies supX1,...,Xn,X̂k |g(X1, . . . ,Xn)− g(X1, . . . , X̂k, . . . ,Xn)| ≤ ck, for all 1 ≤ k ≤ n then,
for any ε> 0:

Pr [g(X1, . . . ,Xn)−E[g(X1, . . . ,Xn)] ≥ ε] ≤ exp
(

−
2ε2

∑n
i=1 c2i

)

, (32)

Pr [E[g(X1, . . . ,Xn)]−g(X1, . . . ,Xn) ≥ ε] ≤ exp
(

−
2ε2

∑n
i=1 c2i

)

,

where the expectations are over the random draws of X1, . . . ,Xn. Here the constants c1,c2, · · · ,cn are
called Lipschitz constants.

Appendix B. Lipschitz Constants for Section 4.6

Lemma 19 The upper bound on R̂(GU
B,D), namely T1(U,S), admits the Lipschitz constant:

2
√
2B

D̄n

(√

n

∑
i=1
x#i xi−

√

n

∑
i=1
x#i xi−

DR2µmax
nD̄+DR2

)

.

Proof The quantity of interest is the worst change in

2
√
2B
n

√

n

∑
i=1
xi(D̄I+

D
n

n

∑
j=1
u ju#j )−1x#i
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when uk is varied for any setting of u1, . . . ,uk−1,uk+1, . . . ,un. Since ∑n
j=1, j 2=k u ju#j is positive semi-

definite and inside the inverse operator, uk will have the most extreme effect on the expression when
∑n
j=1, j 2=k u ju#j = 0. Thus, consider:

2
√
2B
n

√

n

∑
i=1
x#i

(

D̄I+ D
n
uku#k

)−1
xi.

Apply the Woodbury matrix inversion identity to the term inside the square root:
n

∑
i=1
x#i

(

D̄I+ D
n
uku#k

)−1
xi =

1
D̄

n

∑
i=1
x#i

(

I−
uku#k

nD̄
D +u#k uk

)

xi

=
1
D̄

(

n

∑
i=1
x#i xi−

∑n
i=1(x#i uk)2
nD̄
D +u#k uk

)

.

The maximum value of this expression occurs when uk = 0. To find the minimum, write the second
term inside the brackets in the above expression as below:

(

u#k
‖uk‖

n

∑
i=1
xix#i

uk
‖uk‖

)

/

(

nD̄
Du#k uk

+1
)

.

Clearly, in the numerator, the magnitude of uk does not matter. To maximize this expression, uk
should be set to a vector of maximal length and in the same direction as the maximum eigenvector
of ∑n

i=1 xix#i . Since all examples are assumed to have bounded norm no larger than R, the largest uk
vector has norm R. Denoting the maximum eigenvalue of ∑n

i=1 xix#i by µmax, it is easy to show the
claimed value of Lipschitz constant for any k.

Lemma 20 The upper bound on R̂(H V
E,D), namely T2(V,S), admits the Lipschitz constant:

2
√
2E

D̄n

(√

n

∑
i=1
x#i xi−

√

n

∑
i=1
x#i xi−

DR2µmax
nD̄+DR2

)

.

Proof The quantity of interest is the maximum change in the following optimization problem over
uk for any setting of u1,u2, . . . ,uk−1,uk+1, . . . ,unv :

min
λ≥0

1
n

n

∑
i=1
x#i

(

D̄
nv
∑
j=1

λ jI+D
nv
∑
j=1

λ ju ju#j

)−1

xi+
2
n
E

nv
∑
i=1

λi.

As before, this happens when all u’s except uk are 0. In such a scenario, the expression is minimized
for the setting λ j = 0 for all j 2= k. The minimization only needs to consider variable settings of λk.
Since this minimization is over a single scalar, it is possible to obtain a closed-form expression for
λk. The optimal λk is merely: 1√

2E ∑
n
i=1 x#i

(

D̄I+Duku#k
)−1 xi. Substituting this into the objective

gives an expression which is independent of λ’s:

2
√
2E
n

√

n

∑
i=1
x#i

(

D̄I+ D
n
uku#k

)−1
xi.

This expression is identical to the one obtained in Theorem 19 and the proof follows.
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Appendix C. Solving for nv

Let x= 1√nv ,c= 4R
√

2E
D̄ and b= 3

2

√

ln(2/δ)
2 . Consider solving for x in the expression x2−2bx=(c+

2b)/
√
n. Equivalently, solve (x−b)2 = b2+(c+2b)/

√
n. Taking the square root of both sides gives

x= b±
√

b2+(c+2b)/
√
n. Since x> 0, only the positive root is considered. Thus,√nv = 1/(b+

√

b2+(c+2b)/
√
n) which gives an exact expression for nv. Dropping terms from the denominator

produces the simpler expression: √nv ≤ 1/
√

(c+2b)/
√
n. Hence, nv ≤

√
n

4R
√

2E
D̄ +3

√

ln(2/δ)
2

.
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Abstract
Most generalization bounds in learning theory are based on some measure of the complexity of the
hypothesis class used, independently of any algorithm. In contrast, the notion of algorithmic stabil-
ity can be used to derive tight generalization bounds that are tailored to specific learning algorithms
by exploiting their particular properties. However, as in much of learning theory, existing stability
analyses and bounds apply only in the scenario where the samples are independently and identically
distributed. In many machine learning applications, however, this assumption does not hold. The
observations received by the learning algorithm often have some inherent temporal dependence.

This paper studies the scenario where the observations are drawn from a stationary ϕ-mixing or
β-mixing sequence, a widely adopted assumption in the study of non-i.i.d. processes that implies a
dependence between observations weakening over time. We prove novel and distinct stability-based
generalization bounds for stationary ϕ-mixing and β-mixing sequences. These bounds strictly gen-
eralize the bounds given in the i.i.d. case and apply to all stable learning algorithms, thereby ex-
tending the use of stability-bounds to non-i.i.d. scenarios.

We also illustrate the application of our ϕ-mixing generalization bounds to general classes of
learning algorithms, including Support Vector Regression, Kernel Ridge Regression, and Support
Vector Machines, and many other kernel regularization-based and relative entropy-based regular-
ization algorithms. These novel bounds can thus be viewed as the first theoretical basis for the use
of these algorithms in non-i.i.d. scenarios.

Keywords: learning in non-i.i.d. scenarios, weakly dependent observations, mixing distributions,
algorithmic stability, generalization bounds, learning theory

1. Introduction

Most generalization bounds in learning theory are based on some measure of the complexity of the
hypothesis class used, such as the VC-dimension, covering numbers, or Rademacher complexity.
These measures characterize a class of hypotheses, independently of any algorithm. In contrast,
the notion of algorithmic stability can be used to derive bounds that are tailored to specific learning
algorithms and exploit their particular properties. A learning algorithm is stable if the hypothesis it

c©2010 Mehryar Mohri and Afshin Rostamizadeh.
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outputs varies in a limited way in response to small changes made to the training set. Algorithmic
stability has been used effectively in the past to derive tight generalization bounds (Bousquet and
Elisseeff, 2001, 2002; Kearns and Ron, 1997).

But, as in much of learning theory, existing stability analyses and bounds apply only in the
scenario where the samples are independently and identically distributed (i.i.d.). In many machine
learning applications, this assumption, however, does not hold; in fact, the i.i.d. assumption is not
tested or derived from any data analysis. The observations received by the learning algorithm often
have some inherent temporal dependence. This is clear in system diagnosis or time series prediction
problems. Clearly, prices of different stocks on the same day, or of the same stock on different days,
may be dependent. But, a less apparent time dependency may affect data sampled in many other
tasks as well.

This paper studies the scenario where the observations are drawn from a stationary ϕ-mixing
or β-mixing sequence, a widely adopted assumption in the study of non-i.i.d. processes that im-
plies a dependence between observations weakening over time (Yu, 1994; Meir, 2000; Vidyasagar,
2003; Lozano et al., 2006; Mohri and Rostamizadeh, 2007). We prove novel and distinct stability-
based generalization bounds for stationary ϕ-mixing and β-mixing sequences. These bounds strictly
generalize the bounds given in the i.i.d. case and apply to all stable learning algorithms, thereby
extending the usefulness of stability-bounds to non-i.i.d. scenarios. Our proofs are based on the
independent block technique described by Yu (1994) and attributed to Bernstein (1927), which is
commonly used in such contexts. However, our analysis somewhat differs from previous uses of
this technique in that the blocks of points we consider are not necessarily of equal size.

For our analysis of stationary ϕ-mixing sequences, we make use of a generalized version of Mc-
Diarmid’s inequality given by Kontorovich and Ramanan (2008) that holds for ϕ-mixing sequences.
This leads to stability-based generalization bounds with the standard exponential form. Our gen-
eralization bounds for stationary β-mixing sequences cover a more general non-i.i.d. scenario and
use the standard McDiarmid’s inequality, however, unlike the ϕ-mixing case, the β-mixing bound
presented here is not a purely exponential bound and contains an additive term depending on the
mixing coefficient.

We also illustrate the application of our ϕ-mixing generalization bounds to general classes of
learning algorithms, including Support Vector Regression (SVR) (Vapnik, 1998), Kernel Ridge Re-
gression (Saunders et al., 1998), and Support Vector Machines (SVMs) (Cortes and Vapnik, 1995).
Algorithms such as SVR have been used in the context of time series prediction in which the i.i.d.
assumption does not hold, some with good experimental results (Müller et al., 1997; Mattera and
Haykin, 1999). However, to our knowledge, the use of these algorithms in non-i.i.d. scenarios has
not been previously supported by any theoretical analysis. The stability bounds we give for SVR,
SVMs, and many other kernel regularization-based and relative entropy-based regularization algo-
rithms can thus be viewed as the first theoretical basis for their use in such scenarios.

The following sections are organized as follows. In Section 2, we introduce the definitions rel-
evant to the non-i.i.d. problems that we are considering and discuss the learning scenarios in that
context. Section 3 gives our main generalization bounds for stationary ϕ-mixing sequences based
on stability, as well as the illustration of its applications to general kernel regularization-based algo-
rithms, including SVR, KRR, and SVMs, as well as to relative entropy-based regularization algo-
rithms. Finally, Section 4 presents the first known stability bounds for the more general stationary
β-mixing scenario.
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2. Preliminaries

We first introduce some standard definitions for dependent observations in mixing theory (Doukhan,
1994) and then briefly discuss the learning scenarios in the non-i.i.d. case.

2.1 Non-i.i.d. Definitions

Definition 1 A sequence of random variables Z={Zt}∞t=−∞ is said to be stationary if for any t and
non-negative integers m and k, the random vectors (Zt , . . . ,Zt+m) and (Zt+k, . . . ,Zt+m+k) have the
same distribution.

Thus, the index t or time, does not affect the distribution of a variable Zt in a stationary sequence.
This does not imply independence however. In particular, for i< j< k, Pr[Zj |Zi] may not equal
Pr[Zk | Zi], that is, conditional probabilities may vary at different points in time. The following
is a standard definition giving a measure of the dependence of the random variables Zt within a
stationary sequence. There are several equivalent definitions of these quantities, we are adopting
here a version convenient for our analysis, as in Yu (1994).

Definition 2 Let Z= {Zt}∞t=−∞ be a stationary sequence of random variables. For any i, j∈Z∪
{−∞,+∞}, let σ j

i denote the σ-algebra generated by the random variables Zk, i≤k≤ j. Then, for
any positive integer k, the β-mixing and ϕ-mixing coefficients of the stochastic process Z are defined
as

β(k) = sup
n

E
B∈σn−∞

[
sup

A∈σ∞n+k

∣∣∣Pr[A | B]−Pr[A]
∣∣∣
]

ϕ(k) = sup
n

A∈σ∞n+k
B∈σn−∞

∣∣∣Pr[A | B]−Pr[A]
∣∣∣.

Z is said to be β-mixing (ϕ-mixing) if β(k) → 0 (resp. ϕ(k) → 0) as k → ∞. It is said to be
algebraically β-mixing (algebraically ϕ-mixing) if there exist real numbers β0 > 0 (resp. ϕ0 > 0)
and r > 0 such that β(k) ≤ β0/kr (resp. ϕ(k) ≤ ϕ0/kr) for all k, exponentially mixing if there exist
real numbers β0 (resp. ϕ0 > 0), β1 (resp. ϕ1 > 0) and r > 0 such that β(k) ≤ β0 exp(−β1kr) (resp.
ϕ(k) ≤ ϕ0 exp(−ϕ1kr)) for all k.

Both β(k) and ϕ(k) measure the dependence of an event on those that occurred more than k units
of time in the past. β-mixing is a weaker assumption than ϕ-mixing and thus covers a more general
non-i.i.d. scenario.

This paper gives stability-based generalization bounds both in the ϕ-mixing and β-mixing case.
The β-mixing bounds cover a more general case of course, however, the ϕ-mixing bounds are sim-
pler and admit the standard exponential form. The ϕ-mixing bounds are based on a concentration
inequality that applies to ϕ-mixing processes only. Except for the use of this concentration bound
and two lemmas 5 and 6, all of the intermediate proofs and results to derive a ϕ-mixing bound in
Section 3 are given in the more general case of β-mixing sequences.

It has been argued by Vidyasagar (2003) that β-mixing is “just the right” assumption for the
analysis of weakly-dependent sample points in machine learning, in particular because several PAC-
learning results then carry over to the non-i.i.d. case. Our β-mixing generalization bounds further
contribute to the analysis of this scenario.1

1. Some results have also been obtained in the more general context of α-mixing but they seem to require the stronger
condition of exponential mixing (Modha and Masry, 1998).
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We describe in several instances the application of our bounds in the case of algebraic mixing.
Algebraic mixing is a standard assumption for mixing coefficients that has been adopted in previous
studies of learning in the presence of dependent observations (Yu, 1994; Meir, 2000; Vidyasagar,
2003; Lozano et al., 2006). Let us also point out that mixing assumptions can be checked in some
cases such as with Gaussian or Markov processes (Meir, 2000) and that mixing parameters can also
be estimated in such cases.

Most previous studies use a technique originally introduced by Bernstein (1927) based on in-
dependent blocks of equal size (Yu, 1994; Meir, 2000; Lozano et al., 2006). This technique is
particularly relevant when dealing with stationary β-mixing. We will need a related but somewhat
different technique since the blocks we consider may not have the same size. The following lemma
is a special case of Corollary 2.7 from Yu (1994).

Lemma 3 (Yu, 1994, Corollary 2.7) Let µ≥ 1 and suppose that h is measurable function, with
absolute value bounded by M, on a product probability space

(
∏
µ
j=1Ω j,∏

µ
i=1σ

si
ri

)
where ri ≤ si ≤

ri+1 for all i. Let Q be a probability measure on the product space with marginal measures Qi on
(Ωi,σsiri ), and let Q

i+1 be the marginal measure of Q on
(
∏i+1

j=1Ω j,∏i+1
j=1σ

s j
r j

)
, i=1, . . . ,µ− 1. Let

β(Q) = sup1≤i≤µ−1β(ki), where ki=ri+1−si, and P=∏
µ
i=1Qi. Then,

|E
Q
[h]−E

P
[h]|≤ (µ−1)Mβ(Q).

The lemma gives a measure of the difference between the distribution of µ blocks where the blocks
are independent in one case and dependent in the other case. The distribution within each block
is assumed to be the same in both cases. For a monotonically decreasing function β, we have
β(Q) = β(k∗), where k∗ =mini(ki) is the smallest gap between blocks.

2.2 Learning Scenarios

We consider the familiar supervised learning setting where the learning algorithm receives a sample
of m labeled points S= (z1, . . . ,zm) = ((x1,y1), . . . ,(xm,ym))∈ (X×Y )m, where X is the input space
and Y the set of labels (Y ⊆ R in the regression case), both assumed to be measurable.

For a fixed learning algorithm, we denote by hS the hypothesis it returns when trained on the
sample S. The error of a hypothesis on a pair z ∈ X ×Y is measured in terms of a cost function
c : Y ×Y → R+. Thus, c(h(x),y) measures the error of a hypothesis h on a pair (x,y), c(h(x),y) =
(h(x)−y)2 in the standard regression cases. We will often use the shorthand c(h,z) := c(h(x),y) for
a hypothesis h and z= (x,y) ∈ X ×Y and will assume that c is upper bounded by a constant M>0.
We denote by R̂(h) the empirical error of a hypothesis h for a training sample S=(z1, . . . ,zm):

R̂(h) =
1
m

m

∑
i=1

c(h,zi).

In the standard machine learning scenario, the sample pairs z1, . . . ,zm are assumed to be i.i.d., a
restrictive assumption that does not always hold in practice. We will consider here the more general
case of dependent samples drawn from a stationary mixing sequence Z over X ×Y . As in the i.i.d.
case, the objective of the learning algorithm is to select a hypothesis with small error over future
samples. But, here, we must distinguish two versions of this problem.
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In the most general version, future samples depend on the training sample S and thus the gener-
alization error or true error of the hypothesis hS trained on S must be measured by its expected error
conditioned on the sample S:

R(hS) = E
z
[c(hS,z) | S]. (1)

This is the most realistic setting in this context, which matches time series prediction problems.
A somewhat less realistic version is one where the samples are dependent, but the test points are
assumed to be independent of the training sample S. The generalization error of the hypothesis hS
trained on S is then:

R(hS) = E
z
[c(hS,z) | S] = E

z
[c(hS,z)].

This setting seems less natural since, if samples are dependent, future test points must also depend
on the training points, even if that dependence is relatively weak due to the time interval after which
test points are drawn. Nevertheless, it is this somewhat less realistic setting that has been studied
by all previous machine learning studies that we are aware of Yu (1994), Meir (2000), Vidyasagar
(2003) and Lozano et al. (2006), even when examining specifically a time series prediction prob-
lem (Meir, 2000). Thus, the bounds derived in these studies cannot be directly applied to the more
general setting. We will consider instead the most general setting with the definition of the general-
ization error based on Equation 1. Clearly, our analysis also applies to the less general setting just
discussed as well.

Let us also briefly discuss the more general scenario of non-stationarymixing sequences, that is
one where the distribution may change over time. Within that general case, the generalization error
of a hypothesis hS, defined straightforwardly by

R(hS, t) = E
zt∼σtt

[c(hS,zt) | S],

would depend on the time t and it may be the case that R(hS, t) ,= R(hS, t ′) for t ,= t ′, making the
definition of the generalization error a more subtle issue. To remove the dependence on time, one
could define a weaker notion of the generalization error based on an expected loss over all time:

R(hS) = E
t
[R(hS, t)].

It is not clear however whether this term could be easily computed and be useful. A stronger
condition would be to minimize the generalization error for any particular target time. Studies of
this type have been conducted for smoothly changing distributions, such as in Zhou et al. (2008),
however, to the best of our knowledge, the scenario of a both non-identical and non-independent
sequences has not yet been studied.

3. ϕ-Mixing Generalization Bounds and Applications

This section gives generalization bounds for β̂-stable algorithms over a mixing stationary distri-
bution.2 The first two sections present our supporting lemmas which hold for either β-mixing or
ϕ-mixing stationary distributions. In the third section, we will briefly discuss concentration in-
equalities that apply to ϕ-mixing processes only. Then, in the final section, we will present our
main results.
2. The standard variable used for the stability coefficient is β. To avoid the confusion with the β-mixing coefficient, we
will use β̂ instead.
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The condition of β̂-stability is an algorithm-dependent property first introduced by Devroye
and Wagner (1979) and Kearns and Ron (1997). It has been later used successfully by Bousquet
and Elisseeff (2001, 2002) to show algorithm-specific stability bounds for i.i.d. samples. Roughly
speaking, a learning algorithm is said to be stable if small changes to the training set do not cause
large deviations in its output. The following gives the precise technical definition.

Definition 4 A learning algorithm is said to be (uniformly) β̂-stable if the hypotheses it returns for
any two training samples S and S′ that differ by removing a single point satisfy

∀z ∈ X×Y, |c(hS,z)− c(hS′ ,z)|≤ β̂.

We note that a β̂-stable algorithm is also stable with respect to replacing a single point. Let S and
Si be two sequences differing in the ith coordinate, and S/i be equivalent to S and Si but with the ith
point removed. Then for a β̂-stable algorithm we have,

|c(hS,z)− c(hSi ,z)| = |c(hS,z)− c(hS/i)+ c(hS/i)− c(hSi ,z)|

≤ |c(hS,z)− c(hS/i)|+ |c(hS/i)− c(hSi ,z)|

≤ 2β̂ .

The use of stability in conjunction with McDiarmid’s inequality will allow us to derive general-
ization bounds. McDiarmid’s inequality is an exponential concentration bound of the form

Pr[|Φ−E[Φ]|≥ ε] ≤ exp
(
−
mε2

τ2

)
,

where the probability is over a sample of size m and where τ
m is the Lipschitz parameter of Φ, with

τ a function of m. Unfortunately, this inequality cannot be applied when the sample points are not
distributed in an i.i.d. fashion. We will use instead a result of Kontorovich and Ramanan (2008) that
extends McDiarmid’s inequality to ϕ-mixing distributions (Theorem 8). To obtain a stability-based
generalization bound, we will apply this theorem to

Φ(S) = R(hS)− R̂(hS) .

To do so, we need to show, as with the standard McDiarmid’s inequality, that Φ is a Lipschitz
function and, to make it useful, bound E[Φ]. The next two sections describe how we achieve both
of these in this non-i.i.d. scenario.

Let us first take a brief look at the problem faced when attempting to give stability bounds for
dependent sequences and give some idea of our solution for that problem. The stability proofs given
by Bousquet and Elisseeff (2001) assume the i.i.d. property, thus replacing an element in a sequence
with another does not affect the expected value of a random variable defined over that sequence. In
other words, the following equality holds,

E
S
[V (Z1, . . . ,Zi, . . . ,Zm)] = E

S,Z′
[V (Z1, . . . ,Z′, . . . ,Zm)], (2)

for a random variable V that is a function of the sequence of random variables S = (Z1, . . . ,Zm).
However, clearly, if the points in that sequence S are dependent, this equality may not hold anymore.
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(a) (b)

Figure 1: Illustration of dependent (a) and independent (b) blocks. Although there is no dependence
between blocks of points in (b), the distribution within each block remains the same as in
(a) and thus points within a block remain dependent.

The main technique to cope with this problem is based on the so-called “independent block
sequence” originally introduced by Bernstein (1927). This consists of eliminating from the original
dependent sequence several blocks of contiguous points, leaving us with some remaining blocks of
points. Instead of these dependent blocks, we then consider independent blocks of points, each with
the same size and the same distribution (within each block) as the dependent ones. By Lemma 3,
for a β-mixing distribution, the expected value of a random variable defined over the dependent
blocks is close to the one based on these independent blocks. Working with these independent
blocks brings us back to a situation similar to the i.i.d. case, with i.i.d. blocks replacing i.i.d. points.
Figure 1 illustrates the two types of blocks just discussed.

Our use of this method somewhat differs from previous ones (see Yu, 1994; Meir, 2000) where
many blocks of equal size are considered. We will be dealing with four blocks and with typically
unequal sizes. More specifically, note that for Equation 2 to hold, we only need that the variable
Zi be independent of the other points in the sequence. To achieve this, roughly speaking, we will
be “discarding” some of the points in the sequence surrounding Zi. This results in a sequence
of three blocks of contiguous points. If our algorithm is stable and we do not discard too many
points, the hypothesis returned should not be greatly affected by this operation. In the next step,
we apply the independent block lemma, which then allows us to assume each of these blocks as
independent modulo the addition of a mixing term. In particular, Zi becomes independent of all
other points. Clearly, the number of points discarded is subject to a trade-off: removing too many
points could excessively modify the hypothesis returned; removing too few would maintain the
dependency between Zi and the remaining points, thereby inducing a larger penalty when applying
Lemma 3. This trade-off is made explicit in the following section where an optimal solution is
sought.

3.1 Lipschitz Bound

As discussed in Section 2.2, in the most general scenario, test points depend on the training sam-
ple. We first present a lemma that relates the expected value of the generalization error in that
scenario and the same expectation in the scenario where the test point is independent of the train-
ing sample. We denote by R(hS) = Ez[c(hS,z)|S] the expectation in the dependent case and by
R̃(hSb) = Ez̃[c(hSb , z̃)] the expectation where the test points are assumed independent of the training,
with Sb denoting a sequence similar to S but with the last b points removed. Figure 2(a) illustrates
that sequence. The block Sb is assumed to have exactly the same distribution as the corresponding
block of the same size in S.
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Lemma 5 Assume that the learning algorithm is β̂-stable and that the cost function c is bounded
by M. Then, for any sample S of size m drawn from a ϕ-mixing stationary distribution and for any
b ∈ {0, . . . ,m}, the following holds:

|R(hS)− R̃(hSb)|≤ bβ̂+Mϕ(b)

Proof The β̂-stability of the learning algorithm implies that

|R(hS)−R(hSb)| = |E
z
[c(hS,z)|S]−Ez [c(hSb ,z)|Sb]|≤ bβ̂. (3)

Now, in order to remove the dependence on Sb we bound the following difference

|E
z
[c(hSb ,z)|Sb]−Ez̃

[c(hSb , z̃)]|

=
∣∣∣∑
z∈Z

c(hSb ,z)(Pr[z|Sb]−Pr[z])
∣∣∣

=
∣∣∣ ∑
z∈Z+

c(hSb ,z)(Pr[z|Sb]−Pr[z])+ ∑
z∈Z−

c(hSb ,z)(Pr[z|Sb]−Pr[z])
∣∣∣

=

∣∣∣∣ ∑
z∈Z+

c(hSb ,z)
∣∣∣Pr[z|Sb]−Pr[z]

∣∣∣− ∑
z∈Z−

c(hSb ,z)
∣∣∣Pr[z|Sb]−Pr[z]

∣∣∣
∣∣∣∣

≤ max
Z∈{Z−,Z+}

∑
z∈Z

c(hSb ,z)
∣∣∣Pr[z|Sb]−Pr[z]

∣∣∣

≤ max
Z∈{Z−,Z+}

M∑
z∈Z

∣∣∣Pr[z|Sb]−Pr[z]
∣∣∣

= max
Z∈{Z−,Z+}

M
∣∣∣∑
z∈Z
Pr[z|Sb]−Pr[z]

∣∣∣

= max
Z∈{Z−,Z+}

M
∣∣∣Pr[Z|Sb]−Pr[Z]

∣∣∣≤Mϕ(b) ,

(4)

where the sum has been separated over the set of zs Z+ for which the difference Pr[z|Sb]− Pr[z]
is non-negative, and its complement Z−. Using (3) and (4) and the triangle inequality yields the
statement of the lemma.

Note that we assume that z immediately follows the sample S, which is the strongest dependent
scenario. The following bounds can be improved in a straightforward manner if the test point z is
assumed to be observed say k units of time after the sample S. The bound would then contain the
mixing term ϕ(k+b) instead of ϕ(b).

We can now prove a Lipschitz bound for the function Φ.

Lemma 6 Let S = (z1, . . . ,zi, . . . ,zm) and Si = (z1, . . . ,z′i, . . . ,zm) be two sequences drawn from a
ϕ-mixing stationary process that differ only in point zi for some i ∈ {1, . . . ,m}, and let hS and hSi be
the hypotheses returned by a β̂-stable algorithm when trained on each of these samples. Then, for
any i ∈ {1, . . . ,m}, the following inequality holds:

|Φ(S)−Φ(Si)|≤ (b+2)2β̂+2ϕ(b)M+
M
m

.
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Figure 2: Illustration of the sequences derived from S that are considered in the proofs.

Proof To prove this inequality, we first bound the difference of the empirical errors as in Bousquet
and Elisseeff (2002), then the difference of the generalization errors. Bounding the difference of
costs on agreeing points with β̂ and the one that disagrees withM gives

|R̂(hS)− R̂(hSi)|≤
1
m∑j ,=i

|c(hS,z j)− c(hSi ,z j)|+
1
m
|c(hS,zi)− c(hSi ,z′i)|

≤ 2β̂+
M
m

. (5)

Since both R(hS) and R(hSi) are defined with respect to a (different) dependent point, we can ap-
ply Lemma 5 to both generalization error terms and use β̂-stability. Using this and the triangle
inequality, we can write

|R(hS)−R(hSi)|≤ |R(hS)− R̃(hSb)+ R̃(hSb)− R̃(hSib)+ R̃(hSib)−R(hSi)|

≤ |R̃(hSb)− R̃(hSib)|+2bβ̂+2ϕ(b)M

= E
z̃
[c(hSb , z̃)− c(hSib , z̃)]+2bβ̂+2ϕ(b)M

≤ 2β̂+2bβ̂+2ϕ(b)M. (6)

The statement of the lemma is obtained by combining inequalities 5 and 6.

3.2 Bound on Expectation

As mentioned earlier, to obtain an explicit bound after application of a generalized McDiarmid’s
inequality, we also need to bound ES[Φ(S)]. This is done by analyzing independent blocks using
Lemma 3.
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Lemma 7 Let hS be the hypothesis returned by a β̂-stable algorithm trained on a sample S drawn
from a β-mixing stationary distribution. Then, for all b ∈ [1,m], the following inequality holds:

E
S
[|Φ(S)|] ≤ (6b+2)β̂+3β(b)M.

Proof Let Sb be defined as in the proof of Lemma 5. To deal with independent block sequences
defined with respect to the same hypothesis, we will consider the sequence Si,b = Si∩Sb, which is
illustrated by Figure 2(a-c). This can result in as many as four blocks. As before, we will consider
a sequence S̃i,b with a similar set of blocks each with the same distribution as the corresponding
blocks in Si,b, but such that the blocks are independent as seen in Figure 2(d).

Since three blocks of at most b points are removed from each hypothesis, by the β̂-stability of
the learning algorithm, the following holds:

E
S
[Φ(S)] = E

S
[R̂(hS)−R(hS)]

= E
S,z

[
1
m

m

∑
i=1

c(hS,zi)− c(hS,z)

]

≤ E
Si,b,z

[
1
m

m

∑
i=1

c(hSi,b ,zi)− c(hSi,b ,z)

]

+6bβ̂.

The application of Lemma 3 to the difference of two cost functions also bounded by M as in the
right-hand side leads to

E
S
[Φ(S)] ≤ E

S̃i,b,z̃

[
1
m

m

∑
i=1

c(hS̃i,b , z̃i)− c(hS̃i,b , z̃)

]

+6bβ̂+3β(b)M.

Now, since the points z̃ and z̃i are independent and since the distribution is stationary, they have the
same distribution and we can replace z̃i with z̃ in the empirical cost. Thus, we can write

E
S
[Φ(S)] ≤ E

S̃i,b,z̃

[
1
m

m

∑
i=1

c(hS̃ii,b , z̃)− c(hS̃i,b , z̃)

]

+6bβ̂+3β(b)M ≤ 2β̂+6bβ̂+3β(b)M,

where S̃ii,b is the sequence derived from S̃i,b by replacing z̃i with z̃. The last inequality holds by
β̂-stability of the learning algorithm. The other side of the inequality in the statement of the lemma
can be shown following the same steps.

3.3 ϕ-Mixing Concentration Bound

We are now prepared to make use of a concentration inequality to provide a generalization bound
in the ϕ-mixing scenario. Several concentration inequalities have been shown in the ϕ-mixing case,
for example, Marton (1998), Samson (2000), Chazottes et al. (2007) and Kontorovich and Ramanan
(2008). We will use that of Kontorovich and Ramanan (2008), which is very similar to that of
Chazottes et al. (2007), modulo the fact that the latter requires a finite sample space.
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The following is a concentration inequality derived from that of Kontorovich and Ramanan
(2008).3

Theorem 8 Let Φ : Zm→R be a measurable function that is c-Lipschitz with respect to the Ham-
ming metric for some c> 0 and let Z1, . . . ,Zm be random variables distributed according to a ϕ-
mixing distribution. Then, for any ε>0, the following inequality holds:

Pr
[∣∣Φ(Z1, . . . ,Zm)−E[Φ(Z1, . . . ,Zm)]

∣∣≥ ε
]
≤ 2exp

(
−2ε2

mc2||Δm||2∞

)
,

where ||Δm||∞ ≤ 1+2
m

∑
k=1

ϕ(k).

It should be pointed out that the statement of the theorem in this paper is improved by a factor of
4 in the exponent with respect to that of Kontorovich and Ramanan (2008, Theorem 1.1). This can be
achieved straightforwardly by following the same steps as in the proof of Kontorovich and Ramanan
(2008), but by making use of the following general form of McDiarmid’s inequality (Theorem 9)
instead of Azuma’s inequality. In particular, Theorem 5.1 of Kontorovich and Ramanan (2008)
shows that for a ϕ-mixing distribution and a 1-Lipschitz function, the constants ci can be bounded
as follows in Theorem 9:

ci ≤ 1+2
m−i

∑
k=1

ϕ(k).

Theorem 9 (McDiarmid, 1989, 6.10) Let Z1, . . . ,Zm be arbitrary random variables taking values
in Z and letΦ : Zm→R be a measurable function satisfying for all zi,z′i∈Z, i=1, . . . ,m, the following
inequalities:

∣∣∣E
[
Φ(Z1, . . . ,Zm)

∣∣Z1 = z1, . . . ,Zi = zi
]
−E

[
Φ(Z1, . . . ,Zm)

∣∣Z1 = z1, . . . ,Zi = z′i
]∣∣∣≤ ci,

where ci>0, i=1, . . . ,m, are constants. Then, for any ε>0, the following inequality holds :

Pr
[∣∣Φ(Z1, . . . ,Zm)−E[Φ(Z1, . . . ,Zm)]

∣∣≥ ε
]
≤ 2exp

(
−2ε2

∑m
i=1 c2i

)
.

In the i.i.d. case, McDiarmid’s theorem can be restated in the following simpler form that we
shall use in Section 4.

Theorem 10 (McDiarmid, i.i.d. scenario) Let Z1, . . . ,Zm be independent random variables taking
values in Z and let Φ : Zm→R be a measurable function satisfying for all zi,z′i∈Z, i=1, . . . ,m, the
following inequalities:

∣∣Φ(z1, . . . ,zi, . . .zm)−Φ(z1, . . . ,z′i, . . .zm)
∣∣≤ ci,

where ci>0, i=1, . . . ,m, are constants. Then, for any ε>0, the following inequality holds:

Pr
[∣∣Φ(Z1, . . . ,Zm)−E[Φ(Z1, . . . ,Zm)]

∣∣≥ ε
]
≤ 2exp

(
−2ε2

∑m
i=1 c2i

)
.

3. We should note that original bound is expressed in terms of η-mixing coefficients. To simplify presentation, we
are adapting it to the case of stationary ϕ-mixing sequences by using the following straightforward inequality for a
stationary process: 2ϕ( j− i) ≥ ηi j. Furthermore, the bound presented in Kontorovich and Ramanan (2008) holds
when the sample space is countable, it is extended to the continuous case in Kontorovich (2007).
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3.4 ϕ-Mixing Generalization Bounds

This section presents several theorems that constitute the main results of this paper in the ϕ-mixing
case. The following theorem is constructed from the bounds shown in the previous three sections.

Theorem 11 (General Non-i.i.d. Stability Bound) Let hS denote the hypothesis returned by a β̂-
stable algorithm trained on a sample S drawn from a ϕ-mixing stationary distribution and let c be
a measurable non-negative cost function upper bounded by M>0, then for any b ∈ {0, . . . ,m} and
any ε>0, the following generalization bound holds:

Pr
S

[∣∣∣R(hS)− R̂(hS)
∣∣∣> ε+(6b+2)β̂+6Mϕ(b)

]

≤ 2exp

(
−2ε2(1+2∑m

i=1ϕ(i))−2

m((b+2)2β̂+2Mϕ(b)+M/m)2

)

.

Proof The theorem follows directly the application of Lemma 6 and Lemma 7 to Theorem 8.

The theorem gives a general stability bound for ϕ-mixing stationary sequences. If we further
assume that the sequence is algebraically ϕ-mixing, that is for all k, ϕ(k) = ϕ0k−r for some r>1,
then we can solve for the value of b to optimize the bound.

Theorem 12 (Non-i.i.d. Stability Bound for Algebraically Mixing Sequences) Let hS denote the
hypothesis returned by a β̂-stable algorithm trained on a sample S drawn from an algebraically ϕ-
mixing stationary distribution, ϕ(k)=ϕ0k−r with r>1, and let c be a measurable non-negative cost
function upper bounded by M>0, then, for any ε>0, the following generalization bound holds:

Pr
S

[∣∣∣R(hS)− R̂(hS)
∣∣∣> ε+8β̂+(r+1)6Mϕ(b)

]

≤ 2exp

(
−2ε2(1+2ϕ0r/(r−1))−2

m(6β̂+(r+1)2Mϕ(b)+M/m)2

)

,

where b=
(

β̂
rϕ0M

)−1/(r+1)
.

Proof For an algebraically mixing sequence, the value of b minimizing the bound of Theorem 11
satisfies the equation β̂b∗ = rMϕ(b∗). Since b must be an integer, we use the approximation b =
⌈(

β̂
rϕ0M

)−1/(r+1)⌉
when applying Theorem 11. However, observing the inequalities ϕ(b∗) ≥ ϕ(b)

and (b∗ + 1) ≥ b, allows us to write the statement of Theorem 12 in terms of the fractional choice
b∗.

The term in the numerator can be bounded as

1+2
m

∑
i=1

ϕ(i) = 1+2
m

∑
i=1

ϕ0i−r

≤ 1+2ϕ0
(
1+

Z m

1
x−rdx

)

= 1+2ϕ0
(
1+

m1−r−1
1− r

)
.
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Using the assumption r > 1, we can upper bound m1−r with 1 and obtain

1+2ϕ0
(
1+

m1−r−1
1− r

)
≤ 1+2ϕ0

(
1+

1
r−1

)
= 1+

2ϕ0r
r−1

.

Plugging in this value and the minimizing value of b in the bound of Theorem 11 yields the state-
ment of the theorem.

In the case of a zero mixing coefficient (ϕ=0 and b=0), the bounds of Theorem 11 coincide
with the i.i.d. stability bound of Bousquet and Elisseeff (2002).

In the general case, in order for the right-hand side of these bounds to converge, we must have
β̂=o(1/

√
m) and ϕ(b)=o(1/

√
m). The first condition holds for several families of algorithms with

β̂≤O(1/m) (Bousquet and Elisseeff, 2002).
In the case of algebraically mixing sequences with r>1, as assumed in Theorem 12, β̂≤O(1/m)

implies ϕ(b) ≈ ϕ0(β̂/(rϕ0M))(r/(r+1)) <O(1/
√
m). More specifically, for the scenario of algebraic

mixing with 1/m-stability, the following bound holds with probability at least 1−δ:
∣∣∣R(hS)− R̂(hS)

∣∣∣≤ O

(√
log(1/δ)
m

r−1
r+1

)

.

This is obtained by setting the right-hand side of Theorem 12 equal to δ and solving for ε. Fur-
thermore, if we choose ε=

√
C log(m)

m(r−1)/(r+1) for a large enough constant C> 0, the right-hand side of
Theorem 12 is summable over m and thus, by the Borel-Cantelli lemma, the following inequality
holds almost surely:

∣∣∣R(hS)− R̂(hS)
∣∣∣≤ O

(√
log(m)

m
r−1
r+1

)

.

Similar bounds can be given for the exponential mixing setting (ϕ(k) = ϕ0 exp(−ϕ1kr)). If we
choose b= O(

√
log(m)3/m) and assume β̂= O(1/m), then, with probability at least 1−δ,

∣∣∣R(hS)− R̂(hS)
∣∣∣≤ O





√
log(1/δ) log2(m)

m



 .

If we instead set ε=C
√

log3(m)
m for a large enough constantC, the right-hand side of Theorem 12 is

summable and again by the Borel-Cantelli lemma we have

∣∣∣R(hS)− R̂(hS)
∣∣∣≤ O





√
log3(m)

m



 ,

almost surely.

3.5 Applications

We now present the application of our stability bounds for algebraically ϕ-mixing sequences to sev-
eral algorithms, including the family of kernel-based regularization algorithms and that of relative
entropy-based regularization algorithms. The application of our learning bounds will benefit from
the previous analysis of the stability of these algorithms by Bousquet and Elisseeff (2002).
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3.5.1 KERNEL-BASED REGULARIZATION ALGORITHMS

We first apply our bounds to a family of algorithms minimizing a regularized objective function
based on the norm ‖ ·‖K in a reproducing kernel Hilbert space, where K is a positive definite sym-
metric kernel:

argmin
h∈H

1
m

m

∑
i=1

c(h,zi)+λ‖h‖2K . (7)

The application of our bound is possible, under some general conditions, since kernel regularized al-
gorithms are stable with β̂≤O(1/m) (Bousquet and Elisseeff, 2002). For the sake of completeness,
we briefly present the proof of this β̂-stability.

We will assume that the cost function c is σ-admissible, that is there exists σ ∈ R+ such that for
any two hypotheses h,h′ ∈ H and for all z= (x,y) ∈ X×Y ,

|c(h,z)− c(h′,z)|≤ σ|h(x)−h′(x)|.

This assumption holds for the quadratic cost and most other cost functions when the hypothesis
set and the set of output labels are bounded by some M ∈ R+: ∀h ∈ H,∀x ∈ X , |h(x)| ≤ M and
∀y∈Y, |y|≤M. We will also assume that c is differentiable. This assumption is in fact not necessary
and all of our results hold without it, but it makes the presentation simpler.

We denote by BF the Bregman divergence associated to a convex function F : BF( f‖g) =F( f )−
F(g)−〈 f −g,∇F(g)〉. In what follows, it will be helpful to define F as the objective function of a
general regularization based algorithm,

FS(h) = R̂S(h)+λN(h),

where R̂S is the empirical error as measured on the sample S, N :H→R+ is a regularization function
and λ> 0 is the familiar trade-off parameter. Finally, we shall use the shorthand Δh= h′ −h.

Lemma 13 (Bousquet and Elisseeff, 2002) A kernel-based regularization algorithm of the form
(7), with bounded kernel K(x,x)≤ κ<∞ and σ-admissible cost function, is β̂-stable with coefficient

β̂≤
σ2κ2

mλ
.

Proof Let h and h′ be the minimizers of FS and F ′
S respectively where S and S′ differ in the first

coordinate (choice of coordinate is without loss of generality), then,

BN(h′‖h)+BN(h‖h′) ≤
2σ
mλ

sup
x∈S

|Δh(x)|. (8)

To see this, we notice that since BF = BR̂+λBN , and since a Bregman divergence is non-negative,

λ
(
BN(h′‖h)+BN(h‖h′)

)
≤ BFS(h

′‖h)+BFS′ (h‖h
′).

By the definition of h and h′ as the minimizers of FS and FS′ ,

BFS(h
′‖h)+BFS′ (h‖h

′) = R̂FS(h
′)− R̂FS(h)+ R̂FS′ (h)− R̂FS′ (h

′).
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Finally, by the σ-admissibility of the cost function c and the definition of S and S′,

λ
(
BN(h′‖h)+BN(h‖h′)

)
≤ R̂FS(h

′)− R̂FS(h)+ R̂FS′ (h)− R̂FS′ (h
′)

=
1
m

[
c(h′,z1)− c(h,z1)+ c(h,z′1)− c(h′,z′1)

]

≤
1
m

[
σ|Δh(x1)|+σ|Δh(x′1)|

]

≤
2σ
m
sup
x∈S

|Δh(x)|,

which establishes (8).
Now, if we consider N(·) = ‖·‖2K , we have BN(h′‖h) = ‖h′ −h‖2K , thus BN(h′‖h)+BN(h‖h′) =

2‖Δh‖2K and by (8) and the reproducing kernel property,

2‖Δh‖2K ≤
2σ
mλ

sup
x∈S

|Δh(x)|

≤
2σ
mλ

κ||Δh||K.

Thus ‖Δh‖K ≤ σκ
mλ . And using the σ-admissibility of c and the kernel reproducing property we

obtain
∀z ∈ X×Y, |c(h′,z)− c(h,z)|≤ σ|Δh(x)|≤ κσ‖Δh‖K .

Therefore,

∀z ∈ X×Y, |c(h′,z)− c(h,z)|≤
σ2κ2

mλ
,

which completes the proof.

Three specific instances of kernel regularization algorithms are SVR, for which the cost function
is based on the ε-insensitive cost:

c(h,z) =

{
0 if |h(x)− y|≤ ε,

|h(x)− y|− ε otherwise.

Kernel Ridge Regression (Saunders et al., 1998), for which

c(h,z) = (h(x)− y)2 ,

and finally Support Vector Machines with the hinge-loss,

c(h,z) =

{
0 if 1− yh(x) ≤ 0,
1− yh(x) if yh(x) < 1,

For kernel regularization algorithms, as pointed out in Bousquet and Elisseeff (2002, Lemma 23),
a bound on the labels immediately implies a bound on the output of the hypothesis returned by the
algorithm. We formally state this lemma below.
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Lemma 14 Let h∗ be the solution of the optimization problem (7), let c be a cost function and let
B(·) be a real-valued function such that for all h ∈ H, x ∈ X, and y′ ∈ Y ,

c(h(x),y′) ≤ B(h(x)).

Then, the output of h∗ is bounded as follows,

∀x ∈ X , |h∗(x)|≤ κ

√
B(0)
λ

,

where λ is the regularization parameter, and κ2 ≥ K(x,x) for all x ∈ X.

Proof Let F(h) = 1
m ∑

m
i=1 c(h,zi)+λ‖h‖2K and let 0 be the zero hypothesis, then by definition of F

and h∗,
λ‖h∗‖2K ≤ F(h∗) ≤ F(0) ≤ B(0).

Then, using the reproducing kernel property and the Cauchy-Schwarz inequality we note,

∀x ∈ X , |h∗(x)| = 〈h∗,K(x, ·)〉 ≤ ‖h∗‖K
√
K(x,x) ≤ κ‖h∗‖K .

Combining the two inequalities proves the lemma.

We note that in Bousquet and Elisseeff (2002), the following bound is also stated: c(h∗(x),y′) ≤
B(κ

√
B(0)/λ). However, when later applied, it seems that the authors use an incorrect upper bound

function B(·), which we remedy in the following.

Corollary 15 Assume a bounded output Y = [0,B], for some B > 0, and assume that K(x,x) ≤ κ2

for all x for some κ> 0. Let hS denote the hypothesis returned by the algorithm when trained on a
sample S drawn from an algebraically ϕ-mixing stationary distribution. Let u = r/(r+1) ∈ [ 12 ,1],
M′ = 2(r+1)ϕ0M/(rϕ0M)u, and ϕ′0 = (1+2ϕ0r/(r−1)). Then, with probability at least 1−δ, the
following generalization bounds hold for

a. Support Vector Machines (SVM, with hinge-loss)

R(hS) ≤ R̂(hS)+
8κ2

λm
+

(
2κ2

λ

)u 3M′

mu +ϕ′0

(
M+

3κ2

λ
+

(
2κ2

λ

)u M′

mu−1

)√
2log(2/δ)

m
,

where M = κ
√

1
λ +B.

b. Support Vector Regression (SVR):

R(hS) ≤ R̂(hS)+
8κ2

λm
+

(
2κ2

λ

)u 3M′

mu +ϕ′0

(
M+

3κ2

λ
+

(
2κ2

λ

)u M′

mu−1

)√
2log(2/δ)

m
,

where M = κ
√

2B
λ +B.
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c. Kernel Ridge Regression (KRR):

R(hS) ≤ R̂(hS)+
32κ2B2

λm
+

(
8κ2B2

λ

)u 3M′

mu +ϕ′0

(
M+

12κ2B2

λ
+

(
8κ2B2

λ

)u M′

mu−1

)√
2log(2/δ)

m
,

where M = 2κ2B2/λ+B2.

Proof For SVM, the hinge-loss is 1-admissible giving β̂≤ κ2/(λm). Using Lemma 14, with B(0) =

1, the loss can be bounded ∀x ∈ X ,y ∈ Y,1+ |h∗(x)|≤ κ
√

1
λ +B.

Similarly, SVR has a loss function that is 1-admissible, thus, applying Lemma 13 gives us
β̂ ≤ κ2/(λm). Using Lemma 14, with B(0) = B, we can bound the loss as follows, ∀x ∈ X ,y ∈
Y, |h∗(x)− y|≤ κ

√
B
λ +B.

Finally for KRR, we have a loss function that is 2B-admissible and again using Lemma 13
β̂ ≤ 4κ2B2/(λm). Again, applying Lemma 14 with B(0) = B2 and ∀x ∈ X ,y ∈ Y,(h∗(x)− y)2 ≤
κ2B2/λ+B2.

Plugging these values into the bound of Theorem 12 and setting the right-hand side to δ yields
the statement of the corollary.

3.5.2 RELATIVE ENTROPY-BASED REGULARIZATION ALGORITHMS

In this section, we apply the results of Theorem 12 to a family of learning algorithms based on
relative entropy-regularization. These algorithms learn hypotheses h that are mixtures of base hy-
potheses in {hθ : θ ∈Θ}, where Θ is measurable set. The output of these algorithms is a mixture
g : Θ→ R, that is a distribution over Θ. Let G denote the set of all such distributions and let g0 ∈G
be a fixed distribution. Relative entropy based-regularization algorithms output the solution of a
minimization problem of the following form:

argmin
g∈G

1
m

m

∑
i=1

c(g,zi)+λD(g‖g0), (9)

where the cost function c : G×Z→ R is defined in terms of a second internal cost function c′ : H×
Z→ R:

c(g,z) =
Z

Θ
c′(hθ,z)g(θ)dθ,

and where D(g‖g0) is the relative entropy between g and g0:

D(g‖g0) =
Z

Θ
g(θ) log

g(θ)
g0(θ)

dθ.

As shown by Bousquet and Elisseeff (2002, Theorem 24), a relative entropy-based regularization
algorithm defined by (9) with bounded loss c′(·) ≤M, is β̂-stable with the following bound on the
stability coefficient:

β̂≤
M2

λm
.

Theorem 12 combined with this inequality immediately yields the following generalization bound.
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Corollary 16 Let hS be the hypothesis solution of the optimization (9) trained on a sample S drawn
from an algebraically ϕ-mixing stationary distribution with the internal cost function c′ bounded by
M. Then, with probability at least 1−δ, the following holds:

R(hS) ≤ R̂(hS)+
8M2

λm
+
3M′

λumu +ϕ′0

(
M+

3M2

λ
+

2uM′

λumu−1

)√
2log(2/δ)

m
,

where u= r/(r+1) ∈ [ 12 ,1], M
′ = 2(r+1)ϕ0Mu+1/(rϕ0)u, and ϕ′0 = (1+2ϕ0r/(r−1)).

3.6 Discussion

The results presented here are, to the best of our knowledge, the first stability-based generalization
bounds for the class of algorithms just studied in a non-i.i.d. scenario. These bounds are non-
trivial when the condition on the regularization parameter λ5 1/m1/2−1/r parameter holds for all
large values of m. This condition coincides with the one obtained in the i.i.d. setting by Bousquet
and Elisseeff (2002), in the limit, as r tends to infinity. The next section gives stability-based
generalization bounds that hold even in the scenario of β-mixing sequences.

4. β-Mixing Generalization Bounds

In this section, we prove a stability-based generalization bound that only requires the training se-
quence to be drawn from a β-mixing stationary distribution. The bound is thus more general and
covers the ϕ-mixing case analyzed in the previous section. However, unlike the ϕ-mixing case,
the β-mixing bound presented here is not a purely exponential bound. It contains an additive term,
which depends on the mixing coefficient.

As in the previous section, Φ(S) is defined by Φ(S)=R(hS)−R̂(hS). To simplify the presenta-
tion, here, we define the generalization error of hS by R(hS)=Ez[c(hS,z)]. Thus, test samples are
assumed independent of S.4 Note that for any block of points Z = z1 . . .zk drawn independently of
S, the following equality holds:

E
Z

[
1
|Z| ∑z∈Z

c(hS,z)
]

=
1
k

k

∑
i=1
E
Z
[c(hS,zi)] =

1
k

k

∑
i=1
E
zi
[c(hS,zi)] = E

z
[c(hS,z)]

since, by stationarity, Ezi [c(hS,zi)]=Ez j [c(hS,z j)] for all 1≤ i, j≤k. Thus, for any such block Z, we
can write R(hS)=EZ

[ 1
|Z| ∑z∈Z c(hS,z)

]
. For convenience, we extend the cost function c to blocks as

follows:
c(h,Z) =

1
|Z| ∑z∈Z

c(h,z).

With this notation, R(hS) = EZ[c(hS,Z)] for any block drawn independently of S, regardless of the
size of Z.

To derive a generalization bound for the β-mixing scenario, we apply McDiarmid’s inequality
(Theorem 10) to Φ defined over a sequence of independent blocks. The independent blocks we
consider are non-symmetric and thus more general than those considered by previous authors (Yu,
1994; Meir, 2000).
4. In the β-mixing scenario, a result similar to that of Lemma 5 can be shown to hold in expectation with respect the
sample S. Using Markov’s inequality, the inequality can be shown to hold with high probability. Thus, the results
that follow can all be be extended to the case where the test points depend on the training sample, at the expense of
an an additional confidence term.
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Figure 3: Illustration of the sequences Sa and Sb derived from S that are considered in the proofs.
The darkened regions are considered as being removed from the sequence.

From a sample S made of a sequence of m points, we construct two sequences of blocks Sa
and Sb, each containing µ blocks. Each block in Sa contains a points and each block in Sb contains
b points (see Figure 3). Sa and Sb form a partitioning of S; for any a,b ∈ {0, . . . ,m} such that
(a+b)µ= m, they are defined precisely as follows:

Sa = (Z(a)
1 , . . . ,Z(a)

µ ), with Z(a)
i = z(i−1)(a+b)+1, . . . ,z(i−1)(a+b)+a

Sb = (Z(b)
1 , . . . ,Z(b)

µ ), with Z(b)
i = z(i−1)(a+b)+a+1, . . . ,z(i−1)(a+b)+a+b,

for all i∈ {1, . . . ,µ}. We shall consider similarly sequences of i.i.d. blocks Z̃ai and Z̃bi , i∈ {1, . . . ,µ},
such that the points within each block are drawn according to the same original β-mixing distribution
and shall denote by S̃a the block sequence (Z̃(a)

1 , . . . , Z̃(a)
µ ).

In preparation for the application of McDiarmid’s inequality, we give a bound on the expectation
of Φ(S̃a). Since the expectation is taken over a sequence of i.i.d. blocks, this brings us to a situation
similar to the i.i.d. scenario analyzed by Bousquet and Elisseeff (2002), with the exception that we
are dealing with i.i.d. blocks instead of i.i.d. points.

Lemma 17 Let S̃a be an independent block sequence as defined above, then the following bound
holds for the expectation of |Φ(S̃a)|:

E
S̃a

[|Φ(S̃a)|] ≤ 2aβ̂.

Proof Since the blocks Z̃(a) are independent, we can replace any one of them with any other block Z
drawn from the same distribution. However, changing the training set also changes the hypothesis,
in a limited way. This is shown precisely below:

E
S̃a

[|Φ(S̃a)|] = E
S̃a

[∣∣∣
1
µ

µ

∑
i=1

c(hS̃a , Z̃
(a)
i )−E

Z
[c(hS̃a ,Z)]

∣∣∣

]

≤ E
S̃a,Z

[∣∣∣
1
µ

µ

∑
i=1

c(hS̃a , Z̃
(a)
i )− c(hS̃a ,Z)

∣∣∣

]

= E
S̃a,Z

[∣∣∣
1
µ

µ

∑
i=1

c(hS̃ia ,Z)− c(hS̃a ,Z)
∣∣∣

]

,
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where S̃ia corresponds to the block sequence S̃a obtained by replacing the ith block with Z. The
β̂-stability of the learning algorithm gives

E
S̃a,Z

[
1
µ

∣∣∣
µ

∑
i=1

c(hS̃ia ,Z)− c(hS̃a ,Z)
∣∣∣

]

≤ E
S̃a,Z

[
1
µ

µ

∑
i=1
2aβ̂

]

≤ 2aβ̂.

We now relate the non-i.i.d. event Pr[Φ(S) ≥ ε] to an independent block sequence event to which
we can apply McDiarmid’s inequality.

Lemma 18 Assume a β̂-stable algorithm. Then, for a sample S drawn from a β-mixing stationary
distribution, the following bound holds:

Pr
S
[|Φ(S)|≥ ε] ≤ Pr

S̃a

[
|Φ(S̃a)|−E[|Φ(S̃a)|] ≥ ε′0

]
+(µ−1)β(b),

where ε′0 = ε− µbM
m −2µbβ̂−ES̃′a [|Φ(S̃′a)|].

Proof The proof consists of first rewriting the event in terms of Sa and Sb and bounding the error
on the points in Sb in a trivial manner. This can be afforded since b will be eventually chosen to be
small. Since |EZ′ [c(hS,Z′)]− c(hS,z′)|≤M for any z′ ∈ Sb, we can write

Pr
S
[|Φ(S)|≥ ε] = Pr

S
[|R(hS)− R̂(hS)|≥ ε]

= Pr
S

[
1
m

∣∣∣∑
z∈S
E
Z
[c(hS,Z)]− c(hS,z)

∣∣∣≥ ε

]

≤ Pr
S

[
1
m

∣∣∣ ∑
z∈Sa

E
Z
[c(hS,Z)]− c(hS,z)

∣∣∣+
1
m

∣∣∣ ∑
z′∈Sb

E
Z′
[c(hS,Z′)]− c(hS,z′)

∣∣∣≥ ε

]

≤ Pr
S

[
1
m

∣∣∣ ∑
z∈Sa

E
Z
[c(hS,Z)]− c(hS,z)

∣∣∣+
µbM
m

≥ ε

]
.

By β̂-stability and µa/m≤ 1, this last term can be bounded as follows

Pr
S

[
1
m

∣∣∣ ∑
z∈Sa

E
Z
[c(hS,Z)]− c(hS,z)

∣∣∣+
µbM
m

≥ ε

]
≤

Pr
Sa

[
1
µa

∣∣∣ ∑
z∈Sa

E
Z
[c(hSa ,Z)]− c(hSa ,z)

∣∣∣+
µbM
m

+2µbβ̂≥ ε

]
.

The right-hand side can be rewritten in terms of Φ and bounded in terms of a β-mixing coefficient:

Pr
Sa

[
1
µa

∣∣∣ ∑
z∈Sa

E
Z
[c(hSa ,Z)]− c(hSa ,z)

∣∣∣+
µbM
m

+2µbβ̂≥ ε

]

= Pr
Sa

[
|Φ(Sa)|+

µbM
m

+2µbβ̂≥ ε

]

≤ Pr
S̃a

[
|Φ(S̃a)|+

µbM
m

+2µbβ̂≥ ε

]
+(µ−1)β(b),
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by applying Lemma 3 to the indicator function of the event
{
|Φ(Sa)|+ µbM

m +2µbβ̂≥ ε
}
. Since

ES̃′a [|Φ(S̃′a)|] is a constant, the probability in this last term can be rewritten as

Pr
S̃a

[
|Φ(S̃a)|+

µbM
m

+2µbβ̂≥ ε

]

= Pr
S̃a

[
|Φ(S̃a)|−E

S̃′a
[|Φ(S̃′a)|]+

µbM
m

+2µbβ̂≥ ε−E
S̃′a

[|Φ(S̃′a)|]
]

= Pr
S̃a

[
|Φ(S̃a)|−E

S̃′a
[|Φ(S̃′a)|] ≥ ε′0

]
,

which ends the proof of the lemma.

The last two lemmas will help us prove the main result of this section formulated in the following
theorem.

Theorem 19 Assume a β̂-stable algorithm and let ε′ denote ε− µbM
m −2µbβ̂−2aβ̂ as in Lemma 18.

Then, for any sample S of size m drawn according to a β-mixing stationary distribution, any choice
of the parameters a,b,µ> 0 such that (a+ b)µ= m, and ε ≥ 0 such that ε′ ≥ 0, the following
generalization bound holds:

Pr
S

[
|R(hS)− R̂(hS)|≥ ε

]
≤ exp

(
−2ε′2m

(
4aβ̂m+(a+b)M

)2

)

+(µ−1)β(b).

Proof To prove the statement of theorem, it suffices to bound the probability term appearing in the
right-hand side of Equation 18, PrS̃a

[
|Φ(S̃a)|−E[|Φ(S̃a)]| ≥ ε′0

]
, which is expressed only in terms

of independent blocks. We can therefore apply McDiarmid’s inequality by viewing the blocks as
i.i.d. “points”.

To do so, we must bound the quantity
∣∣|Φ(S̃a)|− |Φ(S̃ia)|

∣∣ where the sequence Sa and Sia differ
in the ith block. We will bound separately the difference between the generalization errors and
empirical errors.5 The difference in empirical errors can be bounded as follows using the bound on
the cost function c:

|R̂(hSa)− R̂(hSia)| =
∣∣∣∣
1
µ

[

∑
j ,=i
c(hSa ,Zj)− c(hSia ,Zj)

]
+
1
µ
[
c(hSa ,Zi)− c(hSia ,Z

′
i)
]∣∣∣∣

≤ 2aβ̂+
M
µ

= 2aβ̂+
(a+b)M

m
.

The difference in generalization error can be straightforwardly bounded using β̂-stability:

|R(hSa)−R(hSia)| = |E
Z
[c(hSa ,Z)]−E

Z
[c(hSia ,Z)]| = |E

Z
[c(hSa ,Z)− c(hSia ,Z)]|≤ 2aβ̂.

5. We drop the superscripts on Z(a) since we will not be considering the sequence Sb in what follows.
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Using these bounds in conjunction with McDiarmid’s inequality yields

Pr
S̃a

[|Φ(S̃a)|−E
S̃′a

[|Φ(S̃′a)|] ≥ ε′0] ≤ exp

(
−2ε′20 m(

4aβ̂m+(a+b)M
)2

)

≤ exp

(
−2ε′2m

(
4aβ̂m+(a+b)M

)2

)

.

Note that to show the second inequality we make use of Lemma 17 to establish the fact that

ε′0 = ε−
µbM
m

−2µbβ̂−E
S̃′a

[|Φ(S̃′a)|] ≥ ε−
µbM
m

−2µbβ̂−2aβ̂= ε′.

Finally, we make use of Lemma 18 to establish the proof,

Pr
S
[|Φ(S)|≥ ε] ≤ Pr

S̃a

[
|Φ(S̃a)|−E[|Φ(S̃a)|] ≥ ε′0

]
+(µ−1)β(b)

≤ exp

(
−2ε′2m

(
4aβ̂m+(a+b)M

)2

)

+(µ−1)β(b).

This concludes the proof of the theorem.

In order to make use of this bound, we must determine the values of parameters b and µ (a is then
equal to µ/m− u). There is a trade-off between selecting a large enough value for b to ensure that
the mixing term decreases and choosing a large enough value of µ to minimize the remaining terms
of the bound. The exact choice of parameters will depend on the type of mixing that is assumed
(e.g., algebraic or exponential). In order to choose optimal parameters, it will be useful to view the
bound as it holds with high probability, in the following corollary.

Corollary 20 Assume a β̂-stable algorithm and let δ′ denote δ− (µ−1)β(b). Then, for any sample
S of size m drawn according to a β-mixing stationary distribution, any choice of the parameters
a,b,µ> 0 such that (a+ b)µ= m, and δ ≥ 0 such that δ′ ≥ 0, the following generalization bound
holds with probability at least (1−δ):

|R(hS)− R̂(hS)| < µb
(
M
m

+2β̂
)

+2aβ̂
(
4aβ̂m+M

m
µ

)√
log(1/δ′)
2m

.

In the case of a fast mixing distribution, it is possible to select the values of the parameters to
retrieve a bound as in the i.i.d. case, that is, |R(hS)− R̂(hS)| = O

(
m− 1

2
√
log1/δ

)
. In particular,

for β(b) ≡ 0, we can choose a = 0, b = 1, and µ= m to retrieve the i.i.d. bound of Bousquet and
Elisseeff (2001).

In the following, we examine slower mixing algebraic β-mixing distributions, which are thus
not close to the i.i.d. scenario. For algebraic mixing, the mixing parameter is defined as β(b) = b−r.
In that case, we wish to minimize the following function in terms of µ and b:

s(µ,b) =
µ
br

+
m3/2β̂
µ

+
m1/2

µ
+µb

(
1
m

+ β̂

)
. (10)
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The first term of the function captures the condition δ> (µ+1)β(b)≈ µ/br and the remaining terms
capture the shape of the bound in Corollary 20.

Setting the derivative with respect to each variable µand b to zero and solving for each parameter
results in the following expressions:

b=Crγ−
1
r+1 µ=

m3/4γ
1

2(r+1)
√
Cr(1+1/r)

,

where γ= (m−1+ β̂) andCr = r
1
r+1 is a constant defined by the parameter r.

Now, assuming β̂ = O(m−α) for some 0 < α ≤ 1, we analyze the convergence behavior of
Corollary 20. First, we observe that the terms b and µ have the following asymptotic behavior,

b= O
(
m

α
r+1

)
µ= O

(
m

3
4−

α
2(r+1)

)
.

Next, we consider the condition δ′ > 0 which is equivalent to,

δ> (µ−1)β(b) = O
(
m

3
4−α

(
1− 1

2(r+1)

))
. (11)

In order for the right-hand side of the inequality to converge, it must be the case that α > 3r+3
4r+2 . In

particular, if α= 1, as is the case for several algorithms in Section 3.5, then it suffices that r>1.
Finally, in order to see how the bound itself converges, we study the asymptotic behavior of the

terms of Equation 10 (without the first term, which corresponds to the quantity already analyzed in
Equation 11):

m3/2β̂
µ

+µbβ̂
︸ ︷︷ ︸

(a)

+
m1/2

µ
+
µb
m︸ ︷︷ ︸

(b)

= O
(
m

3
4−α

(
1− 1

2(r+1)

)

︸ ︷︷ ︸
(a)

+ m
α

2(r+1)−
1
4

︸ ︷︷ ︸
(b)

)
.

This expression can be further simplified by noticing that (b) ≤ (a) for all 0< α≤ 1 (with equality
at α = 1). Thus, both the bound and the condition on δ decrease asymptotically as the term in (a),
resulting in the following corollary.

Corollary 21 Assume a β̂-stable algorithm with β̂ = O(m−1) and let δ′ = δ−m
1

2(r+1)−
1
4 . Then, for

any sample S of size m drawn according to a algebraic β-mixing stationary distribution, and δ≥ 0
such that δ′ ≥ 0, the following generalization bound holds with probability at least (1−δ):

|R(hS)− R̂(hS)| < O
(
m

1
2(r+1)−

1
4
√
log(1/δ′)

)
.

As in previous bounds r > 1 is required for convergence. Furthermore, as expected, a larger mixing
parameter r leads to a more favorable bound.
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5. Conclusion

We presented stability bounds for both ϕ-mixing and β-mixing stationary sequences. Our bounds
apply to large classes of algorithms, including common algorithms such as SVR, KRR, and SVMs,
and extend to non-i.i.d. scenarios existing i.i.d. stability bounds. Since they are algorithm-specific,
these bounds can often be tighter than other generalization bounds based on general complexity
measures for families of hypotheses. As in the i.i.d. case, weaker notions of stability might help fur-
ther improve and refine these bounds. These stability bounds complement general data-dependent
learning bounds we have shown elsewhere for stationary β-mixing sequences using the notion of
Rademacher complexity (Mohri and Rostamizadeh, 2009).

The stability bounds we presented can be used to analyze the properties of stable algorithms
when used in the non-i.i.d settings studied. But, more importantly, they can serve as a tool for
the design of novel and accurate learning algorithms. Of course, some mixing properties of the
distributions need to be known to take advantage of the information supplied by our generalization
bounds. In some problems, it is possible to estimate the shape of the mixing coefficients. This
should help devising such algorithms.

Acknowledgments

We thank the editor and the reviewers for several comments that helped improve the original version
of this paper.

References

Sergei Natanovich Bernstein. Sur l’extension du théorème limite du calcul des probabilités aux
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Abstract
Maximum entropy (Maxent) is useful in natural language processing and many other areas. Iterative
scaling (IS) methods are one of the most popular approaches to solve Maxent. With many variants
of IS methods, it is difficult to understand them and see the differences. In this paper, we create a
general and unified framework for iterative scaling methods. This framework also connects iterative
scaling and coordinate descent methods. We prove general convergence results for IS methods and
analyze their computational complexity. Based on the proposed framework, we extend a coordinate
descent method for linear SVM to Maxent. Results show that it is faster than existing iterative
scaling methods.
Keywords: maximum entropy, iterative scaling, coordinate descent, natural language processing,
optimization

1. Introduction

Maximum entropy (Maxent) is widely used in many areas such as natural language processing
(NLP) and document classification. It is suitable for problems needing probability interpretations.
For many NLP tasks, given a word sequence, we can use Maxent models to predict the label se-
quence with the maximal probability (Berger et al., 1996). Such tasks are different from traditional
classification problems, which assign label(s) to a single instance.

Maxent models the conditional probability as:

Pw(y|x) ≡
Sw(x,y)
Tw(x)

,

Sw(x,y) ≡ e∑t wt ft(x,y), Tw(x) ≡∑
y
Sw(x,y),

(1)

where x indicates a context, y is the label of the context, and w ∈ Rn is the weight vector. A real-
valued function ft(x,y) denotes the t-th feature extracted from the context x and the label y. We
assume a finite number of features. In some cases, ft(x,y) is 0/1 to indicate a particular property.
Tw(x) is a normalization term applied to make ∑y Pw(y|x) = 1.

c©2010 Fang-Lan Huang, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin.
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Given an empirical probability distribution P̃(x,y) obtained from training samples, Maxent min-
imizes the following negative log-likelihood:

min
w

−∑
x,y
P̃(x,y) logPw(y|x),

or equivalently,
min
w ∑

x
P̃(x) logTw(x)−∑

t
wt P̃( ft), (2)

where P̃(x,y) = Nx,y/N, Nx,y is the number of times that (x,y) occurs in training data, and N is the
total number of training samples. P̃(x) = ∑y P̃(x,y) is the marginal probability of x, and P̃( ft) =
∑x,y P̃(x,y) ft(x,y) is the expected value of ft(x,y). To avoid overfitting the training samples, some
add a regularization term to (2) and solve:

min
w

L(w) ≡min
w ∑

x
P̃(x) logTw(x)−∑

t
wt P̃( ft)+

1
2σ2∑t

w2t , (3)

where σ is a regularization parameter. More discussion about regularization terms for Maxent can
be seen in, for example, Chen and Rosenfeld (2000). We focus on (3) in this paper because it is
strictly convex. Note that (2) is convex, but may not be strictly convex. We can further prove that a
unique global minimum of (3) exists. The proof, omitted here, is similar to Theorem 1 in Lin et al.
(2008).

Iterative scaling (IS) methods are popular in training Maxent models. They all share the same
property of solving a one-variable sub-problem at a time. Existing IS methods include general-
ized iterative scaling (GIS) by Darroch and Ratcliff (1972), improved iterative scaling (IIS) by
Della Pietra et al. (1997), and sequential conditional generalized iterative scaling (SCGIS) by Good-
man (2002). The approach by Jin et al. (2003) is also an IS method, but it assumes that every class
uses the same set of features. As this assumption is not general, in this paper we do not include
this approach for discussion. In optimization, coordinate descent (CD) is a popular method which
also solves a one-variable sub-problem at a time. With these many IS and CD methods, it is diffi-
cult to see their differences. In Section 2, we propose a unified framework to describe IS and CD
methods from an optimization viewpoint. We further analyze the theoretical convergence as well
as computational complexity of IS and CD methods. In particular, general linear convergence is
proved. In Section 3, based on a comparison between IS and CD methods, we propose a new and
more efficient CD method. These two results (a unified framework and a faster CD method) are the
main contributions of this paper.

Besides IS methods, numerous optimization methods have been applied to train Maxent. For
example, Liu and Nocedal (1989), Bottou (2004), Daumé (2004), Keerthi et al. (2005), McDonald
and Pereira (2006), Vishwanathan et al. (2006), Koh et al. (2007), Genkin et al. (2007), Andrew
and Gao (2007), Schraudolph et al. (2007), Gao et al. (2007), Collins et al. (2008), Lin et al. (2008)
and Friedman et al. (2008). They do not necessarily solve the optimization problem (3). Some
handle more complicated log linear models such as Conditional Random Fields (CRF), but their
approaches can be modified for Maxent. Some focus on logistic regression, which is a special form
of Maxent if the number of labels is two. Moreover, some consider the L1 regularization term∑t |wt |
in (3). Several papers have compared optimization methods for Maxent, though it is difficult to have
a complete study. Malouf (2002) compares methods for NLP data, while Minka (2003) focuses on
logistic regression for synthesis data. In this paper, we are interested in a detailed investigation of
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Iterative scaling

Sequential update

Find At(zt) to approximate
L(w+ ztet)−L(w)

SCGIS

Let At(zt) =
L(w+ ztet)−L(w)

CD

Parallel update

Find a separable function A(z)
to approximate L(w+ z)−L(w)

GIS, IIS

Figure 1: An illustration of various iterative scaling methods.

IS methods because they remain one of the most used approaches to train Maxent. This fact can
be easily seen from popular NLP software. The Stanford Log-linear POS Tagger1 supports two
optimization methods, where one is IIS. The OpenNLP Maxent package (Baldridge et al., 2001)
provides only one optimization method, which is GIS.

This paper is organized as follows. In Section 2, we present a unified framework for IS/CD
methods and give theoretical results. Section 3 proposes a new CD method. Its advantages over
existing IS/CD methods are discussed. In Section 4, we investigate some implementation issues for
IS/CD methods. Section 5 presents experimental results. With a careful implementation, our CD
outperforms IS and quasi-Newton techniques. Finally, Section 6 gives discussion and conclusions.

Part of this work appears in a short conference paper (Huang et al., 2009).
Notation X , Y , and n are the numbers of contexts, class labels, and features, respectively. The

total number of nonzeros in training data and the average number of nonzeros per feature are re-
spectively

#nz≡∑
x,y

∑
t: ft(x,y)%=0

1 and l̄ ≡
#nz
n

. (4)

In this paper, we assume non-negative feature values:

ft(x,y) ≥ 0, ∀t,x,y. (5)

Most NLP applications have non-negative feature values. All existing IS methods use this property.

2. A Framework for Iterative Scaling and Coordinate Descent Methods

An important characteristic of IS and CD methods is that they solve a one-variable optimization
problem and then modify the corresponding element in w. Conceptually, the one-variable sub-
problem is related to the function reduction

L(w+ ztet)−L(w),

where et ≡ [0, . . . ,0
︸ ︷︷ ︸

t−1

,1,0, . . . ,0]T . Then IS methods differ in how they approximate the function

reduction. They can also be categorized according to whether w’s components are updated in a
sequential or parallel way. In this section, we create a framework for these methods. A hierarchical
illustration of the framework is in Figure 1.

1. Stanford Log-linear POS Tagger can be found at http://nlp.stanford.edu/software/tagger.shtml.
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2.1 The Framework

To introduce the framework, we separately discuss coordinate descent methods according to whether
w is sequentially or parallely updated.

2.1.1 SEQUENTIAL UPDATE

For a sequential-update algorithm, once a one-variable sub-problem is solved, the corresponding
element in w is updated. The new w is then used to construct the next sub-problem. The procedure
is sketched in Algorithm 1. If the t-th component is selected for update, a sequential IS method
solves the following one-variable sub-problem:

min
zt

At(zt),

where At(zt) is twice differentiable and bounds the function difference:

At(zt) ≥ L(w+ ztet)−L(w), ∀zt . (6)

We hope that by minimizing At(zt), the resulting L(w+ ztet) can be smaller than L(w). However,
(6) is not enough to ensure this property, so we impose an additional condition

At(0) = 0 (7)

on the approximate function At(zt). The explanation below shows that we can strictly decrease the
function value. If A′

t(0) %= 0 and assume z̄t ≡ argminzt At(zt) exists, with the condition At(0) = 0,
we have At(z̄t) < 0. This property and (6) then imply L(w+ z̄tet) < L(w). If A′

t(0) = 0, we can
prove that ∇tL(w) = 0,2 where ∇tL(w) = ∂L(w)/∂wt . In this situation, the convexity of L(w) and
∇tL(w) = 0 imply that we cannot decrease the function value by modifying wt , so we should move
on to modify other components of w.

A CD method can be viewed as a sequential-update IS method. Its approximate function At(zt)
is simply the function difference:

ACD
t (zt) = L(w+ ztet)−L(w). (8)

Other IS methods consider approximations so that At(zt) is simpler for minimization. More details
are in Section 2.2. Note that the name “sequential” comes from the fact that each sub-problem At(zt)
depends on w obtained from the previous update. Therefore, sub-problems must be sequentially
solved.

2.1.2 PARALLEL UPDATE

A parallel-update IS method simultaneously constructs n independent one-variable sub-problems.
After (approximately) solving all of them, the whole vector w is updated. Algorithm 2 gives the
procedure. The function A(z), z ∈ Rn, is an approximation of L(w+ z)−L(w) satisfying

A(z) ≥ L(w+ z)−L(w), ∀z, A(0) = 0, and A(z) =
n

∑
t=1

At(zt). (9)

2. Define a function D(zt) ≡ A(zt)− (L(w+ ztet)− L(w)). We have D′(0) = A′(0)−∇tL(w). If ∇tL(w) %= 0 and
A′t(0) = 0, thenD′(0) %= 0. SinceD(0) = 0, we can find a zt such that A(zt)−(L(w+ztet)−L(w)) < 0, a contradiction
to (6).
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Algorithm 1 A sequential-update IS method
While w is not optimal

For t = 1, . . . ,n
1. Find an approximate function At(zt) satisfying (6)-(7).
2. Approximately solve minzt At(zt) to get z̄t .
3. wt ← wt + z̄t .

Algorithm 2 A parallel-update IS method
While w is not optimal
1. Find approximate functions At(zt) ∀zt satisfying (9).
2. For t = 1, . . . ,n

Approximately solve minzt At(zt) to get z̄t .
3. For t = 1, . . . ,n

wt ← wt + z̄t .

The first two conditions are similar to (6) and (7). By a similar argument, we can ensure that the
function value is strictly decreasing. The last condition indicates that A(z) is separable, so

min
z
A(z) =

n

∑
t=1
min
zt
At(zt).

That is, we can minimize At(zt), ∀zt simultaneously, and then update wt ∀t together. We show
in Section 4 that a parallel-update method possesses some nicer implementation properties than a
sequential method. However, as sequential approaches update w as soon as a sub-problem is solved,
they often converge faster than parallel methods.

If A(z) satisfies (9), taking z = ztet implies that (6) and (7) hold for At(zt), ∀t = 1, . . . ,n. A
parallel-update method could thus be transformed to a sequential-update method using the same
approximate function. Contrarily, a sequential-update algorithm cannot be directly transformed to
a parallel-update method because the summation of the inequality in (6) does not imply (9).

2.2 Existing Iterative Scaling Methods

We introduceGIS, IIS and SCGIS via the proposed framework. GIS and IIS use a parallel update, but
SCGIS is sequential. Their approximate functions aim to bound the change of the function values

L(w+ z)−L(w) =∑
x
P̃(x) log

Tw+z(x)
Tw(x)

+∑
t
Qt(zt), (10)

where Tw(x) is defined in (1) and

Qt(zt) ≡
2wtzt + z2t
2σ2

− zt P̃( ft). (11)

Then GIS, IIS and SCGIS use similar inequalities to get approximate functions. With

Tw+z(x)
Tw(x)

=
∑y Sw+z(x,y)

Tw(x)
=
∑y Sw(x,y)

(

e∑t zt ft(x,y)
)

Tw(x)
=∑

y
Pw(y|x)e∑t zt ft(x,y),
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they apply logα≤ α−1 ∀α> 0 and ∑y Pw(y|x) = 1 to get

(10)≤∑
t
Qt(zt)+∑

x
P̃(x)

(

∑
y
Pw(y|x)e∑t zt ft(x,y)−1

)

=∑
t
Qt(zt)+∑

x,y
P̃(x)Pw(y|x)

(

e∑t zt ft(x,y)−1
)

.

(12)

GIS defines
f # ≡max

x,y
f #(x,y), f #(x,y) ≡∑

t
ft(x,y),

and adds a feature fn+1(x,y) ≡ f # − f #(x,y) with zn+1 = 0. Using Jensen’s inequality and the
assumption of non-negative feature values (5),

e∑
n
t=1 zt ft(x,y) = e∑

n+1
t=1

ft (x,y)
f#

zt f # (13)

≤
n+1

∑
t=1

ft(x,y)
f #

ezt f
#
=

n

∑
t=1

ft(x,y)
f #

ezt f
#
+
f #− f #(x,y)

f #
=

n

∑
t=1

(

ezt f # −1
f #

ft(x,y)

)

+1.

Substituting (13) into (12), the approximate function of GIS is

AGIS(z) =∑
t
Qt(zt)+∑

x,y
P̃(x)Pw(y|x)∑

t

(

ezt f # −1
f #

ft(x,y)

)

.

Then we obtain n independent one-variable functions:

AGISt (zt) = Qt(zt)+
ezt f # −1

f # ∑
x,y
P̃(x)Pw(y|x) ft(x,y).

IIS assumes ft(x,y) ≥ 0 and applies Jensen’s inequality

e∑t zt ft(x,y) = e∑t
ft (x,y)
f#(x,y)

zt f #(x,y) ≤∑
t

ft(x,y)
f #(x,y)

ezt f
#(x,y)

on (12) to get the approximate function

AIISt (zt) = Qt(zt)+∑
x,y
P̃(x)Pw(y|x) ft(x,y)

ezt f #(x,y)−1
f #(x,y)

.

SCGIS is a sequential-update algorithm. It replaces f # in GIS with

f #t ≡max
x,y

ft(x,y). (14)

Using ztet as z in (10), a derivation similar to (13) gives

ezt ft(x,y) ≤
ft(x,y)
f #t

ezt f
#
t +

f #t − ft(x,y)
f #t

. (15)
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The approximate function of SCGIS is

ASCGISt (zt) = Qt(zt)+
ezt f #t −1

f #t
∑
x,y
P̃(x)Pw(y|x) ft(x,y).

As a comparison, we expand ACD
t (zt) in (8) to the following form:

ACD
t (zt) = Qt(zt)+∑

x
P̃(x) log

Tw+ztet (x)
Tw(x)

(16)

= Qt(zt)+∑
x
P̃(x) log

(

1+∑
y
Pw(y|x)(ezt ft(x,y)−1)

)

, (17)

where (17) is from (1) and

Sw+ztet (x,y) = Sw(x,y)ezt ft(x,y), (18)

Tw+ztet (x) = Tw(x)+∑
y
Sw(x,y)(ezt ft(x,y)−1). (19)

A summary of approximate functions of IS and CD methods is in Table 1.

2.3 Convergence of Iterative Scaling and Coordinate Descent Methods

The convergence of CD methods has been well studied (e.g., Bertsekas, 1999; Luo and Tseng,
1992). However, for methods like IS which use only an approximate function to bound the function
difference, the convergence is less studied. In this section, we generalize the linear convergence
proof in Chang et al. (2008) to show the convergence of IS and CD methods. To begin, we consider
any convex and differentiable function L: Rn → R satisfying the following conditions in the set

U = {w | L(w) ≤ L(w0)}, (20)

where w0 is the initial point of an IS/CD algorithm:

1. ∇L is bi-Lipschitz: there are two positive constants τmax and τmin such that for any u,v ∈U ,

τmin‖u−v‖ ≤ ‖∇L(u)−∇L(v)‖ ≤ τmax‖u−v‖. (21)

2. Quadratic bound property: there is a constant K > 0 such that for any u,v ∈U

|L(u)−L(v)−∇L(v)T (u−v)|≤ K‖u−v‖2. (22)

The following theorem proves that (3) satisfies these two conditions.

Theorem 1 L(w) defined in (3) satisfies (21) and (22).

The proof is in Section 7.1.
We denote wk as the point after each iteration of the while loop in Algorithm 1 or 2. Hence

from wk to wk+1, n sub-problems are solved. The following theorem establishes our main linear
convergence result for IS methods.
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AGIS
t (zt) = Qt(zt)+

ezt f # −1
f # ∑

x,y
P̃(x)Pw(y|x) ft(x,y)

AIIS
t (zt) = Qt(zt)+∑

x,y
P̃(x)Pw(y|x) ft(x,y)

ezt f #(x,y)−1
f #(x,y)

ASCGIS
t (zt) = Qt(zt)+

ezt f #t −1
f #t

∑
x,y
P̃(x)Pw(y|x) ft(x,y)

ACD
t (zt) = Qt(zt)+∑

x
P̃(x) log

(

1+∑
y
Pw(y|x)(ezt ft(x,y)−1)

)

Table 1: Approximate functions of IS and CD methods.

Theorem 2 Consider Algorithm 1 or 2 to minimize a convex and twice differentiable function L(w).
Assume L(w) attains a unique global minimum w∗ and L(w) satisfies (21)-(22). If the algorithm
satisfies

‖wk+1−wk‖ ≥ η‖∇L(wk)‖, (23)
L(wk+1)−L(wk) ≤ −ν‖wk+1−wk‖2, (24)

for some positive constants η and ν, then the sequence {wk} generated by the algorithm linearly
converges. That is, there is a constant µ∈ (0,1) such that

L(wk+1)−L(w∗) ≤ (1−µ)(L(wk)−L(w∗)),∀k.

The proof is in Section 7.2. Note that this theorem is not restricted to L(w) in (3). Next, we show that
IS/CD methods discussed in this paper satisfy (23)-(24), so they all possess the linear convergence
property.

Theorem 3 Consider L(w) defined in (3) and assume At(zt) is exactly minimized in GIS, IIS,
SCGIS, or CD. Then {wk} satisfies (23)-(24).

The proof is in Section 7.3.

2.4 Solving One-variable Sub-problems

After generating approximate functions, GIS, IIS, SCGIS and CD need to minimize one-variable
sub-problems. In general, the approximate function possesses a unique global minimum. We do not
discuss some rare situations where this property does not hold (for example, minzt AGISt (zt) has an
optimal solution zt = −∞ if P̃( ft) = 0 and the regularization term is not considered).

Without the regularization term, by A′
t(zt) = 0, GIS and SCGIS both have a simple closed-form

solution of the sub-problem:

zt =
1
f s
log

(

P̃( ft)
∑x,y P̃(x)Pw(y|x) ft(x,y)

)

, where f s ≡

{

f # if s is GIS,

f #t if s is SCGIS.
(25)
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For IIS, the term ezt f #(x,y) in AIISt (zt) depends on x and y, so it does not have a closed-form solution.
CD does not have a closed-form solution either.

With the regularization term, the sub-problems no longer have a closed-form solution. While
many optimization methods can be applied, in this section we analyze the complexity of using
the Newton method to solve one-variable sub-problems. The Newton method minimizes Ast (zt) by
iteratively updating zt :

zt ← zt−Ast
′(zt)/Ast

′′(zt), (26)

where s indicates an IS or a CD method. This iterative procedure may diverge, so we often need a
line search procedure to ensure the function value is decreasing (Fletcher, 1987, p. 47). Due to the
many variants of line searches, here we discuss only the cost for finding the Newton direction. The
Newton directions of GIS and SCGIS are similar:

−
Ast ′(zt)
Ast ′′(zt)

= −
Q′
t(zt)+ ezt f s∑x,y P̃(x)Pw(y|x) ft(x,y)

Q′′
t (zt)+ f sezt f s∑x,y P̃(x)Pw(y|x) ft(x,y)

, (27)

where f s is defined in (25). For IIS, the Newton direction is:

−
AIIS
t

′
(zt)

AIIS
t

′′
(zt)

= −
Q′
t(zt)+∑x,y P̃(x)Pw(y|x) ft(x,y)ezt f

#(x,y)

Q′′
t (zt)+∑x,y P̃(x)Pw(y|x) ft(x,y) f #(x,y)ezt f #(x,y)

. (28)

The Newton directions of CD is:

−
ACD
t

′
(zt)

ACD
t

′′
(zt)

, (29)

where

ACD
t

′
(zt) = Q′

t(zt)+∑
x,y
P̃(x)Pw+ztet (y|x) ft(x,y), (30)

ACD
t

′′
(zt) = Q′′

t (zt)+∑
x,y
P̃(x)Pw+ztet (y|x) ft(x,y)

2−

∑
x
P̃(x)

(

∑
y
Pw+ztet (y|x) ft(x,y)

)2

. (31)

Eqs. (27)-(28) can be easily obtained using formulas in Table 1. We show details of deriving
(30)-(31) in Section 7.4.

We separate the complexity analysis to two parts. One is on calculating of Pw(y|x) ∀x,y, and the
other is on the remaining operations.

For Pw(y|x)= Sw(x,y)/Tw(x), parallel-update approaches calculate it once every n sub-problems.
To get Sw(x,y) ∀x,y, the operation

∑
t
wt ft(x,y) ∀x,y

needs O(#nz) time. If XY ≤ #nz, the cost for obtaining Pw(y|x), ∀x,y is O(#nz), where X and Y are
respectively the numbers of contexts and labels.3 Therefore, on average each sub-problem shares
O(#nz/n) = O(l̄) cost. For sequential-update methods, they expensively update Pw(y|x) after every

3. If XY > #nz, one can calculate ewt ft (x,y), ∀ ft(x,y) %= 0 and then the product ∏t: ft (x,y)%=0 e
wt ft (x,y). The complexity is

still O(#nz).
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CD GIS SCGIS IIS

1st Newton direction O(l̄) O(l̄) O(l̄) O(l̄)
Each subsequent Newton direction O(l̄) O(1) O(1) O(l̄)

Table 2: Cost for finding Newton directions if the Newton method is used to minimize At(zt).

sub-problem. A trick to trade memory for time is to store all Sw(x,y) and Tw(x), and use (18) and
(19). Since Sw+ztet (x,y) = Sw(x,y), if ft(x,y) = 0, this procedure reduces the number of operations
from the O(#nz) operations to O(l̄). However, it needs O(XY ) extra spaces to store all Sw(x,y) and
Tw(x). This trick has been used in the SCGIS method (Goodman, 2002).

From (27) and (28), all remaining operations of GIS, IIS, and SCGIS involve the calculation of

∑
x,y
P̃(x)Pw(y|x) ft(x,y)(a function of zt), (32)

which needs O(l̄) under a fixed t. For GIS and SCGIS, since the function of zt in (32) is independent
of x,y, we can calculate and store ∑x,y P̃(x)Pw(y|x) ft(x,y) in the first Newton iteration. Therefore,
the overall cost (including calculating Pw(y|x)) is O(l̄) for the first Newton iteration and O(1) for
each subsequent iteration. For IIS, because ezt f #(x,y) in (28) depends on x and y, we need O(l̄) for
every Newton direction. For CD, it calculates Pw+ztet (y|x) for every zt , so the cost per Newton
direction is O(l̄). We summarize the cost for solving sub-problems of GIS, SCGIS, IIS and CD in
Table 2.

2.5 Related Work

Our framework for IS methods includes two important components:

1. Approximate L(w+ ztet)−L(w) or L(w+ z)−L(w) to obtain functions At(zt).

2. Sequentially or parallely minimize approximate functions.

Each component has been well discussed in many places. However, ours may be the first to investi-
gate IS methods in detail. Below we discuss some related work.

The closest work to our framework might be Lange et al. (2000) from the statistics community.
They discuss “optimization transfer” algorithms which construct At(zt) or A(z) satisfying conditions
similar to (6)-(7) or (9). However, they do not require one-variable sub-problems, so A(z) of a
parallel-update method may be non-separable. They discuss that “optimization transfer” algorithms
can be traced back to EM (Expectation Maximization). In their paper, the function At(zt) or A(z) is
called a “surrogate” function or a “majorizing” function. Some also call it an “auxiliary” function.
Lange et al. (2000) further discuss several ways to construct A(z), where Jensen’s inequality used
in (13) is one of them. An extension along this line of research is by Zhang et al. (2007).

The concept of sequential- and parallel-update algorithms is well known in many subjects. For
example, these algorithms are used in iterative methods for solving linear systems (Jacobi and
Gauss-Seidel methods). Some recent machine learning works which mention them include, for
example, Collins et al. (2002) and Dudı́k et al. (2004). Dudı́k et al. (2004) propose a variant of IS
methods for L1-regularized maximum entropy. They consider both sequential- and parallel-update
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algorithms using certain approximate functions. Their sequential methods greedily choose coordi-
nates minimizing At(zt), while ours in Section 2.1.1 chooses coordinates cyclicly.

Regarding the convergence, if the sub-problem has a closed-form solution like (25), it is easy to
apply the result in Lange et al. (2000). However, the case with regularization is more complicated.
For example, Dudı́k et al. (2004) point out that Goodman (2002) does not give a “complete proof
of convergence.” Note that the strict decrease of function values following conditions (6)-(7) or (9)
does not imply the convergence to the optimal function value. In Section 2.3, we prove not only the
global convergence but also the linear convergence for a general class of IS/CD methods.

3. Comparison and a New Coordinate Descent Method

Using the framework in Section 2, we compare CD and IS methods in this section. Based on the
comparison, we propose a new and fast CD method.

3.1 Comparison of Iterative Scaling and Coordinate Descent Methods

An IS or CD method falls into a place between two extreme designs:

At(zt) a loose bound ⇐⇒ At(zt) a tight bound
Easy to minimize At(zt) Hard to minimize At(zt)

That is, there is a tradeoff between the tightness to bound the function difference and the hardness
to solve the sub-problem. To check how IS and CD methods fit into this explanation, we obtain the
following relationship of their approximate functions:

ACD
t (zt) ≤ ASCGIS

t (zt) ≤ AGIS
t (zt),

ACD
t (zt) ≤ AIIS

t (zt) ≤ AGIS
t (zt) ∀ zt .

(33)

The derivation is in Section 7.5. From (33), CD considers more accurate sub-problems than SCGIS
and GIS. However, when solving the sub-problem, from Table 2, CD’s each Newton step takes more
time. The same situation occurs in comparing IIS and GIS.

The above discussion indicates that while a tight At(zt) can give faster convergence by handling
fewer sub-problems, the total time may not be less due to the higher cost of each sub-problem.

3.2 A Fast Coordinate Descent Method

Based on the discussion in Section 3.1, we develop a CD method which is cheaper in solving each
sub-problem but still enjoys fast final convergence. This method is modified from Chang et al.
(2008), a CD approach for linear SVM. They approximately minimize ACD

t (zt) by applying only one
Newton iteration. This approach is a truncated Newton method: In the early stage of the coordinate
descent method, we roughly minimize ACD

t (zt) but in the final stage, one Newton update can quite
accurately solve the sub-problem. The Newton direction at zt = 0 is

d = −
ACD
t

′
(0)

ACD
t

′′
(0)

. (34)

We discuss in Section 2.4 that the update rule (26) may not decrease the function value. Hence
we need a line search procedure to find λ ≥ 0 such that zt = λd satisfies the following sufficient
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Algorithm 3 A fast coordinate descent method for Maxent
• Choose β ∈ (0,1) and γ ∈ (0,1/2). Give initial w and calculate Sw(x,y), Tw(x), ∀x,y.
• While w is not optimal

– For t = 1, . . . ,n
1. Calculate the Newton direction

d = −ACD
t

′
(0)/ACD

t
′′
(0)

=
−

(

∑x,y P̃(x)Pw(y|x) ft(x,y)+ wt
σ2

)

∑x,y P̃(x)Pw(y|x) ft(x,y)2−∑x P̃(x)
(

∑y Pw(y|x) ft(x,y)
)2

+ 1
σ2

,

where
Pw(y|x) =

Sw(x,y)
Tw(x)

.

2. While λ= 1,β,β2, . . .
(a) Let zt = λd
(b) Calculate

ACD
t (zt) = Qt(zt)+∑

x
P̃(x) log

(

1+∑
y

Sw(x,y)
Tw(x)

(ezt ft(x,y)−1)

)

(c) If ACD
t (zt) ≤ γztACD

t
′
(0), then break.

3. wt ← wt + zt
4. Update Sw(x,y) and Tw(x) ∀x,y by (18)-(19)

decrease condition:

ACD
t (zt)−ACD

t (0) = ACD
t (zt) ≤ γztACD

t
′
(0) ≤ 0, (35)

where γ is a constant in (0,1/2). Note that ztACD
t

′
(0) is negative under the definition of d in (34).

Instead of (35), Grippo and Sciandrone (1999) and Chang et al. (2008) use

ACD
t (zt) ≤−γz2t (36)

as the sufficient decrease condition. We prefer (35) as it is scale-invariant. That is, if ACD
t is linearly

scaled, then (35) holds under the same γ. In contrast, γ in (36) may need to be changed. To find λ
for (35), a simple way is by sequentially checking λ= 1,β,β2, . . . , where β∈ (0,1). We choose β as
0.5 for experiments. The following theorem proves that the condition (35) can always be satisfied.

Theorem 4 Given the Newton direction d as in (34). There is λ̄> 0 such that zt = λd satisfies (35)
for all 0≤ λ< λ̄.

The proof is in Section 7.6. The new CD procedure is in Algorithm 3. In the rest of this paper, we
refer to CD as this new algorithm.

In Section 2.3 we prove the linear convergence of IS/CD methods. In Section 7.7, we use the
same framework to prove that Algorithm 3 linearly converges:
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Theorem 5 Algorithm 3 satisfies (23)-(24) and linearly converges to the global optimum of (3).

As evaluating ACD
t (zt) via (17)-(19) needs O(l̄) time, the line search procedure takes

O(l̄)× (# line search steps).

This causes the cost of solving a sub-problem higher than that of GIS/SCGIS (see Table 2). Fortu-
nately, we show that near the optimum, the line search procedure needs only one step:

Theorem 6 In a neighborhood of the optimal solution, the Newton direction d defined in (34) sat-
isfies the sufficient decrease condition (35) with λ= 1.

The proof is in Section 7.8. If the line search procedure succeeds at λ = 1, then the cost for each
sub-problem is similar to that of GIS and SCGIS.

Next we show that near the optimum, one Newton direction of CD’s tight ACD
t (zt) already re-

duces the objective function L(w)more rapidly than directions by exactly minimizing a loose At(zt)
of GIS, IIS or SCGIS. Thus Algorithm 3 has faster final convergence than GIS, IIS, or SCGIS.

Theorem 7 Assume w∗ is the global optimum of (3). There is an ε > 0 such that the following
result holds. For any w satisfying ‖w−w∗‖ ≤ ε, if we select an index t and generate directions

d = −ACD
t

′
(0)/ACD

t
′′
(0) and ds = argmin

zt
Ast (zt), s= GIS, IIS or SCGIS, (37)

then
δt(d) <min

(

δt(dGIS),δt(dIIS),δt(dSCGIS)
)

,

where
δt(zt) ≡ L(w+ ztet)−L(w).

The proof is in Section 7.9. Theorems 6 and 7 show that Algorithm 3 improves upon the traditional
CD by approximately solving sub-problems, while still maintaining fast convergence. That is, it
attempts to take both advantages of the two designs mentioned in Section 3.1.

3.2.1 EFFICIENT LINE SEARCH

We propose a technique to speed up the line search procedure. We derive a function ĀCD
t (zt) so that

it is cheaper to calculate than ACD
t (zt) and satisfies ĀCD

t (zt) ≥ ACD
t (zt) ∀zt . Then,

ĀCD
t (zt) ≤ γztACD

t
′
(0) (38)

implies (35), so we can save time by replacing step 2 of Algorithm 3 with

2’. While λ= 1,β,β2, . . .
(a) Let zt = λd
(b) Calculate ĀCD

t (zt)
(c) If ĀCD

t (zt) ≤ γztACD
t

′
(0), then break.

(d) Calculate ACD
t (zt)

(e) If ACD
t (zt) ≤ γztACD

t
′
(0), then break.
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We assume non-negative feature values and obtain

ĀCD
t (zt) ≡ Qt(zt)+ P̃t log

(

1+
ezt f #t −1
f #t P̃t

∑
x,y
P̃(x)Pw(y|x) ft(x,y)

)

, (39)

where f #t is defined in (14),

P̃t ≡∑
Ωt

P̃(x), and Ωt ≡ {x : ∃y such that ft(x,y) %= 0}. (40)

The derivation is in Section 7.10. Because

∑
x,y
P̃(x)Pw(y|x) ft(x,y), t = 1, . . . ,n (41)

are available from finding ACD
t

′
(0), getting ĀCD

t (zt) and checking (38) take only O(1), smaller than
O(l̄) for (35). Using logα≤ α−1 ∀α> 0, it is easy to see that

ĀCD
t (zt) ≤ ASCGIS

t (zt), ∀zt .

Therefore, we can simply replace ASCGIS
t (zt) of the SCGIS method with ĀCD

t (zt) to have a new IS
method.

4. Implementation Issues

In this section we analyze some implementation issues of IS and CD methods.

4.1 Row Versus Column Format

In many Maxent applications, data are sparse with few nonzero ft(x,y). We store such data by
a sparse matrix. Among many ways to implement sparse matrices, two common ones are “row
format” and “column format.” For the row format, each (x,y) corresponds to a list of nonzero
ft(x,y), while for the column format, each feature t is associated with a list of (x,y). The loop
to access data in the row format is (x,y) → t, while for the column format it is t → (x,y). By
(x,y) → t we mean that the outer loop goes through (x,y) values and for each (x,y), there is an
inner loop for a list of feature values. For sequential-update algorithms such as SCGIS and CD,
as we need to maintain Sw(x,y) ∀x,y via (18) after solving the t-th sub-problem, an easy access of
t’s corresponding (x,y) elements is essential. Therefore, the column format is more suitable. In
contrast, parallel-update methods can use either row or column formats. For GIS, we can store all n
elements of (41) before solving n sub-problems by (25) or (27). The calculation of (41) can be done
by using the row format and a loop of (x,y) → t. For IIS, an implementation by the row format is
more complicated due to the ezt f #(x,y) term in AIIS

t (zt). Take the Newton method to solve the sub-
problem as an example. We can calculate and store (28) for all t = 1, . . . ,n by a loop of (x,y) → t.
That is, n Newton directions are obtained together before conducting n updates.

4.2 Memory Requirement

For sequential-update methods, to save the computational time of calculating Pw(y|x), we use (18)-
(19), so Sw(x,y) ∀x,y must be stored. Therefore, O(XY ) storage is needed. For parallel-update
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Data set X Y n #nz
CoNLL2000-P 197,979 44 168,674 48,030,163
CoNLL2000-C 197,252 22 273,680 53,396,844
BROWN 935,137 185 626,726 601,216,661

Table 3: Statistics of NLP data (0/1 features). X : number of contexts, Y : number of class labels, n:
number of features, and #nz: number of total non-zero feature values; see (4).

methods, they also need O(XY ) spaces if using the column format: To calculate e∑t wt ft(x,y) ∀x,y via
a loop of t → (x,y), we need O(XY ) positions to store ∑t wt ft(x,y) ∀x,y. In contrast, if using the
row format, the loop is x→ y→ t, so for each fixed x, we need only O(Y ) spaces to store S(x,y) ∀y
and then obtain Tw(x). This advantage makes the parallel update a viable approach if Y (the number
of labels) is very large.

4.3 Number of exp and log Operations

Many exp/log operations are needed in training a Maxent model. On most computers, exp/log
operations are much more expensive than multiplications/divisions. It is important to analyze the
number of exp/log operations in IS and CD methods.

We first discuss the number of exp operations. A simple check of (27)-(31) shows that the
numbers are the same as those in Table 2. IIS and CD need O(l̄) exp operations for every Newton
direction because they calculate ezt f #(x,y) in (28) and ezt ft(x,y) in (17), respectively. CD via Algorithm
3 takes only one Newton iteration, but each line search step also needs O(l̄) exp operations. If
feature values are binary, ezt ft(x,y) in (17) becomes ezt , a value independent of x,y. Thus the number
of exp operations is significantly reduced from O(l̄) to O(1). This property implies that Algorithm
3 is more efficient if data are binary valued. In Section 5, we will confirm this result through
experiments.

Regarding log operations, GIS, IIS and SCGIS need none as they remove the log function in
At(zt). CD via Algorithm 3 keeps log in ACD

t (zt) and requires O(|Ωt |) log operations at each line
search step, where Ωt is defined in (40).

4.4 Permutation of Indices in Solving Sub-problems

For sequential-update methods, one does not have to follow a cyclic way to update w1, . . . ,wn.
Chang et al. (2008) report that in their CD method, a permutation of {1, . . . ,n} as the order for
solving n sub-problems leads to faster convergence. For sequential-update ISmethods adopting this
strategy, the linear convergence in Theorem 2 still holds.

5. Experiments

In this section, we compare IS/CDmethods to reconfirm properties discussed in earlier sections. We
consider two types of data for NLP (Natural Language Processing) applications. One is Maxent for
0/1-featured data and the other is Maxent (logistic regression) for document data with non-negative
real-valued features. Programs used for experiments in this paper are online available at
http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.
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Figure 2: Results on 0/1-featured data. The first row shows time versus the relative function dif-
ference (42). The second and third rows show ‖∇L(w)‖ and testing performances along
time, respectively. Time is in seconds.

5.1 Maxent for 0/1-featured Data in NLP

We apply Maxent models to part of speech (POS) tagging and chunking tasks. In POS tagging,
we mark a POS tag to the word in a text based on both its definition and context. In a chunking
task, we divide a text into syntactically correlated parts of words. That is, given words in a sentence
annotated with POS tags, we label each word with a chunk tag. Other learning models such as CRF
(Conditional Random Fields) may outperform Maxent for these NLP applications. However, we do
not consider other learning models as the focus of this paper is to study IS methods for Maxent.

We use CoNLL2000 shared task data4 for chunking and POS tagging, and BROWN corpus5
for POS tagging. CoNLL2000-P indicates CoNLL2000 for POS tagging, and CoNLL2000-C means
CoNLL2000 for chunking. CoNLL2000 data consist of Sections 15-18 of the Wall Street Journal
corpus as training data and Section 20 as testing data. For the BROWN corpus, we randomly se-

4. Data can be found at http://www.cnts.ua.ac.be/conll2000/chunking.
5. Corpus can be found at http://www.nltk.org.
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lect four-fifth articles for training and use the rest for testing. We omit the stylistic tag modifiers
“fw,”“tl,”“nc,”and “hl,” so the number of labels is reduced from 472 to 185. Our implementation is
built upon the OpenNLP package (Baldridge et al., 2001). We use the default setting of OpenNLP
to extract binary features (0/1 values) suggested by Ratnaparkhi (1998). The OpenNLP imple-
mentation assumes that each feature index t corresponds to a unique label y. In prediction, we
approximately maximize the probability of tag sequences to the word sequences by a beam search
(Ratnaparkhi, 1998). Table 3 lists the statistics of data sets.

We implement the following methods for comparisons.

1. GIS and SCGIS: To minimize At(zt), we run Newton updates (without line search) until
|A′
t(zt)| ≤ 10−5. We can afford many Newton iterations because, according to Table 2, each

Newton direction costs only O(1) time.

2. CD: the coordinate descent method proposed in Section 3.2.

3. LBFGS: a limited memory quasi Newton method for general unconstrained optimization
problems (Liu and Nocedal, 1989).

4. TRON: a trust region Newton method for logistic regression (Lin et al., 2008). We extend the
method for Maxent.

We consider LBFGS as Malouf (2002) reports that it is better than other approaches including
GIS and IIS. Lin et al. (2008) show that TRON is faster than LBFGS for document classification, so
we include TRON for comparison. We exclude IIS because of its higher cost per Newton direction
than GIS/SCGIS (see Table 2). Indeed Malouf (2002) reports that GIS outperforms IIS. Our imple-
mentation of all methods takes the property of 0/1 features. We use the regularization parameter
σ2 = 10 as under this value Maxent models achieve good testing performances. We set β= 0.5 and
γ= 0.001 for the line search procedure (35) in CD. The initial w of all methods is 0.

We begin at checking time versus the relative difference of the function value to the optimum:

L(w)−L(w∗)

L(w∗)
, (42)

wherew∗ is the optimal solution of (3). Asw∗ is not available, we obtain a reference point satisfying
‖∇L(w)‖ ≤ 0.01. Results are in the first row of Figure 2. Next, we check these methods’ gradient
values. As ‖∇L(w)‖ = 0 implies that w is the global minimum, usually ‖∇L(w)‖ is used in a
stopping condition. The second row of Figure 2 shows time versus ‖∇L(w)‖. We are also interested
in the time needed to achieve a reasonable testing result. We measure the performance of POS
tagging by accuracy and chunking by F1 measure. The third row of Figure 2 presents the testing
accuracy/F1 versus training time. Note that (42) and ‖∇L(w)‖ in Figure 2 are both log scaled.

We give some observations from Figure 2. Among the three IS/CD methods compared, the new
CD approach discussed in Section 3.2 is the fastest. SCGIS comes the second, while GIS is the last.
This result is consistent with the tightness of their approximate functions; see (33). Regarding IS/CD
methods versus LBFGS/TRON, the three IS/CD methods more quickly decrease the function value
in the beginning, but LBFGS has faster final convergence. In fact, if we draw figures with longer
training time, TRON’s final convergence is the fastest. This result is reasonable as LBFGS and
TRON respectively have superlinear and quadratic convergence, higher than the linear rate proved
in Theorem 2 for IS methods. The choice of methods thus relies on whether one prefers getting a
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Problem l n #nz σ2

astro-physic 62,369 99,757 4,834,550 8l
yahoo-japan 176,203 832,026 23,506,415 4l
rcv1 677,399 47,236 49,556,258 8l

Table 4: Statistics of document data (real-valued features). l: number of instances, n: number
of features, #nz: number of total non-zero feature values, and σ2: best regularization
parameter from five-fold cross validation.

reasonable model quickly (IS/CD methods) or accurately minimizing the function (LBFGS/TRON).
Practically CD/IS may be more useful as they reach the final testing accuracy rapidly. Finally, we
compare LBFGS and TRON. Surprisingly, LBFGS outperforms TRON, a result opposite to that in
Lin et al. (2008). We do not have a clear explanation yet. A difference is that Lin et al. (2008)
deal with document data of real-valued features, but here we have 0/1-featured NLP applications.
Therefore, one should always be careful that for the same approaches, observations made on one
type of data may not extend to another.

In Section 4, we discussed a strategy of permuting n sub-problems to speed up the convergence
of sequential-update IS methods. However, in training Maxent models for 0/1-featured NLP data,
with/without permutation gives similar performances. We find that this strategy tends to work better
if features are related. Hence we suspect that features used in POS tagging or chunking tasks are
less correlated than those in documents and the order of sub-problems is not very important.

5.2 Maxent (Logistic Regression) for Document Classification

In this section, we experiment with logistic regression on document data with non-negative real-
valued features. Chang et al. (2008) report that their CDmethod is very efficient for linear SVM, but
is slightly less effective for logistic regression. They attribute the reason to that logistic regression
requires expensive exp/log operations. In Section 4, we show that for 0/1 features, the number of
IS methods’ exp operations is smaller. Experiments here help to check if IS/CD methods are more
suitable for 0/1 features than real values.

Logistic regression is a special case of maximum entropy with two labels +1 and −1. Consider
training data {x̄i, ȳi}li=1, x̄i ∈ Rn, ȳi = {1,−1}. Assume x̄it ≥ 0, ∀i, t. We set the feature ft(xi,y) as

ft(xi,y) =

{

x̄it if y= 1,
0 if y= −1,

where xi denotes the index of the i-th training instance x̄i. Then

Sw(xi,y) = e∑t wt ft(xi,y) =

{

ewT x̄i if y= 1,
1 if y= −1,

and
Pw(y|xi) =

Sw(xi,y)
Tw(xi)

=
1

1+ e−ywT x̄i
. (43)

From (2) and (43),

L(w) = 1
2σ2 ∑t w

2
t + 1

l ∑i log
(

1+ e−ȳiwT x̄i
)
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Figure 3: Results on real-valued document data. The first row shows time versus the relative func-
tion difference (42). The second and third rows show ‖∇L(w)‖ and testing performances
along time, respectively. Time is in seconds.

is the common form of regularized logistic regression. We give approximate functions of IS/CD
methods in Section 7.11.

We compare the same methods: SCGIS, CD, LBFGS, and TRON. GIS is not included because
of its slow convergence shown in Section 5.1. Our implementations are based on sources used in
Chang et al. (2008).6 We select three data sets considered in Chang et al. (2008). Each instance has
been normalized to ‖x̄i‖ = 1. Data statistics and σ2 for each problem are in Table 4. We set β= 0.5
and γ = 0.01 for the line search procedure (35) in CD. Figure 3 shows the results of the relative
function difference to the optimum, the gradient ‖∇L(w)‖, and the testing accuracy.

From Figure 3, the relation between the two IS/CD methods is similar to that in Figure 2, where
CD is faster than SCGIS. However, in contrast to Figure 2, here TRON/LBFGS may surpass IS/CD
in an earlier stage. Some preliminary analysis on the cost per iteration seems to indicate that IS/CD

6. Source can be found at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.
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Figure 4: This figure shows the effect of using (38) to do line search. The first and second rows
show time versus the relative function difference with different σ2. CDD indicates the CD
method without using (38). Time is in seconds.

methods are more efficient on 0/1-featured data due to a smaller number of exp operations, but more
experiments/data are needed to draw definitive conclusions.

In Figure 3, TRON is only similarly to or moderately better than LBFGS, but Lin et al. (2008)
show that TRON is much better. The only difference between their setting and ours is that Lin et al.
(2008) add one feature to each data instance. That is, they modify x̄i to

[ x̄i
1
]

, so weights of Maxent
become [wb ], where b is called the bias term. It is surprising that this difference affects LBFGS’
performance that much.

6. Discussion and Conclusions

In (38), we propose a way to speed up the line search procedure of Algorithm 3. Figure 4 shows
how effective this trick is by varying the value of σ2. Clearly, the trick is more useful if σ2 is
small. In this situation, the function L(w) is well conditioned (as it is closer to a quadratic function
∑t w2t ). Hence (38) more easily holds at λ= 1. Then the line search procedure costs only O(1) time.
However, a too small σ2 may downgrade the testing accuracy. For example, the final accuracy for
yahoo-japan is 92.75% with σ2 = 4l, but is 92.31% with σ2 = 0.5l.

Some work has concluded that approaches like LBFGS or nonlinear conjugate gradient are better
than IS methods for training Maxent (e.g., Malouf, 2002; Daumé, 2004). However, experiments in
this paper show that comparison results may vary under different circumstances. For example,
comparison results can be affected by:

1. Data of the target application. IS/CD methods seem to perform better if features are 0/1 and
if implementations have taken this property.
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2. The IS method being compared. Our experiments indicate that GIS is inferior to many meth-
ods, but other IS/CD methods like SCGIS or CD (Algorithm 3) are more competitive.

In summary, we create a general framework for iterative scaling and coordinate descent meth-
ods for maximum entropy. Based on this framework, we discuss the convergence, computational
complexity, and other properties of IS/CD methods. We further develop a new coordinate decent
method for Maxent. It is more efficient than existing iterative scaling methods.

7. Proofs and Derivations

We define 1-norm and 2-norm of a vector w ∈ Rn:

‖w‖1 ≡
n

∑
t=1

|wt |, ‖w‖2 ≡
√

n

∑
t=1

w2t .

The following inequality is useful in our proofs.

‖w‖2 ≤ ‖w‖1 ≤
√
n‖w‖2, ∀w ∈ Rn. (44)

Subsequently we simplify ‖w‖2 to ‖w‖.

7.1 Proof of Theorem 1

Due to the regularization term 1
2σ2w

Tw, one can prove that the set U defined in (20) is bounded;
see, for example, Theorem 1 of Lin et al. (2008). As ∇2L(w) is continuous in the bounded set U ,
the following τmax and τmin exist:

τmax ≡maxw∈U
λmax(∇2L(w)) and τmin ≡minw∈U

λmin(∇2L(w)), (45)

where λmax(·) and λmin(·) mean the largest and the smallest eigenvalues of a matrix, respectively.
To show that τmax and τmin are positive, it is sufficient to prove τmin > 0. As ∇2L(w) is I/σ2 plus a
positive semi-definite matrix, it is easy to see τmin ≥ 1/(σ2) > 0.

To prove (21), we apply the multi-dimensional Mean-Value Theorem (Apostol, 1974, Theorem
12.9) to ∇L(w). If u,v ∈ Rn, then for any a ∈ Rn, there is a c= αu+(1−α)v with 0≤ α≤ 1 such
that

aT (∇L(u)−∇L(v)) = aT∇2L(c)(u−v). (46)

Set
a= u−v.

Then for any u,v ∈U , there is a point c such that

(u−v)T (∇L(u)−∇L(v)) = (u−v)T∇2L(c)(u−v). (47)

SinceU is a convex set from the convexity of L(w), c ∈U . With (45) and (47),

‖u−v‖‖∇L(u)−∇L(v)‖ ≥ (u−v)T (∇L(u)−∇L(v)) ≥ τmin‖u−v‖2.
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Hence

‖∇L(u)−∇L(v)‖ ≥ τmin‖u−v‖. (48)

By applying (46) again with a= ∇L(u)−∇L(v),

‖∇L(u)−∇L(v)‖2 ≤‖∇L(u)−∇L(v)‖‖∇2L(c)(u−v)‖
≤‖∇L(u)−∇L(v)‖‖u−v‖τmax.

Therefore,

‖∇L(u)−∇L(v)‖ ≤ τmax‖u−v‖. (49)

Then (21) follows from (48) and (49)
To prove the second property (22), we write the Taylor expansion of L(u):

L(u) = L(v)+∇L(v)T (u−v)+
1
2
(u−v)T∇2L(c)(u−v),

where c ∈U . With (45), we have
τmin
2

‖u−v‖2 ≤ L(u)−L(v)−∇L(v)T (u−v) ≤ τmax
2

‖u−v‖2.

Since τmax ≥ τmin > 0, L satisfies (22) by choosing K = τmax/2.

7.2 Proof of Theorem 2

The following proof is modified from Chang et al. (2008). Since L(w) is convex and w∗ is the
unique solution, the optimality condition shows that

∇L(w∗) = 0. (50)

From (21) and (50),
‖∇L(wk)‖ ≥ τmin‖wk−w∗‖. (51)

With (23) and (51),
‖wk+1−wk‖ ≥ ητmin‖wk−w∗‖. (52)

From (24) and (52),

L(wk)−L(wk+1) ≥ νη2τ2min‖wk−w∗‖2. (53)

Combining (22) and (50),
L(wk)−L(w∗) ≤ K‖wk−w∗‖2. (54)

Using (53) and (54),

L(wk)−L(wk+1) ≥ νη2τ2min
K

(

L(wk)−L(w∗)
)

.

This is equivalent to
(

L(wk)−L(w∗)
)

+
(

L(w∗)−L(wk+1)
)

≥
νη2τ2min
K

(

L(wk)−L(w∗)
)

.
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Finally, we have

L(wk+1)−L(w∗) ≤
(

1−
νη2τ2min
K

)
(

L(wk)−L(w∗)
)

. (55)

Let µ≡ νη2τ2min/K. As all constants are positive, µ> 0. If µ> 1, L(wk) > L(w∗) implies that
L(wk+1) < L(w∗), a contradiction to the definition of L(w∗). Thus we have either µ ∈ (0,1) or
µ= 1, which suggests we get the optimum in finite steps.

7.3 Proof of Theorem 3

We prove the result for GIS and IIS first. Let z̄ = argminzAs(z), where s indicates GIS or IIS
method.7 From the definition of As(z) and its convexity,8

∇As(0) = ∇L(wk) and ∇As(z̄) = 0.9 (56)

Note that ∇As(z) is the gradient with respect to z, but ∇L(w) is the gradient with respect to w.
SinceU is bounded, the set {(w,z) | w ∈U and w+ z ∈U} is also bounded. Thus we have that

max
w∈U

max
z:w+z∈U

λmax
(

∇2As(z)
)

is bounded by a constant K. Here λmax(·) means the largest eigenvalue of a matrix. To prove (23),
we use

‖wk+1−wk‖ = ‖z̄−0‖

≥
1
K
‖∇As(z̄)−∇As(0)‖ =

1
K
‖∇As(0)‖ =

1
K
‖∇L(wk)‖,

(57)

where the inequality is from the same derivation for (49) in Theorem 1. The last two equalities
follow from (56).

Next, we prove (24). By (56) and the fact that the minimal eigenvalue of ∇2As(z) is greater than
or equal to 1/(σ2), we have

As(0) ≥ As(z̄)−∇As(z̄)T z̄+ 1
2σ2

z̄T z̄= As(z̄)+
1
2σ2

z̄T z̄. (58)

From (9) and (58),

L(wk)−L(wk+1) = L(wk)−L(wk + z̄) ≥ As(0)−As(z̄) ≥ 1
2σ2

z̄T z̄=
1
2σ2

‖wk+1−wk‖2.

Let ν= 1/(2σ2) and we obtain (24).
We then prove results for SCGIS and CD. For the convenience, we define some notation. A

sequential algorithm starts from an initial point w0, and produces a sequence {wk}∞k=0. At each iter-
ation, wk+1 is constructed by sequentially updating each component of wk. This process generates
vectors wk,t ∈ Rn, t = 1, . . . ,n, such that wk,1 = wk, wk,n+1 = wk+1, and

wk,t = [wk+11 , . . . ,wk+1t−1 ,w
k
t , . . . ,wkn]T for t = 2, . . . ,n.

7. The existence of z̄ follows from thatU is bounded. See the explanation in the beginning of Section 7.1.
8. It is easy to see that all At(zt) in Table 1 are strictly convex.
9. Because ∇tL(wk) = ACD

t
′
(0), we can easily obtain ∇As(0) = ∇L(wk) by checking Ast ′(0) = ACD

t
′
(0), where s is GIS

or IIS. See formulas in Table 1.
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By an argument similar to (57) and (58), we can prove that the one-variable function Ast (zt), where
s is SCGIS or CD, satisfies

|wk,t+1t −wk,tt |≥ η̄|Ast
′(0)| = η̄|∇L(wk,t)t | and (59)

L(wk,t)−L(wk,t+1) ≥ 1
2σ2

|wk,t+1t −wk,tt |2. (60)

Note that η̄> 0 is a positive constant. To prove (23), taking the summation of (59) from t = 1 to n,

‖wk+1−wk‖1 ≥ η̄
n

∑
t=1

|∇L(wk,t)t |≥ η̄
n

∑
t=1

(

|∇L(wk,1)t |− |∇L(wk,t)t−∇L(wk,1)t |
)

= η̄

(

‖∇L(wk,1)‖1−
n

∑
t=1

|∇L(wk,t)t−∇L(wk,1)t |
)

. (61)

Since L(w) satisfies (21), using (44),

n

∑
t=1

|∇L(wk,t)t −∇L(wk,1)t |≤
n

∑
t=1

‖∇L(wk,t)−∇L(wk,1)‖1

≤
n

∑
t=1

√
nτmax‖wk,t −wk,1‖1 ≤ n

√
nτmax‖wk+1−wk‖1.

(62)

From (61) and (62), we have

‖wk+1−wk‖1 ≥
η̄

1+ η̄n
√
nτmax

‖∇L(wk,1)‖1.

This inequality and (44) imply

‖wk+1−wk‖ ≥ 1√
n‖w

k+1−wk‖1 ≥ η̄√
n+η̄n2τmax

‖∇L(wk)‖.

Let η= η̄/(
√
n+ η̄n2τmax). We then have (23).

Taking the summation of (60) from t = 1 to n, we get (24):

L(wk)−L(wk+1) ≥ 1
2σ2

‖wk+1−wk‖2.

7.4 Derivation of (30)-(31)

Using (18)-(19), we have

dSw+ztet (x,y)
dzt

= Sw(x,y)ezt ft(x,y) ft(x,y) = Sw+ztet (x,y) ft(x,y)

and
dTw+ztet (x)

dzt
=∑

y
Sw(x,y)ezt ft(x,y) ft(x,y) =∑

y
Sw+ztet (x,y) ft(x,y).
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Then (30) can be obtained from (16), the definition of Tw+ztet (x) in (1), and the following calculation:

d logTw+ztet (x)
dzt

=
∑y Sw+ztet (x,y) ft(x,y)

Tw+ztet (x)
=∑

y
Pw+ztet (y|x) ft(x,y).

For (31), we use

d∑y Pw+ztet (y|x) ft(x,y)
dzt

=∑
y
ft(x,y)

Tw+ztet (x)
dSw+zt et (x,y)

dzt − dTw+zt et (x)
dzt Sw+ztet (x,y)

Tw+ztet (x)
2

=∑
y
ft(x,y)

(

ft(x,y)Pw+ztet (y|x)−
Sw+ztet (x,y)
Tw+ztet (x)

∑
y′
Pw+ztet (y

′|x) ft(x,y′)

)

=∑
y
Pw+ztet (y|x) ft(x,y)

2−∑
y

(

Pw+ztet (y|x) ft(x,y)∑
y′
Pw+ztet (y

′|x) ft(x,y′)

)

=∑
y
Pw+ztet (y|x) ft(x,y)

2−

(

∑
y
Pw+ztet (y|x) ft(x,y)

)2

.

7.5 Derivation of (33)

From (6) and (9), we immediately have ASCGIS
t (zt)≥ACD

t (zt) and AIIS
t (zt)≥ACD

t (zt). Next we prove
that AGIS

t (zt) ≥ ASCGIS
t (zt). Assume D(zt) ≡ AGIS

t (zt)−ASCGIS
t (zt). Then

D′(zt) =
(

ezt f
#
− ezt f

#
t
)

∑
x,y
P̃(x)Pw(y|x) ft(x,y).

Since f # ≥ f #t ≥ 0,

D′(zt) ≥ 0 if zt > 0,
D′(zt) ≤ 0 if zt < 0.

(63)

From Taylor expansion, there exists h between 0 and zt such that

D(zt) = D(0)+ ztD′(h).

From ASCGIS
t (0) = AGIS

t (0) = 0, we have D(0) = 0. By (63), ztD′(h) ≥ 0, so

AGIS
t (zt)−ASCGIS

t (zt) = D(zt) ≥ D(0) = 0.

We can use a similar method to prove AGIS
t (zt) ≥ AIIS

t (zt).

7.6 Proof of Theorem 4

From (31), we can define

H =max
t

(

1
σ2

+∑
x,y
P̃(x) ft(x,y)2

)

≥ ACD
t

′′
(zt), ∀zt . (64)
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From the Taylor expansion of ACD
t (zt) at zt = 0, there exists h between 0 and d such that zt = λd

satisfies

ACD
t (λd)− γλdACD

t
′
(0)

= ACD
t (0)+ACD

t
′
(0)λd+

1
2
ACD
t

′′
(h)λ2d2− γλdACD

t
′
(0)

≤ ACD
t

′
(0)λd+

1
2
Hλ2d2− γλdACD

t
′
(0)

= −λ
ACD
t

′
(0)2

ACD
t

′′
(0)

+
1
2
Hλ2

ACD
t

′
(0)2

ACD
t

′′
(0)2

+ γλ
ACD
t

′
(0)2

ACD
t

′′
(0)

= λ
ACD
t

′
(0)2

ACD
t

′′
(0)

(

λ

(

H
2ACD

t
′′
(0)

)

−1+ γ

)

. (65)

If we choose

λ̄=
2ACD

t
′′
(0)(1− γ)
H

, (66)

then for λ≤ λ̄, (65) is non-positive. Therefore, (35) is satisfied for all 0≤ λ≤ λ̄.

7.7 Proof of Theorem 5

Following the proof in Section 7.3, it is sufficient to prove inequalities in the same form as (59) and
(60). By Theorem 4, any λ∈ [βλ̄, λ̄], where β∈ (0,1) and λ̄ is defined in (66), satisfies the sufficient
decrease condition (35). Since Algorithm 3 selects λ by trying {1,β,β2, . . .}, with (64), the selected
value λ satisfies

λ≥ βλ̄= β
2ACD

t
′′
(0)(1− γ)
H

.

This and (34) suggest that the step size zt = λd in Algorithm 3 satisfies

|zt | = λ

∣
∣
∣
∣
∣

−ACD
t

′
(0)

ACD
t

′′
(0)

∣
∣
∣
∣
∣
≥
2β(1− γ)

H

∣
∣
∣ACD

t
′
(0)

∣
∣
∣ . (67)

From (34), (35), zt = λd, ACD
t

′′
(0) ≥ 1/σ2 and λ≤ 1, we have

ACD
t (zt)−ACD

t (0) ≤ γztACD
t

′
(0) = −γztdACD

t
′′
(0) ≤−

γ
λσ2

z2t ≤−
γ
σ2
z2t . (68)

Note that zt is the step taken for updating wk,tt to wk,t+1t . With ACD
t (zt) = L(wk,t+1)−L(wk,t), (67)-

(68) are in the same form as (59)-(60). In Section 7.3, (59)-(60) are sufficient to prove the desired
conditions (23)-(24) for the linear convergence (Theorem 2). Therefore, Algorithm 3 linearly con-
verges.

840



ITERATIVE SCALING AND COORDINATE DESCENT METHODS FOR MAXIMUM ENTROPY MODELS

7.8 Proof of Theorem 6

A direct calculation of ACD
t

′′′
(zt) shows that it is bounded for all zt and wkt . We assume that a bound

isM. Using ACD
t (0) = 0, (34) and Taylor expansion, there exists h between 0 and d such that

ACD
t (d) = ACD

t
′
(0)d+

1
2
ACD
t

′′
(0)d2+

1
6
ACD
t

′′′
(h)d3

= −
1
2
ACD
t

′
(0)2

ACD
t

′′
(0)

+
1
6
ACD
t

′′′
(h)d3

≤ −
1
2
ACD
t

′′
(0)d2+

1
6
M

∣
∣d3

∣
∣ (69)

= −γd2ACD
t

′′
(0)+

(

γACD
t

′′
(0)−

1
2
ACD
t

′′
(0)+

1
6
M|d|

)

d2

= γdACD
t

′
(0)+

(

γACD
t

′′
(0)−

1
2
ACD
t

′′
(0)+

1
6
M|d|

)

d2.

Note that γ< 1/2. As ACD
t

′′
(0)≥ 1/σ2 and |ACD

t
′
(0)|→ 0 whenw converges to the optimal solution

w∗, near the optimum, d is small enough so that

0≤ |d|≤
6
M

(
1
2
− γ

)

ACD
t

′′
(0).

Then we obtain ACD
t (d) ≤ γdACD

t
′
(0) and (35) is satisfied.

7.9 Proof of Theorem 7

The following lemma, needed for proving Theorem 7, shows that the direction taken by CD is bigger
than that of GIS, IIS, or SCGIS.

Lemma 8 There exists a positive constant λ such that in a neighborhood of w∗,

|ds|(1+λ) ≤ |d| =
∣
∣
∣
∣

δ′t(0)
δ′′t (0)

∣
∣
∣
∣
, (70)

where d and ds are defined in (37).

Proof. Since ds = argminzt Ast (zt) and Ast (zt) is strictly convex,

Ast
′(ds) = 0. (71)

We separate the proof to two cases: Ast ′(0) > 0 and Ast ′(0) < 0. If Ast ′(0) = 0, then ds = 0, so (70)
immediately holds.

If Ast ′(0) > 0, from the strict convexity of Ast (zt) and (71), ds < 0. It is sufficient to prove that
there is λ such that Ast ′(d/(1+λ)) ≤ 0. This result implies d/(1+λ) ≤ ds, so we obtain (70) .

Using Taylor expansion, if zt f s(x,y) < 0, then

ezt f
s(x,y) ≤ 1+ zt f s(x,y)+

1
2
z2t ( f s(x,y))2, (72)
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where

f s(x,y) ≡









f # if s is GIS,

f #t if s is SCGIS,

f #(x,y) if s is IIS.

From Table 1 and (72),

Ast
′(zt) =∑

x,y
P̃(x)Pw(y|x) ft(x,y)ezt f

s(x,y) +Q′
t(zt) (73)

≤

(

∑
x,y
P̃(x)Pw(y|x) ft(x,y)+

wt
σ2

− P̃( ft)

)

+

(

R1(w)+
1
σ2

)

zt +
1
2
z2t R2(w)

= Ast
′(0)+

(

R1(w)+
1
σ2

−
1
2
|zt |R2(w)

)

zt ,

where

R1(w) ≡∑
x,y
P̃(x)Pw(y|x) ft(x,y) f s(x,y) and

R2(w) ≡∑
x,y
P̃(x)Pw(y|x) ft(x,y) f s(x,y)2.

Now the Newton direction is

d = −
ACD
t

′
(0)

ACD
t

′′
(0)

= −
δ′t(0)
δ′′t (0)

= −
Ast ′(0)
δ′′t (0)

< 0. (74)

From (31),

δ′′t (0) =∑
x,y
P̃(x)Pw(y|x) ft(x,y)2−∑

x
P̃(x)

(

∑
y
Pw(y|x) ft(x,y)

)2

+
1
σ2

≤ R1(w)−R3(w)+
1
σ2

,

(75)

where

R3(w) ≡∑
x
P̃(x)

(

∑
y
Pw(y|x) ft(x,y)

)2

.

When w→ w∗, R1(w), R2(w), R3(w) respectively converge to R1(w∗), R2(w∗), R3(w∗). Moreover,
as w+dset ∈ {w̄ | L(w̄) ≤ L(w)}, ds → 0 when w→ w∗. Therefore,

lim
w→w∗

δ′′t (0)
R1(w)+ 1

σ2 −
1
2 |ds|R2(w)

= 1−
R3(w∗)

R1(w∗)+ 1
σ2

. (76)

Here we can assume R3(w∗) > 0. If not, ft(x,y) = 0 for all x,y. Then w∗
t = 0 is obtained in just one

iteration. From (76), we can choose a positive λ such that

1
1+λ

> 1−
R3(w∗)

R1(w∗)+ 1
σ2

. (77)
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From (76) and (77), for any w in a neighborhood of w∗,

δ′′t (0) ≤
R1(w)+ 1

σ2 −
1
2 |d

s|R2(w)

1+λ
.

From (74),
d

1+λ
≤−

Ast ′(0)
R1(w)+ 1

σ2 −
1
2 |ds|R2(w)

. (78)

From (73) with zt = d/(1+λ) and (78),

Ast
′
(

d
1+λ

)

≤ Ast
′(0)−Ast

′(0) = 0.

Therefore, d/(1+λ) ≤ ds < 0.
If Ast ′(0) < 0, then ds > 0. Using Taylor expansion, if zt f s(x,y) > 0, we have

ezt f
s(x,y) ≥ 1+ zt f s(x,y).

Then (73) becomes

Ast
′(zt) ≥

(

∑
x,y
P̃(x)Pw(y|x) ft(x,y)+

wt
σ2

− P̃( ft)

)

+

(

R1(w)+
1
σ2

)

zt

= Ast
′(0)+

(

R1(w)+
1
σ2

)

zt .

(79)

From (75) and a derivation similar to (76), there is a λ> 0 such that

δ′′t (0)(1+λ) ≤ R1(w)+
1
σ2

.

Let zt = d/(1+λ) in (79). With (74),

Ast
′
(

d
1+λ

)

≥ Ast
′(0)−Ast

′(0) = 0.

Therefore, 0< ds ≤ d/(1+λ).
Proof of Theorem 7 We prove this theorem by calculating a lower bound of δt(ds)− δt(d).

From (69),

δt(d) ≤−
1
2
δ′t(0)2

δ′′t (0)
+
1
6
Md3, (80)

whereM is an upper bound of δ′′′t (zt). If w is sufficiently close to w∗,

δt(ds) = δ′t(0)ds+
1
2
δ′′t (0)(ds)2+

1
6
δ′′′t (h)(ds)3

=
1
2
δ′′t (0)

(
δ′t(0)
δ′′t (0)

−ds
)2

−
1
2
δ′t(0)2

δ′′t (0)
+
1
6
δ′′′t (h)(ds)3

≥
1
2
δ′′t (0)

(
λ

1+λ

)
δ′t(0)2

δ′′t (0)2
−
1
2
δ′t(0)2

δ′′t (0)
−
1
6
M|d3|

=
1
2

(
−1
1+λ

)
δ′t(0)2

δ′′t (0)
−
1
6
M|d3|,

(81)
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where h is between 0 and ds and the inequality is from Lemma 8. Combining (80) and (81),

δt(ds)−δt(d) ≥
1
2

(

1−
1

1+λ

)
δ′t(0)2

δ′′t (0)
−
1
3
M|d3|

=

(
1
2

(
λ

1+λ

)

−
1
3
M
|δ′t(0)|
δ′′t (0)2

)
δ′t(0)2

δ′′t (0)
.

Since δ′′t (0)≥ 1/(σ2) and δ′t(0)→∇tL(w∗) = 0, there is a neighborhood of w∗ so that δ′t(0) is small
enough and

1
2

(
λ

1+λ

)

>
1
3
M
|δ′t(0)|
δ′′t (0)2

.

Therefore, δt(ds) > δt(d) in a neighborhood of w∗.

7.10 Derivation of (39)

From Jensen’s inequality and the fact that log(x) is a concave function,

∑Ωt P̃(x) log Tw+zt et (x)
Tw(x)

∑Ωt P̃(x)
≤ log




∑Ωt P̃(x)Tw+zt et (x)

Tw(x)

∑Ωt P̃(x)



 .

With (16), (19) and (40), we have

ACD
t (zt) ≤ Qt(zt)+ P̃t log

(

1+
∑Ωt P̃(x)∑y Pw(y|x)(ezt ft(x,y)−1)

P̃t

)

.

By the inequality (15),

ACD
t (zt) ≤ Qt(zt)+ P̃t log






1+

∑Ωt P̃(x)∑y Pw(y|x)
(

ft(x,y)ezt f
#
t

f #t
+ f #t − ft(x,y)

f #t
−1

)

P̃t







= Qt(zt)+ P̃t log



1+

(

ezt f #t −1
)

∑Ωt P̃(x)∑y Pw(y|x) ft(x,y)

f #t P̃t





= ĀCD
t (zt).

Note that replacing P̃t with ∑x P̃(x) leads to another upper bound of ACD
t (zt). It is, however, looser

than ĀCD
t (zt).

7.11 Logistic Regression

We list approximate functions of IS/CD methods for logistic regression. Note that

P̃(xi,y) =

{
1
l if y= ȳi,
0 otherwise,

and P̃( ft) = ∑
i:ȳi=1

1
l
x̄it . (82)
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For GIS, using the formula in Table 1 and (43),

AGISt (zt) = Qt(zt)+
1
l

(

ezt f # −1
f # ∑

i

x̄it
1+ e−wT x̄i

)

,

where from (11) and (82),

Qt(zt) =
2wtzt + z2t
2σ2

−
zt
l ∑i:ȳi=1

x̄it and f # ≡max
j
f #(i).

Similarly, IIS and SCGIS respectively solve

AIISt (zt) = Qt(zt)+
1
l

(

∑
i

x̄it
1+ e−wT xi

ezt f #(i)−1
f #(i)

)

,

ASCGISt (zt) = Qt(zt)+
1
l

(

ezt f #t −1
f #t

∑
i

x̄it
1+ e−wT xi

)

,

where f #t =maxi x̄it and f #(i) = ∑t x̄it . Finally, from (17), (30), and (31),

ACD
t (zt) = Qt(zt)+

1
l ∑i

log
(

1+
ezt x̄it −1
1+ e−wT x̄i

)

,

ACD
t

′
(0) =

wt
σ2

+
1
l

(

∑
i

x̄it
1+ e−wT x̄i

− ∑
i:ȳi=1

x̄it

)

,

ACD
t

′′
(0) =

1
σ2

+
1
l

(

∑
i

e−wT x̄i x̄2it
(1+ e−wT x̄i)2

)

.
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Abstract
We propose a new algorithm for building decision tree classifiers. The algorithm is executed in
a distributed environment and is especially designed for classifying large data sets and streaming
data. It is empirically shown to be as accurate as a standard decision tree classifier, while being
scalable for processing of streaming data on multiple processors. These findings are supported by
a rigorous analysis of the algorithm’s accuracy.

The essence of the algorithm is to quickly construct histograms at the processors, which com-
press the data to a fixed amount of memory. A master processor uses this information to find
near-optimal split points to terminal tree nodes. Our analysis shows that guarantees on the local
accuracy of split points imply guarantees on the overall tree accuracy.
Keywords: decision tree classifiers, distributed computing, streaming data, scalability

1. Introduction

We propose a new algorithm for building decision tree classifiers for classifying both large data
sets and streaming data. As recently noted (Bottou and Bousquet, 2008), the challenge which dis-
tinguishes large-scale learning from small-scale learning is that training time is limited compared
to the amount of available data. Thus, in our algorithm both training and testing are executed in
a distributed environment, using only one pass on the data. We refer to the new algorithm as the
Streaming Parallel Decision Tree (SPDT).

Decision trees are simple yet effective classification algorithms. One of their main advantages
is that they provide human-readable rules of classification. Decision trees have several drawbacks,
one of which is the need to sort all numerical attributes in order to decide where to split a node.
This becomes costly in terms of running time and memory size, especially when decision trees
are trained on large data. The various techniques for handling large data can be roughly grouped
into two approaches: performing pre-sorting of the data, as in SLIQ (Mehta et al., 1996) and its
successors SPRINT (Shafer et al., 1996) and ScalParC (Joshi et al., 1998), or replacing sorting with
approximate representations of the data such as sampling and/or histogram building, for example,
BOAT (Gehrke et al., 1999), CLOUDS (AlSabti et al., 1998), and SPIES (Jin and Agrawal, 2003).
While pre-sorting techniques are more accurate, they cannot accommodate very large data sets or
streaming data.

Faced with the challenge of handling large data, a large body of work has been dedicated to par-
allel decision tree algorithms (Shafer et al., 1996; Joshi et al., 1998; Narlikar, 1998; Jin and Agrawal,
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2003; Srivastava et al., 1999; Sreenivas et al., 1999; Goil and Choudhary, 1999). There are several
ways to parallelize decision trees, described in detail in Amado et al. (2001), Srivastava et al. (1999)
and Narlikar (1998). Horizontal parallelism partitions the data so that different processors see dif-
ferent examples.1 Vertical parallelism enables different processors to see different attributes. Task
parallelism distributes the tree nodes among the processors. Finally, hybrid parallelism combines
horizontal or vertical parallelism in the first stages of tree construction with task parallelism towards
the end.

Like their serial counterparts, parallel decision trees overcome the sorting obstacle by applying
pre-sorting, distributed sorting, and approximations. Following our interest in streaming data, we
focus on approximate algorithms. Our proposed algorithm builds the decision tree in a breadth-first
mode, using horizontal parallelism. The core of our algorithm is an on-line method for building
histograms from streaming data at the processors. The histograms are essentially compressed repre-
sentations of the data, so that each processor can transmit an approximate description of the data that
it sees to a master processor, with low communication complexity. The master processor integrates
the information received from all the processors and determines which terminal nodes to split and
how.

This paper is organized as follows. In Section 2 we introduce the SPDT algorithm and the
underlying histogram building algorithm. We dwell upon the advantages of SPDT over existing
algorithms. In Section 3 we analyze the tree accuracy. In Section 4 we present experiments that
compare the SPDT algorithm with the standard decision tree. The experiments show that the SPDT
algorithm compares favorably with the traditional, single-processor algorithm. Moreover, it is scal-
able to streaming data and multiple processors. We conclude in Section 5.

2. Algorithm Description

Consider the following problem: given a (possibly infinite) series of training examples {(x1,y1), . . . ,
(xn,yn)}where xi ∈ Rd and yi ∈ {1, . . . ,c}, our goal is to construct a decision tree that will accurately
classify test examples. The classifier is built using multiple processing nodes (i.e., CPUs), where
each of the processing nodes observes approximately 1/W of the training examples (whereW is the
number of processing nodes). This partitioning happens for one of several reasons: for example, the
data may not be stored in a single location, and may not arrive at a single location, or it may be too
abundant to be handled by a single node in a timely manner.

Because of the large number of training examples, it is not feasible to store the examples (even
in each separate processor). Therefore, a processor can either save a short buffer of examples and
use them to improve (or construct) the classifier, or build a representative summary statistic from
the examples, improving it over time, but never saving the examples themselves. In this paper we
take the latter approach.

Although the setting described here is generally applicable to streams of data, it is also appli-
cable to the classification of large data sets in batch mode, where memory and processing power
constraints require the distribution of data across multiple processors and with limited memory for
each processor.

We first present our histogram data structure and the methods related to it. We then describe the
tree building process.

1. We refer to processing nodes as processors, to avoid confusion with tree nodes.
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Algorithm 1 Update Procedure
input A histogram h= {(p1,m1), . . . ,(pB,mB)}, a point p.
output A histogram with B bins that represents the set S∪{p}, where S is the set represented by h.
1: if p= pi for some i then
2: mi = mi+1
3: else
4: Add the bin (p,1) to the histogram, resulting in a histogram of B+1 bins h∪{(p,1)}. Denote

pB+1 = p and mB+1 = 1.
5: Sort the sequence p1, . . . , pB+1. Denote by q1, . . . ,qB+1 the sorted sequence, and let π be a

permutation on 1, . . . ,B+ 1 such that qi = pπ(i) for all i = 1, . . . ,B+ 1. Denote ki = mπ(i),
namely, the histogram h∪ (p,1) is equivalent to (q1,k1), . . . ,(qB+1,kB+1), q1 < .. . < qB+1.

6: Find a point qi that minimizes qi+1−qi.
7: Replace the bins (qi,ki), (qi+1,ki+1) by the bin

(

qiki+qi+1ki+1
ki+ ki+1

,ki+ ki+1
)

.

8: end if

2.1 On-line Histogram Building

A histogram is a set of B pairs (called bins) of real numbers {(p1,m1), . . . ,(pB,mB)}, where B is a
preset constant integer. The histogram is a compressed and approximate representation of a set S
of real numbers. At any time we have |S| = ∑B

i=1mi, where |S| is the number of points in S. The
histogram data structure supports four procedures, named update, merge, sum, and uniform. The
update procedure is based on an on-line clustering algorithm developed by Guedalia et al. (1999).
A demonstration of the algorithms on actual input is given in the appendix.

Algorithm 1 presents the update procedure, which adds a new point to a set that is already
represented by a given histogram. The merge procedure (Algorithm 2) creates a histogram that rep-
resents the union S1∪S2 of the sets S1,S2, whose representing histograms are given. The algorithm
is similar to the update algorithm; in the first step, the two histograms form a single histogram with
many bins. In the second step, bins which are closest are merged together (as in lines 5 and 6 in
Algorithm 1) to form a single bin. The process repeats until the histogram has B bins.

The sum procedure estimates the number of points in a given interval [a,b], that belong to a set
whose histogram is given. Algorithm 3 describes how to calculate the sum for [−∞,b], and can be
used to calculate the sum for [a,b], since it is equal to the sum for [−∞,b]minus the sum for [−∞,a].

The algorithm assumes that for a bin (p,m), there are m points surrounding p, of which m/2
points are to the left of the bin and m/2 points are to the right. Consequently, the number of points
in the interval [pi, pi+1] is equal to (mi+mi+1)/2, which is the area of the trapezoid (pi,0),(pi,mi),
(pi+1,mi+1),(pi+1,0), divided by (pi+1 − pi). To estimate the number of points in the interval
[pi,b], for pi < b < pi+1, we draw a straight line from (pi,mi) to (pi+1,mi+1). We set mb = mi +
mi+1−mi
pi+1−pi (b− pi), so that (b,mb) is on this line. The estimated number of points in the interval [pi,b]
is then the area of the trapezoid (pi,0),(pi,mi),(b,mb),(b,0), divided again by (pi+1− pi). The
case where b< p1 or b> pB requires special treatment. One possibility is to add two dummy bins
(p0,0) and (pB+1,0), where p0 and pB+1 are chosen using prior knowledge, according to which all
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Algorithm 2Merge Procedure
input Histograms h1 = {(p(1)

1 ,m(1)
1 ), . . . ,(p(1)

B1 ,m(1)
B1 )}, h2 = {(p(2)

1 ,m(2)
1 ), . . . ,(p(2)

B2 ,m(2)
B2 )}, an inte-

ger B .
output A histogram with B bins that represents the set S1∪S2, where S1 and S2 are the sets repre-

sented by h1 and h2, respectively.
1: For i = 1, . . . ,B1, denote pi = p(1)

i and mi = m(1)
i . For i = 1, . . . ,B2, denote pB1+i = p(2)

i and
mB1+i = m(2)

i .
2: Sort the sequence p1, . . . , pB1+B2 . Denote by q1, . . . ,qB1+B2 the sorted sequence, and let π be a
permutation on 1, . . . ,B1+B2 such that qi = pπ(i) for all i = 1, . . . ,B1+B2. Denote ki = mπ(i),
namely, the histogram h1∪h2 is equivalent to (q1,k1), . . . ,(qB1+B2 ,kB1+B2), q1 < .. . < qB1+B2 .

3: repeat
4: Find a point qi that minimizes qi+1−qi.
5: Replace the bins (qi,ki), (qi+1,ki+1) by the bin

(

qiki+qi+1ki+1
ki+ ki+1

,ki+ ki+1
)

.

6: until The histogram has B bins

Algorithm 3 Sum Procedure
input A histogram {(p1,m1), . . . ,(pB,mB)}, a point b such that p1 < b< pB.
output Estimated number of points in the interval [−∞,b].
1: Find i such that pi ≤ b< pi+1.
2: Set

s=
mi+mb
2

·
b− pi
pi+1− pi

where
mb = mi+

mi+1−mi
pi+1− pi

(b− pi).

3: for all j < i do
4: s= s+mj
5: end for
6: s= s+mi/2

or almost all the points in S are in the interval [p0, pB+1] (p0 and pB+1 can be determined on the fly
during the histogram’s construction).

The uniform (Algorithm 4) procedure receives as input a histogram {(p1,m1), . . . ,(pB,mB)}
and an integer B̃ and outputs a set of real numbers u1 < .. . < uB̃−1, with the property that the number
of points between two consecutive numbers u j,u j+1, and the number of data points to the left of u1
and to the right of uB̃−1, is

|S|
B̃ . The algorithm works like the sum procedure in the inverse direction:

After the point u j was determined, we analytically find a point u j+1 such that the number of points
in [u j,u j+1] is estimated to be equal to |S|

B̃ . This is very similar to the calculations performed in
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Algorithm 4 Uniform Procedure
input A histogram {(p1,m1), . . . ,(pB,mB)}, an integer B̃.
output A set of real numbers u1 < .. . < uB̃, with the property that the number of points between

two consecutive numbers u j,u j+1, as well as the number of data points to the left of u1 and to
the right of uB̃, is 1B̃ ∑

B
i=1mi.

1: for all j = 1, . . . , B̃−1 do
2: Set s= j

B̃ ∑
B
i=1mi

3: Find i such that sum([−∞, pi]) < s< sum([−∞, pi+1]).
4: Set d to be the difference between s and sum([−∞, pi]).
5: Search for u j such that

d =
mi+muj

2
·
u j− pi
pi+1− pi

,

where
muj = mi+

mi+1−mi
pi+1− pi

(u j− pi).

Substituting
z=

u j− pi
pi+1− pi

,

we obtain a quadratic equation az2+bz+ c= 0 with a= mi+1−mi, b= 2mi, and c= −2d.
Hence set u j = pi+(pi+1− pi)z, where

z=
−b+

√
b2−4ac
2a

.

6: end for

sum, where this time we are given the area of a trapezoid and have to compute the coordinates of its
vertices (see line 5 in Algorithm 4).

2.2 Tree Growing Algorithm

We construct a decision tree based on a set of training examples {(x1,y1), . . . ,(xn,yn)}, where
x1, . . . ,xn ∈ Rd are the feature vectors and y1, . . . ,yn ∈ {1, . . . ,c} are the labels. Every internal node
in the tree possesses two ordered child nodes and a decision rule of the form x(i) < a, where x(i) is
the ith attribute and a is a real number. Feature vectors that satisfy the decision rule are directed to
the node’s left child node, and the other vectors are directed to the right child node. Thus, every
example x has a path from the root to one of the leaves, denoted l(x). Every leaf has a label t, so
that an example x is assigned the label t(l(x)).

Algorithm 5 provides an overview of the tree construction algorithm. We note that this descrip-
tion fits standard decision trees as well. Each time that line 3 is executed, we say that a new iteration
has begun. If there are too many samples (possibly infinite in number), we read a predefined number
of samples; otherwise, we use the complete data set. A new level of nodes is appended to the tree in
each iteration. In line 5 we decide whether a leaf v is to be split or labeled, according to a stopping
criterion. Possible stopping criteria can be some threshold on the number of samples reaching the
node, or on the node’s impurity. A node’s impurity is a function G that measures the homogeneity
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Algorithm 5 Decision Tree
input Training set {(x1,y1), . . . ,(xn,yn)}
1: Initialize T to be a single unlabeled node.
2: while there are unlabeled leaves in T do
3: Navigate data samples to their corresponding leaves.
4: for all unlabeled leaves v in T do
5: if v satisfies the stopping criterion or there are no samples reaching v then
6: Label v with the most frequent label among the samples reaching v
7: else
8: Choose candidate splits for v and estimate Δ for each of them.
9: Split v with the highest estimated Δ among all possible candidate splits.
10: end if
11: end for
12: end while

of labels in samples reaching the node. Its parameters are q1, . . . ,qc, where q j is the probability that
a sample reaching v has label j and c is the number of labels. The most popular impurity functions
are the Gini criterion,

1−∑
j
q2j

and the entropy function
−∑

j
q j lnq j where 0ln0≡ 0 .

In our analysis in Section 3, we requireG to be continuous and satisfyG({q j})≥ 1−max j{q j}.
These properties hold for the Gini and entropy functions.

The notation Δ, appearing in lines 8 and 9, represents the gap in the impurity function before
and after splitting. Suppose that an attribute i and a threshold a are chosen, so that a node v is split
according to the rule x(i) < a. Denote by τ the probability that a sample reaching v is directed to v’s
left child node. Denote further by qL, j and qR, j the probabilities of label j in the left and right child
nodes, respectively. We define the function Δ(τ,{q j},{qL, j},{qR, j}) = Δ(v, i,a) as

Δ= G({q j})− τG({qL, j})− (1− τ)G({qR, j}). (1)

To complete the algorithm’s description, we need to specify what are the candidate splits, men-
tioned in lines 8 and 9, and how the function Δ for each split is estimated in a distributed environ-
ment. We begin by providing an interpretation for these notions in the classical setting, that is, for
the standard, serial algorithm. Most algorithms sort every attribute in the training set, and test splits
of the form x(i) < a+b

2 , where a and b are two consecutive numbers in the sorted sequence of the ith
attribute. For every candidate split, Δ can be calculated precisely, as in (1).

In the parallel setting, we apply a distributed architecture that consists of W processors (also
called workers). Each processor can observe 1/W of the data, but has a view of the complete
classification tree built so far. We do not wish each processor to sort its share of the data set,
because this operation is not scalable to extremely large data sets. Moreover, the communication
complexity between the processors must be a constant that does not depend on the size of the data
set. Our algorithm addresses these issues by trading time and communication complexity with
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Algorithm 6 Compress Data Sets
input 1/W of the training set, whereW is the number of processors
output histograms to be transmitted to the master processor
1: Initialize an empty histogram h(v, i, j) for every unlabeled leaf v, attribute i, and class j.
2: for all observed training samples (xk,yk), where xk = (x(1)

k , . . .x(d)
k ) do

3: if the sample is directed to an unlabeled leaf v then
4: for all attributes i do
5: Update the histogram h(v, i,yk) with the point x(i)

k , using the update procedure.
6: end for
7: end if
8: end for

classification accuracy. The processors build histograms describing the data they observed and send
them to a master processor. Algorithm 6 specifies which histograms are built and how. The number
of bins in the histograms is specified through a trade-off between accuracy and computational load:
A large number of bins allows a more accurate description, whereas small histograms are beneficial
for avoiding time, memory, and communications overloads.

For every unlabeled leaf v, attribute i, and class j, the master processor merges the W his-
tograms h(v, i, j) received from the processors. The master node now has an exact knowledge of
the frequency of each label in each tree node, and hence the ability to calculate the impurity of all
unlabeled leaves. Leaves that satisfy the stopping criterion are labeled. For the other leaves, the
questions remain of how to choose candidate splits and how to estimate their Δ. They are answered
as follows. Let v be an unlabeled leaf (that remains unlabeled after the application of the stopping
criterion) and let i be an attribute. We first merge the histograms h(v, i,1), . . . ,h(v, i,c) (c denotes
the number of labels). The new histogram, denoted h(v, i), represents the ith dimension of feature
vectors that reach v, with no distinction between vectors of different labels. We now apply the
uniform procedure on h(v, i) with some chosen B̃. The resulting set u1 < .. . < uB̃−1 constitutes the
locations of the candidate splits for the ith attribute. Finally, Δ for each candidate split is estimated
using the sum procedure and the histograms h(v, i, j). We clarify the rationale behind this choice of
split locations. Suppose that the best split is x(i) < a, where uk < a < uk+1. The number of points
in the interval [uk,a] is bounded, implying a bound on the degree of change in Δ if one splits at uk
instead of a. This issue is discussed in more detail in Section 3.

Decision trees are frequently pruned during or after training to obtain smaller trees and better
generalization. In the experiments presented in Section 4, we adapted the MDL-based pruning
algorithm of Mehta et al. (1996), which is similar to the one used in CART (Breiman et al., 1984).
This algorithm involves simple calculations during node splitting that reflect the node’s purity. In a
bottom-up pass on the complete tree, some subtrees are chosen to be pruned, based on estimates of
the expected error rate before and after pruning. The distributed environment neither changes this
pruning algorithm nor does it affect its output.

2.3 Complexity Analysis

Every iteration consists of an updating phase performed simultaneously by all the processors and
a merging phase performed by the master processor. In the update phase, every processor makes
one pass on the data batch assigned to it. The only memory allocation is for the histograms being
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constructed. The number of bins in the histograms is constant; hence, operations on histograms take
a constant amount of time. Every processor performs at most N/W histogram updates, where N is
the size of the data batch andW is the number of processors. There areW ×L× c×d histograms,
where L is the number of leaves in the current iteration, c is the number of labels, and d is the
number of attributes. Assuming thatW,L,c, and d are all independent of N, it follows that the space
complexity is O(1). The histograms are communicated to the master processor, which merges them
and applies the sum and uniform procedures. If the uniform procedure is applied with a constant
parameter B̃, then the time complexity of the merging phase is O(1).

To summarize, each iteration requires the following:

• At most N/W operations by each processor in the updating phase.

• Constant space and communication complexities.

• Constant time in the merging phase.

2.4 Related Work

In this section we discuss previous work on histogram and quantile approximations, as well as
procedures for building decision trees on parallel platforms.

2.4.1 HISTOGRAMS AND QUANTILES APPROXIMATIONS

Data structures that summarize large sets are substantial components of a variety of algorithms in
database management and data mining. Our histogram algorithms tackle two related problems:
data compression and quantile approximations.2 There is broad coverage of these topics in the
literature, with an inclination towards one pass algorithms, see Gilbert et al. (2002), Guha et al.
(2006), Ioannidis (2003) and Lin (2007) and references therein. Proposed solutions can be divided
into two categories: The first category consists of algorithms with proven approximation guarantees
(Cormode andMuthukrishnan, 2005; Gilbert et al., 2002; Greenwald and Khanna, 2001; Guha et al.,
2006). The demand for a guaranteed accuracy level forces these algorithms to use large amounts of
memory, that is, their space requirements are increasing functions of the data size. An exception is
the probabilistic algorithm of Manku et al. (1998), which receives an input parameter δ and returns
approximate quantiles whose guarantees hold with probability δ. The space complexity of this
algorithm increases with δ but not with the data size. The second category, to which our algorithm
belongs, consists of heuristics that work well empirically and demand low amounts of space, but
lack any rigorous accuracy analysis (Agrawal and Swami, 1995; Jain and Chlamtac, 1985). To our
knowledge, distributed environments are not addressed in either of the two categories, except for a
brief mention by Manku et al. (1998).

Guaranteed accuracy at the cost of non-constant memory and increasing processing time are
problematic because of the inherent nature of streaming data. For example, the algorithm proposed
by Guha et al. (2006) requires roughly O(B2 logn) memory, where n is the number of data points
and B the number of bins. Thus, for example, a stream of 1010 data points (not a large number in
today’s data environments) requires more than 20 times the memory of a comparable fixed-memory
algorithm.

2. For a sequence S of real numbers, the φ-quantile, 0≤ φ≤ 1, is defined to be an element x∈ S such that *φ|S|+ elements
of S are smaller or equal to x.
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The use of a fixed-memory algorithm, like the one proposed in this paper, naturally comes at
a cost in accuracy. As we show, when the data distribution is highly skewed, the accuracy of the
on-line histogram decays. Therefore, in cases where the data can be assumed to have originated
in categorical distributions with a limited number of values or in distributions which are not highly
skewed, the proposed algorithm is sufficiently accurate. In other cases, where distributions are
known to be highly skewed, or memory sizes are not a major factor when executing the algorithm,
practitioners may prefer to resort to guaranteed accuracy algorithms. This replaces the first part of
the proposed algorithm, but keeps its higher levels intact.

2.4.2 PARALLEL DECISION TREES

The SPIES (Jin and Agrawal, 2003) and pCLOUDS (Sreenivas et al., 1999) algorithms build deci-
sion trees for streaming data and work in a distributed environment. They are similar to the SPDT
algorithm in that they use histograms to process the data in constant time and memory. There are,
however, three major differences between these algorithms and the SPDT algorithm and its anal-
ysis. The first difference is in the histogram building algorithm. Unlike SPDT, both SPIES and
pCLOUDS sample the data. The second difference is in the need of a second pass. CLOUDS
(AlSabti et al., 1998) has two versions, named SS and SSE.3 SSE and SPIES may require several
passes over the data, and therefore hold each data batch in memory. The purpose of the second pass
is to locate exactly the best split location for every node, and hence eventually to construct the same
tree as the standard algorithm. SS is more similar to SPDT, since both algorithms build histograms
with an equal number of points in each bin and take the boundaries of the histograms to be the
candidate splits. Since only a constant number of split locations is checked, it is possible that a
suboptimal split is chosen, which may cause the entire tree to be different from the one constructed
by the standard algorithm. The third difference between our work and previous works is our ability
to analytically show that the error rate of the parallel tree approaches the error rate of the serial tree,
even though the trees are not identical.

3. Bounding the Error of SPDT

In this section, we investigate the training error rate of SPDT. We adopt a simpler version of the
framework set by Kearns and Mansour (1999), which views tree nodes as weak learners. This
approach allows us to obtain an overall estimate of the tree by studying the local improvements in
classification accuracy induced by the internal nodes.

3.1 Background

Let n be the number of training samples used to train a decision tree T . For a tree node v, denote by
nv the number of training samples that reach v, and by qv, j the probability that a sample reaching v
has label j, for j = 1, . . . ,c. The training error rate of T is

eT =
1
n ∑
v leaf in T

nv(1−max
j
{qv, j}).

3. pCLOUDS is a parallelization of the SSE version of CLOUDS. We mention the SS version as well because it can be
similarly parallelized.
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Henceforth, we require that the impurity function G is continuous and satisfies G({q j}) ≥ 1−
max j{q j}. The last inequality implies that we have eT ≤ GT , where

GT =
1
n ∑
v leaf in T

nvG({qv, j}). (2)

For our analysis, we rewrite Algorithm 5 such that only one new leaf is added to the tree in
each iteration (see Algorithm 7). The resulting full-grown tree is identical to the tree constructed
by Algorithm 5. Let Tt be the tree produced by Algorithm 7 after the tth iteration. Suppose that the
node v is split in the tth iteration and assigned the rule x(i) < a, and let vL,vR denote its left and right
child nodes respectively. Then

GTt−1 −GTt

=
1
n
(nvG({qv, j})−nvLG({qvL, j})−nvRG({qvR, j}))

=
nv
n
Δ(v, i,a).

It follows that a lower bound on Δ(v, i,a) yields an upper bound on GTt and hence also on eTt .

Definition 1 An internal node v, split by a rule x(i) < a, is said to perform locally well with respect
to a function f ({q j}) if it satisfies Δ(v, i,a) ≥ f ({qv, j}). A tree T is said to perform locally well if
every internal node v in it performs locally well. Finally, a decision tree building algorithm performs
locally well if for every training set, the output tree performs locally well.

Suppose that Tt−1 has a leaf for which nv
n f ({qv, j}) can be lower-bounded by a quantity h(t,GTt−1)

that depends only on t and GTt−1 . Then a lower bound on the training error rate of an algorithm that
performs locally well can be derived by solving the recurrence GTt ≤ GTt−1 − h(t,GTt−1). As a
simple example, consider f ({q j}) = αG({q j}) for some positive constant α. By (2), and since the
number of leaves in Tt−1 is t, there exists a leaf v in Tt−1 for which nv

n G({qv, j}) ≥ GTt−1/t, hence
nv
n f ({qv, j}) ≥

α
t GTt−1 . Let ṽ be the node which is split in the tth iteration. By definition (see line 10

in Algorithm 7), nṽn Δṽ ≥
nv
n Δv, where Δv and Δṽ are the best splits for v and ṽ. We have

GTt−1 −GTt =
nṽ
n
Δṽ ≥

nv
n
Δv ≥

nv
n
f ({qv, j}) ≥

α
t
GTt−1 .

Let G0 be an upper bound on GT0 . Solving the recurrence GTt ≤ (1−α/t)GTt−1 with initial value
G0, we obtain GTt ≤ G0(t−1)−α/2, therefore eTt ≤ G0(t−1)−α/2.

Kearns and Mansour (1999) made a stronger assumption, named the Weak Hypothesis Assump-
tion, on the local performance of tree nodes. For binary classification and a finite feature space, it
is shown that if G(q1,q2) is the Gini index, the entropy function, or G(q1,q2) =

√q1q2, then the
Weak Hypothesis Assumption implies good local performance (each splitting criterion with respect
to its own f (q1,q2)). Lower bounds on the training error of trees with these splitting criteria are
then derived, as described above. These bounds are subject to the validity of the Weak Hypothesis
Assumption.
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3.2 Main Result

To build an SPDT, we have to set the parameters B and B̃. Recall that B is the number of bins in the
histograms constructed by the processors, and B̃ is the size of the output of uniform. Encouraged
by empirical results concerning the histograms’ accuracy, (see Section 4), we set B= B̃ and assume
that all applications of the uniform and sum procedures during SPDT runtime provide us with exact
information on the data set. For example, it is assumed that Δ is calculated exactly and not only
“estimated” (see line 9 in Algorithm 5). We note that all our results remain intact also if we allow
the calculations to be somewhat biased (the empirical evidence points to a bias of about 5%).

It follows that the only source for sub-optimality with respect to standard decision trees is in the
choice of the candidate splits. We recall that for the standard decision tree, the number of candidate
splits for a node v is equal to the number of training samples that reach v minus one. This luxury is
out of the reach of the SPDT because of scalability requirements. The SPDT thus must test only a
constant number of candidate splits before it announces the winning split. The following theorem
asserts that Δ for the split chosen by the SPDT algorithm can be arbitrarily close to the optimal Δ
(of the split chosen by the standard algorithm). The number of bins depends on how close to the
real Δ we wish to be, and also on the shape of the training set, but not on its size.

Theorem 2 Assume that the functions operating on histograms return exact answers. Let v be a
leaf in a decision tree which is under construction, and let x(i) < a be the best split for v according
to the standard algorithm. Denote τ,q j,qL, j,qR, j as in Section 2.2. Then for every δ> 0 there exists
B that depends on τ,{q j},{qL, j},{qR, j}, and δ, such that the split x(ĩ) < ã chosen by the SPDT
algorithm with B bins satisfies Δ(v, ĩ, ã) ≥ Δ(v, i,a)−δ.

Proof. Fix B and consider the split x(i) < uk, where uk < a< uk+1 (take uk = u1 if a< u1 or uk = ur
if a > ur ; in the sequel we assume without loss of generality that a > u1). Denote by τ̃, q̃L, q̃R the
quantities relevant to this split. Let ρ j denote the probability that a training sample x that reaches v
satisfies uk < x(i) < a and has label j. Then

τ̃= τ−ρ0−ρ1

q̃L, j =
τ ·qL, j−ρ j

τ̃

q̃R, j =
(1− τ)qR, j +ρ j

1− τ̃
.

By the continuity of Δ(τ,{q j},{qL, j},{qR, j}), for every δ> 0 there exists ε such that

Δ(τ,{q j},{qL, j},{qR, j})−Δ(τ̃,{q j},{q̃L, j},{q̃R, j}) < δ.

for all ρ j < ε. Since ρ j ≤ 1
B+1 , we can guarantee that ρ j < ε for all j by setting B = 1/ε. We thus

have Δ(v, ĩ, ã) ≥ Δ(v, i,uk) ≥ Δ(v, i,a)−δ, as required.
Theorem 2 implies the following corollary.

Corollary 3 Assume that the standard decision tree algorithm performs locally well with respect to
a function f ({q j}), and that the functions operating on histograms return exact answers. Then for
every positive function δ({q j}), the SPDT algorithm performs locally well with respect to f ({q j})−
δ({q j}), in the sense that for every training set there exists B such that the tree constructed by the
SPDT algorithm with B bins performs locally well. Moreover, B does not depend on the size of the
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Algorithm 7 Decision Tree One Node per Iteration
input training set {(x1,y1), . . . ,(xn,yn)}
1: Initialize T to be a single node.
2: while there are unlabeled leaves in T do
3: for all unlabeled leaves v in T do
4: if v satisfies the stopping criterion or there are no samples reaching v then
5: Label v with the most frequent label among the samples reaching v
6: else
7: Choose candidate splits for v and estimate Δ for each of them.
8: end if
9: end for
10: Split an unlabeled leaf v such that nvΔ is maximal among all unlabeled leaves and all possible

candidate splits, where nv is the number of samples reaching v.
11: end while

training set, implying constant memory and communication complexity and constant running time
at the master processor.

We conclude this section with an example in which we explicitly derive an upper bound on
the error rate of SPDT. Set f ({q j}) = αG({q j}) for a positive constant α, for which we have
seen in Section 3.1 that eTt ≤ G0(t− 1)−α/2. We note that Kearns and Mansour (1999) show that
for G(q1,q2) =

√q1q2, the Weak Hypothesis Assumption implies good local performance with
f (q1,q2) = αG(q1,q2). Applying Corollary 3 with δ({q j}) = α

2G({q j}) = f ({q j})/2, we deduce
that when using histograms with enough bins, the SPDT’s error rate is guaranteed to be no more
than G0(t−1)−α/4.

4. Empirical Results

In the following section we empirically test the proposed algorithms. We first show the accuracy of
the histogram building and merging procedures, and later compare the accuracy of SPDT compared
to a standard decision tree algorithm.

4.1 Histogram Algorithms

We evaluated the accuracy of the histogram building and information extraction algorithms. We
ran experiments on seven synthetic sets, generated via different kinds of probability distributions,
summarized in Table 1. Each set S, consisting of 105 points, was partitioned into four equal parts,
denoted S1− S4. For each part Sk we built a histogram hk with B = 100 bins, using the update
procedure. We then ran the uniform procedure on hk with B̃ = 100, resulting in a sequence of
points u1, . . . ,u99. For each pair of subsequent numbers ui,ui+1, we checked how many points of Sk
are in the interval [ui,ui+1]. We expect to see |Sk|

B̃ = 25000/100= 250 points in each such interval.
Our findings are summarized in Table 2. We observe that the mean absolute difference between 250
and the actual number of points in an interval is equal to 11.17 (4.47% of the expected quantity).

We repeat the same experiment on the histograms h1,2,h3,4, obtained after merging h1 with h2
and h3 with h4. The mean absolute difference between 50000/100= 500 and the number of points
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Distribution Probability density function
Normal f (x) = 1√

2πe
−x2

Uniform f (x) = 1, 0≤ x≤ 1
Exponential f (x) = 1

µe
−(x/µ), µ= 0.5, x≤ 0

Beta f (x) = 1
R 1
0 ta−1(1−t)b−1dt

xa−1(1− x)b−1, a= 0.5, b= 0.5, 0< x< 1
Gamma f (x) = 1

baΓ(a)x
a−1e−x/b, a= 3, b= 1, x≥ 0

Lognormal f (x) = 1
xσ

√
2πe

−(ln(x)−µ)2/2σ2 , µ= 1, σ= 0.5, x> 0
Chi-square f (x) = 1

2v/2Γ(v/2)x
(v−2)/2e−x/2, v= 10, x≥ 0

Table 1: Probability density functions of synthetic sets used in the experiments described in Section
4.1.

Distribution Mean Standard Deviation
Average of Average of Average of Average of
h1−h4 h1,2 and h3,4 h1,2,3,4 h1−h4 h1,2 and h3,4 h1,2,3,4

Normal 11.53 26.22 68.89 15.8 36.83 107.45
Uniform 5.99 18.57 34.13 7.55 24.09 46.84
Exponential 13.78 30.5 18.36 39.28 31.52 83.93
Beta 6.95 18.51 30.91 9.56 24.7 45.26
Gamma 11.87 20.4 61.7 15.68 32.08 84.41
Lognormal 15.93 34.75 72.62 21.59 45.03 93.84
Chi-square 12.12 28.17 56 16.42 38 73.75
Average over
all data sets 11.17 25.87 55.36 14.99 34.29 76.5
Percent error,
averaged over
all data sets 4.47 5.17 5.54

Table 2: Mean absolute difference between the number of points in [ui,ui+1] and the desired number
and standard deviation of the number of points in [ui,ui+1]. Details are in Section 4.1.

in (Sk∪Sk+1)∩ [ui,ui+1], k = 1,3, is 25.87 (5.17% of the expected quantity). Finally, we merged
h1,2 with h3,4. Applying the uniform procedure, the obtained mean absolute difference between
1000 and S∩ [ui,ui+1] is 55.36 (5.54% of the expected quantity).

The sum and uniform procedures assume that there are (mi +mi+1)/2 points in every interval
[pi, pi+1]. We tested this assumption on the histograms h1− h4,h1,2,h3,4 and h1,2,3,4. For h1,2,3,4,
the mean absolute differences between (mi +mi+1)/2 and the actual number of points in [pi, pi+1]
is 28.79. Recall that on average there are 1000 points in each interval, implying an error of 2.88%.
Details are in Table 3.

Figure 1 shows how accuracy is affected by the distribution’s skewness.4 The figure was ob-
tained by calculating the histograms h1,2,3,4 and points u1, . . . ,u99 for different values of the param-

4. The skewness of a distribution is defined to be κ3/σ3, where κ3 is the third moment and σ is the standard deviation.
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Distribution Average of Average of
h1−h4 h1,2 and h3,4 h1,2,3,4

Normal 4.22 11.07 23.01
Uniform 5.06 14.18 30.28
Exponential 3.74 12.17 24.21
Beta 6.6 15.98 33.2
Gamma 4.02 12.56 18.94
Lognormal 3.68 13.52 29.29
Chi-square 4.14 12.42 28.58
Average over
all data sets 4.5 13.13 28.79
Percent error,
averaged over
all data sets 1.8 2.63 2.88

Table 3: Mean absolute difference between the number of points in [pi, pi+1] and (mi +mi+1)/2.
Details are in Section 4.1.

Figure 1: Standard deviation of the number if points in [ui,ui+1] as a function of the distribution’s
skewness. The different degrees of skewness are obtained by varying the parameter v of
the chi-square distribution and the parameter b of the beta distribution with a = 0.5 (see
Table 1). More details are given in Section 4.1.

eters of the beta and chi-square distributions. We observe that highly skewed distributions exhibit
less accurate results.
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Data Set Number of Number of Number of
examples features classes

Adult 32561 (16281) 105 2
Isolet 6238 (1559) 617 2
Letter 20000 16 2
Nursery 12960 25 2
Page Blocks 5473 10 2
Pen Digits 7494 (3498) 16 2
Spam Base 4601 57 2
Magic 19020 10 2
Abalone 4177 10 28
Multiple Features 2000 649 11
Face Detection 100000 (10000) 900 2
OCR 100000 (10000) 1156 2

Table 4: Properties of the data sets used in the experiments. The number of examples in parentheses
is the number of test examples (if a train/test partition exists).

4.2 Evaluation of the SPDT Algorithms

We ran our experiments on ten medium-sized data sets taken from the UCI repository (Blake et al.,
1998) and two large data sets taken from the Pascal Large Scale Learning Challenge (Pascal, 2008).
The characteristics of the data sets are summarized in Table 4. For the UCI data sets, we applied ten-
fold cross validation when a train/test partition was not given. For the Pascal data sets, we extracted
105 examples to constitute a training set, and additional 104 examples to constitute a test set. We
set the number of bins to 50, and limited the depth of the trees to no more than 100 for the UCI data
sets and 10 for the Pascal data sets. We implemented our algorithm in the IBM Parallel Machine
Learning toolbox (PML), which runs using MPICH2, and executed it on an 8-CPU Power5 machine
with 16GB memory using a Linux operating system. We note that none of the experiments reported
in previous works involved both a large number of examples and a large number of attributes.

We began by testing the assumption that splits chosen by the SPDT algorithm are close to
optimal. To this end, we extracted four continuous attributes from the training sets (we chose the
training set of the first fold if there was no train/test partition). For every attribute, we calculated
the following three quantities: Δ of the optimal splitting point, Δ of the splitting point chosen by
SPDT with 8 processors, and average Δ over all splitting points (chosen by random splitting). We
then normalized by G({q j}), that is,

Δ̃=
Δ

G({q j})
= 1−

τG({qL, j})+(1− τ)G({qR, j})
G({q j})

.

The normalized value Δ̃ can be interpreted as the split’s efficiency. Since G({q j}) is the maximum
possible value of Δ, Δ̃ represents the ratio between what is actually achieved and the maximum that
can be achieved. Table 7 displays the gain of the various splitting algorithms.
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Data Set Constant Standard SPDT SPDT SPDT SPDT
classification tree 1 worker 2 workers 4 workers 8 workers

Adult 24 15.73 15.79 15.88 15.69 15.83
Isolet 50 14.95 22.58 26.62 23.09 26.17
Letter 50 8.52 8.59 8.59 8.59 8.59
Nursery 34 2.07 2.17 2.17 2.17 2.17
Page Blocks 10 2.89 3.29 3.09 3.03 3.42
Pen Digits 48 5.37 3.77 3.63 3.63 3.63
Spam Base 39 8.17 6.91 7.02 7.15 7.22
Magic 35 17.91 18.38 18.41 17.95 17.92
Abalone 83.5 79.33 79.93 80.6 79.93 80
Multiple Features 90 8.85 8.5 8.15 8.5 8.7
Face Detection 8.5 - 3.31 4.18 4.13 4.03
OCR 48 - 44.1 42.85 39.35 40.73

Table 5: Percent error for UCI and Pascal data sets. The lowest error rate for each data set is marked
in bold. The “constant classification” column is the percent error of a classifier that always
outputs the most frequent class, that is, it is 100%minus the frequency of the most frequent
class.

Data Set Standard SPDT SPDT SPDT SPDT
tree 1 worker 2 workers 4 workers 8 workers

Adult 81.18 80.75 80.84 80.69 81.38
Isolet 89.7 77.72 69.45 73.93 70.71
Letter 95.56 94.89 94.89 94.89 94.91
Nursery 99.72 99.69 99.69 99.69 99.69
Page Blocks 95.48 94.69 95.84 96.28 95.05
Pen Digits 97.2 97.48 97.37 97.37 97.37
Spam Base 95.25 94.95 93.68 94.32 94.22
Magic 80.17 79.81 79.69 80.1 80.27
Face Detection - 97.76 97.32 97.25 95.44
OCR - 61.72 61.48 63.85 62.57

Table 6: Area under ROC curve (%) for UCI and Pascal data sets with binary classification prob-
lems. The highest AUC for each data set is marked in bold.

Data Set Attribute Δ̃OPTIMAL Δ̃SPDT Δ̃RANDOM
Isolet 1 0.0239 0.0231 0.0108
Page Blocks 9 0.1125 0.0985 0.0199
Spam Base 55 0.2044 0.1393 0.1295
Magic 1 0.128 0.1228 0.0304

Table 7: Δ̃ of splits chosen by the standard tree, SPDT, and random splitting. Details are given in
Section 4.2.
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Data Set Err. (%) Err. (%) AUC (%) AUC (%) Tree size Tree size
before after before after before after
pruning pruning pruning pruning pruning pruning

Adult 15.83 13.83 81.38 88.08 5731 359
Isolet 26.17 25.79 70.71 69.9 403 281
Letter 8.59 9.9 94.91 95.29 1069 433
Nursery 2.17 2.28 99.69 99.66 210 194
Page Blocks 3.42 3.46 95.05 95.19 62 29
Pen Digits 3.63 4 97.37 96.75 87 77
Spam Base 7.22 9.48 94.22 94.39 384 95
Magic 17.92 14.75 80.27 88.81 3690 258
Abalone 80 73.5 - - 4539 93
Multiple Features 8.7 8.25 - - 173 52
Face Detection 4.03 3.91 95.44 97.75 253 169
OCR 40.73 40.63 62.57 62.63 625 447

Table 8: Percent error, areas under ROC curves, and tree sizes (number of tree nodes) before and
after pruning, with eight processors.

We proceed to inspect the tree’s accuracy. Tables 5 and 6 display the error rates and areas under
the ROC curves of the standard decision tree and the SPDT algorithm with 1, 2, 4, and 8 processors.5
We note that it is infeasible to apply the standard algorithm on the Pascal data sets, due to their size.
For the UCI data sets, we observe that the approximations undertaken by the SPDT algorithm do
not necessarily have a detrimental effect on its error rate. The FF statistics combined with Holm’s
procedure (Dems̆ar, 2006) with a confidence level of 95% shows that the SPDT algorithm exhibited
accuracy that could not be detected as statistically significantly different from that of the standard
algorithm.

It is also interesting to study the effect of pruning on the error rate and tree size. Using the
procedure described in Section 2.2, we pruned the trees obtained by SPDT. Table 8 shows that
pruning usually improves the error rate (though not to a statistically significant threshold, using sign
test with p< 0.05) while reducing the tree size by 54% on average.

Figure 2 shows the speedup for different sized subsets of the face detection and OCR data
sets. Referring to data set size as the number of examples multiplied by the number of dimensions,
we found that data set size and speedup are highly correlated (Spearman correlation of 0.90). We
further checked the running time as a function of the data set size. In a logarithmic scale, we obtain
approximate regression curves (average R2 = 0.99, see Figure 3). The slopes of the curves decrease
as the number of processors increases, and drops below 1 for eight processors. In other words, if we
multiply the data size by a factor of 10, the running time is multiplied by less than 10.

The results presented here fit the theoretical analysis of Section 2.3. For large data sets, the
communication between the processors in the merging phase is negligible relative to the gain in the
update phase. Therefore, increasing the number of processors is especially beneficial for large data
sets.

5. The results for the OCR data set can be somewhat improved if we increase the tree depth to 25 instead of 10. For four
processors, we obtain an error of 32.56% and AUC of 67.5%.
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Figure 2: Speedup of the SPDT algorithm for the face detection (top) and OCR (bottom) data
sets.
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Figure 3: Running time vs. data size for the face detection (top) and OCR (bottom) data sets.
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5. Conclusions

We propose a new algorithm for building decision trees, which we refer to as the Streaming Parallel
Decision Tree (SPDT). The algorithm is specially designed for large data sets and streaming data,
and is executed in a distributed environment. Our experiments reveal that the error rate of SPDT is
approximately the same as for the serial algorithm. We also provide a way to analytically compare
the error rate of trees constructed by serial and parallel algorithms without comparing similarities
between the trees themselves.
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Appendix A.

We demonstrate how the histogram algorithms run on the following input sequence:

23,19,10,16,36,2,9,32,30,45. (3)

Suppose that we wish to build a histogram with five bins for the first seven elements. To this
end, we perform seven executions of the update procedure. After reading the first five elements,
we obtain the histogram

(23,1),(19,1),(10,1),(16,1),(36,1).

as depicted in Figure 4(a). We then add the bin (2,1) and merge the two closest bins, (16,1) and
(19,1), to a single bin (17.5,2). This results in the following histogram, depicted in Figure 4(b):

(2,1),(10,1),(17.5,2),(23,1),(36,1).

We repeat this process for the seventh element: the bin (9,1) is added, and the two closest bins,
(9,1) and (10,1), form a new bin (9.5,2). The resulting histogram is given in Figure 4(c):

(2,1),(9.5,2),(17.5,2),(23,1),(36,1).

Let us now merge the last histogram with the following one:

(32,1),(30,1),(45,1).

Figure 5 follows the changes in the histogram during the three iterations of the merge procedure.
We omit details due to the similarity to the update examples given above. The final histogram is
given in Figure 5(d):

(2,1),(9.5,2),(19.33,3),(32.67,3),(45,1).

This histogram represents the set in (3).
We now wish to estimate the number of points smaller than 15. The leftmost bin (2,1) gives 1

point. The second bin, (9.5,2), has 2/2= 1 points to its left. The challenge is to estimate how many
points to its right are smaller than 15. We first estimate that there are (2+3)/2= 2.5 points inside
the trapezoid whose vertices are (9.5,0),(9.5,2),(19.33,3), and (19.33,0) (see Figure 6). Assum-
ing that the number of points inside a trapezoid is proportional to its area, the number of points
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(a) (b)

(c)

Figure 4: Examples of executions of the update procedure.

inside the trapezoid defined by the vertices (9.5,0),(9.5,2),(15,2.56), and (15,0) is estimated to
be

2+2.56
2

×
15−9.5
19.33−9.5

= 1.28.

We thus estimate that there are in total 1+1+1.28= 3.28 points smaller than 15. The true answer,
obtained by looking at the set represented by the histogram (see Equation (3)), is three points: 2, 9,
and 10.

The reader can readily verify that the uniform procedure with B̃= 3 returns the points 15.21 and
28.98. Each one of the intervals [−∞,15.21], [15.21,28.98], and [28.98,∞] is expected to contain
3.33 points. The true values are 3, 2, and 4, respectively.
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Abstract

A successful class of image denoising methods is based on Bayesian approaches working in wavelet
representations. The performance of these methods improves when relations among the local fre-
quency coefficients are explicitly included. However, in these techniques, analytical estimates can
be obtained only for particular combinations of analytical models of signal and noise, thus preclud-
ing its straightforward extension to deal with other arbitrary noise sources.

In this paper, we propose an alternative non-explicit way to take into account the relations
among natural image wavelet coefficients for denoising: we use support vector regression (SVR)
in the wavelet domain to enforce these relations in the estimated signal. Since relations among the
coefficients are specific to the signal, the regularization property of SVR is exploited to remove the
noise, which does not share this feature. The specific signal relations are encoded in an anisotropic
kernel obtained from mutual information measures computed on a representative image database.
In the proposed scheme, training considers minimizing the Kullback-Leibler divergence (KLD)
between the estimated and actual probability functions (or histograms) of signal and noise in order
to enforce similarity up to the higher (computationally estimable) order. Due to its non-parametric
nature, the method can eventually cope with different noise sources without the need of an explicit
re-formulation, as it is strictly necessary under parametric Bayesian formalisms.

Results under several noise levels and noise sources show that: (1) the proposed method out-
performs conventional wavelet methods that assume coefficient independence, (2) it is similar to
state-of-the-art methods that do explicitly include these relations when the noise source is Gaus-
sian, and (3) it gives better numerical and visual performance when more complex, realistic noise
sources are considered. Therefore, the proposed machine learning approach can be seen as a more
flexible (model-free) alternative to the explicit description of wavelet coefficient relations for image
denoising.

Keywords: natural images, statistical relations, image denoising, wavelets, non-parametric meth-
ods, kernel, mutual information, regularization
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1. Introduction

Denoising requires representing the distorted signal in a domain where signal and noise display dif-
ferent enough behavior. In such a representation, noise is removed by imposing the known proper-
ties of the signal to the distorted samples. In image denoising, classical regularization techniques are
used to impose smoothness in the spatial domain since noise is typically white
(Banham and Katsaggelos, 1997). Smoothness in the spatial domain means predictability of the
signal from the neighborhood, and thus classical approaches exploit the low-pass behavior of the
power spectrum to rely on band-limitation or autoregressive models of the signal (Andrews and
Hunt, 1977; Banham and Katsaggelos, 1997; Bertero et al., 1988). Several image denoising methods
working in the spatial domain have been presented in the literature, either based on splines (Takeda
et al., 2007), patch-based approximations (Kervrann and Boulanger, 2007), local auto-regressive
models (Gutiérrez et al., 2006), or support vector regression (Kai Tick Chow and Lee, 2001; van
Ginneken and Mendrik, 2006) to perform smooth (regularized) approximations of the noisy signal.
Recently, successful methods use adaptive local basis representations (Dabov et al., 2007). Ap-
proaches to the problem using local basis is qualitatively related to wavelet descriptions. In fact,
wavelet representations have been recognized as quite appropriate domains for image denoising.1

Wavelet representations are convenient in image denoising because natural image samples have
a very specific statistical behavior in this domain. On the one hand, smoothness is represented by
a strong energy compaction in coarse scales. On the other hand, the combination of smooth re-
gions with local, high contrast features, such as edges, gives rise to sparse activation of wavelet
sensors. This leads to very particular, heavy-tailed, marginal probability density functions (PDFs)
of the wavelet coefficients (Burt and Adelson, 1983; Field, 1987; Simoncelli, 1997; Hyvärinen,
1999). These basic features were incorporated in the classical wavelet-based image denoising tech-
niques (Donoho and Johnstone, 1995; Simoncelli, 1999; Figueiredo and Nowak, 2001). Classical
techniques such as hard and soft thresholding (Donoho and Johnstone, 1995) have been derived
by using Bayesian approaches in non-redundant wavelets, looking for eitherMaximum a Posteriori
(MAP) or Bayesian Least Squares (BLS) estimators, in combination with simple marginal mod-
els and assuming statistical independence among coefficients (Simoncelli, 1999; Figueiredo and
Nowak, 2001).

It is well-known, however, that marginal models in the wavelet domain are not enough for
a proper signal characterization: relevant relations among coefficients still remain after wavelet
transforms (Simoncelli, 1999). For instance, edges lead to strong coupling between the energy
of neighboring wavelet coefficients of natural images. These relations among wavelet coefficients
have proven to be a key issue in applications such as image coding (Malo et al., 2006; Camps-Valls
et al., 2008), texture analysis and synthesis (Portilla and Simoncelli, 2000) or image quality metrics
(Laparra et al., 2010). The use of these relations is in the roots of the most recent and successful
image denoising approaches as well (Portilla et al., 2003; Siwei and Simoncelli, 2007; Goossens
et al., 2009). In this case, more complex image models explicitly including the relations among
coefficients have to be plugged and fitted into the Bayesian framework to obtain the image estimates.

Unfortunately, all these model-based Bayesian techniques have three common problems:

1. They critically depend on the accuracy of the image model, whose definition is not trivial;

1. In the 2007 IEEE International Symposium on Information Theory (ISIT2007), the tutorial “Recent Trends in Denois-
ing” (http://www.stanford.edu/∼slansel/tutorial/summary.htm) pointed out that state-of-the-art method-
ologies are usually defined in the wavelet domain.
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2. MAP or LS estimations can only be derived analytically for particular, typically Gaussian,
noise sources. For different noise sources, the whole technique has to be reformulated which
may not be analytically tractable;

3. The estimation of the parameters of the image model from the noisy observation is difficult
in general.

Conversely, non-parametric approaches can include the above qualitative properties in an indirect
way without the restriction of being analytically attached to particular image or noise models. These
approaches are based on learning the underlying model directly from the image samples.

In this work we apply support vector regression (SVR) in a redundant (overcomplete) wavelet
domain to the noisy image. The proposed method has the following advantages in front of the
Bayesian framework:

1. It does not use a particular parametric image model to be fitted, for example, no analytical
PDF is required.

2. Its solution may be found for arbitrary noise sources even without knowing the functional
form of the noise PDF since it can work with just noise histograms. Therefore, the procedure
does not need to be reformulated for different noise sources.

3. It is capable to take into account the relations among wavelet coefficients of natural images
through the use of a suitable kernel. In this way, the method preserves the relevant relations
among the coefficients of the true signal and better removes the degradation.

The proposed method does not assume independence among the signal coefficients in the wavelet
domain, as opposed to Simoncelli (1999) and Figueiredo and Nowak (2001), nor an explicit model
of signal relations, as done in Portilla et al. (2003). Therefore, the proposed machine learning
approach can be seen as a more flexible (model-free) alternative to the explicit description of wavelet
coefficient relations for image denoising. Even though the selection of a particular SVR may be
seen as a signal parametrization, the model is still non-parametric in the sense that no functional
form of the signal (or noise) characteristics (e.g., the PDF) is assumed.

Non-explicit use of dependencies in local frequency domains for denoising was also introduced
in Gutiérrez et al. (2006). In that case, relations were embedded into a perceptual model used for
non-parametric spectrum estimation, and offered better results than local parametric autoregressive
models not including these relations. Here we pursue the same goal (a model-free technique includ-
ing local frequency relations), but with a completely different framework (SVR instead of perceptual
information). The idea of using SVR regularization in the wavelet domain for image denoising has
been recently introduced in Kai Tick Chow and Lee (2001), Cheng et al. (2004) and van Ginneken
and Mendrik (2006). However, in these works, (1) the qualitative effect of the different parameters
of the SVR was not analyzed, (2) these parameters were set without plausible justification of their
values, and more importantly, (3) the relevance of the relations among the wavelet coefficients of the
signal was not an issue, so the ability of SVR to take these relations into account in the kernel was
neither assessed nor compared to other methods that do consider them. In fact, a trivial isotropic
Gaussian kernel was used in all cases. On the contrary, in this paper we address the key following
issues:
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• Natural images features in redundant wavelet domains. Interesting insight about the prob-
lem can be obtained by analyzing the mutual information between the coefficients of wavelet
representations (Buccigrossi and Simoncelli, 1999; Liu and Moulin, 2001). However, in re-
dundant domains, it is strictly necessary to discern what are the relations specific to the signal
and those due to the transform.

• General constraints of the SVR parameters in image denoising. Generic recommenda-
tions about the SVR parameters have been adapted to propose specific subband-dependent
profiles for the insensitivity and the penalization parameters, and to propose a mutual infor-
mation based kernel.

• Effect of the SVR parameters. We show the qualitative effect of varying the values of the
parameters under the constrained parameter space.

• Procedure to optimize the SVR parameters. We propose an automatic procedure to select
the SVR parameters based on the Kullback-Leibler divergence, under certain assumptions on
signal and noise.

Even though this methodological framework is proposed in the context of achromatic image denois-
ing, it can be readily extended to other denoising problems in which wavelet coefficients exhibit
particular relations, such as in color or multispectral images, speech signals, etc.

The remainder of the paper is outlined as follows. In Section 2, we point out relevant signal
features in redundant wavelet domains through mutual information measurements. These key prop-
erties will be used by the proposed algorithm presented in Section 3. In Section 4, the effect of SVR
parameters and the validity of the proposed criterion for its selection is addressed experimentally.
Section 5 shows the performance of the proposed method compared to standard denoising methods
in the wavelet domain. Several experiments dealing with different amount and nature of noise il-
lustrate the capabilities of our proposal. Finally, Section 6 draws some conclusions and outlines the
further work.

2. Features of Natural Images in the Steerable Wavelet Domain

The starting hypothesis for image denoising is that signal and noise display different characteristics
and thus it is possible to separate them in a certain domain. Natural images show non-trivial rela-
tionships among wavelet transform coefficients. In the following, we review the reported statistical
properties of natural images in orthogonal wavelet domains, and then analyze them in the redundant
steerable wavelet domain selected in our implementation. Specifically we will use mutual infor-
mation (MI) to assess the statistical relations among wavelet coefficients of natural images as in
Buccigrossi and Simoncelli (1999) and Liu and Moulin (2001).

2.1 Intraband Versus Interband Signal Relations in Orthogonal Wavelets

Dependencies among orthogonal wavelet coefficients were measured using mutual information in
Liu and Moulin (2001). The dependencies were studied at interband and intraband levels, and the
results suggested that the mutual information between intraband neighbors is typically larger than
the interband relations for several models and types of interaction. In Buccigrossi and Simoncelli
(1999), the authors analyzed the linear predictability of a coefficient’s magnitude from a condition-
ing coefficient set, either its parent, neighbors (left and upper), cousins (coefficients at the same
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location but in different orientation subbands), or aunts (cousins of the parent). After an exhaus-
tive mutual information analysis, the parent provided less information content than the neighbors.
These evidences suggest that the dependencies among spatial neighboring coefficients (intraband)
in orthogonal wavelet descriptions are stronger than the interband dependencies.

2.2 Natural Images Relations in Steerable Wavelets

Redundant (non-orthogonal) wavelet representations may be more suited to image denoising appli-
cations since redundant representation of the image features may make the signal inherent relations
clearer. Specifically, some redundant representations are designed to be translation or rotation in-
variant (Freeman and Adelson, 1991; Coifman and Donoho, 1995; Kingsbury, 2006). This behavior
is convenient to ensure that a particular feature in different spatial regions (or with different orienta-
tions) gives rise to the same neighboring relations. Some translation invariant wavelets (Simoncelli
and Freeman, 1995) have also a smoother rotation behavior than non-redundant transforms. This
justifies applying the same processing all over a particular subband and dealing with the different
orientations in similar ways. Besides, this prevents aliasing artifacts appearing in critically-sampled
wavelets. In this work we choose a redundant steerable pyramid representation (Simoncelli and
Freeman, 1995) to take advantage of these properties.

Despite the reported results on the relations of signal coefficients in orthogonal transforms, a
number of questions have to be answered in the case of redundant representations, and in particular,
in the steerable wavelet domain:

1. How relevant are the relations among coefficients of natural images in this domain?

2. How relatively important are interorientation, interscale and intraband signal relations?

3. How is the spatial arrangement of these signal relations?

The first question is particularly important since, even though the steerable transform may intensify
the relations among signal coefficients, its redundant nature may also introduce relations which
could be due to the transform but not to the signal. The second question allows us to focus on the
most significant relations. Answering the third question is crucial to design suitable kernels for
image denoising.

In the following, we get some insight on these concerns by performing two experiments on
a representative database of 920 achromatic images of size 256× 256 extracted from the McGill
Calibrated Colour Image Database.2

2.2.1 SIGNAL RELATIONS ARE SPECIFIC TO THE SIGNAL

In our first test, following Liu and Moulin (2001), we computed the mutual information among
steerable wavelet coefficients of the data set for different spatial, orientation, and scale distances.
We used a steerable pyramid with 8 orientations and 4 scales. The mutual information was estimated
from the uniformly binned empirical data (256 bins) by computing the histogram of all available
sample pairs (721280 samples) for the three considered neighborhoods. In addition, as stated above,
in redundant domains it is necessary to know whether these relations come from the images or they
are due to the transform. Note that, considering i.i.d. signals, any relation among the coefficients

2. See http://tabby.vision.mcgill.ca/.
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(a) (b) (c)

Figure 1: Comparison between redundancy of natural image coefficients in the steerable wavelet
representation (solid), and the redundancy due to this representation (dashed). Redun-
dancy is measured in terms of relative mutual information in logarithmic scale among (a)
spatial (b) orientation and (c) scale neighbors.

after a linear transform will be due to the transform no matter their PDF in the original domain.
Therefore, in order to assess the amount of relations due to the transform, we compared the MI
among natural images coefficients, and the MI among the coefficients of an i.i.d. signal (Fig. 1).
The relations displayed by i.i.d. signals in the transformed domain may be seen as a lower bound
for the mutual information of signal coefficients. From Fig. 1, it can be noticed that, in every case,
relations found in natural images are bigger than those introduced by the transform.

2.2.2 INTRABAND SIGNAL RELATIONS DOMINATE OVER INTERSCALE OR ORIENTATION

Besides, the results show that intraband relations in the signal are also more important than interor-
ientation or interscale relations. Note that mutual information measures are defined to depend on
logarithms of probability so that comparisons have to be done by subtraction, not by division. Be-
yond consistency with previously reported results for orthogonal wavelet transforms (Buccigrossi
and Simoncelli, 1999; Liu and Moulin, 2001), it has been observed that the relations are specific to
the signal and not just induced by the transform.

2.2.3 INTRABAND RELATIONS ARE STRONGLY ORIENTED

In our second test, we studied the spatial arrangement of the relations among intraband coefficients
since they display the most relevant relations. To this end, we computed the mutual information in
a 2D 5× 5 neighborhood for the different orientations and scales. Figure 2[top] shows the above
mentioned results for the set of natural images (finest scale). We also provide the relations intro-
duced by the transform (i.i.d. signal, Fig. 2 [bottom]). Similar results were obtained for the other
(coarser) scales. Again, the relations among the signal coefficients are higher than those introduced
by the transform. Another key issue observed in Fig. 2 [top] is the specific spatial arrangement of
these relations: the presence of oriented structures in natural images gives rise to strong anisotropic
intraband relations in the different subbands. Coefficients following these relations are expected
to be representative of natural features. These mutual information results match recently reported
results on autocorrelation of intraband wavelet coefficients (Goossens et al., 2009). The results ob-
tained in these experiments will be further used in Section 4 to design specific kernels that take into
account the observed natural image relations.
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Figure 2: Mutual information among the central coefficient and its spatial neighbors in the same
subband (intraband) in the steerable wavelet domain. Darker gray values indicate higher
mutual information. Top row shows the results for the different orientations of the finest
scale of the natural image database, and bottom row shows the equivalent results for
Gaussian noise.

Summarizing, natural images have singular features in the steerable wavelet domain (Figs. 1
and 2): given a distorted image, enforcing these singular oriented relations among coefficients in
every subband (with the appropriate kernels) will eventually preserve the natural signal relations and
remove the noise. Of course, the bigger the difference between the shape of the intraband relations
in signal and noise the better the results are expected to be.

3. Restoring Wavelet Relations with SVR

The effect of noise in the wavelet domain is introducing artificial deviations from the original signal
and hiding the natural relations among the coefficients (see an illustrative example in Fig. 3). In
the more general case, the degraded observation, id, can be written as the result of the addition of a
certain realization of noise, n, to the original signal, i:

id = i+n. (1)

Note that this (convenient) way to state the problem does not necessarily mean that the physical
degradation has to be additive. In fact, the nature of the degradation should ideally be expressed
through a probabilistic noise model that may depend on the original signal, p(n|i). The other de-
sirable piece of information is a probabilistic model of the signal, p(i). However, in most practical
situations, the complete probabilistic description of the problem, that is, having p(i) and p(n|i), is
not available in analytical form.

In order to avoid this lack of information, we propose to use the regularization ability of SVRs.
In this section, first we review the capabilities of the SVR for signal approximation. Afterwards,
general constraints to the SVR parameter space are given for the particular problem of natural image
denoising. Finally, we present an automatic procedure to choose the appropriate SVR parameters
(from the above restricted space) to be used for any combination of image and noise.

3.1 Capabilities of SVR for Signal Estimation

Throughout this work, a wavelet transform, matrix T , is applied to the observed image, leading to
a set of (noisy) coefficients, y = T · id. The original set of wavelet coefficients, x = T · i, has to be
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Figure 3: Effect of noise on the wavelet coefficients. Patch of a subband of a wavelet representation
of the original image Barbara (left) and its noisy version (right). Darker values indicate
higher amplitudes.

estimated from the distorted observation, y. Due to the observed strong intraband relations, we will
use the SVR in the wavelet domain in patches inside each subband. Subbands are decomposed into
non-overlapping 16×16 patches, leading to sets of N = 256 samples. Now, given input-output pairs
{pi,yi}Ni=1, where pi are the wavelet indices and yi are the corresponding noisy wavelet coefficients
in a patch, we train the adaptive SVR (Camps-Valls et al., 2001; Navia et al., 2001; Gómez et al.,
2005) to approximate the signal.

Let φ be a non-linear mapping to a higher dimensional feature space, then the adaptive SVR
computes the weights w to obtain the estimation, x̂i = φ$(pi)w, by minimizing the following regu-
larized functional:

‖w‖2+∑
i
Ci ξi,

subject to |yi−φ$(pi)w|≤ εi+ξi, ∀i= 1, . . . ,N, where ξi are the magnitude of the deviations of the
estimated signal from the observed noisy data outside the (sample-dependent) insensitivity zones εi.
Sample-dependent penalization parameters, Ci, tune the trade-off between fitting the model to the
observed noisy data (minimizing the deviations) and keeping model weights ‖w‖ small (enforcing
flatness in the feature space).

This adaptive SVR differs from the standard formulation (Smola and Schölkopf, 2004), in two
aspects: (1) the loss function given by (εi,Ci) is sample-dependent, which is convenient in wavelet
domains where signal and noise variances strongly depend on the subband, and (2) the usual bias
term in SVM formulations has been intentionally dropped to account for the fact that the expected
value of wavelet coefficients is zero. The appropriate design of Ci and εi profiles is analyzed in
Section 3.2.

Explicitly working with the non-linearity φ is no longer necessary since the whole formulation
can be expressed in the form of dot products of the mapping functions called kernels, K(pi, p j) =
φ(pi)$φ(p j). In this case, the estimation is given by x̂ = K ·α, where α is the dual representation
of weights w (Smola and Schölkopf, 2004). The kernel matrix can be seen as a similarity ma-
trix between samples (or coefficients), and should reflect the relations between them. Many kernel
functions have been proposed in the literature (Smola and Schölkopf, 2004). In the image denoising
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case in wavelet domains, we focus on the basic structure of the generalized Radial Basis Functions
(RBF) kernel since the relationship among the wavelet coefficients corresponding to spatial neigh-
bors within a subband is local. However, as it will be analyzed in Section 3.2, the kernel will be
adapted to incorporate the anisotropic signal relations studied in Section 2.2, see Fig. 2.

3.2 General Constraints on SVR Parameter Space in Image Denoising

As stated above, SVR signal approximation will depend on the penalization parameters, Ci, the
insensitivities, εi, and the kernel K. In the following, we restrict the range of possible values of
these parameters, θ= (Ci,εi,K), in the particular case of image denoising in wavelet domains:

Penalization factor. In general, the penalization factor of SVRs should be related to the standard
deviation of the signal (Cherkassky, 2004). In the denoising problem considered here, the
signal variance substantially differs in each wavelet scale. According to this, it is strictly nec-
essary to set a different penalization factor per scale, Ci =Cki, where ki is a scale-dependent
profile. This profile ki was obtained by averaging the standard deviation of wavelet coeffi-
cients over 100 images from the database used in Section 2. This profile was multiplied by
a factor, C, varied in the range [10, 104], which did not show a strong impact on the results
provided a sufficiently large value. This is consistent with the suggestions reported in Chal-
imourda et al. (2004) in a more general context. Note that, for instance, in the examples of
the next section (Fig. 3), indistinguishable results are obtained for a large enough C. In our
experiments, we found that a reasonable prescription for the global factor on the penalization
profile isC ≈ 103.

Adaptive insensitivity zone. In general, the insensitivity has to be related to the standard deviation
of the noise (Kwok and Tsang, 2003). In transformed domains, the effect of the transform
has to be taken into account in order to estimate the corresponding standard deviation. In
redundant wavelet representations, this standard deviation is coefficient dependent. Thus it
is strictly necessary to introduce a subband-dependent εi profile (Camps-Valls et al., 2001;
Gómez et al., 2005). The transformed standard deviations can be estimated either (1) empir-
ically from noise samples, or (2) computed from the noise covariance matrix if it is known.
In the empirical case, noise samples can be experimentally obtained by applying the noise
source to a large enough set of images, and writing the noise as in Eq. 1. In our experiments,
we used the natural image database used in Section 2, and we obtained fairly stable results for
the profile by considering 100 images. In the case that the noise covariance is known, the cor-
responding matrix in the selected wavelet domain can be obtained from the noise covariance
matrix in the spatial domain, Σn, and the transform T (Stark and Woods, 1994). Therefore,
the insensitivity profile can be computed as:

εi = τ diag(T ·Σn ·T$)
1/2
i . (2)

In the case of white noise, Σn = σ2n · I, and thus Eq. (2) reduces to:

εi = τ σn diag(T ·T$)
1/2
i , (3)

where σ2n is the noise variance in the spatial domain, and τ is a scaling factor to be adapted
for each particular image and noise combination. The scaling factor, τ, should be in the range
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Figure 4: Anisotropic kernel functions used in the support vector regression method for the eight
considered orientation subbands.

[0.5, 3] according to the known relationship between the ε-insensitivity zone and the noise
standard deviation (Kwok and Tsang, 2003). Note that (2) may cope with colored noise. Con-
sidering the off-diagonal elements of the covariance matrix (neglected in (2) and (3)) would
give rise to coupling ε-insensitivities among samples. This issue has been already considered
and solved in the context of image coding by using an additional non-linear transform and a
constant ε in the transformed domain (Camps-Valls et al., 2008). However, in this paper, we
restrict ourselves to the approximated diagonal case.

Including signal relations in the kernel. In the kernel methods literature, the use of prior knowl-
edge about the problem can be encoded through bagged, cluster, or probabilistic kernels (Je-
bara et al., 2004; Weston et al., 2004). In our case, we propose to take into account image
coefficient relations by analyzing a large (representative) database and taking the (oriented)
mutual information among samples as core distance measure. However, using these empiri-
cal measures to set the kernels is not straightforward since the kernels have to fulfill Mercer’s
Theorem (Mercer, 1905). According to this, we propose to use generalized Gaussian ker-
nels. In particular, we fitted anisotropic Laplacian kernels to the MI measures to consider the
intraband oriented relations within each subband:

Kα(pi, p j) = exp
(

− ((pi− p j)$G(α)$Σ−1G(α)(pi− p j))1/2
)

,

where Σ =
(

σ1 0
0 σ2

)

, σ1 and σ2 are the widths of the kernels, pi ∈ R2 denotes the spatial

position of coefficient yi within a subband, and G(α) is the 2D rotation matrix with rotation
angle, α, corresponding to the orientation of each subband (see Fig. 4). Note that these set of
oriented kernels describe the signal relationships that emerge from experiments in Section 2
(cf. Fig. 2[top]).
We obtained proper values for the widths σ1 and σ2 by fitting the above kernel to the MI mea-
sures among coefficients described in Section 2 (σ1 = 2σ2, and σ1 = 4.8 in spatial coefficient
units). The kernel was further normalized in the standard way. Since this width comes from
direct measures from images, it describes a fundamental property of natural images so it can
be kept fairly constant.

The conclusion of this section is that in the case of image denoising in wavelet domains, an
appropriate analysis of the signal variance, the noise variance, and the relations among the wavelet
coefficients of the signal can be used to strongly reduce the dimensionality of the SVR parameter
space. After this analysis, the only SVR parameter that remains fixed is the global scaling, τ, to be
applied to the insensitivity profile.
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3.3 Procedure for Automatic SVR Selection

In the more general case, applying SVRs with a given set of parameters, θ, to a noisy image leads
to a certain image estimate, îθ = T−1 · x̂θ. From this image estimate, and the convenient additive
notation for the noise (Eq. (1)), a noise estimate can be obtained: n̂θ = id− îθ. In this section we
propose a procedure to select the SVR parameters, θ, that better approximates the noise free image,
using the available information.

In the more general situation the only available information is the noisy image. However, as
stated above, denoising methods usually assume that additional probabilistic information on the
signal and noise is available: p(i) and p(n|i). Note that this knowledge is equivalent to the knowl-
edge of the joint signal and noise distribution since p(i,n) = p(n|i) p(i).

Let us momentarily assume that this information is available to propose the general procedure
to set the SVR parameters. Afterwards, we will relax the requirements by considering an approxi-
mation that can be easily applied in practical situations.

In order to enforce solutions that closely follow the (assumed to be known) statistics of signal
and noise, we propose to select the SVR that minimizes the k-th order Kullback-Leibler divergence
(KLD) (Cover and Tomas, 1991) between the joint PDF of signal and noise, and the joint PDF of
the estimated signal and the estimated noise:

θ∗ = arg min
θ

{

DKL
[

p(îθ, n̂θ) ‖ p(i,n)
]

}

. (4)

The underlying idea is that the SVR that minimizes the divergence between the above PDFs is
the one that better captures the features of the true signal and better removes the degradation.

Although in ideal situations the application of this procedure would obtain the best results in
statistical terms, in practical situations the full probabilistic description of the problem is not avail-
able. A number of approximations are done in practical situations. For instance, thermal noise
in CCD cameras is not independent from the input signal since diffusion increase with the irradi-
ance. However, thermal noise is usually assumed to be independent of the input signal. Additional
assumptions as additivity or certain analytical marginal PDF of the noise are also widely used.

In our case, we assume independence between signal and noise:

p(i,n) = p(i) p(n).

However, no analytical model for these PDFs is assumed. Under this independence assumption, it
is easy to see that Eq. 4 reduces to:

θ∗ = arg min
θ

{

DKL
[

p(îθ) ‖ p(i)
]

+DKL
[

p(n̂θ) ‖ p(n)
]

}

. (5)

This means that the selected SVR parameters are those that give rise to both signal and noise es-
timates probabilistically similar to the true signal and noise respectively. Note that this similarity
does not require analytical models of the PDFs since it can be computed from histograms (or signal
and noise samples).

Of course, the independence assumption does not hold in general, however, as it will be shown
in Section 4.2, this is not a critical fact for a good behavior of the method even in non-additive cases
in which the noise is clearly signal-dependent. Moreover, the independence assumption simplifies
the practical application of the criterion for SVR selection since, for a limited number of samples,
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histogram estimations of p(i) and p(n) are far more reliable than histogram estimations of p(i,n),
which implies the duplication of the dimensionality (in an already high dimensional situation).

In the examples throughout the paper we restricted ourselves to second order KLDmeasures due
to the lack of samples, yet capturing the second order structure of signal and noise. The optimization
in Eq. (5) was carried out by exhaustive search.

3.4 Summary of the Proposed Denoising Method

The proposed denoising method can be summarized as follows. First the noisy image is transformed
by a steerable wavelet filter bank. Then, a set of SVRs is applied to the patches of the subbands of
the transform. These SVRs use the profiles for the penalization factor and the insensitivity computed
from signal and noise samples as described in Section 3.2. The SVRs use the kernel based on MI
that captures signal relations in the wavelet domain as described in Section 3.2. While the scaling
of the penalization profile and the kernels are kept fixed as indicated in Section 3.2, the scaling of
the insensitivity profile is automatically selected following the procedure described in section 3.3.

4. Behavior of the Proposed Method

In this section, we show an illustrative example of how the SVR parameters affect the estimated
solution. Moreover we validate the proposed automatic procedure for SVR selection considering
examples with different noise sources including non-additive and signal dependent cases.

4.1 Impact of SVR Parameters in Image Denoising

As stated above, the regularization behavior of the SVR depends on θ = (Ci,εi,K). Here we show
the qualitative effect of the global penalization scaling C, the global insensitivity scaling τ, and
the kernel width σ assuming a generalized RBF kernel. Figure 5 shows the qualitative effect of
SVR estimation as a function of these parameters. Compare the results with the original and noisy
subbands shown in Fig. 3.

Increasing the kernel width, σ (vertical direction), introduces too strong relations among coeffi-
cients in such a way that spurious energy appears in the reconstruction. Increasing the insensitivity,
τ (horizontal direction), a sparser solution is obtained, leading to information loss and thus relevant
features of the signal are discarded. On the contrary, a too small insensitivity value gives rise to
overfitting, and hence noise is not removed. Small values of the C parameter gives rise to over-
regularized estimations. Large enough values of C give rise to similar behavior (see comments in
Section 3.2).

Of course, interactions among these parameters occur, and have been studied in other contexts
elsewhere (Chalimourda et al., 2004; Cherkassky and Ma, 2003; Cherkassky, 2004). In the image
denoising case, the deviation from an appropriate solution in combined directions of the parameters
gives rise to different solutions that combine the negative effect of the departure in each direction.

The above example suggests that appropriate SVRs can certainly recover the underlying struc-
ture of the original signal from the noisy observation, which is the rationale of the proposed method.

4.2 Validation of the Automatic Procedure for SVR Selection

In this section, we validate the previous SVR selection procedure in two different ways. Firstly,
note that KLD values in the example of Fig. 3 qualitatively illustrate the usefulness of the proposed
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Figure 5: Effect of SVR parameters on the noisy wavelet patch of Fig. 3. The values of the KL-
divergence criterion between the estimated and the actual PDFs of noise and signal are
given in each case (see text in Section 3.3).

procedure: the minimum divergence solution (central subband patch) gives also a reasonable trade-
off between smoothness and detail preservation of the original subband patch.

Secondly, we quantitatively show that the SVR that enforces the similarity between the esti-
mated and actual signal and noise joint PDFs (in KLD terms) is not far from the SVR that maxi-
mizes the structural similarity between the estimated and the original image. In order to do so, we
compare the KLD measures for different SVRs, with the corresponding distortion measured with
the Structural SIMilarity (SSIM) index (Wang et al., 2004). The SSIM index is a widely used simi-
larity measure, which is better related to human quality assessment than Euclidean measures, such
as MSE or PSNR. Note that while KLD values are available in real situations (provided the noise
histogram and a generic natural images histogram are known), distortion measures are not available
since the original image is unknown. Consequently, the SSIM results next presented are for mere
comparison purposes.

In this experiment, the SVM parameter space is reduced to the scaling factor on the insensitivity
profile as recommended in Section 3.2. Accordingly, Fig. 6 shows the KLD and distortion (1-SSIM)
results as a function of τ (see Eq. (3)). Curves are shown for different kinds of (Gaussian and non-
Gaussian) noise sources corrupting a particular image (details on the noise sources are given in
Section 5).
For the Gaussian noise case, two different variances are shown. It is worth noting that (1) the
KLD criterion (solid) closely follows the actual distortion curve (dashed), and (2) the minima for
low and high noise regime curves are very similar. These facts suggest that, in the Gaussian noise
case, the proposed criterion is quite robust and provides consistent results: the higher the noise
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(red curves) the higher the ε zone minima. Besides, the linear relation between ε and the noise
standard deviation, reported in Kwok and Tsang (2003), is confirmed here: as expected, the scaling
factor keeps fairly constant, τ ≈ 2.5, for both σ2n = 200 and σ2n = 400. Obviously, higher noise
levels imply more distorted estimations. For other (non-Gaussian) noise sources, similar results are
obtained. For the JPEG and JPEG2000 quantization noise sources, the KLD criterion also matches
SSIM performance. For the case of more complex noise sources, such as vertical striping (VS)
and Infra Red Imaging System (IRIS) noise, the criterion gives close-to-optimal solutions in SSIM
terms. Note that, remarkably, the KLD criterion is better suited to the error minimization when
the signal and noise independence assumption holds (Gaussian case). Therefore there is room to
further improve the SVR selection criterion. The above results suggest that the proposed SVR
selection procedure can be considered as a convenient approximation to distortion minimization
(which is not possible in real situations).

5. Denoising Experiments and Discussion

In this section, we evaluate the performance of the proposed method in different scenarios for image
denoising. Our algorithm is compared to several wavelet-based denoising methods using standard
256×256 images (‘Barbara’, ‘Boats’, ‘Lena’) with different levels and sources of degradation. In
the following, we first give details on implementation issues of the considered algorithms. Then, we
analyze their performance for several kinds of noise sources:

• Experiment 1. Additive Gaussian noise of different variances (σ2n = {200,400}).

• Experiment 2. Coding noise: JPEG and JPEG2000 at different quantization coarseness.

• Experiment 3. Acquisition noise: vertical striping and Infra Red Imaging System (IRIS)
noise.

Note that the noise PDF is in general unknown, except for the academic case of Gaussian noise, but
the histogram can be computed from samples in all cases.
All results are compared numerically by using the standard (yet not perceptually meaningful) RMSE,
and the perceptually meaningful SSIM index (Wang et al., 2004). Moreover, representative exam-
ples are shown in every case for visual inspection. For proper visualization, all the results are
equalized in the same way by truncating the values outside the [0,255] range.

5.1 Implementation Details

The algorithms that do not use information about the inter-coefficient relations (Donoho and John-
stone, 1995; Simoncelli, 1999; Figueiredo and Nowak, 2001) are straightforward to implement and
have few parameters to tune. All these methods use orthogonal wavelet representations. In our
particular implementation, we used 4-scale QMF wavelets from MatlabPyrTools.3 In every case,
we followed authors’ prescriptions to choose these parameters for the best performance:

• Hard Thresholding (HT). The key parameter is the threshold value λ. We use the noise vari-
ance to set the threshold, λ= 3σn, as suggested in Donoho and Johnstone (1995).

3. See http://www.cns.nyu.edu/˜eero/software.php.
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Gaussian Noise

JPEG JPEG2000

Vertical Striping IRIS noise

Figure 6: Validation of the proposed KLD criterion to adjust SVR parameter ε (or equivalently τ,
see text). In every distortion case, solid lines represent the KLD criterion and dashed lines
represent the distortion (1-SSIM). For proper visualization, KLD curves were normalized
to fall in the same range as the distortion. In the Gaussian noise case, two different noise
variances are considered: σ2n = 200 (black lines) and σ2n = 400 (red lines). As can be seen,
the minima of the KL distance (squares) are always in the same region as the minima of
the distortion (circles), thus giving rise to similar SSIM performance.
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• Soft Thresholding (ST). In our implementation, the threshold in each subband is derived from
the standard deviation of the noise, σn, using optimized values to minimize the mean square
error (MSE) in a set of 100 natural images. Threshold values were optimized for the σ2n in the
range [0,1600].

• Bayesian Laplacian (BL). In this case, the parameters of the Laplacian distribution (s and
p in Simoncelli, 1999) for the marginal PDFs in each subband are estimated by maximum
likelihood (ML), as suggested by the author.

• Bayesian Gaussian (BG). The threshold value was set according to the function of noise
variance provided in Figueiredo and Nowak (2001).

On the other hand, in the case of the Gaussian Scale Mixture (GSM) (Portilla et al., 2003), which
does consider inter-coefficient relations, we used the implementation provided by the authors.4 We
have used (1) the same representation as in the proposed method (4-scale, 8-orientation steerable
pyramid), and (2) we also provided the average noise power spectral density (PSD) to achieve the
best possible performance of the GSM method.

Details of the proposed SVR method are included in previous Section 3.2. A Matlab imple-
mentation of the algorithm is available online.5 Since the Ci and εi profiles are computed off-line,
the computational cost of the proposed method is mainly constrained by the SVR training. In our
current implementation, we used the IRWLS algorithm in Matlab (Pérez-Cruz et al., 2000) in order
to drop the bias term and incorporate the insensitivity and penalization profiles easily. These modi-
fications are not trivial in faster implementations (Huang and Kecman, 2004; Kecman et al., 2004).
As a result, our Matlab implementation takes about 30 seconds6 for each image/noise estimation
for a set of SVR parameters. Three strategies can be carried out for speeding up the optimization:
(1) using faster SVR implementations (Platt, 1999; Chang and Lin, 2001; Tsang et al., 2005), (2)
alternative procedures to exhaustive search on convex error surfaces (Torczon, 1997; Lewis and Tor-
czon, 2002; Vishwanathan et al., 2006), and (3) restricting the dimension of the parameter space (as
done in Section 3.2).

5.2 Experiment 1. Additive Gaussian Noise

Table 1 shows the distortion results for the three considered images and the two noise variances,
σ2n = 200 and σ2n = 400.. The best SSIM values in each case are highlighted. In every case, we
also provide the SVRopt result, which is the best result the proposed method can get in SSIM terms.
This is useful to assess the performance of the proposed divergence-based criterion and to give
an upper bound of method’s performance. Results show that our algorithm performs better than
the methods that neglect signal relations (HT, ST, BG and BL), and obtains similar (yet slightly
lower) numerical results than the one which incorporates them (GSM). It is not surprising that the
GSM method achieves the best performance in this case, since it is analytically suited to deal with
Gaussian noise. The SVR performance is consistent through all images and noise variances, thus
suggesting that the guiding criterion is robust. Finally, it must be noted that, in the most difficult
case of σ2n = 400, GSM and SVR offer more similar results, and clearly outperform the rest of the
methods.
4. See http://decsai.ugr.es/˜javier/denoise/.
5. See http://www.uv.es/vista/vistavalencia/denoising_SVR/.
6. Computations were carried out in a 2.8GHz processor with 4GB RAM.
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‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.77 16.48 0.76 13.62 0.73 18.97
ST 0.78 14.37 0.79 10.26 0.74 12.59
BG 0.80 14.14 0.79 11.70 0.76 12.75
BL 0.81 12.95 0.83 8.30 0.78 11.66
GSM 0.90 8.94 0.87 8.94 0.83 13.61
SVR 0.87 10.11 0.84 10.16 0.81 12.54
SVRopt 0.87 10.11 0.85 10.36 0.82 12.30

‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.67 24.52 0.68 20.15 0.67 20.22
ST 0.69 19.04 0.71 16.16 0.66 19.72
BG 0.70 20.40 0.70 19.17 0.67 19.26
BL 0.73 16.52 0.77 10.26 0.67 18.45
GSM 0.86 11.02 0.80 17.40 0.79 15.95
SVR 0.83 13.13 0.81 10.73 0.78 14.50
SVRopt 0.83 13.13 0.81 10.73 0.78 14.06

Table 1: Results for the Gaussian noise: distortions for different images and methods are given at
σ2n = 200 (top) and σ2n = 400 (bottom).

Figure 7 shows representative visual results in the challenging situation of σ2n = 400. It can
be noticed that thresholding methods (HT, ST) and Bayesian generalizations not including signal
relations in the model (BG, BL) show poor performance, producing images either grained or cor-
rupted by too salient wavelet functions. Even though SVR yields slightly lower numerical scores
than GSM, global visual performance is comparable.

5.3 Experiment 2. Coding Noise: JPEG and JPEG2000

In this section, we focus on restoring grayscale images after JPEG or JPEG2000 compression, which
induces non-Gaussian noise: it produces heavy tailed marginal error PDFs in the spatial domain with
non-negligible relations among the pixels (see comments in Section 5.5). Quantization noise is an
illustrative example of how the proposed method can cope with non-Gaussian, colored and signal-
dependent noise. In order to obtain the necessary samples to build the noise histograms, we used
100 images from the database described in Section 2 encoded by JPEG and JPEG2000. In the first
case, the Matlab implementation of the JPEG algorithm with quality factorsQ= 9 (small distortion)
and Q = 7 (large distortion) was used. In the second case, scalar quantization of the QMF wavelet
domain using standard JPEG2000 bit allocation tables (Taubman and Marcellin, 2001) was used.
Different values of quantization coarseness, that will be referred to as Δ1 (small distortion) and Δ2
(large distortion) were applied.

Table 2 shows the quantitative results for all considered methods for the three images at different
quantization levels. It can be noticed that again the SVR method outperforms the thresholding
methods (HT, ST) and those not including signal relations in the model (BG, BL). SVR yields
similar numerical scores than GSM in JPEG (Fig. 8). However, in JPEG2000 better numerical
(Table 2 [bottom]) and visual (Fig. 9) results are obtained with SVR. In general, high frequency
details are better preserved by our method, while GSM yields over smoothed solutions, particularly
in JPEG2000.
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Noisy Image (0.46) HT (0.67)

ST (0.66) BG (0.67)

BL (0.67) GSM (0.79)

SVR (0.78) SVRopt (0.78)

Figure 7: Visual results for the ‘Lena’ image corrupted with Gaussian noise, σ2n = 400. SSIM
values are given in parentheses.
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Noisy Image (0.68) HT (0.65)

ST (0.68) BG (0.66)

BL (0.64) GSM (0.71)

SVR (0.71) SVRopt (0.73)

Figure 8: Visual results for the ‘Barbara’ image with JPEG quantization noise (Q = 7). SSIM
values are given in parentheses.
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Noisy Image (0.54) HT (0.54)

ST (0.55) BG (0.54)

BL (0.54) GSM (0.55)

SVR (0.57) SVRopt (0.57)

Figure 9: Visual results for the ‘Barbara’ image with coarse quantization JPEG2000 noise. SSIM
values are given in parentheses.
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JPEG Q= 9 Q= 7
‘Barbara’ ‘Boats’ ‘Lena’ ‘Barbara’ ‘Boats’ ‘Lena’

Method SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.70 20.05 0.75 13.07 0.70 18.40 0.65 22.11 0.71 16.34 0.65 24.99
ST 0.73 17.51 0.78 11.59 0.73 15.13 0.68 19.71 0.75 12.72 0.68 18.77
BG 0.72 18.76 0.77 12.30 0.72 16.27 0.66 21.57 0.74 13.32 0.67 21.05
BL 0.71 20.37 0.77 13.43 0.73 16.52 0.64 21.67 0.74 14.70 0.69 17.65
GSM 0.77 15.50 0.80 11.15 0.75 13.66 0.71 18.56 0.77 12.18 0.71 17.45
SVR 0.78 14.89 0.78 12.13 0.74 13.22 0.71 18.42 0.76 12.84 0.71 15.68
SVRopt 0.78 14.89 0.80 11.35 0.75 13.97 0.73 18.28 0.76 12.89 0.71 15.72
JPEG2000 Δ2 Δ1

‘Barbara’ ‘Boats’ ‘Lena’ ‘Barbara’ ‘Boats’ ‘Lena’
Method SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE
HT 0.54 30.81 0.55 26.23 0.51 32.66 0.67 24.82 0.59 25.18 0.56 28.25
ST 0.55 28.83 0.55 25.15 0.51 31.24 0.68 22.52 0.60 23.69 0.56 27.47
BG 0.54 30.37 0.55 26.08 0.51 32.45 0.67 24.16 0.59 24.92 0.56 28.10
BL 0.54 30.30 0.55 25.87 0.51 29.05 0.67 24.35 0.59 24.79 0.56 28.12
GSM 0.55 28.47 0.57 20.92 0.52 25.84 0.68 20.54 0.64 17.94 0.58 23.64
SVR 0.57 25.31 0.57 21.88 0.52 29.32 0.71 17.23 0.64 18.27 0.59 21.55
SVRopt 0.57 25.31 0.57 21.74 0.52 25.35 0.72 17.04 0.64 18.27 0.59 21.55

Table 2: Results for the coding noise: distortions at different quality levels of JPEG (Q = {9,7})
and JPEG2000 (coarseness Δ1 and Δ2) are given for different images and methods.

5.4 Experiment 3. Acquisition Noise: Vertical Striping and IRIS Noise

Real imaging systems introduce complex forms of noise depending on the acquisition process, so
assuming a particular PDF for all cases is far from being realistic. For instance, variation of the
intensity between neighboring elements of the CCD typically leads to vertical striping noise in
pushbroom sensors (Mouroulis et al., 2000; Barducci and Pippi, 2001). Other typical acquisition
noise source is observed in infrared imaging cameras, which is a complex mixture of different noise
sources. In this section, we pay attention to these two particular non-Gaussian realistic acquisition
noises through controlled experiments:

1. Vertical striping noise. We simulated this noise by modifying 4% of the image columns
selected randomly. The luminance of the selected columns was modified by a random factor
following a uniform distribution between 0.8 and 1. Spatial coherence was forced by attaching
groups of contiguous 5 to 10 strips.

2. InfraRed Imaging System (IRIS) noise. Inspired in the observed characteristics of a represen-
tative number of acquired images by a commercial IR camera, the noise was modeled by a
combination of four noise sources: low-variance Gaussian noise (σ2n ≈ 50), ‘salt-and-pepper’
noise (with a percentage of corrupted pixels about 0.05%), some spatially coherent missing
pixels (black patches), and interlaced lines all over the image.

In both cases, we computed the contrast noise PDF, p(n), from 100 noisy images. In the next
Section 5.5, the non-Gaussian nature of these acquisition noise PDFs is shown.
Table 3 shows the obtained numerical results for all images and both acquisition noise sources.
In both complex scenarios, the proposed SVR-based method outperforms GSM and the rest of
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Method ‘Barbara’ ‘Boats’ ‘Lena’
SSIM RMSE SSIM RMSE SSIM RMSE

HT 0.73 17.43 0.73 15.99 0.69 18.07
ST 0.77 15.71 0.78 14.04 0.75 14.08
BG 0.76 16.01 0.76 14.75 0.73 15.14
BL 0.77 16.56 0.81 14.96 0.77 14.64
GSM 0.79 14.83 0.79 14.36 0.75 14.45
SVR 0.80 15.66 0.80 13.47 0.79 13.18
SVRopt 0.80 15.45 0.82 14.25 0.80 13.31
HT 0.50 30.80 0.58 28.70 0.56 28.81
ST 0.55 27.02 0.64 23.48 0.60 24.40
BG 0.54 28.40 0.62 25.44 0.59 26.20
BL 0.50 28.74 0.60 21.77 0.55 24.08
GSM 0.53 30.51 0.64 25.92 0.61 30.99
SVR 0.59 31.07 0.67 21.44 0.66 31.44
SVRopt 0.60 30.71 0.70 24.56 0.66 32.05

Table 3: Acquisition noise: vertical striping (top) and IRIS noise (bottom). Distortions for different
images and methods.

methods numerically. A noticeable gain in SSIM is observed, which is confirmed when looking
at the restored images in Figs. 10 and 11. It is worth noting that in the vertical striping noise
(Fig. 10), SVR yields a sharper (and more realistic) reconstruction while GSM produces an over-
blurred solution. In the case of the IRIS noise, only SVR removes the interlacing noise contribution,
producing better visual results. Including the average PSD information in GSM, as we do in the
experiments, improves its performance. However, it is not enough to remove the interlacing artifact
due to the particular nature of IRIS noise. IRIS noise is difficult because the PSD and variance
of each particular realization of the noise may substantially differ from the (estimated) averages.
On the contrary, the proposed SVR method uses an adaptive cost function learned from the noisy
image. Here, nevertheless, the upper bound of performance is not met, suggesting that there is still
room for improving the selection criterion proposed, possibly considering the joint density.

5.5 Analysis of the Residuals

Further qualitative insight in the obtained solutions can be achieved by comparing the estimated
and actual PDFs of signal and noise with the different methods and noise sources. Since we are
restricting ourselves to second order KLD criterion, this comparison reduces to assess the difference
between 2D histograms (in the spatial domain).

It is widely known that the PDF of pairs of neighbor pixels in natural images is an oriented
ellipsoid reflecting the strong correlation among luminance values in the spatial domain (Clarke,
1985). The corresponding restored images (even for the worse performing algorithms) also display
such strong local correlation. Therefore, no relevant conclusion is gained by direct inspection of
these histograms (results not shown). On the contrary, the 2D histograms of the noise are more
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Noisy Image (0.77) HT (0.69)

ST (0.75) BG (0.73)

BL (0.77) GSM (0.75)

SVR (0.79) SVRopt (0.80)

Figure 10: Visual results for the ‘Lena’ image with vertical striping noise. SSIM values are given
in parentheses.
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Noisy Image (0.59) HT (0.58)

ST (0.64) BG (0.62)

BL (0.60) GSM (0.64)

SVR (0.67) SVRopt (0.70)

Figure 11: Visual results for the ‘Boats’ image with IRIS noise. SSIM values are given in paren-
theses.
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suitable for direct inspection because (1) actual noise histograms are quite different for the different
noise sources, and (2) the estimated histograms strongly depend on the denoising method.

Figure 4 represents the distribution of the actual and estimated noise PDFs by all the considered
methods in the spatial domain. It can be noticed that, for the Gaussian noise, all methods reproduce
quite well the shape and extent of the PDF, as expected for the parametric models, which use a proper
Gaussian noise model. Note that the SVR method also succeeds in approximating the energy of the
noise even without using the Gaussian assumption explicitly.

For non-Gaussian noise sources, the behavior of the methods markedly differ. For instance, the
quantization noise induced by JPEG/JPEG2000 follows a non-Gaussian, oriented joint distribution
(the central dark area is actually an oriented ellipsoid), indicating correlation among noise samples.
In the case of JPEG, this central ellipsoid is better reproduced by hard thresholding and the proposed
SVR method. The other methods slightly underestimate the variance of the noise. For the case of
JPEG2000, methods not considering signal relations dramatically underestimate the noise variance.
In the case of more complex noise sources, such as vertical striping or IRIS, none of the methods
reproduce the low probability structure (light gray regions). However, the central peak is poorly
reproduced by marginal methods, either overestimating (HT, ST, BG) or underestimating (BL) the
width. On the contrary, GSM and SVR give more reasonable width estimation. To conclude, meth-
ods assuming an (inadequate) Gaussian noise model do not match, in general, the noise distribution,
so they should be reformulated for each particular noise source, which may be complicated or even
impossible. GSM constitutes an exception to this statement, since results suggest that the quality
of the signal model compensates the unsuitability of the noise model. On the contrary, this is not
necessary for the proposed method, which only needs examples of noisy images to learn from.

6. Conclusions

In this work, we proposed an alternative non-parametric way to take into account the relations
among natural image wavelet coefficients for denoising: we used SVR in the wavelet domain to en-
force these relations in the estimated signal. The specific signal relations, which proved to be more
relevant in intraband coefficients, are encoded in an anisotropic kernel based on mutual information
computed from a representative image database. An adaptive SVR with different cost function per
subband was developed: the subband-dependent εi and Ci are modeled by analyzing the particular
signal and noise variances in a representative image database. By following general recommenda-
tions for the design of the kernel, εi and Ci, and adapting them to the particular image denoising
problem, we restricted the class of appropriate SVRs. A KLD-based criterion was proposed to au-
tomatically select the SVR that best recovers the relevant wavelet coefficient relations of the true
signal. The criterion was quite consistent but there is still room for improvement, specially in the
case of complex noise sources.

Results show that the performance of the proposed non-parametric method is (1) better than
conventional wavelet methods that assume coefficient independence, (2) similar to state-of-the-
art methods that do explicitly include these relations when the noise source is Gaussian, and (3)
numerically and visually better results are obtained when more complex realistic noise sources are
considered. Therefore, the proposed SVR approach can be seen as a more flexible (model-free)
alternative to the explicit description of coefficient relations. The important thing here is that no
reformulation is needed for dealing with any other kinds of noise. Moreover, these results are an
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additional indication that relation between local frequency coefficients is a salient natural image
feature that should not be neglected in denoising applications.

Future work is tied to the incorporation of new information in the kernels: here we focused on
the consideration of signal relations in the kernel, but the particular structure of the noise could be
eventually incorporated. Note that the denoising procedure is quite general and admits any kind of
non-parametric regression machine, such as Gaussian Processes.
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Abstract
A large number of learning algorithms, for example, spectral clustering, kernel Principal Compo-
nents Analysis and many manifold methods are based on estimating eigenvalues and eigenfunctions
of operators defined by a similarity function or a kernel, given empirical data. Thus for the analysis
of algorithms, it is an important problem to be able to assess the quality of such approximations.
The contribution of our paper is two-fold:
1. We use a technique based on a concentration inequality for Hilbert spaces to provide new much
simplified proofs for a number of results in spectral approximation.
2. Using these methods we provide several new results for estimating spectral properties of the
graph Laplacian operator extending and strengthening results from von Luxburg et al. (2008).
Keywords: spectral convergence, empirical operators, learning integral operators, perturbation
methods

1. Introduction

A broad variety of methods for machine learning and data analysis from Principal Components
Analysis (PCA) to Kernel PCA, Laplacian-based spectral clustering and manifold methods, rely on
estimating eigenvalues and eigenvectors of certain data-dependent matrices. In many cases these
matrices can be interpreted as empirical versions of underlying integral operators or closely related
objects, such as continuous Laplacian operators. Thus establishing connections between empirical
operators and their continuous counterparts is essential to understanding these algorithms. In this
paper, we propose a method for analyzing empirical operators based on concentration inequalities
in Hilbert spaces. This technique together with perturbation theory results allows us to derive a
number of results on spectral convergence in an exceptionally simple way. We note that the approach
using concentration inequalities in a Hilbert space has already been proved useful for analyzing

∗. Also at Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova, Italy.
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supervised kernel algorithms, see De Vito et al. (2005b), Yao et al. (2007), Bauer et al. (2007) and
Smale and Zhou (2007). Here we develop on this approach to provide a detailed and comprehensive
study of perturbation results for empirical estimates of integral operators as well as empirical graph
Laplacians.

In recent years several works started considering these connections. The first study of this prob-
lem appeared in Koltchinskii and Giné (2000) and Koltchinskii (1998), where the authors consider
integral operators defined by a kernel. In Koltchinskii and Giné (2000) the authors study the rela-
tion between the spectrum of an integral operator with respect to a probability distribution and its
(modified) empirical counterpart in the framework of U-statistics. In particular they prove that the
!2 distance between the two (ordered) spectra goes to zero under the assumption that the kernel is
symmetric and square integrable. Moreover, under some stronger conditions, rates of convergence
and distributional limit theorems are obtained. The results are based on an inequality due to Lidskii
and to Wielandt for finite dimensional matrices and the Marcinkiewicz law of large numbers. In
Koltchinskii (1998) similar results were obtained for convergence of eigenfunctions and, using the
triangle inequality, for spectral projections. These investigations were continued in Mendelson and
Pajor (2005) and Mendelson and Pajor (2006), where it was shown that, under the assumption that
the kernel is of positive type, the problem of eigenvalue convergence reduces to the study of how
the random operator 1n ∑

n
i=1Xi⊗Xi deviates from its average E[X ⊗X ], with respect to the operator

norm, where X ,X1, . . . ,Xn are i.i.d !2 random vectors. The result is based on a symmetrization tech-
nique and on the control of a suitable Radamacher complexity.
The above studies are related to the problem of consistency of kernel PCA considered in Shawe-
Taylor et al. (2002) and Shawe-Taylor et al. (2005) and refined in Zwald et al. (2004) and Zwald and
Blanchard (2006). In particular, Shawe-Taylor et al. (2002) and Shawe-Taylor et al. (2005) study
the deviation of the sum of the all but the largest k eigenvalues of the empirical matrix to its mean
using McDiarmid inequality. The above result is improved in Zwald et al. (2004) where fast rates
are provided by means of a localized Rademacher complexities approach. The results in Zwald and
Blanchard (2006) are a development of the results in Koltchinskii (1998). Using a new perturba-
tion result the authors study directly the convergence of the whole subspace spanned by the first k
eigenvectors and are able to show that only the gap between the k and k+ 1 eigenvalue affects the
estimate. All the above results hold for symmetric, positive definite kernels.

A second related series of works considered convergence of the graph Laplacian in various set-
tings , see for example, Belkin (2003), Lafon (2004), Belkin and Niyogi (2005), Hein et al. (2005),
Hein (2006), Singer (2006) and Giné and Koltchinskii (2006). These papers discuss convergence
of the graph Laplacian directly to the Laplace-Beltrami operator. Convergence of the normalized
graph Laplacian applied to a fixed smooth function on the manifold is discussed in Hein et al. (2005),
Singer (2006) and Lafon (2004). Results showing uniform convergence over some suitable class of
test functions are presented in Hein (2006) and Giné and Koltchinskii (2006). Finally, convergence
of eigenvalues and eigenfunctions for the case of the uniform distribution was shown in Belkin and
Niyogi (2007).

Unlike these works, where the kernel function is chosen adaptively depending on the number
of points, we will be primarily interested in convergence of the graph Laplacian to its continuous
(population) counterpart for a fixed weight function. Von Luxburg et al. (2004) study the conver-
gence of the second eigenvalue which is relevant in spectral clustering problems. These results are
extended in von Luxburg et al. (2008), where operators are defined on the space of continuous func-
tions. The analysis is performed in the context of perturbation theory in Banach spaces and bounds
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on individual eigenfunctions are derived. The problem of out-of-sample extension is considered
via a Nyström approximation argument. By working in Banach spaces the authors have only mild
requirements for the weight function defining the graph Laplacian, at the price of having to do a
fairly complicated analysis.

Our contribution is twofold. In the first part of the paper, we assume that the kernel K is sym-
metric and positive definite. We start considering the problem of out-of-sample extension of the
kernel matrix and discuss a singular value decomposition perspective on Nyström-like extensions.
More precisely, we show that a finite rank (extension) operator acting on the Reproducing Kernel
Hilbert space H defined by K can be naturally associated with the empirical kernel matrix: the two
operators have same eigenvalues and related eigenvectors/eigenfunctions. The kernel matrix and its
extension can be seen as compositions of suitable restriction and extension operators that are ex-
plicitly defined by the kernel. A similar result holds true for the asymptotic integral operator, whose
restriction to H is a Hilbert-Schmidt operator. We can use concentration inequalities for opera-
tor valued random variables and perturbation results to derive concentration results for eigenvalues
(taking into account the multiplicity), as well as for the sums of eigenvalues. Moreover, using a per-
turbation result for spectral projections, we derive finite sample bounds for the deviation between
the spectral projection associated with the k largest eigenvalues. We recover several known results
with simplified proofs, and derive new results.

In the second part of the paper, we study the convergence of the asymmetric normalized graph
Laplacian to its continuous counterpart. To this aim we consider a fixed positive symmetric weight
function satisfying some smoothness conditions. These assumptions allow us to introduce a suit-
able intermediate Reproducing Kernel Hilbert space H , which is, in fact, a Sobolev space. We
describe explicitly restriction and extension operators and introduce a finite rank operator with spec-
tral properties related to those of the graph Laplacian. Again we consider the law of large numbers
for operator-valued random variables to derive concentration results for empirical operators. We
study behavior of eigenvalues as well as the deviation of the corresponding spectral projections
with respect to the Hilbert-Schmidt norm. To obtain explicit estimates for spectral projections we
generalize the perturbation result in Zwald and Blanchard (2006) to deal with non-self-adjoint op-
erators. From a technical point the main difficulty in studying the asymmetric graph Laplacian is
that we no longer assume the weight function to be positive definite so that there is no longer a
natural Reproducing Kernel Hilbert space space associated with it. In this case we have to deal with
non-self-adjoint operators and the functional analysis becomes more involved. Comparing to von
Luxburg et al. (2008), we note that the RKHS H replaces the Banach space of continuous func-
tions. Assuming some regularity assumption on the weight functions we can exploit the Hilbert
space structure to obtain more explicit results. Among other things, we derive explicit convergence
rates for a large class of weight functions. Finally we note that for the case of positive definite
weight functions results similar to those presented here have been independently derived by Smale
and Zhou (2009).

The paper is organized as follows. We start by introducing the necessary mathematical objects
in Section 2. We recall some facts about the properties of linear operators in Hilbert spaces, such
as their spectral theory and some perturbation results, and discuss some concentration inequalities
in Hilbert spaces. This technical summary section aims at making this paper self-contained and
provide the reader with a (hopefully useful) overview of the needed tools and results. In Section 3,
we study the spectral properties of kernel matrices generated from random data. We study concen-
tration of operators obtained by an out-of-sample extension using the kernel function and obtain
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considerably simplified derivations of several existing results on eigenvalues and eigenfunctions.
We expect that these techniques will be useful in analyzing algorithms requiring spectral conver-
gence. In fact, in Section 4, we apply these methods to prove convergence of eigenvalues and
eigenvectors of the asymmetric graph Laplacian defined by a fixed weight function. We refine the
results in von Luxburg et al. (2008), which, to the best of our knowledge, is the only other paper
considering this problem so far.

2. Notation and Preliminaries

In this section we will discuss various preliminary results necessary for the further development.

2.1 Operator Theory

We first recall some basic notions in operator theory (see, for example, Lang, 1993). In the following
we let A :H →H be a (linear) bounded operator, where H is a complex (separable) Hilbert space
with scalar product1 (norm) 〈·, ·〉 (‖·‖) and (e j) j≥1 a Hilbert basis in H . We often use the notation
j≥ 1 to denote a sequence or a sum from 1 to pwhere p can be infinite. The set of bounded operators
on H is a Banach space with respect to the operator norm ‖A‖

H ,H
= ‖A‖ = sup‖ f‖=1‖A f‖. If A is a

bounded operator, we let A∗ be its adjoint, which is a bounded operator with ‖A∗‖ = ‖A‖.
A bounded operator A is Hilbert-Schmidt if ∑ j≥1‖Ae j‖2 < ∞ for some (any) Hilbert basis (e j) j≥1.
The space of Hilbert-Schmidt operators is also a Hilbert space (a fact which will be a key in our
development) endowed with the scalar product 〈A,B〉HS = ∑ j

〈
Aej,Be j

〉
and we denote by ‖·‖HS

the corresponding norm. In particular, Hilbert-Schmidt operators are compact.
A closely related notion is that of a trace class operator. We say that a bounded operator A

is trace class, if ∑ j≥1

〈√
A∗Aej,e j

〉
< ∞ for some (any) Hilbert basis (e j) j≥1 (where

√
A∗A is the

square root of the positive operator A∗A defined by spectral theorem (see, for example, Lang, 1993).
In particular, Tr(A) =∑ j≥1

〈
Aej,e j

〉
<∞ and Tr(A) is called the trace of A. The space of trace class

operators is a Banach space endowed with the norm ‖A‖TC = Tr(
√
A∗A). Trace class operators

are also Hilbert Schmidt (hence compact). The following inequalities relate the different operator
norms:

‖A‖ ≤ ‖A‖HS ≤ ‖A‖TC.

It can also be shown that for any Hilbert-Schmidt operator A and bounded operator B we have

‖AB‖HS ≤ ‖A‖HS‖B‖, (1)
‖BA‖HS ≤ ‖B‖‖A‖HS.

Remark 1 If the context is clear we will simply denote the norm and the scalar product by ‖·‖
and 〈·, ·〉 respectively. However, we will add a subscript when comparing norms in different spaces.
When A is a bounded operator, ‖A‖ always denotes the operator norm.

2.2 Spectral Theory for Compact Operators

Recall that the spectrum of a matrix K can be defined as the set of eigenvalues λ ∈ C, s.t. det(K−
λI) = 0, or, equivalently, such that λI−K does not have a (bounded) inverse. This definition can be

1. We choose the convention for which the scalar product is linear in the first argument.
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generalized to operators. Let A : H → H be a bounded operator, we say that λ ∈ C belongs to the
spectrum σ(A), if (A−λI) does not have a bounded inverse. For any λ -∈ σ(A), R(λ) = (A−λI)−1
is the resolvent operator, which is by definition a bounded operator. If A is a compact operator, then
σ(A)\{0} consists of a countable family of isolated points with finite multiplicity |λ1|≥ |λ2|≥ · · ·
and either σ(A) is finite or limn→∞λn = 0 (see, for example, Lang, 1993).

If the bounded operator A is self-adjoint (A= A∗, analogous to a hermitian matrix in the finite-
dimensional case), the eigenvalues are real. Each eigenvalue λ has an associated eigenspace which
is the closed subspace of all eigenvectors with eigenvalue λ. A key result, known as the Spectral
Theorem, ensures that

A=
∞

∑
i=1

λiPλi ,

where Pλ is the orthogonal projection operator onto the eigenspace associated with λ. Moreover,
it can be shown that the projection Pλ can be written explicitly in terms of the resolvent operator.
Specifically, we have the following remarkable equality:

Pλ =
1
2πi

Z

Γ
(γI−A)−1dγ,

where the integral can be taken over any closed simple rectifiable curve Γ ⊂ C (with positive di-
rection) containing λ and no other eigenvalue. We note that while an integral of an operator-valued
function may seem unfamiliar, it is defined along the same lines as an integral of an ordinary real-
valued function. Despite the initial technicality, the above equation allows for far simpler analysis
of eigenprojections than other seemingly more direct methods.

This analysis can be extended to operators, which are not self-adjoint, to obtain a decomposition
parallel to the Jordan canonical form for matrices. To avoid overloading this section, we postpone
the precise technical statements for that case to the Appendix B.

Remark 2 Though in manifold and spectral learning we typically work with real valued functions,
in this paper we will consider complex vector spaces to be able to use certain results from the
spectral theory of (possibly non self-adjoint) operators. However, if the reproducing kernel and the
weight function are both real valued, as usually is the case in machine learning, we will show that
all functions of interest are real valued as well.

2.3 Reproducing Kernel Hilbert Space (RKHS)

Let X be a subset of Rd . A Reproducing Kernel Hilbert space is a Hilbert space H of functions
f : X → C, such that all the evaluation functionals are bounded, that is

f (x) ≤Cx‖ f‖ for some constantCx.

It can be shown that there is a unique conjugate symmetric positive definite kernel function K :
X ×X → C, called reproducing kernel, associated with H and the following reproducing property
holds

f (x) = 〈 f ,Kx〉 ,

where Kx := K(·,x). It is also well known (Aronszajn, 1950) that any conjugate symmetric positive
definite kernel K uniquely defines a reproducing kernel Hilbert space whose reproducing kernel is

909



ROSASCO, BELKIN AND DE VITO

K. We will assume that the kernel is continuous and bounded, and we set

κ= sup
x∈X

K(x,x).

As a consequence, the elements of H are bounded continuous functions, the space H is separable
and is compactly embedded in C (X) with the compact-open topology (Aronszajn, 1950).

Remark 3 The set X can be taken to be any locally compact separable metric space and the as-
sumption about continuity can be weakened. However, the above setting will simplify some technical
considerations, in particular in Section 4.2 where Sobolev spaces are considered.

2.4 Concentration Inequalities in Hilbert spaces

We recall that if ξ1, . . . ,ξn are independent (real-valued) random variables with zero mean and such
that |ξi|≤C, i= 1, . . . ,n, then Hoeffding inequality ensures that ∀ε> 0,

P

[∣∣∣∣∣
1
n

n

∑
i=1

ξi

∣∣∣∣∣
≥ ε

]

≤ 2e−
nε2
2C2 .

If we set τ= nε2
2C2 then we can express the above inequality saying that with probability at least (with

confidence) 1−2e−τ, ∣∣∣∣∣
1
n

n

∑
i=1

ξi

∣∣∣∣∣
≤
C
√
2τ√
n

. (2)

Similarly if ξ1, . . . ,ξn are zero mean independent random variables with values in a separable com-
plex Hilbert space and such that ‖ξi‖ ≤C, i = 1, . . . ,n, then the same inequality holds with the
absolute value replaced by the norm in the Hilbert space, that is, the following bound

∥∥∥∥∥
1
n

n

∑
i=1

ξi

∥∥∥∥∥
≤
C
√
2τ√
n

(3)

holds true with probability at least 1−2e−τ (Pinelis, 1992).

Remark 4 In the cited reference the concentration inequality (3) is stated for real Hilbert spaces.
However, a complex Hilbert space H can be viewed as a real vector space with the scalar product
given by 〈 f ,g〉HR

= (〈 f ,g〉H +〈g, f 〉H )/2, so that ‖ f‖HR
= ‖ f‖H . This last equality implies that (3)

holds also for complex Hilbert spaces.

2.5 Perturbation Theory

First we recall some results on perturbation of eigenvalues and eigenfunctions. About eigenvalues,
we need to recall the notion of extended enumeration of discrete eigenvalues. We adapt the definition
of Kato (1987), which is given for an arbitrary self-adjoint operator, to the compact operators. Let
A : H → H be a compact operator, an extended enumeration is a sequence of real numbers where
every nonzero eigenvalue of A appears as many times as its multiplicity and the other values (if
any) are zero. An enumeration is an extended numeration where any element of the sequence is an
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isolated eigenvalue with finite multiplicity. If the sequence is infinite, this last condition is equivalent
to the fact that any element is nonzero.

The following result due to Kato (1987) is an extension to infinite dimensional operators of an
inequality due to Lidskii for finite rank operator.

Theorem 5 (Kato 1987) Let H be a separable Hilbert space with A, B self-adjoint compact op-
erators. Let (γ j) j≥1, be an enumeration of discrete eigenvalues of B−A, then there exist extended
enumerations (β j) j≥1 and (α j) j≥1 of discrete eigenvalues of B and A respectively such that,

∑
j≥1

φ(β j−α j) ≤ ∑
j≥1

φ(γ j),

where φ is any nonnegative convex function with φ(0) = 0.

By choosing φ(t) = |t|p, p≥ 1, the above inequality becomes

∑
j≥1

|β j−α j|p ≤ ∑
j≥1

|γ j|p.

Letting p= 2 and recalling that ‖B−A‖2HS = ∑ j≥1 |γ j|2, it follows that

∑
j≥1

|β j−α j|2 ≤ ‖B−A‖2HS.

Moreover, since limp→∞(∑ j≥1 |γ j|p)1/p = sup j≥1 |γ j| = ‖B−A‖, we have that

sup
j≥1

|β j−α j|≤ ‖B−A‖.

Given an integer N, let mN be the sum of the multiplicities of the first N nonzero top eigenvalues
of A, it is possible to prove that the sequences (α j) j≥1 and (β j) j≥1 in the above proposition can be
chosen in such a way that

α1 ≥ α2 ≥ . . . ≥ αmN > α j j > mN ,

β1 ≥ β2 ≥ . . . ≥ βmN ≥ β j j > mN .

However in general we need to consider extended enumerations, which are not necessarily decreas-
ing sequence, in order to take into account the kernel spaces of A and B, which are potentially
infinite dimensional vector spaces (also see the remark after Theorem II in Kato 1987).

To control the spectral projections associated with one or more eigenvalues we need the follow-
ing perturbation result due to Zwald and Blanchard (2006) (see also Theorem 20 in Section 4.3).
Let A be a positive compact operator such that the number of eigenvalues is infinite. GivenN ∈N, let
PAN be the orthogonal projection on the eigenvectors corresponding to the top N distinct eigenvalues
α1 > .. . > αN and αN+1 the next one.

Proposition 6 Let A be a compact positive operator. Given an integer N, if B is another compact
positive operator such that ‖A−B‖ ≤ αN−αN+1

4 , then

‖PBD−PAN‖ ≤
2

αN−αN+1
‖A−B‖
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where the integer D is such that the dimension of the range of PBD is equal to the dimension of the
range of PAN. If A and B are Hilbert-Schmidt, in the above bound the operator norm can be replaced
by the Hilbert-Schmidt norm.

We note that a bound on the projections associated with simple eigenvalues implies that the corre-
sponding eigenvectors are close since, if u and v are taken to be normalized and such that 〈u,v〉> 0,
then the following inequality holds

‖Pu−Pv‖2HS = 2(1−〈u,v〉2) ≥ 2(1−〈u,v〉) = ‖u− v‖2H .

3. Integral Operators Defined by a Reproducing Kernel

Let X be a subset ofRd and K :X×X→C be a reproducing kernel satisfying the assumptions stated
in Section 2.3. Let ρ be a probability measure on X and denote by L2(X ,ρ) the space of square
integrable (complex) functions with norm ‖ f‖2ρ = 〈 f , f 〉ρ =

R

X | f (x)|2dρ(x). Since K(x,x) ≤ κ by
assumption, the corresponding integral operator LK : L2(X ,ρ) → L2(X ,ρ)

(LK f )(x) =
Z

X
K(x,s) f (s)dρ(s)

is a bounded operator.
Suppose we are now given a set of points x = (x1, . . . ,xn) sampled i.i.d. according to ρ. Many

problems in statistical data analysis and machine learning deal with the empirical kernel n× n-
matrix K given by Ki j = 1

nK(xi,x j). The question we want to discuss is to which extent we can
use the kernel matrix K (and the corresponding eigenvalues, eigenvectors) to estimate LK (and the
corresponding eigenvalues, eigenfunctions). Answering this question is important as it guarantees
that the computable empirical proxy is sufficiently close to the ideal infinite sample limit.
The first difficulty in relating LK and K is that they operate on different spaces. By default, LK is an
operator on L2(X ,ρ), while K is a finite dimensional matrix. To overcome this difficulty we let H
be the RKHS associated with K and define the operators TH ,Tn :H →H given by

TH =
Z

X
〈·,Kx〉Kxdρ(x), (4)

Tn =
1
n

n

∑
i=1

〈·,Kxi〉Kxi . (5)

Note that TH is the integral operator with kernelK with range and domainH rather than in L2(X ,ρ).
The reason for writing it in this seemingly complicated form is to make the parallel with (5) clear.
To justify the “extension operator” in (5), consider the natural “restriction operator”,2 Rn :H → Cn,
Rn f = ( f (x1), . . . , f (xn)). It is not hard to check that the adjoint operator R∗

n :Cn→H can be written
as R∗

n(y1, . . . ,yn) = 1
n ∑

n
i=1 yiKxi . Indeed, we see that

〈R∗
n(y1, . . . ,yn), f 〉H = 〈(y1, . . . ,yn),Rn f 〉Cn

=
1
n

n

∑
i=1

yi f (xi) =
1
n

n

∑
i=1

yi〈Kxi , f 〉H ,

2. Rn is also called sampling or evaluation operator. We prefer to call it the restriction operator since Rn f is the
restriction of the function f : X → R to the set of points {x1, . . . ,xn}.
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where Cn is endowed with 1/n times the canonical scalar product. Thus, we observe that Tn = R∗
nRn

is the composition of the restriction operator and its adjoint. On the other hand for the matrix
K we have that K = RnR∗

n, regarded as operator on Cn. Similarly, if RH denotes the inclusion
H ↪→ L2(X ,ρ), TH = R∗

H
RH and LK = RH R∗

H
.

In the next subsection, we discuss a parallel with the Singular Value Decomposition for matrices
and show that TH and LK have the same eigenvalues (possibly, up to some zero eigenvalues) and
the corresponding eigenfunctions are closely related. A similar relation holds for Tn and K. Thus
to establish a connection between the spectral properties of K and LK , it is sufficient to bound the
difference TH − Tn, which is done in the following theorem (De Vito et al., 2005b). While the
proof can be found in De Vito et al. (2005b), we provide it for completeness and to emphasize its
simplicity.
Theorem 7 The operators TH and Tn are Hilbert-Schmidt. Under the above assumption with con-
fidence 1−2e−τ

‖TH −Tn‖HS ≤
2
√
2κ

√
τ√

n
.

Proof We introduce a sequence (ξi)ni=1 of random variables in the Hilbert space of Hilbert-Schmidt
operators by

ξi = 〈·,Kxi〉Kxi −TH .

From (4) follows that E(ξi) = 0. By a direct computation we have that ‖〈·,Kx〉Kx‖2HS = ‖Kx‖4 ≤ κ2.
Hence, using (4), ‖TH ‖HS ≤ κ and

‖ξi‖HS ≤ 2κ, i= 1, . . . ,n.

From inequality (3) we have with probability 1−2e−τ

‖
1
n

n

∑
i=1

ξi‖HS = ‖TH −Tn‖HS ≤
2
√
2κ

√
τ√

n
,

which establishes the result.

As a direct consequence of Theorem 7 we obtain several concentration inequalities for eigenval-
ues and eigenfunctions. These results will be discussed in subsection 3.2 and they are based on an
interpretation of the Nyström extension in terms of Singular Value Decomposition of the empirical
operator and its mean, as explained in the following subsection.

3.1 Extension Operators

We will now briefly revisit the Nyström extension and clarify some connections to the Singular
Value Decomposition (SVD) for operators. Recall that applying SVD to a p×m matrix A produces
a singular system consisting of singular (strictly positive) values (σ j)kj=1 with k being the rank of
A, vectors (u j)mj=1 ∈ Cm and (v j)pj=1 ∈ Cp such that they form orthonormal bases of Cm and Cp

respectively, and 




A∗Auj = σ ju j j = 1, . . .k
A∗Auj = 0 j = k+1, . . . ,m
AA∗v j = σ jv j j = 1, . . .k
AA∗v j = 0 j = k+1, . . . , p.
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It is not hard to see that the matrix A can be written as A = VΣ1/2U∗, where U and V are matrices
obtained by ”stacking” u’s and v’s in the columns, and Σ is a p×mmatrix having the singular values
σi on the first k-entries on the diagonal (and zero outside), so that






Auj =
√
σ jv j j = 1, . . .k

Au j = 0 j = k+1, . . . ,m
A∗v j =

√
σ ju j j = 1, . . .k

A∗v j = 0 j = k+1, . . . , p,

which is the formulation we will use in this paper. The same formalism applies more generally to
operators and allows us to connect the spectral properties of LK and TH as well as the matrix K
and the operator Tn. The basic idea is that each of these pairs (as shown in the previous subsection)
corresponds to a singular system and thus share eigenvalues (up to some zero eigenvalues) and have
eigenvectors related by a simple equation. Indeed the following result can be obtained considering
the SVD decomposition associated with RH (and Proposition 9 considering the SVD decomposition
associated with Rn). The proof of the following proposition can be deduced from the results in
De Vito et al. (2005b) and De Vito et al. (2006).3

Proposition 8 The following facts hold true.

1. The operators LK and TH are positive, self-adjoint and trace class. In particular both σ(LK)
and σ(TH ) are contained in [0,κ].

2. The spectra of LK and TH are the same, possibly up to the zero. If σ is a nonzero eigenvalue
and u,v are the associated eigenfunctions of LK and TH (normalized to norm 1 in L2(X ,ρ)
and H ) respectively, then

u(x) =
1

√
σ j
v(x) for ρ-almost all x ∈ X ,

v(x) =
1

√
σ j

Z

X
K(x,s)u(s)dρ(s) for all x ∈ X .

3. The following decompositions hold:

LKg = ∑
j≥1

σ j
〈
g,u j

〉
ρ u j g ∈ L2(X ,ρ),

TH f = ∑
j≥1

σ j
〈
f ,v j

〉
v j f ∈H ,

where the eigenfunctions (u j) j≥1 of LK form an orthonormal basis of kerLK⊥ and the eigen-
functions (v j) j≥1 of TH form an orthonormal basis for ker(TH )⊥.

If K is real-valued, both the families (u j) j≥1 and (v j) j≥1 can be chosen as real valued functions.

3. In De Vito et al. (2005b) and De Vito et al. (2006) the results are stated for real kernels, however the proof does not
change if K is complex valued. Moreover, if K is real and LK is regarded as integral operator on the space of square
integrable complex functions, one can easily check that the eigenvalues are positive and, if u is an eigenfunction with
eigenvalue σ≥ 0, then the complex conjugate u is also an eigenfunction with the same eigenvalue, so that it is always
possible to choose all the eigenfunctions to be real valued.
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Note that the RKHS H does not depend on the measure ρ. If the support of the measure ρ is only a
subset of X (e.g., a finite set of points or a submanifold), then functions in L2(X ,ρ) are only defined
on the support of ρ whereas functions inH are defined on the whole space is X . The eigenfunctions
of LK and TH coincide (up-to a scaling factor) on the support of the measure, and v is an extension4
of u outside of the support of ρ. Moreover, the extension/restriction operations preserve both the
normalization and orthogonality of the eigenfunctions. In a slightly different context Coifman and
Lafon (2006) showed the connection between the Nyström method and the set of eigenfunctions of
LK , which are called geometric harmonics. The main difference between our result and the cited
paper is that we consider all the eigenfunctions, whereas Coifman and Lafon introduce a threshold
on the spectrum to ensure stability since they do not consider a sampling procedure.

An analogous result relates the matrix K and the operator Tn .

Proposition 9 The following facts hold.

1. The operator Tn is of finite rank, self-adjoint and positive, whereas the matrix K is conjugate
symmetric and semi-positive definite. In particular the spectrum σ(Tn) has only finitely many
nonzero elements and is contained in [0,κ].

2. The spectra of K and Tn are the same up to the zero, that is, σ(K)\{0} = σ(Tn)\{0}. More-
over, if σ̂ is a nonzero eigenvalue and û, v̂ are the corresponding eigenvector and eigenfunction
of K and Tn (normalized to norm 1 in Cn and H ) respectively, then

û =
1√
σ̂

(v̂(x1), . . . , v̂(xn)),

v̂ =
1√
σ̂

(
1
n

n

∑
i=1

Kxi û
i

)

,

where ûi is the i−th component of the eigenvector û.

3. The following decompositions hold:

Kw =
k

∑
j=1

σ̂ j
〈
w, û j

〉
û j w ∈ C

n,

Tn f =
k

∑
j=1

σ̂ j
〈
f , v̂ j

〉
H
v̂ j f ∈H ,

where k is the rank of K and both sums run over the nonzero eigenvalues, the family (û j) j≥1
is an orthonormal basis for ker{K}⊥ ⊂Cn and the family (v̂ j) j≥1 of Tn forms an orthonormal
basis for the space ker(Tn)⊥ ⊂H , where

ker(Tn) = { f ∈H | f (xi) = 0 ∀i= 1, . . . ,n}.

If K is real-valued, both the families (û j) j≥1 and (v̂ j) j≥1 can be chosen as real valued vectors and
functions, respectively.

4. However, the extension is trivial in the points x ∈ X where K(x,x) = 0, as it happens if the kernel is compactly
supported.
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Note that in this section LK , T and Tn are self-adjoint operators and K is a conjugate symmetric
matrix. If K is real, we can directly work with real Hilbert spaces. However since we need complex
vector spaces in Section 4 for consistency we stated the above results for complex reproducing
kernels.

3.2 Bounds on Eigenvalues and Spectral Projections

Using Theorem 7, we are able to bound the !2-distance between the spectrum of LK and the spectrum
of K.

Proposition 10 There exist an extended enumeration (σ j) j≥1 of discrete eigenvalues for LK and an
extended enumeration (σ̂ j) j≥1 of discrete eigenvalues for K such that

∑
j≥1

(σ j− σ̂ j)
2 ≤

8κ2τ
n

,

with confidence greater than 1−2e−τ. In particular sup j≥1 |σ j− σ̂ j|≤ 2
√
2κ

√
τ√

n .

Proof By Proposition 8, an extended enumeration (σ j) j≥1 of discrete eigenvalues for LK is also an
extended enumeration (σ j) j≥1 of discrete eigenvalues for TH , and a similar relation holds forK and
Tn by Proposition 9. Theorem 5 with A= Tn and B= TH gives that

∑
j≥1

(σ j− σ̂ j)
2 ≤ ‖TH −Tn‖2HS

for a suitable extended enumerations (σ j) j≥1, (σ̂ j) j≥1 of discrete eigenvalues for T and Tn, respec-
tively. Theorem 7 provides us with the claimed bound.

Theorem 4.2 and the following corollaries of Koltchinskii and Giné (2000) provide the same con-
vergence rate (in expectation) under a different setting (the kernel K is only symmetric, but with
some assumption on the decay of the eigenvalues of LK).

The following result can be deduced by Theorem 5 with p = 1 and Theorem 7, however a
simpler direct proof is given below.

Proposition 11 Under the assumption of Proposition 10 with confidence 1−2e−τ

|∑
j≥1

(σ j− σ̂ j)| = |Tr(TH )−Tr(Tn)|≤
2
√
2κ

√
τ√

n
.

Proof Note that

Tr(Tn) =
1
n

n

∑
i=1

K(xi,xi), and Tr(TH ) =
Z

X
K(x,x)dρ(x).

Then we can define a sequence (ξi)i=1n of real-valued random variables by ξi = K(xi,xi)−Tr(TH ).
Clearly E[ξi] = 0 and |ξi|≤ 2κ, i= 1, . . . ,n so that Hoeffding inequality (2) yields with confidence
1−2e−τ ∣∣∣∣∣

1
n

n

∑
i=1

ξi

∣∣∣∣∣
= |Tr(TH )−Tr(Tn)|≤

2
√
2κ

√
τ√

n
.
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From Proposition 6 and Theorem 7 we directly derive the probabilistic bound on the eigen-
projections given by Zwald and Blanchard (2006)—their proof is based on bounded difference
inequality for real random variables—see also De Vito et al. (2005a). For the sake of simplicity, in
the following result we assume that the number of eigenvalues of LK is infinite.

Theorem 12 Given an integer N, let m be the sum of the multiplicities of the first N distinct eigen-
values of LK, so that

σ1 ≥ σ2 ≥ . . . ≥ σm > σm+1,

and PN be the orthogonal projection from L2(X ,ρ) onto the span of the corresponding eigenfunc-
tions. Let k be the rank of K, and û1 . . . , ûk the eigenvectors corresponding to the nonzero eigen-
values of K in a decreasing order. Denote by v̂1 . . . , v̂k ∈H ⊂ L2(X ,ρ) the corresponding Nyström
extension given by item 2 of Proposition 9.

Given τ> 0, if the number n of examples satisfies

n>
128κ2τ

(σm−σm+1)2
,

then
m

∑
j=1

‖(I−PN)v̂ j‖2ρ+
k

∑
j=m+1

‖PNv̂ j‖2ρ ≤
32κ2τ

(σm−σm+1)2 n
, (6)

with probability greater than 1−2e−τ.

Proof Let (u j) j≥1 be an orthonormal family of eigenfunctions of LK with strictly positive eigenval-
ues. Without loss of generality, we can assume that u1, . . . ,um are the eigenfunctions with eigenval-
ues σ1,σ2, . . . ,σm. Let (v j) j≥1 the corresponding family of eigenfunctions of TH given by Propo-
sition 8 and complete to an orthonormal basis of H . Complete also the family v̂1 . . . , v̂k to an other
orthonormal basis of H .

Apply Proposition 6 with A = TH and B = Tn by taking into account Theorem 7. With high
probability

‖PTn −PTH ‖2HS ≤
8κ2τ

(σm−σm+1)2 n
≤
am−am+1

2
,

where

PTH =
m

∑
j=1

〈
f ,v j

〉
H
v j PTn =

m

∑
j=1

〈
f , v̂ j

〉
H
v̂ j

and the last bound follows from the condition on n. In particular, σ̂m > σ̂m+1.
Since both (vi) j≥1 and (v̂i) j≥1 are orthonormal bases for H

‖PTn −PTH ‖2HS = ∑
i, j≥1

|
〈
PTnvi−PTH vi, v̂ j

〉
H
|2

=
m

∑
j=1

∑
i≥m+1

|
〈
vi, v̂ j

〉
H
|2+ ∑

j≥m+1

m

∑
i=1

|
〈
vi, v̂ j

〉
H
|2

≥
m

∑
j=1

∑
i≥m+1
TH vi -=0

|
〈
vi, v̂ j

〉
H
|2+

k

∑
j≥m+1

m

∑
i=1

|
〈
vi, v̂ j

〉
H
|2.
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Since the sum on i is with respect to the eigenfunctions of TH with nonzero eigenvalue, the Mercer
theorem implies that

〈
vi, v̂ j

〉
H

=
〈
ui, v̂ j

〉
ρ. Finally, observe that

m

∑
i=1

|
〈
ui, v̂ j

〉
ρ|
2 = ‖PNv̂ j‖2ρ

∑
i≥m+1
TH vi -=0

|
〈
ui, v̂ j

〉
ρ|
2 = ∑

i≥m+1
LKui -=0

|
〈
ui, v̂ j

〉
ρ|
2 = ‖(I−PN)v̂ j‖2ρ

where we used that kerTH ⊂ kerTn, so that v̂ j ∈ kerLK⊥ with probability 1.

The first term on the left side of inequality (6) is the projection of the vector space spanned by the
Nyström extension of the first top eigenvectors of the empirical matrix K onto the orthogonal of the
vector spaceMN spanned by the first top eigenfunctions of the integral operator LK , the second term
is the projection of the vector space spanned by the Nyström extensions of the other eigenvectors
of K onto MN . Both differences are in L2(X ,ρ) norm. A similar result is given in Zwald and
Blanchard (2006), however, the role of the Nyström extensions is not considered—they study only
the operators TH and Tn (with our notation). Another result similar to ours is independently given
in Smale and Zhou (2009), where the authors considered a single eigenfunction with multiplicity 1.

4. Asymmetric Graph Laplacian

In this section we will consider the case of the so-called asymmetric normalized graph Laplacian,
which is the identity matrix minus the transition matrix for the natural random walk on a graph.
In such a random walk, the probability of leaving a vertex along a given edge is proportional to
the weight of that edge. As before, we will be interested in a specific class of graphs (matrices)
associated with data.

LetW : X×X → R be a symmetric continuous weight function such that

0< c≤W (x,s) ≤C x,s ∈ X . (7)

Note that we will not requireW to be positive definite, but positive.
A set of data points x = (x1, . . . ,xn) ∈ X defines a weighted undirected graph with the weight

matrixW given byWi j =
1
nW (xi,x j). The (asymmetric) normalized graph Laplacian L : Cn → Cn

is an n×n matrix given by
L= I−D−1W,

where the degree matrix D is diagonal with

Dii =
1
n

n

∑
j=1
W (xi,x j) =

n

∑
j=1
Wi j,

which is invertible since D≥ cI by (7).
As in the previous section, X is a subset of Rd endowed with a probability measure ρ and

L2(X ,ρ) is the space of square integrable complex functions with respect to ρ.
Let m(x) =

R

XW (x,s)dρ(s) be the degree function, bound (7) implies that the operator L :
L2(X ,ρ) → L2(X ,ρ)

(L f )(x) = f (x)−
Z

X

W (x,s) f (s)
m(x)

dρ(s),
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is well defined and continuous. The fact thatW is bounded away from zero is essential to control
the behavior of the degree function m, however it might be possible to replace this condition with
the requirement that m(x) ≥ c , to consider localized weight functions.

We see that when a set x = (x1, . . . ,xn) ∈ X is sampled i.i.d. according to ρ, the matrix L is an
empirical version of the operator L. We will view L as a perturbation of L due to finite sampling
and will extend the approach developed in this paper to relate their spectral properties. Note that
the methods described in the previous section are not directly applicable in this setting sinceW is
not necessarily positive definite, so there is no RKHS associated with it. Moreover, even if W is
positive definite, L involves division by a function, and may not be a map from the RKHS to itself.
To overcome this difficulty in our theoretical analysis, we will rely on an auxiliary RKHS H with
reproducing kernel K. Interestingly enough, this space will play no role from the algorithmic point
of view, but only enters the theoretical analysis.

To state the properties of H we define the following functions

Kx : X → C Kx(t) = K(t,x),
Wx : X → R Wx(t) =W (t,x),

mn : X → R mn =
1
n

n

∑
i=1
Wxi ,

where mn is the empirical counterpart of the function m and, in particular, mn(xi) = Dii.
To proceed we need the following assumption, which postulates that the functions

wx,Wx/m,Wx/mn belong toH . However it is important to note that forW sufficiently smooth (as we
expect it to be in most applications) these conditions can be satisfied by choosingH to be a Sobolev
space of sufficiently high degree. This is made precise in the Section 4.2 (see Assumption 2).

Assumption 1 Given a continuous weight functionW satisfying (7), we assume there exists a RKHS
H with bounded continuous kernel K such that

Wx,
1
m
Wx,

1
mn
Wx ∈H

‖
1
m
Wx‖H ≤C,

for all x ∈ X.

Assumption 1 allows to define the following bounded operators LH ,AH :H →H

AH =
Z

X
〈·,Kx〉H

1
m
Wx dρ(x),

LH = I−AH

and their empirical counterparts Ln,An :H →H

An =
1
n

n

∑
i=1

〈·,Kxi〉H
1
mn
Wxi ,

Ln = I−An.

Next result will show that LH , AH and L have related eigenvalues and eigenfunctions and that
eigenvalues and eigenfunctions (eigenvectors) of Ln, An and L are also closely related. In particular
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we will see in the following that to relate the spectral properties of L and L it suffices to control
the deviation AH −An. However, before doing this, we make the above statements precise in the
following subsection.

4.1 Extension Operators

In analogy to Section 3.1 we consider the relation between the operators we want to study and their
extensions. We define the restriction operator Rn :H →Cn and the extension operator En :Cn→H

as

Rn f = ( f (x1), . . . , f (xn)) f ∈H ,

En(y1, . . . ,yn) =
1
n

n

∑
i=1

yi
1
mn
Wxi (y1, . . . ,yn) ∈ C

n.

Clearly the extension operator is no longer the adjoint of Rn but the connection among the operators
L to Ln and An can still be clarified by means of Rn and En. Indeed it is easy to check that An = EnRn
and D−1W= RnEn. Similarly the infinite sample restrictions and extension operators can be defined
to relate the operators L, AH and LH . The next proposition considers such a connection.

Proposition 13 The following facts hold true.

1. The operator AH is Hilbert-Schmidt, the operators L and LH are bounded and have positive
eigenvalues.

2. Given σ ∈ [0,+∞[, σ ∈ σ(LH ) if and only if 1−σ ∈ σ(AH ), with the same eigenfunction.

3. The spectra of L and LH are the same up to the eigenvalue 1. If σ -= 1 is an eigenvalue and
u,v associated eigenfunctions of L and LH respectively, then

u(x) = v(x) for almost all x ∈ X ,

v(x) =
1

1−σ

Z

X

W (x, t)
m(x)

u(t) dρ(t) for all x ∈ X .

4. Finally the following decompositions hold

L = ∑
j≥1
σ j -=1

σ jPj +P0, (8)

LH = I− ∑
j≥1
σ j -=1

(1−σ j)Qj +D, (9)

where the projections Qj,Pj are the spectral projections of L and LH associated with the
eigenvalue σ j, P0 is the spectral projection of L associated with the eigenvalue 1, and D is a
quasi-nilpotent operator such that kerD= ker(I−LH ) and QjD= DQj = 0 for all j ≥ 1.

Furthermore, all the eigenfunctions can be chosen as real-valued.
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The proof of the above result is long and quite technical and can be found in Appendix A. Note that,
with respect to Proposition 9, neither the normalization nor the orthogonality is preserved by the
extension/restriction operations, so that we are free to normalize vwith the factor 1/(1−σ), instead
of 1/

√
1−σ as in Proposition 8. One can easily show that, if u1, . . . ,um is a linearly independent

family of eigenfunctions of L with eigenvalues σ1, . . . ,σm -= 1, then the extension v1, . . . ,vm is a
linearly independent family of eigenfunctions of LH with eigenvalues σ1, . . . ,σm -= 1. Finally,
we stress that in item 4 both series converge in the strong operator topology, however, though
∑ j≥1Pi = I−P0, it is not true that ∑ j≥1Qi converges to I−Q0, where Q0 is the spectral projection
of LH associated with the eigenvalue 1. This is the reason why we need to write the decomposition
of LH as in (9) instead of (8). An analogous result allows us to relate L to Ln and An.

Proposition 14 The following facts hold true.

1. The operator An is Hilbert-Schmidt, the matrix L and the operator Ln have positive eigenval-
ues.

2. Given σ ∈ [0,+∞[, σ ∈ σ(Ln) if and only if 1−σ ∈ σ(An), with the same eigenfunction.

3. The spectra of L and Ln are the same up to the eigenvalue 1, moreover if σ̂ -= 1 is an eigen-
value and the û, v̂ eigenvector and eigenfunction of L and Ln, then

û = (v̂(x1), . . . , v̂(x1)),

v̂(x) =
1

1− σ̂
1
n

n

∑
i=1

W (x,xi)
mn(x)

ûi

where ûi is the i−th component of the eigenvector û.

4. Finally the following decompositions hold

L = ∑
j≥1
σ̂ j -=1

σ̂ jP̂j + P̂0,

Ln = ∑
j≥1
σ̂ j -=1

σ̂ jQ̂ j + Q̂0+ D̂,

where the projections Qj,Pj are the spectral projections of L and Ln associated with the
eigenvalue σ j, P̂0 and Q̂0 are the spectral projections of L and Ln associated with the eigen-
value 1, and D̂ is a quasi-nilpotent operator such that ker D̂= ker(I−Ln) and Q̂ jD̂= D̂Q̂ j =
0 for all j with σ̂ j -= 1.

The last decomposition is parallel to the Jordan canonical form for (non-symmetric) matrices. No-
tice that, since the sum is finite, ∑ j≥1

σ̂ j -=1
Q̂ j + Q̂0 = I.

4.2 Graph Laplacian Convergence for Smooth Weight Functions

If the weight functionW is sufficiently differentiable, we can choose the RKHS H to be a suitable
Sobolev space. For the sake of simplicity, we assume that X is a bounded open subset of Rd with a
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nice boundary.5 Given s ∈ N, the Sobolev space H s =H s(X) is

H s = { f ∈ L2(X ,dx) | Dα f ∈ L2(X ,dx) ∀|α| = s},

where Dα f is the (weak) derivative of f with respect to the multi-index α = (α1, . . . ,αd) ∈ Nd ,
|α| = α1+ · · ·+αd and L2(X ,dx) is the space of square integrable complex functions with respect
to the Lebesgue measure (Burenkov, 1998). The space H s is a separable Hilbert space with respect
to the scalar product

〈 f ,g〉H s = 〈 f ,g〉L2(X ,dx) + ∑
|α|=s

〈Dα f ,Dαg〉L2(X ,dx) .

LetCsb(X) be the set of continuous bounded functions such that all the (standard) derivatives of order
s exists and are continuous bounded functions. The space Csb(X) is a Banach space with respect to
the norm

‖ f‖Csb = sup
x∈X

| f (x)|+ ∑
|α|=s

sup
x∈X

|(Dα f )(x)|.

Since X is bounded, it is clear thatCsb(X)⊂H s and ‖ f‖H s ≤ d‖ f‖Csb , where d is a suitable constant
depending only on s. A sort of converse also holds, which will be crucial in our approach, see
Corollary 21 of Burenkov (1998). Let l,m ∈ N such that l−m> d

2 , then

H l ⊂Cmb (X) ‖ f‖Cmb ≤ d′‖ f‖H l (10)

where d′ is a constant depending only on l and m.
From Eq (10) with l = s and m= 0, we see that the Sobolev space H s, where s= 3d/24+1, is

a RKHS with a continuous6 real valued bounded kernel Ks.
We are ready to state our assumption on the weight function, which implies Assumption 1.

Assumption 2 We assume that W : X×X → R is a positive, symmetric function such that

W (x, t) ≥ c> 0 ∀x, t ∈ X , (11)
W ∈Cd+1b (X×X). (12)

As we will see, condition (12) quantifies the regularity ofW we need to use Sobolev spaces as RKHS
and, as usual, it critically depends on the dimension of the input space, see also Remark 19 below.
By inspecting our proofs, (12) can be replaced by the more technical conditionW ∈H d+1(X×X).

As a consequence of Assumption 2, we are able to control the deviation of Ln from LH .

Theorem 15 Under the conditions of Assumption 2, with confidence 1−2e−τ we have

‖Ln−LH ‖HS = ‖AH −An‖HS ≤C
√
τ√
n
, (13)

where ‖·‖HS is the Hilbert-Schimdt norm of an operator in the Sobolev spaceH s with s= 3d/24+1,
and C is a suitable constant.
5. The conditions, like quasi-resolved boundary open set, are very technical and we refer to Burenkov (1998) for the
precise assumptions, see Section 4.3 of the cited reference.

6. The kernel Ks is continuous on X×X since the embedding of H s intoCb(X) is compact, see Schwartz (1964).
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To prove this result we need some preliminary lemmas. In the following C will be a constant that
could change from one statement to the other. The first result shows that Assumption 2 implies
Assumption 1 with H =H s and that the multiplicative operators defined by the degree function, or
its empirical estimate, are bounded.

Lemma 16 There exists a suitable constant C > 0 such that

1. for all x ∈ X, Wx,
1
mWx,

1
mnWx ∈H d+1 ⊂H s and ‖ 1mWx‖H s ≤C;

2. the multiplicative operators M,Mn :H s →H s defined by

M f = mf , Mn f = mn f , f ∈H s

are bounded invertible operators satisfying

‖M‖
H s ,H s ,‖M−1‖

H s,H s ,‖Mn‖H s ,H s ,‖M−1
n ‖

H s,H s ≤C,

‖M−Mn‖H s ,H s ≤C‖m−mn‖H d+1 ,

where ‖·‖
H s,H s is the operator norm of an operator in the Sobolev space H s.

Proof Let C1 = ‖W‖Cd+1b (X×X). Given x ∈ X , clearly Wx ∈ Cd+1b (X) and, by standard results of
differential calculus, both m and mn ∈Cd+1b (X) with

‖Wx‖Cd+1b (X),‖m‖Cd+1b (X),‖mn‖Cd+1b (X) ≤C1.

Leibniz rule for the quotient with bound (11) gives that 1m and
1
mn ∈C

d+1
b (X) with

‖
1
m
‖Cd+1b (X),‖

1
mn

‖Cd+1b (X) ≤C2,

whereC2 is independent both on n and on the sample (x1, . . . ,xn). Claim in item 1 is a consequence
of the fact that pointwise multiplication is a continuous bilinear map on Cd+1b (X), and Cd+1b (X) ⊂
H d+1 ⊂H s with

‖ f‖H s ≤C3‖ f‖H d+1 ≤C4‖ f‖Cd+1b (X).

We claim that if g ∈Cd+1b (X) and f ∈H s, then g f ∈H s and

‖g f‖H s ≤ ‖g‖H d+1‖ f‖H s .

Indeed, Lemma 15 of Section 4 of Burenkov (1998) with p = p2 = 2, p1 = ∞, l = s and n = d
ensures that

‖g f‖H s ≤ ‖g‖Csb(X)‖ f‖H s .

Eq. (10) with m= s and l = d+1> d/2+ s= d/2+[d/2]+1 provides us with the claimed bound.
The content of item 2. is a consequence of the above result with g= m,mn,

1
m , 1mn , and m−mn,

respectively, satisfying ‖g‖H d+1 ≤C4max{C1,C2} =C5.
The constantC will be the maximum among the constantsCi.

Next lemma shows that the integral operator of kernelW and its empirical counterpart are Hilbert-
Schmidt operators and it bounds their difference.
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Lemma 17 The operators LW,H ,LW,n :H s →H s defined by

LW,H =
Z

X
〈·,Ks

x〉H sWxdρ(x),

LW,n =
1
n

n

∑
i=1

〈
·,Ks

xi
〉
H sWxi ,

are Hilbert-Schmidt. Furthermore, with confidence 1−2e−τ

‖LW,H −LW,n‖HS ≤C
√
τ√
n
.

for a suitable constant C.

Proof Note that ‖
〈
·,Ks

xi
〉
H sWxi‖HS = ‖Ks

xi‖H s‖Wxi‖H s ≤ C1 for a suitable constant C1, which is
finite by item 1 of Lemma 16 and the fact that Ks is bounded. Hence LW,n,LW,H are Hilbert Schmidt
operators on H s. The random variables (ξi)ni=1 defined by ξi =

〈
·,Ks

xi
〉
H sWxi −LW,H , taking value

in the Hilbert space of Hilbert-Schmidt operators, are zero mean and bounded. Applying (3) we
have with confidence 1−2e−τ

‖LW,H −LW,n‖HS ≤C
√
τ√
n
, (14)

for a suitable constantC.

We then consider multiplication operators defined by the degree functions.

Lemma 18 With confidence 1−2e−τ

‖M−Mn‖H s ,H s ≤C
√
τ√
n
.

for a suitable constant C.

Proof Item 2 of Lemma 16 ensures that M and Mn are bounded operators on H s with
‖M−Mn‖H s ,H s ≤C1‖m−mn‖H d+1 .
The random variables (ξi)ni=1, defined by ξi =Wxi −m ∈H d+1 are zero mean and bounded. Apply-
ing (3) we have with high probability

‖m−mn‖H d+1 ≤
C2

√
τ√
n

,

so that the claim is proved with a suitable choice forC.

Remark 19 In the above lemma we need to control m−mn in a suitable Hilbert space in order
to use Hoeffding inequality (3). Lemma 15 of Burenkov (1998) ensures that ‖M−Mn‖H s,H s is
bounded by ‖m−mn‖Csb(X). In order to control it with a Sobolev norm by means of (10), we need
to require that m−mn ∈ H l with l > s+ d/2. Furthermore, the requirement that H s is a RKHS
with continuous bounded kernel implies that s> d/2 so that l > d. Hence a natural requirement on
the weight function is that Wx ∈ H l(X), which is closely related to Assumption 2 with the minimal
choice l = d+1.
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Finally, we can combine the above two lemmas to get the proof of Theorem 15.
Proof [Proof of Theorem 15] By Lemma 16, bothM andMn are invertible operators and

AH =M−1LW,H , An =M−1
n LW,n,

so that we can consider the following decomposition

An−AH = M−1
n LW,n−M−1LW,H (15)

= (M−1
n −M−1)LW,H +M−1

n (LW,n−LW,H )

= M−1
n (M−Mn)M−1LW,H +

+ M−1
n (LW,n−LW,H ).

By taking the Hilbert-Schmidt norm of the above expression and using (1) with the bounds provided
by Lemma 16, we get

‖An−AH ‖HS ≤C2‖M−Mn‖H s ,H s‖LW,H ‖HS+C‖LW,n−LW,H ‖HS.

The concentration inequalities (17) and (18) give (13), possibly redefining the constantC.

In the next section we discuss the implications of the above result in terms of concentration of
eigenvalues and spectral projections.

4.3 Bounds on Eigenvalues and Spectral Projections

Since the operators are no longer self-adjoint the perturbation results in Section 3.2 cannot be used.
See Appendix B for a short review about spectral theory for compact (not necessarily self-adjoint)
operators. The following theorem is an adaptation of results in Anselone (1971), compare with
Theorem 4.21.

Theorem 20 Let A be a compact operator. Given a finite set Λ of non-zero eigenvalues of A, let Γ
be any simple rectifiable closed curve (having positive direction) with Λ inside and σ(A)\Λ outside.
Let P be the spectral projection associated with Λ, that is,

P=
1
2πi

Z

Γ
(λ−A)−1 dλ,

and define
δ−1 = sup

λ∈Γ
‖(λ−A)−1‖.

Let B be another compact operator such that

‖B−A‖ ≤
δ2

δ+ !(Γ)/2π
< δ,

where !(Γ) is the length of Γ, then the following facts hold true.

1. The curve Γ is a subset of the resolvent set of B enclosing a finite set Λ̂ of non-zero eigenvalues
of B;
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2. Denoting by P̂ the spectral projection of B associated with Λ̂, then

‖P̂−P‖ ≤
!(Γ)

2πδ
‖B−A‖

δ−‖B−A‖
;

3. The dimension of the range of P is equal to the dimension of the range of P̂.

Moreover, if B−A is a Hilbert-Schmidt operator, then

‖P̂−P‖HS ≤
!(Γ)

2πδ
‖B−A‖HS
δ−‖B−A‖

.

We postpone the proof of the above result to Appendix A.
We note that, if A is self-adjoint, then the spectral theorem ensures that

δ= min
λ∈Γ,σ∈Λ

|λ−σ|.

The above theorem together with the results obtained in the previous section allows to derive several
results.

Proposition 21 If Assumption 2 holds, let σ be an eigenvalue of L, σ -= 1, with multiplicity m. For
any ε> 0 and τ> 0, there exists an integer n0 and a positive constant C such that, if the number of
examples is greater than n0, with probability greater than 1−2e−τ,

1. there are σ̂1, . . . , σ̂m (possibly repeated) eigenvalues of the matrix L satisfying

|σ̂i−σ|≤ ε for all i= 1, . . . ,m.

2. for any normalized eigenvector û ∈ Cn of L with eigenvalue σ̂i for some i = 1, . . . ,m, there
exists an eigenfunction u ∈H s ⊂ L2(X ,ρ) of L with eigenvalue σ, satisfying

‖v̂−u‖H s ≤C
√
τ√
n
,

where v̂ is the Nyström extension of the vector û given in item 3 of Proposition 14.

If LH is self-adjoint, then n0 ≥ 4C
2τ
ε2 provided that ε<minσ′∈σ(LH ),σ′ -=σ |σ′ −σ|.

Proof Theorem 15 gives that, with probability greater than 1−2e−τ,

‖An−AH ‖ ≤ ‖An−AH ‖HS ≤
C1

√
τ√
n

≤
δ2

δ+ ε
. (16)

for all n ≥ n0, where C1 is a suitable constant, n0 ∈ N is such that C1
√
τ√

n0
≤ δ2

δ+ε and
δ−1 = supλ∈Γ‖(λ−AH )−1‖. Under these conditions, we apply Theorem 20 with A = AH , B = An
and Γ= {λ ∈ C | |λ− (1−σ)| = ε}, so that !(Γ) = 2πε. Since AH is compact and assuming ε small
enough, we have that Λ= {1−σ}.
Item 1 of Theorem 20 with Proposition 14 ensures that Λ̂= {1− σ̂1, . . . ,1− σ̂m}, so that |σ̂i−σ|< ε
for all i= 1, . . . ,m. Let now û∈Cn be a normalized vector such that Lû= σ̂iû for some i= 1, . . . ,m.
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Proposition 14 ensures that v̂ is an eigenfunction of An with eigenvalue 1− σ̂, so that Q̂v̂= v̂ where
Q̂ is the spectral projection of An associated with Λ̂. Let Q be the spectral projection of AH associ-
ated with 1−σ and define u=Qv̂∈H s. By definition of Q, AH u= (1−σ)u. SinceH s ⊂ L2(X ,ρ),
Proposition 13 ensures that Lu= σu. Item 2 of Theorem 20 gives that

‖v̂−u‖H s = ‖Q̂v̂−Qv̂‖H s ≤ ‖Q̂−Q‖
H s ,H s‖v̂‖H s ≤ ‖v̂‖H s

ε
δ

‖An−AH ‖HS
δ−‖An−AH ‖HS

≤
C2

1− (σ+ ε)
C1
δ+ ε
δ2

√
τ√
n
,

where we use (16), the fact that ‖An−AH ‖ ≤ δ2
δ+ε and

‖v̂‖H s ≤
1

1− σ̂
sup
x∈X

‖
1
mn
Wx‖H s =

C2
1− σ̂

≤
C2

1− (σ+ ε)

withC2 being the constant in item 1 of Lemma 16.
If AH is self-adjoint, the spectral theorem ensures that δ= ε, so that n0 ≥ 4C

2τ
ε2 .

Next we consider convergence of the spectral projections of AH and An associated with the first
N-eigenvalues. For sake of simplicity, we assume that the cardinality of σ(AH ) is infinite.

Proposition 22 Consider the first N eigenvalues of AH . There exist an integer n0 and a constant
C > 0, depending on N and σ(AH ), such that, with confidence 1−2e−τ and for any n≥ n0,

‖PN− P̂D‖HS ≤
C
√
τ√
n

,

where PN , P̂D are the eigenprojections corresponding to the first N eigenvalues of AH and D eigen-
values of An, and D is such that the sum of the multiplicity of the first D eigenvalues of An is equal
to the sum of the multiplicity of the first N eigenvalues of AH .

Proof The proof is close to the one of the previous proposition. We apply Theorem 20 with A=AH ,
B= An and the curve Γ equal to the boundary of the rectangle

{λ ∈ C |
αN +αN+1

2
≤ℜe(λ) ≤ ‖A‖+2, |ℑm(λ)|≤ 1},

where αN is the N-largest eigenvalue of AH and αN+1 the N+1-largest eigenvalue of AH . Clearly
Γ encloses the first N largest eigenvalues of AH , but no other points of σ(A). Define δ−1 =
supλ∈Γ‖(λ−AH )−1‖ and n0 ∈ N such that

C1
√
τ√

n0
≤

δ2

δ+ !(Γ)/2π
and

C1
√
τ√

n0
< 1,

where C1 is the constant in Theorem 15. As in the above corollary, with probability greater than
1−2e−τ, for all n≥ n0

‖An−AH ‖ ≤
δ2

δ+ !(Γ)/2π
and ‖An−AH ‖ < 1.
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The last inequality ensures that the largest eigenvalues of An is smaller than 1+ ‖AH ‖, so that by
Theorem 20, the curve Γ encloses the first D-eigenvalues of An, where D is equal to the sum of the
multiplicity of the first N eigenvalues of AH . The proof is finished lettingC = δ+!(Γ)/2π

δ2 C1.
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Appendix A. Some Proofs

We start giving the proof of Proposition 13.
Proof [ of Proposition 13]

We first need a preliminary fact. The function m is bounded from above and below by a positive
constant by (7), so that the measure ρW = mρ, having density m w.r.t. ρ, is equivalent7 to ρ. This
implies that the spaces L2(X ,ρ) and L2(X ,ρW ) are the same vector space and the corresponding
norm are equivalent. In this proof, we regard L as an operator from L2(X ,ρW ) into L2(X ,ρW ),
observing that its eigenvalues and eigenfunctions are the same as the eigenvalues and eigenfunctions
of L, viewed as an operator from L2(X ,ρ) into L2(X ,ρ)—however, functions that are orthogonal in
L2(X ,ρW ) in general are not orthogonal in L2(X ,ρ).

Note that the operator IK : H → L2(X ,ρW ) defined by IK f (x) = 〈 f ,Kx〉 is linear and Hilbert-
Schmidt since

‖IK‖2HS = ∑
j≥1

‖IKe j‖2ρW =
Z

X
∑
j≥1

〈
Kx,e j

〉2 dρW (x)

=
Z

X
K(x,x)m(x) dρ(x) ≤ κ‖m‖∞,

where κ= supx∈X K(x,x). The operator I∗W : L2(X ,ρW ) →H defined by

I∗W f =
Z

X

1
m
Wx f (x)dρ(x)

is linear and bounded since, by Assumption 1

‖
Z

X

1
m
Wx f (x)dρ(x)‖H ≤

Z

X
‖
1
m
Wx‖H | f (x)|dρ(x) ≤C‖ f‖ρ ≤

C
c
‖ f‖ρW .

A direct computation shows that

I∗WIK = AH = I−LH , σ(AH ) = 1−σ(LH )

and
IKI∗W = I−L, σ(IKI∗W ) = 1−σ(L).

7. Two measures are equivalent if they have the same null sets.
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Both I∗WIK and IKI∗W are Hilbert-Schmidt operators since they are composition of a bounded operator
and Hilbert-Schmidt operator. Moreover, let σ -= 1 and v ∈ H with v -= 0 such that LH v = σv.
Letting u= IKv, then

Lu= (I− IKI∗W )IKv= IKLH v= σu and I∗Wu= I∗WIKv= (1−σ)v -= 0,

so that u -= 0 and u is an eigenfunction of L with eigenvalue σ. Similarly we can prove that if σ -= 1
and u ∈ L2(X ,ρ),u -= 0 is such that Lu = σu, then v = 1

1−σ I
∗
Wu is different from zero and is an

eigenfunction of LH with eigenvalue σ.
We now show that L is a positive operator on L2(X ,ρW ), so that both L and LH have positive

eigenvalues. Indeed, let f ∈ L2(X ,ρW ),

〈L f , f 〉ρW =
Z

X
| f (x)|2m(x)dρ(x)−

Z

X

(
Z

X

W (x,s)
m(x)

f (s)dρ(s)
)
f (x)m(x)dρ(x)

=
1
2

Z

X

Z

X

[
| f (x)|2W (x,s)−2W (x,s) f (x) f (s)+ | f (s)|2W (x,s)

]
dρ(s)dρ(x)

=
1
2

Z

X

Z

X
W (x,s)| f (x)− f (s)|2dρ(s)dρ(x) ≥ 0,

where we used thatW (x,s) =W (s,x) > 0 and m(x) =
R

XW (x,s)dρ(s). SinceW is real valued, it
follows that we can always choose the eigenfunctions of L as real valued, and, as a consequence,
the eigenfunctions of LH .

Finally we prove that both L and LH admit a decomposition in terms of spectral projections—
we stress that the spectral projection of L is orthogonal in L2(X ,ρW ), but not in L2(X ,ρ).
Since L is a positive operator on L2(X ,ρW ), it is self-adjoint, as well as IKI∗W , hence the spectral
theorem gives

IKI∗W = ∑
j≥1

(1−σ j)Pj

where for all j, Pj : L2(X ,ρW ) → L2(X ,ρW ) is the spectral projection of IKI∗W associated to the
eigenvalue 1−σ j -= 0. Moreover note that Pj is also the spectral projection of L associated to the
eigenvalue σ j -= 1. By definition Pj satisfies:

P2j = Pj,
P∗
j = Pj the adjoint is in L2(X ,ρW ),

PjPi = 0, i -= j,
PjPker(IKI∗W ) = 0,

∑
j≥1

Pj = I−Pker(IKI∗W ) = I−P0

where Pker(IKI∗W ) is the projection on the kernel of IKI∗W , that is, the projection P0. Moreover the sum
in the last equation converges in the strong operator topology. In particular we have

IKI∗WPj = PjIKI∗W = (1−σ j)Pj,

so that
L = I− IKI∗W = ∑

j≥1
σ jPj +P0.
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Let Qj :H →H be defined by

Qj =
1

1−σ j
I∗WPjIK .

Then from the properties of the projections Pj we have,

Q2j =
1

(1−σ j)2
I∗WPjIKI∗WPjIK =

1
1−σ j

I∗WPjPjIK = Qj,

QjQi =
1

(1−σ j)(1−σi)
I∗WPjIKI∗WPiIK =

1
1−σi

I∗WPjPiIK = 0, i -= j.

Moreover,

∑
j≥1

(1−σ j)Qj = ∑
j≥1

(1−σ j)
1

1−σ j
I∗WPjIK = I∗W (∑

j≥1
Pj)IK = I∗WIK− I∗WPker(IKI∗W )IK

so that
IKI∗W = ∑

j≥1
(1−σ j)Qj + I∗WPker(IKI∗W )IK ,

where again all the sums are to be intended as converging in the strong operator topology. If we let
D= I∗WPker(IKI∗W )IK then

QjD=
1

1−σ j
I∗WPjIKI∗WPker(IKI∗W ) = I∗WPjPker(IKI∗W ) = 0,

and, similarly DQj = 0. By construction σ(D) = 0, that is, D is a quasi-nilpotent operator. Equa-
tion (9) is now clear as well as the fact that kerD= ker(I−LH ).

Proof [Proof of Proposition 14] The proof is the same as the above proposition by replacing ρ with
the empirical measure 1n ∑

n
i=1 δxi .

Next we prove Theorem 20.
Proof [Proof of Theorem 20] We recall the following basic result. Let S and T two bounded
operators acting on H and defined C = I−ST . If ‖C‖ < 1, then T has a bounded inverse and

T−1−S= (I−C)−1CS

where we note that ‖I−C‖−1 ≤ 1
1−‖C‖ since ‖C‖ < 1, see Proposition 1.2 of Anselone (1971).

Let A and B two compact operators. Let Γ be a compact subset of the resolvent set of A and
define

δ−1 = sup
λ∈Γ

‖(λ−A)−1‖,

which is finite since Γ is compact and the resolvent operator (λ−A)−1 is norm continuous (see, for
example, Anselone, 1971). Assume that

‖B−A‖ < δ,
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then for any λ ∈ Γ

‖(λ−A)−1(B−A)‖ ≤ ‖(λ−A)−1‖‖B−A‖ ≤ δ−1‖B−A‖ < 1.

Hence we can apply the above result with S= (λ−A)−1, T = (λ−B), since

C = I− (λ−A)−1(λ−B) = (λ−A)−1(B−A).

It follows that (λ−B) has a bounded inverse and

(λ−B)−1− (λ−A)−1 = (I− (λ−A)−1(B−A))−1(λ−A)−1(B−A)(λ−A)−1.

In particular, Γ is a subset of the resolvent set of B and, if B−A is a Hilbert-Schmidt operator, so is
(λ−B)−1− (λ−A)−1.

Let Λ be a finite set of non-zero eigenvalues. Let Γ be any simple closed curve with Λ inside
and σ(A)\Λ outside. Let P be the spectral projection associated with Λ, then

P=
1
2πi

Z

Γ
(λ−A)−1 dλ.

Applying the above result, it follows that Γ is a subset of the resolvent set of B and we let Λ̂ be the
subset of σ(B) inside Γ and P̂ the corresponding spectral projection, then

P̂−P=
1
2πi

Z

Γ
(λ−B)−1− (λ−A)−1 dλ

=
1
2πi

Z

Γ
(I− (λ−A)−1(B−A))−1(λ−A)−1(B−A)(λ−A)−1 dλ.

It follows that

‖P̂−P‖ ≤
!(Γ)

2π
δ−2‖B−A‖

1−δ−1‖B−A‖
=

!(Γ)

2πδ
‖B−A‖

δ−‖B−A‖
.

In particular if ‖B−A‖ ≤ δ2
δ+!(Γ)/2π < δ, ‖P̂−P‖ ≤ 1 so that the dimension of the range of P is

equal to the dimension of the range of P̂. It follows that Λ̂ is not empty.
If B−A is a Hilbert-Schmidt operator, we can replace the operator norm with the Hilbert-Schmidt
norm, and the corresponding inequality is a consequence of the fact that the Hilbert-Schmidt oper-
ator are an ideal.

Appendix B. Spectral Theorem for Non-self-adjoint Compact Operators

Let A : H → H be a compact operator. The spectrum σ(A) of A is defined as the set of complex
number such that the operator(A−λI) does not admit a bounded inverse, whereas the complement
of σ(A) is called the resolvent set and denoted by ρ(A). For any λ ∈ ρ(A), R(λ) = (A−λI)−1 is the
resolvent operator, which is by definition a bounded operator. We recall the main results about the
spectrum of a compact operator (Kato, 1966)
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Proposition 23 The spectrum of a compact operator A is a countable compact subset of C with no
accumulation point different from zero, that is,

σ(A)\{0} = {λi | i≥ 1, λi -= λ j if i -= j}

with limi→∞λi = 0 if the cardinality of σ(A) is infinite. For any i≥ 1, λi is an eigenvalue of A, that
is, there exists a nonzero vector u ∈ H such that Au = λiu. Let Γi be a rectifiable closed simple
curve (with positive direction) enclosing λi, but no other points of σ(A), then the operator defined
by

Pλi =
1
2πi

Z

Γi
(λI−A)−1dλ

satisfies
PλiPλ j = δi jPλi and (A−λi)Pλi = Dλi for all i, j ≥ 1,

where Dλi is a nilpotent operator such that PλiDλi = DλiPλi = Dλi . In particular the dimension of
the range of Pλi is always finite.

We notice that Pλi is a projection onto a finite dimensional space Hλi , which is left invariant by
A. A nonzero vector u belongs to Hλi if and only if there exists an integer m ≤ dimHλi such that
(A−λ)mu= 0, that is, u is a generalized eigenvector of A. However, if A is symmetric, for all i≥ 1,
λi ∈ R, Pλi is an orthogonal projection and Dλi = 0 and it holds that

A=∑
i≥1

λiPλi

where the series converges in operator norm. Moreover, ifH is infinite dimensional, λ= 0 is always
in σ(A), but it can be or not an eigenvalue of A.

If A be a compact operator with σ(A) ⊂ [0,‖A‖], we introduce the following notation. Denoted
by pA the cardinality of σ(A)\{0} and given an integer 1≤N ≤ pA, let λ1 > λ2 > .. . ,λN > 0 be the
firstN nonzero eigenvalues of A, sorted in a decreasing way. We denote by PAN the spectral projection
onto all the generalized eigenvectors corresponding to the eigenvalues λ1, . . . ,λN . The range of PAN
is a finite-dimensional vector space, whose dimension is the sum of the algebraic multiplicity of the
first N eigenvalues. Moreover

PAN =
N

∑
j=1

Pλ j =
1
2πi

Z

Γ
(λI−A)−1dλ

where Γ is a rectifiable closed simple curve (with positive direction) enclosing λ1, . . . ,λN , but no
other points of σ(A).
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Abstract
In this paper, we study the problem of learning a matrix W from a set of linear measurements.
Our formulation consists in solving an optimization problem which involves regularization with a
spectral penalty term. That is, the penalty term is a function of the spectrum of the covariance of
W . Instances of this problem in machine learning include multi-task learning, collaborative filtering
and multi-view learning, among others. Our goal is to elucidate the form of the optimal solution
of spectral learning. The theory of spectral learning relies on the von Neumann characterization
of orthogonally invariant norms and their association with symmetric gauge functions. Using this
tool we formulate a representer theorem for spectral regularization and specify it to several useful
example, such as Schatten p−norms, trace norm and spectral norm, which should proved useful in
applications.
Keywords: kernel methods, matrix learning, minimal norm interpolation, multi-task learning,
orthogonally invariant norms, regularization

1. Introduction

In this paper, we study the problem of learning a matrix from a set of linear measurements. Our
formulation consists in solving for the matrix

Ŵ = argmin{E(I(W ),y)+ γΩ(W ) :W ∈Md,n}, (1)

where Md,n is the set of d×n real matrices, y an m−dimensional real vector of observations and I :
Md,n → Rm a linear operator, whose components are given by the Frobenius inner product between
the matrix W and prescribed data matrices. The objective function in (1) combines a data term,
E(I(W ),y), which measures the fit ofW to available training data and a penalty term or regularizer,
Ω(W ). The positive constant γ controls the trade-off between the two terms and may be chosen
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by prior information on the noise underlying the data. A typical example for the data term is
E(I(W ),y) = ‖I(W )− y‖22, where the subscript indicates the Euclidean norm.

In the design of learning algorithms from the point of view of regularization the choice of the
penalty term is essential. To obtain insights into this issue, we shall investigate in this paper the
form of matrices which solve the variational problem (1) when the penalty term is an orthogonally
invariant norm (OI-norm). This means, for any pair of orthogonal matricesU and V , that

Ω(UWV ) =Ω(W ).

There are many important examples of OI-norms. Among them, the family of Schatten p−norms,
1≤ p≤ ∞, namely the !p−norm of the singular values of a matrix, are especially useful.

Our main motivation for studying the optimization problem (1) arises from its application to
multi-task learning, see Argyriou et al. (2007a) and references therein. In this context, the matrix
columns are interpreted as the parameters of different regression or classification tasks and the
regularizerΩ is chosen in order to favor certain kinds of dependencies across the tasks. The operator
I consists of inner products formed from the inputs of each task and the error term E(I(W ),y) is the
sum of losses on the individual tasks. Collaborative filtering (Srebro et al., 2005) provides another
interesting instance of problem (1), in which the operator I is formed from a subset of the matrix
elements. Further examples in which OI-norm have been used include multi-class classification
(Amit et al., 2007), multi-view learning (Cavallanti et al., 2008) and similarity learning (Maurer,
2008a).

A recent trend in regularization methods in machine learning is to use matrix regularizers which
are orthogonally invariant (Argyriou et al., 2007a,b; Abernethy et al., 2009; Srebro et al., 2005). In
particular, an important case is the Schatten one norm ofW , which is often referred to as the trace
norm. The general idea behind this methodology is that a small trace norm favors low-rank solution
matrices to (1). This means that the tasks (the columns of W ) are related in that they all lie in a
low-dimensional subspace of Rd . Indeed, if we choose the regularizer to be the rank of a matrix, we
obtained a non-convex NP-hard problem. However, the trace norm provides a convex relaxation of
this problem, which has been justified in various ways (see, for example, Fazel et al., 2001; Candès
and Recht, 2008).

The main purpose of this paper is to characterize the form of the solutions to problem (1).
Specifically, we provide what in machine learning is known as a representer theorem. Namely we
show, for a wide variety of OI-norm regularizers, that it is possible to compute the inner product
〈Ŵ ,X〉 only in terms of the m×m Gram matrix I∗I and I(X). A representer theorem is appealing
from a practical point of view, because it ensures that the cost of solving the optimization problem
(1) depends on the size m of the training sample, which can be much smaller than the number of
elements of the matrix W . For example, in multi-task learning, the number of rows in the matrix
W may be much larger than the number of data per task. More fundamentally, the task vectors (the
columns of matrixW ) may be elements of a reproducing kernel Hilbert Space.

Our point of view in developing these theorems is through the study of the minimal norm inter-
polation problem

min{‖W‖ : I(W ) = ŷ, W ∈Md,n}.

The reason for this is that the solution Ŵ of problem (1) also solves the above problem for an
appropriately chosen ŷ∈Rm. Specifically, this is the case if we choose ŷ= I(Ŵ ). In the development
of these results, tools from convex analysis are needed. In particular, a key tool that we use in this
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paper is a classical result of von Neumann (1962), which characterizes OI-norms in terms of the
notion of symmetric gauge function; see also Lewis (1995) for a discussion of the von Neumann
theorem in the context of convex analysis. We record some of these facts which we need in Section
4.

The paper is organized in the following manner. In Section 2 we introduce our notation and
describe the connection between minimal norm interpolation and regularization. In Section 3 we
describe the relationship between any solution of (1) and any solution of a dual problem, which
involves a number of variables equal to the training set size. In Section 4 we specify this result
to the class of OI-norms. In particular, we describe a special case of such norms, which contains
the Schatten p−norms, and derive a linear representer theorem for this case. As we shall see,
this computation in general involves a nonlinear function and a singular value decomposition of an
appropriate matrix.

2. Background

Before proceeding, we introduce some of the notation used in the paper and review some basic facts.

2.1 Notation

We use Nd as a shorthand for the set of integers {1, . . . ,d}, Rd for the linear space of vectors with d
real components and Md,n for the linear space of d×n real matrices. For any vector a ∈ Rd we use
ai to denote its i-th component and for any matrix W ∈ Md,n we use wt to denote the t-th column
ofW , for t ∈ Nn. For a vector λ ∈ Rd , we let Diag(λ) or Diag(λi)i∈Nd to denote the d×d diagonal
matrix having the elements of λ on the diagonal. We denote the trace of matrix W by tr(W ). We
use Sd to denote the set of d× d real symmetric matrices and Sd+ and Sd++ to denote the subsets
of positive semidefinite and positive definite ones, respectively. We use + and , for the positive
definite and positive semidefinite partial orderings on Sd , respectively. We also let Od be the set of
d× d orthogonal matrices and Pd the set of d× d permutation matrices. Finally, in this paper, the
notation 〈·, ·〉 denotes the standard inner products on Rd andMd,n, that is, 〈a,b〉=∑i∈Nd aibi for any
vectors a,b ∈ Rd and 〈W,V 〉 = tr(W-V ) for any matricesW,V ∈Md,n.

2.2 Regularization and Interpolation with Matrices

Let us first describe the type of optimization problems of interest in this paper. Our motivation
comes from recent work in machine learning which deals with the problem of multi-task learn-
ing. Beyond these practical concerns, the matrix optimization problems we consider here have the
property that the matrix structure is important.

We shall consider regularization problems of the type

min{E(I(W ),y)+ γΩ(W ) :W ∈Md,n} , (2)

where E :Rm×Rm→R is called a loss function,Ω :Md,n→R a regularizer, γ> 0 the regularization
parameter, I :Md,n → Rm is a linear operator and y ∈ Rm. Associated to the above regularization
problem is the interpolation problem

min{Ω(W ) :W ∈Md,n, I(W ) = y} . (3)

Unless otherwise stated, we always assume that the minima in problems (2) and (3) are attained.

937



ARGYRIOU, MICCHELLI AND PONTIL

Regularization enables one to trade off interpolation of the data against smoothness or simplicity
of the model, whereas interpolation frequently suffers from overfitting. Note that the family of the
former problems encompasses the latter ones. Indeed, an interpolation problem can be simply
obtained in the limit as the regularization parameter γ goes to zero (see, for example, Micchelli and
Pinkus, 1994).

For example, a special case of matrix regularization problems of the type (2) is obtained with
the choice

I(W ) = (〈wt ,xti〉 : t ∈ Nn, i ∈ Nmt ) ,

where the xti are given input vectors in Rd . This occurs, for example, in multi-task learning and
problems closely related to it (Abernethy et al., 2009; Argyriou et al., 2007a,b; Candès and Recht,
2008; Cavallanti et al., 2008; Izenman, 1975; Maurer, 2006a,a; Srebro et al., 2005; Yuan et al., 2007,
etc.). In learning multiple tasks jointly, each task may be represented by a vector of regression
parameters which corresponds to the column wt in our notation. There are n tasks and mt data
examples {(xti,yti) : i ∈ Nmt} for the t-th task.

In multi-task learning, the error term E in (2) expresses the objective that the regression vector
for each task should fit well the data for this particular task. The choice of the regularizer Ω is im-
portant in that it captures certain relationships between the tasks. For example, one such regularizer,
considered in Evgeniou et al. (2005), is a specific quadratic form inW , namely

Ω(W ) = ∑
s,t∈Nn

〈ws,Estwt〉,

where the matrices Est ∈ Sd are chosen to model cross-tasks interactions.
Another common choice for the regularizer is the trace norm, which is defined to be the sum of

the singular values of a matrix,
Ω(W ) = ∑

j∈Nr

σ j(W ),

where r = min(d,m). Equivalently this regularizer can be expressed as Ω(W ) = tr(W-W )
1
2 . Reg-

ularization with the trace norm learns the tasks as one joint optimization problem, by favoring
matrices with low rank (Argyriou et al., 2007a). In other words, the vectors wt are related in that
they are all linear combinations of a small set of basis vectors. It has been demonstrated that this
approach allows for accurate estimation of related tasks even when there are only a few data points
available for each task.

In general, the linear operator I can be written in the form

I(W ) = (〈W,Xi〉 : i ∈ Nm) , (4)

where the inputs matrices Xi are inMd,n. Recall that the adjoint operator, I∗ :Rm →Md,n, is defined
by the property that

〈I∗(c),W 〉 = 〈c, I(W )〉 ,

for all c ∈ Rm,W ∈Md,n. Therefore, it follows that I∗ is given at c ∈ Rm, by

I∗(c) = ∑
i∈Nm

ciXi.

We denote by R (I) and N (I) the range and the null space of the operator I, respectively.
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In this paper, we are interested in studying the form of the solution to matrix problems (2) or
(3). For certain families of regularizers, the solutions can be expressed in terms of the given inputs
Xi in (4). Such facts are known in machine learning as representer theorems, see Argyriou et al.
(2009) and reference therein.

The line of attack we shall follow in this paper will go through interpolation. That is, our main
concern will be to obtain representer theorems which hold for problems like (3). This in turn will
imply representer theorems for the associated regularization problems. This is justified by the next
lemma.

Lemma 1 Let E :Rm×Rm→R, a linear operator I :Md,n→Rm,Ω :Md,n→R, γ> 0 such that the
problems (2) and (3) admit a minimizer for every y ∈ Rm. Then for every y ∈ Rm there exists ŷ ∈ Rm

such that any solution of the interpolation problem (3) with y= ŷ is a solution of the regularization
problem (2).

Proof If Ŵ solves (2), we may define ŷ := I(Ŵ ). It then readily follows that any solution of (3)
with ŷ in place of y is a solution of (2).

For some other results relating optimality conditions for regularization and interpolation problems,
see Argyriou et al. (2009). We shall return to this issue in Section 4, where we study representer
theorems of a particular type for regularizers which are OI-norms.

3. Duality and Minimal Norm Interpolation

In this section, we turn our attention to the study of the interpolation problem (3) when the function
Ω is a norm on Md,n. That is we prescribe a linear operator I :Md,n → Rm, a vector y ∈ R (I)\{0}
and study the minimal norm interpolation problem

φ :=min{‖W‖ : I(W ) = y,W ∈Md,n}. (5)

The approach we take to analyze problem (5) makes use of a dual problem. To identify it, we
recall the definition of the dual norm, given by

‖X‖D =max{〈X ,W 〉 :W ∈Md,n,‖W‖ ≤ 1}.

Consequently, it follows, for every X ,W ∈Md,n, that

|〈X ,W 〉|≤ ‖X‖D‖W‖. (6)

Associated with this inequality is the notion of the peak set of the norm ‖ ·‖ at X , namely

D‖X‖ = {W : 〈X ,W 〉 = ‖X‖D, :W ∈Md,n,‖W‖ = 1}.

Note that, for each X ∈ Md,n\{0} the peak set D‖X‖ is a nonempty compact convex set which
contains allW ∈Md,n\{0} that make the bound in (6) tight.

As we shall see in the theorem below, the dual norm leads to the following dual problem

θ :=min{‖I∗(c)‖D : c ∈ R (I), 〈c,y〉 = 1} . (7)

Let us first observe that both the primal and dual problem have solutions. In the primal problem we
minimize a norm which is a function which grows at infinity and, so, the existence of a solution is
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assured. Similarly, the quantity ‖I∗(c)‖D which is minimized in the dual problem is also norm on
c ∈ R (I).

The main result of this section establishes the relationship between the solutions of the primal
problem (5) and those of the dual problem (7).

Theorem 2 A vector ĉ∈Rm solves the dual problem (7) if and only if there exists Ŵ ∈ θ−1D‖I∗(ĉ)‖
such that I(Ŵ ) = y. Moreover, in this case Ŵ solves the primal problem (5) and φθ= 1. Conversely,
for every Ŵ solving the primal problem (5) and any solution ĉ of the dual problem (7), it holds that
Ŵ ∈ θ−1D‖I∗(ĉ)‖.

Before we proceed with a proof, let us explain the rationale behind this result. The number of
free parameters in the dual problem is at most m− 1, while the primal problem involves dn−m
parameters. Typically, in applications, dn is much larger than m. Recalling the connection to
multi-task learning in Section 2, this means that d is much larger than the number of data per
task, mn . Therefore, from the perspective of this parameter count, solving the dual problem may be
advantageous. More importantly, any solution of the dual problem will provide us with a solution of
the primal problem and conditions on the latter are obtained from a study of the peak set D‖I∗(ĉ)‖.
For example, as we shall see in Section 4, in the case of OI-norms, this fact will be facilitated by
fundamental matrix inequalities.
Proof of Theorem 2 First let us establish that

1
θ
≤ φ. (8)

To this end, consider any c ∈ Rm with 〈c,y〉 = 1 andW ∈Md,n with I(W ) = y. Then

1= 〈c,y〉 = 〈c, I(W )〉 = 〈I∗(c),W 〉 ≤ ‖I∗(c)‖D‖W‖. (9)

From this inequality we get the desired claim. To prove the reverse inequality in (8), we let ĉ∈R (I)
be a solution of the dual problem (7) and conclude, for any b ∈ R (I) such that 〈b,y〉 = 0, that

lim
ε→0+

‖I∗(ĉ+ εb)‖D−‖I∗(ĉ)‖D
ε

≥ 0.

Since the dual norm is a maximum of linear functions over a compact set, we may apply Theorem 22
in the case that X = {X : X ∈Md,n,‖X‖ ≤ 1},W =Md,n, f (W,X) = 〈W,X〉, and evaluate Equation
(16) forW = I∗(ĉ) and Δ= I∗(b) to obtain the inequality

max{〈I∗(b),T 〉 : T ∈ D‖I∗(ĉ)‖}≥ 0 .

Using the fact that b ∈ R (I) and 〈b,y〉= 0, we can rephrase this inequality in the following fashion.
For every Z ∈Md,n such that 〈Z, I∗(y)〉 = 0 we have that

max{〈Z, I∗I(T )〉 : T ∈ D‖I∗(ĉ)‖}≥ 0.

To resolve this set of inequalities we use Lemma 21 in the appendix with k = 1, J :Md,n → R

defined atW ∈Md,n as J(W ) = 〈I∗(y),W 〉 andW := I∗I(D‖I∗(ĉ)‖). Since J∗ : R →Md,n is given
for a ∈ R as J∗(a) = aI∗(y), we conclude that there exist λ ∈ R and W̃ ∈ D‖I∗(ĉ)‖ such that

λ I∗(y) = I∗I(W̃ ).
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This equation implies that λy− I(W̃ ) ∈ N (I∗). However, recalling the fact that y ∈ R (I), we also
have that λy− I(W̃ ) ∈ R (I). Therefore, we have established that

λy= I(W̃ ).

To identify the value of λ we use the fact that 〈y, ĉ〉 = 1 and obtain that

λ= 〈ĉ, I(W̃ )〉 = 〈I∗(ĉ),W̃ 〉 = ‖I∗(ĉ)‖D = θ.

Now, we define Ŵ =
1
θ
W̃ and note that I(Ŵ ) = y and since ‖W̃‖ = 1 we obtain that

φ≤ ‖Ŵ‖ =
1
θ
.

This inequality, combined with inequality (8) demonstrates that φθ = 1 and that Ŵ is a solution to
the primal problem (5).

To complete the proof, consider any Ŵ solving (5) and ĉ solving (7) and it easily follows from
inequality (9) and φθ= 1 that Ŵ ∈ θ−1D‖I∗(ĉ)‖.

Theorem 2 describes the relation between the set of solutions of the primal problem (5) and the
dual problem (7). It also relates the set of solutions of the primal problem to the range of the adjoint
operator I∗. This latter property, combined with Lemma 1, may be viewed as a general representer
theorem, that is, the theorem implies that the solutions of the regularization problem (2) are matrices
in the set D‖I∗(c̃)‖, for some c̃ ∈ Rm. However, additional effort is required to obtain a concrete
representation of such solution. For example, for the Frobenius norm, D‖X‖ = {X/‖X‖} and, so,
the optimality condition becomes Ŵ = I∗(c̃). We refer to this condition throughout the paper as the
standard representer theorem, see Argyriou et al. (2009) and references therein. In other words, the
standard representer theorem for Ŵ means that Ŵ ∈ R (I∗).

We make no claim of originality for Theorem 2 as its proof uses well established tools of convex
analysis. On the contrary, we emphasize the utility of this result for machine learning. Alternatively,
we can approach the minimal norm interpolation problem by use of the Lagrangian, defined, for
W ∈Md,n and λ ∈ Rm, as

L(W,λ) = ‖W‖+ 〈W, I∗(λ)〉−〈y,λ〉.

4. Representer Theorems for Orthogonally Invariant Norms

In this section, we focus our attention on matrix norms which are invariant under left and right
multiplication by orthogonal matrices. As we shall see, for such norms, the representer theorem
can be written in terms of the singular value decomposition. In addition, in Section 4.3, we shall
describe a subclass of OI-norms for which representer theorems can be phrased in terms of matrix
multiples of the adjoint operator value I∗(ĉ). This type of representer theorem arises in multi-task
learning as described in Argyriou et al. (2009). That is, each of the columns of the optimal matrix
lies in the span of the corresponding columns of the input matrices Xi.
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4.1 Notation

LetW ∈Md,n be a matrix and set r = min{d,n}. We express the singular value decomposition of
the matrixW in the form

W =UΣV-,

where U ∈ Od ,V ∈ On and Σ ∈ Md,n is a diagonal matrix with nonnegative elements, that is Σ =
diag(σ(W )), where σ(W ) = (σi(W ) : i ∈ Nr) ∈ Rr

+. We assume that the singular values are ordered
in a non-increasing sense, that is,

σ1(W ) ≥ · · ·≥ σr(W ) ≥ 0 .

Note that σ(W ) is uniquely defined in this way. Sometimes we also use Σ(W ) to denote the diagonal
matrix Σ. The components of σ(W ) are the singular values ofW . They are equal to the square root
of the largest r eigenvalues ofW-W , which are the same as those ofWW-. We shall call functions
of the singular values of a matrix spectral functions.

In the case of a symmetric matrix A ∈ Sn, we similarly write

A=UΛU-

for a spectral decomposition of A, where U ∈ On, Λ = Diag(λ(A)) and λ(A) = (λ j : j ∈ Nn) has
components ordered in non-decreasing sense

λ1(A) ≥ · · ·≥ λn(A) .

In addition, for x ∈ Rr, we shall use |x| to denote the vector of absolute values (|xi| : i ∈ Nr).
Finally, for two vectors x,y ∈ Rr we write x≤ y whenever, for all i ∈ Nr, xi ≤ yi.

4.2 Orthogonally Invariant Norms

A norm ‖ · ‖ on Md,n is called orthogonally invariant whenever, for every U ∈ Od , V ∈ On and
W ∈Md,n, we have that

‖UWV-‖ = ‖W‖ .

It is clear from the definition that an OI-norm that ‖ · ‖ is a spectral function. That is, for some
function f , we have that ‖W‖ = f (σ(W )).

The remaining conditions on f which characterize OI-norms were given by von Neumann
(1962) (see also Horn and Johnson, 1991, Section 3.5). He established that OI-norms are exactly
symmetric gauge functions (SG-functions) of the singular values. To this end, we let Pr be the subset
of r× r permutation matrices.

Definition 3 A function f : Rr → R+ is called an SG-function whenever the following properties
hold:

1. f is a norm on Rr;

2. f (x) = f (|x|) for all x ∈ Rr;

3. f (Px) = f (x) for all x ∈ Rr and all permutation matrices P ∈ Pr.
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Property 2 states that f is absolutely or gauge invariant. Property 3 states that f is symmetric or
permutation invariant. Hence, an SG-function is an absolutely symmetric norm.

Von Neumann’s result is stated in the following theorem.

Theorem 4 If ‖ · ‖ is an OI-norm on Md,n then there exists an SG-function f : Rr → R+ such that
‖W‖ = f (σ(W )) , for all W ∈ Md,n. Conversely, if f : Rr → R is an SG-function then the norm
defined at W ∈Md,n, as ‖W‖ = f (σ(W )) is orthogonally invariant.

The best known example of OI-norms are the Schatten p-norms, where p≥ 1, They are defined,
for everyW ∈Md,n, as

‖W‖p =

(

∑
i∈Nr

(σi(W ))p
)

1
p

and, for p= ∞, as
‖W‖∞ = σ1(W ).

The Schatten 1−norm is sometimes called the trace norm or nuclear norm. Other common values
of p give rise to the Frobenius norm (p= 2) and the spectral norm (p=∞). The Frobenius norm can
also be written as

√
trW-W and the spectral norm is alternatively expressed as max{‖Wx‖2 : ‖x‖2 =

1}, where the subscript on the vector norm indicates the Euclidean norm of that vector. Another
well-known family of OI-norms are the Ky Fan norms defined, for everyW ∈Md,n as

‖W‖(k) = ∑
i∈Nk

σi(W )

where 1≤ k≤ r (the cases k= 1 and k= r are the spectral and trace norms, respectively). For more
examples and for many interesting results involving OI-norms, we refer the reader to (Bhatia, 1997,
Sec. IV.2) and (Horn and Johnson, 1991, Sec. 3.5).

We also mention, in passing, a formula from Argyriou et al. (2007b) which is useful for algo-
rithmic developments. Specifically, we recall, for p ∈ (0,2], that

‖W‖p = inf
{

〈WW-,D− 2−p
p 〉 : D ∈ Sd++, trD≤ 1

}

. (10)

When p ∈ [1,2], the function
(W,D) 0→ 〈WW-,D− 2−p

p 〉

is jointly convex in W and D and, so, the infimum in (10) is convex in W , in agreement with the
convexity of the norm of ‖W‖p. Furthermore, ifWW- is invertible and p ∈ (0,2], then the infimum
is uniquely attained by the matrix

D=
(WW-)

p
2

tr(WW-)
p
2
.

In machine learning practice, regularization with the trace norm has been proposed for collab-
orative filtering and multi-task learning (Abernethy et al., 2009; Argyriou et al., 2007a,b; Maurer,
2006a; Srebro et al., 2005, and references therein) and related problems (Yuan et al., 2007). If
Ω(W ) = rank(W ) the regularization problem (1) is non-convex. However, a common technique that
overcomes this issue is to replace the rank by the trace norm (Fazel et al., 2001). The trace norm
is the !1 norm on the singular values and hence there is an analogy to regularization of a vector
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variable with the !1 norm, which is often used to obtain sparse solutions, see Candès and Recht
(2008) and reference therein. In analogy to !1 regularization, it has recently been shown that for
certain configurations of the input data the low rank solution can be recovered using the trace norm
approach (Candès and Recht, 2008; Recht et al., 2008). More generally, regardless of the rank of
the solution, it has been demonstrated that this approach allows for accurate joint estimation of mul-
tiple related tasks even when there are only few data points available for each task (Srebro et al.,
2005; Argyriou et al., 2007a). One motivation is to approximate a matrix with a (possibly low-rank)
factorization (Srebro et al., 2005). Another is that fitting multiple learning tasks simultaneously, so
that they share a small set of orthogonal features, leads to a trace norm problem (Argyriou et al.,
2007a).

The spectral norm, ‖ · ‖∞, is also of interest in the context of filter design (Zames, 1981) in
control theory. Moreover, Schatten p-norms in the range p ∈ [1,2] can be used for trading off
sparsity of the model against task independence in multi-task learning (Argyriou et al., 2007b). In
general, OI-norms are a natural class of regularizers to consider, since many matrix optimization
problems can be posed in terms of the spectrum of the matrix.

We now proceed by reviewing some facts on duals of OI-norms. To this end, we first state a
useful inequality, which can be found, for example, in (Horn and Johnson, 1991, ex. 3.3.10). This
inequality also originates from von Neumann (1962) and is sometimes called von Neumann’s trace
theorem or Ky Fan inequality.

Lemma 5 For any X ,Y ∈Md,n, we have that

〈X ,Y 〉 ≤ 〈σ(X),σ(Y )〉 (11)

and equality holds if and only if there are U ∈ Od and V ∈ On such that X =UΣ(X)V- and Y =
UΣ(Y )V-.

We emphasize that equality in (11) implies that the matrices X and Y admit the same ordered sys-
tem of singular vectors, where the ordering is given by ordering of the singular values. It is also
important to note that this inequality is stronger than the Cauchy-Schwarz inequality for the Frobe-
nius norm, 〈X ,Y 〉 ≤ ‖X‖2‖Y‖2. Moreover, in the case of diagonal matrices one obtains a vector
inequality due to Hardy et al. (1988)

〈x,y〉 ≤ 〈[x], [y]〉 ,

where x,y∈Rd and [x] denotes the vector consisting of the components of x in non-increasing order.
Let us also mention that apart from norm duality, Lemma 5 underlies many analytical properties of
spectral functions, such as convexity, Fenchel conjugacy, subgradients and differentiability (see, for
example, Lewis, 1995 for a review).

For our purposes, inequality (11) can be used to compute the dual of an OI-norm in terms of the
dual of the corresponding SG-function. This is expressed in the following lemmas, which follow
easily from (11) (see also Bhatia, 1997, Secs. IV.1, IV.2).

Lemma 6 If the norm ‖ · ‖ on Md,n is orthogonally invariant and f is the corresponding SG-
function, then the dual norm is given, for W ∈Md,n, by

‖W‖D = fD(σ(W ))

where fD : Rr → R+ is the dual norm of f .
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Lemma 7 ‖ ·‖ is an OI-norm on Md,n if and only if ‖ ·‖D is orthogonally invariant. Also, f :Rr →R

is an SG-function if and only if fD is an SG-function.

The next useful formula describes the peak set for any OI-norm.

Lemma 8 Let W ∈Md,n \ {0} and W =UΣ(W )V- its singular value decomposition. If the norm
‖ ·‖ is orthogonally invariant and f is the corresponding SG-function, then

D‖W‖ = {Z : Z =UΣ(Z)V-,σ(Z) ∈ D f (σ(W ))} .

Lemma 9 Let W ∈ Md,n \ {0} and W =UΣ(X)V- its singular value decomposition. If the norm
‖ ·‖ is orthogonally invariant and the corresponding SG-function f is differentiable at σ(W ), then
‖ ·‖ is differentiable at W and

∇‖W‖ =U∇ f (σ(W ))V- .

Lemma 10 If f is an SG-function, x ∈ Rr \{0} and w ∈ D f (x), then w ∈ D f (x), where w,x ∈ Rr

are the vectors with elements the absolute values of w,x, respectively, in decreasing order. Moreover,
|w|, |x| can yield w,x with a simultaneous permutation of their elements.

In other words, duality of OI-norms translates to duality of SG-functions. Norm duality pre-
serves orthogonal invariance as well as the symmetric gauge properties. And dual pairs of matrices
with respect to OI-norms directly relate to dual pairs of vectors with respect to SG-functions. Simi-
larly, (sub)gradients of OI-norms correspond to (sub)gradients of SG-functions. In fact, Lemmas 8
and 9 hold, more generally, for all symmetric functions of the singular values (Lewis, 1995).

As an example, the dual of a Schatten p-norm ‖ · ‖p is the norm ‖ · ‖q, where 1
p + 1

q = 1. For
p > 1 and every W = UΣ(W )V- ∈ Md,n \ {0}, one can readily obtain the set of duals from the
equality conditions in Hölder’s inequality. These give that

D‖W‖p =
{

Z : Z =UΣ(Z)V-,σi(Z) =
(σi(W ))q−1

‖σ(W )‖q−1q
, i ∈ Nr

}

.

Moreover, this norm is differentiable for p> 1 and the gradient is given by

∇‖W‖p =UDiag(λ)V- 1
‖σ(X)‖p−1p

,

where λi = (σi(W ))p−1, i ∈ Nr.
Before continuing to the main result about OI-norms, we briefly review the relation between

regularization and interpolation problems, mentioned at the end of Section 2. We are interested in
obtaining representer theorems and optimality conditions, in general, for regularization problems of
the form (2). We shall focus, however, on representer theorems for interpolation problems of the
form (3).

Let Ω :Md,n → R be a given regularizer and assume that, for every y ∈ Rm and linear operator
I :Md,n → Rm, there exists some solution of (3) satisfying a prescribed representer theorem. Then,
by Lemma 1, for every y ∈ Rm, I :Md,n → Rm and E :Rm×Rm → R, the same representer theorem
holds for some solution of problem (2). In the remainder of the paper we shall prove optimality
conditions for interpolation problems, which thus equally apply to regularization problems.
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Conversely, the representer theorem for the regularization problem (2) associated with certain
choices of the function Ω and E , will also hold for the corresponding interpolation problems (3).
To illustrate this idea, we adopt a result from Argyriou et al. (2009), which concerns the standard
representer theorem,

Ŵ ∈ R (I∗) .

Theorem 11 Let E : Rm×Rm → R and Ω :Md,n → R be a function with the following properties:

(i) E is lower semicontinuous and bounded from below;

(ii) Ω is lower semicontinuous and has bounded sublevel sets, that is, for every λ ∈ R, the set
{W :W ∈Md,n,Ω(W ) ≤ λ} is bounded;

(iii) for some v ∈ Rm \{0},y ∈ Rm, there exists a unique minimizer of min{E(av,y) : a ∈ R} and
this minimizer does not equal zero.

If, for all choices of I and y, there exists a solution Ŵ ∈ R (I∗) of (2), then, for all choices of I and
y such that y ∈ R (I), there exists a solution Ŵ ∈ R (I∗) of (3).

As noted in Argyriou et al. (2009), the square loss, hinge loss or logistic loss are all valid error
functions in this theorem. The above results allow us to focus on the interpolation problems, as a
devise to study the regularization problem.

We are now ready to describe the main result of this section, which concerns the form of the
solution of interpolation problems (5) for the class of OI-norms.

Theorem 12 Assume that ‖ · ‖ is an OI-norm and let f be the corresponding SG-function. If the
matrix Ŵ ∈Md,n \{0} is a solution of (5) and the vector ĉ ∈ Rm is a solution of (7), then

Ŵ =U Σ(Ŵ )V- , I∗(ĉ) =U Σ(I∗(ĉ))V-

for some U ∈ Od ,V ∈ On, and

σ(Ŵ ) ∈
1

‖I∗(ĉ)‖D
D f (σ(I∗(ĉ))) .

Proof By Theorem 2 we obtain that ‖I∗(ĉ)‖DŴ ∈ D‖I∗(ĉ)‖. We can write I∗(ĉ) in terms of its
singular value decomposition, I∗(ĉ) = U Σ(I∗(ĉ))V- with U ∈ Od ,V ∈ On. Using Lemma 8 we
conclude that

‖I∗(ĉ)‖DŴ =U (‖I∗(ĉ)‖DΣ(Ŵ ))V-,

where ‖I∗(ĉ)‖Dσ(Ŵ ) ∈ D f (σ(I∗(ĉ))).

This theorem implies that, in order to solve the minimal norm interpolation problem (5), we may first
solve the dual problem (7) and then find a matrix in the peak set of I∗(ĉ) scaled by 1/‖I∗(ĉ)‖D, which
interpolates the data. The latter step in turn requires computing a singular value decomposition of
I∗(ĉ) and then solving a non-linear system of equations. However, when the SG-function is smooth,
there is a unique elements in the peak set and, so, there is no need to solve the non-linear equations.
For example, if ‖ · ‖ is the Frobenius norm, Theorem 12 readily yields the standard representer
theorem.
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4.3 Admissible Orthogonally Invariant Norms

In this section, we define a subclass of OI-norms, which obey an improved version of the representer
theorem presented above.

We begin with a definition.

Definition 13 A norm ‖ · ‖ on Rr is said to be admissible if for any x ∈ Rr, any k ∈ Nr such that
xk 1= 0 we have that

‖xk‖ < ‖x‖

where xk is the vector all of whose components agree with x, except the k-th component which is
zero.

The simplest example of admissible norms are the !p norm on Rd , ‖ · ‖p, for p ∈ [1,∞). From
this norm we can form other admissible norms in various ways. Specifically, for any p1, p2 ∈ [1,∞),
we see that the norm ‖ · ‖p1 + ‖ · ‖p2 or the norm max{‖ · ‖p1 ,‖ · ‖p2} are both admissible. Note
that some of these norms are not strictly convex. Also compare this definition to that of weakly
monotone norms (Horn and Johnson, 1985, Def. 5.5.13).

Lemma 14 If ‖ · ‖ is an admissible norm on Rr, x ∈ Rr\{0} and w ∈ D‖x‖, then for any k ∈ Nr
with xk = 0 it holds that wk = 0.

Conversely, assume that, for every x ∈ Rr\{0}, w ∈ D‖x‖ and k ∈ Nr, if xk = 0 it holds that
wk = 0. Then ‖ ·‖ is admissible.

Proof Let w ∈ D‖x‖, where x ∈ Rr\{0}, with xk = 0. Suppose to the contrary that wk 1= 0. Since
‖ · ‖ is admissible it follows that ‖wk‖ < ‖w‖, and so, we get that ‖wk‖ < 1, because ‖w‖ = 1.
However, we also have that

‖x‖D = 〈w,x〉 = 〈wk,x〉 ≤ ‖wk‖‖x‖D

from which it follows that ‖wk‖ ≥ 1. This proves the first part of the claim.
For the converse, we consider a w ∈ Rr\{0} with wk 1= 0. We shall show that ‖wk‖ < ‖w‖. To

this end, we choose x ∈ D‖wk‖D and then we choose y ∈ D‖xk‖. By our hypothesis, we conclude
that yk = 0 and by our choice we have, in particular that 1 = ‖y‖ = ‖x‖D. Consequently, it follows
that

‖xk‖D = 〈y,xk〉 = 〈y,x〉 ≤ ‖y‖‖x‖D = 1

from which conclude that
‖wk‖ = 〈wk,x〉 = 〈w,xk〉 ≤ ‖w‖. (12)

Moreover, if equality holds in this inequality it would follow that w
‖w‖ ∈ D‖xk‖. But then, we can

invoke our hypothesis once again and obtain a contradiction. That is, inequality (12) is strict and
therefore ‖ ·‖ is an admissible norm, as asserted.

The above observation leads us to consider the following subclass of OI-norms.

Definition 15 A norm ‖ ·‖ on Md,n is said to be admissible orthogonally invariant if there exists an
admissible vector norm ‖ ·‖ on Rr such that, for every W ∈Md,n, we have that ‖W‖ = ‖σ(W )‖.
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Examples of non-admissible OI-norms are the spectral norm, the Ky Fan norms ‖ · ‖(k) for
1≤ k < r and the norm max{‖ ·‖1,α‖ ·‖∞} for α ∈ (1,∞).

We have now accumulated sufficient information on admissible OI-norms to present an im-
proved representer theorem for problem (5). We shall prove below, for any admissible OI-norm, Ŵ
can be expressed as

Ŵ = ∑
i∈Nm

ĉiXiR .

In other words, Ŵ is obtained by first applying the standard representer theorem and then multiply-
ing it from the right by the matrix R. In the case of the Frobenius norm R= In.

Theorem 16 If ‖ ·‖ is admissible orthogonally invariant, the matrix Ŵ ∈Md,n \{0} is a solution of
(5) and the vector ĉ ∈ Rm is a solution of (7), then there exists a matrix R ∈ Sn+ such that

Ŵ = I∗(ĉ)R (13)

and the eigenvectors of R are right singular vectors of I∗(ĉ).

Proof By Theorem 12, there exists I∗(ĉ) =U Σ(I∗(ĉ))V-, obtained from a dual solution ĉ of (7),
such that ‖I∗(ĉ)‖DŴ =UDiag(λ)V-, where λ ∈ D f (σ(I∗(ĉ))) and f is the SG-function associated
with ‖ · ‖. Since f is admissible, Lemma 14 implies that λi = 0 whenever σi(I∗(ĉ)) = 0. Hence
there exists µ∈ Rr

+ such that λi = σi(I∗(ĉ))µi, i ∈ Nr, and µi = 0 whenever σi(I∗(ĉ)) = 0. Thus,
‖I∗(ĉ)‖DŴ = U Σ(I∗(ĉ))V-V Diag(µ)V- and the corollary follows by selecting
R=

1
‖I∗(ĉ)‖D

V Diag(µ)V-.

Note that, in the above theorem, the eigenvectors of R need not correspond to right singular
vectors of I∗(ĉ) according to a simultaneous ordering of the eigenvalues / singular values.

We may also state a converse of Theorem 16, that is, the only OI-norms which satisfy property
(13) are admissible.

Theorem 17 If ‖ ·‖ is orthogonally invariant and condition (13) holds (without any conditions on
R ∈ Mn,n), for every linear operator I : Md,n → Rm, y ∈ R (I) \ {0}, every solution Ŵ of (5) and
every solution ĉ of (7), then the norm ‖ ·‖ is admissible orthogonally invariant.

Proof Let f be the SG-function corresponding to ‖ ·‖. Let arbitrary x ∈ Rr \{0} and w ∈ D f (x).
Define x,w ∈ Rr

+ to be the vectors with elements the absolute values of x,w, respectively, in de-
scending order. By Lemma 10, we obtain that w ∈ D f (x). Define also X = Diag(x) ∈ Md,n and
W = Diag(w) ∈ Md,n. By Lemma 8, we obtain that W ∈ D‖X‖. Now, consider the problem
min{‖Z‖ : Z ∈Md,n,〈Z,X〉 = ‖X‖D}, whose set of solutions is D‖X‖. By hypothesis, W = cXR
for some R ∈Mn,n and for c= 1

‖X‖D (the only solution of the dual problem). Therefore, Diag(w) =

c Diag(x)R and hence xk = 0 implies wk = 0, for all k ∈ Nr. By Lemma 10, this implies in turn that
wk = 0 if xk = 0, for all k ∈ Nr. Combining with Lemma 14, we deduce that f is admissible, as
required.
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We remark that there exist norms on Md,n which are not orthogonally invariant and satisfy
condition (13). In fact, given two non-singular matrices Q ∈ Md,d and M ∈ Mn,n, the norm W 0→
‖QWM‖2 is not orthogonally invariant, but the representer theorem is easily seen to be

Ŵ = (Q-Q)−1I∗(ĉ)(MM-)−1.

Furthermore, concerning the converse of Theorem 16, it can be shown that if we restrict the
eigenvectors of R to be right singular vectors of I∗(ĉ), then ‖ ·‖ has to be orthogonally invariant.

Moreover, if the norm ‖ · ‖ is not admissible, then it can be shown that for every solution ĉ of
the dual problem there exists a solution of the primal satisfying (13). As an example, see Corollary
20 below (spectral norm). For a characterization of functions yielding such representer theorems,
see Argyriou et al. (2009).

Returning to Theorem 12, for the Schatten p-norms we have the following corollary. To state
it, we use the notation Aq−1 as a shorthand for the matrix UDiag(σi(A)q−1)i∈NrV- when A =
U Σ(A)V-.

Corollary 18 If the matrix Ŵ ∈ Md,n \ {0} is a solution of (5) for the Schatten p−norm, with
p ∈ (1,∞), then there exists a vector ĉ ∈ Rm such that

Ŵ =
I∗(ĉ)q−1

‖I∗(ĉ)‖qq
,

where 1
p + 1

q = 1.

Proof The corollary follows directly from Theorem 12 and the description of D‖ · ‖p in Section
4.2.

The above corollary does not cover the cases that p= 1 or p= ∞. We state them separately.

Corollary 19 If Ŵ ∈Md,n \{0} is a solution of (5) for the trace norm, ĉ ∈ Rm a solution of (7) and
I∗(ĉ) = ∑i∈Nr σi(I

∗(ĉ))uiv-i is a singular value decomposition, then

Ŵ =
1

σ1(I∗(ĉ)) ∑
i∈Nrmax

λiuiv-i ,

for some λi ≥ 0, i ∈ Nrmax such that ∑i∈Nrmax
λi = 1, where rmax is the multiplicity of the largest

singular value σ1(I∗(ĉ)). Moreover, Ŵ = I∗(ĉ)R, where

R=
1

σ21(I∗(ĉ))
∑

i∈Nrmax

viv-i .

Proof The corollary follows from Theorem 12 and the description of D‖ ·‖1. From the definition,
it is easy to obtain that, for every x ∈ Rr

+, D‖x‖1 = {y ∈ Rr
+ : yi = 0, if xi < ‖x‖∞,∑i∈Nr yi = 1}.

Thus, σ1(I∗(ĉ))Ŵ = ‖I∗(ĉ)‖∞Ŵ =UΛV-, for Λ = Diag(λ) and λi = 0 for i > rmax, ∑
i∈Nrmax

λi = 1.

Since Λ=
1

σ1(I∗(ĉ))
Σ(I∗(ĉ))Λ, R can be selected as

1
σ21(I∗(ĉ))

VΛV-.
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Corollary 20 If the matrix Ŵ ∈ Md,n \ {0} is a solution of (5) for the spectral norm, ĉ ∈ Rm a
solution of (7) and I∗(ĉ) = ∑i∈Nr σi(I

∗(ĉ))uiv-i is a singular value decomposition, then

Ŵ =
1

‖I∗(ĉ)‖1

rank(I∗(ĉ))

∑
i=1

uiv-i +
r

∑
i=rank(I∗(ĉ))+1

αi uiv-i , (14)

for some αi ∈ [0,1], i= rank(I∗(ĉ))+1 , . . . , r.

Proof The corollary follows from Theorem 12 and the fact that, for every x ∈ Rr
+, D‖x‖∞ = {y ∈

[−1,1]r : yi = 1, if xi > 0}.

The above corollary also confirms that representation (13) does not apply to the spectral norm
(which is not admissible orthogonally invariant). Indeed, from (14) it is clear that the range of Ŵ
can be a superset of the range of I∗(ĉ).

To recapitulate the results presented in this section, Theorem 12 allows one to obtain the so-
lutions of the primal minimum norm interpolation problem (5) from those of its dual problem (7),
which involves m variables. This is true for all OI-norms, even though the representer theorem in
the form (13) applies only to admissible OI-norms. Part of the appeal of OI-norms is that computing
primal solutions from dual ones reduces to a vector norm optimization problem. Indeed, given a
solution of the dual problem, one just needs to compute the singular value decomposition of the
matrix I∗(ĉ) and the peak set of the SG-function f at the singular values. The associated primal so-
lutions are then easily obtained by keeping the same row and column spaces and using elements of
the peak set in place of the singular values. In fact, in many cases, the latter problem of computing
the peak set of f may be straightforward. For example, if fD is differentiable (except at zero), each
dual solution is associated with a single primal one, which equals a multiple of the gradient of fD at
the dual solution.

4.4 Related Work

The results of Section 4 are related to other prior work, besides the already mentioned literature
on representer theorems for the case of the vector L2 norm (that is, for n = 1). In particular, the
representer theorem for the trace norm (Corollary 19) has been stated in Srebro et al. (2005). Also,
the representation (13) in Theorem 16 relates to the representer theorems proven in Argyriou et al.
(2009); Abernethy et al. (2009). The results in Abernethy et al. (2009) apply to the case of the trace
norm and when the Xi are rank one matrices. The results in Argyriou et al. (2009) give representer
theorems for a broad class of functions, of which differentiable OI-norms are members. However,
as mentioned before, Theorem 16 requires additional conditions on matrix R. In particular, the
requirement on the eigenvectors of this matrix holds only for admissible OI-norms.

5. Conclusion and Future Work

We have characterized the form of the solution of regularization with an orthogonally invariant
penalty term. Our result depends upon a detailed analysis of the corresponding minimal norm inter-
polation problem. In particular, we have derived a dual problem of the minimal norm interpolation
problem and established the relationship between these two problems. The dual problem involves
optimization over a vector of parameters whose size equals the number of data points. In practical
circumstances, this number may be smaller than the dimension of the matrix we seek, thus our result
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should prove useful in the development of optimization algorithms for orthogonally invariant norm
regularization. For example, one could combine our result with Lemma 9 in order to implement
gradient methods for solving the dual problem. Note however that the dual problem involves a sin-
gular value decomposition, and more effort is needed in elucidating the algorithmic implications of
the results presented here.
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Appendix A.

Here, we describe two results which we have used in the paper. Recall that for every linear operator
J :Md,n → Rk, the linear spaces R (J) and N (J) denote the range and the kernel of J, respectively.

Lemma 21 Let W be a nonempty, convex and compact subset of Md,n and let J : Md,n → Rk be
a linear operator. The set R (J∗) intersects W if and only if, for every X ∈ N (J) the following
inequality holds

max{〈X ,W 〉 :W ∈W }≥ 0. (15)

Proof Suppose that there exist z ∈ Rk and T ∈W such that J∗(z) = T . Then for any X ∈Md,n with
J(X) = 0 we have that 〈X ,T 〉 = 0 and, so, inequality (15) holds true.

Now, suppose that R (J∗)∩W = /0. Then, there is a hyperplane which strictly separates R (J∗)
fromW (see, for example, Rockafellar, 1970, Cor. 11.4.2). That is, there existW0 ∈Md,n and µ∈R

such that, for all z ∈ Rk,
〈W0,J∗(z)〉+µ≥ 0,

while, for allW ∈W ,
〈W0,W 〉+µ< 0.

The first inequality implies that J(W0) = 0. To see this, we choose any z0 ∈Rk and λ∈R and let
z = λz0 in the first inequality. Now, we allow λ→ ±∞, to obtain that 〈W0,J∗(z0)〉 = 0. Therefore,
the first inequality simplifies to the statement that µ≥ 0.

The second inequality implies that

max{〈W0,W 〉 :W ∈W } < −µ≤ 0,

which contradicts (15) and proves the result.

Next, we state an important rule for taking directional derivatives of a convex function expressed
as a maximum of a family of convex functions. For this purpose, recall that the right directional
derivative of a function g :W → R in the direction Δ atW ∈W is defined as

g′+(W ;Δ) = lim
λ→0+

g(W +λΔ)−g(W )

λ
.
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Theorem 22 LetW be a convex subset and X a compact subset of Md,n and f :W ×X → R. If,
for every W ∈W , the function X 0→ f (W,X) is continuous on X and, for every X ∈ X the function
W 0→ f (W,X) is convex onW , then the convex function g :W → R defined at W ∈W as

g(W ) :=max{ f (W,X) : X ∈ X }

has a right directional derivative at W in the direction Δ ∈Md,n, given as

g′+(W ;Δ) =max{ f ′+(W ;Δ,X) : X ∈M(W )}, (16)

where M(W ) = {X : X ∈ X , f (W,X) = g(W )}.
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Abstract
In this paper, we present an overview of generalized expectation criteria (GE), a simple, robust,
scalable method for semi-supervised training using weakly-labeled data. GE fits model parameters
by favoring models that match certain expectation constraints, such as marginal label distributions,
on the unlabeled data. This paper shows how to apply generalized expectation criteria to two classes
of parametric models: maximum entropy models and conditional random fields. Experimental
results demonstrate accuracy improvements over supervised training and a number of other state-
of-the-art semi-supervised learning methods for these models.
Keywords: generalized expectation criteria, semi-supervised learning, logistic regression, condi-
tional random fields

1. Introduction

Semi-supervised learning, where a small amount of human annotation is combined with a large
amount of unlabeled data to yield an accurate classifier, has received a significant amount of atten-
tion from the research community. However, there are surprisingly few cases of its use in applica-
tions, where the emphasis is on solving a task, not on advancing theoretical understanding. This
may be partially due to the natural time it takes for new machine learning ideas to propagate to
practitioners, but we believe it is also due in large part to the inherent difficulty of the task and the
unreliability of existing methods.

Instead of addressing the difficulties of semi-supervised learning head-on, we propose to use
weakly labeled data (“side-information”) in semi-supervised learning. To use this data, we present
generalized expectation critera (GE), a method initially described as expectation regularization in
Mann and McCallum (2007). GE represents a new family of semi-supervised learning, where mod-
els are fit by minimizing model divergence from an input distribution. To calculate the divergence
from the input distribution there is no need for additional training data, as the expected distribution
on the unlabeled data can be used. These terms can be easily integrated with other terms, such as
traditional log-likehood.

∗. Gideon S. Mann is the corresponding author.

c©2010 Gideon S. Mann and Andrew McCallum.
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The experiments in this paper explore an illustrative special case of GE, label regularization,
where a marginal distribution over output labels is applied as an expectation constraint. We in-
vestigate two parametric models: maximum entropy models and their structured output analog,
conditional random fields. We demonstrate that for both of these models, label regularization is
able to provide performance gains over other supervised and semi-supervised learning methods.

Generalized expectation criteria have a number of advantages over alternative semi-supervised
learning techniques that make it suitable for use in practice. It is simple, making it easy to im-
plement and use. It requires no additional processing such as constructing an inverted index for
graph construction or pre-clustering unlabeled data. Since it can handle a wide spectrum of side-
information, human intuitions about the problem can be explicitly communicated to the learning
process, in contrast to other methods which can require opaque supervision, such as carefully tuned
initialization, or specification of “contrastive examples” and other “auxiliary functions”. We apply
GE in this paper to discriminative models, and thus it is able to robustly handle overlapping, non-
independent feature sets and yields transparent confidence estimates (in the form of probabilities).
Additionally, GE has all of the advantages of parametric models, in particular scalability and a small
memory footprint at test time.

2. Related Work

Traditional supervised learning takes as input fully labeled data, a set of tuples D = {(x,y)}, where
x is the input and y the desired output. The learner is a function which maps the input to a predictive
function: J(D) = f , where f : x→ y. Supervised learning is powerful, but the amount of labeled
data needed can require significant human time and effort to create. In an effort to reduce the need
for human effort, the machine learning community has explored semi-supervised learning. In semi-
supervised learning approaches, a small amount of labeled data is augmented by unlabeled data,
a set of elements U = {x}, which it exploits to chose a similar function: J(D ∪U) = f . This
section presents the main methods for semi-supervised learning from labeled and unlabeled data: 1)
bootstrapping, 2) expectation maximization, 3) feature discovery, 4) decision boundaries in sparse
region methods, and 5) graph-based methods.

In contrast to these methods, GE criteria exploit semi-supervised learning from weakly labeled
data. With this scenario, there be no labeled data. Instead, in addition to unlabeled data there is side
information that has been provided to the learner, for example, expectation constraints like marginal
label distributions g̃y = p(y).1 Section 2.2 reviews prior work in this area.

2.1 Semi-supervised Learning with Labeled and Unlabeled Instances

There are five main prior categories of semi-supervised learning approaches: bootstrapping, ex-
pectation maximization, feature discovery, decision boundaries in sparse regions, and graph-based
methods.

2.1.1 BOOTSTRAPPING

In bootstrapping, or self-training approaches, a classifier is first trained on the fully labeled instances
and then is applied to unlabeled instances. Some subset of those newly labeled instances are then
used (in conjunction with the original labeled instances) to retrain the model.

1. Liang et al. (2009) presents a taxonomy of side-information.

956



GENERALIZED EXPECTATION CRITERIA

Algorithm 1 Bootstrapping for semi-supervised learning
f (0) ← J(D)
repeat
UB ←∪xi∈U(xi, f (t−1)(xi))
f (t) ← J(D ∪UB)

until done

One of the most successful examples of this work is Yarowsky (1995), where a small ’seed set’
of labeled instances is incrementally augmented. Co-training (Blum and Mitchell, 1998) looks at
the case where two complementary classifiers can both be applied to a particular problem. Abney
(2004) provides a deeper understanding of these methods by demonstrating that they optimize a
natural objective function. However, these methods typically require continual human intervention
in order to avoid performance loss during the bootstrapping process, such as in Riloff and Shepherd
(2000).

2.1.2 EXPECTATION MAXIMIZATION

Generative models trained by expectation maximization (Dempster et al., 1977) have been widely
studied for semi-supervised learning. EM consists of two steps: an expectation step Q(θ|θ(t)) =
Ep(y|x,θ(t) [logL(θ;x,y)], and a maximization step, θ(t+1) = argmaxθ Q(θ|θ(t)). To apply EM to semi-
supervised data, the log-likelihood function, log L(θ;x,y), is set to be a composite of labeled and
unlabeled data (possibly with a weighting factor to down-weight the contribution to the likelihood
from the unlabeled data). One popular example of the use of EM for generative models is Nigam
et al. (1998) which presents a naı̈ve Bayes model for text classification trained using EM and semi-
supervised data.

EM has also been applied to structured classification problems such as part-of-speech tagging
(Klein and Manning, 2004), where EM can succeed after very careful and clever initialization.
While these models can often be very effective, especially when used with “prototypes” (Haghighi
and Klein, 2006b), they cannot efficiently accommodate non-independent features, for example,
those that span multiple inputs. In these cases, the dynamic program required to compute the feature
expectations over all input positions quickly becomes intractable, as building the lattice requires
exponential space in the length of input features.

EM for discriminative models has also been explored. Wang et al. (2002) proposes a EM based
model which instead of the likelihood, maximizes the entropy given the latent variables. Alter-
natively, Salakhutdinov et al. (2003) present an expected gradient method, which can be used for
discriminative models which have some partially observed labels, and McCallum et al. (2005) uses
this method for conditionally trained CRFs. While this method is appealing in the case of input
data that consists of sequences with partially hidden variables, it cannot be applied to scenarios with
fully unlabeled instances.

Another twist on this technique is to blend generative and discriminative models, by combining
ML estimates over the labeled data with EM parameter estimates over the unlabeled data, for a joint
model which combines a CRF and a HMM (Suzuki et al., 2007; Suzuki and Isozaki, 2008). In
this formulation, the log-likelihood can be viewed as two separate log-likelihood functions L1(θ)
and L2(θ) which respectively correspond to the CRF and HMM log-likelihood. When optimizing
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L1(θ) (using maximum likelihood), the HMM parameters are held constant, and the reverse when
optimizing L2(θ).

While EM can sometimes works well, it is often fragile and finds solutions that are worse than
the equivalent supervised model. Merialdo (1994) gives a classic example where EM fails to help
part-of-speech tagging. Cozman and Cohen (2006) discuss the risks of using EM and describe
situations where it can fail. Additionally, the generative models on which EM depends often perform
worse than discriminative models.

2.1.3 FEATURE DISCOVERY

As alternative to estimating a classifier directly with unlabeled data, a number of groups have ex-
plored using the unlabeled data for feature induction or feature discovery, and those features are
then embedded into a traditional supervised learning problem. A latent clustering is applied over
the unlabeled data, to learn a function fl , which is used to provide additional features fl(x) = z,
these features are then used to augment the original labeled data: D̄ = ∪(xd ,yd)∈D(xd ∪ zd ,yd), and
then supervised learning proceeds as usual. For example, Miller et al. (2004) and Ganchev et al.
(2007) apply the method described in Brown et al. (1992) to cluster all of the word tokens in a large
unsupervised corpus. Then for a given sentence, in addition to standard features, additional features
corresponding to the latent clusters of the tokens in the sentence, are added. This technique, along
with similar approachs (Freitag, 2004; Li and McCallum, 2005), have yielded small but consistent
success. This method can be applied independently of the particular training method and in Section
6.3, we explore combining our method with those described by Miller et al. (2004).

Ando and Zhang (2005) use a similar method, but the clustering they explore is composed
of auxiliary problems (e.g., predict a given token given the token context). In their method, they
estimate the parameters for a linear classifier for each auxiliary problem, and then these parameters
are embedded as a transformation of the parameters for a linear classifier for the original problem.
Although this method has produced impressive gains, it is quite sensitive to the selection of auxiliary
information, and making good selections requires significant insight. F. Pereira and J. Blitzer.2 note
that the list of tricks necessary to get the method of Ando and Zhang (2005) to work includes:
oversampling positive instances, selecing the unlabeled data carefully, scaling real-valued features,
and choosing the appropriate feature types.

Additionally, feature discovery as a semi-supervised learning technique relies on having a sub-
stantial amount of labeled data for training. It cannot be used in cases where only a limited amount
of labeled data is available.

2.1.4 DECISION BOUNDARIES IN SPARSE REGIONS

Another family of methods uses the intuition that decision boundaries ought to fall in low-density re-
gions (corresponding to an assumption of class separability) and thus fit discriminative models with
this objective in mind. Clearly, if the cluster assumption is violated (i.e., the classes are not widely
separable), assigning decision boundaries to low density regions is a poor choice. One illustrative
example is entropy regularization (Grandvalet and Bengio, 2004), where a traditional conditional
label log-likelihood objective function is augmented with an additional term that minimizes the

2. Conveyed in personal communication.
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entropy of the label distribution on the unlabeled data:

O(θ;D,U) = L(θ;D)+H(θ;U)

= ∑
d∈D

log p(yd|xd)−λ ∑
u∈U
∑
y
p(y|xu) log p(y|xu).

This objective function favors parameter settings where the model is certain of the labels on given
unlabeled data. In entropy regularization, the hyper-parameter λ has a dramatic effect on the per-
formance of the learner, since it must be tuned with regards to the amount of labeled and unlabeled
data. Entropy regularization is particularly difficult to apply in cases of very small amounts of la-
beled data, since in one degenerate case, the model could select one output label for all possible
inputs. Studies on structured output models in Jiao et al. (2006) experimentally demonstrate that
careful tuning of λ is mandatory.

Transductive support vector machines (TSVMs) (Joachims, 1999) add a constraint to the SVM
optimization function in order to preserve the margin over unknown test labels:

({yu},θ) = argmin
{yu},θ

1
2
||θ||2 subject to

{

∀xi∈D yi[θ · xi+b] ≥ 1
∀xu∈D yu[θ · xu+b] ≥ 1 .

It is combinatorially intractable to do a brute-force search over all possible labelings {yu}, so an ap-
proximation search must be undertaken. Even with these approximations, the algorithm as originally
proposed has running time O(n3). Sindhwani and Keerthi (2006) propose a method for speeding up
training in some cases. In our experience, like entropy regularization, TSVMs also require extensive
and delicate tuning of meta-parameters. We note that Sindhwani and Keerthi (2006) report results
with meta-parameters tuned on test data. Benchmark tests have shown that entropy regularization
performs as well as TSVMs (when the SVM is given a linear kernel) (Chapelle et al., 2006). Another
related method is information regularization (Corduneanu and Jaakkola, 2003), which measures dis-
tance via the mutual information between a classifier and the marginal distribution p(x).

2.1.5 GRAPH-BASED METHODS

Graph-based (manifold) methods can be very accurate when applied to semi-supervised learning.
In these methods, a graph, typically with weighted edges, is constructed spanning the labeled and
unlabeled instances. Thereafter, unlabeled instances are assigned labels according to their neigh-
bors. Zhu and Ghahramani (2002) propose label propagation, where labels propagate from labeled
instances to unlabeled instances (see Algorithm 2). In this formulation, there are two significant

Algorithm 2 Label propagation
repeat
∀xu∈U : p(y(t)u |x(t)u ) = 1

Z ∑ j∈N (xu) q( j→ u)p(y(t−1)
j |x j)

until p(y(t)u |x(t)u ) converges

choices that must be made: the graph structure (the neighborhood N (x) for each instance) and the
transition function q( j→ i). Szummer and Jaakkola (2002) present a closely related approach which
uses random walks through the graph to assign labels. More distantly related, Li and McCallum
(2004) examine a method which performs an implicit clustering over points, as it simultaneously
estimates pair-wise distance and classification boundaries.
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As originally proposed, graph-based methods are slow, requiring time O(n3) or on average
O(kn2) where k is the number of neighbors (similar to TSVMs). By sub-sampling unlabeled data,
one can reduce run-time from O(n3) to O(m2n), where m is the subsampled number of unlabeled
data points (Delalleau et al., 2006), but subsampling does not take full advantage of available unla-
beled data. Zhu and Lafferty (2005) propose alternative methods for reducing the time compleity
to O(m3),m < n, but these may also impact performance. For structured output spaces, Lafferty
et al. (2004) and Altun et al. (2005) have looked at approaches using these methods. However, the
high running time of these methods has prevented wide-scale adoption, and they have been tested
predominantly on synthetic or toy examples (e.g., with 5 labeled examples). Recently, Baluja et al.
(2008) proposed a method for performing graph-based semi-supervised learning in parallel.

Since these are non-parametric models, they do not build a compact encoding of the model,
and so it is not always clear how to apply them inductively (on new unlabeled data). At the very
least, labeled and unlabeled data must be stored in order to classify new examples. In this paper
we compare against a representative graph-based label propagation method called Quadratic Cost
Criterion (QC) (Bengio et al., 2006) whose results are reported in Chapelle et al. (2006).

2.1.6 DIFFICULT APPLICATIONS

There are cases of semi-supervised learning being used in application settings, however, not without
difficulty. In fact, a broad survey of semi-supervised learning methods (Chapelle et al., 2006) found
that they do not uniformly beat supervised methods and that there is no clear winner from among the
methods. This conclusion reflects the experimental evidence and theoretical support from a large
span of work.

Expectation-maximization is notoriously fickle for semi-supervised learning. In a classic result
(Merialdo, 1994) attempts semi-supervised learning to improve HMM part-of-speech tagging and
finds that EM with unlabeled data reduces accuracy. Ng and Cardie (2003) also apply EM but finds
that it fails to improve performance, as do Grenager et al. (2005) (without their tricky initialization).
Cozman and Cohen (2006) discuss use cases where EM might fail to work.

Krogel and Scheffer (2004) use transductive SVMs for the functional genomics KDD Cup chal-
lenge and find that not only does it fails to improve performance but it even deteriorates perfor-
mance. Ifrim and Weikum (2006) also find that TSVMs deteriorate performance. Kockelkorn et al.
(2003) use transductive SVMs for text classification, but complain that it is computationally costly.
Zhang and Oles (2000) discuss theoretical reasons why TSVMs might fail to work in various sce-
narios.

Macskassy and Provost (2006) apply harmonic mixing to classification of relational data, how-
ever the running time of harmonic mixing proves to be a barrier to its use. In the case of word
sense disambiguation, Niu et al. (2005) has looked at label propagation, and found that the metric
for graph construction has a dramatic effect on performance. Chen et al. (2005) look at combining
manifold methods (e.g., ISOMAP) with semi-supervised learning, but finds that the methods are too
fragile in their tuning parameters to be effective. Blum and Chawla (2001) also cite fragility in the
tuning parameters as a problem for their graph-based method.
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2.2 Semi-supervised Learning with Weakly Labeled Data

As an alternative to semi-supervised learning with labeled and unlabeled data, a number of methods
have investigated semi-supervised learning with weakly labeled data or side information, though
none with the expressiveness in labeling allowed by GE criteria.

Graph-based methods have used class proportions for post-processing to set thresholds on label
propagation (Zhu et al., 2003). Schuurmans (1997) uses predicted label distributions on unlabeled
data for model structure selection (as opposed to parameter estimation). More distantly, conditional
harmonic mixing (Burges and Platt, 2006) minimizes over each point the KL-divergence between
the currently predicted label distribution and the distribution predicted by its neighbors. Wang et al.
(2004) also look at methods for incorporating class proportions into classification. In their model,
they pseudolabel instances and provide them as constraints for the model to handle.

The use of side information to train a parametric classifier has been explored before by Schapire
et al. (2002) who uses a boosted ensemble of weak learners set from human-generated expected
distributions. There are significant differences between GE and this work, in particular, Schapire
et al. (2002) match distributions on a per-instance basis, while generalized expectation criteria match
a global distribution. Thus in the model proposed by Schapire et al. (2002), every example has to
match the distribution given as input.3 Graca et al. (2008) integrates similar types of instance-
based constraints into EM learning, where the constraints restrict the space over which the model
calculates the expectations of the hidden variables.

Like Schapire et al. (2002), Jin and Liu (2005) present a model for incorporating class pro-
portions into discriminative models which places a expected class distribution over each instance.
Unlike Schapire et al. (2002), these distributions start from a fixed point and then are allowed to
change during training.

In contrastive estimation (Smith and Eisner, 2005), EM is performed over a restricted log-
likelihood function, where instead of L(θ) =∑i log p(xi;θ), the contrastive estimation log-likelihood
function is LCE(θ) =∑i log p(xi|N (xi);θ). The neighborhood function N (xi) must be highly tuned,
and even slight variations in it can have significant impact on error. More crucially, the bias intro-
duced by choosing N (xi) is difficult to predict and unintuitive.

Haghighi and Klein (2006b) take prototypes as input to their method, and then uses SVD to link
up words to prototypes with similar co-occurrence patterns (e.g., “Inner Richmond” has the label
NEIGHBORHOOD). Haghighi and Klein (2006a) extends this framework to context-free grammar
induction. Another group that has investigated integrating constraints into structure output learning
is Chang et al. (2007) which integrates constraints into unsupervised learning with HMM. In their
method, they reranking candidate labelings by constraint violations and then use a threshold set of
these candidates for re-training in a Viterbi-like approximation to expectation maximization.

Generalized expectation criteria are unique in that it uses the expected distribution as the sole
criterion for optimizing the model parameters on one set of unlabeled data (though it may also use
labeled data). Most other methods do not try to directly fit these expectations, but use them instead
as heuristics within a more complicated semi-supervised learning model. When we compare with
techniques that use the label distribution (e.g., naı̈ve Bayes with a fixed label prior), we find they do
worse than GE, which demonstrates that GE is able to use these class distributions more effectively
than other methods.

3. Label regularization is impossible under the Schapire et al. (2002) model, since if the model exactly matched the
label expectation on a per-instance basis, in application it would assign all instances to the majority class.
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3. Generalized Expectation Criteria

When a person is designing a classifier, they frequently have intuitions about the data they are trying
to classify. For example, someone designing a part-of-speech tagger might know that ‘nouns’ are
quite frequent, whereas ‘conjunctions’ are much less common. Manually labeling data can be a
round-about way of providing this information to the machine learning model, and weak labeling
provides another route for biasing the model with this information. It would be difficult to hypoth-
esize priors over model parameters to capture this intuition. With GE the designer sets priors over
model expectations, and since these expectations have a relatively transparent interpretation to the
human designer, they provide an appealing route for injecting bias into the classifier. GE can effec-
tively learn from a wide variety of side information, including expectation constraints which hold
over global properties of the classifier (e.g., label marginals in label regularization), constraints over
individual instances, and expectation constraints which are more expressive than the base model can
model directly (e.g., a three label sequence in a markov order 1 CRF).

A generalized expectation (GE) criterion is a term in a parameter estimation objective func-
tion that assigns scores to values of a model expectation. First some standard notation: x is the
input, y the output, and θ the parameters for a given model. Given a set of unlabeled data U = {x}
and a conditional model p(y|x;θ), a GE criterion G(θ;U) is defined by a score function S and a
constraint function G(x,y):

G(θ;U) = S(EU [Ep(y|x;θ)[G(x,y)]]).

In this light, GE criteria can be viewed as an replacement for a maximum likelihood estimator
and can be maximized alone to yield a parameter estimate θ. For a particular choice of model
family and parameterization, many different choices for score functions and constraint functions
may be explored. In this paper we consider a subset of GE criteria which express a preference for
a particular value of a constraint g̃x,y, and apply the KL-divergence to compute model divergence
from this constraint:

G(θ;U) = D(g̃x,y||EU [p(y|x;θ)G(x,y)]).

Other work has considered squared loss and constraint functions which are more and less expressive
than the model parameterization (Druck et al., 2009a).

GE criteria can be used as a sole criterion for an objective function (e.g., Mann and McCallum
2008). In this work, we combine it the log-likelihood, L(θ) to form a composite objective function:

O(θ;U,D) = L(θ;D)+G(θ;U).

Alternatively, an entropy regularization term (Grandvalet and Bengio, 2004)4 can be combined into
the above objective function in the same manner:

O(θ;U,D) = L(θ;D)+G(θ;U)+H(θ;U).

GE criteria can be interpreted as a generalization of traditional maximum likelihood. First, GE
allows a variety of scoring functions (e.g., KL-divergence or mean-squared error from a reference

4. Entropy regularization cannot be framed as a instance of GE, but a generalization could encompass both: G(θ;U) =
S(EU [Ep(y|x;θ)[F(x,y)]]), where F is an arbitrary function over a particular (x,y) tuple (e.g., for entropy regularization
F = log p(y|x;θ).
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distribution) and thus can incorporate information from a source other than empirical feature counts
derived from the training data (e.g., human intuition, empirical counts derived from alternative data
sources). Second, there need not be a one-to-one relationship between GE terms and features. For
example, we can express preferences on a subset of model features (and leave others unconstrained),
or on marginal distributions larger than model factors. In this paper, we apply a constraint for only
one feature obtained from human intuition about the problem.

We explore label regularization, where the constraints g̃ are expectations of model marginal
distributions on the expected output labels. We look at functions G(x,y) = 1(y), and use various
estimated label marginal distributions:

g̃x,y = p̃(y).

The effect of adding this term is to ensure that the model applied to the unlabeled data matches the
label proportions.5 Note that this does not force the conditional label distribution for each instance
to conform to this constraint, but rather it encourages the model to meet this constraint in aggregate
over all instances.

Similar to label regularization, Quadrianto et al. (2008) uses label proportions to learn classifiers,
though there are some interesting differences from our work. Their method relies on having multiple
training subsets with very different class distributions, whereas we only use one data set with a
single set of label proportions. Their work concentrates on non-structured classification, whereas
we extend our method to the structured output case.

3.1 Recent Work on GE Criteria and Related Methods

Since the initial proposal of GE criteria (under the name expectation regularization) in Mann and
McCallum (2007), there has been a flurry of recent work on generalized expectation criteria and
related methods which apply expectation constraints for weak learning.

In a set of user experiments, Druck et al. (2008) compares traditional labeled data and labeled
features (which can be used to build feature marginal distributions). That study finds that given the
same amount of time, human annotation in the form of labeled features and classifiers trained using
GE criteria outperform human annotation of traditional labeled instances and maximum likelihood
training. For the structured output case, Mann and McCallum (2008) has shown that expectations
over features for CRF learning, similar to the prototypes proposed in Haghighi and Klein (2006b),
are more effective when used with GE than similar numbers of labeled tokens used to train a CRF.
Druck et al. (2009a) extends these methods to conditional random field dependency parsing models,
and shows that in that case as well feature marginal distributions can be effectively used to guide
training.

A few groups have investigated related methods for incorporating expectation constraints.
Ganchev et al. (2009) use expectation constraints over aligned sentences and a source-language
parser induce dependency grammar on a target language, using a generative method related to
expectation-maximization and a discriminative model closely related to GE criteria. Bellare et al.
(2009) presents an alternative objective function to learn using expectation constraints over unla-
beled data.

Since the emphasis is on reducing human annotation time, it is a clear question as to whether
active learning can be applied to help choose labeled features or expectation constraints. Druck

5. The mathematics is unchanged for expectation constraints over any single features, but the experiments concern only
this simple scenario.
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et al. (2009b) pursues this question and uses active learning to choose which features to use with
GE criteria. Along those lines, Liang et al. (2009) proposes a notion of ’measurements’ to encap-
sulate the variety of weakly labeled data, and uses active learning to guide which measurements are
provided from the human annotator to guide learning.

4. GE Criteria for Log-linear Models

In this section, we describe how to apply the GE criteria proposed above to conditionally trained
log-linear models, starting with conditional maximum-entropy models, aka multinomial logistic
regression models (Berger et al., 1996). In these models, there are k scalar feature functions ψk(z,y),
and the probability of the label y for input x is calculated by

p(y|x;θ) =
1

Z(x)
exp

(

∑
k
θkψk(x,y)

)

,

where Z(x) = ∑y′ exp(∑k θkψk(x,y′)) is the partition function. Given training data D , the model is
trained by maximizing the log-likelihood of the labels (with a Gaussian prior for regularization):

O(θ;D) = logL(θ;D)

= ∑
d∈D

log p(yd |xd;θ)− ∑k θ
2
k

2σ2 .

This can be done by gradient methods (Malouf, 2002), where the gradient of the likelihood is
∂
∂θk

O(θ;D) =∑
d

(

ψk(xd,yd)−∑
y
p(y|xd;θ)ψk(xd ,y)

)

+
θk
σ2 .

For semi-supervised discriminative training, we augment the objective function by adding the
generalized expectation criteria objective function terms.

O(θ;D,U) = L(θ;D)+G(θ;U)

=∑
d

log p(yd |xd);θ)−
∑k θ

2
k

2σ2 −λD(g̃x,y||EU [Ep(y|x;θ)[G(x,y)]]).

Note that here the side information comes in the expectation constraints g̃x,y which specify partic-
ular priors for model marginal. In practice, we find that the hyper-parameters do not need to be
extensively tuned. In particular, λ does not need tuning for each data set, and can be set simply to
λ= 10×# labeled examples.6

The form of the GE criteria lends itself to optimization by gradient based methods. After drop-
ping terms which are constant with respect to the partial derivative, we are left with:

∂
∂θk

G(θ;U) ∝
∂
∂θk
∑
y
g̃x,y log ∑

x∈U
p(y|x;θ)G(x,y)

=∑
y

(

g̃x,y
∑x∈U p(y|x;θ)G(x,y)

)

∑
x∈U

∂
∂θk

p(y|x;θ)G(x,y)

=∑
y

(

g̃x,y
∑x∈U p(y|x;θ)G(x,y)

)

∑
x∈U

p(y|x;θ)G(x,y)
(

ψk(x,y)−∑
y′
p(y′|x;θ)ψk(x)

)

.

6. As support for this value of λ, notice that the KL-divergence is significantly smaller than the likelihood as the likeli-
hood is proportional to the number of examples, while the KL-divergence is not.
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GE criteria aren’t convex, and this can be shown by a contradictory example. Take a simple version
of the GE criteria: G(θ;U) = ∑y log∑x p(y|x;θ). In this setting, for an arbitrary label yi you can
find parameter settings where ∀x, p(yi|x) = 1, by having a parameter θ= {θk = ∞, ∀ j ,= k,θ j = 0}
where ψk(x,y) = 1{y= yi}. In this setting, it’s pretty clear that multiple optima exist, and that other
settings of θ yield smaller values of G(θ;U).

Label regularization can occasionally find a degenerate solution where, rather than the expec-
tation of all instances matching the input distribution, instead, the distribution over labels for each
instance will match the given distribution on every example. For example, given a three class clas-
sification task, if the labeled class distribution p̂ j(y) = {.5, .35, .15}, it will find a solution such that
p̃(y;θ) = {.5, .35, .15} for every instance. As a result, all the test instances will be assigned the
same label.

One solution, appealing to 0/1 loss, would be to simply measure and match the expectation over
winning class counts, but this is not differentiable. So instead, we make p(y|x;θ) more peaked using
a less than 1.

p(y|x;θ) ∝ exp

(

1
T∑k

θkψk(x)

)

.

This is differentiable and thus amenable to many gradient ascent methods. In practice we find that
this meta-parameter does not require fine-tuning. Across all data sets we simply use T = 0.1 for
multi-class problems and T = 1 for binary classification problems, and we find this to work well.

4.1 CRF Training

The previous section has shown the application of generalized expectation criteria to classification
models. However, GE can additionally be applied to structured models. In this section, we examine
the case of linear chain structured conditional random fields (Lafferty et al., 2001), and derive the
GE gradient for this model.

Linear-chain CRFs are a discriminative probabilistic model over sequences x= 〈x1..xn〉 of fea-
ture vectors and label sequences y = 〈y1..yn〉, where |x| = |y| = n, and each label yi ∈ s. This
model is analogous to maximum entropy models for structured outputs, where expectations can be
efficiently calculated by dynamic programming. For a linear-chain CRF of Markov order one

p(y|x;θ) =
1

Z(x) exp

(

∑
k
θkΨk(x,y)

)

,

where Ψk(x,y) = ∑iψk(x,yi,yi+1, i), and the partition function Z(x) = ∑y′ exp(∑k θkΨk(x,y′)).
Given training data D , the model is trained by maximizing the log-likelihood,

O(θ;D) =∑
d

log p(yd |xd ;θ)− ∑k θ
2
k

2σ2 ,

by gradient-based methods where the gradient of the likelihood is (similar to the non-structured
case):

∂
∂θk

O(θ;D) =∑
d

(

Ψk(xd ,yd)−∑
y
p(y|xd ;θ)Ψk(xd ,y)

)

+
θk
σ2 .
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The second term (the expected counts of the features given the model) can be computed in a tractable
amount of time, since according to the Markov assumption, the feature expectations can be rewrit-
ten:

∑
y
p(y|x;θ)Ψk(x,y) =∑

i
∑

yi,yi+1

p(yi,yi+1|x;θ)ψk(x,yi,yi+1, i).

A dynamic program (the forward/backward algorithm) then computes in timeO(n|s|2) all the needed
probabilities pθ(yi,yi+1), where n is the sequence length, and |s| is the number of labels.

4.2 Semi-supervised training with Generalized Expectation Criteria

To add unlabeled data regularization to the CRF training, just as with the maximum entropy model,
we augment the objective function with the regularization term:

O(θ;D,U) =L(θ;D)+G(θ;U)

=∑
d

log p(yd |xd ;θ)− ∑k θ
2
k

2σ2 −λD(g̃x,y||EU [Ep(y|x;θ)[∑
i
G(x,yi)]]).

Note that we restrict the constraint function to functions over one output label, G(x,yi). Druck et al.
(2009a) has looked at extending the method to arbitrary constraint functions G(x,y), but here we
only consider constraint functions over functions of one label.

The derivation of the gradient for G(θ;U) is somewhat more complicated than in the unstruc-
tured case, but follows roughly the same line. s is the set of permissible output labels. y(m=s) = {y :
ym = s}. The gradient is then:

∂
∂θk

G(θ;U) ∝
∂
∂θk
∑
s
g̃x,s log ∑

x∈U
∑
m
∑
y(m=s)

p(y(m=s)|x)G(x,s)

=∑
s

(

g̃x,s
∑x∈U,m,y(m=s)

p(y(m=s)|x)G(x,s)

)

∑
x∈U
∑
m
∑
y(m=s)

∂
∂θk

p(y(m=s)|x)G(x,s)

Now define:
g̃
G

=

(

g̃x,s
∑x∈U,m,y(m=s)

p(y(m=s)|x)G(x,s)

)

=∑
s

g̃
G ∑x∈U

∑
m
∑
y(m=s)

p(y(m=s)|x)G(x,s)
(

Ψk(x,y(m=s))−∑
y′
p(y′|x)Ψk(x,y)

)

=∑
s

g̃
G ∑x∈U

∑
m
∑
y(m=s)

p(y(m=s)|x)G(x,s)Ψk(x,y(m=s))

−∑
s

g̃
G ∑x∈U

∑
m
∑
y(m=s)

p(y(m=s)|x)G(x,s)∑
y′
p(y′|x)Ψk(x,y)

)

=∑
s

g̃
G ∑x∈U

(

∑
i
∑

yi,yi+1

ψk(x,yi,yi+1, i)∑
m
p(yi,yi+l,ym = s|x)G(x,s)

)

−∑
s

g̃
G ∑x∈U

(

∑
i
∑

yi,yi+1

ψk(x,yi,yi+1, i)
)(

∑
m
p(ym = s|x)G(x,s)

)

.
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After combining terms and rearranging we arrive at the final form of the gradient:

= ∑
x∈U
∑
i
∑

yi,yi+1

ψk(x,yi,yi+1, i)×

∑
s

g̃
G

(

∑
m
p(yi,yi+1,ym = s|x;θ)G(x,s)− p(yi,yi+1|x;θ)∑

m
p(ym = s|x;θ)G(x,s)

)

.

Here, the second term is easily obtainable from forward/backward, but the first term is a little more
complicated to compute. Computing this term naively would require multiple runs of constrained
forward/backward. Here we propose a more efficient method that requires only one run of for-
ward/backward.7 For the sake of simplicity, we omit the constraint function G(x,s); its addition is
trivial. First we decompose the probability into two parts:

∑
m
p(yi,yi+1,ym = s|x;θ) =

i

∑
m=1

p(yi,yi+1,ym = s|x;θ)+
n

∑
m=i+1

p(yi,yi+1,ym = s|x;θ).

Similar to forward/backward we build a lattice of intermediate results that then can be used to
calculate the quantity of interest:

i

∑
m=1

p(yi,yi+1,ym = s|x;θ)

= p(yi,yi+1|x;θ)δ(yi,s)+
i−1

∑
m=1

p(yi,yi+1,ym = s|x;θ)

= p(yi,yi+1|x;θ)δ(yi,s)+

(

∑
yi−1

i−1

∑
m=1

p(yi−1,yi,ym = s|x;θ)
)

p(yi+1|yi,x;θ).

For each label s, it requires one pass to create a lattice with ∑i−1
m=1 p(yi−1,yi,ym = s|x;θ) for all pairs

(yi,yi+1). ∑n
m=i+1 p(yi−1,yi,ym = s|x;θ) can be computed in the same fashion. To compute the

lattices it takes time O(n|s|2), and one lattice must be computed for each label so the total time is
O(n|s|3).

5. Experimental Results for Classifiers

We present two sets of experiments: experiments on maximum entropy models and conditional
random fields for the special case of generalized expectation criteria, label regularization. For this
set of experiments, we evaluate on five different data sets, and compare against seven different semi-
supervised and supervised-only methods. We present learning curves, where the amount of labeled
training data is gradually increased from one instance per class up to thousands of instances and
demonstrate that generalized expectation criteria are able to show improvements for both types of
scenarios. We present experiments with noisy expected distributions, and show that the method
is robust with respect to a variety of settings for λ and temperature. We do not vary the gaussian
regularizer, but leave a default value. Unpublished experiments by G. Druck8 have suggested that

7. Kakade et al. (2002) present a related method that computes p(y1..i = s1..i|yi+1 = s).
8. Conveyed in personal communication.
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Name # Test Examples # Unlabeled Examples # features # classes
SRAA 20k 20k 77,494 4
POS 20k 20k 11,520 44
SecStr 1000 83k 314 (45,436) 2
BIOII 100k 100k 54,958 3
CoNLL03 100k 100k 114,264 9

Table 1: The data sets are complex: they have dramatic class skews, highly inter-dependent fea-
tures, and large amounts of data. The SecStr data set has 315 atomic features, and 45k
features when pairwise feature conjunctions are used.

while gaussian regularization can have an effect for label regularization, for more complicated GE
variants it doesn’t dramatically affect performance. We begin training with parameters set at 0 (even
though the objective function may not be convex).

5.1 Experimental Set-up

First, we examine a protein secondary structure prediction task (SecStr), as extensively evaluated
in Chapelle et al. (2006), compare with the published results and show that label regularization is
able to outperform previous methods. Next, we examine three especially difficult natural language
processing tasks: the CoNLL03 named-entity recognition task (CoNLL03), Part of speech tagging
of the Wall Street Journal (POS), and the 2007 BiocreativeII evaluation (BIOII), using a sliding
window classifier.9 Finally, one of the main targets for semi-supervised learning is text classifica-
tion (Nigam et al., 2006), and we evaluate on the simulated/real auto/aviation (SRAA) task. The
tasks are large in scale, with up to hundreds of thousands of instances and features (see Table 1).
They have complex characteristics such as heavily inter-dependent features and highly skewed class
distributions.

Across all of the experiments, for supervised comparisons, we compare with naı̈ve Bayes and
maximum entropy models, for semi-supervised comparisons we compare with naı̈ve Bayes trained
with EM and maximum entropy models trained with entropy regularization. On some tasks, in
particular the sliding window NLP tasks, the number of features per instance varied dramatically,
and so we used document length normalization for the naı̈ve Bayes approaches as we found it to
significantly improve accuracy. On the secondary structure prediction (SecStr), we had access to
published results for a supervised SVM using a radial-basis function (RBF) kernel, a Cluster Kernel
(Weston et al., 2006) and a graph based-method, the Quadratic Cost Criterion with Class Mean
Normalization (Bengio et al., 2006) trained using various data sub-sampling schemes (Delalleau
et al., 2006): a random sampler and two smarter variations. Presumably, training a graph-based
method on the entire unlabeled training set would have been technically infeasible.

For CoNLL03, POS, BIOII, and SRAA, we performed inductive learning, splitting the data
randomly into two sections, training and test. From the training set, we randomly chose some
instances to be labeled and set the remainder to be hidden. Out of those hidden, we then select a

9. The sliding window classifier makes independent decisions for each element in the sequence. While finite-state
methods could also be applied in these cases, the cost of training label regularization would be prohibitive, and we
found that these methods work well.
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# Labeled Instances
2 100 1000

SVM (supervised) 55.41 66.29
Cluster Kernel 57.05 65.97
QC randsub (CMN) 57.68 59.16
QC smartonly (CMN) 57.86 59.29
QC smartsub (CMN) 57.74 59.16
Naive Bayes (supervised) 52.42% (± 0.4) 57.12% (± 0.7) 64.47% (± 0.2)
Naive Bayes EM 50.79% (± 1.5) 57.34% (± 1.1) 57.60% (± .009)

MaxEnt (supervised) 52.42% (± 0.5) 56.74% (± 1.1) 65.43% (± 0.3)
MaxEnt + Ent. Min. 49.40% (± 2.1) 54.45% (± 1.8) 58.28% (± 0.1)
MaxEnt + GE 57.08% (± .03) 58.51% (± 0.4) 65.44% (± 0.3)

Table 2: Label regularization outperforms other semi-supervised learning methods at 100 labeled
data points. At one instance per class, its performance is better than the supervised SVM
and maximum entropy model at 100. Standard error is reported for experiments that were
run locally. Other experimental performance is taken from the literature.

fixed number to use for unsupervised learning. We then evaluate the model on the hidden test data.
We repeat this evaluation five times for each of the models.

The SecStr task was set up in what is commonly called transductive learning, where the model
is evaluated on hidden training data. For this task, the labeled/unlabeled splits were provided with
the data from Chapelle et al. (2006) and evaluation is on hidden training data. In order to provide a
somewhat more fair comparison with the RBF kernels used by the other methods on this task, the
feature set used by the maximum entropy model and naı̈ve Bayes models is augmented by pairwise
feature conjunctions.10

For the maximum entropy model trained with entropy regularization, after some experimenta-
tion, we weighted its contribution to the objective function with

λ= # labeled data points / # unlabeled data points.

This was shown to yield relatively good performance. For the first set of experiments, we use la-
bel proportions estimated from all of the data, corresponding to a use-case where a user gives this
knowledge to the system during training. Section 5.3 presents experiments showing robustness to
noisy label proportions both when smoothed towards a uniform distribution and when sampled from
a limited number of training examples. Across the experiments, we observed that label regulariza-
tion trains in time linear in the amount of unlabeled data, and since the resulting model is parametric,
it is linear in the number of features for evaluation.

5.2 Learning Curves

For the first set of experiments, we experimented with varying the number of supervised training
example, while keeping the unlabeled data set size the same (with sizes of the unlabeled data shown

10. Though, as one anonymous reviewer noted, this makes them strictly more expressive then kernel methods with
quadratic features.
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Figure 1: BIOII: Label regularization (GE) outperforms all other methods. The x-axis represents
increasing numbers of labeled data instances. The y-axis is the F-measure micro average
across all classes.

in Table 1). We added examples in a balanced way, going from 1 example per class up to 500 exam-
ples per class (when possible). For each data point we ran 5 trials, where the data was partitioned
into training/test/unlabeled uniformly at random. The sole exception was for the SecStr data where
the data splits and tests were pre-specified.

As Table 2 shows, for SecStr, label regularization outperforms the other methods at 100 labeled
points, and approaches the cluster kernel method on 1000 points. While performance results were
not available for the other methods for two instances per class, we ran label regularization for this
case and found that it outperforms the supervised SVM and maximum entropy model when they
are trained with 100 labeled points. In these experiments QC is not run over the complete data
(presumably because of scalability problems), but operates on a subset, either selected randomly
(randsub) or in a smarter fashion (smartonly and smartsub), while the label regularization method
uses the complete data.

Figures 1, 2, 3, and 4 show classifier performance using a fixed amount of unlabeled data as
greater amounts of labeled data is added. Label regularization yields significant benefits over the
other methods for POS, BIOII, and CoNLL03 for all amounts of labeled data. Label regularization
on SRAA shows a benefit over the fully supervised maximum entropy model but its accuracy is
not as high as that obtained by the EM-trained naı̈ve Bayes learner. This may be partly explained
by the fact that the baseline performance of the discriminative maximum entropy model is much
lower than the generative naı̈ve Bayes model, so that label regularization starts off at a considerable
deficit.

While alternative methods often result in degredations of performance over their supervised
counter parts (EM, entropy regularization, cluster kernels), in these experiments label regularization
consistently yielded improved accuracy. Additionally, the benefit of label regularization is more ap-
parent as the feature sets and numbers of unlabeled instances increase, with the least improvements
on one of the simplest tasks, the SRAA text classification task.

These experiments demonstrate that label regularization can at least match, and in many cases
beat, alternative methods of semi-supervised learning, given minimal additional information and
access to large samples of unlabeled data. The successes of GE suggest more investigation of addi-
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Figure 2: CoNLL03: Label regularization (GE) outperforms all other methods. The x-axis repre-
sents increasing numbers of labeled instances per class, and the y-axis is accuracy.

Figure 3: POS: Label regularization (GE) outperforms all other methods, though performance im-
provements over supervised maximum entropy methods appear to level off at 1300 la-
beled instances.

tional, alternative modalities of supervision which will generate data that can be added to supervised
classifiers and combined with unlabeled data in order to improve performance.

5.3 Noisy Priors

The previous section assumes that the system has accurate knowledge of the distributions over
the labels. In this section, we perform a sensitively analysis by gradually smoothing the class
distribution until it reaches a uniform distribution. We add noisy counts ν to the true counts c(y):

p̂ j(y)(y) =
c(y)+ν

∑y′ (c(y′)+ν)
.

As more noise is added, the input distribution converges to uniform.
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Figure 4: SRAA: Label regularization (GE) outperforms its supervised maximum entropy counter-
part and entropy regularization and is the winner at one labeled instance per lass. After
that, naı̈ve Bayes EM is the clear winner.

Figure 5 demonstrates the effect of increasing noise in the system. At ν = 1,000, the majority
class probability drops from 84% to 80% and there is almost no loss of performance. At ν= 10,000
are added, the majority class probability drops to 61% and there is only a slight loss of performance.
At ν= 1e07 the majority class probability has dropped to 11%, a virtually uniform distribution, and
performance has leveled off. These results are encouraging as they suggest that relatively large
changes (of 20% absolute, 27% relative) can be tolerated without major losses in accuracy. Even
when the human has no domain knowledge to contribute, label distribution estimates of sufficient
accuracy should be obtainable from a reasonably small number of labeled examples.

To test this assumption, we performed another set of experiments, where instead of smoothing
the input distributions towards a uniform distribution, we sampled them from the data, varying
the number of instances used in the sample. These points were sampled from the data, and then
the data was partitioned into test/train/unlabel splits. Figure 6 and 7 demonstrate the effect of
sampled distributions, as opposed to distributions smoothed towards a uniform distribution. For the
CoNLL3 data set, as can be seen in Figure 6, after sampling from 1000 points, the performance of
the classifier doesn’t get worse, suggesting that only a small amount of prior knowledge or labeling
is necessary for determining accurate input distributions. With the POS data, it appears that as
you increase the number of points used to compute the sample performance improves, though it
appears to begin to level out at 1000 points. Because this data set is significantly smaller, we were
unable to continue running experiments with larger numbers of sampled points to evaluate when the
performance begins to level out.

5.4 Robustness

Along with robustness in the face of noise from the estimated label proportions, the model is robust
to changes in λ and temperature. As can be seen in Figure 8, λ and temperature have a wide
plateau over which their performance is stable. At some extreme values of λ and temperature,
the performance degrades, and can drop below supervised performance. This trend was observed
for 500 labeled examples (shown in the figure), as well as in cases when there as little as one
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Figure 5: CoNLL03: The x-axis represents increasing amount of noise towards a uniform distri-
bution. On this data set, the majority class is 84% of the instances, and so the uniform
distribution is an extremely poor approximation. Performance suffers little when the ma-
jority class proportion is erroneously given as 61%(ν= 10,000)
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Figure 6: CoNLL03: An input label distribution with sampling noise. After 1000 points, sampling
from more points doesn’t appear to lead to performance improvements.

labeled example for a number of the data sets. For other semi-supervised techniques such as entropy
regularization, extensive tuning is required across for each individual data set and labeled/unlabeled
data set sizes in order to improve upon supervised-only performance (Jiao et al., 2006).
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Figure 7: POS: An input label distribution with sampling noise. Since POS has many classes (44),
access to an accurate sampling distribution has a larger impact on performance, and the
graph suggests that even higher precision in sampling would lead to higher accuracy.
Note that we were unable to sample as many points as in the previous example beause of
limited amounts of available data.

Figure 8: CoNLL03: For a wide range of λ and temperature the performance is similar and sur-
passes the purely supervised performance.

5.5 Running Time

Figure 9 shows the running time per optimization iteration for the two largest tasks, CoNLL and
BIOII. The slope variation between the running times can be accounted for by the number of fea-
tures in each of the data sets.

5.6 Mechanism of Effect

One question that needs to be addressed is whether label regularization is improving performance
solely by adjusting the label proportions or operating in some other fashion. Though certainly cor-
recting label proportions is one pathway for improved performance we have two pieces of evidence
that additional learning is happening in the model. First, when we allow other classifiers access to
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Figure 9: Label regularization is linear in the number of unlabeled examples, without requiring
sub-sampling.

the label proportions, they are unable to reach the same gains as achieved with GE. For example, in
all of the experiments the naı̈ve Bayes classifier has its label prior fixed to the input distribution as
it is subsequently trained with EM, yet it typically fails to reach the same level of performance as
achieved with the GE methods. Second, Druck et al. (2008) reports results of experiments using GE
criteria where the input distributions were only allowed to affect the features they were conditioned
on (corresponding to only being able to adjust the label proportions). In these experiments, when
GE could only adjust the features specified by the input distributions it achieved significantly worse
results, thus indicating that learning parameter values for features not directly conditioned by the
input distributions has a dramatic effect on classifier accuracy.

5.7 Combining Label Regularization and Entropy Regularization

Generalized expectation criteria can often be easily combined with other models. Any semi-supervised
model in the parametric model family, such as expected gradient methods (Salakhutdinov et al.,
2003), can be easily combined with GE, and certain generative models such as naı̈ve MRFs (Druck
et al., 2007) can be simply combined as well. More distantly, just as various models can be aug-
mented with regularization terms (as in ridge regression for linear regression models), GE may be
augmented in the same way. In this paper we used a Gaussian prior and minimized KL-divergence
from input distributions with gradient methods here, in other cases it might require an alternative
penalty term from the input distributions and a different minimization technique.

Here we examine combining label regularization with entropy regularization where the objective
function is augmented with more than one regularization criterion. For many of the experiments,
combining label regularization and entropy regularization does not lead to improvements. Two
exceptions were experiments on SRAA and the SecStr data sets. Notably, on SecStr, combined
entropy regularization and label regularization yields a performance of 66.30, a level which matches
the performance of the supervised radial-basis SVM and beats all other unsupervised methods. For
SRAA, Figure 10 shows that when entropy regularization is added to label regularization, there
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Figure 10: SRAA: Combining label regularization and entropy regularization can be easily accom-
plished, and yields improvements over label regularization alone for this data set.

Figure 11: CoNLL03: On this data set, combining label regularization and entropy regularization
does not lead to any benefit. The GE+Entropy regularization curve exactly overlaps the
GE curve.

can sometimes be a benefit over the use of label regularization or entropy regularization alone.
In comparison, Figure 11 shows that there is little or no difference in performance when entropy
regularization is combined with label regularization in the case of CoNLL03.

6. Experimental Results for Conditional Random Fields

In this section, we examine the performance of label regularization for conditional random fields.
We look at two data sets, Craigslist Apartment listings, and citation data. We compare against two
previous methods for semi-supervised learning of conditional random fields, entropy regularization
and the clustering method proposed by Miller et al. (2004) in Section 6.3. We demonstrate that label
regularization can achieve higher accuracy than purely supervised training, and can beat or match
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MRF (prototypes) 53.7%
MRF (prototypes) + cluster 71.5%
HMM supervised only (100) 74.4%
CRF supervised only (100) 75.8% (± 0.3)
CRF supervised (100) + Ent. Reg. (2k) 76.7% (± 0.4)
CRF supervised (100) + GE (2k) 77.1% (± 0.3)

Table 3: APT: A CRF trained semi-supervised with 100 labeled examples and 2k unlabeled exam-
pled has the highest performance, beating the strictly supervised CRF and the CRF trained
semi-supervised with entropy regularization. Standard error is shown in parentheses for
experiments run locally.

the performance of entropy regularization or clustering. We do not vary the gaussian regularizer, but
leave a default value. We begin training with parameters set at 0 (even though the objective function
may not be convex). Later experiments start from a model initialized by a non-structured classifier
trained with GE, which we observed to yield higher accuracy (Mann and McCallum, 2008).

6.1 Apartment Listings

First we examine performance on the apartment data set (APT) initially presented by Grenager et al.
(2005) and later examined by Haghighi and Klein (2006b), with label regularization. This data was
collected in June 2004 from craigslist.com, and consists of 302 hand-labeled ads where each ad is
labeled with 12 fields (e.g., SIZE, RENT, NEIGHBORHOOD, FEATURES). The average ad has 119
tokens in 8.7 fields.

For this task, sliding window models perform poorly as the fields are “sticky,” (i.e., the best way
to predict the next label is from the previous label). We set label regularization λ as before, but set
the entropy regularization λ to 0.01 times the number of labeled examples divided by the number of
unlabeled examples. For these experiments we used 2,000 unlabeled apartments listings.

We performed minimal feature engineering, using only standard capitalization and word class
features (e.g., “digits”). We additionally used a feature that is the exact token string of the previous
word. The use of flexible, non-independent features demonstrates the benefit of the greater expres-
sive power of discriminatively trained CRFs; with these features alone, the CRF out-performs the
supervised HMM.

Table 3 compares the performance of our system relative to previous supervised and semi-
supervised systems,11 where at the maximum amount of training data, label regularization achieves
a 1.3% accuracy improvement over the purely supervised CRF, and a 0.4% accuracy improvement
over semi-supervised learning via entropy regularization.

Table 4 shows learning curve performance for the CRF with a variety of different settings.
With accurate input distributions, the CRF trained with label regularization achieves the highest
performance, for all but with one example, where entropy regularization is the highest performer.
Label regularization gives a 8% absolute accuracy improvement at the lower levels of training data
and a 1.3% boost (a 5% relative error reduction) for a highly trained sequence model. Unlike entropy

11. We did not implement the ad-hoc boundary pre-processing and post-processing as is performed by the unsupervised
MRF. These boundary features gave a 3% improvement for Haghighi and Klein (2006b).
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# Supervised Supervised Entropy Regularization GE: Estimated Priors GE: Accurate Priors
1 41.2% (± 1.7) 44.3% (± 0.3) 41.3% (± 1.7) 45.7% (± 1.7)
5 48.4% (± 1.8) 45.8% (± 1.1) 51.9% (± 1.6) 56.2% (± 0.6)
10 55.9% (± 1.3) 58.0% (± 2.5 ) 57.5% (± 1.2) 63.0 % (± 0.2)
50 71.7% (± 0.5) 74.1 % (± 0.2) 73.7 % (± 0.4) 74.0 % (± 0.6)
100 75.8% (± 0.3) 76.7 % (± 0.4) 77.4 % (± 0.2) 77.1 % (± 0.3)

Table 4: APT: Use of input distributions estimated from limited labeled data yields smaller im-
provements over the true distributions, but still improves over the strictly supervised accu-
racy, and at large levels of training data, nearly matches the accuracy achieved by the true
distributions. Standard error is shown in parentheses for the experiments.

# Supervised Supervised Entropy Regularization GE: Estimated Priors GE: Accurate Priors
1 24.9% (± 3.6) 17.5% (± 3.2) 25.5% (± 3.8) 37.3% (± 2.1)
5 52.4% (± 0.5 ) 27.0% (± 2.7) 52.4% (± 5.6) 54.7% (± 0.5)
10 56.1% (± 0.6) 35.2% (± 3.3) 55.5% (± 0.7) 57.9% (± 0.4)
50 67.8% (± 0.6) 66.5% (± 0.8) 67.5% (± 0.3) 68.0% (± 0.6)
100 72.7% (± 0.5) 73.5% (± 0.5) 72.4% (± 0.3) 72.0% (± 0.6)

Table 5: CITE: Label regularization (GE) is able to significantly improve on the purely supervised
cases at very low levels of training data. At higher levels of training data, it makes less of
an impact. Standard error is shown in parentheses for the experiments.

regularization, label regularization improves over supervised learning across all amounts of training
data.

In addition to testing with accurate proportions, we also examined performance when input
distributions were read directly off of the minimal training label sequence. When these noisy input
distributions were used, the performance was less than with entropy regularization at lower levels
of training data, but it still provided consistent gains in performance across all training settings.

6.2 Citation Data

In addition to experiments on apartment data, we also ran experiments on citation data (CITE) as
given by Grenager et al. (2005). This data set consists of 500 hand-annotated citations taken from
the reference sections of different computer science papers. Each citation is annotated with 13 fields
(e.g., AUTHOR, TITLE, DATE, JOURNAL), and on average the citation has 35 tokens annotated with
5.5 fields. For this experiment we used 1,000 unlabeled examples, with λ = 1 times the number of
unlabeled data points, and the entropy regularizer set as before. On this set of data, as shown in
Table 5, label regularization gives a slight win at low levels of training data, but at higher levels,
it does not provide any improvement. Entropy regularization unfortunately consistently decreases
performance. Here, estimating the input distributions from the minimal training data leads to per-
formance decreases beyond supervised training. The difference between the two data sets suggest
that more work is needed to understand in what situations label regularization can be expected to
work well.
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# Supervised Supervised Supervised + Clustering GE GE + Clustering
1 41.2% (± 1.7) 44.5% (± 0.9) 45.7% (± 1.7) 50.0% (± 0.3)
5 48.4% (± 1.8) 54.3% (± 1.8) 56.2% (± 0.6) 58.9% (± 1.1)
10 55.9% (± 1.3) 61.2% (± 1.5) 63.0 % (± 0.2) 64.4% (± 0.9 )
50 71.7% (± 0.5) 74.1% (± 0.5) 74.0 % (± 0.6) 74.1% (± 0.3)
100 75.8% (± 0.3) 77.6% (± 0.1) 77.1 % (± 0.3) 77.6% (± 0.2)

Table 6: APT: Using clustering features gives an additional gain to label regularization for low
levels of training data, but it doesn’t provide any additional benefit at higher levels of
training data. Standard error is shown in parentheses for the experiments.

One thing to note from the experiments, is that as training data increases, the performance gap
between the true distributions and estimated input distributions diminishes, until at 100 supervised
examples, it almost matches the accuracy achieved by the true distributions. These results are at
once encouraging and surprising, and suggest two possible reasons for improvement. First, perhaps
the CRF isn’t matching the proportions implicit in the labeled data, even though it has access to this
information. Second, it suggests that the unlabeled data does have an effect beyond that of helping
to readjust the classifier towards the input distributions. In particular, perhaps new features are being
brought in by inclusion of the unlabeled examples.

The strengths of label regularization over entropy regularization are two-fold. First, GE gives an
overall win in performance across many different levels of training data. Second, GE gives consis-
tent gains. GE rarely performs worse than purely supervised training (when the input distributions
are accurate), whereas the performance of entropy regularization is erratic, sometimes yielding a
gain in performance, in other cases leading to a severe decrease in performance.

6.3 Clustering Features

Miller et al. (2004) proposes a method of using unsupervised clusters to improve performance.
In his method, the unlabeled data undergoes word clustering, and then features corresponding to
clusters are added during supervised training. A similar method can be applied here, in which fea-
tures corresponding to unsupervised word clusters are added during semi-supervised training. We
applied this method to the apartment data, and for very low level of training, found encouraging
performance gains. Table 6 shows that for one labeled example, 2,000 unlabeled examples, and
unsupervised clustering, the system achieves almost a 5% improvement by using these unsuper-
vised cluster features (45.7% to 50.0%). At higher levels of training data, label regularization and
clustering features interact poorly, and using them together lead to no improvement. While at lower
levels of training data, label regularization is able to achieve more gains than the clustering method,
at higher levels of performance, it only matches performance. We have also attempted to use sim
features as proposed in Haghighi and Klein (2006b), but found these methods difficult to tune (e.g.,
what SVD rank to retain).
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7. Conclusion

This paper has presented generalized expectation criteria, a simple, robust, scalable method for
semi-supervised learning. This method penalizes models by divergence between the model’s ex-
pectations over the unlabeled data and input conditional probabilities, which can be estimated from
labeled data or given as a priori knowledge by a human annotator. An important special case, label
regularization is empirically explored for the case of maximum entropy models where we find it to
provide accuracy improvements over entropy regularization, naı̈ve Bayes EM, Quadratic Cost Cri-
terion (a representative graph-based method) and a cluster kernel SVM. We show that the method
is robust to noise in the estimates of the input conditional probabilities, the meta-parameters need
little or no tuning, and that it runs in linear time with increasing numbers of unlabeled examples.

We additionally present extensions of the method to conditional random fields. In this case, the
gradient computation is complicated and requires the use of a specialized dynamic program which
computes ∑ j p(yi,yi+1,y j = l|x;θ). Conditional random fields trained with label regularization out-
perform alternative methods for semi-supervised training such as entropy regularization, and can
achieve 1% to 8% improvement over supervised only approaches.

The simplicity of these methods, their robustness, and their high performance give promise that
they may have a wide application and impact in use for semi-supervised machine learning.
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Abstract
How can we generate realistic networks? In addition, how can we do so with a mathematically
tractable model that allows for rigorous analysis of network properties? Real networks exhibit a
long list of surprising properties: Heavy tails for the in- and out-degree distribution, heavy tails for
the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over
time. Current network models and generators either fail to match several of the above properties, are
complicated to analyze mathematically, or both. Here we propose a generative model for networks
that is both mathematically tractable and can generate networks that have all the above mentioned
structural properties. Our main idea here is to use a non-standard matrix operation, the Kronecker
product, to generate graphs which we refer to as “Kronecker graphs”.

First, we show that Kronecker graphs naturally obey common network properties. In fact,
we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker
graphs can effectively model the structure of real networks.

We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph gen-
eration model to large real networks. A naive approach to fitting would take super-exponential
time. In contrast, KRONFIT takes linear time, by exploiting the structure of Kronecker matrix
multiplication and by using statistical simulation techniques.

Experiments on a wide range of large real and synthetic networks show that KRONFIT finds
accurate parameters that very well mimic the properties of target networks. In fact, using just
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four parameters we can accurately model several aspects of global network structure. Once fitted,
the model parameters can be used to gain insights about the network structure, and the resulting
synthetic graphs can be used for null-models, anonymization, extrapolations, and graph summa-
rization.
Keywords: Kronecker graphs, network analysis, network models, social networks, graph genera-
tors, graph mining, network evolution

1. Introduction

What do real graphs look like? How do they evolve over time? How can we generate synthetic, but
realistic looking, time-evolving graphs? Recently, network analysis has been attracting much inter-
est, with an emphasis on finding patterns and abnormalities in social networks, computer networks,
e-mail interactions, gene regulatory networks, and many more. Most of the work focuses on static
snapshots of graphs, where fascinating “laws” have been discovered, including small diameters and
heavy-tailed degree distributions.

In parallel with discoveries of such structural “laws” there has been effort to find mechanisms
and models of network formation that generate networks with such structures. So, a good realistic
network generation model is important for at least two reasons. The first is that it can generate
graphs for extrapolations, hypothesis testing, “what-if” scenarios, and simulations, when real graphs
are difficult or impossible to collect. For example, how well will a given protocol run on the Internet
five years from now? Accurate network models can produce more realistic models for the future
Internet, on which simulations can be run. The second reason is more subtle. It forces us to think
about network properties that generative models should obey to be realistic.

In this paper we introduce Kronecker graphs, a generative network model which obeys all the
main static network patterns that have appeared in the literature (Faloutsos et al., 1999; Albert et al.,
1999; Chakrabarti et al., 2004; Farkas et al., 2001; Mihail and Papadimitriou, 2002; Watts and Stro-
gatz, 1998). Our model also obeys recently discovered temporal evolution patterns (Leskovec et al.,
2005b, 2007a). And, contrary to other models that match this combination of network properties
(as for example, Bu and Towsley, 2002; Klemm and Eguı́luz, 2002; Vázquez, 2003; Leskovec et al.,
2005b; Zheleva et al., 2009), Kronecker graphs also lead to tractable analysis and rigorous proofs.
Furthermore, the Kronecker graphs generative process also has a nice natural interpretation and
justification.

Our model is based on a matrix operation, the Kronecker product. There are several known
theorems on Kronecker products. They correspond exactly to a significant portion of what we want
to prove: heavy-tailed distributions for in-degree, out-degree, eigenvalues, and eigenvectors. We
also demonstrate how a Kronecker graphs can match the behavior of several real networks (social
networks, citations, web, internet, and others). While Kronecker products have been studied by
the algebraic combinatorics community (see, e.g., Chow, 1997; Imrich, 1998; Imrich and Klavžar,
2000; Hammack, 2009), the present work is the first to employ this operation in the design of
network models to match real data.

Then we also make a step further and tackle the following problem: Given a large real network,
we want to generate a synthetic graph, so that the resulting synthetic graph matches the properties
of the real network as well as possible.

Ideally we would like: (a) A graph generation model that naturally produces networks where
many properties that are also found in real networks naturally emerge. (b) The model parameter
estimation should be fast and scalable, so that we can handle networks with millions of nodes. (c)
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The resulting set of parameters should generate realistic-looking networks that match the statistical
properties of the target, real networks.

In general the problem of modeling network structure presents several conceptual and engineer-
ing challenges: Which generative model should we choose, among the many in the literature? How
do we measure the goodness of the fit? (Least squares don’t work well for power laws, for subtle
reasons!) If we use likelihood, how do we estimate it faster than in time quadratic on the number of
nodes? How do we solve the node correspondence problem, that is, which node of the real network
corresponds to what node of the synthetic one?

To answer the above questions we present KRONFIT, a fast and scalable algorithm for fitting
Kronecker graphs by using the maximum likelihood principle. When calculating the likelihood there
are two challenges: First, one needs to solve the node correspondence problem by matching the
nodes of the real and the synthetic network. Essentially, one has to consider all mappings of nodes
of the network to the rows and columns of the graph adjacency matrix. This becomes intractable
for graphs with more than tens of nodes. Even when given the “true” node correspondences, just
evaluating the likelihood is still prohibitively expensive for large graphs that we consider, as one
needs to evaluate the probability of each possible edge. We present solutions to both of these
problems: We develop a Metropolis sampling algorithm for sampling node correspondences, and
approximate the likelihood to obtain a linear time algorithm for Kronecker graph model parameter
estimation that scales to large networks with millions of nodes and edges. KRONFIT gives orders
of magnitude speed-ups against older methods (20 minutes on a commodity PC, versus 2 days on a
50-machine cluster).

Our extensive experiments on synthetic and real networks show that Kronecker graphs can ef-
ficiently model statistical properties of networks, like degree distribution and diameter, while using
only four parameters.

Once the model is fitted to the real network, there are several benefits and applications:

(a) Network structure: the parameters give us insight into the global structure of the network
itself.

(b) Null-model: when working with network data we would often like to assess the significance
or the extent to which a certain network property is expressed. We can use Kronecker graph
as an accurate null-model.

(c) Simulations: given an algorithm working on a graph we would like to evaluate how its per-
formance depends on various properties of the network. Using our model one can generate
graphs that exhibit various combinations of such properties, and then evaluate the algorithm.

(d) Extrapolations: we can use the model to generate a larger graph, to help us understand how
the network will look like in the future.

(e) Sampling: conversely, we can also generate a smaller graph, which may be useful for run-
ning simulation experiments (e.g., simulating routing algorithms in computer networks, or
virus/worm propagation algorithms), when these algorithms may be too slow to run on large
graphs.

(f) Graph similarity: to compare the similarity of the structure of different networks (even of
different sizes) one can use the differences in estimated parameters as a similarity measure.
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(g) Graph visualization and compression: we can compress the graph, by storing just the model
parameters, and the deviations between the real and the synthetic graph. Similarly, for visual-
ization purposes one can use the structure of the parameter matrix to visualize the backbone
of the network, and then display the edges that deviate from the backbone structure.

(h) Anonymization: suppose that the real graph cannot be publicized, like, for example, corporate
e-mail network or customer-product sales in a recommendation system. Yet, we would like
to share our network. Our work gives ways to such a realistic, ’similar’ network.

The current paper builds on our previous work on Kronecker graphs (Leskovec et al., 2005a;
Leskovec and Faloutsos, 2007) and is organized as follows: Section 2 briefly surveys the related
literature. In section 3 we introduce the Kronecker graph model, and give formal statements about
the properties of networks it generates. We investigate the model using simulation in Section 4
and continue by introducing KRONFIT, the Kronecker graphs parameter estimation algorithm, in
Section 5. We present experimental results on a wide range of real and synthetic networks in
Section 6. We close with discussion and conclusions in Sections 7 and 8.

2. Relation to Previous Work on Network Modeling

Networks across a wide range of domains present surprising regularities, such as power laws, small
diameters, communities, and so on. We use these patterns as sanity checks, that is, our synthetic
graphs should match those properties of the real target graph.

Most of the related work in this field has concentrated on two aspects: properties and pat-
terns found in real-world networks, and then ways to find models to build understanding about the
emergence of these properties. First, we will discuss the commonly found patterns in (static and
temporally evolving) graphs, and finally, the state of the art in graph generation methods.

2.1 Graph Patterns

Here we briefly introduce the network patterns (also referred to as properties or statistics) that we
will later use to compare the similarity between the real networks and their synthetic counterparts
produced by the Kronecker graphs model. While many patterns have been discovered, two of the
principal ones are heavy-tailed degree distributions and small diameters.

Degree distribution: The degree-distribution of a graph is a power law if the number of nodes
Nd with degree d is given by Nd ∝ d−γ (γ > 0) where γ is called the power law exponent. Power
laws have been found in the Internet (Faloutsos et al., 1999), the Web (Kleinberg et al., 1999; Broder
et al., 2000), citation graphs (Redner, 1998), online social networks (Chakrabarti et al., 2004) and
many others.

Small diameter: Most real-world graphs exhibit relatively small diameter (the “small- world”
phenomenon, or “six degrees of separation” Milgram, 1967): A graph has diameter D if every pair
of nodes can be connected by a path of length at most D edges. The diameter D is susceptible to
outliers. Thus, a more robust measure of the pair wise distances between nodes in a graph is the
integer effective diameter (Tauro et al., 2001), which is the minimum number of links (steps/hops)
in which some fraction (or quantile q, say q = 0.9) of all connected pairs of nodes can reach each
other. Here we make use of effective diameter which we define as follows (Leskovec et al., 2005b).
For each natural number h, let g(h) denote the fraction of connected node pairs whose shortest
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connecting path has length at most h, that is, at most h hops away. We then consider a function
defined over all positive real numbers x by linearly interpolating between the points (h,g(h)) and
(h+ 1,g(h+ 1)) for each x, where h = #x$, and we define the effective diameter of the network to
be the value x at which the function g(x) achieves the value 0.9. The effective diameter has been
found to be small for large real-world graphs, like Internet, Web, and online social networks (Albert
and Barabási, 2002; Milgram, 1967; Leskovec et al., 2005b).

Hop-plot: It extends the notion of diameter by plotting the number of reachable pairs g(h)
within h hops, as a function of the number of hops h (Palmer et al., 2002). It gives us a sense of how
quickly nodes’ neighborhoods expand with the number of hops.

Scree plot: This is a plot of the eigenvalues (or singular values) of the graph adjacency matrix,
versus their rank, using the logarithmic scale. The scree plot is also often found to approximately
obey a power law (Chakrabarti et al., 2004; Farkas et al., 2001). Moreover, this pattern was also
found analytically for random power law graphs (Mihail and Papadimitriou, 2002; Chung et al.,
2003).

Network values: The distribution of eigenvector components (indicators of “network value”)
associated to the largest eigenvalue of the graph adjacency matrix has also been found to be skewed
(Chakrabarti et al., 2004).

Node triangle participation: Edges in real-world networks and especially in social networks
tend to cluster (Watts and Strogatz, 1998) and form triads of connected nodes. Node triangle partic-
ipation is a measure of transitivity in networks. It counts the number of triangles a node participates
in, that is, the number of connections between the neighbors of a node. The plot of the number
of triangles Δ versus the number of nodes that participate in Δ triangles has also been found to be
skewed (Tsourakakis, 2008).

Densification power law: The relation between the number of edges E(t) and the number of
nodes N(t) in evolving network at time t obeys the densification power law (DPL), which states that
E(t) ∝ N(t)a. The densification exponent a is typically greater than 1, implying that the average
degree of a node in the network is increasing over time (as the network gains more nodes and
edges). This means that real networks tend to sprout many more edges than nodes, and thus densify
as they grow (Leskovec et al., 2005b, 2007a).

Shrinking diameter: The effective diameter of graphs tends to shrink or stabilize as the number
of nodes in a network grows over time (Leskovec et al., 2005b, 2007a). This is somewhat coun-
terintuitive since from common experience as one would expect that as the volume of the object (a
graph) grows, the size (i.e., the diameter) would also grow. But for real networks this does not hold
as the diameter shrinks and then seems to stabilize as the network grows.

2.2 Generative Models of Network Structure

The earliest probabilistic generative model for graphs was the Erdős-Rényi (Erdős and Rényi, 1960)
random graph model, where each pair of nodes has an identical, independent probability of being
joined by an edge. The study of this model has led to a rich mathematical theory. However, as the
model was not developed to model real-world networks it produces graphs that fail to match real
networks in a number of respects (for example, it does not produce heavy-tailed degree distribu-
tions).

The vast majority of recent network models involve some form of preferential attachment
(Barabási and Albert, 1999; Albert and Barabási, 2002; Winick and Jamin, 2002; Kleinberg et al.,
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1999; Kumar et al., 1999; Flaxman et al., 2007) that employs a simple rule: new node joins the
graph at each time step, and then creates a connection to an existing node u with the probability
proportional to the degree of the node u. This leads to the “rich get richer” phenomena and to power
law tails in degree distribution. However, the diameter in this model grows slowly with the number
of nodes N, which violates the “shrinking diameter” property mentioned above.

There are also many variations of preferential attachment model, all somehow employing the
“rich get richer” type mechanism, for example, the “copying model” (Kumar et al., 2000), the
“winner does not take all” model (Pennock et al., 2002), the “forest fire” model (Leskovec et al.,
2005b), the “random surfer model” (Blum et al., 2006), etc.

A different family of network methods strives for small diameter and local clustering in net-
works. Examples of such models include the small-world model (Watts and Strogatz, 1998) and
the Waxman generator (Waxman, 1988). Another family of models shows that heavy tails emerge
if nodes try to optimize their connectivity under resource constraints (Carlson and Doyle, 1999;
Fabrikant et al., 2002).

In summary, most current models focus on modeling only one (static) network property, and
neglect the others. In addition, it is usually hard to analytically analyze properties of the network
model. On the other hand, the Kronecker graph model we describe in the next section addresses
these issues as it matches multiple properties of real networks at the same time, while being analyt-
ically tractable and lending itself to rigorous analysis.

2.3 Parameter Estimation of Network Models

Until recently relatively little effort was made to fit the above network models to real data. One of
the difficulties is that most of the above models usually define a mechanism or a principle by which
a network is constructed, and thus parameter estimation is either trivial or almost impossible.

Most work in estimating network models comes from the area of social sciences, statistics and
social network analysis where the exponential random graphs, also known as p∗ model, were in-
troduced (Wasserman and Pattison, 1996). The model essentially defines a log linear model over all
possible graphs G, p(G|θ) ∝ exp(θT s(G)), where G is a graph, and s is a set of functions, that can
be viewed as summary statistics for the structural features of the network. The p∗ model usually
focuses on “local” structural features of networks (like, for example, characteristics of nodes that
determine a presence of an edge, link reciprocity, etc.). As exponential random graphs have been
very useful for modeling small networks, and individual nodes and edges, our goal here is different
in a sense that we aim to accurately model the structure of the network as a whole. Moreover, we
aim to model and estimate parameters of networks with millions of nodes, while even for graphs
of small size (> 100 nodes) the number of model parameters in exponential random graphs usually
becomes too large, and estimation prohibitively expensive, both in terms of computational time and
memory.

Regardless of a particular choice of a network model, a common theme when estimating the
likelihood P(G) of a graph G under some model is the challenge of finding the correspondence be-
tween the nodes of the true network and its synthetic counterpart. The node correspondence problem
results in the factorially many possible matchings of nodes. One can think of the correspondence
problem as a test of graph isomorphism. Two isomorphic graphs G and G′ with differently assigned
node IDs should have same likelihood P(G) =P(G′) so we aim to find an accurate mapping between
the nodes of the two graphs.
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SYMBOL DESCRIPTION

G Real network
N Number of nodes in G
E Number of edges in G
K Kronecker graph (synthetic estimate of G)
K1 Initiator of a Kronecker graphs
N1 Number of nodes in initiator K1
E1 Number of edges in K1 (the expected number of edges in P1, E1 = ∑θi j)
G⊗H Kronecker product of adjacency matrices of graphs G and H
K[k]

1 = Kk = K kth Kronecker power of K1
K1[i, j] Entry at row i and column j of K1
Θ= P1 Stochastic Kronecker initiator
P

[k]
1 = Pk = P kth Kronecker power of P1

θi j = P1[i, j] Entry at row i and column j of P1
pi j = Pk[i, j] Probability of an edge (i, j) in Pk, that is, entry at row i and column j of Pk
K = R(P ) Realization of a Stochastic Kronecker graph P
l(Θ) Log-likelihood. Log-prob. that Θ generated real graph G, logP(G|Θ)
Θ̂ Parameters at maximum likelihood, Θ̂= argmaxΘP(G|Θ)
σ Permutation that maps node IDs of G to those of P
a Densification power law exponent, E(t) ∝ N(t)a
D Diameter of a graph
Nc Number of nodes in the largest weakly connected component of a graph
ω Fraction of times SwapNodes permutation proposal distribution is used

Table 1: Table of symbols.

An ordering or a permutation defines the mapping of nodes in one network to nodes in the other
network. For example, Butts (2005) used permutation sampling to determine similarity between two
graph adjacency matrices, while Bezáková et al. (2006) used permutations for graph model selec-
tion. Recently, an approach for estimating parameters of the “copying” model was introduced (Wiuf
et al., 2006), however authors also note that the class of “copying” models may not be rich enough
to accurately model real networks. As we show later, Kronecker graph model seems to have the
necessary expressive power to mimic real networks well.

3. Kronecker Graph Model

The Kronecker graph model we propose here is based on a recursive construction. Defining the
recursion properly is somewhat subtle, as a number of standard, related graph construction methods
fail to produce graphs that densify according to the patterns observed in real networks, and they also
produce graphs whose diameters increase. To produce densifying graphs with constant/shrinking
diameter, and thereby match the qualitative behavior of a real network, we develop a procedure that
is best described in terms of the Kronecker product of matrices.
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3.1 Main Idea

The main intuition behind the model is to create self-similar graphs, recursively. We begin with an
initiator graph K1, with N1 nodes and E1 edges, and by recursion we produce successively larger
graphs K2,K3, . . . such that the kth graph Kk is on Nk =Nk

1 nodes. If we want these graphs to exhibit a
version of the Densification power law (Leskovec et al., 2005b), then Kk should have Ek = Ek1 edges.
This is a property that requires some care in order to get right, as standard recursive constructions
(for example, the traditional Cartesian product or the construction of Barabási et al., 2001) do not
yield graphs satisfying the densification power law.

It turns out that the Kronecker product of two matrices is the right tool for this goal. The
Kronecker product is defined as follows:

Definition 1 (Kronecker product of matrices) Given two matrices A= [ai, j] and B of sizes n×m
and n′ ×m′ respectively, the Kronecker product matrix C of dimensions (n ·n′)× (m ·m′) is given by

C= A⊗B .
=








a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB
...

... . . . ...
an,1B an,2B . . . an,mB








.

We then define the Kronecker product of two graphs simply as the Kronecker product of their
corresponding adjacency matrices.

Definition 2 (Kronecker product of graphs, Weichsel, 1962) If G and H are graphs with adja-
cency matrices A(G) and A(H) respectively, then the Kronecker product G⊗H is defined as the
graph with adjacency matrix A(G)⊗A(H).

Observation 1 (Edges in Kronecker-multiplied graphs)

Edge (Xi j,Xkl) ∈ G⊗H iff (Xi,Xk) ∈ G and (Xj,Xl) ∈ H.

where Xi j and Xkl are nodes in G⊗H, and Xi, Xj, Xk and Xl are the corresponding nodes in G and
H, as in Figure 1.

The last observation is crucial, and deserves elaboration. Basically, each node in G⊗H can be
represented as an ordered pair Xi j, with i a node of G and j a node of H, and with an edge joining
Xi j and Xkl precisely when (Xi,Xk) is an edge of G and (Xj,Xl) is an edge of H. This is a direct
consequence of the hierarchical nature of the Kronecker product. Figure 1(a–c) further illustrates
this by showing the recursive construction of G⊗H, when G=H is a 3-node chain. Consider node
X1,2 in Figure 1(c): It belongs to the H graph that replaced node X1 (see Figure 1(b)), and in fact is
the X2 node (i.e., the center) within this small H-graph.

We propose to produce a growing sequence of matrices by iterating the Kronecker product:

Definition 3 (Kronecker power) The kth power of K1 is defined as the matrix K
[k]
1 (abbreviated to

Kk), such that:

K[k]
1 = Kk = K1 ⊗K1 ⊗ . . .K1

︸ ︷︷ ︸

k times
= Kk−1 ⊗K1
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X

X

X
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3

X3,3

X2,3

Central node is X                             2,2

X3,1 X3,2

X1,1 X1,2 X1,3

X2,1

(a) Graph K1 (b) Intermediate stage (c) Graph K2 = K1 ⊗K1

1   1   0
1   1   1
0   1   1

K1 K1
K1 K1

K1K1

K1

0

0

(d) Adjacency matrix (e) Adjacency matrix
of K1 of K2 = K1 ⊗K1

Figure 1: Example of Kronecker multiplication: Top: a “3-chain” initiator graph and its Kronecker
product with itself. Each of the Xi nodes gets expanded into 3 nodes, which are then
linked using Observation 1. Bottom row: the corresponding adjacency matrices. See
Figure 2 for adjacency matrices of K3 and K4.

(a) K3 adjacency matrix (27×27) (b) K4 adjacency matrix (81×81)

Figure 2: Adjacency matrices ofK3 andK4, the 3rd and 4th Kronecker power ofK1 matrix as defined
in Figure 1. Dots represent non-zero matrix entries, and white space represents zeros.
Notice the recursive self-similar structure of the adjacency matrix.

Definition 4 (Kronecker graph) Kronecker graph of order k is defined by the adjacency matrix
K[k]

1 , where K1 is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: To produce Kk from Kk−1, we
“expand” (replace) each node of Kk−1 by converting it into a copy of K1, and we join these copies
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Initiator K1 K1 adjacency matrix K3 adjacency matrix

Figure 3: Two examples of Kronecker initiators on 4 nodes and the self-similar adjacency matrices
they produce.

together according to the adjacencies in Kk−1 (see Figure 1). This process is very natural: one
can imagine it as positing that communities within the graph grow recursively, with nodes in the
community recursively getting expanded into miniature copies of the community. Nodes in the
sub-community then link among themselves and also to nodes from other communities.

Note that there are many different names to refer to Kronecker product of graphs. Other names
for the Kronecker product are tensor product, categorical product, direct product, cardinal product,
relational product, conjunction, weak direct product or just product, and even Cartesian product (Im-
rich and Klavžar, 2000).

3.2 Analysis of Kronecker Graphs

We shall now discuss the properties of Kronecker graphs, specifically, their degree distributions,
diameters, eigenvalues, eigenvectors, and time-evolution. Our ability to prove analytical results
about all of these properties is a major advantage of Kronecker graphs over other network models.

3.2.1 DEGREE DISTRIBUTION

The next few theorems prove that several distributions of interest are multinomial for our Kronecker
graph model. This is important, because a careful choice of the initial graph K1 makes the result-
ing multinomial distribution to behave like a power law or Discrete Gaussian Exponential (DGX)
distribution (Bi et al., 2001; Clauset et al., 2007).

Theorem 5 (Multinomial degree distribution) Kronecker graphs have multinomial degree distri-
butions, for both in- and out-degrees.
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Proof Let the initiator K1 have the degree sequence d1,d2, . . . ,dN1 . Kronecker multiplication of
a node with degree d expands it into N1 nodes, with the corresponding degrees being d× d1,d×
d2, . . . ,d × dN1 . After Kronecker powering, the degree of each node in graph Kk is of the form
di1 ×di2 × . . .dik , with i1, i2, . . . , ik ∈ (1 . . .N1), and there is one node for each ordered combination.
This gives us the multinomial distribution on the degrees of Kk. So, graph Kk will have multinomial
degree distribution where the “events” (degrees) of the distribution will be combinations of degree
products: di11 d

i2
2 . . .diN1

N1
(where ∑N1

j=1 i j = k) and event (degree) probabilities will be proportional to
( k
i1i2...iN1

)

. Note also that this is equivalent to noticing that the degrees of nodes in Kk can be ex-
pressed as the kth Kronecker power of the vector (d1,d2, . . . ,dN1).

3.2.2 SPECTRAL PROPERTIES

Next we analyze the spectral properties of adjacency matrix of a Kronecker graph. We show that
both the distribution of eigenvalues and the distribution of component values of eigenvectors of the
graph adjacency matrix follow multinomial distributions.

Theorem 6 (Multinomial eigenvalue distribution) The Kronecker graph Kk has a multinomial
distribution for its eigenvalues.

Proof Let K1 have the eigenvalues λ1,λ2, . . . ,λN1 . By properties of the Kronecker multiplica-
tion (Loan, 2000; Langville and Stewart, 2004), the eigenvalues of Kk are the kth Kronecker power
of the vector of eigenvalues of the initiator matrix, (λ1,λ2, . . . ,λN1)

[k]. As in Theorem 5, the eigen-
value distribution is a multinomial.

A similar argument using properties of Kronecker matrix multiplication shows the following.

Theorem 7 (Multinomial eigenvector distribution) The components of each eigenvector of the
Kronecker graph Kk follow a multinomial distribution.

Proof Let K1 have the eigenvectors !v1,!v2, . . . ,!vN1 . By properties of the Kronecker multiplica-
tion (Loan, 2000; Langville and Stewart, 2004), the eigenvectors of Kk are given by the kth Kro-
necker power of the vector: (!v1,!v2, . . . ,!vN1), which gives a multinomial distribution for the compo-
nents of each eigenvector in Kk.

We have just covered several of the static graph patterns. Notice that the proofs were a direct
consequences of the Kronecker multiplication properties.

3.2.3 CONNECTIVITY OF KRONECKER GRAPHS

We now present a series of results on the connectivity of Kronecker graphs. We show, maybe a bit
surprisingly, that even if a Kronecker initiator graph is connected its Kronecker power can in fact
be disconnected.

Lemma 8 If at least one of G and H is a disconnected graph, then G⊗H is also disconnected.
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(a) Adjacency matrix (b) Adjacency matrix (c) Adjacency matrix
when G is disconnected when G is bipartite when H is bipartite

(d) Kronecker product of (e) Rearranged adjacency
two bipartite graphs G and H matrix from panel (d)

Figure 4: Graph adjacency matrices. Dark parts represent connected (filled with ones) and white
parts represent empty (filled with zeros) parts of the adjacency matrix. (a) When G is
disconnected, Kronecker multiplication with any matrix H will result in G⊗H being
disconnected. (b) Adjacency matrix of a connected bipartite graph G with node partitions
A and B. (c) Adjacency matrix of a connected bipartite graph G with node partitions C
and D. (e) Kronecker product of two bipartite graphs G and H. (d) After rearranging the
adjacency matrix G⊗H we clearly see the resulting graph is disconnected.

Proof Without loss of generality we can assume that G has two connected components, while H is
connected. Figure 4(a) illustrates the corresponding adjacency matrix forG. Using the notation from
Observation 1 let graph let G have nodes X1, . . . ,Xn, where nodes {X1, . . .Xr} and {Xr+1, . . . ,Xn}
form the two connected components. Now, note that (Xi j,Xkl) /∈ G⊗H for i ∈ {1, . . . ,r}, k ∈
{r+ 1, . . . ,n}, and all j, l. This follows directly from Observation 1 as (Xi,Xk) are not edges in G.
Thus, G⊗H must at least two connected components.

Actually it turns out that both G and H can be connected while G⊗H is disconnected. The
following theorem analyzes this case.

Theorem 9 If both G and H are connected but bipartite, then G⊗H is disconnected, and each of
the two connected components is again bipartite.

Proof Again without loss of generality let G be bipartite with two partitions A = {X1, . . .Xr} and
B = {Xr+1, . . . ,Xn}, where edges exists only between the partitions, and no edges exist inside the

996



KRONECKER GRAPHS: AN APPROACH TO MODELING NETWORKS

partition: (Xi,Xk) /∈G for i,k∈A or i,k∈B. Similarly, letH also be bipartite with two partitionsC=
{X1, . . .Xs} andD= {Xs+1, . . . ,Xm}. Figures 4(b) and (c) illustrate the structure of the corresponding
adjacency matrices.

Now, there will be two connected components in G⊗H: 1st component will be composed of
nodes {Xi j} ∈ G⊗H, where (i ∈ A, j ∈ D) or (i ∈ B, j ∈ C). And similarly, 2nd component will
be composed of nodes {Xi j}, where (i ∈ A, j ∈ C) or (i ∈ B, j ∈ D). Basically, there exist edges
between node sets (A,D) and (B,C), and similarly between (A,C) and (B,D) but not across the sets.
To see this we have to analyze the cases using Observation 1. For example, in G⊗H there exist
edges between nodes (A,C) and (B,D) as there exist edges (i,k) ∈G for i ∈ A,k ∈ B, and ( j, l) ∈H
for j ∈C and l ∈ D. Similar is true for nodes (A,C) and (B,D). However, there are no edges cross
the two sets, for example, nodes from (A,D) do not link to (A,C), as there are no edges between
nodes in A (since G is bipartite). See Figures 4(d) and 4(e) for a visual proof.

Note that bipartite graphs are triangle free and have no self-loops. Stars, chains, trees and cycles
of even length are all examples of bipartite graphs. In order to ensure that Kk is connected, for the
remained of the paper we focus on initiator graphs K1 with self loops on all of the vertices.

3.2.4 TEMPORAL PROPERTIES OF KRONECKER GRAPHS

We continue with the analysis of temporal patterns of evolution of Kronecker graphs: the densifica-
tion power law, and shrinking/stabilizing diameter (Leskovec et al., 2005b, 2007a).

Theorem 10 (Densification power law) Kronecker graphs follow the densification power law (DPL)
with densification exponent a= log(E1)/ log(N1).

Proof Since the kth Kronecker power Kk has Nk =Nk
1 nodes and Ek = Ek1 edges, it satisfies Ek =Na

k ,
where a= log(E1)/ log(N1). The crucial point is that a is independent of k, and hence the sequence
of Kronecker powers follows an exact version of the densification power law.

We now show how the Kronecker product also preserves the property of constant diameter, a
crucial ingredient for matching the diameter properties of many real-world network data sets. In
order to establish this, we will assume that the initiator graph K1 has a self-loop on every node.
Otherwise, its Kronecker powers may be disconnected.

Lemma 11 If G and H each have diameter at most D and each has a self-loop on every node, then
the Kronecker graph G⊗H also has diameter at most D.

Proof Each node in G⊗H can be represented as an ordered pair (v,w), with v a node of G and w a
node of H, and with an edge joining (v,w) and (x,y) precisely when (v,x) is an edge of G and (w,y)
is an edge of H. (Note this exactly the Observation 1.) Now, for an arbitrary pair of nodes (v,w)
and (v′,w′), we must show that there is a path of length at most D connecting them. Since G has
diameter at most D, there is a path v= v1,v2, . . . ,vr = v′, where r≤D. If r<D, we can convert this
into a path v = v1,v2, . . . ,vD = v′ of length exactly D, by simply repeating v′ at the end for D− r
times. By an analogous argument, we have a path w = w1,w2, . . . ,wD = w′. Now by the definition
of the Kronecker product, there is an edge joining (vi,wi) and (vi+1,wi+1) for all 1 ≤ i ≤ D− 1,
and so (v,w) = (v1,w1),(v2,w2), . . . ,(vD,wD) = (v′,w′) is a path of length D connecting (v,w) to
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(v′,w′), as required.

Theorem 12 If K1 has diameter D and a self-loop on every node, then for every k, the graph Kk
also has diameter D.

Proof This follows directly from the previous lemma, combined with induction on k.

As defined in Section 2 we also consider the effective diameter D∗. We defined the q-effective
diameter as the minimum D∗ such that, for a q fraction of the reachable node pairs, the path length
is at most D∗. The q-effective diameter is a more robust quantity than the diameter, the latter being
prone to the effects of degenerate structures in the graph (e.g., very long chains). However, the q-
effective diameter and diameter tend to exhibit qualitatively similar behavior. For reporting results
in subsequent sections, we will generally consider the q-effective diameter with q = 0.9, and refer
to this simply as the effective diameter.

Theorem 13 (Effective diameter) If K1 has diameter D and a self-loop on every node, then for
every q, the q-effective diameter of Kk converges to D (from below) as k increases.

Proof To prove this, it is sufficient to show that for two randomly selected nodes of Kk, the proba-
bility that their distance is D converges to 1 as k goes to infinity.

We establish this as follows. Each node in Kk can be represented as an ordered sequence of k
nodes from K1, and we can view the random selection of a node in Kk as a sequence of k indepen-
dent random node selections from K1. Suppose that v = (v1, . . . ,vk) and w = (w1, . . . ,wk) are two
such randomly selected nodes from Kk. Now, if x and y are two nodes in K1 at distance D (such a
pair (x,y) exists since K1 has diameter D), then with probability 1− (1− 1

N2
1
)k, there is some index

j for which {v j,wj} = {x,y}. If there is such an index, then the distance between v and w is D. As
the expression 1− (1− 1

N2
1
)k converges to 1 as k increases, it follows that the q-effective diameter is

converging to D.

3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed so far yields graphs with a range of desired prop-
erties, its discrete nature produces “staircase effects” in the degrees and spectral quantities, simply
because individual values have large multiplicities. For example, degree distribution and distri-
bution of eigenvalues of graph adjacency matrix and the distribution of the principal eigenvector
components (i.e., the “network” value) are all impacted by this. These quantities are multinomi-
ally distributed which leads to individual values with large multiplicities. Figure 5 illustrates the
staircase effect.

Here we propose a stochastic version of Kronecker graphs that eliminates this effect. There
are many possible ways how one could introduce stochasticity into Kronecker graph model. Be-
fore introducing the proposed model, we introduce two simple ways of introducing randomness to
Kronecker graphs and describe why they do not work.
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Figure 5: The “staircase” effect. Kronecker initiator and the degree distribution and network value
plot for the 6th Kronecker power of the initiator. Notice the non-smoothness of the curves.

Probably the simplest (but wrong) idea is to generate a large deterministic Kronecker graph Kk,
and then uniformly at random flip some edges, that is, uniformly at random select entries of the
graph adjacency matrix and flip them (1 → 0,0 → 1). However, this will not work, as it will es-
sentially superimpose an Erdős-Rényi random graph, which would, for example, corrupt the degree
distribution—real networks usually have heavy tailed degree distributions, while random graphs
have Binomial degree distributions. A second idea could be to allow a weighted initiator matrix,
that is, values of entries of K1 are not restricted to values {0,1} but rather can be any non-negative
real number. Using such K1 one would generate Kk and then threshold the Kk matrix to obtain a bi-
nary adjacency matrix K, that is, for a chosen value of ε set K[i, j] = 1 if Kk[i, j] > ε else K[i, j] = 0.
This also would not work as the mechanism would selectively remove edges and thus the low degree
nodes which would have low weight edges would get isolated first.

Now we define Stochastic Kronecker graph model which overcomes the above issues. A more
natural way to introduce stochasticity to Kronecker graphs is to relax the assumption that entries of
the initiator matrix take only binary values. Instead we allow entries of the initiator to take values
on the interval [0,1]. This means now each entry of the initiator matrix encodes the probability of
that particular edge appearing. We then Kronecker-power such initiator matrix to obtain a large
stochastic adjacency matrix, where again each entry of the large matrix gives the probability of that
particular edge appearing in a big graph. Such a stochastic adjacency matrix defines a probability
distribution over all graphs. To obtain a graph we simply sample an instance from this distribution
by sampling individual edges, where each edge appears independently with probability given by the
entry of the large stochastic adjacency matrix. More formally, we define:

Definition 14 (Stochastic Kronecker graph) Let P1 be a N1 ×N1 probability matrix: the value
θi j ∈ P1 denotes the probability that edge (i, j) is present, θi j ∈ [0,1].

Then kth Kronecker power P [k]
1 = Pk, where each entry puv ∈ Pk encodes the probability of an

edge (u,v).
To obtain a graph, an instance (or realization), K = R(Pk) we include edge (u,v) in K with

probability puv, puv ∈ Pk.

First, note that sum of the entries of P1, ∑i j θi j, can be greater than 1. Second, notice that in
principle it takes O(N2k

1 ) time to generate an instance K of a Stochastic Kronecker graph from the
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probability matrix Pk. This means the time to get a realization K is quadratic in the size of Pk as
one has to flip a coin for each possible edge in the graph. Later we show how to generate Stochastic
Kronecker graphs much faster, in the time linear in the expected number of edges in Pk.

3.3.1 PROBABILITY OF AN EDGE

For the size of graphs we aim to model and generate here taking P1 (or K1) and then explicitly
performing the Kronecker product of the initiator matrix is infeasible. The reason for this is that P1
is usually dense, so Pk is also dense and one can not explicitly store it in memory to directly iterate
the Kronecker product. However, due to the structure of Kronecker multiplication one can easily
compute the probability of an edge in Pk.

The probability puv of an edge (u,v) occurring in k-th Kronecker power P =Pk can be calculated
in O(k) time as follows:

puv =
k−1

∏
i=0

P1

[
⌊u−1
Ni

1

⌋

(modN1)+1,
⌊v−1
Ni

1

⌋

(modN1)+1
]

. (1)

The equation imitates recursive descent into the matrix P , where at every level i the appropriate
entry of P1 is chosen. Since P has Nk

1 rows and columns it takesO(k logN1) to evaluate the equation.
Refer to Figure 6 for the illustration of the recursive structure of P .

3.4 Additional Properties of Kronecker Graphs

Stochastic Kronecker graphs with initiator matrix of size N1 = 2 were studied by Mahdian and Xu
(2007). The authors showed a phase transition for the emergence of the giant component and another
phase transition for connectivity, and proved that such graphs have constant diameters beyond the
connectivity threshold, but are not searchable using a decentralized algorithm (Kleinberg, 1999).

General overview of Kronecker product is given in Imrich and Klavžar (2000) and properties
of Kronecker graphs related to graph minors, planarity, cut vertex and cut edge have been explored
in Bottreau and Metivier (1998). Moreover, recently Tsourakakis (2008) gave a closed form ex-
pression for the number of triangles in a Kronecker graph that depends on the eigenvalues of the
initiator graph K1.

3.5 Two Interpretations of Kronecker Graphs

Next, we present two natural interpretations of the generative process behind the Kronecker graphs
that go beyond the purely mathematical construction of Kronecker graphs as introduced so far.

We already mentioned the first interpretation when we first defined Kronecker graphs. One
intuition is that networks are hierarchically organized into communities (clusters). Communities
then grow recursively, creating miniature copies of themselves. Figure 1 depicts the process of
the recursive community expansion. In fact, several researchers have argued that real networks are
hierarchically organized (Ravasz et al., 2002; Ravasz and Barabási, 2003) and algorithms to extract
the network hierarchical structure have also been developed (Sales-Pardo et al., 2007; Clauset et al.,
2008). Moreover, especially web graphs (Dill et al., 2002; Dorogovtsev et al., 2002; Crovella and
Bestavros, 1997) and biological networks (Ravasz and Barabási, 2003) were found to be self-similar
and “fractal”.

The second intuition comes from viewing every node of Pk as being described with an ordered
sequence of k nodes from P1. (This is similar to the Observation 1 and the proof of Theorem 13.)
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(a) 2×2 Stochastic (b) Probability matrix (c) Alternative view
Kronecker initiator P1 P2 = P1 ⊗P1 of P2 = P1 ⊗P1

Figure 6: Stochastic Kronecker initiator P1 and the corresponding 2nd Kronecker power P2. Notice
the recursive nature of the Kronecker product, with edge probabilities in P2 simply being
products of entries of P1.

Let’s label nodes of the initiator matrix P1, u1, . . . ,uN1 , and nodes of Pk as v1, . . . ,vNk
1
. Then

every node vi of Pk is described with a sequence (vi(1), . . . ,vi(k)) of node labels of P1, where vi(l)∈
{u1, . . . ,uk}. Similarly, consider also a second node v j with the label sequence (v j(1), . . . ,v j(k)).
Then the probability pe of an edge (vi,v j) in Pk is exactly:

pe(vi,v j) = Pk[vi,v j] =
k

∏
l=1

P1[vi(l),v j(l)].

(Note this is exactly the Equation 1.)
Now one can look at the description sequence of node vi as a k dimensional vector of attribute

values (vi(1), . . . ,vi(k)). Then pe(vi,v j) is exactly the coordinate-wise product of appropriate entries
of P1, where the node description sequence selects which entries of P1 to multiply. Thus, the P1
matrix can be thought of as the attribute similarity matrix, that is, it encodes the probability of
linking given that two nodes agree/disagree on the attribute value. Then the probability of an edge
is simply a product of individual attribute similarities over the k N1-valued attributes that describe
each of the two nodes.

This gives us a very natural interpretation of Stochastic Kronecker graphs: Each node is de-
scribed by a sequence of categorical attribute values or features. And then the probability of two
nodes linking depends on the product of individual attribute similarities. This way Kronecker graphs
can effectively model homophily (nodes with similar attribute values are more likely to link) by P1
having high value entries on the diagonal. Or heterophily (nodes that differ are more likely to link)
by P1 having high entries off the diagonal.

Figure 6 shows an example. Let’s label nodes of P1 u1,u2 as in Figure 6(a). Then every node
of Pk is described with an ordered sequence of k binary attributes. For example, Figure 6(b) shows
an instance for k = 2 where node v2 of P2 is described by (u1,u2), and similarly v3 by (u2,u1).
Then as shown in Figure 6(b), the probability of edge pe(v2,v3) = b · c, which is exactly P1[u2,u1] ·
P1[u1,u2] = b ·c—the product of entries of P1, where the corresponding elements of the description
of nodes v2 and v3 act as selectors of which entries of P1 to multiply.

Figure 6(c) further illustrates the recursive nature of Kronecker graphs. One can see Kronecker
product as recursive descent into the big adjacency matrix where at each stage one of the entries
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or blocks is chosen. For example, to get to entry (v2,v3) one first needs to dive into quadrant b
following by the quadrant c. This intuition will help us in Section 3.6 to devise a fast algorithm for
generating Kronecker graphs.

However, there are also two notes to make here. First, using a single initiator P1 we are implicitly
assuming that there is one single and universal attribute similarity matrix that holds across all k N1-
ary attributes. One can easily relax this assumption by taking a different initiator matrix for each
attribute (initiator matrices can even be of different sizes as attributes are of different arity), and then
Kronecker multiplying them to obtain a large network. Here each initiator matrix plays the role of
attribute similarity matrix for that particular attribute.

For simplicity and convenience we will work with a single initiator matrix but all our methods
can be trivially extended to handle multiple initiator matrices. Moreover, as we will see later in
Section 6 even a single 2× 2 initiator matrix seems to be enough to capture large scale statistical
properties of real-world networks.

The second assumption is harder to relax. When describing every node vi with a sequence of
attribute values we are implicitly assuming that the values of all attributes are uniformly distributed
(have same proportions), and that every node has a unique combination of attribute values. So,
all possible combinations of attribute values are taken. For example, node v1 in a large matrix Pk
has attribute sequence (u1,u1, . . . ,u1), and vN1 has (u1,u1, . . . ,u1,uN1), while the “last” node vNk

1
is

has attribute values (uN1 ,uN1 , . . . ,uN1). One can think of this as counting in N1-ary number sys-
tem, where node attribute descriptions range from 0 (i.e., “leftmost” node with attribute description
(u1,u1, . . . ,u1)) to Nk

1 (i.e., “rightmost” node attribute description (uN1 ,uN1 , . . . ,uN1)).
A simple way to relax the above assumption is to take a larger initiator matrix with a smaller

number of parameters than the number of entries. This means that multiple entries of P1 will share
the same value (parameter). For example, if attribute u1 takes one value 66% of the times, and the
other value 33% of the times, then one can model this by taking a 3× 3 initiator matrix with only
four parameters. Adopting the naming convention of Figure 6 this means that parameter a now
occupies a 2×2 block, which then also makes b and c occupy 2×1 and 1×2 blocks, and d a single
cell. This way one gets a four parameter model with uneven feature value distribution.

We note that the view of Kronecker graphs where every node is described with a set of features
and the initiator matrix encodes the probability of linking given the attribute values of two nodes
somewhat resembles the Random dot product graph model (Young and Scheinerman, 2007; Nickel,
2008). The important difference here is that we multiply individual linking probabilities, while in
Random dot product graphs one takes the sum of individual probabilities which seems somewhat
less natural.

3.6 Fast Generation of Stochastic Kronecker Graphs

Generating a Stochastic Kronecker graph K on N nodes naively takes O(N2) time. Here we present
a fast heuristic procedure that works well in practice and takes time linear in the number of edges
to generate a graph. The intuition for fast generation of Stochastic Kronecker graphs comes from
the recursive nature of the Kronecker product and is closely related to the R-MAT graph genera-
tor (Chakrabarti et al., 2004). In contrast to R-MAT Stochastic Kronecker graph initiator matrix
encodes both the total number of edges in a graph and their structure. ∑θi j encodes the number of
edges in the graph, while the proportions (ratios) of values θi j define how many edges each part of
graph adjacency matrix will contain.
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In order to illustrate the recursive nature of Kronecker graphs and to highlight the relation to
R-MAT graph generator Figure 6 shows how probability matrix in panel (b) can be recursively
decomposed as shown in panel (c) of Figure 6. To “arrive” to a particular edge (vi,v j) of Pk one has
to make a sequence of k (in our case k = 2) decisions among the entries of P1, multiply the chosen
entries of P1, and then placing the edge (vi,v j) with the obtained probability.

Thus, instead of flipping O(N2) = O(N2k
1 ) biased coins to determine the edges in a graph, we

place E edges by directly simulating the recursion of the Kronecker product. Basically, we recur-
sively choose sub-regions of matrix K with probability proportional to θi j, θi j ∈ P1 until in k steps
we descend to a single cell of the big adjacency matrix K and place an edge. For example, for
(v2,v3) in Figure 6(c) we first have to choose b following by c.

More generally, the probability of each individual edge of Pk follows a Bernoulli distribution,
as the edge occurrences are independent. By the Central Limit Theorem (Petrov, 1995) the number
of edges in Pk tends to a normal distribution with mean (∑N1

i, j=1θi j)
k = Ek1, where θi j ∈ P1. So,

given a stochastic initiator matrix P1 we first sample the expected number of edges E in Pk. Then
we place E edges in a graph K, by applying the recursive descent for k steps where at each step
we choose entry (i, j) with probability θi j/E1 where E1 = ∑i j θi j. Since we add E = Ek1 edges, the
probability that edge (vi,v j) appears in K is exactly Pk[vi,v j]. However, in practice it can happen
that more than one edge lands in the same (vi,v j) entry of big adjacency matrix K. If an edge lands
in a already occupied cell we simply insert it again. Even though values of P1 are usually skewed,
adjacency matrices of real networks are so sparse that collisions are not really a problem in practice
as only around 1% of edges collide. It is due to these edge collisions the above procedure does not
obtain exact samples from the graph distribution defined by the parameter matrix P . However, in
practice graphs generated by this fast linear time (O(E)) procedure are basically indistinguishable
from graphs generated with the exact exponential time (O(N2)) procedure.

Code for generating Kronecker graphs can be obtained at http://snap.stanford.edu.

3.7 Observations and Connections

Next, we describe several observations about the properties of Kronecker graphs and make connec-
tions to other network models.

• Bipartite graphs: Kronecker graphs can naturally model bipartite graphs. Instead of starting
with a square N1 ×N1 initiator matrix, one can choose arbitrary N1 ×M1 initiator matrix,
where rows define “left”, and columns the “right” side of the bipartite graph. Kronecker
multiplication will then generate bipartite graphs with partition sizes Nk

1 and Mk
1.

• Graph distributions: Pk defines a distribution over all graphs, as it encodes the probability
of all possible N2k

1 edges appearing in a graph by using an exponentially smaller number
of parameters (just N2

1 ). As we will later see, even a very small number of parameters, for
example, 4 (2× 2 initiator matrix) or 9 (3× 3 initiator), is enough to accurately model the
structure of large networks.

• Extension of Erdős-Rényi random graph model: Stochastic Kronecker graphs represent an
extension of Erdős-Rényi (Erdős and Rényi, 1960) random graphs. If one takes P1 = [θi j],
where every θi j = p then we obtain exactly the Erdős-Rényi model of random graphs Gn,p,
where every edge appears independently with probability p.
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• Relation to the R-MAT model: The recursive nature of Stochastic Kronecker graphs makes
them related to the R-MAT generator (Chakrabarti et al., 2004). The difference between the
two models is that in R-MAT one needs to separately specify the number of edges, while
in Stochastic Kronecker graphs initiator matrix P1 also encodes the number of edges in the
graph. Section 3.6 built on this similarity to devise a fast algorithm for generating Stochastic
Kronecker graphs.

• Densification: Similarly as with deterministic Kronecker graphs the number of nodes in
a Stochastic Kronecker graph grows as Nk

1 , and the expected number of edges grows as
(∑i j θi j)

k. This means one would want to choose values θi j of the initiator matrix P1 so
that ∑i j θi j > N1 in order for the resulting network to densify.

4. Simulations of Kronecker Graphs

Next we perform a set of simulation experiments to demonstrate the ability of Kronecker graphs to
match the patterns of real-world networks. We will tackle the problem of estimating the Kronecker
graph model from real data, that is, finding the most likely initiator P1, in the next section. Instead
here we present simulation experiments using Kronecker graphs to explore the parameter space, and
to compare properties of Kronecker graphs to those found in large real networks.

4.1 Comparison to Real Graphs

We observe two kinds of graph patterns—“static” and “temporal.” As mentioned earlier, common
static patterns include degree distribution, scree plot (eigenvalues of graph adjacency matrix vs.
rank) and distribution of components of the principal eigenvector of graph adjacency matrix. Tem-
poral patterns include the diameter over time, and the densification power law. For the diameter
computation, we use the effective diameter as defined in Section 2.

For the purpose of this section consider the following setting. Given a real graph G we want
to find Kronecker initiator that produces qualitatively similar graph. In principle one could try
choosing each of the N2

1 parameters for the matrix P1 separately. However, we reduce the number
of parameters from N2

1 to just two: α and β. Let K1 be the initiator matrix (binary, deterministic).
Then we create the corresponding stochastic initiator matrix P1 by replacing each “1” and “0” of K1
with α and β respectively (β≤ α). The resulting probability matrices maintain—with some random
noise—the self-similar structure of the Kronecker graphs in the previous section (which, for clarity,
we call deterministic Kronecker graphs). We defer the discussion of how to automatically estimate
P1 from data G to the next section.

The data sets we use here are:

• CIT-HEP-TH: This is a citation graph for High-Energy Physics Theory research papers from
pre-print archive ArXiv, with a total of N =29,555 papers and E =352,807 citations (Gehrke
et al., 2003). We follow its evolution from January 1993 to April 2003, with one data-point
per month.

• AS-ROUTEVIEWS: We also analyze a static data set consisting of a single snapshot of con-
nectivity among Internet Autonomous Systems (RouteViews, 1997) from January 2000, with
N =6,474 and E =26,467.
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Figure 7: Citation network (CIT-HEP-TH): Patterns from the real graph (top row), the deterministic
Kronecker graph with K1 being a star graph on 4 nodes (center + 3 satellites) (middle
row), and the Stochastic Kronecker graph (α = 0.41, β = 0.11 – bottom row). Static
patterns: (a) is the PDF of degrees in the graph (log-log scale), and (b) the distribution of
eigenvalues (log-log scale). Temporal patterns: (c) gives the effective diameter over time
(linear-linear scale), and (d) is the number of edges versus number of nodes over time
(log-log scale). Notice that the Stochastic Kronecker graphs qualitatively matches all the
patterns very well.

Results are shown in Figure 7 for the CIT-HEP-TH graph which evolves over time. We show
the plots of two static and two temporal patterns. We see that the deterministic Kronecker model
already to some degree captures the qualitative structure of the degree and eigenvalue distributions,
as well as the temporal patterns represented by the densification power law and the stabilizing di-
ameter. However, the deterministic nature of this model results in “staircase” behavior, as shown
in scree plot for the deterministic Kronecker graph of Figure 7 (column (b), second row). We see
that the Stochastic Kronecker graphs smooth out these distributions, further matching the qualita-
tive structure of the real data, and they also match the shrinking-before-stabilization trend of the
diameters of real graphs.

Similarly, Figure 8 shows plots for the static patterns in the Autonomous systems
(AS-ROUTEVIEWS) graph. Recall that we analyze a single, static network snapshot in this case.
In addition to the degree distribution and scree plot, we also show two typical plots (Chakrabarti
et al., 2004): the distribution of network values (principal eigenvector components, sorted, versus
rank) and the hop-plot (the number of reachable pairs g(h) within h hops or less, as a function of the
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Figure 8: Autonomous systems (AS-ROUTEVIEWS): Real (top) versus Kronecker (bottom).
Columns (a) and (b) show the degree distribution and the scree plot, as before. Columns
(c) and (d) show two more static patterns (see text). Notice that, again, the Stochastic
Kronecker graph matches well the properties of the real graph.
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Figure 9: Effective diameter over time for a 4-node chain initiator graph. After each consecutive
Kronecker power we measure the effective diameter. We use different settings of α pa-
rameter. α= 0.38,0.43,0.54 and β= 0, respectively.

number of hops h). Notice that, again, the Stochastic Kronecker graph matches well the properties
of the real graph.

4.2 Parameter Space of Kronecker Graphs

Last we present simulation experiments that investigate the parameter space of Stochastic Kronecker
graphs.

First, in Figure 9 we show the ability of Kronecker Graphs to generate networks with increasing,
constant and decreasing/stabilizing effective diameter. We start with a 4-node chain initiator graph
(shown in top row of Figure 3), setting each “1” of K1 to α and each “0” to β = 0 to obtain P1
that we then use to generate a growing sequence of graphs. We plot the effective diameter of each
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Figure 10: Fraction of nodes in the largest weakly connected component (Nc/N) and the effective
diameter for 4-star initiator graph. (a) We fix β = 0.15 and vary α. (b) We vary both α
and β. (c) Effective diameter of the network, if network is disconnected or very dense
path lengths are short, the diameter is large when the network is barely connected.

R(Pk) as we generate a sequence of growing graphs R(P2),R(P3), . . . ,R(P10). R(P10) has exactly
1,048,576 nodes. Notice Stochastic Kronecker graphs is a very flexible model. When the generated
graph is very sparse (low value of α) we obtain graphs with slowly increasing effective diameter
(Figure 9(a)). For intermediate values of α we get graphs with constant diameter (Figure 9(b)) and
that in our case also slowly densify with densification exponent a= 1.05. Last, we see an example
of a graph with shrinking/stabilizing effective diameter. Here we set the α= 0.54 which results in a
densification exponent of a = 1.2. Note that these observations are not contradicting Theorem 11.
Actually, these simulations here agree well with the analysis of Mahdian and Xu (2007).

Next, we examine the parameter space of a Stochastic Kronecker graphs where we choose a star
on 4 nodes as a initiator graph and parameterized with α and β as before. The initiator graph and
the structure of the corresponding (deterministic) Kronecker graph adjacency matrix is shown in top
row of Figure 3.

Figure 10(a) shows the sharp transition in the fraction of the number of nodes that belong to the
largest weakly connected component as we fix β = 0.15 and slowly increase α. Such phase tran-
sitions on the size of the largest connected component also occur in Erdős-Rényi random graphs.
Figure 10(b) further explores this by plotting the fraction of nodes in the largest connected compo-
nent (Nc/N) over the full parameter space. Notice a sharp transition between disconnected (white
area) and connected graphs (dark).

Last, Figure 10(c) shows the effective diameter over the parameter space (α,β) for the 4-node
star initiator graph. Notice that when parameter values are small, the effective diameter is small,
since the graph is disconnected and not many pairs of nodes can be reached. The shape of the
transition between low-high diameter closely follows the shape of the emergence of the connected
component. Similarly, when parameter values are large, the graph is very dense, and the diameter is
small. There is a narrow band in parameter space where we get graphs with interesting diameters.

5. Kronecker Graph Model Estimation

In previous sections we investigated various properties of networks generated by the (Stochastic)
Kronecker graphs model. Many of these properties were also observed in real networks. Moreover,
we also gave closed form expressions (parametric forms) for values of these statistical network
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properties, which allow us to calculate a property (e.g., diameter, eigenvalue spectrum) of a network
directly from just the initiator matrix. So in principle, one could invert these equations and directly
get from a property (e.g., shape of degree distribution) to the values of initiator matrix.

However, in previous sections we did not say anything about how various network properties of
a Kronecker graph correlate and interdepend. For example, it could be the case that two network
properties are mutually exclusive. For instance, perhaps only could only match the network diameter
but not the degree distribution or vice versa. However, as we show later this is not the case.

Now we turn our attention to automatically estimating the Kronecker initiator graph. The setting
is that we are given a real network G and would like to find a Stochastic Kronecker initiator P1 that
produces a synthetic Kronecker graph K that is “similar” to G. One way to measure similarity is to
compare statistical network properties, like diameter and degree distribution, of graphs G and K.

Comparing statistical properties already suggests a very direct approach to this problem: One
could first identify the set of network properties (statistics) to match, then define a quality of fit
metric and somehow optimize over it. For example, one could use the KL divergence (Kullback and
Leibler, 1951), or the sum of squared differences between the degree distribution of the real network
G and its synthetic counterpart K. Moreover, as we are interested in matching several such statistics
between the networks one would have to meaningfully combine these individual error metrics into
a global error metric. So, one would have to specify what kind of properties he or she cares about
and then combine them accordingly. This would be a hard task as the patterns of interest have
very different magnitudes and scales. Moreover, as new network patterns are discovered, the error
functions would have to be changed and models re-estimated. And even then it is not clear how to
define the optimization procedure to maximize the quality of fit and how to perform optimization
over the parameter space.

Our approach here is different. Instead of committing to a set of network properties ahead
of time, we try to directly match the adjacency matrices of the real network G and its synthetic
counterpart K. The idea is that if the adjacency matrices are similar then the global statistical
properties (statistics computed over K and G) will also match. Moreover, by directly working with
the graph itself (and not summary statistics), we do not commit to any particular set of network
statistics (network properties/patterns) and as new statistical properties of networks are discovered
our models and estimated parameters will still hold.

5.1 Preliminaries

Stochastic graph models induce probability distributions over graphs. A generative model assigns
a probability P(G) to every graph G. P(G) is the likelihood that a given model (with a given set of
parameters) generates the graph G. We concentrate on the Stochastic Kronecker graphs model, and
consider fitting it to a real graph G, our data. We use the maximum likelihood approach, that is, we
aim to find parameter values, the initiator P1, that maximize P(G) under the Stochastic Kronecker
graph model.

This presents several challenges:

• Model selection: a graph is a single structure, and not a set of items drawn independently and
identically-distributed (i.i.d.) from some distribution. So one cannot split it into independent
training and test sets. The fitted parameters will thus be best to generate a particular instance
of a graph. Also, overfitting could be an issue since a more complex model generally fits
better.
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• Node correspondence: The second challenge is the node correspondence or node labeling
problem. The graph G has a set of N nodes, and each node has a unique label (index, ID).
Labels do not carry any particular meaning, they just uniquely denote or identify the nodes.
One can think of this as the graph is first generated and then the labels (node IDs) are randomly
assigned. This means that two isomorphic graphs that have different node labels should have
the same likelihood. A permutation σ is sufficient to describe the node correspondences as it
maps labels (IDs) to nodes of the graph. To compute the likelihood P(G) one has to consider
all node correspondences P(G) =∑σP(G|σ)P(σ), where the sum is over all N! permutations
σ of N nodes. Calculating this super-exponential sum explicitly is infeasible for any graph
with more than a handful of nodes. Intuitively, one can think of this summation as some
kind of graph isomorphism test where we are searching for best correspondence (mapping)
between nodes of G and P .

• Likelihood estimation: Even if we assume one can efficiently solve the node correspondence
problem, calculating P(G|σ) naively takes O(N2) as one has to evaluate the probability of
each of the N2 possible edges in the graph adjacency matrix. Again, for graphs of size we
want to model here, approaches with quadratic complexity are infeasible.

To develop our solution we use sampling to avoid the super-exponential sum over the node
correspondences. By exploiting the structure of the Kronecker matrix multiplication we develop an
algorithm to evaluate P(G|σ) in linear time O(E). Since real graphs are sparse, that is, the number
of edges is roughly of the same order as the number of nodes, this makes fitting of Kronecker graphs
to large networks feasible.

5.2 Problem Formulation

Suppose we are given a graph G on N = Nk
1 nodes (for some positive integer k), and an N1 ×N1

Stochastic Kronecker graphs initiator matrix P1. Here P1 is a parameter matrix, a set of parameters
that we aim to estimate. For now also assume N1, the size of the initiator matrix, is given. Later we
will show how to automatically select it. Next, using P1 we create a Stochastic Kronecker graphs
probability matrix Pk, where every entry puv of Pk contains a probability that node u links to node
v. We then evaluate the probability that G is a realization of Pk. The task is to find such P1 that has
the highest probability of realizing (generating) G.

Formally, we are solving:

argmax
P1

P(G|P1). (2)

To keep the notation simpler we use standard symbol Θ to denote the parameter matrix P1
that we are trying to estimate. We denote entries of Θ = P1 = [θi j], and similarly we denote P =
Pk = [pi j]. Note that here we slightly simplified the notation: we use Θ to refer to P1, and θi j are
elements of Θ. Similarly, pi j are elements of P (≡ Pk). Moreover, we denote K = R(P ), that is, K
is a realization of the Stochastic Kronecker graph sampled from probabilistic adjacency matrix P .

As noted before, the node IDs are assigned arbitrarily and they carry no significant information,
which means that we have to consider all the mappings of nodes from G to rows and columns of
stochastic adjacency matrix P . A priori all labelings are equally likely. A permutation σ of the set
{1, . . . ,N} defines this mapping of nodes from G to stochastic adjacency matrix P . To evaluate the
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Figure 11: Kronecker parameter estimation as an optimization problem. We search over the ini-
tiator matrices Θ (≡ P1). Using Kronecker multiplication we create probabilistic adja-
cency matrix Θ[k] that is of same size as real network G. Now, we evaluate the like-
lihood by simultaneously traversing and multiplying entries of G and Θ[k] (see Equa-
tion refeq:KronProbGPS). As shown by the figure permutation σ plays an important
role, as permuting rows and columns of G could make it look more similar to Θ[k] and
thus increase the likelihood.

likelihood of G one needs to consider all possible mappings of N nodes of G to rows (columns) of
P . For convenience we work with log-likelihood l(Θ), and solve Θ̂= argmaxΘ l(Θ), where l(Θ) is
defined as:

l(Θ) = logP(G|Θ) = log∑
σ
P(G|Θ,σ)P(σ|Θ)

= log∑
σ
P(G|Θ,σ)P(σ). (3)

The likelihood that a given initiator matrix Θ and permutation σ gave rise to the real graph G,
P(G|Θ,σ), is calculated naturally as follows. First, by using Θ we create the Stochastic Kronecker
graph adjacency matrix P = Pk = Θ[k]. Permutation σ defines the mapping of nodes of G to the
rows and columns of stochastic adjacency matrix P . (See Figure 11 for the illustration.)

We then model edges as independent Bernoulli random variables parameterized by the parame-
ter matrix Θ. So, each entry puv of P gives exactly the probability of edge (u,v) appearing.

We then define the likelihood:

P(G|P ,σ) = ∏
(u,v)∈G

P [σu,σv] ∏
(u,v)/∈G

(1−P [σu,σv]), (4)

where we denote σi as the ith element of the permutation σ, and P [i, j] is the element at row i, and
column j of matrix P =Θ[k].

The likelihood is defined very naturally. We traverse the entries of adjacency matrix G and then
based on whether a particular edge appeared in G or not we take the probability of edge occurring
(or not) as given by P , and multiply these probabilities. As one has to touch all the entries of the
stochastic adjacency matrix P evaluating Equation 4 takes O(N2) time.

We further illustrate the process of estimating Stochastic Kronecker initiator matrix Θ in Fig-
ure 11. We search over initiator matrices Θ to find the one that maximizes the likelihood P(G|Θ).
To estimate P(G|Θ) we are given a concrete Θ and now we use Kronecker multiplication to create
probabilistic adjacency matrix Θ[k] that is of same size as real network G. Now, we evaluate the
likelihood by traversing the corresponding entries of G and Θ[k]. Equation 4 basically traverses the
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adjacency matrix ofG, and maps every entry (u,v) ofG to a corresponding entry (σu,σv) of P . Then
in case that edge (u,v) exists in G (i.e., G[u,v] = 1) the likelihood that particular edge existing is
P [σu,σv], and similarly, in case the edge (u,v) does not exist the likelihood is simply 1−P [σu,σv].
This also demonstrates the importance of permutation σ, as permuting rows and columns ofG could
make the adjacency matrix look more “similar” to Θ[k], and would increase the likelihood.

So far we showed how to assess the quality (likelihood) of a particular Θ. So, naively one could
perform some kind of grid search to find best Θ. However, this is very inefficient. A better way of
doing it is to compute the gradient of the log-likelihood ∂

∂Θ l(Θ), and then use the gradient to update
the current estimate of Θ and move towards a solution of higher likelihood. Algorithm 1 gives an
outline of the optimization procedure.

However, there are several difficulties with this algorithm. First, we are assuming gradient
descent type optimization will find a good solution, that is, the problem does not have (too many)
local minima. Second, we are summing over exponentially many permutations in Equation 3. Third,
the evaluation of Equation 4 as it is written now takes O(N2) time and needs to be evaluated N!
times. So, given a concrete Θ just naively calculating the likelihood takes O(N!N2) time, and then
one also has to optimize over Θ.

Observation 2 The complexity of calculating the likelihood P(G|Θ) of the graph G naively is
O(N!N2), where N is the number of nodes in G.

Next, we show that all this can be done in linear time.

5.3 Summing Over the Node Labelings

To maximize Equation 2 using algorithm 1 we need to obtain the gradient of the log-likelihood
∂
∂Θ l(Θ). We can write:

∂
∂Θ

l(Θ) =
∑σ

∂
∂ΘP(G|σ,Θ)P(σ)

∑σ′ P(G|σ′,Θ)P(σ′)

=
∑σ

∂ logP(G|σ,Θ)

∂Θ
P(G|σ,Θ)P(σ)

P(G|Θ)

= ∑
σ

∂ logP(G|σ,Θ)

∂Θ
P(σ|G,Θ). (5)

Note we are still summing over all N! permutations σ, so calculating Eq. 5 is computationally
intractable for graphs with more than a handful of nodes. However, the equation has a nice form
which allows for use of simulation techniques to avoid the summation over super-exponentially
many node correspondences. Thus, we simulate draws from the permutation distribution P(σ|G,Θ),
and then evaluate the quantities at the sampled permutations to obtain the expected values of log-
likelihood and gradient. Algorithm 2 gives the details.

Note that we can also permute the rows and columns of the parameter matrix Θ to obtain equiv-
alent estimates. Therefore Θ is not strictly identifiable exactly because of these permutations. Since
the space of permutations on N nodes is very large (grows as N!) the permutation sampling algo-
rithm will explore only a small fraction of the space of all permutations and may converge to one of
the global maxima (but may not explore all N1! of them) of the parameter space. As we empirically
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input : size of parameter matrix N1, graph G on N = Nk
1 nodes, and learning rate λ

output: MLE parameters Θ̂ (N1 ×N1 probability matrix)

initialize Θ̂11
while not converged do2

evaluate gradient: ∂
∂Θ̂t

l(Θ̂t)3

update parameter estimates: Θ̂t+1 = Θ̂t +λ ∂
∂Θ̂t

l(Θ̂t)4

end5

return Θ̂= Θ̂t6

Algorithm 1: KRONFIT algorithm.

input : Parameter matrix Θ, and graph G
output: Log-likelihood l(Θ), and gradient ∂

∂Θ l(Θ)

for t := 1 to T do1
σt := SamplePermutation (G,Θ)2

lt = logP(G|σ(t),Θ)3

gradt := ∂
∂Θ logP(G|σ(t),Θ)4

end5

return l(Θ) = 1
T ∑t lt , and ∂

∂Θ l(Θ) = 1
T ∑t gradt6

Algorithm 2: Calculating log-likelihood and gradient

show later our results are not sensitive to this and multiple restarts result in equivalent (but often
permuted) parameter estimates.

5.3.1 SAMPLING PERMUTATIONS

Next, we describe the Metropolis algorithm to simulate draws from the permutation distribution
P(σ|G,Θ), which is given by

P(σ|G,Θ) =
P(σ,G,Θ)

∑τP(τ,G,Θ)
=
P(σ,G,Θ)

Z

where Z is the normalizing constant that is hard to compute since it involves the sum over N!
elements. However, if we compute the likelihood ratio between permutations σ and σ′ (Equation 6)
the normalizing constants nicely cancel out:

P(σ′|G,Θ)

P(σ|G,Θ)
= ∏

(u,v)∈G

P [σ′u,σ
′
v]

P [σu,σv]
∏

(u,v)/∈G

(1−P [σ′u,σ
′
v])

(1−P [σu,σv])
(6)

= ∏
(u,v)∈G

(σu,σv)-=(σ′u,σ
′
v)

P [σ′u,σ
′
v]

P [σu,σv]
∏

(u,v)/∈G
(σu,σv)-=(σ′u,σ

′
v)

(1−P [σ′u,σ
′
v])

(1−P [σu,σv])
. (7)

This immediately suggests the use of a Metropolis sampling algorithm (Gamerman, 1997) to
simulate draws from the permutation distribution since Metropolis is solely based on such ratios
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input : Kronecker initiator matrix Θ and a graph G on N nodes
output: Permutation σ(i) ∼ P(σ|G,Θ)

σ(0) := (1, . . . ,N)1
i= 12
repeat3

Draw j and k uniformly from (1, . . . ,N)4

σ(i) := SwapNodes(σ(i−1), j, k)5
Draw u fromU(0,1)6

if u> P(σ(i)|G,Θ)
P(σ(i−1)|G,Θ)

then7

σ(i) := σ(i−1)8
end9
i = i + 110

until σ(i) ∼ P(σ|G,Θ)11

return σ(i)12

WhereU(0,1) is a uniform distribution on [0,1], and σ′ := SwapNodes(σ, j,k) is the13
permutation σ′ obtained from σ by swapping elements at positions j and k.

Algorithm 3: SamplePermutation(G,Θ): Metropolis sampling of the node permutation.

(where normalizing constants cancel out). In particular, suppose that in the Metropolis algorithm
(Algorithm 3) we consider a move from permutation σ to a new permutation σ′. Probability of
accepting the move to σ′ is given by Equation 6 (if P(σ′|G,Θ)

P(σ|G,Θ) ≤ 1) or 1 otherwise.
Now we have to devise a way to sample permutations σ from the proposal distribution. One

way to do this would be to simply generate a random permutation σ′ and then check the acceptance
condition. This would be very inefficient as we expect the distribution P(σ|G,Θ) to be heavily
skewed, that is, there will be a relatively small number of good permutations (node mappings). Even
more so as the degree distributions in real networks are skewed there will be many bad permutations
with low likelihood, and few good ones that do a good job in matching nodes of high degree.

To make the sampling process “smoother”, that is, sample permutations that are not that different
(and thus are not randomly jumping across the permutation space) we design a Markov chain. The
idea is to stay in high likelihood part of the permutation space longer. We do this by making
samples dependent, that is, given σ′ we want to generate next candidate permutation σ′′ to then
evaluate the likelihood ratio. When designing the Markov chain step one has to be careful so that
the proposal distribution satisfies the detailed balance condition: π(σ′)P(σ′|σ′′) = π(σ′′)P(σ′′|σ′),
where P(σ′|σ′′) is the transition probability of obtaining permutation σ′ from σ′′ and, π(σ′) is the
stationary distribution.

In Algorithm 3 we use a simple proposal where given permutation σ′ we generate σ′′ by swap-
ping elements at two uniformly at random chosen positions of σ′. We refer to this proposal as
SwapNodes. While this is simple and clearly satisfies the detailed balance condition it is also inef-
ficient in a way that most of the times low degree nodes will get swapped (a direct consequence of
heavy tailed degree distributions). This has two consequences, (a) we will slowly converge to good
permutations (accurate mappings of high degree nodes), and (b) once we reach a good permutation,
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very few permutations will get accepted as most proposed permutations σ′ will swap low degree
nodes (as they form the majority of nodes).

A possibly more efficient way would be to swap elements of σ biased based on corresponding
node degree, so that high degree nodes would get swapped more often. However, doing this directly
does not satisfy the detailed balance condition. A way of sampling labels biased by node degrees
that at the same time satisfies the detailed balance condition is the following: we pick an edge in G
uniformly at random and swap the labels of the nodes at the edge endpoints. Notice this is biased
towards swapping labels of nodes with high degrees simply as they have more edges. The detailed
balance condition holds as edges are sampled uniformly at random. We refer to this proposal as
SwapEdgeEndpoints.

However, the issue with this proposal is that if the graph G is disconnected, we will only be
swapping labels of nodes that belong to the same connected component. This means that some parts
of the permutation space will never get visited. To overcome this problem we execute SwapNodes
with some probability ω and SwapEdgeEndpoints with probability 1−ω.

To summarize we consider the following two permutation proposal distributions:

• σ′′ = SwapNodes(σ′): we obtain σ′′ by taking σ′, uniformly at random selecting a pair of
elements and swapping their positions.

• σ′′ = SwapEdgeEndpoints(σ′): we obtain σ′′ from σ′ by first sampling an edge ( j,k) from
G uniformly at random, then we take σ′ and swap the labels at positions j and k.

5.3.2 SPEEDING UP THE LIKELIHOOD RATIO CALCULATION

We further speed up the algorithm by using the following observation. As written the Equation 6
takes O(N2) to evaluate since we have to consider N2 possible edges. However, notice that per-
mutations σ and σ′ differ only at two positions, that is, elements at position j and k are swapped,
that is, σ and σ′ map all nodes except the two to the same locations. This means those elements of
Equation 6 cancel out. Thus to update the likelihood we only need to traverse two rows and columns
of matrix P , namely rows and columns j and k, since everywhere else the mapping of the nodes to
the adjacency matrix is the same for both permutations. This gives Equation 7 where the products
now range only over the two rows/columns of P where σ and σ′ differ.

Graphs we are working with here are too large to allow us to explicitly create and store the
stochastic adjacency matrix P by Kronecker powering the initiator matrixΘ. Every time probability
P [i, j] of edge (i, j) is needed the Equation 1 is evaluated, which takes O(k). So a single iteration of
Algorithm 3 takes O(kN).

Observation 3 Sampling a permutation σ from P(σ|G,Θ) takes O(kN).

This is gives us an improvement over the O(N!) complexity of summing over all the permuta-
tions. So far we have shown how to obtain a permutation but we still need to evaluate the likelihood
and find the gradients that will guide us in finding good initiator matrix. The problem here is that
naively evaluating the network likelihood (gradient) as written in Equation 5 takes timeO(N2). This
is exactly what we investigate next and how to calculate the likelihood in linear time.
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5.4 Efficiently Approximating Likelihood and Gradient

We just showed how to efficiently sample node permutations. Now, given a permutation we show
how to efficiently evaluate the likelihood and it’s gradient. Similarly as evaluating the likelihood
ratio, naively calculating the log-likelihood l(Θ) or its gradient ∂

∂Θ l(Θ) takes time quadratic in the
number of nodes. Next, we show how to compute this in linear time O(E).

We begin with the observation that real graphs are sparse, which means that the number of edges
is not quadratic but rather almost linear in the number of nodes, E / N2. This means that majority
of entries of graph adjacency matrix are zero, that is, most of the edges are not present. We exploit
this fact. The idea is to first calculate the likelihood (gradient) of an empty graph, that is, a graph
with zero edges, and then correct for the edges that actually appear in G.

To naively calculate the likelihood for an empty graph one needs to evaluate every cell of graph
adjacency matrix. We consider Taylor approximation to the likelihood, and exploit the structure of
matrix P to devise a constant time algorithm.

First, consider the second order Taylor approximation to log-likelihood of an edge that succeeds
with probability x but does not appear in the graph:

log(1− x) ≈−x−
1
2
x2.

Calculating le(Θ), the log-likelihood of an empty graph, becomes:

le(Θ) =
N

∑
i=1

N

∑
j=1

log(1− pi j) ≈−
( N1

∑
i=1

N1

∑
j=1

θi j

)k
−

1
2

( N1

∑
i=1

N1

∑
j=1

θi j2
)k

. (8)

Notice that while the first pair of sums ranges over N elements, the last pair only ranges over N1
elements (N1 = logk N). Equation 8 holds due to the recursive structure of matrix P generated by the
Kronecker product. We substitute the log(1− pi j) with its Taylor approximation, which gives a sum
over elements of P and their squares. Next, we notice the sum of elements of P forms a multinomial
series, and thus ∑i, j pi j = (∑i, j θi j)

k, where θi j denotes an element of Θ, and pi j element of Θ[k].
Calculating log-likelihood of G now takes O(E): First, we approximate the likelihood of an

empty graph in constant time, and then account for the edges that are actually present in G, that is,
we subtract “no-edge” likelihood and add the “edge” likelihoods:

l(Θ) = le(Θ)+ ∑
(u,v)∈G

− log(1−P [σu,σv])+ log(P [σu,σv]).

We note that by using the second order Taylor approximation to the log-likelihood of an empty
graph, the error term of the approximation is 1

3(∑i θi j
3)k, which can diverge for large k. For typical

values of initiator matrix P1 (that we present in Section 6.5) we note that one needs about fourth
or fifth order Taylor approximation for the error of the approximation actually go to zero as k
approaches infinity, that is, ∑i j θi j

n+1 < 1, where n is the order of Taylor approximation employed.

5.5 Calculating the Gradient

Calculation of the gradient of the log-likelihood follows exactly the same pattern as described above.
First by using the Taylor approximation we calculate the gradient as if graphGwould have no edges.
Then we correct the gradient for the edges that are present in G. As in previous section we speed

1015



LESKOVEC, CHAKRABARTI, KLEINBERG, FALOUTSOS AND GHAHRAMANI

up the calculations of the gradient by exploiting the fact that two consecutive permutations σ and
σ′ differ only at two positions, and thus given the gradient from previous step one only needs to
account for the swap of the two rows and columns of the gradient matrix ∂P/∂Θ to update to the
gradients of individual parameters.

5.6 Determining the Size of Initiator Matrix

The question we answer next is how to determine the right number of parameters, that is, what is
the right size of matrix Θ? This is a classical question of model selection where there is a tradeoff
between the complexity of the model, and the quality of the fit. Bigger model with more parameters
usually fits better, however it is also more likely to overfit the data.

For model selection to find the appropriate value of N1, the size of matrixΘ, and choose the right
tradeoff between the complexity of the model and the quality of the fit, we propose to use the Bayes
Information Criterion (BIC) (Schwarz, 1978). Stochastic Kronecker graph model the presence of
edges with independent Bernoulli random variables, where the canonical number of parameters is
N2k

1 , which is a function of a lower-dimensional parameter Θ. This is then a curved exponential
family (Efron, 1975), and BIC naturally applies:

BIC(N1) = −l(Θ̂N1)+
1
2
N2

1 log(N2)

where Θ̂N1 are the maximum likelihood parameters of the model with N1 ×N1 parameter matrix,
and N is the number of nodes in G. Note that one could also additional term to the above formula
to account for multiple global maxima of the likelihood space but as N1 is small the additional term
would make no real difference.

As an alternative to BIC one could also consider the Minimum Description Length (MDL) (Ris-
sanen, 1978) principle where the model is scored by the quality of the fit plus the size of the de-
scription that encodes the model and the parameters.

6. Experiments on Real and Synthetic Data

Next we described our experiments on a range of real and synthetic networks. We divide the ex-
periments into several subsections. First we examine the convergence and mixing of the Markov
chain of our permutation sampling scheme. Then we consider estimating the parameters of syn-
thetic Kronecker graphs to see whether KRONFIT is able to recover the parameters used to generate
the network. Last, we consider fitting Stochastic Kronecker graphs to large real world networks.

KRONFIT code for efficient Kronecker graph parameter estimation can be downloaded from
http://snap.stanford.edu.

6.1 Permutation Sampling

In our experiments we considered both synthetic and real graphs. Unless mentioned otherwise all
synthetic Kronecker graphs were generated using P ∗

1 = [0.8,0.6;0.5,0.3], and k= 14 which gives us
a graph G on N =16,384 nodes and E =115,741 edges. We chose this particular P ∗

1 as it resembles
the typical initiator for real networks analyzed later in this section.
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Figure 12: Convergence of the log-likelihood and components of the gradient towards their true
values for Metropolis permutation sampling (Algorithm 3) with the number of samples.

6.1.1 CONVERGENCE OF THE LOG-LIKELIHOOD AND THE GRADIENT

First, we examine the convergence of Metropolis permutation sampling, where permutations are
sampled sequentially. A new permutation is obtained by modifying the previous one which creates
a Markov chain. We want to assess the convergence and mixing of the chain. We aim to determine
how many permutations one needs to draw to reliably estimate the likelihood and the gradient,
and also how long does it take until the samples converge to the stationary distribution. For the
experiment we generated a synthetic Stochastic Kronecker graphs using P ∗

1 as defined above. Then,
starting with a random permutation we run Algorithm 3, and measure how the likelihood and the
gradients converge to their true values.

In this particular case, we first generated a Stochastic Kronecker graphs G as described above,
but then calculated the likelihood and the parameter gradients for Θ′ = [0.8,0.75;0.45,0.3]. We
average the likelihoods and gradients over buckets of 1,000 consecutive samples, and plot how the
log-likelihood calculated over the sampled permutations approaches the true log-likelihood (that we
can compute since G is a Stochastic Kronecker graphs).

First, we present experiments that aim to answer how many samples (i.e., permutations) does
one need to draw to obtain a reliable estimate of the gradient (see Equation 5). Figure 12(a)
shows how the estimated log-likelihood approaches the true likelihood. Notice that estimated values
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quickly converge to their true values, that is, Metropolis sampling quickly moves towards “good”
permutations. Similarly, Figure 12(b) plots the convergence of the gradients. Notice that θ11 and θ22
of Θ′ and P ∗

1 match, so gradients of these two parameters should converge to zero and indeed they
do. On the other hand, θ12 and θ21 differ between Θ′ and P ∗

1 . Notice, the gradient for one is positive
as the parameter θ12 of Θ′ should be decreased, and similarly for θ21 the gradient is negative as the
parameter value should be increased to match the Θ′. In summary, this shows that log-likelihood
and gradients rather quickly converge to their true values.

In Figures 12(c) and (d) we also investigate the properties of the Markov Chain Monte Carlo
sampling procedure, and assess convergence and mixing criteria. First, we plot the fraction of
accepted proposals. It stabilizes at around 15%, which is quite close to the rule-of-a-thumb of
25%. Second, Figure 12(d) plots the autocorrelation of the log-likelihood as a function of the lag.
Autocorrelation rk of a signal X is a function of the lag k where rk is defined as the correlation
of signal X at time t with X at t + k, that is, correlation of the signal with itself at lag k. High
autocorrelations within chains indicate slow mixing and, usually, slow convergence. On the other
hand fast decay of autocorrelation implies better the mixing and thus one needs less samples to
accurately estimate the gradient or the likelihood. Notice the rather fast autocorrelation decay.

All in all, these experiments show that one needs to sample on the order of tens of thousands
of permutations for the estimates to converge. We also verified that the variance of the estimates is
sufficiently small. In our experiments we start with a random permutation and use long burn-in time.
Then when performing optimization we use the permutation from the previous step to initialize the
permutation at the current step of the gradient descent. Intuitively, small changes in parameter space
Θ also mean small changes in P(σ|G,Θ) .

6.1.2 DIFFERENT PROPOSAL DISTRIBUTIONS

In Section 5.3.1 we defined two permutation sampling strategies: SwapNodes where we pick two
nodes uniformly at random and swap their labels (node ids), and SwapEdgeEndpoints where we
pick a random edge in a graph and then swap the labels of the edge endpoints. We also discussed
that one can interpolate between the two strategies by executing SwapNodes with probability ω, and
SwapEdgeEndpoints with probability 1−ω.

So, given a Stochastic Kronecker graphs G on N =16,384 and E =115,741 generated from
P ∗

1 = [0.8,0.7;0.5,0.3] we evaluate the likelihood of Θ′ = [0.8,0.75;0.45,0.3]. As we sample per-
mutations we observe how the estimated likelihood converges to the true likelihood. Moreover we
also vary parameter ω which interpolates between the two permutation proposal distributions. The
quicker the convergence towards the true log-likelihood the better the proposal distribution.

Figure 13 plots the convergence of the log-likelihood with the number of sampled permutations.
We plot the average over non-overlapping buckets of 1,000 consecutive permutations. Faster con-
vergence implies better permutation proposal distribution. When we use only SwapNodes (ω= 1) or
SwapEdgeEndpoints (ω= 0) convergence is rather slow. We obtain best convergence for ω around
0.6.

Similarly, Figure 14(a) plots the autocorrelation as a function of the lag k for different choices
of ω. Faster autocorrelation decay means better mixing of the Markov chain. Again, notice that we
get best mixing for ω≈ 0.6. (Notice logarithmic y-axis.)

Last, we diagnose how long the sampling procedure must be run before the generated samples
can be considered to be drawn (approximately) from the stationary distribution. We call this the

1018



KRONECKER GRAPHS: AN APPROACH TO MODELING NETWORKS

-5.9⋅105

-5.7⋅105

-5.5⋅105

-5.3⋅105

0⋅100 2⋅105 4⋅105

Lo
g-

lik
el

ih
oo

d,
 l(
θ|
σ
t)

Sample index (time)

True l(θ)
α=0.0
α=0.2
α=0.4
α=0.6
α=0.8
α=1.0

Figure 13: Convergence of the log-likelihood and gradients for Metropolis permutation sampling
(Algorithm 3) for different choices of ω that interpolates between the SwapNodes (ω=
1) and SwapEdgeEndpoints (ω= 0) permutation proposal distributions. Notice fastest
convergence of log-likelihood for ω= 0.6.

burn-in time of the chain. There are various procedures for assessing convergence. Here we adopt
the approach of Gelman et al. (2003), that is based on running multiple Markov chains each from a
different starting point, and then comparing the variance within the chain and between the chains.
The sooner the within- and between-chain variances become equal the shorter the burn-in time, that
is, the sooner the samples are drawn from the stationary distribution.

Let l be the parameter that is being simulated with J different chains, and then let l(k)j denote the
kth sample of the jth chain, where j = 1, . . . ,J and k = 1, . . . ,K. More specifically, in our case we
run separate permutation sampling chains. So, we first sample permutation σ(k)

j and then calculate
the corresponding log-likelihood l(k)j .

First, we compute between and within chain variances σ̂2
B and σ̂2

W , where between-chain vari-
ance is obtained by

σ̂2
B =

K
J−1

J

∑
j=1

(l̄· j− l̄··)2

where l̄· j = 1
K ∑

K
k=1 l

(k)
j and l̄·· = 1

J ∑
J
j=1 l̄· j.

Similarly the within-chain variance is defined by

σ̂2
W =

1
J(K−1)

J

∑
j=1

K

∑
k=1

(l(k)j − l̄· j)2.

Then, the marginal posterior variance of l̂ is calculated using

σ̂2 =
K−1
K

σ̂2
W +

1
K
σ̂2
B.
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Figure 14: (a) Autocorrelation plot of the log-likelihood for the different choices of parameter ω.
Notice we get best mixing with ω ≈ 0.6. (b) The potential scale reduction that com-
pares the variance inside- and across- independent Markov chains for different values of
parameter ω.

And, finally, we estimate the potential scale reduction (Gelman et al., 2003) of l by

√

R̂=

√

σ̂2

σ̂2
W

.
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when sampled from P(σ|Θ,G). Notice the space of good permutations is rather small
but our sampling quickly finds permutations of high likelihood. (c) Convergence of log-
likelihood for 10 runs of gradient descent, each from a different random starting point.

Note that as the length of the chainK→∞,
√
R̂ converges to 1 from above. The recommendation

for convergence assessment from Gelman et al. (2003) is that the potential scale reduction is below
1.2.

Figure 14(b) gives the Gelman-Rubin-Brooks plot, where we plot the potential scale reduction√
R̂ over the increasing chain length K for different choices of parameter ω. Notice that the potential

scale reduction quickly decays towards 1. Similarly as in Figure 14 the extreme values of ω give
slow decay, while we obtain the fastest potential scale reduction when ω≈ 0.6.

6.1.3 PROPERTIES OF THE PERMUTATION SPACE

Next we explore the properties of the permutation space. We would like to quantify what fraction
of permutations are “good” (have high likelihood), and how quickly are they discovered. For the
experiment we took a real network G (AS-ROUTEVIEWS network) and the MLE parameters Θ̂ for
it that we estimated before hand (l(Θ̂) ≈−150,000). The network G has 6,474 nodes which means
the space of all permutations has ≈ 1022,000 elements.

First, we sampled 1 billion (109) permutations σi uniformly at random, that is, P(σi)= 1/(6,474!)
and for each evaluated its log-likelihood l(σi|Θ) = logP(Θ|G,σi). We ordered the permutations in
deceasing log-likelihood and plotted l(σi|Θ) vs. rank. Figure 15(a) gives the plot. Notice that very
few random permutations are very bad (i.e., they give low likelihood), similarly few permutations
are very good, while most of them are somewhere in between. Notice that best “random” permuta-
tion has log-likelihood of ≈ −320,000, which is far below true likelihood l(Θ̂) ≈ −150,000. This
suggests that only a very small fraction of all permutations gives good node labelings.

On the other hand, we also repeated the same experiment but now using permutations sampled
from the permutation distribution σi∼P(σ|Θ,G) via our Metropolis sampling scheme. Figure 15(b)
gives the plot. Notice the radical difference. Now the l(σ|Θi) very quickly converges to the true
likelihood of ≈ −150,000. This suggests that while the number of “good” permutations (accurate
node mappings) is rather small, our sampling procedure quickly converges to the “good” part of the
permutation space where node mappings are accurate, and spends the most time there.
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6.2 Properties of the Optimization Space

In maximizing the likelihood we use a stochastic approximation to the gradient. This adds variance
to the gradient and makes efficient optimization techniques, like conjugate gradient, highly unstable.
Thus we use gradient descent, which is slower but easier to control. First, we make the following
observation:

Observation 4 Given a real graph G then finding the maximum likelihood Stochastic Kronecker
initiator matrix Θ̂

Θ̂= argmax
Θ

P(G|Θ)

is a non-convex optimization problem.

Proof By definition permutations of the Kronecker graphs initiator matrix Θ all have the same
log-likelihood. This means that we have several global minima that correspond to permutations of
parameter matrix Θ, and then between them the log-likelihood drops. This means that the optimiza-
tion problem is non-convex.

The above observation does not seem promising for estimating Θ̂ using gradient descent as it is
prone to finding local minima. To test for this behavir we run the following experiment: we gener-
ated 100 synthetic Kronecker graphs on 16,384 (214) nodes and 1.4 million edges on the average,
each with a randomly chosen 2×2 parameter matrix Θ∗. For each of the 100 graphs we run a single
trial of gradient descent starting from a random parameter matrix Θ′, and try to recover Θ∗. In
98% of the cases the gradient descent converged to the true parameters. Many times the algorithm
converged to a different global minima, that is, Θ̂ is a permuted version of original parameter matrix
Θ∗. Moreover, the median number of gradient descent iterations was only 52.

This suggests surprisingly nice structure of our optimization space: it seems to behave like a
convex optimization problem with many equivalent global minima. Moreover, this experiment is
also a good sanity check as it shows that given a Kronecker graph we can recover and identify the
parameters that were used to generate it.

Moreover, Figure 15(c) plots the log-likelihood l(Θt) of the current parameter estimate Θt over
the iterations t of the stochastic gradient descent. We plot the log-likelihood for 10 different runs
of gradient descent, each time starting from a different random set of parameters Θ0. Notice that in
all runs gradient descent always converges towards the optimum, and none of the runs gets stuck in
some local maxima.

6.3 Convergence of the Graph Properties

We approached the problem of estimating Stochastic Kronecker initiator matrix Θ by defining the
likelihood over the individual entries of the graph adjacency matrix. However, what we would really
like is to be given a real graph G and then generate a synthetic graph K that has similar properties
as the real G. By properties we mean network statistics that can be computed from the graph, for
example, diameter, degree distribution, clustering coefficient, etc. A priori it is not clear that our
approach which tries to match individual entries of graph adjacency matrix will also be able to
reproduce these global network statistics. However, as show next this is not the case.

To get some understanding of the convergence of the gradient descent in terms of the network
properties we performed the following experiment. After every step t of stochastic gradient descent,
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Figure 16: Convergence of graph properties with the number of iterations of gradient descent using
the synthetic data set. We start with a random choice of parameters and with steps of
gradient descent the Kronecker graph better and better matches network properties of
the target graph.

we compare the true graph G with the synthetic Kronecker graph Kt generated using the current
parameter estimates Θ̂t . Figure 16(a) gives the convergence of log-likelihood, and (b) gives absolute
error in parameter values (∑ |θ̂i j−θ∗i j|, where θ̂i j ∈ Θ̂t , and θ∗i j ∈ Θ∗). Similarly, Figure 16(c) plots
the effective diameter, and (d) gives the largest singular value of graph adjacency matrix K as it
converges to largest singular value of G.

Note how with progressing iterations of gradient descent properties of graphKt quickly converge
to those of G even though we are not directly optimizing the similarity in network properties: log-
likelihood increases, absolute error of parameters decreases, diameter and largest singular value of
Kt both converge to G. This is a nice result as it shows that through maximizing the likelihood the
resulting graphs become more and more similar also in their structural properties (even though we
are not directly optimizing over them).

6.4 Fitting to Real-world Networks

Next, we present experiments of fitting Kronecker graph model to real-world networks. Given a real
network G we aim to discover the most likely parameters Θ̂ that ideally would generate a synthetic
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Figure 17: Autonomous Systems (AS-ROUTEVIEWS): Overlayed patterns of real graph and the
fitted Kronecker graph. Notice that the fitted Kronecker graph matches patterns of the
real graph while using only four parameters (2×2 initiator matrix).

graph K having similar properties as real G. This assumes that Kronecker graphs are a good model
of the network structure, and that KRONFIT is able to find good parameters. In previous section
we showed that KRONFIT can efficiently recover the parameters. Now we examine how well can
Kronecker graph model the structure of real networks.

We consider several different networks, like a graph of connectivity among Internet Autonomous
systems (AS-ROUTEVIEWS) with N =6,474 and E =26,467 a who-trusts-whom type social net-
work from Epinions (Richardson et al., 2003) (EPINIONS) with N =75,879 and E =508,960 and
many others. The largest network we consider for fitting is FLICKR photo-sharing online social
network with 584,207 nodes and 3,555,115 edges.

For the purpose of this section we take a real network G, find parameters Θ̂ using KRONFIT,
generate a synthetic graph K using Θ̂, and then compare G and K by comparing their properties that
we introduced in Section 2. In all experiments we started from a random point (random initiator
matrix) and run gradient descent for 100 steps. At each step we estimate the likelihood and the
gradient based on 510,000 sampled permutations where we discard first 10,000 samples to allow
the chain to burn-in.
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6.4.1 FITTING TO AUTONOMOUS SYSTEMS NETWORK

First, we focus on the Autonomous Systems network obtained from the University of Oregon Route
Views project (RouteViews, 1997). Given the AS network G we run KRONFIT to obtain param-
eter estimates Θ̂. Using the Θ̂ we then generate a synthetic Kronecker graph K, and compare the
properties of G and K.

Figure 17 shows properties of AS-ROUTEVIEWS, and compares them with the properties of a
synthetic Kronecker graph generated using the fitted parameters Θ̂ of size 2×2. Notice that proper-
ties of both graphs match really well. The estimated parameters are Θ̂= [0.987,0.571;0.571,0.049].

Figure 17(a) compares the degree distributions of the AS-ROUTEVIEWS network and its syn-
thetic Kronecker estimate. In this and all other plots we use the exponential binning which is a
standard procedure to de-noise the data when plotting on log-log scales. Notice a very close match
in degree distribution between the real graph and its synthetic counterpart.

Figure 17(b) plots the cumulative number of pairs of nodes g(h) that can be reached in ≤ h
hops. The hop plot gives a sense about the distribution of the shortest path lengths in the network
and about the network diameter. Last, Figures 17(c) and (d) plot the spectral properties of the graph
adjacency matrix. Figure 17(c) plots largest singular values vs. rank, and (d) plots the components
of left singular vector (the network value) vs. the rank. Again notice the good agreement with the
real graph while using only four parameters.

Moreover, on all plots the error bars of two standard deviations show the variance of the graph
properties for different realizations R(Θ̂[k]). To obtain the error bars we took the same Θ̂, and
generated 50 realizations of a Kronecker graph. As for the most of the plots the error bars are so
small to be practically invisible, this shows that the variance of network properties when generating
a Stochastic Kronecker graph is indeed very small.

Also notice that the AS-ROUTEVIEWS is an undirected graph, and that the fitted parameter
matrix Θ̂ is in fact symmetric. This means that without a priori biasing the fitting towards undi-
rected graphs, the recovered parameters obey this aspect of the network. Fitting AS-ROUTEVIEWS
graph from a random set of parameters, performing gradient descent for 100 iterations and at each
iteration sampling half a million permutations, took less than 10 minutes on a standard desktop
PC. This is a significant speedup over Bezáková et al. (2006), where by using a similar permuta-
tion sampling approach for calculating the likelihood of a preferential attachment model on similar
AS-ROUTEVIEWS graph took about two days on a cluster of 50 machines.

6.4.2 CHOICE OF THE INITIATOR MATRIX SIZE N1

As mentioned earlier for finding the optimal number of parameters, that is, selecting the size of
initiator matrix, BIC criterion naturally applies to the case of Kronecker graphs. Figure 23(b)
shows BIC scores for the following experiment: We generated Kronecker graph with N =2,187
and E =8,736 using N1 = 3 (9 parameters) and k = 7. For 1 ≤ N1 ≤ 9 we find the MLE parameters
using gradient descent, and calculate the BIC scores. The model with the lowest score is chosen.
As Figure 23(b) shows we recovered the true model, that is, BIC score is the lowest for the model
with the true number of parameters, N1 = 3.

Intuitively we expect a more complex model with more parameters to fit the data better. Thus
we expect larger N1 to generally give better likelihood. On the other hand the fit will also depend on
the size of the graph G. Kronecker graphs can only generate graphs on Nk

1 nodes, while real graphs
do not necessarily have Nk

1 nodes (for some, preferably small, integers N1 and k). To solve this
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N1 l(Θ̂) Nk
1 Ek1 |{deg(u) > 0}| BIC score

2 −152,499 8,192 25,023 5,675 152,506
3 −127,066 6,561 28,790 5,683 127,083
4 −153,260 16,384 24,925 8,222 153,290
5 −149,949 15,625 29,111 9,822 149,996
6 −128,241 7,776 26,557 6,623 128,309

AS-ROUTEVIEWS 26,467 6,474

Table 2: Log-likelihood at MLE for different choices of the size of the initiator matrix N1 for the
AS-ROUTEVIEWS graph. Notice the log-likelihood l(θ̂) generally increases with the
model complexity N1. Also notice the effect of zero-padding, that is, for N1 = 4 and
N1 = 5 the constraint of the number of nodes being an integer power of N1 decreases the
log-likelihood. However, the column |{deg(u) > 0}| gives the number of non-isolated
nodes in the network which is much less than Nk

1 and is in fact very close to the true num-
ber of nodes in the AS-ROUTEVIEWS. Using the BIC scores we see that N1 = 3 or N1 = 6
are best choices for the size of the initiator matrix.

problem we choose k so that Nk−1
1 < N(G) ≤ Nk

1 , and then augment G by adding Nk
1 −N isolated

nodes. Or equivalently, we pad the adjacency matrix of G with zeros until it is of the appropriate
size, Nk

1 ×Nk
1 . While this solves the problem of requiring the integer power of the number of nodes

it also makes the fitting problem harder as when N / Nk
1 we are basically fitting G plus a large

number of isolated nodes.
Table 2 shows the results of fitting Kronecker graphs to AS-ROUTEVIEWS while varying the

size of the initiator matrix N1. First, notice that in general larger N1 results in higher log-likelihood
l(Θ̂) at MLE. Similarly, notice (column Nk

1) that while AS-ROUTEVIEWS has 6,474 nodes, Kro-
necker estimates have up to 16,384 nodes (16,384= 47, which is the first integer power of 4 greater
than 6,474). However, we also show the number of non-zero degree (non-isolated) nodes in the
Kronecker graph (column |{deg(u) > 0}|). Notice that the number of non-isolated nodes well cor-
responds to the number of nodes in AS-ROUTEVIEWS network. This shows that KRONFIT is
actually fitting the graph well and it successfully fits the structure of the graph plus a number of
isolated nodes. Last, column Ek1 gives the number of edges in the corresponding Kronecker graph
which is close to the true number of edges of the AS-ROUTEVIEWS graph.

Last, comparing the log-likelihood at the MLE and the BIC score in Table 2 we notice that the
log-likelihood heavily dominates the BIC score. This means that the size of the initiator matrix
(number of parameters) is so small that overfitting is not a concern. Thus we can just choose the
initiator matrix that maximizes the likelihood. A simple calculation shows that one would need
to take initiator matrices with thousands of entries before the model complexity part of BIC score
would start to play a significant role.

We further examine the sensitivity of the choice of the initiator size by the following experiment.
We generate a Stochastic Kronecker graphs K on 9 parameters (N1 = 3), and then fit a Kronecker
graph K′ with a smaller number of parameters (4 instead of 9, N′

1 = 2). And also a Kronecker graph
K′′ of the same complexity as K (N′′

1 = 3).
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Figure 18: 3 by 3 Stochastic Kronecker graphs: Given a Stochastic Kronecker graphs G generated
from N1 = 3 (red curve), we fit a Kronecker graph K′ with N′

1 = 2 (green) and K′′ with
N′′

1 = 3 (blue). Not surprisingly K′′ fits the properties of K perfectly as the model is the
of same complexity. On the other hand K′ has only 4 parameters (instead of 9 as in K
and K′′) and still fits well.

Figure 18 plots the properties of all three graphs. Not surprisingly K′′ (blue) fits the properties
of K (red) perfectly as the initiator is of the same size. On the other hand K′ (green) is a simpler
model with only 4 parameters (instead of 9 as in K and K′′) and still generally fits well: hop plot
and degree distribution match well, while spectral properties of graph adjacency matrix, especially
scree plot, are not matched that well. This shows that nothing drastic happens and that even a bit
too simple model still fits the data well. In general we observe empirically that by increasing the
size of the initiator matrix one does not gain radically better fits for degree distribution and hop plot.
On the other hand there is usually an improvement in the scree plot and the plot of network values
when one increases the initiator size.

6.4.3 NETWORK PARAMETERS OVER TIME

Next we briefly examine the evolution of the Kronecker initiator for a temporally evolving graph.
The idea is that given parameter estimates of a real-graph Gt at time t, we can forecast the future
structure of the graph Gt+x at time t+x, that is, using parameters obtained from Gt we can generate
a larger synthetic graph K that will be similar to Gt+x.
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Snapshot at time N E l(Θ̂) Estimates at MLE, Θ̂
T1 2,048 8,794 −40,535 [0.981,0.633;0.633,0.048]
T2 4,088 15,711 −82,675 [0.934,0.623;0.622,0.044]
T3 6,474 26,467 −152,499 [0.987,0.571;0.571,0.049]

Table 3: Parameter estimates of the three temporal snapshots of the AS-ROUTEVIEWS network.
Notice that estimates stay remarkably stable over time.
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Figure 19: Autonomous systems network over time (AS-ROUTEVIEWS): Overlayed patterns of real
AS-ROUTEVIEWS network at time T3 and the Kronecker graphs with parameters esti-
mated from AS-ROUTEVIEWS at time T1 and T2. Notice good fits which means that
parameters estimated on historic snapshots can be used to estimate the graph in the fu-
ture.

As we have the information about the evolution of the AS-ROUTEVIEWS network, we estimated
parameters for three snapshots of the network when it had about 2k nodes. Table 3 gives the results of
the fitting for the three temporal snapshots of the AS-ROUTEVIEWS network. Notice the parameter
estimates Θ̂ remain remarkably stable over time. This means that Kronecker graphs can be used to
estimate the structure of the networks in the future, that is, parameters estimated from the historic
data can extrapolate the graph structure in the future.
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Network N E Estimated MLE parameters Θ̂ l(Θ̂) Time
AS-ROUTEVIEWS 6,474 26,467 [0.987,0.571;0.571,0.049] −152,499 8m15s
ATP-GR-QC 19,177 26,169 [0.902,0.253;0.221,0.582] −242,493 7m40s
BIO-PROTEINS 4,626 29,602 [0.847,0.641;0.641,0.072] −185,130 43m41s
EMAIL-INSIDE 986 32,128 [0.999,0.772;0.772,0.257] −107,283 1h07m
CA-GR-QC 5,242 28,980 [0.999,0.245;0.245,0.691] −160,902 14m02s
AS-NEWMAN 22,963 96,872 [0.954,0.594;0.594,0.019] −593,747 28m48s
BLOG-NAT05-6M 31,600 271,377 [0.999,0.569;0.502,0.221] −1,994,943 47m20s
BLOG-NAT06ALL 32,443 318,815 [0.999,0.578;0.517,0.221] −2,289,009 52m31s
CA-HEP-PH 12,008 237,010 [0.999,0.437;0.437,0.484] −1,272,629 1h22m
CA-HEP-TH 9,877 51,971 [0.999,0.271;0.271,0.587] −343,614 21m17s
CIT-HEP-PH 30,567 348,721 [0.994,0.439;0.355,0.526] −2,607,159 51m26s
CIT-HEP-TH 27,770 352,807 [0.990,0.440;0.347,0.538] −2,507,167 15m23s
EPINIONS 75,879 508,837 [0.999,0.532;0.480,0.129] −3,817,121 45m39s
GNUTELLA-25 22,687 54,705 [0.746,0.496;0.654,0.183] −530,199 16m22s
GNUTELLA-30 36,682 88,328 [0.753,0.489;0.632,0.178] −919,235 14m20s
DELICIOUS 205,282 436,735 [0.999,0.327;0.348,0.391] −4,579,001 27m51s
ANSWERS 598,314 1,834,200 [0.994,0.384;0.414,0.249] −20,508,982 2h35m
CA-DBLP 425,957 2,696,489 [0.999,0.307;0.307,0.574] −26,813,878 3h01m
FLICKR 584,207 3,555,115 [0.999,0.474;0.485,0.144] −32,043,787 4h26m
WEB-NOTREDAME 325,729 1,497,134 [0.999,0.414;0.453,0.229] −14,588,217 2h59m

Table 4: Results of parameter estimation for 20 different networks. Table 5 gives the description
and basic properties of the above network data sets. Networks and KRONFIT code are
available for download at http://snap.stanford.edu.

Figure 19 further explores this. It overlays the graph properties of the real AS-ROUTEVIEWS
network at time T3 and the synthetic graphs for which we used the parameters obtained on historic
snapshots of AS-ROUTEVIEWS at times T1 and T2. The agreements are good which demonstrates
that Kronecker graphs can forecast the structure of the network in the future.

Moreover, this experiments also shows that parameter estimates do not suffer much from the
zero padding of graph adjacency matrix (i.e., adding isolated nodes to make G have Nk

1 nodes).
Snapshots of AS-ROUTEVIEWS at T1 and T2 have close to 2k nodes, while we had to add 26%
(1,718) isolated nodes to the network at T3 to make the number of nodes be 2k. Regardless of this we
see the parameter estimates Θ̂ remain basically constant over time, which seems to be independent
of the number of isolated nodes added. This means that the estimated parameters are not biased too
much from zero padding the adjacency matrix of G.

6.5 Fitting to Other Large Real-world Networks

Last, we present results of fitting Stochastic Kronecker graphs to 20 large real-world networks:
large online social networks, like EPINIONS, FLICKR and DELICIOUS, web and blog graphs (WEB-
NOTREDAME, BLOG-NAT05-6M, BLOG-NAT06ALL), internet and peer-to-peer networks
(AS-NEWMAN, GNUTELLA-25, GNUTELLA-30), collaboration networks of co-authorships from
DBLP (CA-DBLP) and various areas of physics (CA-HEP-TH, CA-HEP-PH, CA-GR-QC), physics
citation networks (CIT-HEP-PH, CIT-HEP-TH), an email network (EMAIL-INSIDE), a protein inter-
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Figure 20: Blog network (BLOG-NAT06ALL): Overlayed patterns of real network and the estimated
Kronecker graph using 4 parameters (2×2 initiator matrix). Notice that the Kronecker
graph matches all properties of the real network.

action network BIO-PROTEINS, and a bipartite affiliation network (authors-to-papers, ATP-GR-QC).
Refer to Table 5 in the appendix for the description and basic properties of these networks. They
are available for download at http://snap.stanford.edu.

For each data set we started gradient descent from a random point (random initiator matrix) and
ran it for 100 steps. At each step we estimate the likelihood and the gradient based on 510,000
sampled permutations where we discard first 10,000 samples to allow the chain to burn-in.

Table 4 gives the estimated parameters, the corresponding log-likelihoods and the wall clock
times. All experiments were carried out on standard desktop computer. Notice that the estimated
initiator matrices Θ̂ seem to have almost universal structure with a large value in the top left entry,
a very small value at the bottom right corner and intermediate values in the other two corners. We
further discuss the implications of such structure of Kronecker initiator matrix on the global network
structure in next section.

Last, Figures 20 and 21 show overlays of various network properties of real and the estimated
synthetic networks. In addition to the network properties we plotted in Figure 18, we also sepa-
rately plot in- and out-degree distributions (as both networks are directed) and plot the node triangle
participation in panel (c), where we plot the number of triangles a node participates in versus the
number of such nodes. (Again the error bars show the variance of network properties over different
realizations R(Θ̂[k]) of a Stochastic Kronecker graph.)

Notice that for both networks and in all cases the properties of the real network and the synthetic
Kronecker coincide really well. Using Stochastic Kronecker graphs with just 4 parameters we match
the scree plot, degree distributions, triangle participation, hop plot and network values.

Given the previous experiments from the Autonomous systems graph we only present the results
for the simplest model with initiator size N1 = 2. Empirically we also observe that N1 = 2 gives

1030



KRONECKER GRAPHS: AN APPROACH TO MODELING NETWORKS

100

101

102

103

104

105

100 101 102 103 104

C
ou

nt

In-degree, k

Real graph
Kronecker

100

101

102

103

104

105

100 101 102 103 104

C
ou

nt

Out-degree, k

Real graph
Kronecker

100

101

102

103

104

105

100 101 102 103 104 105

C
ou

nt

Node triangle participation

Real graph
Kronecker

(a) In-Degree (b) Out-degree (c) Triangle participation

104

105

106

107

108

109

1010

 0  1  2  3  4  5  6  7  8

R
ea

ch
ab

le
 p

ai
rs

 o
f n

od
es

, r
(h

)

Number of hops, h

Real graph
Kronecker

101

102

103

100 101 102

Si
ng

ul
ar

 v
al

ue

Rank

Real graph
Kronecker

10-3

10-2

10-1

100

100 101 102 103 104

N
et

w
or

k 
va

lu
e

Rank

Real graph
Kronecker

(d) Hop plot (e) Scree plot (f) “Network” value

Figure 21: EPINIONS who-trusts-whom social network: Overlayed patterns of real network and
the fitted Kronecker graph using only 4 parameters (2× 2 initiator matrix). Again, the
synthetic Kronecker graph matches all the properties of the real network.

surprisingly good fits and the estimation procedure is the most robust and converges the fastest.
Using larger initiator matrices N1 > 2 generally helps improve the likelihood but not dramatically.
In terms of matching the network properties we also gent a slight improvement by making the
model more complex. Figure 22 gives the percent improvement in log-likelihood as we make the
model more complex. We use the log-likelihood of a 2× 2 model as a baseline and estimate the
log-likelihood at the MLE for larger initiator matrices. Again, models with more parameters tend to
fit better. However, sometimes due to zero-padding of a graph adjacency matrix they actually have
lower log-likelihood (as for example seen in Table 2).

6.6 Scalability

Last we also empirically evaluate the scalability of the KRONFIT. The experiment confirms that
KRONFIT runtime scales linearly with the number of edges E in a graph G. More precisely, we
performed the following experiment.

We generated a sequence of increasingly larger synthetic graphs on N nodes and 8N edges, and
measured the time of one iteration of gradient descent, that is, sample 1 million permutations and
evaluate the gradients. We started with a graph on 1,000 nodes, and finished with a graph on 8
million nodes, and 64 million edges. Figure 23(a) shows KRONFIT scales linearly with the size of
the network. We plot wall-clock time vs. size of the graph. The dashed line gives a linear fit to the
data points.

7. Discussion

Here we discuss several of the desirable properties of the proposed Kronecker graphs.
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Figure 22: Percent improvement in log-likelihood over the 2× 2 model as we increase the model
complexity (size of initiator matrix). In general larger initiator matrices that have more
degrees of freedom help improving the fit of the model.
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Figure 23: (a) Processor time to sample 1 million gradients as the graph grows. Notice the algo-
rithm scales linearly with the graph size. (b) BIC score for model selection.

Generality: Stochastic Kronecker graphs include several other generators as special cases: For
θi j = c, we obtain the classical Erdős-Rényi random graph model. For θi, j ∈ {0,1}, we obtain
a deterministic Kronecker graph. Setting the K1 matrix to a 2× 2 matrix, we obtain the R-MAT
generator (Chakrabarti et al., 2004). In contrast to Kronecker graphs, the RMAT cannot extrapolate
into the future, since it needs to know the number of edges to insert. Thus, it is incapable of obeying
the densification power law.
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(a) 2×2 initiator matrix (b) Two recursive communities (c) Core-periphery

Figure 24: 2× 2 Kronecker initiator matrix (a) can be thought of as two communities where there
are a and d edges inside each of the communities and b and c edges crossing the two
communities as illustrated in (b). Each community can then be recursively divided using
the same pattern. (c) The onion like core-periphery structure where the network gets
denser and denser as we move towards the center of the network.

Phase transition phenomena: The Erdős-Rényi graphs exhibit phase transitions (Erdős and
Rényi, 1960). Several researchers argue that real systems are “at the edge of chaos” or phase
transition (Bak, 1996; Sole and Goodwin, 2000). Stochastic Kronecker graphs also exhibit phase
transitions (Mahdian and Xu, 2007) for the emergence of the giant component and another phase
transition for connectivity.

Implications to the structure of the large-real networks: Empirically we found that 2×2 initiator
(N1 = 2) fits well the properties of real-world networks. Moreover, given a 2×2 initiator matrix, one
can look at it as a recursive expansion of two groups into sub-groups. We introduced this recursive
view of Kronecker graphs back in Section 3. So, one can then interpret the diagonal values of Θ as
the proportion of edges inside each of the groups, and the off-diagonal values give the fraction of
edges connecting the groups. Figure 24 illustrates the setting for two groups.

For example, as shown in Figure 24, large a,d and small b,c would imply that the network is
composed of hierarchically nested communities, where there are many edges inside each community
and few edges crossing them (Leskovec, 2009). One could think of this structure as some kind
of organizational or university hierarchy, where one expects the most friendships between people
within same lab, a bit less between people in the same department, less across different departments,
and the least friendships to be formed across people from different schools of the university.

However, parameter estimates for a wide range of networks presented in Table 4 suggests a very
different picture of the network structure. Notice that for most networks a2 b> c2 d. Moreover,
a≈ 1, b≈ c≈ 0.6 and d ≈ 0.2. We empirically observed that the same structure of initiator matrix
Θ̂ also holds when fitting 3×3 or 4×4 models. Always the top left element is the largest and then
the values on the diagonal decay faster than off the diagonal (Leskovec, 2009).

This suggests a network structure which is also known as core-periphery (Borgatti and Everett,
2000; Holme, 2005), the jellyfish (Tauro et al., 2001; Siganos et al., 2006), or the octopus (Chung
and Lu, 2006) structure of the network as illustrated in Figure 24(c).

All of the above basically say that the network is composed of a densely linked network core
and the periphery. In our case this would imply the following structure of the initiator matrix. The
core is modeled by parameter a and the periphery by d. Most edges are inside the core (large a), and
very few between the nodes of periphery (small d). Then there are many more edges between the
core and the periphery than inside the periphery (b,c > d) (Leskovec, 2009). This is exactly what
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we see as well. And in spirit of Kronecker graphs the structure repeats recursively—the core again
has the dense core and the periphery, and so on. And similarly the periphery itself has the core and
the periphery.

This suggest an “onion” like nested core-periphery (Leskovec et al., 2008a,b) network structure
as illustrated in Figure 24(c), where the network is composed of denser and denser layers as one
moves towards the center of the network. We also observe similar structure of the Kronecker ini-
tiator when fitting 3×3 or 4×4 initiator matrix. The diagonal elements have large but decreasing
values with off diagonal elements following same decreasing pattern.

One of the implications of this is that networks do not break nicely into hierarchically orga-
nized sets of communities that lend themselves to graph partitioning and community detection al-
gorithms. On contrary, this suggests that large networks can be decomposed into a densely linked
core with many small periphery pieces hanging off the core. This is in accordance with our recent
results (Leskovec et al., 2008a,b), that make similar observation (but based on a completely differ-
ent methodology based on graph partitioning) about the clustering and community structure of large
real-world networks.

8. Conclusion

In conclusion, the main contribution of this work is a family of models of network structure that
uses a non-traditional matrix operation, the Kronecker product. The resulting graphs (a) have all
the static properties (heavy-tailed degree distribution, small diameter, etc.), (b) all the temporal
properties (densification, shrinking diameter) that are found in real networks. And in addition, (c)
we can formally prove all of these properties.

Several of the proofs are extremely simple, thanks to the rich theory of Kronecker multiplication.
We also provide proofs about the diameter and effective diameter, and we show that Stochastic
Kronecker graphs can mimic real graphs well.

Moreover, we also presented KRONFIT, a fast, scalable algorithm to estimate Stochastic Kro-
necker initiator, which can be then used to create a synthetic graph that mimics the properties of a
given real network.

In contrast to earlier work, our work has the following novelties: (a) it is among the few that
estimates the parameters of the chosen generator in a principled way, (b) it is among the few that
has a concrete measure of goodness of the fit (namely, the likelihood), (c) it avoids the quadratic
complexity of computing the likelihood by exploiting the properties of the Kronecker graphs, and
(d) it avoids the factorial explosion of the node correspondence problem, by using the Metropolis
sampling.

The resulting algorithm matches well all the known properties of real graphs, as we show with
the Epinions graph and the AS graph, it scales linearly on the number of edges, and it is orders of
magnitudes faster than earlier graph-fitting attempts: 20 minutes on a commodity PC, versus 2 days
on a cluster of 50 workstations (Bezáková et al., 2006).

The benefits of fitting a Kronecker graph model into a real graph are several:

• Extrapolation: Once we have the Kronecker generator Θ for a given real matrix G (such that
G is mimicked by Θ[k]), a larger version of G can be generated by Θ[k+1].

• Null-model: When analyzing a real network G one often needs to asses the significance of the
observation. Θ[k] that mimics G can be used as an accurate model of G.
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• Network structure: Estimated parameters give insight into the global network and community
structure of the network.

• Forecasting: As we demonstrated one can obtain Θ from a graph Gt at time t such that G is
mimicked by Θ[k]. Then Θ can be used to model the structure of Gt+x in the future.

• Sampling: Similarly, if we want a realistic sample of the real graph, we could use a smaller
exponent in the Kronecker exponentiation, like Θ[k−1].

• Anonymization: Since Θ[k] mimics G, we can publish Θ[k], without revealing information
about the nodes of the real graph G.

Future work could include extensions of Kronecker graphs to evolving networks. We envision
formulating a dynamic Bayesian network with first order Markov dependencies, where parameter
matrix at time t depends on the graph Gt at current time t and the parameter matrix at time t− 1.
Given a series of network snapshots one would then aim to estimate initiator matrices at individual
time steps and the parameters of the model governing the evolution of the initiator matrix. We
expect that based on the evolution of initiator matrix one would gain greater insight in the evolution
of large networks.

Second direction for future work is to explore connections between Kronecker graphs and Ran-
dom Dot Product graphs (Young and Scheinerman, 2007; Nickel, 2008). This also nicely connects
with the “attribute view” of Kronecker graphs as described in Section 3.5. It would be interesting
to design methods to estimate the individual node attribute values as well as the attribute-attribute
similarity matrix (i.e., the initiator matrix). As for some networks node attributes are already given
one could then try to infer “hidden” or missing node attribute values and this way gain insight into
individual nodes as well as individual edge formations. Moreover, this would be interesting as one
could further evaluate how realistic is the “attribute view” of Kronecker graphs.

Last, we also mention possible extensions of Kronecker graphs for modeling weighted and
labeled networks. Currently Stochastic Kronecker graphs use a Bernoulli edge generation model,
that is, an entry of big matrix P encodes the parameter of a Bernoulli coin. In similar spirit one could
consider entries of P to encode parameters of different edge generative processes. For example, to
generate networks with weights on edges an entry of P could encode the parameter of an exponential
distribution, or in case of labeled networks one could use several initiator matrices in parallel and
this way encode parameters of a multinomial distribution over different node attribute values.
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Appendix A. Table of Networks

Table 5 lists all the network data sets that were used in this paper. We also computed some of the
structural network properties. Most of the networks can be obtained at
http://snap.stanford.edu.
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Abstract
The problem of computing a maximum a posteriori (MAP) configuration is a central computational
challenge associated with Markov random fields. There has been some focus on “tree-based” linear
programming (LP) relaxations for theMAP problem. This paper develops a family of super-linearly
convergent algorithms for solving these LPs, based on proximal minimization schemes using Breg-
man divergences. As with standard message-passing on graphs, the algorithms are distributed and
exploit the underlying graphical structure, and so scale well to large problems. Our algorithms have
a double-loop character, with the outer loop corresponding to the proximal sequence, and an inner
loop of cyclic Bregman projections used to compute each proximal update. We establish conver-
gence guarantees for our algorithms, and illustrate their performance via some simulations. We also
develop two classes of rounding schemes, deterministic and randomized, for obtaining integral con-
figurations from the LP solutions. Our deterministic rounding schemes use a “re-parameterization”
property of our algorithms so that when the LP solution is integral, the MAP solution can be ob-
tained even before the LP-solver converges to the optimum. We also propose graph-structured
randomized rounding schemes applicable to iterative LP-solving algorithms in general. We ana-
lyze the performance of and report simulations comparing these rounding schemes.
Keywords: graphical models, MAP Estimation, LP relaxation, proximal minimization, rounding
schemes

1. Introduction

A key computational challenge that arises in applications of discrete graphical models is to compute
the most probable configuration(s), often referred to as the maximum a posteriori (MAP) problem.
Although the MAP problem can be solved exactly in polynomial time on trees (and more generally,
graphs with bounded treewidth) using the max-product algorithm, it is computationally challenging
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for general graphs. Indeed, the MAP problem for general discrete graphical models includes a large
number of classical NP-complete problems as special cases, including MAX-CUT, independent set,
and various satisfiability problems.

This intractability motivates the development and analysis of methods for obtaining approximate
solutions, and there is a long history of approaches to the problem. One class of methods is based on
simulated annealing (Geman and Geman, 1984), but the cooling schedules required for theoretical
guarantees are often prohibitively slow. Besag (1986) proposed the iterated conditional modes algo-
rithm, which performs a sequence of greedy local maximizations to approximate the MAP solution,
but may be trapped by local maxima. Greig et al. (1989) observed that for binary problems with at-
tractive pairwise interactions (the ferromagnetic Ising model in statistical physics terminology), the
MAP configuration can be computed in polynomial-time by reduction to a max-flow problem. The
ordinary max-product algorithm, a form of non-serial dynamic-programming (Bertele and Brioschi,
1972), computes the MAP configuration exactly for trees, and is also frequently applied to graphs
with cycles. Despite some local optimality results (Freeman and Weiss, 2001; Wainwright et al.,
2004), it has no general correctness guarantees for graph with cycles, and even worse, it can con-
verge rapidly to non-MAP configurations (Wainwright et al., 2005), even for problems that are easily
solved in polynomial time (e.g., ferromagnetic Ising models). For certain graphical models arising
in computer vision, Boykov et al. (2001) proposed graph-cut based search algorithms that compute
a local maximum over two classes of moves. A broad class of methods are based on the principle of
convex relaxation, in which the discrete MAP problem is relaxed to a convex optimization problem
over continuous variables. Examples of this convex relaxation problem include linear programming
relaxations (Koval and Schlesinger, 1976; Chekuri et al., 2005; Wainwright et al., 2005), as well
as quadratic, semidefinite and other conic programming relaxations (for instance, (Ravikumar and
Lafferty, 2006; Kumar et al., 2006; Wainwright and Jordan, 2004)).

Among the family of conic programming relaxations, linear programming (LP) relaxation is the
least expensive computationally, and also the best understood. The primary focus of this paper is a
well-known LP relaxation of the MAP estimation problem for pairwise Markov random fields, one
which has been independently proposed by several groups (Koval and Schlesinger, 1976; Chekuri
et al., 2005; Wainwright et al., 2005). This LP relaxation is based on optimizing over a set of
locally consistent pseudomarginals on edges and vertices of the graph. It is an exact method for
any tree-structured graph, so that it can be viewed naturally as a tree-based LP relaxation.1 The first
connection between max-product message-passing and LP relaxation was made byWainwright et al.
(2005), who connected the tree-based LP relaxation to the class of tree-reweighted max-product
(TRW-MP) algorithms, showing that TRW-MP fixed points satisfying a strong “tree agreement”
condition specify optimal solutions to the LP relaxation.

For general graphs, this first-order LP relaxation could be solved—at least in principle—by
various standard algorithms for linear programming, including the simplex and interior-point meth-
ods (Bertsimas and Tsitsikilis, 1997; Boyd and Vandenberghe, 2004). However, such generic meth-
ods fail to exploit the graph-structured nature of the LP, and hence do not scale favorably to large-
scale problems (Yanover et al., 2006). A body of work has extended the connection between the
LP relaxation and message-passing algorithms in various ways. Kolmogorov (2005) developed a
serial form of TRW-MP updates with certain convergence guarantees; he also showed that there
exist fixed points of the TRW-MP algorithm, not satisfying strong tree agreement, that do not cor-

1. In fact, this LP relaxation is the first in a hierarchy of relaxations, based on the treewidth of the graph (Wainwright
et al., 2005).
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respond to optimal solutions of the LP. This issue has a geometric interpretation, related to the fact
that coordinate ascent schemes (to which TRW-MP is closely related), need not converge to the
global optima for convex programs that are not strictly convex, but can become trapped in cor-
ners. Kolmogorov and Wainwright (2005) showed that this trapping phenomena does not arise
for graphical models with binary variables and pairwise interactions, so that TRW-MP fixed points
are always LP optimal. Globerson and Jaakkola (2007b) developed a related but different dual-
ascent algorithm, which is guaranteed to converge but is not guaranteed to solve the LP. Weiss et al.
(2007) established connections between convex forms of the sum-product algorithm, and exactness
of reweighted max-product algorithms; Johnson et al. (2007) also proposed algorithms related to
convex forms of sum-product. Various authors have connected the ordinary max-product algorithm
to the LP relaxation for special classes of combinatorial problems, including matching (Bayati et al.,
2005; Huang and Jebara, 2007; Bayati et al., 2007) and independent set (Sanghavi et al., 2007). For
general problems, max-product does not solve the LP; Wainwright et al. (2005) describe a instance
of the MIN-CUT problem on which max-product fails, even though LP relaxation is exact. Other
authors (Feldman et al., 2002a; Komodakis et al., 2007) have implemented subgradient methods
which are guaranteed to solve the linear program, but such methods typically have sub-linear con-
vergence rates (Bertsimas and Tsitsikilis, 1997).

This paper makes two contributions to this line of work. Our first contribution is to develop and
analyze a class of message-passing algorithms with the following properties: their only fixed points
are LP-optimal solutions, they are provably convergent with at least a geometric rate, and they have
a distributed nature, respecting the graphical structure of the problem. All of the algorithms in this
paper are based on the well-established idea of proximal minimization: instead of directly solving
the original linear program itself, we solve a sequence of so-called proximal problems, with the
property that the sequence of associated solutions is guaranteed to converge to the LP solution.
We describe different classes of algorithms, based on different choices of the proximal function:
quadratic, entropic, and tree-reweighted entropies. For all choices, we show how the intermedi-
ate proximal problems can be solved by forms of message-passing on the graph that are similar to
but distinct from the ordinary max-product or sum-product updates. An additional desirable fea-
ture, given the wide variety of lifting methods for further constraining LP relaxations (Wainwright
and Jordan, 2003), is that new constraints can be incorporated in a relatively seamless manner, by
introducing new messages to enforce them.

Our second contribution is to develop various types of rounding schemes that allow for early
termination of LP-solving algorithms. There is a substantial body of past work (e.g., Raghavan and
Thompson, 1987) on rounding fractional LP solutions so as to obtain integral solutions with approx-
imation guarantees. Our use of rounding is rather different: instead, we consider rounding schemes
applied to problems for which the LP solution is integral, so that rounding would be unnecessary
if the LP were solved to optimality. In this setting, the benefit of certain rounding procedures (in
particular, those that we develop) is allowing an LP-solving algorithm to be terminated before it has
solved the LP, while still returning the MAP configuration, either with a deterministic or high prob-
ability guarantee. Our deterministic rounding schemes apply to a class of algorithms which, like
the proximal minimization algorithms that we propose, maintain a certain invariant of the original
problem. We also propose and analyze a class of graph-structured randomized rounding procedures
that apply to any algorithm that approaches the optimal LP solution from the interior of the relaxed
polytope. We analyze these rounding schemes, and give finite bounds on the number of iterations
required for the rounding schemes to obtain an integral MAP solution.
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The remainder of this paper is organized as follows. We begin in Section 2 with background
on Markov random fields, and the first-order LP relaxation. In Section 3, we introduce the notions
of proximal minimization and Bregman divergences, then derive various of message-passing algo-
rithms based on these notions, and finally discuss their convergence properties. Section 4 is devoted
to the development and analysis of rounding schemes, both for our proximal schemes as well as
other classes of LP-solving algorithms. We provide experimental results in Section 5, and conclude
with a discussion in Section 6.

2. Background

We begin by introducing some background onMarkov random fields, and the LP relaxations that are
the focus of this paper. Given a discrete space X = {0,1,2, . . . ,m− 1}, let X = (X1, . . . ,XN) ∈ X N

denote a N-dimensional discrete random vector. (While we have assumed the variables take values
in the same set X , we note that our results easily generalize to the case where the variables take
values in different sets with differing cardinalities.) We assume that the distribution P of the random
vector is a Markov random field, meaning that it factors according to the structure of an undirected
graph G = (V,E), with each variable Xs associated with one node s ∈ V , in the following way.
Letting θs : X → R and θst : X ×X → R be singleton and edgewise potential functions respectively,
we assume that the distribution takes the form

P(x;θ) ∝ exp
{
∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)
}
.

The problem of maximum a posteriori (MAP) estimation is to compute a configuration with
maximum probability—that is, an element

x∗ ∈ argmax
x∈X N

{
∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)
}
, (1)

where the argmax operator extracts the configurations that achieve the maximal value. This problem
is an integer program, since it involves optimizing over the discrete space X N . For future reference,
we note that the functions θs(·) and θst(·) can always be represented in the form

θs(xs) = ∑
j∈X

θs; jI[xs = j],

θst(xs,xt) = ∑
j,k∈X

θst; jkI[xs = j; xt = k],

where the m-vectors {θs; j, j ∈ X } and m×m matrices {θst; jk, ( j,k) ∈ X ×X } parameterize the
problem.

The first-order linear programming (LP) relaxation (Koval and Schlesinger, 1976; Chekuri et al.,
2005; Wainwright et al., 2005) of this problem is based on a set of pseudomarginals µs and µst ,
associated with the nodes and vertices of the graph. These pseudomarginals are constrained to be
non-negative, as well to normalize and be locally consistent in the following sense:

∑
xs∈X

µs(xs) = 1, for all s ∈V , and (2)

∑
xt∈X

µst(xs,xt) = µs(xs) for all (s, t) ∈ E, xs ∈ X . (3)
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The polytope defined by the non-negativity constraints µ≥ 0, the normalization constraints (2) and
the marginalization constraints (3), is denoted by L(G). The LP relaxation is based on maximizing
the linear function

〈θ, µ〉 := ∑
s∈V
∑
xs
θs(xs)µs(xs)+ ∑

(s,t)∈E
∑
xs,xt

θst(xs,xt)µst(xs,xt), (4)

subject to the constraint µ∈ L(G).
In the sequel, we write the linear program (4) more compactly in the form maxµ∈L(G)〈θ, µ〉.

By construction, this relaxation is guaranteed to be exact for any problem on a tree-structured
graph (Wainwright et al., 2005), so that it can be viewed as a tree-based relaxation. The main
goal of this paper is to develop efficient and distributed algorithms for solving this LP relaxation,2
as well as strengthenings based on additional constraints. For instance, one natural strengthening is
by “lifting”: view the pairwise MRF as a particular case of a more general MRF with higher order
cliques, define higher-order pseudomarginals on these cliques, and use them to impose higher-order
consistency constraints. This particular progression of tighter relaxations underlies the Bethe to
Kikuchi (sum-product to generalized sum-product) hierarchy (Yedidia et al., 2005); see Wainwright
and Jordan (2003) for further discussion of such LP hierarchies.

3. Proximal Minimization Schemes

We begin by defining the notion of a proximal minimization scheme, and various types of diver-
gences (among them Bregman) that we use to define our proximal sequences. Instead of dealing
with the maximization problem maxµ∈L(G)〈θ, µ〉, it is convenient to consider the equivalent mini-
mization problem,

min
µ∈L(G)

−〈θ, µ〉.

3.1 Proximal Minimization

The class of methods that we develop are based on the notion of proximal minimization (Bertsekas
and Tsitsiklis, 1997). Instead of attempting to solve the LP directly, we solve a sequence of problems
of the form

µn+1 = arg min
µ∈L(G)

{
−〈θ, µ〉+

1
ωn
Df (µ‖µn)

}
, (5)

where for iteration numbers n= 0,1,2, . . ., the vector µn denotes current iterate, the quantity ωn is a
positive weight, and Df is a generalized distance function, known as the proximal function. (Note
that we are using superscripts to represent the iteration number, not for the power operation.)

The purpose of introducing the proximal function is to convert the original LP—which is convex
but not strictly so—into a strictly convex problem. The latter property is desirable for a number of
reasons. First, for strictly convex programs, coordinate descent schemes are guaranteed to converge
to the global optimum; note that they may become trapped for non-strictly convex problems, such as
the piecewise linear surfaces that arise in linear programming. Moreover, the dual of a strictly con-
vex problem is guaranteed to be differentiable (Bertsekas, 1995); a guarantee which need not hold

2. The relaxation could fail to be exact though, in which case the optimal solution to the relaxed problem will be
suboptimal on the original MAP problem
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for non-strictly convex problems. Note that differentiable dual functions can in general be solved
more easily than non-differentiable dual functions. In the sequel, we show how for appropriately
chosen generalized distances, the proximal sequence {µn} can be computed using message passing
updates derived from cyclic projections.

We note that the proximal scheme (5) is similar to an annealing scheme, in that it involves per-
turbing the original cost function, with a choice of weights {ωn}. While the weights {ωn} can be
adjusted for faster convergence, they can also be set to a constant, unlike for standard annealing
procedures in which the annealing weight is taken to 0. The reason is that Df (µ‖µ(n)), as a gen-
eralized distance, itself converges to zero as the algorithm approaches the optimum, thus providing
an “adaptive” annealing. For appropriate choice of weights and proximal functions, these proximal
minimization schemes converge to the LP optimum with at least geometric and possibly superlinear
rates (Bertsekas and Tsitsiklis, 1997; Iusem and Teboulle, 1995).

In this paper, we focus primarily on proximal functions that are Bregman divergences (Censor
and Zenios, 1997), a class that includes various well-known divergences, among them the squared
!2-distance and norm, and the Kullback-Leibler divergence. We say that a function f : S +→ R, with
domain S ⊆ Rp, is a Bregman function if int S -= /0 and it is continuously differentiable and strictly
convex on int S. Any such function induces a Bregman divergence Df : S× intS +→ R as follows:

Df (µ′ ‖ν) := f (µ′)− f (ν)−〈∇ f (ν), µ′ −ν〉. (6)

Figure 1 illustrates the geometric interpretation of this definition in terms of the tangent approxi-
mation. A Bregman divergence satisfies Df (µ′ ‖ν) ≥ 0 with equality if and only if µ′ = ν, but need
not be symmetric or satisfy the triangle inequality, so it is only a generalized distance. Further re-
strictions on the inducing function f are thus required for the divergence to be “well-behaved,” for
instance that it satisfy the property that for any sequence νn → ν∗, where νn ∈ int S, ν∗ ∈ S, then
Df (ν∗ ‖νn) → 0. Censor and Zenios (1997) impose such technical conditions explicitly in their
definition of a Bregman function; in this paper, we impose the stronger yet more easily stated con-
dition that the Bregman function f (as defined above) be of Legendre type (Rockafellar, 1970). In
this case, in addition to the Bregman function properties, it satisfies the following property: for any
sequence µn → µ∗ where µn ∈ int S, µ∗ ∈ ∂S, it holds that ‖∇ f (µn)‖→+∞. Further, we assume that
the range ∇ f (int S) = Rp.

Let us now look at some choices of divergences, proximal minimizations (5) based on which we
will be studying in the sequel.

3.1.1 QUADRATIC DIVERGENCE

This choice is the simplest, and corresponds to setting the inducing Bregman function f in (6) to be
the quadratic function

q(µ) :=
1
2

{

∑
s∈V
∑
xs∈X

µ2s (xs)+ ∑
(s,t)∈E

∑
(xs,xt)∈X×X

µ2st(xs,xt)
}

,

defined over nodes and edges of the graph. The divergence is then simply the quadratic norm across
nodes and edges

Q(µ‖ν) :=
1
2 ∑s∈V

‖µs−νs‖2+
1
2 ∑

(s,t)∈E
‖µst −νst‖2, (7)
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f

µ′

ν

µ

Df (µ′ ‖ν)

f (ν)+ 〈∇ f (ν), µ′ −ν〉

Figure 1: Graphical illustration of a Bregman divergence.

where we have used the shorthand ‖µs− νs‖2 = ∑xs∈X |µs(xs)− νs(xs)|2, with similar notation for
the edges.

3.1.2 WEIGHTED ENTROPIC DIVERGENCE

Another choice for the inducing Bregman function is the weighted sum of negative entropies

H̄α(µ) = ∑
s∈V

αsH̄s(µs)+ ∑
(s,t)∈E

αst H̄st(µst), (8)

where H̄s and H̄st are defined by

H̄s(µs) := ∑
xs∈X

µs(xs) logµs(xs), and

H̄st(µst) := ∑
(xs,xt)∈X×X

µst(xs,xt) logµst(xs,xt),

corresponding to the node-based and edge-based negative entropies, respectively. The correspond-
ing Bregman divergence is a weighted sum of Kullback-Leibler (KL) divergences across the nodes
and edges. In particular, letting αs > 0 and αst > 0 be positive weights associated with node s and
edge (s, t) respectively, we define

Dα(µ‖ν) = ∑
s∈V

αsD(µs ‖νs)+ ∑
(s,t)∈E

αstD(µst ‖νst), (9)

where D(p‖q) := ∑x
(
p(x) log p(x)

q(x) −
[
p(x)− q(x)

])
is the KL divergence. An advantage of the

KL divergence, relative to the quadratic norm, is that it automatically acts to enforce non-negativity
constraints on the pseudomarginals in the proximal minimization problem. (See Section 3.4 for a
more detailed discussion of this issue.)

3.1.3 TREE-REWEIGHTED ENTROPIC DIVERGENCE

Our last example is based on a tree-reweighted entropy. The notion of a tree-reweighted entropy
was first proposed by Wainwright et al. (2002). Their entropy function however while a Bregman
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function is not of the Legendre type. Nonetheless let us first describe their proposed function. Given
a set T of spanning trees T = (V,E(T )), and a probability distribution ρ over T , we can obtain edge
weights ρst ∈ (0,1] for each edge (s, t) of the graph G as ρst = ∑T∈T I((s, t) ∈ E). Given such edge
weights, define

ftrw(µ) := ∑
s∈V

H̄s(µs)+ ∑
(s,t)∈E

ρst Ist(µst), (10)

where H̄ is the negative entropy as defined earlier, while the quantity Ist defined as

Ist(µst) := ∑
(xs,xt)∈X×X

µst(xs,xt) log
µst(xs,xt)

[∑x′t µst(xs,x
′
t)][∑x′s µst(x

′
s,xt)]

,

is the mutual information associated with edge (s, t). It can be shown that the function ftrw is
strictly convex and continuously differentiable when restricted to µ∈ L(G); and in particular that it
is a Bregman function with domain L(G). Within its domain L(G), the function can be re-expressed
as a weighted negative entropy family (8),

ftrw(µ) = ∑
s∈V

(1− ∑
t:(s,t)∈E

ρst)H̄t(µt)+ ∑
(s,t)∈E

ρst H̄st(µst),

but where the node entropy weights αs := 1−∑t:(s,t)∈E ρst are not always positive. The correspond-
ing Bregman divergence belongs to the weighted entropic family (9), with node weights αs defined
above, and edge-weights αst = ρst . However as stated above, this tree-reweighted entropy function
is not of Legendre type, and hence is not admissible for our proximal minimization procedure (5).

However, Globerson and Jaakkola (2007a) proposed an alternative tree reweighted entropy that
while equal to ftrw(µ) for µ∈ L(G) is yet convex for all µ (not just when restricted to L(G)). Their
proposed function is described as follows. For each undirected edge in E, construct two oriented
edges in both directions; denote the set of these oriented edges by Ē. Then given node weights
ρos ∈ (0,1] for each node s ∈V , and edge weights ρs|t ∈ (0,1] for oriented edges (t→ s)∈ Ē, define

fotw(µ) := ∑
s∈V

ρosH̄s(µs)+ ∑
(t→s)∈Ē

ρs|t H̄s|t(µst), (11)

where the quantity H̄s|t defined as

H̄s|t(µst) := ∑
(xs,xt)∈X×X

µst(xs,xt) log
µst(xs,xt)

∑x′s µst(x
′
s,xt)

,

is the conditional entropy of Xs given Xt with respect to the joint distribution µst . It can be shown
that this oriented tree-reweighted entropy is not only a Bregman function with domain the non-
negative orthant R

p
+, but is also of Legendre type, so that it is indeed admissible for our proximal

minimization procedure. The corresponding divergence is given as,

Dρ(µ‖ν) = ∑
s∈V

ρosD(µs ‖νs)+ ∑
t→s∈Ē

ρs|t(D(µst ‖νst)+ D̃(µst ‖νst)),

where D(p‖q) is the KL divergence, and D̃(·‖ ·) is a KL divergence like term, defined as

D̃(µst ‖νst) := ∑
(xs,xt)∈X×X

µst(xs,xt) log
[∑x′s νst(x

′
s,xt)]

[∑x′s µst(x
′
s,xt)]

+
νst(xs,xt)

[∑x′s νst(x
′
s,xt)]

[µst(xs,xt)−νst(xs,xt)].
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3.2 Proximal Sequences via Bregman Projection

The key in designing an efficient proximal minimization scheme is ensuring that the proximal se-
quence {µn} can be computed efficiently. In this section, we first describe how sequences of prox-
imal minimizations (when the proximal function is a Bregman divergence) can be reformulated as
a particular Bregman projection. We then describe how this Bregman projection can itself be com-
puted iteratively, in terms of a sequence of cyclic Bregman projections (Censor and Zenios, 1997)
based on a decomposition of the constraint set L(G). In the sequel, we then show how these cyclic
Bregman projections reduce to very simple message-passing updates.

Given a Bregman divergence D, the Bregman projection of a vector ν onto a convex set C is
given by

µ̂ := argmin
µ∈C

Df (µ‖ν). (12)

That this minimum is achieved and is unique follows from our assumption that the function f is of
Legendre type and from Theorem 3.12 in Bauschke and Borwein (1997), so that the projection is
well-defined. We define the projection operator

ΠC(ν) := argmin
µ∈C

Df (µ‖ν), (13)

where we have suppressed the dependence on the Bregman function f in the notation. When the
constraint set C = ∩Mi=1Ci is an intersection of simpler constraint sets, then a candidate algorithm
for the Bregman projection is to compute it in a cyclic manner: by iteratively projecting onto the
simple constraint sets {Ci} (Censor and Zenios, 1997). Define the sequence

µt+1 =ΠCi(t)(µ
t),

for some control sequence parameter i : N +→ {1, . . . ,M} that takes each output value an infinite
number of times, for instance i(t) = tmodM. It can be shown that when the constraints are affine
then such cyclic Bregman projections µt converge to the projection µ̂onto the entire constraint set as
defined in (12) so that µt → µ̂ (Censor and Zenios, 1997). But when a constraintCi is non-affine, the
individual projection would have to be followed by a correction (Dykstra, 1985; Han, 1988; Censor
and Zenios, 1997) in order for such convergence to hold. In Appendix A we have outlined these
corrections briefly for the case where the constraints are linear inequalities. For ease of notation, we
will now subsume these corrections into the iterative projection notation, µt+1 = ΠCi(t)(µ

t), so that
the notation assumes that the Bregman projections are suitably corrected when the constraints Ci(t)
are non-affine. In this paper, other than positivity constraints, we will be concerned only with affine
constraints, for which no corrections are required.

Let us now look at the stationary condition characterizing the optimum µ̂ of (12). As shown in
for instance Bertsekas (1995), the optimum µ̂ of any constrained optimization problem minµ∈C g(µ)
is given by the stationary condition,

〈∇g(µ̂), µ− µ̂〉 ≥ 0, (14)

for all µ∈ C. For the projection problem (12), the gradient of the objective Df (µ‖ν) := f (µ)−
f (ν)−〈∇ f (ν), µ−ν〉 with respect to the first argument µ is given by ∇ f (µ)−∇ f (ν), which when
substituted in (14) yields the stationary condition of the optimum µ̂ as

〈∇ f (µ̂)−∇ f (ν), µ− µ̂〉 ≥ 0, (15)
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for all µ∈C. Now consider the proximal minimization problem to be solved at step n, namely the
strictly convex problem

min
µ∈L(G)

{
−〈θ, µ〉+

1
ωn
Df (µ‖µn)

}
. (16)

Solving for the derivative of this objective with respect to µ as −θ+ 1
ωn (∇ f (µ)−∇ f (µn)), and

substituting in (14), we obtain the conditions defining the optimum µn+1 as

〈∇ f (µn+1)−∇ f (µn)−ωnθ, µ−µn+1〉 ≥ 0,

for all µ∈ L(G). Comparing these with the conditions for Bregman projection (15), we see that if
there exists a vector ν such that

∇ f (ν) = ∇ f (µn)+ωnθ, (17)
then the proximal iterate µn+1 is the Bregman projection of this vector ν onto the set L(G). As
shown in Bauschke and Borwein (1997), for any function f of Legendre type with domain S, the
gradient ∇ f is a one-to-one function with domain int S, so that its inverse (∇ f )−1 is a well-defined
function on the range ∇ f (int S) of ∇ f . Since we have assumed that this range is Rp, we can thus
obtain the unique ν which satisfies the condition in (17) as ν = (∇ f )−1(∇ f (µ)+ωnθ) (Note that
the range constraint could be relaxed to only require that the range of ∇ f be a cone containing θ).
Accordingly, we set up the following notation: for any Bregman function f , induced divergence Df ,
and convex setC, we define the operator

J f (µ,ν) := (∇ f )−1(∇ f (µ)+ν).

We can then write the proximal update (16) in a compact manner as the compounded operation

µn+1 = ΠL(G)

(
J f (µn,ωnθ)

)
.

Consequently, efficient algorithms for computing the Bregman projection (12) can be leveraged to
compute the proximal update (16). In particular, we consider a decomposition of the constraint set
as an intersection—L(G) = ∩Mk=1Lk(G)—and then apply the method of cyclic Bregman projections
discussed above. Initializing µn,0 = µn and updating from µn,τ +→ µn,τ+1 by projecting µn,τ onto con-
straint set Li(τ)(G), where i(τ) = τ modM, for instance, we obtain the meta-algorithm summarized
in Algorithm 1.

As shown in the following sections, by using a decomposition of L(G) over the edges of the
graph, the inner loop steps correspond to local message-passing updates, slightly different in nature
depending on the choice of Bregman distance. Iterating the inner and outer loops yields a prov-
ably convergent message-passing algorithm for the LP. Convergence follows from the convergence
properties of proximal minimization (Bertsekas and Tsitsiklis, 1997), combined with convergence
guarantees for cyclic Bregman projections (Censor and Zenios, 1997). In the following section, we
derive the message-passing updates corresponding to various Bregman functions of interest.

3.3 Quadratic Projections

Consider the proximal sequence with the quadratic distance Q from Equation (7); the Bregman
function inducing this distance is the quadratic function q(y) = 1

2y
2, with gradient ∇q(y) = y. A

little calculation shows that the operator Jq takes the form

Jq(µ,ωθ) = µ+ωθ,
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Algorithm 1 Basic proximal-Bregman LP solver
Given a Bregman distance D, weight sequence {ωn} and problem parameters θ:

• Initialize µ0 to the uniform distribution: µ(0)
s (xs) = 1

m , µ
(0)
st (xs,xt) = 1

m2 .

• Outer Loop: For iterations n= 0,1,2, . . ., update µn+1 =ΠL(G)

(
J f (µn,ωnθ)

)
.

– Solve Outer Loop via Inner Loop:
(a) Inner initialization µn,0 = J f (µn,ωnθ).
(b) For t = 0,1,2, . . ., set i(t) = t modM.
(c) Update µn,t+1 =ΠLi(t)(G)

(
µn,t

)
.

whence we obtain the initialization in Equation (19).
We now turn to the projections µn,τ+1 =Πq(µn,τ,Li(G)) onto the individual constraints Li(G).

For each such constraint, the local update is based on the solving the problem

µn,τ+1 = arg min
ν∈Li(G)

{
q(ν)−〈ν, ∇q(µn,τ)〉

}
. (18)

In Appendix B.1, we show how the solution to these inner updates takes the form (20) given in
Algorithm 2. The {Zs,Zst} variables correspond to the dual variables used to correct the Bregman
projections for positivity (and hence inequality) constraints, as outlined in (33) in Section 3.2.

3.4 Entropic Projections

Consider the proximal sequence with the Kullback-Leibler distanceD(µ‖ν) defined in Equation (9).
The Bregman function hα inducing the distance is a sum of negative entropy functions f (µ) =
µlogµ, and its gradient is given by ∇ f (µ) = log(µ)+"1. In this case, some calculation shows that
the map ν= J f (µ,ωθ) is given by

ν = µexp(ωθ/α),

whence we obtain the initialization Equation (21). In Appendix B.2, we derive the message-passing
updates summarized in Algorithm 3.

3.5 Tree-reweighted Entropy Proximal Sequences

In the previous sections, we saw how to solve the proximal sequences following the algorithmic
template 1 and using message passing updates derived from cyclic Bregman projections. In this
section, we show that for the tree-reweighted entropic divergences (11), in addition to the cyclic
Bregman projection recipe of the earlier sections, we can also use tree-reweighted sum-product
or related methods (Globerson and Jaakkola, 2007b; Hazan and Shashua, 2008) to compute the
proximal sequence.
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Algorithm 2 Quadratic Messages for µn+1
Initialization:

µ(n,0)
st (xs,xt) = µ(n)

st (xs,xt)+wnθst(xs,xt), (19)

µ(n,0)
s (xs) = µ(n)

s (xs)+wnθs(xs).

Zs(xs) = µ(n,0)
s (xs),

Zst(xs,xt) = µ(n)
st (xs,xt).

repeat
for each edge (s, t) ∈ E do

µ(n,τ+1)
st (xs,xt) = µ(n,τ)

st (xs,xt)+

(
1

m+1

)(
µ(n,τ)
s (xs)−∑

xt
µ(n,τ)
st (xs,xt)

)
, (20)

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)+

(
1

m+1

)(
−µ(n,τ)

s (xs)+∑
xt
µ(n,τ)
st (xs,xt)

)
,

Cst(xs,xt) = min{Zst(xs,xt),µ
(n,τ+1)
st (xs,xt)},

Zst(xs,xt) = Zst(xs,xt)−Cst(xs,xt),

µ(n,τ+1)
st (xs,xt) = µ(n,τ+1)

st (xs,xt)−Cst(xs,xt).

end for
for each node s ∈V do

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)+
1
m

(

1−∑
xs
µ(n,τ)
s (xs)

)

,

Cs(xs) = min{Zs(xs),µ
(n,τ+1)
s (xs)},

Zs(xs) = Zs(xs)−Cs(xs),

µ(n,τ+1)
s (xs) = µ(n,τ+1)

s (xs)−Cs(xs).

end for
until convergence

Recall the proximal sequence optimization problem (5) written as

µn+1 = arg min
ν∈L(G)

{
−〈θ, ν〉+

1
ωn
Df (ν‖µn)

}

= arg min
ν∈L(G)

{
−〈θ, ν〉+

1
ωn

( f (ν)− f (µn)−〈∇ f (µn), ν−µn〉)
}

. (24)

Let us denote θn := ωnθ+∇ f (µn), and set the Bregman function f to the tree-reweighted entropy
ftrw defined in (10) (or equivalently the oriented tree-reweighted entropy fotw (11) since both are
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Algorithm 3 Entropic Messages for µn+1
Initialization:

µ(n,0)
st (xs,xt) = µ(n)

st (xs,xt)exp(ωnθst(xs,xt)/αst), and (21)

µ(n,0)
s (xs) = µ(n)

s (xs)exp(ωn θs(xs)/αs).

repeat
for each edge (s, t) ∈ E do

µ(n,τ+1)
st (xs,xt) = µ(n,τ)

st (xs,xt)
(

µ(n,τ)
s (xs)

∑xt µ
(n,τ)
st (xs,xt)

) αs
αs+αst

, and (22)

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)
αs

αs+αst

(

∑
xt
µ(n,τ)
st (xs,xt)

) αst
αs+αst

.

end for
for each node s ∈V do

µ(n,τ+1)
s (xs) =

µ(n,τ)
s (xs)

∑xs µ
(n,τ)
s (xs)

. (23)

end for
until convergence

equivalent over the constraint set L(G)). The proximal optimization problem as stated above (24)
reduces to,

µn+1 = arg min
ν∈L(G)

{〈θn, ν〉+ ftrw(ν)} .

But this is precisely the optimization problem solved by the tree-reweighted sum-product (Wain-
wright and Jordan, 2003), as well as other related methods (Globerson and Jaakkola, 2007b; Hazan
and Shashua, 2008), for a graphical model with parameters θn.

Computing the gradient of the function ftrw, and performing some algebra yields the algorithmic
template of Algorithm 4.

3.6 Convergence

We now turn to the convergence of the message-passing algorithms that we have proposed. At a
high-level, for any Bregman proximal function, convergence follows from two sets of known results:
(a) convergence of proximal algorithms; and (b) convergence of cyclic Bregman projections.

For completeness, we re-state the consequences of these results here. For any positive sequence
ωn > 0, we say that it satisfies the infinite travel condition if ∑∞

n=1(1/ωn) = +∞. We let µ∗ ∈ L(G)
denote an optimal solution (not necessarily unique) of the LP, and use f ∗ = f (µ∗) = 〈θ, µ∗〉 to denote
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Algorithm 4 TRW proximal solver

• For outer iterations n= 0,1,2, . . .,

(a) Update the parameters:

θns (xs) = ωnθs(xs)+ log(µn(xs))+1,

θnst(xs,xt) = ωnθst(xs,xt)+ρst

(

log
µnst(xs,xt)

∑x′s µ
n
st(x′s,xt)∑x′t µ

n
st(xs,x′t)

−1

)

.

(b) Run a convergent TRW-solver on a graphical model with parameters θn, so as to com-
pute

µn+1 = arg min
ν∈L(G)

{
−〈θn, ν〉+ ftrw(ν)

}
.

the LP optimal value. We say that the convergence rate is superlinear if

lim
n→+∞

| f (µn+1)− f ∗|
| f (µn)− f ∗|

= 0,

and linear if

lim
n→+∞

| f (µn+1)− f ∗|
| f (µn)− f ∗|

≤ γ,

for some γ ∈ (0,1). We say the convergence is geometric if there exists some constant C > 0 and
γ ∈ (0,1) such that for all n,

| f (µn)− f ∗| ≤ C γn.

Proposition 1 (Rate of outer loop convergence) Consider the sequence of iterates produced by a
proximal algorithm (5) for LP-solving.

(a) Using the quadratic proximal function and positive weight sequence ωn → +∞ satisfying
infinite travel, the proximal sequence {µn} converges superlinearly.

(b) Using the entropic proximal function and positive weight sequence ωn satisfying infinite
travel, the proximal sequence {µn} converges:

(i) superlinearly if ωn → 0, and
(ii) at least linearly if 1/ωn ≥ c for some constant c> 0.

The quadratic case is covered in Bertsekas and Tsitsiklis (1997), whereas the entropic case was
analyzed by Tseng and Bertsekas (1993), and Iusem and Teboulle (1995).

Our inner loop message updates use cyclic Bregman projections, for which there is also a sub-
stantial literature on convergence. Censor and Zenios (1997) show that with dual feasibility cor-
rection, cyclic projections onto general convex sets are convergent. For Euclidean projections with
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linear constraints, Deutsch and Hundal (2006) establish a linear rate of convergence, with the rate
dependent on angles between the half-spaces defining the constraints. The intuition is that the more
orthogonal the half-spaces, the faster the convergence; for instance, a single iteration suffices for
completely orthogonal constraints. Our inner updates thus converge linearly to the solution within
each outer proximal step.

We note that the rate-of-convergence results for the outer proximal loops assume that the prox-
imal update (computed within each inner loop) has been performed exactly. In practice, the inner
loop iterations do not converge finitely (though they have a linear rate of convergence), so that
an early stopping entails that the solution to each proximal update would be computed only ap-
proximately, up to some accuracy ε. That is, if the proximal optimization function at outer itera-
tion n is hn(µ) with minimum µn+1, then the computed proximal update µn+1 is sub-optimal, with
hn(µn+1)− hn(µn+1) ≤ ε. Some recent theory has addressed whether superlinear convergence can
still be obtained in such a setting; for instance, Solodov and Svaiter (2001) shows that that under
mild conditions superlinear rates still hold for proximal iterates with inner-loop solutions that are
ε-suboptimal. In practice, we cannot directly use ε-suboptimality as the stopping criterion for the
inner loop iterations since we do not have the optimal solution µn+1. However, since we are trying to
solve a feasibility problem, it is quite natural to check for violation in the constraints defining L(G).
We terminate our inner iterations when the violation in all the constraints below a tolerance ε. As
we show in Section 5, our experiments show that setting this termination threshold to ε = 10−4 is
small enough for sub-optimality to be practically irrelevant and that superlinear convergence still
occurs.

3.6.1 REMARKS

The quadratic proximal updates turn out to be equivalent to solving the primal form of the LP by
the projected subgradient method (Bertsekas, 1995) for constrained optimization. (This use of the
subgradient method should be contrasted with other work Feldman et al. (2002b); Komodakis et al.
(2007) which performed subgradient descent to the dual of the LP.) For any constrained optimization
problem:

min
µ

f0(µ)

s.t. f j(µ) ≤ 0, j = 1, . . . ,m, (25)

the projected subgradient method performs subgradient descent iteratively on (i) the objective func-
tion f0, as well as on (ii) the constraint functions { f j}mj=1 till the constraints are satisfied. Casting it
in the notation of Algorithm 1; over outer loop iterations n= 1, . . ., it sets

µn,0 = µn−αn∇ f0(µn),

and computes, over inner loop iterations t = 1, . . . ,

j(t) = t mod m,

µn,t+1 = µn,t−αn,t∇ f j(t)(µn,t),

and sets µn+1 = µn,∞, the converged estimate of the inner loops of outer iteration n. The constants
{αn,αn,t} are step-sizes for the corresponding subgradient descent steps.
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The constraint set in our LP problem, L(G), has equality constraints so that it is not directly in
the form of Equation (25). However any equality constraint h(µ) = 0 can be rewritten equivalently
as two inequality constraints h(µ) ≤ 0, and −h(µ) ≤ 0; so that one could cast our constrained LP
in the form of (25) and solve it using the constrained subgradient descent method. As regards the
step-sizes, suppose we set αn = ωn, and αn,t according to Polyak’s step-size (Bertsekas, 1995) so
that αn,t =

f j(t)(µn,t)− f j(t)(µ∗)
‖∇ f j(t)(µn,t)‖22

, where µ∗ is the constrained optimum. Since µ∗ is feasible by definition,

f j(µ∗) = 0. Further, for the normalization constraints Css(µ) ! 1 where Css(µ) := ∑xs∈X µs(xs)−1,
we have ‖∇Css(µ)‖2 = m, while for the marginalization constraints Cst(µ) ! 0, where Cst(µ) :=
∑xt∈X µst(xs,xt) = µs(xs), we have ‖∇Cst(µ)‖2 = (m+ 1). It can then be seen that the subgradient
method for constrained optimization applied to our constrained LP with the above step-sizes yields
the same updates as our quadratic proximal scheme.

4. Rounding Schemes with Optimality Guarantees

The graph-structured LP in (4) was a relaxation of the MAP integer program (1), so that there
are two possible outcomes to solving the LP: either an integral vertex is obtained, which is then
guaranteed to be a MAP configuration, or a fractional vertex is obtained, in which case the relax-
ation is loose. In the latter case, a natural strategy is to “round” the fractional solution, so as to
obtain an integral solution (Raghavan and Thompson, 1987). Such rounding schemes may either be
randomized or deterministic. A natural measure of the quality of the rounded solution is in terms of
its value relative to the optimal (MAP) value. There is now a substantial literature on performance
guarantees of various rounding schemes, when applied to particular sub-classes of MAP problems
(e.g., Raghavan and Thompson, 1987; Kleinberg and Tardos, 1999; Chekuri et al., 2005).

In this section, we show that rounding schemes can be useful even when the LP optimum is
integral, since they may permit an LP-solving algorithm to be finitely terminated—that is, before
it has actually solved the LP—while retaining the same optimality guarantees about the final out-
put. An attractive feature of our proximal Bregman procedures is the existence of precisely such
rounding schemes—namely, that under certain conditions, rounding pseudomarginals at intermedi-
ate iterations yields the integral LP optimum. We describe these rounding schemes in the following
sections, and provide two kinds of results. We provide certificates under which the rounded solu-
tion is guaranteed to be MAP optimal; moreover, we provide upper bounds on the number of outer
iterations required for the rounding scheme to obtain the LP optimum.

In the next Section 4.1, we describe and analyze deterministic rounding schemes that are specif-
ically tailored to the proximal Bregman procedures that we have described. Then in the following
Section 4.2, we propose and analyze a graph-structured randomized rounding scheme, which applies
not only to our proximal Bregman procedures, but more broadly to any algorithm that generates a
sequence of iterates contained within the local polytope L(G).

4.1 Deterministic Rounding Schemes

We begin by describing three deterministic rounding schemes that exploit the particular structure of
the Bregman proximal updates.
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4.1.1 NODE-BASED ROUNDING

This method is the simplest of the deterministic rounding procedures, and applies to the quadratic
and entropic updates. It operates as follows: given the vector µn of pseudomarginals at iteration n,
obtain an integral configuration xn(µn) ∈ X N by choosing

xns ∈ argmax
x′s∈X

µn(x′s), for each s ∈V .

We say that the node-rounded solution xn is edgewise-consistent if

(xns ,xnt ) ∈ arg max
(x′s,x′t)∈X×X

µnst(x′s,x′t) for all edges (s, t) ∈ E. (26)

4.1.2 NEIGHBORHOOD-BASED ROUNDING

This rounding scheme applies to all three proximal schemes. For each node s ∈ V , denote its star-
shaped neighborhood graph by Ns = {(s, t)|t ∈ N(s)}, consisting of edges between node s and its
neighbors. Let {QUA,ENT,TRW} refer to the quadratic, entropic, and tree-reweighted schemes
respectively.
(a) Define the neighborhood-based energy function

Fs(x;µn) :=






2µn(xs)+ ∑
t∈N(s)

µn(xs,xt) for QUA

2αs logµns (xs)+ ∑
t∈N(s)

αst logµnst(xs,xt) for ENT

2logµn(xs)+ ∑
t∈N(s)

ρst log µnst(xs,xt)
µns (xs)µnt (xt)

for TRW.

(27)

(b) Compute a configuration xn(Ns) maximizing the function Fs(x;µn) by running two rounds of
ordinary max-product on the star graph.

Say that such a rounding is neighborhood-consistent if the neighborhoodMAP solutions {xn(Ns),s∈
V} agree on their overlaps.

4.1.3 TREE-BASED ROUNDING

This method applies to all three proximal schemes, but most naturally to the TRW proximal method.
Let T1, . . . ,TK be a set of spanning trees that cover the graph (meaning that each edge appears in at
least one tree), and let {ρ(Ti), i = 1, . . . ,K} be a probability distribution over the trees. For each
edge (s, t), define the edge appearance probability ρst = ∑K

i=1ρ(Ti) I[(s, t) ∈ Ti]. Then for each tree
i= 1, . . . ,K:
(a) Define the tree-structured energy function

Fi(x;µn) :=






∑
s∈V
logµn(xs)+ ∑

(s,t)∈E(Ti)

1
ρst
logµnst(xs,xt) for QUA

∑
s∈V

αs logµn(xs)+ ∑
(s,t)∈E(Ti)

αst
ρst
logµnst(xs,xt) for ENT

∑
s∈V
logµn(xs)+ ∑

(s,t)∈E(Ti)
log µnst(xs,xt)

µns (xs)µnt (xt)
for TRW.

(28)
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(b) Run the ordinary max-product problem on energy Fi(x;µn) to find a MAP-optimal configura-
tion xn(Ti).

Say that such a rounding is tree-consistent if the tree MAP solutions {xn(Ti), i = 1, . . . ,M} are all
equal. This notion of tree-consistency is similar to the underlying motivation of the tree-reweighted
max-product algorithm (Wainwright et al., 2005).

4.1.4 OPTIMALITY CERTIFICATES FOR DETERMINISTIC ROUNDING

The following result characterizes the optimality guarantees associated with these rounding schemes,
when they are consistent respectively in the edge-consistency, neighborhood-consistency and tree-
consistency senses defined earlier.

Theorem 2 (Deterministic rounding with MAP certificate) Consider a sequence of iterates {µn}
generated by the quadratic or entropic proximal schemes. For any n = 1,2,3, . . ., any consistent
rounded solution xn obtained from µn via any of the node, neighborhood or tree-rounding schemes
(when applicable) is guaranteed to be a MAP-optimal solution. For the iterates of TRW proximal
scheme, the guarantee holds for both neighborhood and tree-rounding methods.

We prove this claim in Section 4.1.6. It is important to note that such deterministic rounding
guarantees do not apply to an arbitrary algorithm for solving the linear program. At a high-level,
there are two key properties required to ensure guarantees in the rounding. First, the algorithm must
maintain some representation of the cost function that (up to possible constant offsets) is equal to
the cost function of the original problem, so that the set of maximizers of the invariance would
be equivalent to the set of maximizers of the original cost function, and hence the MAP problem.
Second, given a rounding scheme that maximizes tractable sub-parts of the reparameterized cost
function, the rounding is said to be admissible if these partial solutions agree with one another. Our
deterministic rounding schemes and optimality guarantees follow this approach, as we detail in the
proof of Theorem 2.

We note that the invariances maintained by the proximal updates in this paper are closely related
to the reparameterization condition satisfied by the sum-product and max-product algorithms (Wain-
wright et al., 2003). Indeed, each sum-product (or max-product) update can be shown to compute
a new set of parameters for the Markov random field that preserves the probability distribution.
A similar but slightly different notion of reparameterization underlies the tree-reweighted sum-
product and max-product algorithms (Wainwright et al., 2005); for these algorithms, the invariance
is preserved in terms of convex combinations over tree-structured graphs. The tree-reweighted
max-product algorithm attempts to produce MAP optimality certificates that are based on verifying
consistency of MAP solutions on certain tree-structured components whose convex combination
is equal to the LP cost. The sequential TRW-S max-product algorithm of Kolmogorov (2006) is
a version of tree-reweighted max-product using a clever scheduling of the messages to guarantee
monotonic changes in a dual LP cost function. Finally, the elegant work of Weiss et al. (2007)
exploits similar reparameterization arguments to derive conditions under which their convex free-
energy based sum-product algorithms yield the optimal MAP solution.

An attractive feature of all the rounding schemes that we consider is their relatively low compu-
tational cost. The node-rounding scheme is trivial to implement. The neighborhood-based scheme
requires running two iterations of max-product for each neighborhood of the graph. Finally, the
tree-rounding scheme requires O(KN) iterations of max-product, where K is the number of trees
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that cover the graph, and N is the number of nodes. Many graphs with cycles can be covered with
a small number K of trees; for instance, the lattice graph in 2-dimensions can be covered with two
spanning trees, in which case the rounding cost is linear in the number of nodes.

4.1.5 BOUNDS ON ITERATIONS FOR DETERMINISTIC ROUNDING

Of course, the natural question is how many iterations are sufficient for a a given rounding scheme
to succeed. The following result provides a way of deriving such upper bounds:
Corollary 3 Suppose that the LP optimum is uniquely attained at an integral vertex µ∗, and con-
sider algorithms generating sequence {µn} converging to µ∗. Then we have the following guaran-
tees:
(a) for quadratic and entropic schemes, all three types of rounding recover the MAP solution

once ‖µn−µ‖∞ ≤ 1/2.

(b) for the TRW-based proximal method, tree-based rounding recovers the MAP solution once
‖µn−µ‖∞ ≤ 1

4N .
Proof We first claim that if the !∞-bound ‖µn−µ∗‖∞ < 1

2 is satisfied, then the node-based rounding
returns the (unique) MAP configuration, and moreover this MAP configuration x∗ is edge-consistent
with respect to µn. To see these facts, note that the !∞ bound implies, in particular, that at every node
s ∈V , we have

|µns (x∗s )−µ∗s (x∗s )| = |µns (x∗s )−1| <
1
2
,

which implies that µns (x∗s ) > 1/2 as µ∗s (x∗s ) = 1. Due to the non-negativity constraints and marginal-
ization constraint ∑xs∈X µ

n(xs) = 1, at most one configuration can have mass above 1/2. Thus,
node-based rounding returns x∗s at each node s, and hence overall, it returns the MAP configuration
x∗. The same argument also shows that the inequality µnst(x∗s ,x∗t ) > 1

2 holds, which implies that
(x∗s ,x∗t ) = argmaxxs,xt µn(xs,xt) for all (s, t) ∈ E. Thus, we have shown x∗ is edge-consistent for µnst ,
according to the definition (26).

Next we turn to the performance of neighborhood and tree-rounding for the quadratic and en-
tropic updates. For n ≥ n∗, we know that x∗ achieves the unique maximum of µns (xs) at each node,
and µnst(xs,xt) on each edge. From the form of the neighborhood and tree energies (27),(28),
this node- and edge-wise optimality implies that x∗(N(s)) := {x∗t , t ∈ s∪N(s)} maximizes the
neighborhood-based and tree-based cost functions as well, which implies success of neighborhood
and tree-rounding. (Note that the positivity of the weights αs and αst is required to make this asser-
tion.)

For the TRW algorithm in part (b), we note that when ‖µn−µ‖∞ ≤ 1/(4N), then we must have
µns (x∗s )≥ 1−1/(4N) for every node. We conclude that these inequalities imply that x∗ = (x∗1, . . . ,x∗N)
must be the unique MAP on every tree. Indeed, consider the set S = {x ∈ X N | x -= x∗}. By union
bound, we have

P(S) = P[∃s ∈V | xs -= x∗s ]

≤
N

∑
s=1

P(xs -= x∗s )

=
N

∑
s=1

(1−µs(x∗s )) ≤
1
4
,
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showing that we have P(x∗) ≥ 3/4, so that x∗ must be the MAP configuration.
To conclude the proof, note that the tree-rounding scheme computes the MAP configuration on

each tree Ti, under a distribution with marginals µs and µst . Consequently, under the stated condi-
tions, the configuration x∗ must be the unique MAP configuration on each tree, so that tree rounding
is guaranteed to find it.

Using this result, it is possible to bound the number of iterations required to achieve the !∞-
bounds. In particular, suppose that the algorithm has a linear rate of convergence—say that | f (µn)−
f (µ∗)|≤ | f (µ0)− f (µ∗)|γn for some γ ∈ (0,1). For the quadratic or entropic methods, it suffices to
show that ‖µn−µ∗‖2 < 1/2. For the entropic method, there exists some constant C > 0 such that
‖µn−µ∗‖2 ≤ 1

2C | f (µ
n)− f (µ∗)| (cf. Prop. 8, Iusem and Teboulle, 1995). Consequently, we have

‖µn−µ∗‖2 ≤
| f (µ0)− f (µ∗)|

2C
γn.

Consequently, after n∗ := logC| f (µ0)− f (µ∗)|
log(1/γ) iterations, the rounding scheme would be guaranteed to

configuration for the entropic proximal method. Similar finite iteration bounds can also be obtained
for the other proximal methods, showing finite convergence through use of our rounding schemes.

Note that we proved correctness of the neighborhood and tree-based rounding schemes by lever-
aging the correctness of the node-based rounding scheme. In practice, it is possible for neighborhood-
or tree-based rounding to succeed even if node-based rounding fails; however, we currently do not
have any sharper sufficient conditions for these rounding schemes.

4.1.6 PROOF OF THEOREM 2

We now turn to the proof of Theorem 2. At a high level, the proof consists of two main steps.
First, we show that each proximal algorithm maintains a certain invariant of the original MAP
cost function F(x;θ); in particular, the iterate µn induces a reparameterization F(x;µn) of the cost
function such that the set of maximizers is preserved—viz.:

argmax
x∈X N

F(x;θ) := argmax
x∈X N ∑

s∈V,xs∈X
θs(xs)+ ∑

(s,t)∈E,xs,xt∈X
θst(xs,xt) = argmax

x∈X N
F(x;µn). (29)

Second, we show that the consistency conditions (edge, neighborhood or tree, respectively) guaran-
tee that the rounded solution belongs to argmaxx∈X N F(x;µn)

We begin with a lemma on the invariance property:

Lemma 4 (Invariance of maximizers) Define the function

F(x;µ) :=






∑
s∈V

µs(xs)+ ∑
(s,t)∈E

µst(xs,xt) for QUA

∑
s∈V

αs logµs(xs)+ ∑
(s,t)∈E

αst logµst(xs,xt) for ENT

∑
s∈V
logµs(xs)+ ∑

(s,t)∈E
ρst log µst(xs,xt)

µs(xs)µt(xt) for TRW.

(30)

At each iteration n= 1,2,3, . . . for which µn > 0, the function F(x;µn) preserves the set of maximiz-
ers (29).
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The proof of this claim, provided in Appendix C, is based on exploiting the necessary (Lagrangian)
conditions defined by the optimization problems characterizing the sequence of iterations {µn}.

For the second part of the proof, we show how a solution x∗, obtained by a rounding procedure,
is guaranteed to maximize the function F(x;µn), and hence (by Lemma 4) the original cost function
F(x;θ). In particular, we state the following simple lemma:

Lemma 5 The rounding procedures have the following guarantees:

(a) Any edge-consistent configuration from node rounding maximizes F(x;µn) for the quadratic
and entropic schemes.

(b) Any neighborhood-consistent configuration from neighborhood rounding maximizes
F(x;µn) for the quadratic and entropic schemes.

(c) Any tree-consistent configuration from tree rounding maximizes F(x;µn) for all three schemes.

Proof We begin by proving statement (a). Consider an edge-consistent integral configuration x∗
obtained from node rounding. By definition, it maximizes µn(xs) for all s ∈V , and µnst(xs,xt) for all
(s, t) ∈ E, and so by inspection, also maximizes F(x;µn) for the quadratic and proximal cases.

We next prove statement (b) on neighborhood rounding. Suppose that neighborhood round-
ing outputs a single neighborhood-consistent integral configuration x∗. Since x∗N(s) maximizes the
neighborhood energy (27) at each node s ∈V , it must also maximize the sum ∑s∈V Fs(x;µn). A little
calculation shows that this sum is equal to 2F(x;µn), the factor of two arising since the term on edge
(s, t) arises twice, one for neighborhood rooted at s, and once for t.

Turning to claim (c), let x∗ be a tree-consistent configuration obtained from tree rounding. Then
for each i= 1, . . . ,K, the configuration x∗ maximizes the tree-structured function Fi(x;µn), and hence
also maximizes the convex combination ∑K

i=1ρ(Ti)Fi(x;µn). By definition of the edge appearance
probabilities ρst , this convex combination is equal to the function F(x;µn).

4.2 Randomized Rounding Schemes

The schemes considered in the previous section were all deterministic, since (disregarding any pos-
sible ties), the output of the rounding procedure was a deterministic function of the given pseu-
domarginals {µns ,µnst}. In this section, we consider randomized rounding procedures, in which the
output is a random variable.

Perhaps the most naive randomized rounding scheme is the following: for each node r ∈ V ,
assign it value xr ∈ X with probability µnv(xr). We propose a graph-structured generalization of
this naive randomized rounding scheme, in which we perform the rounding in a dependent way
across sub-groups of nodes, and establish guarantees for its success. In particular, we show that
when the LP relaxation has a unique integral optimum that is well-separated from the second best
configuration, then the rounding scheme succeeds with high probability after a pre-specified number
of iterations.

4.2.1 THE RANDOMIZED ROUNDING SCHEME

Our randomized rounding scheme is based on any given subset E ′ of the edge set E. Consider the
subgraph G(E\E ′), with vertex set V , and edge set E\E ′. We assume that E ′ is chosen such that
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the subgraph G(E\E ′) is a forest. That is, we can decompose G(E\E ′) into a union of disjoint
trees, {T1, . . . ,TK}, where Ti = (Vi,Ei), such that the vertex subsets Vi are all disjoint and V =
V1∪V2∪ . . .∪VK . We refer to the edge subset as forest-inducing when it has this property. Note that
such a subset always exists, since E ′ = E is trivially forest-inducing. In this case, the “trees” simply
correspond to individual nodes, without any edges; Vi = {i}, Ei = /0, i= 1, . . . ,N.

For any forest-inducing subset E ′ ⊆ E, Algorithm 5 defines our randomized rounding scheme.

Algorithm 5 RANDOMIZED ROUNDING SCHEME

for subtree indices i= 1, . . . ,K do
Sample a sub-configuration XVi from the probability distribution

p(xVi ;µ(Ti)) = ∏
s∈Vi

µn(xs) ∏
(s,t)∈Ei

µn(xs,xt)
µn(xs)µn(xt)

.

end for
Form the global configuration X ∈ X N by concatenating all the local random samples:

X :=
(
XV1 , . . . ,XVK

)
.

To be clear, the randomized solution X is a function of both the pseudomarginals µn, and the
choice of forest-inducing subset E ′, so that we occasionally use the notation X(µn;E ′) to reflect
explicitly this dependence. Note that the simplest rounding scheme of this type is obtained by
setting E ′ = E. Then the “trees” simply correspond to individual nodes without any edges, and the
rounding scheme is the trivial node-based scheme.

The randomized rounding scheme can be “derandomized” so that we obtain a deterministic
solution xd(µn;E ′) that does at least well as the randomized scheme does in expectation. This
derandomization scheme is shown in Algorithm 6, and its correctness is guaranteed in the following
theorem, proved in Appendix D.

Theorem 6 Let (G = (V,E), θ) be the given MAP problem instance, and let µn ∈ L(G) be any
set of pseudomarginals in the local polytope L(G). Then, for any subset E ′ ⊆ E of the graph G,
the (E ′,µn)-randomized rounding scheme in Algorithm 5, when derandomized as in Algorithm 6
satisfies,

F(xd(µn;E ′);θ) ≥ E

(
F(X(µn;E ′);θ)

)
,

where X(µn;E ′) and xd(µn;E ′) denote the outputs of the randomized and derandomized schemes
respectively.

4.2.2 OSCILLATION AND GAPS

In order to state some theoretical guarantees on our randomized rounding schemes, we require some
notation. For any edge (s, t) ∈ E, we define the edge-based oscillation

δst(θ) := max
xs,xt

[θst(xs,xt)]−minxs,xt
[θst(xs,xt)].
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Algorithm 6 DERANDOMIZED ROUNDING SCHEME
Initialize: µ̄= µn.

for subtree indices i= 1, . . . ,K do
Solve

xdVi = argmax
xVi
∑
s∈Vi

{
θs(xs)+ ∑

t:(s,t)∈E ′
∑
xt
µ̄t(xt)θst(xs,xt)

}
+ ∑

(s,t)∈Ei
θst(xs,xt).

Update µ̄:

µ̄s(xs) =

{ µ̄s(xs) if s /∈Vi
0 if s ∈Vi,xds -= xs
1 if s ∈Vi,xds = xs.

µ̄st(xs,xt) =

{
µ̄st(xs,xt) if (s, t) /∈ Ei
µ̄s(xs)µ̄t(xt) if (s, t) ∈ Ei.

end for
Form the global configuration xd ∈ X N by concatenating all the subtree configurations:

xd :=
(
xdV1 , . . . ,x

d
VK

)
.

We define the node-based oscillation δs(θ) in the analogous manner. The quantities δs(θ) and δst(θ)
are measures of the strength of the potential functions.

We extend these measures of interaction strength to the full graph in the natural way

δG(θ) := max
{
max

(s,t)∈E
δst(θ), max

s∈V
δs(θ)

}
.

Using this oscillation function, we now define a measure of the quality of a unique MAP optimum,
based on its separation from the second most probable configuration. In particular, letting x∗ ∈ X N

denote a MAP configuration, and recalling the notation F(x;θ) for the LP objective, we define the
graph-based gap

Δ(θ;G) :=
min
x -=x∗

[
F(x∗;θ)−F(x;θ)

]

δG(θ)
.

This gap function is a measure of how well-separated the MAP optimum x∗ is from the remaining
integral configurations. By definition, the gap Δ(θ;G) is always non-negative, and it is strictly
positive whenever the MAP configuration x∗ is unique. Finally, note that the gap is invariant to
the translations (θ +→ θ′ = θ+C) and rescalings (θ +→ θ′ = cθ) of the parameter vector θ. These
invariances are appropriate for the MAP problem since the optima of the energy function F(x;θ) are
not affected by either transformation (i.e., argmaxx F(x;θ) = argmaxx F(x;θ′) for both θ′ = θ+C
and θ′ = cθ).
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Finally, for any forest-inducing subset, we let d(E ′) be the maximum degree of any node with
respect to edges in E ′—namely,

d(E ′) := max
s∈V

|t ∈V | (s, t) ∈ E ′|.

4.2.3 OPTIMALITY GUARANTEES FOR RANDOMIZED ROUNDING

We show, in this section, that when the pseudomarginals µn are within a specified !1 norm ball
around the unique MAP optimum µ∗, the randomized rounding scheme outputs the MAP configu-
ration with high probability.

Theorem 7 Consider a problem instance (G,θ) for which the MAP optimum x∗ is unique, and let
µ∗ be the associated vertex of the polytope L(G). For any ε ∈ (0,1), if at some iteration n, we have
µn ∈ L(G), and

‖µn−µ∗‖1 ≤
ε Δ(θ;G)

1+d(E ′)
, (31)

then (E ′,µn)-randomized rounding succeeds with probability greater than 1− ε,

P[X(µn;E ′) = x∗] ≥ 1− ε.

We provide the proof of this claim in Appendix E. It is worthwhile observing that the theorem
applies to any algorithm that generates a sequence {µn} of iterates contained within the local poly-
tope L(G). In addition to the proximal Bregman updates discussed in this paper, it also applies to
interior-point methods (Boyd and Vandenberghe, 2004) for solving LPs. For the naive rounding
based on E ′ = E, the sequence {µn} need not belong to L(G), but instead need only satisfy the
milder conditions µns (xs) ≥ 0 for all s ∈V and xs ∈ X , and ∑xs µ

n
s (xs) = 1 for all s ∈V .

The derandomized rounding scheme enjoys a similar guarantee, as shown in the following the-
orem, proved in Appendix F.

Theorem 8 Consider a problem instance (G,θ) for which the MAP optimum x∗ is unique, and let
µ∗ be the associated vertex of the polytope L(G). If at some iteration n, we have µn ∈ L(G), and

‖µn−µ∗‖1 ≤
Δ(θ;G)

1+d(E ′)
,

then the (E ′,µn)-derandomized rounding scheme in Algorithm 6 outputs the MAP solution,

xd(µn;E ′) = x∗.

4.2.4 BOUNDS ON ITERATIONS FOR RANDOMIZED ROUNDING

Although Theorems 7 and 8 apply even for sequences {µn} that need not converge to µ∗, it is most
interesting when the LP relaxation is tight, so that the sequence {µn} generated by any LP-solver
satisfies the condition µn → µ∗. In this case, we are guaranteed that for any fixed ε ∈ (0,1), the
bound (31) will hold for an iteration number n that is “large enough”. Of course, making this
intuition precise requires control of convergence rates. Recall that N is the number of nodes in
the graph, and m is cardinality of the set X from which all variables takes their values. With this
notation, we have the following.
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Corollary 9 Under the conditions of Theorem 7, suppose that the sequence of iterates {µn} con-
verge to the LP (and MAP) optimum at a linear rate: ‖µn−µ∗‖2 ≤ γn‖µ0−µ∗‖2. Then:

(a) The randomized rounding in Algorithm 5 succeeds with probability at least 1− ε for all iter-
ations greater than

n∗ :=
1
2 log

(
Nm+N2m2

)
+ log

(
‖µ0−µ∗‖2

)
+ log

(1+d(E ′)
Δ(θ;G)

)
+ log(1/ε)

log(1/γ)
.

(b) The derandomized rounding in Algorithm 6 yields the MAP solution for all iterations greater
than

n∗ :=
1
2 log

(
Nm+N2m2

)
+ log

(
‖µ0−µ∗‖2

)
+ log

(1+d(E ′)
Δ(θ;G)

)

log(1/γ)
.

This corollary follows by observing that the vector (µn− µ∗) has less than Nm+N2m2 ele-
ments, so that ‖µn− µ∗‖1 ≤

√
Nm+N2m2 ‖µn− µ∗‖2. Moreover, Theorems 7 and 8 provide an

!1-ball radius such that the rounding schemes succeed (either with probability greater than 1− ε, or
deterministically) for all pseudomarginal vectors within these balls.

5. Experiments

In this section, we provide the results of several experiments to illustrate the behavior of our methods
on different problems. We performed experiments on 4-nearest neighbor grid graphs with sizes
varying from N = 100 to N = 900, using models with either m = 3 or m = 5 labels. The edge
potentials were set to Potts functions, of the form

θst(xs,xt) =

{
βst if xs = xt
0 otherwise.

for a parameter βst ∈ R. These potential functions penalize disagreement of labels if βst > 0,
and penalize agreement if βst < 0. The Potts weights on edges βst were chosen randomly as
Uniform(−1,+1). We set the node potentials as θs(xs) ∼ Uniform(−SNR,SNR), for some signal-
to-noise parameter SNR≥ 0 that controls the ratio of node to edge strengths. In applying all of the
proximal procedures, we set the proximal weights as ωn = n.

5.1 Rates of Convergence

We begin by reporting some results on the convergence rates of proximal updates. Figure 2(a)
plots the logarithmic distance log‖µn− µ∗‖2 versus the number of iterations for grids of differ-
ent sizes (node numbers N ∈ {100,400,900}). Here µn is the iterate at step n entropic proximal
method and µ∗ is the LP optimum. In all cases, note how the curves have an inverted quadratic
shape, corresponding to a superlinear rate of convergence, which is consistent with Proposition 1.
On other hand, Figure 2(b) provides plots of the logarithmic distance versus iteration number for
problem sizes N = 900, and over a range of signal-to-noise ratios SNR (in particular, SNR ∈
{0.05,0.25,0.50,1.0,2.0}). Notice how the plots still show the same inverted quadratic shape, but
that the rate of convergence slows down as the SNR decreases, as is to be expected.
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Figure 2: (a) Plot of distance log10 ‖µn − µ∗‖2 between the current entropic proximal iterate µn
and the LP optimum µ∗ versus iteration number for Potts models on grids with N ∈
{100,400,900} vertices, m = 5 labels and SNR = 1. Note the superlinear rate of con-
vergence, consistent with Proposition 1. (b) Plot of distance log10 ‖µn−µ∗‖2 between the
current entropic proximal iterate µn and the LP optimum µ∗ versus iteration number for
Potts models on grids with m= 5 labels, N = 900 vertices, and a range of signal-to-noise
ratios SNR∈ {0.05,0.25,0.50,1.0,2.0}. The rate of convergence remains superlinear but
slows down as the SNR is decreased.

In Figure 3, we compare two of our proximal schemes—the entropic and the quadratic schemes—
with a subgradient descent method, as previously proposed (Feldman et al., 2002a; Komodakis et al.,
2007). For the comparison, we used a Potts model on a grid of 400 nodes, with each node taking
three labels. The Potts weights were set as earlier, with SNR= 2. Plotted in Figure 3(a) are the log
probabilities of the solutions from the TRW-proximal and entropic proximal methods, compared to
the dual upper bound that is provided by the sub-gradient method. Each step on the horizontal axis
is a single outer iteration for the proximal methods, and five steps of the subgradient method. (We
note that it is slower to perform five subgradient steps than a single proximal outer iteration.) Both
the primal proximal methods and the dual subgradient method converge to the same point. The
TRW-based proximal scheme converges the fastest, essentially within four outer iterations, whereas
the entropic scheme requires a few more iterations. The convergence rate of the subgradient ascent
method is slower than both of these proximal schemes, even though we allowed it to take more steps
per “iteration”. In Figure 3(b), we plot a number of traces showing the number of inner iterations
(vertical axis) required as a function of outer iteration (horizontal axis). The average number of
inner iterations is around 20, and only rarely does the algorithm require substantially more.

5.2 Comparison of Rounding Schemes

In Figure 4, we compare five of our rounding schemes on a Potts model on grid graphs withN = 400,
m = 3 labels and SNR = 2. For the graph-structured randomized rounding schemes, we used the
node-based rounding scheme (so that E\E ′ = /0), and the chain-based rounding scheme (so that
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Figure 3: (a) Plots of the function value (for fractional iterates µn) versus number of iterations for
a Potts model with N = 400 vertices, m = 3 labels and SNR = 2. Three methods are
compared: a subgradient method (Feldman et al., 2002b; Komodakis et al., 2007), the
entropic proximal method (Ent. Prox.), and the TRW-based proximal method (TRW
Prox.). (b) Traces of different algorithm runs showing the number of inner iterations
(vertical axis) versus the outer iteration number (horizontal axis). Typically around 20
inner iterations are required.

E\E ′ is the set of horizontal chains in the grid). For the deterministic rounding schemes, we used
the node-based, neighborhood-based and the tree-based rounding schemes. Panel (a) of Figure 4
shows rounding schemes as applied to the entropic proximal algorithm, whereas panel (b) shows
rounding schemes applied to the TRW proximal scheme. In both plots, the tree-based and star-based
deterministic schemes are the first to return an optimal solution, whereas the node-based randomized
scheme is the slowest in both plots. Of course, this type of ordering is to be expected, since the tree
and star-based schemes look over larger neighborhoods of the graph, but incur larger computational
cost.

6. Discussion

In this paper, we have developed distributed algorithms, based on the notion of proximal sequences,
for solving graph-structured linear programming (LP) relaxations. Our methods respect the graph
structure, and so can be scaled to large problems, and they exhibit a superlinear rate of convergence.
We have also developed a series of graph-structured rounding schemes that can be used to gener-
ate integral solutions along with a certificate of optimality. These optimality certificates allow the
algorithm to be terminated in a finite number of iterations.

The structure of our algorithms naturally lends itself to incorporating additional constraints,
both linear and other types of conic constraints. It would be interesting to develop an adaptive ver-
sion of our algorithm, which selectively incorporated new constraints as necessary, and then used
the same proximal schemes to minimize the new conic program. Our algorithms for solving the
LP are primal-based, so that the updates are in terms of the pseudo-marginals µ that are the primal
parameters of the LP. This is contrast to typical message-passing algorithms such as tree-reweighted
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Figure 4: Plots of the log probability of rounded solutions versus the number of iterations for the
entropic proximal scheme (panel (a)), and the TRW proximal scheme (panel (b)). In both
cases, five different rounding schemes are compared: node-based randomized rounding
(Node Rand.), chain-based randomized rounding (Chain Rand.), node-based determinis-
tic rounding (Node. Det.), star-based deterministic rounding (Star Det.), and tree-based
deterministic rounding (Tree Det.).

max-product, which are dual-based and where the updates are entirely in terms of message param-
eters that are the dual parameters of the LP. However, the dual of the LP is non-differentiable, so
that these dual-based updates could either get trapped in local minima (dual co-ordinate ascent) or
have sub-linear convergence rates (dual sub-gradient ascent). On the one hand, our primal-based
algorithm converges to the LP minimum, and has at least linear convergence rates. On the other, it
is more memory-intensive because of the need to maintain O(|E|) edge pseudo-marginal parame-
ters. It would be interesting to modify our algorithms so that maintaining these explicitly could be
avoided; note that our derandomized rounding scheme (Algorithm 4.2.1) does not make use of the
edge pseudo-marginal parameters.
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Appendix A. Corrections to Bregman Projections

We briefly outline the corrections needed to cyclic Bregman projections for the case where the
constraints are linear inequalities. It is useful, in order to characterize these needed corrections,
to first note that these cyclic projections are equivalent to co-ordinate ascent steps on the dual of
the Bregman projection problem (13). Let the linear constraint set for the Bregman projection
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problem (13) beC ≡ ∩i{〈ai, µ〉 ≤ bi}. Its Lagrangian can be written as

L(µ,z) = Df (µ‖ν)+∑
i
zi(〈ai, µ〉−bi),

where z≥ 0 are the Lagrangian or dual parameters. The dual function is given as g(z)=minµL(µ,z),
so that the dual problem can be written as

min
z≥0

g(z).

If the constraints were linear equalities, the dual variables {z} would be unconstrained, and itera-
tive co-ordinate ascent—which can be verified to be equivalent to cyclic projections of the primal
variables onto individual constraints—would suffice to solve the dual problem. However, when the
constraints have inequalities, the dual problem is no longer unconstrained: the dual variables are
constrained to be positive. We would thus need to constrain the co-ordinate ascent steps. This can
also be understood as the following primal-dual algorithmic scheme. Note that a necessary KKT
condition for optimality of a primal-dual pair (µ,z) for (13) is

∇ f (µ) = ∇ f (ν)−∑
i
ziai. (32)

The primal-dual algorithmic scheme then consists of maintaining primal-dual iterates (µt ,zt) which
satisfy the equality (32), are dual feasible with zt ≥ 0, and which entail co-ordinate ascent on the
dual problem, so that g(zt+1) ≥ g(zt) with at most one co-ordinate of µt updated in µt+1. We can
now write down the corrected-projection update of µt given the single constraintCi ≡ {〈ai, µ〉 ≤ bi}.
According to the primal-dual algorithmic scheme this corresponds to co-ordinate ascent on the i-th
co-ordinate of zt so that (32) is maintained, whereby

∇ f (µt+1) = ∇ f (µt)+Cai, (33)
zt+1 = zt−Cei,
C := min{zti, β},

where ei is the co-ordinate vector with one in the i-th co-ordinate and zero elsewhere, and β is the
i-th dual parameter setting corresponding to an unconstrained co-ordinate ascent update,

∇ f (µ) = ∇ f (µn)+βai, (34)
〈µ, ai〉 = bi.

One could derive such corrections corresponding to constrained dual ascent for general convex
constraints (Dykstra, 1985; Han, 1988).

Appendix B. Detailed Derivation of Message-passing Updates

In this appendix, we provided detailed derivation of the message-passing updates for the inner loops
of the algorithms.
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B.1 Derivation of Algorithm 2

Consider the edge marginalization constraint for edge (s, t), Li(G) ≡ ∑xt µst(xs,xt) = µs(xs). De-
noting the dual (Lagrange) parameter corresponding to the constraint by λst(xs), the Karush-Kuhn-
Tucker conditions for the quadratic update (18) are given by

∇q(µn,τ+1st (xs,xt)) = ∇q(µn,τst (xs,xt))+λst(xs),
∇q(µn,τ+1s (xs)) = ∇q(µn,τs (xs))−λst(xs),
µn,τ+1st (xs,xt) = µn,τst (xs,xt)+λst(xs),
µn,τ+1s (xs) = µn,τs (xs)−λst(xs),

while the constraint itself gives

∑
xt
µn,τ+1st (xs,xt) = µn,τs (xs).

Solving for λst(xs) yields Equation (20). The node marginalization follows similarly.
The only inequalities are the positivity constraints, requiring that the node and edge pseudo-

marginals be non-negative. Following the correction procedure for Bregman projections in (33), we
maintain Lagrange dual variables corresponding to these constraints. We use Zs(xs) as the Lagrange
variables for the node positivity constraints µs(xs) ≥ 0, and Zst(xs,xt) for the edge-positivity con-
straints µst(xs,xt) ≥ 0.

Consider the projection of {µn,τ+1} onto the constraint µs(xs)≥ 0. Following (34), we first solve
for βs(xs) that satisfies

µs(xs) = µn,τ+1s (xs)−βs(xs),
µs(xs) = 0,

so that βs(xs) = µn,τ+1s (xs). Substituting in (33), we obtain the update

Cs(xs) = min{Zs(xs),µ
(n,τ+1)
s (xs)},

Zs(xs) = Zs(xs)−Cs(xs),

µ(n,τ+1)
s (xs) = µ(n,τ+1)

s (xs)−Cs(xs).

The edge positivity constraint updates follow similarly.
Thus overall, we obtain message-passing Algorithm 2 for the inner loop.

B.2 Derivation of Algorithm 3

Note that we do not need to explicitly impose positivity constraints in this case. Because the domain
of the entropic Bregman function is the positive orthant, if we start from a positive point, any further
Bregman projections would also result in a point in the positive orthant.

The projection µn,τ+1 = Πh(µn,τ,Li(G)) onto the individual constraint Li(G) is defined by the
optimization problem:

µn,τ+1 = min
Li(G)

{h(µ)−µ6∇h(µn,τ)}.
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Consider the subset Li(G) defined by the marginalization constraint along edge (s, t), namely
∑x′t∈X µst(xs,x

′
t) = µs(xs) for each xs ∈ X . Denoting the dual (Lagrange) parameters correspond-

ing to these constraint by λst(xs), the KKT conditions are given by

∇h(µn,τ+1st (xs,xt)) = ∇h(µn,τst (xs,xt))+λst(xs), and
∇h(µn,τ+1s (xs)) = ∇h(µn,τs (xs))−λst(xs).

Computing the gradient ∇h and performing some algebra yields the relations

µ(n,τ+1)
st (xs,xt) = µ(n,τ)

st (xs,xt)exp(λ
(n,τ+1)
st (xs)),

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)exp(−λ
(n,τ+1)
st (xs)), and

exp(2λ(n,τ+1)
st (xs)) =

µ(n,τ)
s (xs)

∑xt µ
(n,τ)
st (xs,xt)

,

from which the updates (22) follow.
Similarly, for the constraint set defined by the node marginalization constraint

∑xs∈X µs(xs) = 1, we have ∇h(µ(n,τ+1)
s (xs)) = ∇h(µ(n,τ)

s (xs))+λ(n,τ+1)
s , from which

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)exp(λ
(n,τ+1)
s ), and

exp(λ(n,τ+1)
s ) = 1/ ∑

xs∈X
µ(n,τ)
s (xs).

The updates in Equation (23) follow.

Appendix C. Proof of Lemma 4

We provide a detailed proof for the entropic scheme; the arguments for other proximal algorithms
are analogous. The key point is the following: regardless of how the proximal updates are com-
puted, they must satisfy the necessary Lagrangian conditions for optimal points over the set L(G).
Accordingly, we define the following sets of Lagrange multipliers:

λss for the normalization constraintCss(µs) = ∑x′s µs(x
′
s)−1= 0,

λst(xs) for the marginalization constraintCts(xs) = ∑x′t µst(xs,x
′
t)−µs(xs) = 0,

γst(xs,xt) for the non-negativity constraint µst(xs,xt) ≥ 0.

(There is no need to enforce the non-negativity constraint µs(xs) ≥ 0 directly, since it is implied by
the non-negativity of the joint pseudo-marginals and the marginalization constraints.)

With this notation, consider the Lagrangian associated with the entropic proximal update at step
n:

L(x;λ,γ) =C(µ;θ,µn)+ 〈γ, µ〉+∑
s∈V

λssCss(xs)+ ∑
(s,t)∈E

[
λts(xs)Cts(xs)+λst(xt)Cst(xt)

]
,

whereC(µ;θ,µn) is shorthand for the cost component−〈θ, µ〉+ 1
ωn Dα(µ‖µn). UsingC,C′ to denote

constants (whose value can change from line to line), we now take derivatives to find the necessary
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Lagrangian conditions:

∂L
∂µs(xs)

= −θs(xs)+
2αs
ωn

log
µs(xs)
µns (xs)

+C+λss+ ∑
t∈N(s)

λts(xs), and

∂L
∂µst(xs,xt)

= −θst(xs,xt)+
2αst
ωn

log
µst(xs,xt)
µnst(xs,xt)

+C′ + γst(xs,xt)−λts(xs)−λst(xt).

Solving for the optimum µ= µn+1 yields

2αs
ωn

logµn+1s (xs) = θs(xs)+
2αs
ωn

logµns (xs)− ∑
t∈N(s)

λts(xs)+C,

2αst
ωn

logµn+1st (xs,xt) = θst(xs,xt)+
2αst
ωn

logµnst(xs,xt)− γst(xs,xt)

+λts(xs)+λst(xt)+C′.

From these conditions, we can compute the energy invariant (30):

2
ωn
F(x;µn+1) = ∑

s∈V

2αs
ωn

logµn+1s (xs)+ ∑
(s,t)∈E

2αst
ωn

logµn+1st (xs,xt)+C

= F(x;θ)+
2
ωn

{

∑
s∈V

αs logµn(xs)+ ∑
(s,t)∈E

αst logµnst(xs,xt)
}

− ∑
(s,t)∈E

γst(xs,xt)+C

= F(x;θ)+
2
ωn
F(x;µn)− ∑

(s,t)∈E
γst(xs,xt)+C.

Now since µn > 0, by complementary slackness, we must have γst(xs,xt) = 0, which implies that

2
ωn
F(x;µn+1) = F(x;θ)+

2
ωn
F(x;µn)+C. (35)

From this equation, it is a simple induction to show for some constants γn > 0 and Cn ∈ R,
we have F(x;µn) = γnF(x;θ) +Cn for all iterations n = 1,2,3, . . ., which implies preservation of
the maximizers. If at iteration n = 0, we initialize µ0 = 0 to the all-uniform distribution, then we
have 2

ω1F(x;µ1) = F(x;θ)+C′, so the statement follows for n = 1. Suppose that it holds at step n;
then 2

ωn F(x;µn) = 2
ωn γnF(x;θ)+ 2Cn

ωn
, and hence from the induction step (35), we have F(x;µn+1) =

γn+1F(x;θ)+Cn+1, where γn+1 = ωn
2 γn.

Appendix D. Proof of Theorem 6

Consider the expected cost of the configuration X(µn;E ′) obtained from the randomized rounding
procedure of Algorithm 5. A simple computation shows that

E[F(X(µn;E ′);θ)] = G(µ̄) :=
K

∑
i=1

H(µn;Ti)+H(µn;E ′),
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where

H(µn;Ti) := ∑
s∈Vi
∑
xs
µns (xs)θs(xs)+ ∑

(s,t)∈Ei
∑
xs,xt

µnst(xs,xt)θst(xs,xt), (36)

H(µn;E ′) := ∑
(u,v)∈E ′

∑
xs,xt

µnu(xu)µnv(xv)θst(xu,xv).

We now show by induction that the de-randomized rounding scheme achieves cost at least as
large as this expected value. Let µ̄(i) denote the updated pseudomarginals at the end of the i-th
iteration. Since we initialize with µ̄(0) = µn, we have G(µ̄(0)) = E[F(X(µn;E ′);θ)]. Consider the i-th
step of the algorithm; the algorithm computes the portion of the de-randomized solution xdVi over the
i−th tree. It will be convenient to use the decomposition G= Gi+G\i, where

Gi(µ̄) := ∑
s∈Vi
∑
xs
µ̄s(xs)

{
θs(xs)+ ∑

{t | (s,t)∈E ′}
∑
xt
µ̄t(xt)θst(xs,xt)

}
+

∑
(s,t)∈Ei

∑
xs,xt

µ̄st(xs,xt)θst(xs,xt),

and G\i = G−Gi. If we define

Fi(xVi) := ∑
s∈Vi

{
θs(xs)+ ∑

t:(s,t)∈E ′
∑
xt
µ̄(i−1)
t (xt)θst(xs,xt)

}
+ ∑

(s,t)∈Ei
θst(xs,xt),

it can be seen that Gi(µ̄(i−1)) = E[Fi(xVi)] where the expectation is under the tree-structured distri-
bution over XVi given by

p(xVi ; µ̄(i−1)(Ti)) = ∏
s∈Vi

µ̄(i−1)(xs) ∏
(s,t)∈Ei

µ̄(i−1)(xs,xt)
µ̄(i−1)(xs)µ̄(i−1)(xt)

.

Thus when the algorithm makes the choice xdVi = argmaxxVi Fi(xVi), it holds that

Gi(µ̄(i−1)) = E[Fi(xVi)] ≤ Fi(xdVi).

The updated pseudomarginals µ̄(i) at the end the i-th step of the algorithm are given by,

µ̄(i)
s (xs) =

{ µ̄(i−1)
s (xs) if s /∈Vi
0 if s ∈Vi,Xd,s -= xs
1 if s ∈Vi,Xd,s = xs.

}
,

µ̄(i)
st (xs,xt) =

{
µ̄(i−1)
st (xs,xt) if (s, t) /∈ Ei

µ̄(i)
s (xs)µ̄

(i)
t (xt) if (s, t) ∈ Ei.

In other words, µ̄(i)(Ti) is the indicator vector of the maximum energy sub-configuration xdVi . Con-
sequently, we have

Gi(µ̄(i)) = Fi(xdVi) ≥ Gi(µ̄(i−1)),

and G\i(µ̄(i)) =G\i(µ̄(i−1)), so that at the end of the i-th step, G(µ̄(i)) ≥G(µ̄(i−1)). By induction, we
conclude that G(µ̄(K)) ≥ G(µ̄(0)), where K is the total number of trees in the rounding scheme.

At the end of K steps, the quantity µ̄(K) is the indicator vector for xd(µn;E ′) so that G(µ̄(K)) =
F(Xd(µn;E ′);θ). We have also shown that G(µ̄(0)) = E[F(X(µn;E ′);θ)]. Combining these pieces,
we conclude that F(xd(µn;E ′);θ) ≥ E[F(X(µn;E ′);θ)], thereby completing the proof.
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Appendix E. Proof of Theorem 7

Let psucc = P[X(µn;E ′) = x∗], and let R(µn;E ′) denote the (random) integral vertex of L(G) that is
specified by the random integral solution X(µn;E ′). (Since E ′ is some fixed forest-inducing subset,
we frequently shorten this notation to R(µn).) We begin by computing the expected cost of the
random solution, where the expectation is taken over the rounding procedure. A simple computation
shows that E[〈θ, R(µn)〉] := ∑K

i=1H(µn;Ti)+H(µn;E ′), whereH(µn;Ti) andH(µn;E ′)were defined
previously (36).

We now upper bound the difference 〈θ, µ∗〉−E[〈θ, R(µn)〉]. For each subtree i = 1, . . . ,K, the
quantity Di := H(µ∗;Ti)−H(µn;Ti) is upper bounded as

Di = ∑
s∈Vi
∑
xs

[
µ∗s (xs)−µns (xs)

]
θs(xs)+ ∑

(s,t)∈Ei
∑
xs,xt

[
µ∗s (xs)µ∗t (xt)−µnst(xs,xt)

]
θst(xs,xt)

≤ ∑
s∈Vi

δs(θ)∑
xs
|µ∗s (xs)−µns (xs)|+ ∑

(s,t)∈Ei
δst(θ)∑

xs,xt
|µ∗st(xs,xt)−µn(xs,xt)|.

In asserting this inequality, we have used the fact that that the matrix with entries given by
µ∗s (xs)µ∗t (xt)−µnst(xs,xt) is a difference of probability distributions, meaning that all its entries are
between −1 and 1, and their sum is zero.

Similarly, we can upper bound the difference D(E ′) =H(µ∗;E ′)−H(µn;E ′) associated with E ′:

D(E ′) = ∑
(u,v)∈E ′

∑
xu,xv

[
µ∗u(xu)µ∗v(xv)−µnu(xu)µnv(xv)

]
θuv(xu,xv)

≤ ∑
(u,v)∈E ′

δuv(θ) ∑
xu,xv

∣∣∣∣µ
∗
u(xu)µ∗v(xv)−µnu(xu)µnv(xv)

∣∣∣∣

≤ ∑
(u,v)∈E ′

δuv(θ) ∑
xu,xv

{∣∣∣∣µ
∗
u(xu)[µ∗v(xv)−µnv(xv)]

∣∣∣∣+
∣∣∣∣µ
n
v(xv)[µ∗u(xu)−µnu(xu)]

∣∣∣∣

}

≤ ∑
(u,v)∈E ′

δuv(θ)

{

∑
xu
|µnu(xu)−µ∗u(xu)|+∑

xu
|µnv(xv)−µ∗v(xv)|

}
.

Combining the pieces, we obtain

〈θ, µ∗〉−E[〈θ, R(µn)〉] ≤ δG(θ)

{
‖µn−µ∗‖1+∑

s∈V
d(s;E ′)∑

xs
|µns (xs)−µ∗s (xs)|

}

≤ (1+d(E ′))δG(θ)‖µn−µ∗‖1. (37)

In the other direction, we note that when the rounding fails, then we have

〈θ, µ∗〉−〈θ, R(µn)〉 ≥ max
x -=x∗

[F(x∗;θ)−F(x;θ)].

Consequently, conditioning on whether the rounding succeeds or fails, we have

〈θ, µ∗〉−E[〈θ, R(µn)〉] ≥ psucc
[
〈θ, µ∗〉−〈θ, µ∗〉

]
+(1− psucc)max

x -=x∗
[F(x∗;θ)−F(x;θ)]

= (1− psucc)max
x -=x∗

[F(x∗;θ)−F(x;θ)].

1076



MESSAGE-PASSING FOR GRAPH-STRUCTURED LINEAR PROGRAMS

Combining this lower bound with the upper bound (37), performing some algebra, and using the
definition of the gap Δ(θ;G) yields that the probability of successful rounding is at least

psucc ≥ 1−
(1+d(E ′))

Δ(θ;G)
‖µn−µ∗‖1.

If the condition (31) holds, then this probability is at least 1− ε, as claimed.

Appendix F. Proof of Theorem 8

The proof follows that of Theorem 7 until Equation (37), which gives

〈θ, µ∗〉−E[〈θ, R(µn)〉] ≤ (1+d(E ′))δG(θ)‖µn−µ∗‖1.

Let vd(µn;E ′) denote the integral vertex of L(G) that is specified by the de-randomized integral so-
lution xd(µn;E ′). Since E ′ is some fixed forest-inducing subset, we frequently shorten this notation
to vd(µn). Theorem 6 shows that

E[〈θ, R(µn)〉] ≤ 〈θ, vd(µn)〉.

Suppose the de-randomized solution is not optimal so that vd(µn) -=µ∗. Then, from the definition
of the graph-based gap Δ(θ;G), we obtain

〈θ, µ∗〉−〈θ, vd(µn)〉 ≥ δG(θ)Δ(θ;G).

Combining the pieces, we obtain

δG(θ)Δ(θ;G) ≤ 〈θ, µ∗〉−〈θ, vd(µn)〉
≤ 〈θ, µ∗〉−E[〈θ, R(µn)〉]
≤ (1+d(E ′))δG(θ)‖µn−µ∗‖1,

which implies ‖µn−µ∗‖1 ≥ Δ(θ;G)
1+d(E ′) . However, this conclusion is a contradiction under the given

assumption on ‖µn−µ∗‖1 in the theorem. It thus holds that the de-randomized solution vd(µn) is
equal to the MAP optimum µ∗, thereby completing the proof.
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Abstract
We consider learning formulations with non-convex objective functions that often occur in practical
applications. There are two approaches to this problem:

• Heuristic methods such as gradient descent that only find a local minimum. A drawback of
this approach is the lack of theoretical guarantee showing that the local minimum gives a good
solution.

• Convex relaxation such as L1-regularization that solves the problem under some conditions. How-
ever it often leads to a sub-optimal solution in reality.

This paper tries to remedy the above gap between theory and practice. In particular, we present a
multi-stage convex relaxation scheme for solving problems with non-convex objective functions.
For learning formulations with sparse regularization, we analyze the behavior of a specific multi-
stage relaxation scheme. Under appropriate conditions, we show that the local solution obtained by
this procedure is superior to the global solution of the standard L1 convex relaxation for learning
sparse targets.
Keywords: sparsity, non-convex optimization, convex relaxation, multi-stage convex relaxation

1. Introduction

We consider the general regularization framework for machine learning, where a loss function is
minimized, subject to a regularization condition on the model parameter. For many natural machine
learning problems, either the loss function or the regularization condition can be non-convex. For
example, the loss function is non-convex for classification problems, and the regularization condi-
tion is non-convex in problems with sparse parameters.

A major difficulty with nonconvex formulations is that the global optimal solution cannot be
efficiently computed, and the behavior of a local solution is hard to analyze. In practice, convex
relaxation (such as support vector machine for classification or L1 regularization for sparse learning)
has been adopted to remedy the problem. The choice of convex formulation makes the solution
unique and efficient to compute. Moreover, the solution is easy to analyze theoretically. That
is, it can be shown that the solution of the convex formulation approximately solves the original
problem under appropriate assumptions. However, for many practical problems, such simple convex
relaxation schemes can be sub-optimal.
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Because of the above gap between practice and theory, it is important to study direct solutions
of non-convex optimization problems beyond the standard convex relaxation. Our goal is to design
a numerical procedure that leads to a reproducible solution which is better than the standard convex
relaxation solution. In order to achieve this, we present a general framework of multi-stage con-
vex relaxation, which iteratively refine the convex relaxation formulation to give better solutions.
The method is derived from concave duality, and involves solving a sequence of convex relaxation
problems, leading to better and better approximations to the original nonconvex formulation. It
provides a unified framework that includes some previous approaches (such as LQA Jianqing Fan,
2001, LLA Zou and Li, 2008, CCCP Yuille and Rangarajan, 2003) as special cases. The procedure
itself may be regarded as a special case of alternating optimization, which automatically ensures its
convergence. Since each stage of multi-stage convex relaxation is a convex optimization problem,
the approach is also computationally efficient. Although the method only leads to a local optimal
solution for the original nonconvex problem, this local solution is a refinement of the global solution
for the initial convex relaxation. Therefore intuitively one expects that the local solution is better
than the standard one-stage convex relaxation. In order to prove this observation more rigorously,
we consider least squares regression with nonconvex sparse regularization terms, for which we can
analyze the effectiveness of the multi-stage convex relaxation. It is shown that under appropriate
assumptions, the (local) solution computed by the multi-stage convex relaxation method using non-
convex regularization achieves better parameter estimation performance than the standard convex
relaxation with L1 regularization.

The main contribution of this paper is the analysis of sparse regularized least squares regression
presented in Section 3, where we derive theoretical results showing that under appropriate condi-
tions, it is beneficial to use multi-stage convex relaxation with nonconvex regularization as opposed
to the standard convex L1 regularization. This demonstrates the effectiveness of multi-stage convex
relaxation for a specific but important problem. Although without theoretical analysis, we shall also
present the general idea of multi-stage convex relaxation in Section 2, because it can be applied to
other potential application examples as illustrated in Appendix C. The gist of our analysis can be
applied to those examples (e.g., the multi-task learning problem in the setting of matrix completion,
which has drawn significant attention recently) as well. However, the detailed derivation will be
specific to each application and the analysis will not be trivial. Therefore while we shall present a
rather general form of multi-stage convex relaxation formulation in order to unify various previous
approaches, and put this work in a broader context, the detailed theoretical analysis (and empirical
studies) for other important applications will be left to future work.

2. Multi-stage Convex Relaxation

This section presents the general idea of multi-stage convex relaxation which can be applied to
various optimization problems. It integrates a number of existing ideas into a unified framework.

2.1 Regularized Learning Formulation

The multi-stage convex relaxation approach considered in the paper can be applied to the following
optimization problem, which can be motivated from supervised learning formulation. As back-
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ground information, its connection to regularized learning formula (15) is given in Appendix B.

ŵ=argmin
w
R(w),

R(w) = R0(w)+
K

∑
k=1

Rk(w), (1)

where w= [w1, . . . ,wd] ∈ Rd is a d-dimensional parameter vector, and R(w) is the general form of
a regularized objective function. Moreover, for convenience, we assume that R0(w) is convex in w,
and each Rk(w) is non-convex. In the proposed work, we shall employ convex/concave duality to
derive convex relaxations of (1) that can be efficiently solved.

Related to (1), one may also consider the constrained formulation

ŵ= argmin
w
R0(w) subject to

K

∑
k=1

Rk(w) ≤ A, (2)

where A is a constant. One may also mix (1) and (2).

2.2 Concave Duality

In the following discussion, we consider a single nonconvex component Rk(w) in (1), which we
shall rewrite using concave duality. Let hk(w) : Rd →Ωk ⊂ Rdk be a vector function with Ωk being
the convex hull of its range. It may not be a one-to-one map. However, we assume that there exists
a function R̄k defined on Ωk so that we can express Rk(w) as

Rk(w) = R̄k(hk(w)).

Assume that we can find hk so that the function R̄k(uk) is concave on uk ∈ Ωk. Under this
assumption, we can rewrite the regularization function Rk(w) as:

Rk(w) = inf
vk∈Rdk

[

v'k hk(w)−R∗
k(vk)

]

(3)

using concave duality (Rockafellar, 1970). In this case, R∗
k(vk) is the concave dual of R̄k(uk) given

below
R∗
k(vk) = inf

uk∈Ωk

[

v'k uk− R̄k(uk)
]

.

Note that using the convention in convex analysis (Rockafellar, 1970), we may assume that R∗
k(vk) is

defined on Rdk but may take−∞ value. Equivalently, we may consider the subset {vk :R∗
k(vk) >−∞}

as the feasible region of the optimization problem (3), and assume that R∗
k(vk) is only defined on

this feasible region.
It is well-known that the minimum of the right hand side of (3) is achieved at

v̂k = ∇uR̄k(u)|u=hk(w). (4)

This is the general framework we suggest in the paper. For illustration, some example non-
convex problems encountered in machine learning are included in Appendix C.
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2.3 Penalized Formulation

Let hk(w) be a vector function with convex components, so that (3) holds. Given an appropriate
vector vk ∈ Rdk , a simple convex relaxation of (1) becomes

ŵ= arg min
w∈Rd

[

R0(w)+
K

∑
k=1
hk(w)'vk

]

. (5)

This simple relaxation yields a solution that is different from the solution of (1). However, if each
hk satisfies the condition of Section 2.2, then it is possible to write Rk(w) using (3). Now, with this
new representation, we can rewrite (1) as

[ŵ, v̂] = arg min
w,{vk}

[

R0(w)+
K

∑
k=1

(hk(w)'vk−R∗
k(vk))

]

. (6)

This is clearly equivalent to (1) because of (3). If we can find a good approximation of v̂= {v̂k} that
improves upon the initial value of v̂k = 1, then the above formulation can lead to a refined convex
problem in w that is a better convex relaxation than (5).

Our numerical procedure exploits the above fact, which tries to improve the estimation of vk
over the initial choice of vk = 1 in (5) using an iterative algorithm. This can be done using an
alternating optimization procedure, which repeatedly applies the following two steps:

• First we optimize w with v fixed: this is a convex problem in w with appropriately chosen
h(w).

• Second we optimize v with w fixed: although non-convex, it has a closed form solution that
is given by (4).

Initialize v̂= 1
Repeat the following two steps until convergence:

• Let

ŵ= argmin
w

[

R0(w)+
K

∑
k=1
hk(w)'v̂k

]

. (7)

• Let v̂k = ∇uR̄k(u)|u=hk(ŵ) (k = 1, . . . ,K)

Figure 1: Multi-stage Convex Relaxation Method

The general procedure for solving (6) is presented in Figure 1. It can be regarded as a gen-
eralization of CCCP (concave-convex programming) (Yuille and Rangarajan, 2003), which takes
h(w) =w. It is also more general than LQA (local quadratic approximation) (Jianqing Fan, 2001) or
LLA (local linear approximation) (Zou and Li, 2008). Specifically LQA takes h j(ŵ) =w2j and LLA
takes h j(ŵ) = |w j|. The justification of those procedures rely on the so-called MM (majorization-
minimization) principle, where an upper bound of the objective function is minimized at each step
(see Zou and Li, 2008 and references therein). However, in order to apply MM, for each particular
choice of h, one has to demonstrate that the convex relaxation is indeed an upper bound, which is
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necessary to show convergence. In the concave relaxation formulation adopted in this work, the
justification of convergence is automatically embedded in (6), which becomes a joint optimization
problem. Figure 1 is simply an alternating optimization procedure for solving (6), which is equiva-
lent to (1). Since convex duality of many interesting objective functions (including matrix functions)
are familiar to many machine learning researchers, the concave duality derivation presented here
can be automatically applied to various applications without the need to worry about convergence
justification. This will be especially useful for complex formulations such as structured or matrix
regularization, where the more traditional MM idea cannot be easily applied. One may also regard
our framework as a principled method to design a class of algorithms that may be interpreted as
MM procedures. Some examples illustrate its applications are presented in Appendix C.

Note that by repeatedly refining the parameter v, we can potentially obtain better and better
convex relaxation in Figure 1, leading to a solution superior to that of the initial convex relaxation.
Since at each step the procedure decreases the objective function in (6), its convergence to a local
minimum is easy to show. In fact, in order to achieve convergence, one only needs to approximately
minimize (7) and reasonably decrease the objective value at each step. We skip the detailed analysis
here, because in the general case, a local solution is not necessarily a good solution, and there
are other approaches (such as gradient descent) that can compute a local solution. In order to
demonstrate the effectiveness of multi-stage convex relaxation, we shall include a more careful
analysis for the special case of sparse regularization in Section 3.1. Our theory shows that the local
solution of multi-stage relaxation with a nonconvex sparse regularizer is superior to the convex L1
regularization solution (under appropriate conditions).

2.4 Constrained Formulation

The multi-stage convex relaxation idea can also be used to solve the constrained formulation (2).
The one-stage convex relaxation of (2), given fixed relaxation parameter vk, becomes

ŵ= arg min
w∈Rd

R0(w) subject to
K

∑
k=1
hk(w)'vk ≤ A+

K

∑
k=1

R∗
k(vk).

Because of (3), the above formulation is equivalent to (2) if we optimize over v. This means that by
optimizing v in addition to w, we obtain the following algorithm:

• Initialize v̂= 1

• Repeat the following two steps until convergence:

– Let

ŵ= argmin
w
R0(w) subject to

K

∑
k=1
hk(w)'v̂k ≤ A+

K

∑
k=1

R∗
k(v̂k).

– Let v̂k = ∇uR̄k(u)|u=hk(ŵ) (k = 1, . . . ,K)

If an optimization problem includes both nonconvex penalization and nonconvex constrains,
then one may use the above algorithm with Figure 1.
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3. Multi-stage Convex Relaxation for Sparse Regularization

The multi-stage convex relaxation method described in the previous section tries to obtain better
approximations of the original nonconvex problem by refining the convex relaxation formulation.
Since the local solution found by the algorithm is the global solution of a refined convex relaxation
formulation, it should be closer to the desired solution than that of the standard one-stage convex
relaxation method. Although this high level intuition is appealing, it is still necessarily to present a
more rigorous theoretical result which can precisely demonstrate the advantage of the multi-stage
approach over the standard single stage method. Unless we can develop a theory to show the effec-
tiveness of the multi-stage procedure in Figure 1, our proposal is yet another local minimum finding
scheme that may potentially get stuck at a bad local solution.

In order to obtain some strong theoretical results that can demonstrate the advantage of the
multi-stage approach, we consider the special case of sparse learning. This is because this problem
has been well-studied in recent years, and the behavior of convex relaxation (L1 regularization) is
well-understood.

3.1 Theory of Sparse Regularization

For a non-convex but smooth regularization condition such as capped-L1 or smoothed-Lp with
p ∈ (0,1), standard numerical techniques such as gradient descent lead to a local minimum so-
lution. Unfortunately, it is difficult to find the global optimum, and it is also difficult to analyze the
quality of the local minimum. Although in practice, such a local minimum solution may outperform
the Lasso solution, the lack of theoretical (and practical) performance guarantee prevents the more
wide-spread applications of such algorithms. As a matter of fact, results with non-convex regu-
larization are difficult to reproduce because different numerical optimization procedures can lead
to different local minima. Therefore the quality of the solution heavily depend on the numerical
procedure used.

The situation is very different for a convex relaxation formulation such as L1-regularization
(Lasso). The global optimum can be easily computed using standard convex programming tech-
niques. It is known that in practice, 1-norm regularization often leads to sparse solutions (although
often suboptimal). Moreover, its performance has been theoretically analyzed recently. For exam-
ple, it is known from the compressed sensing literature that under certain conditions, the solution of
L1 relaxation may be equivalent to L0 regularization asymptotically (e.g., Candes and Tao, 2005). If
the target is truly sparse, then it was shown in Zhao and Yu (2006) that under some restrictive con-
ditions referred to as irrepresentable conditions, 1-norm regularization solves the feature selection
problem. The prediction performance of this method has been considered in Koltchinskii (2008),
Zhang (2009a), Bickel et al. (2009) and Bunea et al. (2007).

In spite of its success, L1-regularization often leads to suboptimal solutions because it is not a
good approximation to L0 regularization. Statistically, this means that even though it converges to
the true sparse target when n→ ∞ (consistency), the rate of convergence can be suboptimal. The
only way to fix this problem is to employ a non-convex regularization condition that is closer to
L0 regularization. In the following, we formally prove a result for multi-stage convex relaxation
with non-convex sparse regularization that is superior to the Lasso result. In essence, we establish
a performance guarantee for non-convex formulations when they are solved by using the multi-
stage convex relaxation approach which is more sophisticated than the standard one-stage convex
relaxation.
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In supervised learning, we observe a set of input vectors x1, . . . ,xn ∈ Rd , with corresponding
desired output variables y1, . . . ,yn. In general, we may assume that there exists a target w̄ ∈ Rd such
that

yi = w̄'xi+ εi (i= 1, . . . ,n), (8)

where εi are zero-mean independent random noises (but not necessarily identically distributed).
Moreover, we assume that the target vector w̄ is sparse. That is, there exists k̄= ‖w̄‖0 is small. This
is the standard statistical model for sparse learning.

Let y denote the vector of [yi] and X be the n× d matrix with each row a vector xi. We are
interested in recovering w̄ from noisy observations using the following sparse regression method:

ŵ= argmin
w

[

1
n
‖Xw−y‖22+λ

d

∑
j=1

g(|w j|)

]

, (9)

where g(|w j|) is a regularization function. Here we require that g′(u) is non-negative which means
we penalize larger umore significantly. Moreover, we assume u1−qg′(u) is a non-increasing function
when u > 0, which means that [g(|w1|), . . . ,g(|wd|)] is concave with respect to h(w) =
[|w1|q, . . . , |wd|q] for some q ≥ 1. It follows that (9) can be solved using the multi-stage convex
relaxation algorithm in Figure 2, which we will analyze. Although this algorithm was mentioned in
Zou and Li (2008) as LLA when q= 1, they only presented a one-step low-dimensional asymptotic
analysis. We present a true multi-stage analysis in high dimension. Our analysis also focuses on
q= 1 (LLA) for convenience because the Lasso analysis in Zhang (2009a) can be directly adapted;
however in principle, one can also analyze the more general case of q> 1.

Initialize λ(0)
j = λ for j = 1, . . . ,d

For ! = 1,2, . . .

• Let

ŵ(!) = arg min
w∈Rd

[

1
n
‖Xw−y‖22+

d

∑
j=1

λ(!−1)
j |w j|q

]

. (10)

• Let λ(!)
j = λq−1|ŵ j|1−qg′(|ŵ(!)

j |) ( j = 1, . . . ,d)

Figure 2: Multi-stage Convex Relaxation for Sparse Regularization

For convenience, we consider fixed design only, where X is fixed and the randomness is with
respect to y only. We require some technical conditions for our analysis. First we assume sub-
Gaussian noise as follows.

Assumption 3.1 Assume that {εi}i=1,...,n in (8) are independent (but not necessarily identically
distributed) sub-Gaussians: there exists σ≥ 0 such that ∀i and ∀t ∈ R,

Eεi etεi ≤ eσ
2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the above definition. For
example, if a random variable ξ ∈ [a,b], then Eξet(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is
Gaussian: ξ∼ N(0,σ2), then Eξetξ ≤ eσ2t2/2.

1087



ZHANG

We also introduce the concept of sparse eigenvalue, which is standard in the analysis of L1
regularization.

Definition 1 Given k, define

ρ+(k) =sup
{

1
n
‖Xw‖22/‖w‖22 : ‖w‖0 ≤ k

}

,

ρ−(k) = inf
{

1
n
‖Xw‖22/‖w‖22 : ‖w‖0 ≤ k

}

.

Our main result is stated as follows. The proof is in the appendix.

Theorem 2 Let Assumption 3.1 hold. Assume also that the target w̄ is sparse, with Eyi = w̄'xi,
and k̄ = ‖w̄‖0. Choose λ such that

λ≥ 20σ
√

2ρ+(1) ln(2d/η)/n.

Assume that g′(z) ≥ 0 is a non-increasing function such that g′(z) = 1 when z ≤ 0. Moreover, we
require that g′(θ) ≥ 0.9 with θ= 9λ/ρ−(2k̄+ s). Assume that ρ+(s)/ρ−(2k̄+2s) ≤ 1+0.5s/k̄ for
some s≥ 2k̄, then with probability larger than 1−η:

‖ŵ(!)− w̄‖2 ≤
17

ρ−(2k̄+ s)

[

2σ
√

ρ+(k̄)
(

√

7.4k̄/n+
√

2.7ln(2/η)/n
)

+λ

(

∑
j:w̄ j /=0

g′(|w̄ j|−θ)2
)1/2



+0.7! 10
ρ−(2k̄+ s)

√

k̄λ,

where ŵ(!) is the solution of (10) with q= 1.

Note that the theorem allows the situation d 0 n, which is what we are interested in. This
is the first general analysis of multi-stage convex relaxation for high dimensional sparse learning,
although some simpler asymptotic results for low dimensional two-stage procedures were obtained
in Zou (2006) and Zou and Li (2008), they are not comparable to ours.

Results most comparable to what we have obtained here are that of the FoBa procedure in
Zhang (2009b) and that of the MC+ procedure in Zhang (2010). The former is a forward backward
greedy algorithm, which does not optimize (9), while the latter is a path-following algorithm for
solving (9). Although results in Zhang (2010) are comparable to ours, we should note that efficient
path-following computation in MC+ requires specialized regularizers g(·). Moreover, unlike our
procedure, which is efficient because of convex optimization, there is no proof showing that the
path-following strategy in Zhang (2010) is always efficient (in the sense that there may be expo-
nentially many switching points). However, empirical experience in Zhang (2010) does indicate its
efficiency for a class of regularizers that can be relatively easily handled by path-following. There-
fore we are not claiming here that our approach will always be superior to Zhang (2010) in practice.
Nevertheless, our result suggests that different local solution procedures can be used to solve the
same nonconvex formulation with valid theoretical guarantees. This opens the door for additional
theoretical studies of other numerical procedures.

The condition ρ+(s)/ρ−(2k̄+ 2s) ≤ 1+ 0.5s/k̄ requires the eigenvalue ratio ρ+(s)/ρ−(s) to
grow sub-linearly in s. Such a condition, referred to as sparse eigenvalue condition, is also needed in
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the standard analysis of L1 regularization (Zhang and Huang, 2008; Zhang, 2009a). It is related but
weaker than the restricted isometry property (RIP) in compressive sensing (Candes and Tao, 2005).
Note that in the traditional low-dimensional statistical analysis, one assumes that ρ+(s)/ρ−(2k̄+
2s) < ∞ as s → ∞, which is significantly stronger than the condition we use here. Although in
practice it is often difficult to verify the sparse eigenvalue condition for real problems, Theorem 2
nevertheless provides important theoretical insights for multi-stage convex relaxation.

Since in standard Lasso, g′(|w j|) ≡ 1, we obtain the following bound from Theorem 2

‖ŵL1 − w̄‖2 = O(
√
kλ),

where ŵL1 is the solution of the standard L1 regularization. This bound is tight for Lasso, in the sense
that the right hand side cannot be improved except for the constant—this can be easily verified with
an orthogonal design matrix. It is known that in order for Lasso to be effective, one has to pick λ no
smaller than the order σ

√

lnd/n. Therefore, the parameter estimation error of the standard Lasso is
of the order σ

√

k̄ lnd/n, which cannot be improved.
In comparison, if we consider an appropriate regularization condition g(|w j|) that is concave in

|w j|. Since g′(|w j|)≈ 0 when |w j| is large, the bound in Theorem 2 can be significantly better when
most non-zero coefficients of w̄ are relatively large in magnitude. For example, consider the capped-
L1 regularizer g(|w j|) = min(α, |w j|) with α ≥ θ; in the extreme case where min j |w j| > α+ θ
(which can be achieved when all nonzero components of w̄ are larger than the order σ

√

lnd/n), we
obtain the better bound

‖ŵ(!)− w̄‖2 = O(
√

k̄/n+
√

ln(1/η)/n)

for the multi-stage procedure for a sufficiently large ! at the order of ln lnd. This bound is superior
to the standard one-stage L1 regularization bound ‖ŵL1 − w̄‖2 = O(

√

k̄ ln(d/η)/n), which is tight
for Lasso. The difference can be significant when lnd is large.

Generally speaking, with a regularization condition g(|w j|) that is concave in |w j|, the depen-
dency on λ is through g′(|w̄ j|)which decreases as |w̄ j| increases. This removes the bias of the Lasso
and leads to improved performance. Specifically, if w̄ j is large, then g′(|w̄ j|) ≈ 0. In comparison,
the Lasso bias is due to the fact that g′(|w̄ j|)≡ 1. For illustration, the derivative g′(·) of some sparse
regularizers are plotted in Figure 3.

Note that our theorem only applies to regularizers with finite derivative at zero. That is, g′(0) <
∞. The result doesn’t apply to Lp regularization with p< 1 because g′(0) = ∞. Although a weaker
result can be obtained for such regularizers, we do not include it here. We only include an intuitive
example below to illustrate why the condition g′(0) <∞ is necessary for stronger results presented in
the paper. Observe that the multi-stage convex relaxation method only computes a local minimum,
and the regularization update rule is given by λ(!−1)

j = g′(ŵ(!−1)
j ). If g′(0) = ∞, then λ(!−1)

j = ∞

when ŵ(!−1)
j = 0. This means that if a feature accidentally becomes zero in some stage, it will

always remain zero. This is why only weaker results can be obtained for Lp regularizers (p < 1):
we need to further assume that ŵ(!)

j never becomes close to zero when w̄ j /= 0. A toy example is
presented in Table 1 to demonstrate this point. The example is a simulated regression problem with
d = 500 variables and n = 100 training data. The first five variables of the target w̄ are non-zeros,
and the remaining variables are zeros. For both capped-L1 and Lp regularizers, the first stage is the
standard L1 regularization, which misses the correct feature #2 and wrongly selects some incorrect
ones. For capped-L1 regularization, in the second stage, because most correct features are identified,
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Figure 3: Derivative g′(|w j|) of some sparse regularizers

Stage ! coefficients ‖ŵ(!)− w̄‖2
multi-stage capped-L1

1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0, . . .] 4.4
2 [7.7,0.4,5.7,6.3,5.7,0.0,0.0,0.2,0.0, . . .] 1.6
3 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, . . .] 0.98
4 [7.8,1.2,5.7,6.6,5.7,0.0,0.0,0.0,0.0, . . .] 0.98

multi-stage L0.5
1 [6.0,0.0,4.7,4.8,3.9,0.6,0.7,1.2,0.0, . . .] 4.4
2 [7.3,0.0,5.4,5.9,5.3,0.0,0.3,0.3,0.0,0.0, . . .] 2.4
3 [7.5,0.0,5.6,6.1,5.7,0.0,0.1,0.0,0.0,0.0, . . .] 2.2
4 [7.5,0.0,5.6,6.2,5.7,0.0,0.1,0.0,0.0,0.0, . . .] 2.1

target w̄ [8.2,1.7,5.4,6.9,5.7,0.0,0.0,0.0,0.0, . . .]

Table 1: An Illustrative Example for Multi-stage Sparse Regularization

the corresponding “bias” is reduced by not penalizing the corresponding variables. This leads to
improved performance. Since the correct feature #2 shows up in stage 2, we are able to identify
it and further improve the convex relaxation in stage 3. After stage 3, the procedure stabilizes
because it computes exactly the same relaxation. For Lp regularization, since feature #2 becomes
zero in stage 1, it will remain zero thereafter because λ(!)

2 = ∞ when ! ≥ 1. In order to remedy this
problem, one has to use a regularizer with g′(0) < ∞ such as the smoothed Lp regularizer.
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3.2 Empirical Study

Although this paper focuses on the development of the general multi-stage convex relaxation frame-
work as well as its theoretical understanding (in particular the major result given in Theorem 2), we
include two simple numerical examples to verify our theory. More comprehensive empirical com-
parisons can be found in other related work such as Candes et al. (2008), Zou (2006) and Zou and
Li (2008).

In order to avoid cluttering, we only present results with capped-L1 and Lp (p = 0.5) regular-
ization methods. Note that based on Theorem 2, we may tune α in capped-L1 by using a formula
α= α0λ where λ is the regularization parameter. We choose α0 = 10 and α0 = 100.

In the first experiment, we generate an n× d random matrix with its column j corresponding
to [x1, j, . . . ,xn, j], and each element of the matrix is an independent standard Gaussian N(0,1). We
then normalize its columns so that ∑n

i=1 x2i, j = n. A truly sparse target β̄, is generated with k nonzero
elements that are uniformly distributed from [−10,10]. The observation yi = β̄'xi+ εi, where each
εi ∼ N(0,σ2). In this experiment, we take n= 50,d = 200,k = 5,σ= 1, and repeat the experiment
100 times. The average training error and 2-norm parameter estimation error are reported in Fig-
ure 4. We compare the performance of multi-stage methods with different regularization parameter
λ. As expected, the training error for the multi-stage algorithms are smaller than that of L1, due
to the smaller bias. Moreover, substantially smaller parameter estimation error is achieved by the
multi-stage procedures, which is consistent with Theorem 2. This can be regarded as an empirical
verification of the theoretical result.

Figure 4: Performance of multi-stage convex relaxation on simulation data. Left: average training
squared error versus λ; Right: parameter estimation error versus λ.

In the second experiment, we use the Boston Housing data to illustrate the effectiveness of
multi-stage convex relaxation. This data set contains 506 census tracts of Boston from the 1970
census, available from the UCI Machine Learning Database Repository: http://archive.ics.
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uci.edu/ml/. Each census tract is a data-point, with 13 features (we add a constant offset on e as
the 14th feature), and the desired output is the housing price. In this example, we randomly partition
the data into 20 training plus 486 test points. We perform the experiments 100 times, and report
training and test squared error versus the regularization parameter λ for different q. The results are
plotted in Figure 5. In this case, L0.5 is not effective, while capped-L1 regularization with α= 100λ
is slightly better than Lasso. Note that this data set contains only a small number (d = 14) features,
which is not the case where we can expect significant benefit from the multi-stage approach (most of
other UCI data similarly contain only small number of features). In order to illustrate the advantage
of the multi-stage method more clearly, we also report results on a modified Boston Housing data,
where we append 20 random features (similar to the simulation experiments) to the original Boston
Housing data, and rerun the experiments. The results are shown in Figure 6. As expected from
Theorem 2 and the discussion thereafter, since d becomes large, the multi-stage convex relaxation
approach with capped-L1 regularization and L0.5 regularization perform significantly better than the
standard Lasso.

Figure 5: Performance of multi-stage convex relaxation on the original Boston Housing data. Left:
average training squared error versus λ; Right: test squared error versus λ.

4. Discussion

Many machine learning applications require solving nonconvex optimization problems. There are
two approaches to this problem:

• Heuristic methods such as gradient descent that only find a local minimum. A drawback of
this approach is the lack of theoretical guarantee showing that the local minimum gives a
good solution.
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Figure 6: Performance of multi-stage convex relaxation on the modified Boston Housing data. Left:
average training squared error versus λ; Right: test squared error versus λ.

• Convex relaxation such as L1-regularization that solves the problem under some conditions.
However it often leads to a sub-optimal solution in reality.

The goal of this paper is to remedy the above gap between theory and practice. In particular, we
investigated a multi-stage convex relaxation scheme for solving problems with non-convex objective
functions. The general algorithmic technique is presented first, which can be applied to a wide range
of problems. It unifies a number of earlier approaches. The intuition is to refine convex relaxation
iteratively by using solutions obtained from earlier stages. This leads to better and better convex
relaxation formulations, and thus better and better solutions.

Although the scheme only finds a local minimum, the above argument indicates that the local
minimum it finds should be closer to the original nonconvex problem than the standard convex
relaxation solution. In order to prove the effectiveness of this approach theoretically, we considered
the sparse learning problem where the behavior of convex relaxation (Lasso) has been well studied
in recent years. We showed that under appropriate conditions, the local solution from the multi-stage
convex relaxation algorithm is superior to the global solution of the standard L1 convex relaxation
for learning sparse targets. Experiments confirmed the effectiveness of this method.

We shall mention that our theory only shows that nonconvex regularization behaves better than
Lasso under appropriate sparse eigenvalue conditions. When such conditions hold, multi-stage con-
vex relaxation is superior. On the other hand, when such conditions fail, neither Lasso nor (the
local solution of) multi-stage convex relaxation can be shown to work well. However, in such case,
some features will become highly correlated, and local solutions of non-convex formulations may
become unstable. In order to improve stability, it may be helpful to employ ensemble methods such
as bagging. Our empirical experience suggests that when features are highly correlated, convex
formulations may perform better than (non-bagged) nonconvex formulations due to the added sta-
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bility. However, since our analysis doesn’t yield any insights in this scenario, further investigation
is necessary to theoretically compare convex formulations to bagged nonconvex formulations.

Finally, multi-stage convex relaxation is not the only numerical method that can solve noncon-
vex formulations with strong theoretical guarantee. For example, the MC+ procedure in Zhang
(2010) offers a different method with similar guarantee. This opens the possibility of investigating
other local solution methods for nonconvex optimization such as modified gradient descent algo-
rithms that may be potentially more efficient.

Appendix A. Proof of Theorem 2

The analysis is an adaptation of Zhang (2009a). We first introduce some definitions. Consider the
positive semi-definite matrix A = n−1X'X ∈ Rd×d . Given s,k ≥ 1 such that s+ k ≤ d. Let I,J be
disjoint subsets of {1, . . . ,d} with k and s elements respectively. Let AI,I ∈ Rk×k be the restriction of
A to indices I, AI,J ∈ Rk×s be the restriction of A to indices I on the left and J on the right. Similarly
we define restriction wI of a vector w ∈ Rd on I; and for convenience, we allow either wI ∈ Rk or
wI ∈ Rd (where components not in I are zeros) depending on the context.

We also need the following quantity in our analysis:

π(k,s) = sup
v∈Rk,u∈Rs,I,J

v'AI,Ju‖v‖2
v'AI,Iv‖u‖∞

.

The following two lemmas are taken from Zhang (2009a). We skip the proof.

Lemma 3 The following inequality holds:

π(k,s) ≤
s1/2

2
√

ρ+(s)/ρ−(k+ s)−1,

Lemma 4 Consider k,s> 0 and G⊂ {1, . . . ,d} such that |Gc| = k. Given any w ∈ Rd. Let J be the
indices of the s largest components of wG (in absolute values), and I = Gc∪ J. Then

max(0,w'
I Aw) ≥ ρ−(k+ s)(‖wI‖2−π(k+ s,s)‖wG‖1/s)‖wI‖2.

The following lemma gives bounds for sub-Gaussian noise needed in our analysis.

Lemma 5 Define ε̂= 1
n ∑

n
i=1(w̄'xi−yi)xi. Under the conditions of Assumption 3.1, with probabil-

ity larger than 1−η:
‖ε̂‖2∞ ≤ 2σ2ρ+(1) ln(2d/η)/n. (11)

Moreover, for any fixed F, with probability larger than 1−η:

‖ε̂F‖22 ≤ ρ+(|F|)σ2[7.4|F|+2.7ln(2/η)]/n. (12)

Proof The proof relies on two propositions. The first proposition is a simple application of large
deviation bound for sub-Gaussian random variables.

Proposition 6 Consider a fixed vector u= [u1, . . . ,un]∈Rn, and a random vector y= [y1, . . . ,yn]∈
Rn with independent sub-Gaussian components: Eet(yi−Eyi) ≤ eσ2t2/2 for all t and i, then ∀ε> 0:

Pr
(
∣

∣

∣
u'(y−Ey)

∣

∣

∣
≥ ε

)

≤ 2e−ε
2/(2σ2‖u‖22).
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Proof (of Proposition 6). Let sn = ∑n
i=1ui(yi − Eyi); then by assumption,

E(etsn + e−tsn) ≤ 2e∑i u2i σ2t2/2, which implies that Pr(|sn| ≥ ε)etε ≤ 2e∑i u2i σ2t2/2. Now let
t = ε/(∑iu2i σ2), we obtain the desired bound.

The second proposition is taken from Pisier (1989).

Proposition 7 Consider the unit sphere Sk−1 = {u : ‖u‖2 = 1} inRk (k≥ 1). Given any ε> 0, there
exists an ε-cover Q⊂ Sk−1 such that minq∈Q ‖u−q‖2 ≤ ε for all ‖u‖2 = 1, with |Q|≤ (1+2/ε)k.

Now are are ready to prove (11). Let xi, j be the j-th component of xi, then by definition, we
have ∑n

i=1 x2i, j ≤ nρ+(1) for all j = 1, . . . ,d. It follows from Proposition 6 that for all ε > 0 and j:
Pr(|ε̂ j|≥ ε) ≤ 2e−nε2/(2σ2ρ+(1)). Taking union bound for j = 1, . . . ,d, we obtain Pr(‖ε̂‖∞ ≥ ε) ≤
2de−nε2/(2σ2ρ+(1)), which is equivalent to (11).

Next we are ready to prove (12). Let P be the projection matrix to the column spanned by XF ,
and let k be the dimension of P, then k ≤ |F|.

According to Proposition 7, given ε1 > 0, there exists a finite setQ= {qi}with |Q|≤ (1+2/ε1)k
such that ‖Pqi‖2 = 1 for all i, and mini ‖Pz−Pqi‖2 ≤ ε1 for all ‖Pz‖2 = 1. To see the existence of
Q, we consider a rotation of the coordinate system (which does not change 2-norm) so that Pz is the
projection of z ∈ Rn to its first k coordinates in the new coordinate system. Proposition 7 can now
be directly applied to the first k coordinates in the new system, implying that we can pick qi such
that Pqi = qi.

For each i, Proposition 6 implies that ∀ε2 > 0:

Pr
(
∣

∣

∣
q'i P(y−Ey)

∣

∣

∣
≥ ε2

)

≤ 2e−ε
2
2/(2σ2).

Taking union bound for all qi ∈ Q, we obtain with probability exceeding 1−2(1+2/ε1)ke−ε
2
2/2σ2 :

∣

∣

∣
q'i P(y−Ey)

∣

∣

∣
≤ ε2

for all i.
Let z= P(y−Ey)/‖P(y−Ey)‖2, then there exists i such that ‖Pz−Pqi‖2 ≤ ε1. We have

‖P(y−Ey)‖2 =z'P(y−Ey)
≤‖Pz−Pqi‖2‖P(y−Ey)‖2+ |q'i P(y−Ey)|
≤ε1‖P(y−Ey)‖2+ ε2.

Therefore
‖P(y−Ey)‖2 ≤ ε2/(1− ε1).

Let ε1 = 2/15, and η= 2(1+2/ε1)ke−ε
2
2/2σ2 , we have

ε22 = 2σ2[(4k+1) ln2− lnη],

and thus

ρ+(|F|)−1/2‖ε̂F‖2 =ρ+(|F|)−1/2‖X'
F (y−Ey)‖2

≤‖P(y−Ey)‖2 ≤
15
13
σ
√

2(4k+1) ln2−2lnη.
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This simplifies to the desired bound.

Lemma 8 Consider w̄ such that { j : w̄ j /= 0} ⊂ F and F ∩G = /0. Let ŵ = ŵ(!) be the solution of
(10) with q= 1, and let Δŵ= ŵ− w̄. Let λG =min j∈Gλ

(!−1)
j and λ0 =max j λ

(!−1)
j . Then

∑
j∈G

|ŵ j|≤
2‖ε̂‖∞

λG−2‖ε̂‖∞ ∑
j/∈F∪G

|ŵ j|+
2‖ε̂‖∞+λ0
λG−2‖ε̂‖∞ ∑j∈F

|Δŵ j|.

Proof For simplicity, let λ j = λ(!−1)
j . The first order equation implies that

1
n

n

∑
i=1
2(x'i w− yi)xi, j +λ jsgn(w j) = 0,

where sgn(w j) = 1 when w j > 0, sgn(w j) =−1 when w j < 0, and sgn(w j) ∈ [−1,1] when w j = 0.
This implies that for all v ∈ Rd , we have

2v'AΔŵ≤−2v'ε̂−
d

∑
j=1

λ jv jsgn(ŵ j). (13)

Now, let v= Δŵ in (13), we obtain

0≤2Δŵ'AΔŵ≤ 2|Δŵ'ε̂|−
d

∑
j=1

λ jΔŵ jsgn(ŵ j)

≤2‖Δŵ‖1‖ε̂‖∞−∑
j∈F

λ jΔŵ jsgn(ŵ j)−∑
j/∈F

λ jΔŵ jsgn(ŵ j)

≤2‖Δŵ‖1‖ε̂‖∞+∑
j∈F

λ j|Δŵ j|−∑
j/∈F

λ j|ŵ j|

≤∑
j∈G

(2‖ε̂‖∞−λG)|ŵ j|+ ∑
j/∈G∪F

2‖ε̂‖∞|ŵ j|+∑
j∈F

(2‖ε̂‖∞+λ0)|Δŵ j|.

By rearranging the above inequality, we obtain the desired bound.

Lemma 9 Using the notations of Lemma 8, and let J be the indices of the largest s coefficients (in
absolute value) of ŵG. Let I = Gc∪ J and k = |Gc|. If (λ0+2‖ε̂‖∞)/(λG−2‖ε̂‖∞) ≤ 3, then

‖Δŵ‖2 ≤ (1+(3k/s)0.5)‖ΔŵI‖2.

Proof Using (λ0+2‖ε̂‖∞)/(λG−2‖ε̂‖∞) ≤ 3, we obtain from Lemma 8

‖ŵG‖1 ≤ 3‖Δŵ− ŵG‖1.

Therefore ‖Δŵ−ΔŵI‖∞ ≤ ‖ΔŵG‖1/s≤ 3‖Δŵ− ŵG‖1/s, which implies that

‖Δŵ−ΔŵI‖2 ≤(‖Δŵ−ΔŵI‖1‖Δŵ−ΔŵI‖∞)1/2

≤31/2‖Δŵ− ŵG‖1s−1/2 ≤ (3k/s)1/2‖ΔŵI‖2.
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By rearranging this inequality, we obtain the desired bound.

Lemma 10 Let the conditions of Lemma 8 hold, and let k = |Gc|. If t = 1−π(k+ s,s)k1/2s−1 > 0,
and (λ0+2‖ε̂‖∞)/(λG−2‖ε̂‖∞) ≤ (4− t)/(4−3t), then

‖Δŵ‖2 ≤
1+(3k/s)0.5

tρ−(k+ s)



2‖ε̂Gc‖2+

(

∑
j∈F

(λ(!−1)
j )2

)1/2


 .

Proof Let J be the indices of the largest s coefficients (in absolute value) of ŵG, and I = Gc ∪ J.
The conditions of the lemma imply that

max(0,Δŵ'
I AΔŵ) ≥ρ−(k+ s)[‖ΔŵI‖2−π(k+ s,s)‖ŵG‖1/s]‖ΔŵI‖2

≥ρ−(k+ s)[1− (1− t)(4− t)(4−3t)−1]‖ΔŵI‖22
≥0.5tρ−(k+ s)‖ΔŵI‖22.

In the above derivation, the first inequality is due to Lemma 4; the second inequality is due to the
conditions of this lemma plus Lemma 8, which implies that

‖ŵG‖1 ≤ 2
‖ε̂‖∞+λ0
λG−2‖ε̂‖∞

‖ŵGc‖1 ≤
‖ε̂‖∞+λ0
λG−2‖ε̂‖∞

√
k‖ŵI‖2;

and the last inequality follows from 1− (1− t)(4− t)(4−3t)−1 ≥ 0.5t.
If Δŵ'

I ÂΔŵ≤ 0, then the above inequality, together with Lemma 9, imply the lemma. Therefore
in the following, we can assume that

Δŵ'
I AΔŵ≥ 0.5tρ−(k+ s)‖ΔŵI‖22.

Moreover, let λ j = λ(!−1)
j . We obtain from (13) with v= ΔŵI the following:

2Δŵ'
I ÂΔŵ≤−2Δŵ'

I ε̂−∑
j∈I
λ jΔŵ jsgn(ŵ j)

≤2‖ΔŵI‖2‖ε̂Gc‖2+2‖ε̂G‖∞ ∑
j∈G

|Δŵ j|+∑
j∈F

λ j|Δŵ j|−∑
j∈G

λ j|Δŵ j|

≤2‖ΔŵI‖2‖ε̂Gc‖2+(∑
j∈F

λ2j)
1/2‖ΔŵI‖2,

where λ j ≥ λG ≥ 2‖ε̂G‖∞ is used to derive the last inequality. Now by combining the above two
estimates, we obtain

‖ΔŵI‖2 ≤
1

tρ−(k+ s)

[

2‖ε̂Gc‖2+(∑
j∈F

λ2j)
1/2

]

.

The desired bound now follows from Lemma 9.
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Lemma 11 Consider g(·) that satisfies the conditions of Theorem 2. Let λ j = λg′(|w̃ j|) for some
w̃ ∈ Rd, then

(

∑
j∈F

λ2j

)1/2

≤ λ

(

∑
j∈F

g′(|w̄ j|−θ)2
)1/2

+λθ−1
(

∑
j∈F

|w̄ j− w̃ j|2
)1/2

.

Proof By assumption, if |w̄ j− w̃ j|≥ θ, then

g′(|w̃ j|) ≤ 1≤ θ−1|w̄ j− w̃ j|;

otherwise, g′(|w̃ j|) ≤ g′(|w̄ j|−θ). It follows that the following inequality always holds:

g′(|w̃ j|) ≤ g′(|w̄ j|−θ)+θ−1|w̄ j− w̃ j|.

The desired bound is a direct consequence of the above result and the 2-norm triangle inequality
(∑ j(x j +Δx j)2)1/2 ≤ (∑ j x2j)1/2+(∑ jΔx2j)1/2.

Lemma 12 Under the conditions of Theorem 2, we have for all s≥ 2k̄:

‖ŵ(!)− w̄‖2 ≤
7

ρ−(2k̄+ s)
√

|F|λ.

Proof Let t = 0.5, then using Lemma 5, the condition of the theorem implies that

λ+2‖ε̂‖∞
λg′(θ)−2‖ε̂‖∞

≤
4− t
4−3t

.

Moreover, Lemma 3 implies that the condition

t = 0.5≤ 1−π(2k̄+ s,s)(2k̄)0.5/s

is also satisfied.
Now, if we assume that at some ! ≥ 1 that

|Gc
!|≤ 2k̄, where G! = { j /∈ F : λ(!−1)

j ≥ λg′(θ)}, (14)

then we can obtain from Lemma 10 that

‖ŵ(!)− w̄‖2 ≤
1+

√
3

tρ−(2k̄+ s)

[

2
√

|Gc
!|‖ε̂‖∞+

√

|F |λ
]

≤
3.2

tρ−(2k̄+ s)
√

|F|λ,

where we have used the fact that |Gc
!| ≤ 2k̄ ≤ 2|F| and λ ≥ 20‖ε̂‖∞ in the derivation of the second

inequality. This shows that (14) implies the lemma.
Therefore next we only need to prove by induction on ! that (14) holds for all ! = 1,2, . . .. When

! = 1, we have G1 = Fc, which implies that (14) holds.
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Now assume that (14) holds at !− 1 for some ! > 1. Since j ∈ Gc
! −F implies that j /∈ F and

λg′(|ŵ(!−1)
j |) = λ(!)

j < λg′(θ) by definition, and since g′(z) is non-increasing when z ≥ 0 (theorem
assumption), we know that |ŵ(!−1)

j |≥ θ. Therefore by induction hypothesis we obtain

√

|Gc
! −F |≤

√

∑
j∈Gc!−F

|ŵ(!−1)
j |2/θ2 ≤

‖ŵ(!−1)− w̄‖2
θ

≤
7λ

ρ−(2k̄+ s)θ
√

|F|≤
√

|F|,

where the second to the last inequality is due to the fact that (14) implies the lemma at !− 1. The
last inequality uses the definition of θ in the theorem. This inequality implies that |Gc

!|≤ 2|F |≤ 2k̄,
which completes the induction step.

A.1 Proof of Theorem 2

As in the proof of Lemma 12, if we let t = 0.5, then using Lemma 5, the condition of the theorem
implies that

λ+2‖ε̂‖∞
λg′(θ)−2‖ε̂‖∞

≤
4− t
4−3t

.

Moreover, Lemma 3 implies that the condition

t = 0.5≤ 1−π(2k̄+ s,s)(2k̄)0.5/s

is also satisfied.
We prove by induction: for ! = 1, the result follows from Lemma 12. For ! > 1, we let Gc =

F ∪{ j : |ŵ(!−1)
j |≥ θ}. From the proof of Lemma 12, we know that

k = |Gc|≤ 2k̄.

Let u =
√

ρ+(k̄)σ[
√

7.4k̄/n+
√

2.7ln(2/η)/n]. We know from Lemma 5, and λ ≥ 20‖ε̂‖∞ that
with probability 1−2η,

‖ε̂Gc‖2 ≤‖ε̂F‖2+
√

|Gc−F|‖ε̂‖∞
≤u+

√

|Gc−F|λ/20

≤u+(λ/20)
√

∑
j∈Gc−F

|ŵ(!−1)
j |2/θ2

≤u+λ(20θ)−1‖ŵ(!−1)− w̄‖2.
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Now, using Lemma 10 and Lemma 11, we obtain

‖Δŵ(!)‖2

≤
1+

√
3

tρ−(k+ s)

[

2‖ε̂Gc‖2+(∑
j∈F

(λ(!−1)
j )2)1/2

]

≤
1+

√
3

tρ−(k+ s)



2‖ε̂Gc‖2+λ

(

∑
j∈F

g′(|w̄ j|−θ)2
)1/2

+λθ−1
(

∑
j∈F

|w̄ j− ŵ(!−1)
j |2

)1/2




≤
1+

√
3

tρ−(k+ s)



2u+λ

(

∑
j∈F

g′(|w̄ j|−θ)2
)1/2

+1.1λθ−1‖w̄− ŵ(!−1)‖2





≤
1+

√
3

tρ−(k+ s)



2u+λ

(

∑
j∈F

g′(|w̄ j|−θ)2
)1/2



+0.67‖w̄− ŵ(!−1)‖2.

The desired bound can now be obtained by solving this recursion with respect to

‖Δŵ(!)‖2 = ‖w̄− ŵ(!)‖2

for ! = 2,3, . . ., where ‖Δŵ(1)‖2 is given by Lemma 12.

Appendix B. Some Non-convex Formulations in Machine Learning

Consider a set of input vectors x1, . . . ,xn ∈Rd , with corresponding desired output variables y1, . . . ,yn.
The task of supervised learning is to estimate the functional relationship y ≈ f (x) between the in-
put x and the output variable y from the training examples {(x1,y1), . . . ,(xn,yn)}. The quality of
prediction is often measured through a loss function φ( f (x),y).

Now, consider linear prediction model f (x) = w'x. As in boosting or kernel methods, non-
linearity can be introduced by including nonlinear features in x. For linear models, we are mainly
interested in the scenario that d0 n. That is, there are many more features than the number of sam-
ples. In this case, an unconstrained empirical risk minimization is inadequate because the solution
overfits the data. The standard remedy for this problem is to impose a constraint on w to obtain a
regularized problem. This leads to the following regularized empirical risk minimization method:

ŵ= arg min
w∈Rd

[

n

∑
i=1

φ(w'xi,yi)+λg(w)

]

, (15)

where λ > 0 is an appropriately chosen regularization condition. This is the motivation for the
general problem formulation (1) in Section 2.

B.1 Loss Function

Examples of loss function φ(w'x,y) in (15) include least squares for regression: φ(w'x,y) =
(w'x− y)2, and 0-1 binary classification error: φ(w'x,y) = I(w'xy ≤ 0), where y ∈ {±1} are
the class labels, and I(·) is the set indicator function. The latter is nonconvex. In practice, for
computational reasons, a convex relaxation such as the SVM loss φ(w'x,y) = max(0,1−w'xy)
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is often used to substitute the classification error loss. Such a convex loss is often referred to as a
surrogate loss function, and the resulting method becomes a convex relaxation method for solving
binary classification. This class of methods have been theoretically analyzed in Bartlett et al. (2006)
and Zhang (2004). While asymptotically, convex surrogate methods are consistent (that is, they
can be used to obtain Bayes optimal classifiers when the sample size approaches infinity), for finite
data, these methods can be more sensitive to outliers. In order to alleviate the effect of outliers, one
may consider the smoothed classification error loss function φ(w'x,y) =min(α,max(0,1−w'xy))
(α≥ 1). This loss function is bounded, and thus more robust to outliers than SVMs under finite sam-
ple size; moreover, it is piece-wise differentiable, and thus easier to handle than the discontinuous
classification error loss. For comparison purpose, the three loss functions are plotted in Figure 7.

Figure 7: Loss Functions: classification error versus smoothed classification error (α= 1) and SVM

B.2 Regularization Condition

Some examples of regularization conditions in (15) include squared regularization g(w) = w'w,
and 1-norm regularization g(w) = ‖w‖1. The former can be generalized to kernel methods, and the
latter leads to sparse solutions. Sparsity is an important regularization condition, which corresponds
to the (non-convex) L0 regularization, defined as ‖w‖0 = |{ j : w j /= 0}| = k. That is, the measure
of complexity is the number of none zero coefficients. If we know the sparsity parameter k for the
target vector, then a good learning method is L0 regularization:

ŵ= arg min
w∈Rd

1
n

n

∑
i=1

φ(w'xi,yi) subject to ‖w‖0 ≤ k, (16)
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which applies the standard empirical risk minimization formulation to learning L0 constrained
sparse targets.

If k is not known, then one may regard k as a tuning parameter, which can be selected through
cross-validation. This method is often referred to as subset selection in the literature. Sparse learn-
ing is an essential topic in machine learning, which has attracted considerable interests recently. It
can be shown that the solution of the L0 regularization problem in (16) achieves good prediction
accuracy if the target function can be approximated by a sparse w̄. However, a fundamental dif-
ficulty with this method is the computational cost, because the number of subsets of {1, . . . ,d} of
cardinality k (corresponding to the nonzero components of w) is exponential in k.

Due to the computational difficult, in practice, it is necessary to replace (16) by some easier
to solve formulations in (15). Specifically, L0 regularization is equivalent to (15) by choosing the
regularization function as g(w) = ‖w‖0. However, this function is discontinuous. For computational
reasons, it is helpful to consider a continuous approximation with g(w) = ‖w‖pp, where p > 0. If
p≥ 1, the resulting formulation is convex. In particular, by choosing the closest approximation with
p = 1, one obtain Lasso, which is the standard convex relaxation formulation for sparse learning.
With p ∈ (0,1), the Lp regularizer ‖w‖pp is non-convex but continuous.

Supervised learning can be solved using general empirical risk minimization formulation in
(15). Both φ and g can be non-convex in application problems. The traditional approach is to use
convex relaxation to approximate it, leading to a single stage convex formulation. In this paper, we
try to extend the idea by looking at a more general multi-stage convex relaxation method, which
leads to more accurate approximations.

For illustration, we consider the following examples which will be used in our later discussion.

• Smoothed classification error loss: formulation (15) with convex regularization g(w) and
nonconvex loss function (with α≥ 1)

φ(w'x,y) =min(α,max(0,1−w'xy)).

This corresponds to R0(w) = λg(w), and Rk(w) = φ(ŵ'xk,yk) for k = 1, . . . ,n in (1).

• Lp regularization (0≤ p≤ 1): formulation (15) with nonconvex regularization g(w) = ‖w‖pp
and a loss function φ(·, ·) that is convex inw. This corresponds to R0(w)= n−1∑n

i=1φ(w'xi,yi),
and Rk(w) = λ|wk|p for k = 1, . . . ,d in (1).

• Smoothed Lp regularization (with parameters α > 0 and 0 ≤ p ≤ 1): formulation (15) with
nonconvex regularization g(w) = ∑k[(α+ |wk|)p−αp]/(pαp−1), and a loss function φ(·, ·)
that is convex in w. This corresponds to R0(w) = n−1∑n

i=1φ(w'xi,yi), and Rk(w) = λ[(α+
|wk|)p−αp]/(pαp−1) for k = 1, . . . ,d in (1). The main difference between standard Lp and
smoothed Lp is at |wk| = 0, where the smoothed Lp regularization is differentiable, with
derivative 1. This difference is theoretically important as discussed in Section 3.1.

• Smoothed log regularization (with parameter α > 0): formulation (15) with nonconvex reg-
ularization g(w) = ∑kα ln(α+ |wk|), and a loss function φ(·, ·) that is convex in w. This
corresponds to R0(w) = n−1∑n

i=1φ(w'xi,yi), and Rk(w) = λα ln(α+ |wk|) for k = 1, . . . ,d
in (1). Similar to the smoothed Lp regularization, the smoothed log-loss has derivative 1 at
|wk| = 0.
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• Capped-L1 regularization (with parameter α > 0): formulation (15) with nonconvex regu-
larization g(w) = ∑d

j=1min(|w j|,α), and a loss function φ(·, ·) that is convex in w. This
corresponds to R0(w) = n−1∑n

i=1φ(w'xi,yi), and Rk(w) = λmin(|wk|,α) for k = 1, . . . ,d
in (1). The capped-L1 regularization is a good approximation to L0 because as α → 0,
∑kmin(|wk|,α)/α→ ‖w‖0. Therefore when α→ 0, this regularization condition is equiv-
alent to the sparse L0 regularization up to a rescaling of λ. Capped-L1 regularization is a
simpler but less smooth version of the SCAD regularization (Jianqing Fan, 2001). SCAD is
more complicated, but its advantage cannot be shown through our analysis.

Appendix C. Some Examples of Multi-stage Convex Relaxation Methods

The multi-stage convex relaxation method can be used with examples in Section 2.2 to obtain con-
crete algorithms for various formulations. We describe some examples here.

C.1 Smoothed Classification Loss

We consider a loss term of the form Rk(w) = min(α,max(0,1−w'xkyk)) for k = 1, . . . ,n (with
α≥ 1), and relax it to the SVM loss hk(w) =max(0,1−w'xkyk).

The optimization problem is

ŵ= argmin
w

[

n

∑
i=1
min(α,max(0,1−w'xiyi))+λg(w)

]

,

where we assume that g(w) is a convex regularization condition such as g(w) = λ‖w‖22.
Consider concave duality in Section 2.2. Each uk is a scalar in the range Ωk = [0,∞), and

R̄k(uk) =min(α,uk). We have R∗
k(vk) = α(vk−1)I(vk ∈ [0,1]), defined on the domain vk ≥ 0. The

solution in (4) is given by v̂k = I(w'xkyk ≥ 1−α) for k = 1, . . . ,n. Therefore Section 2.2 implies
that the multi-stage convex relaxation solves the weighted SVM formulation

ŵ= argmin
w

[

n

∑
i=1
v̂imax(0,1−w'xiyi)+λg(w)

]

,

where the relaxation parameter v is updated as

v̂i = I(ŵ'xiyi ≥ 1−α) (i= 1, . . . ,n).

Intuitively, the mis-classified points ŵ'xiyi < 1−α are considered as outliers, and ignored.

C.2 Lp and Smoothed Lp Regularization

In sparse regularization, we may consider a regularization term Rk(w) = λ|wk|p/p (k= 1, . . . ,d) for
some p ∈ (0,1). Given any q > p, (3) holds with uk = hk(w) = |wk|q ∈ [0,∞), and R̄k(uk) =
λ|uk|p/q/p, where uk ∈ Ωk = [0,∞). The dual is R∗

k(vk) = −λc(p,q)(vk/λ)p/(p−q), defined on
the domain vk ≥ 0, where c(p,q) = (q− p)p−1qq/(p−q). The solution in (4) is given by v̂k =
(λ/q)|wk|p−q.

An extension is to consider a regularization term Rk(w) = λ[(α+ |wk|)p−αp]/(pαp−1) (k =
1, . . . ,d) for some p ∈ (0,1) and α > 0. Given any q > p, (3) holds with uk = hk(w) = (α+

1103



ZHANG

|wk|)q ∈ [αq,∞), and R̄k(uk) = λ[up/qk −αp]/(pαp−1), where uk ∈Ωk = [0,∞). The dual is R∗
k(vk) =

−λc(p,q)αp/(p−q)(vk/λ)p/(p−q) + λα/p, defined on the domain vk ≥ 0, where c(p,q) =
(q− p)pp/(q−p)qq/(p−q). The solution in (4) is given by v̂k = λ/(qαp−1)(α+ |wk|)p−q.

An alternative is to relax smoothed Lp regularization (p ∈ (0,1)) directly to Lq regularization
for q ≥ 1 (one usually takes either q = 1 or q = 2). In this case, uk = hk(w) = |wk|q ∈ [0,∞), and
R̄k(uk) = λ[(α+u1/qk )p−αp]/(pαp−1). Although it is not difficult to verify that R̄k(uk) is concave,
we do not have a simple closed form for R∗

k(vk). However, it is easy to check that the solution in (4)
is given by v̂k = λ/(qαp−1)(α+ |wk|)p−1|wk|1−q.

In summary, for Lp and smoothed Lp, we consider the following optimization formulation for
some α≥ 0 and p ∈ (0,1]:

ŵ= argmin
w

[

R0(w)+λ
d

∑
j=1

(α+ |w j|)p
]

,

where we assume that R0(w) is a convex function of w.
From previous discussion, the multi-stage convex relaxation method in Section 2.2 becomes a

weighted Lq regularization formulation for q≥ 1:

ŵ= argmin
w

[

R0(w)+
d

∑
j=1
v̂ j|w j|q

]

,

where the relaxation parameter v is updated as

v̂ j = λ(p/q)(α+ |ŵ j|)p−1|ŵ j|1−q ( j = 1, . . . ,d).

The typical choices of q are q= 1 or q= 2. That is, we relax Lp regularization to L1 or L2 regular-
ization.

Finally, we note that the two stage version of Lp regularization, relaxed to Lq with q = 1, is
referred to Adaptive-Lasso (Zou, 2006).

C.3 Smoothed log Regularization

This is a different sparse regularization condition, where we consider a regularization term Rk(w) =
λα ln(α+ |wk|) for some α> 0. Given any q> 0, (3) holds with uk = hk(w) = (α+ |wk|)q ∈ [αq,∞),
and R̄k(uk) = λ(α/q) ln(uk), where uk ∈ Ωk = [0,∞). The dual is R∗

k(vk) = λ(α/q)[lnvk + 1−
ln(λα/q)], defined on the domain vk ≥ 0. The solution in (4) is given by v̂k = λ(α/q)(α+ |wk|)−q.

Similar to smoothed Lp, we may relax directly to Lq, with uk = hk(w) = |wk|q ∈ [0,∞). R̄k(uk) =

λα ln(α+u1/qk ), where The solution in (4) is given by v̂k = λ(α/q)(α+ |wk|)−1|wk|1−q.
Similar to smoothed log regularization, the multi-stage convex relaxation method in Section 2.2

becomes a weighted Lq regularization formulation for q≥ 1:

ŵ= argmin
w

[

R0(w)+
d

∑
j=1
v̂ j|w j|q

]

,

where the relaxation parameter v is updated as

v̂ j = λ(α/q)(α+ |w j|)−1|w j|1−q ( j = 1, . . . ,d).

This resulting procedure is the same as the one empirically studied in Candes et al. (2008).
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C.3.1 CAPPED L1 REGULARIZATION

We consider another sparse regularization term with Rk(w) = λmin(|wk|,α) (k= 1, . . . ,d) for some
α > 0. In this case, (3) holds with uk = hk(w) = |wk| ∈ [0,∞), and R̄k(uk) = λmin(uk,α), where
uk ∈Ωk = [0,∞). The dual is R∗

k(vk) = λα(−1+vk/λ)I(vk ∈ [0,λ]) defined [0,∞), where I(·) is the
set indicator function. The solution in (4) is given by v̂k = λI(|wk|≤ α).

In capped L1 regularization, we consider the optimization problem

ŵ= argmin
w

[

R0(w)+λ
d

∑
j=1
min(α, |w j|)

]

,

where we assume that R0(w) is a convex function of w.
From Section 2.2, the multi-stage convex relaxation becomes a weighted L1 regularization for-

mulation:

ŵ= argmin
w

[

R0(w)+
d

∑
j=1
v̂ j|w j|

]

,

where the relaxation parameter v is updated as

v̂ j = λI(|ŵ j|≤ α) ( j = 1, . . . ,d).

This method has an intuitive interpretation: in order to achieve sparsity, the standard L1 regular-
ization not only shrinks small coefficients to zero, but also shrinks large coefficients. This causes a
bias. The capped-L1 formulation removes the bias by adaptively adjusting the relaxation parameter
v̂ j so that if |ŵ j| is large, then we do not penalize the corresponding variable j.

C.3.2 SPARSE EIGENVALUE PROBLEM

We use a simple example to illustrate that the multi-stage convex relaxation idea does not only apply
to formulations with convex risks. Consider the sparse eigenvalue problem, where we are interested
in finding the largest eigenvalue of a positive semi-definite matrix A. One formulation is

ŵ= arg max
‖w‖2≤1

[

w'Aw−λ
d

∑
j=1

(α+ |w j|)p
]

,

with parameter p ∈ (0,1) and a small parameter α > 0 to encourage sparsity. If λ = 0, then it
is the standard eigenvalue problem without sparsity constraints. Although the standard eigenvalue
problem is not convex in w, it has a convex relaxation to a semi-definite programming problem,
and thus can be efficiently solved. For convenience, we think of the standard eigenvalue problem as
“convex” for the purpose of this paper. The multi-stage convex relaxation becomes:

ŵ= arg max
‖w‖2≤1

[

w'Aw−
d

∑
j=1
v jw2j

]

,

which is a standard eigenvalue problem. The relaxation parameter is updated as

v̂ j = λ(p/2)(α+ |ŵ j|)p−1|ŵ j|−1 ( j = 1, . . . ,d).
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C.3.3 MATRIX REGULARIZATION

Our final example is multi-task learning with matrix regularization, also considered in Argyriou
et al. (2008). In this case, w is not a vector, but a matrix, with columns (tasks) w!. We solve a
problem of the following form:

w= argmin
w

[

m

∑
!=1

R!(w!)+λtr((αI+ww')p/2)

]

.

In the above formulation, R! is the risk function for task !. The matrix regularization used here is
the counterpart of Lp regularization for vectors. It encourages low-rank if p < 2. In particular, the
case of p = 1 is often called trace norm (or nuclear norm). It is convex and frequently used in the
literature. The parameter α> 0 gives some smoothness, similar to the vector case.

The case of p< 1 gives better low-rank approximation, similar to the vector regularization case.
Again, this problem can be solved with multi-stage convex relaxation method. In this case, the
relaxation parameter v is a positive semi-definite matrix, and we relax the regularization term to
h(w) = (αI+ww') as a matrix. Thus the relaxed regularization term becomes tr(v(αI+ww')).
This regularization decouples the problems as follows, which allows us to solve each task ! sepa-
rately:

ŵ! = argmin
w!

[

R!(w!)+(w!)'v̂w!
]

(! = 1,2, . . . ,m).

This is a key advantage of the method. Similar to the vector case, we have the following update
formula for the relaxation parameter:

v̂= λ(p/2)(αI+ ŵŵ')(p−2)/2.
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Abstract
Learning a measure of similarity between pairs of objects is an important generic problem in ma-
chine learning. It is particularly useful in large scale applications like searching for an image that
is similar to a given image or finding videos that are relevant to a given video. In these tasks, users
look for objects that are not only visually similar but also semantically related to a given object.
Unfortunately, the approaches that exist today for learning such semantic similarity do not scale to
large data sets. This is both because typically their CPU and storage requirements grow quadrat-
ically with the sample size, and because many methods impose complex positivity constraints on
the space of learned similarity functions.

The current paper presents OASIS, an Online Algorithm for Scalable Image Similarity learn-
ing that learns a bilinear similarity measure over sparse representations. OASIS is an online dual
approach using the passive-aggressive family of learning algorithms with a large margin criterion
and an efficient hinge loss cost. Our experiments show that OASIS is both fast and accurate at a
wide range of scales: for a data set with thousands of images, it achieves better results than existing
state-of-the-art methods, while being an order of magnitude faster. For large, web scale, data sets,
OASIS can be trained on more than two million images from 150K text queries within 3 days on
a single CPU. On this large scale data set, human evaluations showed that 35% of the ten nearest
neighbors of a given test image, as found by OASIS, were semantically relevant to that image. This
suggests that query independent similarity could be accurately learned even for large scale data sets
that could not be handled before.
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1. Introduction

Large scale learning is sometimes defined as the regime where learning is limited by computational
resources rather than by availability of data (Bottou, 2008). Learning a pairwise similarity measure
is a particularly challenging large scale task: since pairs of samples have to be considered, the large
scale regime is reached even for fairly small data sets, and learning similarity for large data sets
becomes exceptionally hard to handle.

At the same time, similarity learning is a well studied problem with multiple real world appli-
cations. It is particularly useful for applications that aim to discover new and relevant data for a
user. For instance, a user browsing a photo in her album may ask to find similar or related images.
Another user may search for additional data while viewing an online video or browsing text docu-
ments. In all these applications, similarity could have different flavors: a user may search for images
that are similar visually, or semantically, or anywhere in between.

Many similarity learning algorithms assume that the available training data contains real-valued
pairwise similarities or distances. However, in all the above examples, the precise numerical value
of pairwise similarity between objects is usually not available. Fortunately, one can often obtain
information about the relative similarity of different pairs (Frome et al., 2007), for instance, by
presenting people with several object pairs and asking them to select the pair that is most similar.
For large scale data, where man-in-the-loop experiments are prohibitively costly, relative similarities
can be extracted from analyzing pairs of images that are returned in response to the same text query
(Schultz and Joachims, 2004). For instance, the images that are ranked highly by one of the image
search engines for the query “cute kitty” are likely to be semantically more similar than a random
pair of images. The current paper focuses on this setting: similarity information is extracted from
pairs of images that share a common label or are retrieved in response to a common text query.

Similarity learning has an interesting reciprocal relation with classification. On one hand, pair-
wise similarity can be used in classification algorithms like nearest neighbors or kernel methods. On
the other hand, when objects can be classified into (possibly overlapping) classes, the inferred labels
induce a notion of similarity across object pairs. Importantly however, similarity learning assumes
a form of supervision that is weaker than in classification, since no labels are provided. OASIS is
designed to learn a class-independent similarity measure with no need for class labels.

A large number of previous studies have focused on learning a similarity measure that is also a
metric, like in the case of a positive semidefinite matrix that defines a Mahalanobis distance (Yang,
2006). However, similarity learning algorithms are often evaluated in a context of ranking. For in-
stance, the learned metric is typically used together with a nearest-neighbor classifier (Weinberger
et al., 2006; Globerson and Roweis, 2006). When the amount of training data available is very
small, adding positivity constraints for enforcing metric properties is useful for reducing over fitting
and improving generalization. However, when sufficient data is available, as in many modern appli-
cations, adding positive semi-definitiveness constraints consumes considerable computation time,
and its benefit in terms of generalization are limited. With this view, we take here an approach that
avoids imposing positivity or symmetry constraints on the learned similarity measure.

The current paper presents an approach for learning semantic similarity that scales up to an
order of magnitude larger than current published approaches. Three components are combined to
make this approach fast and scalable: First, our approach uses an unconstrained bilinear similarity.
Given two images p1 and p2 we measure similarity through a bilinear form pT1Wp2, where the
matrixW is not required to be positive, or even symmetric. Second we use a sparse representation
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of the images, which allows to compute similarities very fast. Finally, the training algorithm that
we developed, OASIS, Online Algorithm for Scalable Image Similarity learning, is an online dual
approach based on the passive-aggressive algorithm (Crammer et al., 2006). It minimizes a large
margin target function based on the hinge loss, and already converges to high quality similarity
measures after being presented with a small fraction of the training pairs.

We find that OASIS is both fast and accurate at a wide range of scales: for a standard benchmark
with thousands of images, it achieves better (but comparable) results than existing state-of-the-
art methods, with computation times that are shorter by orders of magnitude. For web-scale data
sets, OASIS can be trained on more than two million images within three days on a single CPU,
and its training time grows linearly with the size of the data. On this large scale data set, human
evaluations of OASIS learned similarity show that 35% of the ten nearest neighbors of a given image
are semantically relevant to that image.

The paper is organized as follows. We first present our online algorithm, OASIS, based on the
Passive-aggressive family of algorithms. We then present the sparse feature extraction technique
used in the experiments. We continue by describing experiments with OASIS on problems of image
similarity, at two different scales: a large scale academic benchmark with tens of thousands of
images, and a web-scale problem with millions of images. The paper ends with a discussion on
properties of OASIS.

2. Learning Relative Similarity

We consider the problem of learning a pairwise similarity function S, given data on the relative
similarity of pairs of images.

Formally, let P be a set of images, and ri j = r(pi, p j)∈R be a pairwise relevance measure which
states how strongly p j ∈ P is related to pi ∈ P . This relevance measure could encode the fact that
two images belong to the same category or were appropriate for the same query. We do not assume
that we have full access to all the values of r. Instead, we assume that we can compare some pairwise
relevance scores (for instance r(pi, p j) and r(pi, pk)) and decide which pair is more relevant. We
also assume that when r(pi, p j) is not available, its value is zero (since the vast majority of images
are not related to each other). Our goal is to learn a similarity function S(pi, p j) that assigns higher
similarity scores to pairs of more relevant images,

S(pi, p+
i ) > S(pi, p−i ) , ∀pi, p+

i , p−i ∈ P such that r(pi, p+
i ) > r(pi, p−i ). (1)

In this paper we overload notation by using pi to denote both the image and its representation as a
column vector pi ∈ Rd . We consider a parametric similarity function that has a bi-linear form,

SW(pi, p j) ≡ pTi W p j (2)

with W ∈ Rd×d . Importantly, if the images pi are represented as sparse vectors, namely, only a
number ki ( d of the d entries in the vector pi are non-zeroes, then the value of Equation (2) can be
computed very efficiently even when d is large. Specifically, SW can be computed with complexity
of O(kik j) regardless of the dimensionality d.

1111



CHECHIK, SHARMA, SHALIT AND BENGIO

2.1 An Online Algorithm

We propose an online algorithm based on the Passive-Aggressive (PA) family of learning algorithms
introduced by Crammer et al. (2006). Here we consider an algorithm that uses triplets of images
pi, p+

i , p−i ∈ P such that r(pi, p+
i ) > r(pi, p−i ).

We aim to find a parametric similarity function S such that all triplets obey

SW(pi, p+
i ) > SW(pi, p−i )+1 (3)

which means that it fulfills Equation (1) with a safety margin of 1. We define the following hinge
loss function for the triplet:

lW(pi, p+
i , p−i ) =max

{

0,1−SW(pi, p+
i )+SW(pi, p−i )

}

. (4)

Our goal is to minimize a global loss LW that accumulates hinge losses (4) over all possible triplets
in the training set:

LW = ∑
(pi,p+

i ,p−i )∈P

lW(pi, p+
i , p−i ) .

In order to minimize this loss, we apply the Passive-Aggressive algorithm iteratively over triplets
to optimize W. First, W is initialized to some value W0. Then, at each training iteration i, we
randomly select a triplet (pi, p+

i , p−i ), and solve the following convex problem with soft margin:

Wi = argmin
W

1
2
‖W−Wi−1‖2Fro+Cξ (5)

s.t. lW(pi, p+
i , p−i ) ≤ ξ and ξ≥ 0

where ‖·‖Fro is the Frobenius norm (point-wise L2 norm). Therefore, at each iteration i, Wi is
selected to optimize a trade-off between remaining close to the previous parametersWi−1 and min-
imizing the loss on the current triplet lW(pi, p+

i , p−i ). The aggressiveness parameter C controls this
trade-off.

OASIS
Initialization:

InitializeW0 = I

Iterations
repeat

Sample three images p, p+
i , p−i , such that r(pi, p

+
i ) > r(pi, p−i ).

UpdateWi =Wi−1+ τiVi

where τi =min
{

C,
lWi−1 (pi,p+

i ,p−i )

‖Vi‖2

}

and Vi = [p1i (p
+
k − p−k ), . . . , pdi (p

+
k − p−k )]T

until (stopping criterion)

Figure 1: Pseudo-code of the OASIS algorithm.
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We follow Crammer et al. (2006) to solve the problem in Equation (5). When lW(pi, p+
i , p−i ) =

0, it is clear thatWi =Wi−1 satisfies Equation (5) directly. Otherwise, we define the Lagrangian

L(W,τ,ξ,λ) =
1
2
‖W−Wi−1‖2+Cξ+ τ(1−ξ− pTi W(p+

i − p−i ))−λξ (6)

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. The optimal solution is such that the gradient
vanishes ∂L(W,τ,ξ,λ)

∂W = 0, hence

∂L(W,τ,ξ,λ)
∂W =W−Wi−1− τVi = 0

where the gradient matrix Vi = ∂LW
∂W = [p1i (p

+
i − p−i ), . . . , pdi (p

+
i − p−i )]T . The optimal new W is

therefore
W=Wi−1+ τVi (7)

where we still need to estimate τ. Differentiating the Lagrangian with respect to ξ and setting it to
zero also yields:

∂L(W,τ,ξ,λ)
∂ξ

=C− τ−λ= 0 (8)

which, knowing that λ ≥ 0, means that τ ≤ C. Plugging Equations (7) and (8) back into the La-
grangian in Equation (6), we obtain

L(τ) =
1
2
τ2‖Vi‖2+ τ(1− pTi (Wi−1+ τVi)(p+

i − p−i )) .

Regrouping the terms we obtain

L(τ) = −
1
2
τ2‖Vi‖2+ τ(1− pTi Wi−1(p+

i − p−i )) .

Taking the derivative of this second Lagrangian with respect to τ and setting it to 0, we have

∂L(τ)
∂τ

= −τ‖Vi‖2+(1− pTi Wi−1(p+
i − p−i )) = 0

which yields

τ=
1− pTi Wi−1(p+

i − p−i )

‖Vi‖2
=
lWi−1(pi, p+

i , p−i )

‖Vi‖2
.

Finally, Since τ≤C, we obtain

τ=min
{

C,
lWi−1(pi, p+

i , p−i )

‖Vi‖2

}

. (9)

Equations (7) and (9) summarize the update needed for every triplets (pi, p+
i , p−i ). It has been

shown (Crammer et al., 2006) that applying such an iterative algorithm yields a cumulative online
loss that is likely to be small. It was furthermore shown that selecting the bestWi during training
using a hold-out validation set achieves good generalization. We also show below that multiple runs
of the algorithm converge to provide similar precision (see Figure 7).
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2.2 Loss Bounds

Following closely the analysis of loss bounds for passive aggressive (PA) algorithms developed by
Crammer et al. (2006) we state similar relative bounds for the OASIS framework. We do this by
rewriting OASIS as a straightforward linear classification problem. Denote by −→wi the vector ob-
tained by“unfolding” the matrixW (concatenating all its columns into a single vector) and similarly
−→xi the unfolded matrix pi(p+

i − p−i )T . Using this notation, the constraint in Equation (3) becomes

−→wi ·−→xi > 1 ,

with · denoting the standard inner product. This is equivalent to the formulation of PA when the
label yi is always 1. The introduction of slack variables in Equation (5) brings us to the variant
denoted by Crammer et al. (2006) as PA-I.

The loss bounds in Crammer et al. (2006) rely on −→w0 being the zero vector. Since here we
initialize withW 0 = I (the identity matrix) we need to adapt the analysis slightly. Let−→u be a vector
in Rd 2 obtained by unfolding an arbitrary matrix U. We define

li = 1−−→wi ·−→xi and l∗i = 1−−→u ·−→xi ,

where li is the instantaneous loss at round i, and l∗i is the loss suffered by the arbitrary vector
−→u .

The following two theorems rely on Lemma 1 of Crammer et al. (2006), which we restate without
proof:

∑τi(2li− τi‖xi‖2−2l∗i ) ≤ ‖−→u −−→w0‖2 .

While in Crammer et al. (2006) −→w0 is the zero vector, in our case −→w0 is the unfolded identity matrix.
We therefore have

‖−→u −−→w0‖2 = ‖U‖2Fro−2trace(U)+n .

Using this modified lemma we can restate the relevant bound:

Theorem 1 Let (−→x1 ),...,(−→xM) be a sequence of examples where−→xi ∈Rd2 , ‖−→xi ‖ ≤ R for all i= 1...M.
Then, for any matrix U ∈ Rn2, the number of prediction mistakes made by OASIS on this sequence
of examples is bounded from above by,

max{R2,1/C}
(

‖U‖2Fro−2trace(U)+n+2C
M

∑
i=1

l∗i
)

where C is the aggressiveness parameter provided to OASIS.

2.3 Sampling Strategy

For real world data sets, the actual number of triplets (pi, p+
i , p−i ) is typically very large and cannot

be stored in memory. Instead, we use the fact that the number of relevant images for a category or
a query is typically small, and keep a list of relevant images for each query or category. For the
case of single-labeled images, we can efficiently retrieve an image that is relevant to a given image,
by first finding its class, and then finding another image from that class. The case of multi-labeled
images is described in Section 5.2.

Specifically, to sample a triplet (pi, p+
i , p−i ) during training, we first uniformly sample an image

pi from P . Then we uniformly sample an image p+
i from the images sharing the same categories
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or queries as pi. Finally, we uniformly sample an image p−i from the images that share no category
or query with pi. When the set P is very large and the number of categories or queries is also
very large, one does not need to maintain the set of non-relevant images for each image: sampling
directly from P instead only adds a small amount of noise to the training procedure and is not really
harmful.

When relevance feedbacks r(pi, p j) are provided as real numbers and not just ∈ {0,1}, one
could use these number to bias training towards those pairs that have a higher relevance feedback
value. This can be done by considering r(pi, p j) as frequencies of appearance, and sampling pairs
according to the distribution of these frequencies.

3. Image Representation

The problem of selecting an informative representation of images is still an unsolved computer
vision challenge, and an ongoing research topic. Different approaches for image representation
have been proposed including by Feng et al. (2004); Takala et al. (2005) and Tieu and Viola (2004).
In the information retrieval community there is wide agreement that a bag-of-words representation is
a very useful representation for handling text documents in a wide range of applications. For image
representation, there is still no such approach that would be adequate for a wide variety of image
processing problems. However, among the proposed representations, a consensus is emerging on
using local descriptors for various tasks, for example, Lowe (2004); Quelhas et al. (2005). This
type of representation segments the image into regions of interest, and extracts visual features from
each region. The segmentation algorithm as well as the region features vary among approaches,
but, in all cases, the image is then represented as a set of feature vectors describing the regions of
interest. Such a set is often called a bag-of-local-descriptors.

In this paper we take the approach of creating a sparse representation based on the framework of
local descriptors. Our features are extracted by dividing each image into overlapping square blocks,
and each block is then described with edge and color histograms. For edge histograms, we rely on
uniform Local Binary Patterns (uLBPs) proposed by Ojala et al. (2002). These texture descriptors
have shown to be effective on various tasks in the computer vision literature (Ojala et al., 2002;
Takala et al., 2005), certainly due to their robustness with respect to changes in illumination and
other photometric transformations (Ojala et al., 2002). Local Binary Patterns estimate a texture
histogram of a block by considering differences in intensity at circular neighborhoods centered on
each pixel. Precisely, we use LBP8,2 patterns, which means that a circle of radius 2 is considered
centered on each block. For each circle, the intensity of the center pixel is compared to the inter-
polated intensities located at 8 equally-spaced locations on the circle, as shown on Figure 2, left.
These eight binary tests (lower or greater intensity) result in an 8-bit sequence, see Figure 2, right.
Hence, each block pixel is mapped to a sequence among 28 = 256 possible sequences and each
block can therefore be represented as a 256-bin histogram. In fact, it has been observed that the bins
corresponding to non-uniform sequences (sequences with more than 2 transitions 1→ 0 or 0→ 1)
can be merged, yielding more compact 59-bin histograms without performance loss (Ojala et al.,
2002).

Color histograms are obtained by K-means clustering. We first select a palette or typical colors
by training a color codebook from the Red-Green-Blue pixels of a large training set of images using
K-means. The color histogram of a block is then obtained by mapping each block pixel to the closest
color in the codebook palette.

1115



CHECHIK, SHARMA, SHALIT AND BENGIO













 

















 



Figure 2: An example of Local Binary Pattern (LBP8,2). For a given pixel, the Local Binary Pattern
is an 8-bit code obtained by verifying whether the intensity of the pixel is greater or lower
than its 8 neighbors.

Finally, the histograms describing color and edge statistics of each block are concatenated,
which yields a single vector descriptor per block. Our local descriptor representation is therefore
simple, relying on both a basic segmentation approach and simple features. Naturally, alternative
representations could also be used with OASIS, (Feng et al., 2004; Grangier et al., 2006; Tieu
and Viola, 2004) However, this paper focuses on the learning model, and a benchmark of image
representations is beyond the scope of the current paper.

As a final step, we use the representation of blocks to obtain a representation for an image. For
computation efficiency we aim at a high dimensional and sparse vector space. For this purpose, each
local descriptor of an image p is represented as a discrete index, called visual term or visterm, and,
like for text data, the image is represented as a bag-of-visterms vector, in which each component pi
is related to the presence or absence of visterm i in p.

The mapping of the descriptors to discrete indexes is performed according to a codebook C,
which is typically learned from the local descriptors of the training images through k-means clus-
tering (Duygulu et al., 2002; Jeon and Manmatha, 2004; Quelhas et al., 2005). The assignment of
the weight pi of visterm i in image p is as follows:

pi =
fi di

√

∑d
j=1( f j d j)2

,

where fi is the term frequency of i in p, which refers to the number of occurrences of i in p, while
d j is the inverse document frequency of j, which is defined as −log(r j), r j being the fraction of
training images containing at least one occurrence of visterm j. This approach has been found
successful for the task of content based image ranking described by Grangier and Bengio (2008).

In the experiments described below, we used a large set of images collected from the web
to train the features. This set is described in more detail in Section 5.2. We used a set of 20
typical RGB colors (hence the number of clusters used in the k-means for colors was 20), the block
vocabulary size d = 10000 and our image blocks were of size 64x64 pixels, overlapping every
32 pixels. Furthermore, in order to be robust to scale, we extracted blocks at various scales by
successively down scaling images by a factor of 1.25 and extracting the features at each level, until
there were less than 10 blocks in the resulting image. There was on average around 70 non-zero
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values (out of 10000) describing a single image. Note that no other information (such as meta-data)
was added in the input vector representation each image.

4. Related Work

Similarity learning can be considered in two main setups, depending on the type of available training
labels. First, a regression setup, where the training set consists of pairs of objects x1i ,x2i and their
pairwise similarity yi ∈ R. In many cases however, precise similarities are not available, but rather
a weaker notion of similarity order. In one such setup, the training set consists of triplets of objects
x1i ,x2i ,x3i and a ranking similarity function, that can tell which of the two pairs (x1,x2) or (x1,x3) is
more similar. Finally, multiple similarity learning studies assume that a binary measure of similarity
is available yi ∈ {+1,−1}, indicating whether a pair of objects is similar or not.

For small-scale data, there are two main groups of similarity learning approaches. The first
approach, learning Mahalanobis distances, can be viewed as learning a linear projection of the data
into another space (often of lower dimensionality), where a Euclidean distance is defined among
pairs of objects. Such approaches include Fisher’s Linear Discriminant Analysis (LDA), relevant
component analysis (RCA) (Bar-Hillel et al., 2003), supervised global metric learning (Xing et al.,
2003), large margin nearest neighbor (LMNN) (Weinberger et al., 2006) and Metric Learning by
Collapsing Classes (Globerson and Roweis, 2006). A Mahalanobis distance learning algorithm
which uses a supervision signal identical to the one we employ in OASIS is Rosales and Fung
(2006), which learns a special kind of PSD matrix via linear programming. See also a review by
Yang (2006) for more details.

The second family of approaches, learning kernels, is used to improve performance of kernel
based classifiers. Learning a full kernel matrix in a non parametric way is prohibitive except for
very small data. As an alternative, several studies suggested to learn a weighted sum of pre-defined
kernels (Lanckriet et al., 2004) where the weights are being learned from data. In some applications
this was shown to be inferior to uniform weighting of the kernels (Noble, 2008). The work of
Frome et al. (2007) further learns a weighting over local distance function for every image in the
training set. Non linear image similarity learning was also studied in the context of dimensionality
reduction, as in Hadsell et al. (2006).

Finally, Jain et al. (2008a,b), based on work by Davis et al. (2007), aim to learn metrics in an
online setting. This work is one of the closest work with respect to OASIS: it learns a linear model
of a [dis-]similarity function between documents in an online way. The main difference is that the
work of Jain et al. (2008a) learn a true distance throughout the learning process, imposing positive
definiteness constraints, and is slightly less efficient computationally. We argue in this paper that
in the large scale regime, such a constraint is not necessary given the amount of available training
examples.

Another work closely related to OASIS is that of Rasiwasia and Vasconcelos (2008), which
also tries to learn a semantic similarity function between images. In their case, however, semantic
similarity is learned by representing each image by the posterior probability distribution over a pre-
defined set of semantic tags, and then computing the distance between two images as the distance
between the two underlying posterior distributions. The representation size of images in this ap-
proach is therefore equal to the number of semantic classes, hence it will not scale when the number
of semantic classes is very large as in free text search.
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5. Experiments

Evaluating large scale learning algorithms poses special challenges. First, current available bench-
marks are limited either in their scale, like 30K images in Caltech256 as described by Griffin et al.
(2007), or in their resolution, such as the tiny images data set of Torralba et al. (2007). Large
scale methods are not expected to perform particularly well on small data sets, since they are de-
signed to extract limited information from each sample. Second, many images on the web cannot be
used without explicit permission, hence they cannot be collected and packed into a single database.
Large, proprietary collections of images do exist, but are not available freely for academic research.
Finally, except for very few cases, similarity learning approaches in current literature do not scale
to handle large data sets effectively, which makes it hard to compare a new large scale method with
the existing methods.

To address these issues, this paper takes the approach of conducting experiments at two different
scales. First, to demonstrate the scalability of OASIS we applied OASIS to a web-scale data with 2.7
million images. Second, to investigate the properties of OASIS more deeply, we compare OASIS
with small-scale methods using the standard Caltech256 benchmark.

5.1 Evaluation Measures

We evaluated the performance of all algorithms using standard ranking precision measures based on
nearest neighbors. For each query image in the test set, all other test images were ranked according
to their similarity to the query image. The number of same-class images among the top k images
(the k nearest neighbors) was computed. When averaged across test images (either within or across
classes), this yields a measure known as precision-at-top-k, providing a precision curve as a function
of the rank k.

We also calculated the mean average precision (mAP), a measure that is widely used in the
information retrieval community. To compute average precision, the precision-at-top-k is first cal-
culated for each test image. Then, it is averaged over all positions k that have a positive sample.
For example, if all positives are ranked highest, the average-precision is 1. The average-precision
measure is then further averaged across all test image queries, yielding the mean average precision
(mAP).

5.2 Web-Scale Experiment

Our first set of experiments is based on Google proprietary data that is two orders of magnitude
larger than current standard benchmarks. We collected a set of ∼150K text queries submitted to the
Google Image Search system. For each of these queries, we had access to a set of relevant images,
each of which is associated with a numerical relevance score. This yielded a total of ∼2.7 million
images, which we split into a training set of 2.3 million images and a test set of 0.4 million images
(see Table 1).

Set Number of Queries Number of Images
Training 139944 2292259
Test 41877 402164

Table 1: Statistics of the Web data set.
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5.2.1 EXPERIMENTAL SETUP

We used the query-image relevance information to create an image-image relevance as follows.
Denote the set of text queries by Q and the set of images by P . For each q ∈ Q , let P+

q denote the
set of images that are relevant to the query q, and let P−

q denote the set of irrelevant images. The
query-image relevance is defined by the matrix RQI : Q ×P → R+, and obeys RQI(q, p+

q ) > 0 and
RQI(q, p−q ) = 0 for all q ∈ Q , p+

q ∈ P+
q , p−q ∈ P−

q . We also computed a normalized version of RQI ,
which can be interpreted as a joint distribution matrix, or the probability to observe a query q and
an image p for that query,

Pr(q, p) =
RQI(q, p)

∑q′,p′RQI(q′, p′)
.

In order to compute the image-image relevance matrix RII : P ×P → R+, we treated images as
being conditionally independent given the queries, Pr(p1, p2|q) = Pr(p1|q)Pr(p2|q), and computed
the joint image-image probability as a relevance measure

Pr (p1, p2) = ∑
q∈Q

Pr (p1, p2|q)Pr (q) = ∑
q∈Q

Pr(p1 | q)Pr(p2 | q)Pr(q) .

To improve scalability, we used a threshold over this joint distribution, and considered two
images to be related only if their joint distribution exceeded a cutoff value θ

RII(p1, p2) = [Pr(p1, p2)]θ (10)

where [x]θ = x for x > θ and is zero otherwise. To set the value of θ we have manually inspected a
small subset of pairs of related images taken from the training set. We selected the largest θ such
that most of those related pairs had scores above the threshold, while minimizing noise in RII .

Equation 10 is written as if one needs to calculate the full joint matrix RII , but this matrix grows
quadratically with the number of images. In practice, we can use the fact that RQI is very sparse, to
quickly create a list with images that are relevant to a given image. To do this given an image pi,
we go over all the queries for which it is relevant RQI(q, pi), and for each of these queries, collect
the list of all images that are relevant to that query. The average number of queries relevant for an
image in our data is small (about 100), and so is the number of images relevant for a given query.
As a result, RII can be calculated efficiently even for large image sets.

We trained OASIS over 2.3 million images in the training set using the sampling mechanism
based on the relevance of each image, as described in Section 2.3. To select the number of training
iterations, we used as a validation set a small subset of the training set to trace the mean average
precision of the model at regular intervals during the training process. Training was stopped when
the mean average precision had saturated, which happened after 160 million iterations (triplets).
Overall, training took a total of ∼4000 minutes on a single CPU of a standard modern machine.
Finally, we evaluated the trained model on the 400 thousand images of the test set.

5.2.2 RESULTS

We start with specific examples illustrating the behavior of OASIS, and continue with a quantita-
tive analysis of precision and speed. Table 2 shows the top five images as ranked by OASIS on
four examples of query-images in the test set. The relevant text queries for each image are shown
beneath the image. The first example (top row), shows a query-image that was originally retrieved
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Query image Top 5 relevant images retrieved by OASIS

Table 2: OASIS: Successful cases from the Web data set

in response to the text query “illusion”. All five images ranked highly by OASIS are semantically
related, showing other types of visual illusions. Similar results can be observed for the three re-
maining examples on this table, where OASIS captures well the semantics of animal photos (cats
and dogs), mountains and different food items.

In all these cases, OASIS captures similarity that is both semantic and visual, since the raw
visual similarity of these images is not high. A different behavior is demonstrated in Table 3. It
shows three cases where OASIS was biased by visual similarity and provided high rankings to im-
ages that were semantically non relevant. In the first example, the assortment of flowers is confused
with assortments of food items and a thigh section (5th nearest neighbor) which has visually similar
shape. The second example presents a query image which in itself has no definite semantic element.
The results retrieved are those that merely match texture of the query image and bear no semantic
similarity. In the third example, OASIS fails to capture the butterfly in the query image.

To obtain a quantitative evaluation of OASIS we computed the precision at top k, using a thresh-
old θ= 0, which means that an image in the test set is considered relevant to a query image, if there
exists at least one text query to which they were both relevant to.

The obtained precision values were quite low, achieving 1.5% precision at the top ranked image.
This is drastically lower than the precision described below for Caltech256, and could be the result
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Query image Top 5 relevant images retrieved by OASIS

Table 3: OASIS: Failure cases from the Web data set

of multiple reasons. First, the number of unique textual queries in our data is very large (around
150K), hence the images in this data set were significantly more heterogeneous than images in the
Caltech256 data.

Second, and most importantly, our labels that measure pairwise relevance are very partial. This
means that many pairs of images that are semantically related are not labeled as such. A clear
demonstration of this effect is observed in Tables 2 and 3. The query images (like “scottish fold”)
have labels that are usually very different from the labels of the retrieved images (as in “humor
cat”, “agility”) even if their semantic content is very similar. This is a common problem in content-
based analysis, since similar content can be described in many different ways. In the case discussed
here, the partial data on the query-image relevance RQI is further propagated to the image-image
relevance measure RII .

5.2.3 HUMAN EVALUATION EXPERIMENTS

In order to obtain a more accurate estimate of the real semantic precision, we performed a rating
experiment with human evaluators. We chose the 25 most relevant images1 from the test set and
retrieved their 10 nearest neighbors as determined by OASIS. We excluded query-images which
contained porn, racy or duplicates in their 10 nearest neighbors. We also selected randomly a set of
10 negative images p− that were chosen for each of the query images p such that RII(p, p−) = 0.
These negatives were then randomly mixed with the 10 nearest neighbors.

All 25 query images were presented to twenty human evaluators, asking them to mark which of
the 20 candidate images are semantically relevant to the query image.2 Evaluators were volunteers

1. The overall relevance of an image was estimated as the sum of relevances of the image with respect to all queries.
2. The description of the task as given to the evaluators is provided in Appendix A.
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selected from a pool of friends and colleagues, many of which had experience with search or ma-
chine vision problems. We collected the ratings on the positive images and calculated the precision
at top k.
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Figure 3: (A) Precision at top k as a function of k neighbors computed against RII (θ = 0) for the
web-scale test set. (B) Precision at top k as a function of k neighbors for the human
evaluation subset. (C) Mean precision for 5 selected queries. Error bars denote the
standard error of the mean. To select the queries for this plot, we first calculated the mean-
average precision per query, sorted the queries by their mAP, and selected the queries
ranked at position 1, 6, 11, 16, and 21. (D) Precision of OASIS and human evaluators,
per query, using rankings of all (remaining) human evaluators as a ground truth.

Figure 3(B) shows the average precision across all queries and evaluators. Precision peaks
at 42% and reaches 35% at the top 10 ranked image, being significantly higher than the values
calculated automatically using RII .

We observed that the variability across different query images was also very high. Figure 3(C)
shows the precision for 5 different queries, selected to span the range of average-precision values.
The error bars at each curve show the variability in the responses of different evaluators. The
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precision of OASIS varies greatly across different queries. Some query images were “easy” for
OASIS, yielding high scores from most evaluators, while other queries retrieved images that were
consistently found to be irrelevant by most evaluators.

We also compared the magnitude of variability across human evaluators, with variability across
queries. We first calculated the mAP from the precision curves of every query and evaluator, and
then calculated the standard deviation in the mAP of every evaluator and of every query. The
mean standard deviation over queries was 0.33, suggesting a large variability in the difficulty of
image queries, as observed in Figure 3(C) . The mean standard deviation over evaluators was 0.25,
suggesting that different evaluators had very different notions of what images should be regarded as
“semantically similar” to a query image.

Finally, to estimate an “upper bound” on the difficulty of the task, we also computed the pre-
cision of the human evaluators themselves. For every evaluator, we used the rankings of all other
evaluators as ground truth, to compute his precision. As with the ranks of OASIS, we computed the
fraction of evaluators that marked an image as relevant, and repeated this separately for every query
and human evaluator, providing a measure of “coherence” per query. Figure 3(D) shows the mean
precision obtained by OASIS and human evaluators for every query in our data. For some queries
OASIS achieves precision that is very close to that of the mean human evaluator. In many cases
OASIS achieves precision that is as good or better than some evaluators.

5.2.4 SPEED AND SCALABILITY

We further studied how the runtime of OASIS scales with the size of the training set. Figure 4 shows
that the runtime of OASIS, as found by early stopping on a separate validation set, grows linearly
with the train set size. We compare this to the fastest result we found in the literature, based on a fast
implementation of LMNN by Weinberger and Saul (2008). LMNN learns a Mahalanobis distance
for k-nearest neighbor classification, aiming to have the nearest neighbors of a sample belong to the
same class, and samples from different classes separated by a large margin. The LMNN algorithm
is known to scale quadratically with the number of objects, although their experiments with MNIST
data show that the active set of constraints grows linearly. This could be because MNIST has 10
classes only. In many real world data however, the number of classes typically grows almost linearly
with the number of samples.

5.3 Caltech256 Data Set

To compare OASIS with small-scale methods we used the Caltech256 data set (Griffin et al., 2007).
This data set consists of 30607 images that were obtained from Google image search and from
PicSearch.com. Images were assigned to 257 categories and evaluated by humans in order to ensure
image quality and relevance. After we have pre-processed the images as described in Section 3 and
filtered images that were too small, we were left with 29461 images in 256 categories. To allow
comparisons with other methods in the literature that were not optimized for sparse representation,
we also reduced the block vocabulary size d from 10000 to 1000. This processed data is available
online at http://ai.stanford.edu/∼gal/Research/OASIS.

Using the Caltech256 data set allows us to compare OASIS with existing similarity learning
methods. For OASIS, we treated images that have the same labels as similar. The same labels were
used for comparing with methods that learn a metric for classification, as described below.
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Figure 4: Comparison of the runtime of OASIS and fast-LMNN by Weinberger and Saul (2008),
over a wide range of scales. LMNN results (on MNIST data) are faster than OASIS
results on subsets of the web data. However LMNN scales quadratically with the number
of samples, hence is three times slower on 60K images, and may be infeasible for handling
2.3 million images.

5.3.1 COMPARED METHODS

We compared the following approaches:

1. OASIS. - The algorithm described above in Section 2.1.

2. Euclidean. - The standard Euclidean distance in feature space. The initialization of OASIS
using the identity matrix is equivalent to this distance measure.

3. MCML - Metric Learning by Collapsing Classes (Globerson and Roweis, 2006). This ap-
proach learns a Mahalanobis distance such that samples from the same class are mapped to
the same point. The problem is written as a convex optimization problem, and we have used
the gradient-descent implementation provided by the authors.

4. LMNN - Large Margin Nearest Neighbor Classification (Weinberger et al., 2006). This ap-
proach learns a Mahalanobis distance for k-nearest neighbor classification, aiming to have the
k-nearest neighbors of a given sample belong to the same class while examples from different
classes are separated by a large margin. As a preprocessing phase, images were projected to a
basis of the principal components (PCA) of the data, with no dimensionality reduction, since

1124



LARGE SCALE ONLINE LEARNING OF IMAGE SIMILARITY

this improved the precision results. We also compared with a fast implementation of LMNN,
that uses a clever scheme of maintaining a set of active constraints (Weinberger and Saul,
2008). We used the web data discussed above to compare with previously published results
obtained with fast-LMNN on MNIST data (see Figure 4).

5. LEGO - Online metric learning (Jain et al., 2008a). LEGO learns a Mahalanobis distance
in an online fashion using a regularized per instance loss, yielding a positive semidefinite
matrix. The main variant of LEGO aims to fit a given set of pairwise distances. We used
another variant of LEGO that, like OASIS, learns from relative distances. In our experimental
setting, the loss is incurred for same-class examples being more than a certain distance away,
and different class examples being less than a certain distance away. LEGO uses the LogDet
divergence for regularization, as opposed to the Frobenius norm used in OASIS.

For all these approaches, we used an implementation provided by the authors. Algorithms were
implemented in Matlab, with runtime bottlenecks implemented in C for speedup (except LEGO).
We test below two variants of OASIS applied to the Caltech256 data set: a pure Matlab implementa-
tion, and one that has aC components. We used aC++ implementation of OASIS for the web-scale
experiments described below.

We have also experimented with the methods of Xing et al. (2003) and RCA (Bar-Hillel et al.,
2003). We found the method of Xing et al. (2003) to be too slow for the sets in our experiments.
RCA is based on a per-class eigen decomposition that is not well defined when the number of
samples is smaller than the feature dimensionality. We therefore experimented with a preprocessing
phase of dimensionality reduction followed by RCA, but results were inferior to other methods and
were not included in the evaluations below. RCA also did not perform well when tested on the full
data, where dimensionality was not a problem, possibly because it is not designed to handle well
sparse data.

5.3.2 EXPERIMENTAL PROTOCOL

We tested all methods on subsets of classes taken from the Caltech256 repository. Each subset was
built such that it included semantically diverse categories, spanning the full range of classification
difficulty, as measured by Griffin et al. (2007). We used subsets of sizes 10, 20, 50 and 249 classes
(we used 249 classes since classes 251-256 are strongly correlated with other classes, and since
class 129 did not contain enough large images). The full lists of categories in each set are given in
Appendix B. For each set, images from each class were split into a training set of 40 images and a
test set of 25 images, as proposed by Griffin et al. (2007).

We used cross-validation to select the values of hyper parameters for all algorithms except
MCML. Models were learned on 80% of the training set (32 images), and evaluated on the remain-
ing 20%. Cross validation was used for setting the following hyper parameters: the early stopping
time for OASIS; the ω parameter for LMNN (ω∈ {0.125,0.25,0.5}), and the regularization param-
eter η for LEGO (η ∈ {0.02,0.08,0.32}). We found that LEGO was usually not sensitive to the
choice of η, yielding a variance that was smaller than the variance over different cross-validation
splits. Results reported below were obtained by selecting the best value of the hyper parameter and
then training again on the full training set (40 images). For MCML, we used the default parameters
supplied with the code from the authors, since its very long run time and multiple parameters made
it non-feasible to tune hyper parameters on this data.
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Figure 5: Mean average precision of OASIS as a function of the number of training steps. Error
bars represent standard error of the mean over 5 selections of training (40 images) and
test (25 images) sets. Performance is compared with a baseline obtained using the naı̈ve
Euclidean metric on the feature vector. C=0.1 (A) 10 classes. Test performance saturates
around 30K training steps, while going over all triplets would require 2.8 million steps.
(B) 20 classes.

5.3.3 RESULTS

Figure 5 traces the mean average precision over the training and the test sets as it progresses during
learning. For the 10 classes task, precision on the test set saturates early (around 35K training steps),
and then decreases very slowly.

Figure 6 and Table 4 compare the precision obtained with OASIS, with four competing ap-
proaches, as described above (Section 5.3.1). OASIS achieved consistently superior results through-
out the full range of k (number of neighbors) tested, and on all four sets studied. Interestingly, we
found that LMNN performance on the training set was often high, suggesting that it overfits the
training set. This behavior was also noted by Weinberger et al. (2006) in some of their experiments.

OASIS achieves superior or equal performance, with a runtime that is faster by about two orders
of magnitudes than MCML, and about one order of magnitude faster than LMNN. The run time of
OASIS and LEGO was measured until the point of early stopping.

Table 5 shows the total CPU time in minutes for training each of the algorithms compared (mea-
sured on a standard 1.8GHz Intel Xeon CPU). For the purpose of a fair comparison with competing
approaches, we tested two implementations of OASIS: The first was fully implemented Matlab. The
second had the core of the algorithm implemented in C and called from Matlab.3 LMNN code and
MCML code were supplied by the authors and implemented in Matlab, with core parts implemented
inC. LEGO code was supplied by the authors and fully implemented in Matlab.

Importantly, we found that Matlab does not make full use of the speedup that can be gained by
sparse image representation. As a result, the C/C++ implementation of OASIS that we tested is
significantly faster.

3. The OASIS code is available online at http://ai.stanford.edu/∼gal/Research/OASIS
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10 classes OASIS MCML LEGO LMNN Euclidean
Matlab Matlab+C Matlab Matlab+C -

Mean avg prec 33±1.6 29±1.7 27±0.8 24±1.6 23±0.9
Top 1 prec. 43±4.0 39±5.1 39±4.8 38±5.4 37±4.1
Top 10 prec. 38±1.3 33±1.8 32±1.2 29±2.1 27±1.5
Top 50 prec. 23±1.5 22±1.3 20±0.5 18±1.5 18±0.7

20 classes OASIS MCML LEGO LMNN Euclidean
Mean avg. prec 21±1.4 17±1.2 16±1.2 14±0.6 14±0.7
Top 1 prec. 29±2.6 26±2.3 26±2.7 26±3.0 25±2.6
Top 10 prec. 24±1.9 21±1.5 20±1.4 19±1.0 18±1.0
Top 50 prec. 15±0.4 14±0.5 13±0.6 11±0.2 12±0.2

50 classes OASIS MCML LEGO LMNN Euclidean
Mean avg. prec. 12±0.4 ∗ 9±0.4 8±0.4 9±0.4
Top 1 prec. 21±1.6 ∗ 18±0.7 18±1.3 17±0.9
Top 10 prec. 16±0.4 ∗ 13±0.6 12±0.5 13±0.4
Top 50 prec. 10±0.3 ∗ 8±0.3 7±0.2 8±0.3

Table 4: Mean average precision and precision at top 1, 10, and 50 of all compared methods. Values
are averages over 5 cross validation folds; ± values are the standard deviation across the 5
folds. A ’*’ denotes cases where a method took more than 5 days to converge.

OASIS OASIS MCML LEGO LMNN (naive) fast-LMNN
classes Matlab Matlab+C Matlab+C Matlab Matlab+C Matlab+C
10 42±15 0.12± .03 1835±210 143±44 337±169 247±209
20 45±8 0.15± .02 7425±106 533±49 631±40 365±62
50 25±2 1.6± .04 ∗ 711±28 960±80 2109±67
249 485±113 1.13± .15 ∗ ∗∗ ∗∗ ∗∗

Table 5: Runtime (minutes) of all compared methods. Values are averages over 5 cross validation
folds, ± values are the standard deviation across the 5 folds. A ’∗’ denotes cases where a
method took more than 5 days to converge. A ’∗∗’ denotes cases where performance was
worse than the Euclidean baseline.

5.4 Parallel Training

We presented OASIS as optimizing an objective function at each step. Since OASIS is based on the
PA framework, it is also known to minimize a global objective of the form

‖W‖2Fro+C∑
i
li
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Figure 6: Comparison of the performance of OASIS, LMNN, MCML, LEGO and the Euclidean
metric in feature space. Each curve shows the precision at top k as a function of k neigh-
bors. The results are averaged across 5 train/test partitions (40 training images, 25 test
images), error bars are standard error of the means (s.e.m.), black dashed line denotes
chance performance. (A) 10 classes. (B) 20 classes. (C) 50 classes.

as shown by Crammer et al. (2006) This objective is convex since the losses li are linear in W.
For such convex functions, it is guaranteed that any linear combination of solutions is superior than
each of the individual solutions. This property suggests another way to speed up training, by training
multiple rankers in parallel and averaging the resulting models. Each of the individual models can
be trained with a smaller number of iterations. Note however that there is no guarantee that the total
CPU time is improved.

Figure 7 demonstrates this approach; we trained 5 or 10 rankers in parallel and plot the test set
mean average precision as a function of the number of training iterations.
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Figure 7: Comparing individual rankers and a linear combination of 5 and 10 rankers. Results are
for an experiment with 249 classes of the Caltech256 data set.
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Figure 8: Comparison of Symmetric variants of OASIS. (A) 10 classes. (B) 20 classes.

6. Symmetry and Positivity

The similarity matrixW learned by OASIS is not guaranteed to be positive or even symmetric. Some
applications, like ranking images by semantic relevance to a given image query are known to be
non-symmetric when based on human judgement (Tversky, 1977). However, in some applications
symmetry or positivity constraints reflect a prior knowledge that may help avoiding overfitting.
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Furthermore positiveW impose a Mahalanobis metric over the data, that can be further factorized
to extract a linear projection of the data into a Euclidean space: xTWy = (Ax)T (Ay) such that
ATA=W. Such projection A of the data can be useful for visualization and exploratory analysis of
data for example in scientific applications. We now discuss variants of OASIS that learn a symmetric
or positive matrices.

6.1 Symmetric Similarities

A simple approach to enforce symmetry is to project the OASIS modelW onto the set of symmetric
matricesW′ = sym(W) = 1

2
(

WT +W
)

. The update procedure then consists of a series of gradient
steps followed by projection to the feasible set (of symmetric matrices). This approach is sometimes
called projected gradient, and we denote it here Online-Proj-Oasis. Alternatively, projection can
also be applied after learning is completed (denoted here Proj-Oasis).

Alternatively, the asymmetric score function SW(pi, p j) in the loss lW can be replaced with a
symmetric score

S′W(pi, p j) ≡−(pi− p j)T W (pi− p j) .

and derive an OASIS-like algorithm (which we call Dissim-Oasis). The optimal update for this
loss has a symmetric gradient V′i = (pi− p+

i )(pi− p+
i )T − (pi− p−i )(pi− p−i )T . Therefore, ifW0

is initialized with a symmetric matrix (for example, the identity matrix) all Wi are guaranteed to
remain symmetric. Dissim-Oasis is closely related to LMNN (Weinberger et al., 2006). This can be
seen be casting the batch objective of LMNN, into an online setup, which has the form err(W ) =
−ω · S′W(pi, p+

i ) + (1−ω) · l′W(pi, p+
i , p−i ). This online version of LMNN becomes equivalent to

Dissim-Oasis for ω= 0.
Figure 8 compares the precision of the different symmetric methods with the original OASIS.

All symmetric variants performed slightly worse, or equal to the original asymmetric OASIS. Asym-
metric OASIS is also twice faster than DISSIM-OASIS. The precision of Proj-Oasis was equivalent
to that of OASIS. This was because the asymmetric OASIS learning rule actually converged to an
almost-symmetric model (as measured by a symmetry index ρ(W) = ‖sym(W)‖2

‖W‖2
= 0.94).

6.2 Positive Similarity

Most similarity learning approaches focus on learning metrics. In the context of OASIS, whenW is
positive semi definite (PSD), it defines a Mahalanobis distance over the images. The matrix square-
root ofW, ATA=W can then be used to project the data into a new space in which the Euclidean
distance is equivalent to theW distance in the original space.

We experimented with positive variants of OASIS, where we repeatedly projected the learned
model onto the set of PSD matrices, once every t iterations. Projection is done by taking the eigen
decompositionW= V ·D ·VT where V is the eigenvector matrix and D is the diagonal eigenvalues
matrix limited to positive eigenvalues. Figure 9 traces precision on the test set throughout learning
for various values of t.

The effect of positive projections is complex. First, continuously projecting once every few steps
helps to reduce overfitting, as can be observed by the slower decline of the blue curve (upper smooth
curve) compared to the orange curve (lowest curve). However, when projection is performed after
many steps (instead of continuously), performance of the projected model actually outperforms the
continuous-projection model (upper jittery curve). The reason for this effect is likely to be that the
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Figure 9: Mean average precision (mAP) during training for three PSD projection schemes, using
the set of 20 classes from caltech256.

estimates of the positive sub-space are very noisy when only based on a few samples (see also Chen
et al. 2009, Section 2.1). Indeed, accurate estimation of the negative subspace is known to be a
hard problem, because small perturbations can turn a negative but small eigenvalue, into a small but
positive one. As a result, the set of vectors selected based on having positive eigenvalues, is highly
variable. We found that this effect was so strong, that the optimal projection strategy is to avoid
projection throughout learning completely. Instead, projecting into PSD after learning (namely,
after a model was chosen using early stopping) provided the best performance in our experiments.

An interesting alternative to obtain a PSD matrix was explored by Kulis et al. (2009) and
Jain et al. (2008a). Using a LogDet divergence between two matrices Dld(X ,Y ) = tr(XY−1)−
log(det(XY−1)) ensures that, given an initial PSD matrix, all subsequent matrices will be PSD as
well. It would be interesting to test the effect of using LogDet regularization in the OASIS setup.

7. Discussion

We have presented OASIS, a scalable algorithm for learning image similarity that captures both
semantic and visual aspects of image similarity. Three key factors contribute to the scalability of
OASIS. First, using a large margin online approach allows training to converge even after seeing a
small fraction of potential pairs. Second, the objective function of OASIS does not require the sim-
ilarity measure to be necessarily a metric during training, although it appears to naturally converge
to a symmetric solution. Finally, we use a sparse representation of low level features which allows
computing scores very efficiently.

1131



CHECHIK, SHARMA, SHALIT AND BENGIO

We found that OASIS performs well in a wide range of scales: from problems with thousands
of images, where it slightly outperforms existing metric-learning approaches, to large web-scale
problems, where it achieves high accuracy, as estimated by human evaluators.

OASIS differs from previous methods in that the similarity measure that it learns is not forced to
be a metric, or even symmetric. When the number of available samples is small, it is useful to add
constraints that reflect prior knowledge on the type of similarity measure expected to be learned.
However, we found that these constraints were not helpful even for problems with a few hundreds
of samples. Interestingly, human judgements of pairwise similarity are known to be asymmetric, a
property that can be easily captured by an OASIS model.

OASIS learns a class-independent model: it is not aware of which queries or categories were
shared by two similar images. As such, it is more limited in its descriptive power and it is likely that
class-dependent similarity models could improve precision. On the other hand, class-independent
models could generalize to handle classes that were not observed during training, as in transfer
learning. Large scale similarity learning, applied to images from a large variety of classes, could
therefore be a useful tool to address real-world problems with a large number of classes.
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Appendix A. Human Evaluation

The following text was given as instructions to human evaluators when judging the relevance of
images to a query image.

Scenario:
A user is searching images to use in a presentation he/she plans to

give. The user runs a standard image search, and selects an image,
the ‘‘query image’’. The user then wishes to refine the search and
look for images that are SEMANTICALLY similar to the query image.

The difficulty lies, in the definition of ‘‘SEMANTICALLY’’. This can
have many interpretations, and you should take that into account.

So for instance, if you see an image of a big red truck, you can
interpret the user intent (the notion of semantically similar) in
various ways:

- any big red truck
- any red truck
- any big truck
- any truck
- any vehicle

You should interpret ‘‘SEMANTICALLY’’ in a broad sense rather than
in a strict sense but feel free to draw the line yourself (although
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be consistent).

Your task:
You will see a set of query images on the left side of the screen,

and a set of potential candidate matches, 5 per row, on the
right. Your job is to decide for each of the candidate images if it
is a good semantic match to the query image or not. The default is
that it is NOT a good match. Furthermore, if for some reason you
cannot make-up your mind, then answer ‘‘can’t say’’.

Appendix B. Caltech256 Class Sets

• 10 classes: bear, skyscraper, billiards, yo-yo, minotaur, roulette-wheel, hamburger, laptop-
101, hummingbird, blimp.

• 20 classes: airplanes-101, mars, homer-simpson, hourglass, waterfall, helicopter-101, mountain-
bike starfish-101, teapot, pyramid, refrigerator, cowboy-hat, giraffe, joy-stick, crab-101, bird-
bath, fighter-jet tuning-fork, iguana, dog.

• 50 classes: car-side-101, tower-pisa, hibiscus, saturn, menorah-101, rainbow, cartman, chandelier-
101, backpack, grapes, laptop-101, telephone-box, binoculars, helicopter-101, paper-shredder,
eiffel-tower, top-hat, tomato, star-fish-101, hot-air-balloon, tweezer, picnic-table, elk, kangaroo-
101, mattress, toaster, electric-guitar-101, bathtub, gorilla, jesus-christ, cormorant, man-
dolin, light-house, cake, tricycle, speed-boat, computer-mouse, superman, chimp, pram, fried-
egg, fighter-jet, unicorn, greyhound, grasshopper, goose, iguana, drinking-straw, snake, hot-
dog.

• 249 classes: classes 1-250, excluding class 129 (leopards-101), which had less than 65 large
enough images.

References

A. Bar-Hillel, T. Hertz, N. Shental, and D.Weinshall. Learning distance functions using equivalence
relations. In Proc. of 20th International Conference on Machine Learning (ICML), page 11, 2003.

L. Bottou. Large-scale machine learning and stochastic algorithms. In NIPS 2008 Workshop on
Optimization for Machine Learning, 2008.

Y. Chen, E.K. Garcia, M.R. Gupta, A. Rahimi, and L. Cazzanti. Similarity-based classification:
Concepts and algorithms. The Journal of Machine Learning Research, 10:747–776, 2009.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive
algorithms. Journal of Machine Learning Research (JMLR), 7:551–585, 2006.

J.V. Davis, B. Kulis, P. Jain, S. Sra, and I.S. Dhillon. Information-theoretic metric learning. In
Proceedings of the 24th international conference on Machine learning, pages 209–216. ACM
Press New York, NY, USA, 2007.

1133



CHECHIK, SHARMA, SHALIT AND BENGIO

P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth. Object recognition as machine translation:
Learning a lexicon for a fixed image vocabulary. In European Conference on Computer Vision
(ECCV), pages 97–112, 2002.

S.L. Feng, R. Manmatha, and V. Lavrenko. Multiple Bernoulli relevance models for image and video
annotation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2004.

A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local distance functions for
shape-based image retrieval and classification. In International Conference on Computer Vision,
pages 1–8, 2007.

A. Globerson and S. Roweis. Metric learning by collapsing classes. Advances in Neural Information
Processing Systems, 18:451, 2006.

D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 30(8):1371–1384, 2008.

D. Grangier, F. Monay, and S. Bengio. Learning to retrieve images from text queries with a discrim-
inative model. In International Conference on Adaptive Multimedia Retrieval (AMR), 2006.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694,
California Institute of Technology, 2007.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping.
In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, 2006.

P. Jain, B. Kulis, I. Dhillon, and K. Grauman. Online metric learning and fast similarity search. In
Advances in Neural Information Processing Systems, volume 22, 2008a.

P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2008b.

J. Jeon and R.Manmatha. Using maximum entropy for automatic image annotation. In International
Conference on Image and Video Retrieval, pages 24–32, 2004.

B. Kulis, M.A. Sustik, and I.S. Dhillon. Low-rank kernel learning with bregman matrix divergences.
Journal of Machine Learning Research, 10:341–376, 2009.

G.R.G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M.I. Jordan. Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research (JMLR), 5:27–
72, 2004.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision (IJCV), 60(2):91–110, 2004.

W.S. Noble. Multi-kernel learning for biology. In NIPS 2008 workshop on kernel learning, 2008.

1134



LARGE SCALE ONLINE LEARNING OF IMAGE SIMILARITY

T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture
classification with local binary patterns. Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 24(7):971–987, 2002.

P. Quelhas, F. Monay, J. M. Odobez, D. Gatica-Perez, T. Tuytelaars, and L. J. Van Gool. Modeling
scenes with local descriptors and latent aspects. In International Conference on Computer Vision,
pages 883–890, 2005.

N. Rasiwasia and N. Vasconcelos. A study of query by semantic example. In 3rd International
Workshop on Semantic Learning and Applications in Multimedia, 2008.

R. Rosales and G. Fung. Learning sparse metrics via linear programming. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
367–373. ACM New York, NY, USA, 2006.

M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In Advances
in Neural Information Processing Systems 16: Proceedings of the 2003 Conference. Bradford
Book, 2004.

V. Takala, T. Ahonen, and M. Pietikainen. Block-based methods for image retrieval using local
binary patterns. In Scandinavian Conference on Image Analysis (SCIA), 2005.

K. Tieu and P. Viola. Boosting image retrieval. International Journal of Computer Vision (IJCV),
56(1):17 – 36, 2004.

A. Torralba, R. Fergus, and W. T. Freeman. Tiny images. Technical Report MIT-CSAIL-TR-2007-
024, Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology,
2007. URL http://dspace.mit.edu/handle/1721.1/37291.

A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.

K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor
classification. Advances in Neural Information Processing Systems, 18:1473, 2006.

K.Q. Weinberger and L.K. Saul. Fast solvers and efficient implementations for distance metric
learning. In ICML25, pages 1160–1167, 2008.

E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning with application to
clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in
Neural Information Processing Systems 15, pages 521–528, Cambridge, MA, 2003. MIT Press.

L. Yang. Distance metric learning: A comprehensive survey. Technical report, Michigan State
University, 2006.

1135



 



Journal of Machine Learning Research 11 (2010) 1137-1140 Submitted 10/09; Revised 1/10; Published 3/10

Continuous Time Bayesian Network Reasoning and Learning Engine

Christian R. Shelton CSHELTON@CS.UCR.EDU

Yu Fan YFAN@CS.UCR.EDU

William Lam WLAM@CS.UCR.EDU

Joon Lee JLEE133@CS.UCR.EDU

Jing Xu JINGXU@CS.UCR.EDU

Department of Computer Science and Engineering
University of California
Riverside, CA 92521, USA

Editor: Soeren Sonnenburg

Abstract
We present a continuous time Bayesian network reasoning and learning engine (CTBN-RLE). A
continuous time Bayesian network (CTBN) provides a compact (factored) description of a continuous-
time Markov process. This software provides libraries and programs for most of the algorithms
developed for CTBNs. For learning, CTBN-RLE implements structure and parameter learning for
both complete and partial data. For inference, it implements exact inference and Gibbs and impor-
tance sampling approximate inference for any type of evidence pattern. Additionally, the library
supplies visualization methods for graphically displaying CTBNs or trajectories of evidence.
Keywords: continuous time Bayesian networks, C++, open source software

1. Introduction

Continuous time Bayesian networks (CTBNs) represent a continuous-time finite-state Markov pro-
cess compactly factored according to a graph (Nodelman et al., 2002). The initial distribution of
the process is represented as a Bayesian network. The dynamics of the process is also factorized
according to a directed graph, but this graph may contain cycles. The edges in this second graph
represent causal influence between variables of the system.

CTBNs compactly represent the dynamics differently than models in queueing theory (Bolch
et al., 1998), Petri nets (Petri, 1962), or matrix diagrams (Ciardo and Miner, 1999). The representa-
tion and algorithms developed so far for CTBNs emphasize reasoning about the transient properties
over the steady-state of the system. Unfortunately, previously there were no commonly available
software packages implementing CTBN algorithms. Their implementation requires a few critical
numerical algorithms, thus making it difficult to quickly try the representation without prior experi-
ence.

This software package aims to reduce this barrier to entry by supplying our implementations
of these methods in a complete object-oriented design. The software does not require any external
libraries. It is implemented in C++ with demonstration programs for common functionality and a
documented interface for users to develop their own programs. The class hierarchy was designed
with extensions to allow for further innovation.

c©2010 Christian R. Shelton, Yu Fan, William Lam, Joon Lee and Jing Xu.
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2. Continuous Time Bayesian Networks

The dynamics of a continuous-time n-state Markov process are often described with an n-by-n in-
tensity (or rate) matrix, Qwith elements qi j. The diagonal elements are non-positive and correspond
to the parameters of the exponential distributions describing the duration of time the process stays
in each state. Therefore the expected duration in state i is 1

−qii . All other elements are non-negative
and each row sums to zero. The probability of transitioning from state i to state j is proportional to
qi j.

A continuous time Bayesian network (CTBN) consists of a set of variables, X , an initial distri-
bution P0 over X specified as a Bayesian network, and a graph-factored model of the dynamics of
the system which is composed of two parts: (1) a directed (possibly cyclic) graph G over X and
(2) conditional intensities QX |U for each variable X ∈ X with parent set U in the graph G . QX |U is
defined as a set of intensity matrices QX |u for each assignment u to the variables U. At any instant,
the evolution of variable X is governed by the intensity matrix QX |u if u is the current assignment
to the parents of X .

3. Engine Components

In terms of data structures, the library supplies classes for storing and efficiently scanning mul-
tivariate trajectories, for representing both the initial distribution (as a Bayesian network) and the
dynamics (as a directed graph with associated conditional rate matrices) of a CTBN, for representing
the associated sufficient statistics, and for drawing samples from the CTBN process.

3.1 Inference Methods

Inference for CTBNs can take a number of forms. The common three types of queries are all
implemented and additional query types can be added (through subclassing) without knowledge of
the details of the inference algorithms. In particular, code is supplied for

• querying the marginal distribution of a variable at a particular time (filtering or smoothing),

• querying the expected number of transitions for a variable during an interval of time, and

• querying the expected amount of time a variable stayed in a particular state during an interval.

All are conditioned on a (possibly incomplete) trajectory of events (transitions of the states of the
variables of the process). The latter two represent the calculations necessary to compute expected
sufficient statistics.

Exact inference (which takes exponential time in terms of the number of variables) is imple-
mented. Additionally, two approximate inference methods based on sampling are also implemented:
Gibbs sampling (El-Hay et al., 2008) and importance sampling (Fan and Shelton, 2008).

3.2 Learning

All learning methods estimate both the dynamics graph and the Bayesian network of the initial
distribution. For the latter, this is just standard Bayesian network learning which exists in other
packages; however, we supply our implementation here for simplicity and to avoid relying on other
software packages.
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Figure 1: (Left) Automatic layout of the drug effect network without parameters. (Right) Portion
of automatic layout with parameters.

Maximum likelihood parameter learning is implemented both for complete data (Nodelman
et al., 2003) and for incomplete data (Nodelman et al., 2005) via the expectation-maximization
algorithm. Structure learning is also implemented for both complete and incomplete data. The
latter represents an implementation of structural expectation maximization. Two structure searches
are available: a brute force search that tries all parent sets up to a certain size (not possible for the
initial distribution due to acyclic constraints) and a graph edit search that makes local changes to
the graph.

3.3 Modularity

Any supplied (or user-defined) inference method can be used in expectation-maximization and
structural expectation maximization. Different proposal distributions for importance sampling can
be added through simple subclassing. Similarly, the code allows for the construction of CTBNs
from any underlying process type. As an example, we define “toggle” variables (only the change
of state has meaning) through a very short subclass that implements the necessary parameter tieing.
This new process can be mixed freely with other processes to create CTBNs of mixed node types.

3.4 Visualization

Two visualization tools are supplied. The first converts a CTBN into a text file suitable to be read by
the open source package graphviz which can then layout the CTBN in a variety of formats. Fig-
ure 1 shows the output of this automatic visualization on the drug effect network from Nodelman
et al. (2002). Additionally, either an postscript or text visualization of a trajectory can be automat-
ically generated. Figure 2 shows these outputs for a partially observed trajectory drawn from the
same drug effect network.
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Figure 2: Automatic visualizations of a trajectory of the drug effect network (with all variables
missing observations from t = 1 to 1.5), as a postscript file (left) and in text (right).
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Abstract
In recent years, a fundamental problem structure has emerged as very useful in a variety of ma-
chine learning applications: Submodularity is an intuitive diminishing returns property, stating that
adding an element to a smaller set helps more than adding it to a larger set. Similarly to convexity,
submodularity allows one to efficiently find provably (near-) optimal solutions for large problems.
We present SFO, a toolbox for use in MATLAB or Octave that implements algorithms for mini-
mization and maximization of submodular functions. A tutorial script illustrates the application of
submodularity to machine learning and AI problems such as feature selection, clustering, inference
and optimized information gathering.

1. Introduction

Convex optimization has become a powerful tool in machine learning: Surprisingly, many prob-
lems that intuitively require the optimization of highly multi-modal objectives, such as clustering
and non-linear classification, can be reduced to convex programs, allowing efficient and optimal
solution. More formally, they require finding a solution x∗ ∈ Rd :

x∗ = argmin
x

g(x) s.t. x ∈ F,

where g is a convex function, and F ⊆ Rd is a (convex) set of feasible solutions.
However, many optimization problems in machine learning, such as feature selection, struc-

ture learning and inference in discrete graphical models, require finding solutions to combinatorial
optimization problems: They can be reduced to the problem

A∗ = argmin
A⊆V

F(A) s.t. A ∈ F,

where F is a set function F : 2V → R defined over a finite set V , and F ⊆ 2V is a collection of
feasible subsets of V , for example, all sets of size at most k, F = {A ⊆ V : |A |≤ k}.

In many machine learning problems, the function F satisfies submodularity, an intuitive dimin-
ishing returns property, stating that adding an element to a smaller set helps more than adding it to
a larger set. Formally, for all A ⊆ B ⊆ V and s ∈ V \B it must hold that F(A ∪ {s})−F(A) ≥
F(B ∪ {s})−F(B). Similarly to convexity, submodularity allows one to efficiently find provably
(near-) optimal solutions for large problems. Interestingly, for submodular functions, guarantees
can be obtained both for minimization and for maximization problems. This is important, since
applications require both minimization (e.g., in clustering, inference and structure learning) and
maximization (e.g., in feature selection and optimized information gathering). We present SFO, a

c©2010 Andreas Krause.
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toolbox1 for use in MATLAB or Octave that implements various algorithms for minimization and
maximization of submodular functions. Examples illustrate the application of submodularity to ma-
chine learning and AI problems such as clustering (Narasimhan et al., 2005), inference in graphical
models (Kolmogorov and Zabih, 2004) and optimized information gathering (Krause et al., 2006).

2. Implementation of Submodular Functions

The SFO toolbox includes several examples of submodular functions. It is also easily extendable
with additional functions. The ground set V is implemented as a MATLAB array. Submodular
functions are implemented as MATLAB objects, inheriting from sfo fn. The following shows ex-
ample code defining the submodular function

F(A) = I(XA ;XV \A) = H(XV \A)−H(XV \A | XA),

that is, the mutual information between a set of random variables XA and its complement XV \A ,
based on a joint multivariate normal distribution P(XV = xV ) =N (xV ;0,Σ)with covariance matrix
Σ ∈ R100×100:

V = 1 : 1 0 0 ;
F = s f o f n m i ( Sigma ,V ) ;
F ( 1 : 3 ) % e v a l u a t e F on s e t A= [ 1 , 2 , 3 ]

This objective function has been used for experimental design in Gaussian processes (Krause et al.,
2008), structure learning (Narasimhan and Bilmes, 2004) and clustering (Narasimhan et al., 2005).
Often, algorithms require computing marginal increments

δ+
s (A) = F(A ∪{s})−F(A) and δ−s (A) = F(A \{s})−F(A),

that is, computing the change in submodular value by adding (removing) an element s from a set A .
Often, computing F(A ∪{s}) (or F(A \{s})) is more efficient when F(A) has already been com-
puted. E.g., for mutual information, incrementally computing F(A ∪{s}) requires up-/downdating
of the Cholesky decomposition of covariance matrix ΣAA . To speed up computation, the submodu-
lar function objects in SFO support methods inc and dec:

F = i n i t ( F , 1 : 5 ) ; % cache compu t a t i on o f F ( 1 : 5 )
i n c ( F , 1 : 5 , 9 ) % e f f i c i e n t e v a l u a t i o n o f F ( [ 1 : 5 9 ] )
dec ( F , 1 : 5 , 3 ) % e f f i c i e n t e v a l u a t i o n o f F ( [ 1 : 2 4 : 5 ] )

The SFO toolbox implements several other examples of submodular functions, including

sfo fn entropy Entropy of multivariate Gaussians
sfo fn infogain Information gain for multivariate Gaussians
sfo fn mi Mutual information in multivariate Gaussians
sfo fn varred Variance reduction in multivariate Gaussians
sfo fn detect Improvement in detection performance
sfo fn cutfun Cut function in graphs
sfo fn ising Energy in ising models with attractive potentials

1. The toolbox is available at http://www.submodularity.org.
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Creating submodular functions from other submodular functions is also possible, using sfo fn lincomb
for nonnegative linear combinations, and sfo fn trunc for truncation. Custom submodular functions
can be used either by inheriting from sfo fn, or by using the sfo fn wrapper function, which wraps a
pointer to an anonymous function in a submodular function object. The following example wraps an
anonymous function fnwhich computes, for any set of integers A , the number of distinct remainders
modulo 5:

fn = @(A) l e n g t h ( un ique (mod (A , 5 ) ) ) ;
F = s f o f n w r a p p e r ( fn ) ;
F ( [ 1 6 ] ) % r e t u r n s 1
F ( [ 1 : 1 0 ] ) % r e t u r n s 5

3. Implemented Algorithms for Submodular Function Optimization

SFO implements various algorithms for (constrained) maximization and minimization of submod-
ular functions. Their use is demonstrated in sfo tutorial and sfo tutorial octave.
Minimization of Submodular Functions

• sfo min norm point: The minimum norm point algorithm of Fujishige (2005) for solvingA∗ =
argminA⊆V F(A) for general submodular functions.

• sfo queyranne: Algorithm of Queyranne (1995) solving A∗ = argminA⊆V :0<|A |<|V |F(A) for
symmetric submodular functions (i.e., F(A) = F(V \A) for all sets A).

• sfo ssp: The submodular-supermodular procedure of Narasimhan and Bilmes (2006) for
(heuristically) minimizing the difference between two submodular functions
A∗ = argminA⊆V F1(A)−F2(A).

• sfo s t min cut: Solves A∗ = argminA⊆V F(A) s.t. s ∈ A , t /∈ A .
• sfo greedy splitting: The algorithm of Zhao et al. (2005) for submodular clustering

Maximization of Submodular Functions
• sfo greedy lazy: The greedy algorithm of Nemhauser et al. (1978) for constrained maximiza-
tion / coverage, using the lazy evaluation technique of Minoux (1978).

• sfo cover: Greedy coverage algorithm using lazy evaluations.
• sfo celf: The CELF algorithm for approximately solving A∗ = argmaxA F(A) s.t. C(A)≤ B,
for linear cost functionC (Leskovec et al., 2007).

• sfo ls lazy: The (deterministic) local search algorithm of Feige et al. (2007) for unconstrained
maximization of nonnegative submodular functions, using lazy evaluations.

• sfo pspiel: The PSPIEL algorithm of Krause et al. (2006). PSPIEL approximately solves
A∗ = argmaxA F(A) s.t. C(A)≤ B, whereC(A) is the cost of a cheapest path connecting the
nodes A in a graph.

• sfo saturate: The SATURATE algorithm of Krause et al. (2008) for approximately solving
the robust optimization problem A∗ = argmax|A |≤kmini Fi(A).

• sfo balance: The ESPASS algorithm for approximately solving the optimization problem
max|A1∪···∪Ak|≤mmini F(Ai) (Krause et al., 2009).

• sfo max dca lazy: The Data Correcting algorithm for maximizing general (not necessarily
nondecreasing) submodular functions (Goldengorin et al., 1999).
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Abstract

We extend the well-known BFGS quasi-Newton method and its memory-limited variant LBFGS to
the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing
three components of BFGS to subdifferentials: the local quadratic model, the identification of
a descent direction, and the Wolfe line search conditions. We prove that under some technical
conditions, the resulting subBFGS algorithm is globally convergent in objective function value.
We apply its memory-limited variant (subLBFGS) to L2-regularized risk minimization with the
binary hinge loss. To extend our algorithm to the multiclass and multilabel settings, we develop a
new, efficient, exact line search algorithm. We prove its worst-case time complexity bounds, and
show that our line search can also be used to extend a recently developed bundle method to the
multiclass and multilabel settings. We also apply the direction-finding component of our algorithm
to L1-regularized risk minimization with logistic loss. In all these contexts our methods perform
comparable to or better than specialized state-of-the-art solvers on a number of publicly available
data sets. An open source implementation of our algorithms is freely available.

Keywords: BFGS, variable metric methods, Wolfe conditions, subgradient, risk minimization,
hinge loss, multiclass, multilabel, bundle methods, BMRM, OCAS, OWL-QN

1. Introduction

The BFGS quasi-Newton method (Nocedal and Wright, 1999) and its memory-limited LBFGS vari-
ant are widely regarded as the workhorses of smooth nonlinear optimization due to their combi-
nation of computational efficiency and good asymptotic convergence. Given a smooth objective
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YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH








∇J(wt)
!pt c2∇J(wt)

!pt
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!pt

Figure 1: Geometric illustration of the Wolfe conditions (4) and (5).

function J : Rd → R and a current iterate wt ∈ R
d , BFGS forms a local quadratic model of J:

Qt(p) := J(wt)+ 1
2 p$B−1

t p+∇J(wt)
$p , (1)

whereBt & 0 is a positive-definite estimate of the inverse Hessian of J, and∇J denotes the gradient.
Minimizing Qt(p) gives the quasi-Newton direction

pt := −Bt∇J(wt), (2)

which is used for the parameter update:

wt+1 = wt +ηtpt . (3)

The step size ηt > 0 is normally determined by a line search obeying the Wolfe (1969) conditions:

J(wt+1) ≤ J(wt)+ c1ηt∇J(wt)
$pt (sufficient decrease) (4)

and ∇J(wt+1)
$pt ≥ c2∇J(wt)

$pt (curvature) (5)

with 0 < c1 < c2 < 1. Figure 1 illustrates these conditions geometrically. The matrix Bt is then
modified via the incremental rank-two update

Bt+1 = (I −ρtsty$
t )Bt(I −ρtyts$t )+ρtsts$t , (6)

where st := wt+1−wt and yt := ∇J(wt+1)−∇J(wt) denote the most recent step along the opti-
mization trajectory in parameter and gradient space, respectively, and ρt := (yt$st)−1. The BFGS
update (6) enforces the secant equation Bt+1yt = st . Given a descent direction pt , the Wolfe con-
ditions ensure that (∀t) s$t yt > 0 and henceB0 & 0 =⇒ (∀t) Bt & 0.

Limited-memory BFGS (LBFGS, Liu and Nocedal, 1989) is a variant of BFGS designed for
high-dimensional optimization problems where the O(d2) cost of storing and updatingBt would be
prohibitive. LBFGS approximates the quasi-Newton direction (2) directly from the last m pairs of
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st and yt via a matrix-free approach, reducing the cost to O(md) space and time per iteration, with
m freely chosen.

There have been some attempts to apply (L)BFGS directly to nonsmooth optimization problems,
in the hope that they would perform well on nonsmooth functions that are convex and differentiable
almost everywhere. Indeed, it has been noted that in cases where BFGS (resp., LBFGS) does not
encounter any nonsmooth point, it often converges to the optimum (Lemarechal, 1982; Lewis and
Overton, 2008a). However, Lukšan and Vlček (1999), Haarala (2004), and Lewis and Overton
(2008b) also report catastrophic failures of (L)BFGS on nonsmooth functions. Various fixes can be
used to avoid this problem, but only in an ad-hoc manner. Therefore, subgradient-based approaches
such as subgradient descent (Nedić and Bertsekas, 2000) or bundle methods (Joachims, 2006; Franc
and Sonnenburg, 2008; Teo et al., 2010) have gained considerable attention for minimizing nons-
mooth objectives.

Although a convex function might not be differentiable everywhere, a subgradient always exists
(Hiriart-Urruty and Lemaréchal, 1993). Let w be a point where a convex function J is finite. Then
a subgradient is the normal vector of any tangential supporting hyperplane of J at w. Formally, g
is called a subgradient of J at w if and only if (Hiriart-Urruty and Lemaréchal, 1993, Definition
VI.1.2.1)

(∀w′) J(w′) ≥ J(w)+(w′ −w)$g. (7)

The set of all subgradients at a point is called the subdifferential, and is denoted ∂J(w). If this set
is not empty then J is said to be subdifferentiable at w. If it contains exactly one element, that is,
∂J(w) = {∇J(w)}, then J is differentiable at w. Figure 2 provides the geometric interpretation of
(7).

The aim of this paper is to develop principled and robust quasi-Newton methods that are amenable
to subgradients. This results in subBFGS and its memory-limited variant subLBFGS, two new sub-
gradient quasi-Newton methods that are applicable to nonsmooth convex optimization problems. In
particular, we apply our algorithms to a variety of machine learning problems, exploiting knowl-
edge about the subdifferential of the binary hinge loss and its generalizations to the multiclass and
multilabel settings.

In the next section we motivate our work by illustrating the difficulties of LBFGS on nonsmooth
functions, and the advantage of incorporating BFGS’ curvature estimate into the parameter update.
In Section 3 we develop our optimization algorithms generically, before discussing their application
to L2-regularized risk minimization with the hinge loss in Section 4. We describe a new efficient
algorithm to identify the nonsmooth points of a one-dimensional pointwise maximum of linear
functions in Section 5, then use it to develop an exact line search that extends our optimization
algorithms to the multiclass and multilabel settings (Section 6). Section 7 compares and contrasts
our work with other recent efforts in this area. We report our experimental results on a number of
public data sets in Section 8, and conclude with a discussion and outlook in Section 9.

2. Motivation

The application of standard (L)BFGS to nonsmooth optimization is problematic since the quasi-
Newton direction generated at a nonsmooth point is not necessarily a descent direction. Never-
theless, BFGS’ inverse Hessian estimate can provide an effective model of the overall shape of a
nonsmooth objective; incorporating it into the parameter update can therefore be beneficial. We
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Figure 2: Geometric interpretation of subgradients. The dashed lines are tangential to the hinge
function (solid blue line); the slopes of these lines are subgradients.

discuss these two aspects of (L)BFGS to motivate our work on developing new quasi-Newton meth-
ods that are amenable to subgradients while preserving the fast convergence properties of standard
(L)BFGS.

2.1 Problems of (L)BFGS on Nonsmooth Objectives

Smoothness of the objective function is essential for classical (L)BFGS because both the local
quadratic model (1) and the Wolfe conditions (4, 5) require the existence of the gradient ∇J at every
point. As pointed out by Hiriart-Urruty and Lemaréchal (1993, Remark VIII.2.1.3), even though
nonsmooth convex functions are differentiable everywhere except on a set of Lebesgue measure
zero, it is unwise to just use a smooth optimizer on a nonsmooth convex problem under the as-
sumption that “it should work almost surely.” Below we illustrate this on both a toy example and
real-world machine learning problems.

2.1.1 A TOY EXAMPLE

The following simple example demonstrates the problems faced by BFGS when working with a
nonsmooth objective function, and how our subgradient BFGS (subBFGS) method (to be introduced
in Section 3) with exact line search overcomes these problems. Consider the task of minimizing

f (x,y) = 10 |x|+ |y| (8)

with respect to x and y. Clearly, f (x,y) is convex but nonsmooth, with the minimum located at (0,0)
(Figure 3, left). It is subdifferentiable whenever x or y is zero:

∂x f (0, ·) = [−10,10] and ∂y f (·,0) = [−1,1].

We call such lines of subdifferentiability in parameter space hinges.
We can minimize (8) with the standard BFGS algorithm, employing a backtracking line search

(Nocedal and Wright, 1999, Procedure 3.1) that starts with a step size that obeys the curvature
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Figure 3: Left: the nonsmooth convex function (8); optimization trajectory of BFGS with inexact
line search (center) and subBFGS (right) on this function.

condition (5), then exponentially decays it until both Wolfe conditions (4, 5) are satisfied.1 The
curvature condition forces BFGS to jump across at least one hinge, thus ensuring that the gradient
displacement vector yt in (6) is non-zero; this prevents BFGS from diverging. Moreover, with such
an inexact line search BFGS will generally not step on any hinges directly, thus avoiding (in an
ad-hoc manner) the problem of non-differentiability. Although this algorithm quickly decreases the
objective from the starting point (1,1), it is then slowed down by heavy oscillations around the
optimum (Figure 3, center), caused by the utter mismatch between BFGS’ quadratic model and the
actual function.

A generally sensible strategy is to use an exact line search that finds the optimum along a given
descent direction (cf. Section 4.2.1). However, this line optimum will often lie on a hinge (as it does
in our toy example), where the function is not differentiable. If an arbitrary subgradient is supplied
instead, the BFGS update (6) can produce a search direction which is not a descent direction, causing
the next line search to fail. In our toy example, standard BFGS with exact line search consistently
fails after the first step, which takes it to the hinge at x= 0.

Unlike standard BFGS, our subBFGS method can handle hinges and thus reap the benefits of
an exact line search. As Figure 3 (right) shows, once the first iteration of subBFGS lands it on the
hinge at x= 0, its direction-finding routine (Algorithm 2) finds a descent direction for the next step.
In fact, on this simple example Algorithm 2 yields a vector with zero x component, which takes
subBFGS straight to the optimum at the second step.2

2.1.2 TYPICAL NONSMOOTH OPTIMIZATION PROBLEMS IN MACHINE LEARNING

The problems faced by smooth quasi-Newton methods on nonsmooth objectives are not only en-
countered in cleverly constructed toy examples, but also in real-world applications. To show this,
we apply LBFGS to L2-regularized risk minimization problems (30) with binary hinge loss (31), a
typical nonsmooth optimization problem encountered in machine learning. For this particular ob-
jective function, an exact line search is cheap and easy to compute (see Section 4.2.1 for details).
Figure 4 (left & center) shows the behavior of LBFGS with this exact line search (LBFGS-LS)

1. We set c1 = 10−3 in (4) and c2 = 0.8 in (5), and used a decay factor of 0.9.
2. This is achieved for any choice of initial subgradient g(1) (Line 3 of Algorithm 2).
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Figure 4: Performance of subLBFGS (solid) and standard LBFGS with exact (dashed) and inexact
(dotted) line search methods on sample L2-regularized risk minimization problems with
the binary (left and center) and multiclass hinge losses (right). LBFGS with exact line
search (dashed) fails after 3 iterations (marked as ×) on the Leukemia data set (left).

on two data sets, namely Leukemia and Real-sim.3 It can be seen that LBFGS-LS converges on
Real-sim but diverges on the Leukemia data set. This is because using an exact line search on a
nonsmooth objective function increases the chance of landing on nonsmooth points, a situation that
standard BFGS (resp., LBFGS) is not designed to deal with. To prevent (L)BFGS’ sudden break-
down, a scheme that actively avoids nonsmooth points must be used. One such possibility is to
use an inexact line search that obeys the Wolfe conditions. Here we used an efficient inexact line
search that uses a caching scheme specifically designed for L2-regularized hinge loss (cf. end of
Section 4.2). This implementation of LBFGS (LBFGS-ILS) converges on both data sets shown
here but may fail on others. It is also slower, due to the inexactness of its line search.

For the multiclass hinge loss (42) we encounter another problem: if we follow the usual practice
of initializing w = 0, which happens to be a non-differentiable point, then LBFGS stalls. One way
to get around this is to force LBFGS to take a unit step along its search direction to escape this
nonsmooth point. However, as can be seen on the Letter data set3 in Figure 4 (right), such an ad-hoc
fix increases the value of the objective above J(0) (solid horizontal line), and it takes several CPU
seconds for the optimizers to recover from this. In all cases shown in Figure 4, our subgradient
LBFGS (subLBFGS) method (as will be introduced later) performs comparable to or better than the
best implementation of LBFGS.

2.2 Advantage of Incorporating BFGS’ Curvature Estimate

In machine learning one often encounters L2-regularized risk minimization problems (30) with var-
ious hinge losses (31, 42, 55). Since the Hessian of those objective functions at differentiable points
equals λI (where λ is the regularization constant), one might be tempted to argue that for such
problems, BFGS’ approximation Bt to the inverse Hessian should be simply set to λ−1I . This
would reduce the quasi-Newton direction pt = −Btgt , gt ∈ ∂J(wt) to simply a scaled subgradient
direction.

To check if doing so is beneficial, we compared the performance of our subLBFGS method with
two implementations of subgradient descent: a vanilla gradient descent method (denoted GD) that

3. Descriptions of these data sets can be found in Section 8.
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Figure 5: Performance of subLBFGS, GD, and subGD on sample L2-regularized risk minimization
problems with binary (left), multiclass (center), and multilabel (right) hinge losses.

        


















        
















Figure 6: BFGS’ quadratic approximation to a piecewise linear function (left), and its estimate of
the gradient of this function (right).

uses a random subgradient for its parameter update, and an improved subgradient descent method
(denoted subGD) whose parameter is updated in the direction produced by our direction-finding
routine (Algorithm 2) with Bt = I . All algorithms used exact line search, except that GD took
a unit step for the first update in order to avoid the nonsmooth point w0 = 0 (cf. the discussion
in Section 2.1). As can be seen in Figure 5, on all sample L2-regularized hinge loss minimization
problems, subLBFGS (solid) converges significantly faster than GD (dotted) and subGD (dashed).
This indicates that BFGS’ Bt matrix is able to model the objective function, including its hinges,
better than simply settingBt to a scaled identity matrix.

We believe that BFGS’ curvature update (6) plays an important role in the performance of
subLBFGS seen in Figure 5. Recall that (6) satisfies the secant conditionBt+1yt = st , where st and
yt are displacement vectors in parameter and gradient space, respectively. The secant condition in
fact implements a finite differencing scheme: for a one-dimensional objective function J : R → R,
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we have

Bt+1 =
(w+ p)−w

∇J(w+ p)−∇J(w)
. (9)

Although the original motivation behind the secant condition was to approximate the inverse Hes-
sian, the finite differencing scheme (9) allows BFGS to model the global curvature (i.e., overall
shape) of the objective function from first-order information. For instance, Figure 6 (left) shows
that the BFGS quadratic model4 (1) fits a piecewise linear function quite well despite the fact that
the actual Hessian in this case is zero almost everywhere, and infinite (in the limit) at nonsmooth
points. Figure 6 (right) reveals that BFGS captures the global trend of the gradient rather than its in-
finitesimal variation, that is, the Hessian. This is beneficial for nonsmooth problems, where Hessian
does not fully represent the overall curvature of the objective function.

3. Subgradient BFGS Method

We modify the standard BFGS algorithm to derive our new algorithm (subBFGS, Algorithm 1) for
nonsmooth convex optimization, and its memory-limited variant (subLBFGS). Our modifications
can be grouped into three areas, which we elaborate on in turn: generalizing the local quadratic
model, finding a descent direction, and finding a step size that obeys a subgradient reformulation
of the Wolfe conditions. We then show that our algorithm’s estimate of the inverse Hessian has a
bounded spectrum, which allows us to prove its convergence.

Algorithm 1 Subgradient BFGS (subBFGS)
1: Initialize: t := 0,w0 = 0,B0 = I

2: Set: direction-finding tolerance ε≥ 0, iteration limit kmax > 0,
lower bound h> 0 on s$

t yt
y$
t yt

(cf. discussion in Section 3.4)
3: Compute subgradient g0 ∈ ∂J(w0)
4: while not converged do
5: pt = descentDirection(gt ,ε,kmax) (Algorithm 2)
6: if pt = failure then
7: Return wt
8: end if
9: Find ηt that obeys (23) and (24) (e.g., Algorithm 3 or 5)
10: st = ηtpt
11: wt+1 = wt +st
12: Choose subgradient gt+1 ∈ ∂J(wt+1) : s$t (gt+1−gt) > 0
13: yt := gt+1−gt

14: st := st +max
(

0, h− s$
t yt

y$
t yt

)

yt (ensure s$
t yt

y$
t yt

≥ h)
15: UpdateBt+1 via (6)
16: t := t+1
17: end while

4. For ease of exposition, the model was constructed at a differentiable point.
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Figure 7: Left: selecting arbitrary subgradients yields many possible quadratic models (dotted
lines) for the objective (solid blue line) at a subdifferentiable point. The models were
built by keepingBt fixed, but selecting random subgradients. Right: the tightest pseudo-
quadratic fit (10) (bold red dashes); note that it is not a quadratic.

3.1 Generalizing the Local Quadratic Model

Recall that BFGS assumes that the objective function J is differentiable everywhere so that at the
current iterate wt it can construct a local quadratic model (1) of J(wt). For a nonsmooth objective
function, such a model becomes ambiguous at non-differentiable points (Figure 7, left). To resolve
the ambiguity, we could simply replace the gradient ∇J(wt) in (1) with an arbitrary subgradient
gt ∈ ∂J(wt). However, as will be discussed later, the resulting quasi-Newton direction pt :=−Btgt
is not necessarily a descent direction. To address this fundamental modeling problem, we first
generalize the local quadratic model (1) as follows:

Qt(p) := J(wt)+Mt(p), where
Mt(p) := 1

2 p$B−1
t p + sup

g∈∂J(wt)
g$p. (10)

Note that where J is differentiable, (10) reduces to the familiar BFGS quadratic model (1). At non-
differentiable points, however, the model is no longer quadratic, as the supremum may be attained
at different elements of ∂J(wt) for different directions p. Instead it can be viewed as the tightest
pseudo-quadratic fit to J at wt (Figure 7, right). Although the local model (10) of subBFGS is
nonsmooth, it only incorporates non-differential points present at the current location; all others are
smoothly approximated by the quasi-Newton mechanism.

Having constructed the model (10), we can minimize Qt(p), or equivalently Mt(p):

min
p∈R

d

(

1
2 p$B−1

t p + sup
g∈∂J(wt)

g$p

)

(11)

to obtain a search direction. We now show that solving (11) is closely related to the problem of
finding a normalized steepest descent direction. A normalized steepest descent direction is defined
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as the solution to the following problem (Hiriart-Urruty and Lemaréchal, 1993, Chapter VIII):

min
p∈R

d
J′(wt , p) s.t. |||p|||≤ 1, (12)

where

J′(wt , p) := lim
η↓0

J(wt +ηp)− J(wt)

η

is the directional derivative of J at wt in direction p, and ||| · ||| is a norm defined on R
d . In other

words, the normalized steepest descent direction is the direction of bounded norm along which
the maximum rate of decrease in the objective function value is achieved. Using the property:
J′(wt , p) = supg∈∂J(wt) g

$p (Bertsekas, 1999, Proposition B.24.b), we can rewrite (12) as:

min
p∈R

d
sup

g∈∂J(wt)
g$p s.t. |||p|||≤ 1. (13)

If the matrixBt & 0 as in (11) is used to define the norm ||| · ||| as

|||p|||2 := p$B−1
t p, (14)

then the solution to (13) points to the same direction as that obtained by minimizing our pseudo-
quadratic model (11). To see this, we write the Lagrangian of the constrained minimization problem
(13):

L(p,α) := α p$B−1
t p −α + sup

g∈∂J(wt)
g$p

= 1
2 p$(2αB−1

t )p −α + sup
g∈∂J(wt)

g$p, (15)

where α> 0 is a Lagrangian multiplier. It is easy to see from (15) that minimizing the Lagrangian
function L with respect to p is equivalent to solving (11) withB−1

t scaled by a scalar 2α, implying
that the steepest descent direction obtained by solving (13) with the weighted norm (14) only differs
in length from the search direction obtained by solving (11). Therefore, our search direction is
essentially an unnomalized steepest descent direction with respect to the weighted norm (14).

Ideally, we would like to solve (11) to obtain the best search direction. This is generally in-
tractable due to the presence a supremum over the entire subdifferential set ∂J(wt). In many ma-
chine learning problems, however, ∂J(wt) has some special structure that simplifies the calculation
of that supremum. In particular, the subdifferential of all the problems considered in this paper is
a convex and compact polyhedron characterised as the convex hull of its extreme points. This dra-
matically reduces the cost of calculating supg∈∂J(wt) g

$p since the supremum can only be attained
at an extreme point of the polyhedral set ∂J(wt) (Bertsekas, 1999, Proposition B.21c). In what fol-
lows, we develop an iterative procedure that is guaranteed to find a quasi-Newton descent direction,
assuming an oracle that supplies argsupg∈∂J(wt) g

$p for a given direction p ∈ R
d . Efficient oracles

for this purpose can be derived for many machine learning settings; we provides such oracles for
L2-regularized risk minimization with the binary hinge loss (Section 4.1), multiclass and multilabel
hinge losses (Section 6), and L1-regularized logistic loss (Section 8.4).
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Algorithm 2 pt = descentDirection(g(1),ε,kmax)
1: input (sub)gradient g(1) ∈ ∂J(wt), tolerance ε≥ 0, iteration limit kmax > 0,

and an oracle to calculate argsupg∈∂J(w) g$p for any given w and p

2: output descent direction pt
3: Initialize: i= 1, ḡ(1) = g(1), p(1) = −Btg

(1)

4: g(2) = argsupg∈∂J(wt) g
$p(1)

5: ε(1) := p(1)$g(2)−p(1)$ḡ(1)

6: while (g(i+1)$p(i) > 0 or ε(i) > ε) and ε(i) > 0 and i< kmax do

7: µ∗ :=min
[

1, (ḡ(i)−g(i+1))$Bt ḡ
(i)

(ḡ(i)−g(i+1))$Bt(ḡ(i)−g(i+1))

]

; see (97)

8: ḡ(i+1) = (1−µ∗)ḡ(i) +µ∗g(i+1)

9: p(i+1) = (1−µ∗)p(i)−µ∗Btg
(i+1); see (76)

10: g(i+2) = argsupg∈∂J(wt) g
$p(i+1)

11: ε(i+1) :=min j≤(i+1)
[

p( j)$g( j+1)− 1
2(p

( j)$ḡ( j) +p(i+1)$ḡ(i+1))
]

12: i := i+1
13: end while
14: pt = argmin j≤i Mt(p( j))

15: if supg∈∂J(wt) g
$pt ≥ 0 then

16: return failure;
17: else
18: return pt .
19: end if

3.2 Finding a Descent Direction

A direction pt is a descent direction if and only if g$pt < 0 ∀g ∈ ∂J(wt) (Hiriart-Urruty and
Lemaréchal, 1993, Theorem VIII.1.1.2), or equivalently

sup
g∈∂J(wt)

g$pt < 0. (16)

For a smooth convex function, the quasi-Newton direction (2) is always a descent direction because

∇J(wt)
$pt = −∇J(wt)

$Bt∇J(wt) < 0

holds due to the positivity ofBt .
For nonsmooth functions, however, the quasi-Newton direction pt := −Btgt for a given gt ∈

∂J(wt) may not fulfill the descent condition (16), making it impossible to find a step size η > 0
that obeys the Wolfe conditions (4, 5), thus causing a failure of the line search. We now present an
iterative approach to finding a quasi-Newton descent direction.

Our goal is to minimize the pseudo-quadratic model (10), or equivalently minimize Mt(p).
Inspired by bundle methods (Teo et al., 2010), we achieve this by minimizing convex lower bounds
of Mt(p) that are designed to progressively approach Mt(p) over iterations. At iteration i we build
the following convex lower bound onMt(p):

M(i)
t (p) := 1

2 p$B−1
t p + sup

j≤i
g( j)$p, (17)
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where i, j ∈ N and g( j) ∈ ∂J(wt) ∀ j ≤ i. Given a p(i) ∈ R
d the lower bound (17) is successively

tightened by computing

g(i+1) := argsup
g∈∂J(wt)

g$p(i), (18)

such thatM(i)
t (p)≤M(i+1)

t (p)≤Mt(p) ∀p ∈ R
d . Here we set g(1) ∈ ∂J(wt) arbitrarily, and assume

that (18) is provided by an oracle (e.g., as described in Section 4.1). To solve minp∈R
d M(i)

t (p), we
rewrite it as a constrained optimization problem:

min
p,ξ

(
1
2 p$B−1

t p+ξ
)

s.t. g( j)$p ≤ ξ ∀ j ≤ i. (19)

This problem can be solved exactly via quadratic programming, but doing so may incur substantial
computational expense. Instead we adopt an alternative approach (Algorithm 2) which does not
solve (19) to optimality. The key idea is to write the proposed descent direction at iteration i+ 1
as a convex combination of p(i) and −Btg

(i+1) (Line 9 of Algorithm 2); and as will be shown in
Appendix B, the returned search direction takes the form

pt = −Bt ḡt ,

where ḡt is a subgradient in ∂J(wt) that allows pt to satisfy the descent condition (16). The opti-
mal convex combination coefficient µ∗ can be computed exactly (Line 7 of Algorithm 2) using an
argument based on maximizing the dual objective ofMt(p); see Appendix A for details.

The weak duality theorem (Hiriart-Urruty and Lemaréchal, 1993, Theorem XII.2.1.5) states that
the optimal primal value is no less than any dual value, that is, if Dt(α) is the dual of Mt(p), then
minp∈R

d Mt(p) ≥Dt(α) holds for all feasible dual solutions α. Therefore, by iteratively increasing
the value of the dual objective we close the gap to optimality in the primal. Based on this argument,
we use the following upper bound on the duality gap as our measure of progress:

ε(i) :=min
j≤i

[

p( j)$g( j+1)− 1
2(p

( j)$ḡ( j) +p(i)$ḡ(i))
]

≥ min
p∈R

d
Mt(p)−Dt(α∗), (20)

where ḡ(i) is an aggregated subgradient (Line 8 of Algorithm 2) which lies in the convex hull of
g( j) ∈ ∂J(wt) ∀ j ≤ i, and α∗ is the optimal dual solution; Equations 77–79 in Appendix A provide
intermediate steps that lead to the inequality in (20). Theorem 7 (Appendix B) shows that ε(i) is
monotonically decreasing, leading us to a practical stopping criterion (Line 6 of Algorithm 2) for
our direction-finding procedure.

A detailed derivation of Algorithm 2 is given in Appendix A, where we also prove that at a non-
optimal iterate a direction-finding tolerance ε≥ 0 exists such that the search direction produced by
Algorithm 2 is a descent direction; in Appendix B we prove that Algorithm 2 converges to a solution
with precision ε in O(1/ε) iterations. Our proofs are based on the assumption that the spectrum
(eigenvalues) of BFGS’ approximationBt to the inverse Hessian is bounded from above and below.
This is a reasonable assumption if simple safeguards such as those described in Section 3.4 are
employed in the practical implementation.
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3.3 Subgradient Line Search

Given the current iterate wt and a search direction pt , the task of a line search is to find a step size
η> 0 which reduces the objective function value along the linewt +ηpt :

minimize Φ(η) := J(wt +ηpt). (21)

Using the chain rule, we can write

∂Φ(η) := {g$pt : g ∈ ∂J(wt +ηpt)}. (22)

Exact line search finds the optimal step size η∗ by minimizing Φ(η), such that 0 ∈ ∂Φ(η∗); inexact
line searches solve (21) approximately while enforcing conditions designed to ensure convergence.
The Wolfe conditions (4) and (5), for instance, achieve this by guaranteeing a sufficient decrease in
the value of the objective and excluding pathologically small step sizes, respectively (Wolfe, 1969;
Nocedal and Wright, 1999). The original Wolfe conditions, however, require the objective function
to be smooth; to extend them to nonsmooth convex problems, we propose the following subgradient
reformulation:

J(wt+1) ≤ J(wt) + c1ηt sup
g∈∂J(wt)

g$pt (sufficient decrease) (23)

and sup
g′∈∂J(wt+1)

g′$pt ≥ c2 sup
g∈∂J(wt)

g$pt , (curvature) (24)

where 0 < c1 < c2 < 1. Figure 8 illustrates how these conditions enforce acceptance of non-trivial
step sizes that decrease the objective function value. In Appendix C we formally show that for any
given descent direction we can always find a positive step size that satisfies (23) and (24). Moreover,
Appendix D shows that the sufficient decrease condition (23) provides a necessary condition for the
global convergence of subBFGS.

Employing an exact line search is a common strategy to speed up convergence, but it drastically
increases the probability of landing on a non-differentiable point (as in Figure 4, left). In order to
leverage the fast convergence provided by an exact line search, one must therefore use an optimizer
that can handle subgradients, like our subBFGS.

A natural question to ask is whether the optimal step size η∗ obtained by an exact line search
satisfies the reformulated Wolfe conditions (resp., the standard Wolfe conditions when J is smooth).
The answer is no: depending on the choice of c1, η∗ may violate the sufficient decrease condition
(23). For the function shown in Figure 8, for instance, we can increase the value of c1 such that
the acceptable interval for the step size excludes η∗. In practice one can set c1 to a small value, for
example, 10−4, to prevent this from happening.

The curvature condition (24), on the other hand, is always satisfied by η∗, as long as pt is a
descent direction (16):

sup
g′∈J(wt+η∗pt)

g′$pt = sup
g∈∂Φ(η∗)

g ≥ 0 > sup
g∈∂J(wt)

g$pt

because 0 ∈ ∂Φ(η∗).
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Figure 8: Geometric illustration of the subgradient Wolfe conditions (23) and (24). Solid disks are
subdifferentiable points; the slopes of dashed lines are indicated.

3.4 Bounded Spectrum of SubBFGS’ Inverse Hessian Estimate

Recall from Section 1 that to ensure positivity of BFGS’ estimate Bt of the inverse Hessian, we
must have (∀t) s$t yt > 0. Extending this condition to nonsmooth functions, we require

(wt+1−wt)
$(gt+1−gt) > 0, where gt+1 ∈ ∂J(wt+1) and gt ∈ ∂J(wt). (25)

If J is strongly convex,5 andwt+1 /= wt , then (25) holds for any choice of gt+1 and gt .6 For general
convex functions, gt+1 need to be chosen (Line 12 of Algorithm 1) to satisfy (25). The existence of
such a subgradient is guaranteed by the convexity of the objective function. To see this, we first use
the fact that ηtpt = wt+1−wt and ηt > 0 to rewrite (25) as

p$
t gt+1 > p$

t gt , where gt+1 ∈ ∂J(wt+1) and gt ∈ ∂J(wt). (26)

It follows from (22) that both sides of inequality (26) are subgradients of Φ(η) at ηt and 0, respec-
tively. The monotonic property of ∂Φ(η) given in Theorem 1 (below) ensures that p$

t gt+1 is no less
than p$

t gt for any choice of gt+1 and gt , that is,

inf
g∈∂J(wt+1)

p$
t g ≥ sup

g∈∂J(wt)
p$
t g. (27)

This means that the only case where inequality (26) is violated is when both terms of (27) are equal,
and

gt+1 = arg inf
g∈∂J(wt+1)

g$pt and gt = argsup
g∈∂J(wt)

g$pt ,

that is, in this case p$
t gt+1 = p$

t gt . To avoid this, we simply need to set gt+1 to a different subgra-
dient in ∂J(wt+1).

5. If J is strongly convex, then (g2−g1)$(w2−w1) ≥ c‖w2−w1‖2, with c> 0, gi ∈ ∂J(wi), i= 1,2.
6. We found empirically that no qualitative difference between using random subgradients versus choosing a particular
subgradient when updating theBt matrix.
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Theorem 1 (Hiriart-Urruty and Lemaréchal, 1993, Theorem I.4.2.1)
Let Φ be a one-dimensional convex function on its domain, then ∂Φ(η) is increasing in the sense
that g1 ≤ g2 whenever g1 ∈ ∂Φ(η1), g2 ∈ ∂Φ(η2), and η1 < η2.

Our convergence analysis for the direction-finding procedure (Algorithm 2) as well as the global
convergence proof of subBFGS in Appendix D require the spectrum ofBt to be bounded from above
and below by a positive scalar:

∃(h,H : 0< h≤ H < ∞) : (∀t) h2 Bt 2 H. (28)

From a theoretical point of view it is difficult to guarantee (28) (Nocedal and Wright, 1999, page
212), but based on the fact thatBt is an approximation to the inverse HessianH−1

t , it is reasonable
to expect (28) to be true if

(∀t) 1/H 2 Ht 2 1/h.

Since BFGS “senses” the Hessian via (6) only through the parameter and gradient displacements st
and yt , we can translate the bounds on the spectrum of Ht into conditions that only involve st and
yt :

(∀t)
s$t yt

s$t st
≥
1
H
and

y$
t yt

s$t yt
≤
1
h
, with 0< h≤ H < ∞. (29)

This technique is used in Nocedal and Wright (1999, Theorem 8.5). If J is strongly convex5 and
st /=0, then there exists anH such that the left inequality in (29) holds. On general convex functions,
one can skip BFGS’ curvature update if (s$t yt/s$t st) falls below a threshold. To establish the
second inequality, we add a fraction of yt to st at Line 14 of Algorithm 1 (though this modification
is never actually invoked in our experiments of Section 8, where we set h= 10−8).

3.5 Limited-Memory Subgradient BFGS

It is straightforward to implement an LBFGS variant of our subBFGS algorithm: we simply modify
Algorithms 1 and 2 to compute all products between Bt and a vector by means of the standard
LBFGS matrix-free scheme (Nocedal and Wright, 1999, Algorithm 9.1). We call the resulting
algorithm subLBFGS.

3.6 Convergence of Subgradient (L)BFGS

In Section 3.4 we have shown that the spectrum of subBFGS’ inverse Hessian estimate is bounded.
From this and other technical assumptions, we prove in Appendix D that subBFGS is globally con-
vergent in objective function value, that is, J(w) → infw J(w). Moreover, in Appendix E we show
that subBFGS converges for all counterexamples we could find in the literature used to illustrate the
non-convergence of existing optimization methods on nonsmooth problems.

We have also examined the convergence of subLBFGS empirically. In most of our experiments
of Section 8, we observe that after an initial transient, subLBFGS observes a period of linear con-
vergence, until close to the optimum it exhibits superlinear convergence behavior. This is illustrated
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Figure 9: Convergence of subLBFGS in objective function value on sample L2-regularized risk
minimization problems with binary (left) and multiclass (right) hinge losses.

in Figure 9, where we plot (on a log scale) the excess objective function value J(wt) over its “opti-
mum” J∗7 against the iteration number in two typical runs. The same kind of convergence behavior
was observed by Lewis and Overton (2008a, Figure 5.7), who applied the classical BFGS algorithm
with a specially designed line search to nonsmooth functions. They caution that the apparent super-
linear convergence may be an artifact caused by the inaccuracy of the estimated optimal value of
the objective.

4. SubBFGS for L2-Regularized Binary Hinge Loss

Many machine learning algorithms can be viewed as minimizing the L2-regularized risk

J(w) :=
λ
2
‖w‖2 +

1
n

n

∑
i=1

l(xi,zi,w), (30)

where λ > 0 is a regularization constant, xi ∈ X ⊆ R
d are the input features, zi ∈ Z ⊆ Z the cor-

responding labels, and the loss l is a non-negative convex function of w which measures the dis-
crepancy between zi and the predictions arising from using w. A loss function commonly used for
binary classification is the binary hinge loss

l(x,z,w) := max(0,1− zw$x), (31)

where z ∈ {±1}. L2-regularized risk minimization with the binary hinge loss is a convex but nons-
mooth optimization problem; in this section we show how subBFGS (Algorithm 1) can be applied
to this problem.

7. Estimated empirically by running subLBFGS for 104 seconds, or until the relative improvement over 5 iterations was
less than 10−8.
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Let E ,M , andW index the set of points which are in error, on the margin, and well-classified,
respectively:

E := {i ∈ {1,2, . . . ,n} : 1− ziw$xi > 0},
M := {i ∈ {1,2, . . . ,n} : 1− ziw$xi = 0},
W := {i ∈ {1,2, . . . ,n} : 1− ziw$xi < 0}.

Differentiating (30) after plugging in (31) then yields

∂J(w) = λw−
1
n

n

∑
i=1

βizixi = w̄−
1
n ∑i∈M

βizixi, (32)

where w̄ := λw−
1
n ∑i∈E

zixi and βi :=







1 if i ∈ E ,
[0,1] if i ∈M ,
0 if i ∈W .

4.1 Efficient Oracle for the Direction-Finding Method

Recall that subBFGS requires an oracle that provides argsupg∈∂J(wt) g
$p for a given direction p.

For L2-regularized risk minimization with the binary hinge loss we can implement such an oracle
at a computational cost of O(d |M t |), where d is the dimensionality of p and |M t | the number of
current margin points, which is normally much less than n. Towards this end, we use (32) to obtain

sup
g∈∂J(wt)

g$p = sup
βi,i∈M t

(

w̄t −
1
n ∑i∈M t

βizixi

)$

p

= w̄$
t p −

1
n ∑i∈M t

inf
βi∈[0,1]

(βizix$
i p). (33)

Since for a given p the first term of the right-hand side of (33) is a constant, the supremum is attained
when we set βi ∀i ∈M t via the following strategy:

βi :=

{

0 if zix$
i pt ≥ 0,

1 if zix$
i pt < 0.

4.2 Implementing the Line Search

The one-dimensional convex function Φ(η) := J(w +ηp) (Figure 10, left) obtained by restricting
(30) to a line can be evaluated efficiently. To see this, rewrite (30) as

J(w) :=
λ
2
‖w‖2 +

1
n
1
$max(0, 1−z ·Xw), (34)

where 0 and 1 are column vectors of zeros and ones, respectively, · denotes the Hadamard (component-
wise) product, and z ∈ R

n collects correct labels corresponding to each row of data in X :=
[x1,x2, · · · ,xn]$ ∈ R

n×d . Given a search direction p at a point w, (34) allows us to write

Φ(η) =
λ
2
‖w‖2+ ληw$p +

λη2

2
‖p‖2 +

1
n
1
$max [0, (1− (f +ηΔf))] , (35)
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Figure 10: Left: Piecewise quadratic convex function Φ of step size η; solid disks in the zoomed
inset are subdifferentiable points. Right: The subgradient of Φ(η) increases monotoni-
cally with η, and jumps discontinuously at subdifferentiable points.

where f := z ·Xw and Δf := z ·Xp. Differentiating (35) with respect to η gives the subdifferential
of Φ:

∂Φ(η) = λw$p+ηλ‖p‖2−
1
n
δ(η)$Δf , (36)

where δ : R → R
n outputs a column vector [δ1(η),δ2(η), · · · ,δn(η)]$ with

δi(η) :=







1 if fi+ηΔ fi < 1,
[0,1] if fi+ηΔ fi = 1,
0 if fi+ηΔ fi > 1.

(37)

We cache f and Δf , expending O(nd) computational effort and using O(n) storage. We also
cache the scalars λ

2‖w‖2, λw$p, and λ
2‖p‖

2, each of which requires O(d) work. The evaluation of
1− (f +ηΔf), δ(η), and the inner products in the final terms of (35) and (36) all take O(n) effort.
Given the cached terms, all other terms in (35) can be computed in constant time, thus reducing the
cost of evaluating Φ(η) (resp., its subgradient) to O(n). Furthermore, from (37) we see that Φ(η) is
differentiable everywhere except at

ηi := (1− fi)/Δ fi with Δ fi /= 0, (38)

where it becomes subdifferentiable. At these points an element of the indicator vector (37) changes
from 0 to 1 or vice versa (causing the subgradient to jump, as shown in Figure 10, right); otherwise
δ(η) remains constant. Using this property of δ(η), we can update the last term of (36) in constant
time when passing a hinge point (Line 25 of Algorithm 3). We are now in a position to introduce an
exact line search which takes advantage of this scheme.
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Figure 11: Nonsmooth convex function Φ of step size η. Solid disks are subdifferentiable points;
the optimal step η∗ either falls on such a point (left), or lies between two such points
(right).

4.2.1 EXACT LINE SEARCH

Given a direction p, exact line search finds the optimal step size η∗ := argminη≥0Φ(η) that satisfies
0 ∈ ∂Φ(η∗), or equivalently

inf∂Φ(η∗) ≤ 0≤ sup∂Φ(η∗).

By Theorem 1, sup∂Φ(η) is monotonically increasing with η. Based on this property, our algorithm
first builds a list of all possible subdifferentiable points and η= 0, sorted by non-descending value
of η (Lines 4–5 of Algorithm 3). Then, it starts with η = 0, and walks through the sorted list
until it locates the “target segment”, an interval [ηa,ηb] between two subdifferential points with
sup∂Φ(ηa) ≤ 0 and sup∂Φ(ηb) ≥ 0. We now know that the optimal step size either coincides with
ηb (Figure 11, left), or lies in (ηa,ηb) (Figure 11, right). If η∗ lies in the smooth interval (ηa,ηb),
then setting (36) to zero gives

η∗ =
δ(η′)$Δf/n−λw$p

λ‖p‖2
, ∀η′ ∈ (ηa,ηb). (39)

Otherwise, η∗ = ηb. See Algorithm 3 for the detailed implementation.

5. Segmenting the Pointwise Maximum of 1-D Linear Functions

The line search of Algorithm 3 requires a vector η listing the subdifferentiable points along the line
w +ηp, and sorts it in non-descending order (Line 5). For an objective function like (30) whose
nonsmooth component is just a sum of hinge losses (31), this vector is very easy to compute (cf.
(38)). In order to apply our line search approach to multiclass and multilabel losses, however, we
must solve a more general problem: we need to efficiently find the subdifferentiable points of a
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Algorithm 3 Exact Line Search for L2-Regularized Binary Hinge Loss
1: input w,p,λ,f , and Δf as in (35)
2: output optimal step size
3: h= λ‖p‖2, j := 1
4: η := [(1−f)./Δf ,0] (vector of subdifferentiable points & zero)
5: π = argsort(η) (indices sorted by non-descending value of η)
6: while ηπ j ≤ 0 do
7: j := j+1
8: end while
9: η := ηπ j/2
10: for i := 1 to f .size do

11: δi :=
{

1 if fi+ηΔ fi < 1
0 otherwise (value of δ(η) (37) for any η ∈ (0,ηπ j))

12: end for
13: ρ := δ$Δf/n−λw$p
14: η := 0, ρ′ := 0
15: g := −ρ (value of sup∂Φ(0))
16: while g< 0 do
17: ρ′ := ρ
18: if j > π.size then
19: η := ∞ (no more subdifferentiable points)
20: break
21: else
22: η := ηπ j
23: end if
24: repeat

25: ρ :=
{

ρ−Δ fπ j/n if δπ j = 1 (move to next subdifferentiable
ρ+Δ fπ j/n otherwise point and update ρ accordingly)

26: j := j+1
27: until ηπ j /= ηπ j−1 and j ≤ π.size
28: g := ηh−ρ (value of sup∂Φ(ηπ j−1))
29: end while
30: return min(η, ρ′/h) (cf. equation 39)

one-dimensional piecewise linear function ρ : R → R defined to be the pointwise maximum of r
lines:

ρ(η) = max
1≤p≤r

(bp+ηap), (40)

where ap and bp denote the slope and offset of the pth line, respectively. Clearly, ρ is convex since
it is the pointwise maximum of linear functions (Boyd and Vandenberghe, 2004, Section 3.2.3), see
Figure 12(a). The difficulty here is that although ρ consists of at most r line segments bounded by
at most r− 1 subdifferentiable points, there are r(r− 1)/2 candidates for these points, namely all
intersections between any two of the r lines. A naive algorithm to find the subdifferentiable points
of ρ would therefore take O(r2) time. In what follows, however, we show how this can be done in
just O(r logr) time. In Section 6 we will then use this technique (Algorithm 4) to perform efficient
exact line search in the multiclass and multilabel settings.
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(a) Pointwise maximum of lines
 



(b) Case 1





(c) Case 2

Figure 12: (a) Convex piecewise linear function defined as the maximum of 5 lines, but comprising
only 4 active line segments (bold) separated by 3 subdifferentiable points (black dots).
(b, c) Two cases encountered by our algorithm: (b) The new intersection (black cross)
lies to the right of the previous one (red dot) and is therefore pushed onto the stack; (c)
The new intersection lies to the left of the previous one. In this case the latter is popped
from the stack, and a third intersection (blue square) is computed and pushed onto it.

Algorithm 4 Segmenting a Pointwise Maximum of 1-D Linear Functions
1: input vectors a and b of slopes and offsets

lower bound L, upper boundU , with 0≤ L<U < ∞
2: output sorted stack of subdifferentiable points η

and corresponding active line indices ξ

3: y := b+La
4: π := argsort(−y) (indices sorted by non-ascending value of y)
5: S.push (L,π1) (initialize stack)
6: for q := 2 to y.size do
7: while not S.empty do
8: (η,ξ) := S.top

9: η′ :=
bπq −bξ
aξ−aπq

(intersection of two lines)

10: if L< η′ ≤ η or (η′ = L and aπq > aξ) then
11: S.pop (cf. Figure 12(c))
12: else
13: break
14: end if
15: end while
16: if L< η′ ≤U or (η′ = L and aπq > aξ) then
17: S.push (η′,πq) (cf. Figure 12(b))
18: end if
19: end for
20: return S

We begin by specifying an interval [L,U ] (0≤ L<U <∞) in which to find the subdifferentiable
points of ρ, and set y := b+La, where a = [a1,a2, · · · ,ar] and b = [b1,b2, · · · ,br]. In other words,
y contains the intersections of the r lines defining ρ(η) with the vertical line η = L. Let π denote
the permutation that sorts y in non-ascending order, that is, p< q =⇒ yπp ≥ yπq , and let ρ(q) be the
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function obtained by considering only the top q≤ r lines at η= L, that is, the first q lines in π:

ρ(q)(η) = max
1≤p≤q

(bπp +ηaπp). (41)

It is clear that ρ(r) = ρ. Let η contain all q′ ≤ q− 1 subdifferentiable points of ρ(q) in [L,U ] in
ascending order, and ξ the indices of the corresponding active lines, that is, the maximum in (41)
is attained for line ξ j−1 over the interval [η j−1,η j]: ξ j−1 := πp∗ , where p∗ = argmax1≤p≤q(bπp +
ηaπp) for η ∈ [η j−1,η j], and lines ξ j−1 and ξ j intersect at η j.

Initially we set η0 := L and ξ0 := π1, the leftmost bold segment in Figure 12(a). Algorithm 4
goes through lines in π sequentially, and maintains a Last-In-First-Out stack S which at the end of
the qth iteration consists of the tuples

(η0,ξ0),(η1,ξ1), . . . ,(ηq′ ,ξq′)

in order of ascending ηi, with (ηq′ ,ξq′) at the top. After r iterations S contains a sorted list of all
subdifferentiable points (and the corresponding active lines) of ρ= ρ(r) in [L,U ], as required by our
line searches.

In iteration q+1 Algorithm 4 examines the intersection η′ between lines ξq′ and πq+1: If η′ >U ,
line πq+1 is irrelevant, and we proceed to the next iteration. If ηq′ < η′ ≤U as in Figure 12(b), then
line πq+1 is becoming active at η′, and we simply push (η′,πq+1) onto the stack. If η′ ≤ ηq′ as in
Figure 12(c), on the other hand, then line πq+1 dominates line ξq′ over the interval (η′,∞) and hence
over (ηq′ ,U ] ⊂ (η′,∞), so we pop (ηq′ ,ξq′) from the stack (deactivating line ξq′), decrement q′, and
repeat the comparison.

Theorem 2 The total running time of Algorithm 4 is O(r logr).

Proof Computing intersections of lines as well as pushing and popping from the stack require O(1)
time. Each of the r lines can be pushed onto and popped from the stack at most once; amortized
over r iterations the running time is therefore O(r). The time complexity of Algorithm 4 is thus
dominated by the initial sorting of y (i.e., the computation of π), which takes O(r logr) time.

6. SubBFGS for Multiclass and Multilabel Hinge Losses

We now use the algorithm developed in Section 5 to generalize the subBFGS method of Section 4 to
the multiclass and multilabel settings with finite label set Z. We assume that given a feature vector
x our classifier predicts the label

z∗ = argmax
z∈Z

f (w,x,z),

where f is a linear function of w, that is, f (w,x,z) = w$φ(x,z) for some feature map φ(x,z).

6.1 Multiclass Hinge Loss

A variety of multiclass hinge losses have been proposed in the literature that generalize the binary
hinge loss, and enforce a margin of separation between the true label zi and every other label. We
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focus on the following rather general variant (Taskar et al., 2004):8

l(xi,zi,w) := max
z∈Z

[Δ(z,zi)+ f (w,xi,z)− f (w,xi,zi)], (42)

where Δ(z,zi) ≥ 0 is the label loss specifying the margin required between labels z and zi. For
instance, a uniform margin of separation is achieved by setting Δ(z,z′) := τ > 0 ∀z /= z′ (Crammer
and Singer, 2003a). By requiring that ∀z ∈ Z : Δ(z,z) = 0 we ensure that (42) always remains
non-negative. Adapting (30) to the multiclass hinge loss (42) we obtain

J(w) :=
λ
2
‖w‖2+

1
n

n

∑
i=1
max
z∈Z

[Δ(z,zi)+ f (w,xi,z)− f (w,xi,zi)]. (43)

For a givenw, consider the set

Z∗
i := argmax

z∈Z
[Δ(z,zi)+ f (w,xi,z)− f (w,xi,zi)]

of maximum-loss labels (possibly more than one) for the ith training instance. Since f (w,x,z) =
w$φ(x,z), the subdifferential of (43) can then be written as

∂J(w) = λw +
1
n

n

∑
i=1
∑
z∈Z

βi,z φ(xi,z) (44)

with βi,z =

{

[0,1] if z ∈ Z∗
i

0 otherwise

}

− δz,zi s.t. ∑
z∈Z

βi,z = 0, (45)

where δ is the Kronecker delta: δa,b = 1 if a= b, and 0 otherwise.9

6.2 Efficient Multiclass Direction-Finding Oracle

For L2-regularized risk minimization with multiclass hinge loss, we can use a similar scheme as
described in Section 4.1 to implement an efficient oracle that provides argsupg∈∂J(w) g

$p for the
direction-finding procedure (Algorithm 2). Using (44), we can write

sup
g∈∂J(w)

g$p = λw$p +
1
n

n

∑
i=1
∑
z∈Z

sup
βi,z

(

βi,z φ(xi,z)$p
)

. (46)

The supremum in (46) is attained when we pick, from the choices offered by (45),

βi,z := δz,z∗i −δz,zi , where z∗i := argmax
z∈Z∗

i

φ(xi,z)$p.

8. Our algorithm can also deal with the slack-rescaled variant of Tsochantaridis et al. (2005).
9. Let l∗i :=maxz/=zi [Δ(z,zi)+ f (w,xi,z)− f (w,xi,zi)]. Definition (45) allows the following values of βi,z:











z= zi z ∈ Z∗
i \{zi} otherwise

l∗i < 0 0 0 0
l∗i = 0 [−1,0] [0,1] 0
l∗i > 0 −1 [0,1] 0











s.t. ∑
z∈Z

βi,z = 0.

1167



YU, VISHWANATHAN, GÜNTER AND SCHRAUDOLPH

6.3 Implementing the Multiclass Line Search

Let Φ(η) := J(w +ηp) be the one-dimensional convex function obtained by restricting (43) to a
line along direction p. Letting ρi(η) := l(xi,zi,w +ηp), we can write

Φ(η) =
λ
2
‖w‖2+ ληw$p +

λη2

2
‖p‖2 +

1
n

n

∑
i=1

ρi(η). (47)

Each ρi(η) is a piecewise linear convex function. To see this, observe that

f (w +ηp,x,z) := (w +ηp)$φ(x,z) = f (w,x,z)+η f (p,x,z)

and hence

ρi(η) := max
z∈Z

[Δ(z,zi)+ f (w,xi,z)− f (w,xi,zi)
︸ ︷︷ ︸

=:b(i)
z

+ η( f (p,xi,z)− f (p,xi,zi))
︸ ︷︷ ︸

=:a(i)
z

], (48)

which has the functional form of (40) with r = |Z|. Algorithm 4 can therefore be used to compute
a sorted vector η(i) of all subdifferentiable points of ρi(η) and corresponding active lines ξ(i) in the
interval [0,∞) in O(|Z| log |Z|) time. With some abuse of notation, we now have

η ∈ [η(i)
j ,η(i)

j+1] =⇒ ρi(η) = b
ξ(i)
j

+ ηa
ξ(i)
j
. (49)

The first three terms of (47) are constant, linear, and quadratic (with non-negative coefficient)
in η, respectively. The remaining sum of piecewise linear convex functions ρi(η) is also piecewise
linear and convex, and so Φ(η) is a piecewise quadratic convex function.

6.3.1 EXACT MULTICLASS LINE SEARCH

Our exact line search employs a similar two-stage strategy as discussed in Section 4.2.1 for locat-
ing its minimum η∗ := argminη>0Φ(η): we first find the first subdifferentiable point η̌ past the
minimum, then locate η∗ within the differentiable region to its left. We precompute and cache a
vector a(i) of all the slopes a(i)

z (offsets b(i)
z are not needed), the subdifferentiable points η(i) (sorted

in ascending order via Algorithm 4), and the corresponding indices ξ(i) of active lines of ρi for all
training instances i, as well as ‖w‖2, w$p, and λ‖p‖2.

Since Φ(η) is convex, any point η < η∗ cannot have a non-negative subgradient.10 The first
subdifferentiable point η̌≥ η∗ therefore obeys

η̌ := minη ∈ {η(i), i= 1,2, . . . ,n} : η≥ η∗

= minη ∈ {η(i), i= 1,2, . . . ,n} : sup ∂Φ(η) ≥ 0. (50)

We solve (50) via a simple linear search: Starting from η = 0, we walk from one subdifferentiable
point to the next until sup ∂Φ(η) ≥ 0. To perform this walk efficiently, define a vector ψ ∈ N

n of
indices into the sorted vector η(i) resp. ξ(i); initially ψ := 0, indicating that (∀i) η(i)

0 = 0. Given the
current index vector ψ, the next subdifferentiable point is then

η′ := η(i′)
(ψi′+1)

, where i′ = argmin
1≤i≤n

η(i)
(ψi+1); (51)

10. If Φ(η) has a flat optimal region, we define η∗ to be the infimum of that region.
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Algorithm 5 Exact Line Search for L2-Regularized Multiclass Hinge Loss
1: input base point w, descent direction p, regularization parameter λ, vector a of

all slopes as defined in (48), for each training instance i: sorted stack Si of
subdifferentiable points and active lines, as produced by Algorithm 4

2: output optimal step size
3: a := a/n, h := λ‖p‖2

4: ρ := λw$p

5: for i := 1 to n do
6: while not Si.empty do
7: Ri.push Si.pop (reverse the stacks)
8: end while
9: (·,ξi) := Ri.pop
10: ρ := ρ+aξi
11: end for
12: η := 0, ρ′ = 0
13: g := ρ (value of sup∂Φ(0))
14: while g< 0 do
15: ρ′ := ρ
16: if ∀i : Ri.empty then
17: η := ∞ (no more subdifferentiable points)
18: break
19: end if
20: I := argmin1≤i≤n η′ : (η′, ·) = Ri.top (find the next subdifferentiable point)
21: ρ := ρ−∑i∈I aξi
22: Ξ := {ξi : (η,ξi) := Ri.pop, i ∈ I}
23: ρ := ρ+∑ξi∈Ξ aξi
24: g := ρ+ηh (value of sup∂Φ(η))
25: end while
26: return min(η, −ρ′/h)

the step is completed by incrementing ψi′ , that is, ψi′ := ψi′ + 1 so as to remove η
(i′)
ψi′ from future

consideration.11 Note that computing the argmin in (51) takes O(logn) time (e.g., using a priority
queue). Inserting (49) into (47) and differentiating, we find that

sup ∂Φ(η′) = λw$p+λη′‖p‖2+
1
n

n

∑
i=1

a
ξ(i)
ψi

. (52)

The key observation here is that after the initial calculation of sup∂Φ(0) = λw$p + 1
n ∑

n
i=1 aξ(i)

0
for η = 0, the sum in (52) can be updated incrementally in constant time through the addition of
a
ξ(i′)
ψi′

−a
ξ(i′)
(ψi′ −1)

(Lines 20–23 of Algorithm 5).

Suppose we find η̌ = η(i′)
ψi′ for some i

′. We then know that the minimum η∗ is either equal to η̌
(Figure 11, left), or found within the quadratic segment immediately to its left (Figure 11, right).

11. For ease of exposition, we assume i′ in (51) is unique, and deal with multiple choices of i′ in Algorithm 5.
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We thus decrement ψi′ (i.e., take one step back) so as to index the segment in question, set the
right-hand side of (52) to zero, and solve for η′ to obtain

η∗ = min



η̌,
λw$p+ 1

n ∑
n
i=1 aξ(i)

ψi

−λ‖p‖2



 . (53)

This only takes constant time: we have cachedw$p and λ‖p‖2, and the sum in (53) can be obtained
incrementally by adding a

ξ(i′)
ψi′

−a
ξ(i′)
(ψi′+1)

to its last value in (52).

To locate η̌ we have to walk at most O(n|Z|) steps, each requiring O(logn) computation of
argmin as in (51). Given η̌, the exact minimum η∗ can be obtained in O(1). Including the prepro-
cessing cost ofO(n|Z| log |Z|) (for invoking Algorithm 4), our exact multiclass line search therefore
takes O(n|Z|(logn|Z|)) time in the worst case. Algorithm 5 provides an implementation which in-
stead of an index vector ψ directly uses the sorted stacks of subdifferentiable points and active lines
produced by Algorithm 4. (The cost of reversing those stacks in Lines 6–8 of Algorithm 5 can easily
be avoided through the use of double-ended queues.)

6.4 Multilabel Hinge Loss

Recently, there has been interest in extending the concept of the hinge loss to multilabel problems.
Multilabel problems generalize the multiclass setting in that each training instance xi is associated
with a set of labels Zi ⊆ Z (Crammer and Singer, 2003b). For a uniform margin of separation τ, a
hinge loss can be defined in this setting as follows:

l(xi,Zi,w) := max[0, τ+max
z′ /∈Zi

f (w,xi,z′)−min
z∈Zi

f (w,xi,z)]. (54)

We can generalize this to a not necessarily uniform label loss Δ(z′,z) ≥ 0 as follows:

l(xi,Zi,w) := max
(z,z′): z∈Zi
z′ /∈Zi\{z}

[Δ(z′,z)+ f (w,xi,z′)− f (w,xi,z)], (55)

where as before we require that Δ(z,z) = 0 ∀z∈Z so that by explicitly allowing z′ = zwe can ensure
that (55) remains non-negative. For a uniform margin Δ(z′,z) = τ ∀z′ /= z our multilabel hinge loss
(55) reduces to the decoupled version (54), which in turn reduces to the multiclass hinge loss (42)
if Zi := {zi} for all i.

For a givenw, let

Z∗
i := argmax

(z,z′): z∈Zi
z′ /∈Zi\{z}

[Δ(z′,z)+ f (w,xi,z′)− f (w,xi,z)]

be the set of worst label pairs (possibly more than one) for the ith training instance. The subdiffer-
ential of the multilabel analogue of L2-regularized multiclass objective (43) can then be written just
as in (44), with coefficients

βi,z := ∑
z′:(z′,z)∈Z∗

i

γ(i)z′,z − ∑
z′:(z,z′)∈Z∗

i

γ(i)z,z′ , where (∀i) ∑
(z,z′)∈Z∗

i

γ(i)z,z′ = 1 and γ(i)z,z′ ≥ 0. (56)
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Now let (zi,z′i) := argmax(z,z′)∈Z∗
i
[φ(xi,z′)−φ(xi,z)]$p be a single steepest worst label pair in

direction p. We obtain argsupg∈∂J(w) g
$p for our direction-finding procedure by picking, from the

choices offered by (56), γ(i)
z,z′ := δz,ziδz′,z′i .

Finally, the line search we described in Section 6.3 for the multiclass hinge loss can be ex-
tended in a straightforward manner to our multilabel setting. The only caveat is that now ρi(η) :=
l(xi,Zi,w +ηp) must be written as

ρi(η) := max
(z,z′): z∈Zi
z′ /∈Zi\{z}

[Δ(z′,z)+ f (w,xi,z′)− f (w,xi,z)
︸ ︷︷ ︸

=:b(i)
z,z′

+η( f (p,xi,z′)− f (p,xi,z))
︸ ︷︷ ︸

=:a(i)
z,z′

] . (57)

In the worst case, (57) could be the piecewise maximum ofO(|Z|2) lines, thus increasing the overall
complexity of the line search. In practice, however, the set of true labelsZi is usually small, typically
of size 2 or 3 (cf. Crammer and Singer, 2003b, Figure 3). As long as ∀i : |Zi|=O(1), our complexity
estimates of Section 6.3.1 still apply.

7. Related Work

We discuss related work in two areas: nonsmooth convex optimization, and the problem of seg-
menting the pointwise maximum of a set of one-dimensional linear functions.

7.1 Nonsmooth Convex Optimization

There are four main approaches to nonsmooth convex optimization: quasi-Newton methods, bundle
methods, stochastic dual methods, and smooth approximation. We discuss each of these briefly, and
compare and contrast our work with the state of the art.

7.1.1 NONSMOOTH QUASI-NEWTON METHODS

These methods try to find a descent quasi-Newton direction at every iteration, and invoke a line
search to minimize the one-dimensional convex function along that direction. We note that the line
search routines we describe in Sections 4–6 are applicable to all such methods. An example of this
class of algorithms is the work of Lukšan and Vlček (1999), who propose an extension of BFGS
to nonsmooth convex problems. Their algorithm samples subgradients around non-differentiable
points in order to obtain a descent direction. In many machine learning problems evaluating the
objective function and its (sub)gradient is very expensive, making such an approach inefficient. In
contrast, given a current iterate wt , our direction-finding routine (Algorithm 2) samples subgra-
dients from the set ∂J(wt) via the oracle. Since this avoids the cost of explicitly evaluating new
(sub)gradients, it is computationally more efficient.

Recently, Andrew and Gao (2007) introduced a variant of LBFGS, the Orthant-Wise Limited-
memory Quasi-Newton (OWL-QN) algorithm, suitable for optimizing L1-regularized log-linear
models:

J(w) := λ‖w‖1+
1
n

n

∑
i=1
ln(1+ e−ziw

$xi)

︸ ︷︷ ︸

logistic loss

, (58)
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where the logistic loss is smooth, but the regularizer is only subdifferentiable at points where w

has zero elements. From the optimization viewpoint this objective is very similar to L2-regularized
hinge loss; the direction finding and line search methods that we discussed in Sections 3.2 and 3.3,
respectively, can be applied to this problem with slight modifications.

OWL-QN is based on the observation that the L1 regularizer is linear within any given orthant.
Therefore, it maintains an approximation Bow to the inverse Hessian of the logistic loss, and uses
an efficient scheme to select orthants for optimization. In fact, its success greatly depends on its
direction-finding subroutine, which demands a specially chosen subgradient gow (Andrew and Gao,
2007, Equation 4) to produce the quasi-Newton direction, pow = π(p,gow), where p := −Bowgow

and the projection π returns a search direction by setting the ith element of p to zero whenever
pigowi > 0. As shown in Section 8.4, the direction-finding subroutine of OWL-QN can be replaced
by our Algorithm 2, which makes OWL-QN more robust to the choice of subgradients.

7.1.2 BUNDLE METHODS

Bundle method solvers (Hiriart-Urruty and Lemaréchal, 1993) use past (sub)gradients to build a
model of the objective function. The (sub)gradients are used to lower-bound the objective by a
piecewise linear function which is minimized to obtain the next iterate. This fundamentally dif-
fers from the BFGS approach of using past gradients to approximate the (inverse) Hessian, hence
building a quadratic model of the objective function.

Bundle methods have recently been adapted to the machine learning context, where they are
known as SVMStruct (Tsochantaridis et al., 2005) resp. BMRM (Smola et al., 2007). One notable
feature of these variants is that they do not employ a line search. This is justified by noting that
a line search involves computing the value of the objective function multiple times, a potentially
expensive operation in machine learning applications.

Franc and Sonnenburg (2008) speed up the convergence of SVMStruct for L2-regularized binary
hinge loss. The main idea of their optimized cutting plane algorithm, OCAS, is to perform a line
search along the line connecting two successive iterates of a bundle method solver. Recently they
have extended OCAS to multiclass classification (Franc and Sonnenburg, 2009). Although devel-
oped independently, their line search methods for both settings are very similar to the methods we
describe in Sections 4.2.1 and 6.3.1, respectively. In particular, their line search for multiclass clas-
sification also involves segmenting the pointwise maximum of r 1-D linear functions (cf. Section 5),
though the O(r2) time complexity of their method is worse than our O(r logr).

7.1.3 STOCHASTIC DUAL METHODS

Distinct from the above two classes of primal algorithms are methods which work in the dual do-
main. A prominent member of this class is the LaRank algorithm of Bordes et al. (2007), which
achieves state-of-the-art results on multiclass classification problems. While dual algorithms are
very competitive on clean data sets, they tend to be slow when given noisy data.

7.1.4 SMOOTH APPROXIMATION

Another possible way to bypass the complications caused by the nonsmoothness of an objective
function is to work on a smooth approximation instead—see for instance the recent work of Nes-
terov (2005) and Nemirovski (2005). Some machine learning applications have also been pursued
along these lines (Lee and Mangasarian, 2001; Zhang and Oles, 2001). Although this approach can
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be effective, it is unclear how to build a smooth approximation in general. Furthermore, smooth
approximations often sacrifice dual sparsity, which often leads to better generalization performance
on the test data, and also may be needed to prove generalization bounds.

7.2 Segmenting the Pointwise Maximum of 1-D Linear Functions

The problem of computing the line segments that comprise the pointwise maximum of a given set of
line segments has received attention in the area of computational geometry; see Agarwal and Sharir
(2000) for a survey. Hershberger (1989) for instance proposed a divide-and-conquer algorithm for
this problem with the same time complexity as our Algorithm 4. The Hershberger (1989) algo-
rithm solves a slightly harder problem—his function is the pointwise maximum of line segments,
as opposed to our lines—but our algorithm is conceptually simpler and easier to implement.

A similar problem has also been studied under the banner of kinetic data structures by Basch
(1999), who proposed a heap-based algorithm for this problem and proved a worst-case O(r log2 r)
bound, where r is the number of line segments. Basch (1999) also claims that the lower bound is
O(r logr); our Algorithm 4 achieves this bound.

8. Experiments

We evaluated the performance of our subLBFGS algorithm with, and compared it to other state-of-
the-art nonsmooth optimization methods on L2-regularized binary, multiclass, and multilabel hinge
loss minimization problems. We also compared OWL-QN with a variant that uses our direction-
finding routine on L1-regularized logistic loss minimization tasks. On strictly convex problems
such as these every convergent optimizer will reach the same solution; comparing generalisation
performance is therefore pointless. Hence we concentrate on empirically evaluating the convergence
behavior (objective function value vs. CPU seconds). All experiments were carried out on a Linux
machine with dual 2.4GHz Intel Core 2 processors and 4GB of RAM.

In all experiments the regularization parameter was chosen from the set 10{−6,−5,··· ,−1} so as to
achieve the highest prediction accuracy on the test data set, while convergence behavior (objective
function value vs. CPU seconds) is reported on the training data set. To see the influence of the
regularization parameter λ, we also compared the time required by each algorithm to reduce the
objective function value to within 2% of the optimal value.12 For all algorithms the initial iterate
w0 was set to 0. Open source C++ code implementing our algorithms and experiments is available
for download from http://www.cs.adelaide.edu.au/˜jinyu/Code/nonsmoothOpt.tar.gz.

The subgradient for the construction of the subLBFGS search direction (cf. Line 12 of Algo-
rithm 1) was chosen arbitrarily from the subdifferential. For the binary hinge loss minimization
(Section 8.3), for instance, we picked an arbitrary subgradient by randomly setting the coefficient
βi ∀i ∈M in (32) to either 0 or 1.

8.1 Convergence Tolerance of the Direction-Finding Procedure

The convergence tolerance ε of Algorithm 2 controls the precision of the solution to the direction-
finding problem (11): lower tolerance may yield a better search direction. Figure 13 (left) shows

12. For L1-regularized logistic loss minimization, the “optimal” value was the final objective function value achieved by
the OWL-QN∗ algorithm (cf. Section 8.4). In all other experiments, it was found by running subLBFGS for 104
seconds, or until its relative improvement over 5 iterations was less than 10−8.
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Figure 13: Performance of subLBFGS with varying direction-finding tolerance ε in terms of ob-
jective function value vs. number of iterations (top row) resp. CPU seconds (bottom
row) on sample L2-regularized risk minimization problems with binary (left), multiclass
(center), and multilabel (right) hinge losses.

that on binary classification problems, subLBFGS is not sensitive to the choice of ε (i.e., the quality
of the search direction). This is due to the fact that ∂J(w) as defined in (32) is usually dominated by
its constant component w̄; search directions that correspond to different choices of ε therefore can
not differ too much from each other. In the case of multiclass and multilabel classification, where
the structure of ∂J(w) is more complicated, we can see from Figure 13 (top center and right) that
a better search direction can lead to faster convergence in terms of iteration numbers. However,
this is achieved at the cost of more CPU time spent in the direction-finding routine. As shown in
Figure 13 (bottom center and right), extensively optimizing the search direction actually slows down
convergence in terms of CPU seconds. We therefore used an intermediate value of ε= 10−5 for all
our experiments, except that for multiclass and multilabel classification problems we relaxed the
tolerance to 1.0 at the initial iterate w = 0, where the direction-finding oracle argsupg∈∂J(0) g

$p is
expensive to compute, due to the large number of extreme points in ∂J(0).

8.2 Size of SubLBFGS Buffer

The size m of the subLBFGS buffer determines the number of parameter and gradient displacement
vectors st and yt used in the construction of the quasi-Newton direction. Figure 14 shows that the
performance of subLBFGS is not sensitive to the particular value of m within the range 5≤m≤ 25.

1174



QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

Figure 14: Performance of subLBFGS with varying buffer size on sample L2-regularized risk min-
imization problems with binary (left), multiclass (center), and multilabel hinge losses
(right).

Data Set Train/Test Set Size Dimensionality Sparsity

Covertype 522911/58101 54 77.8%
CCAT 781265/23149 47236 99.8%
Astro-physics 29882/32487 99757 99.9%
MNIST-binary 60000/10000 780 80.8%
Adult9 32561/16281 123 88.7%
Real-sim 57763/14438 20958 99.8%
Leukemia 38/34 7129 00.0%

Table 1: The binary data sets used in our experiments of Sections 2, 8.3, and 8.4.

We therefore simply set m = 15 a priori for all subsequent experiments; this is a typical value for
LBFGS (Nocedal and Wright, 1999).

8.3 L2-Regularized Binary Hinge Loss

For our first set of experiments, we applied subLBFGS with exact line search (Algorithm 3) to the
task of L2-regularized binary hinge loss minimization. Our control methods are the bundle method
solver BMRM (Teo et al., 2010) and the optimized cutting plane algorithm OCAS (Franc and Son-
nenburg, 2008),13 both of which were shown to perform competitively on this task. SVMStruct
(Tsochantaridis et al., 2005) is another well-known bundle method solver that is widely used in
the machine learning community. For L2-regularized optimization problems BMRM is identical to
SVMStruct, hence we omit comparisons with SVMStruct.

Table 1 lists the six data sets we used: The Covertype data set of Blackard, Jock & Dean,14
CCAT from the Reuters RCV1 collection,15 the Astro-physics data set of abstracts of scientific
papers from the Physics ArXiv (Joachims, 2006), the MNIST data set of handwritten digits16 with

13. The source code of OCAS (version 0.6.0) was obtained from http://www.shogun-toolbox.org.
14. Data set can be found at http://kdd.ics.uci.edu/databases/covertype/covertype.html.
15. Data set can be found at http://www.daviddlewis.com/resources/testcollections/rcv1.
16. Data set can be found at http://yann.lecun.com/exdb/mnist.
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L1-reg. logistic loss L2-reg. binary loss
Data Set λL1 kL1 kL1r λL2 kL2
Covertype 10−5 1 2 10−6 0
CCAT 10−6 284 406 10−6 0
Astro-physics 10−5 1702 1902 10−4 0
MNIST-binary 10−4 55 77 10−6 0
Adult9 10−4 2 6 10−5 1
Real-sim 10−6 1017 1274 10−5 1

Table 2: Regularization parameter λ and overall number k of direction-finding iterations in our
experiments of Sections 8.3 and 8.4, respectively.

Figure 15: Objective function value vs. CPU seconds on L2-regularized binary hinge loss minimiza-
tion tasks.

two classes: even and odd digits, the Adult9 data set of census income data,17 and the Real-sim data
set of real vs. simulated data.17 Table 2 lists our parameter settings, and reports the overall number
kL2 of iterations through the direction-finding loop (Lines 6–13 of Algorithm 2) for each data set.
The very small values of kL2 indicate that on these problems subLBFGS only rarely needs to correct
its initial guess of a descent direction.

It can be seen from Figure 15 that subLBFGS (solid) reduces the value of the objective con-
siderably faster than BMRM (dashed). On the binary MNIST data set, for instance, the objective

17. Data set can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.
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Figure 16: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value on L2-regularized binary hinge loss
minimization tasks.

function value of subLBFGS after 10 CPU seconds is 25% lower than that of BMRM. In this set of
experiments the performance of subLBFGS and OCAS (dotted) is very similar.

Figure 16 shows that all algorithms generally converge faster for larger values of the regular-
ization constant λ. However, in most cases subLBFGS converges faster than BMRM across a wide
range of λ values, exhibiting a speedup of up to more than two orders of magnitude. SubLBFGS
and OCAS show similar performance here: for small values of λ, OCAS converges slightly faster
than subLBFGS on the Astro-physics and Real-sim data sets but is outperformed by subLBFGS on
the Covertype, CCAT, and binary MNIST data sets.

8.4 L1-Regularized Logistic Loss

To demonstrate the utility of our direction-finding routine (Algorithm 2) in its own right, we plugged
it into the OWL-QN algorithm (Andrew and Gao, 2007)18 as an alternative direction-finding method
such that pow = descentDirection(gow,ε,kmax), and compared this variant (denoted OWL-QN*)
with the original (cf. Section 7.1) on L1-regularized minimization of the logistic loss (58), on the
same data sets as in Section 8.3.

An oracle that supplies argsupg∈∂J(w) g
$p for this objective is easily constructed by noting

that (58) is nonsmooth whenever at least one component of the parameter vector w is zero. Let
wi = 0 be such a component; the corresponding component of the subdifferential ∂λ‖w‖1 of the L1

18. The source code of OWL-QN (original release) was obtained from Microsoft Research through http://tinyurl.
com/p774cx.
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Figure 17: Objective function value vs. CPU seconds on L1-regularized logistic loss minimization
tasks.

regularizer is the interval [−λ,λ]. The supremum of g$p is attained at the interval boundary whose
sign matches that of the corresponding component of the direction vector p, that is, at λsign(pi).

Using the stopping criterion suggested by Andrew and Gao (2007), we ran experiments until
the averaged relative change in objective function value over the previous 5 iterations fell below
10−5. As shown in Figure 17, the only clear difference in convergence between the two algorithms
is found on the Astro-physics data set where OWL-QN∗ is outperformed by the original OWL-QN
method. This is because finding a descent direction via Algorithm 2 is particularly difficult on the
Astro-physics data set (as indicated by the large inner loop iteration number kL1 in Table 2); the
slowdown on this data set can also be found in Figure 18 for other values of λ. Although finding a
descent direction can be challenging for the generic direction-finding routine of OWL-QN∗, in the
following experiment we show that this routine is very robust to the choice of initial subgradients.

To examine the algorithms’ sensitivity to the choice of subgradients, we also ran them with
subgradients randomly chosen from the set ∂J(w) (as opposed to the specially chosen subgradient
gow used in the previous set of experiments) fed to their corresponding direction-finding routines.
OWL-QN relies heavily on its particular choice of subgradients, hence breaks down completely
under these conditions: the only data set where we could even plot its (poor) performance was
Covertype (dotted “OWL-QNr” line in Figure 17). Our direction-finding routine, by contrast, is self-
correcting and thus not affected by this manipulation: the curves for OWL-QN*r lie on top of those
for OWL-QN*. Table 2 shows that in this case more direction-finding iterations are needed though:
kL1r > kL1 . This empirically confirms that as long as argsupg∈∂J(w) g

$p is given, Algorithm 2 can
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Figure 18: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value on L1-regularized logistic loss min-
imization tasks. (No point is plotted if the initial parameter w0 = 0 is already optimal.)

indeed be used as a generic quasi-Newton direction-finding routine that is able to recover from a
poor initial choice of subgradients.

8.5 L2-Regularized Multiclass and Multilabel Hinge Loss

We incorporated our exact line search of Section 6.3.1 into both subLBFGS and OCAS (Franc and
Sonnenburg, 2008), thus enabling them to deal with multiclass and multilabel losses. We refer
to our generalized version of OCAS as line search BMRM (ls-BMRM). Using the variant of the
multiclass and multilabel hinge loss which enforces a uniform margin of separation (Δ(z,z′) =
1 ∀z /= z′), we experimentally evaluated both algorithms on a number of publicly available data sets
(Table 3). All multiclass data sets except INEX were downloaded from http://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html, while the multilabel data sets were
obtained from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel.
html. INEX (Maes et al., 2007) is available from http://webia.lip6.fr/˜bordes/mywiki/
doku.php?id=multiclass_data. The original RCV1 data set consists of 23149 training instances,
of which we used 21149 instances for training and the remaining 2000 for testing.

8.5.1 PERFORMANCE ON MULTICLASS PROBLEMS

This set of experiments is designed to demonstrate the convergence properties of multiclass sub-
LBFGS, compared to the BMRM bundle method (Teo et al., 2010) and ls-BMRM. Figure 19 shows
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Data Set Train/Test Set Size Dimensionality |Z| Sparsity λ k
Letter 16000/4000 16 26 0.0% 10−6 65
USPS 7291/2007 256 10 3.3% 10−3 14
Protein 14895/6621 357 3 70.7% 10−2 1
MNIST 60000/10000 780 10 80.8% 10−3 1
INEX 6053/6054 167295 18 99.5% 10−6 5
News20 15935/3993 62061 20 99.9% 10−2 12
Scene 1211/1196 294 6 0.0% 10−1 14
TMC2007 21519/7077 30438 22 99.7% 10−5 19
RCV1 21149/2000 47236 103 99.8% 10−5 4

Table 3: The multiclass (top 6 rows) and multilabel (bottom 3 rows) data sets used, values of the
regularization parameter, and overall number k of direction-finding iterations in our exper-
iments of Section 8.5.

Figure 19: Objective function value vs. CPU seconds on L2-regularized multiclass hinge loss mini-
mization tasks.

that subLBFGS outperforms BMRM on all data sets. On 4 out of 6 data sets, subLBFGS outper-
forms ls-BMRM as well early on but slows down later, for an overall performance comparable to
ls-BMRM. On the MNIST data set, for instance, subLBFGS takes only about half as much CPU
time as ls-BMRM to reduce the objective function value to 0.3 (about 50% above the optimal value),
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Figure 20: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value. (No point is plotted if an algorithm
failed to reach the threshold value within 104 seconds.)

yet both algorithms reach within 2% of the optimal value at about the same time (Figure 20, bottom
left). We hypothesize that subLBFGS’ local model (10) of the objective function facilitates rapid
early improvement but is less appropriate for final convergence to the optimum (cf. the discussion in
Section 9). Bundle methods, on the other hand, are slower initially because they need to accumulate
a sufficient number of gradients to build a faithful piecewise linear model of the objective function.
These results suggest that a hybrid approach that first runs subLBFGS then switches to ls-BMRM
may be promising.

Similar to what we saw in the binary setting (Figure 16), Figure 20 shows that all algorithms
tend to converge faster for large values of λ. Generally, subLBFGS converges faster than BMRM
across a wide range of λ values; for small values of λ it can greatly outperform BMRM (as seen on
Letter, Protein, and News20). The performance of subLBFGS is worse than that of BMRM in two
instances: on USPS for small values of λ, and on INEX for large values of λ. The poor performance
on USPS may be caused by a limitation of subLBFGS’ local model (10) that causes it to slow down
on final convergence. On the INEX data set, the initial point w0 = 0 is nearly optimal for large
values of λ; in this situation there is no advantage in using subLBFGS.

Leveraging its exact line search (Algorithm 5), ls-BMRM is competitive on all data sets and
across all λ values, exhibiting performance comparable to subLBFGS in many cases. From Fig-
ure 20 we find that BMRM never outperforms both subLBFGS and ls-BMRM.
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Figure 21: Objective function value vs. CPU seconds in L2-regularized multilabel hinge loss mini-
mization tasks.

Figure 22: Regularization parameter λ ∈ {10−6, · · · ,10−1} vs. CPU seconds taken to reduce the
objective function to within 2% of the optimal value. (No point is plotted if an algorithm
failed to reach the threshold value within 104 seconds.)

8.5.2 PERFORMANCE ON MULTILABEL PROBLEMS

For our final set of experiments we turn to the multilabel setting. Figure 21 shows that on the Scene
data set the performance of subLBFGS is similar to that of BMRM, while on the larger TMC2007
and RCV1 sets, subLBFGS outperforms both of its competitors initially but slows down later on,
resulting in performance no better than BMRM. Comparing performance across different values of
λ (Figure 22), we find that in many cases subLBFGS requires more time than its competitors to
reach within 2% of the optimal value, and in contrast to the multiclass setting, here ls-BMRM only
performs marginally better than BMRM. The primary reason for this is that the exact line search
used by ls-BMRM and subLBFGS requires substantially more computational effort in the multilabel
than in the multiclass setting. There is an inherent trade-off here: subLBFGS and ls-BMRM expend
computation in an exact line search, while BMRM focuses on improving its local model of the
objective function instead. In situations where the line search is very expensive, the latter strategy
seems to pay off.
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9. Discussion and Outlook

We proposed subBFGS (resp., subLBFGS), an extension of the BFGS quasi-Newton method (resp.,
its limited-memory variant), for handling nonsmooth convex optimization problems, and proved its
global convergence in objective function value. We applied our algorithm to a variety of machine
learning problems employing the L2-regularized binary hinge loss and its multiclass and multilabel
generalizations, as well as L1-regularized risk minimization with logistic loss. Our experiments
show that our algorithm is versatile, applicable to many problems, and often outperforms specialized
solvers.

Our solver is easy to parallelize: The master node computes the search direction and transmits
it to the slaves. The slaves compute the (sub)gradient and loss value on subsets of data, which is
aggregated at the master node. This information is used to compute the next search direction, and
the process repeats. Similarly, the line search, which is the expensive part of the computation on
multiclass and multilabel problems, is easy to parallelize: The slaves run Algorithm 4 on subsets of
the data; the results are fed back to the master which can then run Algorithm 5 to compute the step
size.

In many of our experiments we observe that subLBFGS decreases the objective function rapidly
at the beginning but slows down closer to the optimum. We hypothesize that this is due to an
averaging effect: Initially (i.e., when sampled sparsely at a coarse scale) a superposition of many
hinges looks sufficiently similar to a smooth function for optimization of a quadratic local model
to work well (cf. Figure 6). Later on, when the objective is sampled at finer resolution near the
optimum, the few nearest hinges begin to dominate the picture, making a smooth local model less
appropriate.

Even though the local model (10) of sub(L)BFGS is nonsmooth, it only explicitly models the
hinges at its present location—all others are subject to smooth quadratic approximation. Apparently
this strategy works sufficiently well during early iterations to provide for rapid improvement on
multiclass problems, which typically comprise a large number of hinges. The exact location of
the optimum, however, may depend on individual nearby hinges which are not represented in (10),
resulting in the observed slowdown.

Bundle method solvers, by contrast, exhibit slow initial progress but tend to be competitive
asymptotically. This is because they build a piecewise linear lower bound of the objective func-
tion, which initially is not very good but through successive tightening eventually becomes a faith-
ful model. To take advantage of this we are contemplating hybrid solvers that switch over from
sub(L)BFGS to a bundle method as appropriate.

While bundle methods like BMRM have an exact, implementable stopping criterion based on
the duality gap, no such stopping criterion exists for BFGS and other quasi-Newton algorithms.
Therefore, it is customary to use the relative change in function value as an implementable stopping
criterion. Developing a stopping criterion for sub(L)BFGS based on duality arguments remains an
important open question.

sub(L)BFGS relies on an efficient exact line search. We proposed such line searches for the
multiclass hinge loss and its extension to the multilabel setting, based on a conceptually simple yet
optimal algorithm to segment the pointwise maximum of lines. A crucial assumption we had to
make is that the number |Z| of labels is manageable, as it takes O(|Z| log |Z|) time to identify the
hinges associated with each training instance. In certain structured prediction problems (Tsochan-
taridis et al., 2005) which have recently gained prominence in machine learning, the set Z could
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be exponentially large—for instance, predicting binary labels on a chain of length n produces 2n
possible labellings. Clearly our line searches are not efficient in such cases; we are investigating
trust region variants of sub(L)BFGS to bridge this gap.

Finally, to put our contributions in perspective, recall that we modified three aspects of the
standard BFGS algorithm, namely the quadratic model (Section 3.1), the descent direction find-
ing (Section 3.2), and the Wolfe conditions (Section 3.3). Each of these modifications is versatile
enough to be used as a component in other nonsmooth optimization algorithms. This not only offers
the promise of improving existing algorithms, but may also help clarify connections between them.
We hope that our research will focus attention on the core subroutines that need to be made more
efficient in order to handle larger and larger data sets.
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Appendix A. Bundle Search for a Descent Direction

Recall from Section 3.2 that at a subdifferential point w our goal is to find a descent direction p∗

which minimizes the pseudo-quadratic model:19

M(p) := 1
2 p$B−1p+ sup

g∈∂J(w)
g$p. (59)

This is generally intractable due to the presence of a supremum over the entire subdifferential
∂J(w). We therefore propose a bundle-based descent direction finding procedure (Algorithm 2)
which progressively approachesM(p) from below via a series of convex functionsM(1)(p), · · · ,M(i)(p),
each taking the same form asM(p) but with the supremum defined over a countable subset of ∂J(w).
At iteration i our convex lower bound M(i)(p) takes the form

M(i)(p) := 1
2 p$B−1p+ sup

g∈V (i)
g$p, where

V
(i) := {g( j) : j ≤ i, i, j ∈ N}⊆ ∂J(w). (60)

Given an iterate p( j−1) ∈ R
d we find a violating subgradient g( j) via

g( j) := argsup
g∈∂J(w)

g$p( j−1). (61)

19. For ease of exposition we are suppressing the iteration index t here.
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Violating subgradients recover the true objectiveM(p) at the iterates p( j−1):

M(p( j−1)) =M( j)(p( j−1)) = 1
2 p( j−1)$B−1p( j−1) +g( j)$p( j−1). (62)

To produce the iterates p(i), we rewrite minp∈R
d M(i)(p) as a constrained optimization problem

(19), which allows us to write the Lagrangian of (60) as

L(i)(p,ξ,α) := 1
2 p$B−1p+ξ−α$(ξ1−G(i)$p), (63)

where G(i) := [g(1), g(2), . . . , g(i)] ∈ R
d×i collects past violating subgradients, and α is a column

vector of non-negative Lagrange multipliers. Setting the derivative of (63) with respect to the primal
variables ξ and p to zero yields, respectively,

α$
1 = 1 and (64)

p = −BG(i)α. (65)

The primal variable p and the dual variable α are related via the dual connection (65). To eliminate
the primal variables ξ and p, we plug (64) and (65) back into the Lagrangian to obtain the dual of
M(i)(p):

D(i)(α) := − 1
2(G

(i)α)$B(G(i)α), (66)
s.t. α ∈ [0,1]i, ‖α‖1 = 1.

The dual objective D(i)(α) (resp., primal objective M(i)(p)) can be maximized (resp., minimized)
exactly via quadratic programming. However, doing so may incur substantial computational ex-
pense. Instead we adopt an iterative scheme which is cheap and easy to implement yet guarantees
dual improvement.

Letα(i) ∈ [0,1]i be a feasible solution for D(i)(α).20 The corresponding primal solution p(i) can
be found by using (65). This in turn allows us to compute the next violating subgradient g(i+1) via
(61). With the new violating subgradient the dual becomes

D(i+1)(α) := − 1
2(G

(i+1)α)$B(G(i+1)α),

s.t. α ∈ [0,1]i+1, ‖α‖1 = 1, (67)

where the subgradient matrix is now extended:

G(i+1) = [G(i), g(i+1)]. (68)

Our iterative strategy constructs a new feasible solution α ∈ [0,1]i+1 for (67) by constraining it to
take the following form:

α =

[

(1−µ)α(i)

µ

]

, where µ∈ [0,1]. (69)

20. Note that α(1) = 1 is a feasible solution for D(1)(α).
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In other words, we maximize a one-dimensional function D̄(i+1) : [0,1] → R:

D̄(i+1)(µ) := − 1
2

(

G(i+1)α
)$

B
(

G(i+1)α
)

(70)

= − 1
2

(

(1−µ)ḡ(i) +µg(i+1)
)$

B
(

(1−µ)ḡ(i) +µg(i+1)
)

,

where

ḡ(i) := G(i)α(i) ∈ ∂J(w) (71)

lies in the convex hull of g( j) ∈ ∂J(w) ∀ j ≤ i (and hence in the convex set ∂J(w)) because α(i) ∈
[0,1]i and ‖α(i)‖1 = 1. Moreover, µ∈ [0,1] ensures the feasibility of the dual solution. Noting that
D̄(i+1)(µ) is a concave quadratic function, we set

∂D̄(i+1)(µ) =
(

ḡ(i)−g(i+1)
)$

B
(

(1−η)ḡ(i) +ηg(i+1)
)

= 0 (72)

to obtain the optimum

µ∗ := argmax
µ∈[0,1]

D̄(i+1)(µ) =min

(

1,max

(

0,
(ḡ(i)−g(i+1))$Bḡ(i)

(ḡ(i)−g(i+1))$B(ḡ(i)−g(i+1))

))

. (73)

Our dual solution at step i+1 then becomes

α(i+1) :=
[

(1−µ∗)α(i)

µ∗

]

. (74)

Furthermore, from (68), (69), and (71) it follows that ḡ(i) can be maintained via an incremental
update (Line 8 of Algorithm 2):

ḡ(i+1) := G(i+1)α(i+1) = (1−µ∗)ḡ(i) +µ∗g(i+1), (75)

which combined with the dual connection (65) yields an incremental update for the primal solution
(Line 9 of Algorithm 2):

p(i+1) := −Bḡ(i+1) = −(1−µ∗)Bḡ(i)−µ∗Bg(i+1)

= (1−µ∗)p(i)−µ∗Bg(i+1). (76)

Using (75) and (76), computing a primal solution (Lines 7–9 of Algorithm 2) costs a total of O(d2)
time (resp., O(md) time for LBFGS with buffer size m), where d is the dimensionality of the opti-
mization problem. Note that maximizing D(i+1)(α) directly via quadratic programming generally
results in a larger progress than that obtained by our approach.

In order to measure the quality of our solution at iteration i, we define the quantity

ε(i) := min
j≤i

M( j+1)(p( j))−D(i)(α(i)) = min
j≤i

M(p( j))−D(i)(α(i)), (77)

where the second equality follows directly from (62). Let D(α) be the corresponding dual prob-
lem of M(p), with the property D

([
α(i)

0

])

= D(i)(α(i)), and let α∗ be the optimal solution to

1186



QUASI-NEWTON APPROACH TO NONSMOOTH CONVEX OPTIMIZATION

argmaxα∈A D(α) in some domain A of interest. As a consequence of the weak duality theorem
(Hiriart-Urruty and Lemaréchal, 1993, Theorem XII.2.1.5), minp∈R

d M(p) ≥ D(α∗). Therefore
(77) implies that

ε(i) ≥ min
p∈R

d
M(p)−D(i)(α(i)) ≥ min

p∈R
d
M(p)−D(α∗) ≥ 0. (78)

The second inequality essentially says that ε(i) is an upper bound on the duality gap. In fact, The-
orem 7 below shows that (ε(i) − ε(i+1)) is bounded away from 0, that is, ε(i) is monotonically de-
creasing. This guides us to design a practical stopping criterion (Line 6 of Algorithm 2) for our
direction-finding procedure. Furthermore, using the dual connection (65), we can derive an imple-
mentable formula for ε(i):

ε(i) = min
j≤i

[
1
2 p( j)$B−1p( j) +p( j)$g( j+1) + 1

2(G
(i)α(i))$B(G(i)α(i))

]

= min
j≤i

[

− 1
2 p( j)$ḡ( j) +p( j)$g( j+1)− 1

2 p(i)$ḡ(i)
]

= min
j≤i

[

p( j)$g( j+1)− 1
2(p

( j)$ḡ( j) +p(i)$ḡ(i))
]

, (79)

where g( j+1) := argsup
g∈∂J(w)

g$p( j) and ḡ( j) := G( j)α( j) ∀ j ≤ i.

It is worth noting that continuous progress in the dual objective value does not necessarily prevent
an increase in the primal objective value, that is, it is possible that M(p(i+1)) ≥M(p(i)). Therefore,
we choose the best primal solution so far,

p := argmin
j≤i

M(p( j)), (80)

as the search direction (Line 18 of Algorithm 2) for the parameter update (3). This direction is a
direction of descent as long as the last iterate p(i) fulfills the descent condition (16). To see this, we
use (88–90) below to get supg∈∂J(w) g

$p(i) =M(p(i))+D(i)(α(i)), and since

M(p(i)) ≥min
j≤i

M(p( j)) and D(i)(α(i)) ≥ D( j)(α( j)) ∀ j ≤ i,

definition (80) immediately gives supg∈∂J(w) g
$p(i) ≥ supg∈∂J(w) g

$p. Hence if p(i) is a descent
direction, then so is p.

We now show that if the current parameter vector w is not optimal, then a direction-finding
tolerance ε≥ 0 exists for Algorithm 2 such that the returned search direction p is a descent direction,
that is, supg∈∂J(w) g

$p < 0.

Lemma 3 Let B be the current approximation to the inverse Hessian maintained by Algorithm 1,
and h > 0 a lower bound on the eigenvalues of B. If the current iterate w is not optimal: 0 /∈
∂J(w), and the number of direction-finding iterations is unlimited (kmax = ∞), then there exists a
direction-finding tolerance ε≥ 0 such that the descent direction p = −Bḡ, ḡ ∈ ∂J(w) returned by
Algorithm 2 at w satisfies supg∈∂J(w) g

$p < 0.
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Proof Algorithm 2 returns p after i iterations when ε(i) ≤ ε, where ε(i) = M(p)−D(i)(α(i)) by
definitions (77) and (80). Using definition (66) of D(i)(α(i)), we have

−D(i)(α(i)) = 1
2(G

(i)α(i))$B(G(i)α(i)) = 1
2 ḡ(i)$Bḡ(i), (81)

where ḡ(i) = G(i)α(i) is a subgradient in ∂J(w). On the other hand, using (59) and (76), one can
write

M(p) = sup
g∈∂J(w)

g$p + 1
2 p$B−1p

= sup
g∈∂J(w)

g$p + 1
2 ḡ$Bḡ, where ḡ ∈ ∂J(w). (82)

Putting together (81) and (82), and usingB & h, one obtains

ε(i) = sup
g∈∂J(w)

g$p + 1
2 ḡ$Bḡ + 1

2 ḡ(i)$Bḡ(i) ≥ sup
g∈∂J(w)

g$p +
h
2
‖ḡ‖2+

h
2
‖ḡ(i)‖2. (83)

Since 0 /∈ ∂J(w), the last two terms of (83) are strictly positive; and by (78), ε(i) ≥ 0 . The claim
follows by choosing an ε such that (∀i) h

2(‖ḡ‖
2+‖ḡ(i)‖2) > ε≥ ε(i) ≥ 0.

Using the notation from Lemma 3, we show in the following corollary that a stricter upper
bound on ε allows us to bound supg∈∂J(w) g

$p in terms of ḡ$Bḡ and ‖ḡ‖. This will be used in
Appendix D to establish the global convergence of the subBFGS algorithm.

Corollary 4 Under the conditions of Lemma 3, there exists an ε≥ 0 for Algorithm 2 such that the
search direction p generated by Algorithm 2 satisfies

sup
g∈∂J(w)

g$p ≤− 1
2 ḡ$Bḡ ≤−

h
2
‖ḡ‖2 < 0. (84)

Proof Using (83), we have

(∀i) ε(i) ≥ sup
g∈∂J(w)

g$p + 1
2 ḡ$Bḡ +

h
2
‖ḡ(i)‖2.

The first inequality in (84) results from choosing an ε such that

(∀i)
h
2
‖ḡ(i)‖2 ≥ ε ≥ ε(i) ≥ 0. (85)

The lower bound h > 0 on the spectrum of B yields the second inequality in (84), and the third
follows from the fact that ‖ḡ‖ > 0 at non-optimal iterates.
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Appendix B. Convergence of the Descent Direction Search

Using the notation established in Appendix A, we now prove the convergence of Algorithm 2 via
several technical intermediate steps. The proof shares similarities with the proofs found in Smola
et al. (2007), Shalev-Shwartz and Singer (2008), and Warmuth et al. (2008). The key idea is that at
each iterate Algorithm 2 decreases the upper bound ε(i) on the distance from the optimality, and the
decrease in ε(i) is characterized by the recurrence ε(i) − ε(i+1) ≥ c(ε(i))2 with c > 0 (Theorem 7).
Analysing this recurrence then gives the convergence rate of the algorithm (Theorem 9).

We first provide two technical lemmas (Lemma 5 and 6) that are needed to prove Theorem 7.

Lemma 5 Let D̄(i+1)(µ) be the one-dimensional function defined in (70), and ε(i) the positive mea-
sure defined in (77). Then ε(i) ≤ ∂D̄(i+1)(0).

Proof Let p(i) be our primal solution at iteration i, derived from the dual solution α(i) using the
dual connection (65). We then have

p(i) = −Bḡ(i), where ḡ(i) := G(i)α(i). (86)

Definition (59) ofM(p) implies that

M(p(i)) = 1
2 p(i)$B−1p(i) +p(i)$g(i+1), (87)

where

g(i+1) := argsup
g∈∂J(w)

g$p(i). (88)

Using (86), we haveB−1p(i) = −B−1Bḡ(i) = −ḡ(i), and hence (87) becomes

M(p(i)) = p(i)$g(i+1)− 1
2 p(i)$ḡ(i). (89)

Similarly, we have

D(i)(α(i)) = − 1
2(G

(i)α(i))$B(G(i)α(i)) = 1
2 p(i)$ḡ(i). (90)

From (72) and (86) it follows that

∂D̄(i+1)(0) = (ḡ(i)−g(i+1))$Bḡ(i) = (g(i+1)− ḡ(i))$p(i), (91)

where g(i+1) is a violating subgradient chosen via (61), and hence coincides with (88). Using (89)–
(91), we obtain

M(p(i))−D(i)(α(i)) =
(

g(i+1)− ḡ(i)
)$

p(i) = ∂D̄(i+1)(0). (92)

Together with definition (77) of ε(i), (92) implies that

ε(i) = min
j≤i

M(p( j))−D(i)
(

α(i)
)

≤ M(p(i))−D(i)(α(i)) = ∂D̄(i+1)(0).
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Lemma 6 Let f : [0,1] → R be a concave quadratic function with f (0) = 0, ∂ f (0) ∈ [0,a], and
∂ f 2(x) ≥−a for some a≥ 0. Then maxx∈[0,1] f (x) ≥

(∂ f (0))2
2a .

Proof Using a second-order Taylor expansion around 0, we have f (x) ≥ ∂ f (0)x− a
2x
2. x∗ =

∂ f (0)/a is the unconstrained maximum of the lower bound. Since ∂ f (0)∈ [0,a], we have x∗ ∈ [0,1].
Plugging x∗ into the lower bound yields (∂ f (0))2/(2a).

Theorem 7 Assume that at w the convex objective function J : Rd → R has bounded subgradient:
‖∂J(w)‖ ≤ G, and that the approximation B to the inverse Hessian has bounded eigenvalues:
B 2 H. Then

ε(i)− ε(i+1) ≥
(ε(i))2

8G2H
.

Proof Recall that we constrain the form of feasible dual solutions for D(i+1)(α) as in (69). Instead
of D(i+1)(α), we thus work with the one-dimensional concave quadratic function D̄(i+1)(µ) (70). It
is obvious that

[
α(i)

0

]

is a feasible solution for D(i+1)(α). In this case, D̄(i+1)(0) = D(i)(α(i)). (74)
implies that D̄(i+1)(µ∗) = D(i+1)(α(i+1)). Using the definition (77) of ε(i), we thus have

ε(i)− ε(i+1) ≥ D(i+1)(α(i+1))−D(i)(α(i)) = D̄(i+1)(µ∗)− D̄(i+1)(0). (93)

It is easy to see from (93) that ε(i) − ε(i+1) are upper bounds on the maximal value of the concave
quadratic function f (µ) := D̄(i+1)(µ)− D̄(i+1)(0) with µ ∈ [0,1] and f (0) = 0. Furthermore, the
definitions of D̄(i+1)(µ) and f (µ) imply that

∂ f (0) = ∂D̄(i+1)(0) = (ḡ(i)−g(i+1))$Bḡ(i) and (94)

∂2 f (µ) = ∂2D̄(i+1)(µ) = − (ḡ(i)−g(i+1))$B(ḡ(i)−g(i+1)).

Since ‖∂J(w)‖ ≤ G and ḡ(i) ∈ ∂J(w) (71), we have ‖ḡ(i) −g(i+1)‖ ≤ 2G. Our upper bound on the
spectrum of B then gives |∂ f (0)| ≤ 2G2H and

∣
∣∂2 f (µ)

∣
∣ ≤ 4G2H. Additionally, Lemma 5 and the

fact thatB 5 0 imply that

∂ f (0) = ∂D̄(i+1)(0) ≥ 0 and ∂2 f (µ) = ∂2D̄(i+1)(µ) ≤ 0, (95)

which means that

∂ f (0) ∈ [0,2G2H] ⊂ [0,4G2H] and ∂2 f (µ) ≥ −4G2H.

Invoking Lemma 6, we immediately get

ε(i)− ε(i+1) ≥
(∂ f (0))2

8G2H
=

(∂D̄(i+1)(0))2

8G2H
. (96)

Since ε(i) ≤ ∂D̄(i+1)(0) by Lemma 5, the inequality (96) still holds when ∂D̄(i+1)(0) is replaced with
ε(i).
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(94) and (95) imply that the optimal combination coefficient µ∗ (73) has the property

µ∗ =min

[

1,
∂D̄(i+1)(0)

−∂2D̄(i+1)(µ)

]

.

Moreover, we can use (65) to reduce the cost of computing µ∗ by setting Bḡ(i) in (73) to be −p(i)

(Line 7 of Algorithm 2), and calculate

µ∗ =min

[

1,
g(i+1)$p(i)− ḡ(i)$p(i)

g(i+1)$Btg(i+1) +2 g(i+1)$p(i)− ḡ(i)$p(i)

]

, (97)

whereBtg
(i+1) can be cached for the update of the primal solution at Line 9 of Algorithm 2.

To prove Theorem 9, we use the following lemma proven by induction by Abe et al. (2001,
Sublemma 5.4):

Lemma 8 Let {ε(1), ε(2), · · ·} be a sequence of non-negative numbers satisfying ∀i ∈ N the recur-
rence

ε(i)− ε(i+1) ≥ c(ε(i))2,

where c ∈ R+ is a positive constant. Then ∀i ∈ N we have

ε(i) ≤
1

c
(

i+ 1
ε(1)c

) .

We now show that Algorithm 2 decreases ε(i) to a pre-defined tolerance ε in O(1/ε) steps:

Theorem 9 Under the assumptions of Theorem 7, Algorithm 2 converges to the desired precision ε
after

1 ≤ t ≤
8G2H
ε

−4

steps for any ε< 2G2H.

Proof Theorem 7 states that

ε(i)− ε(i+1) ≥
(ε(i))2

8G2H
,

where ε(i) is non-negative ∀i ∈ N by (78). Applying Lemma 8 we thus obtain

ε(i) ≤
1

c
(

i+ 1
ε(1)c

) , where c :=
1

8G2H
. (98)

Our assumptions on ‖∂J(w)‖ and the spectrum ofB imply that

D̄(i+1)(0) = (ḡ(i)−g(i+1))$Bḡ(i) ≤ 2G2H.
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Hence ε(i) ≤ 2G2H by Lemma 5. This means that (98) holds with ε(1) = 2G2H. Therefore we can
solve

ε≤
1

c
(

t+ 1
ε(1)c

) with c :=
1

8G2H
and ε(1) := 2G2H (99)

to obtain an upper bound on t such that (∀i≥ t) ε(i) ≤ ε< 2G2H. The solution to (99) is t ≤ 8G2H
ε −4.

Appendix C. Satisfiability of the Subgradient Wolfe Conditions

To formally show that there always is a positive step size that satisfies the subgradient Wolfe con-
ditions (23, 24), we restate a result of Hiriart-Urruty and Lemaréchal (1993, Theorem VI.2.3.3) in
slightly modified form:

Lemma 10 Given two points w /= w′ in R
d, define wη = ηw′ + (1−η)w. Let J : R

d → R be
convex. There exists η ∈ (0,1) and g̃ ∈ ∂J(wη) such that

J(w′)− J(w) = g̃$(w′ −w) ≤ ĝ$(w′ −w),

where ĝ := argsupg∈∂J(wη) g$(w′ −w).

Theorem 11 Let p be a descent direction at an iteratew. If Φ(η) := J(w+ηp) is bounded below,
then there exists a step size η> 0 which satisfies the subgradient Wolfe conditions (23, 24).

Proof Since p is a descent direction, the line J(w) + c1ηsupg∈∂J(w) g
$p with c1 ∈ (0,1) must

intersect Φ(η) at least once at some η > 0 (see Figure 1 for geometric intuition). Let η′ be the
smallest such intersection point; then

J(w +η′p) = J(w) + c1η′ sup
g∈∂J(w)

g$p. (100)

SinceΦ(η) is lower bounded, the sufficient decrease condition (23) holds for all η′′ ∈ [0,η′]. Setting
w′ = w +η′p in Lemma 10 implies that there exists an η′′ ∈ (0,η′) such that

J(w +η′p) − J(w) ≤ η′ sup
g∈∂J(w+η′′p)

g$p. (101)

Plugging (100) into (101) and simplifying it yields

c1 sup
g∈∂J(w)

g$p ≤ sup
g∈∂J(w+η′′p)

g$p. (102)

Since p is a descent direction, supg∈∂J(w) g
$p < 0, and thus (102) also holds when c1 is replaced

by c2 ∈ (c1,1).
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Algorithm 6 Algorithm 1 of Birge et al. (1998)
1: Initialize: t := 0 and w0
2: while not converged do
3: Find wt+1 that obeys

J(wt+1) ≤ J(wt) − at ‖gε′t‖
2+ εt (104)

where gε′t ∈ ∂ε′t J(wt+1), at > 0, εt ,ε′t ≥ 0 .

4: t := t+1
5: end while

Appendix D. Global Convergence of SubBFGS

There are technical difficulties in extending the classical BFGS convergence proof to the nonsmooth
case. This route was taken by Andrew and Gao (2007), which unfortunately left their proof critically
flawed: In a key step (Andrew and Gao, 2007, Equation 7) they seek to establish the non-negativity
of the directional derivative f ′(x̄; q̄) of a convex function f at a point x̄ in the direction q̄, where
x̄ and q̄ are the limit points of convergent sequences {xk} and {q̂k}κ, respectively. They do so by
taking the limit for k ∈ κ of

f ′(xk + α̃kq̂k; q̂k) > γ f ′(xk; q̂k), where {α̃k}→ 0 and γ ∈ (0,1) ,

which leads them to claim that

f ′(x̄; q̄) ≥ γ f ′(x̄; q̄) , (103)

which would imply f ′(x̄; q̄) ≥ 0 because γ ∈ (0,1). However, f ′(xk, q̂k) does not necessarily con-
verge to f ′(x̄; q̄) because the directional derivative of a nonsmooth convex function is not continu-
ous, only upper semi-continuous (Bertsekas, 1999, Proposition B.23). Instead of (103) we thus only
have

f ′(x̄; q̄) ≥ γ limsup
k→∞,k∈κ

f ′(xk; q̂k) ,

which does not suffice to establish the desired result: f ′(x̄; q̄) ≥ 0. A similar mistake is also found
in the reasoning of Andrew and Gao (2007) just after Equation 7.

Instead of this flawed approach, we use the technique introduced by Birge et al. (1998) to prove
the global convergence of subBFGS (Algorithm 1) in objective function value, that is, J(wt) →
infw J(w), provided that the spectrum of BFGS’ inverse Hessian approximationBt is bounded from
above and below for all t, and the step size ηt (obtained at Line 9) is not summable: ∑∞

t=0ηt = ∞.
Birge et al. (1998) provide a unified framework for convergence analysis of optimization algo-

rithms for nonsmooth convex optimization, based on the notion of ε-subgradients. Formally, g is
called an ε-subgradient of J at w iff (Hiriart-Urruty and Lemaréchal, 1993, Definition XI.1.1.1)

(∀w′) J(w′) ≥ J(w)+(w′ −w)$g− ε, where ε≥ 0. (105)

The set of all ε-subgradients at a point w is called the ε-subdifferential, and denoted ∂εJ(w). From
the definition of subgradient (7), it is easy to see that ∂J(w) = ∂0J(w) ⊆ ∂εJ(w). Birge et al.
(1998) propose an ε-subgradient-based algorithm (Algorithm 6) and provide sufficient conditions
for its global convergence:
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Theorem 12 (Birge et al., 1998, Theorem 2.1(iv), first sentence)
Let J : Rd → R∪{∞} be a proper lower semi-continuous21 extended-valued convex function, and
let {(εt ,ε′t ,at ,wt+1,gε′t )} be any sequence generated by Algorithm 6 satisfying

∞

∑
t=0

εt < ∞ and
∞

∑
t=0

at = ∞. (106)

If ε′t → 0, and there exists a positive number β> 0 such that, for all large t,

β‖wt+1−wt‖ ≤ at‖gε′t‖, (107)

then J(wt) → infw J(w).

We will use this result to establish the global convergence of subBFGS in Theorem 14. Towards
this end, we first show that subBFGS is a special case of Algorithm 6:

Lemma 13 Let pt = −Bt ḡt be the descent direction produced by Algorithm 2 at a non-optimal
iterate wt , where Bt 5 h > 0 and ḡt ∈ ∂J(wt), and let wt+1 = wt +ηtpt , where ηt > 0 satisfies
sufficient decrease (23) with free parameter c1 ∈ (0,1). Then wt+1 obeys (104) of Algorithm 6 for
at := c1ηt h

2 , εt = 0, and ε′t := ηt(1− c1
2 ) ḡ$t Bt ḡt .

Proof Our sufficient decrease condition (23) and Corollary 4 imply that

J(wt+1) ≤ J(wt) −
c1ηt
2

ḡ$t Bt ḡt (108)

≤ J(wt) − at‖ḡt‖2, where at :=
c1ηth
2

.

What is left to prove is that ḡt ∈ ∂ε′t J(wt+1) for an ε′t ≥ 0. Using ḡt ∈ ∂J(wt) and the definition (7)
of subgradient, we have

(∀w) J(w) ≥ J(wt) + (w−wt)
$ḡt

= J(wt+1) + (w−wt+1)
$ḡt + J(wt)− J(wt+1) + (wt+1−wt)

$ḡt .

Using wt+1−wt = −ηtBt ḡt and (108) gives

(∀w) J(w) ≥ J(wt+1) + (w−wt+1)
$ḡt +

c1ηt
2

ḡ$t Bt ḡt − ηt ḡ$t Bt ḡt

= J(wt+1) + (w−wt+1)
$ḡt − ε′t ,

where ε′t := ηt(1− c1
2 ) ḡ$t Bt ḡt . Since ηt > 0, c1 < 1, and Bt 5 h > 0, ε′t is non-negative. By the

definition (105) of ε-subgradient, ḡt ∈ ∂ε′t J(wt+1).

21. This means that there exists at least one w ∈ R
d such that J(w) < ∞, and that for all w ∈ R

d , J(w) > −∞ and
J(w) ≤ liminft→∞ J(wt) for any sequence {wt} converging to w. All objective functions considered in this paper
fulfill these conditions.
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Theorem 14 Let J : Rd → R∪{∞} be a proper lower semi-continuous21 extended-valued convex
function. Algorithm 1 with a line search that satisfies the sufficient decrease condition (23) with
c1 ∈ (0,1) converges globally to the minimal value of J, provided that:

1. the spectrum of its approximation to the inverse Hessian is bounded above and below: ∃(h,H :
0< h≤ H < ∞) : (∀t) h2 Bt 2 H

2. the step size ηt > 0 satisfies ∑∞
t=0ηt = ∞, and

3. the direction-finding tolerance ε for Algorithm 2 satisfies (85).

Proof We have already shown in Lemma 13 that subBFGS is a special case of Algorithm 6. Thus if
we can show that the technical conditions of Theorem 12 are met, it directly establishes the global
convergence of subBFGS.

Recall that for subBFGS at := c1ηt h
2 , εt = 0, ε′t := ηt(1− c1

2 ) ḡ$t Bt ḡt , and ḡt = gε′t . Our assump-
tion on ηt implies that ∑∞

t=0 at =
c1h
2 ∑∞

t=0ηt =∞, thus establishing (106). We now show that ε′t → 0.
Under the third condition of Theorem 14, it follows from the first inequality in (84) in Corollary 4
that

sup
g∈∂J(wt)

g$pt ≤ − 1
2 ḡ$t Bt ḡt , (109)

where pt = −Bt ḡt , ḡt ∈ ∂J(wt) is the search direction returned by Algorithm 2. Together with the
sufficient decrease condition (23), (109) implies (108). Now use (108) recursively to obtain

J(wt+1) ≤ J(w0) −
c1
2

t

∑
i=0

ηi ḡ$i Biḡi .

Since J is proper (hence bounded from below), we have
∞

∑
t=0

ηi ḡ
$
i Biḡi =

1
1− c1

2

∞

∑
t=0

ε′i < ∞ . (110)

Recall that ε′i ≥ 0. The bounded sum of non-negative terms in (110) implies that the terms in the
sum must converge to zero.

Finally, to show (107) we usewt+1−wt =−ηtBt ḡt , the definition of the matrix norm: ‖B‖ :=
maxx/=0

‖Bx‖
‖x‖ , and the upper bound on the spectrum ofBt to write:

‖wt+1−wt‖ = ηt‖Bt ḡt‖ ≤ ηt‖Bt‖‖ḡt‖ ≤ ηtH‖ḡt‖. (111)

Recall that ḡt = gε′t and at = c1ηt h
2 , and multiply both sides of (111) by c1h

2H to obtain (107) with
β := c1h

2H .

Appendix E. SubBFGS Converges on Various Counterexamples

We demonstrate the global convergence of subBFGS22 with an exact line search on various coun-
terexamples from the literature, designed to show the failure to converge of other gradient-based
algorithms.

22. We run Algorithm 1 with h= 10−8 and ε= 10−5.
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Figure 23: Optimization trajectory of steepest descent (left) and subBFGS (right) on counterexam-
ple (112).

E.1 Counterexample for Steepest Descent

The first counterexample (112) is given by Wolfe (1975) to show the non-convergent behaviour of
the steepest descent method with an exact line search (denoted GD):

f (x,y) :=

{

5
√

(9x2+16y2) if x≥ |y|,
9x+16|y| otherwise.

(112)

This function is subdifferentiable along x ≤ 0, y = 0 (dashed line in Figure 23); its minimal value
(−∞) is attained for x = −∞. As can be seen in Figure 23 (left), starting from a differentiable
point (2,1), GD follows successively orthogonal directions, that is, −∇ f (x,y), and converges to
the non-optimal point (0,0). As pointed out by Wolfe (1975), the failure of GD here is due to the
fact that GD does not have a global view of f , specifically, it is because the gradient evaluated
at each iterate (solid disk) is not informative about ∂ f (0,0), which contains subgradients (e.g.,
(9,0)), whose negative directions point toward the minimum. SubBFGS overcomes this “short-
sightedness” by incorporating into the parameter update (3) an estimate Bt of the inverse Hessian,
whose information about the shape of f prevents subBFGS from zigzagging to a non-optimal point.
Figure 23 (right) shows that subBFGS moves to the correct region (x< 0) at the second step. In fact,
the second step of subBFGS lands exactly on the hinge x ≤ 0,y = 0, where a subgradient pointing
to the optimum is available.

E.2 Counterexample for Steepest Subgradient Descent

The second counterexample (113), due to Hiriart-Urruty and Lemaréchal (1993, Section VIII.2.2),
is a piecewise linear function which is subdifferentiable along 0≤ y= ±3x and x= 0 (dashed lines
in Figure 24):

f (x,y) :=max{−100, ±2x+3y, ±5x+2y}. (113)

This example shows that steepest subgradient descent with an exact line search (denoted subGD)
may not converge to the optimum of a nonsmooth function. Steepest subgradient descent updates
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Figure 24: Optimization trajectory of steepest subgradient descent (left) and subBFGS (right) on
counterexample (113).

    


























    


























Figure 25: Optimization trajectory of standard BFGS (left) and subBFGS (right) on counterexam-
ple (114).

parameters along the steepest descent subgradient direction, which is obtained by solving the min-
sup problem (13) with respect to the Euclidean norm. Clearly, the minimal value of f (−100) is
attained for sufficiently negative values of y. However, subGD oscillates between two hinges 0 ≤
y = ±3x, converging to the non-optimal point (0,0), as shown in Figure 24 (left). The zigzagging
optimization trajectory of subGD does not allow it to land on any informative position such as the
hinge y = 0, where the steepest subgradient descent direction points to the desired region (y < 0);
Hiriart-Urruty and Lemaréchal (1993, Section VIII.2.2) provide a detailed discussion. By contrast,
subBFGS moves to the y < 0 region at the second step (Figure 24, right), which ends at the point
(100,−300) (not shown in the figure) where the minimal value of f is attained .
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E.3 Counterexample for BFGS

The final counterexample (114) is given by Lewis and Overton (2008b) to show that the standard
BFGS algorithm with an exact line search can break down when encountering a nonsmooth point:

f (x,y) :=max{2|x|+ y, 3y}. (114)

This function is subdifferentiable along x= 0, y≤ 0 and y= |x| (dashed lines in Figure 25). Figure
25 (left) shows that after the first step, BFGS lands on a nonsmooth point, where it fails to find a
descent direction. This is not surprising because at a nonsmooth pointw the quasi-Newton direction
p := −Bg for a given subgradient g ∈ ∂J(w) is not necessarily a direction of descent. SubBFGS
fixes this problem by using a direction-finding procedure (Algorithm 2), which is guaranteed to
generate a descent quasi-Newton direction. Here subBFGS converges to f = −∞ in three iterations
(Figure 25, right).
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Abstract
We present a unified framework to study graph kernels, special cases of which include the random
walk (Gärtner et al., 2003; Borgwardt et al., 2005) and marginalized (Kashima et al., 2003, 2004;
Mahé et al., 2004) graph kernels. Through reduction to a Sylvester equation we improve the time
complexity of kernel computation between unlabeled graphs with n vertices from O(n6) to O(n3).
We find a spectral decomposition approach even more efficient when computing entire kernel ma-
trices. For labeled graphs we develop conjugate gradient and fixed-point methods that take O(dn3)
time per iteration, where d is the size of the label set. By extending the necessary linear algebra to
Reproducing Kernel Hilbert Spaces (RKHS) we obtain the same result for d-dimensional edge ker-
nels, and O(n4) in the infinite-dimensional case; on sparse graphs these algorithms only take O(n2)
time per iteration in all cases. Experiments on graphs from bioinformatics and other application
domains show that these techniques can speed up computation of the kernel by an order of mag-
nitude or more. We also show that certain rational kernels (Cortes et al., 2002, 2003, 2004) when
specialized to graphs reduce to our random walk graph kernel. Finally, we relate our framework to
R-convolution kernels (Haussler, 1999) and provide a kernel that is close to the optimal assignment
kernel of Fröhlich et al. (2006) yet provably positive semi-definite.
Keywords: linear algebra in RKHS, Sylvester equations, spectral decomposition, bioinformatics,
rational kernels, transducers, semirings, random walks

1. Introduction

Machine learning in domains such as bioinformatics (Sharan and Ideker, 2006), chemoinformatics
(Bonchev and Rouvray, 1991), drug discovery (Kubinyi, 2003), web data mining
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Figure 1: Left: Structure of E. coli protein fragment APO-BCCP87 (Yao et al., 1997), ID 1a6x
in the Protein Data Bank (Berman et al., 2000). Right: Borgwardt et al.’s (2005) graph
representation for this protein fragment. Nodes represent secondary structure elements,
and edges encode neighborhood along the amino acid chain (solid) resp. in Euclidean 3D
space (dashed).

(Washio and Motoda, 2003), and social networks (Kumar et al., 2006) involves the study of rela-
tionships between structured objects. Graphs are natural data structures to model such structures,
with nodes representing objects and edges the relations between them. In this context, one often
encounters two questions: “How similar are two nodes in a given graph?” and “How similar are
two graphs to each other?”

In protein function prediction, for instance, one might want to predict whether a given protein is
an enzyme or not. Computational approaches infer protein function by finding proteins with similar
sequence, structure, or chemical properties. A very successful recent method is to model the protein
as a graph (see Figure 1), and assign similar functions to similar graphs (Borgwardt et al., 2005).
In Section 5.2 we compute graph kernels to measure the similarity between proteins and enzymes
represented in this fashion.

Another application featured in Section 5.2 involves predicting the toxicity of chemical molecules
by comparing their three-dimensional structure. Here the molecular structure is modeled as a graph,
and the challenge is to compute the similarity between molecules of known and unknown toxicity.

Finally, consider the task of finding web pages with related content. Since documents on the
web link to each other, one can model each web page as the node of a graph, and each link as
an edge. Now the problem becomes that of computing similarities between the nodes of a graph.
Taking this one step further, detecting mirrored sets of web pages requires computing the similarity
between the graphs representing them.

Kernel methods (Schölkopf and Smola, 2002) offer a natural framework to study these ques-
tions. Roughly speaking, a kernel k(x,x′) is a measure of similarity between objects x and x′. It
must satisfy two mathematical requirements: it must be symmetric, that is, k(x,x′) = k(x′,x), and
positive semi-definite (p.s.d.). Comparing nodes in a graph involves constructing a kernel between
nodes, while comparing graphs involves constructing a kernel between graphs. In both cases, the
challenge is to define a kernel that captures the semantics inherent in the graph structure and is
reasonably efficient to evaluate.

The idea of constructing kernels on graphs (i.e., between the nodes of a single graph) was
first proposed by Kondor and Lafferty (2002), and extended by Smola and Kondor (2003). In con-
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trast, in this paper we focus on kernels between graphs. The first such kernels were proposed by
Gärtner et al. (2003) and later extended by Borgwardt et al. (2005). Much at the same time, the
idea of marginalized kernels (Tsuda et al., 2002) was extended to graphs by Kashima et al. (2003,
2004), then further refined by Mahé et al. (2004). Another algebraic approach to graph kernels has
appeared recently (Kondor and Borgwardt, 2008). A seemingly independent line of research inves-
tigates the so-called rational kernels, which are kernels between finite state automata based on the
algebra of abstract semirings (Cortes et al., 2002, 2003, 2004).

The aim of this paper is twofold: on the one hand we present theoretical results showing that all
the above graph kernels are in fact closely related, on the other hand we present new algorithms for
efficiently computing such kernels. We begin by establishing some notation and reviewing pertinent
concepts from linear algebra and graph theory.

1.1 Paper Outline

The first part of this paper (Sections 2–5) elaborates and updates a conference publication of
Vishwanathan et al. (2007) to present a unifying framework for graph kernels encompassing many
known kernels as special cases, and to discuss connections to yet others. After defining some basic
concepts in Section 2, we describe the framework in Section 3, prove that it leads to p.s.d. ker-
nels, and discuss the random walk and marginalized graph kernels as special cases. For ease of
exposition we will work with real matrices in the main body of the paper and relegate the RKHS
extensions to Appendix A. In Section 4 we present four efficient ways to compute random walk
graph kernels, namely: 1. via reduction to a Sylvester equation, 2. with a conjugate gradient solver,
3. using fixed-point iterations, and 4. via spectral decompositions. Experiments on a variety of real
and synthetic data sets in Section 5 illustrate the computational advantages of our methods, which
generally reduce the time complexity of kernel computation from O(n6) to O(n3). The experiments
of Section 5.3 were previously presented at a bioinformatics symposium (Borgwardt et al., 2007).

The second part of the paper (Sections 6–7) draws further connections to existing kernels on
structured objects. In Section 6 we present a simple proof that rational kernels (Cortes et al., 2002,
2003, 2004) are p.s.d., and show that specializing them to graphs yields random walk graph kernels.
In Section 7 we discuss the relation between R-convolution kernels (Haussler, 1999) and various
graph kernels, all of which can in fact be shown to be instances of R-convolution kernels. Extend-
ing the framework through the use of semirings does not always result in a p.s.d. kernel though;
a case in point is the optimal assignment kernel of Fröhlich et al. (2006). We establish sufficient
conditions for R-convolution kernels in semirings to be p.s.d., and provide a “mostly optimal as-
signment kernel” that is provably p.s.d. We conclude in Section 8 with an outlook and discussion.

2. Preliminaries

Here we define the basic concepts and notation from linear algebra and graph theory that will be
used in the remainder of the paper.

2.1 Linear Algebra Concepts

We use ei to denote the ith standard basis vector (that is, a vector of all zeros with the ith entry set
to one), e to denote a vector with all entries set to one, 0 to denote the vector of all zeros, and I to
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denote the identity matrix. When it is clear from the context we will not mention the dimensions of
these vectors and matrices.

Definition 1 Given real matrices A ∈ R
n×m and B ∈ R

p×q, the Kronecker product A⊗B ∈ R
np×mq

and column-stacking operator vec(A) ∈ R
nm are defined as

A⊗B :=




A11B A12B . . . A1mB
...

...
...

...
An1B An2B . . . AnmB



 , vec(A) :=




A∗1
...

A∗m



 ,

where A∗ j denotes the jth column of A.

The Kronecker product and vec operator are linked by the well-known property (e.g., Bernstein,
2005, Proposition 7.1.9):

vec(ABC) = (C(⊗A)vec(B). (1)

Another well-known property of the Kronecker product which we make use of is (Bernstein, 2005,
Proposition 7.1.6):

(A⊗B)(C⊗D) = AC⊗BD. (2)

Finally, the Hadamard product of two real matrices A,B ∈ R
n×m, denoted by A)B ∈ R

n×m, is
obtained by element-wise multiplication. It interacts with the Kronecker product via

(A⊗B)) (C⊗D) = (A)C)⊗ (B)D). (3)

All the above concepts can be extended to a Reproducing Kernel Hilbert Space (RKHS) (See Ap-
pendix A for details).

2.2 Graph Concepts

A graph G consists of an ordered set of n vertices V = {v1,v2, . . . ,vn}, and a set of directed edges
E ⊂V×V . A vertex vi is said to be a neighbor of another vertex v j if they are connected by an edge,
that is, if (vi,v j) ∈ E; this is also denoted vi ∼ v j. We do not allow self-loops, that is, (vi,vi) /∈ E
for any i. A walk of length k on G is a sequence of indices i0, i1, . . . ik such that vir−1 ∼ vir for all
1 ≤ r ≤ k. A graph is said to be strongly connected if any two pairs of vertices can be connected
by a walk. In this paper we will always work with strongly connected graphs. A graph is said to be
undirected if (vi,v j) ∈ E ⇐⇒ (v j,vi) ∈ E.

In much of the following we will be dealing with weighted graphs, which are a slight gener-
alization of the above. In a weighted graph, each edge (vi,v j) has an associated weight wi j > 0
signifying its “strength”. If vi and v j are not neighbors, then wi j = 0. In an undirected weighted
graph wi j = wji.

When G is unweighted, we define its adjacency matrix as the n× n matrix Ã with Ãi j = 1 if
v j ∼ vi, and 0 otherwise. For weighted graphs, Ãi j = wji. While some authors would call these
matrices the transpose of the adjacency matrix, for our purposes the present definitions will be more
convenient. For undirected graphs Ã is symmetric, and the two definitions coincide. The diagonal
entries of Ã are always zero.
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The adjacency matrix has a normalized cousin, defined A := ÃD−1, which has the property that
each of its columns sums to one, and it can therefore serve as the transition matrix for a stochastic
process. Here, D is a diagonal matrix of node degrees, that is, Dii = di =∑ j Ãi j. A random walk on
G is a process generating sequences of vertices vi1 ,vi2 ,vi3 , . . . according to P(ik+1|i1, . . . ik) = Aik+1,ik ,
that is, the probability at vik of picking vik+1 next is proportional to the weight of the edge (vik ,vik+1).
The t th power of A thus describes t-length walks, that is, (At)i j is the probability of a transition
from vertex v j to vertex vi via a walk of length t. If p0 is an initial probability distribution over
vertices, then the probability distribution pt describing the location of our random walker at time t
is pt = At p0. The jth component of pt denotes the probability of finishing a t-length walk at vertex
v j.

A random walk need not continue indefinitely; to model this, we associate every node vik in
the graph with a stopping probability qik . Our generalized random walk graph kernels then use
the overall probability of stopping after t steps, given by q(pt . Like p0, the vector q of stopping
probabilities is a place to embed prior knowledge into the kernel design. Since pt as a probability
distribution sums to one, a uniform vector q (as might be chosen in the absence of prior knowledge)
would yield the same overall stopping probability for all pt , thus leading to a kernel that is invariant
with respect to the graph structure it is meant to measure. In this case, the unnormalized adjacency
matrix Ã (which simply counts random walks instead of measuring their probability) should be used
instead.

Let X be a set of labels which includes the special label ζ. Every edge-labeled graph G is
associated with a label matrix X ∈ X n×n in which Xi j is the label of the edge (v j,vi) and Xi j = ζ
if (v j,vi) /∈ E. Let H be the RKHS induced by a p.s.d. kernel κ : X ×X → R, and let φ : X → H

denote the corresponding feature map, which we assume maps ζ to the zero element of H . We use
Φ(X) to denote the feature matrix of G (see Appendix A for details). For ease of exposition we do
not consider labels on vertices here, though our results hold for that case as well. Henceforth we
use the term labeled graph to denote an edge-labeled graph.

Two graphs G = (V,E) and G′ = (V ′,E ′) are isomorphic (denoted by G ∼= G′) if there ex-
ists a bijective mapping g : V → V ′ (called the isomorphism function) such that (vi,v j) ∈ E iff
(g(vi),g(v j)) ∈ E ′.

3. RandomWalk Graph Kernels

Our generalized random walk graph kernels are based on a simple idea: given a pair of graphs,
perform random walks on both, and count the number of matching walks. We show that this simple
concept underlies both random walk and marginalized graph kernels. In order to do this, we first
need to introduce direct product graphs.

3.1 Direct Product Graphs

Given two graphs G(V,E) and G′(V ′,E ′), their direct product G× is a graph with vertex set

V× = {(vi,v′r) : vi ∈V, v′r ∈V ′}, (4)

and edge set

E× = {((vi,v′r), (v j,v′s)) : (vi,v j) ∈ E ∧ (v′r,v′s) ∈ E ′}. (5)
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Figure 2: Two graphs (top left & right) and their direct product (bottom). Each node of the direct
product graph is labeled with a pair of nodes (4); an edge exists in the direct product if
and only if the corresponding nodes are adjacent in both original graphs (5). For instance,
nodes 11′ and 32′ are adjacent because there is an edge between nodes 1 and 3 in the first,
and 1′ and 2′ in the second graph.

In other words, G× is a graph over pairs of vertices from G and G′, and two vertices in G× are
neighbors if and only if the corresponding vertices in G and G′ are both neighbors; see Figure 2 for
an illustration. If Ã and Ã

′
are the respective adjacency matrices of G and G′, then the adjacency

matrix of G× is Ã× = Ã⊗ Ã
′
. Similarly, A× = A⊗A′.

Performing a random walk on the direct product graph is equivalent to performing a simulta-
neous random walk on G and G′ (Imrich and Klavžar, 2000). If p and p′ denote initial probability
distributions over the vertices of G and G′, then the corresponding initial probability distribution on
the direct product graph is p× := p⊗ p′. Likewise, if q and q′ are stopping probabilities (that is, the
probability that a random walk ends at a given vertex), then the stopping probability on the direct
product graph is q× := q⊗q′.

Let |V | =: n and |V ′| =: n′. If G and G′ are edge-labeled, we can associate a weight matrix
W× ∈ R

nn′×nn′ with G× using our extension of the Kronecker product (Definition 1) into RKHS
(Definition 11 in Appendix A):

W× =Φ(X)⊗Φ(X ′). (6)
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As a consequence of the definition of Φ(X) and Φ(X ′), the entries of W× are non-zero only if
the corresponding edge exists in the direct product graph. If we simply let H = R, Φ(X) = Ã, and
Φ(X ′) = Ã

′
then (6) reduces to Ã×, the adjacency matrix of the direct product graph. Normalization

can be incorporated by letting φ(Xi j) = 1/di if (v j,vi) ∈ E, and zero otherwise.1 Then Φ(X) = A
and Φ(X ′) = A′, and consequentlyW× = A×.

If the edges of our graphs take on labels from a finite set, without loss of generality {1,2, . . . ,d},
we can let H be R

d endowed with the usual inner product. For each edge (v j,vi) ∈ E we set
φ(Xi j) = el /di if the edge (v j,vi) is labeled l; all other entries of Φ(X) are 0. Thus the weight
matrix (6) has a non-zero entry iff an edge exists in the direct product graph and the corresponding
edges in G and G′ have the same label. Let lA denote the normalized adjacency matrix of the graph
filtered by the label l, that is, lAi j = Ai j if Xi j = l, and zero otherwise. Some simple algebra (omitted
for the sake of brevity) shows that the weight matrix of the direct product graph can then be written
as

W× =
d

∑
l=1

lA⊗ lA′. (7)

In Section 4 we will develop efficient methods to compute kernels defined using the weight matrix of
the direct product graph. The applicability and time complexity of a particular method will depend
on whether the graphs are unlabeled though possibly edge-weighted (W× = A×), have discrete edge
labels (7), or—in the most general case—employ an arbitrary edge kernel (6); see Table 1 for a
summary.

3.2 Kernel Definition

As stated above, performing a random walk on the direct product graph G× is equivalent to per-
forming a simultaneous random walk on the graphs G and G′ (Imrich and Klavžar, 2000). There-
fore, the ((i−1)n′ + r, ( j−1)n′ + s)th entry of Ak× represents the probability of simultaneous length
k random walks on G (starting from vertex v j and ending in vertex vi) and G′ (starting from ver-
tex v′s and ending in vertex v′r). The entries of W× (6) represent similarity between edges: The
((i−1)n′ + r, ( j−1)n′ + s) entry of Wk

× represents the similarity between simultaneous length k
random walks on G and G′, measured via the kernel function κ. Given initial and stopping proba-
bility distributions p× and q× one can compute q(×Wk

×p×, which is the expected similarity between
simultaneous length k random walks on G and G′.

To define a kernel which computes the similarity betweenG andG′, one natural idea is to simply
sum up q(×Wk

×p× for all values of k. However, this sum might not converge, leaving the kernel value
undefined. To overcome this problem, we introduce appropriately chosen non-negative coefficients
µ(k), and define the kernel between G and G′ as

k(G,G′) :=
∞

∑
k=0

µ(k)q(×Wk
×p×. (8)

This definition is very flexible and offers the kernel designer many parameters to adjust in an
application-specific manner: Appropriately choosing µ(k) allows one to (de-)emphasize walks of
different lengths; if initial and stopping probabilities are known for a particular application, then

1. The technical problem that now φ(Xi j) depends on di can be addressed by making di a feature of all edges (v j,vi)∈E.
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this knowledge can be incorporated into the kernel; and finally, appropriate kernels or similarity
measures between edges can be incorporated via the weight matrixW×. Despite its flexibility, this
kernel is guaranteed to be p.s.d. and—as we will see in Section 4—can be computed efficiently by
exploiting the special structure ofW×. To show that (8) is a valid p.s.d. kernel we need the following
technical lemma:

Lemma 2 ∀ k ∈ N : Wk
×p× = vec[Φ(X ′)k p′ (Φ(X)k p)(].

Proof By induction over k. Base case: k = 0. Using (1) we find

W 0
×p× = p× = (p⊗ p′)vec(1) = vec(p′ 1 p() = vec[Φ(X ′)0p′ (Φ(X)0p)(]. (9)

Induction from k to k+1: Using the induction assumptionWk
×p× = vec[Φ(X ′)k p′ (Φ(X)k p)(] and

Lemma 12 we obtain

Wk+1
× p× =W×Wk

×p× = (Φ(X)⊗Φ(X ′))vec[Φ(X ′)k p′ (Φ(X)k p)(]

= vec[Φ(X ′)Φ(X ′)k p′ (Φ(X)k p)(Φ(X)(] (10)
= vec[Φ(X ′)k+1p′ (Φ(X)k+1p)(].

Base case (9) and induction (10) together imply Lemma 2 ∀ k ∈ N0.

Theorem 3 If the coefficients µ(k) are such that (8) converges, then (8) defines a valid p.s.d. kernel.

Proof Using Lemmas 12 and 2 we can write

q(×Wk
×p× = (q⊗q′)( vec[Φ(X ′)k p′ (Φ(X)k p)(]

= vec[q′(Φ(X ′)k p′ (Φ(X)k p)(q]
= (q(Φ(X)k p)(

︸ ︷︷ ︸
ρk(G)(

(q′(Φ(X ′)k p′)
︸ ︷︷ ︸

ρk(G′)

. (11)

Each individual term of (11) equals ρk(G)(ρk(G′) for some function ρk, and is therefore a valid
p.s.d. kernel. The theorem follows because the class of p.s.d. kernels is closed under non-negative
linear combinations and pointwise limits (Berg et al., 1984).

3.3 Special Cases

Kashima et al. (2004) define a kernel between labeled graphs via walks and their label sequences.
Recall that a walk of length t on G is a sequence of indices i1, i2, . . . it+1 such that vik ∼ vik+1 for all
1 ≤ k ≤ t. In our setting (where we do not consider node labels), the label sequence h = h1, . . . ,ht
associated with a walk is simply the sequence of edge labels encountered during the walk. Let P
denote a transition probability matrix, where Pi j denotes the probability of transition from node vi
to node v j. For instance, P might be the normalized adjacency matrix of G. Furthermore, let p

1208



GRAPH KERNELS

and q denote starting and stopping probabilities. Then one can compute the probability of a walk
i1, i2, . . . it+1 and hence the label sequence h associated with it as

p(h|G) := qit+1
t

∏
j=1

Pij,i j+1 pi1 . (12)

Now let φ̂ denote a feature map on edge labels, and define a kernel between label sequences of
length t by

κ(h,h′) :=
t

∏
i=1

κ(hi,h′i) =
t

∏
i=1

〈
φ̂(hi), φ̂(h′i)

〉
(13)

if h and h′ have the same length t, and zero otherwise. Using (12) and (13) we can define a kernel
between graphs via marginalization:

k(G,G′) :=∑
h
∑
h′
κ(h,h′) p(h|G) p(h|G′). (14)

Kashima et al. (2004, Eq. 1.19) show that (14) can be written as

k(G,G′) = q(×(I−T×)−1p×, (15)

where T× = [vec(P)vec(P′)(]) [Φ̂(X)⊗Φ̂(X ′)]. (As usual, X and X ′ denote the edge label matrices
of G and G′, respectively, and Φ̂ the corresponding feature matrices.)

Although this kernel is differently motivated, it can be obtained as a special case of our frame-
work. Towards this end, assume µ(k) = λk for some λ> 0. We can then write

k(G,G′) =
∞

∑
k=0

λkq(×Wk
×p× = q(×(I−λW×)−1p×. (16)

To recover the marginalized graph kernels let λ = 1, and define Φ(Xi j) = Pi jΦ̂(Xi j), in which case
W× = T×, thus recovering (15).

Given a pair of graphs, Gärtner et al. (2003) also perform random walks on both, but then count
the number of matching walks. Their kernel is defined as (Gärtner et al., 2003, Definition 6):

k(G,G′) =
n

∑
i=1

n′

∑
j=1

∞

∑
k=0

λk
[
Ã
k
×

]

i j
. (17)

To obtain (17) in our framework, set µ(k) := λk, assume uniform distributions for the starting and
stopping probabilities over the vertices of G and G′ (i.e., pi = qi = 1/n and p′i = q′i = 1/n′), and let
Φ(X) := Ã and Φ(X ′) = Ã

′
. Consequently, p× = q× = e/(nn′), andW× = Ã×, the unnormalized

adjacency matrix of the direct product graph. This allows us to rewrite (8) to obtain

k(G,G′) =
∞

∑
k=0

µ(k)q(×Wk
×p× =

1
n2n′2

n

∑
i=1

n′

∑
j=1

∞

∑
k=0

λk
[
Ã
k
×

]

i j
, (18)

which recovers (17) to within a constant factor. Gärtner et al. (2003) also extend their kernels to
graphs with labels from a finite set by replacing Ã× in (17) with a sum W̃× of label-filtered (but
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sparsity dense sparse
edge labels none/scalar finite set finite-dim. ∞-dim. anyMethod (Section) W× = A⊗A′ (7) kernel (6)

Sylvester Equation (4.1) m2n3 unknown — —
Conjugate Gradient (4.2) m2rn3 m2rdn3 m2rn4 m2rn2

Fixed-Point Iterations (4.3) m2kn3 m2kdn3 m2kn4 m2kn2
Spectral Decomposition (4.4) (m+n)mn2 m2n6 —
Nearest Kron. Product (4.5) 1 m2k′dn2 m2k′n4 m2k′n2

Table 1: Worst-case time complexity (in O(·) notation) of our methods for an m×m graph kernel
matrix, where n= size of the graphs (number of nodes), d = size of label set resp. dimen-
sionality of feature map, r = effective rank of W×, k = number of fixed-point iterations
(31), and k′ = number of power iterations (37).

unnormalized) adjacency matrices, analogous to our (7). The reduction to our framework extends
to this setting in a straightforward manner.

Gärtner et al. (2003) discuss two cases of special interest: First, their geometric kernel employs
a fixed decay factor λ to down-weight the contribution of long walks to the kernel, setting λk := λk as
in our (16). The choice of λ is critical here: It must be small enough for the sum in (17) to converge,
depending on the spectrum of W× (Vishwanathan, 2002, Chapter 6). Second, their exponential
kernel is defined as

k(G,G′) =
n

∑
i=1

n′

∑
j=1

[eλÃ× ]i j = e(eλÃ×e, (19)

using the matrix exponential. This is obtained in our framework by setting λk := λk/k!, so that the
right-most sum in (18) becomes the series expansion of eλÃ× .

The kernels of Gärtner et al. (2003) differ from our definition (8) in that they do not explicitly
model starting or stopping probabilities, and employ unnormalized adjacency matrices instead of
our more general weight matrix (6) which allows for normalization and arbitrary kernels on edges.

4. Efficient Computation

Computing a geometric random walk graph kernel with µ(k) = λk amounts to inverting (I−λW×),
an n2×n2 matrix if G and G′ have n vertices each. Since the complexity of inverting a matrix is
essentially cubic in its dimensions, direct computation of (16) would require O(n6) time. Below
we develop methods based on Sylvester equations (Section 4.1), conjugate gradients (Section 4.2),
fixed-point iterations (Section 4.3), and spectral decompositions (Section 4.4) that greatly accelerate
this computation. Section 4.5 introduces an approximation that can further speed up the kernel
computation for labeled graphs.

Table 1 summarizes our results, listing the worst-case time complexity of our methods as a
function of graph density and labeling. Exact computation of the full kernel matrix between m
dense, unlabeled (but possibly edge-weighted) graphs of n nodes each (leftmost column) is generally
quadratic in the number of graphs and cubic in their size; for the iterative methods this must be
multiplied by the number of iterations, which is given by the effective rank r of the weight matrixW×
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for conjugate gradient, and by (31) for fixed-point iterations. The spectral decomposition approach
(Section 4.4) is exceptional here in that it can be linear in m resp. quadratic in n (but not both) if
precomputation of them spectral graph decompositions dominates (resp. is dominated by) the actual
kernel computations.

The cost of the iterative algorithms increases by another factor of d for graphs with edge labels
from a finite set of d symbols or an edge kernel with d-dimensional feature map; for an arbitrary
edge kernel (whose feature map may be infinite-dimensional) this factor becomes n. On labeled
graphs our spectral decomposition approach offers no savings, and the Sylvester equation method
applies only if the labels come from a finite set of symbols, and then with unknown time complexity.
A nearest Kronecker product approximation can be used, however, to approximate the direct product
of labeled graphs with a weight matrix that can be handled by any of our methods for unlabeled
graphs. This approximation requires k′ (37) iterations, each costing O(dn2) time when the labels
come from a finite set of d symbols, and O(n4) in general.

Finally, when the graphs are sparse (i.e., only have O(n) edges each; rightmost column in Ta-
ble 1) our iterative methods (conjugate gradient, fixed-point, and nearest Kronecker product) take
only O(n2) time per iteration, regardless of how the graphs are labeled. We cannot authoritatively
state the time complexity for sparse graphs of solving Sylvester equations or performing spectral
decompositions. Spielman and Teng (2008) have shown that graphs can be sparsified (i.e., approxi-
mated by sparse graphs) in nearly linear time, although the constants involved are quite large.

4.1 Sylvester Equation Methods

Consider the following equation, commonly known as the Sylvester or Lyapunov equation:

M = SMT +M0. (20)

Here, S,T,M0 ∈ R
n×n are given and we need to solve forM ∈ R

n×n. These equations can be readily
solved in O(n3) time with freely available code (Gardiner et al., 1992), such as Matlab’s dlyap
method. Solving the generalized Sylvester equation

M =
d

∑
i=1

SiMTi+M0 (21)

involves computing generalized simultaneous Schur factorizations of d symmetric matrices
(Lathauwer et al., 2004). Although technically involved, (21) can also be solved efficiently, al-
beit at a higher computational cost. The computational complexity of this generalized factorization
is at present unknown.

We now show that for graphs with discrete edge labels, whose weight matrixW× can be written
as (7), the problem of computing the graph kernel (16) can be reduced to solving the following
generalized Sylvester equation:

M =
d

∑
i=1

λ iA′M iA( +M0, (22)

where vec(M0) = p×. We begin by flattening (22):

vec(M) = λ
d

∑
i=1
vec(iA′MiA()+ p×. (23)
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Using Lemma 12 (which extends (1) into an RKHS) we can rewrite (23) as

(I−λ
d

∑
i=1

iA⊗ iA′)vec(M) = p×, (24)

use (7), and solve (24) for vec(M):

vec(M) = (I−λW×)−1p×. (25)

Multiplying both sides of (25) by q(× yields

q(×vec(M) = q(×(I−λW×)−1p×. (26)

The right-hand side of (26) is the graph kernel (16). Given the solution M of the Sylvester
equation (22), the graph kernel can be obtained as q(×vec(M) in O(n2) time. The same argument
applies for unlabeled graphs by simply setting d = 1, which turns (22) into a simple Sylvester
equation. Since solving that only takes O(n3) time, computing the random walk graph kernel in this
fashion is much faster than the O(n6) time required by the direct approach.

One drawback of this strategy is that Sylvester equation solvers are quite sophisticated and
typically available only as black-box library routines, which limits their applicability. Matlab’s
dlyap solver, for instance, does not exploit sparsity, and only handles the cases d = 1 and d = 2. A
solver for the simple Sylvester equation (20) can still be used to efficiently compute kernels between
labeled graphs though by employing the nearest Kronecker product approximation (Section 4.5).

4.2 Conjugate Gradient Methods

Given a matrix M and a vector b, conjugate gradient (CG) methods solve the system of equations
Mx = b efficiently (Nocedal and Wright, 1999). While they are designed for symmetric p.s.d. ma-
trices, CG solvers can also be used to solve other linear systems efficiently. They are particularly
efficient if the matrix is rank deficient, or has a small effective rank, that is, number of distinct
eigenvalues. Furthermore, if computing matrix-vector products is cheap—because M is sparse, for
instance—the CG solver can be sped up significantly (Nocedal and Wright, 1999). Specifically, if
computing Mv for an arbitrary vector v requires O(m) time, and the effective rank of M is r, then a
CG solver takes O(r) iterations, and hence only O(rm) time, to solveMx= b.

The graph kernel (16) can be computed by a two-step procedure: First we solve the linear system

(I−λW×)x= p×, (27)

for x, then we compute q(×x. We now focus on efficient ways to solve (27) with a CG solver. Recall
that if G and G′ contain n vertices each then W× is an n2×n2 matrix. Naively, multiplying W by
some vector y inside the CG algorithm requires O(n4) operations. However, by our extension of the
vec-ABC formula (1) into RKHS (Lemma 12), introducing the matrix Y ∈ R

n×n with y = vec(Y ),
and recalling thatW× =Φ(X)⊗Φ(X ′), by Lemma 12 we can write

W×y= (Φ(X)⊗Φ(X ′))vec(Y ) = vec(Φ(X ′)Y Φ(X)(). (28)

If φ(·) ∈ R
d then the above matrix-vector product can be computed in O(dn3) time. If Φ(X) and

Φ(X ′) are sparse, thenΦ(X ′)Y Φ(X)( can be computed yet more efficiently: If there areO(n) non-ζ
entries in Φ(X) and Φ(X ′), then computing (28) takes only O(n2) time.
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4.3 Fixed-Point Iterations

Fixed-point methods begin by rewriting (27) as

x= p× +λW×x. (29)

Now, solving for x is equivalent to finding a fixed point of (29) taken as an iteration
(Nocedal and Wright, 1999). Letting xt denote the value of x at iteration t, we set x0 := p×, then
compute

xt+1 = p× +λW×xt (30)

repeatedly until ‖xt+1− xt‖ < ε, where ‖ · ‖ denotes the Euclidean norm and ε some pre-defined
tolerance. This is guaranteed to converge if all eigenvalues of λW× lie inside the unit disk; this can
be ensured by setting λ < |ξ1|−1, where ξ1 is the largest-magnitude eigenvalue of W×. Assuming
that each iteration of (30) contracts x to the fixpoint by a factor of λξ1, we converge to within ε of
the fixpoint in k iterations, where

k = O
(

lnε
lnλ+ ln |ξ1|

)
. (31)

The above is closely related to the power method used to compute the largest eigenvalue of
a matrix (Golub and Van Loan, 1996); efficient preconditioners can also be used to speed up con-
vergence (Golub and Van Loan, 1996). Since each iteration of (30) involves computation of the
matrix-vector product W×xt , all speed-ups for computing the matrix-vector product discussed in
Section 4.2 are applicable here. In particular, we exploit the fact that W× is a sum of Kronecker
products to reduce the worst-case time complexity to O(dn3) per iteration in our experiments, in
contrast to Kashima et al. (2004) who computed the matrix-vector product explicitly.

4.4 Spectral Decomposition Method

In the previous two sections we have introduced methods that are efficient for both unlabeled and
labeled graphs, but specifically computed the geometric kernel (16), that is, assumed that µ(k) = λk.
We now turn to a method based on spectral decompositions that can compute the general random
walk kernel (8) for any convergent choice of µ(k), but is only efficient for unlabeled graphs. (In
fact, it will turn out to be our most efficient method for computing an entire kernel matrix between
unlabeled graphs.)

LetW× = P×D×P−1
× denote the spectral decomposition ofW×, that is, the columns of P× are its

eigenvectors, and D× is a diagonal matrix of corresponding eigenvalues. The random walk graph
kernel (8) can then be written as

k(G,G′) :=
∞

∑
k=0

µ(k)q(×(P×D×P−1
× )k p× = q(×P×

(
∞

∑
k=0

µ(k)Dk
×

)

P−1
× p×. (32)

This simplifies matters in that (32) only takes weighted powers of a diagonal matrix, which decouple
into scalar powers of its entries. An implementable graph kernel can then be obtained by employing
a power series that is known to converge to a given nonlinear function. The geometric kernel (16),
for instance, uses the fact that ∑∞

k=0 xk = 1
1−x ; setting µ(k) := λk in (32) we thus obtain

k(G,G′) := q(×P×(I−λD×)−1P−1
× p×. (33)
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The crucial difference to (16) is that the inverse in (33) is of a diagonal matrix, hence trivial to
compute: just take the reciprocal of each entry. To give another example, setting µ(k) := λk/k! in
(32) yields the exponential kernel (19) by way of spectral decomposition:

k(G,G′) := q(×P× eλD×P−1
× p×, (34)

because ex = ∑∞
k=0 xk/k!. Again, unlike in (19) the matrix exponential here is trivial to compute

because λD× is diagonal: simply exponentiate each entry.
Thus by diagonalizing the nonlinearity central to a random walk graph kernel, spectral decom-

position can greatly expedite its computation. As described above, however, it is computationally
unattractive: Computing the spectral decomposition of a dense matrix takes time cubic in its size
(Golub and Van Loan, 1996); since W× is an n2× n2 matrix this would result in O(n6) time com-
plexity per kernel computation.2 By leveraging the properties of the Kronecker product, however,
we can obtain a far better result for unlabeled (though possibly edge-weighted) graphs:

Theorem 4 The kernel matrix for any random walk kernel (8) between m unlabeled, possibly edge-
weighted graphs with n nodes can be computed in O((mp+n)mn2) time via spectral decompositions,
where computing the corresponding scalar power series takes O(p) time.

Proof Because the graphs are unlabeled, we have W× := A× = Ai⊗Aj, where Ai and Aj (i, j ∈
{1,2, . . . ,m}) are the adjacency matrices (normalized or not) of individual graphs. Begin by pre-
computing the spectral decomposition of each graph: (∀i)Ai = PiDiP−1

i . Using Propositions 7.1.6,
7.1.7 of Bernstein (2005) we have

Ai⊗Aj = (PiDiP−1
i )⊗ (PjDjP−1

j ) = (Pi⊗Pj)(Di⊗Dj)(Pi⊗Pj)−1. (35)

Proposition 7.1.10 of Bernstein (2005) tells us that in fact Di⊗Dj = D×, which implies that also
Pi⊗Pj = P× and that indeed the spectral decomposition of a Kronecker product decomposes into
those of its constituents, as seen in (35). We can therefore use Propositions 7.1.6, 7.1.7 of Bernstein
(2005) again to rewrite (32) as

k(Gi,Gj) = (q(i Pi⊗q(j Pj)

(
∞

∑
k=0

µ(k)(Di⊗Dj)
k

)

(P−1
i pi⊗P−1

j p j). (36)

Computing the central power series here takesO(n2p) time just as in (32), but the cost of calculating
the two flanking factors has been reduced from O(n4) to O(n2) in (36). The entire m×m kernel
matrix can thus be obtained in O(m2n2p) time, plus the O(mn3) time it takes to precompute spectral
decompositions of the m individual adjacency matrices.

Note that in practice we will always pick a power series with known limit that is trivial to evaluate
(i.e., p = 1), as exemplified by the geometric (33) and exponential (34) kernels. Theorem 4 then
gives us a very efficient method to compute entire kernel matrices, albeit only between unlabeled
graphs. (It is tempting to try to extend the spectral approach for the exponential kernel to labeled
graphs, but this runs into a key technical difficulty: a sum of (label-filtered adjacency) matrices in
the exponent cannot be separated unless those matrices commute, that is, generally eA+B 3= eAeB
unless AB= BA.)

2. Thus Gärtner et al. (2003) give a time complexity cubic in the O(n2) size of the product graph.
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4.5 Nearest Kronecker Product Approximation

As we have seen above, some of our fast methods for computing random walk graph kernels may
become computationally expensive, or not even be available, for labeled graphs, in particular when
the number d of distinct labels is large or a general edge kernel is employed. In such cases we can
find the nearest Kronecker product toW×, that is, compute matrices S and T such thatW× ≈ S⊗T ,
then use any of our methods on S⊗ T as if it were the adjacency matrix of a direct product of
unlabeled graphs.

Finding the nearest Kronecker product approximating a matrix such as W× is a well-studied
problem in numerical linear algebra, and efficient algorithms which can exploit the sparsity ofW×

are available (Pitsianis, 1992; Van Loan, 2000). Formally, these methods minimize the Frobenius
norm ‖W×−S⊗T‖F by computing the largest singular value of Ŵ×, a permuted version ofW×. We
employ the power method3 for this purpose, each iteration of which entails computing the matrix-
vector product Ŵ×vec(T ′), where T ′ ∈ R

n×n is the current approximation of T . The result of the
matrix-vector product is then reshaped into an n×nmatrix to form T ′ for the next iteration (Pitsianis,
1992). It is easy to see that computing Ŵ× vec(T ′) requires O(n4) time.

If W× can be written as a sum of d Kronecker products (7), then so can Ŵ× (Pitsianis, 1992;
Van Loan, 2000), and the cost per iteration hence drops to O(dn2). Furthermore, if the two graphs
are sparse with O(n) edges each, thenW× will have O(n2) non-zero entries, and each iteration only
takes O(n2) time. The number k′ of iterations required is

k′ = O
(

lnn
ln |ξ1|− ln |ξ2|

)
, (37)

where ξ1 and ξ2 are the eigenvalues ofW× with largest resp. second-largest magnitude.
As described above, the nearest Kronecker product approximation is calculated separately for

each entry of an m×m kernel matrix. This causes two problems: First, the spectral decomposition
method will now take O(m2n3) time, as it is no longer possible to precompute the m graph spec-
tra. Second, like the optimal assignment kernel (Section 7.2) the resulting kernel matrix may have
negative eigenvalues, and hence fail to be p.s.d. In future work, it may be possible to address these
shortcomings by computing a simultaneous nearest Kronecker product approximation for the entire
kernel matrix. For now, we verified empirically on the MUTAG and PTC data sets (cf. Section 5.2)
that the most negative eigenvalue is relatively small: its magnitude was 4.4% resp. 0.1% of ξ2. We
also found the nearest Kronecker product to provide a better approximation than simply ignoring the
graph labels: the angle between vec(W×) and its unlabeled variant was 2.2 resp. 4.7 times greater
than that between vec(W×) and vec(S⊗T ).

5. Experiments

Numerous studies have applied random walk graph kernels to problems such as protein function
prediction (Borgwardt et al., 2005) and chemoinformatics (Kashima et al., 2004). In our experi-
ments we therefore focus on the runtime of computing the kernels, rather than their utility in any
given application. We present three sets of experiments: First, we study the scaling behaviour of our
algorithms on unlabeled random graphs. Second, we assess the practical impact of our algorithmic
improvement on four real-world data sets whose size mandates fast kernel computation. Third, we

3. Lanczos iterations are typically faster but more difficult to handle numerically.
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Figure 3: Time to compute a 10×10 kernel matrix on random graphs with n nodes and 3n edges as
a function of the graph size n. Left: The Sylvester equation (Sylv.), conjugate gradient
(CG), fixed-point iteration (FP), and spectral decomposition (spec.) approaches, com-
pared to the dense and sparse direct method. Thin straight lines indicate O(n6) (black
dots) resp. O(n3) (red dashes) scaling. Right: Kashima et al.’s (2004) fixed-point itera-
tion (original) compared to our version, which exploits Lemma 12 (vec-trick).

devise novel methods for protein-protein interaction (PPI) network comparison using graph kernels.
The algorithmic challenge here is to efficiently compute kernels on large sparse graphs.

The baseline for comparison in all our experiments is the direct approach of Gärtner et al.
(2003), implemented via a sparse LU factorization; this already runs orders of magnitude faster
on our data sets than a dense (i.e., non-sparse) implementation. Our code was written in Matlab
Release 2008a, and all experiments were run under Mac OS X 10.5.5 on an Apple Mac Pro with a
3.0GHz Intel 8-Core processor and 16GB of main memory. We employed Lemma 12 to speed up
matrix-vector multiplication for both CG and fixed-point methods (cf. Section 4.2), and used the
function dlyap fromMatlab’s control toolbox to solve the Sylvester equation. By default, we used a
value of λ= 10−4, and set the convergence tolerance for both CG solver and fixed-point iteration to
10−6. For the real-world data sets, the value of λ was chosen to ensure that the random walk graph
kernel converges. Since our methods are exact and produce the same kernel values (to numerical
precision), we only report the CPU time of each algorithm.

5.1 Unlabeled Random Graphs

The aim here is to study the scaling behaviour of our algorithms as a function of graph size and
sparsity. We generated several sets of unlabeled random graphs. For the first set we began with
an empty graph of n = 2k nodes, where k = 2,3, . . . ,10, randomly added 3n edges, then checked
the graph’s connectivity. For each k we repeated this process until we had collected 10 strongly
connected random graphs.

The time required to compute the 10×10 kernel matrix between these graphs for each value of
n is shown in Figure 3 (left). We see that the direct approach scales asymptotically as O(n6) in
both the dense and the sparse implementation. For a graph of 64 nodes the direct approach already
takes over half an hour (sparse) resp. 3 hours (dense) of CPU time. Our Sylvester equation (Sylv.),
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Figure 4: Time to compute a 10×10 kernel matrix on random graphs as a function of their fill factor.
Left: The dense and sparse direct method on 32-node graphs, compared to our Sylvester
equation (Sylv.), conjugate gradient (CG), fixed point iteration (FP), and spectral decom-
position (spec.) approaches. Right: Our approaches on larger graphs with 256 nodes,
where the direct method is infeasible.

conjugate gradient (CG) and fixed-point iteration (FP) methods, by contrast, all scale as O(n3), and
can thus be applied to far larger graphs. Our spectral decomposition approach (spec.) is the fastest
method here; it too scales as O(n3) as n asymptotically dominates over the fixed kernel matrix size
m= 10.

We also examined the impact of Lemma 12 on enhancing the runtime performance of the fixed-
point iteration approach as originally proposed by Kashima et al. (2004). For this experiment, we
again computed the 10×10 kernel matrix on the above random graphs, once using the original
fixed-point iteration, and once using fixed-point iteration enhanced by Lemma 12. As Figure 3
(right) shows, our approach consistently outperforms the original version, sometimes by over an
order of magnitude.

For the next set of experiments we fixed the graph size at 32 nodes (the largest size that the
direct method could handle comfortably), and randomly added edges until the fill factor (i.e., the
number of non-zero entries in the adjacency matrix) reached x%, where x = 5,10,20,30, . . . ,100.
For each x, we generated 10 such graphs and computed the 10×10 kernel matrix between them.
Figure 4 (left) shows that as expected, the sparse direct method is faster than its dense counterpart
for small fill factors but slower for larger ones. Both however are consistently outperformed by our
four methods, which are up to three orders of magnitude faster, with fixed-point iterations (FP) and
spectral decompositions (spec.) the most efficient.

To better understand how our algorithms take advantage of sparsity, we generated a set of larger
random graphs (with 256 nodes) by the same procedure as before, but with a geometric progression
of fill factors: x = 0.1,0.2,0.5,1,2,5,10,20,50,100. The direct methods are infeasible here. The
CPU times taken by our algorithms to compute a 10×10 kernel matrix is shown in Figure 4 (right).
Both conjugate gradient and fixed point iteration methods have runtimes roughly proportional to
the fill factor. The runtime of the Sylvester equation solver, by contrast, is largely independent of
the fill factor because our black-box dlyap solver does not aggressively exploit sparsity in the adja-
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cency matrices. The same holds for our spectral decomposition approach, which however exhibits
impressive performance here: although it does not exploit sparsity at all, it is the fastest method
by far on all but the sparsest (≤ 2% filled) graphs. Clearly, well-designed sparse implementations
of Sylvester equation solvers, and in particular spectral decomposition, could facilitate substantial
further gains in efficiency here.

5.2 Real-World Data Sets

Our next set of experiments used four real-world data sets: Two sets of molecular compounds
(MUTAG and PTC), and two data sets describing protein tertiary structure (Protein and Enzyme).
Graph kernels provide useful measures of similarity for all of these.

5.2.1 THE DATA SETS

We now briefly describe each data set, and discuss how graph kernels are applicable.

Chemical Molecules. Toxicity of chemical molecules can be predicted to some degree by compar-
ing their three-dimensional structure. We employed graph kernels to measure similarity between
molecules from the MUTAG and PTC data sets (Toivonen et al., 2003). The average number of
nodes per graph in these data sets is 17.72 resp. 26.70; the average number of edges is 38.76 resp.
52.06.

Protein Graphs. A standard approach to protein function prediction involves classifying proteins
into enzymes and non-enzymes, then further assigning enzymes to one of the six top-level classes
of the Enzyme Commission (EC) hierarchy. Towards this end, Borgwardt et al. (2005) modeled a
data set of 1128 proteins as graphs in which vertices represent secondary structure elements, and
edges represent neighborhood within the 3-D structure or along the amino acid chain, as illustrated
in Figure 1.

Comparing these graphs via a modified random walk graph kernel and classifying them with a
Support Vector Machine (SVM) led to function prediction accuracies competitive with state-of-the-
art approaches (Borgwardt et al., 2005). We used Borgwardt et al.’s (2005) data to test the efficacy
of our methods on a large data set. The average number of nodes and edges per graph in this data
is 38.57 resp. 143.75. We used a single label on the edges, and the delta kernel to define similarity
between edges.

Enzyme Graphs. We repeated the above experiment on an enzyme graph data set, also due to
Borgwardt et al. (2005). This data set contains 600 graphs, with 32.63 nodes and 124.27 edges on
average. Graphs in this data set represent enzymes from the BRENDA enzyme database
(Schomburg et al., 2004). The biological challenge on this data is to correctly assign the enzymes
to one of the EC top-level classes.

5.2.2 UNLABELED GRAPHS

For this experiment, we computed kernels taking into account only the topology of the graph, that
is, we did not consider node or edge labels. Table 2 lists the CPU time required to compute the full
kernel matrix for each data set, as well as—for comparison purposes—a 100×100 submatrix. The
latter is also shown graphically in Figure 5 (left).
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data set MUTAG PTC Enzyme Protein
nodes/graph 17.7 26.7 32.6 38.6
edges/node 2.2 1.9 3.8 3.7
#graphs 100 230 100 417 100 600 100 1128
Sparse 31” 1’45” 45” 7’23” 1’52” 1h21’ 23’23” 2.1d*

Sylvester 10” 54” 28” 7’33” 31” 23’28” 5’25” 11h29’
Conj. Grad. 23” 1’29” 26” 4’29” 14” 10’00” 45” 39’39”
Fixed-Point 8” 43” 15” 2’38” 5” 5’44” 43” 22’09”
Spectral 5” 27” 7” 1’54” 7” 4’32” 27” 23’52”

∗extrapolated number of days; run did not finish in time available.

Table 2: Time to compute kernel matrix for unlabeled graphs from various data sets.

On these unlabeled graphs, conjugate gradient, fixed-point iterations, and spectral
decompositions—sped up via Lemma 12—are consistently faster than the sparse direct method.
The Sylvester equation approach is very competitive on smaller graphs (outperforming CG on MU-
TAG) but slows down with increasing number of nodes per graph. Even so, it still outperforms the
sparse direct method. Overall, spectral decomposition is the most efficient approach, followed by
fixed-point iterations.

5.2.3 LABELED GRAPHS

For this experiment, we compared graphs with edge labels. Note that node labels can be dealt
with by concatenating them to the edge labels of adjacent edges. On the two protein data sets we
employed a linear kernel to measure similarity between edge weights representing distances (in
Ångströms) between secondary structure elements; since d = 1 we can use all our methods for
unlabeled graphs here. On the two chemical data sets we used a delta kernel to compare edge
labels reflecting types of bonds in molecules; for the Sylvester equation and spectral decomposition
approaches we then employed the nearest Kronecker product approximation. We report CPU times
for the full kernel matrix as well as a 100×100 submatrix in Table 3; the latter is also shown
graphically in Figure 5 (right).

On labeled graphs, the conjugate gradient and the fixed-point iteration always outperform the
sparse direct approach, more so on the larger graphs and with the linear kernel. As expected, spectral
decompositions are inefficient in combination with the nearest Kronecker product approximation,

kernel delta, d=7 delta, d=22 linear, d=1
data set MUTAG PTC Enzyme Protein
#graphs 100 230 100 417 100 600 100 1128
Sparse 42” 2’44” 1’07” 14’22” 1’25” 57’43” 12’38” 1.1d*

Sylvester 1’08” 6’05” 1’06” 18’20” 2’13” 76’43” 19’20” 11h19’
Conj. Grad. 39” 3’16” 53” 14’19” 20” 13’20” 41” 57’35”
Fixed-Point 25” 2’17” 37” 7’55” 10” 6’46” 25” 31’09”
Spectral 1’20” 7’08” 1’40” 26’54” 8” 4’22” 26” 21’23”

∗extrapolated number of days; run did not finish in time available.

Table 3: Time to compute kernel matrix for labeled graphs from various data sets.
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Figure 5: Time (in seconds on a log-scale) to compute 100×100 kernel matrix for unlabeled (left)
resp. labeled (right) graphs from several data sets, comparing the conventional sparse
method to our fast Sylvester equation, conjugate gradient (CG), fixed-point iteration (FP),
and spectral approaches.

but with the linear kernel they perform as well as fixed-point iterations for m = 100, and better yet
on the large kernel matrices. The Sylvester equation approach (at least with the Sylvester solver we
used) cannot take advantage of sparsity, but still manages to perform almost as well as the sparse
direct method.

5.3 Protein-Protein Interaction Networks

In our third experiment, we used random walk graph kernels to tackle a large-scale problem in
bioinformatics involving the comparison of fairly large protein-protein interaction (PPI) networks.
Using a combination of human PPI and clinical microarray gene expression data, the task is to
predict the disease outcome (dead or alive, relapse or no relapse) of cancer patients. As before, we
set λ= 0.001 and the convergence tolerance to 10−6 for all our experiments reported below.

5.3.1 CO-INTEGRATION OF GENE EXPRESSION AND PPI DATA

We co-integrated clinical microarray gene expression data for cancer patients with known human
PPI from Rual et al. (2005). Specifically, a patient’s gene expression profile was transformed into a
graph as follows: A node was created for every protein which—according to Rual et al. (2005)—
participates in an interaction, and whose corresponding gene expression level was measured on this
patient’s microarray. We connect two proteins in this graph by an edge if Rual et al. (2005) list
these proteins as interacting, and both genes are up- resp. downregulated with respect to a reference
measurement. Each node bears the name of the corresponding protein as its label.

This approach of co-integrating PPI and gene expression data is built on the assumption that
genes with similar gene expression levels are translated into proteins that are more likely to interact.
Recent studies confirm that this assumption holds significantly more often for co-expressed than
for random pairs of proteins (Fraser et al., 2004; Bhardwaj and Lu, 2005). To measure similarity
between these networks in a biologically meaningful manner, we compare which groups of proteins
interact and are co-regulated in each patient. For this purpose, a random walk graph kernel is the
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data set Leukemia Breast Cancer
kernel vanilla composite vanilla composite
Sparse 24” 52” 39” 1’19”

Conj. Grad. 6” 13” 12” 26”
Fixed-Point 4” 7” 7” 13”

Table 4: Average time to compute kernel matrix on protein-protein interaction networks.

natural choice, as a random walk in this graph represents a group of proteins in which consecutive
proteins along the walk are co-expressed and interact. As each node bears the name of its corre-
sponding protein as its node label, the size of the product graph is at most that of the smaller of the
two input graphs.

5.3.2 COMPOSITE GRAPH KERNEL

The presence of an edge in a graph signifies an interaction between the corresponding nodes. In
chemoinformatics, for instance, edges indicate chemical bonds between two atoms; in PPI net-
works, edges indicate interactions between proteins. When studying protein interactions in disease,
however, the absence of a given interaction can be as significant as its presence. Since existing
graph kernels cannot take this into account, we propose to modify them appropriately. Key to our
approach is the notion of a complement graph:

Definition 5 Let G= (V,E) be a graph with vertex set V and edge set E. Its complement Ḡ= (V, Ē)
is a graph over the same vertices but with complementary edges Ē := (V ×V )\E.

In other words, the complement graph consists of exactly those edges not present in the original
graph. Using this notion we define the composite graph kernel

kcomp(G,G′) := k(G,G′)+ k(Ḡ, Ḡ′). (38)

This deceptively simple kernel leads to substantial gains in performance in our experiments com-
paring co-integrated gene expression/protein-protein interaction networks.

5.3.3 DATA SETS

Leukemia. Bullinger et al. (2004) provide a data set of microarrays of 119 leukemia patients. Since
50 patients survived after a median follow-up time of 334 days, always predicting a lethal outcome
here would result in a baseline prediction accuracy of 1 - 50/119 = 58.0%. Co-integrating this data
with human PPI, we found 2,167 proteins from Rual et al. (2005) for which Bullinger et al. (2004)
report expression levels among the 26,260 genes they examined.
Breast Cancer. This data set consists of microarrays of 78 breast cancer patients, of which 44
had shown no relapse of metastases within 5 years after initial treatment (van’t Veer et al., 2002).
Always predicting survival thus gives a baseline prediction accuracy of 44/78 = 56.4% on this data.
When generating co-integrated graphs, we found 2,429 proteins from Rual et al. (2005) for which
van’t Veer et al. (2002) measure gene expression out of the 24,479 genes they studied.

5.3.4 RESULTS

In Table 4 we contrast the CPU runtimes of our conjugate gradient and fixed-point approaches to
graph kernel computation on the cancer patients modeled as labeled graphs with that of the direct
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sparse method. On both data sets, our fast graph kernel computation methods yield an impressive
gain in speed.

Using either the “vanilla” graph kernel (16) or our composite graph kernel (38), we predict the
survivors by means of a support vector machine (SVM) in 10-fold cross-validation. The vanilla
random walk graph kernel offers slightly higher prediction accuracy than the baseline classifier on
one task (Leukemia: 59.2% vs 58.0%), and gives identical results on the other (Breast Cancer: both
56.4%). Our composite graph kernel attains 5 percentage points above baseline in both experiments
(Leukemia: 63.3%; Breast cancer: 61.5%).

The vanilla kernel suffers from its inability to measure network discrepancies, the paucity of the
graph model employed, and the fact that only a small minority of genes could be mapped to inter-
acting proteins; due to these problems, its accuracy remains close to the baseline. The composite
kernel, by contrast, also models missing interactions. With it, even our simple graph model, which
only considers 10% of the genes examined in both studies, is able to capture some relevant biolog-
ical information, which in turn leads to better classification accuracy on these challenging data sets
(Warnat et al., 2005).

6. Rational Kernels

Rational kernels (Cortes et al., 2004) were conceived to compute similarity between variable-length
sequences and, more generally, weighted automata. For instance, the output of a large-vocabulary
speech recognizer for a particular input speech utterance is typically a weighted automaton com-
pactly representing a large set of alternative sequences. The weights assigned by the system to each
sequence are used to rank different alternatives according to the models the system is based on. It
is therefore natural to compare two weighted automata by defining a kernel.

As discussed in Section 3, random walk graph kernels have a very different basis: They compute
the similarity between two random graphs by matching random walks. Here the graph itself is the
object to be compared, and we want to find a semantically meaningful kernel. Contrast this with a
weighted automaton, whose graph is merely a compact representation of the set of variable-length
sequences which we wish to compare. Despite these differences we find rational kernels and random
walk graph kernels to be closely related.

To understand the connection recall that every random walk on a labeled graph produces a se-
quence of edge labels encountered during the walk. Viewing the set of all label sequences generated
by random walks on a graph as a language, one can design a weighted transducer which accepts this
language, with the weight assigned to each label sequence being the probability of a random walk
generating this sequence. (This transducer can be represented by a graph whose adjacency matrix
is the normalized weight matrix of the original graph.)

In this section we formalize this observation and thus establish connections between rational
kernels on transducers (Cortes et al., 2004) and random walk graph kernels. In particular, we show
that composition of transducers is analogous to computing product graphs, and that rational ker-
nels on weighted transducers may be viewed as generalizations of random walk graph kernels to
weighted automata. In order to make these connections explicit we adopt notation commonly used
for describing algebraic path problems, wherein disparate problems related to graphs, automata,
and transducers are described in a common framework using matrices and tensors (Eilenberg, 1974;
Lehmann, 1977; Berstel, 1979; Kuich and Salomaa, 1986).
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6.1 Semirings

At the most general level, weighted transducers are defined over semirings. In a semiring addi-
tion and multiplication are generalized to abstract operations ⊕̄ and )̄ with the same distributive
properties:

Definition 6 (Mohri, 2002) A semiring is a system (K,⊕̄,)̄, 0̄, 1̄) such that

1. (K,⊕̄, 0̄) is a commutative monoid in which 0̄ ∈ K is the identity element for ⊕̄ (i.e., for any
x,y,z ∈ K, we have x⊕̄y ∈ K, (x⊕̄y)⊕̄z= x⊕̄(y⊕̄z), x⊕̄ 0̄= 0̄⊕̄x= x and x⊕̄y= y⊕̄x);

2. (K,)̄, 1̄) is a monoid in which 1̄ is the identity operator for )̄ (i.e., for any x,y,z ∈ K, we
have x)̄y ∈ K, (x)̄y))̄z= x)̄(y)̄z), and x)̄ 1̄= 1̄)̄x= x);

3. )̄ distributes over ⊕̄, that is, for any x,y,z ∈ K,

(x⊕̄y))̄z= (x)̄z)⊕̄(y)̄z)
and z)̄(x⊕̄y) = (z)̄x)⊕̄(z)̄y);

4. 0̄ is an annihilator for )̄: ∀x ∈ K, x)̄ 0̄= 0̄)̄x= 0̄.

Thus, a semiring is a ring that may lack negation. (R,+, ·,0,1) is the familiar semiring of real
numbers. Other examples include

Boolean: ({FALSE,TRUE},∨,∧,FALSE,TRUE);

Logarithmic: (R∪{−∞},⊕̄ln,+,−∞,0), where ∀x,y ∈ K : x⊕̄ln y := ln(ex+ ey);

Tropical: (R∪{−∞},max,+,−∞,0).

Linear algebra operations such as matrix addition and multiplication as well as Kronecker products
can be carried over to a semiring in a straightforward manner. For instance, for M,M′ ∈ K

n×n we
have

[M )̄M′]i, j =

n
M

k=1
Mik )̄M′

k j. (39)

The (⊕̄,)̄) operations in some semirings can be mapped into ordinary (+, ·) operations by
applying an appropriate morphism:

Definition 7 Let (K,⊕̄,)̄, 0̄, 1̄) be a semiring. A function ψ :K → R is a morphism if

ψ(x⊕̄y) = ψ(x)+ψ(y);
ψ(x)̄y) = ψ(x) ·ψ(y);
ψ(0̄) = 0 and ψ(1̄) = 1.
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In the following, by ’morphism’ we will always mean a morphism from a semiring to the real
numbers. Not all semirings have such morphisms: For instance, the logarithmic semiring has a
morphism—namely, the exponential function—but the tropical semiring does not have one. If the
semiring has a morphism ψ, applying it to the matrix product (39), for instance, yields

ψ([M )̄M′]i, j) = ψ

( n
M

k=1
Mik )̄M′

k j

)

=
n

∑
k=1

ψ(Mik )̄M′
k j) =

n

∑
k=1

ψ(Mik) ·ψ(M′
k j). (40)

As in Appendix A, we can extend the morphism ψ to matrices (and analogously to vectors) by
defining [Ψ(M)]i j := ψ(Mi j). We can then write (40) concisely as

Ψ(M )̄M′) = Ψ(M)Ψ(M′). (41)

6.2 Weighted Transducers

Loosely speaking, a transducer is a weighted automaton with an input and an output alphabet. We
will work with the following slightly specialized definition:4

Definition 8 A weighted finite-state transducer T over a semiring (K,⊕̄,)̄, 0̄, 1̄) is a 5-tuple T =
(Σ,Q,H, p,q), where Σ is a finite input-output alphabet, Q is a finite set of n states, p ∈ K

n is a
vector of initial weights, q ∈ K

n is a vector of final weights, and H is a four-dimensional tensor in
K
n×|Σ|×|Σ|×n which encodes transitions and their corresponding weights.

For a,b∈ Σ we will use the shorthand Hab to denote the n×n slice H∗ab∗ of the transition tensor,
which represents all valid transitions on input symbol a emitting the output symbol b. The output
weight assigned by T to a pair of strings α= a1a2 . . .al and β= b1b2 . . .bl is

[[T ]](α,β) = q( )̄Ha1b1 )̄Ha2b2 )̄ . . .)̄Halbl )̄ p. (42)

A transducer is said to accept a pair of strings (α,β) if it assigns non-zero output weight to them,
that is, [[T ]](α,β) 3= 0̄. A transducer is said to be regulated if the output weight it assigns to any pair
of strings is well-defined inK. Since we disallow ε transitions, our transducers are always regulated.

The inverse of T = (Σ,Q,H, p,q), denoted by T−1, is obtained by transposing the input and
output labels of each transition. Formally, T−1 = (Σ,Q,H(, p,q) where H(

ab := Hba. The composi-
tion of two transducers T = (Σ,Q,H, p,q) and T ′ = (Σ,Q′,H ′, p′,q′) is a transducer T× = T ◦T ′ =
(Σ,Q×,H×, p×,q×), whereQ× =Q×Q′, p× = p⊗̄ p′,5 q× := q⊗̄q′, and (H×)ab = ¯Lc∈ΣHac ⊗̄H ′

cb.
It can be shown that

[[T×]](α,β) = [[T ◦T ′]](α,β) =
M

γ

[[T ]](α,γ))̄[[T ′]](γ,β). (43)

4. We disallow ε transitions, and use the same alphabet for both input and output. Furthermore, in a departure from
tradition, we represent the transition function as a four-dimensional tensor.

5. We use ⊗̄ to denote the Kronecker product using the semiring operation )̄, in order to distinguish it from the regular
Kronecker product ⊗.
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Composing T with its inverse yields T ◦ T−1 = (Σ,Q × Q,H∗, p⊗̄ p,q⊗̄q), where
H∗
ab = ¯Lc∈ΣHac ⊗̄Hbc. There exists a general and efficient algorithm for composing transducers
as in (43) which takes advantage of the sparseness of the input transducers (Mohri et al., 1996;
Pereira and Riley, 1997).

6.3 Weighted Automata

Aweighted automaton is a transducer with identical input and output symbols. The transition matrix
of a weighted automaton is therefore a three-dimensional tensor inK

n×|Σ|×n. As before, we will use
the shorthand Ha to denote the n×n slice H∗a∗ of the transition tensor, which represents all valid
transitions on the input symbol a emitting output symbolx a. If Σ contains d symbols, then by
specializing (42) it is easy to see that a weighted automaton accepts a string α = a1a2 . . .al with
weight

[[T ]](α) = q( )̄Ha1 )̄Ha2 )̄ . . .)̄Hal )̄ p. (44)

The composition of two weighted automata T = (Σ,Q,H, p,q) and T ′ = (Σ,Q′,H ′, p′,q′) is an
automaton T× = T ◦T ′ = (Σ,Q×,H×, p×,q×), where Q× = Q×Q′, p× = p⊗̄ p′, q× := q⊗̄q′, and
(H×)a = Ha ⊗̄H ′

a. The composition operation is also defined for a weighted automaton W and a
transducer T :

[[W ◦T ]](α,β) = [[W ]](α))̄[[T ]](α,β). (45)

Every random walk on a labeled graph results in a sequence of edge labels encountered during
the walk. The set of all label sequences generated by random walks on a given graph is a language.
One can construct a weighted automaton which accepts this language as follows: Use the standard
semiring (R,+, ·,0,1), let the alphabet Σ consist of the labels {1, . . . ,d} of the graph, and identify
the nodes of the graph with the states of the weighted automaton. Let the starting and stopping
probabilities p and q on the graph equal those of the weighted automaton, and complete the con-
struction by identifying for each l ∈ Σ the label-filtered adjacency matrix lA of the graph with Hl ,
the transition tensor of the weighted automaton for that symbol.

Under the above mapping (44) has a natural interpretation: The weight assigned by the au-
tomaton to a string of symbols is the probability of encountering the corresponding labels while
performing a random walk on the corresponding labeled graph. The composition of weighted au-
tomata, when specialized to labeled graphs, is equivalent to computing a direct product graph.

An unlabeled graph corresponds to a weighted automaton whose input-output alphabet contains
exactly one symbol, and which therefore only accepts strings of the form ak = aa . . .a. The transition
matrix of such a graph (equivalently, its adjacency matrix) is a 2-dimensional tensor in K

n×n. If A
denotes the adjacency matrix of a graph G, then the output weight assigned by G to ak is [[G]](ak) =
q(AA . . .Ap= q(Akp.

6.4 The Rational Kernel for Strings

Given a weighted transducer T and a function ψ : K → R, the rational kernel between two strings
α= a1a2 . . .al and β= b1b2 . . .bl is defined as (Cortes et al., 2004):

k(α,β) := ψ([[T ]](α,β)) . (46)
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Cortes et al. (2004) show that a generic way to obtain p.s.d. rational kernels is to replace T in (46) by
T ◦T−1, and letψ be a semiring morphism. We now present an alternate proof which uses properties
of the Kronecker product. Since ψ is a semiring morphism, by specializing (42) to T ◦T−1, we can
write k(α,β) = ψ

(
[[T ◦T−1]](α,β)

)
as

Ψ(q⊗̄q)(Ψ

(
M

c1
Ha1c1 ⊗̄Hb1c1

)

. . .Ψ

(
M

cl
Halcl ⊗̄Hblcl

)

Ψ(p⊗̄ p). (47)

Rules analogous to (41) give us

Ψ

(
M

c∈Σ
Hac ⊗̄Hbc

)

= ∑
c∈Σ

Ψ(Hac)⊗Ψ(Hbc). (48)

Using (48) we can rewrite (47) as

∑
c1c2...cl

Ψ(q)(⊗Ψ(q)( (Ψ(Ha1c1)⊗Ψ(Hb1c1)) . . .(Ψ(Halcl )⊗Ψ(Hblcl ))Ψ(p)⊗Ψ(p). (49)

Finally, successively applying (2) to (49) yields

k(α,β) = ∑
c1c2...cl

(
Ψ(q)(Ψ(Ha1c1) . . .Ψ(Halcl )Ψ(p)

)

︸ ︷︷ ︸
ρ(α)

(
Ψ(q)(Ψ(Hb1c1) . . .Ψ(Hblcl )Ψ(p)

)

︸ ︷︷ ︸
ρ(β)

, (50)

Each term of (50) equals ρ(α)ρ(β) for some scalar function ρ, and is therefore a valid p.s.d. kernel.
Since p.s.d. kernels are closed under addition and pointwise limits (Berg et al., 1984), k(α,β) is a
valid p.s.d. kernel.

6.5 The Rational Kernel for Weighted Automata

Rational kernels on strings can be naturally extended to weighted automata S andU via (Cortes et al.,
2004):

k(S,U) = ψ




M

α,β

[[S]](α))̄[[T ]](α,β))̄[[U ]](β)





= ψ




M

α,β

[[S◦T ◦U ]](α,β)



 , (51)

where we obtained (51) by using (45) twice. If ψ is a semiring morphism, then we can use Defini-
tion 7 to rewrite (51) as

k(S,U) =∑
α,β

ψ([[S◦T ◦U ]](α,β)) . (52)

Since p.s.d. kernels are closed under addition and pointwise limits, if ψ([[S◦T ◦U ]](α,β)) is a p.s.d.
kernel for any given α and β, then so is (52).
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6.6 Recovering RandomWalk Graph Kernels

In order to recover random walk graph kernels we use the standard (R,+, ·,0,1) ring as our semi-
ring, and hence set ψ to be the identity function. Next we set the transducer T to simply transform
any input string of length k into an identical output string with weight µ(k) ≥ 0. With these restric-
tions (52) can be written as

k(S,U) =∑
α
µ(|α|)[[S◦U ]](α), (53)

where |α| denotes the length of α. Let us rearrange (53) to

k(S,U) =∑
k
µ(k)

(

∑
a1,a2,...,ak

[[S◦U ]](a1,a2, . . . ,ak)

)

. (54)

Specializing the definition of ◦ to weighted automata, and letting Ha (resp. H ′
a) denote the transition

tensor of S (resp.U), we can rewrite (54) as

k(S,U) =∑
k
µ(k)

(

∑
a1,a2,...,ak∈Σk

(q⊗q′)((Ha1 ⊗H ′
a1) . . .(Hak ⊗H ′

ak)(p⊗ p′)

)

=∑
k
µ(k)(q⊗q′)(

(

∑
a1,a2,...,ak∈Σk

(Ha1 ⊗H ′
a1) . . .(Hak ⊗H ′

ak)

)

(p⊗ p′)

=∑
k
µ(k)(q⊗q′)(

(

∑
a∈Σ

Ha⊗H ′
a

)

. . .

(

∑
a∈Σ

Ha⊗H ′
a

)

(p⊗ p′)

=∑
k
µ(k)(q⊗q′)(

(

∑
a
Ha⊗H ′

a

)k
(p⊗ p′). (55)

Next, we identify Ha (resp. H ′
a) with the label-filtered adjacency matrix aA (resp. aA′) of a graph G

(resp. G′) with discrete edge labels. It easy to see that H× := ∑aHa⊗H ′
a is the weight matrix (7) of

the direct product of G and G′. Letting p× = p⊗ p′ and q× = q⊗q′, (55) reduces to

k(G,G′) =∑
k
µ(k)q(×Hk

× p×, (56)

which recovers the random walk graph kernel (8) withW× = H×.
The generality of the rational kernel comes at a computational cost: Even when restricted as in

(53), it requires the composition S◦U of two transducers, which takes up to O((|QS|+ |ES|)(|QU |+
|EU |)) time, where |Q| is the number of states and |E| the number of transitions (Cortes et al., 2004,
Section 4.1). In our setting |Q| = n, the number of nodes in the graph, and |E| is the number of
its edges, which can be of O(n2); the worst-case time complexity of the composition operation is
therefore O(n4). Cortes et al. (2004) showed that the sum in (53) can be computed via a single-
source shortest distance algorithm over a semiring. If S ◦U is acyclic, then this is linear in the
size of S ◦U , which in the worst case is O(n2). In general, however, an all-pairs shortest-distance
algorithm must be employed, such as the generalization of the Floyd-Warshall algorithm due to
Lehmann (1977). This algorithm is cubic in the size of S ◦U , thus leading to an O(n6) worst-
case time complexity. Since computing S ◦U is the same as computing W×, and the Lehmann
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(1977) algorithm is a way to compute (I−W×)−1 (the transitive closure ofW×), our linear algebra
techniques to speed up computation of random walk graph kernels can also be applied to rational
kernels.6 The key insight here is that we never explicitly construct the composition (i.e., direct
product graph) in order to compute the kernel.

For ease of exposition we derived (56) by setting T to be an identity transducer. Instead, one can
use a weighted transducer which allows for more flexible matching between strings in the alphabet.
Basically, the transducer now plays the role of the kernel function κ, and this in turn leads to a more
flexible similarity matrixW×.

There is one important difference between graph kernels and rational kernels. Graph kernels
can handle arbitrary edge kernels, including continuous edge labels via the weight matrix W×. In
contrast, rational kernels, which were designed to work with strings and automata, assume that the
alphabet (set of labels) is finite. As we saw above, they can incorporate flexible similarity matrices
W× in this setting, but cannot handle continuous edge labels. Furthermore, to date rational kernels
have not been extended to deal with labels mapped to an RKHS.

7. R-convolution Kernels

Haussler’s (1999) R-convolution kernels provide a generic way to construct kernels for discrete
compound objects. Let x ∈ X be such an object, and!x := (x1,x2, . . . ,xD) denote a decomposition of
x, with each xi ∈ X i. We can define a boolean predicate

R : X ×X → {TRUE,FALSE}, (57)

where X := X 1× . . .×XD and R(x,!x) is TRUE whenever !x is a valid decomposition of x. Now
consider the inverse of (57), the set of all valid decompositions of an object:

R−1(x) := {!x|R(x,!x) = TRUE}. (58)

Like Haussler (1999) we assume that (58) is countable. We define the R-convolution " of the kernels
κ1,κ2, . . . ,κD with κi : X i×X i → R to be

k(x,x′) = κ1 "κ2 " . . ."κD(x,x′) := ∑
!x∈R−1(x)
!x′∈R−1(x′)

µ(!x,!x′)
D

∏
i=1

κi(xi,x′i), (59)

where µdenotes a set of non-negative coefficients on X×X , which ensures that the sum in (59) con-
verges.7 Haussler (1999) showed that k(x,x′) is p.s.d. and hence admissible as a kernel
(Schölkopf and Smola, 2002), provided that all the individual κi are. The deliberate vagueness of
this setup in regard to the nature of the underlying decomposition leads to a rich framework: Many
different kernels can be obtained by simply changing the decomposition.

7.1 Graph Kernels as R-Convolutions

To apply R-convolution kernels to graphs, one decomposes the graph into smaller substructures,
and builds the kernel based on similarities between those components. Most graph kernels are—
knowingly or not—based on R-convolutions; they mainly differ in the way they decompose the
graph for comparison and the similarity measure they use to compare the components.
6. We thank an anonymous reviewer for pointing this out.
7. Haussler (1999) implicitly assumed this sum to be well-defined, hence did not use µ in his definition.
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Gärtner et al. (2003) observed that any graph kernel whose feature map is injective could be used
to determine whether two graphs G and G′ are isomorphic: Simply compute d(G,G′) := k(G,G)−
2k(G,G′)+k(G′,G′); since by definition any structural difference between the graphs would yield a
non-zero d(G,G′), they are isomorphic iff d(G,G′) = 0. The graph isomorphism problem, however,
is widely believed to be not solvable in polynomial time (Garey and Johnson, 1979). Gärtner et al.
(2003) also showed that computing inner products in a feature space constructed over all subgraphs
of a graph is NP-hard. One must therefore choose which substructures to distinguish in defining a
practical graph kernel, and this choice is generally motivated by runtime considerations.

Random walks provide a straightforward graph decomposition that—as we have seen in Sec-
tion 4—leads to kernels that can be computed efficiently. To see that our random walk graph kernel
(8) is indeed an R-convolution kernel, note that the definition of our weight matrix (6) and the RKHS
Kronecker product (Definition 11) imply

[W×](i−1)n′+r,( j−1)n′+s = [Φ(X)⊗Φ(X ′)](i−1)n′+r,( j−1)n′+s

=
〈
φ(vi,v j),φ(v′r,v′s)

〉
H

=: κ((vi,v j),(v′r,v′s)),

where κ is our edge kernel. We can thus expand (8) by explicitly taking all paths through the
repeated matrix products, giving

k(G,G′) :=
∞

∑
k=1

µ(k)q(×Wk
×p× =

∞

∑
k=1

µ(k)q(×
( k

∏
i=1
W×

)
p×

=
∞

∑
k=1

µ(k) ∑
v0,v1,...vk∈V
v′0,v′1,...v′k∈V ′

qvkq
′
v′k

( k

∏
i=1

κ((vi−1,vi),(v′i−1,v′i))
)
pv0 p

′
v′0

. (60)

This is easily identified as an instance of the R-convolution kernel (59), where the decomposition is
into all equal-length sequences!v,!v′ of nodes from V and V ′, respectively, and

µ(!v,!v′) := µ(|!v|)qv|!v|q
′
v′|!v|
pv0 p

′
v′0

, (61)

where | · | in (61) denotes the length of a sequence. Finally, note that by definition of our edge kernel
κ, only pairs of sequences that are both actual walks on their respective graphs will make a non-zero
contribution to (60).

Random walk graph kernels as proposed by Gärtner et al. (2003) likewise decompose a graph
into random walks, but then employ a delta kernel between nodes. Borgwardt et al. (2005), on
the other hand, use a kernel defined on both nodes and edges. The marginalized graph kernels
of Kashima et al. (2004) are closely related but subtly different in that they decompose the graph
into all possible label sequences generated by a walk. Mahé et al. (2004) extend this approach in
two ways: They enrich the labels via the so-called Morgan index, and modify the kernel definition
to prevent tottering, that is, the generation of high similarity scores by multiple, similar, small
substructures. Both these extensions are particularly relevant for chemoinformatics applications.

Further afield, Horváth et al. (2004) decompose a graph into cyclic patterns, then count the
number of common cyclic patterns which occur in both graphs. Their kernel is plagued by com-
putational issues; in fact they show that computing the cyclic pattern kernel of a general graph is
NP-hard. They consequently restrict their attention to practical problem classes where the number
of simple cycles is bounded.

1229



VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Ramon and Gärtner (2003) consider subtree patterns to define graph kernels. Starting from a
given node v, a tree is created by adding all the nodes that can be reached from v in 1, . . . ,h steps,
where h is the height of the tree. If more than one walk connects two nodes, then each one of these
is used to define a distinct subtree. This means that the same node is counted several times, thus
leading to tottering. Furthermore, the number of candidate trees grows exponentially with the height
of the subtree under consideration, thus severely limiting the depth of graph structure one can probe
at reasonable computational cost.

Borgwardt and Kriegel (2005) define a kernel (62) based on shortest paths. They represent a
graph G = (V,E) by a complete graph S = (V, Ē) over the same vertices, wherein the weight of
each edge in Ē equals the length of the shortest path between the corresponding nodes in G. Their
shortest path kernel is then defined as

ksp(G,G′) = ∑
e∈Ē

∑
e′∈Ē ′

κ(e,e′), (62)

where κ is any kernel defined on the edges of S and S′.
Shervashidze et al. (2009) use subgraphs of fixed size to define kernels. Their key idea is to

represent the graph by a normalized frequency vector which counts the frequency of occurrence of
various fixed-size subgraphs. The kernel is then simply computed as the dot product between these
vectors.

Other decompositions of graphs which are well suited for particular application domains include
molecular fingerprints based on various types of depth-first searches (Ralaivola et al., 2005) and
structural elements such as rings or functional groups (Fröhlich et al., 2006).

7.2 R-Convolutions in Abstract Semirings

There have been a few attempts to extend the R-convolution kernel (59) to abstract semirings, by
defining:

k(x,x′) :=
M

!x∈R−1(x)
!x′∈R−1(x′)

µ(!x,!x′))̄
D

K

i=1
κi(xi,x′i). (63)

The optimal assignment graph kernel of Fröhlich et al. (2006) is motivated along these lines, using
the tropical semiring. It can be defined as

k(x,x′) = max
!x∈R−1(x)
!x′∈R−1(x′)

(
µ(!x,!x′)+

D

∑
i=1

κi(xi,x′i)
)

. (64)

Unfortunately (64) is not always p.s.d. (Vert, 2008). The problem is that the class of p.s.d. kernels
is not closed under the max operation (Berg et al., 1984).

For semirings that have a morphism ψ to the reals, however, we can rewrite (63) as

ψ(k(x,x′)) = ∑
!x∈R−1(x)
!x′∈R−1(x′)

µ(!x,!x′)
D

∏
i=1

ψ(κi(xi,x′i)). (65)
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Comparing (65) with (59) makes it clear that ψ ◦ k is p.s.d. and hence admissible if all ψ ◦κi are.
This can be used to construct p.s.d. R-convolution kernels in such semirings.

For instance, take the logarithmic semiring (R∪{−∞},⊕̄ln,+,−∞,0) augmented with an in-
verse temperature parameter β > 0, so that x⊕̄ln y := ln(eβx + eβy)/β. This has the morphism
ψ(x) = eβx. We can thus specialize (65) to define

k(x,x′) := ∑
!x∈R−1(x)
!x′∈R−1(x′)

eβκ(!x,!x
′), where κ(!x,!x′) := µ(!x,!x′)+

D

∑
i=1

κi(xi,x′i), (66)

which is a valid p.s.d. kernel if all eβκi are. Note that if κi is a p.s.d. kernel, then since β > 0 so is
βκi, and since p.s.d. kernels are closed under exponentiation (Genton, 2001, Equation 5) so is eβκi .

What makes (66) interesting is that when the temperature approaches zero (β→ ∞), the aug-
mented logarithmic semiring approaches the tropical semiring, as x⊕̄ln y → max(x,y). We thus
obtain a kernel that approximates (an exponentiated version of) the optimal assignment kernel (64)
yet is provably p.s.d. Since at low temperatures the value of (66) is dominated by the optimal
assignment, one might call it the “mostly optimal assignment kernel.”

The finite range of floating-point computer arithmetic unfortunately limits how low a temper-
ature (66) can be used with in practice, though this can be greatly extended via suitable software,
such as the extnum C++ class.8

8. Discussion and Outlook

As evidenced by the large number of recent papers, random walk and marginalized graph kernels
have received considerable research attention. Although the connections between these two kernels
were hinted at by Kashima et al. (2004), no effort was made to pursue this further. Our aim in
presenting a unified framework for random walk and marginalized graph kernels that combines
the best features of previous formulations is to highlight the similarities as well as the differences
between these approaches. Furthermore, it allows us to use extended linear algebra in an RKHS to
efficiently compute all these kernels by exploiting common structure inherent in these problems.

As more and more graph-structured data (e.g., molecular structures and protein interaction net-
works) becomes available in fields such as biology, web data mining, etc., graph classification will
gain importance over the coming years. Hence there is a pressing need to speed up the computation
of similarity metrics on graphs. We have shown that sparsity, low effective rank, and Kronecker
product structure can be exploited to greatly reduce the computational cost of graph kernels; taking
advantage of other forms of structure inW× remains a computational challenge. Now that the com-
putation of random walk graph kernels is viable for practical problem sizes, it will open the doors
for their application in hitherto unexplored domains.

A major deficiency of geometric random walk graph kernels is that the admissible range of
values of the decay parameter λ in (16) depends on the spectrum of the weight matrix W×. Since
this is typically unknown, in practice one often resorts to very low values of λ—but this makes the
contributions of higher-order terms (corresponding to long walks) to the kernel negligible. In fact
in many applications a naive kernel which simply computes the average kernel between all pairs of
edges in the two graphs has performance comparable to the random walk graph kernel.

8. extnum can be found at http://darwin.nmsu.edu/molb_resources/bioinformatics/extnum/extnum.html.

1231

http://darwin.nmsu.edu/molb_resources/bioinformatics/extnum/extnum.html


VISHWANATHAN, SCHRAUDOLPH, KONDOR AND BORGWARDT

Trying to remedy this situation by normalizing the matrices involved leads to another phe-
nomenon called tottering (Mahé et al., 2004). Roughly speaking tottering occurs when short self-
repeating walks make a disproportionately large contribution to the kernel value. Consider two
adjacent vertices v and v′ in a graph. Because of tottering, contributions due to walks of the form
v → v′ → v → . . . dominate the kernel value. Unfortunately a kernel using self-avoiding walks
(walks which do not visit the same vertex twice) cannot be computed in polynomial time.

A natural question to ask is the following: Since diffusion can be viewed as a continuous time
limit of random walks, can the ideas behind the random walk kernel be extended to diffusion?
Unfortunately, the Laplacian of the product graph does not decompose into the Kronecker product
of the Laplacian matrices of the constituent graphs; this rules out a straightforward extension.

Although rational kernels have always been viewed as distinct from graph kernels, we have
shown that in fact these two research areas are closely related. It is our hope that this will facilitate
cross-pollination of ideas such as the use of semirings and transducers in defining graph kernels.
A return to the tensor and matrix notation which was commonly used to describe algebraic path
problems would help make these connections explicit.

It is fair to say that R-convolution kernels are the mother of all kernels on structured data.
It is enlightening to view various graph kernels as instances of R-convolution kernels since this
brings into focus the relevant decomposition used to define a given kernel, and the similarities and
differences between various kernels. Extending R-convolutions to abstract semirings, however, does
not always result in a valid p.s.d. kernel. We have shown that a morphism to the reals is sufficient to
successfully transport an R-convolution kernel into a semiring; whether it is necessary remains an
open problem.

We do not believe that the last word on graph comparison has been said yet. Thus far, simple
decompositions like random walks have been used to compare graphs. This is mainly driven by
computational considerations and not by the application domain at hand. The algorithmic challenge
of the future is to integrate higher-order structures such as spanning trees in graph comparisons, and
to compute such kernels efficiently.
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Appendix A. Extending Linear Algebra to RKHS

It is well known that any continuous, symmetric, positive definite kernel κ : X ×X → R has a
corresponding Hilbert space H , called the Reproducing Kernel Hilbert Space or RKHS, which
induces a feature map φ : X →H satisfying κ(x,x′) = 〈φ(x),φ(x′)〉H . The natural extension of this
so-called feature map to matrices isΦ : X n×m→H

n×m defined [Φ(A)]i j := φ(Ai j). In what follows,
we use Φ to lift tensor algebra from X to H , extending various matrix products to the RKHS, and
proving some of their their useful properties. Straightforward extensions via the commutativity
properties of the operators have been omitted for the sake of brevity.

A.1 Matrix Product

Definition 9 Let A ∈ X n×m, B ∈ Xm×p, and C ∈ R
m×p. The matrix products Φ(A)Φ(B) ∈ R

n×p and
Φ(A)C ∈H

n×p are given by

[Φ(A)Φ(B)]ik :=∑
j

〈
φ(Ai j),φ(Bjk)

〉
H

and [Φ(A)C]ik :=∑
j
φ(Ai j)Cjk.

It is straightforward to show that the usual properties of matrix multiplication—namely associa-
tivity, transpose-commutativity, and distributivity with addition—hold for Definition 9 above, with
one exception: associativity does not hold if the elements of all three matrices involved belong to
the RKHS. In other words, given A∈X n×m, B∈Xm×p, andC ∈X p×q, generally [Φ(A)Φ(B)]Φ(C) 3=
Φ(A)[Φ(B)Φ(C)]. The technical difficulty is that in general

〈
φ(Ai j),φ(Bjk)

〉
H
φ(Ckl) 3= φ(Ai j)

〈
φ(Bjk),φ(Ckl)

〉
H

. (67)

Further examples of statements like (67), involving properties which do not hold when extended to
an RKHS, can be found for the other matrix products at (69) and (76) below.

Definition 9 allows us to state a first RKHS extension of the vec(ABC) formula (1):

Lemma 10 If A ∈ R
n×m, B ∈ Xm×p, and C ∈ R

p×q, then

vec(AΦ(B)C)) = (C(⊗A)vec(Φ(B)) ∈ X nq×1 .

Proof Analogous to Lemma 12 below.

A.2 Kronecker Product

Definition 11 Let A ∈ X n×m and B ∈ X p×q. The Kronecker product Φ(A)⊗Φ(B) ∈ R
np×mq is

defined as

[Φ(A)⊗Φ(B)](i−1)p+k,( j−1)q+l :=
〈
φ(Ai j),φ(Bkl)

〉
H

.

Similarly to (67) above, for matrices in an RKHS

∗ (Φ(A)⊗Φ(B))(Φ(C)⊗Φ(D)) = (Φ(A)Φ(C))⊗ (Φ(B)Φ(D)) (68)
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does not necessarily hold. The technical problem with (68) is that generally

〈φ(Air),φ(Bks)〉H
〈
φ(Cr j),φ(Dsl)

〉
H
3=

〈
φ(Air),φ(Cr j)

〉
H
〈φ(Bks),φ(Dsl)〉H . (69)

In Section A.3 we show that analogous properties (Lemmas 14 and 15) do hold for the heteroge-
neous Kronecker product between RKHS and real matrices.

Definition 11 gives us a second extension of the vec(ABC) formula (1) to RKHS:

Lemma 12 If A ∈ X n×m, B ∈ R
m×p, and C ∈ X p×q, then

vec(Φ(A)BΦ(C)) = (Φ(C)(⊗Φ(A))vec(B) ∈ R
nq×1 .

Proof We begin by rewriting the kth column of Φ(A)BΦ(C) as

[Φ(A)BΦ(C)]∗k =Φ(A)∑
j
B∗ j φ(Cjk) =∑

j
φ(Cjk)Φ(A)B∗ j

= [φ(C1k)Φ(A),φ(C2k)Φ(A), . . .φ(Cnk)Φ(A)]





B∗1
B∗2
...
B∗n





︸ ︷︷ ︸
vec(B)

= ([φ(C1k),φ(C2k), . . .φ(Cnk)]⊗Φ(A))vec(B). (70)

To obtain Lemma 12 we stack up the columns of (70):

vec(Φ(A)BΦ(C)) =








φ(C11) φ(C21) . . . φ(Cn1)
...

... . . . ...
φ(C1n) φ(C2n) . . . φ(Cnn)



⊗Φ(A)



vec(B)

= (Φ(C)(⊗Φ(A))vec(B).

Direct computation of the right-hand side of Lemma 12 requires nmpq kernel evaluations; when
m, p, and q are all O(n) this is O(n4). If H is finite-dimensional, however—in other words, if
the feature map can be taken to be φ : X → R

d with d < ∞—then the left-hand side of Lemma 12
can be obtained in O(n3d) operations. Our efficient computation schemes in Section 4 exploit this
observation.

A.3 Heterogeneous Kronecker Product

Definition 13 Let A ∈ X n×m and B ∈ R
p×q. The heterogeneous Kronecker product Φ(A)⊗B ∈

X np×mq is given by

[Φ(A)⊗B](i−1)p+k,( j−1)q+l = φ(Ai j)Bkl.

Recall that the standard Kronecker product obeys (2); here we prove two extensions:
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Lemma 14 If A ∈ X n×m, B ∈ X p×q, C ∈ R
m×o, and D ∈ R

q×r, then

(Φ(A)⊗Φ(B))(C⊗D) = (Φ(A)C)⊗ (Φ(B)D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗Φ(B))(C⊗D)](i−1)p+k,( j−1)q+l =∑
r,s
〈φ(Air),φ(Bks)〉H Cr jDsl

=

〈

∑
r
φ(Air)Cr j,∑

s
φ(Bks)Dsl

〉

H

=
〈
[Φ(A)C]i j, [Φ(B)D]kl

〉
H

= [(Φ(A)C)⊗ (Φ(B)D)](i−1)p+k,( j−1)q+l

Lemma 15 If A ∈ X n×m, B ∈ R
p×q, C ∈ Xm×o, and D ∈ R

q×r, then

(Φ(A)⊗B)(Φ(C)⊗D) = (Φ(A)Φ(C))⊗ (BD).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗B)(Φ(C)⊗D)](i−1)p+k,( j−1)q+l =∑
r,s

〈
φ(Air)Bks,φ(Cr j)Dsl

〉
H

=∑
r

〈
φ(Air),φ(Cr j)

〉
H ∑

s
BksDsl

= [Φ(A)Φ(C)]i j [BD]kl

= [(Φ(A)Φ(C))⊗ (BD)](i−1)p+k,( j−1)q+l

Using the heterogeneous Kronecker product, we can state four more RKHS extensions of the
vec-ABC formula (1):

Lemma 16 If A ∈ X n×m, B ∈ R
m×p, and C ∈ R

p×q, then

vec(Φ(A)BC) = (C(⊗Φ(A))vec(B) ∈ X nq×1 .

Proof Analogous to Lemma 12.

Lemma 17 If A ∈ R
n×m, B ∈ R

m×p, and C ∈ X p×q, then

vec(ABΦ(C)) = (Φ(C)(⊗A)vec(B) ∈ X nq×1 .

Proof Analogous to Lemma 12.
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Lemma 18 If A ∈ X n×m, B ∈ Xm×p, and C ∈ R
p×q, then

vec(Φ(A)Φ(B)C) = (C(⊗Φ(A))vec(Φ(B)) ∈ R
nq×1 .

Proof Analogous to Lemma 12.

Lemma 19 If A ∈ R
n×m, B ∈ Xm×p, and C ∈ X p×q, then

vec(AΦ(B)Φ(C)) = (Φ(C)(⊗A)vec(Φ(B)) ∈ R
nq×1 .

Proof Analogous to Lemma 12.

Note that there is no analogous lemma for vec(Φ(A)Φ(B)Φ(C)) since this term is not well-
defined due to non-associativity (67).

A.4 Kronecker Sum

A concept closely related to the Kronecker product is that of the Kronecker sum, which is defined
for real matrices A ∈ R

n×m and B ∈ R
p×q as

A⊕B := A⊗ Ipq+Inm⊗B, (71)

with Inm (resp. Ipq) denoting the n×m (resp. p× q) identity matrix. Many of its properties can
be derived from those of the Kronecker product. Unlike the Kronecker product, however, the Kro-
necker sum of two matrices in an RKHS is a matrix in the RKHS. From Definition 1 and (71) we
find that

[A⊕B](i−1)p+k,( j−1)q+l := Ai jδkl +δi jBkl. (72)

We can extend (72) to RKHS, defining analogously:

Definition 20 Let A ∈ X n×m and B ∈ X p×q. The Kronecker sum Φ(A)⊕Φ(B) ∈ X np×mq is defined
as

[Φ(A)⊕Φ(B)](i−1)p+k,( j−1)q+l := φ(Ai j)δkl +δi jφ(Bkl).

In other words, in an RKHS the Kronecker sum is defined just as in (71):

Φ(A)⊕Φ(B) = Φ(A)⊗ IB + IA⊗Φ(B), (73)

where IM denotes the real-valued identity matrix of the same dimensions (not necessarily square) as
matrix M. In accordance with Definition 13, the result of (73) is an RKHS matrix.

The equivalent of the vec-ABC formula (1) for Kronecker sums is:

(A⊕B)vec(C) = (A⊗ IB+IA⊗B)vec(C)

= (A⊗ IB)vec(C)+(IA⊗B)vec(C)

= vec(IBCA()+vec(BC I(A ) (74)
= vec(IBCA(+BC I(A ).

This also works for matrices in an RKHS:
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Lemma 21 If A ∈ X n×m, B ∈ X p×q, and C ∈ X q×m, then

(Φ(A)⊕Φ(B))vec(Φ(C)) = vec(IBΦ(C)Φ(A)(+Φ(B)Φ(C)I(A ) ∈ R
np×1 .

Proof Analogous to (74), using Lemmas 18 and 19.

Furthermore, we have two valid heterogeneous forms that map into the RKHS:

Lemma 22 If A ∈ X n×m, B ∈ X p×q, and C ∈ R
q×m, then

(Φ(A)⊕Φ(B))vec(C) = vec(IBCΦ(A)(+Φ(B)C I(A ) ∈ X np×1 .

Proof Analogous to (74), using Lemmas 16 and 17.

Lemma 23 If A ∈ R
n×m, B ∈ R

p×q, and C ∈ X q×m, then

(A⊕B)vec(Φ(C)) = vec(IBΦ(C)A(+BΦ(C)I(A ) ∈ X np×1 .

Proof Analogous to (74), using Lemma 10.

A.5 Hadamard Product

While the extension of the Hadamard (element-wise) product to an RKHS is not required to imple-
ment our fast graph kernels, the reader may find it interesting in its own right.

Definition 24 Let A,B ∈ X n×m and C ∈ R
n×m. The Hadamard products Φ(A))Φ(B) ∈ R

n×m and
Φ(A))C ∈H

n×m are given by

[Φ(A))Φ(B)]i j =
〈
φ(Ai j),φ(Bi j)

〉
H

and [Φ(A))C]i j = φ(Ai j)Ci j.

We prove two extensions of (3):

Lemma 25 If A ∈ X n×m, B ∈ X p×q, C ∈ R
n×m, and D ∈ R

p×q, then

(Φ(A)⊗Φ(B))) (C⊗D) = (Φ(A))C)⊗ (Φ(B))D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗Φ(B))) (C⊗D)](i−1)p+k,( j−1)q+l =
〈
φ(Ai j),φ(Bkl)

〉
H
Ci jDkl

=
〈
φ(Ai j)Ci j,φ(Bkl)Dkl

〉
H

=
〈
[Φ(A))C]i j, [Φ(B))D]kl

〉
H

= [(Φ(A))C)⊗ (Φ(B))D)](i−1)p+k,( j−1)q+l
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Lemma 26 If A ∈ X n×m, B ∈ R
p×q, C ∈ X n×m, and D ∈ R

p×q, then

(Φ(A)⊗B)) (Φ(C)⊗D) = (Φ(A))Φ(C))⊗ (B)D).

Proof Using the linearity of the inner product we directly verify

[(Φ(A)⊗B)) (Φ(C)⊗D)](i−1)p+k,( j−1)q+l =
〈
φ(Ai j)Bkl,φ(Ci j)Dkl

〉
H

=
〈
φ(Ai j),φ(Ci j)

〉
H
BklDkl

= [Φ(A))Φ(C)]i j[B)D]kl

= [(Φ(A))Φ(C))⊗ (B)D)](i−1)p+k,( j−1)q+l

As before,

∗ (Φ(A)⊗Φ(B))) (Φ(C)⊗Φ(D)) = (Φ(A))Φ(C))⊗ (Φ(B))Φ(D)) (75)

does not necessarily hold, the difficulty with (75) being that in general,
〈
φ(Ai j),φ(Bkl)

〉
H

〈
φ(Ci j),φ(Dkl)

〉
H
3=

〈
φ(Ai j),φ(Ci j)

〉
H
〈φ(Bkl),φ(Dkl)〉H . (76)
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Abstract
In this paper, we consider the asymptotic form of the generalization error for the restricted Boltz-
mann machine in Bayesian estimation. It has been shown that obtaining the maximum pole of
zeta functions is related to the asymptotic form of the generalization error for hierarchical learning
models (Watanabe, 2001a,b). The zeta function is defined by using a Kullback function. We use
two methods to obtain the maximum pole: a new eigenvalue analysis method and a recursive blow-
ing up process. We show that these methods are effective for obtaining the asymptotic form of the
generalization error of hierarchical learning models.
Keywords: Boltzmann machine, non-regular learning machine, resolution of singularities, zeta
function

1. Introduction

A learning system consists of data, a learning model and a learning algorithm. The purpose of such
a system is to estimate an unknown true density function from data distributed by the true density
function. The data associated with image or speech recognition, artificial intelligence, the control
of a robot, genetic analysis, data mining, time series prediction, and so on, are very complicated
and usually not generated by a simple normal distribution, as they are influenced by many factors.
Learning models for analyzing such data should likewise have complicated structures. Hierarchical
learning models such as the Boltzmann machine, layered neural network, reduced rank regression
and the normal mixture model are known to be effective learning models. They are, however, non-
regular statistical models, which cannot be analyzed using the classic theories of regular statistical
models (Hartigan, 1985; Sussmann, 1992; Hagiwara, Toda, and Usui, 1993; Fukumizu, 1996).

For example, consider a simple restricted Boltzmann machine that has two observable units and
one hidden unit with binary variables (Fig. 1). The model is expressed by the probability form of
two observable units x= (x1,x2) ∈ {1,−1}2 with a parameter a= (a1,a2) ∈ R2:

p(x|a) = ∑
y=±1

p(x,y|a) =
exp(a1x1+a2x2)+ exp(−a1x1−a2x2)

Z(a)
,

where y ∈ {1,−1} is the hidden variable,

p(x,y|a) =
exp(a1x1y+a2x2y)

Z(a)
, and Z(a) = ∑

xi=±1,y=±1,
exp(a1x1y+a2x2y).

c©2010 Miki Aoyagi.
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Figure 1: Simple restricted Boltzmann machine model: Two observable units and one hidden unit.
The learning model is p(x|a) ≈ exp(a1x1+a2x2)+ exp(−a1x1−a2x2).

We have

p(x|a) = {(
2

∏
i=1

(1+ xi tanh(ai))+
2

∏
i=1

(1− xi tanh(ai)))}
∏2
i=1 cosh(ai)
Z(a)

=
∏2
i=1 cosh(ai)
Z(a)

(2+2x1x2 tanh(a1) tanh(a2)) =
1+ x1x2 tanh(a1) tanh(a2)

4
.

Assume that the true density function is p(x|a∗) with a∗ = 0. Then the true parameter set is
{a = (a1,a2) ∈ R2|p(x|a∗) = p(x|a)} = {a1 = 0}∪ {a2 = 0}. This set does not consist of only
one point, resulting in a non-positive definite Fisher matrix function. On the other hand, the true
parameter set of regular models should be one point and its Fisher matrix function is positive def-
inite. Usually, the true parameter set of non-regular models is an analytic set with complicated
singularities. Consequently, the many theoretical problems, such as clarifying generalization errors
in learning theory, have remained unsolved.

The generalization error measures the difference between the true density function q(x) and the
predictive density function p(x|xn) obtained using n distributed training samples xn = (x1, . . . ,xn) of
x from the true density function q(x). We define it as the average Kullback distance between q(x)
and p(x|xn):

G(n) = En{∑
x
q(x) log

q(x)
p(x|xn)

},

where En is the expectation value over n training samples. This function clarifies precisely how
p(x|xn) can approximate q(x). Thus, G(n) is also called a learning curve or a learning efficiency.
For an arbitrary fixed parameter w∗ in a parameter spaceW , we have

G(n) =∑
x
q(x) log

q(x)
p(x|w∗)

+En{∑
x
q(x) log

p(x|w∗)

p(x|xn)
}.

The first and second terms are called the function approximation error and the statistical estimation
error, respectively. The asymptotic form of the generalization error is important for model selection
methods. The optimal model balances the function approximation error with the statistical estima-
tion error. Since the Fisher matrix function is singular, non-regular models cannot be analyzed using
the classic model selection methods of regular statistical models such as AIC (Akaike, 1974), TIC
(Takeuchi, 1976), HQ (Hannan and Quinn, 1979), NIC (Murata, Yoshizawa, and Amari, 1994), BIC
(Schwarz, 1978), and MDL (Rissanen, 1984). Therefore, it is important to construct a mathematical
foundation for clarifying the generalization error of non-regular models.
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In this paper, we clarify the generalization error of certain restricted Boltzmann machines, ex-
plicitly (Theorem 2 and Theorem 3), and give new bounds for the generalization error of the other
types (Theorem 4), using both a new method of eigenvalue analysis and a recursive blowing up pro-
cess. The restricted Boltzmann machine is one of the non-regular models and a complete bipartite
graph type model that does not allow connections between hidden units (Hinton, 2004; Salakhutdi-
nov, Mnih, and Hinton, 2007). It has been applied efficiently in recognizing hand-written digits and
faces.

Several papers (Yamazaki and Watanabe, 2005; Nishiyama and Watanabe, 2006) have reported
upper bounds for the asymptotic form of the generalization error for the Boltzmann machine model,
but not the exact main terms.

We usually consider the generalization error in terms of a direct and an inverse problem. The
direct problem involves solving the generalization error with a known true density function. The
inverse problem is finding proper learning models and learning algorithms to minimize the gener-
alization error under the condition of an unknown true density function. The inverse problem is
important for practical usage, but in order to solve it, we first need to solve the direct problem. In
this paper, we consider the direct problem of the restricted Boltzmann machine model.

We have already obtained the exact asymptotic forms of the generalization errors for the three
layered neural network (Aoyagi and Watanabe, 2005a; Aoyagi, 2006), and for the reduced rank
regression (Aoyagi and Watanabe, 2005b). In addition, Rusakov and Geiger (2005) obtained the
same for Naive Bayesian networks (cf. Remark 1).

This paper consists of four sections. In Section 2, we summarize the framework of Bayesian
learning models. In Section 3, we explain the restricted Boltzmann machine and show our main
results, and we give our conclusions in Section 4.

2. Stochastic Complexity and Generalization Error in Bayesian Estimation

It is well known that Bayesian estimation is more appropriate than the maximum likelihood method
when a learning machine is non-regular (Akaike, 1980; Mackay, 1992). In this paper, we consider
the stochastic complexity and the generalization error in Bayesian estimation.

Let q(x) be a true probability density function and xn := {xi}ni=1 be n training samples randomly
selected from q(x). Consider a learning model which is written by a probability form p(x|w), where
w is a parameter. The purpose of the learning system is to estimate q(x) from xn by using p(x|w).

Let p(w|xn) be the a posteriori probability density function:

p(w|xn) =
1
Zn
ψ(w)

n

∏
i=1

p(xi|w),

where ψ(w) is an a priori probability density function on the parameter setW and

Zn =
Z

W
ψ(w)

n

∏
i=1

p(xi|w)dw.

So the average inference p(x|xn) of the Bayesian density function is given by

p(x|xn) =
Z

p(x|w)p(w|xn)dw,

which is the predictive density function.
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Set
K(q||p) =∑

x
q(x) log

q(x)
p(x|xn)

.

This function always has a positive value and satisfies K(q||p) = 0 if and only if q(x) = p(x|xn).
The generalization error G(n) is its expectation value En over n training samples:

G(n) = En{∑
x
q(x) log

q(x)
p(x|xn)

}.

Let
Kn(w) =

1
n

n

∑
i=1
log

q(x)
p(xn|w)

.

The average stochastic complexity or the free energy is defined by

F(n) = −En{log
Z

exp(−nKn(w))ψ(w)dw}.

Then we have G(n) = F(n+ 1)− F(n) for an arbitrary natural number n (Levin, Tishby, and
Solla, 1990; Amari, Fujita, and Shinomoto, 1992; Amari and Murata, 1993). F(n) is known as the
Bayesian criterion in Bayesian model selection (Schwarz, 1978), stochastic complexity in universal
coding (Rissanen, 1986; Yamanishi, 1998), Akaike’s Bayesian criterion in optimization of hyper-
parameters (Akaike, 1980) and evidence in neural network learning (Mackay, 1992). In addition,
F(n) is an important function for analyzing the generalization error.

It has recently been proved that the maximum pole of a zeta function gives the generalization
error of hierarchical learning models asymptotically, assuming that the function approximation error
is negligible compared to the statistical estimation error (Watanabe, 2001a,b). This assumption
is natural for the model selection problem. To compare various models of different parameter’s
dimension, we assume that the true distribution is a certain dimensional model. If the parameter’s
dimension of the true distribution is larger than that of the learning model, clarifying the behavior
of the generalization error is rather easy. We assume, therefore, that the true density distribution
q(x) is included in the learning model, that is, q(x) = p(x|w∗) for w∗ ∈W , whereW is the parameter
space.

Define the zeta function J(z) of a complex variable z for the learning model by

J(z) =
Z

K(w)zψ(w)dw,

where K(w) is the Kullback function:

K(w) =∑
x
p(x|w∗) log

p(x|w∗)

p(x|w)
.

Then, for the maximum pole −λ of J(z) and its order θ, we have

F(n) = λ logn− (θ−1) log logn+O(1), (1)

where O(1) is a bounded function of n, and if G(n) has an asymptotic expansion,

G(n) ∼= λ/n− (θ−1)/(n logn) as n→ ∞. (2)
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Figure 2: A restricted Boltzmann machine: M is the number of binary observable units x
and N is the number of binary hidden units y. The learning model is p(x,y|a) ∝
exp(∑M

i=1∑
N
j=1 ai jxiy j), where ai j is a parameter between xi and y j.

Therefore, our aim in this paper is to obtain λ and θ.
To assist in achieving this aim, we use the desingularization in algebraic geometry (Watanabe,

2009). It is, however, a new problem, even in mathematics, to obtain the desingularization of
Kullback functions, since the singularities of these functions are very complicated and as such
most of them have not yet been investigated (Appendix A). We, therefore, need a new method of
eigenvalue analysis and a recursive blowing up process.

3. Restricted Boltzmann Machine

From now on, for simplicity, we denote

{{n}} =

{

0, if n= 0 mod 2,
1, if n= 1 mod 2, {{(n1, · · · ,nm)}} = ({{n1}}, · · · ,{{nm}}),

and we use the notation da instead of ∏H
i=1∏

H ′

j=1 dai j for a= (ai j).
Let 2≤M ∈ N and N ∈ N. Set

p(x,y|a) =
exp(∑M

i=1∑
N
j=1 ai jxiy j)

Z(a)
,

where

Z(a) = ∑
xi=±1,y j=±1,

exp(
M

∑
i=1

N

∑
j=1

ai jxiy j),

x= (xi) ∈ {1,−1}M and y= (y j) ∈ {1,−1}N (Fig. 2).
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Consider a restricted Boltzmann machine

p(x|a) = ∑
y j=±1

p(x,y|a) =
∏N

j=1(∏
M
i=1 exp(ai jxi)+∏M

i=1 exp(−ai jxi))
Z(a)

= {
N

∏
j=1

(
M

∏
i=1

(1+ xi tanh(ai j))+
M

∏
i=1

(1− xi tanh(ai j)))}
∏N

j=1∏
M
i=1 cosh(ai j)
Z(a)

=
∏N

j=1∏
M
i=1 cosh(ai j)
Z(a)

×
N

∏
j=1

(2 ∑
0≤p≤M/2

∑
i1<···<i2p

xi1xi2 · · ·xi2p tanh(ai1 j) tanh(ai2 j) · · · tanh(ai2p j)).

Let B= (bi j) = (tanh(ai j)). Denote BJ =∏M
i=1∏

N
j=1 b

Ji j
i j and xJ =∏M

i=1 x
∑Nj=1 Ji j
i , where J = (Ji j)

is an M×N matrix with Ji j ∈ {0,1}. Then we have

p(x|a) =
2N∏N

j=1∏
M
i=1 cosh(ai j)
Z(a) ∑

J:{{∑Mi=1 Ji j}}=0 for all j
BJxJ.

Let
Z(b) =

Z(a)
2N∏N

j=1∏
M
i=1 cosh(ai j)

.

Set I = {I = (Ii) ∈ {0,1}M|{{∑M
i=1 Ii}} = 0}, and BI = ∑ J:{{∑Mi=1 Ji j}}=0

{{∑Nj=1 Ji j}}=Ii

BJ for I ∈ I . Then we have

p(x|a) =
1

Z(b)∑I∈I
BIxI

and Z(b) = 2NB0. Since ∑0≤i≤M/2

(

M
2i

)

= ((1+1)M +(1−1)M)/2= 2M−1, the number of ele-

ments in I is 2M−1.
Remark 1 Rusakov and Geiger (2005) obtained λ and θ for the following class of Naive Bayesian
networks with two hidden states and binary features:

p(x|c,d, t) = t
M

∏
i=1

c(1+xi)/2i (1− ci)(1−xi)/2+(1− t)
N

∏
i=1

d(1+xi)/2
i (1−di)(1−xi)/2.

where x ∈ {1,−1}M, c = {ci}Mi=1 ∈ RM , d = {di}Mi=1 ∈ RM and 0 ≤ t ≤ 1. Our models with one
hidden unit (N = 1) are obtained by setting t = 1/2, tanh(ai) = 2ci−1 and di = −ci. The relation
di = −ci creates a parameter space different from that of our models.

Assume that the true distribution is p(x|a∗)with a∗ = (a∗i j) and set B∗ = b∗ = (b∗i j) = (tanh(a∗i j)).
Then the Kullback function K(a) is

∑
xi=±1

p(x|a∗)(log p(x|a∗)− log p(x|a)) = ∑
xi=±1

p(x|a∗)
∞

∑
k=2

(−1)k

k
(
p(x|a)
p(x|a∗)

−1)k

= ∑
xi=±1

(p(x|a)− p(x|a∗))2

p(x|a∗)
(1+

∞

∑
k=1

(−1)k

k+2
(
p(x|a)
p(x|a∗)

−1)k).
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Lemma 1 Watanabe, 2001c If analytic functions K1, K2 satisfy γ1|K2| ≤ |K1| ≤ γ2|K2| for some
positive constants γ1 and γ2, then the maximum pole and its order of

R

|K1|zdw are those of
R

|K2|zdw.

By Lemma 1, since we consider a neighborhood of p(x|a)
p(x|a∗) = 1, we only need to obtain the

maximum pole of J(z) =
R

Ψz
0db, where

Ψ0 = ∑
xi=±1

(p(x|a)− p(x|a∗))2 = ∑
xi=±1

(
∑I∈I BIxI

Z(b)
−
∑I∈I B∗IxI

Z(b∗)
)2

= ∑
xi=±1

(∑
I∈I

(

BI

Z(b)
−

B∗I

Z(b∗)

)

xI)2 = 2M∑
I∈I

(

BI

Z(b)
−

B∗I

Z(b∗)

)2

.

By Lemma 1 again, we can replace Ψ0 by

Ψ= ∑
I∈{0,1}M

22N(
BI

Z(b)
−

B∗I

Z(b∗)
)2 = ∑

I∈{0,1}M
(
BI

B0
−
B∗I

B∗0 )
2. (3)

4. Main Results

Consider the zeta function J(z) =
R

V Ψ
zdb, where V is a sufficiently small neighborhood of a∗.

From the eigenvalue analysis method, we obtain the following theorem.

Theorem 2 The average stochastic complexity F(n) in Eq. (1) and the generalization error G(n)
in Eq. (2) are given by using the following maximum pole −λ of J(z) and its order θ.

(Case 1): If M = 2 then λ= 1/2 and θ=

{

2, if N = 1,b∗ = 0
1, otherwise.

(Case 2): If M = 3 then λ=















3/4, if N = 1,b∗ = 0
1/2, if N = 1,b∗ ,= 0,∏3

i=1 b∗i1 = 0
3/2, if N = 1,∏3

i=1 b∗i1 ,= 0
3/2, if N ≥ 2,

and θ =















3, if N = 2,b∗ = 0,
2, if N = 2,b∗ ,= 0,b∗i0 j = b∗i1 j = 0 for 1≤ j ≤ N,
2, if N = 2,b∗i0 j0b

∗
i1 j0 ,= 0,bi2 j0 = b∗i j = 0 for 1≤ i≤ 3,1≤ j ≤ N, j ,= j0,

1, otherwise ,

where

i0, i1, i2 ∈ {1,2,3} are different from each other and 1≤ j0 ≤ N.

For its proof, we use the eigenvalues and the eigenvectors of the matrix Cj = (cI,I
′

j ) where
bIj =∏M

i=1 b
Ii
i j, and c

I,I′
j = bI′′j with {{I′ + I′′}} = I, for I, I′, I′′ ∈ I . Its proof appears in Appendix B.

We obtain λ and θ in Eqs. (1) and (2) forM > N using a recursive blowing up.

Theorem 3 Assume that M > N and a∗ = 0. The average stochastic complexity F(n) in Eq. (1)
and the generalization error G(n) in Eq. (2) are given by using the maximum pole −λ = −MN

4 of

J(z) and its order θ=

{

1, if M > N+1,
M, if M = N+1.

We also bound values of λ for other cases.
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Figure 3: The curve of λ along the y-axis and N along the x-axis, when M = 2,3,4,5 and a∗ = 0.

Theorem 4 Let (a1 j,a2 j, · · · ,aM j) ,= 0 for j = 1, . . . ,N0 and (a1 j,a2 j, · · · ,aM j) = 0 for j = N0+
1, . . . ,N in V , where V is a sufficiently small neighborhood of a∗.

Then we have
M(N−N0)

4 ≤ λ≤ M(N−N0)
4 + MN0

2 , if M > N−N0
M(M−1)

4 + MN0
2 ≤ λ≤ 2N0+(M−1)(M−2)

4 + MN0
2

(

< MN0
2 + M(N−N0)

4

)

, if M ≤ N−N0.

The proofs for these two theorems appear in Appendix C.

5. Conclusion

In this paper, we obtain the generalization error of restricted Boltzmann machines asymptotically
(Fig. 3).

We use a new method of eigenvalue analysis and a recursive blowing up in algebraic geometry
and show that these are effective for solving the problem in learning theory.

We have not used the eigenvalue analysis method where M > N, which is usually the case in
applications. Eigenvalue analysis seems to be necessary for solving the behavior of the restricted
Boltzmann machine model’s generalization error forM ≤ N.

In this paper, we clarify the generalization error for (i) M = 3 (Theorem 2) and (ii) M > N,
a∗ = 0 (Theorem 3) explicitly and give new bounds for the generalization error of the other types
(Theorem 4). The case (i) shows that λ is independent of a∗ forM−1= 2≤ N, and so implies that
we need more careful consideration for obtaining the exact values λ for the case of Theorem 4.

Our future research aims to improve our methods, and to apply them to the case of Theorem 4
and to obtain the generalization error of the general Boltzmann machine, which is also known as
the Bayesian network, the graphical model and the spin model, as such models are widely used in
many fields. We believe that extending our results would provide a mathematical foundation for the
analysis of various graphical models.

This study involves applying techniques of algebraic geometry to learning theory and it seems
that we can contribute to the development of both these fields in the future.
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The application of our results is as follows. The results of this paper introduce a mathematical
measure of preciseness for numerical calculations such as the Markov Chain Monte Carlo. Using
the Markov Chain Monte Carlo (MCMC) method, estimated values for marginal likelihoods had
previously been calculated for hyper-parameter estimations and model selection methods of com-
plex learning models, but the theoretical values were not known. The theoretical values of marginal
likelihoods have been given in this paper. This enables us to construct a mathematical foundation for
analyzing and developing the precision of the MCMCmethod (Nagata and Watanabe, 2005). More-
over, Nagata and Watanabe (2007) studied the setting of temperatures for the exchange MCMC
method and proved the mathematical relation between the symmetrized Kullback function and the
exchange ratio, from which an optimal setting of temperatures could be devised. Our theoretical
results will be helpful in these numerical experiments. Furthermore, these values have been com-
pared with those of the generalization error of a localized Bayes estimation (Takamatsu, Nakajima,
and Watanabe, 2005).
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Appendix A. Hironaka’s Theorem

We introduce Hironaka’s Theorem about the desingularization.

Theorem 5 [Desingularization (Fig. 4)] (Hironaka, 1964)
Let f be a real analytic function in a neighborhood of w = (w1, · · · ,wd) ∈ Rd with f (w) = 0.

There exist an open set V . w, a real analytic manifold U, and a proper analytic map µ from U to
V such that
(1) µ :U−E →V − f−1(0) is an isomorphism, where E = µ−1( f−1(0)),
(2) for each u ∈ U, there is a local analytic coordinate system (u1, · · · ,un) such that f (µ(u)) =
±us11 u

s2
2 · · ·usnn , where s1, · · · ,sn are non-negative integers.

Applying Hironaka’s theorem to the Kullback function K(w), for each w ∈ K−1(0)∩W , we
have a proper analytic map µw from an analytic manifold Uw to a neighborhood Vw of w satisfying
Hironaka’s Theorem (1) and (2). Then the local integration on Vw of the zeta function J(z) of the
learning model is

Jw(z) =
Z

Vw
K(w)zψ(w)dw

=
Z

Uw
∑
u

(u2s11 u2s22 · · ·u2sdd )zψ(µw(u))|µ′w(u)|du. (4)

Therefore, the poles of Jw(z) can be obtained. For example, the function
Z

U0
(u2s11 u2s22 · · ·u2sdd )zut11 u

t2
1 · · ·u

td
1 du

has the poles −(t1 + 1)/(2s1), · · · ,−(td + 1)/(2sd), where U0 is a small neighborhood of 0. For
each w ∈W \K−1(0), there exists a neighborhood Vw such that K(w′) ,= 0, for all w′ ∈ Vw. So
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Figure 4: Hironaka’s Theorem: This is the picture of a desingularization µof f : E maps to f−1(0).
U −E is isomorphic to V − f−1(0) by µ, where V is a small neighborhood of w with
f (w) = 0.

Jw(z) =
R

Vw K(w)zψ(w)dw has no poles. It is known that µ of an arbitrary polynomial in Hironaka’s
Theorem can be obtained by using a blowing up process. Note that the exponents in the integral are
2si instead of si as shown in Eq. (4), since the Kullback function is positive.

In spite of such results, it is still difficult to obtain the generalization error mainly for the follow-
ing two reasons. (a) The desingularization of any polynomial is in general very difficult, although
it is known to be a finite process. Furthermore, most of the Kullback functions of non-regular
statistical models are degenerate (over R) with respect to their Newton polyhedrons, which is the
condition for using a toric resolution (Fulton, 1993; Watanabe, Hagiwara, Akaho, Motomura, Fuku-
mizu, Okada, and Aoyagi, 2005). Also, points in the singularity set {K = ∂K/∂w= 0} of Kullback
functions K(w) are not isolated, and Kullback functions are not simple polynomials, as their num-
ber of variables and number of terms grow with parameters, for example, M and N in Eq. (3). It
is therefore, a new problem, even in mathematics, to obtain desingularizations of such Kullback
functions, since their singularities are very complicated and as such most of them have not yet been
investigated. (b) Since our main purpose is to obtain the maximum pole, obtaining a desingulariza-
tion is not enough. We need techniques for choosing the maximum one from all poles. However, to
the best of our knowledge, no theorems for such a purpose have been developed.

We give below Lemmas 2 and 3 in (Aoyagi and Watanabe, 2005b), as they are frequently used
in this paper. Define the norm of a matrixC = (ci j) by ‖C‖ =

√

∑i, j |ci j|2.

Lemma 6 (Aoyagi and Watanabe, 2005b) Let U be a neighborhood of w0 ∈ Rd, C(w) be an
analytic H×H ′ matrix function from U, ψ(w) be a C∞ function from U with compact support, and
P and Q be any regular H ×H and H ′ ×H ′ matrices, respectively. Then the maximum pole of
R

U‖C(w)‖2zψ(w)dw and its order are those of
R

U‖PC(w)Q‖2zψ(w)dw.

Lemma 7 Assume that p(x|a)=
∏N

j=1Wj(x,a)
∑x∏

N
j=1Wj(x,a)

for x∈X. Then the maximum pole of
R

U{∑x∈X(p(x|a)−

p(x|a∗))2}zψ(w)da and its order are those of

Z

U
{ ∑
x,x′∈X

(
N

∑
j
(logWj(x,a)− logWj(x,a∗)− logWj(x′,a)+ logWj(x′,a∗))}2ψ(w)dw.

(Proof)
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Consider the ideal I generated by p(x|a)− p(x|a∗) for x ∈ X .

Then I is generated by ∏N
j=1Wj(x,a)

∏N
j=1Wj(x,a∗)

−
∑x∏

N
j=1Wj(x,a)

∑x∏
N
j=1Wj(x,a∗)

, and so by ∏N
j=1Wj(x,a)

∏N
j=1Wj(x,a∗)

−
∏N

j=1Wj(x′,a)
∏N

j=1Wj(x′,a∗)
for

x,x′ ∈ X .
Since |x−1|/2≤ | logx|≤ 2|x−1| for |x−1| < 1/2, we have

∑
x,x′∈X

(
∏N

j=1Wj(x,a)
∏N

j=1Wj(x,a∗)
∏N

j=1Wj(x′,a∗)
∏N

j=1Wj(x′,a)
−1)2/4

≤ ∑
x,x′∈X

(
N

∑
j
(log(Wj(x,a))− log(Wj(x,a∗))+ log(Wj(x′,a∗))− log(Wj(x′,a))))2

≤ ∑
x,x′∈X

(
∏N

j=1Wi(x,a)
∏N

j=1Wj(x,a∗)
∏N

j=1Wj(x′,a∗)
∏N

j=1Wj(x′,a)
−1)24

Q.E.D.

Appendix B. Eigenvalue Analysis

The purpose of eigenvalue analysis is to simplify the blowing up process.
Hierarchical learning machines often have Kullback functions involving a matrix product such

as K(w) = ‖D1D2 · · ·DN‖2, where Di is a parameter matrix. Therefore, analyzing the eigenvalues of
these matrices and applying Lemma 6 sometimes results in an easier function to handle. For exam-
ple, the restricted Boltzmann machine has a Kullback function ‖B̃N‖2 = ‖

(

0 E
)

CN · · ·C2C1(1,0, . . . ,0)t‖2, where E is the identity matrix (t denotes the transpose). Theorem 9
(4) below shows that analyzing the eigenvalues ofCN makes an easier function ‖RB̃N‖2 to blow up,
where R is a certain regular matrix. This is the main point of this method.

Let I, I′, I′′ ∈ I . We set BIN = BI , bIj =∏M
i=1 b

Ii
i j, and

BN = (BIN) = (B(0,...,0)
N ,B(1,1,0,...,0)

N ,B(1,0,1,0,...,0)
N , . . .).

We now have BIN = ∑{{I′+I′′}}=I bI
′′

N BI
′

N−1.
For convenience, we denote the “(I, I′)th” element of a 2M−1×2M−1 matrixC by cI,I′ .
Now consider the eigenvalues of the matrixCN = (cI,I

′

N ) where cI,I
′

N = bI′′N with {{I′ + I′′}} = I.
Note that BN =CNBN−1.
Let ! = (!1, . . . ,!2M−1) = (!I) ∈ {−1,1}2M−1 with !(0,...,0) = 1. ! is an eigenvector, if and only if

∑
I′∈I

cI,I
′

N !I′ = !I ∑
I′∈I

c(0,...,0),I
′

N !I′ = !I ∑
I′∈I

bI
′

N!I′ , for all I ∈ I .

That is,
! is an eigenvector ⇐⇒ if {{I+ I′}} = I′′ ({{I+ I′ + I′′}} = 0)

then !I′′ = !I!I′ ( !I!I′!I′′ = 1).
Denote the number of all elements in a set K by #K.
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Theorem 8 Let K1 ⊂ {2, . . . ,M}. Set !I =

{

−1, if #{i ∈ K1 : Ii = 1} is odd,
1, otherwise. Then ! = (!I) is

an eigenvector of CN and its eigenvalue is

∑
I∈I

!IbIN =
∏M
i=1(1+ xibi)+∏M

i=1(1− xibi)
2

, where xi = −1 if i ∈ K1, and xi = 1 if i ,∈ K1.

Note that ∑I∈I !IbIN > 0 since bi = tanh(ai).

(Proof)
Assume that {{I′ + I′′ + I′′′}} = 0. If all #{i ∈ K1 : I′i = 1}, #{i ∈ K1 : I′′i = 1} and #{i ∈ K1 :

I′′′i = 1} are even, then !I′!I′′!I′′′ = 1.
If #{i ∈ K1 : I′i = 1} is odd, then #{i ∈ K1 : I′′i = 1} or #{i ∈ K1 : I′′′i = 1} is odd, since {{I′ +

I′′ + I′′′}} = 0.
If #{i∈K1 : I′i = 1} and #{i∈K1 : I′′i = 1} are odd, then #{i∈K1 : I′′′i = 1} is even and !I′!I′′!I′′′ =

1 since {{I′ + I′′ + I′′′}} = 0.
Q.E.D.

We have 2M−1 eigenvectors !. Moreover, they are orthogonal to each other, since the eigenvec-
tors of a symmetric matrix are orthogonal. These eigenvectors !’s, therefore, span the whole space
R2

M−1 .
Set 1 = (1, . . . ,1)t ∈ Z2

M−1−1 (t denotes the transpose). Let D = (DI,I′) be a symmetric matrix

formed by arranging the eigenvectors !’s such that D =

(

1 1t
1 D′

)

and DD= 2M−1E, where E is

the identity matrix and DI,I′ is “(I, I′)th” element of D.

Since DD=

(

2M−1 1tD′

1+D′1 11t +D′D′

)

= 2M−1E, we have D′1= −1.

LetC′
N = DCND/2M−1 = DCND−1 =











s0N 0 0 · · · 0
0 s1N 0 · · · 0
...

...
...

...
...

0 0 0 · · · s2
M−1−1
N











.

We use siN or sIN (I ∈ I ), depending on the situation.

SinceCN = D−1C′
ND, we have b

{{I+K}}
N = ∑J∈I DI,JsJNDJ,K/2M−1.

B.1 Example

LetM = 4.
We have the matrix by arranging the eigenvectors ofCN ,
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D=

























1 1 1 1 1 1 1 1
1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1

























and the eigenvalues

s0N = 1+b1Nb2N +b1Nb3N +b1Nb4N +b2Nb3N +b2Nb4N +b3Nb4N +b1Nb2Nb3Nb4N ,

s1N = 1+b2Nb3N +b2Nb4N +b3Nb4N−b1N(b2N +b3N +b4N +b2Nb3Nb4N),

s2N = 1+b1Nb3N +b1Nb4N +b3Nb4N−b2N(b1N +b3N +b4N +b1Nb3Nb4N),

s3N = 1+b1Nb3N +b2Nb4N +b1Nb2Nb3Nb4N− (b1N +b3N)(b2N +b4N),

s4N = 1+b1Nb2N +b3Nb4N +b1Nb2Nb3Nb4N− (b1N +b2N)(b3N +b4N),

s5N = 1+b1Nb2N +b1Nb4N +b2Nb4N−b3N(b1N +b2N +b4N +b1Nb2Nb4N),

s6N = 1+b1Nb2N +b1Nb3N +b2Nb3N−b4N(b1N +b2N +b3N +b1Nb2Nb3N),

s7N = 1+b1Nb4N +b2Nb3N +b1Nb2Nb3Nb4N− (b1N +b4N)(b2N +b3N).

Theorem 9 Let H = 2M−1−1.

(1) Let di j =



















1, if i= 1 or j = 1,
DI,J, if I = i

(1, 0, . . . , 0, 1, 0, . . . , 0)
and J = j

(1, 0, . . . , 0, 1, 0, . . . , 0).

Then DI,J =∏i, j:Ii=1,Jj=1 di j for all I,J ∈ I .

(2) BN =CNBN−1 =CN · · ·C2B1 = DC′
N · · ·C′

2D−1B1 =
DC′

N · · ·C′
11

2M−1 .

(3) We have 2M−1D′−1 = D′ −11t .

(4) Let B̃1 = (BI1)I ,=0, B̃N = (BIN)I ,=0 and

S= −
1

H+1







∏N
j=1 s∗

1
j −∏N

j=1 s∗
0
j

...
∏N

j=1 s∗
H
j −∏N

j=1 s∗
0
j







(

∏N
j=2 s1j −∏N

j=2 s0j · · · ∏N
j=2 sHj −∏N

j=2 s0j
)

+B∗0
N∏

N
j=2 s0j







1 · · · 1
...

...
...

1 · · · 1






+B∗0

N











∏N
j=2 s1j 0 0 · · · 0
0 ∏N

j=2 s2j 0 · · · 0
...

...
...

...
0 0 0 · · · ∏N

j=2 sHj











.

We have

(detS)D′−1S−1D′−12M−1(B̃NB∗0
N− B̃∗NB0N)
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= (detS)B̃1− (B∗0
N)H−1(1 D′)







∏N
j=1 s∗

0
j∏i,=0∏

N
j=2 sij

...
∏N

j=1 s∗
H
j ∏i,=H∏

N
j=2 sij






.

(5) The corresponding element to I of (1 D′)







∏i,=0∏
N
j=2 sij

...
∏i,=H∏

N
j=2 sij






consists of monomials

cJ∏M
i=1∏

N
j=2 b

Ji j
i j , where cJ ∈ R, 0≤ Ji j ∈ Z and {{∑N

j=1 Ji j}} = Ii.

(Proof)
(1) Fix K1 ⊂ {2, . . . ,M}.

Consider the eigenvector ! defined by using K1.
Set d′1 = 1 and d′i = !I for I = i

(1, 0, . . . , 0, 1, 0, . . . , 0) , i≥ 2.
Since !I =∏i∈K1:Ii=1(−1) =∏i:Ii=1 d

′
i and D is symmetric, we have statement (1).

(2) is obvious.

(3) Since DD =

(

2M−1 1tD′

1+D′1 11t +D′D′

)

= 2M−1E, we have D′D′ = 2M−1E ′ − 11t and D′(D′ −

11t) = 2M−1E ′ −11t−D′11t = 2M−1E ′ −11t +11t = 2M−1E ′, where E ′ is the identity matrix.
(4)

2M−1(B̃NB∗0
N− B̃∗NB0N) = 2M−1( −B̃∗N B∗0

NE
)

BN

=
(

−B̃∗N B∗0
NE

)

D











∏N
j=2 s0j 0 0 · · · 0
0 ∏N

j=2 s1j 0 · · · 0
...

...
...

...
0 0 0 · · · ∏N

j=2 sHj











DB1

= (−B̃∗N
(

1 1t
)

+B∗0
N
(

1 D′
)

)










∏N
j=2 s0j 0 0 · · · 0
0 ∏N

j=2 s1j 0 · · · 0
...

...
...

...
0 0 0 · · · ∏N

j=2 sHj











DB1

= (
−

(

1 D′
)

H+1











∏N
j=1 s∗

0
j

∏N
j=1 s∗

1
j

...
∏N

j=1 s∗
H
j











(

1 1t
)

+B∗0
N
(

1 D′
)

)











∏N
j=2 s0j 0 0 · · · 0
0 ∏N

j=2 s1j 0 · · · 0
...

...
...

...
0 0 0 · · · ∏N

j=2 sHj











DB1

1256



STOCHASTIC COMPLEXITY OF RESTRICTED BOLTZMANN MACHINE

=
(

1 D′
)

(−
1

H+1











∏N
j=1 s∗

0
j

∏N
j=1 s∗

1
j

...
∏N

j=1 s∗
H
j











(

∏N
j=2 s0j · · · ∏N

j=2 sHj
)

+B∗0
N











∏N
j=2 s0j 0 0 · · · 0
0 ∏N

j=2 s1j 0 · · · 0
...

...
...

...
0 0 0 · · · ∏N

j=2 sHj











)(

(

1
1

)

+

(

1t
D′

)

B̃1)

= D′(−T 0







∏N
j=1 s∗

1
j −∏N

j=1 s∗
0
j

...
∏N

j=1 s∗
H
j −∏N

j=1 s∗
0
j






+B∗0

N







∏N
j=2 s1j −∏N

j=2 s0j
...

∏N
j=2 sHj −∏N

j=2 s0j






)+D′SD′B̃1,

where T 0 =
∏N

j=2 s0j+···+∏N
j=2 sHj

H+1 .
Also we have S−1i1 j1 = (detS)−1×















(B∗0N)H−2

H+1 ∑H
i2=0,i2 ,=i1(∏

N
j=1 s∗

i1
j +H∏N

j=1 s∗
i2
j )∏0≤i≤H,i,=i1,i2∏

N
j=2 sij, if i1 = j1,

(B∗0N)H−2

H+1 ∑0≤i2≤H,i2 ,=i1, j1(∏
N
j=1 s∗

i1
j −∏N

j=1 s∗
i2
j )∏0≤i≤H,i,=i1,i2∏

N
j=2 sij

− (B∗0N)H−2

H+1 (H∏N
j=1 s∗

i1
j +∏N

j=1 s∗
j1
j )∏0≤i≤H,i,=i1, j1∏

N
j=2 sij, if i1 ,= j1

and detS= (B∗0
N)H−1∑H

i2=0∏
N
j=1 s∗

i2
j ∏i,=i2∏

N
j=2 sij.

Let s=







∏N
j=1 s∗

0
j∏i,=0∏

N
j=2 sij

...
∏N

j=1 s∗
H
j ∏i,=H∏

N
j=2 sij






and s̃=







∏N
j=1 s∗

1
j∏i,=1∏

N
j=2 sij

...
∏N

j=1 s∗
H
j ∏i,=H∏

N
j=2 sij






.

Since (detS)S−1(−T 0







∏N
j=1 s∗

1
j −∏N

j=1 s∗
0
j

...
∏N

j=1 s∗
H
j −∏N

j=1 s∗
0
j






+B∗0

N







∏N
j=2 s1j −∏N

j=2 s0j
...

∏N
j=2 sHj −∏N

j=2 s0j






)

= (B∗0
N)H−1{∑H

i2=0∏
N
j=1 s∗

i2
j ∏i,=i2∏

N
j=2 sij1− (H+1)







∏N
j=1 s∗

1
j∏i,=1∏

N
j=2 sij

...
∏N

j=1 s∗
H
j ∏i,=H∏

N
j=2 sij






},

we have

D′−1S−1D′−12M−1(B̃NB∗0
N− B̃∗NB0N)

= (detS)B̃1− (B∗0
N)H−1

H

∑
i2=0

N

∏
j=1

s∗i2j ∏
i,=i2

N

∏
j=2

sij1− (H+1)(B∗0
N)H−1D′−1s̃

= (detS)B̃1− (B∗0
N)H−1

H

∑
i2=0

N

∏
j=1

s∗i2j ∏
i,=i2

N

∏
j=2

sij1− (B∗0
N)H−1(D′ −11t)s̃

= (detS)B̃1− (B∗0
N)H−1

N

∏
j=1

s∗0j∏
i,=0

N

∏
j=2

sij1− (B∗0
N)H−1D′s̃

= (detS)B̃1− (B∗0
N)H−1(1,D′)s,
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by using (3).
(5) Since b{{I+K}}j = ∑J∈I DI,JsJjDJ,K/2M−1, we have for I′ ∈ I ,

∑
J∈I

DI,Js{{J+I
′}}

j DJ,K = DI,I′DI′,K ∑
J∈I

DI,{{J+I′}}s{{J+I
′}}

j D{{J+I′}},K

= 2M−1DI,I′DI′,Kb{{I+K}}j ,

by using (1).
Let I0 = (0, . . . ,0), I1 = (1,1,0, . . . ,0), I2 = (1,0,1,0, . . . ,0), . . ..
The fact that

D











∏i,=0∏
N
j=2 sij

∏i,=1∏
N
j=2 sij
...

∏i,=H∏
N
j=2 sij











= −D











∏i,=0∏
N
j=2 sij 0 0 · · · 0

0 ∏i,=1∏
N
j=2 sij 0 · · · 0

...
...

...
...

...
0 0 0 · · · ∏i,=H∏

N
j=2 sij











D−12M−1











1
0
...
0











= −























N

∏
j=2

∏
0 ,=I′∈I

D













s{{I0+I
′}}

j 0 0 · · · 0
0 s{{I1+I

′}}
j 0 · · · 0

...
...

...
...

...
0 0 0 · · · s{{IH+I′}}

j













D−1























2M−1











1
0
...
0











,

and ∑J∈I DI,Js{{J+I
′}}

j DJ,K = 2M−1DI,I′DI′,Kb{{I+K}}j yields statement (5).
Q.E.D.

Proof of Theorem 2
By Theorem 9 (4) and Lemma 6, we only need to consider the maximum pole of J(z) =

R

‖Ψ′‖2zdb, where Ψ′ = (detS)B̃1− (B∗0
N)H−1(1 D′)







∏N
j=1 s∗

0
j∏i,=0∏

N
j=2 sij

...
∏N

j=1 s∗
H
j ∏i,=H∏

N
j=2 sij






.

(Case 1): The fact that B11 = ∑N
k=1 b1kb2k + · · · provides Case 1.

(Case 2): Assume thatM = 3.

We have D′ =





1 −1 −1
−1 1 −1
−1 −1 1



,















s0j = 1+b1 jb2 j +b1 jb3 j +b2 jb3 j,
s1j = 1+b1 jb2 j−b1 jb3 j−b2 jb3 j,
s2j = 1−b1 jb2 j +b1 jb3 j−b2 jb3 j,
s3j = 1−b1 jb2 j−b1 jb3 j +b2 jb3 j,

and Ψ′ = (detS)





b11b21
b11b31
b21b31



−∏3
i=0∏

N
j=2 sij(B∗0

N)2(1,D′)











∏N
j=1 s∗

0
j/∏

N
j=2 s0j

∏N
j=1 s∗

1
j/∏

N
j=2 s1j

∏N
j=1 s∗

2
j/∏

N
j=2 s2j

∏N
j=1 s∗

3
j/∏

N
j=2 s3j











.

1258



STOCHASTIC COMPLEXITY OF RESTRICTED BOLTZMANN MACHINE

Let N = 1. The fact thatΨ′ = 4(B∗0
N)2B̃1−4(B∗0

N)2





b∗11b∗21
b∗11b∗31
b∗21b∗31



 yields the statement for N = 1.

Assume that N ≥ 2, b∗ ,= 0 and b∗11 ,= 0,b∗21 ,= 0,b∗31 ,= 0. Set b′21 = b11b21, b′31 = b11b31 and
b′11 = b21b31 = b′21b′31/b211. Then

Ψ′ = (detS)





b′21
b′31
b′11



−
3

∏
i=0

N

∏
j=2

sij(B∗0
N)2(1,D′)











∏N
j=1 s∗

0
j/∏

N
j=2 s0j

∏N
j=1 s∗

1
j/∏

N
j=2 s1j

∏N
j=1 s∗

2
j/∏

N
j=2 s2j

∏N
j=1 s∗

3
j/∏

N
j=2 s3j











and its maximum pole is 3/2 and its order is 1.

Assume that N ≥ 2, b∗ ,= 0, b∗11 ,= 0 and ∏3
i=1 b∗i j = 0 for all j. Let ψ =





ψ1
ψ2
ψ3



 =

(1,D′)











∏N
j=1 s∗

0
j/∏

N
j=2 s0j

∏N
j=1 s∗

1
j/∏

N
j=2 s1j

∏N
j=1 s∗

2
j/∏

N
j=2 s2j

∏N
j=1 s∗

3
j/∏

N
j=2 s3j











. By setting
(

b′21
b′31

)

= (detS)
(

b11b21
b11b31

)

−∏3
i=0∏

N
j=2 sij(B∗0

N)2
(

1 1 −1 −1
1 −1 1 −1

)











∏N
j=1 s∗

0
j/∏

N
j=2 s0j

∏N
j=1 s∗

1
j/∏

N
j=2 s1j

∏N
j=1 s∗

2
j/∏

N
j=2 s2j

∏N
j=1 s∗

3
j/∏

N
j=2 s3j











and

Ψ′′ =





Ψ′′
1

Ψ′′
2

Ψ′′
3



 =







b′21
b′31

(∏3i=0∏
N
j=2 sij(B∗

0
N)2)2ψ1ψ2

b211 detS
− (B∗0

N)2∏3
i=0∏

N
j=2 sijψ3






,

and by using Lemma 6, we need the maximum pole of
R

‖Ψ′′‖2zdb. Ψ′′ is singular in the following
cases: (i) b∗11b∗21 = b∗2 j = b∗3 j = 0 for all j, (ii) b∗11b∗21 ,= 0, b∗1 j = b∗2 j = b∗3 j = 0 for all j, since we
have ∂ψ

∂b j |b∗

=−(1,D′)









s∗01/s∗0j 0 0 0
0 s∗11/s∗

1
j 0 0

0 0 s∗21/s∗
2
j 0

0 0 0 s∗31/s∗
3
j

















b∗2 j +b∗3 j b∗1 j +b∗3 j b∗1 j +b∗2 j
b∗2 j−b∗3 j b∗1 j−b∗3 j −b∗1 j−b∗2 j
−b∗2 j +b∗3 j −b∗1 j−b∗3 j b∗1 j−b∗2 j
−b∗2 j−b∗3 j −b∗1 j +b∗3 j −b∗1 j +b∗2 j









. If

Ψ′′ is not singular, its maximum pole is 3/2 and its order is 1. Assume that Ψ′′ is singular that is,
(i) b∗11b∗21 = b∗2 j = b∗3 j = 0 for all j and (ii) b∗11b∗21 ,= 0,b∗1 j = b∗2 j = b∗3 j = 0 for all j. Construct the
blow-up of Ψ′′ along the submanifold {b3 j = 0,2≤ j ≤ N}. Let b32 = u and b3 j = ub′3 j for j ≥ 2.
In the case (i), the coefficient of b2 j0 is around 4ub1 j0∑N

j=2 b1 jb′3 j(1/b211− 1) + 4ub′3 j0(1− b21 j0),
since ∏i,=0∏

N
j=2 sij ∼= ∏N

j=2(1− b1 jb2 j − ub1 jb′3 j − ub2 jb′3 j + 2ub21 jb2 jb′3 j) ∼= 1+∑N
j=2(−b1 jb2 j −

ub1 jb′3 j − ub2 jb′3 j + 2ub21 jb2 jb′3 j) + ∑ j ,= j′ ub1 jb1 j′b2 jb′3 j′ , ∏i=0∏
N
j=2 sijψ1 ∼= −

4∑N
j=2 b1 jb2 j, ∏i=0∏

N
j=2 sijψ2 ∼= −4u∑N

j=2 b1 jb′3 j, and ∏i=0∏
N
j=2 sijψ3 ∼=

4∑N
j=2(−ub2 jb′3 j + 2ub21 jb2 jb′3 j) + 4∑ j ,= j′ ub1 jb1 j′b2 jb′3 j′ . If 4ub1 j0∑N

j=2 b1 jb′3 j(1/b211 − 1)+
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4ub′3 j0(1− b21 j0) = 0 for all j0 then b′3 j0 = 0 for all j0 since |b1 j| < 1. It contradicts b′32 = 1. So

(
(∏3i=0∏

N
j=2 sij(B∗

0
N)2)2ψ1ψ2

b211 detS
− (B∗0

N)2∏3
i=0∏

N
j=2 sijψ3)/u is smooth.

In the case (ii), the coefficient b2 j0 is around 4u(1− b∗21
2)b′3 j0 since s

∗0
1∏i,=0∏

N
j=2 sij ∼= 4(1+

b∗11b∗21)∏
N
j=2(1−ub2 jb′3 j)∼= 4(1+b∗11b∗21)(1−u∑

N
j=2 b2 jb′3 j), (1+b∗11b∗21)∏i=0∏

N
j=2 sijψ1∼= 4b∗11b∗21,

∏i=0∏
N
j=2 sijψ2 ∼= −4ub∗11b∗21∑

N
j=2 b2 jb′3 j, and ∏i=0∏

N
j=2 sijψ3 ∼= −4u∑N

j=2 b2 jb′3 j. So

(
(∏3i=0∏

N
j=2 sij(B∗

0
N)2)2ψ1ψ2

b211 detS
− (B∗0

N)2∏3
i=0∏

N
j=2 sijψ3)/u is smooth.

We haveΨ′′ =





b′21
b′31
ub′22



, for a variable b′22 for both cases (i) and (ii) and we have the statement

for N ≥ 2, b∗ ,= 0, b∗11 ,= 0 and ∏3
i=1 b∗i j = 0 for all j.

Let N ≥ 2 and b∗ = 0.
Construct the blow-up of Ψ′ along the submanifold {bi j = 0,1≤ i≤M,1≤ j ≤ N}.
Let b11 = u and bi j = ub′i j for (i, j) ,= (1,1).

We have Ψ′′ = u2(detS)





b′21
b′31

b′21b′31



 + 4u2




∑N
k=2 b′1kb′2k +u2 f1

∑N
k=2 b′1kb′3k +u2 f2

∑N
k=2 b′2kb′3k +u2 f3



, where f1, f2 and f3 are

polynomials of b′i j of at least degree two.

By setting
(

b′′21
b′′31

)

=

(

b′21
b′31

)

+4
(

∑N
k=2 b′1kb′2k +u2 f1

∑N
k=2 b′1kb′3k +u2 f2

)

/(detS), we have

Ψ′′ =
u2

detS

×





(detS)2b′′21
(detS)2b′′31

(b′′21 detS−4∑
N
k=2 b′1kb′2k−4u2 f1)(b′′31 detS−4∑

N
k=2 b′1kb′3k−4u2 f2)





+u2




0
0

4∑N
k=2 b′2kb′3k +4u2 f3



.

By using Lemma 6 again, the maximum pole of
R

‖Ψ′′‖2zu3Ndb is that of J(z) =
R

‖Ψ′′′‖2zu3Ndb,

where Ψ′′′ = u2




b′′21
b′′31
g1



, and

g1 = (
N

∑
k=2

b′1kb′2k +u2 f1)(
N

∑
k=2

b′1kb′3k +u2 f2)+
detS
4

(
N

∑
k=2

b′2kb′3k +u2 f3).

Construct the blow-up of Ψ′′′ along the submanifold {b′′21 = 0,b′′31 = 0,b′3k = 0,2 ≤ k ≤ N}.
Then we have cases (I) and (II).

(I) Let b′32 = v, b′′21 = vb′′′21, b′′31 = vb′′′21 and b′3k = vb′′3k for 3 ≤ k ≤ N. Then Ψ′′′ = u2v





b′′′21
b′′′31
g′1



,

where g′1 = (∑N
k=2 b′1kb′2k +u2 f1)(b′12+∑N

k=3 b′1kb′′3k +u2 f2/v)+ detS
4 (b′22+∑N

k=3 b′2kb′′3k +u2 f3/v).
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By Theorem 9 (5), we can set f2 = v f ′2 and f3 = v f ′3, where f ′2 and f ′3 are polynomials.
We have

(
N

∑
k=2

b′1kb′2k)(b′12+
N

∑
k=3

b′1kb′′3k)+
detS
4

(b′22+
N

∑
k=3

b′2kb′′3k)

= (b′2,2,b′2,3, · · · ,b′2,N)





















b′1,2
b′1,3
...

b′1,N











(b′1,2,b′1,3, · · · ,b′1,N)+
detS
4

E





















1
b′′3,3
...

b′′3,N











.

Since











b′1,2
b′1,3
...

b′1,N











(b′1,2,b′1,3, · · · ,b′1,N) + detS
4 E is regular, we can change variables from

(b′2,2,b′2,3, · · · ,b′2,N) to (b′′2,2,b′′2,3, · · · ,b′′2,N) by

(b′′2,2,b′′2,3, · · · ,b′′2,N) = (b′2,2,b′2,3, · · · ,b′2,N)





















b′1,2
b′1,3
...

b′1,N











(b′1,2,b′1,3, · · · ,b′1,N)+
detS
4

E











.

Moreover, let b′′′22 = b′′2,2+b′′2,3b′′3,3+ · · ·+b′′2,Nb′′3,N .
Then, we have

Ψ′′′ = u2v





b′′′21
b′′′31

b′′′22+u2 f4



,

where f4 is a polynomial. Therefore, we have the poles −
3N
4

,−
N+1
2

and −
3
2
.

(II) Let b′′21 = v, b′′31 = vb′′′21 and b′3k = vb′′3k for 2≤ k≤ N. Then we have the poles −
3N
4
and −N+1

2 .
Q.E.D.

Appendix C.

Definition 10 (1) Let R = (ri j) be an H ×H ′ matrix, I an element of {0,1}H, and f (R,r′) an
analytic function of r11,r21, . . . ,rHH ′ ,r′1, . . . ,r′k, where r′ = (r′1, . . . ,r′k). f (R,r′) is an I-type function
of (ri j)i′≤i≤H,1≤ j≤H ′ , if for any Ii0 = 1 with i0 ≥ i′,

f (r11, · · · ,r1N ,r21, · · · ,ri0−1,N ,uri0,1, · · · ,uri0,N ,ri0+1,1, · · · ,rM,N ,r′)/u,

is an analytic function of u, where u is a variable.
(2) Let I, I′ ∈ {0,1}H. We denote I ≤ I′ if Ii ≤ I′i for all i= 1, . . . ,H, and denote I < I′ if I ≤ I′ and
I ,= I′.
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For example, BI = BIN is an I′-type function of B for all I′ ≤ I (I′ ∈ {0,1}M).

Let Ii j = i j
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) , for i< j.

Proof of Theorem 3
Assume that a∗ = 0.
Let B′Ii j = BIi j −∑N

k=1 bikb jk, which is a polynomial of at least degree four.

For I ∈ I , let I(s) ∈ {0,1}M be I(s)i =

{

0, if i≤ s,
Ii, if i> s.

We set I ′ = I −{Ii j : 1≤ i< j ≤M}.
By using a blowing up process together with an inductive method of s, we have functions (5)

and (6) below.

Z

{ ∑
1≤i< j≤M

(BIi j(s))
2+ ∑

I∈I ′
(BI(s))

2}z

uMN−11 u(M−1)N−1
2 · · ·u(M−s+1)N−1

s
s

∏
i=1

vN−i−1i dudb(s)dv, (5)

where

BIi j(s) =















u21u22 · · ·u2i ui+1 · · ·u j{ f
(s)
i j +b(s)

ji +u21B
′Ii j
(s)}, i< j ≤ s,

u21u22 · · ·u2i ui+1 · · ·us{ f
(s)
i j +b(s)

ji +u21B
′Ii j
(s)}, i≤ s< j,

u21u22 · · ·u2s{ f
(s)
i j +∑N

k=s+1 b
(s)
ik b

(s)
jk +u21B

′Ii j
(s)}, s< i< j,

BI(s) =
s

∏
k=1

u∑
M
k′=k Ii

k B′I
(s), for I ∈ I

′,

f (s)i j is an I
(s)
i j -type function of (b

(s)
kl )s+1≤k≤M,1≤l≤N ,

f (s)i j |b(s)
i1 =···=b(s)

i,min{i−1,s}=b
(s)
j1 =···=b(s)

j,min{i−1,s}=0
= 0,

B′Ii j
(s) is an I

(s)
i j -type function of (b(s)

kl )s+1≤k≤M,1≤l≤N , and B′I
(s) (I ∈ I ′) is an I(s)-type function of

(b(s)
kl )s+1≤k≤M,1≤l≤N .
For s+1≤ ! ≤M and 1≤ !′ ≤ s,

Z

{ ∑
{i< j≤s}∪{i≤s< j,i<!′}∪{i=!′, j=!}

(BIi j(s))
2}zuMN−11 u(M−1)N−1

2 · · ·u(M−s+1)N−1
s u(M−s)N−1

s+1 dudb̃, (6)

where

BIi j(s) =







u21u22 · · ·u2i ui+1 · · ·u jb̃ ji, if i< j ≤ s,
u21u22 · · ·u2i ui+1 · · ·us+1b̃ ji, if i≤ s< j, i< !′,
u21u22 · · ·u2!′u!′+1 · · ·us+1, if i= !′, j = !.
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C.1 Step 1

Construct the blow-up of function (3) along the submanifold {bi j = 0,1≤ i≤M,1≤ j ≤ N}.
Let b11 = u1, bi j = u1b′i j, (i, j) ,= (1,1).
Then we have BI1 j = u21(b′j1+∑N

k=2 b′1kb′ jk +B′I1 j/u21) for j ≥ 2 and BIi j = u21(∑
N
k=1 b′ikb′ jk +

B′Ii j/u21) for 2≤ i< j.
Let b′′ j1 = b′ j1+∑N

k=2 b′1kb′ jk for j ≥ 2.
Then for 2≤ i< j,

N

∑
k=1

b′ikb′ jk = (b′′i1−
N

∑
k=2

b′1kb′ik)(b′′ j1−
N

∑
k=2

b′1kb′ jk)+
N

∑
k=2

b′ikb′ jk

= b′′i1(b′′ j1−
N

∑
k=2

b′1kb′ jk)− (
N

∑
k=2

b′1kb′ik)b′′ j1+(
N

∑
k=2

b′1kb′ik)(
N

∑
k=2

b′1kb′ jk)+
N

∑
k=2

b′ikb′ jk

= f (1)i j +(b′i2, . . . ,b′iN)











b′12
b′13
...

b′1N











(b′12, . . . ,b′1N)











b′ j2
b′ j3
...

b′ jN











+(b′i2, . . . ,b′iN)











b′ j2
b′ j3
...

b′ jN











,

where f (1)i j = b′′i1(b′′ j1 − ∑N
k=2 b′1kb′ jk) − (∑N

k=2 b′1kb′ik)b′′ j1 is an I(1)i j -type function of










b′′21 b′22 · · · b′2N
b′′31 b′32 · · · b′3N
...

...
...

...
b′′M1 b′M2 · · · b′MN











with f (1)i j |b′′i1=b′′j1=0 = 0.

Next, construct the blow-up along the submanifold {b′12 = b′13 = · · · = b′1N = 0}.
Let b′12 = v1, b′13 = v1b′′13, · · · , b′1N = v1b′′1N .
Then we have, for 2≤ i< j,

(b′i2, . . . ,b′iN)











b′12
b′13
...

b′1N











(b′12, . . . ,b′1N)











b′ j2
b′ j3
...

b′ jN











+(b′i2, . . . ,b′iN)











b′ j2
b′ j3
...

b′ jN











= (b′i2, . . . ,b′iN)











v21











1
b′′13
...

b′′1N











(1,b′′13, · · · ,b′′1N)+











1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1































b′ j2
b′ j3
...

b′ jN











.
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Let Qi =
√

1+b′′213+ · · ·+b′′21i and

G=







































1
QN

−b′′13
Q3 · · · −b′′1i

Qi−1Qi · · · −b′′1N
QN−1QN

b′′13
QN

1
Q3 · · · −b′′13b′′1i

Qi−1Qi · · · −b′′13b′′1N
QN−1QN

b′′14
QN 0 · · · −b′′14b′′1i

Qi−1Qi · · · −b′′14b′′1N
QN−1QN

...
...

...
...

−b′′1,i−1b′′1i
Qi−1Qi
Qi−1
Qi
0

...
... · · ·

... · · ·
...

b′′1N
QN 0 · · · 0 · · · QN−1

QN







































.

Then we have

v21











1
b′′13
...

b′′1N











(1,b′′13, · · · ,b′′1N)+











1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1











= v21G











1+b′′213+ · · ·+b′′21N 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0











Gt +











1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1











= G











v21











1+b′′213+ · · ·+b′′21N 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0











+











1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1





















Gt

= G











1+ v21(1+b′′213+ · · ·+b′′21N) 0 · · · 0
0 1 0 · · · 0
...

... · · ·
...

0 0 · · · 1











Gt .

Therefore, we can change the variables from (b′i2,b′i3, · · · ,b′iN) to (b′′i2,b′′i3, · · · ,b′′iN) by











b′′i2
b′′i3
...

b′′iN











=













√

1+ v21(1+b′′213+ · · ·+b′′21N) 0 · · · 0
0 1 0 · · · 0
...

... · · ·
...

0 0 · · · 1













Gt











b′i2
b′i3
...

b′iN











.
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We have

(b′i2,b′i3, · · · ,b′iN)











v21











1
b′13
...

b′1N











(1,b′13, · · · ,b′1N)+











1 0 · · · 0
0 1 · · · 0
...
...

...
...

0 0 · · · 1































b′ j2
b′ j3
...

b′ jN











=
N

∑
k=2

b′′ikb′′ jk.

Let b(1)
ik = b′′ik for 1 ≤ i ≤ M,1 ≤ k ≤ N and (i,k) ,= (1,1), B′Ii j

(1) = B′Ii j/u41 for 1 ≤ i < j ≤ M

and BI(1) = BI/u∑
M
k=1 Ii
1 for I ∈ I ′.

We have BI1 j = u21(b
(1)
j1 + u21B

′I1 j
(1) ) for 1 < j, BIi j = u21( f

(1)
i j +∑N

k=2 b
(1)
ik b

(1)
jk + u21B

′Ii j
(1)) for 1 < i <

j and BI = u∑
M
k=1 Ii
1 BI(1) for I ∈ I ′, where f (1)i j is an I(1)i j -type function of (b(1)

kl )2≤k≤M,1≤l≤N with

f (1)i j |b(1)
i1 =b(1)

j1 =0 = 0, B′Ii j
(1) is an I

(1)
i j -type function of (b(1)

kl )2≤k≤M,1≤l≤N , and B′I
(1) is an I

(1)-type func-

tion of (b(1)
kl )2≤k≤M,1≤l≤N .

C.2 Step 2

Assume Eq. (5). Construct the blow-up of function (5) along the submanifold {b(s)
i j = 0,s+1≤ i≤

M,1≤ j ≤ N}.
Let b(s)

i j = us+1b′
(s)
i j .

We have

BIi j(s) =















u21u22 · · ·u2i ui+1 · · ·u j{ f
(s)
i j +b(s)

ji +u21B
′Ii j
(s)}, i< j ≤ s,

u21u22 · · ·u2i ui+1 · · ·usus+1{ f
(s)
i j /us+1+b′(s)ji +u21B

′Ii j
(s)/us+1}, i≤ s< j,

u21u22 · · ·u2s u2s+1{ f
(s)
i j /u2s+1+∑N

k=s+1 b′
(s)
ik b

′(s)
jk +u21B

′Ii j
(s)/u

2
s+1}, s< i< j,

and

BI(s) =
s+1

∏
k=1

u∑
N
k′=k Ii

k B′I
(s)/u

∑Nk′=s+1 Ii
s+1 , I ∈ I

′.

We may consider b′(s)s+1,s+1 = 1 or b′(s)!,!′ = 1 for some s+1≤ ! ≤M and 1≤ !′ ≤ s.

If b′(s)!,!′ = 1 for some s+1≤ ! ≤M and 1≤ !′ ≤ s, then we have function (6) by using

f (s)i j |b(s)
i1 =···=b(s)

i,min{i−1,s}=b
(s)
j1 =···=b(s)

j,min{i−1,s}=0
= 0,

and Lemma 6.
Let b′(s)s+1,s+1 = 1.

Set b′′(s)j,s+1 = b′(s)j,s+1+∑N
k=s+2 b′

(s)
s+1,kb

′(s)
jk for j ≥ s+2.
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Then for s+2≤ i< j,

f (s)i j /u2s+1+
N

∑
k=s+1

b′(s)ik b
′(s)
jk

= f (s)i j /u2s+1+(b′′(s)i,s+1−
N

∑
k=s+2

b′(s)s+1,kb
′(s)
ik )(b′′(s)j,s+1−

N

∑
k=s+2

b′(s)s+1,kb
′(s)
jk )+

N

∑
k=s+2

b′(s)ik b
′(s)
jk

= f (s)i j /u2s+1+b′′(s)j,s+1(b
′′(s)
i,s+1−

N

∑
k=s+2

b′(s)s+1,kb
′(s)
ik )−b′′(s)i,s+1(

N

∑
k=s+2

b′(s)s+1,kb
′(s)
jk )

+(
N

∑
k=s+2

b′(s)s+1,kb
′(s)
ik )(

N

∑
k=s+2

b′(s)s+1,kb
′(s)
jk )+

N

∑
k=s+2

b′(s)ik b
′(s)
jk .

Let f (s+1)i j = f (s)i j /u2s+1+b′′(s)j,s+1(b′′
(s)
i,s+1−∑

N
k=s+2 b′

(s)
s+1,kb

′(s)
ik )−b′′(s)i,s+1(∑

N
k=s+2 b′

(s)
s+1,kb

′(s)
jk ). Then

f (s+1)i j is an I(s+1)i j -type function of









b′′(s)s+2,1 b′(s)s+2,2 · · · b′(s)s+2,N
...

...
...

...
b′′(s)M1 b′(s)M2 · · · b′(s)MN









with

f (s+1)i j |b′′(s)i1 =···=b′′(s)i,s+1=b′′
(s)
j1 =···=b′′(s)j,s+1=0

= 0.

Next, construct the blow-up along the submanifold {b′(s)s+1,s+2 = b′(s)s+1,s+3 = · · · = b′(s)s+1,N = 0}.

Let b′(s)s+1,s+2 = vs, b′
(s)
s+1,s+3 = vsb′′

(s)
s+1,s+3, · · · ,

b′(s)s+1,N = vsb′′
(s)
s+1,N .

Let Q(s)
i =

√

1+b′′(s)s+1,s+3
2
+ · · ·+b′′(s)s+1,i

2
and

G(s) =























































1
QN

−b′′(s)s+1,s+3
Q(s)
s+3

· · ·
−b′′(s)s+1,i
Q(s)
i−1Q

(s)
i

· · ·
−b′′(s)s+1,N
Q(s)
N−1Q

(s)
N

b′′(s)s+1,s+3
Q(s)
N

1
Q(s)
s+3

· · ·
−b′′(s)s+1,s+3b

′′(s)
s+1,i

Q(s)
i−1Q

(s)
i

· · ·
−b′′(s)s+1,s+3b

′′(s)
s+1,N

Q(s)
N−1Q

(s)
N

b′′(s)s+1,s+4
Q(s)
N

0 · · ·
−b′′(s)s+1,s+4b

′′(s)
s+1,i

Q(s)
i−1Q

(s)
i

· · ·
−b′′(s)s+1,s+4b

′′(s)
s+1,N

Q(s)
N−1Q

(s)
N

...
...

...
...

−b′′(s)s+1,i−1b
′′(s)
s+1,i

Q(s)
i−1Q

(s)
i

Q(s)
i−1

Q(s)
i
0

...
... · · ·

... · · ·
...

b′′(s)s+1,N
Q(s)
N

0 · · · 0 · · ·
Q(s)
N−1

Q(s)
N























































.
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Change variables from (b′(s)i,s+2,b′
(s)
i,s+3, · · · ,b′

(s)
iN ) to (b′′(s)i,s+2,b′′

(s)
i,s+3, · · · ,b′′

(s)
iN ) by













b′′(s)i,s+2
b′′(s)i,s+3
...

b′′(s)iN













=















√

1+ v2(1+b′′(s)s+1,s+3
2
+ · · ·+b′′(s)s+1,N

2
) 0 · · · 0

0 1 0 · · · 0
...

... · · ·
...

0 0 · · · 1















G(s)t













b′(s)i,s+2
b′(s)i,s+3
...

b′(s)iN













.

We have

(
N

∑
k=s+2

b′(s)s+1,kb
′(s)
ik )(

N

∑
k=s+2

b′(s)s+1,kb
′(s)
jk )+

N

∑
k=s+2

b(s)
ik b

(s)
jk

=
N

∑
k=s+2

b′′(s)ik b
′′(s)
jk .

Let b(s+1)
ji = b(s)

ji for i, j ≤ s and b(s+1)
ji = b′′(s)ji for i, j > s and (i, j) ,= (s+ 1,s+ 1). Also let

f (s+1)i j = f (s)i j for i < j ≤ s, f (s+1)i j = f (s)i j /us+1 for i ≤ s < j, f (s+1)s+1, j = f (s)s+1, j/u2s+1 for j > s+ 1,
B′Ii j

(s+1) = B′Ii j
(s) for i < j ≤ s, B′Ii j

(s+1) = B′Ii j
(s)/us+1 for i ≤ s < j, B′Ii j

(s+1) = B′Ii j
(s)/u

2
s+1 for s < i < j and

B′I
(s+1) = B′I

(s)/u
∑Nk′=s+1 Ii
s+1 for I ∈ I ′. Then we have Eq. (5) with s+1.

C.3 Step 3

From the above induction (1≤ s≤ N+1), we finally have Eq. (6) since we assume that N <M.
Note that we have the same inductive results for

Z

{ ∑
1≤i< j≤M

(
N

∑
k=1

bikb jk)2}zdb, (7)

instead of the function in Eq. (3). This means that the maximum pole, and its order, of the function
in Eq. (3) are those of the function in Eq. (7).

Now we again consider the maximum pole of the function in Eq. (7) and its order.
In Step3, we use the same symbol b rather than b(s) for the sake of simplicity.
We need to consider the following function with the inductive method with s.

Z

{u41u42 · · ·u4s ∑
1≤i< j≤M,i≤s

b2ji+u41u42 · · ·u4s ∑
s+1≤i< j≤M

(
N

∑
k=s+1

bikb jk)2}z

s

∏
k=1

u(M−k+1)(N−k+1)+(2M−k)(k−1)−1
k dudb. (8)

First, we set the variables the same as in Step 1. Then we have

Z

{u41 ∑
2≤ j≤M

b2j1+u41 ∑
2≤i< j≤M

( f (1)i j +
N

∑
k=2

bikb jk)2}zuMN−11 dudb.
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By using Lemma 6 again, we need to consider

Z

{u41 ∑
2≤ j≤M

b2j1+u41 ∑
2≤i< j≤M

(
N

∑
k=2

bikb jk)2}zuMN−11 dudb.

Assume Eq. (8). Construct the blow-up of function (8) along the submanifold {b ji = 0,1≤ i<
j ≤M, i≤ s,bkl = 0,s+1≤ k ≤M,s+1≤ l ≤ N}.
Then we have

Z

{u41u42 · · ·u4s u2s+1 ∑
1≤i< j≤M,i≤s

b2ji+u41u42 · · ·u4s u4s+1 ∑
s+1≤i< j≤M

(
N

∑
k=s+1

bikb jk)2}z

u(M−s)(N−s)+(2M−1−s)s/2−1
s+1

s

∏
k=1

u(M−k+1)(N−k+1)+(2M−k)(k−1)−1
k dudb,

where we can set b21 = 1 or bs+1,s+1 = 1.
If b21 = 1, we have the poles

(M− k+1)(N− k+1)+(2M− k)(k−1)
4

,k = 1, . . . ,s

and
(M− s)(N− s)+(2M−1− s)s/2

2
.

If bs+1,s+1 = 1, then by setting the variables the same as in Step 2 and by using Lemma 6, we
have

Z

{u41u42 · · ·u4s u2s+1 ∑
1≤i< j≤M,i≤s

b2ji

+u41u42 · · ·u4s u4s+1( ∑
s+1< j≤M

b2j,s+1+ ∑
s+2≤i< j≤M

(
N

∑
k=s+2

bikb jk)2)}z

u(M−s)(N−s)+(2M−1−s)s/2−1
s+1

s

∏
k=1

u(M−k+1)(N−k+1)+(2M−k)(k−1)−1
k dudb. (9)

Construct the blow-up of function (9) along the submanifold {b ji = 0,1 ≤ i < j ≤ M, i ≤
s,us+1 = 0}.

Then we have Eq. (8) with s+1, that is,
Z

{u41u42 · · ·u4s u4s+1 ∑
1≤i< j≤M,i≤s

b2ji

+u41u42 · · ·u4s u4s+1( ∑
s+1< j≤M

b2j,s+1+ ∑
s+2≤i< j≤M

(
N

∑
k=s+2

bikb jk)2)}z

u(M−s)(N−s)+(2M−1−s)s−1
s+1

s

∏
k=1

u(M−k+1)(N−k+1)+(2M−k)(k−1)−1
k dudb.
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or
Z

{u41u42 · · ·u4s u2s+1b421(1+ ∑
1≤i< j≤M,i≤s,(i, j),=(1,2)

b2ji)

+u41u42 · · ·u4s u4s+1b421( ∑
s+1< j≤M

b2j,s+1+ ∑
s+2≤i< j≤M

(
N

∑
k=s+2

bikb jk)2)}z

u(M−s)(N−s)+(2M−1−s)s/2−1
s+1 b(M−s)(N−s)+(2M−1−s)s−1

21
s

∏
k=1

u(M−k+1)(N−k+1)+(2M−k)(k−1)−1
k dudb,

which have the poles

(M− k+1)(N− k+1)+(2M− k)(k−1)
4

,k = 1, . . . ,s+1,

and
(M− s)(N− s)+(2M−1− s)s/2

2
.

Finally, we have
Z

{u41u42 · · ·u4N ∑
1≤i< j≤M,i≤N

b2ji}z
N

∏
k=1

u(M−k+1)(N−k+1)+(2M−k)(k−1)−1
k dudb,

and obtain the poles

(M− k+1)(N− k+1)+(2M− k)(k−1)
4

,k = 1, . . . ,N,

and
(2M−1−N)N

4
.

Therefore, since we assume that M > N, we have the maximum pole −λ = −MN
4 and its order

θ=

{

1, if M > N+1,
M, if M = N+1. Q.E.D.

Proof of Theorem 4
Assume that a∗ = 0
By the proof of Theorem 3, the maximum pole of

R

{∑1≤i< j≤M(BIi j)2}zdb is that of
R

{∑1≤i< j≤M(∑N
k=1 bikb jk)2}zdb even for M ≤ N. If M ≤ N then the maximum pole of

R

{∑1≤i< j≤M(∑N
k=1 bikb jk)2}zdb is −M(M − 1)/4. Therefore the maximum pole −λ of

R

{∑I ,=0∈I (BI)2}zdb satisfies λ≥M(M−1)/4, since ∑1≤i< j≤M(BIi j)2 ≤ ∑I ,=0∈I (BI)2.
Next let us prove that λ ≤ 2N+(M−1)(M−2)

4 . Consider Eq. (6) with ! = M, !′ = M− 1 and
s=M−1.

Let b̃ ji = uMb̃′ji for i< j <M. Then we have the pole

N+(M−2)(M−1)/2
2

.

For a∗ ,= 0, Lemma 7 yields the statement.
Q.E.D.
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Abstract
We introduce novel results for approximate inference on planar graphical models using the loop
calculus framework. The loop calculus (Chertkov and Chernyak, 2006a) allows to express the
exact partition function of a graphical model as a finite sum of terms that can be evaluated once the
belief propagation (BP) solution is known. In general, full summation over all correction terms is
intractable. We develop an algorithm for the approach presented in Chertkov et al. (2008) which
represents an efficient truncation scheme on planar graphs and a new representation of the series
in terms of Pfaffians of matrices. We analyze the performance of the algorithm for models with
binary variables and pairwise interactions on grids and other planar graphs. We study in detail both
the loop series and the equivalent Pfaffian series and show that the first term of the Pfaffian series
for the general, intractable planar model, can provide very accurate approximations. The algorithm
outperforms previous truncation schemes of the loop series and is competitive with other state of
the art methods for approximate inference.
Keywords: belief propagation, loop calculus, approximate inference, partition function, planar
graphs, Ising model

1. Introduction

Graphical models are popular tools widely used in many areas which require modeling of uncer-
tainty. They provide an effective approach through a compact representation of the joint probability
distribution. The two most common types of graphical models are Bayesian networks (BN) and
Markov random fields (MRFs).

The partition function of a graphical model, which plays the role of normalization constant
in a MRF or probability of evidence (likelihood) in a BN is a fundamental quantity which arises
in many contexts such as hypothesis testing or parameter estimation. Exact computation of this
quantity is only feasible when the graph is not too complex, or equivalently, when its tree-width is
small. Currently many methods are devoted to approximate this quantity.

The belief propagation (BP) algorithm (Pearl, 1988) is at the core of many of these approximate
inference methods. Initially thought as an exact algorithm for tree graphs, it is widely used as an
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approximation method for loopy graphs (Murphy et al., 1999; Frey and MacKay, 1998). The exact
partition function is explicitly related to the BP approximation through the loop calculus framework
introduced by Chertkov and Chernyak (2006a). Loop calculus allows to express the exact partition
function as a finite sum of terms (loop series) that can be evaluated once the BP solution is known.
Each term maps uniquely to a subgraph, also denoted as a generalized loop, where the connectivity
of any node within the subgraph is at least degree two. Summation of the entire loop series is a
hard combinatorial task since the number of generalized loops is typically exponential in the size
of the graph (see also Watanabe and Fukumizu, 2009). However, different approximations can be
obtained by considering different subsets of generalized loops in the graph.

It has been shown empirically (Gómez et al., 2007; Chertkov and Chernyak, 2006b) that trun-
cating this series may provide efficient corrections to the initial BP approximation. More precisely,
whenever BP performs satisfactorily, which occurs in the case of sufficiently weak interactions be-
tween variables (or short-range influence of loops), accounting for only a small number of terms is
sufficient to recover the exact result. On the other hand, for those cases where BP requires many
iterations to converge, many terms of the series are required to improve substantially the approxi-
mation. Nevertheless, a formal characterization of the classes of problems which are tractable via
loop calculus still remains an open question.

A step toward this goal with a focus on the class of planar graphs has been done in Chertkov
et al. (2008). A graph is said to be planar if it can be embedded into a plane without crossing edges.
Chertkov et al. (2008) showed that under this condition summation of certain (large) subset of terms
can be performed in polynomial time via mapping to the problem of counting perfect matchings. A
perfect matching is a subset of edges where every vertex has exactly one attached edge in the subset.
Furthermore, the full loop series can be expressed as a sum over certain Pfaffians (or determinants),
where each Pfaffian may account for a large number of loops and is solvable in polynomial time as
well.

The approach of Chertkov et al. (2008) builds upon classical results from Fisher (1961), Kaste-
leyn (1961) and Temperley and Fisher (1961) who addressed the question of counting the number of
perfect matchings on a planar grid, also known as the dimer covering problem in statistical physics.
These classical results are consistent with the following related statement: the partition function of
a planar graphical model defined in terms of binary variables can be solved in polynomial time by
computing an appropriate Pfaffian under the key restriction that pairwise interactions only depend
on agreement or disagreement between the signs of their variables, and not on their individual val-
ues. Such a model is known in statistical physics as planar Ising model without external field and
in the machine learning community as planar, binary MRF with pure interaction potentials. Notice
that exact inference for a general binary graphical model on a planar graph, namely Ising model
with external field, is intractable, in particular #P (Barahona, 1982). A gentle overview of counting
perfect matchings in planar graphs can be found in Jerrum (2003).

Recently, other inference methods models based on the Fisher-Temperley-Kasteleyn (FTK)
method have been introduced in the machine learning community. Globerson and Jaakkola (2007)
obtained upper bounds on the partition function for non-planar graphs with binary variables by
decomposition of the partition function into a weighted sum over partition functions of spanning
tractable (zero field) planar models. The resulting problem is a convex optimization problem and,
since exact inference can be done in each planar sub-model via the FTK method, the bound can be
calculated in polynomial time.

1274



APPROXIMATE INFERENCE ON PLANAR GRAPHS USING LOOP CALCULUS AND BP

Another example is the work of Schraudolph and Kamenetsky (2008) which provides a frame-
work for exact inference on a restricted class of planar graphs using directly the FTK approach.
Since a planar Ising model can be transformed to a model without external field at the cost of in-
troducing additional edges, one can allow local fields for a subset B of variables. If the graphical
model is B−outerplanar, which means that there exists a planar embedding in which the subset B
of the nodes lie on the same face, the FTK technique can still be applied.

Contrary to these two approaches, which rely on exact inference on a tractable planar model,
the loop calculus directly leads to a framework for approximate inference on general planar graphs.
Truncating the loop series according to Chertkov et al. (2008) already gives the exact result in the
zero external field case. In the general planar case, however, this truncation may result into an
accurate approximation that can be incrementally corrected by considering subsequent terms in the
series.

In the next Section we review the main theoretical results of the loop calculus approach for
planar graphs and introduce the proposed algorithm for approximating the partition function and
single-variable marginals. In Section 3 we provide experimental results for regular grids and other
types of planar graphs. We focus on a planar-intractable binary model with symmetric pairwise
interactions but nonzero single variable potentials.1 We end this manuscript with conclusions and
discussion of future work in Section 4.

2. Belief Propagation and Loop Series for Planar Graphs

We consider the Forney graph representation, also called general vertex model (Jr., 2001; Loeliger,
2004), of a probability distribution p(σσσ) defined over a vector σσσ of binary variables (vectors are
denoted using bold symbols). Forney graphs are associated with general graphical models which
subsume other factor graphs, for instance those correspondent to BNs and MRFs. In Appendix A
we explain how our approach is related to the more common bipartite factor graph model.

A binary Forney graph G := (V ,E) consists of a set of nodes V where each node a ∈ V
represents an interaction and each edge (a,b) ∈E represents a binary variable ab which take values
σab := {±1}. We denote ā the set of neighbors of node a. Interactions fa (σσσa) are arbitrary functions
defined over typically small subsets of variables where σσσa is the vector of variables associated with
node a, that is, σσσa := (σab1 ,σab2 , . . .) where bi ∈ ā.

The joint probability distribution of such a model factorizes as:

p(σσσ) = Z−1∏
a∈V

fa (σσσa), Z =∑
σσσ
∏
a∈V

fa (σσσa), (1)

where Z is the normalization factor, also called the partition function.
From a variational perspective, a fixed point of the BP algorithm represents a stationary point

of the Bethe ”free energy” approximation under proper constraints (Yedidia et al., 2000). In the
Forney style notation:

ZBP = exp
(

−FBP
)

, (2)

FBP =∑
a
∑
σσσa

τa (σσσa) ln
(

τa(σσσa)
fa(σσσa)

)

−∑
b∈ā
∑
σab

τab (σab) lnτab (σab),

1. The source code used in this paper is freely available at http://www.mbfys.ru.nl/staff/v.gomez/.
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where τa(σσσa) and τab(σab) are the beliefs (pseudo-marginals) associated with each node a ∈ V and
edge (a,b) ∈E . For graphs without loops, Equation (2) coincides with the Gibbs ”free energy” and
therefore ZBP coincides with the exact partition function Z. If the graph contains loops, ZBP is just
an approximation critically dependent on how strong the influence of the loops is.

We introduce now some convenient definitions related to the loop calculus framework.

Definition 1 A generalized loop in a graph G := 〈V ,E〉 is any subgraph C := 〈V ′,E ′〉, V ′ ⊆
V ,E ′ ⊆ (V ′ ×V ′)∩E such that each node in V ′ has degree two or larger.

For simplicity, we will use the term ”loop”, instead of ”generalized loop”, in the rest of this
manuscript. Loop calculus allows to represent Z explicitly in terms of the BP approximation via
the loop series expansion:

Z = ZBP · z, z=

(

1+ ∑
C∈C

rC

)

, rC =∏
a∈C

µa;āC , (3)

where C is the set of all the loops within the graph and āC the set of neighbors of node a within the
loopC. Each term rC is a product of terms µa;āC associated with every node a of the loopC:

µa;āC =
Eτa

[

∏b∈āC (σab−mab)
]

√

∏b∈āCVarτab(σab)
, mab = Eτab [σab] , (4)

where we have used Eτ [·] to denote expectation with respect to the pseudo-marginal distribution τ.
Equation (4) states that all terms of the expansion can be written as correlation functions between
associated variables defined on the BP pseudo-marginals. In the case of {±1} alphabet we have:

µa;āC =
∑σσσa

(

τa (σσσa)∏b∈āC (σab−mab)
)

∏b∈āC

√

1−m2ab
, mab = τab(+1)− τab(−1). (5)

In this work we consider planar graphs where nodes have degree at most three, that is |āC|≤ 3.
We denote by triplet a node with degree exactly three in the graph. In Appendix A.2 we show how a
graphical model stated in a bipartite factor graph representation can be converted to a Forney graph
which satisfies this constraint at the cost of introducing auxiliary nodes.

Definition 2 A 2-regular loop is a loop in which all nodes have degree exactly two.

Definition 3 The 2-regular partition function Z /0 is the truncated form of (3) which sums all 2-
regular loops only:2

Z /0 = ZBP · z /0, (6)
z /0 = 1+ ∑

C∈C ,
|āC|=2,∀a∈C

rC.

As an example, Figure 1a shows a small Forney graph and Figure 1c shows seven loops found in
the corresponding 2-regular partition function.

2. Notice that this is the single-connected partition function in Chertkov et al. (2008). We use the term 2-regular partition
function instead because loops with more than one connected component are also included in this part of the series.
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Figure 1: Example. (a) A Forney graph. (b) Corresponding extended graph. (c) Loops (in bold)
included in the 2-regular partition function. (d) Loops (in bold) not included in the 2-
regular partition function. Marked nodes denote triplets. Grouped in gray squares, the
loops considered in different subsets Ψ of triplets: (d.1) Ψ = {c,h}, (d.2) Ψ = {e, l},
(d.3) Ψ= {h, l}, (d.4) Ψ= {c,e} and (d.5) Ψ= {c,e,h, l} (see Section 2.3).

Definition 4 Consider the set P of all permutations α of the set S = {1, . . . ,2n} in pairs: α =
(i1, j1), . . . ,(in, jn)), ik < jk,∀k = 1, . . . ,n. The Pfaffian of a skew-symmetric matrix A= (Ai j)1≤i< j≤2n
with (Ai j = −Aji) is:

Pfaffian(A) = ∑
α∈P

sign(α) ∏
(i, j)∈α

Ai j,

where the sign of a permutation α is −1 if the number of transpositions to get α from S is odd and
+1 otherwise. The following identity allows to obtain the Pfaffian up to a sign by computing the
determinant:

Pfaffian2(A) = Det(A).
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GÓMEZ, KAPPEN AND CHERTKOV

G

a

c

b

1

1

µa;{b,c}

a

c

b

d

1

1

µa;{b,c}

1µa;{c,d}

µa;{b,d}

Gext

Figure 2: Fisher’s rules. (Top) A node a of degree two in G is split in two nodes in Gext . (Bottom)
A node a of degree three in G is split in three nodes in Gext . The squares on the right
indicate all possible matchings in Gext related to node a. Note that the rules preserve
planarity.

2.1 Computing the 2-regular Partition Function Using Perfect Matchings

In Chertkov et al. (2008) it has been shown that computation of Z /0 in a Forney graph G can be
mapped to the computation of the sum of all weighted perfect matchings within another extended
weighted graph Gext := (VGext ,EGext ). A perfect matching is defined as a subset of edges such that
each node neighbors exactly one edge from the subset and its weight is the product of weights of
edges in it. The key idea of this mapping is that 2-regular loops in G are in one-to-one correspon-
dence to perfect matchings in Gext (see Figures 1b and c for an illustration). If Gext is planar, the
sum of its weighted perfect matchings can be calculated in polynomial time via the FTK approach,
evaluating the Pfaffian of an associated matrix. Here we reproduce these results with little variations
and emphasis on the algorithmic aspects.

Given a Forney graph G and the BP approximation, we obtain the 2-core of G by removing
nodes of degree 1 recursively. The 2-core excludes all nodes that do not appear in any loop. After
this step, G is either the null graph (and then BP is exact) or it is only composed of vertices of
degree two or three.

To construct Gext we split each node in G according to the rules introduced by Fisher (1966)
and illustrated in Figure 2. The procedure results in an extended graph of |VGext |≤ 3|V | nodes and
|EGext | ≤ 3|E | edges. To see that each 2-regular loop in G is associated with a perfect matching in
Gext consider, for instance, the vertex of degree three in the bottom of Figure 2. Given a 2-regular
loopC, vertex a can appear in four different configurations: either node a does not appear inC, orC
contains one of the following three paths: -b-a-c-, -b-a-d- or -c-a-d-. These four cases correspond
to node terms in a loop with values 1, µa;{b,c}, µa;{b,d} and µa;{c,d} respectively, and coincide with
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the matchings in Gext shown within the box on the bottom-right. An simpler argument applies to the
vertex of degree two of the top portion of Figure 2.

Therefore, if we associate to each internal edge (new edge in Gext not in G ) of each split node a
the corresponding weight µa;āC of Equation (4) and to the external edges (existing edges already in
G ) weight 1, the sum over all weighted perfect matchings defined on Gext is precisely z /0:

z /0 =∑perfect matchings in Gext .

The 2-regular partition function Z /0 is obtained using Equation (6).
Kasteleyn (1963) provided a method to compute this sum in polynomial time for planar graphs.

First, edges are properly oriented in such a way that for every face (except possibly the external
face) the number of clockwise oriented edges is odd. We use the linear time algorithm in Karpinski
and Rytter (1998) described here as Algorithm 1 to produce such an orientation. It receives an
undirected graph Gext and constructs a copy G ′

ext := (VG ′
ext ,EG ′

ext )with properly oriented edges EG ′
ext .

It is convenient that Gext is bi-connected, that is, has no articulation points. If needed, we add edges
with zero weight which do not alter Z.

Algorithm 1 Pfaffian orientation
Arguments: undirected bi-connected extended graph Gext .
1: Construct a planar embedding Ḡext of Gext .
2: Construct a spanning tree T of Ḡext .
3: Construct a graph H having vertices corresponding to the faces of Ḡext :
Connect two vertices in H if the respective face boundaries share an edge not in T .
H is a tree. Root H to the external face.

4: G ′
ext := T .

5: Orient all edges in G ′
ext arbitrarily.

6: for all face (vertex in H) traversed in post-order do
7: Add to G ′

ext the unique edge not in G ′
ext .

8: Orient it such that the number of clock-wise oriented edges is odd.
9: end for
10: RETURN directed bi-connected extended graph G ′

ext .

Second, denote µi j the weight of the edge between nodes i and j in G ′
ext and define the following

skew-symmetric matrix:

Âi j =











+µi j if (i, j) ∈ EG ′
ext

−µi j if ( j, i) ∈ EG ′
ext

0 otherwise
.

The Pfaffian of Âi j is the weighted sum of all perfect matchings. Calculation of z /0 can be performed
in time O(N3Gext ):

z /0 =
√

Det(Â).

For the tractable case, namely, Ising model without external field or pairwise MRF with pure
interaction potentials, the 2-regular partition function coincides with the exact partition function Z=
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Z /0 = ZBP · z /0 since other terms in the loop series vanish. In this case, it can be shown that all terms
µa;{b,c,d} associated with triplets a (vertices with degree three in G ) are zero using the following
argument: first, note that a BP fixed point is attained when all variables have zero magnetizations,
that is, uniform beliefs τab(σab) = 1/2, which reduces Equation (5) to:

µa;{b,c,d} =∑
σσσa

τa (σσσa)σabσacσad . (7)

Second, since by construction pseudo-marginals on the triplets τa (σσσa) only depend on agree-
ment or disagreement between the variables:

τa(σσσa) =

{

τa(=), for σab = σac = σad ,

τa(,=), otherwise,

it suffices to see that for each term τa(σσσa)σabσacσad in the sum, the ”symmetric” term where σab,σac
and σad are replaced by their opposite values, has same absolute value but different sign, therefore
the sum (7) is zero.

2.2 Computing Estimates of Marginal Distributions

Given the estimate Z /0, estimates for the marginals Pab(σab) can be obtained:

Pab(σab) =
∂ logZ /0(θab)
∂θab(σab)

∣

∣

∣

∣

θab→0
, where Z /0(θab) :=∑

σσσ
exp(θabσab)∏

a∈V
fa(σσσa)

is the partition sum of the network perturbed with respect to an additional local field potential θab
of variable σab.

Alternatively, one can compute different partition functions for different settings of the variables
Zσab=+1
/0 and Zσab=−1

/0 , and derive the marginals from respective ratios:

Pab(σab = +1) =
Zσab=+1
/0

Zσab=+1
/0 +Zσab=−1

/0

,

where Zσab=+1
/0 indicates the 2-regular partition function calculated from the same model condition-

ing on variable σab, that is, with variable σab fixed (clamped) to +1. Therefore, approximation
errors in the computation of any marginal can be related to approximation errors in the computation
of Z /0. In the following we will mainly focus on evaluating Z /0, although marginal probabilities will
be discussed as well.

2.3 Computing the Full Loop Series Using Perfect Matchings

Chertkov et al. (2008) established that z /0 is just the first term of a finite sum involving Pfaffians. We
briefly reproduce their results here and provide an algorithm for computing the full loop series as a
Pfaffian series.

Consider T defined as the set of all possible triplets in the original graph G . For each possible
subset Ψ ∈ T , including an even number of triplets, there exists a unique correspondence between
loops in G including the triplets in Ψ and perfect matchings in another extended graph GextΨ con-
structed after removal of the triplets Ψ in G . Using this representation the full loop series can be
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represented as a Pfaffian series, where each term ZΨ is tractable and is a product of the respective
Pfaffian and the µa;ā terms associated with each triplet of Ψ:3

z=∑
Ψ

ZΨ ZΨ = zΨ ∏
a∈Ψ

µa;ā (8)

zΨ = sign
(

Pfaffian
(

B̂Ψ
))

·Pfaffian
(

ÂΨ
)

.

where B̂Ψ corresponds to the original Kasteleyn matrix with weights +1 instead of +µi j and −1
instead of −µi j and we make explicit use of the Pfaffians to correct for the sign. The correction
sign(Pfaffian(B̂Ψ)) is necessary because loop terms can be negative and even evaluating Pfaffian(ÂΨ)
with the correct sign would only give the contribution up to a sign. In the previous Subsection, we
assumed z /0 positive.

The 2-regular partition function thus corresponds to Ψ= /0. We refer to the remaining terms of
the series (Ψ ,= /0) as higher order terms. Notice that matrices ÂΨ and B̂Ψ depend on the removed
triplets and therefore each zΨ requires different matrices and different edge orientations. In addition,
after removal of vertices inG , the resulting extended graph may be disconnected. As before, in these
cases we add dummy edges with zero weight so that Gext remains bi-connected.

Figure 1d shows loops corresponding to the higher order Pfaffian terms on our illustrative exam-
ple. The first and second subsets of triplets (d.1 and d.2) include summation over two loops whereas
the remaining Pfaffian terms include uniquely one loop.

Exhaustive enumeration of all subsets of triplets leads to a 2|T | time algorithm, which is pro-
hibitive. However, many triplet combinations may lead to forbidden configurations. Experimentally,
we found that a principled way to look for higher order Pfaffian terms with large contribution is to
search first for pairs of triplets, then groups of four, and so on. For large graphs, this also becomes
intractable. However, the key advantage of the Pfaffian representation is that Z /0 is always the term
that accounts for the largest number of loop terms in the series. In this work we do not derive any
heuristic for searching higher order Pfaffian terms with larger contributions. Instead, in Section 3.1
we study the full Pfaffian series and subsequently we restrict our attention to analyze the accuracy
of Z /0.

Algorithm 2 describes the procedure for computing all terms using Equation (8). The main loop
of the algorithm can be interrupted at any time, thus leading to a sequence of algorithms producing
corrections incrementally.

3. Experiments

In this Section we study numerically the proposed algorithm. To facilitate the evaluation and the
comparison with other algorithms we focus on the pairwise binary Ising model, a particular case of
the model (1) where factors only depend on the disagreement between variables and take the form:
log fa (σab,σac) = φaσabσac. We consider also nonzero local potentials in all variables parameter-
ized by: log fa (σab) = θabσab so that the model becomes planar-intractable.

We create different inference problems by choosing different interactions φa and local field
parameters θab. To generate them we draw independent samples from a normal distribution φa ∼
N (0,β/2) and θab ∼ N (0,βΘ), where Θ and β determine how difficult the inference problem is.
Generally, for Θ= 0 the planar problem is tractable (zero field). For Θ> 0, small values of β result

3. We omit the loop index in the triplet term µa;ā because nodes have at most degree three and therefore the set ā always
coincide in all loops which contain that triplet.
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Algorithm 2 Pfaffian series
Arguments: Forney graph G
1: z := 0.
2: for all {Ψ ∈ T , |Ψ|even} do
3: Build extended graph GextΨ applying rules of Figure 2.
4: Set Pfaffian orientation in GextΨ according to Algorithm 1.
5: Build matrices Â and B̂.
6: Compute Pfaffian with sign correction zΨ according to Equation (8).
7: z := z+ zΨ∏a∈Ψµa;ā.
8: end for
9: RETURN ZBP · z.

in weakly coupled variables (easy problems) and large values of β in strongly coupled variables
(hard problems). Larger values of Θ result in easier inference problems.

In the next Subsection we analyze the full Pfaffian series using a small example and compare it
with the original representation based on the loop series. Next, we compare our algorithm with the
following ones:4

Truncated Loop-Series for BP (TLSBP) (Gómez et al., 2007), which accounts for a certain num-
ber of loops by performing depth-first-search on the factor graph and then merging the found
loops iteratively. We adapted TSLBP as an any-time algorithm (anyTLSBP) in a way that
the length of the loop is used as the only parameter instead of the two parameters S and M
(see Gómez et al., 2007, for details). This is equivalent to setting M = 0 and discarding S.
In this way, anyTLSBP does not compute all possible loops of a certain length (in particular,
complex loops5 are not included), but search can be performed faster.

Cluster Variation Method (CVM-Loopk) A double-loop implementation of CVM (Heskes et al.,
2003). This algorithm is a special case of generalized belief propagation (Yedidia et al.,
2005) with convergence guarantees. We use as outer clusters all (maximal) factors together
with loops of four (k=4) or six (k=6) variables in the factor graph.

Tree-Structured Expectation Propagation (TreeEP) (Minka and Qi, 2004). This method per-
forms exact inference on a base tree of the graphical model and approximates the other inter-
actions. The method yields good results if the graphical model is very sparse.

When possible, we also compare with the following two variational methods which provide upper
bounds on the partition function:

Tree Reweighting (TRW) (Wainwright et al., 2005) which decomposes the parameterization of a
probabilistic graphical model as a mixture of spanning trees of the model, and then uses the
convexity of the partition function to get an upper bound.

Planar graph decomposition (PDC) (Globerson and Jaakkola, 2007) which decomposes the pa-
rameterization of a probabilistic graphical model as a mixture of tractable planar graphs (with
zero local field).

4. We use the libDAI library (Mooij, 2008) for algorithms CVM-Loopk, TreeEP and TRW.
5. A complex loop is defined as a loop which can not be expressed as the union of two or more circuits or simple loops.
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To evaluate the accuracy of the approximations we consider errors in Z and, when possible, compu-
tational cost as well. As shown in Gómez et al. (2007), errors in Z, obtained from a truncated form
of the loop series, are very similar to errors in single variable marginal probabilities, which can be
obtained by conditioning over the variables under interest. We only consider tractable instances for
which Z can be computed via the junction tree algorithm (Lauritzen and Spiegelhalter, 1988) using
8GB of memory.

The error measure for a given approximation Z′ of Z is:

error Z′ =
| logZ− logZ′|

logZ
,

and given P′
ab(σab) estimates for the exact marginals Pab(σab), the error is:

error marginals=mean(a,b)∈E
σab=±1

|P′
ab(σab)−Pab(σab)|.

As in Gómez et al. (2007), we use four different message updates for BP: fixed and random
sequential updates, parallel (or synchronous) updates, and residual belief propagation (RBP), a
method proposed by Elidan et al. (2006) which selects the next message to be updated which has
maximum residual, a quantity defined as an upper bound on the distance of the current messages
from the fixed point. We report non-convergence when none of the previous methods converged.
We report convergence at iteration t when the maximum absolute value of the updates of all the
messages from iteration t−1 to t is smaller than a threshold ϑ= 10−14.

3.1 Full Pfaffian Series

In the previous Section we have described two equivalent representations for Z in terms of the loop
series and the Pfaffian series. Here we analyze numerically how these two representations differ
using an example, shown in Figure 3 as a bipartite factor graph, for which all terms of both series
can be computed. We analyze a single instance, parameterized using Θ= 0.1 and different pairwise
interactions β ∈ {0.1,0.5,1.5}.

Figure 3: Planar bipartite factor graph used to compare the full Pfaffian series with the loop series.
Circles and black squares denote variables and factors respectively.
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Figure 4: Comparison between the full loop series and the full Pfaffian series. Each row corre-
sponds to a different value of the interaction strength β. Left column shows the error,
considering loop terms ZTLSBP(l) in log-log scale. Shaded regions include all loop terms
(not necessarily 2-regular loops) required to achieve the same (or better) accuracy than
the accuracy of the 2-regular partition function Z /0. Middle column shows the error con-
sidering Pfaffian terms ZP f (p) also in log-log scale. The first Pfaffian term corresponds
to Z /0, marked by a circle. Right column shows the values of the first 100 Pfaffian terms
sorted in descending order in |ZΨ| and excluding z /0.

We use TLSBP to retrieve all loops, 8123 for this example, and Algorithm 2 to compute all Pfaf-
fian terms. To compare the two approximations we sort all contributions, either loops or Pfaffians,
by their absolute values in descending order, and then analyze how the errors are corrected as more
terms are included in the approximation. We define partition functions for the truncated series in
the following way:

ZTLSBP(l) =ZBP
(

1+ ∑
i=1...l

rCi

)

, ZP f (p) =ZBP
(

∑
i=1...p

ZΨi

)

.

Then ZTLSBP(l) accounts for the l most contributing loops and ZP f (p) accounts for the p most con-
tributing Pfaffian terms. In all cases, the Pfaffian term with largest absolute value ZΨ1 corresponds
to z /0.

Figure 4 shows the error ZTLSBP (first column) and ZP f (second column) for both representa-
tions. For weak interactions (β = 0.1) BP converges fast and provides an accurate approximation
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with an error of order 10−4. Summation of less than 50 loop terms (top-left panel) is enough to ob-
tain machine precision accuracy. Notice that the error is almost reduced totally with Z /0 (top-middle
panel). In this scenario, higher order terms of the Pfaffian series are negligible (top-right panel).

As we increase β, the quality of the BP approximation decreases. The number of loop correc-
tions required to correct the BP error then increases. In this example, for intermediate interactions
(β = 0.5) the first Pfaffian term z /0 improves considerably, more than five orders of magnitude, on
the BP error, whereas approximately 100 loop terms are required to achieve a similar correction
(gray region of middle-left panel).

For strong interactions (β = 1.5) BP converges after many iterations and gives a poor approx-
imation. In this scenario also a larger proportion of loop terms (bottom-left panel) is necessary to
correct the BP result up to machine precision. Looking at the bottom-left panel we find that approx-
imately 200 loop terms are required to achieve the same correction as the one obtained by Z /0, which
is quite accurate (bottom-middle panel).

As the right panels show, higher order Pfaffian contributions change progressively from a flat
sequence of small terms to an alternating sequence of positive and negative terms which grow in
absolute value as β increases. These oscillations are also present in the loop series expansion.

In general, we conclude that the Z /0 correction to the BP approximation can give a significant
improvement even in hard problems for which BP converges after many iterations. Notice again
that calculating Z /0, the most contributing term in the Pfaffian series, does not require explicit search
for loop nor Pfaffian terms.

3.2 Grids

After analyzing the full Pfaffian series on a small random example we now restrict our attention
to the first Pfaffian correction using grids (nearest neighbor connectivity). First, we compare this
approximation, for both Z /0 and single-variable marginals, with other inference methods for different
types of interactions (attractive or mixed) and then study the scalability of the method with the size
of the graphs.

3.2.1 ATTRACTIVE INTERACTIONS

We first focus on binary models with ”ferromagnetic” tendency, which favors alignment of neigh-
boring variables, φa > 0. If local fields are also positive θab > 0, Sudderth et al. (2007) showed
that, under some additional condition, the BP approximation gives a lower-bound for the exact par-
tition function and all loops (and therefore Pfaffian terms too) have the same sign.6 Although this
is not formally proved for general models with attractive interactions regardless of the sign of the
local fields, numerical results suggest that this property holds as well for this more general type of
models.

We generate grids with positive interactions and local fields, that is |φa|∼N (0,β/2) and |θab|∼
N (0,βΘ), and study performance of the algorithms for various values of β, as well as for strong
Θ= 1 and weak Θ= 0.1 local fields.

Figure 5 shows the average error over 50 instances reported by different methods. For this setup,
BP converged in all instances using random sequential updates of the messages. The error curves
of all methods show an initial growth and a subsequent decrease, a fact explained by the phase

6. The condition is that all single variable beliefs at the BP fixed point must satisfy mab = τab(+1)− τab(−1) >

0,∀(a,b) ∈ E .
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Figure 5: 7x7 grid attractive interactions and positive local fields. BP converged always. Errors are
averages over 50 random instances for fixed β and Θ. Error in partition function Z for
(a) strong local fields Θ= 1 and (b) weak local fields Θ= 0.1. Error in marginals for (c)
strong local fields Θ= 1 and (d) weak local fields Θ= 0.1.

transition for Θ = 0 and β ≈ 1 (Mooij and Kappen, 2005). Figures suggest that errors are larger
as Θ approaches zero. Notice that Z /0 = Z for Θ= 0.

We observe that for all the instances Z /0 is always an improvement over the BP approximation.
Corrections are most significant for weak interactions β < 1 and strong local fields. For strong
interactions β> 1 and weak local fields, the improvement is less significant.

It appears that the Z /0 approximation performs better than TreeEP in all cases except for very
strong couplings, where the two algorithms show very similar results. For weak local fields Z /0
performs similar to CVM-Loop4 which is known to be a very accurate approximation for this type
of model, see Yedidia et al. (2000) for instance. Selecting larger outer-clusters such as loops of
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length 6 does not necessarily leads to improvements although it leads to a dramatic increase in the
computational cost.

The methods which provide upper bounds on Z (PDC and TRW) report the largest average
error. PDC performs slightly better than TRW, as was shown in Globerson and Jaakkola (2007) for
the case of mixed interactions. We note that the worse performance of PDC for strong couplings
might be attributed to implementation artifacts, since for β> 4 the algorithm suffers from numerical
precision errors. In general, both empirical upper bounds are significantly less tight than the lower
bounds provided by BP and Z /0.

Finally, bottom plots show that errors in marginals behave very similar to errors in Z.

3.2.2 MIXED INTERACTIONS

We now analyze a more general Ising model where interactions and local fields can have mixed
signs. In that case, ZBP and Z /0 are no longer lower bounds on Z and loop terms can be positive or
negative. Figure 6 shows results for this setup.

For strong local fields (subplots a,c,e), we observe that Z /0 improvements over BP results become
less significant as β increases. It is important to note that Z /0 always improves the BP result, even
when the couplings are very strong (β = 10) and BP fails to converge for a small percentage of
instances. Z /0 performs very similar to CVM-Loop4 and substantially better than TreeEP for small
and intermediate β. As in the case of attractive interactions, the best results are attained using
CVM-loop4. CVM-loop6 gives worse estimates for β> 1.

For the case of weak local fields (subplots b,d,f), Z /0 is the best approximation in the weak
coupling regime. BP fails to converge near the transition to the spin-glass phase. For β = 10,
BP converges only in less than 25% of the instances. In the most difficult domain, β > 22, all
methods under consideration give similar results (all comparable to BP). Moreover, it may happen
that Z /0 degrades the ZBP approximation because loops of alternating signs have major influence in
the series. This result was also reported in Gómez et al. (2007) when loop terms, instead of Pfaffian
terms, where considered.

Finally, as in the case of attractive interactions, errors in marginals behave similar to errors in Z.

3.2.3 SCALING WITH GRAPH SIZE

We now study how the accuracy of the Z /0 approximation changes as we increase the size of the
grid. We generate random grids with mixed couplings for

√
N = {4, ...,18} and focus on a regime

of very weak local fields Θ = 0.01 and strong couplings β = 1, a difficult configuration according
to the previous results. We compare Z /0 also with anyTLSBP, a variant of our previous algorithm for
truncating the loop series. We run anyTLSBP by selecting loops shorter than a given length, and
the length is increased progressively. To provide a fair comparison between both methods, we run
anyTLSBP for the same amount of CPU time as the one required to obtain Z /0.

Figure 7a shows a comparison of the errors reported by the different algorithms. Since variabil-
ity in the errors is larger than before, we take the median for comparison. In order of increasing
accuracy we get BP, TreeEP, anyTLSBP, CVM-Loop6, CVM-Loop4 and Z /0. We note again that
using larger clusters in CVM does not necessarily result in better performance.

Overall, we can see that results are roughly independent of the network size N in almost all
methods that we compare. The error of anyTLSBP starts being the smallest but soon increases
because the proportion of loops captured decreases very fast. For N > 64, anyTLSBP performs
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Figure 6: 7x7 grid mixed interactions and positive local fields. Errors are averages over 50 random
instances for fixed β and Θ. Error in partition function Z for (a) strong local fields Θ= 1
and (b) weak local fields Θ = 0.1. Error in marginals for (c) strong local fields Θ = 1
and (d) weak local fields Θ = 0.1. Bottom panels show percentage of cases when BP
converges using at least one of the methods described above for (e) strong local fields and
(f) weak local fields.

worse than CVM. The Z /0 correction, on the other hand, stays flat and we can conclude that it scales
reasonably well. Interestingly, although Z /0 and anyTLSBP use different ways to truncate the loop
series, both methods show similar scaling behaviour for large graphs.

Figure 7b shows the CPU time for all the tested approaches averaged over all the cases. The
CPU time of the junction tree method quickly increases with the tree-width of the graphs. For
large enough N, exact solution via the junction tree method is no longer feasible because of the
memory requirements. In contrast, for all the approximate inference methods, memory demands do
not represent a limitation.

In order of increasing cost we have BP, Z /0 with anyTLSBP, TreeEP, CVM-Loop4 and CVM-
Loop6. The Z /0 therefore is a very efficient correction to ZBP.
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Figure 7: Results on regular grids: scaling with grid size for strong interactions β = 1 and very
weak local fields Θ = 0.01. Error medians over 50 random instances. BP converged
always. (a) Partition function Z error. (b) CPU time to compute Z.

3.3 Radial Grid Graphs

In the previous Subsection we analyzed the quality of the Z /0 correction for graphs with a regular
grid structure. Here, we carry over the analysis of the Z /0 correction using planar graphs which
consist of concentric polygons with a variable number of sides. Figure 8 illustrates these spider-
web graphs. We generate them as factor graphs with pairwise interactions which we subsequently
convert to an equivalent Forney graph using the procedure described in Appendix A.2. Again, local
field potentials are parameterized usingΘ= 0.01 and interactions using β= 1. We analyze the error
in Z as a function of the degree d of the central node.

Figure 9a shows the median of errors in Z for 50 random instances. First, we see that the
variability of all the methods, in particular anyTLSBP, is larger than in the regular grid scenario.
CVM-Loop6 does not converge for instances with d > 4 before 104 seconds and it is thus not
included in the analysis. We can say that all approaches scale reasonably well, and as d grows, the
errors become independent of d.

The Z /0 approximation is the best method compared to the other tested approaches. The improve-
ments of Z /0 over CVM-Loop4 (the second best method) can be more than two orders of magnitude
and more than three orders of magnitude compared to BP.

Computational costs are shown in 9b. Again, for larger graphs, exact solution via the junction
tree is not feasible due to the large tree-width and Z /0 represent the most efficient correction which
improves BP of all approximate methods we compared.
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Figure 8: Two examples of planar graphs used for comparison between methods. We fix the num-
ber of concentric polygons to 9 and change the degree d of the central node within the
range [3, ...,25]. (left) Graph for d = 3. (right) Graph for d = 25. Here nodes represent
variables and edges pairwise interactions. We also add external fields which depend on
the state of each node (not drawn).
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Figure 9: Results on spider-web graphs: scaling with the degree d of the central node for β= 1 and
Θ= 0.01. BP converged always. (a)Median of the error in the partition function Z over
50 random instances. (b) CPU time required to compute Z.
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4. Discussion

We have presented an approximate algorithm based on the exact loop calculus framework for in-
ference on planar graphical models defined in terms of binary variables. The proposed approach
improves the estimate for the partition function provided by BP without an explicit search for loops.

The algorithm is illustrated on the example of ordered and disordered Ising model on a pla-
nar graph. Performance of the method is analyzed in terms of its dependence on the system size.
The complexity of the partition function computation is exponential in the general case, unless the
local fields are zero, when it becomes polynomial. We tested our algorithm on regular grids and
planar graphs with different structures. Our experiments on regular grids show that significant im-
provements over BP are always obtained if single variable potentials (local magnetic fields) are
sufficiently large. The quality of this correction degrades with decrease in the amplitude of external
field, to become exact at zero external fields. This suggests that the difficulty of the inference task
changes from very easy, with no local fields, to very hard, with small local fields, and then decays
again as external fields become larger.

The Z /0 correction turns out to be competitive with other state of the art methods for approximate
inference of the partition function. First of all, we showed that Z /0 is much more accurate than upper
bounds based methods such as TRW or PDC, illustrating that such methods come at the cost of
accuracy. We have also shown that for the case of grids with attractive symmetric interactions and
positive local fields, the lower bound provided by Z /0 is the most accurate.

We also found that Z /0 performs much better than treeEP for weak and intermediate interactions
and similar for strong interactions. Comparing with CVM, we have found that Z /0 presented better
results for very small local fields. Using larger outer clusters in CVM does not necessarily lead to
better approximations.

Finally, we have presented a comparison of Z /0 with TLSBP, which is another algorithm based
on the loop series expansion for BP that uses the loop length as truncation parameter. On one hand,
the calculation of Z /0 involves a re-summation of many loop terms which in the case of TLSBP
are summed individually. This consideration favors the Z /0 approach. On the other hand, Z /0 is
restricted to the class of 2-regular loops whereas TLSBP also accounts for terms corresponding to
more complex loop structures in which nodes can have degree larger than two. Overall, for planar
graphs, we have shown evidence that the Z /0 approach is better than TLSBP when the size of the
graphs is not very small. We emphasize, however, that TLSBP can be applied to non-planar binary
graphical models too.

Although planarity is a severe restriction, we emphasize that planar graphs appear in many con-
texts such as computer vision and image processing, magnetic and optical recording, or network
routing and logistics. We have focused on inference problems defined on planar graphs with sym-
metric pairwise interactions and, to make the problems difficult, we have introduced local field
potentials. Notice however, that the algorithm can also be used to solve models with more complex
interactions, that is, more than pairwise typical from the Ising model (see Chertkov et al., 2008, for
a discussion of possible generalizations). This makes our approach more applicable than other ap-
proaches, namely, (Globerson and Jaakkola, 2007; Schraudolph and Kamenetsky, 2008), designed
specifically for the pairwise interaction case.

Summarizing, among the compared methods and models, the introduced approach based on Z /0
represents the best estimate to the partition function as long as the given graph does not deviate
too much from perfect planarity, that is, we are in the small local field regime. It also represents
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an efficient correction to the BP estimate of the partition function, being much more efficient than
CVM, the second best method we have analyzed. Finally, we have shown that estimates of single-
variable marginals calculated using Z /0 are comparable to state of the art inference methods.
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Appendix A. Bipartite Factor Graph Representation

The Forney graph representation is convenient because each loop decomposes naturally in terms
associated with nodes which have the same analytical form of Equation (4). However, probabilistic
models are more frequently represented as bipartite factor graphs. In this Appendix we first show
how the presented approach differs when it is directly applied to a bipartite factor graph and second,
how to convert a bipartite factor graph to a Forney graph.

We consider binary variables i which take values xi ∈ {±1} and factor functions ψa(xa) defined
over subsets a of variables which take values xa := {xi|i ∈ a}. On a bipartite factor graph G f g :=
(V f g,E f g), the setV f g consists of variable nodes i∈ I and factor nodes a∈A , with an edge between
i and a iff i ∈ a, that is i appears in the factor function ψa.

The joint probability distribution of vector x := {xi|i ∈ V } is specified as:

p(x) =
1

Z(ψ) ∏a∈A
ψa (xa), Z(ψ) =∑

x
∏
a∈A

ψa (xa),

where we have stressed the dependency of Z on the potential functions ψ.

A.1 Loop Calculus for Standard Factor-Graph Model

Following Sudderth et al. (2007), one can use the reparameterized model in terms of the factor
pseudo-marginals τa(xa) and the variable pseudo-marginals τi(xi) associated with the minimum of
the Bethe free energy:

p(x) =
1

Z(τ)∏i∈I
τi(xi)∏

a∈A

τa(xa)
∏ j∈a τ j(x j)

,

and express the relation between the exact Z(ψ) and the Bethe partition functions ZBP(ψ;τ) as
Z(ψ)/Z(τ) = ZBP(ψ;τ). The loop series correction becomes:

Z(τ) = 1+ ∑
C∈C

sC, sC =∏
a∈C

µa(C)∏
i∈C

µi(C),
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where each term sC is associated with a loop and can be specified as a product between terms µa(C)
and µi(C) corresponding to factor nodes a and variable nodes i inC respectively:

µa(C) =
Eτa

[

∏i∈a,i∈C (xi−mi)
]

∏i∈a,i∈CVarτi(xi)
µi(C) = Eτi

[

(xi−mi)
di(C)

]

,

where di(C) is the degree of variable node i in the loopC and mi is again Eτi [xi]. For the xi = {±1}
alphabet, we have mi = τi(+1)− τi(−1) and the formulas become:

µa(C) =
∑xa τa(xa)∏i∈a,i∈C (xi−mi)

∏i∈a,i∈C τi(+1)(1−mi)2+ τi(−1)(−1−mi)2

=
∑xa τa(xa)∏i∈a,i∈C (xi−mi)

∏i∈a,i∈C
1+mi
2 (1−mi)2+ 1−mi

2 (1+mi)2

=
∑xa τa(xa)∏i∈a,i∈C (xi−mi)

∏i∈a,i∈C (1−m2i )
, (9)

µi(C) = τi(+1)(1−mi)
di(C) + τi(−1)(−1−mi)

di(C)

=
1+mi
2

(1−mi)(1−mi)
di(C)−1+

1−mi
2

(1+mi)(−1)di(C)(1+mi)
di(C)−1

=
1−m2i
2

(

(1−mi)
di(C)−1+(−1)di(C)(1+mi)

di(C)−1
)

. (10)

One can recover the original formulation of Chertkov and Chernyak (2006a, Pag.5) reallocating the
denominator of (9) to (10) and simplifying.

Now consider Figure 2 where the construction of the extended graph Gext is described. Clearly,
the one-to-one correspondence from 2-regular loops inG to perfect matchings inGext is independent
of whether G is expressed as a bipartite factor graph or a Forney graph. For a bipartite factor graph,
the terms of Equation (5) are replaced with terms given by Equation (10) if the expanded node is a
variable or by Equation (9) if the expanded node is a factor. As previously stated, the Forney style
allows to express in the same form the weights of the extended graph Gext .

A.2 Converting a Bipartite Factor Graph to a Forney-Style Factor Graph.

We show here how to convert a bipartite factor graph defined in terms of binary variables to a more
general Forney graph representation, for which the presented algorithm can be directly applied to.

We label variable and factor nodes using numbers and capital letters respectively. Thus i ∈
I , i := {1,2, . . .} represents a variable and a= {A,B, . . .},a ∈ A a factor. Given G f g := (V f g,E f g),
a direct way to obtain an equivalent Forney graph G := (V ,E) is: first, to create a node δi ∈ V for
each variable node i ∈ V f g, and second, to associate a new binary variable δia with values σδia =
{±1} to edges (δi,a) ∈ E . Nodes δi ∈ V are equivalent factor nodes denoting the characteristic
function: fδi(σσσδi) = 1 if σδia = σδib, ∀a,b ∈ δ̄i and zero otherwise. Finally, factor nodes c ∈ V f g
with associated functions ψc(xc) correspond to the same factor nodes c in V with same associated
functions fc(σσσc) and defined in terms of the new variables δic, ∀i ∈ c̄. Figure 10 shows an example
of this transformation. Notice that, although we impose a direction in the edge labels, they remain
undirected: (δi,a) = (a,δi), ∀δi,a ∈V . For variables i ∈V f g which only appear in two factors, such
as variable 3 in Figure 10a, the corresponding node δ3 is redundant and can be removed. The joint
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δ2C

δ2B

δ2E

δ3D δ3E

(a) (b)

Figure 10: (a) Bipartite factor graph G f g where squares represent factors and circles represent vari-
ables. (b) Equivalent Forney-style factor graph G where factors reside in the nodes and
variables in the edges.

distribution of G f g is related to the joint distribution of G by:

1
Z
ψA(x1)ψB(x2)ψC(x1,x2)ψD(x1,x3)ψE(x2,x3)

≡
1
Z
fA(σδ1A) fB(σδ2B) fC(σδ1C,σδ2C) fD(σδ1D,σδ3D) fE(σδ2E ,σδ3E)

fδ1(σδ1A,σδ1C,σδ1D) fδ2(σδ2B,σδ2C,σδ2E) fδ3(σδ3D,σδ3E).

Once G has been generated following the previous procedure it may be the case that the nodes
δi ∈V have degree three or larger. This happens if a variable i appears in more than three factors on
G f g. It is easy to convert G to a graph were all δi nodes have maximum degree three by introducing
new auxiliary variables δi1 ,δi2 , ... and new equivalent nodes. For instance, if variable i∈V f g appears
in four factors A,B,C,D:

fδi(σδiA,σδiB,σδiC,σδiD) ≡ fδi1 (σδiA,σδiB,σδi1 ) fδi2 (σδi1 ,σδiC,σδiD).

Notice that although the models are equivalent, the number of loops in G may be larger than
in G f g. In the case that a factor in G f g involves more than three variables, as sketched in Chertkov
et al. (2008), one could split the node of degree N into auxiliary nodes of degree N−1 and compute
Z /0 on the transformed model. Alternatively, one can reduce the number of variables that enter a
factor conditioning over the variables.
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Abstract
For many supervised learning tasks it may be infeasible (or very expensive) to obtain objective and
reliable labels. Instead, we can collect subjective (possibly noisy) labels from multiple experts or
annotators. In practice, there is a substantial amount of disagreement among the annotators, and
hence it is of great practical interest to address conventional supervised learning problems in this
scenario. In this paper we describe a probabilistic approach for supervised learning when we have
multiple annotators providing (possibly noisy) labels but no absolute gold standard. The proposed
algorithm evaluates the different experts and also gives an estimate of the actual hidden labels.
Experimental results indicate that the proposed method is superior to the commonly used majority
voting baseline.
Keywords: multiple annotators, multiple experts, multiple teachers, crowdsourcing

1. Supervised Learning From Multiple Annotators/Experts

A typical supervised learning scenario consists of a training set D = {(xi,yi)}Ni=1 containing N
instances, where xi ∈ X is an instance (typically a d-dimensional feature vector) and yi ∈ Y is the
corresponding known label. The task is to learn a function f : X → Y which generalizes well on
unseen data. Specifically for binary classification the supervision is from the set Y = {0,1}, for
multi-class classification Y = {1, . . . ,K}, for ordinal regression Y = {1, . . . ,K} (with an ordering
1< .. . < K), and Y = R for regression.
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However, for many real life tasks, it may not be possible, or may be too expensive (or tedious)
to acquire the actual label yi for training—which we refer to as the gold standard or the objec-
tive ground truth. Instead, we may have multiple (possibly noisy) labels y1i , . . . ,yRi provided by R
different experts or annotators. In practice, there is a substantial amount of disagreement among
the experts, and hence it is of great practical interest to address conventional supervised learning
algorithms in this scenario.

Our motivation for this work comes from the area of computer-aided diagnosis1 (CAD), where
the task is to build a classifier to predict whether a suspicious region on a medical image (like a
X-ray, CT scan, or MRI) is malignant (cancerous) or benign. In order to train such a classifier, a set
of images is collected from hospitals. The actual gold standard (whether it is cancer or not) can only
be obtained from a biopsy of the tissue. Since it is an expensive, invasive, and potentially dangerous
process, often CAD systems are built from labels assigned by multiple radiologists who identify the
locations of malignant lesions. Each radiologist visually examines the medical images and provides
a subjective (possibly noisy) version of the gold standard.2 The radiologist also annotates various
descriptors of the potentially malignant lesion, like the size (a regression problem), shape (a multi-
class classification problem), and also degree of malignancy (an ordinal regression problem). The
radiologists come from a diverse pool including luminaries, experts, residents, and novices. Very
often there is lot of disagreement among the annotations.

For a lot of tasks the labels provided by the annotators are inherently subjective and there will
be substantial variation among different annotators. The domain of text classification offers such
a scenario. In this context the task is to predict the category for a token of text. The labels for
training are assigned by human annotators who read the text and attribute their subjective category.
With the advent of crowdsourcing (Howe, 2008) services like Amazon’s Mechanical Turk,3 Games
with a Purpose,4 and reCAPTCHA5 it is quite inexpensive to acquire labels from a large number of
annotators (possibly thousands) in a short time (Sheng et al., 2008; Snow et al., 2008; Sorokin and
Forsyth, 2008). Websites such as Galaxy Zoo6 allow the public to label astronomical images over
the internet. In situations like these, the performance of different annotators can vary widely (some
may even be malicious), and without the actual gold standard, it may not be possible to evaluate the
annotators.

In this work, we provide principled probabilistic solutions to the following questions:

1. How to adapt conventional supervised learning algorithms when we have multiple annotators
providing subjective labels but no objective gold standard?

2. How to evaluate systems when we do not have absolute gold-standard?

3. A closely related problem—particularly relevant when there are a large number of annotators—
is to estimate how reliable/trustworthy is each annotator.

1. See Fung et al. (2009) for an overview of the data mining issues in this area.
2. Sometimes even a biopsy cannot confirm whether it is cancer or not and hence all we can hope to get is subjective
ground truth.

3. Mechanical Turk found at https://www.mturk.com.
4. Games with a Purpose found at http://www.gwap.com.
5. reCAPTCHA found at http://recaptcha.net/.
6. Galaxy Zoo found at http://galaxyzoo.org.
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1.1 The Problem With Majority Voting

When we have multiple labels a commonly used strategy is to use the labels on which the majority
of them agree (or average for regression problem) as an estimate of the actual gold standard. For
binary classification problems this amounts to using the majority label,7 that is,

ŷi =

{
1 if (1/R)∑R

j=1 y
j
i > 0.5

0 if (1/R)∑R
j=1 y

j
i < 0.5

,

as an estimate of the hidden true label and use this estimate to learn and evaluate classifiers/annotators.
Another strategy is that of considering every pair (instance, label) provided by each expert as a sep-
arate example. Note that this amounts to using a soft probabilistic estimate of the actual ground
truth to learn the classifier, that is,

Pr[yi = 1|y1i , . . . ,yRi ] = (1/R)
R

∑
j=1

y ji .

Majority voting assumes all experts are equally good. However, for example, if there is only one
true expert and the majority are novices, and if novices give the same incorrect label to a specific
instance, then the majority voting method would favor the novices since they are in a majority. One
could address this problem by introducing a weight capturing how good each expert is. But how
would one measure the performance of an expert when there is no gold standard available?

1.2 Proposed Approach and Organization

To address the apparent chicken-and-egg problem, we present a maximum-likelihood estimator
that jointly learns the classifier/regressor, the annotator accuracy, and the actual true label. For
ease of exposition we start with binary classification problem in § 2. The performance of each
annotator is measured in terms of the sensitivity and specificity with respect to the unknown gold
standard (§ 2.1). The proposed algorithm automatically discovers the best experts and assigns a
higher weight to them. In order to incorporate prior knowledge about each annotator, we impose a
beta prior on the sensitivity and specificity and derive the maximum-a-posteriori estimate (§ 2.6).
The final estimation is performed by an Expectation Maximization (EM) algorithm that iteratively
establishes a particular gold standard, measures the performance of the experts given that gold
standard, and refines the gold standard based on the performance measures. While the proposed
approach is described using logistic regression as the base classifier (§ 2.2), it is quite general, and
can be used with any black-box classifier (§ 2.7), and can also handle missing labels (that is, each
expert is not required to label all the instances). Furthermore, we extend the proposed algorithm to
handle categorical (§ 3), ordinal (§ 4), and regression problems (§ 5). In § 6 section we extensively
validate our approach using both simulated data and real data from different domains.

1.3 Related Work and Novel Contributions

We first summarize the novel contributions of this work in context of other related work in this
emerging new area. There has been a long line of work in the biostatistics and epidemiology litera-
ture on latent variable models where the task is to get an estimate of the observer error rates based

7. When there is no clear majority among the multiple experts (that is, ŷi = 0.5) in CAD domain the final decision is
often made by an adjudicator or a super-expert. When there is no adjudicator a fair coin toss is used.
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on the results from multiple diagnostic tests without a gold standard (see Dawid and Skene, 1979,
Hui and Walter, 1980, Hui and Zhou, 1998, Albert and Dodd, 2004 and references therein). In the
machine learning community Smyth et al. (1995) first addressed the same problem in the context of
labeling volcanoes in satellite images of Venus. We differ from this previous body of work in the
following aspects:

1. Unlike Dawid and Skene (1979) and Smyth et al. (1995) which just focused on estimating
the ground truth from multiple noisy labels, we specifically address the issue of learning a
classifier. Estimating the ground truth and the annotator/classifer performance is a byproduct
of our proposed algorithm.

2. In order to learn a classifier Smyth (1995) proposed to first estimate the ground truth (without
using the features) and then use the probabilistic ground truth to learn a classifier. In contrast,
our proposed algorithm learns the classifier and the ground truth jointly. Our experiments
(§ 6.1.1) show that the classifier learnt and ground truth obtained by the proposed algorithm
is superior to that obtained by other procedures which first estimates the ground truth and then
learns the classifier.

3. Our solution is more general and can be easily extended to categorical(§ 3), ordinal(§ 4),
and continuous data(§ 5). It can also be used in conjunction with any supervised learning
algorithm. A preliminary version of this paper (Raykar et al., 2009) mainly discussed the
binary classification problem.

4. Our proposed algorithm is also Bayesian—we impose a prior on the experts. The priors can
potential capture the skill of different annotators. In this paper we refrain from doing a full
Bayesian inference and use the mode of the posterior as a point estimate. A recent complete
Bayesian generalization of these kind of models has been developed by Carpenter (2008).

5. The EM approach used in this paper is similar to that proposed by Jin and Ghahramani (2003).
However their motivation is somewhat different. In their setting, each training example is
annotated with a set of possible labels, only one of which is correct.

There has been recent interest in the natural language processing (Sheng et al., 2008; Snow et al.,
2008) and computer vision (Sorokin and Forsyth, 2008) communities where they use Amazon’s
Mechanical Turk to collect annotations from many people. They show that it can be potentially as
good as that provided by an expert. Sheng et al. (2008) analyzed when it is worthwhile to acquire
new labels for some of the training examples. There is also some theoretical work (see Lugosi,
1992 and Dekel and Shamir, 2009a) dealing with multiple experts. Recently Dekel and Shamir
(2009b) presented an algorithm which does not resort to repeated labeling, that is, each example
does not have to be labeled by multiple teachers. Donmez et al. (2009) address the issue of active
learning in this scenario—How to jointly learn the accuracy of labeling sources and obtain the most
informative labels for the active learning task? There has also been some work in the medical
imaging community (Warfield et al., 2004; Cholleti et al., 2008).

2. Binary Classification

We first describe our proposed noise model for the annotators. The performance of each annotator
is measured in terms of the sensitivity and specificity with respect to the unknown gold standard.

1300



LEARNING FROM CROWDS

2.1 A Two-coin Model for Annotators

Let y j ∈ {0,1} be the label assigned to the instance x by the jth annotator/expert. Let y be the actual
(unobserved) label for this instance. Each annotator provides a version of this hidden true label
based on two biased coins. If the true label is one, she flips a coin with bias α j (sensitivity). If the
true label is zero, she flips a coin with bias β j (specificity). In each case, if she gets heads she keeps
the original label, otherwise she flips the label.

If the true label is one, the sensitivity (true positive rate) for the jth annotator is defined as the
probability that she labels it as one.

α j := Pr[y j = 1|y= 1]. (1)

On the other hand, if the true label is zero, the specificity (1−false positive rate) is defined as the
probability that she labels it as zero.

β j := Pr[y j = 0|y= 0]. (2)

The assumption introduced is that α j and β j do not depend on the instance x. For example, in the
CAD domain, this means that the radiologist’s performance is consistent across different sub-groups
of data.8

2.2 Classification Model

While the proposed method can be used for any classifier, for ease of exposition, we consider the
family of linear discriminating functions: F = { fw}, where for any x,w ∈ Rd , fw(x) = w%x.
The final classifier can be written in the following form: ŷ = 1 if w%x ≥ γ and 0 otherwise. The
threshold γ determines the operating point of the classifier. The Receiver Operating Characteristic
(ROC) curve is obtained as γ is swept from −∞ to ∞. The probability for the positive class is
modeled as a logistic sigmoid acting on fw, that is,

Pr[y= 1|x,w] = σ(w%x),

where the logistic sigmoid function is defined as σ(z) = 1/(1+ e−z). This classification model is
known as logistic regression.

2.3 Estimation/Learning Problem

Given the training data D consisting of N instances with annotations from R annotators, that is,
D = {xi,y1i , . . . ,yRi }Ni=1, the task is to estimate the weight vector w and also the sensitivity α =
[α1, . . . ,αR] and the specificity β = [β1, . . . ,βR] of the R annotators. It is also of interest to get an
estimate of the unknown gold standard y1, . . . ,yN .

2.4 Maximum Likelihood Estimator

Assuming the training instances are independently sampled, the likelihood function of the parame-
ters θ= {w,α,β} given the observations D can be factored as

Pr[D|θ] =
N

∏
i=1
Pr[y1i , . . . ,yRi |xi,θ].

8. While this is a reasonable assumption, it is not entirely true. It is known that some radiologists are good at detecting
certain kinds of malignant lesions based on their training and experience.
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Conditioning on the true label yi, and also using the assumption y ji is conditionally independent (of
everything else) given α j, β j and yi, the likelihood can be decomposed as

Pr[D|θ] =
N

∏
i=1

{
Pr[y1i , . . . ,yRi |yi = 1,α]Pr[yi = 1|xi,w]

+ Pr[y1i , . . . ,yRi |yi = 0,β]Pr[yi = 0|xi,w]
}

.

Given the true label yi, we assume that y1i , . . . ,yRi are independent, that is, the annotators make their
decisions independently.9 Hence,

Pr[y1i , . . . ,yRi |yi = 1,α] =
R

∏
j=1
Pr[y ji |yi = 1,α j] =

R

∏
j=1

[α j]y
j
i [1−α j]1−y

j
i .

Similarly, we have

Pr[y1i , . . . ,yRi |yi = 0,β] =
R

∏
j=1

[β j]1−y
j
i [1−β j]y

j
i .

Hence the likelihood can be written as

Pr[D|θ] =
N

∏
i=1

[
aipi+bi(1− pi)

]
,

where we have defined

pi := σ(w%xi).

ai :=
R

∏
j=1

[α j]y
j
i [1−α j]1−y

j
i .

bi :=
R

∏
j=1

[β j]1−y
j
i [1−β j]y

j
i .

The maximum-likelihood estimator is found by maximizing the log-likelihood, that is,

θ̂ML = {α̂, β̂,ŵ} = argmax
θ

{lnPr[D|θ]}.

2.5 The EM Algorithm

This maximization problem can be simplified a lot if we use the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). The EM algorithm is an efficient iterative procedure to compute
the maximum-likelihood solution in presence of missing/hidden data. We will use the unknown
hidden true label yi as the missing data. If we know the missing data y = [y1, . . . ,yN ] then the
complete likelihood can be written as

lnPr[D,y|θ] =
N

∑
i=1

yi ln piai+(1− yi) ln(1− pi)bi.

9. This assumption is not true in general and there is some correlations among the labels assigned by multiple annotators.
For example in the CAD domain if the cancer is in advanced stage (which is very easy to detect) almost all the
radiologists assign the same label.
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Each iteration of the EM algorithm consists of two steps: an Expectation(E)-step and aMaximization(M)-
step. The M-step involves maximization of a lower bound on the log-likelihood that is refined in
each iteration by the E-step.

1. E-step. Given the observation D and the current estimate of the model parameters θ, the
conditional expectation (which is a lower bound on the true likelihood) is computed as

E{lnPr[D,y|θ]} =
N

∑
i=1

µi ln piai+(1−µi) ln(1− pi)bi, (3)

where the expectation is with respect to Pr[y|D,θ], and µi = Pr[yi = 1|y1i , . . . ,yRi ,xi,θ]. Using
Bayes’ theorem we can compute

µi ∝ Pr[y1i , . . . ,yRi |yi = 1,θ] ·Pr[yi = 1|xi,θ]

=
aipi

ai pi+bi(1− pi)
.

2. M-step. Based on the current estimate µi and the observationsD , the model parameters θ are
then estimated by maximizing the conditional expectation. By equating the gradient of (3) to
zero we obtain the following estimates for the sensitivity and specificity:

α j =
∑N
i=1µiy

j
i

∑N
i=1µi

, β j =
∑N
i=1(1−µi)(1− y ji )
∑N
i=1(1−µi)

.

Due to the non-linearity of the sigmoid, we do not have a closed form solution for w and we
have to use gradient ascent based optimization methods. We use the Newton-Raphson update
given by wt+1 = wt −ηH−1g, where g is the gradient vector, H is the Hessian matrix, and
η is the step length. The gradient vector is given by

g(w) =
N

∑
i=1

[
µi−σ(w%xi)

]
xi.

The Hessian matrix is given by

H(w) = −
N

∑
i=1

[
σ(w%xi)

][
1−σ(w%xi)

]
xix

%
i .

Essentially, we are estimating a logistic regression model with probabilistic labels µi.

These two steps (the E- and the M-step) can be iterated till convergence. The log-likelihood in-
creases monotonically after every iteration, which in practice implies convergence to a local maxi-
mum. The EM algorithm is only guaranteed to converge to a local maximum. In practice multiple
restarts with different initializations can potentially mitigate the local maximum problem. In this
paper we use majority voting µi = 1/R∑R

j=1 y
j
i as the initialization for µi to start the EM-algorithm.
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2.6 A Bayesian Approach

In some applications we may want to trust a particular expert more than the others. One way to
achieve this is by imposing priors on the sensitivity and specificity of the experts. Since α j and
β j represent the probability of a binary event, a natural choice of prior is the beta prior. The beta
prior is also conjugate to the binomial distribution. For any a > 0, b > 0, and δ ∈ [0,1] the beta
distribution is given by

Beta(δ|a,b) =
δa−1(1−δ)b−1

B(a,b)
,

where B(a,b) =
R 1
0 δ

a−1(1− δ)b−1dδ is the beta function.We assume a beta prior10 for both the
sensitivity and the specificity as

Pr[α j|a j1,a
j
2] = Beta(α j|a j1,a

j
2).

Pr[β j|b j1,b
j
2] = Beta(β j|b j1,b

j
2).

For sake of completeness we also assume a zero mean Gaussian prior on the weights w with in-
verse covariance matrix Γ, that is, Pr[w] = N (w|0,Γ−1). Assuming that {α j}, {β j}, and w have
independent priors, the maximum-a-posteriori (MAP) estimator is found by maximizing the log-
posterior, that is,

θ̂MAP = argmax
θ

{lnPr[D|θ]+ lnPr[θ]}.

An EM algorithm can be derived in a similar fashion for MAP estimation by relying on the inter-
pretation of Neal and Hinton (1998). The final algorithm is summarized below:

1. Initialize µi = (1/R)∑R
j=1 y

j
i based on majority voting.

2. Given µi, estimate the sensitivity and specificity of each annotator/expert as follows.

α j =
a j1−1+∑N

i=1µiy
j
i

a j1+a j2−2+∑N
i=1µi

.

β j =
b j1−1+∑N

i=1(1−µi)(1− y ji )
b j1+b j2−2+∑N

i=1(1−µi)
. (4)

The Newton-Raphson update for optimizing w is given by wt+1 = wt −ηH−1g, with step
length η, gradient vector

g(w) =
N

∑
i=1

[
µi−σ(w%xi)

]
xi−Γw,

and Hessian matrix

H(w) = −
N

∑
i=1

σ(w%xi)
[
1−σ(w%xi)

]
xix

%
i −Γ.

10. It may be convenient to specify a prior in terms of the mean µ and variance σ2. The mean and the variance
for a beta prior are given by µ = a/(a+b) and σ2 = ab/((a+ b)2(a+ b+ 1)). Solving for a and b we get
a= (−µ3+µ2−µσ2)/σ2 and b= a(1−µ)/µ.
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3. Given the sensitivity and specificity of each annotator and the model parameters, update µi as

µi =
aipi

ai pi+bi(1− pi)
, (5)

where

pi = σ(w%xi).

ai =
R

∏
j=1

[α j]y
j
i [1−α j]1−y

j
i .

bi =
R

∏
j=1

[β j]1−y
j
i [1−β j]y

j
i . (6)

Iterate (2) and (3) till convergence.

2.7 Discussions

1. Estimate of the gold standard The value of the posterior probability µi is a soft probabilis-
tic estimate of the actual ground truth yi, that is, µi = Pr[yi = 1|y1i , . . . ,yRi ,xi,θ]. The actual
hidden label yi can be estimated by applying a threshold on µi, that is, yi = 1 if µi ≥ γ and
zero otherwise. We can use γ= 0.5 as the threshold. By varying γ we can change the misclas-
sification costs and obtain a ground truth with large sensitivity or large specificity. Because
of this in our experimental validation we can actually draw an ROC curve for the estimated
ground truth.

2. Log-odds of µ A particularly revealing insight can be obtained in terms of the log-odds or
the logit of the posterior probability µi. From (5) the logit of µi can be written as

logit(µi) = ln
µi

1−µi
= ln

Pr[yi = 1|y1i , . . . ,yRi ,xi,θ]
Pr[yi = 0|y1i , . . . ,yRi ,xi,θ]

= w%xi+ c+
R

∑
j=1

y ji [logit(α
j)+ logit(β j)].

where c = ∑R
j=1 log 1−α

j

β j is a constant term which does not depend on i. This indicates that
the estimated ground truth (in the logit form of the posterior probability) is a weighted linear
combination of the labels from all the experts. The weight of each expert is the sum of the
logit of the sensitivity and specificity.

3. Using any other classifier For ease of exposition we used logistic regression. However,
the proposed algorithm can be used with any generalized linear model or in fact with any
classifier that can be trained with soft probabilistic labels. In each step of the EM-algorithm,
the classifier is trained with instances sampled from µi. This modification is easy for most
probabilistic classifiers. For general black-box classifiers where we cannot tweak the training
algorithm an alternate approach is to replicate the training examples according to the soft
label. For example a probabilistic label µi = 0.8 can be effectively simulated by adding 8
training examples with deterministic label 1 and 2 examples with label 0.
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4. Obtaining ground truth with no features In some scenarios we may not have features xi
and we wish to obtain an estimate of the actual ground truth based only on the labels from
multiple annotators. Here instead of learning a classifier we estimate pwhich is the prevalence
of the positive class, that is, p= Pr[yi = 1]. We further assume a beta prior for the prevalence,
that is, Beta(p|p1, p2). The algorithm simplifies as follows.

(a) Initialize µi = (1/R)∑R
j=1 y

j
i based on majority voting.

(b) Given µi, estimate the sensitivity and specificity of each annotator using (4). The preva-
lence of the positive class is estimated as follows.

p =
p1−1+∑N

i=1µi
p1+ p2−2+N

.

(c) Given the sensitivity and specificity of each annotator and prevalence, refine µi as fol-
lows.

µi =
aip

aip+bi(1− p)
.

Iterate (2) and (3) till convergence. This algorithm is similar to the one proposed by Dawid
and Skene (1979) and Smyth et al. (1995).

5. Handling missing labels The proposed approach can easily handle missing labels, that is,
when the labels from some experts are missing for some instances. Let Ri be the number of
radiologists labeling the ith instance, and let Nj be the number of instances labeled by the jth
radiologist. Then in the EM algorithm, we just need to replace N by Nj for estimating the
sensitivity and specificity in (4), and replace R by Ri for updating µi in (6).

6. Evaluating a classifier We can use the probability scores µi directly to evaluate classifiers.
If zi are the labels obtained from any other classifier, then sensitivity and specificity can be
estimated as

α=
∑N
i=1µizi
∑N
i=1µi

, β=
∑N
i=1(1−µi)(1− zi)
∑N
i=1(1−µi)

.

7. Posterior approximation At the end of each EM iteration a crude approximation to the
posterior is obtained as

α j ∼ Beta

(

α j|a j1+
N

∑
i=1

µiy ji ,a
j
2+

N

∑
i=1

µi(1− y ji )

)

,

β j ∼ Beta

(

β j|b j1+
N

∑
i=1

(1−µi)(1− y ji ),b
j
2+

N

∑
i=1

(1−µi)y ji

)

.

3. Multi-class Classification

In this section we describe how the proposed approach for binary classification can be extended
to categorical data. Suppose there are K ≥ 2 categories. An example for categorical data from
the CAD domain is in LungCAD, where the radiologist needs to label whether a nodule (known
to be precursors of cancer) is a solid, a part-solid, or a ground glass opacity—which are three
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different kinds on nodules. We can extend the previous model and introduce a vector of multinomial
parameters α

j
c = (α j

c1, . . . ,α
j
cK) for each annotator, where

α j
ck := Pr[y j = k|y= c]

and ∑K
k=1α

j
ck = 1. Here α j

ck denotes the probability that the annotator j assigns class k to an instance
given the true class is c. When K = 2, α j

11 and α
j
00 are sensitivity and specificity, respectively. A

similar EM algorithm can be derived. In the E-step, we estimate

Pr[yi = c|Y ,α] ∝ Pr[yi = c|xi]
R

∏
j=1

K

∏
k=1

(α j
ck)

δ(y ji ,k),

where δ(u,v) = 1 if u = v and 0 otherwise and in the M-step we learn a multi-class classifier and
update the multinomial parameter as

α j
ck =

∑N
i=1 Pr[yi = c|Y ,α]δ(y ji ,k)
∑N
i=1 Pr[yi = c|Y ,α]

.

One can also assign a Dirichlet prior for the multinomial parameters, and this results in a smoothing
term in the above updates in the MAP estimate.

4. Ordinal Regression

We now consider the situation where the outputs are categorical and have an ordering among the
labels. In the CAD domain the radiologist often gives a score (for example, 1 to 5 from lowest to
highest) to indicate how likely she thinks it is malignant. This is different from a multi-class setting
in which we do not have any preference among the multiple class labels.

Let y ji ∈ {1, . . . ,K} be the label assigned to the ith instance by the jth expert. Note that there is
an ordering in the labels 1< .. . < K. A simple approach is to convert the ordinal data into a series
of binary data (Frank and Hall, 2001). Specifically the K class ordinal labels are transformed into
K−1 binary class labels as follows:

y jci =

{
1 if y ji > c
0 otherwise c= 1, . . . ,K−1.

Applying the same procedure used for binary labels we can estimate Pr[yi > c] for c= 1, . . . ,K−1.
The probability of the actual class values can then be obtained as

Pr[yi = c] = Pr[yi > c−1 and yi ≤ c] = Pr[yi > c−1]−Pr[yi > c].

The class with the maximum probability is assigned to the instance.

5. Regression

In this section we develop a similar algorithm to learn a regression function using annotations from
multiple experts. In the CAD domain as a part of the annotation process a common task for a
radiologist is to measure the diameter of a suspicious lesion.
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5.1 Model for Annotators

Let y ji ∈R be the continuous target value assigned to the ith instance by the jth annotator. Our model
is that the annotator provides a noisy version of the actual true value yi. For the jth annotator we
will assume a Gaussian noise model with mean yi (the true unknown value) and inverse-variance
(precision) τ j, that is,

Pr[y ji |yi,τ
j] =N (y ji |yi,1/τ

j), (7)

where the Gaussian distribution is defined as N (z|m,σ2) = (2πσ2)−1/2exp(−(z−m)2/2σ2). The
unknown inverse-variance τ j measures the accuracy of each annotator—the larger the value of τ j
the more accurate the annotator. We have assumed that τ j does not depend on the instance xi. For
example, in the CAD domain, this means that the radiologist’s accuracy does not depend on the
nodule she is measuring. While this a practical assumption, it is not entirely true. It is known that
some nodules are harder to measure than others.

5.2 Linear Regression Model for Features

As before we consider the family of linear regression functions: F = { fw}, where for anyx,w∈Rd

, fw(x)=w%x. We assume that the actual target response yi is given by the deterministic regression
function fw with additive Gaussian noise, that is,

yi = w%xi+ ε,

where ε is a zero-mean Gaussian random variable with inverse-variance (precision) γ. Hence

Pr[yi|xi,w,γ] =N (yi|w%xi,1/γ). (8)

5.3 Combined Model

Combining both the annotator (7) and the regressor (8) model we have

Pr[y ji |xi,w,τ j,γ] =
Z

Pr[y ji |yi,τ
j]Pr[yi|xi,w,γ]dyi =N (y ji |w

%xi,1/γ+1/τ j).

Since the two precision terms (γ and τ j) are grouped together they are not uniquely identifiable.
Hence we will define a new precision term λ j as

1
λ j

=
1
γ

+
1
τ j

.

So we have the following model

Pr[y ji |xi,w,λ j] =N (y ji |w
%xi,1/λ j). (9)

5.4 Estimation/Learning Problem

Given the training data D consisting of N instances with annotations from R experts, that is, D =
{xi,y1i , . . . ,yRi }Ni=1, the task is to estimate the weight vector w and the precision λ = [λ1, . . . ,λR] of
all the annotators.
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5.5 Maximum-likelihood Estimator

Assuming the instances are independent the likelihood of the parameters θ = {w,λ} given the
observations D can be factored as

Pr[D|θ] =
N

∏
i=1
Pr[y1i , . . . ,yRi |xi,θ].

Conditional on the instance xi we assume that y1i , . . . ,yRi are independent, that is, the annotators
provide their responses independently. Hence from (9) the likelihood can be written as

Pr[D|θ] =
N

∏
i=1

R

∏
j=1

N (y ji |w
%xi,1/λ j).

The maximum-likelihood estimator is found by maximizing the log-likelihood

θ̂ML = {λ̂,ŵ} = argmax
θ

{lnPr[D|θ]}.

By equating the gradient of the log-likelihood to zero we obtain the following update equations for
the precision and the weight vector.

1
λ̂ j

=
1
N

N

∑
i=1

(
y ji − ŵ%xi

)2
. (10)

ŵ =

(
N

∑
i=1

xix
%
i

)−1 N

∑
i=1

xi

(
∑R
j=1 λ̂

jy ji
∑R
j=1 λ̂ j

)

. (11)

As the parameters ŵ and λ̂ are coupled together we iterate these two steps till convergence.

5.6 Discussions

1. Is this standard least-squares? Define the design matrix X = [x1, . . . ,xN ]% and the re-
sponse vector for each annotator as y j = [y j1, . . . ,y

j
N ]%. Using matrix notation Equation 11

can be written as

ŵ = (X%X)−1X%ŷ where ŷ =
∑R
j=1 λ̂

jy j

∑R
j=1 λ̂ j

. (12)

Equation 12 is essentially the solution to a standard linear regression model, except that we are
training a linear regression model with ŷ as the ground truth, which is a precision weighted
mean of the response vectors from all the annotators. The variance of each annotator is
estimated using (10). The final algorithm iteratively establishes a particular gold standard (ŷ),
measures the performance of the annotators and learns a regressor given that gold standard,
and refines the gold standard based on the performance measures.

2. Are we better than the best annotator? If we assume λ̂ is fixed (i.e., we ignore the vari-
ability and assume that it is well estimated) then ŵ is an unbiased estimator of w and the
covariance matrix is given by

Cov(ŵ) = Cov(ŷ)
(
X%X

)−1
=

1
∑R
j=1 λ̂ j

(
X%X

)−1
.
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Since ∑R
j=1 λ̂ j >max j (̂λ j) the proposed method has a lower variance than the regressor learnt

with the best annotator (i.e., the one with the minimum variance).

3. Are we better than the average? For a fixedX the error in ŵ depends only on the variance
of ŷ j. If we know the true λ j then ŷi is the best linear unbiased estimator for yi which mini-
mizes the variance. To see this consider any linear estimator of the form ŷi = ∑ j a j(y

j
i −b j).

The variance is given by Var[ŷi] = ∑ j(a j)2/λ j. Since E[ŷi] = yi∑ j a j, for the bias of this es-
timator to be zero we require that ∑ j a j = 1. Solving the constrained minimization problem
we see that a j = λ j/∑ j λ j minimizes the variance.

4. Obtaining a consensus without featuresWhen no features are available the same algorithm
can be simplified to get a consensus estimate of the actual ground truth and also evaluate the
annotators. Essentially we have to iterate the following two updates till convergence

ŷi =
∑R
j=1 λ̂

jy ji
∑R
j=1 λ̂ j

1
λ̂ j

=
1
N

N

∑
i=1

(
y ji − ŷi

)2
.

6. Experimental Validation

We now experimentally validate the proposed algorithms on both simulated and real data.

6.1 Classification Experiments

We use two CAD and one text data set in our experiments. The CAD data sets include a digital
mammography data set and a breast MRI data set, both of which are biopsy proven, that is, the
gold standard is available. For the digital mammography data set we simulate the radiologists in
order to validate our methods. The breast MRI data has annotations from four radiologists. We also
report results on a Recognizing Textual Entailment data collected by Snow et al. (2008) using the
Amazon’s Mechanical Turk which has annotations from 164 annotators.

6.1.1 DIGITAL MAMMOGRAPHY WITH SIMULATED RADIOLOGISTS

Mammograms are used as a screening tool to detect early breast cancer. CAD systems search for
abnormal areas (lesions) in a digitized mammographic image. These lesions generally indicate
the presence of malignant cancer. The CAD system then highlights these areas on the images,
alerting the radiologist to the need for a further diagnostic mammogram or a biopsy. In classification
terms, given a set of descriptive morphological features for a region on a image, the task is to
predict whether it is potentially malignant (1) or not (0). In order to train such a classifier, a set
of mammograms is collected from hospitals. The ground truth (whether it is cancer or not) is
obtained from biopsy. Since biopsy is an expensive, tedious, and an invasive process, very often
CAD systems are built from labels collected frommultiple expert radiologistswho visually examine
the mammograms and mark the lesion locations—this constitutes our ground truth (multiple labels)
for learning.

In this experiment we use a proprietary biopsy-proven data set (Krishnapuram et al., 2008)
containing 497 positive and 1618 negative examples. Each instance is described by a set of 27 mor-
phological features. In order to validate our proposed algorithm, we simulate multiple radiologists
according to the two-coin model described in § 2.1. Based on the labels from multiple radiologists,
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we can simultaneously (1) learn a logistic-regression classifier, (2) estimate the sensitivity and speci-
ficity of each radiologist, and (3) estimate the golden ground truth. We compare the results with the
classifier trained using the biopsy proved ground truth as well as the majority-voting baseline. For
the first set of experiments we use 5 radiologists with sensitivity α = [0.90 0.80 0.57 0.60 0.55]
and specificity β = [0.95 0.85 0.62 0.65 0.58]. This corresponds to a scenario where the first two
radiologists are experts and the last three are novices. Figure 1 summarizes the results. We compare
on three different aspects: (1) How good is the learnt classifier? (2) How well can we estimate the
sensitivity and specificity of each radiologist? (3) How good is the estimated ground truth? The
following observations can be made.

1. Classifier performance Figure 1(a) plots the ROC curve of the learnt classifier on the training
set. The dotted (black) line is the ROC curve for the classifier learnt using the actual ground
truth. The solid (red) line is the ROC curve for the proposed algorithm and the dashed (blue)
line is for the classifier learnt using the majority-voting scheme. The classifier learnt using
the proposed method is as good as the one learnt using the golden ground truth. The area
under the ROC curve (AUC) for the proposed algorithm is around 3.5% greater than that
learnt using the majority-voting scheme.

2. Radiologist performance The actual sensitivity and specificity of each radiologist is marked
as a black× in Figure 1(b). The end of the solid red line shows the estimates of the sensitivity
and specificity from the proposed method. We used a uniform prior on all the parameters.
The ellipse plots the contour of one standard deviation as obtained from the beta posterior
estimates. The end of the dashed blue line shows the estimate obtained from the majority-
voting algorithm. We see that the proposed method is much closer to the actual values of
sensitivity and specificity.

3. Actual ground truth Since the estimates of the actual ground truth are probabilistic scores,
we can also plot the ROC curves of the estimated ground truth. From Figure 1(b) we can
see that the ROC curve for the proposed method dominates the majority voting ROC curve.
Furthermore, the area under the ROC curve (AUC) is around 3% higher. The estimate ob-
tained by majority voting is closer to the novices since they form a majority (3/5). It does not
have an idea of who is an expert and who is a novice. The proposed algorithm appropriately
weights each radiologist based on their estimated sensitivity and specificity. The improve-
ment obtained is quite large in Figure 2 which corresponds a situation where we have only
one expert and 7 novices.

4. Joint Estimation To learn a classifier, Smyth et al. (1995) proposed to first estimate the
golden ground truth and then use the probabilistic ground truth to learn a classifier. In contrast,
our proposed algorithm learns the classifier and the ground truth jointly as a part of the EM
algorithm. Figure 3 shows that the classifier and the ground truth learnt obtained by the
proposed algorithm is superior than that obtained by other procedures which first estimates
the ground truth and then learns the classifier.

6.1.2 BREAST MRI

In this example, each radiologist reviews the breast MRI data and assesses the malignancy of each
lesion on a BIRADS scale of 1 to 5. The BIRADS scale is defined as follows: 1 Negative, 2 Benign,
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Majority Voting True 1 True 2 True 3 True 4 True 5

Estimated 1 x 0.0217 0 x 0.0000
Estimated 2 x 0.5869 0 x 0.1785
Estimated 3 x 0.2391 0 x 0.1071
Estimated 4 x 0.1521 1 x 0.2500
Estimated 5 x 0.0000 0 x 0.4642

EM algorithm True 1 True 2 True 3 True 4 True 5

Estimated 1 x 0.0000 0 x 0.0000
Estimated 2 x 0.6957 0 x 0.1428
Estimated 3 x 0.1304 0 x 0.0000
Estimated 4 x 0.1739 1 x 0.3214
Estimated 5 x 0.0000 0 x 0.5357

Table 1: The confusion matrix for the estimate obtained using majority voting and the proposed
EM algorithm. The x indicates that there was no such category in the true labels (the gold
standard). The gold-standard is obtained by the biopsy which can confirm whether it is
benign (BIRADS=2) or malignant (BIRADS=5).

3 Probably Benign, 4 Suspicious abnormality, and 5 Highly suggestive of malignancy. Our data set
comprises of 75 lesions with annotations from four radiologists, and the true labels from biopsy.
Based on eight morphological features, we have to predict whether a lesion is malignant or not.

For the first experiment we reduce the BIRADS scale to a binary one: any lesion with a BIRADS
> 3 is considered malignant and benign otherwise. The set included 28 malignant and 47 benign
lesions. Figure 4 summarizes the results. We show the leave-one-out cross validated ROC for the
classifier. The cross-validated AUC of the proposed method is approximately 6% better than the
majority voting baseline.

We also consider the BIRADS labels as a set of ordinal measurements since there is an order-
ing among the BIRADS label. The confusion matrix in Table 1 shows that the EM algorithm is
significantly superior than the majority voting in estimating the true BIRADS.

6.1.3 RECOGNIZING TEXTUAL ENTAILMENT

Finally we report results on Recognizing Textual Entailment data collected by Snow et al. (2008)
using the Amazon’s Mechanical Turk. In this task, the annotator is presented with two sentences
and given a choice of whether the second sentence can be inferred from the first. The data has 800
tasks and 164 distinct readers, with 10 annotations per task along with the golden ground truth. The
majority of the entries (94 %) in the 800x164 matrix are missing. There is one annotator who has
labeled all the tasks. We use this data set to obtain an estimate of the actual ground truth. Figure 5
plots the accuracy of the estimated ground truth as a function of the number of annotators. The
proposed EM algorithm achieves a higher accuracy than majority voting. In other words to achieve
a desired accuracy the proposed algorithm needs fewer annotators than the majority voting scheme.
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Figure 1: Results for the digital mammography data set with annotations from 5 simulated radiol-
ogists. (a) The ROC curve of the learnt classifier using the golden ground truth (dotted
black line), the majority voting scheme (dashed blue line), and the proposed EM algo-
rithm (solid red line). (b) The ROC curve for the estimated ground truth. The actual
sensitivity and specificity of each of the radiologists is marked as a ×. The end of the
dashed blue line shows the estimates of the sensitivity and specificity obtained from the
majority voting algorithm. The end of the solid red line shows the estimates from the
proposed method. The ellipse plots the contour of one standard deviation.
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Figure 2: Same as Figure 1 except with 8 different radiologist annotations.
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Figure 3: ROC curves comparing the proposed algorithm (solid red line) with the Decoupled Esti-
mation procedure (dotted blue line), which refers to the algorithm where the ground truth
is first estimated using just the labels from the five radiologists and then a logistic regres-
sion classifier is trained using the soft probabilistic labels. In contrast the proposed EM
algorithm estimates the ground truth and learns the classifier simultaneously during the
EM algorithm.
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Figure 4: Breast MRI results. (a) The leave-one-out cross validated ROC. (b) ROC for the estimated
ground truth.
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Figure 5: The mean and the one standard deviation error bars for the accuracy of the estimated
ground truth for the Recognizing Textual Entailment task as a function of the number of
annotators. The plot was generated by randomly sampling the annotators 100 times.

6.2 Regression Experiments

We first illustrate the algorithm on a toy dataset and then present a case study for automated polyp
measurements.

6.2.1 ILLUSTRATION

Figure 6 illustrates the the proposed algorithm for regression on a one-dimensional toy data set with
three annotators. The actual regression model (shown as a blue dotted line) is given by y= 5x−2.
We simulate 20 samples from three annotators with precisions 0.01, 0.1, and 1.0. The data are
shown by the annotators’s number. While we can fit a regression model using each annotators’s
response, we see that only the model for annotator three (with highest precision) is close to the true
regression model. The green dashed line shows the model learnt using the average response from
all the three annotators. The red line shows the model learnt by the proposed algorithm.

6.2.2 AUTOMATED POLYP MEASUREMENTS

Colorectal polyps are small colonic findings that may develop into cancer at a later stage. The
diameter of the polyp is one of the key factors which decides the malignancy of a suspicious polyp.
Hence accurate size estimation is crucial to decide the action to be taken on a polyp. We have
developed various algorithms to segment a polyp. Multiple segmentation algorithms give rise to a
set of features which are correlated with the diameter of the polyp. We want to learn a regression
function which can predict the diameter of a polyp as a function of these features. In order to learn
a regression function we collect our ground truth by asking many radiologists to manually measure
the the diameter of the polyps from the three-dimensional images. In practice there is a lot of
disagreement among the radiologists as to the actual size of the polyp.
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Figure 6: Illustration of the proposed algorithm on a one-dimensional toy data set. The actual
regression model (shown as a blue dotted line) is given by y = 5x− 2. We simulate 50
samples from three annotators with precisions 0.01, 0.1, and 1.0. The data are shown
by the annotators’s number. While we can fit a regression model using each annotators’s
response, we see that only the model for annotator three (with highest precision) is close
to the true regression model. The green dashed line shows the model learnt using the
average response from all the three annotators. The red line shows the model learnt by
the proposed algorithm.
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Figure 7: Scatter plot of the actual polyp diameter vs the diameter predicted by the models learnt
using (a) the actual gold standard, (b) the proposed algorithm with annotations from five
radiologists, and (c) the average of the radiologist’s annotations. (See § 6.2.2 for a de-
scription of the experimental setup.)
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We use a proprietary data set containing 393 examples (which point to 285 distinct polyps—
the segmentation algorithms generally return multiple marks on the same polyp.) along with the
measured diameter (ranging from 2mm to 15mm) as our training set. Each example is described
by a set of 60 morphological features which are correlated to the diameter of the polyp. In order
to validate the feasibility of our proposed algorithm, we simulate five radiologists according to the
noisy model described in § 5.1 with τ= [0.001 0.01 0.1 1 10]. This corresponds to a situation where
the first three radiologists are extremely noisy and the last two are quite accurate. Based on the
measurements from multiple radiologists, we can simultaneously (1) learn a linear regressor and (2)
estimate the precision of each radiologist. We compare the results with the classifier trained using
the actual golden ground truth as well as the regressor learnt using the average of the radiologists
measurements. The results are validated on an independent test set containing 397 examples (which
point to 298 distinct polyps).

Figure 7 shows the scatter plot of the actual polyp diameter vs the diameter predicted by the three
different models. We compare the performance based on the root mean squared error (RMSE) and
also the Pearson’s correlation coefficient. The regressor learnt using the proposed iterative algorithm
(Figure 7(b)) is almost as good as the one learnt using the golden ground truth (Figure 7(a)). The
correlation coefficient for the proposed algorithm is significantly larger than that learnt using the
average of the radiologists response. The estimate obtained by averaging is closer to the novices
since they form a majority (3/5). The proposed algorithm appropriately weights each radiologist
based on their estimated precisions.

7. Conclusions and Future Work

In this paper we proposed a probabilistic framework for supervised learning with multiple annota-
tors providing labels but no absolute gold standard. The proposed algorithm iteratively establishes
a particular gold standard, measures the performance of the annotators given that gold standard,
and then refines the gold standard based on the performance measures. We specifically discussed
binary/categorical/ordinal classification and regression problems.

We made two key assumptions: (1) the performance of each annotator does not depend on the
feature vector for a given instance and (2) conditional on the truth the experts are independent, that
is, they make their errors independently. As we pointed out earlier these assumptions are not true
in practice. The annotator performance depends on the instance he is labeling and there is some
degree of correlation among the annotators. We briefly discuss some strategies to relax these two
assumptions.

7.1 Instance Difficulty

One drawback of the current model is that it doesn’t estimate difficulty of items. It is often observed
that for the easy instances all the annotators agree on the labels—thus violating our conditional
independence assumption. The difficulty of annotating an item can be captured by another latent
variable γi for each instance—which modulates the annotators performance. Models for this have
been developed in the area of item-response theory (Baker and Kim, 2004) and also in epidemiol-
ogy (Uebersax and Grove, 1993)—see also Whitehill et al. (2009) for a recent paper in the machine
learning community. While these models do not take into account the available features our pro-
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posed model for sensitivity and specificity can be extended as follows (in place of (1) and (2)):

α j(γi) := Pr[y ji = 1|yi = 1,γi] = σ(a j1+b j1γi).

β j(γi) := Pr[y ji = 0|yi = 0,γi] = σ(a j0+b j0γi).

Here the parameters a j1 and a j0 are related to the sensitivity and specificity of the jth annotator,
while the latent term γi captures the difficulty of the instance. The key assumption here is that the
annotators are independent conditional on both yi and γi. Various assumptions can be made on two
parameters b j1 and b j0 to simplify these models further—for example we could set b j1 = b1 and
b j0 = b0 for all the annotators.

7.2 Annotators Actually Look at the Data

In our model we made the assumption that the sensitivity α j and the specificity β j of the jth annota-
tor does not depend on the feature vector xi. For example, in the CAD domain, this meant that the
radiologist’s performance is consistent across different sub-groups of data—which is not entirely
true. It is known that some radiologists are good at detecting certain kinds of malignant lesions
based on their training and experience. We can extend the previous model such that the sensitivity
and the specificity depends on the feature vector xi explicitly as follows

α j(γi,xi) := Pr[y ji = 1|yi = 1,γi,xi] = σ(a j1+b j1γi+w
j
α
%
xi).

α j(γi,xi) := Pr[y ji = 0|yi = 0,γi,xi] = σ(a j0+b j0γi+w
j
β

%
xi).

However this change increases the number of parameters to be learned.
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Abstract
Estimating the error rates of classifiers or regression models is a fundamental task in machine
learning which has thus far been studied exclusively using supervised learning techniques. We
propose a novel unsupervised framework for estimating these error rates using only unlabeled data
and mild assumptions. We prove consistency results for the framework and demonstrate its practical
applicability on both synthetic and real world data.
Keywords: classification and regression, maximum likelihood, latent variable models

1. Introduction

A common task in machine learning is predicting a response variable y∈Y based on an explanatory
variable x ∈ X . Assuming a joint distribution p(x,y) and a loss function L(y, ŷ), a predictor f : X →
Y is characterized by an expected loss or risk function

R( f ) = E p(x,y){L(y, f (x))}.

For example, in classification we may have X = Rd , Y = {1, . . . , l}, and L(y, ŷ) = I(y #= ŷ) where
I(A) = 1 if A is true and 0 otherwise. The resulting risk is known as the 0-1 risk or simply the
classification error rate

R( f ) = P( f predicts the wrong class).

In regression we may have X = Y = R, and L(y, ŷ) = (y− ŷ)2. The resulting risk is the mean
squared error

R( f ) = E p(x,y)(y− f (x))2.

We consider the case where we are provided with k predictors fi : X → Y , i = 1, . . . ,k (k ≥ 1)
whose risks are unknown. The main task we are faced with is estimating the risks R( f1), . . . ,R( fk)
without using any labeled data whatsoever. The estimation of R( fi) is rather based on an estimator
R̂( fi) that uses unlabeled data x(1), . . . ,x(n)

iid∼ p(x).

c©2010 Pinar Donmez, Guy Lebanon and Krishnakumar Balasubramanian.
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A secondary task that we consider is obtaining effective schemes for combining k predictors
f1, . . . , fk in a completely unsupervised manner. We refer to these two tasks of risk estimation and
predictor combination as unsupervised-supervised learning since they refer to unsupervised analysis
of supervised prediction models.

It may seem surprising that unsupervised risk estimation is possible at all. After all in the
absence of labels there is no ground truth that guides us in estimating the risks. However, as we
show in this paper, if the marginal p(y) is known it is possible in some cases to obtain a consistent
estimator for the risks using only unlabeled data, that is,

lim
n→∞

R̂( fi ;x(1), . . . ,x(n)) = R( fi) with probability 1, i= 1, . . . ,k.

In addition to demonstrating consistency, we explore the asymptotic variance of the risk estimators
and how it is impacted by changes in n (amount of unlabeled data), k (number of predictors), and
R( f1), . . . ,R( fk) (risks). We also demonstrate that the proposed estimation technique works well in
practice on both synthetic and real world data.

The assumption that p(y) is known seems restrictive, but there are plenty of cases where it
holds. Examples include medical diagnosis (p(y) is the well known marginal disease frequency),
handwriting recognition/OCR (p(y) is the easily computable marginal frequencies of different En-
glish letters), regression model for life expectancy (p(y) is the well known marginal life expectancy
tables). In these and other examples p(y) is obtained from extremely accurate histograms.

There are several reasons that motivate our approach of using exclusively unlabeled data to esti-
mate the risks. Labeled data may be unavailable due to privacy considerations where the predictors
are constructed by organizations using training sets with private labels. For example, in medical
diagnosis prediction, the predictors f1, . . . , fk may be obtained by k different hospitals, each using a
private internal labeled set. Following the training stage, each hospital releases its predictor to the
public who then proceed to estimate R( f1), . . . ,R( fk) using a separate unlabeled data set.

Another motivation for using unlabeled data is domain adaptation where predictors that are
trained on one domain, are used to predict data from a new domain from which we have only
unlabeled data. For example, predictors are often trained on labeled examples drawn from the
past but are used at test time to predict data drawn from a new distribution associated with the
present. Here the labeled data used to train the predictors will not provide an accurate estimate due
to differences in the test and train distributions.

Another motivation is companies releasing predictors to clients as black boxes (without their
training data) in order to protect their intellectual property. This is the situation in business analytics
and consulting. In any case, it is remarkable that without labels we can still accurately estimate
supervised risks.

The collaborative nature of this diagnosis is especially useful for multiple predictors as the
predictor ensemble { f1, . . . , fk} diagnoses itself. However, our framework is not restricted to a large
k and works even for a single predictor with k = 1. It may further be extended to the case of active
learning where classifiers are queried for specific data and the case of semi-supervised learning
where a small amount of labeled data is augmented by massive unlabeled data.

We proceed in the next section to describe the general framework and some important special
cases. In Section 3 we discuss extensions to the general framework and in Section 4-5 we discuss the
theory underlying our estimation process. In Section 6 we discuss practical optimization algorithms.
Section 7 contains an experimental study. We conclude with a discussion in Section 8.
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2. Unsupervised Risk Estimation Framework

We adopt the framework presented in Section 1 with the added requirement that the predictors
f1, . . . , fk are stochastic, that is, their prediction ŷ = fi(x) (conditioned on x) is a random variable.
Such stochasticity occurs if the predictors are conditional models predicting values according to
their estimated probability, that is, fi models a conditional distribution qi and predicts y′ with prob-
ability qi(y′|x).

As mentioned previously our goal is to estimate the risk associated with classification or re-
gression models f1, . . . , fk based on unlabeled data x(1), . . . ,x(n)

iid∼ p(x). The testing marginal and
conditional distributions p(x), p(y|x) may differ from the distributions used at training time for the
different predictors. In fact, each predictor may have been trained on a completely different training
distribution, or may have been designed by hand with no training data whatsoever. We consider
the predictors as black boxes and do not assume any knowledge of their modeling assumptions or
training processes.

At the center of our framework is the idea to define a parameter vector θ∈Θwhich characterizes
the risks R( f1), . . . ,R( fk), that is, R( f j) = g j(θ) for some function g j : Θ→ R, j = 1, . . . ,k. The
parameter vector θ is estimated from data by connecting it to the probabilities

p j(y′|y)
def
= p( f j predicts y′| true label is y).

More specifically, we use a plug-in estimate R̂( f j) = g j(θ̂) where θ̂ maximizes the likelihood of
the predictor outputs ŷ(i)j = f j(x(i)) with respect to the model pθ(ŷ) =

R

pθ(ŷ|y)p(y)dy. The precise
equations are:

R̂( f j ; ŷ(1), . . . , ŷ(n)) = g j(θ̂mle(ŷ(1), . . . , ŷ(n))) where (1)

ŷ(i) def
= (ŷ(i)1 , . . . , ŷ(i)k )

ŷ(i)j
def
= f j(x(i)),

θ̂mle(ŷ(1), . . . , ŷ(n)) = argmax!(θ ; ŷ(1), . . . , ŷ(n)), (2)

!(θ ; ŷ(1), . . . , ŷ(n)) =
n

∑
i=1
log pθ(ŷ

(i)
1 , . . . , ŷ(i)k ) (3)

=
n

∑
i=1
log

Z

Y
pθ(ŷ

(i)
1 , . . . , ŷ(i)k |y(i))p(y(i))dµ(y(i)).

The integral in (3) is over the unobserved label y(i) associated with x(i). It should be a continu-
ous integral

R ∞
y(i)=−∞ for regression and a finite summation ∑

l
y(i)=1 for classification. For notational

simplicity we maintain the integral sign for both cases with the understanding that it is over a con-
tinuous or discrete measure µ, depending on the topology of Y . Note that (3) and its maximizer
are computable without any labeled data. All that is required are the classifiers (as black boxes),
unlabeled data x(1), . . . ,x(n), and the marginal label distribution p(y).
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Besides being a diagnostic tool for the predictor accuracy, θ̂mle can be used to effectively aggre-
gate f1, . . . , f j to predict the label of a new example xnew

ŷnew = argmax
y∈Y

pθ̂mle(y | f1(x
new), . . . , fk(xnew))

= argmax
y∈Y

p(y)
k

∏
j=1

pθ̂mlej ( f j(xnew) | y). (4)

As a result, our framework may be used to combine existing classifiers or regression models in a
completely unsupervised manner.

There are three important research questions concerning the above framework. First, what are
the statistical properties of θ̂mle and R̂ (consistency, asymptotic variance). Second, how can we
efficiently solve the maximization problem (2). And third, how does the framework work in practice.
We address these three questions in Sections 4-5, 6, 7 respectively, We devote the rest of the current
section to examine some important special cases of (2)-(3) and consider some generalizations in the
next section.

2.1 Non-Collaborative Estimation of the Risks

In the non-collaborative case we estimate the risk of each one of the predictors f1, . . . , fk separately.
This reduces the problem to that of estimating the risk of a single predictor, which is repeated k
times for each one of the predictors. We thus assume in this subsection the framework (1)-(3) with
k = 1 with no loss of generality. For simplicity we denote the single predictor by f rather than f1
and denote g= g1 and ŷ(i) = ŷ(i)1 . The corresponding simplified expressions are

R̂( f ; ŷ(1), . . . , ŷ(n)) = g(θ̂mle(ŷ(1), . . . , ŷ(n))),

θ̂mle(ŷ(1), . . . , ŷ(n)) = argmax
θ

n

∑
i=1
log

Z

Y
pθ(ŷ(i)|y(i))p(y(i))dµ(y(i)) (5)

where ŷ(i) = f (x(i)).
We consider below several important special cases.

2.1.1 CLASSIFICATION

Assuming l labels Y = {1, . . . , l}, the classifier f defines a multivariate Bernoulli distribution
pθ(ŷ|y) mapping the true label y to ŷ

pθ(ŷ|y) = θŷ,y. (6)

where θ is the stochastic confusion matrix or noise model corresponding to the classifier f . In this
case, the relationship between the risk R( f ) and the parameter θ is

R( f ) = 1− ∑
y∈Y

θyy p(y). (7)
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Equations (6)-(7) may be simplified by assuming a symmetric error distribution (Cover and Thomas,
2005)

pθ(ŷ|y) = θI(ŷ=y)
(

1−θ
l−1

)I(ŷ#=y)
, (8)

R( f ) = 1−θ

where I is the indicator function and θ ∈ [0,1] is a scalar corresponding to the classifier accuracy.
Estimating θ by maximizing (5), with (6) or (8) substituting pθ completes the risk estimation task.

In the simple binary case l = 2,Y = {1,2}with the symmetric noise model (8) the loglikelihood

!(θ) =
n

∑
i=1
log

2

∑
y(i)=1

θI(ŷ
(i)=y(i))(1−θ)I(ŷ

(i) #=y(i))p(y(i))

may be shown to have the following closed form maximizer

θ̂mle =
p(y= 1)−m/n
2p(y= 1)−1

. (9)

where m def
= |{i ∈ {1, . . . ,n} : ŷ(i) = 2}|. The estimator (9) works well in practice and is shown to be

a consistent estimator in the next section (i.e., it converges to the true parameter value). In cases
where the symmetric noise model (8) does not hold, using (9) to estimate the classification risk may
be misleading. For example, in some cases (9) may be negative. In these cases, using the more
general model (6) instead of (8) should provide more accurate results. We discuss this further from
theoretical and experimental perspectives in Sections 4-5, and 7 respectively.

2.1.2 REGRESSION

Assuming a regression equation

y= ax+ ε, ε∼ N(0,τ2)

and an estimated regression model or predictor ŷ= a′x we have

ŷ= a′x= a′a−1(y− ε) = θy−θε

where θ= a′a−1. Thus, in the regression case the distribution pθ(ŷ|y) and the relationship between
the risk and the parameter R( f ) = g(θ) are

pθ(ŷ|y) = (2πθ2τ2)−1/2 exp
(

−
(ŷ−θy)2

2θ2τ2

)

, (10)

R( f |y) = bias 2( f )+Var( f ) = (1−θ)2y2+θ2τ2,

R( f ) = θ2τ2+(1−θ)2E p(y)(y2).

Note that we consider regression as a stochastic estimator in that it predicts y = a′x+ ε or y|x ∼
N(a′x,τ2).
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Assuming p(y) = N(µy,σ2y) (as is often done in regression analysis) we have

pθ(ŷ(i)) =
Z

R

pθ(ŷ(i)|y)p(y)dy= (2πθ2τ22πσ2y)−1/2
Z

R

exp

(

−
(ŷ−θy)2

2θ2τ2
−

(y−µy)2

2σ2y

)

dy (11)

=
1

θ
√

2π(τ2+σ2y)
exp

(

(ŷ(i))2

2θ2τ2

(

σ2y
σ2y + τ2

−1

)

+
µ2y
2σ2y

(

τ2

σ2y + τ2
−1

)

+
ŷ(i)µy

θ
(

τ2+σ2y
)

)

where we used the following lemma in the last equation.

Lemma 1 (e.g., Papoulis, 1984)
Z ∞

−∞
Ae−Bx

2+Cx+Ddx= A
√

π
B
exp

(

C2/4B+D
)

where A,B,C,D are constants that do not depend on x.

In this case the loglikelihood simplifies to

!(θ) = −n log
(

θ
√

2π(τ2+σ2y)
)

−

(

∑n
i=1(ŷ(i))2

2(τ2+σ2y)

)

1
θ2

+

(

µy∑n
i=1 ŷ(i)

τ2+σ2y

)

1
θ
−n

µ2y
2(σ2y + τ2)

which can be shown to have the following closed form maximizer

θ̂mle = −
µy∑n

i=1 ŷ(i)

2n(τ2+σ2y)
±

√

√

√

√

(

µy∑n
i=1 ŷ(i)

)2

4n2(τ2+σ2y)
2 +

∑n
i=1(ŷ(i))2

n(τ2+σ2y)

where the two roots correspond to the two cases where θ= a′/a> 0 and θ= a′/a< 0.
The univariate regression case described above may be extended to multiple explanatory vari-

ables, that is, y= Ax+ ε where y,x,ε are vectors and A is a matrix. This is an interesting extension
which falls beyond the scope of the current paper.

2.1.3 NOISY GAUSSIAN CHANNEL

In this case our predictor f corresponds to a noisy channel mapping a real valued signal y to its noisy
version ŷ. The aim is to estimate the mean squared error or noise level R( f ) = E‖y− ŷ‖2. In this
case the distribution pθ(ŷ|y) and the relationship between the risk and the parameter R( f ) = g(θ)
are

pθ(ŷ|y) = (2πθ2)−1/2 exp
(

−
(ŷ− y)2

2θ2

)

,

R( f |y) = θ2,

R( f ) = θ2E p(y)(y).

The loglikelihood and other details in this case are straightforward variations on the linear re-
gression case described above. We therefore concentrate in this paper on the classification and linear
regression cases.
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As mentioned above, in both classification and regression, estimating the risks for k ≥ 2 pre-
dictors rather than a single one may proceed by repeating the optimization process described above
for each predictor separately. That is R̂( f j) = g j(θ̂mlej ) where θ̂mle1 , . . . , θ̂mlek are estimated by max-
imizing k different loglikelihood functions. In some cases the convergence rate to the true risks
can be accelerated by jointly estimating the risks R( f1), . . . ,R( fk) in a collaborative fashion. Such
collaborative estimation is possible under some assumptions on the statistical dependency between
the noise processes defining the k predictors. We describe below such an assumption followed by a
description of more general cases.

2.2 Collaborative Estimation of the Risks: Conditionally Independent Predictors

We have previously seen how to estimate the risks of k predictors by separately applying (1) to each
predictor. If the predictors are known to be conditionally independent given the true label, that is,
pθ(ŷ1, . . . , ŷk|y) =∏ j pθ j(ŷ j|y) the loglikelihood (3) simplifies to

!(θ) =
n

∑
i=1
log

Z

Y

k

∏
j=1

pθ j(ŷ
(i)
j |y

(i))p(y(i))dµ(y(i)), where ŷ(i)j = f j(x(i)) (12)

and pθ j above is (6) or (8) for classification and (10) for regression. Maximizing the loglikelihood
(12) jointly over θ1, . . . ,θk results in estimators R̂( f1), . . . , R̂( fk) that converge to the true value faster
than the non-collaborativeMLE (5) (more on this in Section 7). Equation (12) does not have a closed
form maximizer requiring the use of iterative computational techniques.

The conditional independence of the predictors is a much weaker condition than the indepen-
dence of the predictors which is very unlikely to hold. In our case, each predictor f j has its own
stochastic noise operator Tj(r,s) = p(ŷ = r|y = s) (regression) or matrix [Tj]rs = p j(ŷ = r|y = s)
(classification) where T1, . . . ,Tk may be arbitrarily specified. In particular, some predictors may be
similar, for example, Ti ≈ Tj, and some may be different, for example, Ti #≈ Tj. The conditional
independence assumption that we make in this subsection is that conditioned on the latent label y
the predictions of the predictors proceed stochastically according to T1, . . . ,Tk in an independent
manner.

Figure 1 displays the loglikelihood functions !(θ) for three different data set sizes n= 100,250,
500. As the size n of the unlabeled data grows the curves become steeper and θ̂mlen approach θtrue.
Figure 2 displays a similar figure for k = 1 in the case of regression.
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Figure 1: A plot of the loglikelihood functions !(θ) in the case of classification for k = 1 (left,
θtrue = 0.75) and k = 2 (right, θtrue = (0.8,0.6)+). The loglikelihood was constructed
based on random samples of unlabeled data with sizes n= 100,250,500 (left) and n= 250
(right) and p(y = 1) = 0.75. In the left panel the y values of the curves were scaled so
their maxima would be aligned. For k = 1 the estimators θ̂mle (and their errors |θ̂mle−
0.75|) for n = 100,250,500 are 0.6633 (0.0867), 0.8061 (0.0561), 0.765 (0.0153). As
additional unlabeled examples are added the loglikelihood curves become steeper and
their maximizers become more accurate and closer to θtrue.
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Figure 2: A plot of the loglikelihood function !(θ) in the case of regression for k = 1 with
θtrue = 0.3, τ = 1, µy = 0 and σy = 0.2. As additional unlabeled examples are added the
loglikelihood curve become steeper and their maximizers get closer to the true parameter
θtrue resulting in a more accurate risk estimate.
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In the case of regression (12) involves an integral over a product of k+1 Gaussians, assuming
that y∼ N(µy,σ2y). In this case the integral in (12) simplifies to

pθ(ŷ
(i)
1 , . . . , ŷ(i)k ) =

Z ∞

−∞

(

k

∏
j=1

1
θ jτ

√
2π
e
−

(

ŷ(i)j −θ jy(i)
)2

/

2θ2jτ2
)

1
σy
√
2π
e−(y(i)−µy)

2/2σ2y dy(i)

=
1

τk(
√
2π)k+1σy∏k

j=1θ j

Z ∞

−∞
exp



−
1
2





(

y(i)−µy
σy

)2

+
k

∑
j=1

(

y(i)

τ
−
ŷ(i)j
τθ j

)2





 dy(i)

=

R ∞
−∞ exp

(

− 1
2

(

1
σ2y

+ k
τ2

)

(y(i))2+

(

µy
σ2y

+∑k
j=1

ŷ(i)j
τ2θ j

)

y(i)− 1
2

(

µ2y
σ2y

+∑k
j=1

(ŷ(i)j )2

τ2θ2j

))

τk(
√
2π)k+1σy∏k

j=1θ j

=

√
π
[

1
2

(

1
σ2y

+ k
τ2

)]−1/2

τk(
√
2π)k+1σy∏k

j=1θ j
exp











(

µy
σ2y

+∑k
j=1

ŷ(i)j
τ2θ j

)2

2
(

1
σ2y

+ k
τ2

) −
k

∑
j=1

(ŷ(i)j )2

2τ2θ2j
−

µ2y
2σ2y











(13)

where the last equation was obtained using Lemma 1 concerning Gaussian integrals. Note that
this equation does not have a closed form maximizer requiring the use of iterative computational
techniques.

2.3 Collaborative Estimation of the Risks: Conditionally Correlated Predictors

In some cases the conditional independence assumption made in the previous subsection does not
hold and the factorization (12) is violated. In this section, we discuss how to relax this assumption
in the classification case. A similar approach may also be used for regression. We omit the details
here due to notational clarity.

There are several ways to relax the conditional independence assumption. Most popular, per-
haps, is the mechanism of hierarchical loglinear models for categorical data (Bishop et al., 1975).
For example, generalizing our conditional independence assumption to second-order interaction
log-linear models we have

log p(ŷ1, . . . , ŷk|y) = αy+
l

∑
i=1

βi,ŷi,y+∑
i< j

γi, j,ŷi,ŷ j,y (14)

where the following ANOVA-type parameter constraints are needed (Bishop et al., 1975)

0=∑
ŷi
βi,ŷi,y ∀i,y, (15)

0=∑
ŷi
γi, j,ŷi,ŷ j,y =∑

ŷ j
γi, j,ŷi,ŷ j,y ∀i, j,y.

The β parameters in (14) correspond to the order-1 interaction between the variables ŷ1, . . . , ŷk,
conditioned on y. They correspond to the θi in the independent formulation (6)-(8). The γ parameters
capture two-way interactions which do not appear in the conditionally independent case. Indeed,
setting γi, j,ŷi,ŷ j,y = 0 retrieves the independent models (6)-(8).
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In the case of classification, the number of degrees of freedom or free unconstrained parameters
in (14) depends on whether the number of classes is 2 or more and what additional assumptions exist
on β and γ. For example, assuming that the probability of fi, f j making an error depends on the true
class y but not on the predicted classes ŷi, ŷ j results in a k+k2 parameters. Relaxing that assumption
but assuming binary classification results in 2k+ 4k2 parameters. The estimation and aggregation
techniques described in Section 2.1 work as before with a slight modification of replacing (6)-(8)
with variations based on (14) and enforcing the constraints (15).

Equation (14) captures two-way interactions but cannot model higher order interactions. How-
ever, three-way and higher order interaction models are straightforward generalizations of (14) cul-
minating in the full loglinear model which does not make any assumption on the statistical depen-
dency of the noise operators T1, . . . ,Tk. However, as we weaken the assumptions underlying the
loglinear models and add higher order interactions the number of parameters increases adding to
the difficulty in estimating the risks R( f1), . . . ,R( fk).

In our experiments on real world data (see Section 7), it is often the case that maximizing the
loglikelihood under the conditionally independent assumption (12) provides adequate accuracy and
there is no need for the more general (14)-(15). Nevertheless, we include here the case of loglinear
models as it may be necessary in some situations.

3. Extensions: Missing Values, Active Learning, and Semi-Supervised Learning

In this section, we discuss extensions to the current framework. Specifically, we consider extending
the framework to the cases of missing values, active and semi-supervised learning.

Occasionally, some predictors are unable to provide their output over specific data points. That
is assuming a data set x(1), . . . ,x(n) each predictor may provide output on an arbitrary subset of the
data points { f j(x(i)) : i ∈ S j}, where S j ⊂ {1, . . . ,n}, j = 1, . . . ,k.

Commonly referred to as a missing value situation, this scenario may apply in cases where dif-
ferent parts of the unlabeled data are available to the different predictors at test time due to privacy,
computational complexity, or communication cost. Another example where this scenario applies is
active learning where operating f j involves a certain cost c j ≥ 0 and it is not advantageous to operate
all predictors with the same frequency for the purpose of estimating the risks R( f1), . . . ,R( fk). Such
is the case when f j corresponds to judgments obtained from human experts or expensive machinery
that is busy serving multiple clients. Active learning fits into this situation with S j denoting the set
of selected data points for each predictor.

We proceed in this case by defining indicators β ji denoting whether predictor j is available
to emit f j(x(i)). The risk estimation proceeds as before with the observed likelihood modified to
account for the missing values.

In the case of collaborative estimation with conditional independence, the estimator and log-
likelihood become

θ̂mlen = argmax
θ

!(θ),

!(θ) =
n

∑
i=1
log ∑

r:βri=0

Z

Y
pθ(ŷ

(i)
1 , . . . , ŷ(i)k )dµ(ŷ(i)r ) (16)

=
n

∑
i=1
log ∑

r:βri=0

ZZ

Y 2
pθ(ŷ

(i)
1 , . . . , ŷ(i)k |y(i))p(y(i))dµ(ŷ(i)r )dµ(y(i))
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where pθ may be further simplified using the non-collaborative approach, or using the collaborative
approach with conditional independence or loglinear model assumptions.

In the case of semi-supervised learning a small set of labeled data is augmented by a large set
of unlabeled data. In this case our framework remains as before with the likelihood summing over
the observed labeled and unlabeled data. For example, in the case of collaborative estimation with
conditional independence we have

!(θ) =
n

∑
i=1
log

Z

Y

k

∏
j=1

pθ j(ŷ
(i)
j |y

(i))p(y(i))dµ(y(i))+
m

∑
i=n+1

log
k

∏
j=1

pθ j(ŷ
(i)
j |y

(i))p(y(i)).

The different variations concerning missing values, active learning, semi-supervised learning,
and non-collaborative or collaborative estimation with conditionally independent or correlated noise
processes can all be combined in different ways to provide the appropriate likelihood function. This
provides substantial modeling flexibility.

4. Consistency of θ̂mlen and R̂( f j)

In this and the next section we consider the statistical behavior of the estimator θ̂mlen defined in
(2) and the risk estimator R̂( f j) = g j(θ̂mle) defined in (1). The analysis is conducted under the
assumption that the vectors of observed predictors outputs ŷ(i) = (ŷ(i)1 , . . . , ŷ(i)k ) are iid samples from
the distribution

pθ(ŷ) = pθ(ŷ1, . . . , ŷk) =
Z

Y
pθ(ŷ1, . . . , ŷk|y)p(y)dµ(y).

We start by investigating whether estimator θ̂mle in (2) converges to the true parameter value.
More formally, strong consistency of the estimator θ̂mlen = θ̂(ŷ(1), . . . , ŷ(n)), ŷ(1), . . . , ŷ(n) iid∼ pθ0 is
defined as strong convergence of the estimator to θ0 as n→ ∞ (Ferguson, 1996)

lim
n→∞

θ̂mlen (ŷ(1), . . . , ŷ(n)) = θ0 with probability 1.

In other words as the number of samples n grows, the estimator will surely converge to the true
parameter θ0 governing the data generation process.

Assuming that the risks R( f j) = g j(θ) are defined using continuous functions g j, strong consis-
tency of θ̂mle implies strong convergence of R̂( f j) to R( f j). This is due to the fact that continuity
preserves limits. Indeed, as the g j functions are continuous in both the classification and regression
cases, strong consistency of the risk estimators R̂( f j) reduces to strong consistency of the estimators
θ̂mle.

It is well known that the maximum likelihood estimator is often strongly consistent. Consider,
for example, the following theorem.

Proposition 2 (e.g., Ferguson, 1996) Let ŷ(1), . . . , ŷ(n) iid∼ pθ0 , θ0 ∈ Θ. If the following conditions
hold

1. Θ is compact (compactness)
2. pθ(ŷ) is upper semi-continuous in θ for all ŷ (continuity)
3. There exists a function K(ŷ) such that E pθ0 |K(ŷ)| < ∞ (boundedness)

and log pθ(ŷ)− log pθ0(ŷ) ≤ K(ŷ) ∀ŷ ∀θ
4. For all θ and sufficiently small ρ> 0, sup|θ′−θ|<ρ pθ′(ŷ) is (measurability)

measurable in ŷ
5. pθ ≡ pθ0 ⇒ θ= θ0 (identifiability)
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then the maximum likelihood estimator is strongly consistent, that is, θ̂mle → θ0 as n → ∞ with
probability 1.

Note that pθ(ŷ) in the proposition above corresponds to
R

Y pθ(ŷ|y)p(y)dµ(y) in our framework.
That is the MLE operates on the observed data or predictor output ŷ(1), . . . , ŷ(n) that is sampled iid
from the distribution pθ0(ŷ) =

R

Y pθ0(ŷ|y)p(y)dµ(y).
Of the five conditions above, the last condition of identifiability is the only one that is truly prob-

lematic. The first condition of compactness is trivially satisfied in the case of classification. In the
case of regression it is satisfied assuming that the regression parameter and model parameter are fi-
nite and a #= 0 as the estimator θ̂mle will eventually lie in a compact set. The second condition of con-
tinuity is trivially satisfied in both classification and regression as the function

R

Y pθ(ŷ|y)p(y)dµ(y)
is continuous in θ once ŷ is fixed. The third condition is trivially satisfied for classification (finite
valued y). In the case of regression due to conditions 1,2 (compactness and semi-continuity) we
can replace the quantifier ∀θ with a particular value θ′ ∈ Θ representing worst case situation in the
bound of the logarithm difference. Then, the bound K may be realized by the difference of log
terms (with respect to that worst case θ′) whose expectation converges to the KL divergence which
in turn is never ∞ for Gaussian distributions or its derivatives. The fourth condition of measurability
follows as pθ is specified in terms of compositions, summations, multiplications, and point-wise
limits of well-known measurable functions.

The fifth condition of identifiability states that if pθ(ŷ) and pθ0(ŷ) are identical as functions, that
is, they are identical for every value of ŷ, then necessarily θ = θ0. This condition does not hold in
general and needs to be verified in each one of the special cases.

We start with establishing consistency in the case of classification where we rely on a symmetric
noise model (8). The non-symmetric case (6) is more complicated and is treated afterwards. We
conclude the consistency discussion with an examination of the regression case.

4.1 Consistency of Classification Risk Estimation

Proposition 3 Let f1, . . . , fk be classifiers fi :X →Y , |Y |= l, with conditionally independent noise
processes described by (8). If the classifiers are weak learners, that is, 1/l < 1− err( fi) < 1 and
p(y) is not uniform the unsupervised collaborative diagnosis model is identifiable.

Corollary 4 Let f1, . . . , fk be classifiers fi : X → Y with |Y | = l and noise processes described by
(8). If the classifiers are weak learners, that is, 1/l < 1− err( fi) < 1, and p(y) is not uniform the
unsupervised non-collaborative diagnosis model is identifiable.

Proof Proving identifiability in the non-collaborative case proceeds by invoking Proposition 3
(whose proof is given below) with k = 1 separately for each classifier. The conditional indepen-
dence assumption in Proposition 3 becomes redundant in this case of a single classifier, resulting in
identifiability of pθ j(ŷ j) for each j = 1, . . . ,k

Corollary 5 Under the assumptions of Proposition 3 or Corollary 4 the unsupervised maximum
likelihood estimator is consistent, that is,

P
(

lim
n→∞

θ̂mlen (ŷ(1), . . . ,y(n)) = (θtrue1 , . . . ,θtruek )
)

= 1.
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Consequentially, assuming that R( f j) = g j(θ), j = 1, . . . ,k with continuous g j we also have

P
(

lim
n→∞

R̂( f j ;y(1), . . . ,y(n)) = R( f j), ∀ j = 1, . . . ,k
)

= 1.

Proof Proposition 3 or Corollary 4 establishes identifiability, which in conjunction with Proposi-
tion 2 proves the corollary.

Proof (for Proposition 3) We prove identifiability by induction on k. In the base case of k = 1, we
have a set of l equations, corresponding to i= 1,2 . . . l,

pθ(ŷ1 = i) = p(y= i)θ1+

(

∑
j #=i
p(y= j)

)

(1−θ1)
(l−1)

= p(y= i)θ1+(1− p(y= i))
(1−θ1)
(l−1)

=
θ1(l p(y= i)−1)+1− p(y= i)

(l−1)

from which we can see that if η #= θ and p(y= i) #= 1/l then pθ(ŷ1) #= pη(ŷ1). This proves identifi-
ability for the base case of k = 1.

Next, we assume identifiability holds for k and prove that it holds for k+ 1. We do so by
deriving a contradiction from the assumption that identifiability holds for k but not for k+ 1. We
denote the parameters corresponding to the k labelers by the vectors θ,η∈ [0,1]k and the parameters
corresponding the additional k+1 labeler by θk+1,ηk+1.

In the case of k classifiers we have

pθ(ŷ1, . . . , ŷk) =
l

∑
i=1

pθ(ŷ1, . . . , ŷk|y= i)p(y= i) =
l

∑
i=1

G(Ai,θ)

where

G(Ai,θ)
def
= p(y= i)∏

j∈Ai
θ j ·∏

j #∈Ai

(1−θ j)
(l−1)

,

Ai
def
= { j ∈ {1,2...,k} : ŷ j = i}.

Note that the A1, . . . ,Al form a partition of {1, . . . ,k}, that is, they are disjoint and their union is
{1, . . . ,k}.

In order to have unidentifiability for the k+1 classifiers we need (θ,θk+1) #= (η,ηk+1) and the
following l equations (corresponding to ŷk+1 = 1,2, . . . , l) to hold for any ŷ1, . . . , ŷk which corre-

1335



DONMEZ, LEBANON AND BALASUBRAMANIAN

sponds to any partition A1, . . . ,Al

θk+1G(A1,θ)+
(1−θk+1)

(l−1) ∑
i#=1

G(Ai,θ) = ηk+1G(A1,η)+
(1−ηk+1)

(l−1) ∑
i#=1

G(Ai,η),

θk+1G(A2,θ)+
(1−θk+1)

(l−1) ∑
i#=2

G(Ai,θ) = ηk+1G(A2,η)+
(1−ηk+1)

(l−1) ∑
i#=2

G(Ai,η),

...

θk+1G(Al,θ)+
(1−θk+1)

(l−1) ∑
i#=l
G(Ai,θ) = ηk+1G(Al,η)+

(1−ηk+1)
(l−1) ∑

i#=l
G(Ai,η).

We consider two cases in which (θ,θk+1) #= (η,ηk+1): (a) θ #= η, and (b) θ = η,θk+1 #= ηk+1.
In the case of (a) we add the l equations above which marginalizes ŷk+1 out of pθ(ŷ1, . . . , ŷk, ŷk+1)
and pη(ŷ1, . . . , ŷk, ŷk+1) to provide

l

∑
i=1

G(Ai,θ) =
l

∑
i=1

G(Ai,η)

which together with θ #= η contradicts the identifiability for the case of k classifiers.
In case (b) we have from the l equations above

θk+1G(At ,θ)+
1−θk+1
l−1

(

l

∑
i=1

G(Ai,θ)−G(At ,θ)

)

= ηk+1G(At ,η)+
1−ηk+1
l−1

(

l

∑
i=1

G(Ai,η)−G(At ,η)

)

for any t ∈ {1, . . . , l} which simplifies to

0= (θk+1−ηk+1)

(

lG(At ,θ)−
l

∑
i=1

G(Ai,θ)

)

t = 1, . . . ,k.

As we assume at this point that θk+1 #= ηk+1 the above equality entails

lG(At ,θ) =
l

∑
i=1

G(Ai,θ). (17)

We show that (17) cannot hold by examining separately the cases p(y= t) > 1/l and p(y= t) < 1/l.
Recall that there exists a t for which p(y = t) #= 1/l since the proposition requires that p(y) is not
uniform.

If p(y= t) > 1/l we choose At = {1, . . . ,k} and obtain

l p(y= t)
k

∏
j=1

θ j =∑
i#=t
p(y= i)

k

∏
j=1

1−θ j
l−1

+ p(y= t)
k

∏
j=1

θ j

(l−1)p(y= t)
k

∏
j=1

θ j = (1− p(y= t))
k

∏
j=1

1−θ j
l−1

p(y= t)
k

∏
j=1

θ j =
(1− p(y= t))

(l−1)

k

∏
j=1

1−θ j
l−1
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which cannot hold as the term on the left hand side is necessarily larger than the term on the right
hand side (if p(y = t) > 1/l and θ j > 1/l). In the case p(y = t) < 1/l we choose As = {1, . . . ,k},
s #= t to obtain

l p(y= t)
k

∏
j=1

1−θ j
l−1

=∑
i#=s

p(y= i)
k

∏
j=1

1−θ j
l−1

+ p(y= s)
k

∏
j=1

θ j

(l p(y= t)− p(y #= s))
k

∏
j=1

1−θ j
l−1

= p(y= s)
k

∏
j=1

θ j

which cannot hold as the term on the left hand side is necessarily smaller than the term on the right
hand side (if p(y= t) < 1/l and θ j > 1/l).

Since we derived a contradiction to the fact that we have k-identifiability but not k+1 identifia-
bility, the induction step is proven which establishes identifiability for any k ≥ 1.

The conditions asserted above that p(y) #= 1/l and 1/l < 1− err( fi) < 1 are intuitive. If they
are violated a certain symmetry may emerge which renders the model non-identifiable and the MLE
estimator not consistent.

In the case of the non-collaborative estimation for binary classification with the non-symmetric
noise model, the matrix θ in (6) is a 2×2 matrix with two degrees of freedom as each row sums to
one. In particular we have θ11 = pθ(ŷ = 1|y = 1), θ12 = pθ(ŷ = 1|y = 2), θ21 = pθ(ŷ = 2|y = 1),
θ22 = pθ(ŷ= 2|y= 2)with the overall risk R( f ) = 1−θ11p(y= 1)−θ22p(y= 2). Unfortunately, the
matrix θ is not identifiable in this case and neither is the scalar parameter θ11p(y= 1)+θ22p(y= 2)
that can be used to characterize the risk.

We can, however, obtain a consistent estimator for θ (and therefore for R( f )) by first showing
that the parameter θ11p(y= 1)−θ22p(y= 2) is identifiable and then taking the intersection of two
such estimators.

Lemma 6 In the case of the non-collaborative estimation for binary classification with the non-
symmetric noise model and p(y) #= 0, the parameter θ11p(y= 1)−θ22p(y= 2) is identifiable.

Proof For two different parameterizations θ,η we have

pθ(ŷ= 1) = p(y= 1)θ11+(1− p(y= 1))(1−θ22), (18)
pθ(ŷ= 2) = p(y= 1)(1−θ11)+(1− p(y= 1))θ22 (19)

and

pη(ŷ= 1) = p(y= 1)η11+(1− p(y= 1))(1−η22), (20)
pη(ŷ= 2) = p(y= 1)(1−η11)+(1− p(y= 1))η22. (21)

Equating the two Equations (18) and (20) we have

p(y= 1)(θ11+θ22)+1− p(y= 1)−θ22 = p(y= 1)(η11+η22)+1− p(y= 1)−η22
p(y= 1)θ11− (1− p(y= 1))θ22 = p(y= 1)η11− (1− p(y= 1))η22

p(y= 1)θ11− p(y= 2)θ22 = p(y= 1)η11− p(y= 2)η22
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Similarly, equating Equation (19) and Equation (21) also results in p(y = 1)θ11− p(y = 2)θ22 =
p(y= 1)η11− p(y= 2)η22. As a result, we have

pθ ≡ pη ⇒ p(y= 1)θ11− p(y= 2)θ22 = p(y= 1)η11− p(y= 2)η22.

The above lemma indicates that we can use the maximum likelihood method to obtain a consis-
tent estimator for the parameter θ11p(y= 1)−θ22p(y= 2). Unfortunately the parameter θ11p(y=
1)−θ22p(y= 2) does not have a clear probabilistic interpretation and does not directly characterize
the risk. As the following proposition shows we can obtain a consistent estimator for the risk R( f )
if we have two populations of unlabeled data drawn from distributions with two distinct marginals
p1(y) and p2(y).

Proposition 7 Consider the case of the non-collaborative estimation of binary classification risk
with the non-symmetric noise model. If we have access to two unlabeled data sets drawn indepen-
dently from two distributions with different marginals, that is,

x(1), . . . ,x(n) iid∼ p1(x) =∑
y
p(x|y)p1(y),

x′(1), . . . ,x′(m) iid∼ p2(x) =∑
y
p(x|y)p2(y)

we can obtain a consistent estimator for the classification risk R( f ).

Proof Operating the classifier f on both sets of unlabeled data we get two sets of observed clas-
sifier outputs ŷ(1), . . . , ŷ(n), ŷ′(1), . . . , ŷ′(m) where ŷ(i) iid∼ ∑y pθ(ŷ|y)p1(y) and ŷ′(i)

iid∼ ∑y pθ(ŷ|y)p2(y).
In particular, note that the marginal distributions p1(y) and p2(y) are different but the parameter
matrix θ is the same in both cases as we operate the same classifier on samples from the same class
conditional distribution p(x|y).

Based on Lemma 6 we construct a consistent estimator for p1(y = 1)θ11− p1(y = 2)θ22 by
maximizing the likelihood of ŷ(1), . . . , ŷ(n). Similarly, we construct a consistent estimator for p2(y=
1)θ11− p2(y = 2)θ22 by maximizing the likelihood of ŷ′(1), . . . , ŷ′(m). Note that p1(y = 1)θ11−
p1(y= 2)θ22 and p2(y= 1)θ11− p2(y= 2)θ22 describe two lines in the 2-D space (θ11,θ22). Since
the true value of θ11,θ22 represent a point in that 2-D space belonging to both lines, it is neces-
sarily the intersection of both lines (the lines cannot be parallel since their linear coefficients are
distributions which are assumed to be different).

As n and m increase to infinity, the two estimators converge to the true parameter values. As a
result, the intersection of the two lines described by the two estimators converges to the true values
of (θ11,θ22) thus allowing reconstruction of the matrix θ and the risk R( f ).

Clearly, the conditions for consistency in the asymmetric case are more restricted than in the
symmetric case. However, situations such as in Proposition 7 are not necessarily unrealistic. In
many cases it is possible to identify two unlabeled sets with different distributions. For example, if
y denotes a medical condition, it may be possible to obtain two unlabeled sets from two different

1338



ESTIMATING CLASSIFICATION AND REGRESSION ERRORS WITHOUT LABELS

hospitals or two different regions with different marginal distribution corresponding to the frequency
of the medical condition.

As indicated in the previous section, the risk estimation framework may be extended beyond
non-collaborative estimation and collaborative conditionally independent estimation. In these ex-
tensions, the conditions for identifiability need to be determined separately, in a similar way to
Corollary 4. A systematic way to do so may be obtained by noting that the identifiability equations

0= pθ(ŷ1, . . . , ŷk)− pη(ŷ1, . . . , ŷk) ∀ŷ1, . . . , ŷk

is a system of polynomial equations in (θ,η). As a result, demonstrating lack of identifiability
becomes equivalent to obtaining a solution to a system of polynomial equations. Using Hilbert’s
Nullstellensatz theorem we have that a solution to a polynomial system exists if the polynomial
system defines a proper ideal of the ring of polynomials (Cox et al., 2006). As k increases the
chance of identifiability failing decays dramatically as we have a system of lk polynomials with 2k
variables. Such an over-determined system with substantially more equations than variables is very
unlikely to have a solution.

These observations serve as both an interesting theoretical connection to algebraic geometry as
well as a practical tool due to the substantial research in computational algebraic geometry. See
Sturmfels (2002) for a survey of computational algorithms and software associated with systems of
polynomial equations.

4.2 Consistency of Regression Risk Estimation

In this section, we prove the consistency of the maximum likelihood estimator θ̂mle in the regression
case. As in the classification case our proof centers on establishing identifiability.

Proposition 8 Let f1, . . . , fk be regression models fi(x) = a′ix with y∼N(µy,σ2y), y= ax+ε. Assum-
ing that a #= 0 the unsupervised collaborative estimation model assuming conditionally independent
noise processes (12) is identifiable.

Corollary 9 Let f1, . . . , fk be regression models fi(x)= a′ix with y∼N(µy,σ2y), y= ax+ε. Assuming
that a #= 0 the unsupervised non-collaborative estimation model (12) is identifiable.

Proof Proving identifiability in the non-collaborative case proceeds by invoking Proposition 8
(whose proof is given below) with k = 1 separately for each regression model. The conditional
independence assumption in Proposition 8 becomes redundant in this case of a single predictor, re-
sulting in identifiability of pθ j(ŷ j) for each j = 1, . . . ,k.

Corollary 10 Under the assumptions of Proposition 8 or Corollary 9 the unsupervised maximum
likelihood estimator is consistent, that is,

P
(

lim
n→∞

θ̂mlen (ŷ(1), . . . ,y(n)) = (θtrue1 , . . . ,θtruek )
)

= 1.

Consequentially, assuming that R( f j) = g j(θ), j = 1, . . . ,k with continuous g j we also have

P
(

lim
n→∞

R̂( f j ;y(1), . . . ,y(n)) = R( f j), ∀ j = 1, . . . ,k
)

= 1.
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Proof Proposition 8 or Corollary 9 establish identifiability, which in conjunction with Proposition 2
completes the proof.

Proof (of Proposition 8).
We will proceed, as in the case of classification, with induction on the number of predictors k.

In the base case of k = 1 we have derived pθ1(ŷ1) in Equation (11). Substituting in it ŷ1 = 0 we get

Pθ1(ŷ1 = 0) =
1

θ1
√

2π(τ2+σ2y)
exp

(

µ2y
2σ2y

(

τ2

σ2y + τ2
−1

))

,

Pη1(ŷ1 = 0) =
1

η1
√

2π(τ2+σ2y)
exp

(

µ2y
2σ2y

(

τ2

σ2y + τ2
−1

))

.

The above expression leads to θ1 #= η1 ⇒ pθ1(ŷ1 = 0) #= pη1(ŷ1 = 0) which implies identifiability.
In the induction step we assume identifiability holds for k and we prove that it holds also for k+1

by deriving a contradiction to the assumption that it does not hold. We assume that identifiability
fails in the case of k+1 due to differing parameter values, that is,

p(θ,θk+1)(ŷ1, . . . , ŷk, ŷk+1) = p(η,ηk+1)(ŷ1, . . . , ŷk, ŷk+1) ∀ŷ j ∈ R j = 1, . . . ,k+1 (22)

with (θ,θk+1) #= (η,ηk+1) where θ,η ∈ Rk. There are two cases which we consider separately: (a)
θ #= η and (b) θ= η.

In case (a) we marginalize both sides of (22) with respect to ŷk+1 which leads to a contradiction
to our assumption that identifiability holds for k

Z ∞

−∞
p(θ,θk+1)(ŷ1, . . . , ŷk, ŷk+1)dŷk+1 =

Z ∞

−∞
p(η,ηk+1)(ŷ1, . . . , ŷk, ŷk+1)dŷk+1

pθ(ŷ1, . . . , ŷk) = pη(ŷ1, . . . , ŷk).

In case (b) θ = η and θk+1 #= ηk+1. Substituting ŷ1 = · · · = ŷk+1 = 0 in (22) (see (13) for a
derivation) we have

P(θ,θk+1)(ŷ1 = 0, . . . , ŷk+1 = 0) = P(η,ηk+1)(ŷ1 = 0, . . . , ŷk+1 = 0)

or

√
π
[

1
2

(

1
σ2y

+ k+1
τ2

)]−1/2

τk+1(
√
2π)k+2σyθk+1∏k

j=1θ j
exp







(

µy
σ2y

)2

2
(

1
σ2y

+ k+1
τ2

) −
µ2y
2σ2y







=

√
π
[

1
2

(

1
σ2y

+ k+1
τ2

)]−1/2

τk+1(
√
2π)k+2σyηk+1∏k

j=1η j
exp







(

µy
σ2y

)2

2
(

1
σ2y

+ k+1
τ2

) −
µ2y
2σ2y







which cannot hold if θ= η but θk+1 #= ηk+1.
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5. Asymptotic Variance of θ̂mlen and R̂

A standard result from statistics is that the MLE has an asymptotically normal distribution with
mean vector θtrue and variance matrix (nJ(θtrue))−1, where J(θ) is the r× r Fisher information
matrix

J(θ) = E pθ{∇ log pθ(ŷ)(∇ log pθ(ŷ))
+}

with ∇ log pθ(ŷ) represents the r× 1 gradient vector of log pθ(ŷ) with respect to θ. Stated more
formally, we have the following convergence in distribution as n→ ∞ (Ferguson, 1996)

√
n(θ̂mlen −θ0) ! N(0,J−1(θtrue)). (23)

It is instructive to consider the dependency of the Fisher information matrix, which corresponds
to the asymptotic estimation accuracy, on n,k, p(y),θtrue.

In the case of classification considering (8) with k = 1 and Y = {1,2} it can be shown that

J(θ) =
α(2α−1)2

(θ(2α−1)−α+1)2
−

(2α−1)2(α−1)
(α−θ(2α−1))2

(24)

where α = P(y = 1). As Figure 3 (right) demonstrates, the asymptotic accuracy of the MLE (as
indicated by J) tends to increase with the degree of non-uniformity of p(y). Recall that since identi-
fiability fails for a uniform p(y) the risk estimate under a uniform p(y) is not consistent. The above
derivation (24) is a quantification of that fact reflecting the added difficulty in estimating the risk as
we move closer to a uniform label distribution α→ 1/2. The dependency of the asymptotic accu-
racy on θtrue is more complex, tending to favor θtrue values close to 1 or 0.5. Figure 3 (left) displays
the empirical accuracy of the estimator as a function of p(y) and θtrue and shows remarkable simi-
larity to the contours of the Fisher information (see Section 7 for more details on the experiments).
In particular, whenever the estimation error is high the asymptotic variance of the estimator is high
(or equivalently, the Fisher information is low). For instance, the top contours in the left panel have
smaller estimation error on the top right than in the top left. Similarly, the top contours in the right
panel have smaller asymptotic variance on the top right than on the top left. We thus conclude that
the Fisher information provides practical, as well as theoretical insight into the estimation accuracy.

Similar calculations of J(θtrue) for collaborative classification case or for the regression case
result in more complicated but straightforward derivations. It is important to realize that consistency
is ensured for any identifiable θtrue, p(y). The value (J(θtrue))−1 is the constant dominating that
consistency convergence.

A similar distributional analysis can be derived for the risk estimator. Applying Cramer’s theo-
rem (Ferguson, 1996) to R̂( f j) = g j(θ̂mle), j = 1, . . . ,k and (23) we have

√
n(R̂( f )−R( f )) ! N

(

0,∇g(θtrue)J(θtrue)∇g(θtrue)+
)

where R( f ), R̂( f ) are the vectors of true risk and risk estimates for the different predictors f1, . . . , fk
and ∇g(θtrue) is the Jacobian matrix of the mapping g= (g1, . . . ,gk) evaluated at θtrue.

For example, in the case of classification with k = 1 we have R( f j) = 1−θ j and the Jacobian
matrix is −1, leading to an identical asymptotic distribution to that of the MLE (23)-(24)

√
n(R̂( f )−R( f )) ! N

(

0,
(

α(2α−1)2

(θ(2α−1)−α+1)2
−

(2α−1)2(α−1)
(α−θ(2α−1))2

)−1)

.
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6. Optimization Algorithms

Recall that we obtained closed forms for the likelihood maximizers in the cases of non-collaborative
estimation for binary classifiers and non-collaborative estimation for one dimensional regression
models. The lack of closed form maximizers in the other cases necessitates iterative optimization
techniques.

One class of technique for optimizing nonlinear loglikelihoods is the class of gradient based
methods such as gradient descent, conjugate gradients, and quasi Newton methods. These tech-
niques proceed iteratively following a search direction; they often have good performance and are
easy to derive. The main difficulty with their implementation is the derivation of the loglikelihood
and its derivatives. For example, in the case of collaborative estimation of classification (l ≥ 2) with
symmetric noise model and missing values the loglikelihood gradient is

∂!
∂θ j

=
n

∑
i=1

∑
y(i)
p(y(i)) ∑

r:βri=0
∑
ŷ(i)r
∏p #= j hpi(I(ŷ

(i)
j = y(i))−θ j)((l−1)θ j)I(ŷ

(i)
j =y(i))−1(1−θ j)

−I(ŷ(i)j =y(i))

∑y(i) p(y(i))∑r:βri=0∑ŷ(i)r ∏
k
p=1 hpi

,

hpi = θI(ŷ
(i)
p =y(i))

p

(

1−θp
l−1

)I(ŷ(i)p #=y(i))

Similar derivations may be obtained in the other cases in a straightforward manner.
An alternative iterative optimization technique for finding the MLE is expectation maximization

(EM). The derivation of the EM update equations is again relatively straightforward. For example
in the above case of collaborative estimation of classification (l ≥ 2) with symmetric noise model
and missing values the EM update equations are

θ(t+1) = argmax
θ

n

∑
i=1
∑
y(i)
∑

r:βri=0
∑
ŷ(i)r

q(t)(ŷ(i)r ,y(i))
k

∑
j=1
log p j(ŷ

(i)
j |y

(i))

=
1
n

n

∑
i=1
∑
y(i)
∑

r:βri=0
∑
ŷ(i)r

q(t)(ŷ(i)r ,y(i))I(ŷ(i)j = y(i)),

q(t)(ŷ(i)r ,y(i)) =
p(y(i))∏k

j=1 p j(ŷ
(i)
j |y(i),θ(t))

∑y(i) ∑r:βri=0∑ŷ(i)r
p(y(i))∏k

j=1 p j(ŷ
(i)
j |y(i),θ(t))

.

where q(t) is the conditional distribution defining the EM bound over the loglikelihood function.
If all the classifiers are always observed, that is, βri = 1 ∀r, i Equation (16) reverts to (12), and

the loglikelihood and its gradient may be efficiently computed in O(nlk2). In the case of missing
classifier outputs a naive computation of the gradient or EM step is exponential in the number of
missing values R=maxi∑r βri. This, however, can be improved by careful dynamic programming.
For example, the nested summations over the unobserved values in the gradient may be computed
using a variation of the elimination algorithm in O(nlk2R) time.

7. Empirical Evaluation

We start with some experiments demonstrating our framework using synthetic data. These experi-
ments are meant to examine the behavior of the estimators in a controlled setting. We then describe
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Figure 3: Left: Average value of |θ̂mlen −θtrue| as a function of θtrue and p(y= 1) for k= 1 classifier
and n= 500 (computed over a uniform spaced grid of 15×15 points). The plot illustrates
the increased accuracy obtained by a less uniform P(y). Right: Fisher information J(θ)
for k = 1 as a function of θtrue and P(y). The asymptotic variance of the estimator is
J−1(θ) which closely matches the experimental result in the left panel.

some experiments using several real world data sets. In these experiments we examine the behav-
ior of the estimators in an uncontrolled setting where some of the underlying assumptions may be
violated. In most of the experiments we consider the mean absolute error (mae) or the !1 error as a
metric that measures the estimation quality

mae(θ̂mle,θtrue) =
1
k

k

∑
i=1

∣

∣θtruei − θ̂mlei
∣

∣.

In the non-collaborative case (which is equivalent to the collaborative case with k= 1) this translates
into the absolute deviation of the estimated parameter from the true parameter.

In Figure 3 (left) we display mae(θ̂mle,θtrue) for classification with k = 1 as a function of θtrue
and p(y) for n = 500 simulated data points. The estimation error, while overall relatively small,
decays as p(y) diverges from the uniform distribution. The dependency on θtrue indicates that the
error is worst for θtrue around 0.75 and it decays as |θtrue− 0.75| increases with a larger decay
attributed to higher θtrue. These observations are remarkably consistent with the developed theory
as Figure 3 (right) shows by demonstrating the value of the inverse asymptotic variance J(θ) which
agrees nicely with the empirical measurement in the left panel.

Figure 4 (left) contains a scatter plot contrasting values of θtrue and θ̂mle for k = 1 classifier and
p(y = 1) = 0.8. The estimator was constructed based on 500 simulated data points. We observe
a symmetric Gaussian-like distribution of estimated values θ̂mle, conditioned on specific values of
θtrue. This is in agreement with the theory predicting an asymptotic Gaussian distribution for the
mle, centered around the true value θtrue. A similar observation is made in Figure 5 (left) which
contains a similar scatter plot in the regression case (k = 1, σy = 1, n = 1000). In both figures, the
striped effect is due to selection of θtrue over a discrete grid with a small perturbation for increased
visibility. Similar plots of larger and smaller n values (not shown) verify that the variation of θ̂mle
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Figure 4: Left: Scatter plot contrasting the true and predicted values of θ in the case of a single clas-
sifier k= 1, p(y= 1) = 0.8, and n= 500 unlabeled examples. The displayed points were
perturbed for improved visualization and the striped effect is due to empirical evaluation
over a discrete grid of θtrue values. Right: mae(θ̂mle,θtrue) as a function of the number
of unlabeled examples for different number of classifiers (θtruei = p(y= 1) = 0.75) in the
collaborative case. The estimation error decreases as more classifiers are used due to the
collaborative nature of the estimation process.

around θtrue decreases as n increases. This agrees with the theory that indicates a O(n−1) rate of
decay for the variance of the asymptotic distribution.

Figures 4 and 5 (right) show the mae(θ̂mle,θtrue) for various k values in classification and re-
gression, respectively. In classification, θ̂mle was obtained by sampling data from p(y = 1) =
0.75 = θtruei ,∀i. In regression, the data was sampled from the regression equation with θtruei = 1
and p(y) = N(0,1). In both cases, the mae error decays with n as expected from the consistency
proof and with k as a result of the collaborative estimation effect.

To further illustrate the effect of the collaboration on the estimation accuracy, we estimated the
error rates individually (non-collaboratively) for 10 predictors and compared their mae to that of
the collaborative estimation case in Figure 6. This shows that each of the classifiers have a similar
mae curve when non-collaborative estimation is used. However, all of these curves are higher than
the collaborative mae curve (solid black line in Figure 6) demonstrating the improvement of the
collaborative process.

We compare in Figure 7 the proposed unsupervised estimation framework with supervised es-
timation that takes advantage of labeled information to determine the classifier accuracy. We con-
ducted this study using equal number of examples for both supervised and unsupervised cases.
Clearly, this is an unfair comparison if we assume that labeled data is unavailable or is difficult to
obtain. The unsupervised estimation does not perform as well as the supervised version especially
in general. Nevertheless, the unsupervised estimation accuracy improves significantly with increas-
ing number of classifiers and finally reaches the performance level of the supervised case due to
collaborative estimation.

In Figure 8 we report the effect of misspecification of the marginal p(y) on the estimation
accuracy. More specifically, we generated synthetic data using a true marginal distribution but
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Figure 5: Left: Scatter plot contrasting the true and predicted values of θ in the case of a single
regression model k = 1, σy = 1, and n= 1000 unlabeled examples. The displayed points
were perturbed for improved visualization and the striped effect is due to empirical eval-
uation over a discrete grid of θtrue values. Right: mae(θ̂mle,θtrue) as a function of the
number of unlabeled examples for different number of regression models (θtruei = σy = 1)
in the collaborative case. The estimation error decreases as more regression models are
used due to the collaborative nature of the estimation process.
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Figure 6: Comparison of collaborative and non-collaborative estimation for k = 10 classifiers.
mae(θ̂mle,θtrue) as a function of n is reported for θtruei = 0.75 ∀ki and P(y = 1) = 0.75.
The colored lines represent the estimation error for each individual classifier and the solid
black line represents the collaborative estimation for all classifiers. The estimation con-
verges to the truth faster in the collaborative case than in the non-collaborative case.
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Figure 7: Comparison of supervised and unsupervised estimation for different values of classifiers
with k = 1,3,5,10. Supervised estimation uses the true labels to determine the accuracy
of the classifiers whereas in the unsupervised case the estimation proceeds according to
the collaborative estimation framework. Despite the fact that the supervised case uses
labels the unsupervised framework reaches similar levels by increasing the number of
classifiers.

estimated the classifier accuracy on this data assuming a misspecified marginal. Generally, the
estimation framework is robust to small perturbations while over-specifying tends to hurt less than
under-specifying (misspecification closer to uniform distribution).

Figure 9 shows the mean prediction accuracy for the unsupervised predictor combination scheme
in (4) for synthetic data. The left panel displays classification accuracy and the right panel displays
the regression accuracy as measured by 1− 1

m ∑
m
i=1(ŷnewi − ynewi )2. The graphs show that in both

cases the accuracy increases with k and n in accordance with the theory and the risk estimation
experiments. The parameter θtruei was chosen uniformly in the range (0.5,1), and P(y = 1) = 0.75
for classification and θtruei = 0.3, p(y) = N(0,1) in the case of regression.

We also experimented with the natural language understanding data set introduced in Snow
et al. (2008). This data was created using the Amazon Mechanical Turk (AMT) for data annotation.
AMT is an online tool that uses paid employees to complete small labeling and annotation tasks.
We selected two binary tasks from this data: the textual entailment recognition (RTE) and temporal
event recognition (TEMP) tasks. In the former task, the annotator is presented with two sentences
for each question. He needs to decide whether the second sentence can be inferred from the first.
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Figure 8: The figure compares the estimator accuracy assuming that the marginal p(y) is misspec-
ified. The plots draw mae(θ̂mle,θtrue) as a function of n for k = 1 and θtrue = 0.75 when
Ptrue(y= 1) = 0.8 (left) and Ptrue(y= 1) = 0.75 (right). Small perturbations in Ptrue(y) do
not affect the results significantly; interestingly over-specifying Ptrue(y= 1) leads to more
accurate estimates than under-specifying (misspecification closer to uniform distribution)

20 40 60 80 100 120 140 160 180 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

 o
f t

he
 p

re
di

ct
io

n 
fo

r y
ne

w

Number of noisy observations

 

 

k=3
k=5
k=10

20 40 60 80 100 120 140 160 180 200
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of noisy observations

Ac
cu

ra
cy

 o
f t

he
 p

re
di

ct
io

n 
fo

r y
ne

w

 

 
k=3
k=5
k=10

Figure 9: Mean prediction accuracy for the unsupervised predictor combination scheme in (4) for synthetic
data. The left panel displays classification accuracy and the right panel displays the regression ac-
curacy as measured by 1− 1

m ∑
m
i=1(ŷnewi −ynewi )2. The graphs show that in both cases the accuracy

increases with k and n in accordance with the theory and the risk estimation experiments.

The original data set contains 800 sentence pairs with a total of 165 annotators. The latter task
involves recognizing the temporal relation in verb-event pairs. The annotator is forced to decide
whether the event described by the first verb occurs before or after the second. The original data
set contains 462 pairs and 76 annotators. In both data sets, most of the annotators have completed
only a handful of tasks. Therefore, we selected a subset of these annotators for each task such that
each annotator has completed at least 100 problems and has differing accuracies. The data sets
contain ground truth labels which are used solely to calculate the annotator accuracy and not used
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Figure 10: mae(θ̂mle,θtrue) as a function of n for different number of annotators k on RTE
(left) and TEMP (right) data sets. Left: n = 100, P(y = 1) = 0.5 and θtrue =
{0.85,0.92,0.58,0.5,0.51}. Right: n = 190, P(y = 1) = 0.56 and θtrue =
{0.93,0.92,0.54,0.44,0.92}. The classifiers were added in the order specified.

at all during the estimation process. For efficiency, we selected only the instances for which all
annotators provide an answer. This resulted in n= 100,190 for RTE and TEMP, respectively.

In Figure 10 we display mae(θtrue, θ̂mle) for these data sets as function of n for different values of
k. These plots generated from real-world data show similar trend to the synthetic experiments. The
estimation errors decay to 0 as n increases and generally tend to decrease as k increases. This corre-
spondence is remarkable since two of the labelers have worse than random accuracy and since it is
not clear whether the conditional independence assumption actually holds in reality for these data
sets. Nevertheless, the collaborative estimation error behaves in accordance with the synthetic data
experiments and the theory. This shows that the estimation framework is robust to the breakdown
of the assumption that the classifier accuracy must be higher than random choice. Also, whether the
conditional independence assumption holds or not is not crucial in this case.

We further experimented with classifiers trained on different representations of the same data
set and estimated their error rates. We adopted the Ringnorm data set generated by Breiman (1996).
Ringnorm is a 2-class artificial data set with 20 dimensions where each class is drawn from a multi-
variate normal distribution. One class has zero mean and a covariance Σ= 4I where I is the identity
matrix. The other class has unit covariance and a mean µ= ( 2√

20 ,
2√
20 , . . . ,

2√
20). The total size

is 7400. We created 5 different representations of the data by projecting it onto mutually exclusive
sets of principal components obtained by Principal Component Analysis (PCA). We trained an SVM
classifier (with 2-degree polynomial kernel) (Vapnik, 2000; Joachims, 1999) on samples from each
representation while holding out 1400 examples as the test set resulting in a total of 5 classifiers. We
tested each of the 5 classifiers on the test set and used their outputs to estimate the corresponding
parameters. The true labels of the test set examples were used as ground truth to calculate the mae
of the mle estimators.

The mae curves for this data set appear in Figure 11 as a function of the number n of unlabeled
examples. When all classifiers are highly accurate (upper left panel), the collaborative unsupervised
estimator is reliable, see Figure 11(a). With a mixture of weak and strong classifiers (upper right
panel), the collaborative unsupervised estimator is also reliable. This is despite the fact that some of
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(b) A mixture of strong and weak classifiers
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(c) Mostly weak classifiers
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(d) Very weak classifiers

Figure 11: mae(θtrue, θ̂mle) as a function of the test set size on the Ringnorm data set. p(y = 1) =
0.47, and θtrue is indicated in the legend in each plot. The four panels represent mostly
strong classifiers (upper left), a mixture of strong and weak classifiers (upper right),
mostly weak classifiers (bottom left), and mostly very weak classifiers (bottom right).
The figure shows that the framework is robust to occasional deviations from the as-
sumption regarding better than random guess classification accuracy (upper right panel).
However, as most of the classifiers become weak or very weak, the collaborative unsu-
pervised estimation framework results in worse estimation error.

the weak classifiers in Figure 11(b) have worse than random accuracy which violates the assump-
tions in the consistency proposition. This shows again that the estimation framework is robust to
occasional deviations from the requirement concerning better than random classification accuracies.
On the other hand, as most of the classifiers become worse (bottom row), the accuracy of the un-
supervised estimator decreases, in accordance with the theory developed in Sections 5 (recall the
Fisher information contour plot).

Our experiments thus far assumed the symmetric noise model (8). Despite it not being always
applicable for real world data and classifiers, it did result in good estimation accuracy in some of the
cases described thus far. However, in some cases this assumption is grossly violated and the more
general noise model is needed (6). For this reason, we conducted two experiments using real world
data assuming the more general (6).

The first experiment concerned domain adaptation (Blitzer et al., 2007) for Amazon’s product
reviews in four different product domains: books, DVDs, electronics and kitchen appliances. Each
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book dvd kitchen electronics 20newsgroup
training error 0.22 0.23 0.26 0.30 0.028
non-collaborative 0.04 0.04 0.08 0.06 0.006
collaborative 0.10 0.10 0.09 0.08 n/a

Figure 12: mae(θ̂mle,θtrue) for the domain adaptation (n = 1000, p(y = 1) = 0.75) and 20 news-
group (n = 15,000, p(y = 1) = 0.05 for each one-vs-all data). The unsupervised non-
collaborative estimator outperforms the collaborative estimator due to violation of the
conditional independence assumption. Both unsupervised estimators perform substan-
tially better than the baseline training error rate estimator. In both cases the results were
averaged over 50 random train test splits.

domain consists of positive (y= 1) and negative (y= 2) reviews with p(y= 1) = 0.75. The task was
to estimate the error rates of classifiers (linear SVM, Vapnik, 2000; Joachims, 1999) that are trained
on 300 examples from one domain but tested on other domains. The mae values for the classification
risks are displayed in Figure 12 with the columns indicating the test domain. In this case, the
unsupervised non-collaborative estimator outperforms the collaborative estimator due to violation
of the conditional independence assumption. Both unsupervised estimators perform substantially
better than the baseline estimator that uses the training error on one domain to predict testing error
on another domain.

In the second experiment using (6) we estimated the risk (non-collaboratively) of 20 one vs. all
classifiers (trained to predict one class) on the 20 newsgroup data (Lang, 1995). The train set size
was 1000 and the unlabeled data size was 15000. In this case the unsupervised non-collaborative
estimator returned extremely accurate risk estimators. As a comparison, the risk estimates obtained
from the training error are four times larger than the unsupervised MLE estimator (See Figure 12).

8. Discussion

We have demonstrated a collaborative framework for the estimation of classification and regression
error rates for k ≥ 1 predictors. In contrast to previous supervised risk estimation methods such
as cross validation (Duda et al., 2001), bootstrap (Efron and Tibshirani, 1997), and others (Hand,
1986), our approach is fully unsupervised and thus able to use vast collections of unlabeled data.
Other related work includes Smyth et al. (1995) and Sheng et al. (2008) which consider repeated
labeling where each instance is labeled by multiple experts and the final label is decided based on a
majority voting scheme. However, Smyth et al. and Sheng et al. fail to address estimating the risks
of the predictors which is the main focus of our work.

We prove statistical consistency in the unsupervised case and derive the asymptotic variance.
Our experiments on synthetic data demonstrate the effectiveness of the framework and verify the
theoretical results. Experiments on real world data show robustness to underlying assumptions. The
framework may be applied to estimate additional quantities in an unsupervised manner, including
noise level in noisy communication channels (Cover and Thomas, 2005) and error rates in structured
prediction problems.
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Abstract
Appropriate selection of the kernel function, which implicitly defines the feature space of an algo-
rithm, has a crucial role in the success of kernel methods. In this paper, we consider the problem
of optimizing a kernel function over the class of translation invariant kernels for the task of binary
classification. The learning capacity of this class is invariant with respect to rotation and scaling of
the features and it encompasses the set of radial kernels. We show that how translation invariant
kernel functions can be embedded in a nested set of sub-classes and consider the kernel learning
problem over one of these sub-classes. This allows the choice of an appropriate sub-class based
on the problem at hand. We use the criterion proposed by Lanckriet et al. (2004) to obtain a func-
tional formulation for the problem. It will be proven that the optimal kernel is a finite mixture of
cosine functions. The kernel learning problem is then formulated as a semi-infinite programming
(SIP) problem which is solved by a sequence of quadratically constrained quadratic programming
(QCQP) sub-problems. Using the fact that the cosine kernel is of rank two, we propose a formula-
tion of a QCQP sub-problem which does not require the kernel matrices to be loaded into memory,
making the method applicable to large-scale problems. We also address the issue of including
other classes of kernels, such as individual kernels and isotropic Gaussian kernels, in the learning
process. Another interesting feature of the proposed method is that the optimal classifier has an
expansion in terms of the number of cosine kernels, instead of support vectors, leading to a remark-
able speedup at run-time. As a by-product, we also generalize the kernel trick to complex-valued
kernel functions. Our experiments on artificial and real-world benchmark data sets, including the
USPS and the MNIST digit recognition data sets, show the usefulness of the proposed method.
Keywords: kernel learning, translation invariant kernels, capacity control, support vector ma-
chines, classification, semi-infinite programming

1. Introduction

Kernel-based methods, such as support vector machines (SVM) and kernel principal component
analysis (KPCA), increase the flexibility of machine learning algorithms by implicitly mapping
the input data into a feature space and performing the algorithm in that space. This flexibility is
achieved by a so called kernel function which substitutes the dot-product operation in an ordinary
algorithm. The kernel function, by implicitly defining the feature space, plays a crucial role in the
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success of kernel methods. In fact, as shown by Xiong et al. (2005), if the kernel function is not
chosen appropriately, it may even worsen the performance of an algorithm. This significant impact
on the performance of the kernel-based algorithms and the fact that the appropriate feature space is
problem-dependent, have driven researchers to devise various algorithms to learn the kernel function
from the problem data.

The earliest method for learning a kernel function is cross-validation which is very slow and is
only applicable to kernels with a small number of parameters. Cristianini et al. (1998) proposed an
algorithm for adapting kernel functions with only one unconstrained parameter. Instead of optimiz-
ing the parameters of a kernel, Amari and Wu (1999) suggested conformal transformation of the
kernel function and proposed an algorithm for learning the parameters of the new kernel. Chapelle
et al. (2002) devised a gradient-based algorithm for local optimization of a kernel with multiple un-
constrained parameters. Glasmachers and Igel (2005) proposed a gradient-based method for learn-
ing the covariance matrix of Gaussian kernels (Note that since the covariance matrix of a Gaussian
kernel is constrained to be positive semi-definite, the method of Chapelle et al. (2002) cannot be
used for learning this matrix). Ong et al. (2005) introduced the notion of hyperkernels and used it
for kernel learning. They formulated the kernel learning problem as a functional with three terms:
an empirical quality functional, a regularization term that penalizes the functions in a reproducing
kernel Hilbert space (RKHS), and another regularization term that penalizes the kernels in a hyper
reproducing kernel Hilbert space.

A milestone in the kernel learning literature is the introduction of the multiple kernel learning
(MKL) framework by Lanckriet et al. (2004). They considered the problem of finding the optimal
convex combination of multiple kernels and formulated it as a quadratically constrained quadratic
programming (QCQP) problem. They also introduced a generalized performance measure which
encompasses the hard-margin, 1-norm soft-margin, and 2-norm soft-margin performance measures
as special cases. Although these performance measures have extensively been used for learning
the optimal separating hyperplane in SVMs, their use as performance measures for kernel selection
was unprecedented. Since the formulation of the resulting QCQP requires storing several kernel
matrices in memory, their method was only applicable to problems with a small number of training
samples. Bach et al. (2004) introduced an SMO-based algorithm to widen the range of solvable
MKL problems by using the Moreau-Yosida regularization technique. Sonnenburg et al. (2005,
2006) reformulated the MKL problem as a semi-infinite linear program (SILP) which was then re-
duced to training a sequence of classical SVMs with a single kernel for which several sophisticated
large-scale algorithms exist. Rakotomamonjy et al. (2008) argued that the main difficulty with the
SILP formulation of Sonnenburg et al. (2006) is that its objective function is non-smooth and intro-
duced an equivalent convex formulation with a smooth objective function. Using convexity of the
problem and the smoothness of the objective function, they proposed a reduced gradient algorithm
for MKL which is also applicable to large-scale problems. The weakness of the reduced gradient
algorithm is that, in contrast to to the SILP algorithm, it does not use the information collected in
the previous points in the calculation of the next point. Combining the strengths of the SILP method
of Sonnenburg et al. (2006) with those of the reduced gradient method of Rakotomamonjy et al.
(2008), Xu et al. (2008) proposed an extended level method which is remarkably faster than both
methods.

In their seminal work, Micchelli and Pontil (2005) generalized the class of admissible kernels
to convex combination of an infinite number of kernels indexed by a compact set and applied their
method to the problem of learning radial kernels (Argyriou et al., 2005, 2006). They used a classical
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result proved by Schoenberg (1938) which states that every continuous radial kernel belongs to the
convex hull of radial Gaussian kernels. They also proposed an efficient DC programming algorithm
for numerically learning radial kernels in Argyriou et al. (2006). Gehler and Nowozin (2008) refor-
mulated the optimization problem of Argyriou et al. (2006) as a semi-infinite programming problem
and proposed the IKL (infinite kernel learning) framework for solving it numerically.

In this work, we consider the class of translation invariant kernel functions which encompasses
the class of radial kernels as well as the class of anisotropic Gaussian kernel functions. This class
contains exactly those kernels which can be defined solely based on the difference of kernel argu-
ments; that is, the kernel functions with the property:

k(x,z) = k̃(x− z).

The general form of continuous translation invariant kernels on Rn was discovered by Bochner
(1933). He proved that every function of the form1

k(x,z) = k̃(x− z) =
Z

Rn
e jγ

T (x−z) dV (γ) (1)

is positive semi-definite, where V(.) is a monotonically increasing bounded function and the integra-
tion is in the Lebesgue-Stieltjes sense. He also proved that, conversely, every continuous translation
invariant positive semi-definite kernel function can be represented in the above form. In statistics,
the translation invariance property is referred to as the stationarity of the kernel function. Genton
(2001) and Schölkopf and Smola (2002) give a list of the properties of this class along with impor-
tant examples of stationary kernel functions, including the Gaussian, exponential, rational quadratic,
and Bn spline kernels.

The rest of the paper proceeds as follows: Table 1 lists the choice of notations for familiar
concepts in the field. Notations specific to this paper will be introduced in the course of discussions.
Although the kernel learning formulation of Micchelli and Pontil (2005) contains a regularization
term for controlling the complexity of the RKHS associated with the kernel function, there is no
mechanism for controlling the capacity of the class of admissible kernels. In our formulation, we
have provisioned a mechanism for controlling the complexity of the class of admissible kernels
which is described in Section 2. The idea is to multiply a vanishing function inside the integral of
Equation (1). In addition to controlling the capacity of the learning machine, this choice substitutes
the compactness assumption of the integration region made by Micchelli and Pontil (2005). In
Section 3, we propose a learning criterion which is essentially a reformulation of the generalized
performance measure of Lanckriet et al. (2004). The proposed criterion ensures the compactness
of the parameter space of SVM, and gives a probabilistic meaning to the regularization parameter
of the 2-norm soft-margin SVM. The problem of finding an optimal kernel which minimizes this
criterion over the class of translation invariant kernels leads to (4) which is our main variational
problem.

In Section 4, we prove some important theorems which pave the way for an algorithmic solution
to this problem. First, in Section 4.1 we prove the existence of an optimal solution for problem (4).

1. In this paper we will represent translation invariant kernels both as k : Rd ×Rd → C with two arguments and as
k̃ :Rd →C with only one argument.
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In Section 4.2, we prove that the min and max operations in (4) can be interchanged, provided
that the integration region is replaced by a compact set. In addition, it will be shown that the
optimal kernel is a finite mixture of the basic kernels of the form kγ(x,z) = exp( jγT (x− z)). In
Section 4.3, it will be proved that the integration region can indeed be replaced by a compact set.
To solve problem (4) numerically, we introduce a semi-infinite programming (SIP) formulation in
Section 4.4. In Section 4.5, using a topological argument, the issue of including other classes of
kernels in the learning process will be addressed. It is well known that the regularization parameter
of the 2-norm SVM, usually denoted by τ, can be regarded as the weight of a Kronecker delta kernel
function, which is incidently a translation invariant kernel, as well. In Section 4.4 we introduce the
semi-infinite programming problem (19) which is our main numerical optimization problem and
corresponds to the simultaneous learning of the optimal translation invariant kernel as well as the
parameter τ. As another application of the discussion of Section 4.5, in Section 4.7 we will introduce
a method for learning the best combination of stabilized translation invariant kernels and isotropic
Gaussian kernels.

In Section 5, we address the problem of numerically solving (19) on a computer. The proposed
optimization algorithm is a variant of the class of local-reduction-based algorithms for solving SIP
problems. An important feature of the proposed optimization algorithm is that it does not require
loading the kernel matrices into memory and so it is applicable to large-scale problems. As stated
above, it will be shown in Section 4.2 that the optimal kernel is complex-valued. Since algorithms
are usually designed for real Euclidean spaces, this complicates the application of the kernel trick
to the optimal kernel (consider for example an algorithm that checks the sign of a dot product). In
Section 6, we show that the feature space induced by the real part of a complex-valued kernel is
essentially equivalent to the original complex-valued kernel and deduce that the optimal real-valued
kernel is a mixture of cosines. Yet another astounding feature of the proposed method is concerned
with the evaluation time of the classifier which is even faster than a classical SVM with a single
Gaussian kernel. Usually, multiple kernel learning methods yield a model whose evaluation time is
in the order of the number of kernels times the number of support vectors. In Section 7, we show
that the evaluation time of the optimal translation invariant kernel is proportional to the number of
cosine kernels, regardless of the number of support vectors. In Section 8, using a learning theory
discussion, we show the necessity of controlling the complexity of the class of translation invariant
kernels.

In Section 9, we will assess the practical usefulness of the proposed method on several data
sets. In Section 9.1, we first perform some experiments on 13 artificial and real-world data sets
collected from the UCI, DELVE, and STATLOG benchmark repositories by Rätsch et al. (2001).In
Section 9.2, we perform experiments on the USPS handwritten digit recognition data set, compar-
ing the proposed method with the MKL of Chapelle et al. (2002). In Section 9.3, we compare
the proposed method with the DC method of Argyriou et al. (2006) on the MNIST handwritten
digit recognition data set. In Section 9.4, we experimentally assess the role of the capacity control
mechanism of Section 2. Finally, we conclude the paper in Section 10.

2. A Hierarchy of Classes for Translation Invariant Kernels

It is well-known in learning theory that to have a small generalization error, there should be a
problem-dependent compromise between the complexity of the learning machine and the empirical
error on the training data (Vapnik, 1998; Cucker and Zhou, 2007). In the previous section we saw
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Symbol Meaning Symbol Meaning
n input space dimension l number of training data
l1 number of training data with label +1 l2 number of training data with label -1
X input space F Feature space
Φ feature map: Φ : X → F nsv number of support vectors
α lagrange multipliers in SVM C regularization parameter in SVM
k the kernel function Δ maximal margin
C+ the set of data with label +1 C− the set of data with label -1
m number of kernels in MKL framework µ weight of kernels in MKL
R radius of the smallest ball surrounding ℜ(z) real part of the complex number z

the data in the feature space j unit imaginary number:
√
−1

z̄ the complex conjugate of z Sc the complement of set S

Table 1: Notations

that Equation (1) captures the general form of the large class of translation invariant kernels. To
obtain the best tradeoff between approximation and estimation errors, we introduce a hierarchy of
classes of translation invariant kernels. The appropriate class for a specific problem is then chosen
by cross-validation. It must be mentioned that the idea of controlling the complexity of the class
of admissible kernels has been previously used by Ong et al. (2005) for learning the kernels with
hyperkernels. Although this type of complexity control is not provisioned by Micchelli and Pontil
(2005), we, based on our experiments, believe that it is an important ingredient of the framework. To
restrict the class of translation invariant kernels, we propose to limit the high frequency components
of the kernel function. This is similar to the use of stabilizer functions in regularization theory (see
Girosi et al., 1993). But, instead of adding a stabilizer function to the objective functional, which
requires the determination of both the stabilizer and the regularization parameter, we explicitly
define a nested class of translation invariant kernels Kβ as:

Kβ :=
{

k(x,z) =
Z

Rn
e jγ

T (x−z)Gβ(‖γ‖)dp(γ) : p is a probablity measure on Rn
}

where β is defined on an ordered set, and Gβ : R+ → [0,1] is a decreasing continuous function
with Gβ(0) = 1 and Gβ(∞) = 0. In addition, to ensure that these classes of kernels are nested, we
require that Gβ1(r) ≥ Gβ2(r) for every r > 0 and β1 ≤ β2. Important candidates for Gβ(‖γ‖) are
exp(−β‖γ‖2) and ‖γ‖−β for β> 0. Note that we have left the choice of the norm to the application.
Two important candidates are L1 and L2 norms. In Section 5, we will also assume that the function
Gβ(‖γ‖) is differentiable with respect to γ.

3. Kernel Selection Criterion

In the process of learning the kernel function, one needs a criterion for choosing a kernel (or equiv-
alently, feature space) from the class of admissible kernels. In the classification task, the ideal
criterion is the misclassification error. But since the probability density of data is unknown, this
criterion cannot be computed. This problem has been circumvented by proposing upper bounds
on the misclassification error which hold with high probability (see for example Vapnik, 1999 and
Chapter 4 of Cristianini and Shawe-Taylor, 2000). In Chapelle et al. (2002), several criteria have
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been studied and the authors suggested minimizing the radius-margin bound (R/Δ)2 as the preferred
criterion.

Consider the training set of a classification task consisting of the input-output pairs
{(x1,y1), ...,(xl,yl)}, with yi ∈ {−1,1}. For a fixed kernel, support vector machines compute the
maximal hard/soft margin separating hyperplane. By generalizing hard margin, 1-norm soft margin,
and 2-norm soft-margin objective functions, Lanckriet et al. (2004) obtained the following general-
ized criterion for 1/Δ2 (which must be minimized):

ω′
C′,τ′(k) := max

α : 0≤ α≤C′,
αT y= 0

{

2αT e−
l

∑
u=1

l

∑
v=1

αuαvyuyvk(xu,xv)− τ′αTα

}

(2)

where e is the n× 1 vector of ones and the prime sign is used to distinguish the parameters from
those used in this paper. If (C′,τ′) is equal to (∞,0) ,(C′,0) , and (∞,1/C′), one obtains hard
margin, 1-norm soft margin, and 2-norm soft-margin performance measures, respectively. Our first
change to this criterion is adding the constraint αT e = 2. It has been shown (Crisp and Burges,
1999; Mavroforakis and Theodorodis, 2006) that by adjusting the parameters C and the offset b
appropriately, this new constraint does not change the separating hyperplane. However, the new
constraint plus αT y = 0 gives ∑i∈C− αi = ∑i∈C+ αi = 1, which makes the exposition of our method
simpler. Furthermore, we divide (2) by 1+ τ′ and define τ := τ′

1+τ′ . So, in this paper we use the
criterion:

ωC,τ(k) :=min
α∈A

{

(1− τ)
l

∑
u=1

l

∑
v=1

αuαvyuyvk(xu,xv)+ ταTα

}

(3)

where A :=
{

α ∈Rl : 0≤ α≤C, αT y= 0, αT e= 2
}

. Note that in the new criterion max{ 1l1 ,
1
l2 }≤

C ≤ 2 and 0≤ τ≤ 1. This criterion works well for a fixed kernel by maximizing the margin Δ. But
in general, to minimize the radius-margin bound (R/Δ)2, one must impose some constraint on the
radius R, as well. For translation invariant kernels we have R2 = ‖Φ(x)‖2 = k(x,x) = k̃(0). Hence,
bounding the radius R is equivalent to bounding k̃(0). One can easily verify that bounding trace{K},
where K is the kernel matrix in the transductive framework (see Lanckriet et al., 2004, Equation 17),
also leads to a bound on k̃(0). Since by exploding R and trace{K}, the margin Δ also explodes by
the same amount, whilst the radius-margin bound remains constant, we from now on assume that
k̃(0) = 1 and obtain the following optimization problem:2

sup
k
min
α∈A

{

(1− τ)
l

∑
u=1

l

∑
v=1

αuαvyuyvk(xu,xv)+ ταTα

}

s.t. k(x,z) =
Z

Rn
e jγ

T (x−z)Gβ(‖γ‖)dV (γ)
Z

Rn
dV (γ) = 1,

V is monotonically increasing

2. Note that since k is a complex-valued positive semi-definite kernel, the objective function is real-valued and non-
negative.
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or equivalently

sup
p∈P (Rn)

min
α∈A

Z

Rn
αTH(γ)αdp(γ) (4)

where P (Γ) denotes the set of all probability measures on Γ and H(γ) is defined below. Let G(γ) be
the l× l matrix whose (u,v)th entry is yuyv exp( jγT (xu−xv))Gβ(‖γ‖). DefineH(γ) := (1−τ)G(γ)+
τIl where Il is the l× l identity matrix. The following equation shows an O(l) computational method
for computing αTG(γ)α:

αTG(γ)α=

∥

∥

∥

∥

∥

l

∑
u=1

αuyu exp( jγT xu)

∥

∥

∥

∥

∥

2

2

Gβ(‖γ‖). (5)

4. Variational Optimization

In this section, we first prove the existence of a solution to problem (4). Next we prove that (4)
can be written as a min-max problem with integration replaced by summation. This allows us to
introduce a SIP formulation of the problem. We then introduce another SIP problem for learning
the optimal kernel and parameter τ.

4.1 Replacing Sup with Max

We will prove that the sup operation in (4) can be substituted by the max operation. Note that all the
variability in the choice of a probability measure p from P (Rn) collapses to the choice of an l× l
matrix

R

Rn H(γ)dp(γ) from S(Cl), where S(Cl) is the space of all l× l Hermitian complex-valued
matrices. So, it is sufficient to prove that the set of all these matrices is compact, which ensures
that any sequence of these matrices has a convergent subsequence, and subsequently, the supremum
value is achieved. Furthermore, by compacting the parameter space A in (3) there is no need to
assume that the kernel matrices are strictly positive definite, as was done in Lemma 2 of Micchelli
and Pontil (2005).

LetC0(Rn) denote the function space of all continuous complex-valued functions defined onRn

which vanish at infinity, that is, lim‖γ‖→∞ g(γ) = 0 for any g ∈C0(Rn). By Theorem 3.17 of Rudin
(1987), the function spaceC0(Rn) with the norm

‖g‖ :=max
γ∈Rn

|g(γ)|

is a Banach space. Note that the use of max operation is justified by the continuity and vanish-
ing properties of g ∈ C0(Rn). Considering the above discussions, we need to prove the following
theorem.

Theorem 1 For any fixed sample data Z = {(x1,y1), ...,(xl,yl)}, the set

KZ :=
{

Z

Rn
H(γ)dp(γ) : p ∈ P (Rn)

}
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is a compact subset of S(Cl).3

Proof Consider any sequence (pn) in P (Rn). Define positive linear functionals Tn :C0(Rn) → C

by Tng :=
R

Rn g(γ)dpn(γ). So, Tn ∈C′
0(R

n), the dual space of C0(Rn). Since for each n, ‖Tn‖ = 1,
by Banach-Alaoglu theorem (see for example Theorem 3.15 of Rudin, 1991 or page 237 of Royden,
1988), there exists some T ∈ C′

0(R
n) with ‖T‖ ≤ 1 and a subsequence (Tm) such that Tm → T in

weak* topology. This means that for every g ∈C0(Rn), we have Tmg→ Tg. Since, each element of
the matrix H(γ) belongs toC0(Rn), it follows that

R

Rn H(γ)dPm(γ) → TH. One can easily prove by
contradiction that ‖T‖ = 1 and T is in fact a positive linear functional. By the Riesz representation
theorem (see Theorem 6.19 of Rudin, 1987), the functional T can be represented uniquely by a
complex Borel measure µ ,with

R

Rn d|µ| = ‖T‖ = 1, in the sense that

Tg=
Z

Rn
g dµ for every g ∈C0(Rn).

The positivity of T implies that µ is a positive real measure. So,
R

Rn dµ= 1 and consequently µ
is also a probability measure on Rn. Thus,

Z

Rn
H(γ)dpm(γ) −→

Z

Rn
H(γ)dµ(γ)

which indicates that the set KZ is compact.

4.2 Interchanging the min and max Operations

We first prove a theorem about interchanging the min and max operations which is an abstracted
and generalized version of Theorem 20 in Micchelli and Pontil (2005).

Theorem 2 Assume that Γ is a compact Hausdorff space and the function g : Γ×Rl → R is con-
tinuous in the first parameter and convex and differentiable in the second parameter. Let E and I
be finite index sets , ai, where i ∈ E ∪ I , be l× 1 vectors, and bi, where i ∈ E ∪ I , be real-valued
scalars. Considering problem (6), assume that the Slater’s condition (see Boyd and Vandenberghe,
2004) holds, that is, there exists some α such that aTi α= bi for all i ∈ E and aTi α< bi for all i ∈ I .
Then there exist a discrete probability measure p̃∈ P (Γ) with at most l+1 atoms and some feasible
point α̃ which solve the max-min problem

max
p∈P (Γ)

min
α : aTi α= bi for i ∈ E ,
aTi α≥ bi for i ∈ I

Z

Γ
g(γ,α)dp(γ) (6)

and the min-max problem

min
α : aTi α= bi for i ∈ E ,
aTi α≥ bi for i ∈ I

max
p∈P (Γ)

Z

Γ
g(γ,α)dp(γ) (7)

simultaneously. In addition, each atom of p̃ is a global maximum of g(γ, α̃) as a function of γ.

3. Note that the topology of S(Cl) is the same as that of Rl2 .An l× l hermitian matrix contains l real-valued diagonal
elements and l2−l

2 independent complex-valued off-diagonal element.
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Proof Assume that α̂ and p̂ solve the problem (7). Define the function

φ :Rl →R

φ(α) :=maxγ∈Γ {g(γ,α)}

and the set

Γ∗ := {γ : γ ∈ Γ,g(γ, α̂) = φ(α̂)} .

By Lemma 24 of Micchelli and Pontil (2005), the directional derivative of φ along the direction
d ∈Rl , denoted by φ′

+(α;d), is given by:

φ
′

+(α;d) =max
γ∈Γ∗

{

dT∇αg(γ,α)
}

.

Since α̂ minimizes (7), we have

φ
′

+(α̂;d) =max
γ∈Γ∗

{

dT∇αg(γ,α) |α=α̂
}

≥ 0 (8)

for any direction d such that aTi d = 0 for i ∈ E and aTi d ≥ 0 for i ∈ I ∗, where I ∗ := {i ∈ I : aTi α=
bi}.

Let M be the convex hull of the set of vectors N := {∇αg(γ,α) |α=α̂ : γ ∈ Γ∗} ⊆ Rl . Since
M ⊆ Rl , by the Caratheodory theorem (see for example Section 17 of Rockafellar, 1970) every
vector in M can be expressed as a convex combination of at most l+ 1 elements of N . We claim
that the set

O :=

{

∑
i∈E∪I ∗

λiai : λi ≥ 0 for all i ∈ I ∗

}

intersectsM . Assume, on the contrary, thatM and O are distinct. SinceM is convex and compact
and O is convex and closed, by the strict separating hyperplane theorem (see corollary 11.4.2 of
Rockafellar, 1970), there exists a separating hyperplane wTα+b= 0, w ∈Rl, b ∈R, such that

∑
i∈E∪I ∗

λiwT ai+b> 0, ∀λ : λi ≥ 0 for i ∈ I ∗

and

wT∇αg(γ,α) |α=α̂ +b< 0, ∀γ ∈ Γ∗. (9)

The first condition, for λ = 0 implies that b > 0 and since λi can take any real value for i ∈ E
and any nonnegative value for i ∈ I ∗, we have
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wTai = 0, ∀i ∈ E ,

wTai ≥ 0, ∀i ∈ I ∗.

By combining these results with (9), we get

max
γ∈Γ∗

wT∇αg(γ, α̂) |α=α̂ < 0.

This means that w is a feasible descent direction at α̂ which contradicts (8). So, the sets O and
M intersect. This means that there exist real numbers λ̂i, i ∈ E , nonnegative numbers λ̂i, i ∈ I ∗,
and a discrete probability measure p̂ with at most l+1 atoms such that

∑
i∈E∪I ∗

λ̂iai =
Z

Γ
∇αg(γ, α̂)d p̂. (10)

Now, we turn our attention to the solution of problem (6) for p = p̂. This is a convex opti-
mization problem. Since by assumption the Slater’s condition holds, the KKT conditions provide a
necessary and sufficient condition for optimality (see Boyd and Vandenberghe, 2004, page 244) and
therefore a solution α̌ to problem (6) is found by solving the following KKT conditions:

∑
i∈E∪I

λ̌iai =
Z

Γ
∇αg(γ, α̌)d p̂

aTi (α̌) = 0, i ∈ E

aTi (α̌) ≥ 0, i ∈ I

λ̌i ≥ 0, i ∈ I

λ̌i
(

aTi α̌−bi
)

= 0, i ∈ I .

By defining λ̂i = 0 for i∈ I \I ∗, using (10), and recalling the definition of I ∗, it can be seen that
α̂, λ̂ are the unique solution to the above KKT conditions. Thus, α̃ = α̂ and p̃ = p̂ solve problems
(6) and (7) simultaneously and the theorem follows.

Corollary 3 Assume that Γ is any compact subset of Rn and the parameter C is chosen4 such
that C > max{ 1l1 ,

1
l2 }. Then, there exist α̃ ∈ Rn and p̃ ∈ P (Γ) that solve problems (11) and (12)

simultaneously. Furthermore, p̃ is a discrete probability measure with at most l+1 atoms and each
atom of p̃ is a global maximum of α̃TH(γ)α̃.

max
p∈P (Γ)

min
α∈A

Z

Γ
αTH(γ)αdp(γ), (11)

min
α∈A

max
p∈P (Γ)

Z

Γ
αTH(γ)αdp(γ). (12)

4. For a similar constraint in the context of ν-SVMs see Section 4 of Crisp and Burges (1999).
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Proof It is sufficient to show that the Slater’s condition holds, that is, there exists α ∈Rl such that
αT e = 2, αT y = 0, α > 0, and α <C. One can easily verify that the choice αi = 1

l1 for i ∈C
+ and

αi = 1
l2 for i ∈C

− satisfies these conditions.
In the rest of the paper, we assume thatC >max{ 1l1 ,

1
l2 }.

4.3 Confining Integration to a Compact Region

To write (4) as a min-max optimization problem, we first proved in Section 4.1 that the sup operation
can be replaced by the max operation. In the previous section we proved Corollary 3 which asserts
that if the integration region of (4) could have been replaced by a compact set, then the max and
min operations could also be interchanged. In this section, we show that the integration region of
(4) can safely be confined to a compact subset of Rn. Let us first prove two useful lemmas.

Lemma 4 For arbitrary domains X and Y and every function f : X×Y →R, the following inequal-
ity holds:

sup
x∈X

inf
y∈Y

f (x,y) ≤ inf
y∈Y
sup
x∈X

f (x,y).

Proof Assume on the contrary that

sup
x∈X

inf
y∈Y

f (x,y) > inf
y∈Y
sup
x∈X

f (x,y).

Then, there exist x̃ ∈ X and ỹ ∈ Y such that

inf
y∈Y

f (x̃,y) > sup
x∈X

f (x, ỹ)

which contradicts with the existence of f (x̃, ỹ).

Lemma 5 If τ< 1, then there exists some compact subset Γβ ofRn, independent of α, where all γ’s
that maximize αTH(γ)α lie in it.5

Proof For each α ∈Rl we have

max
γ∈Rn

αTH(γ)α= (1− τ)max
γ∈Rn







∥

∥

∥

∥

∥

l

∑
u=1

αuyu exp( jγT xu)

∥

∥

∥

∥

∥

2

2

Gβ(‖γ‖)







+ ταTα. (13)

Let t(α) denote the maximum value of the term in the braces in the above equation. Since Gβ

is continuous and Gβ(0) = 1, there is an open ball around zero in Rn such that Gβ(‖γ‖) > 0. This
fact plus the condition αT e = 2, ensure that the coefficient of at least one of the exponential terms
in (13) is nonzero. Hence, the term in the braces in (13), as a function of γ, is never identically zero
and thus t(α) > 0. For all values of γ with Gβ(‖γ‖) < t

4 we have

5. Note that by (3), the choice τ= 1 is unrealistic.
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αTH(γ)α− ταTα=

∥

∥

∥

∥

∥

l

∑
u=1

αuyu exp( jγT xu)

∥

∥

∥

∥

∥

2

Gβ(‖γ‖) ≤ 4Gβ(‖γ‖) < t(α)

and the lemma’s assertion follows from limr→∞G(r) = 0.

Theorem 6 There exists an optimal solution (α̃, p̃) to problem (4) which is also a solution to it
when the integration domain is confined to the compact set Γβ.

Proof Let (α̃, p̃) be a solution to problems (6) and (7) with Γ replaced by Γβ. By Lemma 4 and
Corollary 3, we have the following sequence of inequalities:

max
p∈P (Γβ)

min
α∈A

Z

Γβ
αTH(γ)αdp(γ) ≤

max
p∈P (Rn)

min
α∈A

Z

Rn
αTH(γ)αdp(γ) ≤

min
α∈A

max
p∈P (Rn)

Z

Rn
αTH(γ)αdp(γ) ≤

min
α∈A

max
p∈P (Rn)

Z

Rn
max
γ∈Rn

αTH(γ)αdp(γ) =

min
α∈A

max
γ∈Rn

αTH(γ)α=

min
α∈A

max
p∈P (Γβ)

Z

Γβ
αTH(γ)αdp(γ).

However, the first and the last terms are equal by Corollary 3.

4.4 Semi-infinite Programming Formulation

We have not yet addressed the problem of how (12) is to be really solved on a machine. In this
section, we reformulate (12) as a semi-infinite programming problem for which many algorithms
have been proposed (see Hettich and Kortanek, 1993; Reemtsen and Görner, 1998, for two reviews
on the subject).

Theorem 7 Let α̃ and t̃ be a solution to the semi-infinite programming problem (14) and define
the set ΓHβ (α) :=

{

γ ∈ Γβ : αTH(γ)α= maxγ∈ΓβαTH(γ)α
}

. Let (Q) be the QCQP problem that is
obtained by replacing Γβ by ΓHβ (α̃)≡ {γ1, ...,γm} in (14) and let µ̃1, ..., µ̃m be a set of Lagrange mul-
tipliers associated with the constraints t ≥ αTH(γi)α, 1≤ i ≤ m which optimize the dual problem
of (Q). If p̃ is the discrete probability measure defined by p̃(γi) := µ̃i i= 1, ...,m, then α̃ and p̃ solve
the problem (4). In addition, there exists a solution pair (α̃∗, p̃∗) such that p̃∗ contains at most l+1
nonzero atoms.
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minα,t t
s.t. t ≥ αTH(γ)α for all γ ∈ Γβ

0≤ α≤C
αT y= 0
αT e= 2.

(14)

Proof Since for all γ /∈ ΓHβ (α̃) the strict inequality t̃ > α̃TH(γ)α̃ holds, α̃ and t̃ also solve the fol-
lowing QCQP problem:

minα,t t
s.t. t ≥ αTH(γi)α i= 1, ...,m

0≤ α≤C
αT y= 0
αT e= 2.

In addition, from t̃ = α̃TH(γ1)α̃= ... = α̃TH(γm)α̃, it follows that α̃ and t̃ also solve the follow-
ing problem:

min
α∈A

max
µ≥0, ∑mi=1µi=1

αT
[

m

∑
i=1

µiH(γi)

]

α (15)

By Theorem 17 of Lanckriet et al. (2004), if µ̃ is chosen as specified by the statement of this
theorem, then α̃ and µ̃ simultaneously solve the min-max problem (15) and the following max-min
problem:

max
µ≥0, ∑mi=1µi=1

min
α∈A

αT
[

m

∑
i=1

µiH(γi)

]

α

which can also be written as

max
p∈P (ΓHβ (α̃))

min
α∈A

Z

αTH(γ)αdP(γ)

The first assertion of the theorem follows from the following inequalities:

t̃ = max
p∈P (ΓHβ (α̃))

min
α∈A

Z

αTH(γ)αdP(γ) ≤

max
p∈P (Γβ)

min
α∈A

Z

αTH(γ)αdP(γ) ≤

min
α∈A

max
p∈P (Γβ)

Z

αTH(γ)αdP(γ) = t̃
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where the last equality follows from a simple reformulation of problem (14). The last part of the
theorem follows from Corollary 3 and reversing the above proof.

4.5 Including Other Kernels in the Learning Process

Although the focus of this paper is on the task of learning translation invariant kernels, it is easy
to furnish the set of admissible kernels with other kernel functions. For example, one may want to
find the best convex combination of stabilized translation invariant kernels along with isotropic/non-
isotropic Gaussian kernels, and polynomial kernels with degrees one to five.6 In general, assume
that we haveM classes of kernels

Ki :=
{

kγ(x,z) : γ ∈ Γi
}

i= 1, ...,M

where Γ1, ...,ΓM are distinct compact Hausdorff spaces. For i ∈ 1, ...,M let Gi(γ) be the l× l matrix
whose (u,v)’s entry is yuyvkγ(xu,xv) and define Hi(γ) := (1−τ)Gi(γ)+τIl . The problem of learning
the best convex combination of kernels from these classes for classification with support vector
machines can be stated as

sup
p∈P (Γ0)

min
α∈A

Z

Γ0
αTH0(γ)αdp(γ) (16)

where Γ0 := Γ1∪ ...∪ΓM and

H0(γ) :=



















H1(γ) i f γ ∈ Γ1
H2(γ) i f γ ∈ Γ2

...
HM(γ) i f γ ∈ ΓM

.

The results of the previous sections will hold for this combined class of kernels if we prove that
Γ0 is a compact Hausdoff space and that h0(γ,α) := αTH0(γ)α is continuous with respect to γ. Let
Ti denote the topology on Γi for i ∈ 1, ...,M. Define the set T0 of subsets of Γ0 as:

T0 := {O1∪O2...∪OM : O1 ∈ T1,O2 ∈ T2, ...,OM ∈ TM} .

Proposition 8 T0 is a topology.

Proof Clearly Γ0 ∈ T0. Next we must show that T0 is closed under arbitrary union. Let O=
S

i∈IOi
where Oi ∈ T0 and I is an arbitrary index set. We have

O=
[

j∈{1,...,M}

(

[

i∈I

Oi∩Γ j

)

6. Although the class of translation invariant kernels includes the set of isotropic/non-isotropic Gaussian kernels, it is
not the case for the stabilized class Kβ.
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which shows that O ∈ T0. Finally, we should show that finite intersection of closed sets is a closed
set. Assume thatC =

Tr
i=1Ci, where r ∈N and Cci ∈ T0 . We have

Cc =
[

i∈{1,...,r}
Cci =

[

i∈{1,...,r}

[

j∈{1,...,M}
(Cci ∩Γ j) .

SinceCci and Γ j are both open in T j, the setCci ∩Γ j is open in T j. By the properties of topologies
T1, ...,TM and the definition of topology T0 it follows that Cc ∈ T0 which shows that C is closed in
T0.

Proposition 9 Assume that the functions hi(γ,α) : Γi×Rl → R defined as hi(γ,α) = αTHi(γ)α,
where i = 1, ...,M, are continuous in the first parameter. Then, the function h0(γ,α) : Γ0×Rl →
R defined as h0(γ,α) = αTH(γ)α ,where the topology of Γ0 is T0, is also continuous in the first
parameter.

Proof Fix α to any value and define h̄i(γ) := hi(γ,α) for i= 0, ...,M. Let O be an open subset of R.
We must show that h̄−10 (O) is open in topology T0. We have

h̄−10 (O) =
[

i=1,...,M

(

h̄−10 (O)∩Γi
)

=
[

i=1,..,M
h̄−1i (O).

Since the set h̄−1i (O) is open in Ti for each i ∈ {1, ...,M}, it follows from the definition of T0
that the union of these sets is also open in T0. So, h̄−10 (O) is open in T0 and the result follows.

Proposition 10 The set Γ0 with topology T0 is compact in itself.

Proof Let O = {Oi : i ∈ I0} be an open covering of Γ0, where I0 is some index set. Let j be
any number in the set {1, ...,M}. Since Γ j ⊆ Γ0, the set O is also an open covering for Γ j. By
compactness of Γ j, there exists a finite index set I j ⊆ I0 such that the set

{

Oi : i ∈ I j
}

is an open
subcovering of Γ j. Thus, the set {Oi : i ∈ I1∪ ...∪ IM} is a finite open subcovering of T0 which
proves that Γ0 is compact.

Proposition 11 Assume that topologies T1, ...,TM are Hausdorff. Then, so is the topology T0.

ProofWe must prove that for any two points γ1,γ2 ∈ Γ0 there are disjoint open sets O1 and O2 such
that γ1 ∈ O1 and γ2 ∈ O2. If γ1 and γ2 belong to the same set Γ j for some j ∈ 1, ...,M, then the
assertion follows from the Hausdorffness property of T j. Without loss of generality, assume that
γ1 ∈ Γ1 and γ2 ∈ Γ2. The choice O1 = Γ1 and O2 = Γ2 completes the proof.

Theorem 12 Assume that Γ1, ...,ΓM are compact Hausdorff spaces and the matrices Hj are as
defined previously in this section. Furthermore, assume that for j = 1, ...,M the functions h j(γ,α) :
Γ j → Rl defined by h j(γ,α) := αTHj(γ)α are continuous in the first parameter. Let α̃ and t̃ be a
solution to the semi-infinite programming problem P(Γ1, ...,ΓM), which is defined as
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minα,t t
s.t. t ≥ αTH1(γ)α for all γ ∈ Γ1

...
P(Γ1, ...,ΓM) := t ≥ αTHM(γ)α for all γ ∈ ΓM (17)

0≤ α≤C
αT y= 0
αT e= 2.

Define the set ΓHj (α) :=
{

γ ∈ Γ j : αTHj(γ)α= maxγ∈Γ jαTHj(γ)α
}

. Let (Q) be the QCQP prob-
lem that is obtained by replacing every Γ j with j = 1, ...,M by ΓHj (α̃) ≡

{

γ j1, ...,γ
j
m j

}

in (17). For

any j ∈ {1, ...,M} let µ̃j1, ..., µ̃
j
m j be a set of Lagrange multipliers associated with the constraints

t ≥ αTHj(γ
j
i )α, 1≤ i≤ mj which optimize the dual problem of (Q). If p̃ is the discrete probability

measure defined by p̃(γ ji ) := µ̃ji i = 1, ...,mj j = 1, ...,M, then the pair (α̃, p̃) solves the problem
(16). In addition, there exists a solution pair (α̃∗, p̃∗) such that p̃∗ contains at most l+ 1 nonzero
atoms.

Proof The result is immediately obtained by replacing the set Γβ by Γ0 in Theorem 7.

4.6 Automatic Adjustment of the Parameter τ

In this section, we consider the following problem:

max
0≤τ≤1,p∈P (Rn)

min
α∈A

Z

Rn
αTH(γ)αdP(γ). (18)

It is well known that the parameter τ can be envisioned as the weight of the kernel δ(x,z), where
δ is the Kronecker delta function. So, the problem of learning the parameter τ is equivalent to
choosing the best convex combination of the set of translation invariant kernels augmented with the
delta kernel δ(x,z). By using Theorem 12 we get the following corollary.

Corollary 13 Let α̃ and t̃ be a solution to the semi-infinite programming problem Pτ(Γβ), where for
each compact set Γ the problem Pτ(Γ) is defined by (19). Define the set

ΓGβ (α) :=
{

γ ∈ Γβ : αTG(γ)α= maxγ∈Γβα
TG(γ)α

}

.

Let (Q) be the QCQP problem that is obtained by replacing Γ by ΓGβ (α̃)≡ {γ1, ...,γm} in (19) and let
µ̃1, ..., µ̃m be a set of Lagrange multipliers associated with the constraints t ≥ αTG(γi)α, 1≤ i≤m
which optimize the dual problem of (Q). In addition, let µ̃0 be a Lagrange multiplier associated with
the constraint t ≥ αTα in the dual problem of (Q). If p̃ is the discrete probability measure defined
by p̃(γi) := µ̃i i = 1, ...,m and τ̃ := µ̃0, then α̃, τ̃, and p̃ solve the problem (18). In addition, there
exist some solution α̃∗, τ̃∗, and p̃∗ such that p̃∗ contains at most l+1 nonzero atoms.
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Pτ(Γ) :=

minα,t t
s.t. t ≥ αTG(γ)α for all γ ∈ Γ

t ≥ αTα

0≤ α≤C
αT y= 0
αT e= 2.

(19)

Proof Let ω0 /∈ Γβ and assign the kernel δ(x,z) to this point. The corollary is proved by applying
theorem 12 to the sets Γβ and {ω0}.

4.7 Furnishing the Class of Admissible Kernels with Isotropic Gaussian Kernels

Although the class of translation invariant kernels encompasses the class of Gaussian kernels with
arbitrary covariance matrices, the stabilized class of translation invariant kernels Kβ does not. So, it
may be advantageous to combine the classKβ with the class of Gaussian kernels. In this section, we
consider learning the best convex combination of kernels of the classes Kβ and the stabilized class
of isotropic Gaussian kernels

Kη :=
{

k(x,z) =
Z

R

e−ω‖xu−xv‖
2
e−η‖ω‖

2
dp(ω) : p is a probablity measure on R

}

where η> 0. We also learn the parameter τ automatically. The proof that there exists some compact
set Ωη ⊆ R where we can confine the integration to it parallels the discussion of Section 4.3 and is
omitted. By using Theorem 12, it follows that the expansion of the optimal kernel along with the
weight of each kernel can be obtained by solving the SIP problem Pτ(Γβ,Ωη), where Pτ(Γ,Ω) is
defined as:

Pτ(Γ,Ω) :=

minα,t t
s.t. t ≥ αTG(γ)α for all γ ∈ Γ

t ≥
l

∑
u=1

l

∑
v=1

αuαvyuyve−ω‖x−z‖
2
e−η‖ω‖

2
for all ω ∈Ω

t ≥ αTα

0≤ α≤C
αT y= 0
αT e= 2.

5. Optimization Algorithm

We now turn to the problem of numerically solving the nonlinear convex semi-infinite programming
problem Pτ(Γβ).7 The term semi-infinite stems from the fact that whilst the number of variables is

7. Modifying the proposed algorithm to solve problem Pτ(Γ,Ω) is straightforward.

1369



GHIASI-SHIRAZI, SAFABAKHSH AND SHAMSI

finite, there is an infinite number of constraints which are indexed by the compact set Γβ. Hopefully,
for each finite set Γ⊆Γβ, the problem Pτ(Γ) is QCQP and therefore convex. Hence, in principle, one
can construct a sequence of QCQP problems with an increasing number of constraints such that their
solutions converge to the solution of problem Pτ(Γβ). This is the principle used by discretization and
exchange algorithms (see Hettich and Kortanek, 1993; Reemtsen and Görner, 1998). On the other
hand, by Corollary 13, only a finite number of constraints will be active in a solution. Furthermore,
it is easy to show that this property is not limited to a solution point, and the active constraints at a
solution also identify the active constraints in a neighborhood of it. This is the principle behind the
methods based on local reduction (see Reemtsen and Görner, 1998; Hettich and Kortanek, 1993).
Reemtsen and Görner (1998) proposed that to further speed up the methods based on local reduction,
the set of active constraints be locally adapted. Combining these ideas with numerous experiments,
we arrived at Algorithm 1. This algorithm is very similar to Algorithm 7 in Reemtsen and Görner
(1998) which is based on local reduction.

5.1 Choosing the Initial Value of α

We choose the initial value of α such that maximizing the criterion (3) with respect to the kernel
function k and the parameter τ correspond to maximizing the distance of the means of the two
classes in a feature space. Let us first write the distance between means of two classes in the feature
space of some kernel k′

‖m1−m2‖2 =

∥

∥

∥

∥

∥

1
l1 ∑u∈C+

Φ(xu)−
1
l2 ∑v∈C−

Φ(xv)

∥

∥

∥

∥

∥

2

=
1
l21
∑
u∈C+

∑
v∈C−

k′(xu,xv)+2
1
l1l2 ∑u∈C+

∑
v∈C−

k′(xu,xv)+
1
l22
∑
u∈C−

∑
v∈C−

k′(xu,xv).

By choosing αi = 1/l1 for i ∈C+ and αi = 1/l2 for i ∈C−, we have

‖m1−m2‖2 =
l

∑
u=1

l

∑
v=1

αuαvyuyvk′(xu,xv).

Comparing the above equation with (3), we see that maximizing the criterion (3) with respect to
the kernel function k and the parameter τ is equivalent to maximizing the distance between means
of the samples of the two classes in the feature space of kernel k′(x,z) = k(x,z)+τδ(x,z). Note that
this choice for α also satisfies the required conditions αT e= 2, αT y= 0, and max{ 1l1 ,

1
l2 }≤ α≤C;

and thus α ∈ A .

5.2 Global Search for Local Maxima of αTG(γ)α

The algorithm presented in this section attempts to gather a subset of unsatisfied constraints to be
considered in the next iteration of Algorithm 1. Although at the solution point α̃ the set of active
constraints globally maximize α̃TG(γ)α̃, for other choices of α it is possible that the constraints
be violated by the local maxima of the function αTG(γ)α. So, in Algorithm 2, we try to find the
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values of γ which locally maximize the function αTG(γ)α for given α. Here we also assume that the
function Gβ(‖γ‖) is differentiable with respect to γ. The choice of limited-memory BFGS algorithm
(Nocedal, 1980; Liu and Nocedal, 1989; Nocedal and Wright, 2006) for this optimization is very
important. For large-scale problems with large n, the memory needed to store the Hessian matrix
and the associated computations become prohibitive. Although a gradient-ascent algorithm does
not compute the Hessian matrix, its convergence rate is very slow. The limited-memory BFGS
algorithm provides an excellent practical compromise between the computations at each step and
the number of iterations till convergence, without storing the full Hessian matrix in memory.

Algorithm 1 General Optimization Algorithm
Require: T1
1. Γ(0) ← {} , t(0) ← 1

l1 + 1
l2

{A lower bound for parameter t is the minimum value of αTα for α ∈ A}
2. Initialize α(0) as described in Section 5.1
3. for i= 1,2, ... do
4. set R such that for all γ with ‖γ‖ > R, the relation αTG(γ)α< t(i−1) holds for all α
5. Γ(i)

g ← GlobalSearchForLocals(α(i−1),R)
{denote the maximum value obtained by the global search by s(i)}

6. Γ(i)
s ← Γ(i−1) S

Γ(i)
g

7. Solve problem Pτ(Γ
(i)
s ) to obtain the optimal parameters t(i)s ,α(i)

s and µ(i)
s

{see Section 5.3}
8. Locally adapt Γ(i)

s and µ(i)
s to obtain the optimal parameters t(i)l ,α(i)

l ,Γ(i)
l and µ(i)

l
{see Section 5.4}

9. t(i) ← t(i)l , α(i) ← α(i)
l

10. Construct µ(i) and Γ(i) by eliminating zero indices of µ(i)
l along with the corresponding vectors

in Γ(i)
l

11. if t(i)− t(i−1) < εt(i−1) or i= T1 then
12. terminate algorithm with the kernel k(x,z) := ∑m

j=1µ
(i)
j cos

(

(x− z)T γ(i)j
)

{we assume that Γ(i) =
{

γ(i)1 , ...,γ(i)m
}

and that µ(i)
j is the Lagrange multiplier associated

with the constraint αTG(γ(i)j )α≤ t in problem Pτ(Γ(i))}
13. end if
14. end for

5.3 Solving the Problem Pτ(Γ) for Finite Set Γ

Let Γ = {γ1, ...,γm} be a finite subset of Γβ. Since Γ is finite, the problem Pτ(Γ) can be written as
the following QCQP problem:
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Algorithm 2 GlobalSearchForLocals
Require: α, R, T2, and T3
1. Γ= {}, i= 0
2. for j = 1,2, ... do
3. generate a random point x ∈Rn

4. generate a random number r ∈ [0,R]
5. γ0 ← r x

‖x‖
6. starting from γ0 and using the limited-memory BFGS algorithm find a local maximum γ(i)

for function αTG(γ)α
7. if γ(i) ∈ Γ then
8. i← i+1 {count the number of repeating local maxima}
9. end if
10. Γ← Γ∪ γ(i)
11. if (i− |Γ|) ≥ T2 or j = T3 then
12. return Γ
13. end if
14. end for

minα,t t
s.t. t ≥ αTG(γi)α for all i= 1, ...,m

t ≥ αTα

0≤ α≤C
αT y= 0
αT e= 2.

(20)

This problem has been studied in Section 4.6 of Lanckriet et al. (2004) and it has been suggested
to store the l× l kernel matrices G(γ1), ...,G(γm) in memory and solve the problem with general
purpose software packages. But, the memory requirement of this approach limits its applicability to
small-sized problems. However, the facts that

αTℑ{G(γ)}α= 0

and

ℜ{G(γ)} = vc(γ)T vc(γ)+ vs(γ)T vs(γ),
vc(γ) :=

[

y1cos(γT x1), y2cos(γT x2), . . . ,ylcos(γT xl)
]

,

vs(γ) :=
[

y1sin(γT x1), y2sin(γT x2), . . . ,ylsin(γT xl)
]
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where ℜ{z} and ℑ{z} are the real and imaginary parts of z, respectively, show that the kernel
matrices G(γ1), ...,G(γm) appearing in problem (20) are effectively8 of rank two. This allows us to
reformulate (20) as a new QCQP problem as follows:

minα,t,c,s t
s.t. t ≥ c2i + s2i i= 1, ...,m

ci =
l

∑
u=1

αiyi cos(γTi xu) i= 1, ...,m

si =
l

∑
u=1

αiyi sin(γTi xu) i= 1, ...,m

t ≥ αTα

0≤ α≤C
αT y= 0
αT e= 2.

(21)

Now, there is no need to load the kernel matrices into memory and so general-purpose QCQP
solvers such as Mosek (Andersen and Andersen, 2000) can be used to solve (21) even when the
training set size is huge.

5.4 Local Adaptation

As stated in the previous section, for any finite set Γ= {γ1, ...,γm}⊆Γβ, the problem Pτ(Γ) is convex
and so every local solution is also globally optimal. But, if we consider the values γ1, ...,γm as points
in the space Rn, we get the following non-convex optimization problem:

max
µ≥ 0,µT e= 1,
γ1, ...,γm ∈Rn

min
α∈A

m

∑
i=1

µiαTG(γi)α+µ0αTα. (22)

Now, we can use the the solution of the problem Pτ(Γ) obtained in the previous section as the
starting point for problem (22) and locally improve it by an ascent method. By unrolling (22), we
obtain the following optimization problem:

max
µ∈Rm+1,

γ1, ...,γm ∈Rn

Ĵ(µ,γ1, ...,γm) s.t. µ≥ 0,µTe= 1 (23)

where

8. In this paper, we say that a matrix G is effectively of rank r if there exists some matrix H of rank r such that for all
vectors α ∈ A we have αTGα= αTHα.
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Ĵ(µ,γ1, ...,γm) :=

min
α∈A

{

l

∑
u=1

l

∑
v=1

αuαvyuyv
m

∑
i=1

µiGβ (‖γi‖)cos(γTi (xu− xv))+µ0
l

∑
u=1

α2u

}

. (24)

Problem (23), corresponds to adapting the kernel parameters γ1, ...,γm and µ0, ...,µm of the kernel
function k(x,z) = ∑m

i=1µi cos(γTi (x− z)) + µ0δ(x− z) for the task of SVM classification, where δ
denotes the Kronecker delta function. This problem has been previously studied by Chapelle et al.
(2002) for general kernel functions with unconstrained parameters and they proved that the function
Ĵ(.) is differentiable provided that problem (24) has a unique solution.9 They also proposed a simple
gradient-based iterative algorithm for adapting the kernel parameters. Recently, Rakotomamonjy
et al. (2008) performed a more detailed analysis of this problem in MKL and proposed a reduced
gradient algorithm with line search. They reasoned that since the computation of the function Ĵ is
costly,10 the overhead of a line search preserves the effort.

To avoid the difficulties of the constrained optimization, we replace the constrained vector µ by
the unconstrained vector ρ, connected by the relation µi = ρ2i

ρTρ , i = 0, ...m, and rewrite (23) as the
following problem:

max
ρ ∈Rm+1,

γ1, ...,γm ∈Rn

J(ρ,γ1, ...,γm) (25)

where

J(ρ,γ1, ...,γm) :=

min
α∈A

1
ρTρ

{

l

∑
u=1

l

∑
v=1

αuαvyuyv
m

∑
i=1

ρ2i Gβ (‖γi‖)cos(γTi (xu− xv))+ρ20
l

∑
u=1

α2u

}

. (26)

We use the limited-memory BFGS algorithm to numerically solve (25). Our experiments on
MKL tasks show that the method proposed in this section is several times fatser than the reduced
gradient algorithm of Rakotomamonjy et al. (2008).11 It has been also stated by Rakotomamonjy
et al. (2008) that their method could be improved if the Hessian matrix could be computed ef-
ficiently. This is not the case for the problem (25) with m× (n+ 1) variables; where, even for
moderate size problems, the storage of the Hessian matrix requires lots of memory.

5.5 Solving the Intermediate SVM Problem and Its Gradient

To compute the function J(.) defined by Equation (26), we have to solve the following constrained
quadratic programming problem:

9. Truely speaking, the proof should be credited to Danskin (1966).
10. Although the definition of the function J in Rakotomamonjy et al. (2008) differs from (24), computation of both

functions corresponds to training a single-kernel SVM.
11. We leave this comparison along with some theoretical results to another paper.
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minα αT
(

m

∑
i=1

ρ2i
ρTρ

G(γi)

)

α+
ρ20
ρTρ

αTα

s.t. 0≤ α≤C
αT y= 0
αT e= 2.

(27)

Although the traditional algorithms for solving quadratic programming problems, such as active
set methods, are fast, they need to store the kernel matrix in memory which prevents their application
in large-scale problems. So, various algorithms for large-scale training of SVMs, such as SMO
(Platt, 1999) or SVMLight (Joachims, 1999), have been proposed. Again, since the effective rank of
the kernels G(γ1), ...,G(γm) is two, we can re-state the problem (27) in a memory efficient manner
as:

minα,c,s
ρ20
ρTρ

αTα+
m

∑
i=1

ρ2i
ρTρ

(

c2i + s2i
)

s.t. ci =
l

∑
u=1

αuyu cos(γTi xu) i= 1, ...,m

si =
l

∑
u=1

αuyu sin(γTi xu) i= 1, ...,m

0≤ α≤C
αT y= 0
αT e= 2.

In our experiments we have used the optimization software Mosek (Andersen and Andersen,
2000) to solve this problem. After computing the value of the function J(.) and obtaining a solution
α̃ to (26), we compute the gradient using the following formulas:

∇γ j J =
ρ2j
ρTρ∇γ

{

α̃TG(γ)α̃
}

|γ=γ j j = 1, ...,m, (28)

∇ρ j J = 2 ρ j
ρTρ

{

α̃TG(γ j)α̃−∑m
i=1

ρ2i
(ρTρ) α̃

TG(γi)α̃−
ρ20

(ρTρ) α̃
T α̃

}

j = 1, ...,m. (29)

Note that, in general, the computational complexity of computing formulas (28) and (29) is
O(m× n× nsv2) as was pointed out by Rakotomamonjy et al. (2008).12 The following formulas
show an O(m× (nsv+n)) method for computing the gradient of function J(.).

∇γ j J =
ρ2j
ρTρ

(

c2j + s2j
)

∇γGβ(‖γ‖)|γ=γ j +2
ρ2j
ρTρ

(

s′js j + c′jc j
)

Gβ(‖γ j‖) j = 1, ...,m,

∇ρ j J = 2 ρ j
ρTρ

{

(c2j + s2j)Gβ(‖γ j‖)−∑m
i=1

ρ2i
ρTρ(c

2
j + s2j)Gβ(‖γ j‖)−

ρ20
ρTρ α̃

T α̃
}

j = 1, ...,m

where
12. Note that in Rakotomamonjy et al. (2008) the function J(.) has only m variables, while here the number of variables

is m× (n+1).
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c j =
nsv

∑
u=1

α̃uyu cos(γTj xu) j = 1, ...,m,

s j =
nsv

∑
u=1

α̃uyu sin(γTj xu) j = 1, ...,m,

c′j = −
nsv

∑
u=1

α̃uyuxu sin(γTj xu) j = 1, ...,m,

s′j =
nsv

∑
u=1

α̃uyuxu cos(γTj xu) j = 1, ...,m.

5.6 Convergence Analysis

In this section, we study the convergence properties of Algorithm 1. We hope the contents of this
section help the reader to get a better feeling of this algorithm. For any finite or infinite set Γ, we
denote the solution of problem Pτ(Γ) by S(Γ). Let us first prove a useful lemma.

Lemma 14 If the loop inside Algorithm 1 is executed for the i’th iteration, then S(Γ(i)
l ) = S(Γ(i)).

In other words, removing the constraints where their associated Lagrange multipliers are zero, does
not change S(Γ(i)

l ).

ProofAssume that Γ(i)
l = {γ1, ...,γm}. Without loss of generality, we assume that Γ(i) = {γ1, ...,γm′},

where m′ < m. Denote the Lagrangian of Pτ(Γ
(i)
l ) by L(α, t,µ,λ), where µ1, ...,µm are the Lagrange

multipliers associated with the constraints αTG(γ1)α≤ t, ...,αTG(γm)α≤ t, respectively, and λ ∈ Λ

denotes the Lagrange multipliers associated with all other constraints. Since Pτ(Γ
(i)
l ) is convex, by

the strong duality we have

S(Γ(i)
l ) = max

µ≥0,λ∈Λ
min
α,t

L(α, t,λ,µ) = L(α∗, t∗,λ∗,µ∗)

where it is assumed that α∗, t∗,λ∗, and µ∗ are a solution to problem S(Γ(i)
l ). Since µ∗m′+1, ...,µ

∗
m are

zero, we also have

S(Γ(i)
l ) = max

µ1≥0,...,µm′≥0,λ∈Λ
min
α,t

L(α, t,λ,µ).

Since the strong duality also holds for Pτ(Γ(i)), the last expression is equal to S(Γ(i)) and the
lemma follows.

Now, we prove that for any ε> 0 the Algorithm 1 converges, even without limiting the maximum
number of iterations.

Proposition 15 The sequence of numbers t(0), t(1), ... generated by Algorithm 1 is increasing and
bounded.
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Proof By steps 6 and 8 of Algorithm 1, it follows that S(Γ(i−1))≤ S(Γ(i)
s ) and S(Γ(i)

s )≤ S(Γ(i)
l ). By

Lemma 14, S(Γ(i)
l ) = S(Γ(i)). So, t(i−1) = S(Γ(i−1)) ≤ S(Γ(i)) = t(i). By Equation (5) and the fact

that αT e = 2, it follows that αTα ≤ 4 and αTG(γ)α ≤ 4 for all choices of α and γ; and thus, the
sequence is bounded.

Define g(α,γ) := αTG(γ)α . The following theorem is essentially Theorem 7.2 of Hettich and
Kortanek (1993), where its proof is reconstructed here for the sake of completeness.

Theorem 16 Assume that in every run of step 5 of Algorithm 1 at least one global maximizer of the
function g(α(i−1),γ) is found and that the steps 10-13 of the algorithm are omitted (Note that the
key point is the omission of step 10). Let ᾱ be any accumulation point of the sequence α(0),α(1), ...
and assume that t(i) ↗ t̄ . Then the pair (ᾱ, t̄) is a solution of Pτ(Γβ).

Proof First note that since α(i) ∈ A and A is compact, a point of accumulation for the sequence
α(0),α(1), ... always exists. Recall the definition ofΩβ from Section 4.6 and define the function g(α)
as:

g(α) :=max
γ∈Ωβ

αTG(γ)α

For simplicity, assume that α(i) → ᾱ. Let (α∗, t∗) denote a solution of problem Pτ(Γβ). Clearly
t̄ ≤ t∗. If t̄ = t∗ then the theorem is proved. Assume on the contrary that t̄ < t∗. Then, there exists
γ̄ ∈ Ωβ such that t̄ < g(ᾱ, γ̄) = g(ᾱ). But, since ᾱT ᾱ ≤ t̄, it follows that γ̄ ∈ Γβ. For i = 0,1, ...
choose γ(i) ∈Ωβ such that g(α(i),γ(i)) = g(α(i)). We have

g(ᾱ)− t̄ =
[

g(α(i))− t̄
]

+
[

g(ᾱ)−g(α(i))
]

=
[

g(α(i),γ(i))− t̄
]

+
[

g(ᾱ)−g(α(i))
]

(30)

On the other hand, by omission of step 10 from Algorithm 1, all constraints of the previous
iterations will continue to appear in the next iterations. Since g(α,γ) is continuous, ᾱ is a feasible
point for all problems Pτ(Γ(i)), where i= 0,1, ...,∞. Therefore,

g(ᾱ,γ(i)) ≥ sup
j=1,...,∞

t( j) = t̄ for all i= 0,1, ... (31)

Using (31) in (30) we obtain

g(ᾱ)− t̄ =
[

g(α(i),γ(i))− t̄
]

+
[

g(ᾱ)−g(α(i))
]

≤
[

g(α(i),γ(i))−g(ᾱ,γ(i))
]

+
[

g(ᾱ)−g(α(i))
]

.
(32)

By continuity of g(., .), the right hand side of (32) tends to zero, which contradicts the assump-
tion t̄ < g(ᾱ).
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6. Generalizing the Kernel Trick to Complex-valued Kernels

Consider a machine learning algorithm designed for a real-valued Euclidean space. The kernel trick
for real-valued kernels states that if all geometric concepts of an algorithm are defined solely based
on the dot-product operation, then by replacing all of these dot-products by a kernel function k, we
arrive at a version of the very algorithm running in a feature space associated with kernel k. For
complex-valued kernels, the dot-product of any two vectors may be complex-valued which makes
the application of these kernels to machine learning algorithms more tricky. We now introduce
a generalization of the kernel trick for complex-valued kernels. Assume that k(x,z) is a complex-
valued kernel. Then there exists at least one complex feature space, say F , and a mappingΦ :X→F
such that k(x,z) = 〈Φ(x),Φ(z)〉F . Each axis in the complex feature space F can be substituted by
two real-valued axes, one representing the real part and the other the imaginary part. Let us call
this real-valued space G. To use the kernel trick, we replace the complex feature space F with the
equivalent real feature space G. Now, we show that the dot product between elements of G can be
computed by the real-valued kernel function ℜ{k(x,z)},13 where ℜ{z} is the real part of z.

Theorem 17 Let F be a complex Hilbert space of dimension N (possibly infinite) and G the corre-
sponding 2N-dimensional Hilbert space obtained by representing real and imaginary parts of F in
separate real axes. Then 〈x′,z′〉G =ℜ{〈x,z〉F} , where x′ is the 2N-dimensional vector obtained by
concatenating real and imaginary parts of x.

Proof For finite N we have

ℜ{〈x,z〉F} =ℜ
N

∑
i=1

xiz̄i =ℜ
N

∑
i=1

(xrei + jximi )(zrei − jzimi )

=
N

∑
i=1

(xrei zrei + ximi zimi ) =
2N

∑
i=1

x′iz′i = 〈x′,z′〉G

If F is infinite dimensional, then it has an orthonormal basis (see Kreyszig, 1989 p.168) and
x and z can have at most countably many nonzero elements (see Kreyszig, 1989 p.165) which we
indicate by index set I. So,

ℜ{〈x,z〉F} =ℜ∑
i∈I

xiz̄i =ℜ∑
i∈I

(xrei + jximi )(zrei − jzimi )

=∑
i∈I

(xrei zrei + ximi zimi ) =∑
i∈I

x′iz′i = 〈x′,z′〉G.

After fully developing the paper based on the complex-valued form of translation invariant ker-
nels, one of the reviewers introduced us to the real-valued form of these kernels as was discovered by
Bochner (1955). He proved that every continuous real-valued translation invariant positive definite
kernel in Rn has the general form

13. The fact that real part of a complex kernel is a real kernel is not new (see Schölkopf and Smola, 2002 page 31). But,
as far as we know, the relation between the corresponding Hilbert spaces, as stated in the theorem, is new.
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k(x,z) = k̃(x− z) =
Z

Rn
cosγT (x− z)dV (γ).

It is interesting that after applying the appropriate kernel trick to both real-valued and complex-
valued forms of translation invariant kernels, the optimal kernel is found to be a mixture of cosines.

7. The Method at Runtime

One frequently denounced feature of SVMs is that the resulting classifier has an expansion based on
support vectors. Although support vectors are considered to be sparse in the training set, the result-
ing classifier is usually slower than other competing methods such as neural networks (Schölkopf
et al., 1998). In general, the computation of a support vector classifier requires O(n× nsv) steps.
The problem becomes more severe when the kernel function becomes a combination of several ker-
nels, where the computational complexity of evaluating the classifier grows up to O(m× n× nsv).
For some kernels, such as the Gaussian kernel with isotropic covariance matrix, the computation
time can be reduced to O((m+ n)× nsv). Our method has the eminent property that the result-
ing classifier is not expanded based on support vectors at all. Considering the SVM classifier
f (x) = ∑nsv

u=1αuyuk(x,xu)+b, we have

f (x) =
nsv

∑
u=1

αuyuk(x,xu)+b=
nsv

∑
u=1

αuyu

(

m

∑
i=1

µi cos(γTi (x− xu))Gβ(‖γi‖)

)

+b

=
m

∑
i=1

µiGβ(‖γi‖)
nsv

∑
u=1

αuyu
(

cos(γTi x)cos(γTi xu)+ sin(γTi x)sin(γTi xu)
)

+b

=
m

∑
i=1

µiGβ(‖γi‖)

[(

nsv

∑
u=1

αuyu cos(γTi xu)

)

cos(γTi x)+

(

nsv

∑
u=1

αuyu sin(γTi xu)

)

sin(γTi x)

]

+b.

But ∑nsv
u=1αuyu cos(γTi xu) and ∑nsv

u=1αuyu sin(γTi xu) are constant values. So, the computational
complexity of evaluating the classifier of the proposed method is O(m× n). Note that the clas-
sifier has an expansion based on the number of kernels, instead of support vectors. In addition,
by Theorem 2, the number of kernels is limited to l+ 1. Furthermore, since the deletion of non-
support vector samples from the training set has no effect on the optimal classifier, it follows that
m ≤ nsv+ 1. Although, theoretically, the number of kernels can reach the number of support vec-
tors, our experiments show that the number of kernels is usually a fraction of the number of support
vectors.

8. A Learning Theory Perspective

A common feature between the class of radial kernels, considered by Micchelli and Pontil (2005),
and the class of translation invariant kernels, considered here, is that the kernels of both classes
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have the property that k(x,x) = 1 for every x∈Rn.14 Micchelli et al. (2005b) used this feature along
with a result from Yiming and Zhou (2007) to obtain a probably approximately correct (PAC) upper
bound on the generalization error of their kernel learning framework over the class of radial kernel
functions. They concluded that the regularization parameter of a single-kernel learning machine
is sufficient for controlling the complexity of the class of radial kernels, rejecting the use of an
auxiliary method for controlling the complexity of the class of radial kernels.

But, the situation for translation invariant kernels is completely different. It is well-known that
the VC-dimension of the class of cosine functions with arbitrary frequencies is infinite (see Vapnik,
1998, page 160). In addition, the finiteness of the VC-dimension is a necessary and sufficient condi-
tion for distribution independent learning of binary classification tasks (see Vapnik, 1998, Theorem
4.5). So, controlling the complexity of the class of translation invariant kernels is a necessary ingre-
dient of our framework. This discussion will be experimentally verified in Section 9, where we will
show the vital role of the complexity control mechanism of Section 2.

9. Experimental Results

In this section we report the results of our experiments on several artificial and real-world bench-
mark data sets. In addition, we will experimentally investigate the role of the complexity control
mechanism of Section 2. In all the experiments we have set C = ∞, T1 = 1000, T2 = 4, T3 = 500,
Gβ(‖γ‖2) = exp(−β‖γ‖22)) and the parameter τ is automatically learnt according to Algorithm 1.
The implementation of this paper is packaged in the SIKL (Stabilized infinite kernel learning) tool-
box and is available at http://www.mloss.org. We obtained the implementation of the limited mem-
ory BFGS algorithm from the website http://www.chokkan.org/software/liblbfgs which is a C++
translation of the original implementation made available by Nocedal in Fortran 77. For limited-
memory BFGS algorithm, the 17 most recent curvature information are used and the maximum
number of line-search tries is set to 20. We also changed the stopping condition of the algorithm
from ‖∇x‖

‖x‖ < ε to ‖∇x‖ < ε to avoid the degradation of the accuracy of the global search algorithm
for points far from the origin. The QCQP sub-problem of Algorithm 1 and the QP problem of
Section 5.5 are solved by the optimization software Mosek (Andersen and Andersen, 2000). All
the experiments have been performed on a 2.8GHz Pentium D computer with 2GB memory and
running the Linux operating system.

9.1 Experiments on Small-size Benchmark Data Sets

In this section, we report our experiments on the benchmark data sets prepared by Rätsch et al.
(2001). This benchmark consists of 13 data sets and there exist 100 splits of each data set into
training and test sets. The classification error for each data set is obtained by averaging the classifi-
cation error over these splits. For this experiment we set ε = 0.001. The comparison is among the
following methods:

• Single Gaussian (SG) Rätsch et al. (2001) performed experiments with a single isotropic
Gaussian kernel. The variance parameter σ of the isotropic Gaussian kernel and the parameter
C of the 1-norm soft-margin SVM are optimized by performing 5-fold cross-validation on the
first five instances of the training set.

14. In fact, the classes of radial/translation invariant kernel functions contain kernels with arbitrary positive values for
k(x,x). But, the constraint k(x,x) = 1 is imposed for reasons stated in Section 3.
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• Gaussian Mixture (GM) A generalization of the method of Gehler and Nowozin (2008)
is implemented and used for learning the optimal kernel over the class Kη. The number
of Gaussian kernels m̄, their parameters, and the parameter τ are learnt automatically. The
parameter η is set to 0.001 and the parameterC is learnt by performing 5-fold cross validation
on the first five instances of the training set.

• Cosine Mixture (CM)Here, the method of Section 4.6 is used. The number of cosine kernels
m, their parameters, and the parameter τ are learnt automatically. The parameter C is fixed
to ∞ and the parameter β is optimized by performing 5-fold cross validation on the first five
instances of the training set.

• Cosine and Gaussian Mixture (CGM) Here, the method of Section 4.7 is used. The number
of cosine kernelsm, the number of Gaussian kernels m̄, the parameters of cosine and Gaussian
kernels, and the parameter τ are learnt automatically. The parameter C is set to ∞ and the
parameter η is set to 0.03. The parameter β is optimized by performing 5-fold cross validation
on the first five instances of the training set.

To compare the training and evaluation times of these methods, we repeated the experiments of
Rätsch et al. (2001) on our machine. For training a single-kernel SVM we used the implementation
of SMO algorithm (Platt, 1999) contained in the Statistical Pattern Recognition Toolbox.15 To keep
the results reported by Rätsch et al. (2001) as reference, we neglect the accuracies obtained by the
SG method.

Table 2 summarizes the test error rates and training times of the methods on each data set. It can
be seen that the GM method has the worst performance and does not provide any improvement over
other methods. The only benefit of the GM over SG is that while the latter requires specifying the
kernel function by hand, GM learns the kernel function automatically. The SG and CM are the only
methods of this experiment that do not store the kernel matrices in memory; and thus are applicable
to large-scale problems. In addition, they have also the best training times. To our surprise, although
the CM method solves a musch more difficult problem than SG, it has also improved the training
time in some data sets. Considering the test error rates, the CGM method has the best overall
performance. But, the SG method on the F.Solar data set, and CM method on the Thyroid data set
provide significantly better results. For the Ringnorm data set, the CM method has obtained a high
error rate of 8.5%. Interestingly, the number of training and testing samples of the Ringnorm data
set are exactly equal to the Twonorm data set, for which the CM method has even improved the
accuracy. The essential difference between the Twonorm and the Ringnorm data sets, where in both
data sets each class has a multivariate normal distribution, is that in the Twonorm data set the classes
have separate means, whilst in the Ringnorm data set the classes have separate covariance matrices.
So, it seems that the Gaussian kernel is inherently much more suitable for solving the Ringnorm
data set than the cosine kernel. In fact, this is exactly why combining several kernels is important.
By combining the cosine and Gaussian kernels, the CGM method provides the best performance.

Table 3 compares the methods in terms of the evaluation time. For each method, the factors that
influence the evaluation time are also reported. As can be seen, except for the Ringnorm data set,
the CM is significantly faster at run-time than all other methods, including a classical SVM with
Gaussian kernel. The best speedup is for the Twonorm data set for which, in addition to a lower test

15. Available at http://cmp.felk.cvut.cz/cmp/software/stprtool.
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Data Set Single
Gaussian

Gaussian
Mixture

Cosine
Mixture

Cosine&
Gaussian
Mixture

error
(%)

training
(sec)

error
(%)

training
(sec)

error
(%)

training
(sec)

error
(%)

training
(sec)

Banana 11.5±0.7 1.1 10.5±0.5 26.4 10.7±0.5 3.5 10.4±0.5 21.3
B. Cancer 26.0±4.7 0.2 26.7±5.0 2.7 26.2±4.9 1.2 25.8±4.7 4.2
Diabetis 23.5±1.7 1.6 23.7±1.7 7.5 23.2±1.9 2.3 23.2±1.8 16.5
F. Solar 32.4±1.8 9.1 35.4±1.7 15.4 33.3±1.8 1.2 33.9±1.8 57.7
German 23.6±2.1 4.4 25.3±2.5 35.4 24.1±2.2 3.5 23.7±2.2 53.9
Heart 16.0±3.3 0.1 17.0±3.2 1.4 15.6±3.2 1.1 16.0±3.2 2.8
Image 3.0±0.6 16.0 3.6±1.3 178.9 2.5±0.5 1057.1 2.5±0.5 779.6
Ringnorm 1.7±0.1 2.9 1.7±0.1 9.7 8.5±0.9 192.7 1.7±0.1 17.7
Splice 10.9±0.7 445.4 11.1±0.7 91.8 9.7±0.4 43.3 9.3±0.5 187.0
Thyroid 4.8±2.2 0.1 4.6±2.2 1.8 3.7±2.2 3.4 4.8±2.1 3.1
Titanic 22.4±1.0 0.1 23.2±1.3 1.0 22.9±1.2 0.9 22.9±1.2 2.6
Twonorm 3.0±0.2 0.4 2.7±0.2 7.9 2.4±0.1 5.4 2.7±0.2 17.9
Waveform 9.9±0.4 5.8 9.8±0.4 8.5 10.0±0.5 2.6 9.7±0.4 17.7

Table 2: Test errors and training times of SG, GM, CM, and CGM methods on the data sets col-
lected by Rätsch et al. (2001)

Data Set Single
Gaussian

Gaussian
Mixture

Cosine
Mixture

Cosine &
Gaussian Mixture

testing nsv testing nsv m̄ testing m testing nsv m m̄
(ms) (ms) Gauss (ms) cos (ms) cos Gauss

Banana 144.7 153.1 615.9 375.7 2.1 13.4 13.6 611.3 393.1 2.0 2.5
B. Cancer 2.2 122.3 4.8 200.0 1.8 0.4 3.6 0.5 200.0 4.3 0.1
Diabetis 19.9 263.3 47.6 464.8 2.1 0.8 7.0 3.8 466.2 5.8 0.2
F. Solar 49.9 507.9 354.0 666.0 1.6 0.6 2.1 1.3 666 11.0 0.0
German 31.4 426.0 120.7 696.4 2.9 1.0 6.6 76.3 700.0 11.6 1.8
Heart 2.2 84.3 6.4 163.1 1.9 0.3 1.8 5.1 169.8 1.6 1.5
Image 205.4 700.7 765.1 1030.4 4.4 56.6 160.2 503.2 712.7 65.2 3.8
Ringnorm 120.2 64.4 487.0 156.2 1.9 228.5 91.7 610.8 200.2 0.0 2.0
Splice 357.7 385.4 1647.7 879.5 2.3 51.4 30.8 1293.6 755.7 13.5 1.6
Thyroid 0.5 22.0 3.1 84.3 3.0 0.4 6.4 3.1 112.0 1.0 2.1
Titanic 35.9 89.5 78.5 150.0 1.5 1.5 2.5 14.8 150.0 2.5 0.3
Twonorm 332.6 167.4 455.7 180.6 1.5 3.5 1.0 582.1 226.2 0.0 1.5
Waveform 134.3 104.5 587.4 290.5 1.9 6.0 2.9 731.9 374.7 1.0 1.6

Table 3: Experimentally measured evaluation times along with the parameters that theoretically de-
termine the evaluation times of SG, GM, CM, and CGMmethods on the data sets collected
by Rätsch et al. (2001)

error rate, the evaluation of the CM method is 95 times faster than a classical SVM with Gaussian
kernel. This speedup in the evaluation of the classifiers can be very useful for applications targeted
at small computers with limited computational power.
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Figure 1: Evolution of the values m, nsv, t(i), s(i), training error, and test error during training of the
proposed method on the USPS data set.

9.2 Experiments on the USPS Data Set

In this section, we show the applicability of the proposed method16 to a real-world digit recognition
problem. We consider the problem of classifying digits 0-4 against 5-9 on the USPS handwritten
digit recognition data set as considered by Chapelle et al. (2002) for evaluating their kernel learning
method. This data set consists of 7291 training examples and 2007 test examples of digit images
of size 16× 16. With polynomial kernel and 256 scaling factors, Chapelle et al. (2002) were able
to get a test error rate of 9.0%. We trained the proposed method with the parameters ε = 0.001,
and β = 3.0. After two hours of training, the algorithm produced a model with 244 cosine kernels
and 790 support vectors. It took 1.3 of a second to test the model on the 2007 test samples and
we obtained a test error rate of 3.4% which is significantly better than the 9.0% result reported by
Chapelle et al. (2002). Figure 1 shows the evolution of the values m, nsv, t(i), s(i), training error, and
test error during training of the USPS data set, where s(i) and t(i) are defined in Algorithm 1.

9.3 Experiments on the MNIST Data Set

While many algorithms for kernel learning consider the combination of a finite number of kernels,
learning translation invariant kernels corresponds to combining an infinite number of kernels. In

16. From this section onward, the proposed method refers to the cosine mixture method.
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this section, we compare the proposed algorithm with the DC method proposed by Argyriou et al.
(2006) which is based on the theory developed by Micchelli and Pontil (2005). They considered the
problem of finding an optimal kernel over the whole class of radial kernels which is equivalent to
the problem of learning the best convex combination of Gaussian kernels with isotropic covariance
matrices.

Argyriou et al. (2006) performed a series of experiments on the MNIST data set by using the
first 500 training examples for training and the first 1000 test examples for evaluation. The MNIST
data set contains 28× 28 images of handwritten digits which are divided into 60,000 training and
10,000 test examples. In addition, the results reported by the DC method have been obtained by
splitting each image into four sub-images which is a use of extra information. In the first exper-
iment, we use the first 3,000 training examples17 for training both systems and evaluate them on
the whole test set. As Argyriou et al. (2006), we consider the tasks of classifying digits 3 vs.
8, 4 vs. 7, and odds vs. evens. We downloaded the implementation of the DC method from
http://www.cs.ucl.ac.uk/staff/a.argyriou/code/dc and chose the range [75,25000] for the parameter
σ of the Gaussian kernel which is the largest range considered by Argyriou et al. (2006). The pa-
rameter µ of the DC method and the parameter β of the CM method were optimized by hand. The
parameter ε was set to the value 0.001. The first three rows of Table 4 show the results of this
experiment. It can be seen that the main benefit of the DC method is its short training time, while
the CM method has superiority in terms of the evaluation time.

Another remarkable feature of the CM method is its applicability to large-scale problems. To
illustrate this fact, we increased the size of the training set of the previous experiments from 3,000
to 10,000. We also increased the parameter ε from 0.001 to 0.01 to decrease the training time. The
DC method could not handle this size of training samples and ran out of memory. The last three
rows and columns of Table 4 show the results of the experiments with the CM method. Figure 2
depicts the evolution of the values m, nsv, t(i), s(i), training error, and test error during training of
CM algorithm on the ods vs even task with 10,000 training samples. Note that the model produced
by the CM method on the larger training set is more accurate and faster-to-evaluate than the best
model that the DC algorithm could produce. We think that the capabilities of the CM method and
DC method are complementary. The DC method works with full-rank matrices, is not large-scale,
converges fast, and its model takes more time to compute. On the other hand, the CMmethod works
with low-rank matrices, is large-scale, converges slowly, and its model can be evaluated very fast.
One open problem is that whether these methods can be combined in a way that the benefits of both
methods are achieved.

9.4 Assessing the Effect of the Proposed Complexity Control Mechanism

In Section 8 we provided theoretical support for the necessity of controlling the complexity of the
class of translation invariant kernels. Here we support this claim by experimenting on the Heart
data set chosen from the benchmark produced by Rätsch et al. (2001). This data set contains 170
train patterns and 100 test patterns of dimension 13. The experiments of the previous section show
that the proposed method was completely successful in obtaining a low test error rate on this data
set. In addition, the mean error rate of the proposed method on the train set is 14.0% which is close
to the mean error rate of 15.5% obtained on the test set. The left plot of Figure 3 illustrates the
trajectories of the train and test errors of the proposed method during training on the Heart data set.

17. This is approximately the largest possible train-set size where the DC method did not ran out of memory.
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Data Set DC method Cosine mixture

Task #tr error
(%)

train
(min)

test
(sec)

error
(%)

train
(min)

test
(sec)

odd vs even 3000 3.1 11 60.1 3.2 37 10.1
3 vs 8 3000 0.7 9 24.8 0.8 192 2.6
4 vs 7 3000 0.4 16 26.1 0.5 122 2.5
odd vs even 10000 - - - 2.0 63 9.1
3 vs 8 10000 - - - 0.4 1133 5.3
4 vs 7 10000 - - - 0.2 649 3.1

Table 4: Test errors of the proposed method (CM) and the DC method on different tasks on the
MNIST data set. The dash sign indicates running out of memory.

In another experiment we disabled our complexity control mechanism by setting β= 10−6 and
instead tried to control the capacity of the learning machine by adjusting the parameter C.18 We
optimized the parameter C using the 5-fold cross-validation method described in the previous sec-
tion. After testing on all the 100 splits of the Heart data set we obtained a mean test error rate of
20.8% and a mean train error rate of 17.4%. The right plot of Figure 3 illustrates the trajectories of
the train and test error rates of this experiment on the Heart data set. This experiment confirms the
usefulness of controlling the complexity of the class of translation invariant kernels, as was claimed
in Section 8.

10. Conclusions

In this paper we addressed the problem of learning a translation invariant kernel function for the
task of binary classification with SVM. We proposed a mechanism for controlling the complexity of
the class of translation invariant kernels which was found to be very useful in practice. The criterion
proposed by Lanckriet et al. (2004) was modified to ensure the compactness of the parameter space
of SVM and to give a probabilistic meaning to the regularization parameter of the 2-norm SVM.
We then introduced a semi-infinite programming formulation of the problem. The proposed method
can automatically learn the regularization parameter of the 2-norm SVM, as well. We have also
shown that how other classes of kernels can be included in the learning process. To numerically
solve the SIP problem on a computer, we introduced a large-scale algorithm which is applicable
to problems with both huge number of training samples and large number of features. Since the
optimal translation invariant kernel is complex-valued, we then introduced a method for applying
the kernel trick to complex-valued kernels. It revealed that the optimal translation invariant kernel
is a mixture of cosine kernels. An interesting feature of the proposed method is that there is a very
fast way for evaluating the classifier at run-time. While an ordinary MKL algorithm with m kernels
requires O(m× nsv× n) steps for computing the classifier, the optimal classifier of the proposed
method can be computed in O(m×n) steps.

In continuation of this work, we plan to extend it in several directions. First, we intend to gen-
eralize the proposed kernel learning method from binary classification to other learning problems,
including regression, multiclass classification, clustering, and kernel PCA. Second, we will try to
propose a novel large-scale algorithm that combines the benefits of the full-rank Gaussian and the

18. Setting β= 0 (exactly) allowed the global search algorithm to find points at infinity which caused problems.
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Figure 2: Evolution of the values m, nsv, t(i), s(i), training error, and testing error during training of
the proposed method with the first 10,000 samples of the MNIST data set for the task of
classifying odds vs. evens.

Figure 3: Comparison between the parameters β and C for controlling the capacity of the class of
translation invariant kernels on the Heart data set.
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low-rank cosine kernels. Third, we intend to investigate the applicability of the idea of Xu et al.
(2008) about adding a regularization term that smoothes the fluctuating behaviour of SILP algo-
rithms, to the proposed SIP algorithm. We hope that this study would greatly decrease the training
time of the proposed method. Another direction is to support the complexity control mechanism
of Section 2 by introducing upper bounds for the generalization error of the proposed method. Our
long time plan is to investigate the use of other low-rank kernels and make it a competing popular
technology.
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Abstract
Three simple and explicit procedures for testing the independence of twomulti-dimensional random
variables are described. Two of the associated test statistics (L1, log-likelihood) are defined when
the empirical distribution of the variables is restricted to finite partitions. A third test statistic is
defined as a kernel-based independence measure. Two kinds of tests are provided. Distribution-
free strong consistent tests are derived on the basis of large deviation bounds on the test statistics:
these tests make almost surely no Type I or Type II error after a random sample size. Asymptotically
α-level tests are obtained from the limiting distribution of the test statistics. For the latter tests, the
Type I error converges to a fixed non-zero value α, and the Type II error drops to zero, for increasing
sample size. All tests reject the null hypothesis of independence if the test statistics become large.
The performance of the tests is evaluated experimentally on benchmark data.
Keywords: hypothesis test, independence, L1, log-likelihood, kernel methods, distribution-free
consistent test

1. Introduction

Consider a sample of Rd ×Rd′-valued random vectors (X1,Y1), . . . ,(Xn,Yn) with independent and
identically distributed (i.i.d.) pairs defined on the same probability space. The distribution of (X ,Y )
is denoted by ν, while µ1 and µ2 stand for the distributions of X andY , respectively. We are interested
in testing the null hypothesis that X and Y are independent,

H0 : ν= µ1×µ2, (1)

while making minimal assumptions regarding the distribution.
We consider two main approaches to independence testing. The first is to partition the underly-

ing space, and to evaluate the test statistic on the resulting discrete empirical measures. Consistency
of the test must then be verified as the partition is refined for increasing sample size. Previous mul-
tivariate hypothesis tests in this framework, using the L1 divergence measure, include homogeneity
tests (to determine whether two random variables have the same distribution), by Biau and Györfi
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(2005); and goodness-of-fit tests (for whether a random variable has a particular distribution), by
Györfi and van der Meulen (1990); Beirlant et al. (1994). The log-likelihood has also been em-
ployed on discretised spaces as a statistic for goodness-of-fit testing, by Györfi and Vajda (2002).
We provide generalizations of both the L1 and log-likelihood based tests to the problem of testing in-
dependence, representing to our knowledge the first application of these techniques to independence
testing.

We obtain two kinds of tests for each statistic: first, we derive strong consistent tests—meaning
that both on H0 and on its complement the tests make a.s. no error after a random sample size1—
based on large deviation bounds. While such tests are not common in the classical statistics litera-
ture, they are well suited to data analysis from streams, where we receive a sequence of observations
rather than a sample of fixed size, and must return the best possible decision at each time using only
current and past observations. Our strong consistent tests are distribution-free, meaning they re-
quire no conditions on the distribution being tested; and universal, meaning the test threshold holds
independent of the distribution. Second, we obtain tests based on the asymptotic distribution of the
L1 and log-likelihood statistics, which assume only that ν is nonatomic. Subject to this assump-
tion, the tests are consistent: for a given asymptotic error rate on H0, the probability of error on
H1 drops to zero as the sample size increases. Moreover, the thresholds for the asymptotic tests are
distribution-independent. We also present conjectures regarding the form taken by strong consistent
and asymptotic tests based on the Pearson χ2 statistic, using the goodness-of-fit results of Györfi
and Vajda (2002) (further related test statistics include the power divergence family of Read and
Cressie, 1988, although we do not study them here). We emphasize that our tests are explicit, easy
to carry out, and require very few assumptions on the partition sequences.

Our second approach to independence testing is kernel-based. In this case, our test statistic has a
number of different interpretations: as an L2 distance between Parzen window estimates (Rosenblatt,
1975), as a smoothed difference between empirical characteristic functions (Feuerverger, 1993;
Kankainen, 1995; Ushakov, 1999), or as the Hilbert-Schmidt norm of a cross-covariance operator
mapping between functions of the random variables (Gretton et al., 2005a, 2008). Each test differs
from the others regarding the conditions on the kernels: the Parzen window statistic requires the
kernel bandwidth to decrease with increasing sample size, and has a different limiting distribution
to the remaining two statistics; while the Hilbert-Schmidt approach uses a fixed bandwidth, and
can be thought of as a generalization of the characteristic function-based test. We provide two new
results: a strong consistent test of independence based on a tighter large deviation bound than that of
Gretton et al. (2005a), and an empirical comparison of the limiting distributions of the kernel-based
statistic for fixed and decreasing kernel bandwidth, as used in asymptotic tests.

Additional independence testing approaches also exist in the statistics literature. For d = d′ = 1,
an early nonparametric test for independence, due to Hoeffding (1948); Blum et al. (1961), is based

1. In other words, denoting by P0 (resp. P1) the probability under the null hypothesis (resp. under the alternative), we
have

P0{rejecting H0 for only finitely many n} = 1 (2)

and
P1{accepting H0 for only finitely many n} = 1. (3)

This concept relates to the definition of discernability introduced by Dembo and Peres (1994): two ensemblesH0 and
H1 of probability measures on Rk are said to be discernible if there exists a sequence fn : (Rk)n → {0,1} of Borel
measurable functions achieving (2) and (3). Thus our test implies discernability of the set H0 in (1) and the set H1 of
dependent random variables.
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on the notion of differences between the joint distribution function and the product of the marginals.
The associated independence test is consistent under appropriate assumptions. Two difficulties arise
when using this statistic in a test, however. First, quantiles of the null distribution are difficult to
estimate. Second, and more importantly, the quality of the empirical distribution function estimates
becomes poor as the dimensionality of the spaces Rd and Rd′ increases, which limits the utility of
the statistic in a multivariate setting. Further approaches to independence testing can be employed
when particular assumptions are made on the form of the distributions, for instance that they should
exhibit symmetry. We do not address these approaches in the present study.

The current work is built on an earlier presentation by Gretton and Györfi (2008). Compared
with this earlier work, the present study contains more detailed proofs of the main theorems, proofs
of secondary theorems omitted by Gretton and Györfi (2008) due to space constraints, additional
experiments on higher dimensional benchmark data, and an experimental comparison with the boot-
strap approach for the L1 and log-likelihood based tests (a similar comparison for the kernel-based
test was made by Gretton et al., 2008).

The paper is organized as follows. Section 2 describes the large deviation and limit distribution
properties of the L1-test statistic. The large deviation result is used to formulate a distribution-free
strong consistent test of independence, which rejects the null hypothesis if the test statistic becomes
large. The limit distribution is used in an asymptotically α-level test, which is consistent when
the distribution is nonatomic. Both a distribution-free strong consistent test and an asymptotically
α-level test are presented for the log-likelihood statistic in Section 3. Section 4 contains a review
of kernel-based independence statistics, and describes the associated hypothesis tests for both the
fixed-bandwidth and variable-bandwidth cases. Finally, a numerical comparison between the tests
is given in Section 5.

2. L1-based Statistic

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1,Y1), . . . ,(Xn,Yn), X1, . . . ,Xn, and Y1, . . . ,Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi,Yi) ∈ A×B, i= 1, . . . ,n},
µn,1(A) = n−1#{i : Xi ∈ A, i= 1, . . . ,n}, and
µn,2(B) = n−1#{i : Yi ∈ B, i= 1, . . . ,n},

for any Borel subsets A and B. Given the finite partitions Pn = {An,1, . . . ,An,mn} of Rd and Qn =
{Bn,1, . . . ,Bn,m′

n} of Rd′ , we define the L1 test statistic comparing νn and µn,1×µn,2 as

Ln(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−µn,1(A) ·µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution properties of this
L1 statistic, and the associated independence tests.

2.1 Strongly Consistent Test

For testing a simple hypothesis versus a composite alternative, Györfi and van der Meulen (1990)
introduced a related goodness of fit test statistic Ln defined as

Ln(µn,1,µ1) = ∑
A∈Pn

|µn,1(A)−µ1(A)|.
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Beirlant, Devroye, Györfi, and Vajda (2001), and Biau and Györfi (2005) proved that, for all 0< ε,

P{Ln(µn,1,µ1) > ε}≤ 2mne−nε
2/2. (4)

We now describe a similar result for our L1 independence statistic.

Theorem 1 Under H0, for all 0< ε1, 0< ε2 and 0< ε3,

P{Ln(νn,µn,1×µn,2) > ε1+ ε2+ ε3}≤ 2mn·m
′
ne−nε

2
1/2+2mne−nε

2
2/2+2m

′
ne−nε

2
3/2.

Proof We bound Ln(νn,µn,1×µn,2) according to

Ln(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−µn,1(A) ·µn,2(B)|

≤ ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−ν(A×B)|

+ ∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)|

+ ∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µ2(B)−µn,1(A) ·µn,2(B)|.

Under the null hypothesis H0, we have that

∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)| = 0.

Moreover

∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µ2(B)−µn,1(A) ·µn,2(B)|

≤ ∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µ2(B)−µ1(A) ·µn,2(B)|

+ ∑
A∈Pn

∑
B∈Qn

|µ1(A) ·µn,2(B)−µn,1(A) ·µn,2(B)|

= ∑
B∈Qn

|µ2(B)−µn,2(B)|+ ∑
A∈Pn

|µ1(A)−µn,1(A)|

= Ln(µn,1,µ1)+Ln(µn,2,µ2).

Thus, (4) implies

P{Ln(νn,µn,1×µn,2) > ε1+ ε2+ ε3}
≤ P{Ln(νn,ν) > ε1}+P{Ln(µn,1,µ1) > ε2}+P{Ln(µn,2,µ2) > ε3}

≤ 2mn·m
′
ne−nε

2
1/2+2mne−nε

2
2/2+2m

′
ne−nε

2
3/2.

Theorem 1 yields a strong consistent test of independence, which rejects the null hypothesis if
Ln(νn,µn,1×µn,2) becomes large. The test is distribution-free, that is, the probability distributions
ν, µ1 and µ2 are completely arbitrary; and the threshold is universal, that is, it does not depend on
the distribution.

1394



CONSISTENT NONPARAMETRIC TESTS OF INDEPENDENCE

Corollary 2 Consider the test which rejects H0 when

Ln(νn,µn,1×µn,2) > c1

(√
mnm′

n
n

+

√
mn
n

+

√
m′
n
n

)

≈ c1

√
mnm′

n
n

,

where
c1 >

√
2ln2≈ 1.177. (5)

Assume that conditions
lim
n→∞

mnm′
n

n
= 0, (6)

and
lim
n→∞

mn
lnn

= ∞, lim
n→∞

m′
n

lnn
= ∞, (7)

are satisfied. Then under H0, the test makes a.s. no error after a random sample size. Moreover, if

ν += µ1×µ2,

and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn,A∩S +=0

diam(A) = 0 (8)

and
lim
n→∞

max
B∈Qn,B∩S +=0

diam(B) = 0, (9)

then after a random sample size the test makes a.s. no error.

Proof Under H0, we obtain from Theorem 1 a non-asymptotic bound for the tail of the distribution
of Ln(νn,µn,1×µn,2), namely

P
{

Ln(νn,µn,1×µn,2) > c1

(√
mnm′

n
n

+

√
mn
n

+

√
m′
n
n

)}

≤ 2mnm
′
ne−c

2
1mnm′

n/2+2mne−c
2
1mn/2+2m

′
ne−c

2
1m′

n/2

≤ e−(c21/2−ln2)mnm′
n + e−(c21/2−ln2)mn + e−(c21/2−ln2)m′

n

as n→ ∞. Therefore the conditions (7) imply
∞

∑
n=1
P
{

Ln(νn,µn,1×µn,2) > c1

(√
mnm′

n
n

+

√
mn
n

+

√
m′
n
n

)}

< ∞,

and the proof under the null hypothesis is completed by the Borel-Cantelli lemma.
For the result under the alternative hypothesis, we first apply the triangle inequality

Ln(νn,µn,1×µn,2) ≥ ∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)|

− ∑
A∈Pn

∑
B∈Qn

|νn(A×B)−ν(A×B)|

− ∑
B∈Qn

|µ2(B)−µn,2(B)|

− ∑
A∈Pn

|µ1(A)−µn,1(A)|.
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The condition in (6) implies the three last terms of the right hand side tend to 0 a.s. Moreover, using
the technique from Barron, Györfi, and van der Meulen (1992) we can prove that by conditions (8)
and (9),

∑
A∈Pn

∑
B∈Qn

|ν(A×B)−µ1(A) ·µ2(B)|→ 2sup
C

|ν(C)−µ1×µ2(C)| > 0

as n→ ∞, where the last supremum is taken over all Borel subsetsC of Rd×Rd′ , and therefore

liminf
n→∞

Ln(νn,µn,1×µn,2) ≥ 2sup
C

|ν(C)−µ1×µ2(C)| > 0

a.s.

2.2 Asymptotic α-level Test

Beirlant, Györfi, and Lugosi (1994) proved, under conditions

lim
n→∞

mn = ∞, lim
n→∞

mn
n

= 0, (10)

and
lim
n→∞

max
j=1,...,mn

µ1(An j) = 0, (11)

that √
n(Ln(µn,1,µ1)−E{Ln(µn,1,µ1)})/σ

D→N (0,1),

where D→ indicates convergence in distribution and σ2 = 1−2/π. The technique of Beirlant, Györfi,
and Lugosi (1994) involves a Poisson representation of the empirical process in conjunction with
Bartlett’s idea of partial inversion for obtaining characteristic functions of conditional distributions
(see Bartlett, 1938). We apply these techniques in Appendix A to derive an asymptotic result for
Ln(νn,µn,1×µn,2).

Theorem 3 Assume that conditions (6) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (12)

are satisfied. Then, under H0, there exists a centering sequence (Cn)n≥1 depending on ν such that

√
n(Ln(νn,µn,1×µn,2)−Cn)/σ

D→N (0,1),

where σ2 = 1−2/π.

Theorem 3 yields the asymptotic null distribution of a consistent independence test, which re-
jects the null hypothesis if Ln(νn,µn,1×µn,2) becomes large. In contrast to Corollary 2, and because
of condition (11), this new test is not distribution-free: the measures µ1 and µ2 have to be nonatomic.
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Corollary 4 Let α ∈ (0,1). Consider the test which rejects H0 when

Ln(νn,µn,1×µn,2) > c2

√
mnm′

n
n

+
σ√
n
Φ−1(1−α)

≈ c2

√
mnm′

n
n

,

where
σ2 = 1−2/π and c2 =

√
2/π≈ 0.798,

and Φ denotes the standard normal distribution function. Then, under the conditions of Theorem 3,
the test has asymptotic significance level α. Moreover, under the additional conditions (8) and (9),
the test is consistent.

Before proceeding to the proof, we examine how the above test differs from that in Corollary 2. In
particular, comparing c2 above with c1 in (5), both tests behave identically with respect to

√
mnm′

n/n
for large enough n, but c2 is smaller.
Proof According to Theorem 3, under H0,

P{
√
n(Ln(νn,µn,1×µn,2)−Cn)/σ≤ x}≈Φ(x),

therefore the error probability with threshold x is

α= 1−Φ(x).

Thus the α-level test rejects the null hypothesis if

Ln(νn,µn,1×µn,2) >Cn+
σ√
n
Φ−1(1−α).

AsCn depends on the unknown distribution, we apply an upper bound

Cn ≤
√
2/π
√
mnm′

n
n

(see Equation (22) in Appendix A for the definition of Cn, and Equation (23) for the bound), so
decreasing the error probability.

3. Log-likelihood Statistic

In the literature on goodness-of-fit testing the I-divergence statistic, Kullback-Leibler divergence,
or log-likelihood statistic,

In(µn,1,µ1) =
mn
∑
j=1

µn,1(An, j) log
µn,1(An, j)
µ1(An, j)

,

plays an important role. For testing independence, the corresponding log-likelihood test statistic is
defined as

In(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) ·µn,2(B)
.
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The large deviation and the limit distribution properties of In(νn,µn,1×µn,2) can be derived from
the properties of

In(νn,ν) = ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)
.

We have that under H0,

In(νn,ν)− In(νn,µn,1×µn,2)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)

− ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) ·µn,2(B)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
µn,1(A) ·µn,2(B)

ν(A×B)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B) log
µn,1(A) ·µn,2(B)

µ1(A) ·µ2(B)
,

therefore

In(νn,ν)− In(νn,µn,1×µn,2)

= ∑
A∈Pn

∑
B∈Qn

νn(A×B)

(
log

µn,1(A)

µ1(A)
+ log

µn,2(B)

µ2(B)

)

= ∑
A∈Pn

µn,1(A) log
µn,1(A)

µ1(A)
+ ∑

B∈Qn
µn,2(B) log

µn,2(B)

µ2(B)

= In(µn,1,µ1)+ In(µn,1,µ1)
≥ 0.

3.1 Strongly Consistent Test

We refer to Tusnády (1977) and Barron (1989) who first discussed the exponential character of the
tails of In. Kallenberg (1985), and Quine and Robinson (1985) proved that, for all ε> 0,

P{In(µn,1,µ1) > ε}≤
(
n+mn−1
mn−1

)
e−nε ≤ emn log(n+mn)−nε.

Note that using an alternative bound due to Barron (1989, Equation 3.5), we obtain under (10) and
(11) that

P{In(µn,1,µ1) > ε} = e−n(ε+o(1)), (13)

such that
lim
n→∞

1
n
logP{In(µn,1,µ1) > ε} = −ε.

A large deviation based test can be introduced such that the test rejects the independence if

In(νn,µn,1×µn,2) ≥
mnm′

n(log(n+mnm′
n)+1)

n
.
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Under H0, we obtain a non-asymptotic bound for the tail of the distribution of In(νn,µn,1×µn,2):

P
{
In(νn,µn,1×µn,2) >

mnm′
n(log(n+mnm′

n)+1)
n

}

≤ P
{
In(νn,ν) >

mnm′
n(log(n+mnm′

n)+1)
n

}

≤ emnm
′
n log(n+mnm′

n)−n
mnm′n(log(n+mnm′n)+1)

n

= e−mnm
′
n .

Therefore condition (7) implies

∞

∑
n=1
P
{
In(νn,µn,1×µn,2) >

mnm′
n(log(n+mnm′

n)+1)
n

}
< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null hypothesis.
Under the alternative hypothesis the proof of strong consistency follows from the inequality, also

called Pinsker’s inequality, which upper bounds the L1 error in terms of I-divergence (cf. Csiszár,
1967; Kemperman, 1969; Kullback, 1967),

Ln(νn,µn,1×µn,2)2 ≤ 2In(νn,µn,1×µn,2).

Therefore,

liminf
n→∞

2In(νn,µn,1×µn,2) ≥ (liminf
n→∞

Ln(νn,µn,1×µn,2))2

≥ 4sup
C

|ν(C)−µ1×µ2(C)|2 > 0

a.s., where the supremum is taken over all Borel subsets C of Rd ×Rd′ . In fact, under conditions
(8), (9), and

I(ν,µ1×µ2) < ∞,

one may get
lim
n→∞

In(νn,µn,1×µn,2) = I(ν,µ1×µ2) > 0

a.s. (see Barron et al., 1992). Note that due to the form of the universal test threshold, strong
consistency under H1 requires the condition

lim
n→∞

mnm′
n

n
log(n+mnm′

m) = 0,

as compared to (6).

3.2 Asymptotic α-level Test

Concerning the limit distribution, Inglot et al. (1990), and Györfi and Vajda (2002) proved that
under (10) and (11),

2nIn(µn,1,µ1)−mn√
2mn

D→N (0,1). (14)
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This implies that for any real valued x, under the conditions (6) and (12),

P
{
2nIn(νn,µn,1×µn,2)−mnm′

n√
2mnm′

n
≥ x

}

≤ P
{
2nIn(νn,ν)−mnm′

n√
2mnm′

n
≥ x

}

→ 1−Φ(x),

which results in a test rejecting the independence if

2nIn(νn,µn,1×µn,2)−mnm′
n√

2mnm′
n

≥Φ−1(1−α),

or equivalently

In(νn,µn,1×µn,2) ≥
Φ−1(1−α)

√
2mnm′

n+mnm′
n

2n
.

Note that unlike the L1 case, the ratio of the strong consistent threshold to the asymptotic thresh-
old increases for increasing n.

4. Kernel-based Statistic

We now present a second class of approaches to independence testing, based on a kernel statistic.
We can derive this statistic in a number of ways. The most immediate interpretation, introduced by
Rosenblatt (1975), defines the statistic as the L2 distance between the joint density estimate and the
product of marginal density estimates. Let K and K′ be density functions (called kernels) defined
on Rd and on Rd′ , respectively. For the bandwidth h> 0, define

Kh(x) =
1
hd
K
( x
h

)
and K′

h(y) =
1
hd′

K′
( y
h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of (X ,Y ) and X are respectively

fn(x,y) =
1
n

n

∑
i=1

Kh(x−Xi)K′
h(y−Yi) and fn,1(x) =

1
n

n

∑
i=1

Kh(x−Xi), (15)

with fn,2(y) defined by analogy. Rosenblatt (1975) introduced the kernel-based independence statis-
tic

Tn =
Z

Rd×Rd′
( fn(x,y)− fn,1(x) fn,2(y))2dxdy.

Alternatively, defining

Lh(x) =
Z

Rd
Kh(u)Kh(x−u)du=

1
hd

Z

Rd
K(u)K(x−u)du

and L′h(y) by analogy, we may write the kernel test statistic

Tn = 1
n2 ∑

n
i=1∑

n
j=1Lh(Xi−Xj)L′h(Yi−Yj)

− 2
n3 ∑

n
i=1
(
∑n
j=1Lh(Xi−Xj)

)(
∑n
j=1L′h(Yi−Yj)

)

+
( 1
n2 ∑

n
i=1∑

n
j=1Lh(Xi−Xj)

)( 1
n2 ∑

n
i=1∑

n
j=1L′h(Yi−Yj)

)
. (16)
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Note that at independence, the expected value of the statistic is not zero, but

E{Tn} =
n−1
n2

(Lh(0)−E{Lh(X1−X2)})
(
L′h(0)−E{L′h(Y1−Y2)}

)
(17)

≤ n−1Lh(0)L′h(0) = (nhdhd
′
)−1‖K‖2‖K′‖2

A second interpretation of the above statistic is as a smoothed difference between the joint char-
acteristic function and the product of the marginals (Feuerverger, 1993; Kankainen, 1995; Ushakov,
1999). The characteristic function and Rosenblatt-Parzen window statistics can be quite similar: in
fact, for appropriate smoothing and kernel choices and fixed n, they may be identical (Kankainen,
1995, p. 54, demonstrates this for a Gaussian kernel). That said, a number of important differ-
ences exist between the characteristic function-based statistic and that of Rosenblatt (1975). Most
crucially, the kernel bandwidth is kept fixed for the characteristic function-based test, rather than
decreasing as n rises (a decreasing bandwidth is needed to ensure consistency of the kernel density
estimates), resulting in very different forms for the null distribution; and there are more restric-
tive conditions on the Rosenblatt-Parzen test statistic (Rosenblatt, 1975, conditions a.1-a.4). These
issues are discussed in detail by Feuerverger (1993, Section 5) and Kankainen (1995, Section 5.4).

A further generalization of the statistic is presented by Gretton et al. (2005a, 2008), in terms of
covariances between feature mappings of the random variables to reproducing kernel Hilbert spaces
(RKHSs). We now briefly review this interpretation, beginning with some necessary terminology
and definitions. Let F be an RKHS, with the continuous feature mapping φ(x)∈F for each x∈Rd ,
such that the inner product between the features is given by the positive definite kernel function
Lh(x,x′) := 〈φ(x),φ(x′)〉F . Likewise, letG be a second RKHS onRd′ with kernel L′h(·, ·) and feature
map ψ(y). Following Baker (1973) and Fukumizu et al. (2004), the cross-covariance operator Cν :
G → F for the measure ν is defined such that for all f ∈ F and g ∈ G ,

〈 f ,Cνg〉F = E([ f (X)−E( f (X))] [g(Y )−E(g(Y ))]) .

The cross-covariance operator can be thought of as a generalisation of a cross-covariance matrix
between the (potentially infinite dimensional) feature mappings φ(x) and ψ(y).

To see how this operator may be used to test independence, we recall the following characteri-
zation of independence (see, e.g., Jacod and Protter, 2000, Theorem 10.1e):

Theorem 5 The random variables X and Y are independent if and only if cov( f (X),g(Y )) = 0 for
any pair ( f ,g) of bounded, continuous functions.

While the bounded continuous functions are too rich a class to permit the construction of a
covariance-based test statistic on a sample, Fukumizu et al. (2008) and Sriperumbudur et al. (2008)
show that when F̃ is the unit ball in a characteristic2 RKHS F , and G̃ the unit ball in a characteristic
RKHS G , then

sup
f∈F̃ ,g∈G̃

E([ f (X)−E( f (X))] [g(Y )−E(g(Y ))]) = 0 ⇐⇒ ν= µ1×µ2.

2. The reader is referred to Fukumizu et al. (2008) and Sriperumbudur et al. (2008) for conditions under which an RKHS
is characteristic. We note here that the Gaussian kernel on Rd has this property, and provide further discussion below.
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In other words, the spectral norm of the covariance operator Cν between characteristic RKHSs is
zero only at independence. Rather than the maximum singular value, we may use the squared
Hilbert-Schmidt norm (the sum of the squared singular values), which has a population expression

H(ν;F ,G) = E{Lh(X1−X2)L′h(Y1−Y2)}−2E{E{Lh(X1−X2)|X1}E{Lh(Y1−Y2)|Y1}}
+E{Lh(X1−X2)}E{L′h(Y1−Y2)}

(see Gretton et al., 2005a, Lemma 1): we call this the Hilbert-Schmidt independence criterion
(HSIC).

The test statistic in (16) is then interpreted as a biased empirical estimate of H(ν;F ,G). Clearly,
when Kh and K′

h are continuous and square integrable densities, the induced kernels Lh and L′h are
continuous positive definite RKHS kernels. However, as long as Lh and L′h are characteristic kernels,
then H(ν;F ,G) = 0 iff X and Y independent. The Gaussian and Laplace kernels are characteristic
on Rd (Fukumizu et al., 2008), and universal kernels (in the sense of Steinwart, 2001) are character-
istic on compact domains (Gretton et al., 2005a, Theorem 6). Sriperumbudur et al. (2008) provide
a simple necessary and sufficient condition for a bounded continuous translation invariant kernel to
be characteristic on Rd : the Fourier spectrum of the kernel must be supported on the entire domain.
Note that characteristic kernels need not be inner products of square integrable probability density
functions: an example is the kernel

Lh(x1,x2) = exp(xT1 x2/h)

from Steinwart (2001, Section 3, Example 1), which is universal, hence characteristic on compact
subsets of Rd . Moreover, an appropriate choice of kernels allows testing of dependence in non-
Euclidean settings, such as distributions on strings and graphs (Gretton et al., 2008).

Finally, while we have focused on a kernel dependence measure based on the covariance, al-
ternative kernel dependence measures exist based on the canonical correlation. Dauxois and Nkiet
(1998) propose the canonical correlation between variables in a spline-based RKHS as a statistic for
an independence test: this dependence measure follows the suggestion of Rényi (1959), but with a
more restrictive pair of function classes used to compute the correlation (rather than the set of all
square integrable functions). The variables are assumed in this case to be univariate. Likewise, Bach
and Jordan (2002) use the canonical correlation between RKHS feature mappings as a measure of
dependence between pairs of random variables (although they do not address the problem of hy-
pothesis testing). Bach and Jordan employ a different regularization strategy to Dauxois and Nkiet,
however, which is a roughness penalty on the canonical correlates, rather than projection on a finite
basis. For an appropriate rate of decay of the regularization with increasing sample size, the empir-
ical estimate of the canonical correlation converges in probability (Leurgans et al., 1993; Fukumizu
et al., 2007). Fukumizu et al. (2008) provide a consistent RKHS-based estimate of the mean-square
contingency, which is also based on the canonical correlation. This final independence measure is
asymptotically independent of the kernel choice. When used as a statistic in an independence test,
the kernel contingency was found empirically to have power superior to the HSIC-based test.

4.1 Strongly Consistent Test

The empirical statistic Tn was previously shown by Gretton et al. (2005a) to converge in probability
to its expectation with rate 1/

√
n. Given 0≤ Lh(0)L′h(0) ≤ 1, the corresponding result is

P(Tn−E(Tn) ≥ ε2) ≤ 3e−0.24nε
4
,
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which follows from the straightforward application of a bound by Hoeffding (1963, p. 25). We now
provide a more refined bound which scales better with ε, and is thus tighter when the bandwidth h
decreases.

We will obtain our results for the semi-statistic

T̃n = ‖ fn(·, ·)−E fn(·, ·)‖2,

since under the null hypothesis,
√
Tn = ‖ fn(·, ·)− fn,1(·) fn,2(·)‖

≤ ‖ fn(·, ·)−E fn(·, ·)‖+‖ fn,1(·) fn,2(·)−E fn,1(·)E fn,2(·)‖
≤

√
T̃n+‖ fn,1(·)( fn,2(·)−E fn,2(·))‖+‖( fn,1(·)−E fn,1(·))E fn,2(·)‖

=
√
T̃n+‖ fn,1(·)‖‖ fn,2(·)−E fn,2(·)‖+‖ fn,1(·)−E fn,1(·)‖‖E fn,2(·)‖

≈
√
T̃n.

Theorem 6 For any ε> 0,

P
{
T̃n ≥

(
ε+E

{√
T̃n
})2}

≤ e−nε
2
/

(2Lh(0)L′h(0)).

Proof We apply the McDiarmid inequality (cf. McDiarmid, 1989): Let Z1, . . . ,Zn be independent
random variables taking values in a set A and assume that f : An → R satisfies

sup
z1,...,zn,
z′i∈A

| f (z1, . . . ,zn)− f (z1, . . . ,zi−1,z′i,zi+1, . . . ,zn)|≤ ci, 1≤ i≤ n.

Then, for all ε> 0,

P{ f (Z1, . . . ,Zn)−E f (Z1, . . . ,Zn) ≥ ε}≤ e−2ε
2
/
∑ni=1 c2i .

Because of
√
T̃n = ‖ fn(·, ·)−E fn(·, ·)‖

= ‖
1
n

n

∑
i=1

Kh(·−Xi)K′
h(·−Yi)−E fn(·, ·)‖

≤ ‖
1
n
Kh(·−X1)K′

h(·−Y1)‖+‖
1
n

n

∑
i=2

Kh(·−Xi)K′
h(·−Yi)−E fn(·, ·)‖

we can apply McDiarmid inequality with

2
n
‖Kh(·−X1)K′

h(·−Y1)‖ =
2
n

√
Lh(0)L′h(0) =: ci = c1,

where we note that the ci are independent of i, and can be replaced by a single c1. Thus,

P
{√

T̃n−E
{√

T̃n
}
≥ ε
}

≤ e−2ε
2
/
∑ni=1 c2i

= e−2ε
2
/

(nc21)

≤ e−nε
2
/

(2Lh(0)L′h(0)).

1403



GRETTON AND GYÖRFI

This implies

P
{
T̃n ≥

(
ε+E

{√
T̃n
})2}

≤ e−nε
2
/

(2Lh(0)L′h(0)).

From these inequalities we can derive a test of independence. Choose ε such that

nε2
/
(2Lh(0)L′h(0)) = 2lnn.

Because of
E{T̃n}≈ E{Tn}≤

Lh(0)L′h(0)
n

,

we choose the threshold
(√

Lh(0)L′h(0)4lnn
n

+

√
Lh(0)L′h(0)

n

)2
=
Lh(0)L′h(0)

n
(
√
4lnn+1)2,

that is, we reject the hypothesis of independence if

Tn >
‖K‖2‖K′‖2

nhdhd′
(
√
4lnn+1)2.

It follows from

P
{
Tn ≥

Lh(0)L′h(0)
n

(
√
4lnn+1)2

}

≈ P





T̃n ≥

(√
Lh(0)L′h(0)4lnn

n
+

√
Lh(0)L′h(0)

n

)2



≤ P





T̃n ≥

(√
Lh(0)L′h(0)4lnn

n
+
√
E{T̃n}

)2



≤ P





T̃n ≥

(√
Lh(0)L′h(0)4lnn

n
+E

{√
T̃n
})2






≤ e−2lnn

that this test of independence is strongly consistent.
Under the alternative hypothesis, there are two cases:

• If h→ 0 and the density f exists and is square integrable, then

Tn →‖ f − f1 f2‖2 > 0

a.s. The strong consistency is not distribution-free, since ν must have a square integrable
density.
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• If h is fixed, the strong law of large numbers implies

Tn → E{Lh(X1−X2)L′h(Y1−Y2)}−2E{E{Lh(X1−X2)|X1}E{Lh(Y1−Y2)|Y1}}
+E{Lh(X1−X2)}E{L′h(Y1−Y2)}

=: H(ν;F ,G)

If Kh and K′
h are continuous and square integrable densities, the induced kernels Lh and L′h are

continuous positive definite kernels: H(ν;F ,G) is then the squared Hilbert-Schmidt norm
of the covariance operator for ν. We may replace Lh and L′h with any characteristic kernels
(in the sense of Fukumizu et al., 2008; Sriperumbudur et al., 2008), however, and retain the
property H(ν;F ,G) = 0 iff X and Y independent. In this case, the strong consistency is
distribution-free.

4.2 Approximately α-level Tests

We now describe the asymptotic limit distribution of the test statistic Tn in (16). We address two
cases: first, when the kernel bandwidth decreases, and second, when it remains fixed.

Let us consider the case where Kh(x) and K′
h(y) are intended to be used in a Rosenblatt-Parzen

density estimator, as in (15). The corresponding density estimates in Tn are mean square consistent
if h= hn such that

hn → 0 and nhdnhd
′

n → ∞. (18)

Based on the results of Hall (1984), Cotterill and Csörgő (1985) and Beirlant and Mason (1995), we
expect that, under these consistency conditions,

Tn−E{Tn}√
var(Tn)

D→N (0,1).

We next calculate var(Tn) ≈ var(T̃n). Under the null hypothesis,

T̃n = ‖ fn(·, ·)−E fn(·, ·)‖2

=

∥∥∥∥∥
1
n

n

∑
i=1

(Kh(·−Xi)K′
h(·−Yi)−E{Kh(·−X)K′

h(·−Y )})

∥∥∥∥∥

2

=
1
n2

n

∑
i=1

n

∑
j=1

(
(Kh(·−Xi)K′

h(·−Yi)−E{Kh(·−X)K′
h(·−Y )})×

(Kh(·−Xj)K′
h(·−Yj)−E{Kh(·−X)K′

h(·−Y )})
)

=:
1
n2

n

∑
i=1

n

∑
j=1

Mh(Xi,Yi,Xj,Yj),

and therefore

var(T̃n) =
1
n4

n

∑
i=1

n

∑
j=1

n

∑
i′=1

n

∑
j′=1

cov(Mh(Xi,Yi,Xj,Yj),Mh(Xi′ ,Yi′ ,Xj′ ,Yj′)).

One can check that
cov(Mh(Xi,Yi,Xj,Yj),Mh(Xi′ ,Yi′ ,Xj′ ,Yj′)) = 0
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unless (i, j) = (i′, j′) or (i, j) = ( j′, i′). Thus,

var(T̃n) =
1
n4

(nvar(Mh(X1,Y1,X1,Y1))+2n(n−1)var(Mh(X1,Y1,X2,Y2)))

≈
2
n2
var(Mh(X1,Y1,X2,Y2)).

If h→ 0 then
2
n2
var(Mh(X1,Y1,X2,Y2)) ≈

2‖ f‖2

n2hdhd′
, (19)

therefore a possible form for the asymptotic normal distribution is

nhd/2hd
′/2(Tn−E{Tn})/σ

D→N (0,1),

where
σ2 = 2‖ f‖2.

Thus the asymptotic α-level test rejects the null hypothesis if

Tn > E{Tn}+
σ

nhd/2hd′/2
Φ−1(1−α),

where E{Tn} may be replaced by its upper bound,

Lh(0)L′h(0)/n= ‖K‖2‖K′‖2/(nhdhd
′
).

The only problem left is that the threshold is not distribution-free: σ depends on the unknown f .
The simplest distribution-free bound for the variance,

σ2 ≤
‖K‖4‖K′‖4

n2h2dh2d′

is unsatisfactory since its performance as a function of h is worse than the result (19). An im-
proved distribution-free bound on the variance (for both fixed and decreasing h) is a topic for future
research: we give an empirical estimate below (Equation 20) for use in asymptotic hypothesis tests.

We now consider the case of fixed h. Following Feuerverger (1993); Serfling (1980), the distri-
bution of Tn under H0 is

nTn
D→

∞

∑
l=1

λlz2l ,

where zl ∼ N (0,1) i.i.d., and λl are the solutions to an eigenvalue problem depending on the un-
known distribution of X and Y (see Gretton et al., 2008, Theorem 2 for details).

A difficulty in using the statistic (16) in a hypothesis test therefore arises due to the form of
the null distribution of the statistic, which is a function of the unknown distribution over X and Y ,
whether or not h is fixed. In the case of h decreasing according to (18), we may use an empirical
estimate of the variance of Tn under H0 due to Gretton et al. (2008, Theorem 4). Denoting by 4 the
entrywise matrix product and A·2 the entrywise matrix power,

var(Tn) = 15 (B−diag(B))1, (20)
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Figure 1: Simulated cumulative distribution function of Tn (Emp) under H0 for n = 200 (left col-
umn) and n= 500 (right column), compared with the two-parameter Gamma distribution
(Gamma) and the Normal distribution (Normal). The empirical CDF was obtained em-
pirically using 5000 independent draws of Tn. Both the parametric approximations are
fit using the mean and variance in Equations (17) and (20). “Samp” is the number n of
samples, and the bandwidth is h.

where
B=

(
(HLH)4

(
HL′H

))·2
,

L is a matrix with entries Lh(Xi−Xj), L′ is a matrix with entries L′h(Yi−Yj), H = I− n−1115 is a
centering matrix, and 1 an n×1 vector of ones.

Two approaches have been proposed in the case of fixed h to obtain appropriate quantiles of the
null distribution for hypothesis testing: repeated shuffling of the sample (Feuerverger, 1993), and
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approximation by a two-parameter Gamma density (Kankainen, 1995),

nTn ∼
xα−1e−x/β

βαΓ(α)

where α=
(E{Tn})2
var(Tn)

, β=
nvar(Tn)
E{Tn}

,

and E{Tn} is given in (17). This Gamma approximation was found by Gretton et al. (2008) to per-
form identically on the Section 5 benchmark data to the more computationally expensive approach
of Feuerverger (1993). We emphasize, however, that this approximation is a heuristic: no guaran-
tees are provided regarding the asymptotic performance of this approximation in terms of Type II
error, nor is it established under what conditions the approximation fails.

We end this section with an empirical comparison between the Normal and two-parameter
Gamma null distribution approximations, and the null CDF generated by repeated independent
samples of Tn. We chose X and Y to be independent and univariate, with X having a uniform
distribution and Y being a symmetric bimodal mixture of Gaussians. Both variables had zero mean
and unit standard deviation. Results are plotted in Figure 1.

We observe that as the bandwidth increases, the Gamma approximation of Tn becomes more
accurate (although it is always good for large quantiles, which is the region most important to a
hypothesis test). The Normal approximation is very close to the Gamma approximation for small
bandwidths, but is less accurate (with respect to both the Gamma distribution and the simulated
CDF) for larger bandwidths. Finally, for the smallest bandwidth (h= 0.01), both approximate null
distributions become more accurate for increasing n (for larger kernel sizes, the effect is too small to
see on the plots). We will return to these points in the next section when analysing our experimental
results.

5. Numerical Results

In comparing the independence tests, we made use of the multidimensional benchmark data pro-
posed by Gretton et al. (2008). We tested the independence in two, four, and six dimensions (i.e.,
d ∈ 1,2,3 and d = d′). The data were constructed as follows. First, we generated n samples of two
independent univariate random variables, each drawn at random from the ICA benchmark densities
of Bach and Jordan (2002, Figure 5): these included super-Gaussian, sub-Gaussian, multimodal,
and unimodal distributions, with the common property of zero mean and unit variance. The densi-
ties are described in Table 5, as reproduced from Gretton et al. (2005b, Table 3). Second, we mixed
these random variables using a rotation matrix parametrised by an angle θ, varying from 0 to π/4 (a
zero angle meant the data were independent, while dependence became easier to detect as the angle
increased to π/4: see the two plots in Figure 2). Third, in the cases d = 2 and d = 3, independent
Gaussian noise of zero mean and unit variance was used to fill the remaining dimensions, and the
resulting vectors were multiplied by independent random two- or three-dimensional orthogonal ma-
trices, to obtain random vectors X and Y dependent across all observed dimensions. We emphasise
that classical approaches (such as Spearman’s ρ or Kendall’s τ) are unable to find this dependence,
since the variables are uncorrelated; nor can we recover the subspace in which the variables are
dependent using PCA, since this subspace has the same second order properties as the noise. We
investigated sample sizes n= 128,512,1024, and 2048.
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Label Definition Kurtosis
a Student’s t distribution, 3 DOF ∞
b Double exponential 3.00
c Uniform -1.20
d Students’s t distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
l Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

Table 1: Labels of distributions used in the independence test benchmarks, and their respective
kurtoses. All distributions have zero mean and unit variance.

We compared three different asymptotic independence testing approaches based on space par-
titioning: the L1 test, denoted L1; the log likelihood test Like; and a third test, Pears, based on a
conjecture regarding the asymptotic distribution of the Pearson χ2 statistic

χ2n(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

(νn(A×B)−µn,1(A) ·µn,2(B))2

µn,1(A) ·µn,2(B)

(see Appendix B for details, and for a further conjecture regarding a strongly consistent test for
the χ2n statistic). The number of discretisations per dimension was set at mn = m′

n = 4, besides
in the n = 128,d = 2 case and the d = 3 cases, where it was set at mn = m′

n = 3: for the latter
values of n and d, there were too few samples per bin when a greater number of partitions were
used, causing poor performance. We divided our spaces Rd and Rd′ into roughly equiprobable bins.
Further increases in the number of partitions per dimension, where sufficient samples were present
to justify this (i.e., the n= 512,d = 1 case), resulted only in very minor shifts in performance.

We compared the partitioning approaches with the kernel approach from Section 4, using both
the Gamma Ker(g) and Normal Ker(n) approximations to the null distribution. Our kernels were
Gaussian for both X and Y , with bandwidths set to the median distance between samples of the
respective variables. Note that a more sophisticated but computationally costly approach to band-
width selection is described by Fukumizu et al. (2008), which involves matching the closed-form
expression for the variance of Tn in (20) with an estimate obtained by data shuffling.

Results are plotted in Figure 3 (average over 500 independent generations of the data). The y-
intercept on these plots corresponds to the acceptance rate ofH0 at independence, or 1−(Type I error),
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Figure 2: Example data set for d = d′ = 1, n= 200, and rotation angles θ= π/8 (left) and θ= π/4
(right). In this case, both sources are mixtures of two Gaussians (source (g) in Gretton
et al., 2005b, Table 3).

and should be close to the design parameter of 1−α = 0.95. Elsewhere, the plots indicate accep-
tance of H0 where the underlying variables are dependent, that is, the Type II error.

As expected, we observe dependence becomes easier to detect as θ increases from 0 to π/4,
when n increases, and when d decreases. Although no tests are reliable for small θ, several tests do
well as θ approaches π/4 (besides the case of n= 128, d = 2). The L1 test has a lower Type II error
than the χ2 test when the number of samples per partition is small (n= 128,d = 1, n= 128,d = 2,
and n= 1024,d = 3), but this advantage is lessened for larger numbers of samples per partition. The
log-likelihood test generally has the lowest Type II error of the three partition-based tests, however
it gives a Type I error larger than the design parameter of 0.05 when the number of samples per
bin is insufficient: this problem is severe in the case n = 1024 and d = 3, but can also be observed
at n = 2048,d = 3 (for larger sample sizes n = 3072,d = 3 and n = 4096,d = 3, the Type I error
of the log-likelihood test was at or below the design value). This suggests the log-likelihood test
is more susceptible to bias for small numbers of samples per bin than the L1 and χ2 tests. In the
remaining cases, performance of the log-likelihood test and the L1 test is comparable, besides in the
case n= 512,d = 2, where the log-likelihood test has an advantage.

The superior performance of the log-likelihood test compared with the χ2 test (in the cases
d = 1 and d = 2) might arise due to the different convergence properties of the two test statistics.
In particular, we note the superior convergence behaviour of the goodness-of-fit statistic for the log
likelihood (Equation 13), as compared with the χ2 statistic (Equation 24 in Appendix B), in terms
of the dependence of the latter on the number mn of partitions used. By analogy, we anticipate the
log-likelihood independence statistic In(νn,µn,1×µn,2) will also converge faster than the Pearson χ2
independence statistic χ2n(νn,µn,1×µn,2), and thus provide better test performance. A more formal
discussion of this behaviour is a topic for future research.

In all cases, the kernel-based test has the lowest Type II error.3 That said, one should bear in
mind the kernel test thresholds require E{Tn} and var(Tn), which are unknown and must be es-
timated from the data using Equations (17) and (20), respectively. In other words, unlike the L1

3. Aside from n= 1024 and d = 3, where the log-likelihood has a lower Type II error: we disregard this result since it
is due to the log-likelihood test being affected by bias, as discussed above.
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Figure 3: Rate of acceptance of H0 for the Ker(g), Ker(n), L1, Pears, and Like tests. “Samp” is the
number n of samples, and “dim” is the dimension d = d′ of x and y. In the final row,
the performance of the Ker(g) and Ker(n) tests is plotted for a large bandwidth h = 3,
and α̃ = 0.5, to illustrate the difference between the Normal and two-parameter Gamma
approximations to the null distribution.
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Figure 4: Rate of acceptance of H0 for the distribution-free (Free) and shuffling-based (Shuff) null
distribution quantiles, using the L1 test statistic. “Samp” is the number n of samples, and
“dim” is the dimension d = d′ of x and y.

and log likelihood tests, the kernel test thresholds in our experiments are themselves finite sample
estimates (which we have not attempted to account for, and which could impact on test perfor-
mance). Moreover, the Gamma approximation to the null distribution is simply a heuristic, with no
asymptotic guarantees.

It is of interest to further investigate the null distribution approximation strategies for the kernel
tests, and in particular to determine the effect on test performance of the observations made in
Figure 1. Since the median distance between sample points was small enough in our previous
experiments for the Normal and Gamma estimates to be very similar, we used an artificially high
kernel bandwidth h= 3. In addition, we employed a much lower α̃= 0.5, since this provided a more
visible performance difference. The final row of Figure 3 shows the resulting test performance. We
recall from Figure 1 that for large kernel sizes and α̃ = 0.5, the Gaussian approximation returns a
larger threshold than the true CDF would require, and thus the Normal distribution has a lower Type
I error (the error for very small values of α is in the opposite direction, but had a less pronounced
effect in our experiments). The large bandwidth required to observe this behaviour results in a
substantial performance penalty on the Type II error, however, and would not be used in practice.

An alternative approach to obtaining null distribution quantiles for test thresholds is via a shuf-
fling procedure: the ordering of the Y1, . . . ,Yn sample is permuted repeatedly while that of X1, . . . ,Xn
sample is kept fixed, and the 1−α quantile is obtained from the resulting estimated cumulative
distribution function of the test statistic. Again, we emphasize that unlike the asymptotic L1 and
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Figure 5: Rate of acceptance of H0 for the distribution-free (Free) and shuffling-based (Shuff) null
distribution quantiles, using the log-likelihood test statistic. “Samp” is the number n of
samples, and “dim” is the dimension d = d′ of x and y.

log-likelihood tests we have proposed, the resulting test threshold is an empirical estimate, and the
convergence behaviour of this estimate is not accounted for. In our final experiments, we compared
the performance of our asymptotic tests for L1 and Like with this shuffling approach, for the same
data as in our Figure 3 experiments.4 We used p= 200 permutations in obtaining the approximation
to the null distribution. Results for the L1 case are plotted in Figure 4, and those for the Like case in
Figure 5.

In the case of the L1 statistic, we observe the distribution-free approach is conservative in terms
of the Type I error, generally setting it slightly lower than the target value. The shuffling approach
returns a lower Type II error, however it is notable that the performance difference is not particularly
large with respect to our distribution-free threshold, and that apart from an offset, the error as a
function of angle takes the same form. We should further bear in mind that the shuffling approach
has a substantially greater computational cost (p times the cost of the distribution-free test). In the
case of the Like statistic, we observe similar behaviour to L1 in the cases d = 1 and d = 2. In the
d = 3 case, however, the Like test gives too large a Type I error, and thus the Type II performance
of the two approaches cannot be compared (although for n = 2048, the Like test is observed to
approach the asymptotic regime, and the Type I performance is closer to the target value).

4. This comparison was made for the kernel statistic on these data by Gretton et al. (2008), and no performance differ-
ence was found.
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6. Conclusion

We have described distribution-free strong consistent tests of independence, and asymptotically α-
level tests, based on three statistics: the L1 distance, the log-likelihood, and a kernel-based distance.
The asymptotic L1 and log-likelihood tests require that the distributions be non-atomic, but make
no assumptions apart from this: in particular, the test thresholds are not functions of the distribu-
tion. The kernel statistic is interpretable as either an L2 distance between kernel density estimates
(if the kernel bandwidth shrinks for increasing sample size), or as the Hilbert-Schmidt norm of a
covariance operator between reproducing kernel Hilbert spaces (if the kernel bandwidth is fixed).
We have provided a novel strong consistent test for the kernel statistic, as well as reviewing two
asymptotically α-level tests (for both fixed and shrinking kernel bandwidth). Unlike the L1 and log-
likelihood tests, the thresholds for the kernel asymptotic tests are distribution dependent. We also
gave conjectures regarding the strong consistent test and asymptotically α-level test for the Pearson
χ2 distance.

Our experiments showed the asymptotic tests to be capable of detecting dependence for both
univariate and multi-dimensional variables (of up to three dimensions each), for variables having
no linear correlation. The kernel tests had lower Type II error than the L1 and log-likelihood tests
for a given Type I error, however we should bear in mind that the kernel test thresholds were finite
sample estimates, and the resulting convergence issues have not been addressed. The log-likelihood
test appeared to suffer more from bias than the L1 test, in cases where there were few samples per
partition (this effect was most visible in high dimensions).

This study raises a number of questions for future research. First, the χ2 tests remain con-
jectures, and proofs should be established. Second, there is as yet no distribution-free asymptotic
threshold for the kernel test, which could be based on a tighter bound on the variance of the test
statistic under the null distribution. Third, the asymptotic distribution of the kernel statistic with
fixed bandwidth is presently a heuristic: it would therefore be of interest to replace this with a null
distribution estimate having appropriate convergence guarantees.
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Appendix A. Proof of Theorem 3

The main difficulty in proving Theorem 3 is that it states the asymptotic normality of Ln(νn,µn,1×
µn,2), which is a sum of dependent random variables. To overcome this problem, we use a “Pois-
sonization” argument originating from the fact that an empirical process is equal in distribution to
the conditional distribution of a Poisson process given the sample size (for more on Poissonization
techniques, we refer the reader to Beirlant, Györfi, and Lugosi, 1994).

We begin by introducing the necessary terminology. For each n≥ 1, denote by Nn a Poisson(n)
random variable, defined on the same probability space as the sequences (Xi)i≥1 and (Yi)i≥1, and
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independent of these sequences. Denote by νNn , µNn,1 and µNn,2 the Poissonized version of the
empirical measures associated with the samples {(Xi,Yi)}, {Xi} and {Yi}, respectively, so that

νNn(A×B) =
#{i : (Xi,Yi) ∈ A×B, i= 1, . . . ,Nn}

n
,

µNn,1(A) =
#{i : Xi ∈ A, i= 1, . . . ,Nn}

n
,

and

µNn,2(B) =
#{i : Yi ∈ B, i= 1, . . . ,Nn}

n

for any Borel subsets A and B. The Poissonized version L̃n(νn,µn,1×µn,2) of Ln(νn,µn,1×µn,2) is
then

L̃n(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

|νNn(A×B)−µNn,1(A) ·µNn,2(B)|.

Clearly,
nνNn(A×B) = #{i : (Xi,Yi) ∈ A×B, i= 1, . . . ,Nn},

nµNn,1(A) = #{i : Xi ∈ A, i= 1, . . . ,Nn},

and
nµNn,2(B) = #{i : Yi ∈ B, i= 1, . . . ,Nn}

are Poisson random variables.
Key to the proof of Theorem 3 is the following property, which is a slight extension of the

proposition of Beirlant, Györfi, and Lugosi (1994, p. 311).

Proposition 7 Let gn jk (n≥ 1, j = 1, . . . ,mn, k = 1, . . . ,m′
n) be real measurable functions, and let

Mn :=
mn
∑
j=1

m′
n

∑
k=1

gn jk (νNn(An j×Bnk)−µNn,1(An j)µNn,2(Bnk)) .

Assume that, under the null hypothesis,

E{gn jk (νNn(An j×Bnk)−µNn,1(An j)µNn,2(Bnk))} = 0,

and that (
Mn,

Nn−n√
n

)
D→N

([
0
0

]
,

[
σ2 0
0 1

])
(21)

as n→ ∞, where σ is a positive constant and N (m,C) is a normally distributed random variable
with mean m and covariance matrix C. Then

1
σ

mn
∑
j=1

m′
n

∑
k=1

gn jk (νn(An j×Bnk)−µn,1(An j)µn,2(Bnk))
D→N (0,1).
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Proof The proof is in sketch form, along the lines of Biau and Györfi (2005). Define the two
characteristic functions

Φn(t,v) := E
{
exp
(
ıtMn+ ıv

Nn−n√
n

)}

and

Ψn(t) := E
{

exp

(

ıt
mn
∑
j=1

m′
n

∑
k=1

gn jk (νn(An j×Bnk)−µn,1(An j)µn,2(Bnk))

)}

.

We begin with the result

E{exp(ıtMn+ ıuNn)} =
∞

∑
l=0
E{exp(ıtMn)|Nn = l}eıul pn(l),

where pn(l) is the probability distribution of the Poisson(n) random variable Nn,

pn(l) = P{Nn = l} = e−nnl/l!,

and
Ψn(t) = E{exp(ıtMn)|Nn = n}.

Taking the inverse Fourier transform,

E{exp(ıtMn)|Nn = n} =
1

2πpn(n)

Z π

−π
e−ıunE{exp(ıtMn+ ıuNn)}du.

We now replace n! with the Stirling approximation to obtain

2πpn(n) =
2πe−nnn

n!
≈
√
2π
n

as n→ ∞.

Then, substituting v= u
√
n, we get

Ψn(t) =
1√
2π

(1+o(1))
Z π

√
n

−π
√
n
Φn(t,v)dv.

By assumption,
Φn(t,v) → e−t

2σ2/2e−v
2/2

as n→ ∞. The result follows from Rao (1973, p. 136).

We now use Proposition 7 to prove
√
n
σ

(Ln(νn,µn,1×µn,2)−E{L̃n(νn,µn,1×µn,2)})
D→N (0,1),

where we recall σ2 = 1−2/π. This provides the result in Theorem 3 with the centering constant

Cn = E{L̃n(νn,µn,1×µn,2)} = ∑
A∈Pn

∑
B∈Qn

E{|νNn(A×B)−µNn,1(A) ·µNn,2(B)|}. (22)
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To apply Proposition 7, we must prove assumption (21) holds. Define

gn jk(x) =
√
n
(
|x|−E

∣∣νNn(An j×Bnk)−µNn,1(An j)µNn,2(Bnk)
∣∣) .

Let

Sn := t
√
n
mn
∑
j=1

m′
n

∑
k=1

(∣∣νNn(An j×Bnk)−µNn,1(An j)µNn,2(Bnk)
∣∣

−E
∣∣νNn(An j×Bnk)−µNn,1(An j)µNn,2(Bnk)

∣∣
)

+v
√
n
(
Nn
n

−1
)

.

Our goal is to prove the assumption in (21) holds. In particular, we require the variance of the
Poissonized statistic Sn. After this variance is calculated, the asymptotic normality in (21) can be
proved by verifying the Lyapunov conditions as in Beirlant, Györfi, and Lugosi (1994). From the
definitions of νNn , µ1, and µ2, we have

Nn
n

−1= ∑
A∈Pn

∑
B∈Qn

νNn(A×B)− ∑
A∈Pn

∑
B∈Qn

µ1(A)µ2(B),

and thus the variance of Sn is

var(Sn) = t2n ∑
A∈Pn

∑
B∈Qn

var |νNn(A×B)−µNn,1(A)µNn,2(B)|

+ 2tvn ∑
A∈Pn

∑
B∈Qn

E
{
|νNn(A×B)−µNn,1(A)µNn,2(B)|

·(νNn(A×B)−µ1(A)µ2(B))
}

+ v2.

One can check that there exist standard normal random variables ZA×B, ZA, and ZB such that

νNn(A×B)
D
≈ ZA×B

√
µ1(A)µ2(B)

n
+µ1(A)µ2(B),

µNn,1(A)
D
≈ ZA

√
µ1(A)

n
+µ1(A),

and

µNn,2(B)
D
≈ ZB

√
µ2(B)

n
+µ2(B),
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which implies

νNn(A×B)−µNn,1(A)µNn,2(B)

D
≈ ZA×B

√
µ1(A)µ2(B)

n
+µ1(A)µ2(B)

−

(

ZA

√
µ1(A)

n
+µ1(A)

)(

ZB

√
µ2(B)

n
+µ2(B)

)

=

√
µ1(A)µ2(B)

n

(
ZA×B−ZAZB

1√
n
−ZA

√
µ2(B)−ZB

√
µ1(A)

)

≈ ZA×B

√
µ1(A)µ2(B)

n
.

Thus,

var(Sn)

≈ t2n ∑
A∈Pn

∑
B∈Qn

var

∣∣∣∣∣
ZA×B

√
µ1(A)µ2(B)

n

∣∣∣∣∣

+ 2tvn ∑
A∈Pn

∑
B∈Qn

E
{∣∣∣∣∣
ZA×B

√
µ1(A)µ2(B)

n

∣∣∣∣∣
·

(

ZA×B

√
µ1(A)µ2(B)

n

)}

+ v2

= t2 ∑
A∈Pn

∑
B∈Qn

var |ZA×B|µ1(A)µ2(B)

+ 2tv ∑
A∈Pn

∑
B∈Qn

E{|ZA×B|ZA×B}µ1(A)µ2(B)

+ v2

= t2(1−2/π)+ v2.

Finally, we use the variable ZA×B in defining a distribution-free upper bound on Cn, which we
use in our asymptotically α-level independence test,

Cn = ∑
A∈Pn

∑
B∈Qn

E{|νNn(A×B)−µNn,1(A) ·µNn,2(B)|}

≈ ∑
A∈Pn

∑
B∈Qn

E{|ZA×B|}
√
µ1(A)µ2(B)/n

≤
√
2/π
√
mnm′

n
n

(23)

Appendix B. Conjectured Large Sample Properties of the Pearson χ2 Statistic

For a real parameter λ, the power divergence statistic is defined as

Dn,λ(µn,1,µ1) =
2

λ(λ+1)

mn
∑
j=1

µn,1(An, j)

[(
µn,1(An, j)
µ1(An, j)

)λ
−1

]
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provided λ += 0 and λ += 1 (cf. Read and Cressie, 1988). One can check that

lim
λ→0

Dn,λ(µn,1,µ1) = In(µn,1,µ1).

For λ= 1, we have the Pearson χ2 statistic:

χ2n(µn,1,µ1) = Dn,1(µn,1,µ1) =
mn
∑
j=1

(µn,1(An, j))−µ1(An, j))2

µ1(An, j)
.

For testing independence, we employ the Pearson χ2 test statistic

χ2n(νn,µn,1×µn,2) = ∑
A∈Pn

∑
B∈Qn

(νn(A×B)−µn,1(A) ·µn,2(B))2

µn,1(A) ·µn,2(B)
.

B.1 Strongly Consistent Test

Quine and Robinson (1985) proved that, for all ε> 0,

P{χ2n(µn,1,µ1) > ε}≤
(
n+mn−1
mn−1

)
e−

n logmn
2√mn

√
ε ≤ emn log(n+mn)−

n logmn
2√mn

√
ε
. (24)

A large deviation-based test can be introduced that rejects independence if

χ2n(νn,µn,1×µn,2) ≥

(
2(mnm′

n)
3/2(log(n+mnm′

n)+1)
n log(mnm′

n)

)2
.

UnderH0, we conjecture a non-asymptotic bound for the tail of the distribution of χ2n(νn,µn,1×µn,2),

P





χ2n(νn,µn,1×µn,2) >

(
2(mnm′

n)
3/2(log(n+mnm′

n)+1)
n log(mnm′

n)

)2



≤ e
mnm′

n log(n+mnm′
n)−

n log(mnm′n)

2
√
mnm′n

2(mnm′n)3/2(log(n+mnm′n)+1)
n log(mnm′n)

= e−mnm
′
n .

Therefore the conditions (7) imply

∞

∑
n=1
P





χ2n(νn,µn,1×µn,2) >

(
2(mnm′

n)
3/2(log(n+mnm′

n)+1)
n log(mnm′

n)

)2


< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null hypothesis.
Under the alternative hypothesis the proof strong consistency follows from the proof for the

information divergence since

In(νn,µn,1×µn,2)/2≤ χ2n(νn,µn,1×µn,2)

(cf. Györfi et al., 1998).
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B.2 Asymptotic α-level Test

Morris (1975), Inglot et al. (1990), and Györfi and Vajda (2002) proved that under (10) and (11),

nχ2n(µn,1,µ1)−mn√
2mn

D→N (0,1),

which is the same asymptotic normality result as for 2In(µn,1,µ1) (see Equation (14) in Section 3.2).
We conjecture that under the conditions (6) and (12),

nχ2n(νn,µn,1×µn,2)−mnm′
n√

2mnm′
n

D→N (0,1).

Thus, as for the log-likelihood statistic, the hypothesis of independence is rejected if

χ2n(νn,µn,1×µn,2) ≥
Φ−1(1−α)

√
2mnm′

n+mnm′
n

n
.
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Abstract
We study hierarchical clustering schemes under an axiomatic view. We show that within this frame-
work, one can prove a theorem analogous to one of Kleinberg (2002), in which one obtains an
existence and uniqueness theorem instead of a non-existence result. We explore further properties
of this unique scheme: stability and convergence are established. We represent dendrograms as
ultrametric spaces and use tools from metric geometry, namely the Gromov-Hausdorff distance, to
quantify the degree to which perturbations in the input metric space affect the result of hierarchical
methods.
Keywords: clustering, hierarchical clustering, stability of clustering, Gromov-Hausdorff distance

1. Introduction

Clustering techniques play a very central role in various parts of data analysis. They can give
important clues to the structure of data sets, and therefore suggest results and hypotheses in the
underlying science. Many of the interesting methods of clustering available have been applied to
good effect in dealing with various data sets of interest. However, despite being one of the most
commonly used tools for unsupervised exploratory data analysis, and despite its extensive literature,
very little is known about the theoretical foundations of clustering methods. These points have been
recently made prominent by von Luxburg and Ben-David (2005); Ben-David et al. (2006).

The general question of which methods are “best”, or most appropriate for a particular problem,
or how significant a particular clustering is has not been addressed too frequently. This lack of
theoretical guarantees can be attributed to the fact that many methods involve particular choices to
be made at the outset, for example how many clusters there should be, or the value of a particular
thresholding parameter. In addition, some methods depend on artifacts in the data, such as the
particular order in which the observations are listed.

In Kleinberg (2002), Kleinberg proves a very interesting impossibility result for the problem of
even defining a clustering scheme with some rather mild invariance properties. He also points out
that his results shed light on the trade-offs one has to make in choosing clustering algorithms.
Standard clustering methods take as input a finite metric space X ,d and output a partition

of X . Let P X denote the set of all possible partitions of the set X . Kleinberg (2002) discussed
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this situation in an axiomatic way and identified a set of reasonable properties of standard clustering
schemes, namely, scale invariance, richness and consistency. Fix a standard clustering method f
and a metric space X ,d and let f X ,d Π P X . Kleinberg identified the following desirable
properties of a clustering scheme:

• Scale Invariance: For all α 0, f X ,α d Π.

• Richness: Fix any finite set X . Then for all Π P X , there exists dΠ, a metric on X s.t.
f X ,dΠ Π.

• Consistency: Let Π B1, . . . ,B! . Let d be any metric on X s.t.

1. for all x,x Bα, d x,x d x,x and
2. for all x Bα, x Bα , α α , d x,x d x,x .

Then, f X ,d Π.

He then proved, in the same spirit of Arrow’s impossibility theorem, that no clustering scheme
satisfying these conditions simultaneously can exist.

Theorem 1 (Kleinberg, 2002) There exists no clustering algorithm that satisfies scale invariance,
richness and consistency.

Then, in particular, Kleinberg’s axioms rule out single, average and complete linkage (standard)
clustering. Clusters in any of these three methods can be obtained by first constructing a hierachi-
cal decomposition of space (such as those provided by hierarchical clustering methods) and then
selecting the partition that arises at a given, fixed, threshold.

A natural question is whether Kleinberg’s impossibility results still holds when one admits clus-
tering schemes that do not try to return a fixed partition of a space, but are allowed to return a
hierarchical decomposition.

Furthermore, data sets can exhibit multiscale structure and this can render standard clustering
algorithms inapplicable in certain situations, see Figure 1. This further motivates the use of Hier-
archical clustering methods. Hierarchical methods take as input a finite metric space X ,d and
output a hierarchical family of partitions of X .

Figure 1: Data set with multiscale structure. Any standard clustering algorithm will fail to capture
the structure of the data.

These hierarchical families of partitions that constitute the output of hierarchical methods re-
ceive the name of dendrograms. Dendrograms come in two versions: proximity and threshold
dendrograms. These two types of dendrograms differ in whether they retain some proximity infor-
mation about the underlying clusters that they represent or not: proximity dendrograms do retain

1426



CHARACTERIZATION, STABILITY AND CONVERGENCE OF HIERARCHICAL CLUSTERING METHODS

such information whereas threshold dendrograms do not. Practicioners of statistical data analysis
seem to work almost exclusively with proximity dendrograms. For this reason we opt to carry out
our analysis under the model that hierarchical methods take as input a finite metric space X and
output a proximity dendrogram over X , see Remark 3.

We remind the reader that we are using the term standard clustering methods to refer to proce-
dures that take a finite metric space as input and output a fixed single partition of the metric space.

In a similar spirit to Kleinberg’s theorem, we prove in Theorem 18 that in the context of hierar-
chical methods, one obtains uniqueness instead of non-existence. We emphasize that our result can
be interpreted as a relaxation of the theorem proved by Kleinberg, in the sense that allowing cluster-
ing schemes that output a nested family of partitions in the form of a proximity dendrogram, instead
of a fixed partition, removes the obstruction to existence. The unique HC method characterized by
our theorem turns out to be single linkage hierarchical clustering.

We stress the fact that our result assumes that outputs of hierarchical methods are proximity
dendrograms, whereas Kleinberg’s Theorem applies to flat/standard clustering, a situation in which
the output contains no proximity information between clusters.

In order to state and prove our results we make use of the well known equivalent representation
of dendrograms, the output of HC methods, using ultrametrics. This already appears in the book of
Hartigan and others, see Hartigan (1985), Jain and Dubes (1988, §3.2.3) and references therein.

In recent years, the theme of studying the properties of metrics with prescribed generalized
curvature properties has been studied intensively. In particular, the work of Gromov (1987) has
been seminal, and many interesting results have been proved concerning objects other than metric
spaces, such as finitely generated groups, depending on these methods. The curvature conditions
can be formulated in terms of properties of triangles within the metric spaces, and the most extreme
of these properties is that embodied in ultrametric spaces. A second idea of Gromov’s is to make the
collection of all metric spaces into its own metric space, and the resulting metric gives a very useful
and natural way to distinguish between metric spaces (Gromov, 2007). This metric is known as the
Gromov-Hausdorff distance and its restriction to the subclass of ultrametric spaces is therefore a
very natural object to study.

1.1 Stability

Stability of some kind is clearly a desirable property of clustering methods and, therefore, a point
of interest is studying whether results obtained by a given clustering algorithm are stable to per-
turbations in the input data. Since input data are modelled as finite metric spaces, and the output
of hierarchical methods can be regarded as finite ultrametric spaces, the Gromov-Hausdorff dis-
tance provides a natural tool for studying variability or perturbation of the inputs and outputs of
hierarchical clustering methods.

After observing in §3.6 that average and complete linkage clustering are not stable in the metric
sense alluded to above, we prove in Proposition 26 that single linkage does enjoy a kind of stability:

Proposition 2 Let X ,dX and Y,dY be two finite metric spaces and let X ,uX and Y,uX be the
two (finite metric ultrametric spaces) corresponding outputs yielded by single linkage HC. Then,

dGH X ,uX , Y,uY dGH X ,dX , Y,dY .

Here, dGH stands for the Gromov-Hausdorff distance.
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Figure 2: Convergence of dendrograms. We formalize this concept by equivalently representing
dendrogram as ultrametrics and then computing the Gromov-Hausdorff distance between
the resulting metrics. We prove in Theorem 30 that by taking increasingly many i.i.d.
samples from a given probability distribution µ on a metric space,then with probability 1
one recovers a multiscale representation of the supprt of µ.

This result is very important for the convergence theorems which we prove in the later parts of
the paper. These results describe in a very precise way the fact that for compact metric spaces X ,
the results of clustering the finite subsets of X yields a collection of dendrograms which ultimately
converge to the dendrogram for X . In order for this to happen, one needs the metric on the ultramet-
ric spaces as well as the behavior of the clustering construction on the Gromov-Hausdorff distance,
which is what Proposition 2 does. The issue of stability is further explored in §5.

1.2 Probabilistic Convergence

Finally, in Theorem 30 we also prove that for random i.i.d. observations Xn x1, . . . ,xn with
probability distribution µ compactly supported in a metric space X ,d , the result Xn,uXn of ap-
plying single linkage clustering to Xn,d converges almost surely in the Gromov-Hausdorff sense
to an ultrametric space that recovers the multiscale structure of the support of µ, see Figure 20.
This can be interpreted as a refinement of a previous observation (Hartigan, 1985) that SLHC is
insensitive to the distribution of mass of µ in its support.

1.3 Organization of the Paper

This paper is organized as follows: §A provides a list of all the notation defined and used throughout
the paper; §2 introduces the terminology and basic concepts that we use in our paper; §3.2 reviews
hierarchical clustering methods in general; §3.3 discusses the representation of dendrograms as ul-
trametric spaces and establishes the equivalence of both repersentations; and §3.5 delves into the
issue of constructing a notion of distance between dendrograms which is based in the equivalence
of dendrograms and ultrametrics; §3.6 comments on issues pertaining to the theoretical properties
of HC methods. In §4 we present our characterization result, Theorem 18, for SL in a spirit similar
to the axiomatic treatment of Kleinberg. We delve into the stability and convergence questions of
SL in §5, where we introduce all the necessary concepts from Metric Geometry. Proposition 26 and
Theorem 28 contain our results for the deterministic case. In §5.3 we prove a probabilistic con-
vergence result Theorem 30 that hinges on a general sampling theorem for measure metric spaces,
Theorem 34. Finally, we conclude the paper with a discussion on future directions.
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For clarity of exposition, we have chosen to move most of the proofs in this paper to an appendix.
The ones which remain in the main text are intended to provide intuition which would not otherwise
be there.

2. Background and Notation

Ametric space is a pair X ,d where X is a set and d : X X R satisfies

1. For all x,x X , d x ,x d x,x 0 and d x,x 0 if and only if x x .

2. For all x,x ,x X , d x,x d x,x d x ,x .

A metric space X ,u is an ultrametric space if and only if for all x,x ,x X ,

max u x,x ,u x ,x u x,x . (1)

Ultrametric spaces are therefore metric spaces which satisfy a stronger type of triangle inequal-
ity. It is interesting to observe that this ultrametric triangle inequality (1) implies that all triangles
are isosceles.1

Notice that by iterating the ultrametric property one obtains that if x1,x2, . . . ,xk is any set of k
points in X , then

max u x1,x2 ,u x2,x3 , . . . ,u xk 1,xk u x1,xk .

For a fixed finite set X , we letU X denote the collection of all ultrametrics on X . For n N let
Xn (resp. Un) denote the collection of all metric spaces (resp. ultra-metric spaces) with n points. Let
X n 1Xn denote the collection of all finite metric spaces andU n 1Un all finite ultrametric
spaces. For X ,d X let

sep X ,d : min
x x

d x,x and diam X ,d : max
x,x

d x,x

be the separation and the diameter of X , respectively.
We now recall the definition of an equivalence relation. Given a set A, a binary relation is a

subset S A A. One says that a and a are related and writes a a whenever a,a S. S is
called an equivalence relation if and only if for all a,b,c A, all the following hold true:

• Reflexivity: a a.

• Symmetry: if a b then b a.

• Transitivity: if a b and b c then a c.

The equivalence class of a under , denoted a , is defined as all those a which are related to
a: a a A, s.t. a a . Finally, the quotient space A is the collection of all equivalence
classes: A : a , a A .

We now construct our first example which will be crucial in our presentation.

Example 1 (r-equivalence) Given a finite metric space X ,d and r 0 we say that points x,x X
are r-equivalent (denoted x r x ) if and only if there exists points x0,x1, . . . ,xt X with x0 x,
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Figure 3: Illustration of the equivalence relation r. A finite metric space X is specified by the
points in orange which are endowed with the Euclidean distance. This construction can
be understood as allowing the creation of edges joining two points whenever the distance
between them does not exceed r. Then, two points x and x in black are deemed r-
equivalent if one can find a sequence of edges on the resulting graph connecting x to
x . From left to right and top to bottom we show the resulting graph one obtains for 4
increasing values of r. The points x and x are not r-equivalent when r r1,r2 or r3, but
they are r4-equivalent.

xt x and d xi,xi 1 r for i 0, . . . , t 1. It is easy to see that r is indeed an equivalence
relation on X.

This definition embodies the simple idea of partitioning a finite metric space into path connected
components, where the granularity of this partitioning is specified by the parameter r 0, see Figure
1.

1. Indeed, assume that all sides a,b,c of a triangle in a given ultrametric space are different. Then, without loss of
generality a b c. But then, a max a,b which violates (1). Hence, there must be at least two equal sides in
every triangle in an ultrametric space.
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For a finite set X , and a symmetric function W : X X R let L W denote the maximal
metric on X less than of equal toW (Bridson and Haefliger, 1999), that is,

L W x,x min
m 1

i 0
W xi,xi 1 x x0, . . . ,xm x

for x,x X .
For a finite set X , we let C X denote the collection of all non-empty subsets of X . By P X

we denote the set of all partitions of X . For a given partition Π P X we refer to each B Π as a
block of Π. For partitions Π,Π P X , we say that Π is coarser than Π , or equivalently that Π is
a refinement of Π, if for every block B Π there exists a block B Π s.t. B B .

For k N and r 0 let Sk 1 r Rk denote the k 1 dimensional sphere with radius r. By
a we will denote a matrix of elements ai j.

3. Hierarchical Clustering: Formulation

In this section we formaly define hierarchical clustering methods as maps that assign a dendrogram
to a finite metric space. First, in §3.1 formalize the standard concept of dendrogram; then, in §3.2
we present a formal treatment of HC methods which emphasizes the need for a formulation that is
insensitive to arbitrary choices such as the labels given to the points in the data set. Finally, in §3.3
we prove that the collection of all dendrograms over a finite set is in a one to one correspondence
with the collection of all ultrametrics on this set. We then redefine HC methods as maps from
the collection of finite metric spaces to the collection all finite ultrametric spaces. This change
in perspective permits a natural formulation and study of the stability and convergence issues in
later sections of the paper. In particular, in §3.5, we discuss the construction of notions of distance
between dendrograms by appealing to the ultrametric representation. These notions are instrumental
for the arguments in §5.

Finally, in §3.6, we disgress on some critiques to the classical HC methods. The situation with
HC methods is seemingly paradoxical in that SL is the one that seems to enjoys the best theoretical
properties while CL and AL, despite exhibiting some undesirable behaviour, are the usual choices
of practicioners.

3.1 Dendrograms

A dendrogram over a finite set X is defined to be nested family of partitions, usually represented
graphically as a rooted tree. Dendrograms are meant to represent a hierarchical decompositions
of the underlying set X , such as those that are produced by hierarchical clustering algorithms, and
therefore the nested family of partitions provided must satisfy certain conditions. We formally
describe dendrograms as pairs X ,θ , where X is a finite set and θ : 0, P X . The parameter
of θ usually represents a certain notion of scale and it is reflected in the height of the different levels,
see Figure 3.1. We require that θ satisfies:

1. θ 0 x1 , . . . , xn . This condition means that the initial decomposition of space is the
finest possible: the space itself.

2. There exists t0 s.t. θ t is the single block partition for all t t0. This condition encondes the
fact that for large enough t, the partition of the space becomes trivial.
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x 1

x 2

x 3

x 4

r 1 r 2a b c r 3
Figure 4: A graphical representation of a dendrogram over the set X x1,x2,x3,x4 . Let θ de-

note the dendrogram. Notice for example that θ a x1 , x2 , x3 , x4 ; θ b
x1,x2 , x3 , x4 ; θ c x1,x2 , x3,x4 ; and θ t x1,x2,x3,x4 for any t r3.

3. If r s then θ r refines θ s . This condition ensures that the family of partitions provided
by the dendrogram is indeed nested.

4. For all r there exists ε 0 s.t. θ r θ t for t r,r ε . (technical condition)

Let D X denote the collection of all possible dendrograms over a given finite set X . When
understood from context, we will omit the first component of a dendrogram X ,θ D X and refer
to θ as a dendrogram over X .

Remark 3 (About our definition of dendrogram) Our definition coincides with what Jain and
Dubes call proximity dendrograms in Jain and Dubes (1988, §3.2). We stress that we view the
parameter t in our definition as part of the information about the hierarchical clustering. Jain and
Dubes also discuss a simpler version of dendrograms, which they call threshold dendrograms, which
retain merely the order in which succesive partitions are created. These of course can be viewed as
functions from N into P X satisfying the constraints (1), (2) and (3) above, instead of having the
domain 0, .
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It seems that proximity dendrograms are the type of dendrograms that are most often employed
by practicioners and statisticians, see for example the dendrograms provided by the statistical soft-
ware R2 and by Matlab’s statistics toolbox,3 whereas threshold dendrograms are more popular in
the Machine Learning and Computer Science communities.

Usually, Hierarchical Clustering methods are defined as those maps that to each finite metric
space X ,d assign a dendrogram over X .

Using the definitions above we now construct our first example.

Example 2 For each finite metric space X ,d let X ,θ D X be given by θ r X r. In
other words, for each r 0, θ r returns the partition of X into r-equivalence classes. Recall
(Example 1) that two points x amd x are r equivalent if and only if one can find a sequence of
points x0,x1, . . . ,xk s.t. the first of them is x and the last one is x and all the hops are smaller
than r: maxi dX xi,xi 1 r. We will see below that this definition coincides with single linkage
hierarchical clustering. See Figure 2 for an illustration of this concept.

x 1

x 2

x 3

x 5

x 4

x 6

x 7

x 8

x 9

x 10

x 11

Figure 5: For the same finite metric space X of Example 1 and the value r r2, X r2
x1,x2,x3,x4,x5,x6 , x7,x8 , x9 , x10,x11 , that is, r2 splits X into four path con-

nected components.

2. Available at http://www.r-project.org/.
3. Available at http://www.mathworks.com/products/statistics/.
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In order to build up intuition about our definitions, we prove that X ,θ is indeed a dendro-
gram. Since X is a metric space, x 0 x if and only if x x . Thus condition (1) above is satisfied.
Clearly, for t diam X ,d , x t x for all x,x , and thus condition (2) holds. Fix 0 r s and
let B be a maximal connected component of θ r and let x,x B . Then, by definition of θ r ,
x r x . But it follows from the definition of r that if x r x , then x s x for all s r. Hence, x,x
are in the same block of θ s and condition (3) holds. Condition (4) holds since clearly θ is right
continuous, has finitely many discontinuity points, and is piecewise constant.

We now need to discuss a formal description of agglomerative HC methods.

3.2 A General Description of Agglomerative Hierarchical Clustering Methods

In this section we give a description of agglomerative HC methods that is suitable for our theoretical
analyses. Standard algorithmic descriptions of HC methods typically make the assumption that in
the merging process there are only two points at minimal linkage value of eachother. For example,
the formulation of Lance and Williams (1967) does not specifically explain how to deal with the
case when more than two points are candidates for merging. In practice one could argue that if at
a certain stage, say, three points are at minimal linkage value of eachother, then one could proceed
to merge them two at a time, according to some predefined rule that depends on the indices of the
points.

Whereas this tie breaking strategy seems reasonable from a computational point of view, it
invariably leads to dendrograms that depend on the ordering of the points. This is no doubt an
undesirable feature that can be translated into, for example, that the results of the clustering methods
depend on the order in which the data samples were obtained. Single linkage HC is exempted from
this problem however, because of the fact that at each stage only minimal distances are taken into
account. In contrast, complete and average linkage will produce results that do not behave well
under reordering of the points.

The problems arising from ad hoc tie breaking are often not even mentioned in books on clus-
tering. A notable exception is the book Jain and Dubes (1988), especially Section §3.2.6, where the
reader can find a careful exposition of these issues.

Below, we formulate HC methods in a way that is independent of these extraneous features.
In order to do so , we need to have some kind of invariance in the formulation. More precisely,
let X ,dX be the input metric space, where we assume that X 1, . . . ,n consists of exactly n
points. Write X ,θX is the output dendrogram of a given HC method applied to X ,dX . Let π be
a permutation of the indices 1,2, . . . ,n , and Y,dY be the metric space with points 1, . . . ,n and
permuted metric: dY i, j : dX πi,π j for all i, j 1, . . . ,n ; further, denote by Y,θY the output
dendrogram of the same HC method applied on Y,dY . Then, we require that for all permutations
π, the result of computing the dendrogram first and then permuting the result is the same as the
result of first permuting the input distance matrix and then computing the output dendrogram:

π θX t θY t , for all t 0. (2)

Formally, the action of a permutation π over a partition (such as θX t ) above must be understood
in the following sense: if P B1, . . . ,Br is a partition of 1,2, . . . ,n , then π P is the partition
with blocks π Bi, 1 i r , where in turn π Bi consists of all those indices π j for j Bi.
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We elaborate on this in the next example. We first recall the usual definition of CLHC, and then
construct a simple metric space consisting of five points where this usual formulation of CL fails to
exhibit invariance to permutations.

3.2.1 THE STANDARD FORMULATION OF COMPLETE LINKAGE HC

We assume X , d is a given finite metric space. In this example, we use the formulas for CL
but the structure of the iterative procedure in this example is common to all HC methods (Jain and
Dubes, 1988, Chapter 3). Let θ be the dendrogram to be constructed in this example.

1. Set X0 X and D0 d and set θ 0 to be the partition of X into singletons.

2. Search the matrix D0 for the smallest non-zero value, that is, find δ0 sep X0 , and find
all pairs of points xi1 ,x j1 , xi2 ,x j2 . . . , xik ,x jk at distance δ0 from eachother, that is,
d xiα ,x jα δ0 for all α 1,2, . . . ,k, where one orders the indices s.t. i1 i2 . . . ik.

3. Merge the first pair of elements in that list, xi1 ,x j1 , into a single group. The procedure now
removes xi1 ,x j1 from the initial set of points and adds a point c to represent the cluster
formed by both: define X1 X0 xi1 ,x j1 c . Define the dissimilarity matrix D1 on X1
X1 byD1 a,b D0 a,b for all a,b c andD1 a,c D1 c,a max D0 xi1 ,a ,D0 x j1 ,a
(this step is the only one that depends on the choice corresponding to CL). Finally, set

θ δ xi1 ,x j1
i i1, j1

xi .

4. The construction of the dendrogram θ is completed by repeating the previous steps until all
points have been merged into a single cluster.

Example 3 (about the standard formulation of complete linkage) The crux of the problem lies
in step 3 of the procedure outlined above. The choice to merge just the first pair of points in the list
causes the procedure to not behave well under relabeling of the points in the sense of (2).

An explicit example is the following: consider the metric space 1,2,3,4,5 , d with five
points and distance matrix

d

1 2 3 4 5
1 0 1 2 5 5
2 1 0 3 6 6
3 2 3 0 3 7
4 5 6 3 0 4
5 6 7 4 6 0.

This metric space arises from considering the graph metric on the graph depicted in Figure 6.
Under CLHC (as defined in §3.2.1), and under the action of all possible permutations of the labels
of its 5 points, this metric space produces 3 different non-equivalent dendrograms, see Figure 7.
This is an undesirable feature, as discussed at length in Jain and Dubes (1988, Chapter 3).

We now re-define general HC methods in a way that they satisfy (2).
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Figure 6: A finite metric space that under permutations leads to different outputs of the usual CL

HC algorithm, see text for details. The metric is defined by the graph distance on the
weighted graph shown.

3.2.2 THE PERMUTATION INVARIANT FORMULATION

Here we consider the family of Agglomerative Hierarchical clustering techniques (Jain and Dubes,
1988, Chapter 3). We define these by the recursive procedure described next. The main difference
with §3.2.1 lies that in Step 3 we will allow for more than just two points into the same cluster and
also, it could happen, for example, that four points A,B,C,Dmerge into two different clusters A,B
and C,D at the same time.

Let the finite metric space X ,d be given where X x1, . . . ,xn and let L denote a family of
linkage functions on X :

L : ! : C X C X R

with the property all that ! L are bounded non-negative functions. These functions assign a non-
negative value to each pair of non-empty subsets of X , and provide a certain measure of distance
between two clusters. Let B,B C X , then, some possible standard choices for ! are:

• Single linkage: !SL B,B minx Bminx B d x,x ;

• Complete linkage: !CL B,B maxx Bmaxx B d x,x ; and

• Average linkage: !AL B,B x B x B d x,x
#B #B .

• Hausdorff linkage: !HL B,B dH B,B .4

The permutation invariant formulation is as follows:

4. The Hausdorff distance is defined in Definition 21.
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1. Fix ! L. For each R 0 consider the equivalence relation !,R on blocks of a partition
Π P X , given by B !,R B if and only if there is a sequence of blocks B B1, . . . ,Bs B
in Π with ! Bk,Bk 1 R for k 1, . . . ,s 1.

2. Consider the sequences R1,R2, . . . 0, andΘ1,Θ2, . . . P X given byΘ1 : x1, . . . ,xn ,
and recursively for i 1 by Θi 1 Θi !,Ri where

Ri : min ! B,B ; B,B Θi, B B .

Note that this process necessarily ends in finitely many steps. This construction reflects the
fact that at step i one agglomerates those clusters at distance Ri from eachother (as measured
by the linkage function !). More than two clusters could be merged at any given step.

3. Finally, we define θ! : 0, P X by r θ! r : Θi r where i r : max i Ri r .

Remark 4 (About our definition of HC methods) Note that, unlike the usual definition of ag-
glomerative hierarchical clustering §3.2.1 (Jain and Dubes, 1988, §3.2), at each step of the in-
ductive definition we allow for more than two clusters to be merged. Of course, the standard for-
mulation can be recovered if one assumes that at each step i of the algorithm, there exist only two
blocks B and B in Θi s.t. Ri ! B,B . Then, at each step, only two blocks will be merged.

Example 4 Note for example that for the five point metric space in Example 3, the result of applying
CL (according to the permutation invariant formulation) is the dendrogram in Figure 8 (a). It also

follows, for example, that when applied to the metric space L3 : a,b,c ,
0 1 2
1 0 1
2 1 0

, which can

be represented by three points on a line:
a b c1 1

, SL, AL and CL all yield the same
dendrogram, which is shown in Figure 8 (b).

5

1

2

3

4

1 3 7

c

b

a

1

(a)

(b)

Figure 8: (a) shows the result of applying the permutation invariant formulation of CL to the five
point metric space of Example 3 (see also Figure 6). (b) shows the dendrogram that one
obtains as output of (the permutation invariant formulation of) SL, AL and CL applied to
the metric space L3.
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Proposition 5 We have the following properties of the construction above:

• For i 1,2, . . ., Θi 1 is coarser than Θi and

• Ri 1 Ri.

• θ! is a dendrogram over X.

Proof The only non trivial claim is that Ri 1 Ri, which can be proved by induction on i.

Remark 6 From this point forward, all references to SL, AL, and CL clustering will be to the
permutation invariant formulation, in which more than two clusters can be merged at a given step.

The following result is clear, and we omit its proof.

Proposition 7 The above construction of hierarchical clustering algorithms (including SL, AL, and
CL) yields algorithms which are permutation invariant.

A simplification for SL HC. In the particular case of SL, there is an alternative formulation that uses
the equivalence relation introduced in Example 1 and its associated dendrogram (Example 2). The
proof of the following Proposition is deferred to the appendix.

Proposition 8 Let X ,d be a finite metric space and θSL be the dendrogram over X obtained by
the single linkage agglomerative procedure described above, and let θ be the dendrogram over X
constructed in Example 2. Then, θSL r θ r for all r 0.

3.3 Dendrograms as Ultrametric Spaces

The representation of dendrograms as ultrametrics is well known and it appears in the book by
Jardine and Sibson (1971), it has already been used in the work of Hartigan (1985), and is touched
upon in the classical reference of Jain and Dubes (1988, §3.2.3).

We now present the main ideas regarding this change in perspective which we will adopt for
all subsequent considerations. The formulation of the output of hierarchical clustering algorithms
as ultrametric spaces is powerful when one is proving stability results, as well as results about the
approximation of the dendrograms of metric spaces by their finite subspaces. This is so because
of the fact that once a dendrogram is regarded as a metric space, the Gromov-Hausdorff metric
provides a very natural notion of distance on the output, in which the right kind of stability results
are easily formulated. We state these theorems in §5.

The main result in this section is that dendrograms and ultrametrics are equivalent.

Theorem 9 Given a finite set X, there is a bijectionΨ :D X U X between the collectionD X
of all dendrograms over X and the collection U X of all ultrametrics over X such that for any
dendrogram θ D X the ultrametric Ψ θ over X generates the same hierarchical decomposition
as θ, that is,

for each r 0, x,x B θ r Ψ θ x,x r.

Furthermore, this bijection is given by

Ψ θ x,x min r 0 x,x belong to the same block of θ r .
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In order to establish the above theorem, we first construct certain natural mappings from D X
toU X and fromU X to D X , and we then prove they are inverses of eachother and satisfy ( ).

3.3.1 FROM DENDROGRAMS TO ULTRAMETRICS

Let X be a finite set and θ : 0, P X a dendrogram over X . Consider the symmetric map
uθ : X X R given by

x,x min r 0 x,x belong to the same block of θ r . (3)

See Figure 9 for an illustration of this definition. Note that condition (4) in the definition of
dendrograms guarantees that uθ is well defined. It is easy to see that uθ defines an ultrametric on X :

Lemma 10 Let X be a finite set and X ,θ D X . Then uθ : X X R defined in (3) is an
ultrametric.

x 1

x 2

x 3

x 4

r 1 r 2 r 3

uθ

x 1 x 2 x 3 x 4

x 1 0 r 1 r 3 r 3

x 2 r 1 0 r 3 r 3

x 3 r 3 r 3 0 r 2

x 4 r 3 r 3 r 2 0

Figure 9: A graphical representation of a dendrogram θ over X x1,x2,x3,x3 and the ultrametric
uθ. Notice for example, that according to (3), uθ x1,x2 r1 since r1 is the first value
of the (scale) parameter for which x1 and x2 are merged into the same cluster. Similarly,
since x1 and x3 are merged into the same cluster for the first time when the parameter
equals r3, then uθ x1,x3 r3.

3.3.2 FROM ULTRAMETRICS TO DENDROGRAMS

Conversely, given an ultrametric u : X X R , its associated dendrogram

θu : 0, P X

can be obtained as follows: for each r 0 let θu r be the collection of equivalence classes of
X under the relation x x if and only if u x,x r. That this defines an equivalence rela-
tion follows immediately from the fact that u is an ultrametric. Indeed, assume that x x and
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x x for some r 0. Then, u x,x r and u x ,x r. Now, by the ultrametric property,
max u x,x ,u x ,x u x,x and hence u x,x r as well. We conclude that x x thus
establishing the transitivity of .

Example 5 Consider the ultrametric u on X x1,x2, . . . ,x6 given by

u

x1 x2 x3 x4 x5 x6
x1 0 2 2 5 6 6
x2 2 0 2 5 6 6
x3 2 2 0 5 6 6
x4 5 5 5 0 6 6
x5 6 6 6 6 0 4
x6 6 6 6 6 4 0.

Then, for example θu 0 x1 , x2 , x3 , x4 , x5 , x6 , θu 3 x1,x2,x3 , x4 , x5 , x6 ,
θu 4.5 x1,x2,x3 , x4 , x5,x6 , θu 5.5 x1,x2,x3,x4 , x5,x6 and
θu 7 x1,x2,x3,x4,x5,x6 . A graphical representation of the dendrogram θu is given in Figure
10.

x 1

x 2

x 3

x 4

x 55

x 6

2 4 5 6

Figure 10: A graphical representation of the dendrogram θu of Example 5, see the text for details.

3.3.3 THE CONCLUSION OF THE PROOF OF THEOREM 9.

It is easy to check that (1) given any dendrogram θ on X, θuθ θ and (2) given any ultrametric u on
X , uθu u. Now, letΨ :D X U X be defined by θ Ψ θ : uθ. By construction we see that
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Ψ :D X U X is a bijection and that Ψ 1 is given by u θu. From (3) we see that Ψ satisfies
. Hence, we obtain Theorem 9.

From now, whenever given a dendrogram θX over a set X , we will be using the notation
Ψ θX for the ultrametric associated to X given by Theorem 9. In a similar manner, given an
ultrametric u on X , Ψ 1 u will denote the dendrogram over X given by Theorem 9.

3.4 Reformulation of Hierarchical Clustering using Ultrametrics

In the sequel, appealing to Theorem 9 which states the equivalence between ultrametrics and
dendrograms, we represent dendrograms as ultrametric spaces. Then, any hierarchical clustering
method can be regarded as a map from finite metric spaces into finite ultrametric spaces. This
motivates the following definition:

Definition 11 A hierarchical clustering method is defined to be a map

T : X U s.t. Xn X ,d X ,u Un, n N.

Example 6 For a given finite metric space X ,d consider the HCmethodTSL given byTSL X ,d
X ,Ψ θSL , where θSL is the single linkage dendrogram over X defined in §3.2. Similarly, we define

TCL and TAL.

Example 7 (maximal sub-dominant ultrametric) There is a canonical construction: Let T :
X U be given by X ,d X ,u where

u x,x : min max
i 0,...,k 1

d xi,xi 1 , s.t. x x0, . . . ,xk x . (4)

We remark that the minimum above is taken over k N and all k 1-tuples of points x0,x1, . . . ,xk in
X s.t. x0 x and xk x . Notice that for all x,x X, u x,x d x,x .

This construction is sometimes known as the maximal sub-dominant ultrametric and it has the
property that if u d is any other ultrametric on X, then u u . The Lemma below proves that
this canonical construction is equivalent to the ultrametric induced by the equivalence relation in
Example 1.

Lemma 12 For X ,d X write T X ,d X ,u and let X ,θ D X be the dendrogram
arising from the construction in Example 2. Then, u Ψ θ .

Remark 13 Notice that another way of stating the Lemma above is that x r x if and only if
u x,x r.

It turns out that T yields exactly single linkage clustering as defined in §3.2.

Corollary 14 One has that TSL T .

1442



CHARACTERIZATION, STABILITY AND CONVERGENCE OF HIERARCHICAL CLUSTERING METHODS

Equivalently, for any finite metric space X , the single linkage dendrogram θSL on X agrees with
Ψ 1 u .
Proof The proof follows easily from Proposition 8 and Lemma 12.

We emphasize that, as it follows from Corollary 14, T produces ultrametric outputs which
are exactly those corresponding to SLHC. We will use this fact strongly in the sequel.

3.4.1 INTERPRETATION OF THE ULTRAMETRIC

For a HC method T and X ,d X , let T X ,d X ,u . The intuition that arises from (3) is that
for two points x,x X , u x,x measures the minimal effort method T makes in order to join x to x
into the same cluster.

We note in particular that a desirable property of a HC algorithm should be that upon shrinking
some of the distances in the input metric space, the corresponding “efforts” also decrease. This
property is exactly verified by T . Indeed, let X be a finite set and d1 and d2 two metrics on X s.t.
d1 d2. Write T X ,d1 X ,u1 and T X ,d2 X ,u2 . Then, it follows immediately from
Equation (4) that u1 u2 (compare with Kleinberg’s consistency property, pp 1425).

Observe that CL and AL HC fail to satisfy this property. An example is provided in Figure 19.
We see in Theorem 18 that a condition of this type, together with two more natural normalizing

conditions, completely characterizes SLHC.

3.5 Comparing results of Hierarchical Clustering Methods

One of the goals of this paper is to study the stability of clustering methods to perturbations in the
input metric space. In order to do so one needs to define certain suitable notions of distance between
dendrograms. We choose to do this by appealing to the ultrametric representation of dendrograms,
which provides a natural way of defining a distance between hierarchical clusterings. We now delve
into the construction.

Consider first the simple case of two different dendrograms X ,α and X ,β over the same
fixed finite set X . In this case, as a tentative measure of dissimilarity between the dendrograms we
look at the maximal difference between the associated ultrametrics given by Theorem 9: uα Ψ α
and uβ Ψ β : maxx,x X uα x,x uβ x,x . There is a natural interpretation of the condition that
maxx,x X uα x,x uβ x,x ε: if we look at the graphical representation of the dendrograms α
and β, then the transition horizontal lines in Figure 11 have to occur within ε of eachother.5 This is
easy to see by recalling that by (3),

uα x,x min r 0 x,x belong to the same block of α r

and
uβ x,x min r 0 x,x belong to the same block of β r .

For the example in Figure 11, we then obtain that maxi ri ri ε, which is not surprising since
r2 uα x1,x2 , r2 uβ x1,x2 , etc.

5. These lines represent values of the scale parameter for which there is a merging of blocks of the partitions encoded
by the dendrograms.
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x 1x 2x 3x 4

r 1

r 2

r 3

r 1

r 2

r 3

α β

Figure 11: Two different dendrograms X ,α and X ,β over the same underlying set X
x1,x2,x3,x4 . The condition that uα uβ L X X ε is equivalent to the horizon-
tal dotted lines corresponding to ri and ri (i 1,2,3) being within ε of eachother.

Now, in a slightly more general situation we may be faced with the task of comparing two dif-
ferent dendrograms α and β without knowing (or caring about) the exact labels of the points. In this
case, a natural solution is to look at the minimum of the maximum difference of the corresponding
ultrametrics under all possible permutations, namely:

min
π Pn

max
x,x X

uα x,x uβ π x ,π x , (5)

where n is the cardinality of X and Pn is the collection of all permutations of n elements.
The most general case arises when we do not know whether the dendrograms come from the

same underlying set or not. This situation may arise, for example, when comparing the results of
clustering two different samples, of possibly different sizes, coming from the same data set. One
may want to be able to compare two such clusterings as a way to ascertain whether the sample size
is sufficient for capturing the structure of the underlying data set.

Assume then that we are given X1,α and X2,β , two different dendrograms, defined possibly
over two different sets X1 and X2 of different cardinality. This potential difference in cardinality in
the two sets forces us to consider transformations other than mere permutations. A natural solution,
which can be interpreted as a relaxation of the permutation based distance (5) discussed above, is
to consider maps f : X1 X2 and g : X2 X1 and look at their distortions:
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dis f : max
x,x X1

uα x,x uβ f x , f x ,

dis g : max
x,x X2

uα g x ,g x uβ x,x .

The next natural step would be to optimize over the choice of f and g, for example by minimizing
the maximum of the two distortions:

min
f ,g
max dis f ,dis g .

This construction is depicted in Figure 12. Roughly speaking, this idea leads to the Gromov-
Hausdorff distance. The difference lies in the fact that in standard definition of the Gromov-
Hausdorff distance, one also considers a term that measures the degree to which f and g are inverses
of eachother. Being more precise, given the maps f and g, this term, called the joint distortion of f
and g is given by

dis f ,g : max
x X ,y Y

uα x,g y uβ y, f x .

One defines the Gromov-Hausdorff distance between X1,uα and X2,uβ by

dGH X1,X2 :
1
2
min
f ,g
max dis f ,dis g ,dis f ,g .6 (6)

We now see exactly how the inclusion of the new term enforces f and g to be approximate
inverses of eachother. Assume that for some ε 0 dGH X1,X2 ε, then, in particular, there
exist maps f and g such that uα x,g y uβ y, f x 2ε for all x X1 and y X2. Choosing
y f x , in particular, we obtain that uα x,g f x 2ε for all x X1. Similarly one obtains that
uβ y, f g y 2ε for all y X2. These two inequalities measure the degree to which f g and
g f differ from the identities, and thus, measure the degree to which f and g fail to be inverses of
eachother. This is a useful feature when one considers convergence issues such as we do in §5.

3.5.1 INTERPRETATION OF THE GROMOV-HAUSDORFF DISTANCE IN TERMS OF
DENDROGRAMS

Assume that dGH X1,uα , X2,uβ η
2 for some η 0. Then there exist maps f : X Y and

g : Y X such that the following conditions hold (see Figure 13):

• If x,x fall in the same block of α t then f x , f x belong to the same block of β t for all
t t η.

• If y,y fall in the same block of β t then g y ,g y belong to the same block of α t for all
t t η.

For the next section we do not need to make use of the full generality in these considerations:
there we only compare dendrograms defined over the same underlying set. A more detailed use and
additional material about the Gromov-Hausdorff ideas is given in §5.

We finish this section with a precise result regarding the stability of dendrograms arising from
SLHC.
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r 1 r 2

x 1

x 2

x 3

x 4

r 3

y1

y2

y3

r 1r 2

X, α Y, β

Figure 12: In this example, two different dendrograms, X ,α and Y,β , are given. The (straight)
arrows pointing from left to right show a map f : X Y , and the (curved) arrows
pointing from right to left show the map g : Y X . With simple explicit computa-
tions one sees that these choices of maps f and g incur distortions dis f dis f ,g
max r3, r1 r1 , r2 r2 and dis g max r1 r1 , r2 r2 , respectively. Hence,
we see that dGH X ,Ψ α , Y,Ψ β 1

2 max r3, r1 r1 , r2 r2 .

The following Lemma deals with the situation when we have a fixed finite set P and two different
metrics on P and then we compute the result of applying T each of these metrics. This lemma is a
particular case of our main stability result, Proposition 26 in §5. In the interest of clarity, we prove
it here to provide some intuition about the techniques.

Lemma 15 Let P be a fixed finite set and let d1,d2 be two metrics on P. Write T P,di P,ui ,
i 1,2. Then,

max
p,q P

u1 p,q u2 p,q max
p,q P

d1 p,q d2 p,q .

Proof Let η maxp,q P d1 p,q d2 p,q . Let p0, . . . , pk P be s.t. p0 p, pk q and
maxi d1 pi, pi 1 u1 p,q . Then, by definition of u2 (which is the minimum over all chains of
the maximal hop measured with metric d2) and the fact that d2 d1 η:

u2 p,q max
i
d2 pi, pi 1 max

i
η d1 pi, pi 1 η u1 p,q .

Similarly, u1 p,q η u2 p,q , and hence u1 p,q u2 p,q η. The claim follows since
p,q P are arbitrary.

6. The factor 12 is of course inmaterial but kept here for coherence with the standard definition.
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r 1r 2

x 1

x 2

x 3

x 4

r 3

y1

y2

y3

r 1r 2

X, α

Y, β

Figure 13: These are the same dendrograms as in Figure 12. Let r1 5
3 , r2 1, r3 1

3 , r1
11
6 and

r2
4
3 . For the maps f and g s.t. f x1 f x2 y1, f x3 y2, f x4 y3, g y1

x1, g y2 x3 and g y3 x4, using the formulas computed in Figure 12 we see that
dis f dis g dis f ,g 1

3 and hence dGH X ,Ψ α , Y,Ψ β 1
6 . Now notice

for instance that x3 and x4 fall in the same block of α r2 α 1 and that y2 f x3
and y3 f x4 fall in the same block of β t for all t r2 2 1

6 1 1
3

4
3 r2.

3.6 Some Remarks about Hierarchical Clustering Methods

Practitioners of clustering often prefer AL and CL to SL because it is perceived that the former two
methods tend to produce clusters which are more coherent conceptually, and which are in a non-
technical sense viewed as more compact. In fact, SL exhibits the so called chaining effect which
makes it more likely to produce clusterings which separate items which conceptually should be
together. We view these observations as evidence for the idea that good clustering schemes need to
take some notion of density into account, rather than straightforward geometric information alone.
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One can loosely argue that given the actual definition of the linkage functions used by AL and
CL, these two methods do enjoy some sort of sensitivity to density. Unfortunately, AL and CL are
unstable, and in particular, discontinuous in a very precise sense (see Remark 16 below), whereas
SL enjoys all the nice theoretical properties that the other two methods lack.

In this section we review this seemingly paradoxical situation.
For each n N let Ln be a metric space with n points P p1, . . . , pn and metric dLn pi, p j

i j , i, j 1, . . . ,n . Similarly, let Δn be the metric space with the same underlying set and
metric dΔn pi, p j 1, i, j 1, . . . ,n , i j. Clearly, the metric space Ln is isometric to points
equally spaced on a line in Euclidean space whereas (s.t. two adjacent points are at distance 1 from
eachother) Δn is isometric to the n 1 -unit-simplex as a subset of Rn 1.

Clearly, the outputs of Single Linkage HC applied to both Ln and Δn coincide for all n N:

T P,dLn T P,dΔn P, γ (7)

where γi j 0 if i j and γi j 1 if i j, for all n N, see Figure 14.

11 1 1

x
1

x
2

x
n

1

x
1

x
2

x
n

L n

∆2 ∆
3

∆4

∆n

Figure 14: The metric spaces Ln and Δn both have n points. Single linkage HC applied to either of
them yields the dendrogram in the center.

By appealing to the Euclidean realizations of Ln and Δn, one can define perturbed versions
of these two metric spaces. Indeed, fix ε 0 and let a1, . . . ,an 0,ε 2 and b1, . . . ,bn
Sn 1 ε 2 . Define Lεn to be the metric space with underlying set P and metric dLεn pi, p j i j
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ai a j . Similarly, define Δεn to be the metric space with underlying set P and metric dΔεn pi, p j
si s j bi b j .
Notice that by construction,

max
i, j

dLn pi, p j dLεn pi, p j ε (8)

and
max
i, j

dΔn pi, p j dΔεN pi, p j ε. (9)

We thus say that the spaces P,dLεn and P,dΔεn are perturbed versions of P,dLn and P,dΔn ,
respectively.

Remark 16 (About a critique to SL) Single linkage is generally regarded as a poor choice in
practical applications. The reason for this is the so called chaining effect observed experimentally,
which is central to the criticism to SL made in Lance and Williams (1967) (see also the discussion
in Wishart, 1969, pp. 296). The following two observations are important:

(O1) It is generally argued that since P,dLεn corresponds to points on the vicinity of a line, whereas
P,dΔεn corresponds to points in the close vicinity of a n 1 -simplex, then the cluster formed
by points on the latter metric space is more compact or denser than the one formed by the
former, and thus more meaningful.

(O2) The outputs of SL to the spaces P,dLεn and P,dΔεn are very similar and this similarity is of
order ε.
Indeed, if we write T P,dLεn P,uLεn and T P,dΔεn P,uΔεn , then, by the triangle in-
equality for the L norm,

uLεn uΔεn L P P uLεn uL0n L P P (10)
uL0n uΔ0n L P P

uΔ0n uΔεn L P P .

As we pointed out in (7) at the beginning of Section §3.6,

uL0n uLn γ uΔn uΔ0n ,

thus, (10) simplifies into:

uLεn uΔεn L P P uLεn uL0n L P P (11)
uΔεn uΔ0n L P P

(and by Lemma 15:)
dLεn dL0n L P P

dΔεn dΔ0n L P P .

Hence, by (11) and the construction of dLεn and dΔεn (Equations (8) and (9)), we conclude that

uLεn uΔεn L P P 2ε.

This means that for any small perturbations of Ln and Δn, the output of SL to these perturba-
tions are at a small distance from eachother, as we claimed.
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When put together, observations (O1) and (O2) suggest that SL is unable to pick denser as-
sociations of data, such as cliques, over sparser ones, such as linear structures. This feature is
undesirable in practical applications where often times one would like to regard clusters as modes
of an underlying distribution (Wishart, 1969; Hartigan, 1981).

It is then the case that in practical applications, CL and especially AL are preferred over SL.
These two methods have the property that they indeed somehow favor the association of compact
subsets of points. For CL this can be explained easily using the concept of maximal clique (maxi-
mally connected sub-graphs of a given graph) (Jain and Dubes, 1988, Section 3.2.1). Let dk be the
diameter of the cluster created in step k of CL clustering and define a graph G k as the graph that
links all data points with a distance of at most dk. Then the clusters after step k are the maximal
cliques of G k . This observation reinforces the perception that CL yields clusters that are dense as
measured by the presence of cliques. The sensitivity of AL to density has been discussed by Hartigan
in Hartigan (1985, Section 3) and is basically due to the averaging performed in the definition of
its linkage function.

A more principled way of taking density into account, that does not depend on ad hoc construc-
tions which destroy the stability property, would be to explicitly build the density into the method.
In Carlsson and Mémoli (2009) we study multiparameter clustering methods, which are similar to
HC methods but we track connected components in a multiparameter landscape. We also study the
classification and stability properties of multiparameter clustering methods.

Remark 17 (Instability of CL and AL) It turns out that CL and AL, despite not exhibiting the
undesirable feature of the chaining effect, and despite being regarded as more sensitive to density,
are unstable in a precise sense. Consider for example CL and let n 3. In the construction of
P,dεL above let a1 a2 0 and a3 ε, then

dL

p1 p2 p3
p1 0 1 2
p2 1 0 1
p3 2 1 0

and dεL

p1 p2 p3
p1 0 1 2 ε
p2 1 0 1 ε
p3 2 ε 1 ε 0

.

Write TCL P,dL P,uL and TCL P,dεL P,uεL . Clearly,

uL

p1 p2 p3
p1 0 1 1
p2 1 0 1
p3 1 1 0

and uεL

p1 p2 p3
p1 0 1 2 ε
p2 1 0 2 ε
p3 2 ε 2 ε 0

.

Notice that despitemaxi, j dL pi, p j dεL pi, p j ε,maxi, j uL pi, p j uεL pi, p j 1 ε 1
for all ε 0. We thus conclude that CL is not stable under small perturbations of the metric. Note
that in particular, it follows that CL is not continuous. The same construction can be adapted for
AL. See Figure 15.

4. A Characterization Theorem for SL Hierarchical Clustering

In this section we obtain a characterization of SL hierarchical clustering in terms of some simple
axioms. The main axiom, (II) below, says that the clustering scheme has a prescribed behavior
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Figure 15: Complete Linkage is not stable to small perturbations in the metric. On the left we show
two metric spaces that are metrically very similar. To the right of each of them we show
their CL dendrogram outputs. Regardless of ε 0, the two outputs are always very
dissimilar. We make the notion of similarity between dendrogram precise in §5 by in-
terpreting dendrograms as ultrametric spaces and by computing the Gromov-Hausdorff
distance between these ultrametric spaces.

under distance non-increasing maps of metric space. The behavior is that the map of metric spaces
should induce a map of clusters, that is, that if two points in the domain space belong to the same
cluster, then so do their images in the clustering of the image metric space. This notion, referred
to as functoriality in the mathematics literature, appears to us to be a very natural one, and it is
closely related to Kleinberg’s consistency property (cf. pp. 1425) for ordinary clustering methods;
see Remark 19 for an interpretation of our axioms.

Theorem 18 Let T be a hierarchical clustering method s.t.

(I) T p,q , 0 δ
δ 0 p,q , 0 δ

δ 0 for all δ 0.

(II) Whenever X ,Y X and φ : X Y are such that dX x,x dY φ x ,φ x for all x,x X,
then

uX x,x uY φ x ,φ x

also holds for all x,x X, where T X ,dX X ,uX and T Y,dY Y,uY . prop

(III) For all X ,d X ,
u x,x sep X ,d for all x x X

where T X ,d X ,u .

Then T T , that is, T is exactly single linkage hierarchical clustering.
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Remark 19 (Interpretation of the conditions) Let X ,d X and write T X ,d X ,u . The
intuition is that u x,x measures the effort method T makes in order to join x to x into the same
cluster.

Condition (I) is clear, the two-point metric space contains only one degree of freedom which has
to determine unambiguously the behavior of any clustering method T. In terms of dendrograms, this

means that the two point metric space A,B , 0 δ
δ 0 must be mapped to the dendrogram where

A and B are merged at parameter value δ, see Figure 16.
Condition (II) is crucial and roughly says that whenever one shrinks some distances (even to

zero) to obtain a new (pseudo) metric space, then the corresponding efforts in this new space have
to be smaller than the efforts in the original metric space. This is consistent with the notion that
reducing the distance between two points (without increasing all other distances) makes them more
likely to belong to the same cluster.

Let θX Ψ 1 uX and θY Ψ 1 uY be the dendrograms associated to uX and uY . In terms of
dendrograms, this means that if two points x,x X are in the same block of θX t for some t 0,
then φ x and φ x must be in the same block of θY t . see Figure 17.

Condition (III) expresses the fact that in order to join two points x,x X, any clustering method
T has to make an effort of at least the separation sep X ,d of the metric space. In terms of dendro-
grams, this means that θX t has to equal the partition of X into singletons for all 0 t sep X ,d .
See Figure 18.

y1

y2

T

y1 y2

δ

δ

Figure 16: Interpretation of Condition I: For all δ 0 the two point metric space on the left must
be mapped by T into the dendrogram on the right.

Remark 20 It is interesting to point out why complete linkage and average linkage hierarchical
clustering, as defined in §3.2.2, fail to satisfy the conditions in Theorem 18. It is easy to see that
conditions (I) and (III) are always satisfied by CL and AL.

Consider the metric spaces X A,B,C with metric given by the edge lengths 4,3,5 and
Y A ,B ,C with metric given by the edge lengths 4,3,2 , as given in Figure 19. Obviously, the
map φ from X to Y with φ A A , φ B B and φ C C is s.t.

dY φ x ,φ x dX x,x for all x,x A,B,C .
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x 1

x 2

x 3

x 4

y1

y2

y3

Ψ− 1 (uX )

Ψ− 1 (uY )

Figure 17: Interpretation of Condition II: Assume that φ :X Y is a distance non-increasing map
such that φ x1 φ x2 y1, φ x3 y2 and φ x4 y3. Then, Condition (II) requires
that if x,x X are merged into the same cluster of Ψ 1 uX at parameter value t, then
φ x and φ x must merge into the same cluster ofΨ 1 uY for some parameter value
t. In the Figure, this translates into the condition that vertical dotted lines corresponding
to mergings of pairs of points in X should happen at parameter values greater than or
equal than the parameter values for which correponding points in Y (via φ) are merged
into the same cluster. For example, φ x1 ,φ x2 merge into the same cluster at parameter
value 0. The condition is clearly verified for this pair since by definition of φ, φ x1
φ x2 y1. Take now x3 and x4: clearly the vertical line that shows the parameter value
for which they merge is to the right of the vertical line showing the parameter value for
which y2 φ x3 and y3 φ x4 merge.

It is easy to check that

uX

A B C
A 0 5 3
B 5 0 5
C 3 5 0

and uY

A B C
A 0 2 4
B 2 0 4
C 4 4 0

.

Note that for example 3 uX A,C uY φ A ,φ C uY A ,C 4 thus violating property
(II). The same construction yields a counter-example for average linkage.
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x 1

x 2

x 3

x 4

x 55

x 6

sep(X, d)

Figure 18: Interpretation of Condition III: The vertical line at parameter value t sep X ,d must
intersect the horizontal lines of the dendrogram before any two points are merged.

5. Metric Stability and Convergence of T

The Proposition and Theorem below assert the metric stability and consistency/convergence of the
method T (i.e., of SLHC, by virtue of Proposition 14. We use the notion of Gromov-Hausdorff
distance between metric spaces (Burago et al., 2001). This notion of distance permits regarding the
collection of all compact metric spaces as a metric space in itself.

This seemingly abstract construction is in fact very useful. Finite metric spaces are by now
ubiquitous in virtually all areas of data analysis, and the idea of assigning a metric to the collection
of all of them is in fact quite an old one. For Euclidean metric spaces, for example, the idea of
constructing a metric was used by Kendall et al. (1999) and Bookstein et al. (1985) in constructing
a statistical shape theory, motivated by the ideas about form of biological organisms developed by
D’Arcy Thompson.
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Figure 19: An example that shows why complete linkage fails to satisfy condition (2) of Theorem
18.

5.1 The Gromov-Hausdorff Distance and Examples

Definition 21 Let Z,dZ be a compact metric space. The Hausdorff distance between any two
compact subsets A,B of Z is defined by

dZH A,B : max max
a A

min
b B

dZ a,b ,max
b B

min
a A

dZ a,b .

Remark 22 Let Z z1, . . . ,zn Z. Then, dZH Z,Z δ for some δ 0 if and only if Z
n
i 1B zi,δ . In other words, dZH Z,Z describes the minimal δ s.t. Z is a δ-net for Z and therefore

measures how well Z covers Z.

The Gromov-Hausdorff distance dGH X ,Y between compact metric spaces X ,dX and Y,dY
was orignally defined to be the infimal ε 0 s.t. there exists a metric d on X Y with d X X dX
and d Y Y dY for which the Hausdorff distance between X and Y (as subsets of X Y,d ) is less
than ε (Gromov, 1987). There is, however, an alternative expression for the GH distance that is
better suited for our purposes which we now recall.

Definition 23 (Correspondence) For sets A and B, a subset R A B is a correspondence (be-
tween A and B) if and and only if

• a A, there exists b B s.t. a,b R

• b B, there exists a X s.t. a,b R

Let R A,B denote the set of all possible correspondences between A and B.
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We now give several examples to illustrate this definition.

Example 8 Let A a1,a2 and B b1,b2,b3 . In this case, R1 a1,b1 , a2,b2 , a1,b3 is a
correspondence but R2 a1,b1 , a2,b2 is not.

Example 9 Let A and B be finite s.t. #A #B n. In this case, if π is any permutation matrix of
size n, then ai,bπi , i 1, . . . ,n R A,B .

Example 10 Let φ : X Y and ψ : Y X be given maps. Then, one can construct a correspon-
dence out of these maps, call it R φ,ψ given by

x,φ x , x X ψ y ,y , y Y .

For metric spaces X ,dX and Y,dY . Let ΓX ,Y : X Y X Y R be given by

x,y,x ,y dX x,x dY y,y .

Then, by (Burago et al., 2001, Theorem 7.3.25) the Gromov-Hausdorff distance between X and Y
is equal to

dGH X ,Y :
1
2

inf
R R X ,Y

sup
x,y , x ,y R

ΓX ,Y x,y,x ,y . (12)

It can be seen (it is an easy computation) that in (12) one can restrict the infimum to those
correspondences that arise from maps φ and ψ such as those constructed in Example 10. Then, one
recovers expression (6) which we gave in §3.5, namely, that actually

dGH X ,Y :
1
2
inf
φ,ψ
max dis φ ,dis ψ ,dis φ,ψ . (13)

Remark 24 Expression (13) defines a distance on the set of (isometry classes of) finite metric
spaces (Burago et al., 2001, Theorem 7.3.30). From now on let G denote the collection of all
(isometry classes of) compact metric spaces. We say that Xn,dXn n N G Gromov-Hausdorff
converges to X G if and only if dGH Xn,X 0 as n .

Example 11 Fix X ,dX G . Consider the sequence X , 1n dX n N G . Then, Xn Gromov-
Hausdorff converges to the metric space consisting of a single point.

Remark 25 (Gromov-Hausdorff distance and Hausdorff distance) Let X ,dX be a compact met-
ric space. Then, if X X is compact and we endow X with the metric dX equal to the restriction
of dX , then

dGH X ,dX , X ,dX dXH X ,X .

This is easy to see by defining the correspondence R between X and X given by

R x ,x , x X x,x , x V x , x X ,

whereV x : x X , dX x,x dX x,z , z X x . Indeed, since then, for all x1,x1 , x2,x2
R,

1
2
dX x1,x2 dX x1,x2

1
2
dX x1,x1 dX x2,x2 max

x X
min
x X

dX x,x dXH X ,X .
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Example 12 Consider a finite set M and d,d : M M R two metrics on M. Then, the GH
distance between M,d and M,d is bounded above by the L norm of the difference between d
and d :

dGH M,d , M,d
1
2
d d L M M .

To prove this it is enough to consider the correspondence R R M,M given by R m,m , m
M .

Notice that as an application, for the metric spaces P,dLεn and P,dΔεn discussed in §3.6, one
has that

dGH P,dLn , P,dLεn
ε
2
and

dGH P,dΔn , P,dΔεn
ε
2
.

5.2 Stability and Convergence Results

Our first result states that SL HC is stable in the Gromov-Hausdorff sense and it is a generalization
of Lemma 15.

Proposition 26 For any two finite metric spaces X ,dX and Y,dY

dGH X ,dX , Y,dY dGH T X ,dX ,T Y,dY .

Remark 27 This Proposition generalizes Lemma 15. Notice for example that in case X and Y are
finite, they need not have the same number of points. This feature is important in order to be able
to make sense of situations such as the one depicted in Figure 2 in pp. 1428, where one is trying to
capture the connectivity (i.e., clustering) properties of an underlying ’continuous’ space by taking
finitely (but increasingly) many samples from this space and applying some form of HC to this finite
set. Theorem 28 below deals with exactly this situation. See Figure 20.

Let Z,dZ be a compact metric space. Given a finite index set A and a (finite) collection of
disjoint compact subsets of Z, U α

α A, letWA : A A R be given by

α,α min
z U α

z U α

dZ z,z .

A metric space A,dA arises from this construction, where dA L WA . We say that A,dA is
the metric space with underlying set A arising from U α

α A. Notice that sep A,dA equals the
minimal separation between any two setsU α andU α (α α ). More precisely,

sep A,dA min
α,α A,
α α

min
z U α

z U α

dZ z,z .

We now state a metric stability and convergence result, see Figure 20. The proof of this result
is deferred to §B.

Theorem 28 Assume Z,dZ is a compact metric space. Let X and X be any two finite subsets of
Z and let dX dZ X X and dX dZ X X

. Write T X ,dX X ,uX and T X ,dX X ,uX .
Then,
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Figure 20: Illustration of Theorem 28. Top: A space Z composed of 3 disjoint path connected
parts, Z 1 ,Z 2 and Z 3 . The black dots are the points in the finite sample X . In the
figure, wi j W i, j , 1 i j 3. Bottom Left: The dendrogram representation of
X ,uX . Bottom Right The dendrogram representation of Z,uZ . Note that dZ z1,z2
w13 w23, dZ z1,z3 w13 and dZ z2,z3 w23. As r 0, X ,uX Z,uZ in the
Gromov-Hausdorff sense, see text for details.

1. (Finite Stability) dGH X ,uX , X ,uX dZH X ,Z dZH X ,Z .

2. (Approximation bound) Assume in addition that Z α A Z α where A is a finite index set
and Z α are compact, disjoint and path-connected sets. Let A,dA be the finite metric space
with underlying set A arising from Z α

α A. Let T A,dA A,uA . Then, if dZH X ,Z
sep A,dA 2,

dGH X ,uX , A,uA dZH X ,Z .

3. (Convergence) Under the hypotheses of (2), let Xn n N be a sequence of finite subsets of Z
s.t. dZH Xn,Z 0 as n , and dXn be the metric on Xn given by the restriction of dZ to
Xn Xn. Then, one has that

dGH T Xn,dXn , A,uA 0 as n .

Remark 29 (Interpretation of the statement) Assertion (1) guarantees that if X ,X are both dense
samples of Z, then the result of applying T to both sets are very close in the Gromov-Hausdorff
sense.

Assertions (2) and (3) identify the limiting behavior of the construction T Xn,dXn as Xn be-
comes denser and denser in X, see Figure 20.
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5.3 A Probabilistic Convergence Result

In this section, we prove a precise result which describes how the dendrograms attached to compact
metric spaces by single linkage clustering can be obtained as the limits of the dendrograms attached
to finite subsets of the metric space. The result is by necessity probabilistic in nature. This kind of
result is of great importance, since we are often interested in infinite metric spaces but typically do
not have access to more than finitely many random samples from the metric space.

Theorem 30 and Corollary 32 below proves that for random i.i.d. observations Xn x1, . . . ,xn
with probability distribution µ compactly supported in a metric space X ,d , the result Xn,uXn

of applying single linkage clustering to Xn,d converges almost surely in the Gromov-Hausdorff
sense to an ultrametric space that recovers the multiscale structure of the support of µ, see Figure
20. This is a refinement of a previous observation of Hartigan (1985) that SLHC is insensitive to
the distribution of mass of µ in its support.

The proof of this theorem relies on Theorem 34, a probabilistic covering theorem of independent
interest. In order to state and prove our theorems we make use of the formalism ofmetric measure
spaces.

A triple X ,dX ,µX , where X ,dX is a metric space and µX is a Borel probability measure on
X with compact support will be called an mm-space (short for measure metric space). The support
supp µX of a measure µX on X is the minimal closed set A (w.r.t. inclusion) s.t. µX X A 0.
Measure metric spaces are considered in the work of Gromov and are useful in different contexts,
see (Gromov, 2007, Chapter 312 ). For a mm-space X let fX : R R be defined by

r min
x supp X

µX BX x,r .

Note also that by construction fX in non-decreasing and fX r 0 for all r 0. Let also FX :
N R R be defined by n,δ e n fX δ 4

fX δ 4 . Note that for fixed δ0 0, (1) FX ,δ0 is decreasing
in its argument, and (2) n N

FX n,δ0 .

Theorem 30 Let Z,dZ,µZ be a mm-space and write supp µZ α AU α for a finite index set
A and U U α

α A a collection of disjoint, compact, path-connected subsets of Z. Let A,dA be
the metric space arising from U and let δA : sep A,dA 2.

For each n N, let Zn z1,z2, . . . ,zn be a collection of n independent random variables
(defined on some probability space Ω with values in Z) with distribution µZ, and let dZn be the
restriction of dZ to Zn Zn. Then, for ζ 0 and n N,

PµZ dGH T Zn,dZn ,T A,dA ζ FZ n,min ζ,δA 2 .

Corollary 31 Under the hypotheses of Theorem 30, for any pre-specified probability level p 0,1
and tolerance ζ 0, if

n
ln 1
1 p ln fX δ 4

fX δ 4
,

then PµZ dGH T Zn,dZn ,T A,dA ζ p, where δ : min ζ,δA 2 .
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Corollary 32 Under the hypotheses of Theorem 30, T Zn,dZn
n

T A,dA in the Gromov-
Hausdorff sense µZ-almost surely.

Proof [Proof of Corollary 32] The proof follows immediately from the expression for FX and the
Borel-Cantelli Lemma.

Remark 33 Note that the convergence theorem above implies that in the limit, T Xn,dXn only
retains information about the support of the probability measure but not about the way the mass is
distributed inside the support, compare to Hartigan (1985).

Example 13 (Z Rd) Let ρ :Rd R be a density function with compact, support Z and µ be its
associated probability measure. Then Rd , ,µ satisfies the assumptions in the theorem. If one
makes additional smoothness assumptions on ρ, in this particular case one can relate FZ n,ζ to
geometrical properties of the boundary of supp ρ .

Example 14 (Z is a Riemannian manifold) In more generality, Z could be a Riemannian manifold
and µ a probability measure absolutely continuous w.r.t. to the Riemannian area measure on Z.

6. Discussion

We have obtained novel characterization, stability and convergence theorems for SL HC. Our theo-
rems contemplate both the deterministic and the stochastic case. Our characterization theorem can
be interpreted as a relaxation of Kleinberg’s impossibility result for standard clustering methods
in that by allowing the output of clustering methods to be hierarchical, one obtains existence and
uniqueness.

Our stability results seem to be novel and complement classical observations that CL and AL
are discontinuous as maps from finite metric spaces into dendrograms.

Our convergence results also seem to be novel and they refine a previous observation by Hartigan
about the information retained about an underlying density by SL clustering of an i.i.d. collection
of samples from that density. Our setting for the stochastic convergence results is quite general in
that we do not assume the underlying space to be a smooth manifold and we do not assume the
underlying probability measure to have a density with respect to any reference measure.

We understand that SL HC is not sensitive to variations in the density (see also Hartigan, 1981).
In our future work we will be looking at ways of further relaxing the notions of clustering that can
cope with the problem of detecting “dense” clusters, in the same spirit as Wishart (1969); Stuetzle
(2003). A follow up paper (Carlsson and Mémoli, 2009) presents a systematic treatment of this with
a more general framework.

Some recent works have also addressed the characterization of clustering schemes in the hierar-
chical case. The authors of the present paper reported a characterization for proximity dendrograms
(Carlsson and Mémoli, 2008) using the language of category theory. Zadeh and Ben-David (2009)
gave a characterization for threshold dendrograms.7 More classical is the work of Jardine and Sibson
(1971) who also ultimately view HC methods as maps form finite metric spaces to finite ultrametric
spaces.

7. Recall that the difference between these two types of dendrograms is that proximity dendrograms retain the linkage
value at which mergings take place whereas threshold dendrograms only record the order, see Remark 3.
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It is interesting to consider the situation when one requires the map φ in our characterization
theorem (Theorem 18) to be 1 to 1 on points. In this case, a much wider class of hierarchical
schmemes becomes possible including for example a certain version of clique clustering. The
restriction on the nature of φ would be called restriction of functoriality by a mathematician. The
classification question of clustering methods that arises becomes mathematically interesting and we
are currently exploring it (Carlsson and Mémoli, Stanford, 2009; Carlsson and Mémoli, 2008).
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Appendix A. Notation

Symbol Meaning

R Real numbers.
Rd d-dimensional Euclidean space.
N Natural numbers.
a A square symmetric matrix with elements ai j which are usually distances.
X ,d Metric space X with metric d, page 1429.
X ,u Ultrametric space X with ultrametric u, page 1429.
X , Xn Collection of all finite (resp. n point) metric spaces, page 1429.
U, Un Collection of all finite (resp. n point) ultrametric spaces, page 1429.
C X Collection of all non-empty subsets of the set X , page 1429.
U X Collection of all ultrametrics over the finite set X , page 1429.
P X Collection of all partitions of the finite set X , page 1429.
Π,B,A A partition of a finite set and blocks of that partition, respectively, page 1429.
, a , A An equivalence relation, the equivalence class of a point and the quotient space,

page 1429.
r An equivalence relation with a parameter r 0, page 1429.

Sk 1 r Sphere of radius r and dimension k 1 embedded in Rk, page 1429.
L W Maximal metric W , page 1429.
θ : 0, P X A dendrogram over the finite set X , 1431.
D X Collection of all dendrograms over the finite set X , page 1431.
θ Dendrogram over the finite set X arising from r, 1433.
!SL,!CL,!AL Linkage functions, page 1434.
θSL,θAL,θCL Dendrograms arising from linkage functions, 1434.
T A hierarchical clustering method seen as a map T : X U, page 1442.
T A HC method arising from the maximal sub-dominant ultrametric, page 1442.
uθ An ultrametric obtained from the dendrogram θ, page 1440.
θu A dendrogram obtained from the ultrametric u, page 1441.
Ψ A bijective map between D X and U X , page 1439.
Δn Metric space isometric to an n point unit simplex, page 1447.
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Ln Metric space isometric to n points on a line, page 1447.
dZH Hausdorff distance between subsets of the metric space Z, page 1455.
TSL,TCL,TCL Standard linkage based HC methods seen as maps from X to U, page 1442.
dis f , dis f ,g Distortion of a map f and joint distortion of a pair of maps f and g, page 1445.
dGH Gromov-Hausdorff distance between metric spaces, pages 1445, 1456.
sep X Separation of the metric space X , page 1429.
diam X Diameter of the metric space X , page 1429.
Pn All the n! permutations of elements of the set 1, . . . ,n .
ΓX ,Y A function used to measure metric distortion, page 1456.
X ,d,µ An mm-space, X ,d a compact metric space, µ a Borel probability measure,

page 1459.
supp µ Support of the probability measure µ, page 1459.
Pµ Probability with respect to the law µ.

Appendix B. Proofs

Proof [Proof of Proposition 8] The claim follows from the following claim, which we prove by
induction on i:
Claim: For all i 2, x,x X are s.t. there exists B Θi with x,x B if and only if x Ri 1 x .
Proof [Proof of the Claim] For i 2 the claim is clearly true. Fix i 2.

Assume that x,x X and B Θi 1 are such that x,x B . If x,x belong to the same block
of Θi there is nothing to prove. So, assume that x A and x A with A A and A ,A Θi.
Then, it must be that there exist blocks A A1,A2, . . . ,As A of Θi s.t. !SL At ,At 1 Ri for
t 1, . . . ,s 1. Pick x1,y1 A1, x2,y2 A2, . . . , xs,ys As s.t. x1 x and ys x and d yt ,xt 1
!SL At ,At 1 Ri for t 1, . . . ,s 1, see the Figure 21.

A1

A2

A3

x2

y1

x1

y2

x3
y3

As

As 1

ys

xs

xs 1 ys 1

Figure 21: Construction used in the proof of Proposition 8.

Notice that by the inductive hypothesis we have xt Ri 1 yt for t 1, . . . ,s. It follows that x r x
for r max Ri,Ri 1 . By Proposition 5, r Ri and hence x Ri x .

Assume now that x Ri x . If x,x belong to the same block of Θi there’s nothing to prove since
Θi 1 is coarser than Θi and hence x,x will also belong to the same block of Θi 1. Assume then
that x B and x B for B,B Θi with B B . Let x x1,x2, . . . ,xs x be points in X with
d xt ,xt 1 Ri for t 1, . . . ,s 1. Also, for t 1, . . . ,s 1 let Bt be the block of Θi to which xt
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belongs. But then, by construction

Ri d xt ,xt 1 min
z Bt ,z Bt 1

d z,z !SL Bt ,Bt 1 for t 1, . . . ,s 1,

and hence B1 !SL,Ri Bs. In particular, B1 Bs A for some A Θi 1 and thus x,x belong to the
same block in Θi 1.

Proof [Proof of Lemma 10] Obviously uθ is non-negative. Pick x,x ,x X and let r1,r2 0 be
s.t. x,x belong to the same block of θ r1 and x ,x belong to the same block of θ r2 . These
numbers clearly exist by condition (2) in the definition of dendrograms. Then, there exist a block
B of θ max r1,r2 s.t. x,x B and hence uθ x,x max r1,r2 . The conclusion follows since
r1 uθ x,x and r2 uθ x ,x are arbitrary.

Now, let x,x X be such that uθ x,x 0. Then x,x are in the same block of θ 0 . Condition
(1) in the definition of dendrograms implies that x x .

Proof [Proof of Lemma 12] Pick x,x X and let r : uθ x,x . Then, according to (3), there
exist x0,x1, . . . ,xt X with x0 x, xt x and maxi d xi,xi 1 r. From (4) we conclude that then
u x,x r as well. Assume now that u x,x r and let x0,x1, . . . ,xt X be s.t. x0 x, xt x
and maxi d xi,xi 1 r. Then, x r x and hence again by recalling (3), uθ x,x r. This finishes
the proof.

Proof [Proof of Theorem 18] Pick X ,d X . Write T X ,d X ,u and T X ,d X ,u .
(A) We prove that u x,x u x,x for all x,x X . Pick x,x X and let δ : u x,x . Let
x x0, . . . ,xn x be s.t.

max
i
d xi,xi 1 u x,x δ.

Consider the two point metric space Z,e : p,q , 0 δ
δ 0 . Fix i 0, . . . ,n 1 . Consider

φ : p,q X given by p xi and q xi 1. By condition (I) we have T Zδ Zδ. Note that
δ e p,q d φ p ,φ q d xi,xi 1 and hence by condition (II),

δ u xi,xi 1 .

Then, since i was arbitrary, we obtain δ maxi u xi,xi 1 . Now, since u is an ultrametric on X ,
we know that maxi u xi,ui 1 u x,x and hence δ u x,x .
(B)We prove that u x,x u x,x for all x,x X . Fix r 0. Let Xr,dr be the metric space with
underlying set Xr given by the equivalence classes of X under the relation x r x . Let φr : X Xr
be given by x x r where x r denotes the equivalence class of x under r. Let d̃r : Xr Xr R

be given by

d̃r z,z min
x φ 1

r z
x φ 1

r z

d x,x
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and let dr L d̃r . Note that, by our construction, φr is such that for all x,x X ,

d x,x dr φr x ,φr x .

Indeed, assume the contrary. Then for some x,x X one has that d x,x dr φr x ,φr x . But,
from the definition of dr it follows that d x,x dr φr x ,φr x d̃r φr x ,φr x
min d x,x , s.t. x r x;x r x . This is a contradiction since x r x and x r x .

Write T Xr,dr Xr,ur . Then, by condition (III),

u x,x ur φr x ,φr x (14)

for all x,x X . Note that
sep Xr,dr r. (15)

Indeed, for otherwise, there would be two points x,x X with x r x r and r d x,x
u x,x . But this gives a contradiction by Remark 13.
Claim: u x,x r implies that ur φr x ,φr x r.
Assuming the claim, let x,x X be s.t. u x,x r, then by Equation (14),

u x,x ur φr x ,φr x r.

That is, we have obtained that for any r 0,

x,x s.t.u x,x r x,x s.t.u x,x r ,

which implies that u x,x u x,x for all x,x X .
Proof of the claim. Let x,x X be s.t. u x,x r. Then, x r x r. By definition of φr, also,
φr x φr x and hence, by condition (III) and Equation (15):

ur φr x ,φr x sep Xr,dr r.

Proof [Proof of Proposition 26] Write T X ,dX X ,uX and T Y,dY Y,uY . Let η
dGH X ,dX , Y,dY and R R X ,Y s.t. dX x,x dY y,y 2η for all x,y , x ,y R.
Fix x,y and x ,y R. Let x0, . . . ,xm X be s.t. x0 x, xm x and dX xi,xi 1 uX x,x for all
i 0, . . . ,m 1. Let y y0,y1, . . . ,ym 1,ym y Y be s.t. xi,yi R for all i 0, . . . ,m (this is pos-
sible by definition of R). Then, dY yi,yi 1 dX xi,xi 1 η uX x,x η for all i 0, . . . ,m 1
and hence uY y,y uX x,x 2η. By exchanging the roles of X and Y one obtains the inequality
uX x,x uY y,y 2η. This means uX x,x uY y,y 2η. Since x,y , x ,y R are arbi-
trary, and upon recalling the expression of the Gromov-Hausdorff distance given by (12) we obtain
the desired conclusion.

Proof [Proof of Theorem 28] By Proposition 26 and the triangle inequality for the Gromov-Hausdorff
distance,

dGH X ,Z dGH X ,Z dGH X ,uX , X ,uX .

Now, (1) follows from Remark 25.
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We now prove the second claim. Let δ 0 be s.t. minα βWA α,β δ. For each z Z let α z
denote the index of the path connected component of Z s.t. z Z α z . Since r : dZH X ,Z δ

2 , it
is clear that # Z α X 1 for all α A. It follows that R x,α x x X belongs to R X ,A .
We prove below that for all x,x X ,

uA α x ,α x
(I)
uX x,x

(II)
uA α x ,α x 2r.

By putting (I) and (II) together we will have dGH X ,uX , A,uA r.
Let’s prove (I). It follows immediately from the definition of dA andWA that for all y,y X ,

WA α y ,α y dX y,y .

From the definition of dA it also follows that WA α,α dA α,α for all α,α A. Then, in
order to prove (I) pick x0, . . . ,xm in X with x0 x, xm x and maxi dX xi,xi 1 uX x,x . Consider
the points in A given by

α x α x0 ,α x1 , . . . ,α xm α x .

Then,
dA α xi ,α xi 1 WA α xi ,α xi 1 dX xi,xi 1 uX x,x

for i 0, . . . ,m 1 by the observations above. Then, maxi dA α xi ,α xi 1 dX x,x and by
recalling the definition of uA α x ,α x we obtain (I).

We now prove (II). Assume first that α x α x α. Fix ε0 0 small. Let γ : 0,1 Z α be
a continuous path s.t. γ 0 x and γ 1 x . Let z1, . . . ,zm be points on image γ s.t. z0 x, zm x
and dX zi,zi 1 ε0, i 0, . . . ,m 1. By hypothesis, one can find x x0,x1, . . . ,xm 1,xm x s.t.
dZ xi,zi r. Thus,

max
i
dX xi,xi 1 ε0 2r

and hence uX x,x ε0 2r. Let ε0 0 to obtain the desired result.
Now if α α x α x β, let α0,α1, . . . ,αl A be s.t. α0 α x , αl α x and dA α j,α j 1

uA α,β for j 0, . . . , l 1.
By definition of dA, for each j 0, . . . , l 1 one can find a chain

Cj α 0
j , . . . ,α

r j
j s.t. α 0

j α j, α
r j
j α j 1

and
r j 1

i 0
WA α i

j ,α i 1
j dA α j,α j 1 uA α,β .

SinceWA takes non-negative values, then, for fixed j 0, . . . , l 1 , it follows that

WA α i
j ,α i 1

j uA α,β for all i 0, . . . ,r j 1.

Consider the chain C α0, . . . ,αs in A joining α to β given by the concatenation of all the
Cj. By eliminating repeated consecutive elements inC, if necessary, one can assume that αi αi 1.
By construction WA αi,αi 1 uA α,β for i 0, . . . ,s 1 , and α0 α, αs β. We will now
lift C into a chain in Z joining x to x . Note that by compactness, for all ν,µ A, ν µ there exist
zνν,µ Z ν and zµν,µ Z µ s.t. WA ν,µ dZ zνν,µ,z

µ
ν,µ .
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Z µ

Z ν

zµµ, ν

zνµ, νWA µ, ν

Consider the chain G in Z given by

G x,zα0α0,α1 ,z
α1
α0,α1

, . . . ,zαsαs 1,αs
,x .

For each point g G Z pick a point x g X s.t. dZ g,x g r. Note that this is possible by
definition of r and also, that x g Z α g since r δ 2.

Let G x0,x1, . . . ,xt be the resulting path in X . Notice that if α xk α xk 1 then

dX xk,xk 1 2r WA α xk ,α xk 1 (16)

by the triangle inequality. Also, by construction, for k 0, . . . , t 1 ,

WA α xk ,α xk 1 uA α,β . (17)

Now, we claim that
uX x,x max

k
WA α xk ,α xk 1 2r. (18)

This claim will follow from (16) and the simple observation that

uX x,x max
k
uX xk,xk 1 max

k
dX xk,xk 1

which in turn follows from the fact that uX is the ultrametric on X defined by (4), see remarks in
Example 7. If α xk α xk 1 we already proved that uX xk,xk 1 2r. If on the other hand
α xk α xk 1 then (18) holds. Hence, we have that without restriction, for all x,x X ,

uX x,x max
k
WA α xk ,α xk 1 2r.

and hence the claim. Combine this fact with (17) to conclude the proof of (II). Claim (3) follows
immediately from (2).

B.1 The Proof of Theorem 30

We will make use of the following general covering theorem in the proof of Theorem 30.

Theorem 34 Let X ,d,µ be an mm-space and Xn x1,x2, . . . ,xn a collection of n independent
random variables (defined on some probability space Ω, and with values in X) and identically
distributed with distribution µ. Then, for any δ 0,

Pµ dXH Xn,supp µX δ FX n,δ .
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Proof Consider first a fixed point x supp µX and h 0. Then, since x1, . . . ,xn are i.i.d., for all i,
Pµ xi BX x,h µ BX x,h . We then have:

Pµ x
n

i 1
BX xi,h Pµ

n

i 1
x BX xi,h

Pµ
n

i 1
xi BX x,h

n

i 1
Pµ xi BX x,h (by independence)

1 µX BX x,h n

1 fX h n . (19)

We now obtain a similar bound for the probability that a ball of radius δ 2 around x is within δ
of a point in Xn. Notice that the following inclusion of events holds:

BX x,δ 2
n

i 1
BX xi,δ x

n

i 1
BX xi,δ 2 . (20)

Indeed, assume that the event x n
i 1BX xi,δ 2 holds. Then, x BX xi,δ 2 for some i

1, . . . ,n . Pick any x BX x,δ 2 , then by the triangle inequality, dX x ,xi dX x ,x dX x,xi
δ 2 δ 2 δ, thus x BX xi,δ . Since x is an arbitrary point in BX x,δ 2 we are done. Now,
from (20) and (19) (for h δ 2) above, we find

Pµ BX x,δ 2
n

i 1
BX xi,δ 1 fX δ 2 n. (21)

Now, consider a maximal δ 4-packing of supp µX by balls with centers p1, . . . , pN . Then,
clearly, supp µX N

j 1BX p j,δ 2 . Such a packing always exists since supp µX is assumed to
be compact (Burago et al., 2001). Notice that N, the cardinality of the packing, can be bounded by
1 fX δ 4 . Indeed, since BX pα,δ 4 BX pβ,δ 4 for α β, we have

1 µX supp µX µX
N

j 1
BX p j,δ 2

µX
N

j 1
BX p j,δ 4

N

j 1
µX BX p j,δ 4

N fX δ 4
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and the claim follows. Now, we finish the proof by first noting that since Xn supp µX , the
following inclusion of events holds:

dXH Xn,supp µX δ X
n

i 1
BX xi,δ

and hence, using the union bound, then (21) and the bound on N, we find:

Pµ dXH Xn,supp µX δ Pµ X
n

i 1
BX xi,δ

Pµ
N

j 1
BX p j,δ 2

n

i 1
BX xi,δ

N max
j 1,...,N

Pµ BX p j,δ 2
n

i 1
BX xi,δ

1
fX δ 4

1 fX δ 2 n

1
fX δ 4

1 fX δ 4 n (since fX is non-decreasing)

1
fX δ 4

e n fX δ 4 (by the inequality 1 t e t , t R)

FX n,δ

thus concluding the proof.

Proof [Proof of Theorem 30] For each n N, introduce the random variables rn : dZH Zn,supp µZ
and gn : dGH T Zn,dZn ,T A,dA . Fix ζ δA 2. Note that by Theorem 28 (2) once rn ζ
for some ζ ζ we know that gn rn a.s. Hence, we have

P gn ζ P rn ζ FX n,ζ , (22)

where the last inequality follows from Lemma 34.
Meanwhile, if ζ ζ is arbitrary, then P gn ζ P gn ζ . By (22) (for ζ ζ ) we find

P gn ζ P rn ζ FX n,ζ for all ζ ζ . Thus, we have found that

P gn ζ
FX n,ζ for ζ ζ .

FX n,ζ for ζ ζ .

The conclusion now follows.
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Abstract
Kernel techniques have long been used in SVM to handle linearly inseparable problems by trans-
forming data to a high dimensional space, but training and testing large data sets is often time
consuming. In contrast, we can efficiently train and test much larger data sets using linear SVM
without kernels. In this work, we apply fast linear-SVM methods to the explicit form of poly-
nomially mapped data and investigate implementation issues. The approach enjoys fast training
and testing, but may sometimes achieve accuracy close to that of using highly nonlinear kernels.
Empirical experiments show that the proposed method is useful for certain large-scale data sets.
We successfully apply the proposed method to a natural language processing (NLP) application by
improving the testing accuracy under some training/testing speed requirements.
Keywords: decomposition methods, low-degree polynomial mapping, kernel functions, support
vector machines, dependency parsing, natural language processing

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995) have been popular
for data classification. An SVM often maps data to a high dimensional space and then employs
kernel techniques. We refer to such an approach as nonlinear SVM. Training nonlinear SVM is usu-
ally performed through the use of popular decomposition methods. However, these decomposition
approaches require considerable time for large data sets. In addition, the testing procedure is slow
due to the kernel calculation involving support vectors and testing instances.

For some applications with data in a rich dimensional space (e.g., document classification),
people have shown that testing accuracy is similar with/without a nonlinear mapping. If data are not
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mapped, recently some methods have been proposed to efficiently train much larger data sets. We
refer to such cases as linear SVM.

Among the recent advances in training large linear SVM, Hsieh et al. (2008) discuss decom-
position methods for training linear and nonlinear SVM. If l is the number of training data, n̄ is
the average number of non-zero features per instance, and each kernel evaluation takes O(n̄) time,
then the cost per decomposition iteration for nonlinear SVM is O(ln̄). Taking the property of linear
SVM, Hsieh et al.’s approach runs one iteration in only O(n̄). If the number of iterations is not
significantly more than that for the nonlinear case, their method is very efficient for training linear
SVM.

Motivated by the above O(ln̄) and O(n̄) difference, in this work, we investigate the performance
of applying linear-SVM methods to low-degree data mappings. By considering the explicit form of
the mapping, we directly train a linear SVM. The cost per decomposition iteration is O(n̂), where n̂
is the new average number of non-zero elements in the mapped vector. If n̂ < ln̄, the new strategy
may be faster than the training using kernels.

Currently, polynomial kernels are less widely used than the RBF (Gaussian) kernel, which maps
data to an infinite dimensional space. This might be because under similar training and testing cost,
a polynomial kernel may not give higher accuracy. We show for some data, the testing accuracy
of using low-degree polynomial mappings is only slightly worse than RBF, but training/testing via
linear-SVM strategies is much faster. Therefore, our approach takes advantages of linear methods,
while still preserves a certain degree of nonlinearity. Some early works (e.g., Gertz and Griffin,
2005; Jung et al., 2008; Moh and Buhmann, 2008) have employed this idea in their experiments.
Here we aim at a more detailed study on large-scale scenarios.

An exception where polynomial kernels have been popular is NLP (natural language process-
ing). Some have explored the fast calculation of low-degree polynomial kernels to save the testing
time (e.g., Isozaki and Kazawa, 2002; Kudo and Matsumoto, 2003; Goldberg and Elhadad, 2008).
However, these works still suffer from the slow training because of not applying some recently
developed training techniques.

This paper is organized as follows. We introduce SVM in Section 2. In Section 3, we discuss the
proposed method for efficiently training and testing SVM for low-degree polynomial data mappings.
A particular emphasis is on the degree-2 polynomial mapping. Section 4 presents the empirical
studies. We give an NLP application on dependency parsing in Section 5. Conclusions are in
Section 6.
Notation: we list some notation related to the number of features.
n: number of features (dimensionality of data); xi ∈ Rn is the ith training instance
ni: number of non-zero feature values of xi
n̄: average number of non-zero elements in xi; see (9)
n̂: average number of non-zero elements in the mapped vector φ(xi)
ñ: number of non-zero elements in the weight vector w

2. Linear and Nonlinear SVM

Assume training instance-label pairs are (xi,yi), i = 1, . . . , l, where xi ∈ Rn and yi ∈ {1,−1}. We
consider the following SVM problem with a penalty parameterC > 0:

min
w

1
2
wTw+C∑l

i=1max(1− yiwTφ(xi),0). (1)
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The function φ(x) maps an instance to a higher dimensional space for handling linearly inseparable
data. We refer to such a setting as nonlinear SVM. For some applications, φ(x) = x can already
properly separate data; we call such cases linear SVM.Many SVM studies considerwTxi+b instead
of wTxi in (1). In general this bias term b does not affect the performance much, so here we omit it
for the simplicity.

Due to the high dimensionality of φ(x) and the possible difficulty of obtaining the explicit form
of φ(x), SVM is often solved through the dual problem with the kernel trick:

min
α

1
2
αTQα− eTα

subject to 0≤ αi ≤C, i= 1, . . . , l, (2)

where Qi j = yiy jK(xi,x j) = yiy jφ(xi)Tφ(x j) and e= [1, . . . ,1]T . K(xi,x j) is called the kernel func-
tion and α is the dual variable.

The matrix Q in the dual problem (2) is dense and may be too large to be stored in the computer
memory. Currently, decomposition methods (e.g., Joachims, 1998; Keerthi et al., 2001; Chang and
Lin, 2001) are the major approach to solve (2). However, if linear SVM is considered, we can more
easily solve both the primal and the dual problems. Early studies (e.g., Mangasarian and Musicant,
1999; Ferris and Munson, 2003) have demonstrated that many traditional optimization methods can
be applied. They focus on data with many instances but a small number of features. Recently,
an active research topic is to train linear SVM with both large numbers of instances and features
(e.g., Joachims, 2006; Shalev-Shwartz et al., 2007; Bottou, 2007; Hsieh et al., 2008; Langford et al.,
2009).

3. Using Linear SVM for Low-degree Polynomial Data Mappings

In this section, we discuss the methods and issues in training/testing low-degree data mappings
using linear SVM. We are interested in when the training via linear-SVM techniques is faster than
nonlinear SVM. We put an emphasis on the degree-2 polynomial mapping.

3.1 Low-degree Polynomial Mappings

A polynomial kernel takes the following form

K(xi,x j) = (γxTi x j + r)d, (3)

where γ and r are parameters and d is the degree. The polynomial kernel is the product between two
vectors φ(xi) and φ(x j). For example, if d = 2 and r = 1, then

φ(x) = [1,
√

2γx1, . . . ,
√

2γxn,γx21, . . . ,γx2n,
√
2γx1x2, . . . ,

√
2γxn−1xn]T . (4)

The coefficient
√
2 in (4) is only used to make φ(xi)Tφ(x j) have a simple form. Without using

kernels, we can consider more flexible mapping vectors. For example, if γ= 1, removing
√
2 in (4)

results in a simple mapping vector:

φ(x) = [1,x1, . . . ,xn,x21, . . . ,x2n,x1x2, . . . ,xn−1xn]T . (5)

For the polynomial kernel (3), the dimensionality of φ(x) is

C(n+d,d) =
(n+d)(n+d−1) · · ·(n+1)

d!
,
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which is obtained by counting the number of terms in (3).

3.2 Training by Linear SVMMethods

The training time for SVM depends on the number of data instances and the number of features.
Due to the high dimensionality of φ(x), we must judge whether it is better to choose an explicit
mapping or an implicit way by kernels. We explore this issue by investigating the difference between
applying decomposition methods to solve the dual problem of linear and nonlinear SVM. Though
many optimization methods have been applied to train SVM, we discuss decomposition methods
because of the following reasons. First, they are the major approach for nonlinear SVM. Second,
efficient decomposition methods for linear SVM have been developed (e.g., Hsieh et al., 2008).

A decomposition method iteratively updates a small subset of variables. We consider the situa-
tion of updating one variable at a time.1 If α is the current solution and the ith component is selected
for update, then we minimize the following one-variable problem:

min
d

1
2
(α+dei)TQ(α+dei)− eT (α+dei)

=
1
2
Qiid2+(Qα− e)id+ constant (6)

subject to 0≤ αi+d ≤C.

This minimization is easy, but to construct (6), we must calculate

(Qα− e)i =∑l
j=1Qi jα j−1=∑l

j=1 yiy jK(xi,x j)α j−1. (7)

If each kernel element costs O(n̄), where n̄ is the average number of non-zero features, then (7)
needs O(ln̄) operations.

If using the explicit mapping vectors, we can calculate (Qα− e)i by

∑l
j=1Qi jα j−1= yiwTφ(xi)−1, where w=∑l

j=1 y jα jφ(x j). (8)

If w is available, (8) requires O(n̂) operations, where n̂ is the average number of non-zero elements
in φ(xi), ∀i. To maintain w, Hsieh et al. (2008) use

w← w+ yi(αnewi −αoldi )φ(xi),

so the cost is also O(n̂). Therefore, the above discussion indicates the tradeoff between O(ln̄) and
O(n̂) cost by implicit and explicit mappings, respectively.

Practical implementations of decomposition methods involve other issues. For example, if us-
ing the kernel trick, we may develop better techniques for selecting the working variable at each
iteration. Then the number of iterations is smaller. More details can be found in Hsieh et al. (2008,
Section 4). Nevertheless, checkingO(ln̄) andO(n̂) can roughly indicate if using an explicit mapping
leads to faster training.

1. If using standard SVM with the bias b, the dual form contains an equality and at least two variables must be consid-
ered.
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3.3 Number of Non-zero Features per Instance

From the discussion in Section 3.2, it is important to know the value n̂. If the input data are dense,
then the number of non-zero elements in φ(x) is O(nd), where d is the degree of the polynomial
mapping.

If the input data are sparse, the number of non-zero elements is smaller than the dimensionality.
Assume ni is the number of non-zero elements of the ith training instance. Then the average number
in xi ∀i is

n̄=
n1+ · · ·+nl

l
. (9)

If d = 2, the average number of non-zero elements in φ(xi), ∀i is

n̂=
1
l ∑

l
i=1

(ni+2)(ni+1)
2

≈
1
l ∑

l
i=1

n2i
2

=
1
2
n̄2+

1
2l∑

l
i=1(ni− n̄)2. (10)

The second term in (10) is the variance of n1, . . . ,nl . If the variance is small, comparing ln̄ and n̄2/2
can possibly indicate if one should train a linear or a nonlinear SVM. In Section 4, we give more
analysis on real data.

3.4 Implementation Issues

Due to the high dimensionality of φ(xi), some implementation issues must be addressed. To begin,
we discuss various ways to handle the new data φ(x1), . . . ,φ(xl). A vector φ(x) now contains terms
like xrxs, which can be calculated using x. We consider three methods:

1. Calculate and store φ(x1), . . . , φ(xl) as the new input data.

2. Use x1, . . . , xl as the input data and calculate all φ(x1), . . . , φ(xl) before training.

3. Use x1, . . . , xl as the input data and calculate φ(xi) in a training algorithm (e.g., decomposition
method).

These methods have advantages/disadvantages. The first method does not require any modification
of linear-SVM solvers, but needs a large O(ln̂) disk/memory space to store φ(xi), ∀i. The second
method also needs extra memory spaces, but avoids the long time for loading data from disk. The
third method does not need extra memory, but requires some modifications of the decomposition
implementation. That is, we need to calculate φ(xi) in (8). These three methods are useful under
different circumstances. In Section 4.3, we experimentally show that for data with not too large n,
the third way is the fastest. Although φ(xi) ∀i can be stored in memory, accessing data from memory
to cache and then CPU may be slower than performing the calculation. However, for an application
with very large n and very small n̄, we demonstrate that the first or the second method may be more
suitable. See the discussion later in this section.

While we may avoid storing φ(xi), one memory bottleneck remains. The vector w has a huge
number of O(nd) components. If some features of φ(xi), ∀i are zero, their corresponding elements
in w are useless. Hence we can implement a sparse w to save the storage. In the following we
analyze the possibility of having a sparse w by considering d = 2 and assuming that features of an
instance have an equal opportunity to be zeros. The probability that (xi)r(xi)s is zero for all φ(xi),
i= 1, . . . , l is

∏l
i=1

(

1−
ni(ni−1)
n(n−1)

)

.
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Note that ni(ni−1)/n(n−1) is the probability that (xi)r(xi)s is non-zero. Then the expected number
of non-zero elements in w can be approximated by

C(n+2,2)−
n(n−1)
2 ∏l

i=1

(

1−
ni(ni−1)
n(n−1)

)

, (11)

where n(n−1)/2 is the number of xrxs terms in (4). This number is usually close toC(n+2,2) due
to the product of l values in (11). Moreover, this estimate is only accurate if features are independent.
The assumption may hold for data sets with features from bitmaps or word frequencies, but is
wrong for data with exclusive features (e.g., binary representation of a nominal feature). For data
with known structures of features, in Section 4.2 we use real examples to illustrate how to more
accurately estimate the number of w’s non-zero elements.

In Section 5, we present an example of using a sparse w. The dimensionality of the input data
is n = 46,155. If d = 2, then storing w as a dense vector takes almost 20 GBytes of memory (as-
suming double precision). This problem has a very small ni ≈ 13.3,∀i. Many xrxs terms are zero in
all φ(xi), i= 1, . . . , l, so w is very sparse. However, a naive implementation can be very inefficient.
Assume ñ is the number of non-zero elements in w, where for this example ñ = 1,438,456. Ac-
cessing an element in a sparse vector requires an expensive O(ñ) linear search. We can use a hash
table to store w, but experiments show that the access time of w is still high. If φ(xi), ∀i can be
stored in memory, we construct a hash mapping from (r,s) to j ∈ {1, . . . , ñ} and re-generate training
data using feature index j. That is, we construct a condensed representation for φ(xi), ∀i and train a
linear SVM with a dense w ∈ Rñ. The training is much more efficient because we can easily access
any element ofw. In prediction, for any testing instance x, we use the same hash table to conduct the
inner productwTφ(x). This strategy corresponds to the first/second methods in the above discussion
of handling φ(xi) ∀i.

The above technique to condense φ(xi) has been used in recent works on hash kernels (e.g.,
Shi et al., 2009). They differ from us in several aspects. First, their condensed representation is an
approximation to φ(xi). Second, with an online setting, they may not accurately solve the problem
(1).

3.5 Relations with the RBF kernel

RBF kernel (Gaussian kernel) may be the most used kernel in training nonlinear SVM. It takes the
following form:

K(xi,x j) = e
−‖xi−x j‖2

2σ2 .

Keerthi and Lin (2003) show that, as σ2→∞, SVMwith the RBF kernel and the penalty parameterC
approaches linear SVM with the penalty parameterC/(2σ2). This result implies that with a suitable
parameter selection, the testing accuracy of using the RBF kernel is at least as good as using the
linear kernel.

For polynomial kernels, Lippert and Rifkin (2006) discuss the relation with RBF. They consider
the penalty parameter (1/(2σ2))−2dC and check the situation as σ2 → ∞. For a positive integer d,
the limit of SVM with the RBF kernel approaches SVM with a degree-d polynomial mapping of
data. The polynomial mapping is related only to the degree d. This result seems to indicate that
RBF is again at least as good as polynomial kernels. However, the polynomial mapping for (3) is
more general due to two additional parameters γ and r. Thus the situation is unclear if parameter
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Data set n n̄ l # testing
a9a 123 13.9 32,561 16,281
real-sim 20,958 51.5 57,848 14,461
news20 1,355,181 455.5 15,997 3,999
ijcnn1 22 13.0 49,990 91,701
MNIST38 752 168.2 11,982 1,984
covtype 54 11.9 464,810 116,202
webspam 254 85.1 280,000 70,000

Table 1: Summary of the data sets. n is the number of features, and n̄ is the average number of non-
zero features for each data instance. l is the number of data instances. The last column
shows the number of testing data.

selections have been applied to both kernels. In Section 4, we give a detailed comparison between
degree-2 polynomial mappings and RBF.

3.6 Parameter Selection

The polynomial kernel defined in (3) has three parameters (d, γ, and r). Now we intend to use low-
degree mappings so d should be 2 or 3. Selecting the two remaining parameters is still complicated.
Fortunately, we show in Appendix A that r can be fixed to one, so the number of parameters is the
same as that of the RBF kernel. This result is obtained by proving that a polynomial kernel

K̄(xi,x j) = (γ̄xTi x j + r)d with parameters (C̄, γ̄,r) (12)

results in the same model as the polynomial kernel

K(xi,x j) = (γxTi x j +1)d with parameters γ=
γ̄
r
andC = rdC̄. (13)

3.7 Prediction

Assume a degree-d polynomial mapping is considered and #SV is the number of support vectors.
For any testing data x, the prediction time with/without kernels is

∑i:αi>0
αiyiK(xi,x) ⇒ O(#SV · n̄), (14)

wTφ(x) ⇒ O(n̂), (15)

where n̄ and n̂ are respectively the average number of non-zero elements in x and φ(x). If n̂≤ #SV · n̄,
then (15) is more efficient than (14). Several NLP studies (e.g., Isozaki and Kazawa, 2002) have
used (15) for efficient testing.

4. Experiments

In this section, we experimentally analyze the proposed approach for degree-2 polynomial map-
pings. We use two-class data sets, but in Section 5, we consider multi-class problems from an NLP
application. We briefly discuss extensions to L1-regularized SVM in Section 4.5.

1477



CHANG, HSIEH, CHANG, RINGGAARD AND LIN

Data set
Analysis of φ(xi) # non-zeros in w

n̄2/2 n̂ ln̄ C(n+2,2) Estimated by Real(11) (16)
a9a 96.2 118.1 4.52e+05 7.75e+03 7.75e+03 6.60e+03 5.56e+03
real-sim 1,325.1 2,923.6 2.98e+06 2.20e+08 1.15e+08 3.01e+07
news20 103,750.6 327,051.6 7.29e+06 9.18e+11 5.20e+09 3.13e+09
ijcnn1 84.5 105.0 6.50e+05 2.76e+02 2.76e+02 2.31e+02 2.31e+02
MNIST38 14,147.2 14,965.1 2.02e+06 2.84e+05 2.84e+05 1.54e+05
covtype 71.3 90.3 5.55e+06 1.54e+03 1.54e+03 7.54e+02 6.69e+02
webspam 3,623.5 3,836.4 2.38e+07 3.26e+04 3.26e+04 9.44e+03

Table 2: Analysis of φ(xi), i= 1, . . . , l and number of non-zero elements in w.

Except programs used in Section 5, all sources for experiments are available at http://www.
csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

4.1 Data Sets and Implementations

We select the following problems from LIBSVM tools2 for experiments: a9a, real-sim, news20,
ijcnn1, MNIST, covtype and webspam. The summary of data sets is in Table 1. Problems real-sim,
news20, covtype and webspam have no original test sets, so we use a 80/20 split for training and
testing. MNIST is a 10-class problem; we consider classes 3 and 8 to form a two-class data set
MNIST38. While covtype is originally multi-class, we use a two-class version at LIBSVM tools.

We do not further scale these data sets as some of them have been pre-processed. Problems
real-sim, news20 and webspam are document sets and each instance is normalized to unit length.
We use a scaled version of covtype at LIBSVM tools, where each feature is linearly scaled to [0,1].
The original MNIST data have all feature values in the range [0,255], but the version we download
is scaled to [0,1] by dividing every value by 255.

We compare implicit mappings (kernel) and explicit mappings of data by LIBSVM (Chang and
Lin, 2001) and an extension of LIBLINEAR (Fan et al., 2008), respectively. The two packages use
similar stopping conditions, and we set the same stopping tolerance 0.1. Experiments are conducted
on a 2.5G Xeon L5420 machine with 16G RAM using gcc compiler. Our experiments are run on a
single CPU.

4.2 Analysis of φ(x) and w

Following the discussion in Section 3.2, we check ln̄ and n̂ to see if using the explicit mapping of
data may be helpful. Table 2 presents these two values for the degree-2 polynomial mapping. We
also present n̄2/2 as from (10) it can be a rough estimate of n̂.

From Table 2, except document data real-sim and news20, n̄2/2 is close to n̂. The huge differ-
ence between n̂ and ln̄ indicates that using explicit mappings is potentially faster.

Next we investigate the number of non-zero elements in w. Table 2 presents the dimensionality
of w, two estimated numbers of non-zero elements and the actual number. For most data, the first
estimation by (11) pessimistically predicts that w is fully dense. Two exceptions are real-sim and

2. LIBSVM tools can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
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Data set n̂/n̄ Storing φ(xi) Calculating φ(xi)
L2 cache misses Training time (s) L2 cache misses Training time (s)

a9a 8.51 5.62e+07 2.2 2.51e+06 1.6
real-sim 56.79 2.60e+09 63.3 1.84e+09 59.8
ijcnn1 8.08 3.62e+08 14.0 2.32e+07 10.7
MNIST38 88.97 9.08e+08 20.4 7.90e+06 8.6
covtype 7.56 1.55e+11 6,422.4 2.98e+10 5,211.9
webspam4 45.07 1.30e+11 4,219.3 3.20e+09 3,228.1

Table 3: A comparison between storing and calculating φ(xi). The column n̂/n̄ indicates the ratio
between the memory consumption for storing φ(xi) and xi. Time is in seconds.

news20, where (11) is quite accurate. These two sparse document sets seem to have independent
features (word occurrence) so that the assumption for (11) holds. For data with known structures, we
demonstrate that a better estimate than (11) can be achieved. The problem a9a contains 14 groups
of features3 and each group contains several exclusive binary features (e.g., age in various ranges).
Within each group, xrxs = 0 if r ,= s, so an upper bound of w’s number of non-zero elements is

C(n+2,2)− ∑
feature groups

C(#features in each group,2). (16)

We show in Table 2 that (16) is closer to the actual number. The situation for two other problems
(ijcnn1 and covtype) is similar.

As storing news20’s non-zero w elements requires more memory than our machine’s capacity,
we do not include this set in subsequent experiments.

4.3 Calculating or Storing φ(xi)

In Section 3.4, we discuss three methods to handle φ(xi). Table 3 compares the first/second and the
third methods. We selectC and kernel parameters by a validation procedure and present the training
time of using optimal parameters. For the first/second methods, we count CPU time after all φ(xi)
have been loaded/generated. For the third, we show CPU time after loading all xi, as this method
calculates φ(xi), ∀i in the middle of the training procedure.

Table 3 lists n̂/n̄ to show the ratio between two methods’ memory consumption on storing φ(xi)
and xi, ∀i. In the same table we present each method’s number of L2 cache misses and training
time. The number of L2 cache misses is obtained by the simulation tool cachegrind in valgrind.5
The method by calculating φ(xi) is faster in all cases. Moreover, it has a smaller number of L2
cache misses. Data can be more easily located in the cache when φ(xi) is not stored. We consider
the method of calculating φ(xi) for subsequent experiments in this section.

3. See descriptions in the beginning of each file from http://research.microsoft.com/en-us/um/people/
jplatt/adult.zip.

4. For webspam, as φ(xi) ∀i require more memory than what our machine has, we use single precision floating-point
numbers to store the data. All other experiments in this work use double precision.

5. cachegrind can be found at http://valgrind.org/.
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Linear (LIBLINEAR) RBF (LIBSVM)
Data set C Time (s) Accuracy C γ Time (s) Accuracy
a9a 32 5.4 84.98 8 0.03125 98.9 85.03
real-sim 1 0.3 97.51 8 0.5 973.7 97.90
ijcnn1 32 1.6 92.21 32 2 26.9 98.69
MNIST38 0.03125 0.1 96.82 2 0.03125 37.6 99.70
covtype 0.0625 1.4 76.35 32 32 54,968.1 96.08
webspam 32 25.5 93.15 8 32 15,571.1 99.20

Table 4: Comparison of linear SVM and nonlinear SVM with RBF kernel. Time is in seconds.

Data set
Degree-2 Polynomial Accuracy diff.

C γ
Training time (s) Accuracy Linear RBFLIBLINEAR LIBSVM

a9a 8 0.03125 1.6 89.8 85.06 0.07 0.02
real-sim 0.03125 8 59.8 1,220.5 98.00 0.49 0.10
ijcnn1 0.125 32 10.7 64.2 97.84 5.63 −0.85
MNIST38 2 0.3125 8.6 18.4 99.29 2.47 −0.40
covtype 2 8 5,211.9 NA 80.09 3.74 −15.98
webspam 8 8 3,228.1 NA 98.44 5.29 −0.76

Table 5: Training time (in seconds) and testing accuracy of using the degree-2 polynomial mapping.
The last two columns show the accuracy difference to results using linear and RBF. NA
indicates that programs do not terminate after 300,000 seconds.

4.4 Accuracy and Time of Using Linear, Degree-2 Polynomial, and RBF

We compare training time, testing time, and testing accuracy of using three mappings: linear,
degree-2 polynomial, and RBF.We use LIBLINEAR for linear, LIBSVM for RBF, and both for degree-
2 polynomial. For each data set, we choose parameters C and γ by a five-fold cross validation on
a grid of points. The best (C,γ) are then used to train the whole training set and obtain the testing
accuracy. To reduce the training time, LIBSVM allocates some memory space, called kernel cache,
to store recently used kernel elements. In contrast, LIBLINEAR does not require this space. All it
needs is to store w. In this work, we run LIBSVM using 1 GBytes of kernel cache.

Using linear and RBF mappings, Table 4 presents the training time, testing accuracy, and the
correspondent parameters. Linear and RBF have similar testing accuracy on data sets a9a and real-
sim. The set real-sim contains document data with many features. Linear classifiers have been
observed to perform well on such data with much less training time. For other data sets, the testing
accuracy of using linear is clearly inferior to that of using RBF. Degree-2 polynomial mappings may
be useful for these data. We can possibly improve the accuracy over linear while achieving faster
training time than RBF.

We then explore the performance of the degree-2 polynomial mapping. The first part of Table
5 shows the training time, testing accuracy, and optimal parameters using LIBLINEAR. As a com-
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Data set LIBLINEAR LIBSVM
linear degree-2 degree-2 RBF

a9a 0.00 0.01 19.28 32.42
real-sim 0.02 1.13 107.67 84.52
ijcnn1 0.02 0.07 14.07 20.38
MNIST38 0.00 0.12 2.41 5.76
covtype 0.03 0.09 NA 998.68
webspam 0.05 1.14 NA 846.77

Table 6: Testing time (in seconds) using decomposition methods for linear and nonlinear SVM.
Parameters in Tables 4 and 5 are used to build SVM models for prediction. NA: SVM
models are not available due to lengthy training time (see Table 5).

parison, we run LIBSVM with the same parameters and report training time.6 Table 5 also presents
the testing accuracy difference between degree-2 polynomial and linear/RBF. It is observed that for
nearly all problems, the performance of the degree-2 polynomial mapping can compete with RBF,
while for covtype, the performance is only similar to the linear mapping. Apparently, a degree-2
mapping does not give rich enough information to separate data in covtype.

Regarding the training time, LIBLINEAR with degree-2 polynomial mappings is faster than
LIBSVM with RBF. Therefore, the proposed method may achieve fast training, while preserving
some benefits of nonlinear mappings. Next, we compare the training time between LIBLINEAR
and LIBSVM when the same degree-2 polynomial mapping is used. From Table 5, LIBLINEAR is
much faster than LIBSVM. Thus for applications needing to use low-degree polynomial kernels, the
training time can be significantly reduced.

We present testing time in Table 6. The explicit mapping approach is much faster as it calculates
only wTx or wTφ(x).

4.5 L1-regularized SVM with Linear and Degree-2 Polynomial Mappings

Recently, L1-regularized SVM has gained attention because it can produce a sparse model (see, for
example, the survey by Yuan et al., 2009, and references therein). An L1-regularized SVM7 solves

min
w

‖w‖1+C∑l
i=1max(1− yiwTφ(xi),0)2, (17)

where ‖ ·‖1 denotes the 1-norm. As discussed in Section 3.4, after a degree-2 polynomial mapping
the number of features may be very large. A sparse w reduces the memory consumption. In this
section, we conduct a preliminary investigation on training degree-2 polynomial mappings via (17).

Due to the non-differentiable term ‖w‖1, optimization techniques for (17) are different from
those for L2-regularized SVM. If we pre-compute φ(xi), ∀i (i.e., methods 1 and 2 in Section 3.4 for
handling φ(xi)), then any optimization technique for (17) can be directly applied. Recall that Section
4.3 shows that method 3 (calculating φ(xi) in the training algorithm) is faster if n is not large. We
show an interesting example where this method significantly increases the number of operations. In

6. LIBSVM solves SVM with bias b, but LIBLINEAR solves (1). As the difference is minor, we run LIBSVM with the
same parameters for LIBLINEAR. Moreover, the testing accuracy of LIBSVM is almost the same as LIBLINEAR.

7. We consider L2-loss in (17) by following Yuan et al. (2009).
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Linear Degree-2 polynomial

Data set Time Sparsity Accuracy Time (s): φ(xi) is Sparsity Accuracy L2 SVM
(s) (%) (%) stored calculated (%) (%) Sparsity

a9a 0.73 83.74 85.00 3.94 19.33 10.43 85.10 71.74
real-sim 1.06 25.16 97.04 524.54 2,288.27 0.01 97.43 26.17
ijcnn1 0.86 100.00 91.79 9.17 18.09 83.70 97.59 83.70
MNIST38 0.86 55.85 96.93 38.11 81.10 0.23 99.50 54.23
covtype 60.07 98.15 75.66 70.13 2,196.08 39.22 79.73 43.44
webspam 47.08 38.98 92.55 772.92 1,296.40 12.60 98.32 28.96

Table 7: L1-regularized SVM: a comparison between linear and degree-2 polynomial mappings.
Time is in seconds. Sparsity is the percentage of non-zero elements in w. For the degree-2
polynomial mapping, we show the training time of both calculating and storing φ(x).

Yuan et al. (2009), a primal decomposition (coordinate descent) method is considered the fastest for
solving (17). It updates one element of w at a time. If w is the current solution and the jth element
is selected, the following one-variable problem is minimized:

min
d

|wj +d|+C∑l
i=1max

(

1− yiwTφ(xi)− yidφ(xi) j,0
)2

.

Assume φ(x) j involves xrxs. To obtain all φ(xi) j, ∀i, we must go through non-zero elements of
the rth and the sth features of the original data. This operation costs O(l̄), where l̄ is the average
number of non-zero elements per feature of xi, ∀i. However, the expected number of non-zero
elements of φ(xi) j, ∀i is only

(

l̄/l
)2 · l = l2/l.

If data are sparse, l2/l is much smaller than l̄. Therefore, the cost by using methods 1 and 2 to
pre-compute φ(xi), ∀i is less than method 3. This is mainly because the primal coordinate descent
approach accesses data in a feature-based way. The sparse patterns of two features are needed.
In contrast, decomposition methods used earlier for solving the dual problem of L2-regularized
SVM is instance-based. To obtain xrxs, one needs only the sparse pattern of an instance x. Some
optimization approaches discussed in Yuan et al. (2009) for (17) are instance-based. An interesting
future study would be to investigate their performances.

We extend a primal decomposition implementation for (17) in LIBLINEAR to handle degree-2
polynomial mappings. We use default settings (e.g., stopping tolerance) in LIBLINEAR. Table 7
compares linear and degree-2 polynomial mappings by showing training time, w’s sparsity, and
testing accuracy. For the training time of using degree-2 polynomials, we present results by storing
and calculating φ(xi). Clearly, calculating φ(xi) is much slower, a result consistent with our analysis.
The training time for real-sim is much longer than that in Table 5 (L2-regularized SVM). This result
is due to the huge number of variables in solving the primal problem (17). There are some tricks to
improve the training speed for this problem though we do not get into details. For sparsity, we also
show the result using L2-regularized SVM as a comparison.8 L1-regularized SVM gives excellent

8. The sparsity of L2-regularized SVM is in fact the column of “real” numbers of non-zero elements in Table 2 divided
by the dimensionality C(n+2,2).
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nsubj ROOT det dobj prep det pobj p

John hit the ball with a bat .
NNP VBD DT NN IN DT NN .

Figure 1: A dependency graph with arc labels and part-of-speech tags for a sentence.

sparsity for some problems. For example, MNIST38 has n = 752 features. By solving (17) with
linear mapping, 420 features remain. If using a degree-2 polynomial mapping, the dimensionality is
C(n+2,2) = 283,881. Solving an L2-regularized SVM gives a w with 153,564 non-zero elements,
but using L1 regularization w has only a very small number of 650 non-zero elements. Finally, for
testing accuracy, results are similar to (or slightly lower than) those in Tables 4-5.

Due to the nice sparsity results, L1 regularization for low-degree polynomial mappings may be
a promising future direction.

5. An NLP Application: Data-driven Dependency Parsing

In this section we study a real-world natural language processing (NLP) task on dependency parsing.
Given a sentence, a dependency graph represents each word and its syntactic modifiers through
labeled directed edges. Figure 1 shows an example. Data-driven dependency parsing is a common
method to construct dependency graphs. Different from grammar-based parsing, it learns to produce
the dependency graph solely by using the training data. Data-driven dependency parsing has become
popular because it is chosen as the shared task at CONLL-X9 and CONLL2007.10 More information
about dependency parsing can be found in, for example, McDonald and Nivre (2007).

Dependency parsing appears in many online NLP applications. In such cases testing (parsing)
speed is very important. We will see that this requirement for testing speed makes our approach
very useful for this application.

5.1 A Multi-class Problem

We study a transition-based parsing method proposed by Nivre (2003). The parsing algorithm builds
a labeled dependency graph in one left-to-right pass over the input with a stack to store partially
processed tokens. At each step, we need to decide which transition to perform. As in Nivre et al.
(2007), we use the following transitions:

• SHIFT: Pushes the next input token to the top of the stack and advances to the next input
token.

• REDUCE: Pops the top element from the stack.

9. CONLL-X can be found at http://nextens.uvt.nl/˜conll/.
10. CONLL2007 can be found at http://nextens.uvt.nl/depparse-wiki/SharedTaskWebsite.
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input(1).tag stack.tag stack.leftmost-child.label
input(2).tag stack(1).tag stack.rightmost-child.label
input(3).tag stack.label input.leftmost-child.label
input.word stack.word
input(1).word stack.head.word

Table 8: Feature types used by the dependency parser.

• LEFT-ARC(r): Adds an arc with label r from the next input token to the token on top of the
stack and pops the top element off the stack.

• RIGHT-ARC(r): Adds an arc with label r from the top token on the stack to the next input
token. Then pushes the current input token to the stack and advances to the next input token.

The parser decides the next transition by extracting features from the current parse state. The parse
state consists of the stack, the remaining input tokens, and the partially built dependency graph. We
use the standard method for converting symbolic features into numerical features by binarization.
For each feature type F (see Table 8), that has value v in the current state, we generate a feature
predicate, F = v. These feature predicates are used as binary features in the classifier. It is this
expansion of feature types to binary feature predicates that leads to the large number of features
in the classifiers. Especially the lexicalized (i.e., word-based) features generate large numbers of
sparse features.

Thus the core of the parser is a multi-class classification problem, which maps features to tran-
sitions. Nivre et al. (2006) use LIBSVM with a degree-2 polynomial kernel to train the multi-class
classification problems, and get good results at CONLL-X.

In this experiment, we use data from the English Penn Treebank (Marcus et al., 1993). The
treebank is converted to dependency format using Penn2Malt,11 and the data is split into sections
02–21 for training and section 23 for testing. During training we construct a canonical transition
sequence from the dependency graph of each sentence in the training corpus, adopting an arc-eager
approach for disambiguation. For each transition, we extract the features in Table 8 from the current
parse state, and use this for training the classifiers.

When parsing a sentence, the classifiers are used for predicting the next transition, based on the
features extracted from the current parse state. When all the input tokens have been processed the
dependency graph is extracted from the transition sequence.

In order to reduce training time the data is split into multiple sets. For example, if a feature j
takes two values a and b, we can divide the training data into {x | x j = a} and {x | x j = b}, and
get two models Ma and Mb. Then in the prediction phase, we decide to use Ma or Mb according
to x j of the testing instance. Yamada and Matsumoto (2003) mention that applying this method
reduces the training time without a significant loss in accuracy. We divide the training data into
125 smaller training sets according to the part-of-speech tag of the current input token. Also, the
label for RIGHT-ARC and LEFT-ARC transitions is predicted separately from the transition. The
number of classes ranges from 2 to 12. Table 9 lists the statistics of the largest multi-class problem
among 125.

11. See http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html
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n n̄ l #nz
46,155 13.3 294,582 3,913,845

Table 9: Summary of the dependency parsing data set. We show statistics of the largest problem
among the 125 sets divided from the training data. The column #nz (= ln̄) indicates the
total number of non-zero feature values in the training set.

5.2 Implementations

We consider the degree-2 polynomial mapping in (5). Since the original xi,∀i have 0/1 feature
values, we use (5) instead of (4) to preserve this property.12 In our implementation, by extending
LIBLINEAR, 0/1 values are still stored as double-precision numbers. However, for large data sets,
we can save memory by storing only non-zero indices. Due to using (5), the only parameter is C.

The dimensionality of using the degree-2 polynomial mapping is huge. We discussed in Sec-
tion 3.4 that 20 GBytes memory is needed to store a dense w. Assume the “one-against-the rest”
approach is applied for multi-class classification. We need 125 × (# classes) vectors of w in the
prediction (parsing) stage as training data are separated into 125 sets. Obviously we do not have
enough memory for them. As the data are very sparse, the actual number of non-zero elements in w
is merely 1,438,456 (considering the largest of the 125 training sets). Only these non-zero features
in φ(x) and w are needed in training/testing, so the memory issue is solved. In the practical imple-
mentation, we construct a hash table to collect non-zero features of φ(xi), i = 1, . . . , l as a new set
for training.13 In prediction, we use the same hash map to calculate wTφ(x). This implementation
corresponds to the first/second methods discussed in Section 3.4. See more details in the end of
Section 3.4.

Other settings (e.g., stopping tolerance and LIBSVM’s kernel cache) are the same as those in
Section 4. LIBSVM uses the “one-against-one” approach for training multi-class problems, while
LIBLINEAR uses “one-against-the rest.” We use a dependency parsing system at Google, which
calls LIBSVM/LIBLINEAR for training/testing. Parts of this experiment were performed when some
authors worked at Google.

As the whole parsing system is quite complex, we have not conducted a complete parameter
optimization. Instead, we have roughly tuned each parameter to produce good results.

5.3 Experiments

We compare two approaches. The first uses kernels, while the second does not.

• LIBSVM: RBF and degree-2 polynomial kernels.

• LIBLINEAR: linear mapping (i.e., the original input data) and the degree-2 polynomial map-
ping via (5).

12. In fact, if using (4), we can still use some ways so that
√
2 is not stored. However, the implementation is more

complicated.
13. For a fair comparison, the reported training time includes time for this pre-processing stage.
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LIBSVM LIBLINEAR
RBF Poly (d = 2) Linear Poly: Eq. (5)

Parameters
C = 0.5 C = 0.5 C = 0.5 C = 0.05

1/(2σ2) = 0.18 γ= 0.18
r = 0.3

Training time 3h34m53s 3h21m51s 3m36s 3m43s
Parsing speed 0.7x 1x 1652x 103x
UAS 89.92 91.67 89.11 91.71
LAS 88.55 90.60 88.07 90.71

Table 10: Accuracy, training time, and parsing speed (relative to LIBSVM with polynomial kernel)
for the dependency parsing.

Table 10 lists parameters for various kernels, training/testing time, and testing accuracy. Train-
ing and testing are done using gold standard part-of-speech tags, and only non-punctuation tokens
are used for scoring. The accuracy of dependency parsing is measured by two evaluation metrics:

1. Labeled attachment score (LAS): the percentage of tokens with correct dependency head and
dependency label.

2. Unlabeled attachment score (UAS): the percentage of tokens with correct dependency head.

For LIBSVM the polynomial kernel gives better accuracy than the RBF kernel, consistent with
previous observations, that polynomial mappings are important for parsing (Kudo and Matsumoto,
2000; McDonald and Pereira, 2006; Yamada and Matsumoto, 2003; Goldberg and Elhadad, 2008).
Moreover, LIBSVM using degree-2 polynomial kernel produces better results in terms of UAS/LAS
than LIBLINEAR using just a linear mapping of features. However, parsing using LIBSVM is slow
compared to LIBLINEAR. We can speed up parsing by a factor of 1,652 with only a 2.5% drop
in accuracy. With a degree-2 polynomial mapping (5), we achieve UAS/LAS results similar to
LIBSVM, while still maintaining high parsing speed, 103 times faster than LIBSVM.

From Table 10, training LIBLINEAR is a lot faster than LIBSVM. This large reduction in train-
ing time allows us to easily conduct experiments and improve the settings. Some may criticize
that the comparison on training time is not fair as LIBSVM uses “one-against-one” for multi-class
classification, while LIBLINEAR uses “one-against-the rest.” It is known (e.g., Hsu and Lin, 2002)
that for nonlinear SVM, LIBSVM with “one-against-one” is faster than “one-against-the rest.” Thus
even if we modify LIBSVM to perform “one-against-the rest,” its training is still much slower than
LIBLINEAR.

5.4 Related Work

Earlier works have improved the testing speed of SVM with low-degree polynomial kernels. Most
of them target natural language processing (NLP) applications. Isozaki and Kazawa (2002) propose
an approach similar to obtaining w by the expression in (8).14 A direct implementation of their

14. They do not really form w, but their result by expanding the degree-2 polynomial kernel leads to something very
similar.
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method requires a memory space as large as the dimensionality of w, but we cannot afford such
a space for our application. Kudo and Matsumoto (2003) consider the expression of w in (8) and
propose an approximate prediction scheme using only a sub-vector of w. Their method is useful for
data with 0/1 features. Goldberg and Elhadad (2008) propose speeding up the calculation of low-
degree polynomial kernels by separating features to rare and common ones. Goldberg and Elhadad’s
approach is motivated by some observations of NLP data. It avoids the memory problem, but the
effectiveness on general data is not clear yet.

The above existing works focus on improving testing speed. They suffer from the slow training
of using traditional SVM solvers. For example, Kudo and Matsumoto (2000) mention that “the
experiments . . . have actually taken long training time,” so they must select a subset using properties
of dependency parsing. Our approach considers linear SVM on explicitly mapped data, applies state
of the art training techniques, and can simultaneously achieve fast training and testing.

6. Discussions and Conclusions

Past research has shown that SVM using linear and highly nonlinear mappings of data has the fol-
lowing properties:

Linear Highly nonlinear
Fast training/testing Slow training/testing via kernels
Low accuracy High accuracy

Many have attempted to develop techniques in the between. Most start from the nonlinear side.
They propose methods to manipulate the kernels (e.g., Lee and Mangasarian, 2001; Keerthi et al.,
2006). In contrast, ours is from the linear side. The strategy is simple and requires only minor
modifications of existing packages for linear SVM.

This work focuses on the degree-2 polynomial mapping. An interesting future study is the effi-
cient implementation for degree-3 mappings. Considering other mapping functions to expand data
vectors could be investigated as well. As kernels are not used, we might have a greater flexibility to
design the mapping function.

Table 2 shows that storing w may require a huge amount of memory. For online training, some
(e.g., Langford et al., 2009) have designed feature hashing techniques to control the memory use
of w. Recently, feature hashing has been popular for projecting a high dimensional feature vector
to a lower dimensional one (e.g., Weinberger et al., 2009; Shi et al., 2009). For certain sequence
data, one can consider n-gram (i.e., n consecutive features) instead of general polynomial mappings.
Then not only the number of features becomes smaller, but also controlling w’s sparsity is easier.
Existing experiments on document data can be found in, for example, Ifrim et al. (2008) and Shi
et al. (2009).

We successfully apply the proposed procedure to an NLP application. It has certain require-
ments on the training and testing speed, but we also hope to achieve better testing accuracy. The
proposed procedure is very useful for applications of this type.
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Appendix A. Connection Between (12) and (13)

We prove the result by showing that the dual optimization problems of using (12) and (13) are the
same. Since

(γ̄xTi x j + r)d = rd
(

γ̄
r
xTi x j +1

)d
,

we have
Q̄i j = yiy jK̄(xi,x j) = rdQi j.

The dual optimization problem of using Q̄ can be written as

min
ᾱ

1
rd

(

1
2
(rdᾱ)TQ(rdᾱ)− eT rdᾱ

)

subject to 0≤ rdᾱi ≤ rdC̄, i= 1 . . . , l.

Using α= rdᾱ andC = rdC̄, this problem becomes the dual problem when using Q.
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Universidad Autónoma de Madrid
28049 Madrid, Spain

Ramon Huerta RHUERTA@UCSD.EDU
BioCircuits Institute
University of California, San Diego
La Jolla, CA 92093-0402, USA

Charles Elkan ELKAN@CS.UCSD.EDU
Department of Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093-0404, USA

Carlos Santa Cruz CARLOS.SANTACRUZ@IIC.UAM.ES

Departamento de Ingenierı́a Informática and IIC
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Abstract
Identifying a subset of features that preserves classification accuracy is a problem of growing im-
portance, because of the increasing size and dimensionality of real-world data sets. We propose a
new feature selection method, named Quadratic Programming Feature Selection (QPFS), that re-
duces the task to a quadratic optimization problem. In order to limit the computational complexity
of solving the optimization problem, QPFS uses the Nyström method for approximate matrix diag-
onalization. QPFS is thus capable of dealing with very large data sets, for which the use of other
methods is computationally expensive. In experiments with small and medium data sets, the QPFS
method leads to classification accuracy similar to that of other successful techniques. For large data
sets, QPFS is superior in terms of computational efficiency.
Keywords: feature selection, quadratic programming, Nyström method, large data set, high-
dimensional data

1. Introduction

The task of feature selection is to reduce the number of variables used in training a classifier. Three
main benefits can be drawn from successful feature selection: first, a substantial gain in computa-
tional efficiency (especially important for any application that requires classifier execution in real-
time); second, scientific discovery by determining which features are most correlated with the class
labels (which may in turn reveal unknown relationships among features); and, third, reduction of the
risk of overfitting if too few training instances are available (a serious problem particularly in situ-
ations with high dimensionalities relative to training set sizes). Document categorization (Forman,
2008), prosthesis control (Momen et al., 2007; Shenoy et al., 2008), cardiac arrhythmia classifica-
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tion (Rodriguez et al., 2005), fMRI analysis, gene selection from microarray data (Ding and Peng,
2005; Li et al., 2004; Zhang et al., 2008), real-time identification of polymers (Leitner et al., 2003),
and credit card fraud detection are some real-life domains where these gains are especially mean-
ingful.

Many methods have been suggested to solve the variable selection problem. They can be cat-
egorized into three groups. Filter methods perform feature selection that is independent of the
classifier (Bekkerman et al., 2003; Forman, 2003, 2008). Wrapper methods use search techniques
to select candidate subsets of variables and evaluate their fitness based on classification accuracy
(John et al., 1994; Kohavi and John, 1997; Langley, 1994). Finally, embedded methods incorporate
feature selection in the classifier objective function or algorithm (Breiman et al., 1984; Weston et al.,
2001).

Filter methods are often preferable to other selection methods because of their usability with
alternative classifiers, their computational speed, and their simplicity (Guyon, 2003; Yu and Liu,
2003). But filter algorithms often score variables separately from each other, so they do not achieve
the goal of finding combinations of variables that give the best classification performance. It has
been shown that simply combining good variables does not necessary lead to good classification
accuracy (Cover, 1974; Cover and Thomas, 1991; Jain et al., 2000). Therefore, one common im-
provement direction for filter algorithms is to consider dependencies among variables. In this di-
rection approaches based on mutual information, in particular Maximal Dependency (MaxDep) and
minimal-Redundancy-Maximum-Relevance (mRMR), have been significant advances (Peng et al.,
2005).

The central idea of the MaxDep approach is to find a subset of features which jointly have the
largest dependency on the target class. However, it is often infeasible to compute the joint density
functions of all features and of all features with the class. One approach to making the MaxDep
approach practical is Maximal Relevance (MaxRel) feature selection (Peng et al., 2005). This ap-
proach selects those features that have highest relevance (mutual information) to the target class.
The main limitation of MaxRel is not accounting for redundancy among features. The mRMR
criterion is another version of MaxDep that chooses a subset of features with both minimum redun-
dancy (approximated as the mean value of the mutual information between each pair of variables in
the subset) and maximum relevance (estimated as the mean value of the mutual information between
each feature and the target class). Given the prohibitive cost of considering all possible subsets of
features, the mRMR algorithm selects features greedily, minimizing their redundancy with features
chosen in previous steps and maximizing their relevance to the class.

The new method proposed in this paper aims at dealing with very large data sets with high di-
mensionality providing a time complexity improvement respect to current methods.We show how
to build on well-established mathematical methods to reduce time and space complexity. The new
method is named Quadratic Programming Feature Selection (QPFS) because it is based on efficient
quadratic programming (Bertsekas, 1999). We introduce an objective function with quadratic and
linear terms. The quadratic term captures the dependence (that is, similarity, correlation, or mu-
tual information) between each pair of variables, whereas the linear term captures the relationship
between each feature and the class label. For large data sets, solving a quadratic programming
problem can have high time and space complexity. Therefore, we show how to reformulate the
optimization problem in a lower dimensional subspace using the Nyström method for matrix diag-
onalization (Fowlkes et al., 2001). The Nyström approximation allows the variables to be sampled,
without losing much information but with a great improvement in the speed of the algorithm. Ex-
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perimental results show that the QPFS method achieves accuracy similar to that of other methods
on medium-size data sets, while on the well-known large MNIST data set, QPFS is more efficient
than its predecessors.

The present manuscript is organized as follows. Section 2 presents the QPFS algorithm, in-
cluding the Nyström approximation, error estimation, theoretical complexity, and implementation
issues. Section 3 provides a description of data sets, and experimental results in terms of classifica-
tion accuracy and running time.

2. The QPFS Algorithm

Our goal is to develop a feature selection method capable of succeeding with very large data sets.
To achieve this goal, our first contribution is a novel formulation of the task. The new formulation
uses quadratic programming, a methodology that has previously been successful for a broad range of
other quite different applications (Bertsekas, 1999). Assume the classifier learning problem involves
N training samples and M variables (also called attributes or features). A quadratic programming
problem is to minimize a multivariate quadratic function subject to linear constraints as follows:

min
x

{
1
2
xTQx−FTx

}
. (1)

Above, x is an M-dimensional vector, Q ∈ RM×M is a symmetric positive semidefinite matrix, and
F is a vector in RM with non-negative entries. Applied to the feature selection task, Q represents
the similarity among variables (redundancy), and F measures how correlated each feature is with
the target class (relevance).

After the quadratic programming optimization problem has been solved, the components of x
represent the weight of each feature. Features with higher weights are better variables to use for
subsequent classifier training. Since xi represents the weight of each variable, it is reasonable to
enforce the following constraints:

xi ! 0 for all i= 1, . . . ,M
M

∑
i=1

xi = 1 .

Depending on the learning problem, the quadratic and linear terms can have different relative
purposes in the objective function. Therefore, we introduce a scalar parameter α as follows:

min
x

{
1
2
(1−α)xTQx−αFTx

}
(2)

where x, Q and F are defined as before and α ∈ [0,1]. If α = 1, only relevance is considered; the
quadratic programming problem becomes linear and equivalent to the MaxRel criterion. On the con-
trary, if α = 0, then only independence between features is considered that is, features with higher
weights are those which have lower similarity coefficients with the rest of features. Every data
set has its best choice of α to extract the minimum number of features for classification purposes.
Nevertheless, a reasonable choice of α must balance the linear and quadratic terms of Equation 2.
Thus, we estimate the mean value q̄ of the elements of the matrix Q and on the mean value f̄ of the
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elements of the vector F as

q̄ =
1
M2

M

∑
i=1

M

∑
j=1

qi j ,

f̄ =
1
M

M

∑
i=1

fi .

Since the relevance and redundancy terms in Equation 2 are balanced when (1− α̂) q̄ = α̂ f̄ , a rea-
sonable initial estimate of α is

α̂=
q̄

q̄+ f̄
.

The goal of balancing both terms in the QPFS objective function, Equation 2, is to ensure that
both redundancy and relevance are taken into account. If features are only slightly redundant, that
is, they have low correlation with each other, then the linear term in Equation 1 is dominant: f̄ % q̄.
Making α small reduces this dominance. On the other hand, if the features have a high level of
redundancy relative to relevance (q̄% f̄ ), then the quadratic term in Equation 1 can dominate the
linear one. In this case, overweighting the linear term (α close to 1) makes the objective function be
balanced.

Experimental results in Section 3 show that using α̂ leads to good results. Alternatively, it is
possible to use a validation subset to determine an appropriate value for α. However, that approach
requires evaluating the accuracy of the underlying classifier for each point in a grid of α values.
In this case, QPFS would become a wrapper feature selection method instead of a filter method
because it would need the classifier accuracy to determine the proper value of α.

2.1 Similarity Measures

One advantage of the problem formulation above is that it is sufficiently general to permit any
symmetric similarity measure to be used. In the remainder of this paper, the Pearson correlation
coefficient and mutual information are chosen, because they are conventional and because they are
representative ways to measure similarity.

The Pearson correlation coefficient is simple and has been shown to be effective in a wide va-
riety of feature selection methods, including correlation based feature selection (CFS) (Hall, 2000)
and principal component analysis (PCA) (Duda et al., 2000). Formally, the Pearson correlation
coefficient is defined as

ρi j =
cov(vi,v j)√
var(vi)var(v j)

where cov is the covariance of variables and var is the variance of each variable. The sample
correlation is calculated as

ρ̂i j =
∑N
k=1 (vki− v̄i)(vk j− v̄ j)√

∑N
k=1 (vki− v̄i)2∑N

k=1 (vk j− v̄ j)2
(3)

where N is the number of samples, vki is the k-th sample of random variable vi, and v̄i is the sample
mean of the random variable vi.
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Each matrix element qi j is defined to be the absolute value of the Pearson correlation coefficient
of the pair of variables vi and v j, that is, qi j = |ρ̂i j|. Suppose a classifier learning problem with C
classes, the relevance weight of variable vi, Fi, is computed using a modified correlation coefficient
(Hall, 2000) which is an extension to theC-class classification scenario. The modified definition is

Fi =
C

∑
k=1

p̂(K = k)|ρ̂iCk |

where K is the target class variable, Ck is a binary variable taking the value 1 when K = k and 0
otherwise, p̂(K = k) is the empirical prior probability of class k, and ρ̂iCk is the correlation between
feature vi and binary variableCk, computed according to Equation 3.

Because the correlation coefficient only measures the linear relationship between two random
variables, it may not be suitable for some classification problems. Mutual information can capture
nonlinear dependencies between variables. Formally, the mutual information between two random
variables vi and v j is defined as

I(vi;v j) =
Z Z

p(vi,v j) log
p(vi,v j)
p(vi)p(v j)

dvidv j .

Computing mutual information is based on estimating the probability distributions p(vi), p(v j) and
p(vi,v j). These distributions can be either discretized or estimated by density function methods
(Duda et al., 2000). When mutual information is used, the quadratic term is qi j = I(vi,v j) and the
linear one is Fi = I(vi,c).

QPFS using mutual information as its similarity measure resembles mRMR, but there is an
important difference. The mRMR method selects features greedily, as a function of features chosen
in previous steps. In contrast, QPFS is not greedy and provides a ranking of features that takes into
account simultaneously the mutual information between all pairs of features and the relevance of
each feature to the class label.

2.2 Approximate Solution of the Quadratic Programming Problem

In high-dimensional domains, it is likely that the feature space is redundant. If so, the symmetric
matrix Q is singular. We show now how Equation 2 can then be simplified and solved in a space of
dimension less than M, thus reducing the computational cost.

Given the diagonalization Q=UΛUT in decreasing order of eigenvalues, Equation 2 is equiva-
lent to

min
x

{
1
2
(1−α)xTUΛUTx−αFTx

}
. (4)

If the rank of Q is k&M, then the diagonalization Q =UΛUT can be written as Q = ŪΛ̄ŪT ,
where Λ̄ is a diagonal square matrix consisting of the highest k eigenvalues of Q in decreasing order
and Ū is aM×k matrix consisting of the first k eigenvectors ofQ. Then, Equation 4 can be rewritten
as

min
x

{
1
2
(1−α)xTŪΛ̄ŪT x−αFTx

}
.
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Let y = ŪT x be a vector in Rk. The optimization problem is reduced to minimizing a derived
quadratic function in a k-dimensional space:

min
y

{
1
2
(1−α)yT Λ̄y−αFTŪy

}

under M+1 constraints:

Ūy ≥
−→0

M

∑
i=1

k

∑
j=1

ūi jy j = 1.

We can approximate the original vector x as x≈ Ūy.
The matrix Q is seldom precisely singular for real world data sets. However, Q can normally be

reasonably approximated by a low-rank matrix formed from its k̃ eigenvectors whose eigenvalues
are greater than a fixed threshold δ > 0 (Fine et al., 2001). More precisely, let Q̃ =UΓUT be the
k̃-rank approximation of Q, where Γ ∈ RM×M is a diagonal matrix consisting of the k̃ highest eigen-
values of Q and the rest of diagonal entries are zero. Then, the approximate quadratic programming
problem is formulated as

min
x

{
1
2
(1−α)xTUΓUTx−αFTx

}
.

Equivalently,

min
y

{
1
2
(1−α)yT Γ̃y−αFTŨy

}
(5)

where y= ŨT x∈Rk̃, Γ̃∈Rk̃×k̃ is a diagonal matrix with the nonzero eigenvalues of Γ and Ũ ∈RM×k̃

the first k̃ eigenvectors ofU . The M+1 constraints of the optimization problem are defined as

Ũy ≥
−→0

M

∑
i=1

k̃

∑
j=1

ũi jy j = 1 .

Given the solutions x∗ of Equation 2 and x̃∗ of Equation 5, the error of the approximation can
be estimated using the following theorem.

Theorem 1 (Fine et al., 2001) Given Q̃ a k̃-rank approximation of Q, if (Q− Q̃) is positive semidef-
inite and tr(Q− Q̃) ≤ ε then the optimal value of the original problem is larger than the optimal
objective value of the perturbed problem and their difference is bounded by

g̃(x̃∗) ≤ g(x∗) ≤ g̃(x̃∗)+
d2lε

2
(6)

where l is the number of active constraints in the perturbed problem and d is an upper bound for
the coefficients of the original solution.

1496



QUADRATIC PROGRAMMING FEATURE SELECTION

In our case, 0 ≤ xi ≤ 1 and d = 1. The matrix (Q− Q̃) is positive semidefinite since (Q−
Q̃) =U(Λ−Γ)UT and (Λ−Γ) is a diagonal matrix with positive eigenvalues upper bounded by δ.
Moreover ε≤ (M− k̃)δ and l ≤M+1, so

g(x∗)− g̃(x̃∗) ≤
l(M− k̃)δ

2
≤

(M+1)(M− k̃)δ
2

= γ

where g(x) and g̃(x) are defined as

g(x) =
1
2
(1−α)xTQx−αFTx for x ∈ R

M (7)

g̃(x) =
1
2
(1−α)xT Γ̃x−αFTŨx for x ∈ R

k̃
. (8)

Although the quadratic programming formulation of the feature selection problem is elegant
and provides insight, the formulation by itself does not significantly reduce the computational com-
plexity of feature selection. Thus we introduce the idea of applying a Nyström approximation to
take advantage of the redundancy that typically makes the matrix Q almost singular. When this is
true, the rank of Q is much smaller than M and the Nyström method can approximate eigenvalues
and eigenvectors of Q by solving a smaller eigenproblem using only a subset of rows and columns
of Q (Fowlkes et al., 2001). Suppose that k <M is the rank of Q which is represented as

Q=

(
A B
BT E

)

where A ∈ Rk×k, B ∈ Rk×(M−k), E ∈ R(M−k)×(M−k), and the rows of [A B] are independent. Then,
the eigenvalues and eigenvectors of Q can be calculated exactly from the submatrix [A B] and the
diagonalization of A. Let S = A+A− 1

2BBTA− 1
2 and its diagonalization S = RΣ̂RT then, the highest

k eigenvalues of Q are given by Λ̃= Σ̂ and its associated eigenvectors Ũ are calculated as,

Ũ =

(
A
BT

)
A− 1

2RΣ̂−
1
2 .

The application of the Nyström method entails some practical issues. First, a prior knowledge
of the rank k of Q is, in general, unfeasible and it is necessary to estimate the number of subsamples
r to be used in the Nyström approximation. Second, the r rows of [A B] should be, ideally, linearly
independent. If the rank of Q is greater than r or the rows of [A B] are not linearly independent,
an approximation of the diagonalization of Q is obtained whose error can be quantified, in general,
as ‖E−BTA−1B‖. Although the Nyström approximation is not error-free, if the redundancy of the
feature space is large enough, then good approximations can be achieved, as shown in the following
sections.

When QPFS+Nyström is used, the rule for setting the value of the α parameter is slightly differ-
ent. In this case, only the the [A B] submatrix of Q is known, and it is necessary to use the Nyström
approximation Q̂ of the original matrix Q,

Q̂= (q̂i j) =

(
A B
BT BTA−1B

)
.
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Therefore, the mean value of Q̂ is computed as

¯̂q=
1
M2

M

∑
i=1

M

∑
j=1

q̂i j.

The mean value f̄ of the vector F is still calculated using Equation 3, since QPFS+Nyström needs
to know all coordinates of F . To sum up, the value of α for the QPFS+Nyström method is

α̂=
¯̂q

¯̂q+ f̄
. (9)

The algorithm QPFS+Nyström has two levels of approximation.

1. The first level is to approximate the eigenvalues and eigenvectors of the original matrix Q
based on only a subset of rows, applying the Nyström method: Q̂ = ÛΛ̂ÛT . One of the
critical issues with the Nyström method is how to choose the subset of rows to use (Fowlkes
et al., 2001). Ideally, the number of linearly independent rows of [A B] should be the rank of
Q. We use uniform sampling without replacement. This technique has been used successfully
in other applications (Fowlkes et al., 2001; Williams and Seeger, 2001). Moreover, theoretical
performance bounds for the Nyström method with uniform sampling without replacement are
known (Kumar et al., 2009). In particular, we use the following theorem.

Theorem 2 (Kumar et al., 2009) Let Q ∈ RM×M be a symmetric positive semidefinite Gram
(or kernel) matrix. Assume that r columns of Q are sampled uniformly at random without
replacement (r > k), let Q̂ be the rank-k Nyström approximation to Q, and let Q̃ the best
rank-k approximation to Q. For ε> 0, if r ≥ 64k

ε4 , then

E
[
‖Q− Q̂‖F

]
≤ ‖Q− Q̃‖F + ε

[(
M
r ∑
i∈D(r)

Qii

)√

M
M

∑
i=1

Q2
ii

] 1
2

(10)

where ∑i∈D(r)Qii is the sum of the largest r diagonal entries of Q and ‖ · ‖F represents the
Frobenius norm.

As
(
Q− Q̃

)
is a real symmetric positive semidefinite matrix, it is easy to prove that ‖Q−

Q̃‖F ≤ trace
(
Q− Q̃

)
.

Equation 10 shows that the error in the Nyström approximation decreases with the number of
sampled rows, r.

2. The second level of approximation is to solve the quadratic programming problem using
the Nyström approximation. As stated in Section 2.2, only eigenvalues higher than a fixed
threshold δ> 0 are considered in the rank of matrix Q̂. Then, these top k̃ eigenvalues of matrix
Q̂ are taken to make up a diagonal matrix ˆ̂Λ ∈ Rk̃×k̃ and let ˆ̂U ∈ RM×k̃ the matrix consisting
of the eigenvectors associated to ˆ̂Λ. Therefore, the QPFS+Nyström method approximates Q
by ˆ̂Q= ˆ̂U ˆ̂Λ ˆ̂UT and the quadratic programming problem is defined as,

ˆ̂g(x) =
1
2
(1−α)xT ˆ̂Λx−αFT ˆ̂Ux for x ∈ R

k̃
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and let ˆ̂x∗ be its optimal solution, and g(x) and g̃(x) be as described in Equations 7 and 8,
respectively. The best rank-k̃ approximation to Q is Q̃ = UΓUT as given in Section 2.2.
A bound on the total error in the QPFS+Nyström approximation is obtained following the
reasoning in Fine et al. (2001):

E
[
g(x∗)− ˆ̂g( ˆ̂x∗)

]
≤ E

[
g( ˆ̂x∗)− ˆ̂g( ˆ̂x∗)

]

≤
1
2
(1−α)E

[
( ˆ̂x∗)T

(
Q− ˆ̂Q

)
( ˆ̂x∗)

]

≤
1
2
E

[
‖Q− ˆ̂Q‖2‖ ˆ̂x∗‖2

2

]

≤
1
2

(M+1)E
[
‖Q− ˆ̂Q‖F

]
.

Applying the bound for the Nyström method with uniform sampling without replacement
(Equation 10) and the inequality ‖Q− Q̃‖F ≤ trace

(
Q− Q̃

)
≤ (M− k̃)δ yields

E
[
g(x∗)− ˆ̂g( ˆ̂x∗)

]
≤

1
2
(M+1)



(M− k̃)δ+ ε

[(
M
r ∑
i∈D(r)

Qii

)√

M
M

∑
i=1

Q2
ii

] 1
2





≤ γ+
ε
2

(M+1)

[(
M
r ∑
i∈D(r)

Qii

)√

M
M

∑
i=1

Q2
ii

] 1
2

.

The total error is the sum of the error γ obtained from the approximation of the quadratic
programming problem in a subspace (Equation 6) and the error due to the Nyström method.

2.3 Summary of the QPFS+Nyström Method

Figure 1 shows a diagram of the proposed feature selection method, which can be summarized as
follows:

1. Compute the F vector representing the dependence of each variable with the class.

2. Choose r rows of Q according to some criterion (typically, uniform sampling without replace-
ment). Arrange the Q matrix so that these r rows are the first ones. Define the [A B] matrix to
be the first r rows of Q.

3. Set the value of the α parameter according to Equation 9.

4. Apply the Nyström method knowing [A B]. Obtain an approximation of the eigenvalues and
eigenvectors of Q, Q̂= ÛΛ̂ÛT .

5. Formulate the quadratic programming (QP) problem in the lower dimensional space ˆ̂Q =
ˆ̂U ˆ̂Λ ˆ̂UT .

6. Solve the QP in the subspace to obtain the solution vector y.

7. Return to the original space via x= ˆ̂Uy.

8. Rank the variables according to the coefficients of vector x. In case of equal coefficients, rank
them by decreasing relevance Fk to the class.
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Figure 1: Diagram of the QPFS algorithm using the Nyström method. [A B] is the upper r×M
submatrix of Q.

2.4 Complexity Analysis

As already mentioned, the mRMR method is one of the most successful previous methods for feature
selection. The main advantage of the QPFS+Nyström method versus mRMR is the time complexity
reduction. The time complexities of mRMR and QPFS both have two components, the time needed
to compute the matrices Q and F (Similarity), and the time needed to perform variable ranking
(Rank). The computational cost of evaluating correlations or mutual information for all variable
pairs is O(NM2) for both mRMR and QPFS. Table 1 shows the time complexities of the three algo-
rithms mRMR, QPFS and QPFS+Nyström.

mRMR QPFS QPFS+Nyström
Similarity Rank Similarity Rank Similarity Rank

M large

N & pM
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

M medium

N % pM
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

M small

N %M
O(NM2) O(M2) O(NM2) O(M3) O(NpM2) O(p2M3)

Table 1: Time complexity of algorithms as a function of training set size N, number of variables M,
and Nyström sampling rate p. The predominant cost term is indicated in boldface.

The order-of-magnitude time complexity of QPFS is greater than or similar to that of mRMR.
However, the QPFS+Nyström time complexity is lower for N % pM and N %M. When N & pM,
QPFS+Nyström is faster than mRMR if p2M3 & NM2, that is, when N % p2M. For example, if
p = 10−2 then QPFS+Nyström is more efficient than mRMR if N % 10−4M, that is, if the size of
the training set is greater than 10−4 times the number of variables.

1500



QUADRATIC PROGRAMMING FEATURE SELECTION

2.5 Implementation

We implemented QPFS and mRMR in C using LAPACK for matrix operations (Anderson et al.,
1990). Quadratic optimization is performed by the Goldfarb and Idnani algorithm implemented in
Fortran and used in the R quadprog package (Goldfarb and Idnani, 1983; Turlach and Weingessel,
2000).

As mentioned in Section 2.1, in general mutual information computation requires estimating
density functions for continuous variables. For simplicity, each variable is discretized in three seg-
ments (−∞,µ−σ], (µ−σ,µ+σ], and (µ+σ,+∞), where µ is the sample mean of training data and
σ its standard deviation. The linear SVM provided by the LIBSVM package (Chang and Lin, 2001)
was the underlying classifier in all experiments. A linear kernel is used to reduce the number of
SVM parameters, thus making meaningful results easier to obtain. Note that mRMR and QPFS can
be used with any classifier learning algorithms. We expect results obtained with linear SVMs to be
representative.

3. Experiments

The aim of the experiments described here is twofold: first, to compare classification accuracy
achieved using mRMR versus QPFS; and second, to compare their computational cost.

3.1 Experimental Design

The data sets used for experiments are shown in Table 2. These data sets were chosen because
they are representative of multiple types of classification problems. with respect to the number of
samples, the number of features, and the achievable classification accuracy. Moreover, these data
sets have been used in other research on the feature selection task (Hua et al., 2009; Lauer et al.,
2007; Lecun et al., 1998; Li et al., 2004; Peng et al., 2005; Zhang et al., 2008; Zhu et al., 2008).

In order to estimate classification accuracy, for the ARR, NCI60, SRBCT and GCM data sets
10-fold cross-validation (10CV) and 100 runs were used (Duda et al., 2000). Mean error rates are
comparable to the results reported in Li et al. (2004), Peng et al. (2005), Zhang et al. (2008) and Zhu
et al. (2008). In the case of the RAT data set, 120 training samples (61 for test) and 300 runs were
used, following Hua et al. (2009). The MNIST data set is divided into training and testing subsets
as proposed by Chang and Lin (2001), with 60000 and 10000 patterns respectively. Therefore,
cross-validation is not done with MNIST.

Time complexity is measured as a function of training set size (N), dimensionality (M), and
the Nyström sampling rate (p =

r
M

). In all cases, times are averages over 50 runs. In order to
measure time complexity as a function of training set size, the number of SRBCT examples was
artificially increased 4 times (N = 332) and dimensionality reduced to M = 140. Time complexity
as a function of dimensionality was measured using the original SRBCT data set, that is, with
N = 83 and M = 2308.

As mentioned above, MaxRel, mRMR and QPFS are all filter methods that can be used with any
classifier. Figure 2 shows that the choice of the SVM regularization parameter c does not influence
the comparison between mRMR and QPFS. This figure displays the performance of mRMR and
QPFS for the ARR data set and different c values. Our goal is not to determine the optimal c value
for each data set, but to compare mRMR and QPFS. Therefore, c is set to 1.0 in all experiments.
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Data Set N M C Baseline ReferencesError Rate
ARR 422 278 2 21.81% (Peng et al., 2005; Zhang et al., 2008)

(Li et al., 2004; Zhang et al., 2008)NCI60 60 1123 9 38.67% (Zhu et al., 2008)
SRBCT 83 2308 4 0.22% (Li et al., 2004; Zhu et al., 2008)

(Li et al., 2004; Zhang et al., 2008)GCM 198 16063 14 33.85% (Zhu et al., 2008)
RAT 181 8460 2 8.61% (Hua et al., 2009)
MNIST 60000 780 10 6.02% (Lauer et al., 2007; Lecun et al., 1998)

Table 2: Description of the data sets used in experiments. N is the number of examples, M is
the number of variables, and C is the number of classes. Baseline error rate is the rate
obtained taking into account all variables. The last column cites papers where the data sets
have been mentioned.
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mRMR c=0.01
QPFS MI alpha=0.412 c=0.01
mRMR c=1.0
QPFS MI alpha=0.412 c=1.0
mRMR c=10.0
QPFS MI alpha=0.412 c=10.0

Figure 2: Classification error as a function of the number of features for the ARR data set and
different regularization parameter values c in linear SVM. The figure shows that for c =
0.01, the SVM is too regularized. The effect when c= 10.0 is the opposite and the SVM
overfits the training data. A value of c= 1.0 is a good tradeoff.

The value of the α parameter chosen for each data set is shown in Table 3. This value is obtained
according to Equations 3 and 9. Our hypothesis is that high values of α are better for data sets with
high redundancy among variables. On the other hand, if there is low redundancy then small α should
yield better results. The Nyström sampling rate p is chosen as large as possible while still yielding
a reasonable running time, since larger values reduce error in the approximation of the Q matrix.
Other values of the α parameter, α∈ {0.0,0.1,0.3,0.5,0.7,0.9}, were considered in all experiments
in order to verify that the proposed method of setting α provides good results.
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Data Set p q̄ f̄ α̂

ARR (cor) - 0.0889 0.0958 0.481
NCI60 (cor) - 0.267 0.165 0.618
ARR (MI) - 0.0106 0.0152 0.411
NCI60 (MI) - 0.0703 0.253 0.217
SRBCT (MI) - 0.0188 0.0861 0.179
GCM (MI) 0.05 0.0284 0.158 0.152
RAT (MI) 0.1 0.0346 0.0187 0.649
MNIST (MI) - 0.0454 0.0515 0.469

Table 3: Values of the α parameter for each data set. Correlation (cor) and mutual information (MI)
were used as similarity measures for ARR and NCI60 data sets. Only mutual information
was used for SRBCT, GCM, RAT and MNIST data sets. p is the subsampling rate in the
Nyström method, q̄ is the mean value of the elements of the matrix Q (similarity among
each pair of features), and f̄ is the mean value of the elements of the F vector (similarity
of each feature with the target class). For the MNIST data set only nonzero values have
been considered for the statistics due to the high level of sparsity of its features (80.78%
sparsity in average).

3.2 Classification Accuracy Results

The aim of the experiments described in this section is to compare classification accuracy achieved
with mRMR and with QPFS, with and without Nyström approximation. The MaxRel algorithm
(Peng et al., 2005) is also included in the comparison. Two similarity measures, mutual information
(MI) and correlation are considered. Classification error is measured as a function of the number
of features. We also give results from a baseline method that does random selection of features, in
order to determine the absolute advantage of using any feature selection method.

Figure 3 shows the average classification error rate for the ARR data set as a function of the
number of features. In Figure 3a, correlation is the similarity measure while mutual information
(MI) is applied for Figure 3b. In both cases, the best accuracy is obtained with α = 0.5, which
means that an equal tradeoff between relevance and redundancy is best. However, accuracies using
the values of α specified by our heuristic are similar.

Better accuracy is obtained when MI is used, in which case (Figure 3b) the error rate curve
for α = 0.5 is similar to that obtained with mRMR. The random selection method yields results
significantly worse than those obtained with other algorithms. Comparison with this method shows
that the other methods provide a significant benefit up to about 150 features.

For the NCI60 data set (Figure 4), the best accuracy is obtained when mutual information is used
(Figure 4b) and α is set to 0.217 according to Table 3. In this case, the accuracy of QPFS is slightly
better than the accuracy of mRMR. The value of α close to zero indicates that it is appropriate to
give more weight to the quadratic term in QPFS. When correlation is used (Figure 4a), the best
accuracy is obtained when α is set according to Equation 3.

Generally, MI as similarity measure leads to better accuracy than correlation. This finding is
reasonable given that MI can capture nonlinear relationships between variables. MI is used in the
experiments described in the remainder of this section.
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Figure 3: Classification error as a function of the number of features for the ARR data set. (a)
QPFS results using correlation as similarity measure with different α values. (b)MaxRel,
mRMR and QPFS results using mutual information as similarity measure and different
values of α for QPFS.

Average error rate for the SRBCT data set and different sampling rates as a function of the num-
ber of features is shown in Figure 5. Results for the best α value in the grid {0,0.1,0.3,0.5,0.7,0.9},
α= 0.1, and the estimated α̂= 0.179 are shown in Figure 5a. Accuracies for both α values are sim-
ilar. The fact that a low value of α is best indicates low redundancy among variables compared
to their relevance with the target class. QPFS classification accuracy is similar to that of mRMR.
As shown in Figure 5b, when the QPFS+Nyström method is used, the higher the parameter p, the
closer the Nyström approximation is to complete diagonalization. QPFS+Nyström gives classifica-
tion accuracy similar to that of QPFS when p> 0.1.

Figure 6 shows error rates for the GCM data set using the algorithms MaxRel, mRMR, and
QPFS+Nyström with α = 0.1 and α̂ = 0.152. When the number of features is over 60, accuracy
achieved with QPFS+Nyström is better than with mRMR. A sampling rate of 3% is adequate for
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Figure 4: Classification error as a function of number of features for the NCI60 data set. (a)
QPFS results using correlation as similarity measure with different α values. (b)MaxRel,
mRMR and QPFS results using mutual information as similarity measure and different
values of α for QPFS.

this data set, which represents a major time complexity reduction given a feature space of 16063
variables.

Another data set with many features is the RAT data set, for which Figure 7 shows results. In
this case, QPFS+Nyström gives classification accuracy similar to that of mRMR when the subset
size is over 80 and the sampling rate is 10%. Given the good performance of the MaxRel algorithm
for this data set, it is not surprising that a large α value α = 0.9 or α̂ = 0.649 is best, considering
also that QPFS with α= 1.0 is equivalent to MaxRel.

The MNIST data set has a high number of training examples. Results for it are shown in Figure 8
for the QPFS with α = 0.3, the estimation α̂ = 0.469 and the QPFS+Nyström with α̂ and p ∈
{0.1,0.2,0.5}. Our C code of mRMR is used instead of the code on the mRMR web site (Peng
et al., 2005) which takes a long time to read the training file. The error rate for all algorithms
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Figure 5: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the SRBCT data set.

reaches a minimum when about 350 features are selected. This is not a surprising fact: analyzing
the sparsity of the MNIST features, approximately 400 of them have a level of sparsity higher than
70%. But if the feature space needs a greater reduction, significant differences appears between the
studied methods as shown in Figure 8. mRMR and QPFS with α̂= 0.469 have similiar performance
and close to the best results obtained by QPFS with α= 0.3. For this data set, the number of samples
is much greater than the number of features, N%M, and therefore , the time complexity of mRMR
and QPFS is the same (O(NM2)). When QPFS+Nyström is applied with p = 0.2, the error rate is
competitive and the MNIST provides an example of the ability of QPFS+Nyström to handle large
data sets reducing the computational cost of mRMR and QPFS by a factor of 5. Note that the error
rates shown for the MNIST data set are obtained using a linear kernel. The radial basis function
kernel for SVM classifiers is known to lead to lower error rates for the full MNIST data set, but the
choice of kernel is an issue separate from feature selection, which is the focus of this paper.
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Figure 6: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the GCM data set.
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Figure 7: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the RAT data set.

Figure 9 shows a grid of 780 pixels arrayed in the same way as the images in the MNIST data
sets. A pixel is black if it corresponds to one of the top 100 (Figure 9a) and 350 (Figure 9b) selected
features, and white otherwise. Black pixels are more dense towards the middle of the grid, because
that is where the most informative features are. Pixels sometimes appear in a black/white/black
checkerboard pattern, because neighboring pixels tend to make each other redundant.

Table 4 evaluates the statistical significance of error rate differences. For each data set, 100
classifiers were trained using the stated number M of selected features. The 100 classifiers arise
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Figure 8: Error rates using MaxRel, mRMR and QPFS+Nyström methods, with mutual information
as similarity measure for the MNIST data set.

Figure 9: First (a) 100 and (b) 350 features selected by QPFS+Nyström (α̂ = 0.469 and p = 0.5)
for the MNIST data set (black pixels).

from 10 repetitions of 10-fold cross-validation, so which M features are used may be different for
each classifier. The one-tailed paired t-test for equal means is applied to the two sets of error rates,
one set for mRMR and one set for QPFS. The test is one-tailed because the null hypothesis is that
the mRMR method is as good or better than the QPFS method. The test is paired because both
methods were applied to the same 100 data set versions. Results of the test are given in the row
labeled significant?.
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For the NCI60 and SRBCT data sets, the best result is obtained when QPFS is used and it is
statistically significantly better than mRMR. When 200 to 400 variables are considered, mRMR
and QPFS are not statistically significantly different but the accuracy is not as good as in the case
of 100 features, probably due to overfitting. In the case of the GCM data set, the mRMR method
is statistically significantly better when fewer than 50 variables are considered. If the number of
features is over 100, the accuracy with QPFS is significantly better than with mRMR, and the best
performance is obtained in this case. For the ARR data set, mRMR is statistically significantly better
than QPFS if fewer than 10 features are considered but the error rate obtained can be improved if
more features are taken into account. When more than 50 featues are selected, the two methods are
not statistically significantly different. The RAT data set behavior is quite similar. When fewer than
100 features are used, the mRMR algorithm is satatistically better than QPFS, but the error rate can
be reduced adding more features. The two algorithms are not statistically significantly different in
the other cases, except if more than 400 features are involved in which case QPFS is statistically
significantly better than mRMR. Note that the error rates shown for QPFS are obtained with the
proposed estimation of α̂. In some cases, as shown in Figures 3 to 7, this α value is not the best
choice.

Beyond simple binary statistical significance, Table 4 indicates that the QPFS method is statis-
tically significantly better when the value of α̂ is small. A possible explanation for this finding is
the following. When α̂ is small, features are highly correlated with the label ( f̄ % q̄). The mRMR
method is greedy, and only takes into account redundancy among features selected in previous iter-
ations. When features are highly correlated with the label, then mRMR selects features with high
relevance and mostly ignores redundancy. In contrast, QPFS evaluates all variables simultaneously,
and always balances relevance and redundancy.

3.2.1 COMPARISON WITH OTHER FEATURE SELECTION METHODS

The experiments of this work are focused in comparing QPFS with the greedy filter-type method
mRMR (difference form, named MID) which also takes into account the difference between redun-
dancy and relevance. Nevertheless, other feature selection methods independent of the classifier
have been considered in the described experiments:

• mRMR (quotient form, namedMIQ) (Ding and Peng, 2005). While in mRMR (MID form)
the difference between the estimation of redundancy and relevance is considered, in the case
of mRMR (MIQ form) the quotient of both approximations is calculated.

• reliefF (Robnik-Šikonja and Kononenko, 2003). The main idea of ReliefF is to evaluate the
quality of a feature according to how well it distinguishes between instances that are near
to each other. This algorithm is efficient in problems with strong dependencies between
attributes.

• Streamwise Feature Selection (SFS) (Zhou et al., 2006). SFS selects a feature if the benefit
of adding it to the model is greater than the increase in the model complexity. The algorithm
scales well to large feature sets and considers features sequentially for addition to a model
making unnecessary to know all the features in advance.

Average error rates for MaxRel, mRMR (MID), mRMR (MIQ), reliefF and QPFS using linear
SVM (c= 1.0) and different number of features are shown in Table 5. Table 6 shows the error rate
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M
10 50 100 200 400

RAT
mRMR 21.15±0.31 16.18±0.27 14.88±0.24 12.81±0.25 10.95±0.23

QPFS α̂= 0.65 27.13±0.33 18.16±0.29 15.24±0.27 12.85±0.26 10.51±0.21
significant? no no no no yes
p value 1.00 1.00 0.89 0.56 1.7×10−2

ARR
mRMR 25.19±0.65 20.76±0.63 21.71±0.61 21.64±0.61 -

QPFS α̂= 0.41 28.05±0.65 21.30±0.65 21.52±0.65 21.76±0.58 -
significant? no no no no -
p value 1.00 0.96 0.69 0.39 -

NCI60
mRMR 53.50±2.17 34.33±1.74 32.00±1.93 32.83±1.84 33.64±1.80

QPFS α̂= 0.22 46.33±2.19 29.83±1.68 29.00±1.83 34.67±1.81 35.17±1.95
significant? yes yes yes no no
p value 1.6×10−3 7.5×10−3 3.3×10−2 0.95 0.96

SRBCT
mRMR 9.38±1.06 2.31±0.51 0.47±0.23 0.24±0.17 0.49±0.30

QPFS α̂= 0.18 3.89±0.75 0.11±0.11 0.05±0.11 0.11±0.11 0.35±0.25
significant? yes yes yes no no
p value 5.4×10−9 5.6×10−5 2.3×10−2 0.27 0.36

GCM
mRMR 54.26±1.19 43.38±1.18 41.38±1.08 38.26±1.06 38.50±1.10

QPFS α̂= 0.15 65.66±1.03 44.11±1.11 39.57±1.24 38.06±1.16 35.23±1.17
significant? no no yes no yes
p value 1.00 0.81 0.037 0.40 1.42×10−4

Table 4: Average error rates using the mRMR and QPFS methods, for classifiers based on M fea-
tures. The parameter α̂ of the QPFS method is indicated; rows are ordered according to
this value. The Nyström approximation was used for the GCM and RAT data sets.

and the average number of features selected by Streamwise Feature Selection. SFS was applied
to the binary data sets ARR and RAT and was used only as a feature selection method (a feature
generation step was not included).

Table 5 shows that for ARR, NCI60, SRBCT and GCM data sets, the best selector is mRMR or
QPFS. A statistical study of the performance of both methods is given in Table 4. In the case of the
RAT data set, the best methods are MaxRel and reliefF. The fact that the best results are obtained
with methods which only consider relevance with the target class fits in with the analysis of Figure 7.
Finally, for the MNIST data set the best choice is the mRMR (MIQ) algorithm. Nevertheless, the
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performance of MIQ in some data sets is not competitive (see, for instance, the ARR and NCI60
results). The accuracy of QPFS+Nyström (p= 0.2) is good if a high enough number of features is
used, and it has lower computational cost than mRMR and QPFS.

Regarding SFS, Table 6 shows that SFS provides a competitive error rate for the ARR data set
with few features (around 11) but its effectiveness in the RAT data set is improved by other feature
selection algorithms when more than 6 attributes are considered. It is noticeable the efficiency of
SFS getting acceptable accuracies using a small number of features.

ReliefF and SFS are feature selection methods which need to establish the value of some param-
eters like in QPFS. In ReliefF all instances were used (not random subsampling) and the number of
neighbors was set to 3 for all data sets, except for MNIST where 10 neighbors were considered. In
the case of the SFS algorithm, the default values (wealth = 0.5 and " α= 0.5) were used.

3.3 Time Complexity Results

Since the previous subsection has established the effectiveness of the QPFS method, it is useful now
to compare mRMR and QPFS experimentally with respect to time complexity. As stated in Table 1
in Section 2.4, the running times of mRMR and QPFS with and without Nyström all depend linearly
on N when M and p are fixed. In order to confirm experimentally this theoretical dependence, time
consumption as a function of the number of training examples is measured on the SRBCT data set.

Figure 10a shows the time consumed for the modified SRBCT data set, averaged over 50 runs,
as a function of the number of samples, N, for the mRMR, QPFS and QPFS+Nyström methods.

As expected, both mRMR and QPFS show a linear dependence on the number of patterns.
For QPFS+Nyström, Table 1 shows that the slope of this linear dependence is proportional to the
sampling rate p. Over the range p= 0.01 to p= 0.5, a decrease in p leads to a decrease in the slope
of the linear dependence on N. Therefore, although all algorithms are linearly dependent on N,
the QPFS+Nyström is computationally the most efficient. The time cost advantage increases with
increasing number of training examples because the slope is greater for mRMR than for QPFS.

The next question is the impact on performance of the number of features, M. Table 1 shows
that mRMR and QPFS have quadratic and cubic dependence on M, respectively. However, the
QPFS+Nyström cubic coefficient is proportional to the square of the sampling rate. When small
value of p are sufficient, which is the typical case, the cubic terms are not dominant.

These results are illustrated in the experiments shown in Figure 10b. This figure shows the
average time cost for the SRBCT data set as a function of the problem dimension,M, for the mRMR,
QPFS, and QPFS+Nyström methods. As expected from Table 1, mRMR and QPFS empirically
show quadratic and cubic dependence on problem dimension. QPFS+Nyström shows only quadratic
dependence on problem dimension, with a decreasing coefficient for decreasing p values. In all
cases, a t-test has been used to verify the order of the polynomial that best fits each curve by
least-squares fitting (Neter and Wasserman, 1974). Overall, for small Nyström sampling rates,
QPFS+Nyström is computationally the most efficient.

Last but not least important, Table 1 shows there should be a quadratic dependence on sampling
rate for the QPFS+Nyström algorithm. Figure 10c shows the empirical average time cost for the
SRBCT data set as a function of the sampling rate p. As expected, there is quadratic dependence on
p and cubic dependence on the problem dimension M.
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Data Set Method M
10 20 40 50 100 200 400

MaxRel 27.48 24.68 21.70 20.82 20.31 21.73 -
MID 25.19 22.99 20.64 20.76 21.71 21.64 -

ARR MIQ 29.79 27.78 23.89 23.32 21.53 21.74 -
reliefF 30.64 24.48 21.54 21.34 20.90 21.66 -
QPFS 28.05 23.72 22.39 21.30 21.52 21.76 -
MaxRel 61.33 49.83 40.00 38.67 34.83 35.50 34.17
MID 53.50 41.50 36.33 34.33 32.00 32.83 33.67

NCI60 MIQ 56.50 47.50 38.83 38.17 32.83 35.50 35.17
reliefF 56.93 54.17 48.49 48.49 38.07 32.13 34.36
QPFS 46.33 36.00 33.00 29.83 29.00 34.67 35.17
MaxRel 21.58 14.33 6.36 4.51 2.19 0.24 0.13
MID 9.39 3.33 2.01 2.31 0.47 0.24 0.49

SRBCT MIQ 10.11 2.18 0.47 0.72 0.24 0.25 0.72
reliefF 6.38 4.18 1.65 1.79 0.96 0.40 0.40
QPFS 3.89 1.57 0.97 0.11 0.05 0.11 0.35
MaxRel 79.32 60.78 48.46 45.58 40.98 39.98 38.77
MID 54.26 48.45 44.16 43.38 41.38 38.26 35.50

GCM MIQ 79.32 56.48 46.64 43.96 41.80 38.46 38.05
reliefF 61.25 51.61 46.36 43.83 39.35 39.75 37.08
QPFS+N p= 0.05 65.66 54.72 46.09 44.11 39.57 38.06 35.26
MaxRel 19.95 17.32 15.40 15.16 14.34 13.54 11.97
MID 21.15 18.46 16.53 16.18 14.88 12.81 10.95

RAT MIQ 23.69 19.62 17.23 16.61 15.07 12.46 10.96
reliefF 22.16 20.40 17.44 16.45 13.68 11.43 9.85
QPFS+N p= 0.1 27.13 21.89 19.02 18.16 15.24 12.85 10.51
MaxRel 59.19 40.98 25.77 22.5 12.09 7.64 6.72
MID 53.39 29.37 19.56 17.40 11.72 7.55 6.66

MNIST MIQ 51.69 25.98 11.79 10.87 7.78 6.90 6.33
reliefF 50.91 40.20 23.81 19.56 12.31 8.47 6.86
QPFS+N p= 0.2 57.00 35.39 23.62 20.48 11.31 7.71 6.54

Table 5: Error rates for different feature selection methods and Linear SVM. The best result in each
case is marked in bold. QPFS+N indicates that the Nyström approximation is used in the
QPFS method and p represents the subsampling rate in Nyström method. In all cases, the
α parameter of QPFS is set to α̂.

4. Conclusions

This paper has presented and studied a new feature selection method for multiclass classifier learn-
ing problems. The new method, named Quadratic Programming Feature Selection (QPFS), is based

1512



QUADRATIC PROGRAMMING FEATURE SELECTION

Data Set Number of Selected Features (average) Error rate (%)
ARR 10.75±0.155 23.34±0.63
RAT 6.12±0.13 22.87±0.33

Table 6: Streamwise Feature Selection error rates.
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Figure 10: Time cost in seconds for mRMR and QPFS as a function of: (a) the number of patterns,
N; (b) the dimension, M; and (c) the sampling rate, p. QPFS+N indicates that the
Nyström approximation is used in the QPFS method.

on the optimization of a quadratic function that is reformulated in a lower-dimensional space using
the Nyström approximation (QPFS+Nyström). The QPFS+Nyström method, using either Pearson
correlation coefficient or mutual information as the underlying similarity measure, is computation-
ally more efficient than the leading previous methods, mRMR and MaxRel.

With respect to classification accuracy, the QPFS method is similar to MaxRel and mRMR
when mutual information is used, and yields slightly better results if there is high redundancy. In all
experiments, mutual information yields better classification accuracy than correlation, presumably
because mutual information better captures nonlinear dependencies. Small sampling rates in the
Nyström method still lead to reasonable approximations of exact matrix diagonalization, sharply
reducing the time complexity of QPFS. In summary, the new QPFS+Nyström method for selecting
a subset of features is a competitive and efficient filter-type feature selection algorithm for high-
dimensional classifier learning problems.
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Abstract
A Hilbert space embedding for probability measures has recently been proposed, with applications
including dimensionality reduction, homogeneity testing, and independence testing. This embed-
ding represents any probability measure as a mean element in a reproducing kernel Hilbert space
(RKHS). A pseudometric on the space of probability measures can be defined as the distance be-
tween distribution embeddings: we denote this as γk, indexed by the kernel function k that defines
the inner product in the RKHS.

We present three theoretical properties of γk. First, we consider the question of determining the
conditions on the kernel k for which γk is a metric: such k are denoted characteristic kernels. Un-
like pseudometrics, a metric is zero only when two distributions coincide, thus ensuring the RKHS
embedding maps all distributions uniquely (i.e., the embedding is injective). While previously pub-
lished conditions may apply only in restricted circumstances (e.g., on compact domains), and are
difficult to check, our conditions are straightforward and intuitive: integrally strictly positive defi-
nite kernels are characteristic. Alternatively, if a bounded continuous kernel is translation-invariant
on Rd , then it is characteristic if and only if the support of its Fourier transform is the entire Rd .
Second, we show that the distance between distributions under γk results from an interplay between
the properties of the kernel and the distributions, by demonstrating that distributions are close in
the embedding space when their differences occur at higher frequencies. Third, to understand the
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nature of the topology induced by γk, we relate γk to other popular metrics on probability measures,
and present conditions on the kernel k under which γk metrizes the weak topology.
Keywords: probability metrics, homogeneity tests, independence tests, kernel methods, universal
kernels, characteristic kernels, Hilbertian metric, weak topology

1. Introduction

The concept of distance between probability measures is a fundamental one and has found many
applications in probability theory, information theory and statistics (Rachev, 1991; Rachev and
Rüschendorf, 1998; Liese and Vajda, 2006). In statistics, distances between probability measures
are used in a variety of applications, including hypothesis tests (homogeneity tests, independence
tests, and goodness-of-fit tests), density estimation, Markov chain monte carlo, etc. As an example,
homogeneity testing, also called the two-sample problem, involves choosing whether to accept or
reject a null hypothesisH0 : P = Q versus the alternativeH1 : P #= Q, using random samples {Xj}mj=1
and {Yj}nj=1 drawn i.i.d. from probability distributions P and Q on a topological space (M,A).
It is easy to see that solving this problem is equivalent to testing H0 : γ(P,Q) = 0 versus H1 :
γ(P,Q) > 0, where γ is a metric (or, more generally, a semi-metric1) on the space of all probability
measures defined on M. The problems of testing independence and goodness-of-fit can be posed
in an analogous form. In non-parametric density estimation, γ(pn, p0) can be used to study the
quality of the density estimate, pn, that is based on the samples {Xj}nj=1 drawn i.i.d. from p0.
Popular examples for γ in these statistical applications include the Kullback-Leibler divergence, the
total variation distance, the Hellinger distance (Vajda, 1989)—these three are specific instances
of the generalized φ-divergence (Ali and Silvey, 1966; Csiszár, 1967)—the Kolmogorov distance
(Lehmann and Romano, 2005, Section 14.2), theWasserstein distance (del Barrio et al., 1999), etc.

In probability theory, the distance between probability measures is used in studying limit theo-
rems, the popular example being the central limit theorem. Another application is in metrizing the
weak convergence of probability measures on a separable metric space, where the Lévy-Prohorov
distance (Dudley, 2002, Chapter 11) and dual-bounded Lipschitz distance (also called the Dudley
metric) (Dudley, 2002, Chapter 11) are commonly used.

In the present work, we will consider a particular pseudometric1 on probability distributions
which is an instance of an integral probability metric (IPM) (Müller, 1997). DenotingP the set of
all Borel probability measures on (M,A), the IPM between P ∈P and Q ∈P is defined as

γF(P,Q) = sup
f∈F

∣∣∣∣
Z

M
f dP−

Z

M
f dQ

∣∣∣∣ , (1)

where F is a class of real-valued bounded measurable functions on M. In addition to the general
application domains discussed earlier for metrics on probabilities, IPMs have been used in proving
central limit theorems using Stein’s method (Stein, 1972; Barbour and Chen, 2005), and are popular
in empirical process theory (van der Vaart and Wellner, 1996). Since most of the applications listed

1. Given a set M, a metric for M is a function ρ : M×M → R+ such that (i) ∀x, ρ(x,x) = 0, (ii) ∀x,y, ρ(x,y) =
ρ(y,x), (iii) ∀x,y,z, ρ(x,z) ≤ ρ(x,y)+ρ(y,z), and (iv) ρ(x,y) = 0⇒ x = y. A semi-metric only satisfies (i), (ii) and
(iv). A pseudometric only satisfies (i)-(iii) of the properties of a metric. Unlike a metric space (M,ρ), points in a
pseudometric space need not be distinguishable: one may have ρ(x,y) = 0 for x #= y.

Now, in the two-sample test, though we mentioned that γ is a metric/semi-metric, it is sufficient that γ satisfies
(i) and (iv).
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above require γF to be a metric onP , the choice of F is critical (note that irrespective of F, γF is a
pseudometric onP). The following are some examples of F for which γF is a metric.

(a) F = Cb(M), the space of bounded continuous functions on (M,ρ), where ρ is a metric
(Shorack, 2000, Chapter 19, Definition 1.1).

(b) F =Cbu(M), the space of bounded ρ-uniformly continuous functions on (M,ρ)—Portmonteau
theorem (Shorack, 2000, Chapter 19, Theorem 1.1).

(c) F = { f : ‖ f‖∞ ≤ 1} =: FTV , where ‖ f‖∞ = supx∈M | f (x)|. γF is called the total variation
distance (Shorack, 2000, Chapter 19, Proposition 2.2), which we denote as TV , that is,
γFTV =: TV .

(d) F = { f : ‖ f‖L ≤ 1} =: FW , where ‖ f‖L := sup{| f (x)− f (y)|/ρ(x,y) : x #= y inM}. ‖ f‖L is
the Lipschitz semi-norm of a real-valued function f on M and γF is called the Kantorovich
metric. If (M,ρ) is separable, then γF equals the Wasserstein distance (Dudley, 2002, Theo-
rem 11.8.2), denoted asW := γFW .

(e) F = { f : ‖ f‖BL ≤ 1} =: Fβ, where ‖ f‖BL := ‖ f‖L + ‖ f‖∞. γF is called the Dudley metric
(Shorack, 2000, Chapter 19, Definition 2.2), denoted as β := γFβ

.

(f) F = {1(−∞,t] : t ∈Rd}=:FKS. γF is called the Kolmogorov distance (Shorack, 2000, Theorem
2.4).

(g) F = {e
√
−1〈ω,·〉 : ω ∈ Rd} =: Fc. This choice of F results in the maximal difference between

the characteristic functions of P andQ. That γFc is a metric onP follows from the uniqueness
theorem for characteristic functions (Dudley, 2002, Theorem 9.5.1).

Recently, Gretton et al. (2007b) and Smola et al. (2007) considered F to be the unit ball in a
reproducing kernel Hilbert space (RKHS) H (Aronszajn, 1950), with k as its reproducing kernel
(r.k.), that is, F = { f : ‖ f‖H≤ 1} =: Fk (also see Chapter 4 of Berlinet and Thomas-Agnan, 2004,
and references therein for related work): we denote γFk =: γk. While we have seen many possible F

for which γF is a metric, Fk has a number of important advantages:

• Estimation of γF: In applications such as hypothesis testing, P andQ are known only through
the respective random samples {Xj}mj=1 and {Yj}nj=1 drawn i.i.d. from each, and γF(P,Q) is
estimated based on these samples. One approach is to compute γF(P,Q) using the empirical
measures Pm = 1

m ∑
m
j=1 δXj and Qn = 1

n ∑
n
j=1 δYj , where δx represents a Dirac measure at x.

It can be shown that choosing F as Cb(M), Cbu(M), FTV or Fc results in this approach not
yielding consistent estimates of γF(P,Q) for all P and Q (Devroye and Györfi, 1990). Al-
though choosing F = FW or Fβ yields consistent estimates of γF(P,Q) for all P and Q when
M = Rd , the rates of convergence are dependent on d and become slow for large d (Sriperum-
budur et al., 2009b). On the other hand, γk(Pm,Qn) is a

√
mn/(m+n)-consistent estimator

of γk(P,Q) if k is measurable and bounded, for all P and Q. If k is translation invariant on
M = Rd , the rate is independent of d (Gretton et al., 2007b; Sriperumbudur et al., 2009b), an
important property when dealing with high dimensions. Moreover, γF is not straightforward
to compute when F is Cb(M),Cbu(M), FW or Fβ (Weaver, 1999, Section 2.3): by contrast,
γ2k(P,Q) is simply a sum of expectations of the kernel k (see (9) and Theorem 1).
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• Comparison to φ-divergences: Instead of using γF in statistical applications, one can also
use φ-divergences. However, the estimators of φ-divergences (especially the Kullback-Leibler
divergence) exhibit arbitrarily slow rates of convergence depending on the distributions (see
Wang et al., 2005; Nguyen et al., 2008, and references therein for details), while, as noted
above, γk(Pm,Qn) exhibits good convergence behavior.

• Structured domains: Since γk is dependent only on the kernel (see Theorem 1) and kernels
can be defined on arbitrary domainsM (Aronszajn, 1950), choosing F = Fk provides the flex-
ibility of measuring the distance between probability measures defined on structured domains
(Borgwardt et al., 2006) like graphs, strings, etc., unlike F = FKS or Fc, which can handle
only M = Rd .

The distance measure γk has appeared in a wide variety of applications. These include sta-
tistical hypothesis testing, of homogeneity (Gretton et al., 2007b), independence (Gretton et al.,
2008), and conditional independence (Fukumizu et al., 2008); as well as in machine learning ap-
plications including kernel independent component analysis (Bach and Jordan, 2002; Gretton et al.,
2005a; Shen et al., 2009) and kernel based dimensionality reduction for supervised learning (Fuku-
mizu et al., 2004). In these applications, kernels offer a linear approach to deal with higher order
statistics: given the problem of homogeneity testing, for example, differences in higher order mo-
ments are encoded as differences in the means of nonlinear features of the variables. To capture
all nonlinearities that are relevant to the problem at hand, the embedding RKHS therefore has to be
“sufficiently large” that differences in the embeddings correspond to differences of interest in the
distributions. Thus, a natural question is how to guarantee k provides a sufficiently rich RKHS so
as to detect any difference in distributions. A second problem is to determine what properties of
distributions result in their being proximate or distant in the embedding space. Finally, we would
like to compare γk to the classical integral probability metrics listed earlier, when used to measure
convergence of distributions. In the following section, we describe the contributions of the present
paper, addressing each of these three questions in turn.

1.1 Contributions

The contributions in this paper are three-fold and explained in detail below.

1.1.1 WHEN IS H CHARACTERISTIC?

Recently, Fukumizu et al. (2008) introduced the concept of a characteristic kernel, that is, a re-
producing kernel for which γk(P,Q) = 0⇔ P = Q, P,Q ∈ P , that is, γk is a metric on P . The
corresponding RKHS,H is referred to as a characteristic RKHS. The following are two characteri-
zations for characteristic RKHSs that have already been studied in literature:

1. WhenM is compact, Gretton et al. (2007b) showed thatH is characteristic if k is universal in
the sense of Steinwart (2001, Definition 4), that is,H is dense in the Banach space of bounded
continuous functions with respect to the supremum norm. Examples of suchH include those
induced by the Gaussian and Laplacian kernels on every compact subset of Rd .

2. Fukumizu et al. (2008, 2009a) extended this characterization to non-compact M and showed
that H is characteristic if and only if the direct sum of H and R is dense in the Banach
space of r-integrable (for some r ≥ 1) functions. Using this characterization, they showed
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that the RKHSs induced by the Gaussian and Laplacian kernels (supported on the entire Rd)
are characteristic.

In the present study, we provide alternative conditions for characteristic RKHSs which address
several limitations of the foregoing. First, it can be difficult to verify the conditions of denseness
in both of the above characterizations. Second, universality is in any case an overly restrictive
condition because universal kernels assume M to be compact, that is, they induce a metric only on
the space of probability measures that are supported on compact M.

In Section 3.1, we present the simple characterization that integrally strictly positive definite
(pd) kernels (see Section 1.2 for the definition) are characteristic, that is, the induced RKHS is
characteristic (also see Sriperumbudur et al., 2009a, Theorem 4). This condition is more natural—
strict pd is a natural property of interest for kernels, unlike the denseness condition—and much
easier to understand than the characterizations mentioned above. Examples of integrally strictly
pd kernels on Rd include the Gaussian, Laplacian, inverse multiquadratics, Matérn kernel family,
B2n+1-splines, etc.

Although the above characterization of integrally strictly pd kernels being characteristic is sim-
ple to understand, it is only a sufficient condition and does not provide an answer for kernels that
are not integrally strictly pd,2 for example, a Dirichlet kernel. Therefore, in Section 3.2, we provide
an easily checkable condition, after making some assumptions on the kernel. We present a com-
plete characterization of characteristic kernels when the kernel is translation invariant on Rd . We
show that a bounded continuous translation invariant kernel on Rd is characteristic if and only if
the support of the Fourier transform of the kernel is the entire Rd . This condition is easy to check
compared to the characterizations described above. An earlier version of this result was provided
by Sriperumbudur et al. (2008): by comparison, we now present a simpler and more elegant proof.
We also show that all compactly supported translation invariant kernels on Rd are characteristic.
Note, however, that the characterization of integral strict positive definiteness in Section 3.1 does
not assumeM to be Rd nor k to be translation invariant.

We extend the result of Section 3.2 to M being a d-Torus, that is, Td = S1× d. . .×S1 ≡ [0,2π)d ,
where S1 is a circle. In Section 3.3, we show that a translation invariant kernel on Td is characteristic
if and only if the Fourier series coefficients of the kernel are positive, that is, the support of the
Fourier spectrum is the entireZd . The proof of this result is similar in flavor to the one in Section 3.2.
As examples, the Poisson kernel can be shown to be characteristic, while the Dirichlet kernel is not.

Based on the discussion so far, it is clear that the characteristic property of k can be determined
in many ways. In Section 3.4, we summarize the relations between various kernel families (e.g.,
the universal kernels and the strictly pd kernels), and show how they relate in turn to characteristic
kernels. A summary is depicted in Figure 1.

1.1.2 DISSIMILAR DISTRIBUTIONS WITH SMALL γk
As we have seen, the characteristic property of a kernel is critical in distinguishing between distinct
probability measures. Suppose, however, that for a given characteristic kernel k and for any ε > 0,
there exist P and Q, P #= Q, such that γk(P,Q) < ε. Though k distinguishes between such P and
Q, it can be difficult to tell the distributions apart in applications (even with characteristic kernels),
since P and Q are then replaced with finite samples, and the distance between them may not be

2. It can be shown that integrally strictly pd kernels are strictly pd (see Footnote 4). Therefore, examples of kernels that
are not integrally strictly pd include those kernels that are not strictly pd.
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statistically significant (Gretton et al., 2007b). Therefore, given a characteristic kernel, it is of
interest to determine the properties of distributions P and Q that will cause their embeddings to be
close. To this end, in Section 4, we show that given a kernel k (see Theorem 19 for conditions on
the kernel), for any ε> 0, there exists P #= Q (with non-trivial differences between them) such that
γk(P,Q) < ε. These distributions are constructed so as to differ at a sufficiently high frequency,
which is then penalized by the RKHS norm when computing γk.

1.1.3 WHEN DOES γk METRIZE THE WEAK TOPOLOGY ON P?

Given γk, which is a metric on P , a natural question of theoretical and practical importance is
“how is γk related to other probability metrics, such as the Dudley metric (β), Wasserstein distance
(W ), total variation metric (TV ), etc?” For example, in applications like density estimation, where
the unknown density is estimated based on finite samples drawn i.i.d. from it, the quality of the
estimate is measured by computing the distance between the true density and the estimated density.
In such a setting, given two probability metrics, ρ1 and ρ2, one might want to use the stronger3 of
the two to determine this distance, as the convergence of the estimated density to the true density
in the stronger metric implies the convergence in the weaker metric, while the converse is not true.
On the other hand, one might need to use a metric of weaker topology (i.e., coarser topology) to
show convergence of some estimators, as the convergence might not occur w.r.t. a metric of strong
topology. Clarifying and comparing the topology of a metric on the probabilities is, thus, important
in the analysis of density estimation. Based on this motivation, in Section 5, we analyze the relation
between γk and other probability metrics, and show that γk is weaker than all these other metrics.

It is well known in probability theory that β is weaker thanW and TV , and it metrizes the weak
topology (we will provide formal definitions in Section 5) on P (Shorack, 2000; Gibbs and Su,
2002). Since γk is weaker than all these other probability metrics, that is, the topology induced by
γk is coarser than the one induced by these metrics, the next interesting question to answer would
be, “When does γk metrize the weak topology onP?” In other words, for what k, does the topology
induced by γk coincide with the weak topology? Answering this question would show that γk is
equivalent to β, while it is weaker thanW and TV . In probability theory, the metrization of weak
topology is of prime importance in proving results related to the weak convergence of probability
measures. Therefore, knowing the answer to the above question will help in using γk as a theoretical
tool in probability theory. To this end, in Section 5, we show that universal kernels on compact
(M,ρ) metrize the weak topology on P . For the non-compact setting, we assume M = Rd and
provide sufficient conditions on the kernel such that γk metrizes the weak topology onP .

In the following section, we introduce the notation and some definitions that are used throughout
the paper. Supplementary results used in proofs are collected in Appendix A.

1.2 Definitions and Notation

For a measurable space, M and µ a Borel measure on M, Lr(M,µ) denotes the Banach space of
r-power (r ≥ 1) µ-integrable functions. We will also use Lr(M) for Lr(M,µ) and dx for dµ(x) if µ is

3. Two metrics ρ1 :Y ×Y →R+ and ρ2 :Y ×Y →R+ are said to be equivalent if ρ1(x,y) = 0⇔ ρ2(x,y) = 0, ∀x,y∈Y .
On the other hand, ρ1 is said to be stronger than ρ2 if ρ1(x,y) = 0⇒ ρ2(x,y) = 0, ∀x,y ∈ Y but not vice-versa. If
ρ1 is stronger than ρ2, then we say ρ2 is weaker than ρ1. Note that if ρ1 is stronger (resp. weaker) than ρ2, then the
topology induced by ρ1 is finer (resp. coarser) than the one induced by ρ2.
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the Lebesgue measure onM⊂Rd . Cb(M) denotes the space of all bounded, continuous functions on
M. The space of all r-continuously differentiable functions on M is denoted by Cr(M), 0 ≤ r ≤ ∞.
For x ∈ C, x represents the complex conjugate of x. We denote as i the imaginary unit

√
−1.

For a measurable function f and a signed measure P, P f :=
R

f dP =
R

M f (x)dP(x). δx repre-
sents the Dirac measure at x. The symbol δ is overloaded to represent the Dirac measure, the Dirac-
delta distribution, and the Kronecker-delta, which should be distinguishable from the context. For
M = Rd , the characteristic function, φP of P ∈P is defined as φP(ω) :=

R

Rd eiω
T x dP(x), ω ∈ Rd .

Support of a Borel measure: The support of a finite regular Borel measure, µ on a Hausdorff
space,M is defined to be the closed set,

supp(µ) :=M\
[

{U ⊂M : U is open, µ(U) = 0}. (2)

Vanishing at infinity and C0(M): A complex function f on a locally compact Hausdorff space
M is said to vanish at infinity if for every ε> 0 there exists a compact set K ⊂M such that | f (x)|< ε
for all x /∈ K. The class of all continuous f onM which vanish at infinity is denoted asC0(M).

Holomorphic and entire functions: Let D⊂ Cd be an open subset and f : D→ C be a function.
f is said to be holomorphic (or analytic) at the point z0 ∈ D if

f ′(z0) := lim
z→z0

f (z0)− f (z)
z0− z

exists. Moreover, f is called holomorphic if it is holomorphic at every z0 ∈ D. f is called an entire
function if f is holomorphic and D= Cd .

Positive definite and strictly positive definite: A function k : M×M → R is called positive
definite (pd) if, for all n ∈ N, α1, . . . ,αn ∈ R and all x1, . . . ,xn ∈M, we have

n

∑
i, j=1

αiα jk(xi,x j)≥ 0. (3)

Furthermore, k is said to be strictly pd if, for mutually distinct x1, . . . ,xn ∈ X , equality in (3) only
holds for α1 = · · · = αn = 0. ψ is said to be a positive definite function on Rd if k(x,y) = ψ(x− y)
is positive definite.

Integrally strictly positive definite: Let M be a topological space. A measurable and bounded
kernel, k is said to be integrally strictly positive definite if

Z Z

M
k(x,y)dµ(x)dµ(y) > 0,

for all finite non-zero signed Borel measures µ defined on M.
The above definition is a generalization of integrally strictly positive definite functions on Rd

(Stewart, 1976, Section 6):
RR

Rd k(x,y) f (x) f (y)dxdy > 0 for all f ∈ L2(Rd), which is the strictly
positive definiteness of the integral operator given by the kernel. Note that the above definition is
not equivalent to the definition of strictly pd kernels: if k is integrally strictly pd, then it is strictly
pd, while the converse is not true.4

4. Suppose k is not strictly pd. This means for some n ∈ N and for mutually distinct x1, . . . ,xn ∈ M, there exists
R 4 α j #= 0 for some j ∈ {1, . . . ,n} such that ∑nj,l=1α jαlk(x j,xl) = 0. By defining µ= ∑nj=1α jδx j , it is easy to see
that there exists µ #= 0 such that

RR

M k(x,y)dµ(x)dµ(y) = 0, which means k is not integrally strictly pd. Therefore,
if k is integrally strictly pd, then it is strictly pd. However, the converse is not true. See Steinwart and Christmann
(2008, Proposition 4.60, Theorem 4.62) for an example.
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Fourier transform in Rd: For f ∈ L1(Rd), f̂ and f∨ represent the Fourier transform and inverse
Fourier transform of f respectively, defined as

f̂ (y) :=
1

(2π)d/2
Z

Rd
e−iy

T x f (x)dx, y ∈ Rd , (4)

f∨(x) :=
1

(2π)d/2
Z

Rd
eix

T y f (y)dy, x ∈ Rd . (5)

Convolution: If f and g are complex functions in Rd , their convolution f ∗g is defined by

( f ∗g)(x) :=
Z

Rd
f (y)g(x− y)dy,

provided that the integral exists for almost all x ∈ Rd , in the Lebesgue sense. Let µ be a finite Borel
measure on Rd and f be a bounded measurable function on Rd . The convolution of f and µ, f ∗µ,
which is a bounded measurable function, is defined by

( f ∗µ)(x) :=
Z

Rd
f (x− y)dµ(y).

Rapidly decaying functions, Dd and Sd: Let Dd be the space of compactly supported infinitely
differentiable functions on Rd , that is, Dd = { f ∈C∞(Rd) |supp( f ) is bounded}, where supp( f ) =
cl
(
{x ∈ Rd | f (x) #= 0}

)
. A function f : Rd → C is said to decay rapidly, or be rapidly decreasing,

if for all N ∈ N,
sup

‖α‖1≤N
sup
x∈Rd

(1+‖x‖22)N |(Tα f )(x)| < ∞,

where α = (α1, . . . ,αd) is an ordered d-tuple of non-negative α j, ‖α‖1 = ∑d
j=1α j and

Tα =
(
1
i
∂
∂x1

)α1
· · ·
(
1
i
∂
∂xd

)αd
. Sd , called the Schwartz class, denotes the vector space of rapidly

decreasing functions. Note that Dd ⊂Sd . Also, for any p ∈ [1,∞], Sd ⊂ Lp(Rd). It can be shown
that for any f ∈Sd , f̂ ∈Sd and f∨ ∈Sd (see Folland, 1999, Chapter 9 and Rudin, 1991, Chapter
6 for details).

Distributions, D ′
d: A linear functional on Dd which is continuous with respect to the Fréchet

topology (see Rudin, 1991, Definition 6.3) is called a distribution in Rd . The space of all distribu-
tions in Rd is denoted by D ′

d .
As examples, if f is locally integrable on Rd (this means that f is Lebesgue measurable and

R

K | f (x)|dx< ∞ for every compact K ⊂ Rd), then the functional Df defined by

Df (ϕ) =
Z

Rd
f (x)ϕ(x)dx, ϕ ∈Dd , (6)

is a distribution. Similarly, if µ is a Borel measure on Rd , then

Dµ(ϕ) =
Z

Rd
ϕ(x)dµ(x), ϕ ∈Dd ,

defines a distribution Dµ in Rd , which is identified with µ.
Support of a distribution: For an open setU ⊂Rd ,Dd(U) denotes the subspace ofDd consisting

of the functions with support contained in U . Suppose D ∈ D ′
d . If U is an open set of Rd and if
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D(ϕ) = 0 for every ϕ ∈ Dd(U), then D is said to vanish or be null in U . LetW be the union of all
openU ⊂ Rd in which D vanishes. The complement ofW is the support of D.

Tempered distributions, S ′
d and Fourier transform on S ′

d: A linear continuous functional (with
respect to the Fréchet topology) over the space Sd is called a tempered distribution and the space
of all tempered distributions in Rd is denoted by S ′

d . For example, every compactly supported
distribution is tempered.

For any f ∈S ′
d , the Fourier and inverse Fourier transforms are defined as

f̂ (ϕ) := f (ϕ̂), ϕ ∈Sd ,

f∨(ϕ) := f (ϕ∨), ϕ ∈Sd ,

respectively. The Fourier transform is a linear, one-to-one, bicontinuous mapping fromS ′
d toS ′

d .
For complete details on distribution theory and Fourier transforms of distributions, we refer the

reader to Folland (1999, Chapter 9) and Rudin (1991, Chapter 6).

2. Hilbert Space Embedding of Probability Measures

Embeddings of probability distributions into reproducing kernel Hilbert spaces were introduced in
the late 70’s and early 80’s, generalizing the notion of mappings of individual points: see Berlinet
and Thomas-Agnan (2004, Chapter 4) for a survey. Following Gretton et al. (2007b) and Smola et al.
(2007), γk can be alternatively expressed as a pseudometric between such distribution embeddings.
The following theorem describes this relation.

Theorem 1 Let Pk := {P ∈P :
R

M
√
k(x,x)dP(x) < ∞}, where k is measurable on M. Then for

any P,Q ∈Pk,

γk(P,Q) =

∥∥∥∥
Z

M
k(·,x)dP(x)−

Z

M
k(·,x)dQ(x)

∥∥∥∥
H

=: ‖Pk−Qk‖H, (7)

where H is the RKHS generated by k.

Proof Let TP : H → R be the linear functional defined as TP[ f ] :=
R

M f (x)dP(x) with ‖TP‖ :=
sup f∈H, f #=0

|TP[ f ]|
‖ f‖H

. Consider

|TP[ f ]| =
∣∣∣∣
Z

M
f dP

∣∣∣∣≤
Z

M
| f (x)|dP(x) =

Z

M
|〈 f ,k(·,x)〉H|dP(x)≤

Z

M

√
k(x,x)‖ f‖HdP(x),

which implies ‖TP‖ < ∞, ∀P ∈Pk, that is, TP is a bounded linear functional on H. Therefore, by
the Riesz representation theorem (Reed and Simon, 1980, Theorem II.4), for each P ∈ Pk, there
exists a unique λP ∈H such that TP[ f ] = 〈 f ,λP〉H, ∀ f ∈H. Let f = k(·,u) for some u ∈M. Then,
TP[k(·,u)] = 〈k(·,u),λP〉H = λP(u), which implies λP =

R

M k(·,x)dP(x) =: Pk. Therefore, with

|P f −Q f | = |TP[ f ]−TQ[ f ]| = |〈 f ,λP〉H−〈 f ,λQ〉H| = |〈 f ,λP−λQ〉H| ,

we have
γk(P,Q) = sup

‖ f‖H≤1
|P f −Q f | = ‖λP−λQ‖H = ‖Pk−Qk‖H.

Note that this holds for any P,Q ∈Pk.
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Given a kernel, k, (7) holds for all P ∈Pk. However, in practice, especially in statistical inference
applications, it is not possible to check whether P ∈Pk as P is not known. Therefore, one would
prefer to have a kernel such that

Z

M

√
k(x,x)dP(x) < ∞, ∀P ∈P. (8)

The following proposition shows that (8) is equivalent to the kernel being bounded. Therefore,
combining Theorem 1 and Proposition 2 shows that if k is measurable and bounded, then γk(P,Q) =
‖Pk−Qk‖H for any P,Q ∈P .
Proposition 2 Let f be a measurable function on M. Then

R

M f (x)dP(x) < ∞ for all P ∈P if and
only if f is bounded.

Proof One direction is straightforward because if f is bounded, then
R

M f (x)dP(x) < ∞ for all
P ∈P . Let us consider the other direction. Suppose f is not bounded. Then there exists a sequence
{xn}⊂M such that f (xn)

n→∞−→ ∞. By taking a subsequence, if necessary, we can assume f (xn) > n2
for all n. Then, A := ∑∞

n=1
1

f (xn) < ∞. Define a probability measure P on M by P = ∑∞
n=1

1
A f (xn) δxn ,

where δxn is a Dirac measure at xn. Then,
R

M f (x)dP(x) = 1
A ∑

∞
n=1

f (xn)
f (xn) = ∞, which means if f is

not bounded, then there exists a P ∈P such that
R

M f (x)dP(x) = ∞.

The representation of γk in (7) yields the embedding,

Π :P →H P 6→
Z

M
k(·,x)dP(x),

as proposed by Berlinet and Thomas-Agnan (2004, Chapter 4, Section 1.1) and Gretton et al.
(2007b); Smola et al. (2007). Berlinet and Thomas-Agnan derived this embedding as a general-
ization of δx 6→ k(·,x), while Gretton et al. arrived at the embedding by choosing F = Fk in (1).
Since γk(P,Q) = ‖Π[P]−Π[Q]‖H, the question “When is γk a metric on P?” is equivalent to the
question “When is Π injective?” Addressing these questions is the central focus of the paper and is
discussed in Section 3.

Before proceeding further, we present a number of equivalent representations of γk, which will
improve our understanding of γk and be helpful in its computation. First, Gretton et al. have shown
the reproducing property of k leads to

γ2k(P,Q) =

∥∥∥∥
Z

M
k(·,x)dP(x)−

Z

M
k(·,x)dQ(x)

∥∥∥∥
2

H

=

〈
Z

M
k(·,x)dP(x)−

Z

M
k(·,x)dQ(x),

Z

M
k(·,y)dP(y)−

Z

M
k(·,y)dQ(y)

〉

H

=

〈
Z

M
k(·,x)dP(x),

Z

M
k(·,y)dP(y)

〉

H

+

〈
Z

M
k(·,x)dQ(x),

Z

M
k(·,y)dQ(y)

〉

H

−2
〈

Z

M
k(·,x)dP(x),

Z

M
k(·,y)dQ(y)

〉

H

(a)
=

Z Z

M
k(x,y)dP(x)dP(y)+

Z Z

M
k(x,y)dQ(x)dQ(y)

−2
Z Z

M
k(x,y)dP(x)dQ(y) (9)

=
Z Z

M
k(x,y)d(P−Q)(x)d(P−Q)(y), (10)
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where (a) follows from the fact that
R

M f (x)dP(x) = 〈 f ,
R

M k(·,x)dP(x)〉H for all f ∈ H, P ∈ P

(see proof of Theorem 1), applied with f =
R

M k(·,y)dP(y). As motivated in Section 1, γ2k is a
straightforward sum of expectations of k, and can be computed easily, for example, using (9) either
in closed form or using numerical integration techniques, depending on the choice of k, P and Q. It
is easy to show that, if k is a Gaussian kernel with P andQ being normal distributions on Rd , then γk
can be computed in a closed form (see Song et al., 2008 and Sriperumbudur et. al., 2009b, Section
III-C for examples). In the following corollary to Theorem 1, we prove three results which provide a
nice interpretation for γk whenM= Rd and k is translation invariant, that is, k(x,y)=ψ(x−y), where
ψ is a positive definite function. We provide a detailed explanation for Corollary 4 in Remark 5.
Before stating the results, we need a famous result due to Bochner, that characterizes ψ. We quote
this result from Wendland (2005, Theorem 6.6).

Theorem 3 (Bochner) A continuous function ψ : Rd → R is positive definite if and only if it is the
Fourier transform of a finite nonnegative Borel measure Λ on Rd, that is,

ψ(x) =
Z

Rd
e−ix

Tω dΛ(ω), x ∈ Rd . (11)

Corollary 4 (Different interpretations of γk) (i) Let M = Rd and k(x,y) = ψ(x− y), where ψ :
M→ R is a bounded, continuous positive definite function. Then for any P,Q ∈P ,

γk(P,Q) =

√
Z

Rd
|φP(ω)−φQ(ω)|2 dΛ(ω) =: ‖φP−φQ‖L2(Rd ,Λ), (12)

where φP and φQ represent the characteristic functions of P and Q respectively.
(ii) Suppose θ ∈ L1(Rd) is a continuous bounded positive definite function and

R

Rd θ(x)dx= 1. Let
ψ(x) := ψt(x) = t−dθ(t−1x), t > 0. Assume that p and q are bounded uniformly continuous Radon-
Nikodym derivatives of P and Q w.r.t. the Lebesgue measure, that is, dP = pdx and dQ = qdx.
Then,

lim
t→0

γk(P,Q) = ‖p−q‖L2(Rd). (13)

In particular, if |θ(x)|≤C(1+‖x‖2)−d−ε for some C, ε> 0, then (13) holds for all bounded p and
q (not necessarily uniformly continuous).
(iii) Suppose ψ ∈ L1(Rd) and

√
ψ̂ ∈ L1(Rd). Then,

γk(P,Q) = (2π)−d/4‖Φ∗P−Φ∗Q‖L2(Rd), (14)

where Φ :=
(√

ψ̂
)∨

and dΛ= (2π)−d/2ψ̂dω. Here, Φ∗P represents the convolution of Φ and P.

Proof (i) Let us consider (10) with k(x,y) = ψ(x− y). Then, we have

γ2k(P,Q) =
Z Z

Rd
ψ(x− y)d(P−Q)(x)d(P−Q)(y)

(a)
=

Z Z Z

Rd
e−i(x−y)

Tω dΛ(ω)d(P−Q)(x)d(P−Q)(y)

(b)
=

Z Z

Rd
e−ix

Tω d(P−Q)(x)
Z

Rd
eiy

Tω d(P−Q)(y)dΛ(ω)

=
Z

Rd
(φP(ω)−φQ(ω))

(
φP(ω)−φQ(ω)

)
dΛ(ω) =

Z

Rd
|φP(ω)−φQ(ω)|2 dΛ(ω),
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where Bochner’s theorem (Theorem 3) is invoked in (a), while Fubini’s theorem (Folland, 1999,
Theorem 2.37) is invoked in (b).
(ii) Consider (9) with k(x,y) = ψt(x− y),

γ2k(P,Q) =
Z Z

Rd
ψt(x− y)p(x)p(y)dxdy+

Z Z

Rd
ψt(x− y)q(x)q(y)dxdy

−2
Z Z

Rd
ψt(x− y)p(x)q(y)dxdy

=
Z

Rd
(ψt ∗ p)(x)p(x)dx+

Z

Rd
(ψt ∗q)(x)q(x)dx−2

Z

Rd
(ψt ∗q)(x)p(x)dx. (15)

Note that limt→0
R

Rd (ψt ∗ p)(x)p(x)dx =
R

Rd limt→0(ψt ∗ p)(x)p(x)dx, by invoking the dominated
convergence theorem. Since p is bounded and uniformly continuous, by Theorem 25 (see Ap-
pendix A), we have p ∗ψt → p uniformly as t → 0, which means limt→0

R

Rd (ψt ∗ p)(x)p(x)dx =
R

Rd p2(x)dx. Using this in (15), we have

lim
t→0

γ2k(P,Q) =
Z

Rd
(p2(x)+q2(x)−2p(x)q(x))dx= ‖p−q‖2L2(Rd).

Suppose |θ(x)| ≤ (1+ ‖x‖2)−d−ε for some C, ε > 0. Since p ∈ L1(Rd), by Theorem 26 (see Ap-
pendix A), we have (p ∗ψt)(x) → p(x) as t → 0 for almost every x. Therefore limt→0

R

Rd (ψt ∗
p)(x)p(x)dx=

R

Rd p2(x)dx and the result follows.

(iii) Since ψ is positive definite, ψ̂ is nonnegative and therefore
√
ψ̂ is valid. Since

√
ψ̂ ∈ L1(Rd),

Φ exists. Define φP,Q := φP−φQ. Now, consider

‖Φ∗P−Φ∗Q‖2L2(Rd) =
Z

Rd
|(Φ∗ (P−Q))(x)|2 dx

=
Z

Rd

∣∣∣∣
Z

Rd
Φ(x− y)d(P−Q)(y)

∣∣∣∣
2
dx

=
1

(2π)d
Z

Rd

∣∣∣∣
Z Z

Rd

√
ψ̂(ω)ei(x−y)

Tω dω d(P−Q)(y)
∣∣∣∣
2
dx

(c)
=

1
(2π)d

Z

Rd

∣∣∣∣
Z

Rd

√
ψ̂(ω)(φP(ω)−φQ(ω))eix

Tω dω
∣∣∣∣
2
dx

=
1

(2π)d
Z Z Z

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ)ei(ω−ξ)

T x dωdξdx

(d)
=

Z Z

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ)

[
1

(2π)d
Z

Rd
ei(ω−ξ)

T x dx
]
dωdξ

=
Z Z

Rd

√
ψ̂(ω)

√
ψ̂(ξ)φP,Q(ω)φP,Q(ξ)δ(ω−ξ)dωdξ

=
Z

Rd
ψ̂(ω) |φP(ω)−φQ(ω)|2 dω

= (2π)d/2γ2k(P,Q),

where (c) and (d) are obtained by invoking Fubini’s theorem.
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Remark 5 (a) (12) shows that γk is the L2-distance between the characteristic functions of P and
Q computed w.r.t. the non-negative finite Borel measure, Λ, which is the Fourier transform of ψ. If
ψ ∈ L1(Rd), then (12) rephrases the well known fact (Wendland, 2005, Theorem 10.12) that for any
f ∈H,

‖ f‖2H =
Z

Rd

| f̂ (ω)|2

ψ̂(ω)
dω. (16)

Choosing f = (P−Q)∗ψ in (16) yields f̂ = (φP−φQ)ψ̂ and therefore the result in (12).
(b) Suppose dΛ(ω) = (2π)−d dω. Assume P and Q have p and q as Radon-Nikodym derivatives
w.r.t. the Lebesgue measure, that is, dP = pdx and dQ = qdx. Using these in (12), it can be shown
that γk(P,Q) = ‖p− q‖L2(Rd). However, this result should be interpreted in a limiting sense as
mentioned in Corollary 4(ii) because the choice of dΛ(ω) = (2π)−d dω implies ψ(x) = δ(x), which
does not satisfy the conditions of Corollary 4(i). It can be shown that ψ(x) = δ(x) is obtained in a
limiting sense (Folland, 1999, Proposition 9.1): ψt → δ in D ′

d as t→ 0.

(c) Choosing θ(x) = (2π)−d/2e−‖x‖22/2 in Corollary 4(ii) corresponds to ψt being a Gaussian kernel
(with appropriate normalization such that

R

Rd ψt(x)dx = 1). Therefore, (13) shows that as the
bandwidth, t of the Gaussian kernel approaches zero, γk approaches the L2-distance between the
densities p and q. The same result also holds for choosing ψt as the Laplacian kernel, B2n+1-spline,
inverse multiquadratic, etc. Therefore, γk(P,Q) can be seen as a generalization of the L2-distance
between probability measures, P and Q.
(d) The result in (13) holds if p and q are bounded and uniformly continuous. Since any condition
on P and Q is usually difficult to check in statistical applications, it is better to impose conditions
on ψ rather than on P and Q. In Corollary 4(ii), by imposing additional conditions on ψt , the
result in (13) is shown to hold for all P and Q with bounded densities p and q. The condition,
|θ(x)|≤C(1+‖x‖2)−d−ε for some C, ε> 0, is, for example, satisfied by the inverse multiquadratic
kernel, θ(x) = C̃(1+‖x‖22)−τ, x ∈ Rd , τ> d/2, where C̃ =

(
R

Rd (1+‖x‖22)−τ dx
)−1.

(e) The result in Corollary 4(ii) has connections to the kernel density estimation in L2-sense using
Parzen windows (Rosenblatt, 1975), whereψ can be chosen as the Parzen window: see Gretton et al.
(2007a, Section 7.1) for further discussion. Note in particular that when γk is used in a homogeneity
test, a constant kernel bandwidth results in a faster decrease of the Type II error with increasing
sample size (Anderson et al., 1994, p. 43). A decreasing bandwidth is required for a consistent
estimate of ‖p−q‖L2(Rd), however.

(f) (14) shows that γk is proportional to the L2-distance between Φ ∗P and Φ ∗Q. Let Φ be such
that Φ is nonnegative and Φ ∈ L1(Rd). Then, defining Φ̃ := (

R

Rd Φ(x)dx)−1Φ = Φ/
√
ψ̂(0) =

(
R

Rd ψ(x)dx)−1/2Φ and using this in (14), we have

γk(P,Q) = (2π)−d/4
√
ψ̂(0)

∥∥∥Φ̃∗P− Φ̃∗Q
∥∥∥
L2(Rd)

. (17)

The r.h.s. of (17) can be interpreted as follows. Let X, Y and N be independent random variables
such that X ∼ P, Y ∼ Q and N ∼ Φ̃. This means γk is proportional to the L2-distance computed
between the densities associated with the perturbed random variables, X +N and Y +N. Note
that ‖p− q‖L2(Rd) is the L2-distance between the densities of X and Y . Examples of ψ that satisfy
the conditions in Corollary 4(iii) in addition to the conditions on Φ as mentioned here include the
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Gaussian and Laplacian kernels on Rd. The result in (14) holds even if
√
ψ̂ /∈ L1(Rd) as the proof

of (iii) can be handled using distribution theory. However, we assumed
√
ψ̂ ∈ L1(Rd) to keep the

proof simple, without delving into distribution theory.

Although we will not be using all the results of Corollary 4 in deriving our main results in the
following sections, Corollary 4 was presented to provide a better intuitive understanding of γk. To
summarize, the core results of this section are Theorem 1 (combined with Proposition 2), which pro-
vides a closed form expression for γk in terms of the measurable and bounded k, and Corollary 4(i),
which provides an alternative representation for γk when k is bounded, continuous and translation
invariant on Rd .

3. Conditions for Characteristic Kernels

In this section, we address the question, “When is γk a metric onP?”. In other words, “When is Π
injective?” or “Under what conditions is k characteristic?”. To this end, we start with the definition
of characteristic kernels and provide some examples where k is such that γk is not a metric onP . As
discussed in Section 1.1.1, although some characterizations are available for k so that γk is a metric
onP , they are difficult to check in practice. In Section 3.1, we provide the characterization that if k
is integrally strictly pd, then γk is a metric onP . In Section 3.2, we present more easily checkable
conditions wherein we show that if supp(Λ) = Rd (see (2) for the definition of the support of a Borel
measure), then γk is a metric onP . This result is extended in a straightforward way to Td (d-Torus)
in Section 3.3. The main results of this section are summarized in Table 1.

We start by defining characteristic kernels.

Definition 6 (Characteristic kernel) A bounded measurable positive definite kernel k is charac-
teristic to a set Q ⊂P of probability measures defined on (M,A) if for P,Q ∈Q, γk(P,Q) = 0⇔
P = Q. k is simply said to be characteristic if it is characteristic to P . The RKHS H induced by
such a k is called a characteristic RKHS.

As mentioned before, the injectivity of Π is related to the characteristic property of k. If k is
characteristic, then γk(P,Q) = ‖Π[P]−Π[Q]‖H = 0⇒ P = Q, which means P 6→

R

M k(·,x)dP(x),
that is, Π is injective. Therefore, when M = Rd , the embedding of a distribution to a characteristic
RKHS can be seen as a generalization of the characteristic function, φP =

R

Rd ei〈·,x〉 dP(x). This
is because, by the uniqueness theorem for characteristic functions (Dudley, 2002, Theorem 9.5.1),
φP = φQ ⇒ P = Q, which means P 6→

R

Rd ei〈·,x〉 dP(x) is injective. So, in this context, intuitively
ei〈y,x〉 can be treated as the characteristic kernel, k, although, formally, this is not true as ei〈y,x〉 is not
a pd kernel.

Before we get to the characterization of characteristic kernels, the following examples show that
there exist bounded measurable kernels that are not characteristic.

Example 1 (Trivial kernel) Let k(x,y) = ψ(x− y) =C, ∀x,y ∈ Rd with C > 0. Using this in (9),
we have γ2k(P,Q) =C+C−2C = 0 for any P,Q ∈P , which means k is not characteristic.
Example 2 (Dot product kernel) Let k(x,y) = xT y, x,y ∈ Rd. Using this in (9), we have

γ2k(P,Q) = µTPµP +µTQµQ−2µTPµQ = ‖µP−µQ‖22,

where µP and µQ represent the means associated with P andQ respectively, that is, µP :=
R

Rd xdP(x).
It is clear that k is not characteristic as γk(P,Q) = 0⇒ µP = µQ ! P = Q for all P,Q ∈P .
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Summary of Main Results

Domain Property Q Characteristic Reference

M k is integrally strictly pd P Yes Theorem 7

Rd Ω= Rd P Yes Theorem 9

Rd supp(ψ) is compact P Yes Corollary 10

Rd Ω" Rd , int(Ω) #= /0 P1 Yes Theorem 12

Rd Ω" Rd P No Theorem 9

Td Aψ(0)≥ 0, Aψ(n) > 0, ∀n #= 0 P Yes Theorem 14

Td ∃n #= 0 |Aψ(n) = 0 P No Theorem 14

Table 1: The table should be read as: If “Property” is satisfied on “Domain”, then k is characteris-
tic (or not) to Q. P is the set of all Borel probability measures on a topological space,
M. See Section 1.2 for the definition of integrally strictly pd kernels. When M = Rd ,
k(x,y) = ψ(x− y), where ψ is a bounded, continuous positive definite function on Rd .
ψ is the Fourier transform of a finite nonnegative Borel measure, Λ, and Ω := supp(Λ)
(see Theorem 3 and (2) for details). P1 := {P ∈ P : φP ∈ L1(Rd) ∪ L2(Rd), P :
λ and supp(P) is compact}, where φP is the characteristic function of P and λ is the
Lebesgue measure. P: λ denotes that P is absolutely continuous w.r.t. λ. WhenM = Td ,
k(x,y) = ψ(x− y), where ψ is a bounded, continuous positive definite function on Td .
{Aψ(n)}n∈Zd are the Fourier series coefficients of ψ which are nonnegative and summable
(see Theorem 13 for details).

Example 3 (Polynomial kernel of order 2) Let k(x,y) = (1+ xT y)2, x,y ∈ Rd. Using this in (10),
we have

γ2k(P,Q) =
Z Z

Rd
(1+2xT y+ xT yyT x)d(P−Q)(x)d(P−Q)(y)

= 2‖µP−µQ‖22+‖ΣP−ΣQ +µPµTP −µQµTQ‖2F ,

where ΣP and ΣQ represent the covariance matrices associated with P and Q respectively, that is,
ΣP :=

R

Rd xxT dP(x)−µPµTP . ‖ · ‖F represents the Frobenius norm. Since γk(P,Q) = 0⇒ (µP =
µQ and ΣP = ΣQ) ! P = Q for all P,Q ∈P , k is not characteristic.

In the following sections, we address the question of when k is characteristic, that is, for what k is
γk a metric onP?
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3.1 Integrally Strictly Positive Definite Kernels are Characteristic

Compared to the existing characterizations in literature (Gretton et al., 2007b; Fukumizu et al., 2008,
2009a), the following result provides a more natural and easily understandable characterization for
characteristic kernels, namely that integrally strictly pd kernels are characteristic toP .

Theorem 7 (Integrally strictly pd kernels are characteristic) Let k be an integrally strictly pos-
itive definite kernel on a topological space M. Then k is characteristic to P .

Before proving Theorem 7, we provide a supplementary result in Lemma 8 that provides neces-
sary and sufficient conditions for a kernel not to be characteristic. We show that choosing k to be
integrally strictly pd violates the conditions in Lemma 8, and k is therefore characteristic toP .

Lemma 8 Let k be measurable and bounded on a topological space, M. Then ∃P #= Q where
P,Q ∈P such that γk(P,Q) = 0 if and only if there exists a finite non-zero signed Borel measure µ
that satisfies:

(i)
RR

M k(x,y)dµ(x)dµ(y) = 0,

(ii) µ(M) = 0.

Proof (⇐ ) Suppose there exists a finite non-zero signed Borel measure, µ that satisfies (i) and (ii) in
Lemma 8. By the Jordan decomposition theorem (Dudley, 2002, Theorem 5.6.1), there exist unique
positive measures µ+ and µ− such that µ= µ+−µ− and µ+ ⊥ µ− (µ+ and µ− are singular). By (ii),
we have µ+(M) = µ−(M) =: α. Define P = α−1µ+ and Q = α−1µ−. Clearly, P #= Q, P,Q ∈ P .
Then, by (10), we have

γ2k(P,Q) =
Z Z

M
k(x,y)d(P−Q)(x)d(P−Q)(y) = α−2

Z Z

M
k(x,y)dµ(x)dµ(y) (a)

= 0,

where (a) is obtained by invoking (i). So, we have constructed P #= Q such that γk(P,Q) = 0.
(⇒ ) Suppose ∃P #= Q, P,Q ∈ P such that γk(P,Q) = 0. Let µ= P−Q. Clearly µ is a finite
non-zero signed Borel measure that satisfies µ(M) = 0. Note that by (10),

γ2k(P,Q) =
Z Z

M
k(x,y)d(P−Q)(x)d(P−Q)(y) =

Z Z

M
k(x,y)dµ(x)dµ(y),

and therefore (i) follows.

Proof (of Theorem 7) Since k is integrally strictly pd onM, we have
Z Z

M
k(x,y)dη(x)dη(y) > 0,

for any finite non-zero signed Borel measure η. This means there does not exist a finite non-zero
signed Borel measure that satisfies (i) in Lemma 8. Therefore, by Lemma 8, there does not exist
P #= Q, P,Q ∈P such that γk(P,Q) = 0, which implies k is characteristic.

Examples of integrally strictly pd kernels on Rd include the Gaussian, exp(−σ‖x− y‖22), σ > 0;
the Laplacian, exp(−σ‖x− y‖1), σ > 0; inverse multiquadratics, (σ2+ ‖x− y‖22)−c, c > 0, σ > 0,
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etc, which are translation invariant kernels on Rd . A translation variant integrally strictly pd ker-
nel, k̃, can be obtained from a translation invariant integrally strictly pd kernel, k, as k̃(x,y) =
f (x)k(x,y) f (y), where f :M→R is a bounded continuous function. A simple example of a transla-
tion variant integrally strictly pd kernel on Rd is k̃(x,y) = exp(σxT y), σ> 0, where we have chosen
f (·) = exp(σ‖ ·‖22/2) and k(x,y) = exp(−σ‖x− y‖22/2), σ> 0. Clearly, this kernel is characteristic
on compact subsets of Rd . The same result can also be obtained from the fact that k̃ is universal on
compact subsets of Rd (Steinwart, 2001, Section 3, Example 1), recalling that universal kernels are
characteristic (Gretton et al., 2007b, Theorem 3).

Although the condition for characteristic k in Theorem 7 is easy to understand compared to other
characterizations in literature, it is not always easy to check for integral strict positive definiteness
of k. In the following section, we assume M = Rd and k to be translation invariant and present a
complete characterization for characteristic k which is simple to check.

3.2 Characterization for Translation Invariant k on Rd

The complete, detailed proofs of the main results in this section are provided in Section 3.5. Com-
pared to Sriperumbudur et al. (2008), we now present simple proofs for these results without resort-
ing to distribution theory. Let us start with the following assumption.

Assumption 1 k(x,y) = ψ(x− y) where ψ is a bounded continuous real-valued positive definite
function on M = Rd.

The following theorem characterizes all translation invariant kernels in Rd that are characteristic.

Theorem 9 Suppose k satisfies Assumption 1. Then k is characteristic if and only if supp(Λ) = Rd,
where Λ is defined as in (11).

First, note that the condition supp(Λ) = Rd is easy to check compared to all other, aforementioned
characterizations for characteristic k. Table 2 shows some popular translation invariant kernels on R
along with their Fourier spectra, ψ̂ and its support: Gaussian, Laplacian, B2n+1-spline5 (Schölkopf
and Smola, 2002) and Sinc kernels are aperiodic while Poisson (Brémaud, 2001; Steinwart, 2001;
Vapnik, 1998), Dirichlet (Brémaud, 2001; Schölkopf and Smola, 2002), Féjer (Brémaud, 2001)
and cosine kernels are periodic. Although the Gaussian and Laplacian kernels are shown to be
characteristic by all the characterizations we have mentioned so far, the case of B2n+1-splines is
addressed only by Theorem 9, which shows them to be characteristic (note that B2n+1-splines being
integrally strictly pd also follows from Theorem 9). In fact, one can provide a more general result on
compactly supported translation invariant kernels, which we do later in Corollary 10. The Matérn
class of kernels (Rasmussen and Williams, 2006, Section 4.2.1), given by

k(x,y) = ψ(x− y) =
21−ν

Γ(ν)

(√
2ν‖x− y‖2

σ

)ν

Kν

(√
2ν‖x− y‖2

σ

)

, ν> 0, σ> 0, (18)

5. A B2n+1-spline is a Bn-spline of odd order. Only B2n+1-splines are admissible, that is, Bn-splines of odd order are
positive definite kernels whereas those of even order have negative components in their Fourier spectrum ψ̂, and
therefore are not admissible kernels. In Table 2, the symbol ∗(2n+2)

1 represents the (2n+ 2)-fold convolution. An
important point to be noted with the B2n+1-spline kernel is that ψ̂ has vanishing points at ω = 2πα, α ∈ Z\{0},
unlike Gaussian and Laplacian kernels which do not have vanishing points in their Fourier spectrum. Nevertheless,
the spectrum of all these kernels has support R.
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Kernel ψ(x) ψ̂(ω) supp(ψ̂)

Gaussian exp
(
− x2
2σ2

)
σexp

(
−σ2ω2

2

)
R

Laplacian exp(−σ|x|)
√

2
π

σ
σ2+ω2

R

B2n+1-spline ∗(2n+2)
1 1[− 1

2 , 12 ]
(x) 4n+1√

2π
sin2n+2(ω2 )

ω2n+2
R

Sinc sin(σx)
x

√
π
21[−σ,σ](ω) [−σ,σ]

Poisson 1−σ2
σ2−2σcos(x)+1 , 0< σ< 1

√
2π∑∞

j=−∞σ
| j| δ(ω− j) Z

Dirichlet sin (2n+1)x
2

sin x2

√
2π∑nj=−n δ(ω− j) {0,±1, . . . ,±n}

Féjer 1
n+1

sin2 (n+1)x
2

sin2 x
2

√
2π∑nj=−n

(
1− | j|

n+1

)
δ(ω− j) {0,±1, . . . ,±n}

Cosine cos(σx)
√

π
2 [δ(ω−σ)+δ(ω+σ)] {−σ,σ}

Table 2: Translation invariant kernels on R defined by ψ, their spectra, ψ̂ and its support, supp(ψ̂).
The first four are aperiodic kernels while the last four are periodic. The domain is con-
sidered to be R for simplicity. For x ∈ Rd , the above formulae can be extended by
computing ψ(x) = ∏d

j=1ψ(x j) where x = (x1, . . . ,xd) and ψ̂(ω) = ∏d
j=1 ψ̂(ω j) where

ω= (ω1, . . . ,ωd). δ represents the Dirac-delta distribution.

is characteristic as the Fourier spectrum of ψ, given by

ψ̂(ω) =
2d+νπd/2Γ(ν+d/2)νν

Γ(ν)σ2ν

(
2ν
σ2

+4π2‖ω‖22
)−(ν+d/2)

, ω ∈ Rd , (19)

is positive for any ω∈Rd . Here, Γ is the Gamma function, Kν is the modified Bessel function of the
second kind of order ν, where ν controls the smoothness of k. The case of ν= 1

2 in the Matérn class
gives the exponential kernel, k(x,y) = exp(−‖x− y‖2/σ), while ν→ ∞ gives the Gaussian kernel.
Note that ψ̂(x− y) in (19) is actually the inverse multiquadratic kernel, which is characteristic both
by Theorem 7 and Theorem 9.

By Theorem 9, the Sinc kernel in Table 2 is not characteristic, which is not easy to show using
other characterizations. By combining Theorem 7 with Theorem 9, it can be shown that the Sinc,
Poisson, Dirichlet, Féjer and cosine kernels are not integrally strictly pd. Therefore, for translation
invariant kernels on Rd , the integral strict positive definiteness of the kernel (or the lack of it) can
be tested using Theorems 7 and 9.

Of all the kernels shown in Table 2, only the Gaussian, Laplacian and B2n+1-spline kernels are
integrable and their corresponding ψ̂ are computed using (4). The other kernels shown in Table 2
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are not integrable and their corresponding ψ̂ have to be treated as distributions (see Folland, 1999,
Chapter 9 and Rudin, 1991, Chapter 6 for details), except for the Sinc kernel whose Fourier trans-
form can be computed in the L2 sense.6
Proof (Theorem 9)We provide an outline of the complete proof, which is presented in Section 3.5.
The sufficient condition in Theorem 9 is simple to prove and follows from Corollary 4(i), whereas
we need a supplementary result to prove its necessity, which is presented in Lemma 16 (see Sec-
tion 3.5). Proving the necessity of Theorem 9 is equivalent to showing that if supp(Λ) " Rd , then
∃P #= Q, P,Q ∈P such that γk(P,Q) = 0. In Lemma 16, we present equivalent conditions for the
existence of P #= Q such that γk(P,Q) = 0 if supp(Λ) " Rd , using which we prove the necessity of
Theorem 9.

The whole family of compactly supported translation invariant continuous bounded kernels on
Rd is characteristic, as shown by the following corollary to Theorem 9.

Corollary 10 Suppose k #= 0 satisfies Assumption 1 and supp(ψ) is compact. Then k is character-
istic.

Proof Since ψ ∈Cb(Rd) is compactly supported on Rd , by (6), ψ ∈ D ′
d . Therefore, by the Paley-

Wiener theorem (Theorem 29 in Appendix A), ψ̂ is the restriction to Rd of an entire function on
Cd , which means ψ̂ is an analytic function on Rd . Suppose supp(ψ̂) is compact, which means
there exists an open set, U ⊂ Rd such that ψ̂(x) = 0, ∀x ∈U . But being analytic, this implies that
ψ̂(x) = 0, ∀x∈Rd , that is, ψ= 0, which leads to a contradiction. Therefore, ψ̂ cannot be compactly
supported, that is, supp(ψ̂) = Rd , and the result follows from Theorem 9.

The above result is interesting in practice because of the computational advantage in dealing with
compactly supported kernels. Note that proving such a general result for compactly supported
kernels on Rd is not straightforward (maybe not even possible) with the other characterizations.

As a corollary to Theorem 9, the following result provides a method to construct new character-
istic kernels from a given one.

Corollary 11 Let k, k1 and k2 satisfy Assumption 1. Suppose k is characteristic and k2 #= 0. Then
k+ k1 and k · k2 are characteristic.

Proof Since k, k1 and k2 satisfy Assumption 1, k+ k1 and k2 · k also satisfy Assumption 1. In
addition,

(k+ k1)(x,y) := k(x,y)+ k1(x,y) = ψ(x− y)+ψ1(x− y) =
Z

Rd
e−i(x−y)

Tω d(Λ+Λ1)(ω),

(k · k2)(x,y) := k(x,y)k2(x,y) = ψ(x− y)ψ2(x− y) =
Z Z

Rd
e−i(x−y)

T (ω+ξ) dΛ(ω)dΛ2(ξ)

(a)
=:

Z

Rd
e−i(x−y)

Tω d(Λ∗Λ2)(ω),

6. If f ∈ L2(Rd), the Fourier transform#[ f ] := f̂ of f is defined to be the limit, in the L2-norm, of the sequence { f̂n} of
Fourier transforms of any sequence { fn} of functions belonging toSd , such that fn converges in the L2-norm to the
given function f ∈ L2(Rd), as n→ ∞. The function f̂ is defined almost everywhere on Rd and belongs to L2(Rd).
Thus, # is a linear operator, mapping L2(Rd) into L2(Rd). See Gasquet and Witomski (1999, Chapter IV, Lesson
22) for details.
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where (a) follows from the definition of convolution of measures (see Rudin 1991, Section 9.14 for
details). Since k is characteristic, that is, supp(Λ) = Rd , and supp(Λ) ⊂ supp(Λ+Λ1), we have
supp(Λ+Λ1) = Rd and therefore k+ k1 is characteristic. Similarly, since supp(Λ)⊂ supp(Λ∗Λ2),
we have supp(Λ∗Λ2) = Rd and therefore, k · k2 is characteristic.

Note that in the above result, we do not need k1 or k2 to be characteristic. Therefore, one can
generate all sorts of kernels that are characteristic by starting with a characteristic kernel, k.

So far, we have considered characterizations for k such that it is characteristic toP . We showed
in Theorem 9 that kernels with supp(Λ) " Rd are not characteristic to P . Now, we can question
whether such kernels can be characteristic to some proper subset Q of P . The following result
addresses this. Note that these kernels, that is, the kernels with supp(Λ) " Rd are usually not useful
in practice, especially in statistical inference applications, because the conditions on Q are usually
not easy to check. On the other hand, the following result is of theoretical interest: along with
Theorem 9, it completes the characterization of characteristic kernels that are translation invariant
onRd . Before we state the result, we denote P:Q to mean that P is absolutely continuous w.r.t.Q.

Theorem 12 Let P1 := {P ∈P : φP ∈ L1(Rd)∪L2(Rd), P: λ and supp(P) is compact}, where
λ is the Lebesgue measure. Suppose k satisfies Assumption 1 and supp(Λ) " Rd has a non-empty
interior, where Λ is defined as in (11). Then k is characteristic to P1.

Proof See Section 3.5.

Although, by Theorem 9, the kernels with supp(Λ) " Rd are not characteristic to P , Theorem 12
shows that there exists a subset ofP to which a subset of these kernels are characteristic. This type
of result is not available for the previously mentioned characterizations. An example of a kernel
that satisfies the conditions in Theorem 12 is the Sinc kernel, ψ(x) = sin(σx)

x which has supp(Λ) =
[−σ,σ]. The condition that supp(Λ) " Rd has a non-empty interior is important for Theorem 12 to
hold. If supp(Λ) has an empty interior (examples include periodic kernels), then one can construct
P #= Q, P,Q ∈P1 such that γk(P,Q) = 0. This is illustrated in Example 5 of Section 3.5.

So far, we have characterized the characteristic property of kernels that satisfy (a) supp(Λ) = Rd

or (b) supp(Λ) " Rd with int(supp(Λ)) #= /0. In the following section, we investigate kernels that
have supp(Λ) " Rd with int(supp(Λ)) = /0, examples of which include periodic kernels on Rd .
This discussion uses the fact that a periodic function on Rd can be treated as a function on Td , the
d-Torus.

3.3 Characterization for Translation Invariant k on Td

Let M =×d
j=1[0,τ j) and τ := (τ1, . . . ,τd). A function defined on M with periodic boundary condi-

tions is equivalent to considering a periodic function on Rd with period τ. With no loss of gener-
ality, we can choose τ j = 2π, ∀ j which yields M = [0,2π)d =: Td , called the d-Torus. The results
presented here hold for any 0 < τ j < ∞, ∀ j but we choose τ j = 2π for simplicity. Similar to As-
sumption 1, we now make the following assumption.

Assumption 2 k(x,y) = ψ((x− y)mod 2π), where ψ is a continuous real-valued positive definite
function on M = Td.

Similar to Theorem 3, we now state Bochner’s theorem onM = Td .
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Theorem 13 (Bochner) A continuous function ψ : Td → R is positive definite if and only if

ψ(x) = ∑
n∈Zd

Aψ(n)eix
T n, x ∈ Td , (20)

where Aψ : Zd → R+, Aψ(−n) = Aψ(n) and ∑n∈Zd Aψ(n) < ∞. Aψ are called the Fourier series
coefficients of ψ.

Examples forψ include the Poisson, Dirichlet, Féjer and cosine kernels, which are shown in Table 2.
We now state the result that defines characteristic kernels on Td .

Theorem 14 Suppose k satisfies Assumption 2. Then k is characteristic (to the set of all Borel
probability measures on Td) if and only if Aψ(0)≥ 0, Aψ(n) > 0, ∀n #= 0.

The proof is provided in Section 3.5 and the idea is similar to that of Theorem 9. Based on the
above result, one can generate characteristic kernels by constructing an infinite sequence of positive
numbers that are summable and then using them in (20). It can be seen from Table 2 that the Poisson
kernel on T is characteristic while the Dirichlet, Féjer and cosine kernels are not. Some examples
of characteristic kernels on T are:

(1) k(x,y) = eαcos(x−y) cos(αsin(x− y)), 0< α≤ 1 ↔ Aψ(0) = 1, Aψ(n) = α|n|

2|n|! , ∀n #= 0.

(2) k(x,y) =− log(1−2αcos(x− y)+α2), |α| < 1 ↔ Aψ(0) = 0, Aψ(n) = αn
n , ∀n #= 0.

(3) k(x,y) = (π− (x− y)mod 2π)2 ↔ Aψ(0) = π2
3 , Aψ(n) = 2

n2 , ∀n #= 0.

(4) k(x,y) = sinhα
coshα−cos(x−y) , α> 0 ↔ Aψ(0) = 1,Aψ(n) = e−α|n|, ∀n #= 0.

(5) k(x,y) = πcosh(α(π−(x−y)mod 2π))
αsinh(πα) ↔ Aψ(0) = 1

α2 , Aψ(n) = 1
n2+α2 , ∀n #= 0.

The following result relates characteristic kernels and universal kernels defined on Td .

Corollary 15 Let k be a characteristic kernel satisfying Assumption 2 with Aψ(0) > 0. Then k is
also universal.

Proof Since k is characteristic with Aψ(0) > 0, we have Aψ(n) > 0, ∀n. Therefore, by Corollary 11
of Steinwart (2001), k is universal.

Since k being universal implies that it is characteristic, the above result shows that the converse is
not true (though almost true except that Aψ(0) can be zero for characteristic kernels). The condi-
tion on Aψ in Theorem 14, that is, Aψ(0) ≥ 0, Aψ(n) > 0, ∀n #= 0 can be equivalently written as
supp(Aψ) = Zd or supp(Aψ) = Zd\{0}. Therefore, Theorems 9 and 14 are of similar flavor. In
fact, these results can be generalized to locally compact Abelian groups. Fukumizu et al. (2009b)
shows that a bounded continuous translation invariant kernel on a locally compact Abelian group
G is characteristic to the set of all probability measures on G if and only if the support of the
Fourier transform of the translation invariant kernel is the dual group of G. In our case, (Rd,+)
and (Td ,+) are locally compact Abelian groups with (Rd ,+) and (Zd ,+) as their respective dual
groups. In Fukumizu et al. (2009b), these results are also extended to translation invariant kernels
on non-Abelian compact groups and the semigroup Rd

+.
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Figure 1: Summary of the relations between various families of kernels is shown along with the
reference. The letters “C”, “F”, and “T” refer to Corollary, Footnote and Theorem re-
spectively. For example, T. 7 refers to Theorem 7. The implications which are open
problems are shown with “?”. A ! B indicates that A is a dense subset of B. Refer to
Section 3.4 for details.

3.4 Overview of Relations Between Families of Kernels

So far, we have presented various characterizations of characteristic kernels, which are easily check-
able compared with characterizations proposed in the earlier literature (Gretton et al., 2007b; Fuku-
mizu et al., 2008, 2009b). We now provide an overview of various useful conditions one can impose
on kernels (to be universal, strictly pd, integrally strictly pd, or characteristic), and the implications
that relate some of these conditions. A summary is provided in Figure 1.

Characteristic kernels vs. Integrally strictly pd kernels: It is clear from Theorem 7 that inte-
grally strictly pd kernels on a topological space M are characteristic, whereas the converse remains
undetermined. When k is translation invariant on Rd , however, then the converse holds. This is
because if k is characteristic, then by Theorem 9, supp(Λ) = Rd , where Λ is defined as in (11). It is
easy to check that if supp(Λ) = Rd , then k is integrally strictly pd.

Integrally strictly pd kernels vs. Strictly pd kernels: The relation between integrally strictly pd
and strictly pd kernels shown in Figure 1 is straightforward, as one direction follows from Foot-
note 4, while the other direction is not true, which follows from Steinwart and Christmann (2008,
Proposition 4.60, Theorem 4.62). However, if M is a finite set, then k being strictly pd also implies
it is integrally strictly pd.

Characteristic kernels vs. Strictly pd kernels: Since integrally strictly pd kernels are character-
istic and are also strictly pd, a natural question to ask is, “What is the relation between characteristic
and strictly pd kernels?” It can be seen that strictly pd kernels need not be characteristic because
the sinc-squared kernel, k(x,y) = sin2(σ(x−y))

(x−y)2 on R, which has supp(Λ) = [−σ,σ] " R is strictly pd
(Wendland, 2005, Theorem 6.11), while it is not characteristic by Theorem 9. However, for any
general M, it is not clear whether k being characteristic implies that it is strictly pd. As a special
case, if M = Rd or M = Td , then by Theorems 9 and 12, it follows that a translation invariant k
being characteristic also implies that it is strictly pd.

Universal kernels vs. Characteristic kernels: Gretton et al. (2007b) have shown that if k is
universal in the sense of Steinwart (2001), then it is characteristic. As mentioned in Section 3.3,
the converse is not true, that is, if a kernel is characteristic, then it need not be universal, which
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follows from Corollary 15. Note that in this case, M is assumed to be a compact metric space. The
notion of universality of kernels was extended to non-compact domains by Micchelli et al. (2006):
k is said to be universal on a non-compact Hausdorff space, M, if for any compact Z ⊂M, the set
K(Z) := span{k(·,y) : y∈ Z} is dense inCb(Z)w.r.t. the supremum norm. It is to be noted that when
M is compact, this notion of universality is same as that of Steinwart (2001). Micchelli et al. (2006,
Proposition 15) have provided a characterization of universality for translation invariant kernels on
Rd : k is universal if λ(supp(Λ)) > 0, where λ is the Lebesgue measure and Λ is defined as in (11).
This means if a translation invariant kernel on Rd is characteristic, that is, supp(Λ) = Rd , then it
is also universal in the sense of Micchelli et al. (2006), while the converse is not true (e.g., sinc-
squared kernel is not characteristic as supp(Λ) = [−σ,σ] " R but universal in the sense of Micchelli
as λ(supp(Λ)) = 2σ> 0). The relation between these notions for a general non-compact Hausdorff
spaceM (other thanRd) remains to be determined (whether or not the kernel is translation invariant).

Fukumizu et al. (2008, 2009b) have shown that k is characteristic if and only ifH+R is dense
in Lr(M,P) for all P ∈P and for some r ∈ [1,∞). Using this, it is easy to see that ifH is dense in
Lr(M,P) for all P ∈P and for some r ∈ [1,∞), then k is characteristic. Clearly, the converse is not
true. However, if constant functions are included inH, then it is easy to see that the converse is also
true.

Universal kernels vs. Strictly pd kernels: If a kernel is universal, then it is strictly pd, which
follows from Steinwart and Christmann (2008, Definition 4.53, Proposition 4.54, Exercise 4.11).
On the other hand, if a kernel is strictly pd, then it need not be universal, which follows from the
results due to Dahmen and Micchelli (1987) and Pinkus (2004) for Taylor kernels (Steinwart and
Christmann, 2008, Lemma 4.8, Corollary 4.57). Refer to Steinwart and Christmann (2008, Section
4.7, p. 161) for more details.

Recently, Sriperumbudur et al. (2010a,b) carried out a thorough study relating characteristic
kernels to various notions of universality, addressing some open questions mentioned in the above
discussion and Figure 1. This is done by relating universality to the injective embedding of regular
Borel measures into an RKHS, which can therefore be seen as a generalization of the notion of
characteristic kernels, as the latter deal with the injective RKHS embedding of probability measures.

3.5 Proofs

First, we present a supplementary result in Lemma 16 that will be used to prove Theorem 9. The
idea of Lemma 16 is to characterize the equivalent conditions for the existence of P #= Q such that
γk(P,Q) = 0 when supp(Λ) " Rd . Its proof relies on the properties of characteristic functions,
which we have collected in Theorem 27 in Appendix A.

Lemma 16 Let P0 := {P ∈P : φP ∈ L1(Rd)∪L2(Rd) and P: λ}, where λ is the Lebesgue mea-
sure. Suppose k satisfies Assumption 1 and supp(Λ) " Rd, where Λ is defined as in (11). Then, for
any Q ∈P0, ∃P #= Q, P ∈P0 such that γk(P,Q) = 0 if and only if there exists a non-zero function
θ : Rd → C that satisfies the following conditions:

(i) θ ∈ (L1(Rd)∪L2(Rd))∩Cb(Rd) is conjugate symmetric, that is, θ(x) = θ(−x), ∀x ∈ Rd,

(ii) θ∨ ∈ L1(Rd)∩ (L2(Rd)∪Cb(Rd)),

(iii)
R

Rd |θ(x)|2 dΛ(x) = 0,
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(iv) θ(0) = 0,

(v) infx∈Rd{θ∨(x)+q(x)}≥ 0.

Proof Define L1 := L1(Rd), L2 := L2(Rd) and Cb :=Cb(Rd).
(⇐ ) Suppose there exists a non-zero function θ satisfying (i) – (v). For any Q ∈P0, we have

φQ ∈ L1 ∪L2 and φQ ∈ Cb (by Theorem 27), that is, φQ ∈ (L1 ∪L2)∩Cb. Now, consider the case
of φQ ∈ L1 ∩Cb. Since φQ ∈ L1, by the inversion theorem for characteristic functions (Dudley,
2002, Theorem 9.5.4), Q is absolutely continuous w.r.t. λ. If q is the Radon-Nikodym derivative
of Q w.r.t. λ, then q = [φQ]∨ ∈ L1. In addition, by the Riemann-Lebesgue lemma (Lemma 28 in
Appendix A), we have q ∈C0(Rd)⊂Cb, which therefore implies q ∈ L1∩Cb. When φQ ∈ L2∩Cb,
the Fourier transform in the L2 sense (see Footnote 6) implies that q= [φQ]∨ ∈ L1∩L2. Therefore,
q ∈ L1∩ (L2∪Cb). Define p := q+θ∨. Clearly p ∈ L1∩ (L2∪Cb). In addition, φP = p̂= q̂+ θ̂∨ =
φQ +θ ∈ (L1∪L2)∩Cb. Since θ is conjugate symmetric, θ∨ is real valued and so is p. Consider

Z

Rd
p(x)dx=

Z

Rd
q(x)dx+

Z

Rd
θ∨(x)dx= 1+θ(0) = 1.

(v) implies that p is non-negative. Therefore, p is the Radon-Nikodym derivative of a probability
measure P w.r.t. λ, where P is such that P #= Q and P ∈P0. By (12), we have

γ2k(P,Q) =
Z

Rd
|φP(x)−φQ(x)|2 dΛ(x) =

Z

Rd
|θ(x)|2 dΛ(x) = 0.

(⇒ ) Suppose that there exists P #= Q, P,Q ∈P0 such that γk(P,Q) = 0. Define θ := φP−φQ. We
need to show that θ satisfies (i) – (v). Recalling Theorem 27 in the appendix, P,Q ∈ P0 implies
φP,φQ ∈ (L1 ∪ L2)∩Cb and p,q ∈ L1 ∩ (L2 ∪Cb). Therefore, θ = φP − φQ ∈ (L1 ∪ L2)∩Cb and
θ∨ = p−q ∈ L1∩ (L2∪Cb). By Theorem 27 (see Appendix A), φP and φQ are conjugate symmetric
and so is θ. Therefore θ satisfies (i) and θ∨ satisfies (ii). θ satisfies (iv) as

θ(0) =
Z

Rd
θ∨(x)dx=

Z

Rd
(p(x)−q(x))dx= 0.

Non-negativity of p yields (v). By (12), γk(P,Q) = 0 implies (iii).

Remark 17 Note that the dependence of θ on the kernel appears in the form of (iii) in Lemma 16.
This condition shows that λ(supp(θ)∩ supp(Λ)) = 0, that is, the supports of θ and Λ are disjoint
w.r.t. the Lebesgue measure, λ. In other words, supp(θ) ⊂ cl(Rd\supp(Λ)). So, the idea is to
introduce the perturbation, θ over an open set, U where Λ(U) = 0. The remaining conditions
characterize the nature of this perturbation so that the constructed measure, p= q+θ∨, is a valid
probability measure. Conditions (i), (ii) and (iv) simply follow from θ= φP−φQ, while (v) ensures
that p(x)≥ 0, ∀x.

Using Lemma 16, we now present the proof of Theorem 9.

Proof(Theorem 9) The sufficiency follows from (12): if supp(Λ)= Rd , then γ2k(P,Q)=
R

Rd |φP(x)−
φQ(x)|2 dΛ(x) = 0⇒ φP = φQ, a.e. Recalling from Theorem 27 that φP and φQ are uniformly con-
tinuous on Rd , we have that P = Q, and therefore k is characteristic. To prove necessity, we need
to show that if supp(Λ) " Rd , then there exists P #= Q, P,Q ∈ P such that γk(P,Q) = 0. By
Lemma 16, this is equivalent to showing that there exists a non-zero θ satisfying the conditions in
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Lemma 16. Below, we provide a constructive procedure for such a θ when supp(Λ) " Rd , thereby
proving the result.

Consider the following function, fβ,ω0 ∈C∞(Rd) supported in [ω0−β,ω0+β],

fβ,ω0(ω) =
d

∏
j=1

hβ j,ω0, j(ω j) with ha,b(y) := 1[−a,a](y−b)e
− a2

a2−(y−b)2 ,

where ω = (ω1, . . . ,ωd), ω0 = (ω0,1, . . . ,ω0,d), β = (β1, . . . ,βd), a ∈ R++, b ∈ R and y ∈ R. Since
supp(Λ) " Rd , there exists an open set U ⊂ Rd such that Λ(U) = 0. So, there exists β ∈ Rd

++ and
ω0 > β (element-wise inequality) such that [ω0−β,ω0+β]⊂U . Let

θ= α( fβ,ω0 + fβ,−ω0), α ∈ R\{0},

which implies supp(θ) = [−ω0−β,−ω0+β]∪ [ω0−β,ω0+β] is compact. Clearly θ ∈ Dd ⊂Sd
which implies θ∨ ∈ Sd ⊂ L1(Rd)∩ L2(Rd). Therefore, by construction, θ satisfies (i) – (iv) in
Lemma 16. Since

R

Rd θ∨(x)dx = θ(0) = 0 (by construction), θ∨ will take negative values, so we
need to show that there exists Q ∈P0 such that (v) in Lemma 16 holds. Let Q be such that it has a
density given by

q(x) =Cl
d

∏
j=1

1
(1+ |x j|2)l

, l ∈ N where Cl =
d

∏
j=1

(
Z

R
(1+ |x j|2)−l dx j

)−1
,

and x= (x1, . . . ,xd). It can be verified that choosing α such that

0< |α|≤
Cl

2supx
∣∣∣∏d

j=1 h∨β j,0(x j)(1+ |x j|2)l cos(ωT0 x)
∣∣∣
< ∞,

ensures that θ satisfies (v) in Lemma 16. The existence of finite α is guaranteed as ha,0 ∈D1 ⊂S1
which implies h∨a,0 ∈ S1, ∀a. We conclude there exists a non-zero θ as claimed earlier, which
completes the proof.

To elucidate the necessity part in the above proof, in the following, we present a simple example
that provides an intuitive understanding about the construction of θ such that for a given Q, P #= Q
can be constructed with γk(P,Q) = 0.

Example 4 LetQ be a Cauchy distribution inR, that is, q(x) = 1
π(1+x2) with characteristic function,

φQ(ω) = 1√
2πe

−|ω| in L1(R). Letψ be a Sinc kernel, that is,ψ(x) =
√

2
π
sin(βx)

x with Fourier transform
given by ψ̂(ω) = 1[−β,β](ω) and supp(ψ̂) = [−β,β] " R. Let θ be

θ(ω) =
α
2i

[
∗N1 1[− β

2 ,
β
2

](ω)

]
∗ [δ(ω−ω0)−δ(ω+ω0)] ,

where |ω0|≥
(N+2

2
)
β, N ≥ 2 and α #= 0. ∗N1 represents the N-fold convolution. Note that θ is such

that supp(θ)∩supp(ψ̂) is a null set w.r.t. the Lebesgue measure, which satisfies (iii) in Lemma 16. It
is easy to verify that θ ∈ L1(R)∩L2(R)∩Cb(R) also satisfies conditions (i) and (iv) in Lemma 16.
θ∨ can be computed as

θ∨(x) =
2Nα√
2π
sin(ω0x)

sinN
(
βx
2

)

xN
,
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and θ∨ ∈ L1(R)∩L2(R)∩Cb(R) satisfies (ii) in Lemma 16. Choose

0< |α|≤
√
2

√
πβN supx

∣∣∣(1+ x2)sin(ω0x)sincN
(
βx
2π

)∣∣∣
,

where sinc(x) := sin(πx)
πx . Define g(x) := sin(ω0x)sincN

(
βx
2π

)
. Since g∈S1, 0< supx |(1+x2)g(x)|<

∞ and, therefore, α is a finite non-zero number. It is easy to see that θ satisfies (v) of Lemma 16.
Then, by Lemma 16, there exists P #= Q, P ∈P0, given by

p(x) =
1

π(1+ x2)
+
2Nα√
2π
sin(ω0x)

sinN
(
βx
2

)

xN
,

with φP = φQ + θ = φQ + iθI where θI = Im[θ] and φP ∈ L1(R). So, we have constructed P #= Q,
such that γk(P,Q) = 0. Figure 2 shows the plots of ψ, ψ̂, θ, θ∨, q, φQ, p and |φP| for β= 2π, N = 2,
ω0 = 4π and α= 1

50 .

We now prove Theorem 12.

Proof(Theorem 12) Suppose ∃P #= Q, P,Q ∈P1 such that γk(P,Q) = 0. Since any positive Borel
measure on Rd is a distribution (Rudin, 1991, p. 157), P and Q can be treated as distributions
with compact support. By the Paley-Wiener theorem (Theorem 29 in Appendix A), φP and φQ

are restrictions to Rd of entire functions on Cd . Let θ := φP− φQ. Since γk(P,Q) = 0, we have
from (12) that

R

Rd |θ(ω)|2 dΛ(ω) = 0. From Remark 17, it follows that supp(θ)⊂ cl(Rd\supp(Λ)).
Since supp(Λ) has a non-empty interior, we have supp(θ) " Rd . Thus, there exists an open set,
U ⊂ Rd such that θ(x) = 0, ∀x ∈ U . Since θ is analytic on Rd , we have θ = 0, which means
φP = φQ ⇒ P = Q, leading to a contradiction. So, there does not exist P #= Q, P,Q ∈P1 such that
γk(P,Q) = 0, and k is therefore characteristic toP1.

The condition that supp(Λ) has a non-empty interior is important for Theorem 12 to hold. In the
following, we provide a simple example to show that P #= Q, P,Q ∈ P1 can be constructed such
that γk(P,Q) = 0, if k is a periodic translation invariant kernel for which int(supp(Λ)) = /0.

Example 5 Let Q be a uniform distribution on [−β,β] ⊂ R, that is, q(x) = 1
2β1[−β,β](x) with its

characteristic function, φQ(ω) = 1
β
√
2π
sin(βω)

ω ∈ L2(R). Let ψ be the Dirichlet kernel with period

τ, where τ ≤ β, that is, ψ(x) =
sin (2l+1)πx

τ
sin πx

τ
and ψ̂(ω) =

√
2π∑l

j=−l δ
(
ω− 2π j

τ

)
with supp(ψ̂) =

{
2π j
τ : j ∈ {0,±1, . . . ,±l}

}
. Clearly, supp(ψ̂) has an empty interior. Let θ be

θ(ω) =
8
√
2α

i
√
π
sin

(ωτ
2

) sin2
(
ωτ
4
)

τω2
,

with α ≤ 1
2β . It is easy to verify that θ ∈ L

1(R)∩L2(R)∩Cb(R), so θ satisfies (i) in Lemma 16.
Since θ(ω) = 0 at ω= 2πl

τ , l ∈ Z, supp(θ)∩ supp(ψ̂)⊂ supp(ψ̂) is a set of Lebesgue measure zero,
so (iii) and (iv) in Lemma 16 are satisfied. θ∨ is given by

θ∨(x) =






2α|x+ τ
2 |

τ −α, −τ≤ x≤ 0
α− 2α|x− τ

2 |
τ , 0≤ x≤ τ

0, otherwise,
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Figure 2: (a-a′) ψ and its Fourier spectrum ψ̂, (b-b′) θ∨ and iθ, (c-c′) the Cauchy distribution, q and
its characteristic function φQ, and (d-d′) p= q+θ∨ and |φP|. See Example 4 for details.
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where θ∨ ∈ L1(R)∩L2(R)∩Cb(R) satisfies (ii) in Lemma 16. Now, consider p= q+θ∨, which is
given as

p(x) =






1
2β , x ∈ [−β,−τ]∪ [τ,β]

2α|x+ τ
2 |

τ + 1
2β −α, x ∈ [−τ,0]

α+ 1
2β −

2α|x− τ
2 |

τ , x ∈ [0,τ]
0, otherwise.

Clearly, p(x) ≥ 0, ∀x and
R

R p(x)dx = 1. φP = φQ + θ = φQ + iθI where θI = Im[θ] and φP ∈
L2(R). We have therefore constructed P #= Q, such that γk(P,Q) = 0, where P and Q are compactly
supported in R with characteristic functions in L2(R), that is, P,Q ∈P1. Figure 3 shows the plots
of ψ, ψ̂, θ, θ∨, q, φQ, p and |φP| for τ= 2, l = 2, β= 3 and α= 1

8 .
We now present the proof of Theorem 14, which is similar to that of Theorem 9.

Proof (Theorem 14) (⇐ ) From (10), we have

γ2k(P,Q) =
Z Z

Td
ψ(x− y)d(P−Q)(x)d(P−Q)(y)

(a)
=

Z Z

Td ∑
n∈Zd

Aψ(n)ei(x−y)
T n d(P−Q)(x)d(P−Q)(y)

(b)
= ∑

n∈Zd
Aψ(n)

∣∣∣∣
Z

Td
e−ix

T n d(P−Q)(x)
∣∣∣∣
2

(c)
= (2π)2d ∑

n∈Zd
Aψ(n) |AP(n)−AQ(n)|2 , (21)

where we have invoked Bochner’s theorem (Theorem 13) in (a), Fubini’s theorem in (b) and

AP(n) :=
1

(2π)d
Z

Td
e−in

T x dP(x), n ∈ Zd ,

in (c). AP is the Fourier transform of P in Td . Since Aψ(0) ≥ 0 and Aψ(n) > 0, ∀n #= 0, we have
AP(n) = AQ(n), ∀n. Therefore, by the uniqueness theorem of Fourier transform, we have P = Q.

(⇒ ) Proving the necessity is equivalent to proving that if Aψ(0)≥ 0, Aψ(n) > 0, ∀n #= 0 is violated,
then k is not characteristic, which is equivalent to showing that ∃P #= Q such that γk(P,Q) = 0. Let
Q be a uniform probability measure with q(x) = 1

(2π)d , ∀x ∈ Td . Let k be such that Aψ(n) = 0 for
some n= n0 #= 0. Define

AP(n) :=
{

AQ(n), n #= ±n0
AQ(n)+θ(n), n= ±n0

,

where AQ(n) = 1
(2π)d δ0n and θ(−n0) = θ(n0). So,

p(x) = ∑
n∈Zd

AP(n)eix
T n =

1
(2π)d

+θ(n0)eix
T n0 +θ(−n0)e−ix

T n0 .

Choose θ(n0) = iα, α ∈ R. Then, p(x) = 1
(2π)d −2αsin(x

Tn0). It is easy to check that p integrates
to one. Choosing |α|≤ 1

2(2π)d ensures that p(x)≥ 0,∀x ∈ Td . By using AP(n) in (21), it is clear that
γk(P,Q) = 0. Therefore, ∃P #= Q such that γk(P,Q) = 0, which means k is not characteristic.
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Figure 3: (a-a′) ψ and its Fourier spectrum ψ̂, (b-b′) θ∨ and iθ, (c-c′) the uniform distribution, q and
its characteristic function φQ, and (d-d′) p= q+θ∨ and |φP|. See Example 5 for details.
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4. Dissimilar Distributions with Small γk
So far, we have studied different characterizations for the kernel k such that γk is a metric onP . As
mentioned in Section 1, the metric property of γk is crucial in many statistical inference applications
like hypothesis testing. Therefore, in practice, it is important to use characteristic kernels. However,
in this section, we show that characteristic kernels, while guaranteeing γk to be a metric on P ,
may nonetheless have difficulty in distinguishing certain distributions on the basis of finite samples.
More specifically, in Theorem 19 we show that for a given kernel k and for any ε > 0, there exist
P #= Q such that γk(P,Q) < ε. Before proving the result, we motivate it through the following
example.

Example 6 Let P be absolutely continuous w.r.t. the Lebesgue measure on R with the Radon-
Nikodym derivative defined as

p(x) = q(x)+αq(x)sin(νπx), (22)

where q is the Radon-Nikodym derivative ofQw.r.t. the Lebesgue measure satisfying q(x)= q(−x), ∀x
and α ∈ [−1,1]\{0}, ν ∈R\{0}. It is obvious that P #= Q. The characteristic function of P is given
as

φP(ω) = φQ(ω)−
iα
2

[φQ(ω−νπ)−φQ(ω+νπ)] , ω ∈ R,

where φQ is the characteristic function associated with Q. Note that with increasing |ν|, p has
higher frequency components in its Fourier spectrum, as shown in Figure 4. In Figure 4, (a-c)
show the plots of p when q = U[−1,1] (uniform distribution) and (a′-c′) show the plots of p when
q= N(0,2) (zero mean normal distribution with variance 2) for ν= 0,2 and 7.5 with α= 1

2 .
Consider the B1-spline kernel on R given by k(x,y) = ψ(x− y) where

ψ(x) =

{
1− |x|, |x|≤ 1
0, otherwise , (23)

with its Fourier transform given by

ψ̂(ω) =
2
√
2√
π

sin2 ω2
ω2

.

Since ψ is characteristic to P , γk(P,Q) > 0 (see Theorem 9). However, it would be of interest to
study the behavior of γk(P,Q) as a function of ν. We study the behavior of γ2k(P,Q) through its
unbiased, consistent estimator,7 γ2k,u(m,m) as considered by Gretton et al. (2007b, Lemma 7).

Figure 5(a) shows the behavior of γ2k,u(m,m) as a function of ν for q= U[−1,1] and q= N(0,2)
using the B1-spline kernel in (23). Since the Gaussian kernel, k(x,y) = e−(x−y)2 is also a character-
istic kernel, its effect on the behavior of γ2k,u(m,m) is shown in Figure 5(b) in comparison to that of
the B1-spline kernel.

In Figure 5, we observe two circumstances under which γ2k may be small. First, γ2k,u(m,m) decays
with increasing |ν|, and can be made as small as desired by choosing a sufficiently large |ν|. Second,

7. Let {Xj}mj=1 and {Yj}
m
j=1 be random samples drawn i.i.d. from P andQ respectively. An unbiased empirical estimate

of γ2k(P,Q), denoted as γ2k,u(m,m) is given by γ2k,u(m,m) = 1
m(m−1) ∑

m
l #= j h(Zl ,Z j), which is a one-sample U-statistic

with h(Zl ,Z j) := k(Xl ,Xj) + k(Yl ,Yj)− k(Xl ,Yj)− k(Xj,Yl), where Z1, . . . ,Zm are m i.i.d. random variables with
Z j := (Xj,Yj). See Gretton et al. (2007b, Lemma 7) for details.
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Figure 4: (a) q = U[−1,1], (a′) q = N(0,2). (b-c) and (b′-c′) denote p(x) computed as p(x) =
q(x)+ 1

2q(x)sin(νπx) with q= U[−1,1] and q= N(0,2) respectively. ν is chosen to be 2
in (b,b′) and 7.5 in (c,c′). See Example 6 for details.
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Figure 5: Behavior of the empirical estimate of γ2k(P,Q) w.r.t. ν for (a) the B1-spline kernel and (b)
the Gaussian kernel. P is constructed from Q as defined in (22). “Uniform” corresponds
to Q = U[−1,1] and “Gaussian” corresponds to Q = N(0,2). m = 1000 samples are
generated from P and Q to estimate γ2k(P,Q) through γ2k,u(m,m). This is repeated 100
times and the average γ2k,u(m,m) is plotted in both figures. Since the quantity of interest
is the average behavior of γ2k,u(m,m), we omit the error bars. See Example 6 for details.

in Figure 5(a), γ2k,u(m,m) has troughs at ν = ω0
π where ω0 = {ω : ψ̂(ω) = 0}. Since γ2k,u(m,m) is a

consistent estimate of γ2k(P,Q), one would expect similar behavior from γ2k(P,Q). This means that,
although the B1-spline kernel is characteristic to P , in practice, it becomes harder to distinguish
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between P and Q with finite samples, when P is constructed as in (22) with ν = ω0
π . In fact, one

can observe from a straightforward spectral argument that the troughs in γ2k(P,Q) can be made
arbitrarily deep by widening q, when q is Gaussian.

For characteristic kernels, although γk(P,Q) > 0 when P #= Q, Example 6 demonstrates that one
can construct distributions such that γ2k,u(m,m) is indistinguishable from zero with high probability,
for a given sample size m. Below, in Theorem 19, we explicitly construct P #= Q such that |Pϕl −
Qϕl| is large for some large l, but γk(P,Q) is arbitrarily small, making it hard to detect a non-zero
value of γk(P,Q) based on finite samples. Here, ϕl ∈ L2(M) represents the bounded orthonormal
eigenfunctions of a positive definite integral operator associated with k. Based on this theorem, for
example, in Example 6, the decay mode of γk for large |ν| can be investigated.

Consider the formulation of γF with F = Fk in (1). The construction of P for a given Q such
that γk(P,Q) is small, though not zero, can be intuitively understood by re-writing (1) as

γk(P,Q) = sup
f∈H

|P f −Q f |
‖ f‖H

.

When P #= Q, |P f −Q f | can be large for some f ∈ H. However, γk(P,Q) can be made small by
selecting P such that the maximization of |P f−Q f |

‖ f‖H
over H requires an f with large ‖ f‖H. More

specifically, higher order eigenfunctions of the kernel (ϕl for large l) have large RKHS norms, so, if
they are prominent in P and Q (i.e., highly non-smooth distributions), one can expect γk(P,Q) to be
small even when there exists an l for which |Pϕl−Qϕl| is large. To this end, we need the following
lemma, which we quote from Gretton et al. (2005b, Lemma 4).

Lemma 18 (Gretton et al., 2005b) Let F be the unit ball in an RKHS (H,k) defined on a com-
pact topological space, M, with k being measurable. Let ϕl ∈ L2(M,µ) be absolutely bounded
orthonormal eigenfunctions and λl be the corresponding eigenvalues (arranged in decreasing or-
der for increasing l) of a positive definite integral operator associated with k and a σ-finite mea-
sure, µ. Assume λ−1l increases super-linearly with l. Then, for f ∈ F where f (x) = ∑∞

j=1 f̃ jϕ j(x),
f̃ j := 〈 f ,ϕ j〉L2(M,µ), we have ∑∞

j=1 | f̃ j| < ∞ and for every ε> 0, ∃ l0 ∈ N such that | f̃l| < ε if l > l0.
Theorem 19 (P #= Q can have arbitrarily small γk) Suppose the conditions in Lemma 18 hold.
Then there exist probability measures P #= Q defined on M such that γk(P,Q) < ε for any arbi-
trarily small ε> 0.
Proof Suppose q be the Radon-Nikodym derivative associated with Q w.r.t. the σ-finite measure, µ
(see Lemma 18). Let us construct p(x) = q(x)+αle(x)+ τϕl(x) where e(x) = 1M(x). For P to be a
probability measure, the following conditions need to be satisfied:

Z

M
[αle(x)+ τϕl(x)] dµ(x) = 0, (24)

min
x∈M

[q(x)+αle(x)+ τϕl(x)]≥ 0.

Expanding e(x) and f (x) in the orthonormal basis {ϕl}∞l=1, we get e(x) = ∑∞
l=1 ẽlϕl(x) and f (x) =

∑∞
l=1 f̃lϕl(x), where ẽl := 〈e,ϕl〉L2(M,µ) and f̃l := 〈 f ,ϕl〉L2(M,µ). Therefore,

P f −Q f =
Z

M
f (x) [αle(x)+ τϕl(x)] dµ(x)

=
Z

M

[

αl
∞

∑
j=1

ẽ jϕ j(x)+ τϕl(x)

][
∞

∑
t=1

f̃tϕt(x)

]

dµ(x) = αl
∞

∑
j=1

ẽ j f̃ j + τ f̃l, (25)
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where we used the fact that 〈ϕ j,ϕt〉L2(M,µ) = δ jt (here, δ is used in the Kronecker sense). Rewriting
(24) and substituting for e(x) gives

Z

M
[αle(x)+ τϕl(x)]dµ(x) =

Z

M
e(x)[αle(x)+ τϕl(x)]dµ(x) = αl

∞

∑
j=1

ẽ2j + τẽl = 0,

which implies

αl =−
τẽl

∑∞
j=1 ẽ2j

. (26)

Now, let us consider Pϕt−Qϕt = αl ẽt + τδtl . Substituting for αl gives

Pϕt −Qϕt = τδtl− τ
ẽt ẽl

∑∞
j=1 ẽ2j

= τδtl− τρtl,

where ρtl := ẽt ẽl
∑∞j=1 ẽ2j

. By Lemma 18, ∑∞
l=1 |ẽl|<∞⇒∑∞

j=1 ẽ2j <∞, and choosing large enough l gives
|ρtl| < η, ∀ t, for any arbitrary η> 0. Therefore, |Pϕt−Qϕt | > τ−η for t = l and |Pϕt−Qϕt | < η
for t #= l, which means P #= Q. In the following, we prove that γk(P,Q) can be arbitrarily small,
though non-zero.

Recall that γk(P,Q) = sup‖ f‖H≤1 |P f −Q f |. Substituting (26) in (25) and replacing |P f −Q f |
by (25) in γk(P,Q), we have

γk(P,Q) = sup
{ f̃ j}∞j=1

{

τ
∞

∑
j=1

ν jl f̃ j :
∞

∑
j=1

f̃ 2j
λ j
≤ 1

}

, (27)

where we used the definition of RKHS norm as ‖ f‖H := ∑∞
j=1

f̃ 2j
λ j
and ν jl := δ jl − ρ jl . (27) is

a convex quadratically constrained quadratic program in { f̃ j}∞j=1. Solving the Lagrangian yields
f̃ j =

ν jlλ j√
∑∞
j=1 ν

2
jlλ j
. Therefore,

γk(P,Q) = τ

√
∞

∑
j=1

ν2jlλ j = τ

√

λl−2ρllλl +
∞

∑
j=1

ρ2jlλ j
l→∞−→ 0,

because (i) by choosing sufficiently large l, |ρ jl| < ε, ∀ j, for any arbitrary ε> 0, and (ii) λl → 0 as
l → ∞ (Schölkopf and Smola, 2002, Theorem 2.10). Therefore, we have constructed P #= Q such
that γk(P,Q) < ε for any arbitrarily small ε> 0.

5. Metrization of the Weak Topology

So far, we have shown that a characteristic kernel k induces a metric γk on P . As motivated in
Section 1.1.3, an important question to consider that is useful both in theory and practice would
be: “How strong or weak is γk related to other metrics onP?” This question is addressed in Theo-
rem 21, where we compare γk to other metrics onP like the Dudley metric (β), Wasserstein distance
(W ), total variation distance (TV ), and show that γk is weaker than all these metrics (see Footnote 3
for the definition of “strong” and “weak” metrics). Since γk is weaker than the Dudley metric, which

1549



SRIPERUMBUDUR, GRETTON, FUKUMIZU, SCHÖLKOPF AND LANCKRIET

is known to induce a topology on P that coincides with the standard topology on P , called the
weak-∗ (weak-star) topology (usually called the weak topology in probability theory), the next ques-
tion we are interested in is to understand the topology that is being induced by γk. In particular, we
are interested in determining the conditions on k for which the topology induced by γk coincides
with the weak topology on P . This is answered in Theorems 23 and 24, where Theorem 23 deals
with compact M and Theorem 24 provides a sufficient condition on k when M = Rd . The proofs
of all these results are provided in Section 5.1. Before we motivate the need for this study and its
implications, we present some preliminaries.

The weak topology onP is the weakest topology such that the map P 6→
R

M f dP is continuous
for all f ∈ Cb(M). For a metric space (M,ρ), a sequence Pn of probability measures is said to
converge weakly to P, written as Pn

w→ P, if and only if
R

M f dPn→
R

M f dP for every f ∈Cb(M). A
metric γ onP is said to metrize the weak topology if the topology induced by γ coincides with the
weak topology, which is defined as follows: if, for P,P1,P2, . . . ∈P , (Pn

w→ P ⇔ γ(Pn,P)
n→∞−→ 0)

holds, then the topology induced by γ coincides with the weak topology.
In the following, we collect well-known results on the relation between various metrics on P ,

which will be helpful in understanding the behavior of these metrics, both with respect to each other
and to ours. Let (M,ρ) be a separable metric space. The Prohorov metric on (M,ρ), defined as

ς(P,Q) := inf{ε> 0 : P(A)≤Q(Aε)+ ε, ∀Borel sets A},

metrizes the weak topology on P (Dudley, 2002, Theorem 11.3.3), where P,Q ∈ P and Aε :=
{y ∈M : ρ(x,y) < ε for some x ∈ A}. Since the Dudley metric is related to the Prohorov metric as

1
2
β(P,Q)≤ ς(P,Q)≤ 2

√
β(P,Q), (28)

it also metrizes the weak topology onP (Dudley, 2002, Theorem 11.3.3). TheWasserstein distance
and total variation distance are related to the Prohorov metric as

ς2(P,Q)≤W (P,Q)≤ (diam(M)+1)ς(P,Q), (29)

and
ς(P,Q)≤ TV (P,Q),

where diam(M) := sup{ρ(x,y) : x,y ∈ M} (Gibbs and Su, 2002, Theorem 2). This means W and
TV are stronger than ς, while W and ς are equivalent (i.e., induce the same topology) when M is
bounded. By Theorem 4 in Gibbs and Su (2002), TV andW are related as

W (P,Q)≤ diam(M)TV (P,Q),

which meansW and TV are comparable ifM is bounded. See Shorack (2000, Chapter 19, Theorem
2.4) and Gibbs and Su (2002) for further detail on the relationship between various metrics onP .

Let us now consider a sequence of of probability measures on R, Pn :=
(
1− 1

n
)
δ0+ 1

nδn and let
P := δ0. It can be shown that β(Pn,P)→ 0 as n→∞ which means Pn

w→ P, whileW (Pn,P) = 1 and
TV (Pn,P) = 1 for all n. γk(Pn,P) can be computed as

γ2k(Pn,P) =
1
n2

Z Z

R
k(x,y)d(δ0−δn)(x)d(δ0−δn)(y) =

k(0,0)+ k(n,n)−2k(0,n)
n2

.
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If k is, for example, a Gaussian, Laplacian or inverse multiquadratic kernel, then γk(Pn,P)→ 0 as
n→∞. This example shows that γk is weaker thanW and TV . It also shows that, for certain choices
of k, γk behaves similarly to β, which leads to several questions: Does γk metrize the weak topology
on P? What is the general behavior of γk compared to other metrics? In other words, depending
on k, how weak or strong is γk compared to other metrics onP? Understanding the answer to these
questions is important both in theory and practice. If k is such that γk metrizes the weak topology on
P , then it can be used as a theoretical tool in probability theory, similar to the Prohorov and Dudley
metrics. On the other hand, the answer to these questions is critical in applications as it will have a
bearing on the choice of kernels to be used. In applications like density estimation, one would need
a strong metric to ascertain that the density estimate is a good representation of the true underlying
density. For this reason, the total variation distance, Hellinger distance or Kullback-Leibler distance
are generally used. However, it is not always possible to show the convergence of a density estimate
to the true underlying density using a stronger metric and so, in such cases, one would need a weak
metric to analyze the quality of estimate. Therefore, studying the relation between γk and these
other metrics will provide an understanding of the choice of kernels to be used, depending on the
application.

With the above motivation, we first compare γk to β, W and TV . Since β is equivalent to ς,
we do not compare γk to ς. Before we provide the main result in Theorem 21 that compares γk to
other metrics, we present an upper bound on γk in terms of the coupling formulation (Dudley, 2002,
Section 11.8), which is not only useful in deriving the main result but also interesting in its own
right.

Proposition 20 (Coupling bound) Let k be measurable and bounded on M. Then, for any P,Q ∈
P ,

γk(P,Q)≤ inf
µ∈L(P,Q)

Z Z

M
‖k(·,x)− k(·,y)‖Hdµ(x,y), (30)

where L(P,Q) represents the set of all laws on M×M with marginals P and Q.

Proof For any µ∈ L(P,Q), we have
∣∣∣∣
Z

M
f d(P−Q)

∣∣∣∣=
∣∣∣∣
Z Z

M
( f (x)− f (y))dµ(x,y)

∣∣∣∣≤
Z Z

M
| f (x)− f (y)|dµ(x,y)

=
Z Z

M
|〈 f ,k(·,x)− k(·,y)〉H|dµ(x,y)≤ ‖ f‖H

Z Z

M
‖k(·,x)− k(·,y)‖Hdµ(x,y). (31)

Taking the supremum over f ∈Fk and the infimum over µ∈L(P,Q) in (31), where P,Q∈P , gives
the result in (30).

We now present the main result that compares γk to β,W and TV .

Theorem 21 (Comparison of γk to β,W and TV ) Assume supx∈M k(x,x)≤C<∞, where k is mea-
surable on M. Let

ρ̃(x,y) = ‖k(·,x)− k(·,y)‖H. (32)

Then, for any P,Q ∈P ,

(i) γk(P,Q)≤W (P,Q)≤
√
γ2k(P,Q)+4C if (M, ρ̃) is separable.

1551



SRIPERUMBUDUR, GRETTON, FUKUMIZU, SCHÖLKOPF AND LANCKRIET

(ii) γk(P,Q)
(1+

√
C)
≤ β(P,Q)≤ 2(γ2k(P,Q)+4C)

1
3 if (M, ρ̃) is separable.

(iii) γk(P,Q)≤
√
CTV (P,Q).

The proof is provided in Section 5.1. Below are some remarks on Theorem 21.

Remark 22 (a) First, note that, since k is bounded, (M, ρ̃) is a bounded metric space. In addition,
the metric, ρ̃, which depends on the kernel as in (32), is a Hilbertian metric8 (Berg et al., 1984,
Chapter 3, Section 3) on M. A popular example of such a metric is ρ̃(x,y) = ‖x−y‖2, which can be
obtained by choosing M to be a compact subset of Rd and k(x,y) = xT y.

(b) Theorem 21 shows that γk is weaker than β, W and TV for the assumptions being made on
k and ρ̃. Note that the result holds irrespective of whether or not the kernel is characteristic, as
we have not assumed anything about the kernel except it being measurable and bounded. Also,
it is important to remember that the result holds when ρ̃ is Hilbertian, as mentioned in (32) (see
Remark 22(d)).

(c) Apart from showing that γk is weaker than β, W and TV , the result in Theorem 21 can be used
to bound these metrics in terms of γk. For β, which is primarily of theoretical interest, we do not
know a closed form expression, and likewise a closed form expression for W is known only for R
(Vallander, 1973).9 Since γk is easy to compute (see (9) and (10)), bounds on W can be obtained
from Theorem 21 in terms of γk. A closed form expression for TV is available if P and Q have
Radon-Nikodym derivatives w.r.t. a σ-finite measure. However, from Theorem 21, a simple lower
bound can be obtained on TV in terms of γk for any P,Q ∈P .

(d) In Theorem 21, the kernel is fixed and ρ̃ is defined as in (32), which is a Hilbertian metric. On
the other hand, suppose a Hilbertian metric ρ̃ is given. Then the associated kernel k can be obtained
from ρ̃ (Berg et al., 1984, Chapter 3, Lemma 2.1) as

k(x,y) =
1
2
[ρ̃2(x,x0)+ ρ̃2(y,x0)− ρ̃2(x,y)], x,y,x0 ∈M, (33)

which can then be used to compute γk.

The discussion so far has been devoted to relating γk to β,W and TV to understand the strength
or weakness of γk w.r.t. these metrics. In a next step, we address the second question of when
γk metrizes the weak topology on P . This question would have been answered had the result in
Theorem 21 shown that under some conditions on k, γk is equivalent to β. Since Theorem 21 does
not help in this regard, we approach the problem differently. In the following, we provide two results
related to the question. The first result states that when (M,ρ) is compact, γk induced by universal
kernels metrizes the weak topology. In the second result, we relax the assumption of compactness
but restrict ourselves to M = Rd and provide a sufficient condition on k such that γk metrizes the
weak topology onP . The proofs of both theorems are provided in Section 5.1.

Theorem 23 (Weak convergence-I) Let (M,ρ) be a compact metric space. If k is universal, then
γk metrizes the weak topology on P .

8. A metric ρ on M is said to be Hilbertian if there exists a Hilbert space, H and a mapping Φ such that ρ(x,y) =
‖Φ(x)−Φ(y)‖H , ∀x,y ∈M. In our case, H = H and Φ :M→H, x 6→ k(·,x).

9. The explicit form for the Wasserstein distance is known for (M,ρ(x,y)) = (R, |x− y|), and isW (P,Q) =
R

R |FP(x)−
FQ(x)|dx, where FP(x) = P((−∞,x]). It is easy to show that this explicit form can be extended to (Rd ,‖ ·‖1).
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From Theorem 23, it is clear that γk is equivalent to ς, β and W (see (28) and (29)) when M is
compact and k is universal.

Theorem 24 (Weak convergence-II) Let M = Rd and k(x,y) = ψ(x− y), where ψ ∈ C0(Rd)∩
L1(Rd) is a real-valued bounded strictly positive definite function. If there exists an l ∈ N such that

Z

Rd

1
ψ̂(ω)(1+‖ω‖2)l

dω< ∞, (34)

then γk metrizes the weak topology on P .

The entire Matérn class of kernels in (18) satisfies the conditions of Theorem 24 and, therefore,
the corresponding γk metrizes the weak topology on P . Note that Gaussian kernels on Rd do not
satisfy the condition in Theorem 24. The characterization of k for general non-compact domainsM
(not necessarily Rd), such that γk metrizes the weak topology onP , still remains an open problem.

5.1 Proofs

We now present the proofs of Theorems 21, 23 and 24.

Proof (Theorem 21) (i) When (M,ρ) is separable, W (P,Q) has a coupling formulation (Dudley,
2002, p. 420), given as

W (P,Q) = inf
µ∈L(P,Q)

Z Z

M
ρ(x,y)dµ(x,y), (35)

where P,Q ∈ {P ∈ P :
R

M ρ(x,y)dP(y) < ∞, ∀x ∈ M}. In our case ρ(x,y) = ‖k(·,x)− k(·,y)‖H.
In addition, (M,ρ) is bounded, which means (35) holds for all P,Q ∈ P . The lower bound
therefore follows from (30). The upper bound can be obtained as follows. Consider W (P,Q) =
infµ∈L(P,Q)

RR

M ‖k(·,x)− k(·,y)‖Hdµ(x,y), which can be bounded as

W (P,Q) ≤
Z Z

M
‖k(·,x)− k(·,y)‖HdP(x)dQ(y)

(a)
≤

[
Z Z

M
‖k(·,x)− k(·,y)‖2HdP(x)dQ(y)

] 1
2

≤
[

Z

M
k(x,x)d(P+Q)(x)−2

Z Z

M
k(x,y)dP(x)dQ(y)

] 1
2

≤
[
γ2k(P,Q)+

Z Z

M
(k(x,x)− k(x,y))d(P⊗P+Q⊗Q)(x,y)

] 1
2

≤
√
γ2k(P,Q)+4C, (36)

where we have used Jensen’s inequality (Folland, 1999, p. 109) in (a).

(ii) Let F := { f : ‖ f‖H < ∞} and G := { f : ‖ f‖BL < ∞}. For f ∈ F, we have

‖ f‖BL = sup
x #=y

| f (x)− f (y)|
ρ(x,y)

+ sup
x∈M

| f (x)| = sup
x #=y

|〈 f ,k(·,x)− k(·,y)〉H|
‖k(·,x)− k(·,y)‖H

+ sup
x∈M

|〈 f ,k(·,x)〉H|

≤ (1+
√
C)‖ f‖H < ∞,
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which implies f ∈ G and, therefore, F ⊂ G. For any P,Q ∈P ,

γk(P,Q) = sup{|P f −Q f | : f ∈ Fk}
≤ sup{|P f −Q f | : ‖ f‖BL ≤ (1+

√
C), f ∈ F}

≤ sup{|P f −Q f | : ‖ f‖BL ≤ (1+
√
C), f ∈ G}

= (1+
√
C)β(P,Q).

The upper bound is obtained as follows. For any P,Q ∈P , by Markov’s inequality (Folland, 1999,
Theorem 6.17), for all ε> 0, we have

ε2µ(‖k(·,X)− k(·,Y )‖H > ε)≤
Z Z

M
‖k(·,x)− k(·,y)‖2Hdµ(x,y),

where X and Y are distributed as P and Q respectively. Choose ε such that ε3 =
RR

M ‖k(·,x)−
k(·,y)‖2

H
dµ(x,y), such that µ(‖k(·,X)− k(·,Y )‖H > ε) ≤ ε. From the proof of Theorem 11.3.5 in

Dudley (2002), when (M,ρ) is separable, we have

µ(ρ(X ,Y )≥ ε) < ε ⇒ ς(P,Q)≤ ε,

which implies that

ς(P,Q) ≤
(

inf
µ∈L(P,Q)

Z Z

M
‖k(·,x)− k(·,y)‖2Hdµ(x,y)

) 1
3

≤
(

Z Z

M
‖k(·,x)− k(·,y)‖2HdP(x)dQ(y)

) 1
3 (b)
≤
(
γ2k(P,Q)+4C

) 1
3 ,

where (b) follows from (36). The result follows from (28).

(iii) The proof of this result was presented in Sriperumbudur et al. (2009b) and is provided here
for completeness. To prove the result, we use (30) and the coupling formulation for TV (Lindvall,
1992, p. 19), given as

1
2
TV (P,Q) = inf

µ∈L(P,Q)
µ(X #= Y ),

where L(P,Q) is the set of all measures on M×M with marginals P and Q. Here, X and Y are
distributed as P and Q respectively. Consider

‖k(·,x)− k(·,y)‖H≤ 1{x #=y}‖k(·,x)− k(·,y)‖H≤ 2
√
C1{x #=y}. (37)

Taking expectations w.r.t. µand the infimum over µ∈L(P,Q) on both sides of (37) gives the desired
result, which follows from (30).

Proof (Theorem 23) We need to show that for measures P,P1,P2, . . . ∈ P , Pn
w→ P if and only

if γk(Pn,P) → 0 as n→ ∞. One direction is trivial as Pn
w→ P implies γk(Pn,P) → 0 as n→ ∞.

We prove the other direction as follows. Since k is universal, H is dense in Cb(M), the space of
bounded continuous functions, w.r.t. the uniform norm, that is, for any f ∈Cb(M) and every ε> 0,
there exists a g ∈H such that ‖ f −g‖∞ ≤ ε. Therefore,

|Pn f −P f | = |Pn( f −g)+P(g− f )+(Png−Pg)|
≤ Pn| f −g|+P| f −g|+ |Png−Pg|
≤ 2ε+ |Png−Pg|≤ 2ε+‖g‖Hγk(Pn,P).
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Since γk(Pn,P)→ 0 as n→ ∞ and ε is arbitrary, |Pn f −P f |→ 0 for any f ∈Cb(M).

Proof (Theorem 24) As mentioned in the proof of Theorem 23, one direction of the proof is
straightforward: Pn

w→ P ⇒ γk(Pn,P) → 0 as n→ ∞. Let us consider the other direction. Since
ψ ∈C0(Rd)∩L1(Rd) is a strictly positive definite function, any f ∈H satisfies (Wendland, 2005,
Theorem 10.12)

Z

Rd

| f̂ (ω)|2

ψ̂(ω)
dω< ∞.

Assume that
sup
ω∈Rd

(1+‖ω‖2)l| f̂ (ω)|2 < ∞,

for any l ∈ N, which means f ∈Sd . Let (34) be satisfied for some l = l0. Then,

Z

Rd

| f̂ (ω)|2

ψ̂(ω)
dω =

Z

Rd

| f̂ (ω)|2(1+‖ω‖2)l0
ψ̂(ω)(1+‖ω‖2)l0

dω

≤ sup
ω∈Rd

(1+‖ω‖2)l0 | f̂ (ω)|2
Z

Rd

1
ψ̂(ω)(1+‖ω‖2)l0

dω< ∞,

which means f ∈H, that is, if f ∈Sd , then f ∈H, which implies Sd ⊂H. Note that S (Rd) is
dense inC0(Rd). Since ψ ∈C0(Rd), we haveH⊂C0(Rd) (see the proof of Theorem 4.61 in Stein-
wart and Christmann, 2008) and, therefore,H is dense in C0(Rd) w.r.t. the uniform norm. Suppose
P,P1,P2, . . . ∈P . Using a similar analysis as in the proof of Theorem 23, it can be shown that for
any f ∈C0(Rd) and every ε> 0, there exists a g ∈H such that |Pn f −P f |≤ 2ε+ |Png−Pg|. Since
ε is arbitrary and γk(Pn,P)→ 0 as n→ ∞, the result follows.

6. Conclusion and Discussion

We have studied various properties associated with a pseudometric γk onP , which is based on the
Hilbert space embedding of probability measures. First, we studied the conditions on the kernel
(called the characteristic kernel) under which γk is a metric, and showed that apart from universal
kernels, a large family of bounded continuous kernels induces a metric onP: (a) integrally strictly
pd kernels and (b) translation invariant kernels on Rd and Td that have the support of their Fourier
transform to be Rd and Zd respectively. Next, we showed that there exist distinct distributions
which will be considered close according to γk (whether or not the kernel is characteristic), and thus
may be hard to distinguish based on finite samples. Finally, we compared γk to other metrics on
P and explicitly presented the conditions under which it induces a weak topology on P . These
results together provide a strong theoretical foundation for using the γk metric in both statistics and
machine learning applications.

We now discuss two topics related to γk, concerning the choice of kernel parameter and kernels
defined onP .

An important question not covered in the present paper is how to choose a characteristic kernel.
Let us consider the following setting: M = Rd and kσ(x,y) = exp(−σ‖x−y‖22), σ ∈R+, a Gaussian
kernel with σ as the bandwidth parameter. {kσ : σ ∈ R+} is the family of Gaussian kernels and
{γkσ : σ ∈ R+} is the associated family of distance measures indexed by the kernel parameter, σ.
Note that kσ is characteristic for any σ ∈R++ and, therefore, γkσ is a metric onP for any σ ∈R++.
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In practice, one would prefer a single number that defines the distance between P and Q. The
question therefore to be addressed is how to choose an appropriate σ. Note that as σ→ 0, kσ → 1
and as σ→ ∞, kσ → 0 a.e., which means γkσ(P,Q) → 0 as σ→ 0 or σ→ ∞ for all P,Q ∈ P .
This behavior is also exhibited by kσ(x,y) = exp(−σ‖x− y‖1), σ> 0 and kσ(x,y) = σ2/(σ2+‖x−
y‖22), σ > 0, which are also characteristic. This means choosing sufficiently small or sufficiently
large σ (depending on P and Q) makes γkσ(P,Q) arbitrarily small. Therefore, σ must be chosen
appropriately in applications to effectively distinguish between P and Q.

To this end, one can consider the following modification to γk, which yields a pseudometric on
P ,

γ(P,Q) = sup{γk(P,Q) : k ∈K} = sup{‖Pk−Qk‖H : k ∈K}. (38)

Note that γ is the maximal RKHS distance between P and Q over a family, K of measurable and
bounded positive definite kernels. It is easy to check that, if any k ∈K is characteristic, then γ is a
metric onP . Examples for K include:

1. Kg :=
{
e−σ‖x−y‖22 , x,y ∈ Rd : σ ∈ R+

}
.

2. Kl :=
{
e−σ‖x−y‖1 , x,y ∈ Rd : σ ∈ R+

}
.

3. Kψ :=
{
e−σψ(x,y), x,y ∈M : σ ∈ R+

}
, where ψ : M×M → R is a negative definite kernel

(Berg et al., 1984, Chapter 3).

4. Krb f :=
{

R ∞
0 e−λ‖x−y‖

2
2 dµσ(λ),x,y ∈ Rd , µσ ∈M + : σ ∈ Σ⊂ Rd

}
, where M + is the set of

all finite nonnegative Borel measures, µσ on R+ that are not concentrated at zero, etc.

5. Klin :=
{
kλ = ∑l

j=1λ jk j |kλ is pd, ∑l
j=1λ j = 1

}
, which is the linear combination of pd ker-

nels {k j}lj=1.

6. Kcon :=
{
kλ = ∑l

j=1λ jk j |λ j ≥ 0, ∑l
j=1λ j = 1

}
, which is the convex combination of pd ker-

nels {k j}lj=1.

The idea and validity behind the proposal of γ in (38) can be understood from a Bayesian per-
spective, where we define a non-negative finite measure λ over K, and average γk over that mea-
sure, that is, α(P,Q) :=

R

K
γk(P,Q)dλ(k). This also yields a pseudometric on P . That said,

α(P,Q)≤ λ(K)γ(P,Q), ∀P,Q, which means that, if P and Q can be distinguished by α, then they
can be distinguished by γ, but not vice-versa. In this sense, γ is stronger than α and therefore study-
ing γ makes sense. One further complication with the Bayesian approach is in defining a sensible
λ over K. Note that γk0 can be obtained by defining λ(k) = δ(k− k0) in α(P,Q). Future work will
include analyzing γ and investigating its utility in applications compared to that of γk (with a fixed
kernel, k). Sriperumbudur et al. (2009a) describes preliminary work, showing that γ(Pm,Qn) is a√
mn/(m+n)-consistent estimator of γ(P,Q), for families of kernelsK including those mentioned

above.
We now discuss how kernels onP can be obtained from γk. As noted by Gretton et al. (2007b,

Section 4), and following Hein et al. (2004), γk is a Hilbertian metric on P: the associated kernel
can be easily computed using (33),

K(P,Q) =

〈
Z

M
k(·,x)dP(x),

Z

M
k(·,x)dQ(x)

〉

H

=
Z Z

M
k(x,y)dP(x)dQ(y),
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where the positive definite kernel K :P×P → R is a dot-product kernel onP . Using the results
in Berg et al. (1984, Chapter 3, Theorems 2.2 and 2.3), Gaussian and inverse multi-quadratic kernels
onP can be defined as

K(P,Q) = exp
(
−σγ2k(P,Q)

)
, σ> 0 and K(P,Q) =

(
σ+ γ2k(P,Q)

)−1
, σ> 0

respectively. Further work on Hilbertian metrics and positive definite kernels on probability mea-
sures has been carried out by Hein and Bousquet (2005) and Fuglede and Topsøe (2003).
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Appendix A. Supplementary Results

For completeness, we present the supplementary results that were used to prove the results in this
paper. The following result is quoted from Folland (1999, Theorem 8.14).

Theorem 25 Suppose φ∈ L1(Rd),
R

Rd φ(x)dx= a and φt(x) = t−dφ(t−1x) for t > 0. If f is bounded
and uniformly continuous on Rd, then f ∗φt → a f uniformly as t→ 0.

By imposing slightly stronger conditions on φ, the following result quoted from Folland (1999,
Theorem 8.15) shows that f ∗φt → a f almost everywhere for f ∈ Lr(Rd).

Theorem 26 Suppose |φ(x)| ≤ C(1+ ‖x‖2)−d−ε for some C,ε > 0, and
R

Rd φ(x)dx = a. If f ∈
Lr(Rd) (1 ≤ r ≤ ∞), then f ∗ φt(x) → a f (x) as t → 0 for every x in the Lebesgue set of f—in
particular, for almost every x, and for every x at which f is continuous.

Theorem 27 (Fourier transform of a measure) Let µbe a finite Borel measure onRd. The Fourier
transform of µ is given by

µ̂(ω) =
Z

Rd
e−iω

T x dµ(x), ω ∈ Rd ,

which is a bounded, uniformly continuous function on Rd. In addition, µ̂ satisfies the following
properties:

(i) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd, that is, µ̂ is conjugate symmetric,

(ii) µ̂(0) = 1.
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The following result, called the Riemann-Lebesgue lemma, is quoted from Rudin (1991, Theorem
7.5).

Lemma 28 (Riemann-Lebesgue) If f ∈ L1(Rd), then f̂ ∈C0(Rd), and ‖ f̂‖∞ ≤ ‖ f‖1.

The following theorem is a version of the Paley-Wiener theorem for distributions, and is proved in
Rudin (1991, Theorem 7.23).

Theorem 29 (Paley-Wiener) If f ∈ D ′
d has compact support, then f̂ is the restriction to Rd of an

entire function on Cd.
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Abstract
For undiscounted reinforcement learning in Markov decision processes (MDPs) we consider the
total regret of a learning algorithm with respect to an optimal policy. In order to describe the
transition structure of an MDP we propose a new parameter: An MDP has diameter D if for any
pair of states s,s′ there is a policy which moves from s to s′ in at most D steps (on average).
We present a reinforcement learning algorithm with total regret Õ(DS

√
AT ) after T steps for any

unknown MDP with S states, A actions per state, and diameter D. A corresponding lower bound of
Ω(

√
DSAT ) on the total regret of any learning algorithm is given as well.
These results are complemented by a sample complexity bound on the number of suboptimal

steps taken by our algorithm. This bound can be used to achieve a (gap-dependent) regret bound
that is logarithmic in T .

Finally, we also consider a setting where the MDP is allowed to change a fixed number of !
times. We present a modification of our algorithm that is able to deal with this setting and show a
regret bound of Õ(!1/3T 2/3DS

√
A).

Keywords: undiscounted reinforcement learning, Markov decision process, regret, online learn-
ing, sample complexity

1. Introduction

In a Markov decision process (MDP)M with finite state space S and finite action space A , a learner
in some state s ∈ S needs to choose an action a ∈ A . When executing action a in state s, the learner
receives a random reward r drawn independently from some distribution on [0,1] with mean r̄(s,a).
Further, according to the transition probabilities p(s′|s,a), a random transition to a state s′ ∈ S

occurs.
Reinforcement learning of MDPs is a standard model for learning with delayed feedback. In

contrast to important other work on reinforcement learning—where the performance of the learned
policy is considered (see, e.g., Sutton and Barto 1998, Kearns and Singh 1999, and also the discus-
sion and references given in the introduction of Kearns and Singh 2002)—we are interested in the
performance of the learning algorithm during learning. For that, we compare the rewards collected
by the algorithm during learning with the rewards of an optimal policy.

∗. An extended abstract of this paper appeared in Advances in Neural Information Processing Systems 21 (2009), pp. 89–
96.

c©2010 Thomas Jaksch, Ronald Ortner and Peter Auer.
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An algorithm A starting in an initial state s of an MDP M chooses at each time step t (possibly
randomly) an action at . As the MDP is assumed to be unknown except the sets S and A , usually
an algorithm will map the history up to step t to an action at or, more generally, to a probability
distribution over A . Thus, an MDP M and an algorithm A operating on M with initial state s
constitute a stochastic process described by the states st visited at time step t, the actions at chosen
by A at step t, and the rewards rt obtained (t ∈ N). In this paper we will consider undiscounted
rewards. Thus, the accumulated reward of an algorithm A after T steps in an MDP M with initial
state s, defined as

R(M,A,s,T ) :=
T

∑
t=1

rt ,

is a random variable with respect to the mentioned stochastic process. The value 1
T E [R(M,A,s,T )]

then is the expected average reward of the process up to step T . The limit

ρ(M,A,s) := lim
T→∞

1
T E [R(M,A,s,T )]

is called the average reward and can be maximized by an appropriate stationary policy π : S → A

which determines an optimal action for each state (see Puterman, 1994). Thus, in what follows we
will usually consider policies to be stationary.

The difficulty of learning an optimal policy in an MDP does not only depend on the MDP’s size
(given by the number of states and actions), but also on its transition structure. In order to measure
this transition structure we propose a new parameter, the diameter D of an MDP. The diameter D is
the time it takes to move from any state s to any other state s′, using an appropriate policy for each
pair of states s, s′:
Definition 1 Consider the stochastic process defined by a stationary policy π : S → A operating
on an MDP M with initial state s. Let T (s′|M,π,s) be the random variable for the first time step in
which state s′ is reached in this process. Then the diameter of M is defined as

D(M) := max
s'=s′∈S

min
π:S→A

E
[

T (s′|M,π,s)
]

.

In Appendix A we show that the diameter is at least log|A | |S |−3. On the other hand, depending
on the existence of states that are hard to reach under any policy, the diameter may be arbitrarily
large. (For a comparison of the diameter to other mixing time parameters see below.)

In any case, a finite diameter seems necessary for interesting bounds on the regret of any algo-
rithm with respect to an optimal policy. When a learner explores suboptimal actions, this may take
him into a “bad part” of the MDP from which it may take up to D steps to reach again a “good
part” of the MDP. Thus, compared to the simpler multi-armed bandit problem where each arm a is
typically explored logT

g times (depending on the gap g between the optimal reward and the reward
for arm a)—see, for example, the regret bounds of Auer et al. (2002a) for the UCB algorithms and
the lower bound of Mannor and Tsitsiklis (2004)—the best one would expect for the general MDP
setting is a regret bound of Θ

(

D|S ||A | logT
)

. The alternative gap-independent regret bounds of
Õ(

√

|B|T ) and Ω(
√

|B|T ) for multi-armed bandits with |B| arms (Auer et al., 2002b) correspond-
ingly translate into a regret bound of Θ(

√

D|S ||A |T ) for MDPs with diameter D.
For MDPs with finite diameter (which usually are called communicating, see, e.g., Puterman

1994) the optimal average reward ρ∗ does not depend on the initial state (cf. Puterman 1994, Sec-
tion 8.3.3), and we set

ρ∗(M) := ρ∗(M,s) :=max
π
ρ(M,π,s).
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The optimal average reward is the natural benchmark1 for a learning algorithm A, and we define the
total regret of A after T steps as

Δ(M,A,s,T ) := Tρ∗(M)−R(M,A,s,T ).

In the following, we present our reinforcement learning algorithm UCRL2 (a variant of the
UCRL algorithm of Auer and Ortner, 2007) which uses upper confidence bounds to choose an
optimistic policy. We show that the total regret of UCRL2 after T steps is Õ(D|S |

√

|A |T ). A
corresponding lower bound ofΩ(

√

D|S ||A |T ) on the total regret of any learning algorithm is given
as well. These results establish the diameter as an important parameter of an MDP. Unlike other
parameters that have been proposed for various PAC and regret bounds, such as the mixing time
(Kearns and Singh, 2002; Brafman and Tennenholtz, 2002) or the hitting time of an optimal policy
(Tewari and Bartlett, 2008) (cf. the discussion below) the diameter only depends on the MDP’s
transition structure.

1.1 Relation to Previous Work

We first compare our results to the PAC bounds for the well-known algorithms E3 of Kearns and
Singh (2002), and R-Max of Brafman and Tennenholtz (2002) (see also Kakade, 2003). These
algorithms achieve ε-optimal average reward with probability 1− δ after time polynomial in 1

δ ,
1
ε ,

|S |, |A |, and the mixing time Tmixε (see below). As the polynomial dependence on ε is of order 1
ε3 ,

the PAC bounds translate into T 2/3 regret bounds at the best. Moreover, both algorithms need the
ε-return mixing time Tmixε of an optimal policy π∗ as input parameter.2 This parameter Tmixε is the
number of steps until the average reward of π∗ over these Tmixε steps is ε-close to the optimal average
reward ρ∗. It is easy to construct MDPs of diameter D with Tmixε ≈ D

ε . This additional dependence
on ε further increases the exponent in the above mentioned regret bounds for E3 and R-max. Also,
the exponents of the parameters |S | and |A | in the PAC bounds of Kearns and Singh (2002) and
Brafman and Tennenholtz (2002) are substantially larger than in our bound. However, there are
algorithms with better dependence on these parameters. Thus, in the sample complexity bounds for
the Delayed Q-Learning algorithm of Strehl et al. (2006) the dependence on states and actions is of
order |S ||A |, however at the cost of a worse dependence of order 1ε4 on ε.

The MBIE algorithm of Strehl and Littman (2005, 2008)—similarly to our approach—applies
confidence bounds to compute an optimistic policy. However, Strehl and Littman consider only a
discounted reward setting. Their definition of regret measures the difference between the rewards3
of an optimal policy and the rewards of the learning algorithm along the trajectory taken by the
learning algorithm. In contrast, we are interested in the regret of the learning algorithm in respect
to the rewards of the optimal policy along the trajectory of the optimal policy.4 Generally, in dis-
counted reinforcement learning only a finite number of steps is relevant, depending on the discount

1. It can be shown that maxAE [R(M,A,s,T )] = Tρ∗(M) +O(D(M)) and maxAR(M,A,s,T ) = Tρ∗(M) + Õ
(√

T
)

with high probability.
2. The knowledge of this parameter can be eliminated by guessing Tmixε to be 1,2, . . ., so that sooner or later the correct
Tmixε will be reached (cf. Kearns and Singh 2002; Brafman and Tennenholtz 2002). However, since there is no
condition on when to stop increasing Tmixε , the assumed mixing time eventually becomes arbitrarily large, so that the
PAC bounds become exponential in the true Tmixε (cf. Brafman and Tennenholtz, 2002).

3. Actually, the state values.
4. Indeed, one can construct MDPs for which these two notions of regret differ significantly. E.g., set the discount
factor γ = 0. Then any policy which maximizes immediate rewards achieves 0 regret in the notion of Strehl and
Littman. But such a policy may not move to states where the optimal reward is obtained.
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factor. This makes discounted reinforcement learning similar to the setting with trials of constant
length from a fixed initial state as considered by Fiechter (1994). For this case logarithmic online
regret bounds in the number of trials have already been given by Auer and Ortner (2005). Also, the
notion of regret is less natural than in undiscounted reinforcement learning: when summing up the
regret in the individual visited states to obtain the total regret in the discounted setting, somehow
contrary to the principal idea of discounting, the regret at each time step counts the same.

Tewari and Bartlett (2008) propose a generalization of the index policies of Burnetas and Kate-
hakis (1997). These index policies choose actions optimistically by using confidence bounds only
for the estimates in the current state. The regret bounds for the index policies of Burnetas and Kate-
hakis (1997) and the OLP algorithm of Tewari and Bartlett (2008) are asymptotically logarithmic
in T . However, unlike our bounds, these bounds depend on the gap between the “quality” of the
best and the second best action, and these asymptotic bounds also hide an additive term which is
exponential in the number of states. Actually, it is possible to prove a corresponding gap-dependent
logarithmic bound for our UCRL2 algorithm as well (cf. Theorem 4 below). This bound holds uni-
formly over time and under weaker assumptions: While Tewari and Bartlett (2008) and Burnetas
and Katehakis (1997) consider only ergodic MDPs in which any policy will reach every state after
a sufficient number of steps, we make only the more natural assumption of a finite diameter.

Recently, Bartlett and Tewari (2009) have introduced the REGAL algorithm (inspired by our
UCRL2 algorithm) and show—based on the methods we introduce in this paper—regret bounds
where the diameter is replaced with a smaller transition parameter D1 (that is basically an upper
bound on the span of the bias of an optimal policy). Moreover, this bound also allows the MDP to
have some transient states that are not reachable under any policy. However, the bound holds only
when the learner knows an upper bound on this parameter D1. In case the learner has no such upper
bound, a doubling trick can be applied, but then the bound’s dependence on |S | deteriorates from |S |
to |S |3/2. Bartlett and Tewari (2009) also modify our lower bound example to obtain a lower bound
of Ω(D1

√

|S ||A |T ) with respect to their new transition parameter D1. Still, in the given example
D1 =

√
D, so that in this case their lower bound matches our lower bound.

2. Results

We summarize the results achieved for our algorithm UCRL2 (which will be described in the next
section), and also state a corresponding lower bound. We assume an unknownMDPM to be learned,
with S := |S | states, A := |A | actions, and finite diameter D := D(M). Only S and A are known to
the learner, and UCRL2 is run with confidence parameter δ.

Theorem 2 With probability of at least 1−δ it holds that for any initial state s ∈ S and any T > 1,
the regret of UCRL2 is bounded by

Δ(M,UCRL2,s,T ) ≤ 34 ·DS
√

AT log
(T
δ

)

.

It is straightforward to obtain from Theorem 2 the following sample complexity bound.

Corollary 3 With probability of at least 1−δ the average per-step regret of UCRL2 is at most ε for
any

T ≥ 4 ·342 ·
D2S2A
ε2

log
(

34DSA
δε

)

steps.
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It is also possible to give a sample complexity bound on the number of suboptimal steps UCRL2
takes, which allows to derive the following gap-dependent logarithmic bound on the expected regret.

Theorem 4 For any initial state s ∈ S , any T ≥ 1 and any ε> 0, with probability of at least 1−3δ
the regret of UCRL2 is

Δ(M,UCRL2,s,T ) ≤ 342 ·
D2S2A log

(T
δ

)

ε
+ εT.

Moreover setting

g := ρ∗(M)−max
s∈S

max
π:S→A

{

ρ(M,π,s) : ρ(M,π,s) < ρ∗(M)
}

to be the gap in average reward between best and second best policy in M, the expected regret of
UCRL2 (with parameter δ := 1

3T ) for any initial state s ∈ S is

E [Δ(M,UCRL2,s,T )] < 342 ·
D2S2A log(T )

g
+1+∑

s,a

⌈

1+ log2( max
π:π(s)=a

Tπ)
⌉

max
π:π(s)=a

Tπ,

where Tπ is the smallest natural number such that for all T ≥ Tπ the expected average reward after
T steps is g

2 -close to the average reward of π. Using the doubling trick to set the parameter δ, one
obtains a corresponding bound (with larger constant) without knowledge of the horizon T .

These new bounds are improvements over the bounds that have been achieved by Auer and
Ortner (2007) for the original UCRL algorithm in various respects: the exponents of the relevant
parameters have been decreased considerably, the parameter D we use here is substantially smaller
than the corresponding mixing time of Auer and Ortner (2007), and finally, the ergodicity assump-
tion is replaced by the much weaker and more natural assumption that the MDP has finite diameter.

The following is an accompanying lower bound on the expected regret.

Theorem 5 For any algorithm A, any natural numbers S,A ≥ 10, D ≥ 20logA S, and T ≥ DSA,
there is an MDP M with S states, A actions, and diameter D,5 such that for any initial state s ∈ S

the expected regret of A after T steps is

E [Δ(M,A,s,T )] ≥ 0.015 ·
√
DSAT .

Finally, we consider a modification of UCRL2 that is also able to deal with changing MDPs.

Theorem 6 Assume that the MDP (i.e., its transition probabilities and reward distributions) is al-
lowed to change (!− 1) times up to step T , such that the diameter is always at most D. Restart-
ing UCRL2 with parameter δ

!2 at steps
⌈

i3
!2

⌉

for i = 1,2,3 . . ., the regret (now measured as the sum
of missed rewards compared to the ! optimal policies in the periods during which the MDP remains
constant) is upper bounded by

65 · !1/3T 2/3DS
√

A log
(T
δ

)

with probability of at least 1−δ.

5. As already mentioned, the diameter of any MDP with S states and A actions is at least logA S−3.
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For the simpler multi-armed bandit problem, similar settings have already been considered by
Auer et al. (2002b), and more recently by Garivier andMoulines (2008), and Yu andMannor (2009).
The achieved regret bounds are O(

√
!T logT ) in the first two mentioned papers, while Yu and Man-

nor (2009) derive regret bounds of O(! logT ) for a setting with side observations on past rewards in
which the number of changes ! need not be known in advance.

MDPs with a different model of changing rewards have already been considered by Even-Dar
et al. (2005) and Even-Dar et al. (2009), respectively. There, the transition probabilities are assumed
to be fixed and known to the learner, but the rewards are allowed to change at every step (however,
independently of the history). In this setting, an upper bound of O(

√
T ) on the regret against an

optimal stationary policy (with the reward changes known in advance) is best possible and has been
derived by Even-Dar et al. (2005). This setting recently has been further investigated by Yu et al.
(2009), who also show that for achieving sublinear regret it is essential that the changing rewards
are chosen obliviously, as an opponent who chooses the rewards depending on the learner’s history
may inflict linear loss on the learner. It should be noted that although the definition of regret in
the nonstochastic setting looks the same as in the stochastic setting, there is an important difference
to notice. While in the stochastic setting the average reward of an MDP is always maximized by
a stationary policy π : S → A , in the nonstochastic setting obviously a dynamic policy adapted to
the reward sequence would in general earn more than a stationary policy. However, obviously no
algorithm will be able to compete with the best dynamic policy for all possible reward sequences,
so that—similar to the nonstochastic bandit problem, compare to Auer et al. (2002b)—one usually
competes only with a finite set of experts, in the case of MDPs the set of stationary policies π : S →
A . For different notions of regret in the nonstochastic MDP setting see Yu et al. (2009).

Note that all our results scale linearly with the rewards. That is, if the rewards are not bounded
in [0,1] but taken from some interval [rmin,rmax], the rewards can simply be normalized, so that the
given regret bounds hold with additional factor (rmax− rmin).

3. The UCRL2 Algorithm

Our algorithm is a variant of the UCRL algorithm of Auer and Ortner (2007). As its predecessor,
UCRL2 implements the paradigm of “optimism in the face of uncertainty”. That is, it defines a
set M of statistically plausible MDPs given the observations so far, and chooses an optimistic
MDP M̃ (with respect to the achievable average reward) among these plausible MDPs. Then it
executes a policy π̃ which is (nearly) optimal for the optimistic MDP M̃. More precisely, UCRL2
(see Figure 1) proceeds in episodes and computes a new policy π̃k only at the beginning of each
episode k. The lengths of the episodes are not fixed a priori, but depend on the observations made.
In Steps 2–3, UCRL2 computes estimates r̂k (s,a) and p̂k (s′|s,a) for the mean rewards and the
transition probabilities from the observations made before episode k. In Step 4, a setMk of plausible
MDPs is defined in terms of confidence regions around the estimated mean rewards r̂k(s,a) and
transition probabilities p̂k (s′|s,a). This guarantees that with high probability the true MDP M is
inMk. In Step 5, extended value iteration (see below) is used to choose a near-optimal policy π̃k on
an optimistic MDP M̃k ∈Mk. This policy π̃k is executed throughout episode k (Step 6). Episode k
ends when a state s is visited in which the action a = π̃k(s) induced by the current policy has been
chosen in episode k equally often as before episode k. Thus, the total number of occurrences of
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any state-action pair is at most doubled during an episode. The counts vk(s,a) keep track of these
occurrences in episode k.6

3.1 Extended Value Iteration: Finding Optimistic Model and Optimal Policy

In Step 5 of the UCRL2 algorithm we need to find a near-optimal policy π̃k for an optimistic
MDP M̃k. While value iteration typically calculates an optimal policy for a fixed MDP, we also
need to select an optimistic MDP M̃k that gives almost maximal optimal average reward among all
plausible MDPs.

3.1.1 PROBLEM FORMULATION

We can formulate this as a general problem as follows. LetM be the set of all MDPs with (common)
state space S , (common) action space A , transition probabilities p̃ (·|s,a), and mean rewards r̃ (s,a)
such that

‖ p̃ (·|s,a)− p̂(·|s,a)‖1 ≤ d(s,a), (1)
|r̃ (s,a)− r̂(s,a)| ≤ d′(s,a) (2)

for given probability distributions p̂(·|s,a), values r̂(s,a) in [0,1], d(s,a) > 0, and d′(s,a) ≥ 0.
Further, we assume thatM contains at least one communicating MDP, that is, an MDP with finite
diameter.

In Step 5 of UCRL2, the d(s,a) and d′(s,a) are obviously the confidence intervals as given
by (4) and (3), while the communicating MDP assumed to be in Mk is the true MDP M. The task
is to find an MDP M̃ ∈ M and a policy π̃ : S → A which maximize ρ(M̃, π̃,s) for all states s.7
This task is similar to optimistic optimality in bounded parameter MDPs as considered by Tewari
and Bartlett (2007). A minor difference is that in our case the transition probabilities are bounded
not individually but by the 1-norm. More importantly, while Tewari and Bartlett (2007) give a
converging algorithm for computing the optimal value function, they do not bound the error when
terminating their algorithm after finitely many steps. In the following, we will extend standard
undiscounted value iteration (Puterman, 1994) to solve the set task.

First, note that we may combine all MDPs inM to get a single MDPwith extended action setA ′.
That is, we consider anMDP M̃+ with continuous action spaceA ′, where for each action a∈A , each
admissible transition probability distribution p̃(·|s,a) according to (1) and each admissible mean
reward r̃(s,a) according to (2) there is an action inA ′ with transition probabilities p̃(·|s,a) and mean
reward r̃(s,a).8 Then for each policy π̃+ on M̃+ there is an MDP M̃ ∈M and a policy π̃ : S → A

on M̃ such that the policies π̃+ and π̃ induce the same transition probabilities and mean rewards on
the respective MDP. (The other transition probabilities in M̃ can be set to p̂ (·|s,a).) On the other
hand, for any given MDP M̃ ∈M and any policy π̃ : S →A there is a policy π̃+ on M̃+ so that again
the same transition probabilities and rewards are induced by π̃ on M̃ and π̃+ on M̃+. Thus, finding
an MDP M̃ ∈M and a policy π̃ on M̃ such that ρ(M̃, π̃,s) =maxM′∈M ,π,s′ ρ(M′,π,s′) for all initial
states s, corresponds to finding an average reward optimal policy on M̃+.

6. Since the policy π̃k is fixed for episode k, vk(s,a) '= 0 only for a = π̃k(s). Nevertheless, we find it convenient to use
a notation which explicitly includes the action a in vk(s,a).

7. Note that, as we assume thatM contains a communicating MDP, if an average reward of ρ is achievable in one state,
it is achievable in all states.

8. Note that in M̃+ the set of available actions now depends on the state.
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Input: A confidence parameter δ ∈ (0,1), S and A .

Initialization: Set t := 1, and observe the initial state s1.

For episodes k = 1,2, . . . do
Initialize episode k:
1. Set the start time of episode k, tk := t.
2. For all (s,a) in S ×A initialize the state-action counts for episode k, vk(s,a) := 0.
Further, set the state-action counts prior to episode k,

Nk (s,a) := #{τ< tk : sτ = s,aτ = a} .

3. For s,s′ ∈ S and a ∈ A set the observed accumulated rewards and the transition
counts prior to episode k,

Rk (s,a) :=
tk−1

∑
τ=1

rτ1sτ=s,aτ=a,

Pk
(

s,a,s′
)

:= #
{

τ< tk : sτ = s,aτ = a,sτ+1 = s′
}

.

Compute estimates r̂k (s,a) := Rk(s,a)
max{1,Nk(s,a)} , p̂k (s

′|s,a) := Pk(s,a,s′)
max{1,Nk(s,a)} .

Compute policy π̃k:
4. Let Mk be the set of all MDPs with states and actions as in M, and with tran-
sition probabilities p̃ (·|s,a) close to p̂k (·|s,a), and rewards r̃(s,a) ∈ [0,1] close
to r̂k (s,a), that is,

∣

∣r̃(s,a)− r̂k
(

s,a
)
∣

∣ ≤
√

7log(2SAtk/δ)
2max{1,Nk(s,a)} and (3)

∥

∥

∥
p̃
(

·|s,a
)

− p̂k
(

·|s,a
)

∥

∥

∥

1
≤

√

14S log(2Atk/δ)
max{1,Nk(s,a)} . (4)

5. Use extended value iteration (see Section 3.1) to find a policy π̃k and an optimistic
MDP M̃k ∈Mk such that

ρ̃k :=min
s
ρ(M̃k, π̃k,s) ≥ max

M′∈Mk,π,s′
ρ(M′,π,s′)−

1
√
tk

.

Execute policy π̃k:
6. While vk(st , π̃k(st)) <max{1,Nk(st , π̃k(st))} do

(a) Choose action at = π̃k(st), obtain reward rt , and
observe next state st+1.

(b) Update vk(st ,at) := vk(st ,at)+1.
(c) Set t := t+1.

Figure 1: The UCRL2 algorithm.
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Input: Estimates p̂(·|s,a) and distance d(s,a) for a state-action pair (s,a), and
the states in S sorted descendingly according to their ui value.
That is, let S := {s′1,s′2, . . . ,s′n} with ui(s′1) ≥ ui(s′2) ≥ . . . ≥ ui(s′n).

1. Set

p(s′1) := min
{

1, p̂(s′1|s,a)+ d(s,a)
2

}

, and
p(s′j) := p̂(s′j|s,a) for all states s′j with j > 1.

2. Set ! := n.

3. While ∑s′j∈S p(s
′
j) > 1 do

(a) Reset p(s′!) :=max{0,1−∑s′j '=s′! p(s
′
j)}.

(b) Set ! := !−1.

Figure 2: Computing the inner maximum in the extended value iteration (5).

3.1.2 EXTENDED VALUE ITERATION

We denote the state values of the i-th iteration by ui(s). Then we get for undiscounted value iteration
(Puterman, 1994) on M̃+ for all s ∈ S :

u0(s) = 0,

ui+1(s) = max
a∈A

{

r̃ (s,a) + max
p(·)∈P (s,a)

{

∑
s′∈S

p(s′) ·ui(s′)
}

}

, (5)

where r̃ (s,a) := r̂(s,a)+d′(s,a) are the maximal possible rewards according to condition (2), and
P (s,a) is the set of transition probabilities p̃

(

·|s,a
)

satisfying condition (1).
While (5) is a step of value iteration with an infinite action space, maxpp ·ui is actually a linear

optimization problem over the convex polytope P (s,a). This implies that (5) can be evaluated
considering only the finite number of vertices of this polytope.

Indeed, for a given state-action pair the inner maximum of (5) can be computed in O(S) compu-
tation steps by an algorithm introduced by Strehl and Littman (2008). For the sake of completeness
we display the algorithm in Figure 2. The idea is to put as much transition probability as possible
to the state with maximal value ui(s) at the expense of transition probabilities to states with small
values ui(s). That is, one starts with the estimates p̂(s′j|s,a) for p(s′j) except for the state s′1 with
maximal ui(s), for which we set p(s′1) := p̂(s′1|s,a)+ 1

2d(s,a). In order to make p correspond to
a probability distribution again, the transition probabilities from s to states with small ui(s) are re-
duced in total by 1

2d(s,a), so that ‖p− p̂ (·|s,a)‖1 = d(s,a). This is done iteratively. Updating
∑s′j∈S p(s′j) with every change of p for the computation of ∑s′j '=s′! p(s

′
j), this iterative procedure

takes O(S) steps. Thus, sorting the states according to their value ui(s) at each iteration i once, ui+1
can be computed from ui in at most O

(

S2A
)

steps.
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3.1.3 CONVERGENCE OF EXTENDED VALUE ITERATION

We have seen that value iteration on the MDP M̃+ with continuous action is equivalent to value
iteration on an MDP with finite action set. Thus, in order to guarantee convergence, it is sufficient
to assure that extended value iteration never chooses a policy with periodic transition matrix. (In-
tuitively, it is clear that optimal policies with periodic transition matrix do not matter as long as
it is guaranteed that such a policy is not chosen by value iteration, compare to Sections 8.5, 9.4,
and 9.5.3. of Puterman 1994. For a proof see Appendix B.) Indeed, extended value iteration always
chooses a policy with aperiodic transition matrix: In each iteration there is a single fixed state s′1
which is regarded as the “best” target state. For each state s, in the inner maximum an action with
positive transition probability to s′1 will be chosen. In particular, the policy chosen by extended
value iteration will have positive transition probability from s′1 to s′1. Hence, this policy is aperiodic
and has state independent average reward. Thus we obtain the following result.

Theorem 7 LetM be the set of all MDPs with state space S , action space A , transition probabil-
ities p̃ (·|s,a), and mean rewards r̃ (s,a) that satisfy (1) and (2) for given probability distributions
p̂(·|s,a), values r̂(s,a) in [0,1], d(s,a) > 0, and d′(s,a) ≥ 0. IfM contains at least one communi-
cating MDP, extended value iteration converges. Further, stopping extended value iteration when

max
s∈S

{

ui+1(s)−ui(s)
}

−min
s∈S

{

ui+1(s)−ui(s)
}

< ε,

the greedy policy with respect to ui is ε-optimal.

Remark 8 When value iteration converges, a suitable transformation of ui converges to the bias
vector of an optimal policy. Recall that for a policy π the bias λ(s) in state s is basically the
expected advantage in total reward (for T → ∞) of starting in state s over starting in the stationary
distribution (the long term probability of being in a state) of π. For a fixed policy π, the Poisson
equation

λ = r−ρ1+Pλ

relates the bias vector λ to the average reward ρ, the mean reward vector r, and the transi-
tion matrix P . Now when value iteration converges, the vector ui −mins ui(s)1 converges to
λ−minsλ(s)1. As we will see in inequality (11) below, the so-called span maxs ui(s)−mins ui(s)
of the vector ui is upper bounded by the diameter D, so that this also holds for the span of the bias
vector λ of the optimal policy found by extended value iteration, that is, maxsλ(s)−minsλ(s)≤D.
Indeed, one can show that this holds for any optimal policy (cf. also Section 4 of Bartlett and Tewari,
2009).

Remark 9 We would like to note that the algorithm of Figure 2 can easily be adapted to the al-
ternative setting of Tewari and Bartlett (2007), where each single transition probability p(s′|s,a)
is bounded as 0≤ b−(s′,s,a) ≤ p(s′|s,a) ≤ b+(s′,s,a) ≤ 1. However, concerning convergence one
needs to make some assumptions to exclude the possibility of choosing optimal policies with periodic
transition matrices. For example, one may assume (apart from other assumptions already made by
Tewari and Bartlett 2007) that for all s′,s,a there is an admissible probability distribution p(·|s,a)
with p(s′|s,a) > 0. Note that for Theorem 7 to hold, it is similarly essential that d(s,a) > 0. Alter-
natively, one may apply an aperiodicity transformation as described in Section 8.5.4 of Puterman
(1994).
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Now returning to Step 5 of UCRL2, we stop value iteration when

max
s∈S

{

ui+1(s)−ui(s)
}

−min
s∈S

{

ui+1(s)−ui(s)
}

<
1
√
tk

, (6)

which guarantees by Theorem 7 that the greedy policy with respect to ui is 1√
tk
-optimal.

4. Analysis of UCRL2 (Proofs of Theorem 2 and Corollary 3)

We start with a rough outline of the proof of Theorem 2. First, in Section 4.1, we deal with the ran-
dom fluctuation of the rewards. Further, the regret is expressed as the sum of the regret accumulated
in the individual episodes. That is, we set the regret in episode k to be

Δk :=∑
s,a
vk(s,a)

(

ρ∗ − r̄(s,a)
)

,

where vk(s,a) now denotes the final counts of state-action pair (s,a) in episode k. Then it is shown
that the total regret can be bounded by

∑
k
Δk +

√

5
2T log

( 8T
δ

)

with high probability.
In Section 4.2, we consider the regret that is caused by failing confidence regions. We show that

this term can be upper bounded by
√
T with high probability. After this intermezzo, the regret of

episodes for which the true MDPM ∈Mk is examined in Section 4.3. Analyzing the extended value
iteration scheme in Section 4.3.1 and using vector notation, we show that

Δk ≤ vk
(

P̃k−I
)

wk +2∑
s,a
vk(s,a)

√

7log(2SAtk/δ)
2max{1,Nk(s,a)} +2∑

s,a

vk(s,a)√
tk

,

where P̃k is the assumed transition matrix (in M̃k) of the applied policy in episode k, vk are the visit
counts at the end of that episode, and wk is a vector with ‖wk‖∞ ≤ D(M)

2 . The last two terms in
the above expression stem from the reward confidence intervals (3) and the approximation error of
value iteration. These are bounded in Section 4.3.3 when summing over all episodes. The first term
on the right hand side is analyzed further in Section 4.3.2 and split into

vk(P̃k−I)wk = vk(P̃k−Pk)wk +vk(Pk−I)wk

≤
∥

∥vk(P̃k−Pk)
∥

∥

1‖wk‖∞+vk(Pk−I)wk,

where Pk is the true transition matrix (in M) of the policy applied in episode k. Substituting for
P̃k−Pk the lengths of the confidence intervals as given in (4), the remaining term that needs analysis
is vk(Pk − I)wk. For the sum of this term over all episodes we obtain in Section 4.3.2 a high
probability bound of

∑
k

vk(Pk−I)wk ≤ D
√

5
2T log

(8T
δ

)

+Dm,

where m is the number of episodes—a term shown to be logarithmic in T in Appendix C.2. Sec-
tion 4.3.3 concludes the analysis of episodes with M ∈Mk by summing the individual regret terms
over all episodes k with M ∈ Mk. In the final Section 4.4 we finish the proof by combining the
results of Sections 4.1–4.3.
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4.1 Splitting into Episodes

Recall that rt is the (random) reward UCRL2 receives at step t when starting in some initial state s1.
For given state-action counts N(s,a) after T steps, the rt are independent random variables, so that
by Hoeffding’s inequality

P

{ T

∑
t=1

rt ≤∑
s,a
N(s,a)r̄(s,a)−

√

5
8T log

(8T
δ

)

∣

∣

∣

∣

(

N(s,a)
)

s,a

}

≤
(

δ
8T

)5/4
<

δ
12T 5/4

. (7)

Thus we get for the regret of UCRL2 (now omitting explicit references toM and UCRL2)

Δ(s1,T ) = Tρ∗ −
T

∑
t=1

rt < Tρ∗ −∑
s,a
N(s,a)r̄(s,a)+

√

5
8T log

( 8T
δ

)

with probability at least 1− δ
12T 5/4 . Denoting the number of episodes started up to step T by m,

we have ∑m
k=1 vk(s,a) = N(s,a) and ∑s,a N(s,a) = T . Therefore, writing Δk := ∑s,a vk(s,a)

(

ρ∗ −
r̄(s,a)

)

, it follows that

Δ(s1,T ) ≤
m

∑
k=1

Δk +
√

5
8T log

( 8T
δ

)

(8)

with probability at least 1− δ
12T 5/4 .

4.2 Dealing with Failing Confidence Regions

Let us now consider the regret of episodes in which the set of plausible MDPsMk does not contain
the true MDP M, ∑m

k=1Δk1M '∈Mk . By the stopping criterion for episode k we have (except for
episodes where vk(s,a) = 1 and Nk(s,a) = 0, when ∑s,a vk(s,a) = 1≤ tk holds trivially)

∑
s,a
vk(s,a) ≤ ∑

s,a
Nk(s,a) = tk−1.

Hence, denotingM (t) to be the set of plausible MDPs as given by (3) and (4) using the estimates
available at step t, we have due to ρ∗ ≤ 1 that

m

∑
k=1

Δk1M '∈Mk ≤
m

∑
k=1
∑
s,a
vk(s,a)1M '∈Mk ≤

m

∑
k=1

tk1M '∈Mk =
T

∑
t=1

t
m

∑
k=1

1tk=t,M '∈Mk

≤
T

∑
t=1

t1M '∈M (t) ≤
.T 1/4/

∑
t=1

t1M '∈M (t) +
T

∑
t=.T 1/4/+1

t1M '∈M (t)

≤
√
T +

T

∑
t=.T 1/4/+1

t1M '∈M (t).

Now, P
{

M '∈M (t)
}

≤ δ
15t6 (see Appendix C.1), and since

T

∑
t=.T 1/4/+1

1
15t6

≤
1

15T 6/4
+

Z ∞

T 1/4

1
15t6

dt =
1

15T 6/4
+

1
75T 5/4

≤
6

75T 5/4
<

1
12T 5/4

,

we haveP{∃t : T 1/4 < t ≤ T :M '∈M (t)}≤ δ
12T 5/4 . It follows that with probability at least 1−

δ
12T 5/4 ,

m

∑
k=1

Δk1M '∈Mk ≤
√
T . (9)
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4.3 Episodes withM ∈Mk

Nowwe assume thatM ∈Mk and start by considering the regret in a single episode k. The optimistic
average reward ρ̃k of the optimistically chosen policy π̃k is essentially larger than the true optimal
average reward ρ∗, and thus it is sufficient to calculate by howmuch the optimistic average reward ρ̃k
overestimates the actual rewards of policy π̃k. By the assumption M ∈Mk, the choice of π̃k and M̃k
in Step 5 of UCRL2, and Theorem 7 we get that ρ̃k ≥ ρ∗ − 1√

tk
. Thus for the regret Δk accumulated

in episode k we obtain

Δk ≤ ∑
s,a
vk(s,a)

(

ρ∗ − r̄(s,a)
)

≤ ∑
s,a
vk(s,a)

(

ρ̃k− r̄(s,a)
)

+∑
s,a

vk(s,a)√
tk

. (10)

4.3.1 EXTENDED VALUE ITERATION REVISITED

To proceed, we reconsider the extended value iteration of Section 3.1. As an important observation
for our analysis, we find that for any iteration i the range of the state values is bounded by the
diameter of the MDPM, that is,

max
s
ui(s)−mins ui(s) ≤ D. (11)

To see this, observe that ui(s) is the total expected i-step reward of an optimal non-stationary i-step
policy starting in state s on the MDP M̃+ with extended action set (as considered for extended value
iteration). The diameter of this extended MDP is at most D as it contains by assumption the actions
of the true MDPM. Now, if there were states s′,s′′ with ui(s′′)−ui(s′) >D, then an improved value
for ui(s′) could be achieved by the following nonstationary policy: First follow a policy which
moves from s′ to s′′ most quickly, which takes at most D steps on average. Then follow the optimal
i-step policy for s′′. Since only D of the i rewards of the policy for s′′ are missed, this policy gives
ui(s′) ≥ ui(s′′)−D, contradicting our assumption and thus proving (11).

It is a direct consequence of Theorem 8.5.6. of Puterman (1994), that when the convergence
criterion (6) holds at iteration i, then

|ui+1(s)−ui(s)− ρ̃k|≤
1
√
tk

(12)

for all s∈ S , where ρ̃k is the average reward of the policy π̃k chosen in this iteration on the optimistic
MDP M̃k.9 Expanding ui+1(s) according to (5), we get

ui+1(s) = r̃k(s, π̃k(s))+∑
s′
p̃k
(

s′|s, π̃k(s)
)

·ui(s′)

and hence by (12)
∣

∣

∣

∣

(

ρ̃k− r̃k(s, π̃k(s))
)

−
(

∑
s′
p̃k
(

s′|s, π̃k(s)
)

·ui(s′)−ui(s)
)
∣

∣

∣

∣

≤
1
√
tk

. (13)

Setting rk :=
(

r̃k
(

s, π̃k(s)
))

s to be the (column) vector of rewards for policy π̃k,
P̃k :=

(

p̃k (s′|s, π̃k(s))
)

s,s′ the transition matrix of π̃k on M̃k, and vk :=
(

vk
(

s, π̃k(s)
))

s the (row)

9. This is quite intuitive. We expect to receive average reward ρ̃k per step, such that the difference of the state values
after i+1 and i steps should be about ρ̃k.
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vector of visit counts for each state and the corresponding action chosen by π̃k, we can use (13)—
recalling that vk(s,a) = 0 for a '= π̃k(s)—to rewrite (10) as

Δk ≤ ∑
s,a
vk(s,a)

(

ρ̃k− r̄(s,a)
)

+∑
s,a

vk(s,a)√
tk

= ∑
s,a
vk(s,a)

(

ρ̃k− r̃k(s,a)
)

+∑
s,a
vk(s,a)

(

r̃k(s,a)− r̄(s,a)
)

+∑
s,a

vk(s,a)√
tk

≤ vk
(

P̃k−I
)

ui+∑
s,a
vk(s,a)

(

r̃k(s,a)− r̄(s,a)
)

+2∑
s,a

vk(s,a)√
tk

.

Since the rows of P̃k sum to 1, we can replace ui by wk where we set

wk(s) := ui(s)−
mins ui(s)+maxs ui(s)

2
,

such that it follows from (11) that ‖wk‖ ≤ D
2 . Further, since we assumeM ∈Mk, r̃k(s,a)− r̄(s,a)≤

|r̃k(s,a)− r̂k(s,a)|+ |r̄(s,a)− r̂k(s,a)| is bounded according to (3), so that

Δk ≤ vk
(

P̃k−I
)

wk +2∑
s,a
vk(s,a)

√

7log(2SAtk/δ)
2max{1,Nk(s,a)} +2∑

s,a

vk(s,a)√
tk

. (14)

Noting that max{1,Nk(s,a)}≤ tk ≤ T we get from (14) that

Δk ≤ vk
(

P̃k−I
)

wk +

(

√

14log
(2SAT

δ

)

+2
)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (15)

4.3.2 THE TRUE TRANSITION MATRIX

Now we want to replace the transition matrix P̃k of the policy π̃k in the optimistic MDP M̃k by the
transition matrix Pk :=

(

p(s′|s, π̃k(s))
)

s,s′ of π̃k in the true MDP M. Thus, we write

vk
(

P̃k−I
)

wk = vk
(

P̃k−Pk +Pk−I
)

wk

= vk
(

P̃k−Pk
)

wk +vk
(

Pk−I
)

wk. (16)

The first term. Since by assumption M̃k and M are in the set of plausible MDPs Mk, the first term
in (16) can be bounded using condition (4). Thus, also using that ‖wk‖∞ ≤ D

2 we obtain

vk
(

P̃k−Pk
)

wk = ∑
s
∑
s′
vk
(

s, π̃k(s)
)

·
(

p̃k
(

s′|s, π̃k(s)
)

− p
(

s′|s, π̃k(s)
)

)

·wk(s′)

≤ ∑
s
vk
(

s, π̃k(s)
)

·
∥

∥p̃k ( · |s, π̃k(s))− p(·|s, π̃k(s))
∥

∥

1 ·‖wk‖∞

≤ ∑
s
vk
(

s, π̃k(s)
)

·2

√

14S log(2AT/δ)
max{1,Nk (s, π̃k(s))}

·
D
2

≤ D
√

14S log
( 2AT

δ

)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (17)

This term will turn out to be the dominating contribution in our regret bound.
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The second term. The intuition about the second term in (16) is that the counts of the state visits vk
are relatively close to the stationary distributionµk of the transition matrixPk, for whichµkPk = µk,
such that vk

(

Pk−I
)

should be small. For the proof we define a suitable martingale and make use
of the Azuma-Hoeffding inequality.

Lemma 10 (Azuma-Hoeffding inequality, Hoeffding 1963) Let X1,X2, . . . be a martingale differ-
ence sequence with |Xi|≤ c for all i. Then for all ε> 0 and n ∈N,

P
{

∑n
i=1Xi ≥ ε

}

≤ exp
(

− ε2

2nc2
)

.

Denote the unit vectors with i-th coordinate 1 and all other coordinates 0 by ei. Let s1,a1,s2, . . . ,aT ,
sT+1 be the sequence of states and actions, and let k(t) be the episode which contains step t. Con-
sider the sequence Xt :=

(

p(·|st ,at)−est+1
)

wk(t)1M∈Mk(t)
for t = 1, . . . ,T . Then for any episode k

with M ∈Mk, we have due to ‖wk‖∞ ≤ D
2 that

vk(Pk−I)wk =
tk+1−1

∑
t=tk

(

p(·|st ,at)−est
)

wk

=

( tk+1−1

∑
t=tk

p(·|st ,at)−
tk+1−1

∑
t=tk

est+1 +estk+1 −estk

)

wk

=
tk+1−1

∑
t=tk

Xt +wk(stk+1)−wk(stk)

≤
tk+1−1

∑
t=tk

Xt +D .

Also due to ‖wk‖∞ ≤ D
2 , we have |Xt | ≤ (‖p(·|st ,at)‖1 + ‖est+1‖1)

D
2 ≤ D. Further,

E
[

Xt
∣

∣s1,a1, . . . ,st ,at
]

= 0, so that Xt is a sequence of martingale differences, and application of
Lemma 10 gives

P

{

T

∑
t=1

Xt ≥ D
√

2T · 54 log
( 8T
δ

)

}

≤
(

δ
8T

)5/4
<

δ
12T 5/4

.

Since for the number of episodes we have m ≤ SA log2
(8T
SA
)

as shown in Appendix C.2, summing
over all episodes yields

m

∑
k=1

vk(Pk−I)wk1M∈Mk ≤
T

∑
t=1

Xt +mD

≤ D
√

5
2T log

(8T
δ

)

+DSA log2
(8T
SA
)

(18)

with probability at least 1− δ
12T 5/4 .
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4.3.3 SUMMING OVER EPISODES WITH M ∈Mk

To conclude Section 4.3, we sum (15) over all episodes with M ∈Mk, using (16), (17), and (18),
which yields that with probability at least 1− δ

12T 5/4

m

∑
k=1

Δk1M∈Mk ≤
m

∑
k=1

vk
(

P̃k−Pk
)

wk1M∈Mk +
m

∑
k=1

vk
(

Pk−I
)

wk1M∈Mk

+
m

∑
k=1

(

√

14log
( 2SAT

δ

)

+2
)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}

≤ D
√

14S log
( 2AT

δ

)

·
m

∑
k=1
∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}

+D
√

5
2T log

(8T
δ

)

+DSA log2
(8T
SA
)

+

(

√

14log
( 2SAT

δ

)

+2
) m

∑
k=1
∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (19)

Recall that N(s,a) := ∑k vk(s,a) such that ∑s,a N(s,a) = T and Nk(s,a) = ∑i<k vi(s,a). By the
criterion for episode termination in Step 6 of the algorithm, we have that vk(s,a) ≤ Nk(s,a). Using
that for Zk =max

{

1,∑k
i=1 zi

}

and 0≤ zk ≤ Zk−1 it holds that (see Appendix C.3)
n

∑
k=1

zk√
Zk−1

≤
(√
2+1

)√
Zn ,

we get

∑
s,a
∑
k

vk(s,a)
√

max{1,Nk(s,a)}
≤

(√
2+1

)

∑
s,a

√

N(s,a).

By Jensen’s inequality we thus have

∑
s,a
∑
k

vk(s,a)
√

max{1,Nk(s,a)}
≤

(√
2+1

)√
SAT , (20)

and we get from (19) after some minor simplifications that with probability at least 1− δ
12T 5/4

m

∑
k=1

Δk1M∈Mk ≤ D
√

5
2T log

(8T
δ

)

+DSA log2
(8T
SA
)

+

(

2D
√

14S log
( 2AT

δ

)

+2
)

(√
2+1

)√
SAT . (21)

4.4 Completing the Proof of Theorem 2

Finally, evaluating (8) by summing Δk over all episodes, we get by (9) and (21)

Δ(s1,T ) ≤
m

∑
k=1

Δk1M /∈Mk +
m

∑
k=1

Δk1M∈Mk +
√

5
8T log

( 8T
δ

)

≤
√

5
8T log

( 8T
δ

)

+
√
T +D

√

5
2T log

( 8T
δ

)

+DSA log2
(8T
SA
)

+

(

2D
√

14S log
(2AT

δ

)

+2
)

(√
2+1

)√
SAT (22)
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with probability at least 1− δ
12T 5/4 −

δ
12T 5/4 −

δ
12T 5/4 . Further simplifications (given in Appendix C.4)

yield that for any T > 1 with probability at least 1− δ
4T 5/4

Δ(s1,T ) ≤ 34DS
√

AT log
(T
δ

)

. (23)

Since ∑∞
T=2

δ
4T 5/4 < δ the statement of Theorem 2 follows by a union bound over all possible values

of T .

4.5 Proof of Corollary 3

In order to obtain the PAC bound of Corollary 3 we simply have to find a sufficiently large T0 such
that for all T ≥ T0 the per-step regret is smaller than ε. By Theorem 2 this means that for all T ≥ T0
we shall have

34DS
√

AT log
(T
δ

)

T
< ε, or equivalently T >

342D2S2A log
(T
δ

)

ε2
. (24)

Setting T0 := 2α log
(

α
δ

)

for α := 342D2S2A
ε2 we have due to x> 2logx (for x> 0)

T0 = α log
(α
δ
·
α
δ

)

> α log
(

2
α
δ
log

(α
δ

))

= α log
(T0
δ

)

,

so that (24) as well as the corollary follow.

5. The Logarithmic Bound (Proof of Theorem 4)

To show the logarithmic upper bound on the expected regret, we start with a bound on the number of
steps in suboptimal episodes (in the spirit of sample complexity bounds as given by Kakade, 2003).
We say that an episode k is ε-bad if its average regret is more than ε, where the average regret of an
episode of length !k is Δk

!k
with10 Δk = ∑

tk+1−1
t=tk (ρ∗ − rt). The following result gives an upper bound

on the number of steps taken in ε-bad episodes.

Theorem 11 Let Lε(T ) be the number of steps taken by UCRL2 in ε-bad episodes up to step T .
Then for any initial state s ∈ S , any T > 1 and any ε> 0, with probability of at least 1−3δ

Lε(T ) ≤ 342
D2S2A log

(T
δ

)

ε2
.

Proof The proof is an adaptation of the proof of Theorem 2 which gives an upper bound of
O
(

DS
√

LεA log(AT/δ)
)

on the regret Δ′
ε(s,T ) in ε-bad episodes in terms of Lε. The theorem

then follows due to εLε ≤ Δ′
ε(s,T ).

Fix some T > 1, and let Kε and Jε be two random sets that contain the indices of the ε-bad
episodes up to step T and the corresponding time steps taken in these episodes, respectively. Then
by an application of Hoeffding’s inequality similar to (7) in Section 4.1 and a union bound over all
possible values of Lε, one obtains that with probability at least 1−δ,

∑
k∈Kε

tk+1−1

∑
t=tk

rt ≥ ∑
k∈Kε
∑
s,a
vk(s,a)r̄(s,a)−

√

2Lε log
(T
δ

)

.

10. In the following we use the same notation as in the proof of Theorem 2.
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Further, by summing up all error probabilities P
{

M '∈M (t)
}

≤ δ
15t6 for t = 1,2, . . . one has

P

{

∑
k∈Kε

Δk1M '∈Mk > 0
}

≤ δ .

It follows that with probability at least 1−2δ

Δ′
ε(s,T ) ≤

√

2Lε log
(T
δ

)

+ ∑
k∈Kε

Δk1M∈Mk . (25)

In order to bound the regret of a single episode with M ∈Mk we follow the lines of the proof of
Theorem 2 in Section 4.3. Combining (15), (16), and (17) we have that

Δk ≤ vk
(

Pk−I
)

wk +

(

2D
√

14S log
( 2AT

δ

)

+2
)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (26)

In Appendix D we prove an analogon of (20), that is,

∑
k∈Kε
∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
≤

(√
2+1

)

√

LεSA . (27)

Then from (25), (26), and (27) it follows that with probability at least 1−2δ

Δ′
ε(s,T ) ≤

√

2Lε log
(T
δ

)

+

(

2D
√

14S log
( 2AT

δ

)

+2
)

·
(√
2+1

)

·
√

LεSA

+ ∑
k∈Kε

vk(Pk−I)wk1M∈Mk . (28)

For the regret term of ∑k∈Kε vk(Pk−I)wk1M∈Mk we use an argument similar to the one applied
to obtain (18) in Section 4.3.2. Here we have to consider a slightly modified martingale difference
sequence

Xt =
(

p(·|st ,at)−est+1
)

wk(t)1M∈Mk(t)
1t∈Jε

for t = 1, . . . ,T to get (using the bound on the number of episodes given in Appendix C.2)

∑
k∈Kε

vk(Pk−I)wk1M∈Mk ≤ ∑
t∈Jε

Xt +DSA log2
(8T
SA
)

≤
T (Lε)

∑
t=1

Xt +DSA log2
( 8T
SA
)

, (29)

where we set T (L) := min
{

t : #{τ ≤ t,τ ∈ Jε} = L
}

. The application of the Azuma-Hoeffding
inequality in Section 4.3.2 is replaced with the following consequence of Bernstein’s inequality for
martingales.

Lemma 12 (Freedman 1975) Let X1,X2, . . . be a martingale difference sequence. Then

P

{

n

∑
i=1

Xi ≥ κ,
n

∑
i=1

X2i ≤ γ

}

≤ exp

(

−
κ2

2γ+ 2κ
3

)

.
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Application of Lemma 12 with κ = 2D
√

L log(T/δ) and γ = D2L yields that for L ≥ log(T/δ)
D2 it

holds that

P

{

T (L)

∑
t=1

Xt > 2D
√

L log
(T
δ

)

}

}

<
δ
T

. (30)

On the other hand, if L< log(T/δ)
D2 , we have

T (L)

∑
t=1

Xt ≤ DL = D
√
L
√
L <

√
L
√

log
(T
δ

)

< 2D
√

L log
(T
δ

)

. (31)

Hence, (30) and (31) give by a union bound over all possible values of Lε that with probability at
least 1−δ

T (Lε)

∑
t=1

Xt ≤ 2D
√

Lε log
(T
δ

)

.

Together with (29) this yields that with probability at least 1−δ

∑
k∈Kε

vk(Pk−I)wk1M∈Mk ≤ 2D
√

Lε log
(T
δ

)

+DSA log2
( 8T
SA
)

.

Thus by (28) we obtain that with probability at least 1−3δ

Δ′
ε(s,T ) ≤

√

2Lε log
(T
δ

)

+

(

2D
√

14S log
( 2AT

δ

)

+2
)

·
(√
2+1

)

·
√

LεSA

+2D
√

Lε log
(T
δ

)

+DSA log2
( 8T
SA
)

.

This can be simplified to
Δ′
ε(s,T ) ≤ 34DS

√

LεA log
(T
δ

)

(32)

by similar arguments as given in Appendix C.4. Since εLε ≤ Δ′
ε(s,T ), we get

Lε ≤ 342 ·
D2S2A log

(T
δ

)

ε2
, (33)

which proves the theorem.

Now we apply Theorem 11 to obtain the claimed logarithmic upper bound on the expected
regret.
Proof of Theorem 4 Upper bounding Lε in (32) by (33), we obtain for the regret Δ′

ε(s,T ) accumu-
lated in ε-bad episodes that

Δ′
ε(s,T ) ≤ 342 ·

D2S2A log
(T
δ

)

ε
with probability at least 1− 3δ. Noting that the regret accumulated outside of ε-bad episodes is at
most εT implies the first statement of the theorem.

For the bound on the expected regret, first note that the expected regret of each episode in which
an optimal policy is executed is at most D, whereas due to Theorem 11 the expected regret in g

2 -bad
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episodes is upper bounded by 342 · 2·D
2S2A log(T )

g + 1, as δ = 1
3T . What remains to do is to consider

episodes k with expected average regret smaller than g
2 in which however a non-optimal policy π̃k

was chosen.
First, note that for each policy π there is a Tπ such that for all T ≥ Tπ the expected average

reward after T steps is g
2 -close to the average reward of π. Thus, when a policy π is played

in an episode of length ≥ Tπ either the episode is g
2 -bad (in expectation) or the policy π is op-

timal. Now we fix a state-action pair (s,a) and consider the episodes k in which the number
of visits vk(s,a) in (s,a) is doubled. The corresponding episode lengths !k(s,a) are not neces-
sarily increasing, but the vk(s,a) are monotonically increasing, and obviously !k(s,a) ≥ vk(s,a).
Since the vk(s,a) are at least doubled, it takes at most 11+ log2(maxπ:π(s)=a Tπ)2 episodes until
!k(s,a) ≥ vk(s,a) ≥ maxπ:π(s)=a Tπ, when any policy π with π(s) = a applied in episode k that is
not g2 -bad (in expectation) will be optimal. Consequently, as only episodes of length smaller than
maxπ:π(s)=a Tπ have to be considered, the regret of episodes k where vk(s,a) <maxπ:π(s)=a Tπ is up-
per bounded by 11+ log2(maxπ:π(s)=a Tπ)2maxπ:π(s)=a Tπ. Summing over all state-action pairs, we
obtain an additional additive regret term of

∑
s,a

⌈

1+ log2( max
π:π(s)=a

Tπ)
⌉

max
π:π(s)=a

Tπ,

which concludes the proof of the theorem.

6. The Lower Bound (Proof of Theorem 5)

We first consider the two-state MDP depicted in Figure 3. That is, there are two states, the initial
state s◦ and another state s!, and A′ =

⌊A−1
2
⌋

actions. For each action a, let the deterministic rewards
be r(s◦,a) = 0 and r(s!,a) = 1. For all but a single “good” action a∗ let p(s!|s◦,a) = δ := 4

D , whereas
p(s!|s◦,a∗) = δ+ ε for some 0 < ε < δ specified later in the proof. Further, let p(s◦|s!,a) = δ for
all a. The diameter of this MDP is D′ = 1

δ = D
4 . For the rest of the proof we assume that

11 δ≤ 1
3 .

1−δ−ε

δ

... δ ...

1−δ
δ+ε

1−δ

s s0 1

Figure 3: The MDP for the lower bound. The single action a∗ with higher transition probability
from state s◦ to state s! is shown as dashed line.

Consider k :=
⌊ S
2
⌋

copies of this MDP where only one of the copies has such a “good” action a∗.
To complete the construction, we connect the k copies into a single MDP with diameter less than D,

11. Otherwise we have D< 12, so that due to the made assumptions A> 2S. In this case we employ a different construc-
tion: Using S−1 actions, we connect all states to get an MDP with diameter 1. With the remaining A−S+1 actions
we set up a bandit problem in each state as in the proof of the lower bound of Auer et al. (2002b) where only one
state has a better action. This yields Ω(

√
SAT ) regret, which is sufficient, since D is bounded in this case.
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...... ...
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Figure 4: The composite MDP for the lower bound. Copies of the MDP of Figure 3 are arranged in
an A′-ary tree, where the s◦-states are connected.

using at most A−A′ additional actions. This can be done by introducing A′+1 additional actions per
state with deterministic transitions which do not leave the s!-states and connect the s◦-states of the
k copies by inducing an A′-ary tree structure on the s◦-states (one action for going toward the root,
A′ actions going toward the leaves—see Figure 4 for a schematic representation of the composite
MDP). The reward for each of those actions is zero in any state. The diameter of the resulting MDP
is at most 2(D4 +1logA′ k2), which is twice the time it takes to travel to or from the root for any state
in the MDP. Thus we have constructed an MDP M with ≤ S states, ≤ A actions, and diameter ≤ D,
for which we will show the claimed lower bound on the regret.

Actually, in the analysis we will consider the simpler MDP where all s◦-states are identified.
We set this state to be the initial state. This MDP is equivalent to a single MDP M′ like the one in
Figure 3 with kA′ actions which we assume in the following to be taken from {1, . . . ,kA′}. Note that
learning this MDP is easier (as the learner is allowed to switch between different s◦-states without
any cost for transition), while its optimal average reward is the same.

We prove the theorem by applying the same techniques as in the proof of the lower bound for the
multi-armed bandit problem of Auer et al. (2002b). The pair (s∗◦,a∗) identifying the copy with the
better action and the better action is considered to be chosen uniformly at random from {1, . . . ,k}×
{1, . . . ,A′}, and we denote the expectation with respect to the random choice of (s∗◦,a∗) as E∗ [·].
We show that ε can be chosen such that M′ and consequently also the composite MDP M forces
regret E∗ [Δ(M,A,s◦,T )] ≥ E∗ [Δ(M′,A,s∗◦,T )] > 0.015

√
D′kA′T on any algorithm A.

We writeEunif [·] for the expectation when there is no special action (i.e., the transition probabil-
ity from s◦ to s! is δ for all actions), and Ea [·] for the expectation conditioned on a being the special
action a∗ in M′. As already argued by Auer et al. (2002b), it is sufficient to consider deterministic
strategies for choosing actions. Indeed, any randomized strategy is equivalent to an (apriori) random
choice from the set of all deterministic strategies. Thus, we may assume that any algorithm A maps
the sequence of observations up to step t to an action at .

Now we follow the lines of the proof of Theorem A.2 as given by Auer et al. (2002b). Let the
random variables N!, N◦ and N∗

◦ denote the total number of visits to state s!, the total number of visits
to state s◦, and the number of times action a∗ is chosen in state s◦, respectively. Further, write st as
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usual for the state observed at step t. Then since s◦ is assumed to be the initial state, we have

Ea [N!] =
T

∑
t=1

Pa [st = s!] =
T

∑
t=2

Pa [st = s!] =

=
T

∑
t=2

(

Pa [st = s!|st−1 = s◦]Pa [st−1 = s◦]+Pa [st = s!|st−1 = s!]Pa [st−1 = s!]
)

≤ δ
T

∑
t=2

Pa [st−1 = s◦,at '= a∗]+ (δ+ ε)
T

∑
t=2

Pa [st−1 = s◦,at = a∗]+ (1−δ)Ea [N!]

≤ δEa [N◦ −N∗
◦ ]+ (δ+ ε)Ea [N∗

◦ ]+ (1−δ)Ea [N!] .

Taking into account that choosing a∗ instead of any other action in s◦ reduces the probability of
staying in state s◦, it follows that (using D′ = 1

δ )

Ea
[

R(M′,A,s,T )
]

≤ Ea [N!] ≤ Ea [N◦ −N∗
◦ ]+

δ+ε
δ Ea [N∗

◦ ]

= Ea [N◦]+Ea [N∗
◦ ]εD′

≤ Eunif [N◦]+Ea [N∗
◦ ]εD′

= Eunif [T −N!]+Ea [N∗
◦ ]εD′

= T −Eunif [N!]+Ea [N∗
◦ ]εD′. (34)

Now denoting the step where the first transition from s◦ to s! occurs by τ◦!, we may lower bound
Eunif [N!] by the law of total expectation as

Eunif [N!] =
T

∑
t=1

Eunif [N!|τ◦! = t]Punif [τ◦! = t] =
T

∑
t=1

Eunif [N!|τ◦! = t] (1−δ)t−1δ

≥
T−1

∑
t=1

T − t
2

(1−δ)t−1δ =
δT
2

T−1

∑
t=1

(1−δ)t−1−
δ
2

T−1

∑
t=1

t(1−δ)t−1

=
δT
2

·
1− (1−δ)T−1

δ
−
δ
2

(

1− (1−δ)T

δ2
−
T (1−δ)T−1

δ

)

=
T −T (1−δ)T−1

2
−
1
2δ

+
(1−δ)T

2δ
+
T (1−δ)T−1

2

=
T
2
−
1
2δ

+
(1−δ)T

2δ
≥

T
2
−
1
2δ

=
T
2
−
D′

2
. (35)

Therefore, combining (34) and (35) we obtain

Ea
[

R(M′,A,s,T )
]

≤
T
2

+Ea [N∗
◦ ]εD′ +

D′

2
. (36)

As A chooses its actions deterministically based on the observations so far, N∗
◦ is a function of

the observations up to step T , too. A slight difference to Auer et al. (2002b) is that in our setting
the sequence of observations consists not just of the rewards but also of the next state, that is,
upon playing action at the algorithm observes st+1 and rt . However, since the immediate reward is
fully determined by the current state, N∗

◦ is also a function of just the state sequence, and we may
bound Ea [N∗

◦ ] by the following lemma, adapted from Auer et al. (2002b).
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Lemma 13 Let f : {s◦,s!}T+1 → [0,B] be any function defined on state sequences s ∈ {s◦,s!}T+1

observed in the MDP M′. Then for any 0≤ δ≤ 1
2 , any 0≤ ε≤ 1−2δ, and any a ∈ {1, . . . ,kA′},

Ea [ f (s)] ≤ Eunif [ f (s)]+
B
2
·
ε√
δ

√

2Eunif [N∗
◦ ].

The proof of Lemma 13 is a straightforward modification of the respective proof given by Auer
et al. (2002b). For details we refer to Appendix E.

Now let us assume that ε≤ δ. (Our final choice of ε below will satisfy this requirement.) By our
assumption of δ ≤ 1

3 this yields that ε ≤ δ ≤ 1
3 ≤ 1− 2δ. Then, since N

∗
◦ is a function of the state

sequence with N∗
◦ ∈ [0,T ], we may apply Lemma 13 to obtain

Ea [N∗
◦ ] ≤ Eunif [N∗

◦ ]+
T
2
ε
√
D′
√

2Eunif [N∗
◦ ]. (37)

An immediate consequence of (35) is that ∑kA′
a=1Eunif [N∗

◦ ] ≤ T
2 + D′

2 , which yields by Jensen’s in-
equality that ∑kA′

a=1
√

2Eunif [N∗
◦ ] ≤

√

kA′(T +D′). Thus we have from (37)

kA′

∑
a=1

Ea [N∗
◦ ] ≤

T
2

+
D′

2
+
εT
2
√
D′
√

kA′(T +D′)

≤
T
2

+
D′

2
+
εT
2
√
D′kA′T +

εTD′

2
√
kA′.

Together with (36) this gives

E∗
[

R(M′,A,s,T )
]

=
1
kA′

kA′

∑
a=1

Ea [R(M,A,s,T )]

≤
T
2

+
εTD′

2kA′ +
εD′2

2kA′ +
ε2TD′

2kA′

√
D′kA′T +

ε2TD′2

2kA′

√
kA′ +

D′

2
.

Calculating the stationary distribution, we find that the optimal average reward for the MDP M′

is δ+ε
2δ+ε . Hence, the expected regret with respect to the random choice of a

∗ is at least

E∗
[

Δ(M′,A,s,T )
]

=
δ+ ε
2δ+ ε

T −E∗ [R(M,A,s,T )]

≥
δ+ ε
2δ+ ε

T −
T
2
−
εTD′

2kA′ −
εD′

2kA′ ·D
′ −

ε2TD′

2kA′

√
D′kA′T −

ε2TD′

2kA′

√
D′kA′ ·

√
D′ −

D′

2
.

Since by assumption we have T ≥ DSA≥ 16D′kA′ and thus D′ ≤ T
16kA′ , it follows that

E∗
[

Δ(M′,A,s,T )
]

≥
εT

4δ+2ε
−
εTD′

2kA′ −
εD′

2kA′ ·
T

16kA′ −
ε2TD′

2kA′

√
D′kA′T −

ε2TD′

2kA′

√
D′kA′

√

T
16kA′ −

D′

2

=
εT

4δ+2ε
− εTD′

(

1
2kA′ +

1
32k2A′2

)

−
ε2TD′

kA′

√
D′kA′T

(

1
2

+
1

8
√
kA′

)

−
D′

2
.
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Now we choose ε := c
√

kA′
TD′ , where c := 1

5 . Then because of
1
δ = D′ ≤ T

16kA′ it follows that ε ≤
c 1
4D′ = δ

20 (so that also ε≤ δ as needed to get (37)), and further 1
4δ+2ε ≥

1
4+1/8D

′. Hence we obtain

E∗
[

Δ(M′,A,s,T )
]

≥

(

c
4+ 1

8
−

c
2kA′ −

c
32k2A′2

−
c2

2
−

c2

8
√
kA′

)

√
D′kA′T −

D′

2
.

Finally, we note that
D′

2
≤ 1

2

√
D′

√

T
16kA′ =

1
8kA′

√
D′kA′T ,

and since by assumption S,A≥ 10 so that kA′ ≥ 20, it follows that

E∗
[

Δ(M′,A,s,T )
]

> 0.015
√
D′kA′T ,

which concludes the proof.

7. Regret Bounds for Changing MDPs (Proof of Theorem 6)

Consider the learner operates in a setting where the MDP is allowed to change ! times, such that the
diameter never exceeds D (we assume an initial change at time t = 1). For this task we define the
regret of an algorithm A up to step T with respect to the average reward ρ∗(t) of an optimal policy
at step t as

Δ′(A,s,T ) :=
T

∑
t=1

ρ∗(t)− rt ,

where rt is as usual the reward received by A at step t when starting in state s.
The intuition behind our approach is the following: When restarting UCRL2 every

(T
!

)2/3 steps,
the total regret for periods in which the MDP changes is at most !1/3T 2/3. For each other period
we have regret of Õ

(

(T! )1/3
)

by Theorem 2. Since UCRL2 is restarted only T 1/3!2/3 times, the total
regret is Õ

(

!1/3T 2/3
)

.
Because the horizon T is usually unknown, we use an alternative approach for restarting which

however exhibits similar properties: UCRL2′ restarts UCRL2 with parameter δ
!2 at steps τi =

⌈

i3
!2

⌉

for i= 1,2,3, . . . . Now we prove Theorem 6, which states that the regret of UCRL2′ is bounded by

Δ′(UCRL2′,s,T ) ≤ 65 · !1/3T 2/3DS
√

A log
(T
δ

)

with probability at least 1−δ in the considered setting.

Let n be the largest natural number such that
⌈

n3
!2

⌉

≤ T , that is, n is the number of restarts up to

step T . Then n3
!2 ≤ τn ≤ T ≤ τn+1−1< (n+1)3

!2 and consequently

!2/3T 1/3−1 ≤ n ≤ !2/3T 1/3. (38)

The regret Δc incurred due to changes of the MDP can be bounded by the number of steps taken
in periods in which the MDP changes. This is maximized when the changes occur during the !
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longest periods, which contain at most τn+1−1− τn−!+1 steps. Hence we have

Δc ≤ τn+1−1− τn−!+1

≤ 1
!2 (n+1)3− 1

!2 −
1
!2 (n− !+1)3

= 3 n2! +6 n! −3n−
1
!2 + !−3+31! . (39)

For ! ≥ 2 we get by (39) and (38) that

Δc ≤ 3
n2

!
+ ! ≤ 3

!4/3T 2/3

!
+ ! = 3!1/3T 2/3+ !,

while for ! = 1 we obtain also from (39) and (38) that

Δc ≤ 3n2+3n ≤ 3T 2/3+3T 1/3.

Thus the contribution to the regret from changes of the MDP is at most

Δc ≤ 3!1/3T 2/3+3T 1/3+ !

≤ 6!1/3T 2/3+ !1/3!2/3

≤ 6!1/3T 2/3+ !1/3T 2/3

≤ 7!1/3T 2/3 . (40)

On the other hand, if the MDP does not change between the steps τi and min{T,τi+1}, the
regret Δ(sτi ,Ti) for these Ti :=min{T,τi+1}− τi steps is bounded according to Theorem 2 (or more
precisely (23)). Therefore, recalling that the confidence parameter is chosen to be δ

!2 , this gives

Δ(sτi ,Ti) ≤ 34DS
√

TiA log
( !2Ti

δ

)

≤ 34
√
3DS

√
Ti
√

A log
(T
δ

)

with probability 1− δ
4!2T 5/4i

. As ∑n
i=1Ti = T , we have by Jensen’s inequality ∑n

i=1
√
Ti ≤

√
n
√
T .

Thus, summing over all i = 1, . . . ,n, the regret Δ f in periods in which the MDP does not change is
by (38)

Δ f ≤
n

∑
i=1

Δ(sτi ,Ti) ≤ 34
√
3DS

√
n
√
T
√

A log
(T
δ

)

≤ 34
√
3DS !1/3 T 2/3

√

A log
(T
δ

)

(41)

with probability at least 1−∑n
i=1

δ
4!2T 5/4i

. We conclude the proof by bounding this latter probability.

For
⌊

!2

3

⌋

< i< n,

Ti =

⌈

(i+1)3

!2

⌉

−
⌈

i3

!2

⌉

≥
(i+1)3

!2
−
i3

!2
−

!2−1
!2

=
3i2

!2
+
3i+2− !2

!2
≥
3i2

!2
,
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and consequently 1
!2T 5/4i

≤ 1
i2 . This together with Ti ≥ 1 then yields

1−
n

∑
i=1

δ

4!2T 5/4i

≥ 1−
.!2/3/
∑
i=1

δ
4!2

−
n−1

∑
i=.!2/3/+1

δ
4i2

−
δ
4!2

> 1−
!2

3
·
δ
4!2

−
δ
4

∞

∑
i=1

1
i2
−
δ
4

= 1−
δ
3
−
δ
4
·
π2

6
> 1−δ.

As Δ′(UCRL2′,s,T ) ≤ Δc+Δ f , combining (40) and (41) yields

Δ′(UCRL2′,s,T ) ≤ 7!1/3T 2/3+34
√
3DS !1/3 T 2/3

√

A log
(T
δ

)

with probability at least 1− δ, and Theorem 6 follows, since the claimed bound holds trivially for
A log

(T
δ

)

< log4.

8. Open Problems

There is still a gap between the upper bound on the regret of Theorem 2 and the lower bound of
Theorem 5. We conjecture that the lower bound gives the right exponents for the parameters S andD
(concerning the dependence on S compare also the sample complexity bounds of Strehl et al., 2006).
The recent research of Bartlett and Tewari (2009) also poses the question whether the diameter in our
bounds can be replaced by a smaller parameter, that is, by the span of the bias of an optimal policy.
As the algorithm REGAL.C of Bartlett and Tewari (2009) demonstrates, this is at least true when
this value is known to the learner. However, in the case of ignorance, currently this replacement of
the diameter D can only be achieved at the cost of an additional factor of

√
S in the regret bounds

(Bartlett and Tewari, 2009). The difficulty in the proof is that while the span of an optimal policy’s
bias vector in the assumed optimistic MDP can be upper bounded by the diameter of the trueMDP
(cf. Remark 8), it is not clear how the spans of optimal policies in the assumed and the true MDP
relate to each other.

A somehow related question is that of transient states, that is, the possibility that some of the
states are not reachable under any policy. In this case the diameter is unbounded, so that our bounds
become vacuous. Indeed, our algorithm cannot handle transient states: for any time step and any
transient state s, UCRL2 optimistically assumes maximal possible reward in s and a very small but
still positive transition probability to s from any other state. Thus insisting on the possibility of
a transition to s, the algorithm fails to detect an optimal policy.12 The assumption of having an
upper bound on an optimal policy’s bias resolves this problem, as this bound indirectly also gives
some information on what the learner may expect from a state that has not been reached so far and
thus may be transient. Consequently, with the assumed knowledge of such an upper bound, the
REGAL.C algorithm of Bartlett and Tewari (2009) is also able to deal with transient states.

12. Actually, one can modify UCRL2 to deal with transient states by assuming transition probability 0 for all transitions
not observed so far. This is complemented by an additional exploration phase between episodes where, for example,
the state-action pair with the fewest number of visits is probed. While this algorithm gives asymptotically the same
bounds, these however contain a large additive constant for all the episodes that occur before the transition structure
assumed by the algorithm is correct.
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Appendix A. A Lower Bound on the Diameter

We are going to show a more general result, from which the bound on the diameter follows. For a
given MDP, let T ∗(s|s0) be the minimal expected time it takes to move from state s0 to state s.

Theorem 14 Consider an MDP with state space S and A states. Let d0 be an arbitrary distribution
over S , and U ⊆ S be any subset of states. Then the sum of the minimal expected transition times
to states in U when starting in an initial state distributed according to d0 is bounded as follows:

T (U|d0) := ∑
s∈U

∑
s0∈S

d0(s0)T ∗(s|s0) ≥ min
0≤nk≤Ak ,k≥0,
∑k nk=|U|

∑
k
k ·nk.

We think this bound is tight. The minimum on the right hand side is attained when the nk are
maximized for small k until |U| is exhausted. For A≥ 2, this gives an average (over the states inU)
expected transition time of at least logA |U|−3 to states in U. Indeed, for |U| = ∑m−1

k=0 A
k +nm we

have Am+1−A
(A−1)2 < |U|

(

1+ 1
A−1

)

as well as m≥ logA
( |U|
2
)

, so that

m−1

∑
k=0

kAk +m ·nm = m|U|+
m−1

∑
k=0

(k−m)Ak

= m|U|+
m

A−1
−
Am+1−A
(A−1)2

> |U|
(

m−1− 1
A−1

)

≥ |U|
(

logA
(

|U|
2

)

−1− 1
A−1

)

≥ |U|(logA |U|−3) .

In particular, choosing U = S gives the claimed lower bound on the diameter.

Corollary 15 In any MDP with S states and A ≥ 2 actions, the diameter D is lower bounded by
logA S−3.

Remark 16 For given S,A the minimal diameter is not always assumed by an MDP with determin-
istic transitions. Consider for example S = 4 and A = 2. Any deterministic MDP with four states
and two actions has diameter at least 2. However, Figure 5 shows a corresponding MDP whose
diameter is 32 .
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Figure 5: An MDP with four states and two actions whose diameter is 32 . In each state two actions
are available. One action leads to another state deterministically, while the other action
causes a random transition to each of the two other states with probability 1

2 (indicated as
dashed lines).

Proof of Theorem 14 Let a∗(s0,s) be the optimal action in state s0 for reaching state s, and let
p(s|s0,a) be the transition probability to state s when choosing action a in state s0.

The proof is by induction on the size of U. For |U| = 0,1 the statement holds.
For |U| > 1 we have

T (U|d0) = ∑
s0∈S

∑
s∈U

d0(s0)T ∗(s|s0)

= ∑
s0∈S

∑
s∈U\{s0}

d0(s0)T ∗(s|s0)

= ∑
s0∈S

∑
s∈U\{s0}

d0(s0)
(

∑
s1∈S

p
(

s1|s0,a∗(s0,s)
)

T ∗(s|s1)+1
)

= ∑
s0∈S

d0(s0)∑
a
∑

s∈U\{s0},
a∗(s0,s)=a

(

∑
s1∈S

p(s1|s0,a)T ∗(s|s1)+1
)

= ∑
s0∈S

d0(s0)∑
a

(

∑
s1∈S

∑
s∈Us0,a

p(s1|s0,a)T ∗(s|s1)+ |Us0,a|
)

,

where Us0,a :=
{

s ∈U \{s0} : a∗(s0,s) = a
}

.
If all Us0,a ⊂U, we apply the induction hypothesis and obtain for suitable nk(s0,a)

∑
s0∈S

d0(s0)∑
a

(

∑
s1∈S

∑
s∈Us0,a

p(s1|s0,a)T ∗(s|s1)+ |Us0,a|
)

≥ ∑
s0∈S

d0(s0)∑
a

(

∑
k
k ·nk(s0,a)+ |Us0,a|

)

= ∑
s0∈S

d0(s0)∑
a
∑
k

(k+1) ·nk(s0,a),

since ∑k nk(s0,a) = |Us0,a|. Furthermore, nk(s0,a) ≤ Ak and |U|− 1 ≤ ∑a |Us0,a| ≤ |U|. Thus
setting n′k =∑s0 d0(s0)∑a nk−1(s0,a) for k≥ 1 and n′0 = |U|−∑k≥1 n′k satisfies the conditions of the
statement. This completes the induction step for this case.
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If Us0,a = U for some pair (s0,a) (i.e., for all target states s ∈ U the same action is optimal
in s0), then we construct a modified MDP with shorter transition times. This is achieved by modi-
fying one of the actions to give a deterministic transition from s0 to some state in U (which is not
reached deterministically by choosing action a). For the modified MDP the induction step works
and the lower bound can be proven, which then also holds for the original MDP.

Appendix B. Convergence of Value Iteration (Proof of Theorem 7)

As sufficient condition for convergence of value iteration, Puterman (1994) assumes only that all
optimal policies have aperiodic transition matrices. Actually, the proof of Theorem 9.4.4 of Put-
erman (1994)—the main result on convergence of value iteration—needs this assumption only at
one step, that is, to guarantee that the optimal policy identified at the end of the proof has aperiodic
transition matrix. In the following we give a proof sketch of Theorem 7 that concentrates on the
differences to the convergence proof given by Puterman (1994).

Lemma 9.4.3 of Puterman (1994) shows that value iteration eventually chooses only policies π
that satisfy Pπρ

∗ = ρ∗, where Pπ is the transition matrix of π and ρ∗ is the optimal average reward
vector. More precisely, there is an i0 such that for all i≥ i0

max
π:S→A

{rπ+Pπui} =max
π∈E

{rπ+Pπui},

where rπ is the reward vector of the policy π, and E := {π : S → A |Pπρ
∗ = ρ∗}.

Unlike standard value iteration, extended value iteration always chooses policies with aperiodic
transition matrix (cf. the discussion in Section 3.1.3). Thus when considering only aperiodic policies
F := {π : S →A |Pπ is aperiodic} in the proof of Lemma 9.4.3, the same argument shows that there
is an i′0 such that for all i≥ i′0

max
π∈F

{rπ+Pπui} = max
π∈E∩F

{rπ+Pπui}. (42)

Intuitively, (42) shows that extended value iteration eventually chooses only policies from E ∩F .
With (42) accomplished, the proof of Theorem 9.4.4, the main result on convergence of value

iteration, can be rewritten word by word from Puterman (1994), with E replaced with E ∩F and
using (42) instead of Lemma 9.4.3. Thus, unlike in the original proof where the optimal policy π∗
identified at the end of the proof is in E, in our case π∗ is in E ∩F . Here Puterman (1994) uses
the assumption that all optimal policies have aperiodic transition matrices to guarantee that π∗ has
aperiodic transition matrix. In our case, π∗ has aperiodic transition matrix by definition, as it is in
E ∩F .

Then by the aperiodicity of Pπ∗ , the result of Theorem 9.4.4 follows, and one obtains analo-
gously to Theorem 9.4.5 (a) of Puterman (1994) that

lim
i→∞

(ui+1−ui) = ρ∗. (43)

As the underlying MDP M̃+ is assumed to be communicating (so that ρ∗ is state-independent),
analogously to Corollary 9.4.6 of Puterman (1994) convergence of extended value iteration follows
from (43). Finally, with the convergence of extended value iteration established, the error bound for
the greedy policy follows from Theorem 8.5.6 of Puterman (1994).
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Appendix C. Technical Details for the Proof of Theorem 2

This appendix collects some technical details, starting with an error bound for our confidence inter-
vals.

C.1 Confidence Intervals

Lemma 17 For any t ≥ 1, the probability that the true MDP M is not contained in the set of plau-
sible MDPsM (t) at time t (as given by the confidence intervals in (3) and (4)) is at most δ

15t6 , that
is

P
{

M '∈M (t)
}

<
δ
15t6

.

Proof Consider a fixed state-action pair (s,a) and assume some given number of visits n> 0 in (s,a)
before step t. Denote the estimates for transition probabilities and rewards obtained from these n
observations by p̂ (·|s,a) and r̂ (s,a), respectively. Let us first consider the probability with which a
confidence interval for the transition probabilities fails. The random event observed for the transition
probability estimates is the state to which the transition occurs. Generally, the L1-deviation of the
true distribution and the empirical distribution over m distinct events from n samples is bounded
according to Weissman et al. (2003) by

P

{

∥

∥p̂(·)− p(·)
∥

∥

1 ≥ ε
}

≤ (2m−2)exp
(

− nε2
2

)

. (44)

Thus, in our case we have m = S (for each possible transition there is a respective event), so that
setting

ε =

√

2
n
log

(

2S20SAt7
δ

)

≤
√

14S
n
log

(2At
δ

)

,

we get from (44)

P

{

∥

∥

∥
p(·|s,a)− p̂ (·|s,a)

∥

∥

∥

1
≥
√

14S
n
log

(2At
δ

)

}

≤ 2S exp
(

−
n
2
·
2
n
log

(

2S20SAt7
δ

)

)

=
δ

20t7SA
.

For the rewards we observe real-valued, independent identically distributed (i.i.d.) random vari-
ables with support in [0,1]. Hoeffding’s inequality gives for the deviation between the true mean r̄
and the empirical mean r̂ from n i.i.d. samples with support in [0,1]

P

{

∣

∣r̂− r̄
∣

∣≥ εr
}

≤ 2exp
(

−2nε2r
)

.

Setting

εr =

√

1
2n
log

(

120SAt7
δ

)

≤
√

7
2n
log

(2SAt
δ

)

,

we get for state-action pair (s,a)

P

{

∣

∣r̂ (s,a)− r̄(s,a)
∣

∣≥
√

7
2n
log

(2SAt
δ

)

}

≤ 2exp
(

−2n ·
1
2n
log

(

120SAt7
δ

)

)

=
δ

60t7SA
.
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Note that when there haven’t been any observations, the confidence intervals trivially hold with
probability 1 (for transition probabilities as well as for rewards). Hence a union bound over all
possible values of n= 1, . . . , t−1 gives (now writing N(s,a) for the number of visits in (s,a))

P

{

∣

∣r̂ (s,a)− r̄(s,a)
∣

∣≥

√

7log
( 2SAt

δ

)

2max{1,N(s,a)}

}

≤
t−1

∑
n=1

δ
60t7SA

<
δ

60t6SA
and

P

{

∥

∥

∥
p(·|s,a)− p̂ (·|s,a)

∥

∥

∥

1
≥

√

14S log
(2At

δ

)

max{1,N(s,a)}

}

≤
t−1

∑
n=1

δ
20t7SA

<
δ

20t6SA
.

Summing these error probabilities over all state-action pairs we obtain the claimed bound P
{

M /∈
M (t)

}

< δ
15t6 .

C.2 A Bound on the Number of Episodes

Since in each episode the total number of visits to at least one state-action pair doubles, the number
of episodes m is logarithmic in T . Actually, the number of episodes becomes maximal when all
state-action pairs are visited equally often, which results in the following bound.
Proposition 18 The number m of episodes of UCRL2 up to step T ≥ SA is upper bounded as

m ≤ SA log2
( 8T
SA
)

.

Proof Let N (s,a) := #{τ< T +1 : sτ = s,aτ = a} be the total number of observations of the state-
action pair (s,a) up to step T . In each episode k<m there is a state-action pair (s,a) with vk(s,a) =
Nk(s,a) (or vk(s,a) = 1, Nk(s,a) = 0). Let K(s,a) be the number of episodes with vk(s,a) =Nk(s,a)
and Nk(s,a) > 0. If N(s,a) > 0, then vk(s,a) = Nk(s,a) implies Nk+1(s,a) = 2Nk(s,a), so that

N(s,a) =
m

∑
k=1

vk(s,a) ≥ 1+ ∑
k:vk(s,a)=Nk(s,a)

Nk(s,a) ≥ 1+
K(s,a)

∑
i=1

2i−1 = 2K(s,a).

On the other hand, if N(s,a) = 0, then obviously K(s,a) = 0, so that generally, N(s,a) ≥ 2K(s,a)−1
for any state-action pair (s,a). It follows that

T = ∑
s,a
N(s,a) ≥ ∑

s,a

(

2K(s,a)−1
)

. (45)

Now, in each episode a state-action pair (s,a) is visited for which either Nk(s,a) = 0 or Nk(s,a) =
vk(s,a). Hence, m≤ 1+SA+∑s,a K(s,a), or equivalently ∑s,a K(s,a) ≥ m−1−SA. This implies

∑
s,a
2K(s,a) ≥ SA 2∑s,a K(s,a)/SA ≥ SA 2

m−1
SA −1.

Together with (45) this gives
T ≥ SA

(

2
m−1
SA −1−1

)

,

which yields
m ≤ 1+2SA+SA log2

( T
SA
)

,

and the claimed bound on m follows for T ≥ SA.
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C.3 The Sum in (19)

Lemma 19 For any sequence of numbers z1, . . . ,zn with 0≤ zk ≤ Zk−1 :=max
{

1,∑k−1
i=1 zi

}

n

∑
k=1

zk√
Zk−1

≤
(√
2+1

)√
Zn .

Proof We prove the statement by induction over n.
Base case: We first show that the lemma holds for all n with ∑n−1

k=1 zk ≤ 1. Indeed, in this case Zk = 1
for k ≤ n−1 and hence zn ≤ 1. It follows that

n

∑
k=1

zk√
Zk−1

=
n−1

∑
k=1

zk + zn ≤ 1+1 <
(√
2+1

)

Zn.

Note that this also shows that the lemma holds for n= 1, since ∑0k=1 zk = 0≤ 1.
Inductive step: Now let us consider natural numbers n such that ∑n−1

k=1 zk > 1. By the induction
hypothesis we have

n

∑
k=1

zk√
Zk−1

≤
(√
2+1

)

√

Zn−1+
zn√
Zn−1

.

Since zn ≤ Zn−1 = ∑n−1
k=1 zk and Zn−1+ zn = Zn, we further have

(√
2+1

)

√

Zn−1+
zn√
Zn−1

=

√

(√
2+1

)2
Zn−1+2

(√
2+1

)

zn+
z2n
Zn−1

≤
√

(√
2+1

)2
Zn−1+

(

2+2
√
2+1

)

zn

=

√

(√
2+1

)2
Zn−1+

(√
2+1

)2
zn

=
(√
2+1

)

√

Zn−1+ zn =
(√
2+1

)√
Zn ,

which proves the lemma.

C.4 Simplifying (22)

Combining similar terms, (22) yields that with probability at least 1− δ
4T 5/4

Δ(s1,T ) ≤ DS
√
AT

(

3
2

√

1
A ·

5
2 log

( 8T
δ

)

+2
(√
2+1

)

√

14log
(2AT

δ

)

+
√
8+2+ 1√

A

)

+DSA log2
( 8T
SA
)

. (46)

We assume A ≥ 2, since the bound is trivial otherwise. Also, for 1 < T ≤ 342A log
(T
δ

)

we have

Δ(s1,T )≤ 34
√

AT log
(T
δ

)

trivially. Considering T > 34A log
(T
δ

)

we have A< 1
34log( Tδ )

√

AT log
(T
δ

)

and also log2(8T ) < 2log(T ), so that

DSA log2
(8T
SA
)

< 2
34DS

√

AT log
(T
δ

)

.
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Further, T > 34A log
(T
δ

)

also implies log
(2AT

δ

)

≤ 2log
(T
δ

)

and log
(8T
δ

)

≤ 2log
(T
δ

)

. Thus, we
have by (46) that for any T > 1 with probability at least 1− δ

4T 5/4

Δ(s1,T ) ≤ DS
√

AT log
(T
δ

)

(

3
2

√

5
2 +2

(√
2+1

)√
28+

√
8+2+ 1√

2 + 2
34

)

≤ 34DS
√

AT log
(T
δ

)

.

Appendix D. Technical Details for the Proof of Theorem 4: Proof of (27)

For a given index set Kε of episodes we would like to bound the sum

∑
k∈Kε
∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
= ∑

s,a

m

∑
k=1

vk(s,a)
√

max{1,Nk(s,a)}
1k∈Kε .

We will do this by modifying the sum so that Lemma 19 becomes applicable. Compared to the
setting of Lemma 19 there are some “gaps” in the sum caused by episodes /∈ Kε. In the following
we show that the contribution of episodes that occur after step Lε := ∑k∈Kε ∑s,avk(s,a) is not larger
than the missing contributions of the episodes /∈ Kε. Intuitively speaking, one may fill the episodes
that occur after step Lε into the gaps of episodes /∈ Kε as Figure 6 suggests.

Lε

Figure 6: Illustration of the proof idea. Shaded boxes stand for episodes ∈ Kε, empty boxes for
episodes /∈ Kε. The contribution of episodes after step Lε can be “filled into the gaps” of
episodes /∈ Kε before step Lε.

Let !ε(s,a) :=∑k∈Kε vk(s,a), so that∑s,a !ε(s,a)=Lε. We consider a fixed state-action pair (s,a)
and skip the reference to it for ease of reading, so that Nk refers to the number of visits to (s,a)
up to episode k, and N denotes the total number of visits to (s,a). Further, we abbreviate dk :=
√

max{1,Nk}, and let mε := max{k : Nk < !ε} be the episode containing the !ε-th visit to (s,a).
Due to vk = Nk+1−Nk we have

vmε = (Nmε+1− !ε)+(!ε−Nmε). (47)

Since Nmε = ∑mε−1
k=1 vk, this yields

!ε − Nmε +
mε−1

∑
k=1

vk = !ε =
m

∑
k=1

vk1k∈Kε

=
mε−1

∑
k=1

vk1k∈Kε +
(

Nmε+1− !ε
)

1mε∈Kε +
(

!ε−Nmε

)

1mε∈Kε +
m

∑
k=mε+1

vk1k∈Kε ,
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or equivalently,

(

Nmε+1− !ε
)

1mε∈Kε +
m

∑
k=mε+1

vk1k∈Kε =
(

!ε−Nmε

)

1mε /∈Kε +
mε−1

∑
k=1

vk1k/∈Kε . (48)

By (47) and due to dk ≥ dmε for k ≥ mε we have

m

∑
k=1

vk
dk
1k∈Kε ≤

mε−1

∑
k=1

vk
dk
1k∈Kε +

!ε−Nmε

dmε

1mε∈Kε

+
1
dmε

(

(

Nmε+1− !ε
)

1mε∈Kε +
m

∑
k=mε+1

vk1k∈Kε

)

.

Hence, we get together with (48), using that dk ≤ dmε for k ≤ mε

m

∑
k=1

vk
dk
1k∈Kε ≤

mε−1

∑
k=1

vk
dk
1k∈Kε +

!ε−Nmε

dmε

1mε∈Kε

+
1
dmε

(

(

!ε−Nmε

)

1mε /∈Kε +
mε−1

∑
k=1

vk1k/∈Kε

)

≤
mε−1

∑
k=1

vk
dk
1k∈Kε +

!ε−Nmε

dmε

1mε∈Kε +
!ε−Nmε

dmε

1mε /∈Kε +
mε−1

∑
k=1

vk
dk
1k/∈Kε

=
mε−1

∑
k=1

vk
dk

+
!ε−Nmε

dmε

.

Now define v′k as follows: let v′k := vk for k < mε and v′mε
:= !ε−Nmε . Then we have just seen that

m

∑
k=1

vk
dk
1k∈Kε ≤

mε

∑
k=1

v′k
dk

.

Since further ∑mε
k=1 v

′
k = !ε we get by Lemma 19 that

mε

∑
k=1

v′k
dk

≤
(√
2+1

)

√

!ε .

As ∑s,a !ε(s,a) = Lε, we finally obtain by Jensen’s inequality

∑
k∈Kε
∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
≤

(√
2+1

)

√

LεSA ,

as claimed.

Appendix E. Proof of Lemma 13

Let us first recall some notation from Section 6. Thus Pa [·] denotes the probability conditioned
on a being the “good” action, while the probability with respect to a setting where all actions in
state s◦ are equivalent (i.e., ε = 0) is denoted by Punif [·]. Let S := {s◦,s!} and denote the state
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observed at step τ by sτ and the state-sequence up to step τ by sτ = s1, . . . ,sτ. Basically, the proof
follows along the lines of the proof of Lemma A.1 of Auer et al. (2002b). The first difference is that
our observations now consist of the sequence of T + 1 states instead of a sequence of T observed
rewards. Still it is straightforward to get analogously to the proof of Auer et al. (2002b), borrowing
the notation, that for any function f from {s◦,s!}T+1 to [0,B],

Ea [ f (s)]−Eunif [ f (s)] ≤
B
2

√

2log(2)KL
(

Punif
∥

∥Pa
)

, (49)

where KL(P‖Q) denotes for two distributions P,Q the Kullback-Leibler divergence defined as
KL(P‖Q) := ∑s∈ST+1 P{s} log2

(

P{s}
Q{s}

)

. It holds that (cf. Auer et al., 2002b)

KL
(

Punif
∥

∥Pa
)

=
T

∑
t=1
KL

(

Punif
[

st+1
∣

∣st
]

∥

∥

∥
Pa

[

st+1
∣

∣st
]

)

, (50)

where KL(P{st+1|st}‖Q{st+1|st}) :=∑s
t+1∈S t+1 P{st+1} log2

(

P{st+1|st}
Q{st+1|st}

)

. By the Markov property
and the fact that the action at is determined by a sequence st ∈ S t we have (similar to Auer et al.,
2002b)

KL
(

Punif
[

st+1
∣

∣st
]

∥

∥

∥
Pa

[

st+1
∣

∣st
]

)

= ∑
s
t+1∈S t+1

Punif
[

st+1
]

log2
(

Punif [st+1|st ]
Pa [st+1|st ]

)

= ∑
s
t∈S t

Punif
[

st
]

∑
s′∈S

Punif
[

st+1 = s′|st
]

log2
(

Punif [s′|st ]
Pa [s′|st ]

)

= ∑
s
t−1∈S t−1

Punif
[

st−1
]

∑
(s′′,a′)∈S×A

Punif
[

st = s′′,at = a′|st−1
]

· ∑
s′∈S

Punif
[

st+1 = s′|st−1,st = s′′,at = a′
]

log2

(

Punif
[

s′|st−1,st = s′′,at = a′
]

Pa [s′|st−1,st = s′′,at = a′]

)

= ∑
s
t−1∈S t−1

Punif
[

st−1
]

kA′

∑
a′=1

∑
s′′∈S

Punif
[

st = s′′,at = a′|st−1
]

· ∑
s′∈S

Punif
[

s′|s′′,a′
]

log2
(

Punif [s′|s′′,a′]
Pa [s′|s′′,a′]

)

.

Since log2
(

Punif[s′|s′′,a′]
Pa[s′|s′′,a′]

)

'= 0 only for s′′ = s◦ and a′ being the special action a, we get

KL
(

Punif
[

st+1
∣

∣st
]

∥

∥

∥
Pa

[

st+1
∣

∣st
]

)

=

= ∑
s
t−1∈S t−1

Punif
[

st−1
]

Punif
[

st = s◦,at = a|st−1
]

· ∑
s′∈S

Punif
[

s′|s◦,a
]

log2
(

Punif [s′|s◦,a]
Pa [s′|s◦,a]

)

= Punif [st = s◦,at = a] ∑
s′∈S

Punif
[

s′|s◦,a
]

log2
(

Punif [s′|s◦,a]
Pa [s′|s◦,a]

)

= Punif [st = s◦,at = a]
(

δ log2
(

δ
δ+ ε

)

+(1−δ) log2
(

1−δ
1−δ− ε

))

. (51)

To complete the proof we use the following lemma.

1597



JAKSCH, ORTNER AND AUER

Lemma 20 For any 0≤ δ≤ 1
2 and ε≤ 1−2δ we have

δ log2
(

δ
δ+ ε

)

+(1−δ) log2
(

1−δ
1−δ− ε

)

≤
ε2

δ log(2)
.

Indeed, application of Lemma 20 together with (50) and (51) gives that

KL
(

Punif
∥

∥Pa
)

=
T

∑
t=1
KL

(

Punif
[

st+1
∣

∣st
]

∥

∥

∥
Pa

[

st+1
∣

∣st
]

)

≤
T

∑
t=1

Punif [st = s◦,at = a]
ε2

δ log(2)
= Eunif [N∗

◦ ]
ε2

δ log(2)
,

which together with (49) yields

Ea [ f (s)]−Eunif [ f (s)] ≤
B
2
·
ε√
δ

√

2Eunif [N∗
◦ ],

as claimed by Lemma 13.

Proof of Lemma 20 Consider

hδ(ε) :=
ε2

δ
−δ log

(

δ
δ+ ε

)

− (1−δ) log
(

1−δ
1−δ− ε

)

.

We show that hδ(ε) ≥ 0 for δ≤ 1
2 and 0≤ ε≤ ε0, where

ε0 :=
1
2
−δ+

1
2
√

1−2δ.

Indeed, hδ(0) = 0 for all δ, while for the first derivative

h′δ(ε) :=
∂
∂ε
hδ(ε) = 2 ·

ε
δ

+
δ

δ+ ε
−

1−δ
1−δ− ε

we have h′δ(ε) ≥ 0 for δ ≤
1
2 and 0 ≤ ε ≤ ε0. It remains to show that δ ≤ 1

2 and ε ≤ 1− 2δ imply
ε≤ ε0. Indeed, for δ≤ 1

2 and ε≤ 1−2δ we have

ε− ε0 ≤ 1−2δ− ε0 =
1
2
−δ−

1
2
√

1−2δ =
1
2
(

(1−2δ)−
√

1−2δ)
)

≤ 0.
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Abstract
Massive Online Analysis (MOA) is a software environment for implementing algorithms and run-
ning experiments for online learning from evolving data streams. MOA includes a collection of
offline and online methods as well as tools for evaluation. In particular, it implements boosting,
bagging, and Hoeffding Trees, all with and without Naı̈ve Bayes classifiers at the leaves. MOA
supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analy-
sis, and is released under the GNU GPL license.
Keywords: data streams, classification, ensemble methods, java, machine learning software

1. Introduction

Green computing is the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the data stream model, data arrive
at high speed, and an algorithm must process them under very strict constraints of space and time.

MOA is an open-source framework for dealing with massive evolving data streams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, which is an award-winning
open-source workbench containing implementations of a wide range of batch machine learning
methods.

A data stream environment has different requirements from the traditional batch learning setting.
The most significant are the following:

Requirement 1 Process an example at a time, and inspect it only once (at most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

Figure 1 illustrates the typical use of a data stream classification algorithm, and how the require-
ments fit in a repeating cycle:

1. The algorithm is passed the next available example from the stream (Requirement 1).

c©2010 Albert Bifet, Geoff Holmes, Richard Kirkby and Bernhard Pfahringer.
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(1) Input
Requirement 1

(2) Learning
Requirements 2&3

(3) Model
Requirement 4

Learning
Examples

Prediction

Figure 1: The data stream classification cycle

2. The algorithm processes the example, updating its data structures. It does so without exceed-
ing the memory bounds set on it (requirement 2), and as quickly as possible (Requirement
3).

3. The algorithm is ready to accept the next example. On request it is able to predict the class of
unseen examples (Requirement 4).

In traditional batch learning the problem of limited data is overcome by analyzing and averaging
multiple models produced with different random arrangements of training and test data. In the
stream setting the problem of (effectively) unlimited data poses different challenges. One solution
involves taking snapshots at different times during the induction of a model to see how much the
model improves.

The evaluation procedure of a learning algorithm determines which examples are used for train-
ing the algorithm, and which are used to test the model output by the algorithm.When considering
what procedure to use in the data stream setting, one of the unique concerns is how to build a picture
of accuracy over time. Two main approaches arise:

• Holdout: When traditional batch learning reaches a scale where cross-validation is too time
consuming, it is often accepted to instead measure performance on a single holdout set. This
is most useful when the division between train and test sets has been pre-defined, so that
results from different studies can be directly compared.

• Interleaved Test-Then-Train or Prequential: Each individual example can be used to test
the model before it is used for training, and from this the accuracy can be incrementally
updated. When intentionally performed in this order, the model is always being tested on
examples it has not seen. This scheme has the advantage that no holdout set is needed for
testing, making maximum use of the available data. It also ensures a smooth plot of accuracy
over time, as each individual example will become increasingly less significant to the overall
average (Gama et al., 2009).
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Figure 2: MOA Graphical User Interface

As data stream classification is a relatively new field, such evaluation practices are not nearly as
well researched and established as they are in the traditional batch setting. The majority of experi-
mental evaluations use less than one million training examples. In the context of data streams this is
disappointing, because to be truly useful at data stream classification the algorithms need to be ca-
pable of handling very large (potentially infinite) streams of examples. Demonstrating systems only
on small amounts of data does not build a convincing case for capacity to solve more demanding
stream applications (Kirkby, 2007).

MOA permits evaluation of data stream classification algorithms on large streams, in the order
of tens of millions of examples where possible, and under explicit memory limits. Any less than
this does not actually test algorithms in a realistically challenging setting.

2. Experimental Framework

MOA is written in Java. The main benefits of Java are portability, where applications can be run on
any platform with an appropriate Java virtual machine, and the strong and well-developed support
libraries. Use of the language is widespread, and features such as automatic garbage collection help
to reduce programmer burden and error.

MOA contains stream generators, classifiers and evaluation methods. Figure 2 shows the MOA
graphical user interface. However, a command line interface is also available.

Considering data streams as data generated from pure distributions, MOA models a concept
drift event as a weighted combination of two pure distributions that characterizes the target concepts
before and after the drift. Within the framework, it is possible to define the probability that instances
of the stream belong to the new concept after the drift. It uses the sigmoid function, as an elegant
and practical solution (Bifet et al., 2009a,b).

MOA contains the data generators most commonly found in the literature. MOA streams can be
built using generators, reading ARFF files, joining several streams, or filtering streams. They allow
for the simulation of a potentially infinite sequence of data. The following generators are currently
available: Random Tree Generator, SEA Concepts Generator, STAGGER Concepts Generator, Ro-
tating Hyperplane, Random RBF Generator, LED Generator, Waveform Generator, and Function
Generator.
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MOA contains several classifier methods such as: Naive Bayes, Decision Stump, Hoeffding
Tree, Hoeffding Option Tree (Pfahringer et al., 2008), Bagging, Boosting, Bagging using ADWIN,
and Bagging using Adaptive-Size Hoeffding Trees (Bifet et al., 2009b).

2.1 Website, Tutorials, and Documentation

MOA can be found at: http://moa.cs.waikato.ac.nz/.
The website includes a tutorial, an API reference, a user manual, and a manual about mining

data streams. Several examples of how the software can be used are available. For example, a non-
trivial example of the EvaluateInterleavedTestThenTrain task creating a comma separated values
file, training the HoeffdingTree classifier on the WaveformGenerator data, training and testing on
a total of 100 million examples, and testing every one million examples, is encapsulated by the
following commandline:

java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask \
"EvaluateInterleavedTestThenTrain -l HoeffdingTree \
-s generators.WaveformGenerator \
-i 100000000 -f 1000000" > htresult.csv

MOA is easy to use and extend. A simple approach to writing a new classifier is to extend
moa.classifiers.AbstractClassifier, which will take care of certain details to ease the task.
Although the current focus in MOA is on classification, we plan to extend the framework to include
data stream clustering, regression, and frequent pattern learning (Bifet, 2010).
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Abstract
We consider selective classification, a term we adopt here to refer to ‘classification with a reject op-
tion.’ The essence in selective classification is to trade-off classifier coverage for higher accuracy.
We term this trade-off the risk-coverage (RC) trade-off. Our main objective is to characterize this
trade-off and to construct algorithms that can optimally or near optimally achieve the best possible
trade-offs in a controlled manner. For noise-free models we present in this paper a thorough anal-
ysis of selective classification including characterizations of RC trade-offs in various interesting
settings.
Keywords: classification with a reject option, selective classification, perfect learning, high per-
formance classification, risk-coverage trade-off

1. Introduction

In this paper we study the trade-off between coverage and accuracy of classifiers with a reject option,
a trade-off we refer to as the risk-coverage (RC) trade-off. Our main goal is to characterize this trade-
off and to construct algorithms that can optimally or near optimally control it. Throughout the paper
we use the term selective classification to refer to ‘classification with a reject option.’ Selective
classification was introduced a number of decades ago and among the earliest studies are papers
authored by Chow (1957, 1970), focusing on Bayesian solutions for the case where the underlying
distributions are fully known. Through the years, selective classification continued to draw attention
and numerous papers have been published. The attraction of effective selective classification is
rather obvious in applications where one is not concerned with, or can afford partial coverage of
the domain, and/or in cases where extremely low risk is a must but is not achievable in standard
classification frameworks. Classification problems in medical diagnosis and in bioinformatics are
often instances of such applications (Meltzer et al., 2001; Hanczar and Dougherty, 2008).

Despite the relatively large number of research publications on selective classification, the vast
majority of these works have been concerned with implementing a reject option within specific
learning schemes, by endowing a learning scheme (e.g., neural networks, SVMs) with a reject
mechanism. Most of the reject mechanisms were based on “ambiguity” or (lack of) “confidence”
principles: “when confused or when in doubt, refuse to classify.” While there are many convincing
accounts for the potential effectiveness of selective classification in reducing the risk, we are not
familiar with a thorough or conclusive discussions on the relative power of the numerous rejection
mechanisms that have been considered so far. The very few theoretical works that considered se-
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lective classification (see Section 10) do provide some risk or coverage bounds for specific schemes
(e.g., ensemble methods) or learning principles (e.g., ERMs), but altogether characterizations of
achievable (or non-achievable) RC trade-offs are absent in the current literature. In particular, the
work done so far has not facilitated formal discussions of RC trade-off optimality.

A thorough understanding and effective use of selective classification requires characterization
of the theoretical and practical boundaries of RC trade-offs, which are essential elements in any dis-
cussion of optimality in selective classification. These missing elements in the current literature are
critical when constructing and exploring selective classification schemes and selective classification
algorithms that aim at achieving optimality in controlling the RC trade-off.

One of our longer term goals is to provide such characterizations and introduce a notion of op-
timality for selective classification in the most general agnostic model. As a first step, however, we
focus in this work on noiseless settings whereby a perfect hypothesis for the problem at hand exists
(the so called “realizable case”). Moreover, we place special emphasis on the extreme case where
zero risk has to be guaranteed. For this extreme case, which we call “perfect learning,” we pro-
vide a thorough analysis that includes tight positive and negative results for the most general types
of realizable settings (distribution independent, infinite hypothesis spaces). We also discuss some
specific settings (linear classifiers, specific distribution families) and show an efficient algorithm for
linear classifiers that achieves “perfect learning” with guaranteed coverage. Our results on “perfect
learning” are instrumental in exploring entire RC trade-offs. Recalling known results on optimal
standard realizable learning (no rejection is allowed), we show how to “interpolate” bounds and
strategies for these two extreme cases (perfect learning and standard learning) so as to reveal upper
and lower envelopes of optimal RC trade-offs.

2. Selective Classification: Preliminary Definitions

Let X be some feature space, for example, d-dimensional vectors in Rd . In standard binary classi-
fication, the goal is to learn a binary classifier f : X → {±1}, using a finite training sample of m
labeled examples, Sm = {(xi,yi)}mi=1, assumed to be sampled i.i.d. from some unknown underlying
distribution P(X ,Y ) over X ×{±1}. We assume that the classifier is to be selected from a hypoth-
esis space F and focus on the realizable setting where the labels are determined by some unknown
target hypothesis f ∗ ∈ F . Thus, it is assumed that P satisfies PrP(Y = f ∗(X)|X) = 1.

In selective classification the learner should output a binary selective classifier defined to be a
pair ( f ,g), with f being a standard binary classifier, and g : X → [0,1] a selection function whose
meaning is as follows. When applying the selective classifier to a sample x, its output is:

( f ,g)(x) !

{

re ject, w.p. 1−g(x);
f (x), w.p. g(x). (1)

Thus, in its most general form, the selective classifier is randomized. Whenever the selection func-
tion is a zero-one rule, g : X → {0,1}, we say that the selective classifier is deterministic. Note that
“standard learning” (i.e., no rejection is allowed) is the special case of selective classification where
g(x) selects all points (i.e., g(x) ≡ 1).

The two main characteristics of a selective classifier are its coverage and its risk (or “true error”).

Definition 1 (coverage) The coverage of a selective classifier ( f ,g) is the mean value of the selec-
tion function g(X) taken over the underlying distribution P,

Φ( f ,g) ! E [g(X)] .
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Definition 2 (risk) For a bounded loss function ! : Y ×Y → [0,1], we define the risk of a selective
classifier ( f ,g) as the average loss on the accepted samples,

R( f ,g) !
E [!( f (X),Y ) ·g(X)]

Φ( f ,g)
.

This risk definition clearly reduces to the standard definition of risk if g(x) ≡ 1. Note that (at the
outset) both the coverage and risk are unknown quantities because they are defined in terms of the
unknown underlying distribution P.

We define a learning algorithm ALG to be a (random) function that, given a sample Sm, chooses
a selective classifier ( f ,g). We evaluate learners with respect to their coverage and risk and derive
both positive and negative results on achievable risk and coverage. Our model is a slight extension
of the standard minimax model for standard statistical learning as described, for example, by Antos
and Lugosi (1998). Thus, we consider the following game between the learner and an adversary.
The parameters of the game are a domain X and an hypothesis class F .

1. A tolerance level δ and a training sample size m are given.

2. The learner chooses a learning algorithm ALG.

3. With full knowledge of the learner’s choice, the adversary chooses a distribution P(X) over
X , and a target hypothesis f ∗ ∈F (or a distribution over F according to which f ∗ is selected).

4. A training sample Sm is drawn i.i.d. according to P and f ∗.

5. ALG is applied on Sm and outputs a selective classifier ( f ,g).

The result of the game is evaluated in terms of the risk and coverage obtained by the chosen selective
classifier and clearly, these are random quantities that trade-off each other. A positive result in
this model is a pair of bounds, BR = BR(F ,δ,m) and BΦ = BΦ(F ,δ,m), for risk and coverage,
respectively, that for any δ and m, hold with high probability, of at least 1−δ for any distribution P;
namely,

Pr{R( f ,g) ≤ BR ∧ Φ( f ,g) ≥ BΦ}≥ 1−δ.

The probability is taken w.r.t. the random choice of training samples Sm, as well as w.r.t. all other
random choices introduced, such as a random choice of f ∗ by the adversary (if applicable), a random
choice of ( f ,g) by ALG (if applicable), and the randomized selection function (Equation (1)).

A negative result is a probabilistic statement on the impossibility of any positive result. Thus,
in its most general form a negative result is a pair of bounds BR and BΦ that, for any δ, satisfy

Pr{R( f ,g) ≥ BR ∨ Φ( f ,g) ≤ BΦ}≥ δ,

for some probability P. Here again, probability is taken w.r.t. the random choice of the training
samples Sm, as well as w.r.t. all other random choices.

For a selective classifier ( f ,g) with coverage Φ( f ,g) we can specify a Risk-Coverage (RC)
trade-off as a bound on the risk R( f ,g), expressed in terms of Φ( f ,g). Thus, a positive result on the
RC trade-off is a probabilistic statement of the following form

Pr{R( f ,g) ≤ B(Φ( f ,g),δ,m)}≥ 1−δ.
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Similarly, a negative result on the RC trade-off is a statement of the form,

Pr{R( f ,g) ≥ B(Φ( f ,g),δ,m)}≥ δ.

Clearly, all results (positive and negative) are qualified by the model parameters, namely the do-
main X and the hypothesis space F , and the quality/generality of a result should be assessed w.r.t.
generality of these parameters. An additional major consideration is, of course, the computational
complexity of the learning algorithm.

Finally, in the sequel we rely on the following standard definition of the version space (Mitchell,
1977).

Definition 3 (version space) Given an hypothesis class F and a training sample Sm, the version
space VSF ,Sm is the set of all hypotheses in F that classify Sm correctly.

3. Contributions

The purpose of this section is to provide a high level technical overview of our contributions. Using
a training sample Sm, the goal in selective classification is to output a selective classifier ( f ,g) that
has sufficiently low risk with sufficiently high coverage. Obviously, these two quantities trade-off
each other. We call the trade-off between risk and coverage the risk-coverage (RC) trade-off. The
best way to benefit from selective classification is to control the creation of the classifier so as to
meet a prescribed error/coverage specification along the RC trade-off. For example, it might be
desirable to devise a learning system that will receive as input an error constraint (say, 2% error)
and, based on a finite (and small) training sample, will be capable of generating a classifier whose
ensured test error (w.h.p.) is not larger than 2%, while having the maximum possible coverage of
the domain. If the RC trade-off is revealed, it is possible to know if the 2% error constraint can be
met and what would be the corresponding coverage.

In Figure 1 we schematically depict elements of the RC trade-off. The x-axis measures risk
(error in the case of the 0/1 loss) and the y-axis is coverage. The entire region depicted, called
the RC plane, consisting of all (r,c) points in the rectangle of interest, where r is a risk (error)
coordinate and c is a coverage coordinate. Assume a fixed problem setting (including an unknown
underlying distribution P, m training examples drawn i.i.d. from P, an hypothesis space F and a
tolerance parameter δ). To fully characterize the RC trade-off we need to determine for each point
(r,c) on the RC plane if it is (efficiently) “achievable.” We say that (r,c) is (efficiently) achievable
if there is an (efficient) learning algorithm that will output a selective classifier ( f ,g) such that with
probability of at least 1−δ, its coverage is at least c and its risk is at most r.

Notice that point r∗ (the coordinate (r∗,1)) where the coverage is 1 represents “standard learn-
ing.” At this point we require full coverage with certainty and the achievable risk represents the
lowest possible risk in our fixed setting (which should be achievable with probability of at least
1−δ). Point r∗ represent one extreme of the RC trade-off. The other extreme of the RC trade-off is
point c∗, where we require zero risk with certainty. The coverage at c∗ is the optimal (highest possi-
ble) in our setting when zero error is required. We call point c∗ perfect learning because achievable
perfect learning means that we can generate a classifier that never errs with certainty for the problem
at hand. Note that at the outset, it is not at all clear if non-trivial perfect learning (with guaranteed
positive coverage) can be accomplished.

The full RC trade-off is some (unknown) curve connecting points c∗ and r∗. This curve passes
somewhere in the zone labeled with a question mark and represents optimal selective classification.
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Figure 1: The RC plane and RC trade-off

Points above this curve (e.g., at zone A) are not achievable. Points below this curve (e.g., at zone B)
are achievable. One of the main goals of this paper is to study the RC curve and provide as tight as
possible boundaries for it. To this end we characterize upper and lower envelopes of the RC curve
as schematically depicted in Figure 1. The upper envelop is a boundary of a “non-achievable zone”
(zone A) and therefore we consider any upper envelop as a “negative result.” The lower envelop is a
boundary of an “achievable zone” (zone B) and is therefore considered as a “positive result.” Note
that upper and lower envelopes, as depicted in the figure, represent two different things, which are
formally defined in Section 2 as probabilistic statements on possibility and impossibility.

Point r∗ on the RC curve (“standard learning”) was extensively studied in the literature. Perfect
learning (point c∗) was never considered. For the most part, the existing work on selective clas-
sification exhibited (either empirically or theoretically) specific but anecdotal points or curves in
the achievable zone (B) but, to the best of our knowledge no systematic attempts were ever made
to characterize the RC-curve, which corresponds to optimal selective classification. In particular,
there are currently no “negative” results attempting to characterize non achievable zones in the RC
plane.

Our technical exposition begins by focusing on perfect learning (point c∗ in the RC plane).
Given the training set Sm, we are required to generate a “perfect” selective classifier ( f ,g) for which
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it is known with certainty that R( f ,g) = 0.1 Obviously, zero risk is trivially achieved by taking g
that rejects the entire input space X . But is it possible to achieve perfect learning on a guaranteed
fraction of the effective volume of X ?

Our first observation is Theorem 8, stating that for any finite hypothesis class F , perfect learning
with guaranteed coverage is achievable by a particular selective classification strategy. For any
tolerance δ, with probability of at least 1− δ, it is guaranteed that the coverage achieved by this
strategy will be at least

1−
1
m
O(|F |+ ln(1/δ)). (2)

The learning strategy that achieves this performance is simple and natural and can be termed con-
sistent selective strategy (CSS): take f to be any hypothesis from the version space (with respect
to Sm), and construct a g that deterministically rejects any point that is not classified unanimously
by all version space hypotheses. This CSS strategy is optimal for perfect learning. We show in
Theorem 7 that any other strategy that achieves perfect learning cannot have larger coverage than
CSS. It is interesting to note that the optimal selection function is not obtained by thresholding soft
classification values, which is the commonly used heuristic.

It is easy to see why the classifier ( f ,g) selected by CSS has zero risk with certainty. Since
f ∗ is assumed to be in the version space, and since g rejects all instances that are not classified
unanimously by all the hypotheses in the version space, any selection of f from the version space
will have identical classification to f ∗. Nonetheless, it is surprising at the outset that the selection
function g doesn’t reject a lot and in fact, its rejection rate can be very small for sufficiently large m
as it decreases at rate 1/m.

This distribution-free coverage guarantee (2) is proven to be nearly tight for CSS and therefore,
it is the best possible bound for any selective learner. Specifically, as shown in Theorem 11, there
exist a particular finite hypothesis class and a particular underlying distribution for which a matching
negative result (up to multiplicative constants) holds for any consistent selective learner. This result
is readily extended to any selective learner by the CSS coverage optimality of Theorem 7.

What about infinite hypothesis spaces? We show in Theorem 14 that it is impossible to provide
any coverage guarantees for perfect learning, in the general case. Specifically, for linear classifiers,
we show a bad distribution for which any selective learner ensuring zero risk will be forced to reject
the entire volume of X , thus failing to guarantee more than zero coverage. Thus, in the general case,
point c∗ is simply the coordinate (0,0) on the RC plane. The implication of this result is that when
aiming at very small risks, the rejection rate might in general be very high (very small coverage),
which may be unacceptable in many applications.

So the bad news is that perfect learning with guaranteed coverage cannot in general be achieved
if the hypothesis space is infinite. Fortunately, however, this observation does not preclude non-
trivial perfect learning in less adverse situations. What can be accomplished are both data-dependent
and distribution-dependent guarantees. For any selective hypothesis ( f ,g), that is consistent with a
sample Sm, Theorem 21 ensures perfect learning with a high probability coverage guarantee of the
following form:

Φ( f ,g) ≥ 1−
1
m
O
(

γ(F , n̂) ln
m

γ(F , n̂)
+ ln

m
δ

)

, (3)

1. The requirement that in perfect learning the risk is zero with certainty is dual to the requirement that the coverage is
100% with certainty in standard learning.
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where n̂ is a new empirical quantity measuring the version space compression set size (see Defini-
tion 15), and γ(F ,k) is a new complexity measure of the set of all possible version spaces generated
by training samples of size k. We call γ(F ,k) the “order-k characterizing set complexity” of F , and
it is derived using VC-dimension arguments (see Definition 18).

This general data-dependent bound is then applied to linear classifiers. Relying on a classical
result in combinatorial geometry that bounds the number of facets of polytopes, we derive in Theo-
rem 27 the following upper bound on the order-k characterizing set complexity of linear classifiers
in Rd ,

γ(F ,k) ≤ O(d3(k/d)d/2 logk).

Plugging this bound to (3) results in a data-dependent compression bound for linear classifiers in
terms of n̂, the size of the compression set of the version space.

We then consider the evaluation of the compression set size n̂ for specific distributions. Using a
classical result in geometric probability theory on the average number of maximal random vectors,
we show in Lemma 32 that if the underlying distribution is any (unknown) finite mixture of arbitrary
multi-dimensional Gaussians in Rd , then the compression set size of the version space obtained
using m labeled examples satisfies, with probability of at least 1−δ,

n̂= O
(

(logm)d/δ
)

.

This bound immediately yields a coverage guarantee for perfect learning of linear classifiers, as
stated in Corollary 33. This is a powerful result providing strong indication on the potential effec-
tiveness of perfect learning with guaranteed coverage in a variety of applications.

In Section 7 we derive upper and lower envelopes for the RC curve. Our results on perfect
learning described above play a major role in the derivation of these envelopes. We generalize the
CSS strategy and define a “controllable selective strategy” (Definition 34). This strategy is parame-
terized by a number α ∈ [0,1] which controls the rejection rate by interpolating perfect learning and
optimal standard learning. In particular, this strategy, applied with α = 0 is perfect learning, and
with α = 1 it is optimal standard learning (full coverage), which in the realizable case is known to
be achieved by any consistent learner. For any finite hypothesis space, the lower envelop we present
in Theorem 36 is

Rα( f ,g) ≤
(
1−Φ0/Φα( f ,g)

1−Φ0

)

·
1
m

(

ln |F |+ ln
2
δ

)

,

where Φ0 is the coverage guarantee of perfect learning in Equation (2), Rα( f ,g) is the risk of the
“controllable selective strategy” with control parameter α, and Φα( f ,g) is the matching coverage.

The upper envelop on the RC curve is then derived in Theorem 37 for any selective classifier
( f ,g) by constructing a particular bad distribution for which

R( f ,g) ≥
1
4Φ

·min
(

2Φ−1,2Φ−2+
1
4m

·
[

VCdim(F )−
16
3
ln

1
1−2δ

])

.

An exact implementation of the CSS strategy appears as if it should be computationally diffi-
cult. Given a particular training set, CSS must reject a point iff it is not classified the same by all
hypotheses in the current version space. In Section 8 we show an efficient algorithm that implements
CSS of linear classifiers. The main idea leading to this construction is the following observation.
Given a test point x we examine if the inclusion of x with either positive or negative labels in the
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training sets results in linearly separable sets. Clearly, CSS must reject x iff both these augmented
sets are linearly separable. Thus, the construction of the CSS selection function can be reduced to
two tests of linear separability, which can be efficiently accomplished using known techniques for
testing linear separability. Note that we do not construct the selection function explicitly during the
training process, a task that may indeed require intensive computation. Rather, we benefit from a
“lazy learning” approach whereby the selection function is constructed at test time per each example
(as in nearest neighbor algorithms).

4. Perfect Learning with Finite Hypothesis Spaces

In this section we consider the simplest case of realizable learning with a finite hypothesis space
F . We show that perfect selective classification with guaranteed coverage is achievable (from a
learning-theoretic perspective) by a learning strategy termed consistent selective strategy (CSS).
Moreover, CSS is shown to be optimal in its coverage rate, which is fully characterized by providing
lower and upper bounds that match in their asymptotic behavior in the sample size m. We start
by defining a region in X , which is termed the “maximal agreement set.” Any hypothesis that is
consistent with the sample Sm is guaranteed to be consistent with the target hypothesis f ∗ on this
entire region.

Definition 4 (agreement set) Let G ⊆ F . A subset X ′ ⊆ X is an agreement set with respect to G if
all hypotheses in G agree on every instance in X ′, namely,

∀ g1,g2 ∈ G , x ∈ X ′, g1(x) = g2(x).

Definition 5 (maximal agreement set) Let G ⊆ F . The maximal agreement set with respect to G
is the union of all agreement sets with respect to G .

Recall that the version space VSF ,Sm ⊆ F is the set of all hypotheses that classify Sm correctly
(Definition 3).

Definition 6 (consistent selective strategy (CSS)) Given Sm, a consistent selective strategy (CSS)
is a selective classification strategy that takes f to be any hypothesis in VSF ,Sm (i.e., a consistent
learner), and takes a (deterministic) selection function g that equals one for all points in the maximal
agreement set with respect to VSF ,Sm, and zero otherwise.

Recall that the (unknown) labeling hypothesis f ∗ is in VSF ,Sm . Thus, CSS simply rejects all points
that might incur an error with respect to f ∗. An immediate consequence is that any CSS selective
hypothesis ( f ,g) always satisfies R( f ,g) = 0. The main concern, however, is whether its coverage
Φ( f ,g) can be bounded from below and whether any other strategy that achieves perfect learning
with certainty can achieve better coverage. The following theorem proves that CSS has the largest
possible coverage among all strategies.

Theorem 7 (CSS coverage optimality) Given Sm, let ( f ,g) be a selective classifier chosen by any
strategy that ensures zero risk with certainty for any unknown distribution P and any target concept
f ∗ ∈ F . Let ( fc,gc) be a selective classifier selected by CSS using Sm. Then, Φ( f ,g) ≤Φ( fc,gc).
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Proof For the sake of simplicity we limit the discussion to deterministic strategies. The extension
to stochastic strategies is omitted but is straightforward. Given a hypothetical sample S̃m of size
m, let ( f̃c, g̃c) be the selective classifier chosen by CSS and let ( f̃ , g̃) be the selective classifier
chosen by any competing strategy. Assume that there exists x0 ∈ X (x0 /∈ S̃m) such that g̃(x0) = 1
and g̃c(x0) = 0. According to the CSS construction of g̃c, since g̃c(x0) = 0, there are at least two
hypotheses h1,h2 ∈ VSF ,S̃m such that h1(x0) /= h2(x0). Assume, without loss of generality, that
h1(x0) = f̃ (x0). We will now construct a new “imaginary” classification problem and show that,
under the above assumption, the competing strategy fails to guarantee zero risk with certainty. Let
the imaginary target concept f ′∗ be h2 and the imaginary underlying distribution P′ be

P′(x) =







(1− ε)/m, if x ∈ S̃m;
ε, if x= x0;
0, otherwise.

Imagine a random sample S′m drawn i.i.d from P′. There is a positive (perhaps small) probability that
S′m will equal S̃m, in which case ( f ′,g′) = ( f̃ , g̃). Since g′(x0) = g̃(x0) = 1 and f ∗(x0) /= f ′(x0), with
positive probability R( f ′,g′) = ε > 0. Contradiction to the assumption that the competing strategy
achieves perfect learning with certainty. It follows that for any sample S̃m and for any x ∈ X , if
g̃(x) = 1 then g̃c(x) = 1. Consequently, for any unknown distribution P, Φ( f̃ , g̃) ≤Φ( f̃c, g̃c).

The next result establishes the existence of perfect learning with guaranteed coverage in the
finite case.

Theorem 8 (guaranteed coverage) Assume a finite F and let ( f ,g) be a selective classifier se-
lected by CSS. Then, R( f ,g) = 0 and for any 0≤ δ≤ 1, with probability of at least 1−δ,

Φ( f ,g) ≥ 1−
1
m

(

(ln2)min{|F |, |X |}+ ln
1
δ

)

. (4)

Proof For any ε, let G1,G2, . . . ,Gk, be all the hypothesis subsets of F with corresponding maximal
agreement sets, λ1,λ2, . . . ,λk, such that each λi has volume of at most 1− ε with respect to P. For
any 1 ≤ i ≤ k, the probability that a single point will be randomly drawn from λi is thus at most
1− ε. The probability that all training points will be drawn from λi is therefore at most (1− ε)m. If
a training point x is in X \λi, then there are at least two hypotheses f1, f2 ∈ Gi that do not agree on
x. Hence,

Pr
P

(Gi ⊆VSF ,Sm) ≤ (1− ε)m.

We note that
k ≤ 2min{|F |,|X |},

and by the union bound,

Pr
P

(∃Gi Gi ⊆VSF ,Sm) ≤ k · (1− ε)m ≤ 2min{|F |,|X |} · (1− ε)m.

Therefore, with probability of at least 1− 2min{|F |,|X |} · (1− ε)m, the version space VSF ,Sm differs
from any subset Gi, and hence it has a maximal agreement set with volume of at least 1− ε. Using
the inequality 1− ε≤ exp(−ε), we have

2min{|F |,|X |} · (1− ε)m ≤ 2min{|F |,|X |} · exp(−mε).

1613



EL-YANIV AND WIENER

Equating the right-hand side to δ and solving for ε completes the proof.

A leading term in the coverage guarantee (4) is |F |. In corresponding results in standard con-
sistent learning (Haussler, 1988) the corresponding term is log |F |. This may raise a concern on
the tightness of (4). However, as shown in Corollary 13, this bound is tight (up to multiplicative
constants). To prove the Corollary we will require the following two definitions.

Definition 9 (binomial tail distribution) Let Z1,Z2, . . .Zm be m independent Bernoulli random vari-
ables each with a success probability p. Then for any 0≤ k ≤ m we define

Bin(m,k, p) ! Pr

(
m

∑
i=1

Zi ≤ k

)

.

Definition 10 (binomial tail inversion, Langford, 2005) For any 0≤ δ≤ 1 we define

Bin(m,k,δ) !max
p

{p : Bin(m,k, p) ≥ δ} .

Theorem 11 (non-achievable coverage, implicit bound) Let 0 ≤ δ ≤ 1
2 , m, and n > 1 be given.

There exist a distribution P, that depends on m and n, and a finite hypothesis class F of size n,
such that for any selective classifier ( f ,g), chosen from F by CSS (so R( f ,g) = 0) using a training
sample Sm drawn i.i.d. according to P, with probability of at least δ,

Φ( f ,g) ≤ 1−
1
2
·Bin

(

m,
|F |
2

,2δ
)

.

Proof Let X ! {e1,e2, . . .en+1} be the standard (vector) basis of Rn+1, X ′ ! X \{en+1} and P be
the source distribution over X satisfying

P(ei) !

{

Bin
(

m, n2 ,2δ
)

/n, if i≤ n;
1−Bin

(

m, n2 ,2δ
)

, otherwise;

where Bin(m,k,δ) is the binomial tail inversion (Definition 10). Since

Bin
(

m,
n
2
,2δ

)

!max
p

{

p : Bin
(

m,
n
2
, p

)

≥ 2δ
}

,

and Sm is drawn i.i.d. according to P, we get that with probability of at least 2δ,

∣
∣
{

x ∈ Sm : x ∈ X ′}∣∣≤
n
2
.

Let F be the class of singletons such that

fi(e j) !

{

1, if i= j;
−1, otherwise.
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Taking f ∗ ! fi∗ , for some 1≤ i∗ ≤ n, we have,

Pr
(

ei∗ /∈ Sm ,
∣
∣
{

x ∈ Sm : x ∈ X ′}∣∣≤
n
2

)

= Pr
(

ei∗ /∈ Sm |
∣
∣
{

x ∈ Sm : x ∈ X ′}∣∣≤
n
2

)

·Pr
(∣
∣
{

x ∈ Sm : x ∈ X ′}∣∣≤
n
2

)

≥
(

1−
1
n

) n
2
·2δ≥ δ.

If ei∗ /∈ Sm then all samples in Sm are negative, so each sample in X ′ can reduce the version space
VSF ,Sm by at most one hypothesis. Hence, with probability of at least δ,

|VSF ,Sm |≥ |F |−
n
2

=
n
2
.

Since the coverage Φ( f ,g) is the volume of the maximal agreement set with respect to the version
space VSF ,Sm , it follows that

Φ( f ,g) = 1− |VSF ,Sm | ·
Bin

(

m, n2 ,2δ
)

n
≤ 1−

1
2
·Bin

(

m,
|F |
2

,2δ
)

.

Remark 12 The result of Theorem 11 is based on the use of the class of singletons. Augmenting
this class by the empty set and choosing a uniform distribution over X results in a tighter bound.
However, the bound will be significantly less general as it will hold only for a single hypothesis in
F and not for any hypothesis in F .

Corollary 13 (non-achievable coverage, explicit bound) Let 0 ≤ δ ≤ 1
4 , m, and n > 1 be given.

There exist a distribution P, that depends on m and n, and a finite hypothesis class F of size n,
such that for any selective classifier ( f ,g), chosen from F by CSS (so R( f ,g) = 0) using a training
sample Sm drawn i.i.d. according to P, with probability of at least δ,

Φ( f ,g) ≤max
{

0,1−
1
8m

(

|F |−
16
3
ln

1
1−2δ

)}

.

Proof Applying Lemma 43 we get

Bin
(

m,
|F |
2

,2δ
)

≥min
{

1,
|F |
4m

−
4
3m
ln

1
1−2δ

}

.

Applying Theorem 11 completes the proof.
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5. Consistent Selective Classification Over Infinite Hypothesis Spaces

In this section we consider an infinite hypothesis space F . We show that in the general case, perfect
selective classification with guaranteed (non-zero) coverage is not achievable even when F has a
finite VC-dimension. We then derive a meaningful coverage guarantee using posterior information
on the source distribution (data-dependent bound).

We start this section with a negative result that precludes non-trivial perfect learning when F is
the set of linear classifiers. The result is obtained by constructing a particularly bad distribution.

Theorem 14 (non-achievable coverage) Let m and d > 2 be given. There exist a distribution P,
an infinite hypothesis class F with a finite VC-dimension d, and a target hypothesis in F , such that
Φ( f ,g) = 0 for any selective classifier ( f ,g), chosen from F by CSS using a training sample Sm
drawn i.i.d. according to P.

Proof Let F be the class of all linear classifiers in R2 and let P be a uniform distribution over the
arcs,

(x−2)2+ y2 = 2, x< 1,

and
(x+2)2+ y2 = 2, x> −1.

Figure 2 depicts this construction. The training set Sm consists of points on these arcs, labeled by
any linear classifier that passes between the arcs. The maximal agreement set, A, with respect to
the version space VSF ,Sm is partitioned into two subsets A+ and A− according to the labels obtained
by hypotheses in the version space. Clearly, A+ is confined by a polygon whose vertices lie on the
right-hand side arc. Since P is concentrated on the arc, the probability volume of A+ is exactly zero
for any finite m. The same analysis holds for A−, and therefore the coverage is forced to be zero.
The VC-dimension of the class of all linear classifiers in R2 is 3. Embedding the distribution P in a
higher dimensional space Rd and using the class of all linear classifiers in Rd completes the proof.

A direct corollary of Theorem 14 is that, in the general case, perfect selective classification with
distribution-free guaranteed coverage is not achievable for infinite hypothesis spaces. However, this
is certainly not the end of the story for perfect learning. In the remainder of this paper we de-
rive meaningful coverage guarantees using posterior or prior information on the source distribution
(data- and distribution-dependent bounds).

In order to guarantee meaningful coverage we first need to study the complexity of the selection
function g(x) chosen by CSS. The complexity of the classification function f (x) is determined only
by the hypothesis class F and it is independent of the sample size itself. However, the complexity of
g(x) (the maximal agreement set) chosen by CSS generally depends on the sample size. Therefore,
increasing the training sample size does not necessarily guarantee non-trivial coverage. Our main
task is to find the complexity class of the family of maximal agreement sets from which g(x) is
chosen. Let us define the family of all maximal agreement sets as H =

S

Hn such that H1 ⊂H2 ⊂
H3 ⊂ . . .. We can now exploit the fact that CSS chooses a maximal agreement set that belongs to a
specific subclass Hn with a complexity measured in terms of the VC dimension of Hn. We term this
approach Structural Coverage Maximization (SCM) following the analogous and familiar Structural
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Figure 2: A worst-case distribution for linear classifiers: points are drawn uniformly at random
on the two arcs and labeled by a linear classifier that passes between these arcs. The
probability volume of the maximal agreement set is zero.

Risk Minimization (SRM) approach (Vapnik, 1998). A useful way to parameterize H is to use the
size of the “version space compression set” (Definition 15).

Definition 15 (version space compression set) Let Sm be a labeled sample of m points and let
VSF ,Sm be the induced version space. The version space compression set, Sn̂ ⊆ Sm is a smallest
subset of Sm satisfying VSF ,Sm =VSF ,Sn̂ . Note that for any given F and Sm, the size of the version
space compression set, denoted n̂= n̂(F ,Sm), is unique.

Since a maximal agreement set is a region in X , rather than an hypothesis, we formally define the
dual hypothesis that matches every maximal agreement set.

Definition 16 (characterizing hypothesis) Let G ⊆ F and let AG be the maximal agreement set
with respect toG . The characterizing hypothesis ofG , fG (x) is a binary hypothesis over X obtaining
positive values over AG and zero otherwise.

We are now ready to formally define Hn, a class we term “order-n characterizing set.”

Definition 17 (order-n characterizing set) For each n, let Sn be the set of all possible labeled
samples of size n (all n-subsets, each with all possible labelings). The order-n characterizing set of
F , denoted Hn, is the set of all characterizing hypotheses fG (x), where G ⊆ F is a version space
induced by some member of Sn.

Definition 18 (characterizing set complexity) Let Hn be the order-n characterizing set of F . The
order-n characterizing set complexity of F , denoted γ(F ,n), is the VC-dimension of Hn.
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Lemma 19 The characterizing hypothesis fVSF ,Sm (x) belongs to the order-n̂ characterizing set of
F , where n̂= n̂(F ,Sm) is the size of the version space compression set.

Proof According to Definition 15, there exists a subset Sn̂⊂ Sm of size n̂ such thatVSF ,Sm =VSF ,Sn̂ .
The rest of the proof follows immediately from Definition 17.

Before stating the main result of this section, we state a classical result that will be used later.

Theorem 20 (Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999, p.53) Let F be a
hypothesis space with VC-dimension h. For any probability distribution P on X ×{±1}, with prob-
ability of at least 1− δ over the choice of Sm from Pm, any hypothesis f ∈ F consistent with Sm
satisfies

R( f ) ≤ ε(h,m,δ) =
2
m

[

h ln
2em
h

+ ln
2
δ

]

, (5)

where R( f ) ! E [I( f (x) /= f ∗(x))] is the risk of f .

We note that inequality (5) actually holds only for h≤m. For any h>m it is clear that no meaningful
upper bound on the risk can be achieved. It is easy to fix the inequality for the general case by
replacing ln

(2em
h
)

by ln+
( 2em

h
)

, where ln+ (x) !max(ln(x),1).

Theorem 21 (data-dependent coverage guarantee) For any m, let a1,a2, . . . ,am ∈ R be given,
such that ai ≥ 0 and ∑m

i=1 ai ≤ 1. Let ( f ,g) be a selective CSS classifier. Then, R( f ,g) = 0, and for
any 0≤ δ≤ 1, with probability of at least 1−δ,

Φ( f ,g) ≥ 1−
2
m

[

γ(F , n̂) ln+

(
2em

γ(F , n̂)

)

+ ln
2
an̂δ

]

,

where n̂ is the size of the version space compression set, γ(F , n̂) is the order-n̂ characterizing set
complexity of F .

Proof Given our sample Sm = {(xi, f ∗(xi))}mi=1 (labeled by the unknown target function f ∗), we
define the “synthetic” sample S′m = {(xi,1)}mi=1. S′m can be assumed to have been sampled i.i.d from
the marginal distribution of X with positive labels (P′).

Theorem 20 can now be applied on the synthetic problem with the training sample S′m, the
distribution P′, and the hypothesis space taken to be Hi, the order-i characterizing set of F . It
follows that for all f ∈VSHi,S′m , with probability of at least 1−aiδ over choices of S′m from (P′)m,

Pr
P′

( f (x) /= 1) ≤
2
m

[

hi ln
(
2em
hi

)

+ ln
2
aiδ

]

, (6)

where hi is the VC-dimension of Hi. Then, applying the union bound yields, with probability of at
least 1−δ, that inequality (6) holds simultaneously for all 1≤ i≤ m.

All hypotheses in the version spaceVSF ,Sm agree on all samples in Sm. Hence, the characterizing
hypothesis fVSF ,Sm (x) = 1 for any point x ∈ Sm. Let n̂ be the size of the version space compression
set. According to Lemma 19, fVSF ,Sm (x) ∈ Hn̂. Noting that fVSF ,Sm (x) = 1 for any x ∈ S′m, we learn
that fVSF ,Sm (x) ∈VSHn̂,S′m . Therefore, with probability of at least 1−δ over choices of Sm,

Pr
P

( fVSF ,Sm (x) /= 1) ≤
2
m

[

hn̂ ln
(
2em
hn̂

)

+ ln
2
an̂δ

]

.
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Since Φ( f ,g) = PrP( fVSF ,Sm (x) = 1), and hn̂ is the order-n̂ characterizing set complexity of F , the
proof is complete.

6. Consistent Selective Classification With Linear Classifiers

The data dependent bound in Theorem 21 is stated in terms of a new complexity measure (the “char-
acterizing set complexity” of Definition 18). Can this measure be explicitly evaluated or bounded
for some interesting hypothesis classes? In this section we consider the class of linear classifiers in
Rd . Relying on a classical result from combinatorial geometry, we infer an explicit upper bound on
the characterizing set complexity for linear classifiers. Combining this bound with Theorem 21, we
immediately obtain a data-dependent compression coverage guarantee, as stated in Corollary 28.
We then show that if the unknown underlying distribution is a finite mixture of Gaussians, then
CSS will ensure perfect learning with guaranteed coverage. This powerful result, which is stated in
Corollary 33, indicates that consistent selective classification might be relevant in various applica-
tions of interest.

Fix any positive integer d, and let F ! { fw̄,φ(x̄)} be the class of all linear binary classifiers in
Rd , where w̄ are d-dimensional real vectors, φ are scalars, and

fw̄,φ(x̄) =

{

+1, w̄T x̄−φ≥ 0;
−1, w̄T x̄−φ< 0.

Given a binary labeled training sample Sm, define R+ !R+(Sm)⊆Rd to be the subset of the maximal
agreement set with respect to the version space VSF ,Sm , consisting of all points with positive labels.
R+ is called the ‘maximal positive agreement set.’ The ‘maximal negative agreement set’, R− !

R−(Sm), is defined similarly. Before continuing, we define a new symmetric hypothesis class F̃
that allows for a simpler analysis. Let F̃ ! { fw̄,φ(x̄)} be the function class

f̃w̄,φ(x̄) =







+1, if w̄T x̄−φ> 0;
0, if w̄T x̄−φ= 0;
−1, if w̄T x̄−φ< 0,

where we interpret 0 as a classification that agrees with both +1 and −1. Given a sample Sm,
we define R̃+ ⊆ Rd to be the region in Rd for which any hypothesis in the version space2 VSF̃ ,Sm
classifies either+1 or 0 (i.e., this is the maximal positive agreement set). We define R̃− analogously
with respect to negative or zero classifications. While F and F̃ are not identical, the maximal
agreement sets they induce are identical. This is stated in the following technical lemma whose
proof appears in the appendix.

Lemma 22 (maximal agreement set equivalence) For any linearly separable sample Sm, R+ =
R̃+ and R− = R̃−.

The next technical lemma, whose proof also appears in the appendix, provides useful information
on the geometry of the maximal agreement set for the class of linear classifiers.

2. Any hypothesis in F̃ that classifies every sample in Sm correctly or as 0 belongs to the version space.
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Lemma 23 (maximal agreement set geometry I) Let Sm be a linearly separable labeled sample
that is a spanning set of Rd. Then the regions R+ and R− are each an intersection of a finite number
of half-spaces, with at least d samples on the boundary of each half-space.

Our goal is to bound the characterizing set complexity of F . As we show below, this complexity
measure is directly related to the number of facets of the convex hull of n points inRd . The following
classical combinatorial geometry theorem by Klee (see Preparata and Shamos, 1990, page 98) is
thus particularly useful. The statement of Klee’s theorem provided here is readily obtained from the
original by using the Stirling approximation of the binomial coefficient.

Theorem 24 (Klee, 1966) The number of facets of a d-polytope with n vertices is at most

2 ·
(

en
2d/23

)2d/23
. (7)

An immediate conclusion is that (7) upper bounds the number of facets of the convex hull of n points
in Rd (which is of course a d-polytope).

Lemma 25 (maximal agreement set geometry II) Let Sn be a linearly separable sample consist-
ing of n≥ d+1 labeled points. Then the regions R+(Sn) and R−(Sn) are each an intersection of at
most

2(d+1) ·
(
2en
d

)2 d+1
2 3

half-spaces in Rd.

Proof For the sake of clarity, we limit the analysis to a sample Sn in general position; that is,
we assume that no more than d points lie on a (d − 1)-dimensional plane. Handling a sample
Sn in arbitrary position can be straightforwardly treated by including an appropriate infinitesimal
displacement of the points (the technical proof is omitted).

By Lemma 22, we can limit our discussion to the hypothesis space F̃ (rather than F ). Since Sn
includes more than d samples in general position it is a spanning set ofRd . According to Lemma 23,
R+ is an intersection of a finite number of half-spaces, with at least d samples on the boundary of
each half-space (and exactly d in the general position). Let S+ ⊆ Sn be the subset of all positive
samples in Sn, and S− ⊆ Sn, the negative ones. Let f̃w̄,φ be one of the half-spaces defining R+. Then,

∀x̄ ∈ Sn
{

w̄T x̄−φ≥ 0, if x̄ ∈ S+;
w̄T x̄−φ≤ 0, if x̄ ∈ S−.

Also, exactly d samples, x̄, satisfy w̄x̄−φ= 0.
We now embed the samples in Rd+1 using the following transformation, x̄→ x̄′:

x̄′ !
{

(0, x̄), if x̄ ∈ S+;
(1,−x̄), if x̄ ∈ S−.

For each half-space (w̄,φ) in Rd we define a unique half-space, (w̄′,φ′), in Rd+1,

w̄′ ! (2φ, w̄), φ′ ! φ.
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We observe that

w̄′T x̄′ −φ′ =

{

w̄T x̄−φ≥ 0, if x̄ ∈ S+;
2φ− w̄T x̄−φ= −(w̄T x̄−φ) ≥ 0, if x̄ ∈ S−,

and for exactly d samples we have

w̄′T x̄′ −φ′ =

{

w̄T x̄−φ= 0, if x̄ ∈ S+;
2φ− w̄T x̄−φ= −(w̄T x̄−φ) = 0, if x̄ ∈ S−.

Let v̄ be any orthogonal vector to the d samples on the boundary of the half-space. Defining

w̄′′ ! w̄′ +αv̄, φ′′ ! φ′,

with an appropriate choice of α we have,

∀x̄′ ∈ Sn w̄′′T x̄′ −φ′′ = w̄′T x̄′ −φ′ +αv̄′T x̄′ ≥ 0,

and for exactly d+1 samples (including the original d samples),

w̄′′x̄′ −φ′′ = 0.

We observe that f̃w̄′′,φ′′ is a facet of the convex hull of the samples in Rd+1. Up to d+ 1 different
half-spaces in Rd can be transformed into a single half-space in Rd+1 (the number of combinations
of choosing d samples out of d+ 1 samples on the boundary). Using Theorem 24, we bound the
number F(d) of facets of the convex hull of the points in Rd+1 as follows:

F(d) ≤ 2 ·

(

en
⌊ d+1

2
⌋

)2 d+1
2 3

≤ 2 ·
(
2en
d

)2 d+1
2 3

.

Since up to d+ 1 half-spaces in Rd can be mapped onto a single facet of the convex hull in Rd+1,
we can bound the number of half-spaces in Rd by

(d+1) ·F(d) ≤ 2(d+1) ·
(
2en
d

)2 d+1
2 3

.

Lemma 26 (Blumer et al., 1989, Lemma 3.2.3) Let F be a binary hypothesis class of finite VC
dimension h≥ 1. For all k ≥ 1, define the k-fold intersection,

Fk∩ !
{

∩ki=1 fi : fi ∈ F ,1≤ i≤ k
}

,

and the k-fold union,
Fk∪ !

{

∪ki=1 fi : fi ∈ F ,1≤ i≤ k
}

.

Then, for all k ≥ 1,
VC(Fk∩),VC(Fk∩) ≤ 2hk log(3k).
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Lemma 27 (characterizing set complexity) Fix d ≥ 2 and n> d. Let F be the class of all linear
binary classifiers in Rd. Then, the order-n characterizing set complexity of F satisfies

γ(F ,n) ≤ 83 · (d+1)3 ·
(
2en
d

)2 d+1
2 3

· logn.

Proof LetG =Fk∩ be the class of k-fold intersections of half-spaces inRd . Since the VC dimension
of the class of all half-spaces in Rd is d+1, we obtain, using Lemma 26, that the VC dimension of
G satisfies

VC(G) ≤ 2k log(3k)(d+1).

LetHn be the order-n characterizing set of F . From Lemma 25 we know that any hypothesis f ∈Hn
is a union of two regions, where each region is an intersection of no more than

k = 2(d+1) ·
(
2en
d

)2 d+1
2 3

half-spaces in Rd . Therefore, Hn ⊂ G2∪. Using Lemma 26, we get

VC(Hn) ≤ VC (G2∪) ≤ 4log(6) ·VC(G) ≤ 8k log(6) log(3k)(d+1)

≤ 16(d+1)2 ·
(
2en
d

)2 d+1
2 3

· log(6) · log

(

6(d+1) ·
(
2en
d

)2 d+1
2 3)

.

For n> d ≥ 2 we get

log

(

6(d+1) ·
(
2en
d

)2 d+1
2 3)

≤ log(6n)+

⌊
d+1
2

⌋

· log
2en
d

≤ 3 · logn+

⌊
d+1
2

⌋

· logn2 ≤ (d+4) · logn≤ 2 · (d+1) · logn.

Therefore,

VC(Hn) ≤ 83 · (d+1)3 ·
(
2en
d

)2 d+1
2 3

· logn

Corollary 28 (data-dependent coverage guarantee) Let F be the class of linear binary classi-
fiers in Rd and assume that the conditions of Theorem 21 hold. Then, R( f ,g) = 0, and for any
0≤ δ≤ 1, with probability of at least 1−δ,

Φ( f ,g) ≥ 1−
2
m

[

83(d+1)3Λn̂,d ln+

(
2em
Λn̂,d

)

+ ln
2
an̂δ

]

,

where n̂ is the size of the empirical version space compression set, and

Λn̂,d =

(
2en̂
d

)2 d+1
2 3

· log n̂.
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Proof Define

Ψ(γ(F ,n)) ! 1−
2
m

[

γ(F ,n) ln+

(
2em

γ(F ,n)

)

+ ln
2
anδ

]

.

We note that Ψ(γ(F ,n)) is a continues function. For any γ(F ,n) < 2m

∂Ψ(γ(F ,n))
∂γ(F ,n)

= −
2
m
ln

2em
γ(F ,n)

+
2
m

< 0,

and for any γ(F ,n) > 2m
∂Ψ(γ(F ,n))
∂γ(F ,n)

= −
2
m

< 0.

Thus, Ψ(γ(F ,n)) is monotonically decreasing. Noting that ln+(x) is monotonically increasing, by
applying Theorem 21 together with Lemma 27 the proof is complete.

As long as the empirical version space compression set size n̂ is sufficiently small compared to
m, Corollary 28 provides a meaningful coverage guarantee. Since n̂ might depend on m, it is hard
to analyze the effective rate of the bound. To further explore this guarantee, we now bound n̂ in
terms of m for a specific family of source distributions and derive a distribution-dependent coverage
guarantee.

Theorem 29 (Bentley, Kung, Schkolnick, and Thompson, 1978) If m points in d dimensions have
their components chosen independently from any set of continuous distributions (possibly different
for each component), then the expected number of convex hull vertices v is

E[v] = O
(

(logm)d−1
)

.

Definition 30 (sliced multivariate Gaussian distribution) A sliced multivariate Gaussian distri-
bution, N (Σ,µ,w,φ), is a multivariate Gaussian distribution restricted by a half space in Rd. Thus,
if Σ is a non-singular covariance matrix, the pdf of the sliced Gaussian is

1
C
e−

1
2 (x−µ)

TΣ−1(x−µ) · I(wTx−φ≥ 0),

where µ= (µ1, . . . ,µd)T , I is the indicator function and C is an appropriate normalization factor.

Lemma 31 Let P be a sliced multivariate Gaussian distribution. If m points are chosen indepen-
dently from P, then the expected number of convex hull vertices is O

(

(logm)d−1
)

.

Proof Let X ∼N (Σ,µ,w,φ) and Y ∼N (Σ,µ). There is a random vector Z, whose components are
independent standard normal random variables, a vector µ, and a matrix A such that Y = AZ+µ.
Since

wTy−φ= wT (Az+µ)−φ= wTAz+wTµ−φ,

we get that X = AZ0 + µ, where Z0 ∼ N (I,0,wTA,φ−wTµ). Due to the spherical symmetry of
Z, we can choose the half-space (wTA,φ−wTµ) to be axis-aligned by rotating the axes. We note
that the d components of Z are chosen independently and that the axis-aligned half-space enforces

1623



EL-YANIV AND WIENER

restriction only on one of the axes. Therefore, the components of Z0 are chosen independently as
well. Applying Theorem 29, we get that if m points are chosen independently from Z0, then the
expected number of convex hull vertices is O

(

(logm)d−1
)

. The proof is complete by noting that the
number of convex hull vertices is preserved under affine transformations.

Lemma 32 (version space compression set size) Let F be the class of all linear binary classifiers
in Rd. Assume that the underlying distribution P is a mixture of a fixed number of Gaussians. Then,
for any 0 ≤ δ ≤ 1, with probability of at least 1− δ, the empirical version space compression set
size is

n̂= O
(

(logm)d−1

δ

)

.

Proof Let Sn be a version space compression set. Consider x̄0 ∈ Sn. Since Sn is a compression set
there is a half-space, (w̄,φ), such that fw̄,φ ∈ VSF ,Sn\{x̄0} and fw̄,φ /∈ VSF ,Sn . W.l.o.g. assume that
x̄0 ∈ Sn is positive; thus w̄T x̄0− φ < 0, and for any other positive point x̄ ∈ Sn, w̄T x̄− φ ≥ 0. For
an appropriate φ′ < φ, there exists a half-space (w̄,φ′) such that w̄T x̄0− φ′ = 0, and for any other
positive point x̄ ∈ Sn, w̄T x̄− φ′ > 0. Therefore, x̄0 is a convex hull vertex. It follows that we can
bound the number of positive samples in Sn by the number of vertices of the convex hull of all the
positive points. Defining v as the number of convex hull vertices and using Markov’s inequality, we
get that for any ε> 0,

Pr(v≥ ε) ≤
E[v]
ε

.

Since f ∗ is a linear classifier, the underlying distribution of the positive points is a mixture of sliced
multivariate Gaussians. Using Lemmas 31 and 44, we get that with probability of at least 1−δ,

v≤
E[v]
δ

= O
(

(logm)d−1

δ

)

.

Repeating the same arguments for the negative points completes the proof.

Corollary 33 (distribution-dependent coverage guarantee) Let F be the class of all linear bi-
nary classifiers in Rd, and let P be a mixture of a fixed number of Gaussians. Then, R( f ,g) = 0,
and for any 0≤ δ≤ 1, with probability of at least 1−δ,

Φ( f ,g) ≥ 1−O

(

(logm)d
2

m
·

1
δ(d+3)/2

)

.

Proof

Λn̂,d =

(
2en̂
d

)2 d+1
2 3

· log n̂≤
(
2e
d

)2 d+1
2 3

· n̂
d+3
2 .

Applying Lemma 32,

Λn̂,d = O

(

(logm)d
2

δ(d+3)/2

)

.

The proof is complete by noting that Λn̂,d ≥ 1 and using Corollary 28 with ai = 2−i.
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7. Risk-coverage Trade-off Envelopes

In previous sections we have shown that by compromising the coverage we can achieve zero risk.
This is in contrast to the classical setting, where we compromise risk to achieve full coverage. Is it
possible to learn a selective classifier with full control over this trade-off? What are the performance
limitations of this trade-off control?

In this section we present some answers to these questions thus deriving lower and upper en-
velopes for the risk-coverage (RC) trade-off. These results heavily rely on the previous results on
perfect learning and on classical results on standard learning without rejection. The envelopes are
obtained by interpolating bounds on these two extreme types of learning. We begin this section by
deriving a lower envelop; that is, we introduce a strategy that can control the RC trade-off.

7.1 Lower Envelop: Controlling the Coverage-risk Trade-off

Our lower RC envelop is facilitated by the following strategy, which is a generalization of the
consistent selective classification strategy (CSS) of Definition 6.

Definition 34 (controllable selective strategy) Given a mixing parameter 0≤ α≤ 1, the control-
lable selective strategy chooses a selective classifier ( f ,g) such that f is in the version space VSF ,Sm
(as in CSS), and g is defined as follows: g(x) = 1 for any x in the maximal agreement set, A, with
respect to VSF ,Sm, and g(x) = α for any x ∈ X \A.

Clearly, CSS is a special case of the controllable selective strategy obtained with α = 0. Standard
consistent learning (in the classical setting) is the special case obtained with α= 1. We now state a
well known (and elementary) upper bound for classical realizable learning.

Theorem 35 (Haussler, 1988) Let F be any finite hypothesis class. Let f ∈VSF ,Sm be a classifier
chosen by any consistent learner. Then, for any 0≤ δ≤ 1, with probability of at least 1−δ,

R( f ) ≤
1
m

(

ln |F |+ ln
1
δ

)

,

where R( f ) is standard risk (true error) of the classifier f .

The following result provides a distribution independent upper bound on the risk of the controllable
selective strategy as a function of its coverage.

Theorem 36 (lower envelop) Let F be any finite hypothesis class. Let ( f ,g) be a selective classi-
fier chosen by a controllable selective learner after observing a training sample Sm. Then, for any
0≤ δ≤ 1, with probability of at least 1−δ,

R( f ,g) ≤
(
1−Φ0/Φ( f ,g)

1−Φ0

)

·
1
m

(

ln |F |+ ln
2
δ

)

,

where

Φ0 ! 1−
1
m

(

(ln2)|F |+ ln
2
δ

)

.
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Proof For any controllable selective learner with a mixing parameter α we have,

Φ( f ,g) = E [g(X)] = E [I(g(X) = 1)]+αE [I(g(X) /= 1)] .

By Theorem 8, with probability of at least 1− δ
2 ,

E [I(g(X) = 1)] ≥ 1−
1
m

(

(ln2)|F |+ ln
2
δ

)

!Φ0.

Therefore, since Φ( f ,g) ≤ 1,

α=
Φ( f ,g)−E [I(g(X) = 1)]
1−E [I(g(X) = 1)]

≤
Φ( f ,g)−Φ0
1−Φ0

.

Using the law of total expectation we get

E [!( f (X),Y ) ·g(X)] =

0
︷ ︸︸ ︷

E [!( f (X),Y ) ·g(X) | g(x) = 1] ·Pr(g(X) = 1)
+ E [!( f (X),Y ) ·g(X) | g(x) = α] ·Pr(g(X) = α)

= α ·E [!( f (X),Y ) | g(x) = α] ·Pr(g(X) = α)

= α ·E [!( f (X),Y )] .

According to Definition 2.2

R( f ,g) =
E [!( f (X),Y ) ·g(X)]

Φ( f ,g)
=
α ·E [!( f (X),Y )]

Φ( f ,g)
=
α ·R( f ,g)
Φ( f ,g)

.

Applying Theorem 35 together with the union bound completes the proof.

7.2 Upper Envelop: Trade-off Control Limitation

We now present a negative result which identifies a region of non-achievable coverage-risk trade-off
on the RC plane. The statement is a probabilistic lower bound on the risk of any selective classifier
expressed as a function of the coverage. It negates any high probability upper bound on the risk of
the classifier (where the probability is over choice of Sm and the target hypothesis).

Theorem 37 (non-achievable coverage-risk trade-off) Let F be any hypothesis class and let 0≤
δ≤ 1

4 and m be given. There exists a distribution P (that depends on F ), such that for any selective
classifier ( f ,g), chosen using a training sample Sm drawn i.i.d. according to P, with probability of
at least δ,

R( f ,g) ≥min
(
1
2
−

1
4Φ( f ,g)

,
1
2
−

1
2Φ( f ,g)

+
1

16m ·Φ( f ,g)
·
[

VCdim(F )−
16
3
ln

1
1−2δ

])

Proof If η is the VC-dimension of hypothesis class F , there exists a set of data points X ′ =
{e1,e2, . . .eη} shattered by F . Let X ! X ′ ∪{eη+1}. The bad distribution is constructed as follows.
Define Bin(m,k,δ), the binomial tail inversion,

Bin
(

m,
η
2
,2δ

)

!max
p

{

p : Bin
(

m,
η
2
, p

)

≥ 2δ
}

,
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where Bin(m,k, p) is the binomial tail. Define P to be the source distribution over X satisfying

P(ei) !

{

Bin
(

m, η2 ,2δ
)

/η, if i≤ η;
1−Bin

(

m, η2 ,2δ
)

, otherwise,

Assuming that the training sample is selected i.i.d. from P, it follows that with probability of at least
2δ,

∣
∣
{

x ∈ Sm : x ∈ X ′}∣∣≤
η
2
.

F shatters X ′ thus inducing all dichotomies over X ′. Every sample from X ′ can reduce the version
space by half, so with probability of at least 2δ, the version space VSF ,Sm includes all dichotomies
over at least η2 instances. Therefore, over these instances (referred to as x1,x2, . . . ,xη/2), with prob-
ability of 1/2 the error is at least 12 .

3

Φ( f ,g) =
η+1

∑
i=1

{P(ei) ·g(ei)} = P(e1) ·
η

∑
i=1

g(ei)+P(eη+1) ·g(eη+1)

≤ P(e1) ·
η
2

∑
i=1

g(xi)+
η
2
·P(e1)+P(eη+1) = P(e1) ·

η
2

∑
i=1

g(xi)+1−
η
2
·P(e1)

=⇒ P(e1) ·
η
2

∑
i=1

g(xi) ≥Φ( f ,g)+
η
2
·P(e1)−1.

Φ( f ,g) ·R( f ,g) =
η+1

∑
i=1

{P(ei) ·g(ei) · I( f (ei) /= f ∗(ei))}≥
η
2

∑
i=1

{

P(xi) ·g(xi) ·
1
2

}

≥
Φ( f ,g)−1

2
+
η
4
·P(e1) =

Φ( f ,g)−1
2

+
1
4
·Bin

(

m,
η
2
,2δ

)

.

Applying Lemma 43 we get

R( f ,g) ≥min
(
1
2
−

1
4Φ( f ,g)

,
1
2
−

1
2Φ( f ,g)

+
1

16m ·Φ( f ,g)
·
[

VCdim(F )−
16
3
ln

1
1−2δ

])

Corollary 38 Let 0≤ δ≤ 1
4 , m, and n> 1 be given. There exist a distribution P, that depends on m

and n, and a finite hypothesis class F of size n, such that for any selective classifier ( f ,g), chosen
using a training sample Sm drawn i.i.d. according to P, with probability of at least δ, if

Φ( f ,g) ≥ max
{
3
4
,1−

1
16m

·
[

VCdim(F )−
16
3
ln

1
1−2δ

]}

then
R( f ,g) ≥

1
16m

·
[

VCdim(F )−
16
3
ln

1
1−2δ

]

.

3. According to the game theoretic setting the adversary can choose a distribution over F . In this case the expectation in
the risk is averaged over random instances and random labels. Therefore, the error over the instances x1,x2, . . . ,xη/2
is exactly 1/2 and we can replace the term 2δ with δ.
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Proof Assuming

Φ( f ,g) ≥ max
{
3
4
,1−

1
16m

·
[

VCdim(F )−
16
3
ln

1
1−2δ

]}

,

we apply Theorem 37 to complete the proof.

8. CSS Implementation: Lazy CSS

In previous sections we analyzed the performance of CSS and proved that (in the realizable case)
it can achieve sharp coverage rates under reasonable assumptions on the source distribution while
guaranteeing zero error on the accepted samples. However, it remains unclear whether an efficient
implementation of CSS is at reach. In this section we propose an algorithm for CSS and show that
it can be efficiently implemented for linear classifiers.

The following method, which we term lazy CSS, is very similar to the implicit selective sampling
algorithm of Cohn et al. (1994). Instead of explicitly constructing the CSS selection function g
during training (which indeed can be a very complex task), we adapt a “lazy learning” approach
that can potentially facilitate an efficient CSS implementation during test time. In particular, we
propose to evaluate g(x) at any given test point x during the classification process. For the training
set Sm and a test point x we define the following two sets:

S+
m,x ! Sm∪{(x,+1)}, S−m,x ! Sm∪{(x,−1)};

that is, S+
m,x is the (labeled) training set Sm augmented by the test point x labeled positively, and

S−m,x is Sm augmented by x labeled negatively. The selection value g(x) is determined as follows:
g(x) = 0 (i.e., x is rejected) iff there exist hypotheses f+, f− ∈ F that are consistent with S+

m,x and
S−m,x, respectively.

The following lemma states that the selection function g(x) constructed by lazy CSS is a precise
implementation of CSS.

Lemma 39 Let F be any hypothesis class, Sm a labeled training set, and x, a test point. Then x
belongs to the maximal agreement set of VSF ,Sm iff there is no hypothesis f ∈ F that is consistent
with either S+

m,x or S−m,x.

Proof If there exist hypotheses f+, f− ∈ F that are consistent with S+
m,x and S−m,x, then there exist

two hypotheses in F that correctly classify Sm (therefore they belong to VSF ,Sm) but disagree on
x. Hence, x does not belong to the maximal agreement set of VSF ,Sm . Conversely, if x does not
belong to the maximal agreement set of VSF ,Sm , then there are two hypotheses, f1 and f2, which
correctly classify Sm but disagree on x. Let’s assume, without loss of generality, that f1 classifies x
positively. Then, f1 is consistent with S+

m,x and f2 is consistent with S−m,x. Thus there exist hypothe-
ses f+, f− ∈ F that are consistent with S+

m,x and S−m,x.

For the case of linear classifiers it follows that computing the lazy CSS selection function for any
test point is reduced to two applications of a linear separability test. Yogananda et al. (2007) recently
presented a fast linear separability test with a worst case time complexity of O(mr3) and space
complexity of O(md), where m is the number of points, d is the dimension and r ≤min(m,d+1).

1628



ON THE FOUNDATIONS OF NOISE-FREE SELECTIVE CLASSIFICATION

Remark 40 For the realizable case we can modify any rejection mechanism by restricting rejection
only to the region chosen for rejection by CSS. Since CSS accepts only samples that are guaranteed
to have zero test error, the overall performance of the modified rejection mechanism is guaranteed
to be at least as good as the original mechanism. Using this technique we were able to improve
the performance (RC curve) of the most commonly used rejection mechanism for linear classifiers,
which rejects samples according to a simple symmetric distance from the decision boundary (a
“margin”).

9. Which Rejection Model?

In classical classification and Bayes decision theory the goal is to minimize a cost function (or a
loss function), where the cost is specified by a K×K cost matrix (K = 2 for the binary case). Given
the cost matrix, the objective is to select a classifier that minimizes the average weighted cost (over
unobserved instances) as specified by this matrix. When introducing rejection it is necessary to
introduce a suitable optimization criterion (which is referred here also as a ’rejection model’). Ob-
viously, the desired criterion should take into account both the risk of the classifier and its coverage.
The question we discuss in this section is: what would be an appropriate optimization criterion for
selective classification?

A very common rejection model in the literature is the cost model, whereby a specific cost d is
associated with rejection (see, e.g., Tortorella, 2001) and the objective is to minimize the generalized
rejective risk function,

!c( f ,g) ! d ·E [1−g(X)]+E [I( f (X) /= Y ) ·g(X)] . (8)

Given our definitions of risk and coverage, the function (8) can be easily expressed as a function
over the RC plane of Figure 1,

!c(R,Φ) = d (1−Φ( f ,g))+R( f ,g)Φ( f ,g). (9)

For any fixed d, Equation (9) defines level sets (or elevation contour lines) over the RC plane. For
example, Figure 3(a) depicts elevation contour lines induced by (9) with a rejection cost d = 0.3.
The thick line in this figure represent our knowledge of the optimal RC trade-off. Thus, an optimal
classifier, according to this cost model, has a risk-coverage profile that minimizes the cost (9) with
respect to all choices on the RC trade-off curve. This optimal choice is depicted in Figure 3(a) by
the black dot. This popular cost model was refined to accommodate differentiation between the cost
of false positive and false negative as well as different costs for rejection of positive and negative
samples (Herbei and Wegkamp, 2006; Pietraszek, 2005; Tortorella, 2001; Santos-Pereira and Pires,
2005). Such extensions or refinements are appealing because they allow for additional control
and more flexibility in modeling the problem at hand. Nevertheless, these cost models are often
criticized for lack of usability in applications where it is impossible or hard to precisely quantify
the cost of rejection. It is interesting to note that for an ideal Bayesian setting, where the underlying
distribution is completely known, Chow showed (Chow, 1970) that the cost d upper bounds the
probability of misclassification. In this case one can control the classification error by specifying a
matching rejection cost.

In Pietraszek (2005) two additional optimization models are introduced. The first, bounded-
improvement model, is depicted as contour elevation lines over the RC plane in Figure 3(c). In this
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model, given a constraint on the misclassification cost, the classifier should reject as few samples as
possible. The constraint is specified by the ∞ symbol in the RC plane, which is the cost defined for
the entire rectangle containing all risk-coverage profiles having risk larger than the constraint (0.3 in
this example). In the second, bounded-abstentionmodel (depicted in Figure 3(b)), given a constraint
on the coverage (0.5 in this example), the classifier should have the lowest misclassification cost. It
is argued in Pietraszek (2005) that these models are more suitable than the above cost model in many
applications, for instance, when a classifier with limited classification throughput (e.g., a human
expert) should handle the rejected instances, and in a medical and quality assurance applications,
where the goal is to reduce the misclassification cost to a user-defined value.

Figure 3: Rejection models: (a) cost (b) bounded-abstention (c) bounded-improvement

Which cost model among the above three is the right model? This question is, obviously, ill-
defined and the answer depends on the application. Thus, when deriving bounds for a specific
generalized rejective risk function the results are limited to only one specific model. Instead, one can
handle any rejective risk function over the RC plane by identifying the RC trade-off. Specifically, by
bounding the coverage and the risk separately (as we do in this paper) we can in principle optimize
any generalized rejective risk function according to any desired rejection model including the cost,
the bounded-improvement and bounded-abstention models.

10. Related Work

The idea of classification with a reject option dates back to Chow’s seminal papers (Chow, 1957,
1970). These papers analyzed both the Bayes-optimal reject decision and the reject-rate vs. error
trade-off. This is done under the 0-1 loss function, assuming that the underlying distribution is
completely known. The Bayes-optimal rejection policy is based, as in standard classification, on
maximum a posteriori probabilities. Instances should be rejected whenever none of the posteriori
probabilities are sufficiently distinct. This type of rejection can be termed ambiguity-based rejec-
tion. Referring to the diagram in Figure 1, one of Chow’s main results (for the case of complete
probabilistic knowledge), is that the optimal RC trade-off (depicted by the dotted line) is monoton-
ically increasing.

While the optimal decision can be identified in the case of complete probabilistic knowledge, it
was argued (Fumera et al., 2000) that when the a posteriori probabilities are estimated with errors,
Chow’s rule (Chow, 1970) does not provide the optimal error-reject trade-off. Tortorella (2001) and
Santos-Pereira and Pires (2005) discussed Bayesian-optimal decisions in the case of arbitrary cost
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matrices. In these papers the optimal reject rule was chosen based on the ROC curve evaluated on a
subset of the training data. As in most papers on the subject emerging from the engineering commu-
nity (see, e.g., Fumera et al., 2000; Fumera and Roli, 2002; Pietraszek, 2005; Bounsiar et al., 2006;
Landgrebe et al., 2006) no probabilistic or other guarantees are provided for the misclassification
error.

Very few studies have focused on error bounds for classifiers with a reject option. Hellman
(1970) proposed and analyzed two rejection rules for the nearest neighbor algorithm. Extending
Cover and Hart’s classic result for the 1-nearest neighbor algorithm (Cover and Hart, 1967), Hell-
man showed that the test error (over non-rejected points) of a nearest neighbor algorithm with a
reject option can be bounded asymptotically (as the sample size approaches infinity) by some factor
of the Bayes error (with reject). To the best of our knowledge, this excess risk bound is the first that
has been introduced in the context of classification with a reject option.

Herbei and Wegkamp (2006) developed excess risk bounds for the classification with a reject
option setting where the loss function is the 0-1 loss, extended such that the cost of each reject
point is 0 ≤ d ≤ 1/2 (cost model; see Section 9). This result generalizes the excess risk bounds of
Tsybakov (2004) for standard binary classification without reject (which is equivalent to the case
d = 1/2). The bound applies to any empirical error minimization technique. This result is further
extended in Bartlett and Wegkamp (2007) and Wegkamp (2007) in various ways, including the use
of the hinge loss function for efficient optimization. The main results of Herbei and Wegkamp
(both for plug-in rules and empirical risk minimization) degenerate, in the realizable case, to a
meaningless bound, where classification with a reject option is not guaranteed to be any better than
classification without reject. These results are also limited only to the cost model (see discussion
on Section 9). Saying that, we must also note that comparing bounds that were derived for the
agnostic setting with our results can be misleading or “unfair” since the agnostic setting is much
more difficult. The only purpose of this comparison is to clarify that the results here are not special
cases of any of the currently known agnostic bounds.

Freund et al. (2004) studied a simple ensemble method for binary classification. Given an
hypothesis class F , the method outputs a weighted average of all the hypotheses in F such that the
weight of each hypothesis exponentially depends on its individual training error. Their algorithm
abstains from prediction whenever the weighted average of all individual predictions is inconclusive
(i.e., sufficiently close to zero). Two regret bounds for this algorithm were derived. The first bounds
the probability of error when the classifier decides not to reject. If ε is the error of the best hypothesis
in F , the error of the aggregating algorithm is bounded above (w.h.p.) by 2ε+O( 1

m1/2−θ ), where
0 < θ < 1/2 is an hyperparameter. The authors also proved that for a sufficiently large training
sample size, m = Ω((

√

ln(1/δ)ln(|F |))1/θ), the probability that the algorithms will abstain from
prediction is bounded above by 5ε+O( ln |F |√

m1/2−θ
). To the best of our knowledge, these bounds are the

first to provide some guarantee for both the error of the classifier and the coverage. Therefore, these
results are related to the bounded-improvement and bounded-abstention models (see Section 9). As
was rightfully stated by the authors, the final aggregated hypothesis can significantly outperform the
best base-hypothesis in F in some favorable situations. Unfortunately, the regret bound provided
does not exploit these situations, as it is bounded by twice the generalization error of the best
hypothesis. Referring to the diagram in Figure 1, The results of Freund et al. can be depicted as a
curve in region B (thus characterizing some achievable zone). For the realizable case, the bounds of
Freund et al. achieve much slower rates than those we derive in this paper.
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Selective classification is related to selective sampling (Atlas et al., 1990). In selective sampling
the learner sequentially processes unlabeled examples, and for each one determines whether or not
to request a label. One of the earliest active learning algorithms for the realizable case (termed
“mellow active learner”) was proposed by Cohn et al. (1994). Their well motivated approach is
to request labels only for samples that belong to the region of disagreement (the complement of
our maximal agreement set). As mentioned in Section 8, this is very similar to our CSS. Hanneke
studied the rate for which the region of disagreement collapses as the algorithm processes examples
(Hanneke, 2007, 2009). He introduced the notion of disagreement coefficient and derived upper
bounds on the label complexity in active learning expressed in terms of this coefficient. While
his results capture the convergence rate of the region of disagreement as a function of the number
of label requests, in selective classification we are interested in convergence rates as a function
of the size of the training set (in selective sampling the number of labels does not necessarily
match the number of samples). Specific disagreement coefficient values were recently derived for
some interesting hypothesis classes including homogeneous linear classifiers in Rd under uniform
data distribution (Hanneke, 2007) and linear classifiers in Rd under smooth data density bounded
away from zero (Friedman, 2009). While coverage bounds and label complexity bounds cannot be
directly compared, we conjecture that formal connections between these two settings exist because
the disagreement region plays a key role in both. The precise relation between these two settings is
yet to be discovered.

11. Concluding Remarks

Selective classification is well recognized as a very attractive technique for improving classification
accuracy. In fact, it is among very few methods that can help in practical applications where suf-
ficiently low error cannot be achieved in the standard model. Nevertheless, not enough is known
about selective classification in order to harness its power in a controlled, optimal way, or to avoid
its use in cases where it cannot sufficiently help.

In this work we made a first step toward a rigorous analysis of selective classification by re-
vealing properties of the risk-coverage trade-off, which represents optimal selective classification.
By focusing on the extreme case of perfect learning we were able to derive initial results for entire
risk-coverage trade-offs.

Many interesting questions are left open. Among the most important open questions are the
following. What would be an analogous concept to perfect learning in the fully agnostic (non-
realizable) setting? What is the precise relation between selective classification and selective sam-
pling? Is it possible to implement efficiently the CSS strategy and prove useful bounds for other
natural hypothesis classes? Can selective classification be rigorously analyzed in transductive, semi-
supervised or active settings? With respect to agnostic extensions, while it doesn’t make much sense
to talk about “perfect learning” in a noisy setting, it is meaningful and interesting to consider the
analogous concept to regret (or excess risk) bounds. Here we could employ a selective strategy
aiming at achieving the error rate of the best hypothesis in the class precisely (and perhaps with
certainty).
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Appendix A.

Lemma 41 For u>
√
2v> 0,

u− v
u+ v

≥ 1−4 ·
v
u
.

Proof

u− v
u+ v

= 1−
2v
u+ v

= 1−2v
u− v
u2− v2

≥ 1−2v
u

u2− v2
.

Since u>
√
2v, we have

u2− v2 >
u2

2
.

Applying to the previous inequality completes the proof.

Lemma 42 (Bernstein’s inequality Hoeffding, 1963) Let X1, . . . ,Xn be independent zero-mean ran-
dom variables. Suppose that |Xi|≤M almost surely, for all i. Then for all positive t,

Pr

(
n

∑
i=1

Xi > t

)

≤ exp






−

t2/2

∑E
[

X2j
]

+Mt/3






.

Lemma 43 (binomial tail inversion lower bound) For k > 0 and δ≤ 1
2 ,

Bin(m,k,δ) ≥min
(

1,
k
2m

−
4
3m
ln

1
1−δ

)

.

Proof Let Z1, . . .Zm be independent Bernoulli random variables each with a success probability
0≤ p≤ 1. SettingWi ! Zi− p,

Bin(m,k, p) = Pr
Z1,...,Zm∼B(p)m

(
m

∑
i=1

Zi ≤ k

)

= 1−Pr

(
m

∑
i=1

Zi > k

)

= 1−Pr

(
m

∑
i=1
Wi > k−mp

)

.

Clearly, E [Wi] = 0, |Wi|≤ 1, and E
[

W 2
i
]

= p · (1− p)2+(1− p) · p2 = p · (1− p). Using Lemma 42
(Bernstein’s inequality) we thus obtain,

Bin(m,k, p) ≥ 1− exp

(

−
(k−mp)2 /2

mp(1− p)+(k−mp)/3

)

.
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Since (1− p) ≤ 1,

(k−mp)2 /2
mp(1− p)+(k−mp)/3

≥
(k−mp)2

2mp+ 2
3 · (k−mp)

=
(k−mp)2
4
3mp+ 2

3 · k

≥
k2−2mpk
4
3mp+ 2

3 · k
.

Therefore,

Bin(m,k, p) ≥ 1− e
− k2−2mpk
4
3mp+

2
3 ·k .

Equating the right-hand side to δ and solving for p, we have

p≤
k
2m

·
k− 2

3 t
k+ 2

3 · t
,

where t ! ln 1
(1−δ) . Choosing

p=min
{

1,
1
2m

(

k−
8
3
ln

1
1−δ

)}

=min

{

1,
k
2m

·

(

1−4 ·
2
3 t
k

)}

,

using the fact that k ≥ 1> 2
√
2
3 ln 1

1/2 ≥
2
√
2
3 t, and applying Lemma 41, we get

p≤
k
2m

·
k− 2

3 t
k+ 2

3 · t
.

Therefore, Bin(m,k, p) ≥ δ. Since Bin(m,k,δ) =maxp{p : Bin(m,k, p) ≥ δ}, we conclude that

Bin(m,k,δ) ≥ p=min
(

1,
k
2m

−
4
3m
ln

1
1−δ

)

.

Lemma 44 Let S1 and S2 be two sets in Rd. Then,

H(S1∪S2) ≤ H(S1)+H(S2),

where H(S) is the number of convex hull vertices of S.

Proof Assume x ∈ S1∪S2 is a convex hull vertex of S1∪S2. Then, there is a half-space (w,φ) such
that, w ·x−φ= 0, and any other y ∈ S1∪S2 satisfies w ·y−φ> 0. Assume w.l.o.g. that x ∈ S1. Then
it is clear that any y ∈ S1 satisfies w · y−φ> 0. Therefore, x is a convex hull vertex of S1.

Proof of Lemma 22 Let S+ ⊆ Sm be the set of all positive samples in Sm, and S− ⊆ Sm be the set
of all negative samples. Let x̄0 ∈ R+. There exists a hypothesis fw̄,φ(x̄) such that

∀ x̄ ∈ S+, w̄T x̄−φ≥ 0;
∀ x̄ ∈ S−, w̄T x̄−φ< 0,
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and
w̄T x̄0−φ≥ 0.

Let’s assume that x̄0 /∈ R̃+. Then, there exists a hypothesis f̃w̄′,φ′(x̄) such that

∀ x̄ ∈ S+, w̄′T x̄−φ′ ≥ 0;
∀ x̄ ∈ S−, w̄′T x̄−φ′ ≤ 0,

and
w̄′T x̄0−φ′ < 0.

Defining
w̄0 ! w̄+αw̄′, φ0 ! φ+αφ′,

where

α>

∣
∣
∣
∣

w̄T x̄0−φ
w̄′T x̄0−φ′

∣
∣
∣
∣
,

we deduce that there exists a hypothesis fw̄0,φ0(x̄) such that

∀ x̄ ∈ S+, w̄T0 x̄−φ0 ≥ 0;
∀ x̄ ∈ S−, w̄T0 x̄−φ0 < 0,

and

w̄T0 x̄0−φ0 = w̄T x̄0−φ+α
[

w̄′T x̄0−φ′
]

= w̄T x̄0−φ−α
∣
∣w̄′T x̄0−φ′

∣
∣

< w̄T x̄0−φ−
∣
∣w̄T x̄0−φ

∣
∣ = 0.

Therefore, x̄0 /∈ R+. Contradiction. Hence, x̄0 ∈ R̃+ and R+ ⊆ R̃+. The proof that R− ⊆ R̃− follows
the same argument.

To prove that R̃+ ⊆ R+, we look at VSF̃ ,Sm :

∀ f̃w̄,φ ∈VSF̃ ,Sm , x̄ ∈ R̃
+ w̄T x̄−φ≥ 0.

We observe that if fw̄,φ ∈VSF ,Sm , then f̃w̄,φ ∈VSF̃ ,Sm . Therefore,

∀ fw̄,φ ∈VSF ,Sm , x̄ ∈ R̃
+ w̄T x̄−φ≥ 0.

Hence, R̃+ ⊆ R+.
It remains to prove that R̃− ⊆ R−. Assuming x̄0 /∈ R− implies that there exists a hypothesis

fw̄,φ(x̄) such that

∀ x̄ ∈ S+, w̄T x̄−φ≥ 0;
∀ x̄ ∈ S−, w̄T x̄−φ< 0,

and
w̄T x̄0−φ≥ 0.
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Defining4

w̄0 ! w̄, φ0 ! φ−
∣
∣
∣
∣
max
x̄∈S−

(

w̄T x̄−φ
)
∣
∣
∣
∣
,

we conclude that there exists a hypothesis f̃w̄0,φ0(x̄) such that

∀ x̄ ∈ S+ w̄T0 x̄−φ0 ≥ 0;

∀ x̄ ∈ S− w̄T0 x̄−φ0 ≤max
x̄∈S−

(

w̄T x̄−φ
)

+

∣
∣
∣
∣
max
x̄∈S−

(

w̄T x̄−φ
)
∣
∣
∣
∣
= 0,

and
w̄T0 x̄0−φ0 > 0.

Therefore, x̄0 /∈ R̃−, so R̃− ⊆ R−.

Proof of Lemma 23 According to Lemma 22, R+ = R̃+ and R− = R̃−. Therefore, we can restrict
our discussion to the hypothesis class F̃ . Due to the symmetry of the hypothesis class F̃ we will
concentrate only on the positive region R+. Set G!VSF̃ ,Sm . By definition,

R̃+ =
\

f ′w̄,φ∈G
f ′w̄,φ,

where f ′w̄,φ denotes the region in X for which the linear classifier f ′w̄,φ obtains the value one or zero.
Let fw̄,φ ∈ G be a half-space with k < d points on its boundary. We will prove that there exist two
half-spaces in G ( fw̄1,φ1 , fw̄2,φ2 ) such that each has at least k+1 samples on its boundary and

fw̄,φ

\

fw̄1,φ1
\

fw̄2,φ2 = fw̄1,φ1
\

fw̄2,φ2 .

Therefore,
R̃+ =

\

f ′w̄,φ∈G\{ fw̄,φ}
f ′w̄,φ.

Repeating this process recursively with every half-space in G, with less than d points on its bound-
ary, completes the proof.

Before proceeding with the rigorous analysis let’s review the main idea behind the proof. If
a half-space in Rd has less than d points on its boundary, it has at least one degree of freedom.
Rotating the half-space clockwise or counterclockwise around a specific axis (defined by the points
on the boundary) by sufficiently small angles will maintain correct classification over Sm. We will
rotate the half-space clockwise and counterclockwise until “touching” the first point in Sm on each
direction. This operation will maintain correct classification but will result in having one additional
point on the boundary. Then we only have to show that the intersection of the three half-spaces
(original and two rotated ones) is the same as the intersection of the two rotated ones.

4. If S− is an empty set we can arbitrarily define φ0 ! φ−1.
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Let fw̄,φ ∈ G be a half-space with k < d points on its boundary. Without loss of generality
assume that these points are S0m ! {x̄1, x̄2, ..., x̄k}. For the sake of simplicity we will first translate
the space such that x̄1 will lie on the origin. Since x̄1 is on the boundary of the half-space we get

w̄T x̄1−φ= 0 =⇒ φ= w̄T x̄1.

Therefore,
∀x̄ ∈ S0m 0= w̄T x̄−φ= w̄T x̄− w̄T x̄1 = w̄T (x̄− x̄1).

Hence, the weight vector w̄ is orthogonal to all the translated samples (x̄1− x̄1), . . . ,(x̄k− x̄1). We
now have k< d vectors in Rd (including the weight vector) so we can always find at least one vector
v̄ which is orthogonal to all the rest. We now rotate the translated samples around the origin so as
to align the vector w̄ with the first axis, and align the vector v̄ with the second axis. From now on
all translated and rotated coordinates and vectors will be marked with prime. Define the following
rotation matrix in Rd ,

Rθ !










cosθ sinθ 0 0 . . .
−sinθ cosθ 0 0 . . .
0 0 1 0 . . .
0 0 0 1
...

...
... . . .










.

We can now define two new half-spaces in the translated and rotated space, fRαw̄′,0 and fR−βw̄′,0,
where

α= max
0<α′≤π

{α′ | ∀x̄′ ∈ Sm (w̄′T x̄′) · (Rα′w̄′)T x̄′ ≥ 0}, (10)

and
β= max

0<β′≤π
{β′ | ∀x̄′ ∈ Sm (w̄′T x̄′) · (R−β′w̄′)T x̄′ ≥ 0}. (11)

According to Claim 45, both fRαw̄′,0 and fR−βw̄′,0 correctly classify Sm and have at least k+1 samples
on their boundaries.

Now we examine the intersection of fRαw̄′,0 and fR−βw̄′,0. According to Claim 46, if (Rαw̄′)T x̄′ ≥
0 and (R−βw̄′)T x̄′ ≥ 0, then w̄′T x̄′ ≥ 0. The intersection of fRαw̄′,0, fR−βw̄′,0 and fw̄′,0 thus equals the
intersection of fRαw̄′,0 and fR−βw̄′,0, as required.

Claim 45 Both fRαw̄′,0 and fR−βw̄′,0 correctly classify Sm and have at least k+ 1 samples on their
boundaries.

Proof We note that after translation all half-spaces pass through the origin, so φ′ = 0. Recall the
definitions of α and β as maximums (Equations (10) and (11), respectively). We show that the
maximums over α′ and β′ are well defined. Let x̄′ = (x′1,x′2, · · ·x′d)T . Since w̄′ = (1,0,0, · · ·)T we
get that Rαw̄′ = (cosα,−sinα,0, . . .)T and

(w̄′T x̄′) · (Rα′w̄′)T x̄′ = x′1
2 cosα− x′1 · x′2 · sinα.

Since Sm is a spanning set of Rd , at least one sample has a vector with component x′1 /= 0. As all
components are finite and x′1

2 > 0, we can always find a sufficiently small α′ such that x′1
2 cosα′ −
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x′1 · x′2 · sinα′ > 0. Hence, the maximum exists. Furthermore, for α′ = π we have x′1
2 cosπ− x′1 ·

x′2 · sinπ = −x′1
2 < 0. Noticing that x′1

2 cosα− x′1 · x′2 · sinα is continuous in α, and applying the
intermediate value theorem, we know that 0< α< π and x′1

2 cosα− x′1 · x′2 · sinα= 0. Therefore,
there exists a sample in Sm that is not on the boundary of fw̄′,0 (since x′1 /= 0) but on the boundary
of fRαw̄′,0. Recall that all points in S0m are orthogonal to w̄′ = (1,0,0, · · ·)T and v̄ = (0,1,0, · · ·)T .
Therefore,

∀x̄′ ∈ S0m (Rαw̄′)T x̄′ = x′1 · cosα− x′2 · sinα= w̄′T x̄ · cosα− v̄′T x̄ · sinα= 0,

and they reside on the boundary of fRαw̄′,0. Overall, fRαw̄′,0 correctly classifies Sm and has at least
k+1 samples on its boundary. The same argument applies for β by symmetry.

Claim 46 Using the notation introduced in the proof of Lemma 23, if (Rαw̄′)T x̄′ ≥ 0 and
(R−βw̄′)T x̄′ ≥ 0, then

w̄′T x̄′ ≥ 0.

Proof If (Rαw̄′)T x̄′ ≥ 0 and (R−βw̄′)T x̄′ ≥ 0, then
{

x′1 cosα− x′2 · sinα≥ 0,
x′1 cosβ+ x′2 · sinβ≥ 0.

Multiplying the first inequality by sinβ> 0, the second inequality by sinα> 0, and adding the two
we have

sin(α+β) · x′1 ≥ 0.

According to Claim 47 below, sin(α+β)≥ 0. If sin(α+β) = 0, then (α+β) = π and cos(α+β) =
−1. Using the trigonometric identities

cos(α−β) = cosαcosβ+ sinαsinβ;
sin(α−β) = sinαcosβ− cosαsinβ,

we get that

cosβ= cos(β+α−α) = cos(α+β) · cosα+ sin(α+β) · sinα= −cosα,

and
sinβ= sin(β+α−α) = sin(α+β) · cosα− cos(α+β) · sinα= sinα.

Therefore, for any x′1 cosα−x′2 ·sinα> 0, it holds that x′1 cosβ+x′2 ·sinβ< 0 and R̃+ is degenerated.
Contradiction to the fact that Sm is a spanning set of the Rd . Therefore, sin(α+β) > 0, x′1 ≥ 0 and
w̄′T x̄′ ≥ 0.

Claim 47 Using the notation introduced in the proof of Lemma 23,

sin(α+β) ≥ 0.
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Proof By definition we get that for all samples in Sm,
{

x′1
2 cosα− x′1 · x′2 · sinα≥ 0,

x′1
2 cosβ+ x′1 · x′2 · sinβ≥ 0.

Multiplying the first inequality by sinβ> 0 (0< β< π), the second inequality by sinα> 0, adding
the two, and using the trigonometric identity

sin(α+β) = sinαcosβ+ cosαsinβ,

we have
sin(α+β) · x′1

2 ≥ 0.

Since there is a sample in Sm with a vector component x′1 /= 0, we conclude that sin(α+β) ≥ 0.
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Abstract
The goal of many sciences is to understand the mechanisms by which variables came to take on
the values they have (that is, to find a generative model), and to predict what the values of those
variables would be if the naturally occurring mechanisms were subject to outside manipulations.
The past 30 years has seen a number of conceptual developments that are partial solutions to the
problem of causal inference from observational sample data or a mixture of observational sample
and experimental data, particularly in the area of graphical causal modeling. However, in many do-
mains, problems such as the large numbers of variables, small samples sizes, and possible presence
of unmeasured causes, remain serious impediments to practical applications of these developments.
The articles in the Special Topic on Causality address these and other problems in applying graphi-
cal causal modeling algorithms. This introduction to the Special Topic on Causality provides a brief
introduction to graphical causal modeling, places the articles in a broader context, and describes the
differences between causal inference and ordinary machine learning classification and prediction
problems.

Keywords: Bayesian networks, causation, causal inference

1. Introduction

The goal of many sciences is to understand the mechanisms by which variables came to take on
the values they have (that is, to find a generative model), and to predict what the values of those
variables would be if the naturally occurring mechanisms were subject to outside manipulations.
For example, a randomized experiment is one kind of manipulation that substitutes the outcome
of a randomizing device to set the value of a variable (for example, whether or not a particular
new medication is given to a patient who has agreed to participate in a drug trial) in place of the
naturally occurring mechanism that determines the variable’s value. In non-experimental settings,
biologists gather data about the gene activation levels in normally functioning systems in order
to understand which genes affect the activation levels of which other genes, and to predict what
the effects of manipulating the system to turn some genes on or off would be. Epidemiologists
gather data about dietary habits and life expectancy in the general population and seek to find what
dietary factors affect life expectancy and predict the effects of advising people to change their diets.
Finding answers to questions about the mechanisms by which variables come to take on values, or
predicting the value of a variable after some other variable has been manipulated, is characteristic of
causal inference. If only non-experimental data are available, predicting the effects of manipulations
typically involves drawing samples from one probability density (in the unmanipulated population)
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and making inferences about the values of a variable in a population that has a different probability
density (in the manipulated population).

The rapid spread of interest in the last three decades in principled methods of search or esti-
mation of causal relations has been driven in part by technological developments, especially the
changing nature of modern data collection and storage techniques, and the increases in the process-
ing power and storage capacities of computers. Statistics books from 30 years ago often presented
examples with fewer than 10 variables, in domains where some background knowledge was plau-
sible. In contrast, in new domains such as climate research (where satellite data now provide daily
quantities of data unthinkable a few decades ago), fMRI brain imaging, and microarray measure-
ments of gene expression, the number of variables can range into the tens of thousands, and there
is often limited background knowledge to reduce the space of alternative causal hypotheses. Even
when experimental interventions are possible, performing the many thousands of experiments that
would be required to discover causal relationships between thousands or tens of thousands of vari-
ables is often not practical. In such domains, non-automated causal discovery techniques from
sample data, or sample data together with a limited number of experiments, appears to be hopeless,
while the availability of computers with increased processing power and storage capacity allow for
the practical implementation of computationally intensive automated search algorithms over large
search spaces.

The past 30 years has also seen a number of conceptual developments that are partial solutions
to these causal inference problems, particularly in the area of graphical causal modeling. Sections
3 and 4 of this paper describe some of these developments: a variety of well defined mathematical
objects to represent causal relations (for example, directed acyclic graphs); well defined connec-
tions between aspects of these objects and sample data (for example, the Causal Markov and Causal
Faithfulness Assumptions); ways to compute those connections (for example, d-separation); and a
theory of representation and calculation of the effects of manipulations (for example, by breaking
edges in a graph); and search algorithms (for example, the PC algorithm). However, in many do-
mains, problems such as the large numbers of variables, small samples sizes, and possible presence
of unmeasured causes, remain serious impediments to practical applications of these developments.

The articles in the Special Topic on Causality (containing articles from 2007 to 2009) address
these and other problems in making causal inferences. Although there are some superficial simi-
larities between traditional supervised machine learning problems and causal inference (for exam-
ple, both employ model search and feature selection, the kinds of models employed overlap, some
model scores can be used for both purposes), these similarities can mask some very important dif-
ferences between the two kinds of problems. This introduction to the Special Topic on Causality
provides a brief introduction to graphical causal modeling, places the articles in a broader context,
and describes the differences between causal inference and ordinary machine learning classification
or prediction problems; it is not intended to provide a broad overview or a tutorial surveying all
methods of causal inference.

Section 2 describes the problem of causal inference in more detail, and differentiates it from the
typical machine learning supervised classification or prediction problem; Section 3 describes several
different kinds of causal models; Section 4 describes some problems associated with search for
causal models, and why algorithms appropriate for the discovery of good classification or prediction
models in machine learning are not always appropriate for the discovery of good causal models; and
Section 5 describes some major open problems in the field. The various articles in the Special Topic
on Causality are described throughout this article, depending upon which topic they address.
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2. Manipulating Versus Conditioning

This section will describe three different kinds of problems (one typical machine learning or statis-
tical problem, and two kinds of causal problems), and three different kinds of probability densities
(conditional, manipulated, and counterfactual) that are useful for solving the problems.

2.1 Conditional Probabilities

Suppose that there is a population of individuals with the following random variables at time t: rwt
is the average number of glasses of red wine consumed per day in the 5 years prior to t, bmit is the
body mass index of a person at time t, sext is the person’s sex (0 = male, 1 = female) at time t, and
hat is whether or not an individual had a heart attack in the 5 years prior to t. Since sext is rarely
time-dependent, it will be replaced simply by sex.

Suppose an insurance company at time t wants to determine what rates to charge an individual
for health insurance who has rwt = 1, bmit = 25, and sex = 0, and that this rate is partly based on
the probability of the individual having a heart attack in the next 5 years. This can be estimated by
using the rate of heart attacks among the subpopulation matching the subject, that is rwt = 1, bmit =
25, sex = 0. It is impossible to measure the values of hat+5 at time t, because they haven’t occurred
yet, but if the probability density is stable across time, the density of hat+5 among the subset of the
population with rwt = 1, bmit = 25, and sex = 0 will be the same as the density of hat among the
subpopulation for which rwt–5 = 1, bmit–5 = 25, and sex = 0. The density in a subpopulation is a
conditional density, in this case P(hat | rwt–5 = 1, bmit–5 = 25, sex = 0).

Conditioning maps a given joint density, and a given subpopulation (typically specified by a set
of values for random variables) into a new density. The conditional density is a function of the joint
density over the random variables, and a set of values for a set of random variables.1 The estimation
of a conditional probability is often non-trivial because the number of people with rwt–5 = 1, bmit–5
= 25, sex = 0 might be small. A large part of statistics and machine learning is devoted to estimating
conditional probabilities from realistic sample sizes under a variety of assumptions.

If the insurance company is not attempting to change anyone’s behavior then the question of
whether drinking the right amount of red wine prevents heart attacks is irrelevant to their concerns;
the only relevant question is whether the amount of red wine that someone drinks predicts heart
attack rates. It is possible that people who drink an average of between 1 and 2 glasses of red wine
per day for 5 years have lowered rates of heart attacks because of socio-economic factors that both
cause average daily consumption of red wine and other life-style factors that prevent heart attacks.
But even if moderate red wine consumption does not prevent heart attacks, the insurance company
can still use the conditional probability to help determine the rates to charge.

If X is a set of measured variables, the conditional probability density P(Y| X) is not only useful
for predicting future values of Y, it is also useful for predicting current unmeasured values of Y,
and for classifying individuals in cases where Y is categorical.

Problem 1: Predictive Modeling
Input: Samples from a density P(O) (where O is a set of observed random variables), and
two sets of variables X, Y ⊆ O.
Output: A consistent, efficient estimate of P(Y | X).

1. In order to avoid technicalities, I will assume that the set of values conditioned on do not have measure 0.
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2.2 Manipulated Probabilities

In contrast to the previous case, suppose that an epidemiologist is deciding whether or not to recom-
mend providing very strong incentives for adults to drink an average of 1 to 2 glasses of red wine
per day in order to prevent heart attacks. Suppose further that if adopted the incentives will be very
widely effective. The density of heart attacks observationally conditional on drinking an average
of 1 to 2 glasses of red wine per day is not the density relevant to answering this question, and the
question of whether drinking red wine prevents heart attacks is crucial. Suppose drinking red wine
does not prevent heart attacks, but the heart attack rate is lower among moderate red wine drinkers
because some socio-economic variable causes both moderate red wine drinking and other healthy
life-styles choices that prevent heart attacks. In that case, after the incentives to drink red wine are
in place, the density of socioeconomic status among red wine drinkers will be different than prior
to the incentives, and the conditional density of heart attacks among moderate red wine drinkers
will not be the same after the incentives were adopted as prior to their adoption. Thus, using ob-
servational conditional densities to predict heart attacks after the incentives are in place will lead to
incorrect predictions.

The density that is relevant to determining whether or not to recommend drinking a moderate
amount of red wine is not the density of heart attacks among people who have chosen to drink red
wine (choice being the mechanism for determining red wine consumption in the unmanipulated
population), but the density of heart attacks among people who would drink red wine after the
incentives are in place. If the incentives are very effective, the density of heart attacks among
people who would drink red wine after the incentives are in place is approximately equal to the
density of heart attacks among people who are assigned to drink moderate amounts of red wine in
an experimental study.

The density of heart attacks among people who have been assigned to drink red wine (as op-
posed to those who have chosen to drink red wine, as is currently the case) is a manipulated density,
that results from taking action on a given population - it may or may not be equal to any observa-
tional conditional density, depending upon what the causal relations between variables are. Manip-
ulated probability densities are the appropriate probability densities to use when making predictions
about the effects of taking actions (“manipulating” or “doing”) on a given population (for example,
assigning red wine drinking), rather than observing (“seeing”) the values of given variables. Ma-
nipulated probabilities are the probabilities that are implicitly used in decision theory, where the
different actions under consideration are manipulations.2

A simple form of manipulation specifies what new density P’ is assigned to some variable in
a population at a given time. For example, forcing everyone in an (adult) population to drink an
average of 1 glass of red wine daily from t–10 to t–5, assigns P’(rwt–5 = 1) = 1. (Since rwt–5
measures red wine drinking for the past 5 years, an intervention on rwt–5 begins at t–10.) After
this density has been assigned, there is a resulting joint density for the random variables at time
t, denoted by P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || P’(rwt–5 = 1) = 1), where the double bar
indicates the density that has been assigned to rwt–5, in this case that everyone has been assigned the
value rwt–5 = 1.3 This is in contrast to the conditional density P(sex, bmit-5, hat-5, rwt-5, bmit, hat,

2. The use of manipulated probability densities in decision theory is often not explicit. The assumption that the den-
sity of states of nature are independent of the actions taken (act-state independence) is one way to ensure that the
manipulated densities that are needed are equal to observed conditional densities that can be measured.

3. There is no completely standard notation for denoting a manipulated density. This notation is adapted from Lauritzen
(1999).
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rwt | rwt–5 = 1), which is the density of the variables in the subpopulation where rwt–5 = 1 because
people have been observed to drink that amount of red wine, as in the unmanipulated population.

P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || P’(rwt–5 = 1) = 1) is a density, so it is possible to form
marginal and conditional probability densities from it. For example, P(hat | bmit–5 = 25 || P’(rwt–5
= 1) = 1) is the probability of having had a heart attack between t–5 and t among people who have
a bmi of 25 at t–5, everyone having been assigned to drink an average of 1 glass of red wine daily
between t–10 and t–5. In this paper, in order to simplify the exposition, it will be assumed that all
attempted manipulations are successful; that is, if P’(rwt–5 = 1) = x then P(rwt–5 = 1 || P’(rwt–5 = 1)
= x) = x (that is, if rwt–5 is manipulated to have value 1 with probability x, then in the manipulated
population, rwt–5 has value 1 with probability x.) For example, if it is assumed that P’(rwt–5 = 1) =
1 then P(rwt–5 = 1 || P’(rwt–5 = 1) = 1) = 1, that is if everyone has been assigned to drink an average
of 1 glass of red wine per day for 5 years (denoted P’(rwt–5 = 1) = 1), that everyone has done so.

In a randomized trial, a manipulation could set P’(rwt–5 = 1) = 0.5 and P’(rwt–5 = 0) = 0.5, in
which case the resulting density is P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || {P’(rwt–5 = 1) = 0.5,
P’(rwt–5 = 0) = 0.5}).

In more complex manipulations, different probabilities can be assigned to different subpopula-
tions. For example, the amount of red wine someone is assigned to drink could be based on sex:
P’(rwt–5 = 0 | sex = 0) = 0.25, P’(rwt–5 = 1 | sex = 0) = 0.75, P’(rwt–5 = 0 | sex = 1) = 0. 5, P’(rwt-5
= 2 | sex = 1) = 0.5. The resulting density is P(sex, bmit-5, hat-5, rwt-5, bmit, hat, rwt || {P’(rwt–5
= 0 | sex = 0) = 0.25, P’(rwt–5 = 1 | sex = 0) = 0.75, P’(rwt–5 = 0 | sex = 1) = 0.5, P’(rwt-5 = 2 |
sex = 1) = 0.5}). In general, which manipulations are performed on which subpopulations can be a
function both of the values of various random variables, and of what other past manipulations have
been performed.

In many cases the values of some variables in the pre-manipulation density are stable, and the
temporal indices on those variables are omitted. Similarly, if it is assumed that variables in the
post-manipulation population eventually stabilize to fixed values, the time indices of those variables
are omitted in the post-manipulation density, and the time-independent variables refer to the stable
values. Both of these kinds of omissions of time indices are illustrated by the use of sex in the
example.

In contrast to conditional probabilities, which can be estimated from samples from a population,
typically the gold standard for estimating manipulated densities is an experiment, often a random-
ized trial. However, in many cases experiments are too expensive, too difficult, or not ethical to
carry out. This raises the question of what can be determined about manipulated probability densi-
ties from samples from a population, possibly in combination with a limited number of randomized
trials. The problem is even more difficult because the inference is made from a set of measured ran-
dom variables O from samples that might not contain variables that are causes of multiple variables
in O.

Problem 2: Causal Predictive Modeling
Input: Samples from a population with density P(O), and a (possibly empty) set of
manipulated densities P(O ||M1), . . . P(O ||Mn), a manipulationM, and sets X, Y ⊆ O.
Output: A consistent, efficient estimate of P(Y | X ||M) if possible, and an output of “not
possible” otherwise.
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With causal inference, as with statistical inference, it is generally the case that in order to make
inference tractable both computationally and statistically, simplifying assumptions are made. One
kind of simplifying assumption common to both statistical and causal inference is the assumption
that the population distribution lies in some parametric family (for example, Gaussian) or that rela-
tionships between variables are exactly linear. An example of a simplifying assumption unique to
causal inference is that multiple causal mechanisms relating variables do not exactly cancel (Section
3). So, although the goal of Problem 2 is stated as finding a consistent estimate of a manipulated
density, it is more realistic to state the goal as finding a sufficiently good estimate of a manipulated
density when the sample size is large enough.

Problem 2 is usually broken into two parts: finding a set of causal models from sample data,
some manipulations (experiments) and background assumptions (Sections 3 and 4), and predicting
the effects of a manipulation from a set of causal models (Section 3). Here, a “causal model” (Sec-
tion 3) specifies for each possible manipulation that can be performed on the population (including
the manipulation that does nothing to a population) a post-manipulation density over a given set of
variables. In some cases, the inferred causal models may contain unmeasured variables as well as
measured variables.

Problem 3: Constructing Causal Models from Sample Data
Input: Samples from a population with density P(O), a (possibly empty) set of manipulated
densities P(O||M1), . . . P(O||Mn), and background assumptions.
Output: A set of causal models that is as small as possible, and contains a true causal model
that contains at least the variables in O.

Problem 4: Predicting the Effects of Manipulations from Causal Models
Input: An unmanipulated density P(O), a set C of causal models that contain at least the
variables in O, a manipulationM, and sets X, Y ⊆ O.
Output: A function g such that P(Y | X ||M) = g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

In analogy to the goals of statistical modeling, it would be more accurate but much more vague
to state that the goal in Problem 3 is to find a useful (for example, sufficiently simple, sufficiently
accurate, etc.) causal model, rather than a true causal model.

The reason that the stated goal for the output of Problem 3 is a set of causal models, is that
it is generally not possible to reliably find a true causal model given the inputs. Furthermore,
in contrast to predictive models, even if a true causal model can be inferred from a sample from
the unmanipulated population, it generally cannot be validated on a sample from the unmanipu-
lated population, because a causal model contains predictions about a manipulated population that
might not actually exist. This has been a serious impediment to the improvement of algorithms
for constructing causal models, because it makes evaluating the performance of such algorithms
difficult. It is possible to evaluate causal inference algorithms on simulated data, to employ back-
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ground knowledge to check the performance of algorithms, and to conduct limited (due to expense,
time, and ethical constraints) experiments, but these serve as only partial checks how algorithms
perform on real data in a wide variety of domains. For examples, see the Causality Challenge
(http://www.causality.inf.ethz.ch/challenge.php).

In the Special Topic on Causality in this journal, Shpitser and Pearl (2008) and Zhang (2008)
address Problem 4. Bromberg and Margaritis (2009), Pellet and Elisseeff (2008), He and Geng
(2009), and (indirectly) Kang and Tian (2009), Aliferis et al. (2010a), and Aliferis et al. (2010b)
address Problem 3. Both the problems and the papers will be described in more detail in subsequent
sections.

2.3 Effects of Counterfactual Manipulations

There are cases in ethics, the law, and epidemiology in which there are questions about applying
a manipulation to a subpopulation whose membership cannot be measured at the time that the
manipulation is applied. For example, epidemiologists sometimes want to know what would the
effect on heart attacks have been, if a manipulation such as assigning moderate drinking of red wine
from t–10 to t–5, had been applied to the subpopulation which has not moderately drunk red wine
from t–10 to t–5. When the manipulation under consideration assigns a value to a random variable
to a subpopulation with a different actual value of the random variable, the probability in question
is a counterfactual probability. If the subpopulation that did not moderately drink red wine between
t–10 and t–5 differs systematically from the rest of the population with respect to causes of heart
attacks, the subpopulations’ response to being assigned to drink red wine would be different than
the rest of the population.

Questions about counterfactual probabilities arise naturally in assigning blame in ethics or in
the law. For example, the question of whether tobacco companies were negligent in the case of
someone who smoked and developed lung cancer depends upon the probability that person would
not have gotten lung cancer if they had not smoked.

A counterfactual probability cannot be estimated directly from a randomized experiment, be-
cause it is impossible to perform a randomized experiment that assigns moderate red wine drinking
between t–10 to t–5 to a group of people who already have not been moderate wine drinkers between
t–10 and t–5. This raises the question of how counterfactual probabilities can be estimated. One
general approach is to assume that the value of red wine drinking between t–10 and t–5 contains
information about hidden causes of red wine drinking that are also causes of heart attacks.

Problem 5: Counterfactual predictive modeling
Input: An unmanipulated density P(O), a set C of causal models that contain at least the
variables in O, a counterfactual manipulationM, and sets X, Y ⊆ O.
Output: A function g such that P(Y | X ||M) = g(P(O), C, M, X, Y) if one exists, and an
output of “no function” otherwise.

In the Special Topic on Causality in this journal, Shpitser and Pearl (2008) describes a solution
to Problem 5 in the case where the causal graph is known, but may contain unmeasured common
causes.
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3. Causal Models

This section describes several different kinds of commonly used causal models, and how to use
them to calculate the effects of manipulations. The next section describes search algorithms for
discovering causal models.

A (parametric) statistical model (with free parameters) is a set of probability densities that can be
mapped into a single density by specifying the values of the free parameters (for example, a family
of multivariate Gaussian densities).4 For example, a Hidden Markov Model with a fixed structure
but free parameters is a statistical model that represents a certain set of probability densities. A
causal model with free parameters also specifies a set of probability densities over a given set of
variables; however, in addition, for each manipulation that can be performed on the population
it also specifies a set of post-manipulation probability densities over a given set of variables. A
causal model with free parameters together with the values of the free parameters is a causal model
with fixed parameters; a causal model with fixed parameters is mapped to a single density given a
specification of a manipulation.

Often, a causal model is specified in two parts: a statistical model, and a causal graph that
describes the causal relations between variables. The most frequently used causal models belong to
two broad families: (1) causal Bayesian networks, (2) structural equation models. Causal Bayesian
networks (and related models), specify a density for a variable as a function of the values of its
causes. Structural equation models (SEMs) specify the value of a variable as a function of the
values of its causes (typically including some unmeasured noise terms.) However, not surprisingly,
the two kinds of models are closely linked, as explained in Section 3.2.

The statistical setup for both causal Bayesian networks and structural equation models is a
standard one. There is a population of units, where depending upon the problem, the units could
be people, cities, cells, genes, etc. It is assumed that there is a density over the population, which
assigns probabilities to each measurable subset (event) of the population. Each unit also has a set of
properties at a time, where the properties are represented by random variables, which are functions
from the units to real numbers. The following sections describe the causal part of the model.

3.1 Causal Bayesian Networks

A Bayesian network is a pair 〈G,P〉, where G is a directed acyclic graph (DAG) whose vertices are
random variables, and P is a density such that each variable V in G is independent of variables that
are neither descendants nor parents of V in G,5 conditional on the parents of V in G. In this case P
is said to satisfy the local directed Markov condition for G.

There are two conditions that are equivalent to the local directed Markov condition described
below that are useful in causal inference: the global directed Markov condition, and factorization
according to G, both of which are described next.

The conditional independence relations specified by satisfying the local directed Markov condi-
tion for DAG Gmight also entail other conditional independence relations. There is a fast algorithm
for determining from G whether a given conditional independence relation is entailed by satisfying
the local directed Markov condition for G, that uses the d-separation relation, a relation among the

4. In the nomenclature of machine learning, what this article calls a “model (with free parameters)” is often called a
“model family” or “learning machine” and a “model (with fixed parameter values)” is often called a “model instance”
or “model”.

5. X is a parent of Y if the graph contains the edge X → Y. Y is a descendant of X if there is a directed path from X to Y.
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vertices of G. A variable B is a collider (v-structure) on a path U if and only if U contains a subpath
A → B← C. For disjoint sets of vertices X, Y, and Z in a DAG G, X is d-connected to Y given Z
if and only if there is an acyclic path U between some member X of X, and some member Y of Y,
such that every collider on U is either a member of Z or an ancestor of a member of Z, and every
non-collider on U is not in Z.6 For disjoint sets of vertices, X, Y, and Z, X is d-separated from Y
given Z if and only if X is not d-connected to Y given Z. X is d-separated from Y conditional on
Z in DAG G if and only if X is independent of Y conditional on Z in every density that satisfies
the local directed Markov condition for G (Pearl, 1988). If X is independent of Y conditional on Z
in P whenever X is d-separated from Y conditional on Z in G, then P satisfies the global directed
Markov condition for G.

For the set of random variables V in G, a density P(V) factors according to DAG G iff

P(V) = ∏
V∈V

P(V |Parents(V,G))

where Parents(V,G) is the set of parents of V in G.
The local directed Markov condition, the global directed Markov condition, and factorization

according to a DAG G are all equivalent under mild regularity assumptions (Lauritzen et al., 1990).
A DAG can also be used to represent causal relations between variables. A is a direct cause of

B relative to a set of variables V in a population when there exist two manipulations of V\{B} (that
is, all the variables in V, except B, are manipulated to specific values) that differ only in the values
assigned to A and that produce different probability densities of B. A causal DAG G for a population
contains an edge A→ B iff A is a direct cause of B in the specified population.

In order to use samples from probability densities to make causal inferences, some assumptions
relating causal relations to probability densities need to be made. The following Causal Markov
Assumption is commonly made, if only implicitly. A set of variables V is causally sufficient iff
there is no variable C not in V that is a direct cause of more than one variable in V (relative to V ∪
{C}).
Causal Markov Assumption: For a causally sufficient set of variables V in a population N

with density P(V), P(V) satisfies the local directed Markov condition for the causal DAG of N.
Under the Causal Markov Assumption, in a causal Bayesian network a manipulation of X to

P’(X | Y) (where Y is assumed to contain only non-descendants of X in a causal DAG G) simply
replaces the term P(X | Parents(X,G)) in the factorization of the joint density by the manipulated
density P’(X | Y):

P(V||P′(X |Y)) = P′(X |Y) ∏
V∈V\{X}

P(V |Parents(V,G)).

This is called the manipulation rule. The importance of the manipulation rule is that if the
causal DAG is known, and the unmanipulated density can be estimated from a sample, it allows the
prediction of the effect of an unobserved manipulation. Hence the manipulation rule is the solution
to Problem 4, in the special case where the observed variables are causally sufficient, and the unique
correct causal DAG is known.

6. For both the d-separation relation and the independence relation, if X contains a single vertex X, then X will be
written instead of {X}, and similarly for Y and Z. D-connection can also be defined for cyclic graphs and graphs with
double-headed arrows (Spirtes, 1995; Koster, 1999; Cox and Wermuth, 1996).
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The solution to Problem 4 is more difficult when the set of observed variables is not causally
sufficient. There are sufficient and (almost) necessary rules for determining which manipulated
conditional probability densities are invariant under a given manipulation (that is, which densities
are the same in the unmanipulated population and the manipulated population) and rules for how to
express some non-invariant conditional densities as functions of observed densities (Spirtes et al.,
1993). Pearl’s do-calculus extended the sufficient and (almost) necessary conditions for determining
which conditional densities were invariant from single manipulations to sequences of manipulations,
and showed how a broader range of non-invariant manipulated densities could be expressed in terms
of observed densities (Pearl, 1995). In the Special Topic on Causality of this journal, Shpitser and
Pearl (2008) describe an algorithm that has recently been developed and show that it is a complete
solution to Problem 4 in the special case where a unique causal DAG is known (Shpitser and Pearl,
2006a,b; Huang and Valtorta, 2006).

Calculation of the effect of a counterfactual manipulation when causal sufficiency does not
hold among the observed variables is a complex operation that requires several copies of the causal
graph in order to keep track both of the actual value of the variable being manipulated, and the
counterfactual value of the variable being manipulated. In the Special Topic on Causality, Shpitser
and Pearl (2008) describe for the first time an algorithm that is a complete solution to Problem 5 in
the special case where a unique causal DAG is known, even if the set of observed variables is not
causally sufficient.

3.2 Structural Equation Models (SEMs)

Structural equation models are widely used in the social sciences (Bollen, 1989) and in some natural
sciences. The set of random variables in a structural equation model (SEM) can be divided into two
subsets, the “error variables” or “error terms,” and the substantive variables (for which there is no
standard terminology in the literature). The substantive variables are the variables of interest, but
they are not necessarily all observed. Which variables are substantive, and which variables are error
terms can vary with the analysis of the problem. Each substantive variable is a function of other
substantive variables and a unique error term. The joint density over the substantive variables is a
function of the density over the error terms and of the functions relating each variable to its causes.
There is an edge A→ B in the graph (“path diagram”) of a SEM when A is a non-trivial argument
in the function for B. A manipulation of a variable B to a constant c is represented in a SEM by
replacing the equation for B with B = c.

In general, the graph of a SEM may have cycles (that is, directed paths from a variable to itself),
and may explicitly include error terms with double-headed arrows between them to represent that
the error terms are dependent (for example, εA ↔ εB); if no such double-headed edge exists in the
graph, the error terms are assumed to be independent of each other. An error term is not explicitly
included in the graph unless it is the endpoint of a double-headed arrow; otherwise, an error term
occurs in the SEM model, but is not shown in the graph. If the graph has no directed cycles and no
double-headed arrows, then the graph is a DAG and the SEM is said to be recursive; otherwise it is
said to be non-recursive.

In a recursive SEM, if the marginal density over the substantive variables is P(V), then 〈G,P(V)〉
is a Bayesian network (Spirtes et al., 2001; Pearl, 2000); for short, say that a SEMwith an associated
graph that is a DAG is a Bayesian network (although the SEM contains some extra structure in that it
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entails that any non-determinism among the substantive variables is only due to the marginalization
of the error terms.)

Non-recursive SEMs are of interest because they allow for the representation of feedback (with
cycles) or unmeasured common causes (represented by double-headed arrows.) In the case of linear
non-recursive SEMs, it is still possible to deduce the conditional independencies (or more generally
the zero partial correlations) entailed for all Gaussian SEMs (or more generally linear SEMs) from
the graph G of a non-recursive linear SEM using a minor modification of the d-separation relation
(Koster, 1999; Spirtes, 1995).

For both theoretical interest and for the purposes of efficient (constraint-based) search of the
space of linear non-recursive SEMs without cycles (Section 4.2), it is of interest to find some proper
subset of the set of all conditional independence relations entailed by the (modified) d-separation
which entail all the rest, that is, a modified form of the local directed Markov condition. (In contrast
to the recursive case, where such a subset is given by the independencies entailed by the local di-
rected Markov condition, in the non-recursive case SEMs do not generally satisfy the local directed
Markov condition). One such subset of conditional independencies was described by Richardson
(2003). In this special issue, the paper by Kang and Tian (2009) describes another such subset,
which is often smaller than the one described by Richardson, and hence might be more useful for
the purposes of search.

4. Model Search

Traditionally, there have been a number of different approaches to causal discovery. The gold
standard of causal discovery has typically been to perform planned or randomized experiments
(Fisher, 1971). There are obvious practical and ethical considerations that limit the application of
experiments in many instances, particularly on human beings. Moreover, recent data collection
techniques and causal inference problems raise several practical difficulties regarding the number
of experiments that need to be performed in order to answer all of the outstanding questions.

In the absence of experiments, in practice (particularly in the social sciences) search for causal
models is often informal, and based on a combination of background assumptions about causal
relations together with statistical tests of the causal models. If a model is rejected by a statistical test,
the researcher looks for a modification of the original hypothesized model that will pass a statistical
test. The search typically halts when a model that is compatible with background knowledge does
not fail a statistical test (Rodgers and Maranto, 1989). Often, the final model is presented, and the
search itself is not described. Informal searches of this kind fail to account for multiple testing
problems, and can potentially lead to severe overfitting problems. The reliability of such a search
depends upon the correctness of the background assumptions, and the extent to which the space of
alternatives compatible with the background assumptions was searched. Furthermore, unless the
background assumptions are very extensive, or the number of variables is tiny, it is not feasible
to estimate and test all of the models compatible with background assumptions. This is further
complicated by the fact that, as explained below, for reliable causal inference it is not sufficient to
find one model that passes a statistical test; instead it is necessary to find all such models. Recent
developments in automated model search have attempted to address these problems with traditional
methods of search.
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There are several major differences between model search in the case of predicting the unmanip-
ulated value of Y, and model search in the case of predicting the post-manipulation value of Y, based
on the different uses of statistical models and causal models described in the following section.

4.1 Underdetermination of Causal Models by Data

Causal model (with fixed parameter) search is often broken into two parts: search for a causal graph,
and estimation of the free parameters from sample data and the causal graph. (In some cases, the
prediction of the effects of manipulations does not require estimating all of the free parameters, but
does require estimating functionals of the free parameters.) Generally, the estimation of the free
parameters employs standard statistical methods. For example, in a linear SEM with a recursive
DAG, no unmeasured variables, and Gaussian errors, the maximum likelihood estimate of the edge
coefficients is given by regressing each variable on its parents in the DAG. This section concentrates
on the search for causal graphs, because the search for causal graphs is significantly different than
the search for graphs that are to be used only as statistical models.

In causal model search based on unmanipulated data, if no preference for simpler models over
more complex models is made, then the causal models are underdetermined to such an extent that
useful causal inference is impossible for many important parametric families (for example, Gaussian
or multinomial) or unrestricted probability densities. There are a variety of simplicity assumptions
that select simpler models over more complex models that can be made. In the case of search
based upon maximizing some model score given sample data (such as the Bayesian Information
Criterion), the simplicity assumption is a penalty for complexity built into the score (Chickering,
2002). For search that is not based upon model scores, the following simplicity assumption is often,
if implicitly made:
Causal Faithfulness Assumption: For a causally sufficient set of variablesV in a population N,

every conditional independence relation true in the density over V is entailed by the local directed
Markov condition for the causal DAG of N.

There are several other versions of the assumption that are considerably weaker than the one
stated here (and more intuitively justifiable) but still permit reliable causal inference, at the cost of
requiring more complicated algorithms with more complex and somewhat less informative output
(Ramsey et al., 2006).

However, even given the Causal Markov and Faithfulness Assumptions and the assumption
that the observed variables are causally sufficient, the true causal model is underdetermined by the
available evidence and background assumptions, because of the hierarchy of equivalence relations
described below.

Two different DAGs G and G’ that have the same set of d-separation relations are said to be
Markov (conditional independence, d-separation) equivalent.

For each DAG G, there is a set P of probability densities that satisfy the local directed Markov
condition for G, denoted P(G) that are said to be represented by G. In many cases, some subset of
P that belongs to a parametric or semi-parametric family F is of interest; for example, the Gaussian
subset of P. Two DAGs G and G’ are statistically equivalent with respect to F iff P(G) ∩ F = P(G’)
∩ F. Two DAGs that are statistically equivalent with respect to F are the same statistical model with
respect to F.

Two DAGs are causally equivalent (with respect to a family of densities F) iff they represent
the same set of probability densities (in family F) for every manipulation (including the null ma-
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nipulation.) It is easy to see that no pair of DAGs that differ in their structure can be causally
equivalent.

As an example, A → B ← C ← D and A → B ← C → D are Markov equivalent, but not
causally equivalent. They are statistically equivalent with respect to Gaussian SEMs, but they are
not statistically equivalent with respect to linear SEMs with at most one Gaussian error term, and
no determinism among the substantive variables (Shimizu et al., 2006).7

In the absence of further information (for example, samples from manipulated densities or back-
ground domain knowledge) all of the DAGs in a statistical equivalence class fit the data and the back-
ground assumptions equally well, and are equally simple. Hence standard scores such as Bayesian
Information Criterion, Minimum Description Length, chi-squared statistics, etc. all produce equal
scores for the alternative DAGs in a statistical equivalence class for all data sets -- in general, there is
no one DAG with the highest score, but rather, there is a set of DAGs with equally high scores. Fur-
thermore, for computational and statistical reasons, it is sometimes easier to search for the Markov
equivalence class of DAGs, even if it is known that the statistical equivalence class is a proper subset
of the Markov equivalence class.

If the DAG is to be used to estimate observational (not manipulated) conditional densities, this
is not a problem, because all of the statistically equivalent models will produce the same estimate.
However, if the DAG is to be used to predict the effects of manipulations, then the different models
will make different predictions about at least some manipulations. So in the case of causal modeling,
unlike observational statistical modeling, it is not enough to simply output one arbitrarily selected
DAG from a set of highest scoring DAGs -- it is important to output the entire set, so that all of
the different answers given by the different models can be taken into account. Once the set of
highest scoring DAGs is found, the problem of dealing with the underdetermination of the effects
of manipulations must also be dealt with. These problems are described in more detail in the next
two subsections.

If the assumption of causal sufficiency of the observed variables is not made, all three kinds of
equivalence classes have corresponding equivalence classes over the set of observed variables, and
the problem of causal underdetermination becomes much more severe. For example, for a given set
of observed variables O, the Markov equivalence class relative to O consists of the set of all DAGs
(possibly containing variables not in O) that have the same set of d-separation relations among the
variables in O; this might be much larger than the Markov equivalence class that consists of the set
of DAGs (containing only variables inO) that have the same set of d-separation relations among the
variables in O.

4.2 Constraint-based Search

First, the problem where only sample data from the unmanipulated population density is available
will be considered. The number of DAGs grows super-exponentially with the number of vertices,
so even for modest numbers of variables it is not possible to examine each DAG to determine
whether it is compatible with the population density given the Causal Markov and Faithfulness As-
sumptions. Constraint based search algorithms, given as input an oracle that returns answers about
conditional independence in the population and optional background knowledge about orientations
of edges, return a representation of a Markov equivalence class (or if there is background knowl-

7. In a linear SEM it is assumed that each variable is a linear function of its causal parents and a unique error term; in a
Gaussian SEM it is assumed in addition that the errors term are Gaussian.
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edge, a subset of a Markov equivalence class) on the basis of oracle queries. One example of a
constraint-based algorithm is the PC algorithm (Spirtes and Glymour, 1991). If the oracle always
gives correct answers, and the Causal Markov and Causal Faithfulness Assumptions hold, then the
PC algorithm always outputs a Markov equivalence class that contains the true causal model, even
though the algorithm does not check each directed acyclic graph. In the worse case, it is exponential
in the number of variables, but for sparse graphs it can run on hundreds of variables in an accept-
able amount of time (Spirtes and Glymour, 1991; Spirtes et al., 1993; Meek, 1995). Kalisch and
Buhlmann (2007) showed that under a strengthened version of the Causal Faithfulness Assumption,
the PC algorithm is uniformly consistent for very high-dimensional, sparse DAGs where the num-
ber of nodes is allowed to quickly grow with sample size n, as fast as O(na) for any 0 < a < ∞. In
practice, the judgments about conditional independence are made by performing (fallible) statistical
tests. A number of other variants of constraint-based algorithms have been proposed that improve
on either the accuracy or speed of the PC algorithm, or to weaken the assumptions under which it is
guaranteed to be correct.

There are both advantages and disadvantages of constraint based searches as compared to either
a Bayesian approach to the problem of causal discovery (Heckerman and Geiger, 1995), or an
approach based upon assigning a score to each causal model for a given data set (for example,
Bayesian information criterion) and searching for the set of causal models that maximize the score
(Chickering, 2002).

The disadvantages of constraint-based search include that the output of constraint-based searches
give no indication of how much better the best set of output models is compared to the next best
set of models; at small sample sizes tests of conditional independence have low power, particularly
when many variables are conditioned on; mistakes made early in a constraint based searches can
lead to later mistakes; and if the only constraints used are conditional independence constraints, as
is often but not always the case, then at best the search outputs a Markov equivalence class, rather
than a statistical equivalence class.8 In addition, constraint-based methods have the problem of mul-
tiple testing. If no control is made for multiple testing, the models may overfit the data. However,
adjustments to control for overfitting, such as the Bonferroni correction, are often too conservative
and as a result the corrected statistical tests are not very powerful. The issue of multiple testing
appears in Bayesian approaches to causal discovery as multiple causal model scoring. The issue is
handled automatically by Bayesian methods by their use of prior probabilities (Heckerman et al.,
1999).

The advantages of constraint-based algorithms are that they are easier to generalize to the case
where the observed variables are not causally sufficient, they are generally fast, and given recent
developments of non-parametric conditional independence tests, they are applicable without para-
metric assumptions (Tillman et al., 2009).

In the Special Topic on Causation, Bromberg and Margaritis (2009) models the problem of low
power of statistical tests as a knowledge base containing a set of independence facts related through
conditional independence axioms that may contain errors due to errors in the tests of conditional
independence. The inconsistencies are resolved through the use of a defeasible logic called ar-
gumentation that is augmented with a preference function. The logic is used to reason about and
possibly correct errors in these tests. Experimental evaluation shows significant improvements in the
accuracy of argumentative over purely statistical tests, and improvements on the accuracy of causal

8. For searches that use non-conditional independence constraints see Silva et al. (2006) and Shpitser et al. (2009).
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structure discovery from sampled data from randomly generated causal models and on real-world
data sets.

The contributions to the Special Topic on Causality by Aliferis et al. (2010a) and Aliferis et al.
(2010b) show that a general framework for localized causal membership structure learning is very
accurate even in small sample situations and can thus be used as a first step for efficient global
structure learning, as well as accurate prediction and feature selection. It also provides extensive
empirical comparisons of state of the art causal learning methods with non-causal methods for the
above tasks. In addition, they show that unexpectedly some constraint-based methods are self-
correcting with respect to multiple testing, and this may constitute a new methodology for control
of multiple statistical testing.

Another problem with constraint-based algorithms is to make them feasible for even higher
dimensional data sets. In the Special Topic on Causality, Pellet and Elisseeff (2008) link the causal
model search problem to a classic machine learning prediction problem. They show how a generic
feature-selection algorithm returning strongly relevant variables can be turned into a causal model
search algorithm. Under the Causal Markov and Causal Faithfulness Assumptions, the smallest set
of features relevant to predicting a vertex V is the set of parents, children, and parents of children
of V. Ideally, the variables returned by a feature-selection algorithm identify those features of the
causal graph. Then further processing removes the extra edges (between V and those variables
that are parents of children of V but that are neither parents nor children of V) and provides as
many orientations as possible. This algorithm is more accurate than PC and other constraint-based
algorithms, and has the advantage that it can use arbitrary feature-selection techniques developed for
high-dimensional data sets under different assumptions to provide causal model learning algorithms
for high-dimensional data under those assumptions.

4.3 Dealing with Underdetermination

One possibility for dealing with the underdetermination of causal models by observational data is
to strengthen the available information by sampling from manipulated densities, or in other words,
performing experiments.

In the Special Topic on Causality, He and Geng (2009) propose an algorithm for distinguishing
between members of a Markov equivalence class by a set of optimally designed experiments. They
consider several kinds of experiments, and both a batch-design and a sequential design to minimize
the required number of manipulations using both minimax and maximum entropy criteria.

If some members of the Markov equivalence class cannot be eliminated through experimenta-
tion, there are several different approaches to using the entire Markov equivalence class to predict
the effects of manipulations. (This is Problem 4 in the case where the predictions are made from
a set of causal models C rather than a single causal model, and the set of observed variables may
not be causally sufficient.) One possibility is to predict an interval for the potential effects of the
manipulated quantity, instead of a point value. Theoretically, an interval could be obtained by cal-
culating the manipulated quantity for each DAG G in the Markov equivalence class, and taking the
lower and upper limits. Depending upon how many different SEMs there are in the output, this is
sometimes computationally feasible (Maathuis et al., 2009).

A second possibility is to use a Bayesian approach, and perform model averaging. That is,
a prior probability is placed over each causal DAG G, and a posterior probability for each G is
calculated. Then the manipulated quantity is calculated for each G in the output of the search,
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and the results are averaged together. This requires putting a prior probability over each graph;
in addition, if there are many graphs in the output, then this may not be computationally feasible
(Hoeting et al., 1999).

A third alternative is to have an algorithm that determines whether each DAG in the Markov
equivalence class predicts the same effect of a given manipulation. For example, if the Markov
equivalence class contains A → B ← C → D and A → B ← C ← D, then the two causal DAGs
disagree about the effect of manipulating D on C, but agree about the effect of manipulating A on
B. Even when the observed variables are not causally sufficient there is an algorithm (the Prediction
Algorithm) for determining when all of the DAGs in a Markov equivalence class relative to the
observed variables agree about the effect of a particular manipulation, and returns the common
value of the predicted manipulation when they do all agree (Spirtes et al., 1993). However, this
algorithm is known to be correct but incomplete (that is, it sometimes returns “don’t know” even
when all models in the equivalence class agree on the effect of a particular manipulation). In this
special issue, Zhang (2008) provides a modified version of Pearl’s do-calculus that is more complete
than the Prediction algorithm.

5. Open Questions

The following is an overview of important problems that remain in the domain of causal modeling.
1. Matching causal models and search algorithms to causal problems. There are a wide variety

of causal models that have been employed in different disciplines. What new models and search
algorithms are appropriate for different domains such as feedback or reversible systems (Richard-
son, 1996)? What search algorithms are appropriate for different combinations of kinds of data,
such as experimental and observational data (Eberhardt et al., 2005; Cooper and Yoo, 1999; Yoo
and Cooper, 2004; He and Geng, 2009)? What search algorithms are appropriate for different kinds
of background knowledge, and different families of probability densities?

2. Model selection, and prior knowledge. What kind of scores can be used to best evaluate causal
models from various kinds of data? In a related vein, what are good families of prior densities that
capture various kinds of background knowledge?

3. Improve efficiency and efficacy of search algorithms. How can search algorithms be im-
proved to incorporate different kinds of background knowledge, search over different classes of
causal models, run faster, handle more variables and larger sample sizes, be more reliable at small
sample sizes, and produce output that is as informative as possible?

4. Characterization of search algorithms. For causal search algorithms, what are their semantic
and syntactic properties (for example, soundness, consistency, maximum informativeness)? What
are their statistical properties (pointwise consistency, uniform consistency, sample efficiency)?9
What are their computational properties (computational complexity)?

5. Adding or relaxing simplifying assumptions. What plausible alternatives are there to the
Causal Markov and Faithfulness Assumptions? Are there other assumptions that might be weaker
and hold in more domains and applications without much loss about what can be reliably inferred?

9. Intuitively, an estimator is pointwise consistent when as the sample size increases without limit, regardless of the true
value, with probability 1 the absolute value of the difference between the estimator and the true value approaches
zero. An estimator is uniformly consistent if for any given ε and δ, there is a single sample size such that in the worst
case, the probability is less than ε that the absolute value of the difference between the estimator and the true value is
greater than δ. For precise definitions in the causal context, see Robins et al. (2003).
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Are there stronger assumptions that are plausible for some domains that might allow for stronger
causal inferences? How often are these assumptions violated, and how much do violations of these
assumptions lead to incorrect inferences? Can various statistical assumptions be relaxed? For ex-
ample, what if the sample selection process is not i.i.d., but may be causally affected by variables of
interest?

6. Derivation of consequences from causal graph and unmanipulated densities. Shpitser and
Pearl have given complete algorithms for deriving the consequences of various causal models with
hidden common causes in terms of the unmanipulated density and the given manipulation (Shpitser
and Pearl, 2008). Partial extensions of these results to deriving consequences from sets of causal
models have been given (Zhang, 2008); are there further extensions to derivations from sets of
causal models?

7. New constraints for structure learning. The Causal Markov and Causal Faithfulness Assump-
tions, in addition to entailing conditional independence constraints on densities, also entail other
constraints on densities. For example, in a linear SEM, if an unobserved variable T causes ob-
served variables X1, X2, X3, X4, and there are no other causal relations among these variables, then
there are no entailed conditional independence relations among just the observed variables X1, X2,
X3, X4. However, the SEM entails cov(X1,X2) cov(X3,X4) = cov(X1,X3) cov(X2,X4) = cov(X1,X4)
cov(X2,X3) regardless of the values of the free parameters. This information is useful in finding
causal structure with unmeasured variables. In addition, there are sometimes constraints that are not
conditional independence constraints on the density of the observed variables that do not depend
upon any parametric assumptions (Shpitser et al., 2009). How can these non-parametric constraints
be incorporated into search algorithms?

8. Find variable definitions. In many domains, such as fMRI research, there are thousands of
variables, but the measured variables do not correspond to functional units of the brain. How is it
possible to define new variables that are functions of the measured variables, but more useful for
causal inference and more meaningful?

9. Find new applications of causal inference. Applications of causal inference algorithms in
many domains (Cooper and Glymour, 1999) help test and improve causal inference algorithms,
suggest new problems, and produce domain knowledge.

10. Creating good benchmarks. What are the most appropriate performance measures for causal
inference algorithms? What benchmarks can be established? What is the best research design for
testing causal inference algorithms?

11. Formal connections between different causal modeling approaches. Many different fields
have studied causal discovery including Artificial Intelligence, Econometrics, Operations Research,
Control Theory, and Statistics. What are the formal connections between the different models,
assumptions, and algorithms used in each of these fields? What can each of these domains learn
from the others?
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Abstract
This paper develops algorithms to train support vector machines when training data are distributed
across different nodes, and their communication to a centralized processing unit is prohibited due
to, for example, communication complexity, scalability, or privacy reasons. To accomplish this
goal, the centralized linear SVM problem is cast as a set of decentralized convex optimization sub-
problems (one per node) with consensus constraints on the wanted classifier parameters. Using
the alternating direction method of multipliers, fully distributed training algorithms are obtained
without exchanging training data among nodes. Different from existing incremental approaches, the
overhead associated with inter-node communications is fixed and solely dependent on the network
topology rather than the size of the training sets available per node. Important generalizations to
train nonlinear SVMs in a distributed fashion are also developed along with sequential variants
capable of online processing. Simulated tests illustrate the performance of the novel algorithms.1

Keywords: support vector machine, distributed optimization, distributed data mining, distributed
learning, sensor networks

1. Introduction

Problems calling for distributed learning solutions include those arising when training data are
acquired by different nodes, and their communication to a central processing unit, often referred to
as fusion center (FC), is costly or even discouraged due to, for example, scalability, communication
overhead, or privacy reasons. Indeed, in applications involving wireless sensor networks (WSNs)
with battery-operated nodes, transferring each sensor’s data to the FC maybe prohibited due to
power limitations. In other cases, nodes gathering sensitive or private information needed to design
the classifier may not be willing to share their training data.

For centralized learning on the other hand, the merits of support vector machines (SVMs) have
been well documented in various supervised classification tasks emerging in applications such as
medical imaging, bio-informatics, speech, and handwriting recognition, to name a few (Vapnik,
1998; Schölkopf and Smola, 2002; El-Naqa et al., 2002; Liang et al., 2007; Ganapathiraju et al.,
2004; Li, 2005; Markowska-Kaczmar and Kubacki, 2005). Centralized SVMs are maximum-margin

1. Prepared through collaborative participation in the Communications and Networks Consortium sponsored by the
U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2- 0011. The U. S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

c©2010 Pedro Forero, Alfonso Cano and Georgios B. Giannakis.
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linear classifiers designed based on a centrally available training set comprising multidimensional
data with corresponding classification labels. Training an SVM requires solving a quadratic opti-
mization problem of dimensionality dependent on the cardinality of the training set. The resulting
linear SVM discriminant depends on a subset of elements from the training set, known as support
vectors (SVs). Application settings better suited for nonlinear discriminants have been also con-
sidered by mapping vectors at the classifier’s input to a higher dimensional space, where linear
classification is performed. In either linear or nonlinear SVMs designed with centrally available
training data, the decision on new data to be classified is based solely on the SVs.

For this reason, recent designs of distributed SVM classifiers rely on SVs obtained from local
training sets (Flouri et al., 2006, 2008; Lu et al., 2008). These SVs obtained locally per node are
incrementally passed on to neighboring nodes, and further processed at the FC to obtain a discrimi-
nant function approaching the centralized one obtained as if all training sets were centrally available.
Convergence of the incremental distributed (D) SVM to the centralized SVM requires multiple SV
exchanges between the nodes and the FC (Flouri et al., 2006); see also Flouri et al. (2008), where
convergence of a gossip-based DSVM is guaranteed when classes are linearly separable. Without
updating local SVs through node-FC exchanges, DSVM schemes can approximate but not ensure
the performance of centralized SVM classifiers (Navia-Vazquez et al., 2006).

Another class of DSVMs deals with parallel designs of centralized SVMs—a direction well
motivated when training sets are prohibitively large (Chang et al., 2007; Do and Poulet, 2006; Graf
et al., 2005; Bordes et al., 2005). Partial SVMs obtained using small training subsets are combined
at a central processor. These parallel designs can be applied to distributed networked nodes, only if
a central unit is available to judiciously combine partial SVs from intermediate stages. Moreover,
convergence to the centralized SVM is generally not guaranteed for any partitioning of the aggregate
data set (Graf et al., 2005; Bordes et al., 2005).

The novel approach pursued in the present paper trains an SVM in a fully distributed fashion that
does not require a central processing unit. The centralized SVM problem is cast as a set of coupled
decentralized convex optimization subproblems with consensus constraints imposed on the desired
classifier parameters. Using the alternating direction method of multipliers (ADMoM), see, for
example, Bertsekas and Tsitsiklis (1997), distributed training algorithms that are provably conver-
gent to the centralized SVM are developed based solely on message exchanges among neighboring
nodes. Compared to existing alternatives, the novel DSVM classifier offers the following distinct
features.

• Scalability and reduced communication overhead. Compared to approaches having dis-
tributed nodes communicate training samples to an FC, the DSVM approach here relies on
in-network processing with messages exchanged only among single-hop neighboring nodes.
This keeps the communication overhead per node at an affordable level within its neigh-
borhood, even when the network scales to cover a larger geographical area. In FC-based
approaches however, nodes consume increased resources to reach the FC as the coverage area
grows. Different from, for example, Lu et al. (2008), and without exchanging SVs, the novel
DSVM incurs a fixed overhead for inter-node communications per iteration regardless of the
size of the local training sets.

• Robustness to isolated point(s) of failure. If the FC fails, an FC-based SVM design will fail
altogether—a critical issue in tactical applications such as target classification. In contrast, if a
single node fails while the network remains connected, the proposed algorithm will converge
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to a classifier trained using the data of nodes that remain operational. But even if the net-
work becomes disconnected, the proposed algorithm will stay operational with performance
dependent on the number of training samples per connected sub-network.

• Fully decentralized network operation. Alternative distributed approaches include incre-
mental and parallel SVMs. Incremental passing of local SVs requires identification of a
Hamiltonian cycle (going through all nodes once) in the network (Lu et al., 2008; Flouri
et al., 2006). And this is needed not only in the deployment stage, but also every time a
node fails. However, Hamiltonian cycles do not always exist, and if they do, finding them is
an NP-hard task (Papadimitriou, 2006). On the other hand, parallel SVM implementations
assume full (any-to-any) network connectivity, and require a central unit defining how SVs
from intermediate stages/nodes are combined, along with predefined inter-node communica-
tion protocols; see, for example, Chang et al. (2007), Do and Poulet (2006) and Graf et al.
(2005).

• Convergence guarantees to centralized SVM performance. For linear SVMs, the novel
DSVM algorithm is provably convergent to a centralized SVM classifier, as if all distributed
samples were available centrally. For nonlinear SVMs, it converges to the solution of a mod-
ified cost function whereby nodes agree on the classification decision for a subset of points.
If those points correspond to a classification query, the network “agrees on” the classifica-
tion of these points with performance identical to the centralized one. For other classification
queries, nodes provide classification results that closely approximate the centralized SVM.

• Robustness to noisy inter-node communications and privacy preservation. The novel
DSVM scheme is robust to various sources of disturbance that maybe present in message
exchanges. Those can be due to, for example, quantization errors, additive Gaussian receiver
noise, or, Laplacian noise intentionally added for privacy (Dwork et al., 2006; Chaudhuri and
Monteleoni, 2008).

The rest of this paper is organized as follows. To provide context, Section 2 outlines the central-
ized linear and nonlinear SVM designs. Section 3 deals with the novel fully distributed linear SVM
algorithm. Section 3.1 is devoted to an online DSVM algorithm for synchronous and asynchronous
updates, while Section 4 generalizes the DSVM formulation to allow for nonlinear classifiers using
kernels. Finally, Sections 5 and 6 present numerical results and concluding remarks.

General notational conventions are as follows. Upper (lower) bold face letters are used for
matrices (column vectors); (·)T denotes matrix and vector transposition; the ji-th entry of a matrix
( j-th entry of a vector) is denoted by [·] ji ([·] j); diag(x) denotes a diagonal matrix with x on its main
diagonal; diag{·} is a (block) diagonal matrix with the elements in {·} on its diagonal; | · | denotes set
cardinality;" (#) element-wise≥ (≤); {·} ([·]) a set (matrix) of variables with appropriate elements
(entries); ‖·‖ the Euclidean norm; 1 j (0 j) a vector of all ones (zeros) of size Nj; IM stands for the
M×M identity matrix; E{·} denotes expected value; and N (m,Σ) for the multivariate Gaussian
distribution with mean m, and covariance matrix Σ.

2. Preliminaries and Problem Statement

With reference to Figure 1, consider a network with J nodes modeled by an undirected graph
G(J ,E)with vertices J := {1, . . . ,J} representing nodes, and edgesE describing links among com-
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Figure 1: Network example where connectivity among nodes, represented by colored circles, is
denoted by a line joining them.

municating nodes. Node j ∈ J only communicates with nodes in its one-hop neighborhood (ball)
B j ⊆ J . The graph G is assumed connected, that is, any two nodes in G are connected by a (perhaps
multihop) path in G . Notice that nodes do not have to be fully connected (any-to-any), and G is al-
lowed to contain cycles. At every node j ∈ J , a labeled training set S j := {(x jn,y jn) : n= 1, . . . ,Nj}
of size Nj is available, where x jn ∈ X is a p× 1 data vector belonging to the input space X ⊆ Rp,
and y jn ∈ Y := {−1,1} denotes its corresponding class label.2

Given S j per node j, the goal is to find a maximum-margin linear discriminant function g(x) in
a distributed fashion, and thus enable each node to classify any new input vector x to one of the two
classes {−1,1} without communicating S j to other nodes j′ ,= j. Potential application scenarios
include but are not limited to the following ones.

Example 1 (Wireless sensor networks). Consider a set of wireless sensors deployed to infer the
presence or absence of a pollutant over a geographical area at any time tn. Sensor j measures
and forms a local binary decision variable y jn ∈ {1,−1}, where y jn = 1(−1) indicates presence
(absence) of the pollutant at the position vector x j := [x j1, x j2, x j3]T . (Each sensor knows its
position x j using existing self-localization algorithms Langendoen and Reijers, 2003.) The goal
is to have each low-cost sensor improve the performance of local detection achieved based on
S j = {([xTj , tn]T ,y jn) : n = 1, . . . ,Nj}, and through collaboration with other sensors approach the
global performance attainable if each sensor had available all other sensors data. Stringent power
limitations prevent sensor j to send its set S j to all other sensors or to an FC, if the latter is available.
If these sensors are acoustic and are deployed to classify underwater unmanned vehicles, divers or
submarines, then low transmission bandwidth and multipath effects further discourage incremental
communication of the local data sets to an FC (Akyildiz et al., 2005).

Example 2 (Distributed medical databases). Suppose that S j are patient data records stored at a
hospital j. Each x jn here contains patient descriptors (e.g., age, sex or blood pressure), and y jn is a
particular diagnosis (e.g., the patient is diabetic or not). The objective is to automatically diagnose

2. Although not included in this model for simplicity, K-ary alphabets Y with K > 2 can be considered as well.
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(classify) a patient arriving at hospital j with descriptor x, using all available data {S j}Jj=1, rather
than S j alone. However, a nonchalant exchange of database entries (xTjn,y jn) can pose a privacy risk
for the information exchanged. Moreover, a large percentage of medical information may require
exchanging high resolution images. Thus, communicating and processing large amounts of high-
dimensional medical data at an FC may be computationally prohibitive.

Example 3 (Collaborative data mining). Consider two different government agencies, a local
agency A and a nation-wide agency B, with corresponding databases SA and SB. Both agencies
are willing to collaborate in order to classify jointly possible security threats. However, lower clear-
ance level requirements at agency A prevents agency B from granting agency A open access to SB.
Furthermore, even if an agreement granting temporary access to agency A were possible, databases
SA and SB are confined to their current physical locations due to security policies.

If {S j}Jj=1 were all centrally available at an FC, then the global variables w∗ and b∗ describing
the centralized maximum-margin linear discriminant function g∗(x) = xTw∗+b∗ could be obtained
by solving the convex optimization problem; see, for example, Schölkopf and Smola (2002, Ch. 7)

{w∗,b∗} = arg min
w,b,{ξ jn}

1
2
‖w‖2+C

J

∑
j=1

Nj

∑
n=1

ξ jn

s.t. y jn(wTx jn+b) ≥ 1−ξ jn ∀ j ∈ J , n= 1, . . . ,Nj

ξ jn ≥ 0 ∀ j ∈ J , n= 1, . . . ,Nj

(1)

where the slack variables ξ jn account for non-linearly separable training sets, and C is a tunable
positive scalar.

Nonlinear discriminant functions g(x) can also be found along the lines of (1) after mapping
vectors x jn to a higher dimensional space H ⊆ RP, with P > p, via a nonlinear transformation
φ : X →H . The generalized maximum-margin linear classifier inH is then obtained after replacing
x jn with φ(x jn) in (1), and solving the following optimization problem

{w∗,b∗} = arg min
w,b,{ξ jn}

1
2
‖w‖2+C

J

∑
j=1

Nj

∑
n=1

ξ jn

s.t. y jn(wTφ(x jn)+b) ≥ 1−ξ jn ∀ j ∈ J , n= 1, . . . ,Nj

ξ jn ≥ 0 ∀ j ∈ J , n= 1, . . . ,Nj.

(2)

Problem (2) is typically tackled by solving its dual. Letting λ jn denote the Lagrange multiplier
corresponding to the constraint y jn(wTφ(x jn)+b) ≥ 1−ξ jn, the dual problem of (2) is:

max
{λ jn}

−
1
2

J

∑
j=1

J

∑
i=1

Nj

∑
n=1

Ni
∑
m=1

λ jnλimy jnyimφT (x jn)φ(xim)+
J

∑
j=1

Nj

∑
n=1

λ jn

s.t.
J

∑
j=1

Nj

∑
n=1

λ jny jn = 0 (3)

0≤ λ jn ≤C ∀ j ∈ J , n= 1, . . . ,Nj.
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Using the Lagrange multipliers λ∗jn optimizing (3), and the Karush-Kuhn-Tucker (KKT) optimality
conditions, the optimal classifier parameters can be expressed as

w∗ =
J

∑
j=1

Nj

∑
n=1

λ∗jny jnφ(x jn),

b∗ =y jn−w∗Tφ(x jn) (4)

with x jn in (4) satisfying λ∗jn ∈ (0,C). Training vectors corresponding to non-zero λ∗jn’s constitute
the SVs. Once the SVs are identified, all other training vectors with λ∗jn = 0 can be discarded
since they do not contribute to w∗. From this vantage point, SVs are the most informative elements
of the training set. Solving (3) does not require knowledge of φ but only inner product values
φT (x jn)φ(xim) := K(x jn,xim), which can be computed through a pre-selected positive semi-definite
kernel K : X × X → R; see, for example, Schölkopf and Smola (2002, Ch. 2). Although not
explicitly given, the optimal slack variables ξ∗jn can be found through the KKT conditions of (2) in
terms of λ∗jn (Schölkopf and Smola, 2002). The optimal discriminant function can be also expressed
in terms of kernels as

g∗(x) =
J

∑
j=1

Nj

∑
n=1

λ∗jny jnK(x jn,x)+b∗ (5)

where b∗ = y jn −∑J
i=1∑

Ni
m=1λ

∗
imyimK(xim,x jn) for any SV x jn with λ∗jn ∈ (0,C). This so-called

kernel trick allows finding maximum-margin linear classifiers in higher dimensional spaces without
explicitly operating in such spaces (Schölkopf and Smola, 2002).

The objective here is to develop fully distributed solvers of the centralized problems in (1) and
(2) while guaranteeing performance approaching that of a centralized equivalent SVM. Although
incremental solvers are possible, the size of information exchanges required might be excessive,
especially if the number of SVs per node is large (Flouri et al., 2008; Lu et al., 2008). Recall that
exchanging all local SVs among all nodes in the network several times is necessary for incremental
DSVMs to approach the optimal centralized solution. Moreover, incremental schemes require a
Hamiltonian cycle in the network to be identified in order to minimize the communication overhead.
Computing such a cycle is an NP-hard task and in most cases a sub-optimal cycle is used at the
expense of increased communication overhead. In other situations, communicating SVs directly
might be prohibited because of the sensitivity of the information bore, as already mentioned in
Examples 2 and 3.

3. Distributed Linear Support Vector Machine

This section presents a reformulation of the maximum-margin linear classifier problem in (1) to an
equivalent distributed form, which can be solved using the alternating direction method of multipli-
ers (ADMoM) outlined in Appendix A. (For detailed exposition of the ADMoM, see, for example,
Bertsekas and Tsitsiklis, 1997.)

To this end, consider replacing the common (coupling) variables (w,b) in (1) with auxiliary
per-node variables {(w j,b j)}Jj=1, and adding consensus constraints to force these variables to agree
across neighboring nodes. With proper scaling of the cost by J, the proposed consensus-based
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reformulation of (1) becomes

min
{w j,b j,ξ jn}

1
2

J

∑
j=1

∥∥w j
∥∥2+ JC

J

∑
j=1

Nj

∑
n=1

ξ jn

s.t. y jn(wTj x jn+b j) ≥ 1−ξ jn ∀ j ∈ J , n= 1, . . . ,Nj

ξ jn ≥ 0 ∀ j ∈ J , n= 1, . . . ,Nj

w j = wi, b j = bi ∀ j ∈ J , i ∈ B j.

(6)

From a high-level view, problem (6) can be solved in a distributed fashion because each node j
can optimize only the j-dependent terms of the cost, and also meet all the consensus constraints
w j =wi, b j = bi, by exchanging messages only with nodes i in its neighborhood B j. What is more,
network connectivity ensures that consensus in neighborhoods enables network-wide consensus.
And thus, as the ensuing lemma asserts, solving (6) is equivalent to solving (1) so long as the
network remains connected.

Lemma 1 If {(w j,b j)}Jj=1 denotes a feasible solution of (6), and the graph G is connected, then
problems (1) and (6) are equivalent, that is, w j = w and b j = b ∀ j = 1, . . . ,J, where (w,b) is a
feasible solution of (1).

Proof See Appendix B.

To specify how (6) can be solved using the ADMoM, define for notational brevity the aug-
mented vector v j := [wTj , b j]T , the augmented matrix X j := [[x j1, . . . ,x jNj ]

T ,1 j], the diagonal label
matrix Y j := diag([y j1, . . . ,y jNj ]), and the vector of slack variables ξ j := [ξ j1, . . . ,ξ jNj ]

T . With these
definitions, it follows readily that w j = (Ip+1−Πp+1)v j, where Πp+1 is a (p+1)× (p+1) matrix
with zeros everywhere except for the (p+ 1, p+ 1)-st entry, given by [Πp+1](p+1)(p+1) = 1. Thus,
problem (6) can be rewritten as

min
{v j,ξ j,ω ji}

1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j +JC

J

∑
j=1
1Tj ξ j

s.t. Y jX jv j " 1 j−ξ j ∀ j ∈ J

ξ j " 0 j ∀ j ∈ J

v j = ω ji, ω ji = vi ∀ j ∈ J , ∀i ∈ B j

(7)

where the redundant variables {ω ji} will turn out to facilitate the decoupling of the classifier pa-
rameters v j at node j from those of their neighbors at neighbors i ∈ B j.

As in the centralized case, problem (7) will be solved through its dual. Toward this objective, let
α ji1 (α ji2) denote the Lagrange multipliers corresponding to the constraint v j = ω ji (respectively
ω ji = vi), and consider what we term surrogate augmented Lagrangian function

L({v j},{ξ j},{ω ji},{α jik})=
1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j+JC

J

∑
j=1
1Tj ξ j+

J

∑
j=1
∑
i∈B j

αTji1(v j−ω ji)

+
J

∑
j=1
∑
i∈B j

αTji2(ω ji−vi)+
η
2

J

∑
j=1
∑
i∈B j

∥∥v j−ω ji
∥∥2+

η
2

J

∑
j=1
∑
i∈B j

∥∥ω ji−vi
∥∥2 (8)
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where the adjective “surrogate” is used because L does not include the set of constraints W :=
{Y jX jv j " 1 j − ξ j, ξ j " 0 j}, and the adjective “augmented” because L includes two quadratic
terms (scaled by the tuning constant η> 0) to further regularize the equality constraints in (7). The
role of these quadratic terms ||v j−ω ji||2 and ||ω ji−vi||2 is twofold: (a) they effect strict convexity
of L with respect to (w.r.t.) ω ji, and thus ensure convergence to the unique optimum of the global
cost (whenever possible), even when the local costs are convex but not strictly so; and (b) through
the scalar η, they allow one to trade off speed of convergence for steady-state approximation error
(Bertsekas and Tsitsiklis, 1997, Ch. 3).

Consider now solving (7) iteratively by minimizing L in a cyclic fashion with respect to one
set of variables while keeping all other variables fixed. The multipliers {α ji1,α ji2} must be also
updated per iteration using gradient ascent. The iterations required per node j are summarized in
the following lemma.

Lemma 2 The distributed iterations solving (7) are

{v j(t+1),ξ j(t+1)} = arg min
{v j,ξ j}∈W

L({v j},{ξ j},{ω ji(t)},{α jik(t)}), (9)

{ω ji(t+1)} = argmin
{ω ji}

L({v j(t+1)},{ξ j(t+1)},{ω ji},{α jik(t)}), (10)

α ji1(t+1) = α ji1(t)+η(v j(t+1)−ω ji(t+1)) ∀ j ∈ J , ∀i ∈ B j, (11)
α ji2(t+1) = α ji2(t)+η(ω ji(t+1)−vi(t+1)) ∀ j ∈ J , ∀i ∈ B j. (12)

and correspond to the ADMoM solver reviewed in Appendix A.

Proof See Appendix C.

Lemma 2 links the proposed DSVM design with the convergent ADMoM solver, and thus en-
sures convergence of the novel MoM-DSVM to the centralized SVM classifier. However, for the
particular problem at hand it is possible to simplify iterations (9)-(12). Indeed, simple inspection
of (8) confirms that with all other variables fixed, the cost in (10) is linear-quadratic in ω ji; hence,
ω ji(t+ 1) can be found in closed form per iteration, and the resulting closed-form expression can
be substituted back to eliminate ω ji from L . Furthermore, Appendix D shows that the two sets
of multipliers α ji1 and α ji2 can be combined into one set α j after appropriate initialization of the
iterations (11) and (12), as asserted by the following lemma.

Lemma 3 Selecting α ji1(0) = α ji2(0) = 0(p+1)×1 as initialization ∀ j ∈ J , ∀i ∈ B j, iterations (9)-
(12) reduce to

{v j(t+1),ξ j(t+1)} = arg min
{v j,ξ j}∈W

L ′({v j},{ξ j},{v j(t)},{α j(t)}), (13)

α j(t+1) = α j(t)+
η
2 ∑i∈B j

[v j(t+1)−vi(t+1)] ∀ j ∈ J (14)
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where α j(t) := ∑i∈B j α ji1(t), and L ′ is given by

L ′({v j},{ξ j},{v j(t)},{α j(t)}) =
1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j + JC

J

∑
j=1
1Tj ξ j

+2
J

∑
j=1
αTj (t)v j +η

J

∑
j=1
∑
i∈B j

∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
. (15)

Proof See Appendix D.

The optimization problem in (13) involves the reduced Lagrangian L ′ in (15), which is linear-
quadratic in v j and ξ j. In addition, the constraint set W is linear in these variables. To solve
this constrained minimization problem through its dual, let λ j := [λ j1, . . . ,λ jNj ]

T denote Lagrange
multipliers per node corresponding to the constraints Y jX jv j " 1 j− ξ j. Solving the dual of (13)
yields the optimal λ j at iteration t + 1, namely λ j(t + 1), as a function of v j(t) and α j(t); while
the KKT conditions provide expressions for v j(t+ 1) as a function of α j(t), and the optimal dual
variables λ j(t + 1). Notwithstanding, the resultant iterations are decoupled across nodes. These
iterations and the associated convergence guarantees can be summarized as follows.

Proposition 1 Consider the per node iterates λ j(t), v j(t) and α j(t), given by

λ j(t+1) = arg max
λ j: 0 j#λ j#JC1 j

−
1
2
λTj Y jX jU−1

j X
T
j Y jλ j +

(
1 j +Y jX jU−1

j f j(t)
)T

λ j, (16)

v j(t+1) = U−1
j
[
XTj Y jλ j(t+1)− f j(t)

]
, (17)

α j(t+1) = α j(t)+
η
2 ∑i∈B j

[v j(t+1)−vi(t+1)] (18)

where U j := (1+2η|B j|)Ip+1−Πp+1, f j(t) := 2α j(t)−η∑i∈B j [v j(t)+vi(t)], η> 0, and arbitrary
initialization vectors λ j(0), v j(0), and α j(0) = 0(p+1)×1. The iterate v j(t) converges to the solution
of (7), call it v∗, as t → ∞; that is, limt→∞ v j(t) = v∗.

Proof See Appendix E.

Similar to the centralized SVM algorithm, if [λ j(t)]n ,= 0, then [xTjn,1]T is an SV. Finding λ j(t+
1) as in (16) requires solving a quadratic optimization problem similar to the one that a centralized
SVM would solve, for example, via a gradient projection algorithm or an interior point method; see
for example, Schölkopf and Smola (2002, Ch. 6). However, the number of variables involved in
(16) per iteration per node is considerably smaller when compared to its centralized counterpart,
namely Nj versus ∑J

j=1Nj. Also, the optimal local slack variables ξ∗j can be found via the KKT
conditions for (13).

The ADMoM-based DSVM (MoM-DSVM) iterations (16)-(18) are summarized as Algorithm
1, and are illustrated in Figure 2. All nodes have available JC and η. Also, every node computes
its local Nj×Nj matrix Y jX jU−1

j XTj Y j, which remains unchanged throughout the entire algorithm.
Every node then updates its local (p+1)×1 estimates v j(t) and α j(t); and the Nj×1 vector λ j(t).
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At iteration t+1, node j computes vector f j(t) locally to obtain its local λ j(t+1) via (16). Vector
λ j(t + 1) together with the local training set S j are used at node j to compute v j(t + 1) via (17).
Next, node j broadcasts its newly updated local estimates v j(t + 1) to all its one-hop neighbors
i ∈ B j. Iteration t+ 1 resumes when every node updates its local α j(t+ 1) vector via (18). Note
that at any given iteration t of the algorithm, each node j can evaluate its own local discriminant
function g(t)

j (x) for any vector x ∈ X as

g(t)
j (x) = [xT ,1]v j(t) (19)

which from Proposition 1 is guaranteed to converge to the same solution across all nodes as t → ∞.
Simulated tests in Section 5 will demonstrate that after a few iterations the classification perfor-
mance of (19) outperforms that of the local discriminant function obtained based on the local train-
ing set alone. The effect of η on the convergence rate of MoM-DSVM will be tested numerically in
Section 5.

Figure 2: Visualization of iterations (16)-(18): (left) every node j ∈ J computes λ j(t+1) to obtain
v j(t+ 1), and then broadcasts v j(t+ 1) to all neighbors i ∈ B j; (right) once every node
j ∈ J has received vi(t+1) from all i ∈ B j, it computes α j(t+1).

Remark 1 The messages exchanged among neighboring nodes in the MoM-DSVM algorithm cor-
respond to local estimates v j(t), which together with the local multiplier vectors α j(t), convey
sufficient information about the local training sets to achieve consensus globally. Per iteration and
per node a message of fixed size (p+1)×1 is broadcasted (vectors α j are not exchanged among
nodes.) This is to be contrasted with incremental DSVM algorithms in, for example, Lu et al. (2008),
Flouri et al. (2006) and Flouri et al. (2008), where the size of the messages exchanged between
neighboring nodes depends on the number of SVs found at each incremental step. Although the
SVs of each training set may be few, the overall number of SVs may remain large, thus consuming
considerable power when transmitting SVs from one node to the next.

Remark 2 Real networks are prone to node failures, for example, sensors in a WSN may run out of
battery during operation. Thanks to its fully decentralized mode of operation, the novel MoM-DSVM
algorithm guarantees that the remaining nodes in the network will reach consensus as long as the

1672



CONSENSUS-BASED DISTRIBUTED SUPPORT VECTOR MACHINES

Algorithm 1MoM-DSVM
Require: Randomly initialize v j(0), and α j(0) = 0(p+1)×1 for every j ∈ J
1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Compute λ j(t+1) via (16).
4: Compute v j(t+1) via (17).
5: end for
6: for all j ∈ J do
7: Broadcast v j(t+1) to all neighbors i ∈ B j.
8: end for
9: for all j ∈ J do
10: Compute α j(t+1) via (18).
11: end for
12: end for

node that fails, say jo ∈ J , does not correspond to a cut-vertex of G . In this case, the operational
network graphGo :=G− jo remains connected, and thus surviving nodes can percolate information
throughout Go. Of course, S jo will not participate in training the SVM. If jo is a cut-vertex of G ,
the algorithm will remain operational in each connected component of the resulting sub-graph Go,
reaching consensus among nodes in each of the connected components.

3.1 Online Distributed Support Vector Machine

In many distributed learning tasks data arrive sequentially, and possibly asynchronously. In addition,
the processes to be learned may change with time. In such cases, training examples need to be added
or removed from each local training set S j. Training sets of increasing of decreasing size can be
expressed in terms of time-varying augmented data matricesX j(t), and corresponding label matrices
Y j(t). An online version of DSVM is thus well motivated when a new training example x jn(t)
along with its label y jn(t) acquired at time t are incorporated into X j(t) and Y j(t), respectively. The
corresponding modified iterations are given by (cf. (16)-(18))

λ j(t+1) = arg max
λ j: 0 j(t+1)#λ j#JC1 j(t+1)

−
1
2
λTj Y j(t+1)X j(t+1)U−1

j X j(t+1)TY j(t+1)λ j

+
(
1 j−Y j(t+1)X j(t+1)U−1

j f j(t)
)T

λ j, (20)

v j(t+1) = U−1
j

(

X j(t+1)TY j(t+1)λ j(t+1)−2α j(t)+η∑
i∈B j

[v j(t)+vi(t)]
)

, (21)

α j(t+1) = α j(t)+
η
2 ∑i∈B j

[v j(t+1)−vi(t+1)]. (22)

Note that the dimensionality of λ j must vary to accommodate the variable number of S j elements
at every time instant t. The online MoM-DSVM classifier is summarized as Algorithm 2. For this
algorithm to run, no conditions need to be imposed on how the sets S j(t) increase or decrease. Their
changes can be asynchronous and may comprise multiple training examples at once. In principle,
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Algorithm 2 Online MoM-DSVM
Require: Randomly initialize v j(0), and α j(0) = 0(p+1)×1 for every j ∈ J .
1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Update Y j(t+1)X j(t+1)U−1

j X j(t+1)TY j(t+1).
4: Compute λ j(t+1) via (20).
5: Compute v j(t+1) via (21).
6: end for
7: for all j ∈ J do
8: Broadcast v j(t+1) to all neighbors i ∈ B j.
9: end for
10: for all j ∈ J do
11: Compute α j(t+1) via (22).
12: end for
13: end for

the parameters η and C can also become time-dependent. The effect of these parameters will be
discussed in Section 5.

Intuitively speaking, if the training sets remain invariant across a sufficient number of time
instants, v j(t) will closely track the optimal linear classifier. Rigorous convergence analysis of
Algorithm 2 for any given rate of change of the training set goes beyond the scope of this work.
Simulations will however demonstrate that the modified iterations in (20)-(22) are able to track
changes in the training sets even when these occur at every time instant t.

Remark 3 Compared to existing centralized online SVM alternatives in, for example, Cauwen-
berghs and Poggio (2000) and Fung and Mangasarian (2002), the online MoM-DSVM algorithm
of this section allows seamless integration of both distributed and online processing. Nodes with
training sets available at initialization and nodes that are acquiring their training sets online can
be integrated to jointly find the maximum-margin linear classifier. Furthermore, whenever needed,
the online MoM-DSVM can return a partially trained model constructed with examples available to
the network at any given time. Likewise, elements of the training sets can be removed without hav-
ing to restart the MoM-DSVM algorithm. This feature also allows adapting MoM-DSVM to jointly
operate with algorithms that account for concept drift (Klinkenberg and Joachims, 2000). In the
classification context, concept drift defines a change in the true classification boundaries between
classes. In general, accounting for concept drift requires two main steps, which can be easily han-
dled by the online MoM-DSVM: (i) acquisition of updated elements in the training set that better
describe the current concept; and (ii) removal of outdated elements from the training set.

4. Distributed Nonlinear Support Vector Machine

In Section 3, problem (1) was reformulated to allow all nodes to consent on v∗. However, applying
an identical reformulation to the nonlinear classification problem in (2) would require updates in
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(16)-(18) to be carried in H . As the dimensionality P of H increases, the local computation and
communication complexities become increasingly prohibitive.

Our approach to mitigate this well-known “curse of dimensionality” is to enforce consensus
of the local discriminants g∗j on a subspace of reduced rank L < P. To this end, we project the
consensus constraints corresponding to (2) and consider the optimization problem (cf. (6))

min
{w j,b j,ξ j}

1
2

J

∑
j=1

‖w j‖
2+ JC

J

∑
j=1
1Tj ξ j

s.t. Y j(Φ(X j)w j +1 jb j) " 1 j−ξ j ∀ j ∈ J

ξ j " 0 j ∀ j ∈ J

Gw j =Gwi ∀ j ∈ J , i ∈ B j

b j = bi ∀ j ∈ J , i ∈ B j

(23)

where Φ(X j) := [φ(x j1), . . . ,φ(x jNj)]
T , and G := [φ(χ1), . . . ,φ(χL)]

T is a fat L× P matrix com-
mon to all nodes with preselected vectors {χl}Ll=1 specifying its rows. Each χl ∈ X corresponds to a
φ(χl)∈H , which at the optimal solution {w∗

j ,b∗j}Jj=1 of (23), satisfies φ
T (χl)w∗

1 = · · ·= φT (χl)w∗
J =

φT (χl)w∗. The projected constraints {Gw j = Gwi} along with {b j = bi} force all nodes to agree
on the value of the local discriminant functions g∗j(χl) at the vectors {χl}Ll=1, but not necessarily for
all x ∈ X . This is the price paid for reducing the computational complexity of (23) to an affordable
level. Clearly, the choice of vectors {χl}Ll=1, their number L, and the local training sets S j deter-
mine how similar the local discriminant functions g∗j are. If G = IP, then (23) reduces to (6), and
g∗1(x) = . . . = g∗J(x) = g∗(x), ∀x ∈ X , but the high dimensionality challenge appears. At the end of
this section, we will provide different design choices for {χl}Ll=1, and test them via simulations in
Section 5.

Because the cost in (23) is strictly convex w.r.t. w j, it guarantees that the set of optimal vectors
{w∗

j} is unique even when G is a ‘fat’ matrix (L< P) and/or ill-conditioned (Bertsekas, 1999, Prop.
5.2.1). As in (2), having {w∗

j} known is of limited use, since the mapping φ may be unknown, or if
known, evaluating vectors φ(x) may entail an excessive computational cost. Fortunately, the result-
ing discriminant function g∗j(x) admits a reduced-complexity solution because it can be expressed
in terms of kernels, as shown by the following theorem.

Theorem 4 For every positive semi-definite kernel K(·, ·), the discriminant functions g∗j(x) =

φT (x)w∗
j +b∗j with {w∗

j ,b∗j} denoting the optimal solution of (23), can be written as

g∗j(x) =
Nj

∑
n=1

a∗jnK(x,x jn)+
L

∑
l=1

c∗jlK(x,χl)+b∗j , ∀ j ∈ J (24)

where {a∗jn} and {c∗jl} are real-valued scalar coefficients.

Proof See Appendix F.

The space of functions g j described by (24) is fully determined by the span of the kernel function
K(·, ·) centered at training vectors {x jn,n = 1, . . . ,Nj} per node, and also at the vectors {χl}Ll=1
which are common to all nodes. Thus, similarity of the discriminant functions g∗j across nodes is
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naturally constrained by the corresponding S j. Theorem 1 also reveals the effect of {χl}Ll=1 on the
{g∗j}. By introducing vectors {χl}Ll=1 common to all nodes, a subset of basis functions common to
all local functional spaces is introduced a fortiori. Coefficients a∗jn and c∗jl are found so that all local
discriminants g∗j agree on their values at points {χl}Ll=1. Intuitively, at every node these coefficients
summarize the global information available to the network.

Theorem 1 is an existence result whereby each nonlinear discriminant function g∗j is expressible
in terms of S j and {χl}Ll=1. However, finding the coefficients a∗jn, c∗jl and b∗j in a distributed fashion
remains an issue. Next, it is shown that these coefficients can be obtained iteratively by applying
the ADMoM solver to (23).

Similar to (7), introduce auxiliary variables {ω ji} ({ζ ji}) to decouple the constraintsGw j =Gwi
(b j = bi) across nodes, and α jik (β jik) denote the corresponding Lagrange multipliers (cf. (8)). The
surrogate augmented Lagrangian for problem (23) is then

L({w j},{ξ j},{ω ji},{α jik},{ζ ji},{β jik})=
1
2

J

∑
j=1

‖w j‖
2+JC

J

∑
j=1
1Tj ξ j+

J

∑
j=1
∑
i∈B j

αTji1(Gw j−ω ji)

+
J

∑
j=1
∑
i∈B j

αTji2(ω ji−Gwi)+
J

∑
j=1
∑
i∈B j

β ji1(b j−ζ ji)+
J

∑
j=1
∑
i∈B j

β ji2(ζ ji−bi)

+
η
2

J

∑
j=1
∑
i∈B j

∥∥Gw j−ω ji
∥∥2+

η
2

J

∑
j=1
∑
i∈B j

∥∥ω ji−Gwi
∥∥2+

η
2

J

∑
j=1
∑
i∈B j

∥∥b j−ζ ji
∥∥2+

η
2

J

∑
j=1
∑
i∈B j

∥∥ζ ji−bi
∥∥2 .

Following the steps of Lemma 2, and with {α jik} and {β jik} initialized at zero, the ADMoM
iterations take the form

{w j(t+1),b j(t+1),ξ j(t+1)}=arg min
{w j,b j,ξ j}∈W

L ′({w j},{b j},{ξ j},{α j(t)},{β j(t)}), (25)

α j(t+1)=α j(t)+
η
2 ∑i∈B j

G[w j(t+1)−wi(t+1)], (26)

β j(t+1)=β j(t)+
η
2 ∑i∈B j

[b j(t+1)−bi(t+1)] (27)

where L ′ is defined similar to (8), α j(t) as in Lemma 3, and β j(t) := ∑i∈B j β ji1(t). The ADMoM
iterations (25)-(27) will not be explicitly solved since iterates w j(t) lie in the high-dimensional
space H . Nevertheless, our objective is not to find w∗

j , but rather the discriminant function g∗j(x).
To this end, let Γ := [χ1, . . . ,χL]

T , and define the kernel matrices with entries

[K(X j,X j)]n,m := K(x jn,x jm), (28)
[K(X j,Γ)]n,l := K(x jn,χl), (29)
[K(Γ,Γ)]l,l′ := K(χl,χl′). (30)

From Theorem 1 it follows that each local update g(t)
j (x) = φT (x)w j(t)+b j(t) admits per iteration t

a solution expressed in terms of kernels. The latter is specified by the coefficients {a jn(t)}, {c jl(t)}
and {b j(t)} that can be obtained in closed form, as shown in the next proposition.
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Proposition 2 Let λ j := [λ j1, . . . ,λ jNj ]
T denote the Lagrange multiplier corresponding to the con-

straintY j(Φ(X j)w j+1 jb j)" 1 j−ξ j, and w̃ j(t) :=Gw j(t). The local discriminant function g
(t)
j (x)

at iteration t is

g(t)
j (x) =

Nj

∑
n=1

a jn(t)K(x,x jn)+
L

∑
l=1

c jl(t)K(x,χl)+b j(t) (31)

where a j(t) := [a j1(t), . . . ,a jNj(t)]T , c j(t) := [c j1(t), . . . ,c jL(t)]T , and b j(t) are given by

a j(t) := Y jλ j(t), (32)

c j(t) := 2η|B j|Ũ−1
j [K(Γ,Γ)f j(t)−K(Γ,X j)Y jλ j(t)]− f̃ j(t), (33)

b j(t) :=
1

2η|B j|

[
1Tj Y jλ j(t)−h j(t)

]
(34)

with λ j(t) denoting the vector multiplier update available at iteration t, Ũ j := IL+2η|B j|K(Γ,Γ),
f̃ j(t) := 2α j(t)−η∑i∈B j [w̃ j(t)+ w̃i(t)] and h j(t) := 2β j(t)−η∑i∈B j [b j(t)+bi(t)].

Proof See Appendix G.

Proposition 2 asserts that in order to find a j(t), c j(t) and b j(t) in (32), (33) and (34), it suffices
to obtain λ j(t), w̃ j(t), b j(t), α j(t), and β j(t). Note that finding the L× 1 vector w̃ j(t) from w j(t)
incurs complexity of order O(L). The next proposition shows how to iteratively update λ j(t), w̃ j(t),
b j(t), α j(t), and β j(t) in a distributed fashion.

Proposition 3 The iterates λ j(t), w̃ j(t), b j(t), α j(t) and β j(t) can be obtained as

λ j(t+1)=arg max
λ j: 0 j#λ j#JC1 j

−
1
2
λTj Y j

(
K(X j,X j)− K̃(X j,X j)+

1 j1Tj
2η|B j|

)
Y jλ j +1Tj λ j

−

(
f̃Tj (t)

(
K(Γ,X j)−K̃(Γ,X j)

)
+h j(t)

1T
2η|B j|

)
Y jλ j, (35)

w̃ j(t+1)=
[
K(Γ,X j)− K̃(Γ,X j)

]
Y jλ j(t+1)−

[
K(Γ,Γ)−K̃(Γ,Γ)

]
f̃ j(t), (36)

b j(t+1)=
1

2η|B j|

[
1Tj Y jλ j(t+1)−h j(t)

]
, (37)

α j(t+1)=α j(t)+
η
2 ∑i∈B j

[w̃ j(t+1)− w̃i(t+1)], (38)

β j(t+1)=β j(t)+
η
2 ∑i∈B j

[b j(t+1)−bi(t+1)] (39)

where K̃(Z,Z′) := 2η|B j|K(Z,Γ)Ũ−1
j K(Γ,Z′). With arbitrary initialization λ j(0), w̃ j(0), and

b j(0); and α j(0) = 0L×1 and β j(0) = 0, the iterates {a jn(t)}, {c jl(t)} and {b j(t)} in (32), (33)
and (34) converge to {a∗jn}, {c∗jl} and {b∗j} in (24), as t→∞, ∀ j ∈ J ,n= 1, . . . ,Nj, and l = 1, . . . ,L.

Proof See Appendix H.
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Algorithm 3MoM-NDSVM
Require: Randomly initialize w̃ j(0) and b j(0); and α j(0) = 0L×1 and β j(0) = 0 for every j ∈ J .
1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Compute λ j(t+1) via (35).
4: Compute w̃ j(t+1) via (36).
5: Compute b j(t+1) via (37).
6: end for
7: for all j ∈ J do
8: Broadcast w̃ j(t+1) and b j(t+1) to all neighbors i ∈ B j.
9: end for
10: for all j ∈ J do
11: Compute α j(t+1) via (38).
12: Compute β j(t+1) via (39).
13: Compute a j(t), c j(t) and b j(t) via (32), (33) and (34), respectively.
14: end for
15: end for

The iterations comprising the ADMoM-based non-linear DSVM (MoM-NDSVM) are summa-
rized as Algorithm 3. It is important to stress that Algorithm 3 starts by having all nodes agree on
the common quantities Γ, JC, η, and K(·, ·). Also, each node computes its local kernel matrices
as in (28)-(30), which remain unchanged throughout. Subsequently, Algorithm 3 runs in a manner
analogous to Algorithm 1, with the difference that every node communicates an (L+1)×1 vector
(instead of (p+1)×1) for its neighbors to receive w̃ j(t) and b j(t).

4.1 On the Optimality of NDSVM and the Selection of Common Vectors

By construction, Algorithm 3 produces local discriminant functions whose predictions for {χl}Ll=1
are the same for all nodes in the network; that is, g∗1(χl) = . . . = g∗J(χl) = g∗(χl) for l = 1, . . . ,L,
where g∗(χl) = φT (χl)w∗ + b∗, and {w∗,b∗} are the optimal solution of the centralized problem
(2). Viewing {χl}Ll=1 as a classification query, the proposed MoM-NDSVM algorithm can be im-
plemented as follows. Having this query presented at any node j entailing a set of unlabeled vectors
{χl}

L
l=1, the novel scheme first percolates {χl}Ll=1 throughout the network.3 Problem (23) is subse-

quently solved in a distributed fashion using Algorithm 3. Notice that in this procedure no database
information is shared.

Although optimal in the sense of being convergent to its centralized counterpart, the algorithm
just described needs to be run for every new classification query. Alternatively, one can envision
procedures to find discriminant functions in a distributed fashion that classify new queries without
having to re-run the distributed algorithm. The key is to pre-select a fixed set {χl}Ll=1 for which
g∗ in (5) is (approximately) equivalent to g∗j in (24) for all j ∈ J . From Theorem 1, we know
that all local functions g∗j share a common space spanned by the χl-induced kernels {K(·,χl)}. If
the space H where g∗ lies is finite dimensional, for example, when adopting linear or polynomial

3. Percolating {χ}Ll=1 in a distributed fashion through the network can be carried in a finite number of iterations at most
equal to the diameter of the network.
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kernels in (5), one can always find a finite-size set {χl}Ll=1 such that the space spanned by the
set of kernels {K(·,χl)} contains H , and thus g∗1(x) = . . . = g∗J(x) = g∗(x) ∀x ∈ X (Predd et al.,
2006). Indeed, when using linear kernels, the MoM-NDSVM developed here boils down to the
MoM-DSVM developed in Section 3 for a suitable finite-size set {χl}Ll=1.

In general, however, the space spanned by {K(·,χl)} may have lower dimensionality than H ;
thus, local functions g∗j do not coincide at every point. In this case, MoM-NDSVM finds local
approximations to the centralized g∗ which accommodate information available to all nodes. The
degree of approximation depends on the choice of {χl}Ll=1. In what follows, we describe two alter-
natives to constructing such a set {χl}Ll=1.

• Grid-based designs. Consider every entry k of the training vectors {x jn}, and form the
intervals Ik := [xmink ,xmaxk ], k = 1, . . . , p, where xmink := min j∈J , n=1,...,Nj [x jn]k and xmaxk :=
max j∈J , n=1,...,Nj [x jn]k. Take for convenience L = Mp, and partition uniformly each Ik to ob-
tain a set of M equidistant points Qk := {qk1, . . . ,qkM}. The set {χl}Ll=1 can be formed by
taking all Mp possible vectors with entries drawn from the Cartesian product Q1× . . . ,×Qp.
One possible set we use for generating the {χl}Ll=1 vectors is obtained by selecting the k-th
entry of the l-th vector as [χl]k = q

k,
(

l
Mk−1

modM
)
+1, where l = 1, . . . ,Mp and k = 1, . . . , p. In

this case, MoM-NDSVM performs a global consensus step on the entry-wise maxima and
minima of the training vectors {x jn}. Global consensus on the entry-wise maxima and min-
ima can be computed exactly in a finite number of iterations equal to at most the diameter of
the graph G .

• Random designs. Once again, we consider every entry k of the training vectors {x jn}. MoM-
NDSVM starts by performing a consensus step on the entry-wise maxima and minima of the
local training vectors {x jn}. The set {χl}Ll=1 is formed by drawing elements χl randomly
from a uniform p-dimensional distribution with extreme points per entry given by the extreme
points xmink and xmaxk , k = 1, . . . , p. To agree on the set {χl}Ll=1, all nodes in the network are
assumed to share a common seed used to initialize the random sampling algorithms.

As mentioned earlier, the number of points L affects how close local functions are to each other
as well as to the centralized one. The choice of L also depends on the kernel used, prior knowledge
of the discriminant function, and the available local training data Nj. Increasing L guarantees that
local functions will be asymptotically close to each other regardless of Nj; however, the commu-
nication cost and computational complexity per node will increase according to L [cf. Algorithm
3]. On the other hand, a small L reduces the communication overhead at the price of increasing the
disagreement among the g∗j’s. This trade-off will be further explored in the ensuing section through
simulated tests.

5. Numerical Simulations

In this section, we analyze the performance of both MoM-DSVM and MoM-NDSVM algorithms
using different networks with synthetic and real-world training sets. Although we focus on the
binary classification case, it is worth remembering that K-ary classification problems with K > 2
can be solved via binary classification schemes, for example, by using one versus all classifiers, or
all versus all classifiers (Duda et al., 2002, Ch. 5).
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5.1 Linear Classifiers

In this section, we present experiments on synthetic and real data to illustrate the performance of
our distributed method for training linear SVMs.

5.1.1 TEST CASE 1: SYNTHETIC TRAINING SET

Consider a randomly generated network with J= 30 nodes. The network is connected with algebraic
connectivity 0.0448 and average degree per node 3.267. Each node acquires labeled training exam-
ples from two different classes C1 and C2 with corresponding labels y1 = 1 and y2 = −1. Classes
C1 and C2 are equiprobable and consist of random vectors drawn from a two-dimensional Gaussian
distribution with common covariance matrix Σ = [1, 0; 0, 2], and mean vectors m1 = [−1, −1]T
and m2 = [1, 1]T , respectively. Each local training set S j consists of Nj = N = 10 labeled examples
and was generated by: (i) randomly choosing class Ck, k = 1,2; and, (ii) randomly generating a la-
beled example (xTjn,y jn = Ck) with x jn ∼N (mk,Σ). Thus, the global training set contains JN = 300
training examples. Likewise, a test set STest := {(x̃n, ỹn), n = 1, . . . ,NT} with NT = 600 examples,
drawn as in (i) and (ii), is used to evaluate the generalization performance of the classifiers. The
Bayes optimal classifier for this 2-class problem is linear (Duda et al., 2002, Ch. 2), with risk
RBayes = 0.1103. The empirical risk of the centralized SVM in (1) is defined as

Rcentralemp :=
1
NT

NT
∑
n=1

1
2
|ỹn− ŷn|

where ŷn is the predicted label for x̃n. The average empirical risk of the MoM-DSVM algorithm as
a function of the number of iterations is defined as

Remp(t) :=
1
JNT

J

∑
j=1

NT
∑
n=1

1
2
|ỹn− ŷ jn(t)| (40)

where ŷ jn(t) is the label prediction at iteration t and node j for x̃n, n = 1, . . . ,NT using the SVM
parameters in v j(t). The average empirical risk of the local SVMs across nodes Rlocalemp is defined as
in (40) with ŷ jn found using only locally-trained SVMs.

Figure 3 (left) depicts the risk of the MoM-DSVM algorithm as a function of the number of
iterations t for different values of JC. In this test, η = 10 and a total of 500 Monte Carlo runs
are performed with randomly drawn local training and test sets per run. The centralized and local
empirical risks withC= 10 are included for comparison. The average local prediction performance
is also evaluated. Clearly, the risk of the MoM-DSVM algorithm reduces as the number of iterations
increases, quickly outperforming local-based predictions and approaching that of the centralized
benchmark. To further visualize this test case, Figure 3 (right) shows the global training set, along
with the linear discriminant functions found by the centralized SVM and the MoM-DSVM at two
different nodes after 400 iterations with JC = 20 and η = 10. Local SVM results for two different
nodes are also included for comparison.

5.1.2 TEST CASE 2: MNIST TRAINING SET

Here, the MoM-DSVM is tested on the MNIST database of handwritten images (Lecun et al., 1998).
The MNIST database contains images of digits 0 to 9. All images are of size 28 by 28 pixels. We
consider the binary problem of classifying digit 2 versus digit 9 using a linear classifier. For this
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Figure 3: Evolution of the test error (RTest) and prediction error (RPred) of MoM-DSVM for a two-
class problem using synthetic data and a network with J = 30 nodes. Centralized SVM
performance and average local SVMs performance are also plot for comparison (left).
Decision boundary comparison among MoM-DSVM, centralized SVM and local SVM
results for synthetic data generated from two Gaussian classes (right).

experiment each image is vectorized to a 784 by 1 vector. In particular, we take 5,900 training
samples per digit, and a test set of 1,000 samples per digit. Both training and test sets used are as
given by the MNIST database, that is, there is no preprocessing of the data. For simulations, we
consider two randomly generated networks with J = 25, algebraic connectivity 3.2425, and average
degree per node 12.80; and J = 50 nodes, algebraic connectivity 1.3961, and average degree per
node 15.92. The training set is equally partitioned across nodes, thus every node in the network
with J = 25 has Nj = 472 training vectors, and every node in the network with J = 50 has Nj = 236
samples. The distribution of samples across nodes influences the training phase of MoM-DSVM.
For example, if data per node are biased toward one particular class, then the training phase may
require more iterations to percolate appropriate information across the network. In the simulations,
we consider the two extreme cases: (i) training data are evenly distributed across nodes, that is,
every node has the same number of examples from digit 2 and from digit 9; and, (ii) highly biased
local data, that is, every node has data corresponding to a single digit; thus, a local binary classifier
cannot be constructed.

The figures in this section correspond to one run of the MoM-DSVM for a network with noise-
less communication links. Figure 4 shows the evolution of the test error for the network with 25
nodes and highly biased local data. Likewise, Figure 5 shows the evolution of the test error for
the network with 50 nodes and highly biased local data. Different values for the penalties JC and
η were used to illustrate their effect on both the classification performance and the convergence
rate of MoM-DSVM. The parameter JC controls the final performance of the classifier; but for a
finite number of iterations, η also influences the final performance of the classifier. Larger values
of η may be desirable; however, if η is too large, the algorithm first focuses on reaching consensus
across nodes disregarding the classification performance. Although, MoM-DSVM is guaranteed to
converge for all η, a very large choice for η may hinder the convergence rate.
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Figure 4: Evolution of the test error (RTest) of MoM-DSVM, with penalty coefficients JC= 1 (left)
and JC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
unevenly distributed across nodes, and a network with J = 25 nodes.

Figure 5: Evolution of the test error (RTest) of MoM-DSVM, with penalty coefficients JC= 1 (left)
and JC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
unevenly distributed across nodes, and a network with J = 50 nodes.

Next, the dispersion of the solutions after 3,000 iterations for different values of η is tested.
For our experiment, dispersion refers to how similar are the local v j(t) at every node. The mean-
squared error (MSE) of the solution across nodes is defined as Δ(t) := 1

J ∑
J
j=1 ||v j(t)− v̄(t)||2 where

v̄(t) := 1
J ∑

J
j=1 v j(t). Table 1 shows Δ(t) at t = 3,000 for different values of η and JC. Note that

larger values of η lead to smaller dispersion in the solution; however, as illustrated in Figure 5, they
do not imply faster convergence rates.
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Δ(t) at t = 3,000
J = 25 J = 50

η JC = 1 JC = 5 JC = 1 JC = 5
1 3.1849×10−7 3.1870×10−7 2.3749×10−7 2.3227×10−7
5 1.5591×10−8 1.4760×10−8 2.6613×10−8 2.6646×10−8
10 2.9280×10−10 2.9112×10−10 3.6028×10−9 3.6207×10−9

Table 1: MSE Δ(t) with MNIST data set and biased local data for different values of η and JC.

Consider next data that are evenly distributed across nodes. The MNIST training set is parti-
tioned across nodes ensuring that every node has an equal number of examples from digit 2 and
digit 9. Figure 6 shows the evolution of the test error for the network with J = 25 nodes and Figure
7 shows the evolution of the test error for the network with J = 50 nodes for different values for
the penalties JC and η. In this case, local classifiers achieve low test error after one iteration of
the MoM-DSVM. In subsequent iterations MoM-DSVM forces all local classifiers to consent, but
the test error does not decrease monotonically across iterations. This variation is small, ranging
between 0.015 and 0.02, since all local classifiers already have low test error. Both Figures 6 and
7 show that between iterations 500 and 2,000, the global test reaches a minimum value, then it
increases and converges to a larger value. This non-monotonic behavior can be attributed to the fact
that the MoM-DSVM iterates are not guaranteed to be monotonic. Moreover, before consensus is
reached across all nodes the test error at any given node and iteration index does not necessarily
need to be greater than the centralized one.

It is also worth noticing the resemblance of the curves in the left and right panels of Figures 4,
5, 6 and 7. Although the test error is nearly identical for JC= 1 and JC= 5, this does not imply that
the v j(t) are nearly identical across iterations. Furthermore, the insensitivity w.r.t. small changes
in JC reveals that in order to affect the classifier performance, the parameter JC must vary in the
order of J. Relating the distributed setting with its centralized counterpart, it follows that with, for
example, J = 25 a change in JC from 1 to 5 in the distributed setup of (6), corresponds to a change
in C from 0.04 to 0.20 for the centralized setting of (1). Such a small change in C explains why the
classification performance of the equivalent centralized scenarios is nearly identical as reflected in
the figures.

In both biased and evenly distributed data, after a few iterations, MoM-DSVM yields an average
performance close to the optimal one. It is also interesting to note that in the biased data case, nodes
alone cannot construct an approximate classifier since they do not have samples from both classes.
If an incremental approach were used it would need at least one full cycle through the network to
enable construction of local estimators per node.

Finally, the effect of network connectivity on the performance of MoM-DSVM is explored. In
this experiment, we consider a network with J= 25 nodes, ring topology and biased data distribution
as before. The performance of MoM-DSVM is illustrated by Figure 8. It is clear that in this
case a larger η improves the convergence rate. Also, note that after a few iterations the average
performance of the classifier across the network is close to the optimal. In practice, a small reduction
of performance over the centralized classifier may be acceptable in which case MoM-DSVM can
stop after a small number of iterations. Note that the communication cost of MoM-DSVM can be
easily computed at any iteration in terms of the number of scalars transmitted across the network.
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Figure 6: Evolution of the test error (RTest) of MoM-DSVM, with penalty coefficients JC= 1 (left)
and JC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
evenly distributed across nodes, and a network with J = 25 nodes.

Figure 7: Evolution of the test error (RTest) of MoM-DSVM, with penalty coefficients JC= 1 (left)
and JC= 5 (right), for a two-class problem using digits 2 and 9 from the MNIST data set
evenly distributed across nodes, and a network with J = 50 nodes.

For the MNIST data set, the total communication cost up to iteration t is 785Jt scalars (cf. Section
3).

5.1.3 TEST CASE 3: SEQUENTIAL OPERATION

Consider a network with J = 10 nodes, algebraic connectivity 0.3267, and average degree per node
2.80. Data from two classes arrive sequentially at each node in the following fashion: at t = 0
each node has available one labeled training example drawn from the class distributions C1 and C2
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Figure 8: Evolution of the test error (RTest) of MoM-DSVM, with penalty coefficients JC = 1, for
a two-class problem using digits 2 and 9 from the MNIST data set unevenly distributed
across nodes, and a network with ring topology and J = 25 nodes.

described in Test Case 1. From t = 0 to t = 19, each node acquires a new labeled training example
per iteration from this same distribution. From t = 20 to t = 99, no new training example is acquired.
After iteration t = 99, the distribution from which training examples in class C1 were generated
changes to a two-dimensional Gaussian distribution with covariance matrix Σ1 = [1, 0; 0, 2], and
mean vector m1 = [−1, 5]T . From t = 100 to t = 119, each node acquires a new labeled training
example per iteration using the new class-conditional distribution of C1, while the class-conditional
distribution of C2 remains unchanged. During these iterations, we remove the training examples
from C1 that were generated during the interval t = 0 to t = 19, one per iteration. From t = 120
to t = 299 nodes do not acquire new labeled training examples. From iteration t = 300 to t = 499,
we include 8 new training examples per node and per iteration drawn only from class C1 with the
same class-conditional distribution as the one used at the beginning of the algorithm t = 0. Finally,
at iteration t = 500 all labeled training samples drawn from t = 300 to t = 499 are removed at each
node at once, returning to the global data set available prior to iteration t = 300. The algorithm
continues without any further change in the training set until convergence.

Figure 10 illustrates the tracking capabilities of the online MoM-DSVM scheme for different
values of η. A total of 100 Monte Carlo runs were performed. The figure of merit in this case is
V (t) := 1

J ∑
J
j=1
∥∥v j(t)−vc(t)

∥∥, where vc(t) contains the coefficients of the centralized SVM using
the training set available at time t. The peaks in Figure 10 correspond to the changes described in our
experiment. MoM-DSVM rapidly adapts the coefficients after the local training sets are modified.
Clearly, the parameter η can be tuned to control the speed with which MoM-DSVM adapts. Notice
that a large η may cause over-damping effects hindering the final performance of the algorithm.
Figure 9 shows snapshots, for a single run of MoM-DSVM and η = 30, of the global training set
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and local discriminant functions at different iterations. The solid training examples correspond to
the current global SVs found by the online MoM-DSVM algorithm.

Figure 9: Snapshots of the global training data set and local linear discriminant g(t)
j (x) obtained

with MoM-DSVM at all nodes for a synthetic training set evolving in time.

5.1.4 TEST CASE 4: COMMUNICATION COST COMPARISON

In this section, a comparison with the incremental SVM (ISVM) approach in Lu et al. (2008) is
presented. The network with J = 30 nodes is considered again, where each node j has available
a local training set with Nj = N = 20 with training vectors generated as in Test Case 1. A global
test set with NT = 1,200 was used, and 100 Monte Carlo runs were performed. The MoM-DSVM
algorithm used JC = 20. The network topology is a ring; thus, ISVM entails no extra overhead due
to inter-node communications. Nevertheless, in more general network topologies such overhead
might dramatically increase the total communication cost incurred by ISVM. The communication
cost is measured in terms of the number of scalars communicated per node. For MoM-DSVM, this
cost is fixed per iteration and equal to 3J scalars; recall that per iteration every node broadcasts
v j(t) to its neighborhood (cf. Algorithm 1). The ISVM approach locally trains an SVM and passes
its local SVs to the next node in the cycle; the algorithm continues traversing the network until no
SVs are shared among neighboring nodes. Thus, the communication cost per iteration depends on
the number of SVs found at each node, that is, 3×{# of SVs at node j}. A contingency strategy to
prevent SVs from being transmitted multiple times by the same node as well as to prevent repetition
of training set elements at individual nodes is run in parallel with the ISVM algorithm.

Figure 11 depicts the cumulative communication cost for MoM-DSVM and ISVM as a function
of their classification performance. In this particular case and with the most favorable network
topology for an incremental approach, we observe that MoM-DSVM achieves a comparable risk to
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Figure 10: Average error V (t) of MoM-DSVM for a synthetic training set evolving in time evalu-
ated for various values of η. The peaks correspond to iteration indexes where the local
training sets were modified.

ISVM with a smaller number of transmitted scalars. Specifically, to achieve a risk of 0.1159, MoM-
DSVM communicates on average 1,260 scalars whereas ISVM communicates on average 8,758
scalars. MoM-DSVM can largely reduce the amount of communications throughout the network,
a gain that translates directly to lower power consumption, and thus, in the context of WSNs (see
Example 1), longer battery life for individual nodes.

5.2 Nonlinear Classifier

In this section, we present experiments on synthetic and real data to illustrate the performance of
our distributed method for training nonlinear SVMs.

5.2.1 TEST CASE 5: SYNTHETIC TRAINING SET

Consider the same network as in Test Case 1. Each node acquires labeled training examples
from two different equiprobable classes C1 and C2. Class C1 contains now examples from a two-
dimensional Gaussian distribution with covariance matrix Σ1 = [0.6,0;0,0.4], and mean vector
m1 = [0,0]T . Class C2 is a mixture of Gaussian distributions with mixing parameters π21 = 0.3
and π22 = 0.7; mean vectors m2 = [−1,−1]T and m3 = [2,2]T ; and, equal covariance matrix Σ. The
optimal Bayes classifier here is clearly nonlinear.

We generate a matrix Γ with rows taken from a uniform two-dimensional grid of L points. The
extreme values of the grid are chosen equal to the extreme points of the global training set. Local
training sets are of size Nj = 10 ∀ j ∈ J , and are generated from the distributions described in the
previous paragraph. Each node uses its local training sets as well as the matrix Γ to build the local
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Figure 11: Communication cost, measured in terms of the number of scalars transmitted, of MoM-
DSVM and ISVM for a network with ring topology and J = 30.

classifier, as described in (24). A Gaussian kernel with σ2 = 0.9 and η = 10 was employed to
construct a global nonlinear classifier. Figure 12 (left) shows the classification performance on the
points {χl}Ll=1; that is, the classification performance when the testing set is given by {(χl,yl) :
l = 1, . . . ,L}, where yl indicates the class from which χl was originally drawn. For comparison,
we have also included the Bayes risk, the centralized SVM empirical risk, and the local SVM
risk. As expected, the classification performance of the distributed classifier approaches that of the
centralized one.

Figure 12 (right) illustrates the performance of MoM-NDSVM on a randomly-generated test
set of size NT = 600 for various choices of L and JC. Matrix Γ was taken from a uniform two-
dimensional grid of L points as before. A total of 500 Monte Carlo runs were performed. Clearly,
the asymptotic performance of MoM-NDSVM rapidly outperforms the average performance of a
locally-trained SVM and closely converges to the centralized SVM for larger values of L with all
other parameters fixed. However, it is worth observing that the choice of the parameter JC also
influences the performance. Large values for JC promote reduced number of prediction errors
on the training set (possibly) leading to over-fitting. Various strategies, such as cross validation,
can be implemented to select optimal values for both JC and σ2 at the expense of training with
MoM-NDSVM multiple times. To visualize the results, Figures 13 and 14 depicts the form of the
discriminant function for several values of L at 6 different nodes in the network. Centralized and
local discriminant functions are also included as benchmarks. Even though the nodes do not exactly
agree on the final form of g j(x) at all points, their classification performance closely converges to
the one obtained by the centralized SVM benchmark.
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Figure 12: Evolution of prediction error (RPred), where matrix Γ is considered a classification query
of size L (left); and test error (RTest), where matrix Γ is constructed as a random grid
with L points (right), for MoM-NDSVM applied to a two-class problem using synthetic
data and a network with J = 30 nodes.

Figure 13: Comparison of the discriminant functions found by a centralized SVM, local SVMs,
and the MoM-NDSVM algorithm at 6 different nodes of a network with J = 30 using
synthetic data. A penalty term JC = 20 and a random grid with L= 100 were used.

5.2.2 TEST CASE 6: UCI TRAINING SETS

Four data sets from the UCI repository have been chosen to test our MoM-NDSVM algorithm: Iris,
Wine, Puma Indians Diabetes, and Parkinsons (Asuncion and Newman, 2007). A brief description
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Figure 14: Comparison of the discriminant functions found by a centralized SVM, local SVMs,
and the MoM-NDSVM algorithm at 6 different nodes of a network with J = 30 using
synthetic data. A penalty term JC = 60 and a random grid with L= 100 were used.

Data set Classes Dim. Features Size Train. Set Test Set
Iris 3 4 150 12 40
Wine 3 13 178 12 40
Diabetes 2 8 768 50 200
Parkinsons 2 23 197 12 40

Table 2: UCI data sets

of each of the data sets is shown in Table 2. Examples from the data sets are randomly split among
J = 5 nodes in a fully-connected network. Focusing on the binary classification problem, only
classes 2 and 3 from the Iris data set and classes 1 and 2 from the Wine data set are used. For
simulation purposes, each local training set as well as the testing set have the same number of
examples from each class.

Table 3 compares performance of the classifiers constructed viaMoM-NDSVMwith the average
performance of the 5 local classifiers trained with local training sets only, and with the one of
a centralized SVM trained with the training set available to the whole network. A total of 100
Monte Carlo runs were performed per data set, where both training and testing sets were drawn
randomly per run. The MoM-NDSVM parameters JC and η were chosen via cross-validation for
every training set as in Hastie et al. (2009, Ch. 7). Gaussian kernels as in the previous section were
used. The local and centralized SVMs were trained using the Spider toolbox for MATLAB (Weston
et al., 2006). To evaluate the local performance of the classifiers, each node trains a local SVM and
its performance is compared with the one obtained via MoM-NDSVM. For each training set we
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Data set Local Centralized MoM-NDSVM MoM-NDSVM Class. Query
L= 150 L= 300

Iris 8.39% 4.43% 5.15% 5.26% 4.28%
Wine 15.71% 6.17% 7.37% 7.33% 6.60%
Diabetes 34.52% 24.40% 29.69% 28.92% 23.76%

Parkinsons 1 33.76% 18.45% 30.14% 31.13% 18.56%
Parkinsons 2 34.78% 18.86% 23.60% 24.05% 20.28%

Table 3: UCI data sets centralized versus local versus distributed performance comparison for t =
1,000. Parkinsons 2 is the normalized Parkinsons training set.

explore two cases: (i) local classifiers at each node; and (ii) Γ as a classification query. Figure 15
plots the training evolution of MoM-NDSVM for the Puma Indians Diabetes data set.

Figure 15: Evolution of test error (RTest) for Puma Indians Diabetes data set taken from the UCI
repository, and a fully connected network with J = 5 nodes.

The performance of MoM-NDSVM for (i) depends heavily on the choice of Γ. To illustrate
this point, the size of the local training sets per node has been chosen small when compared to the
dimensionality of the feature space. Let xmink and xmaxk correspond to the smallest and largest values
that the k-th feature can take. The row-elements of matrix Γ are chosen randomly and independently
over the interval [xmink ,xmaxk ] per component. Two different values of L were chosen to compare the
performance of MoM-NDSVM. For small values of p, Γ can be chosen as a grid of M uniformly
spaced points per dimension; therefore, L = Mp. The results summarized in Table 3 highlight
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η= 10 η= 20
L p0 = 49 p0 = 81 p0 = 49 p0 = 81
400 0.370% 1.246% 0.504% 1.448%
800 0.136% 0.242% 0.234% 0.654%

Table 4: Average MoM-NDSVM risk (Gaussian kernel) at iteration t = 3,000 for compressed
MNIST data set with dimensionality p0.

the fact that the classification performance at each node remains limited by the training examples
available locally. However, in this extremely challenging case, collaboration among nodes improves
the overall classification performance of the network.

Table 3 also illustrates how conditioning of the data together with the choice for the kernel func-
tion can impact the performance of MoM-NDSVM. In particular, its last two rows compare the clas-
sification performance achieved for the Parkinsons training set without normalization (Parkinsons
1) and with its features normalized to have maximum absolute size unity (Parkinsons 2). Although
both centralized and local performance remain nearly unchanged, the MoM-NDSVM performance
improves about 7% for both L = 150 and L = 300. An intuitive explanation follows from look-
ing closer at the values of the features in the Parkinsons training set. Some features take values in
the order of 102 while others take values in the order of 10−3; thus, a Gaussian kernel that spans
symmetrically along all directions is not the best kernel choice for this case. After normalization, a
smaller number L of Gaussian kernels can be used to obtain a better representation of the decision
surface. In conclusion, data across nodes must be preprocessed whenever possible to achieve a better
trade off between classification performance and the computational complexity of MoM-NDSVM.

Note that the classification performance for case (ii) approaches the centralized SVM one. After
a few iterations, the classification accuracy returned by the network surpasses that of locally trained
SVMs. The speed of convergence might be hindered if L is chosen large. Fine tuning of η can
achieve a desirable trade-off between speed of convergence and performance in terms of test error.

5.2.3 TEST CASE 7: MNIST TRAINING SET

Consider a network with J = 25, algebraic connectivity 3.2425, and average degree per node 12.8.
Local training sets have been constructed based on theMNIST data set using digits 2 and 9 only. The
nodes wish to train a nonlinear global classifier using a Gaussian kernel via MoM-NDSVM. Each
node j has available a training set S j with 472 examples from one class only, thus individual nodes
cannot construct a classifier locally. The large size of the images in MNIST leads to an excessively
large choice for L = L0 1 784, hindering the convergence of MoM-NDSVM. Instead, each image
has been compressed via principal component analysis (PCA) to vectors of dimensionality p0 <
784. It was observed experimentally that after compression, the two classes become separable.
Indeed, the centralized equivalent SVM yields test error zero. Figure 16 depicts the performance of
MoM-NDSVM for various choices of η and p0. Note that η = 20 leads to slower convergence of
the average risk across the network. Table 4 summarizes the classification performance of MoM-
NDSVM after 3,000 iterations. A larger value for L improves the average classification performance
of the network. However, the number of iterations required for MoM-NDSVM to converge increases
with L.
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Figure 16: Average evolution of MoM-NDSVM risk (Gaussian kernel) for compressed MNIST
data set for L= 400 (left), and L= 800 (right) in a network with J = 25 nodes. MNIST
images have been compressed to dimensionality p0 via PCA.

5.3 Noisy Inter-node Communications

This subsection presents robustness tests of the novel distributed classification scheme with noisy
inter-node exchanges. Such noise is due to, for example, quantization error, additive Gaussian noise
at the receiving ends, or, Laplacian noise intentionally added to transmitted samples in order to
guarantee data privacy (Chaudhuri and Monteleoni, 2008; Dwork et al., 2006). Although focus is
placed on MoM-DSVM, the results also carry over to MoM-NDSVM.

5.3.1 TEST CASE 8: MOM-DSVM WITH PERTURBED TRANSMISSIONS

In this setting, per iteration t, each node j purposely introduces a perturbation ε j(t) to the variable
v j(t) before transmission. Perturbed transmissions can be used to preserve data privacy (Dwork
et al., 2006). Consider an eavesdropper accessing the noisy versions of v j(t). The form and variance
level Σ j of the local perturbations ε j(t) can be adjusted per node to prevent the eavesdropper from
learning S j. For instance, Dwork et al. (2006) suggests introducing zero-mean Laplacian random
variable whose variance depends on the sensitivity of v j(t) as a function of S j.

The MoM-DSVM iterations, with JC = 5 and η = 10, are modified by introducing local per-
turbations ε j(t) to v j(t). Each ε j(t) is zero-mean Laplacian distributed and white across time and
space, that is, E{ε j(t1)εTj (t2)} = 0 if t1 ,= t2 and E{εi(t)εTj (t)} = 0 if i ,= j ∀i, j ∈ J . The resulting
MoM-DSVM iterations are

λ j(t+1) = arg max
λ j: 0 j#λ j#JC1 j

−
1
2
λTj Y jX jU−1

j X
T
j Y jλ j+

(
1 j+Y jX jU−1

j f j(t)
)T
λ j,

v j(t+1) = U−1
j
[
XTj Y jλ j(t+1)− f j(t)

]
,

α j(t+1) = α j(t)+
η
2 ∑i∈B j

[(v j(t+1)+ ε j(t))− (vi(t+1)+ εi(t))]

where U j = (1+2η|B j|)Ip+1−Πp+1 and f j(t) := 2α j(t)−η∑i∈B j [v j(t)+ε j(t)+vi(t)+εi(t)] (cf.
Proposition 1). In this case, MoM-DSVM operates in an analogous manner to Algorithm 1, differing
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only in their broadcasting step. In the perturbed transmissions case, every node j broadcasts a per-
turbed vector v j(t)+ ε j(t) (instead of v j(t) alone) to its one-hop neighbors. Note that neighboring
nodes i ∈ B j only “see” the aggregate perturbed vector v j(t)+ ε j(t) from node j.

Figure 17 illustrate the performance of MoM-DSVM after 100 Monte Carlo runs with perturbed
transmissions for a network with J = 8 nodes, algebraic connectivity 0.4194, and average degree
per node 2.5. Nodes collect observations from 2 classes C1 and C2, where C1 is N (m1,Σ1) with
m1 = [0, 0]T , and Σ1 = [0.6, 0; 0, 0.4], and C2 isN (m2,Σ2)withm2 = [2, 2]T , and Σ2 = [1, 0; 0, 2].
Each node collects an equal number of observations per class for a total ofNj =N= 50 observations.
The noise ε j(t), inserted per transmission per node, has covariance matrix given by σ2I3. The
optimal classifier is determined by v∗ = [−1.29, −0.76, 1.78]T , which is the one obtained by MoM-
DSVM with σ2 = 0. Interestingly, the average risk in the presence of perturbed transmissions
remains close to the perturbation-free risk. Even for a large perturbation σ2 = 1, the average risk
hovers around 0.1075. Furthermore, the risk variance remains small. Indeed, it can be shown that
the proposed scheme yields estimates v j(t) with bounded variance.

Figure 17: Average risk (left) and risk variance (right) for a network with J= 8, and a finite variance
perturbation added to v j(t) before it is broadcasted.

5.3.2 TEST CASE 9: NOISY COMMUNICATION LINKS

The MoM-DSVM is also robust to non-ideal inter-node links corrupted by additive noise due to,
for example, quantization or additive Gaussian receiver noise. In this case, the noise is added at the
receiver side. The MoM-DSVM must be modified to obtain a bounded variance on the estimates
v j(t), and the local Lagrange multipliers α ji(t) := α ji1(t) must be exchanged among neighboring
nodes; see Zhu et al. (2009) for similar approaches. Each communication link between node j and
node i ∈ B j introduces additive noise εvji(t) (εαji(t)) to the variable v j(t) (α ji). The perturbations
{εvji(t)} ({εαji(t)}) are zero-mean random variables with covariance matrix Σvji (Σαji), white across
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Algorithm 4MoM-DSVM with noisy links
Require: Randomly initialize v j(0), and α ji(0) = 0(p+1)×1 ∀ j ∈ J ∀i ∈ B j
1: for t = 0,1,2, . . . do
2: for all j ∈ J do
3: Compute λ j(t+1) via (41).
4: Compute v j(t+1) via (42).
5: end for
6: for all j ∈ J do
7: Broadcast v j(t+1) to all neighbors i ∈ B j.
8: end for
9: for all j ∈ J , i ∈ B j do
10: Compute α ji(t+1) via (43).
11: end for
12: for all j ∈ J , i ∈ B j do
13: Transmit α ji(t+1) to i ∈ B j.
14: end for
15: end for

time and space. The modified MoM-DSVM iterations are

λ j(t+1) = arg max
λ j: 0 j#λ j#JC1 j

−
1
2
λTj Y jX jU−1

j X
T
j Y jλ j +

(
1 j +Y jX jU−1

j f j(t)
)T
λ j, (41)

v j(t+1) = U−1
j
[
XTj Y jλ j(t+1)− f j(t)

]
, (42)

α ji(t+1) = α ji(t)+
η
2
[v j(t+1)− (vi(t+1)+ εvi j(t))] (43)

where f j(t) := ∑i∈B j

{
α ji(t)− (αi j(t)+ εαi j(t))−η[v j(t)+(vi(t)+ εvi j(t))]

}
. The resulting MoM-

DSVM algorithm with noisy links is summarized as Algorithm 4.
The left panels of Figures 18 and 19 depict the average performance after 100 Monte Carlo runs

of MoM-DSVM for the same network of Test Case 8. As seen, the variance of the estimates v j(t)
yielded by the modified MoM-DSVM algorithm remains bounded.

Incremental approaches are hindered by noisy communication links because noise added to the
SVs perturbs and accumulates in the local training sets. In ISVM, SVs are bound to percolate across
the network, and even to come back to the node where they originated. Due to the noise, however,
nodes cannot recognize noisy feature vectors already in S j. This is problematic since the size of local
problems being solved per node increases linearly with the size of the training set, thus requiring a
heuristic size-control scheme. The right panels of Figures 18 and 19 show the performance of an
ISVM for different levels of noise variance. Noise is added to the SVs and noisy labels are rounded
to 1 or −1. Different from MoM-DSVM, the performance of ISVM quickly deteriorates, even for
low noise levels since the average risk approaches 0.5 after a few iterations, which amounts to pure
guessing of the binary classifier.
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Figure 18: Average risk for a network with J = 8, and noisy communication links using a synthetic
data set. MoM-DSVM (left) and incremental SVM approach (right).

Figure 19: Risk variance for a network with J = 8 and noisy communication links corresponding to
average risk in Figure 18. MoM-DSVM (left) and incremental SVM approach (right).

6. Conclusions

This work developed distributed SVM algorithms by reformulating the centralized SVM training
problem into per-node separable sub-problems linked via consensus constraints, which can be
solved using decentralized optimization tools. The novel algorithms are well suited for applica-
tions involving data that cannot be shared among collaborating nodes, which possibly operate under
stringent resources, and may thus desire to reduce overhead of inter-node message exchanges.

Based on distributed training sets, the novel MoM-DSVM algorithm constructs a maximum-
margin linear classifier iteratively. At every iteration, locally updated classifier vectors are ex-
changed among neighboring nodes. Convergence to the centralized linear SVM formulation is
guaranteed. The approach lends itself naturally to online and asynchronous variants, which allow
adaptation of the proposed DSVM to scenarios when elements of the local training sets become
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available sequentially, or, when outdated elements need to be removed. Furthermore, the MoM-
DSVM can be generalized to construct distributed nonlinear discriminant functions. The resulting
iterative MoM-NDSVM algorithm is provably convergent to its centralized counterpart, and its
complexity is kept at a manageable level by using the kernel trick. Local classifiers are limited by
the span of their local training sets, and a set of basis common to all nodes.

Although not formally treated, the novel distributed classification algorithms can be readily
extended to solve distributed support vector regression (DSVR) problems. The main characteristics
of the present approach, such as its convexity, remain unchanged. Therefore, it is expected that
linear and nonlinear estimators developed forMoM-DSVR, will enjoy convergence claims similar to
those proved here for MoM-DSVM and MoM-NDSVM classifiers. To complement the distributed
supervised classifiers introduced here, our current research deals with consensus-based distributed
versions of the unsupervised k-means and expectation-maximization clustering algorithms.
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Appendix A. The Alternating Direction Method of Multipliers

The ADMoM is a distributed optimization algorithm solving the following problem

min
v

F1(v)+F2(Av) (44)

s.t. v ∈ P1, Av ∈ P2

where F1 : Rp1 → R and F2 : Rp2 → R are convex functions, A is a p2× p1 matrix, while P1 ⊂ Rp1

and P2 ⊂ Rp2 denote non-empty polyhedral sets.
Upon introducing the auxiliary variable ω ∈ Rp2 , ADMoM solves the separable problem

min
v,ω

F1(v)+F2(ω)

s.t. Av= ω (45)
v ∈ P1, ω ∈ P2
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which is clearly equivalent to (44). With α ∈ Rp2 denoting the Lagrange multiplier corresponding
to the constraint Av= ω, the augmented Lagrangian corresponding to (45) is

L(v,ω,α) = F1(v)+F2(ω)+αT (Av−ω)+
η
2
‖Av−ω‖2 (46)

where the parameter η > 0 controls the impact of the constraint violation in (45). The ADMoM
minimizes alternately L in (46) w.r.t. the primal variable v, then w.r.t. the auxiliary variable ω, and
after each cycle it uses these iterates to update the multiplier. Specifically, with t denoting iteration
index, the ADMoM iterates at t+1 are given by

v(t+1) = argmin
v∈P1

L(v,ω(t),α(t)), (47)

ω(t+1) = arg min
ω∈P2

L(v(t+1),ω,α(t)), (48)

α(t+1) = α(t)+η(Av(t+1)−ω(t+1)) . (49)

Thanks to the auxiliary variable ω, each of the optimization problems (47) and (48) can be run sep-
arately, possibly by different processors. The following proposition states the main claim regarding
convergence of the ADMoM iterates, and its proof can be found in Bertsekas and Tsitsiklis (1997,
Ch. 3, Proposition 4.2).

Proposition 4 Assume that the optimal solution set v∗ of (44) is non-empty, and either P1 is
bounded, or, ATA is nonsingular. Then, a sequence {v(t),ω(t),α(t)} generated by the iterations
(47)-(49) is bounded, and every limit point of {v(t)} is an optimal solution of (44). Furthermore,
{α(t)} converges to an optimal solution α∗ of the dual problem [cf. (45)]

min
α∈Rp2

H1(α)+H2(α)

where for all α ∈ Rp2

H1(α) := inf
v∈P1

[F1(v)+αTAv],

H2(α) := inf
ω∈P2

[F2(ω)−αTω] .

Appendix B. Proof of Lemma 1

First, the equality constraints {w j = wi} and {b j = bi} will be shown equivalent to w1 = · · · = wJ
and b1 = · · · = bJ , respectively, for any feasible solution of (6). Consider any two nodes j0 and jk
both in J . Since the network is connected, there exists a path { j0 j1 . . . jk−1 jk} of length at least
one, which connects nodes j0 and jk. Because j!+1 ∈ B! for ! = 0,1, . . . ,k−1, it is immediate that
w j! = w j1 = · · · = w jk−1 = w jk . Since j!, jk ∈ J are arbitrary, it follows readily that w1 = · · · = wJ .
A similar argument leads to b1 = · · · = bJ .

As any feasible solution of (6) satisfies w1 = · · · = wJ = w and b1 = . . . = bJ = b, problem (6)
becomes

min
w,b,{ξ j}

J

(
1
2
‖w‖2+C

J

∑
j=1
1Tj ξ j

)

s.t. Y j(X jw+b1 j) " 1 j−ξ j ∀ j ∈ J

ξ j " 0 j

(50)

which is equivalent to (1), since the constant J can be dropped from the cost function in (50).
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Appendix C. Proof of Lemma 2

The objective here is to cast (7) in the form of (45), and thus show that iterations (9)-(12) correspond
to the ADMoM iterations (47)-(49) in Appendix A. First, it will be shown that the set of consensus
constraints in (7), namely {v j = ω ji, ω ji = vi : ∀ j ∈ J , ∀i ∈ B j}, can be written as the equality
constraint Av = ω in (45). With this objective in mind, consider listing the constraints v j = ω ji
across nodes j ∈ J and neighbors i ∈ B j as follows

{v1 = ω1i}i∈B1
...

{vJ = ωJi}i∈BJ .

(51)

Since for every v j there are |B j| constraints, the total number of equalities in (51) is ∑J
j=1 |B j| =

2|E |, where |E | is the number of edges in the network. The factor 2 in 2|E | is because for every
edge j↔ i there are two constraints, namely v j = ω ji and vi = ωi j.

The set of equalities in (51) can be written in matrix-vector form as

|B1| vectors






|BJ| vectors










v1
...
v1
...
vJ
...
vJ





=








Ip+1
...
Ip+1





︸ ︷︷ ︸
A1:=

. . . 


Ip+1
...
Ip+1





︸ ︷︷ ︸
AJ :=





︸ ︷︷ ︸
A′:=




v1
...
vJ





︸ ︷︷ ︸
v:=

=




{ω1i}i∈B1

...
{ωJi}i∈BJ





︸ ︷︷ ︸
ω′:=

(52)

where A′v replicates v in accordance with the left-hand-side (l.h.s.) of (51). Matrix A′ in (52) is
block-diagonal with block entries A j := [Ip+1, . . . ,Ip+1]T containing |B j| identity matrices of size
(p+1)× (p+1). Since v j and ω ji are (p+1)×1 vectors, v has size (p+1)J×1, and ω′ has size
2(p+1)|E |×1.

Equation (52) shows that the constraints of the form v j = ω ji can be compactly written as

A′v= ω′. (53)

Consider now the remaining constraints, which are of the form ω ji = vi, and can be listed explicitly
as [cf. (51)]

{v1 = ω j1} j∈B1
...

{vJ = ω jJ} j∈BJ .

(54)

Since the l.h.s. of (54) coincides with the l.h.s. of (51), the set of equations in (54) can be likewise
written as [cf. (53)]

A′v= ω′′ (55)
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where now ω′′ := [{ωTj1} j∈B1 , . . . ,{ω
T
jJ} j∈BJ ]

T . Notice that ω′′ is a permuted version of ω′, since it
can be obtained from ω′ by replacing vector ω ji in ω′ with vector ωi j. Hence, using a 2|E |×2|E |
permutation matrix E and letting ⊗ denote the Kronecker product, ω′′ can be related to ω′ as

ω′′ = (E⊗ Ip+1)ω′ (56)

where E := [{e1i}i∈B1 , . . . ,{eJi}i∈BJ ], and e ji is a 2|E |×1 indicator vector given by

e ji :=





e( ji)1
...
e( ji)J





with sub-blocks e( ji)i′ := [{δ( j− j′, i− i′)} j′∈Bi′ ]
T , and δ(·, ·) denoting Kronecker’s delta function.

Intuitively, e ji identifies with a one the position where ω ji in ω′ is to be re-allocated in ω′′.
Substituting (56) into (55) yields

A′v= (E⊗ Ip+1)ω′. (57)

Concatenating (53) and (57) one arrives at

Av= E′ω′ (58)

where

A :=
[
A′

A′

]
and E′ :=

[
I2(p+1)|E |

E⊗ Ip+1

]
. (59)

Using (58), problem (7) can be re-written as

min
v,ω,{ξ j}

1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j +JC

J

∑
j=1
1Tj ξ j

s.t. Y jX jv j " 1 j−ξ j ∀ j ∈ J

ξ j " 0 j ∀ j ∈ J

Av= E′ω′.

(60)

It is known that the slack variables {ξ j} can be eliminated by introducing the hinge loss func-
tion !(y, [xT ,1]v) := max{0,1− y[xT ,1]v} (Schölkopf and Smola, 2002), which reduces (60) to its
equivalent form

min
v,ω

1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j +JC

J

∑
j=1

Nj

∑
n=1

!(y jn, [xTjn,1]v j)

s.t. Av= E′ω′.

(61)
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Comparing the latter with (45), it follows readily that (61), which is equivalent to (7), belongs to the
ADMoM-solvable class since (61) is subsumed by (45) with the special choices

F1(v) :=
1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j + JC

J

∑
j=1

Nj

∑
n=1

!(y jn, [xTjn,1]v j),

F2(ω) := 0,

P1 := R
(p+1)J,

P2 := {ω ∈ R
4(p+1)|E ||ω= E′ω′ for some ω′ ∈ R

2(p+1)|E |} (62)

where ω := E′ω′ is now placed in the constraint set P2.

So far it has been proved that the problem in (7) can be cast as (45). The ADMoM iterations
for (45) are (47)-(49), with corresponding iterates v(t), ω(t) and α(t). Given the constraint set
P2 in (62), for every iterate ω(t) there exists a unique ω′(t) satisfying ω(t) = E′ω′(t), due to the
fact that E′ in (59) is full column rank. Hence, ω(t) can be replaced by E′ω′(t) in iterations (47)-
(49). Iteration (9) then follows by re-introducing the slack variables {ξ j(t)}. Iteration (10) follows
because now ω′ is unconstrained. Finally, iterations (11) and (12) follow from (49) by splitting α(t)
into appropriate sub-groups of vectors {α ji1(t)} and {α ji2(t)}, respectively.

Appendix D. Proof of Lemma 3

The goal of this appendix is to show that iterations (9)-(12) reduce to (13)-(14). To start, notice that
the cost in (10) is linear-quadratic w.r.t. ω ji. Thus, setting the derivative of L w.r.t. ω ji equal to
zero, ω ji(t+1) can be found in closed form as

ω ji(t+1) =
1
2η

(α ji1(t)−α ji2(t))+
1
2
(v j(t+1)+vi(t+1)). (63)

Substituting (63) into (11) and (12), yields

α ji1(t+1) =
1
2
(α ji1(t)+α ji2(t))+

η
2
(v j(t+1)−vi(t+1)), (64)

α ji2(t+1) =
1
2
(α ji1(t)+α ji2(t))+

η
2
(v j(t+1)−vi(t+1)). (65)

Suppose now that α ji1(t) and α ji2(t) are initialized identically to zero at every node j; that is,
α ji1(0) =α ji2(0) = 0(p+1)×1 ∀ j ∈ J and ∀i∈B j. From (64) and (65), it follows easily that α ji1(1) =
α ji2(1). Similarly, if α ji1(t− 1) = α ji2(t− 1), then by induction α ji1(t) = α ji2(t). Thus, only one
set of multipliers, say {α ji1}, needs to be stored and updated per node j.

Upon substituting ω ji(t+1) = (1/2)(v j(t+1)+vi(t+1)) into the objective function of (9) and
using α ji1(t) = α ji2(t), one obtains

L ′({v j},{ξ j},{v j(t)},{α ji1(t)}) =
1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j+JC

J

∑
j=1
1Tj ξ j

+
J

∑
j=1
∑
i∈B j

αTji1(t)(v j−vi)+
η
2

J

∑
j=1
∑
i∈B j

∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
+
η
2

J

∑
j=1
∑
i∈B j

∥∥∥∥vi−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
.

(66)
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The first double sum in the right hand side (r.h.s.) of (66) can be rewritten as

J

∑
j=1
∑
i∈B j

αTji1(t)(v j−vi) =
J

∑
j=1
∑
i∈B j

vTj (α ji1(t)−αi j1(t))

= 2
J

∑
j=1
vTj ∑

i∈B j

α ji1(t) (67)

where the first equality follows because ∑J
j=1∑i∈B j α

T
ji1(t)vi = ∑J

j=1∑i∈B j α
T
i j1(t)v j. Intuitively, the

r.h.s. computes the sum by fixing a node j and adding the inner products of v j with the incoming
Lagrange multipliers αi j1(t); while the left hand side performs the same sum by fixing a node j
and adding the inner products of outgoing Lagrange multipliers α ji1(t) and the corresponding vi
neighbors. The second equality on (67) holds because the all-zero initialization of the multipliers
implies that α ji1(t) = −αi j1(t) ∀t [cf. from (64)-(65)]. Likewise, the second and third double sums
in the r.h.s. of (66) can be simplified to

η
2

J

∑
j=1
∑
i∈B j

[∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
+

∥∥∥∥vi−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
]

=η
J

∑
j=1
∑
i∈B j

∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
.

(68)

Lemma 3 follows after substituting (67) and (68) into (66), and defining α j(t) := ∑i∈B j α ji1(t).

Appendix E. Proof of Proposition 1

Letting λ j := [λ j1, . . . ,λ jNj ]
T and µj := [µj1, . . . ,µjNj ]

T denote Lagrange multipliers associated with
the constraints Y jX jv j " 1 j−ξ j and ξ j " 0 j, respectively, the Lagrangian corresponding to (13) is
given by

L ′′({v j},{ξ j},{λ j},{µj},{v j(t)},{α j(t)})

=
1
2

J

∑
j=1
vTj (Ip+1−Πp+1)v j + JC

J

∑
j=1
1Tj ξ j−

J

∑
j=1

λTj (Y jX jv j−1 j +ξ j)

−
J

∑
j=1

µTj ξ j +2
J

∑
j=1
αTj (t)v j +η

J

∑
j=1
∑
i∈B j

∥∥∥∥v j−
1
2
[v j(t)+vi(t)]

∥∥∥∥
2
.

(69)

The KKT conditions yield per iteration the primal and dual variables in (69) as follows

v j(t+1) = U−1
j

(

XTj Y jλ j(t+1)−2α j(t)+η ∑
i∈B j

(v j(t)+vi(t))
)

, (70)

0 j = JC1 j−λ j−µj (71)

where λ j(t + 1) is the optimal Lagrange multiplier after iteration t + 1, and the inverse of U j :=
(1+2η|B j|)Ip+1−Πp+1 always exists.

The KKT conditions also require λ j " 0 j and µj " 0 j, which allows (71) to be replaced by
0 j # λ j # JC1 j. To carry out the iteration (70) at every node, the optimal values λ j(t+ 1) of the
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Lagrange multipliers λ j are found by solving the Lagrange dual problem associated with (69). The
pertinent dual function is given by

Lλ({λ j}) =
J

∑
j=1

−
1
2
λTj Y jX jU−1

j X
T
j Y jλ j +

(
1 j−Y jX jU−1

j f j(t)
)T

λ j (72)

where f j(t) := 2α j(t)− η∑i∈B j [v j(t) + vi(t)]. Note that the Lagrange multipliers {µj} are not
present in Lλ. From (72), the Lagrange dual problem can be decoupled if each node j has access to
the vi(t) estimates of its neighboring nodes. Thus, λ j(t+1) is given by

λ j(t+1) = arg max
λ j: 0 j#λ j#JC1 j

−
1
2
λTj Y jX jU−1

j X
T
j Y jλ j +

(
1 j−Y jX jU−1

j f j(t)
)T

λ j (73)

The dual variable update in (73) and the primal variable update in (70) coming from the KKT opti-
mality, are precisely iterations (16) and (17) of Proposition 1, which together with (18) correspond
to iterations (13) and (14). Lemma 3 shows that (13) and (14) are equivalent to (9)-(12). Lemma 2
establishes that (9)-(12) in turn correspond to the ADMoM iterations (47)-(49) of Appendix A. As
stated in Proposition 4 in Appendix A, convergence of the ADMoM iterations (47)-(49) is guaran-
teed so long as: (i) P1 is bounded; or, (ii) ATA is nonsingular. Since for the problem at hand matrix
A in (59) satisfies condition (ii), the iterates for (16)-(18) in Proposition 1 converge to the optimal
solution of (7) for any η> 0.

Appendix F. Proof of Theorem 1

For simplicity, this theorem will be proved for purely linear discriminant functions g(x) = wTx.
Consider the reproducing kernel Hilbert space (RKHS) H of functions g(x) with corresponding
positive semi-definite kernel K : X ×X → R, defined as

H :=

{

g(·) =
N

∑
n=1

γnK(·,xn) : N ∈ N, γ1, . . . ,γN ∈ R, x1, . . . ,xN ∈ X

}

with A denotes the completion of the set A .
The parameter optimization problem (23) can be written in terms of the Hinge loss function

!(y,g(x)) := max{0,1− yg(x)}, and the RKHS-induced norm ‖g‖2H as a regularized optimization
problem to obtain, (see, e.g., Schölkopf and Smola, 2002)

min
{g j∈H }

1
2

J

∑
j=1

∥∥g j
∥∥2
H + JC

J

∑
j=1

Nj

∑
n=1

!(y jn,g j(x jn))

s.t. g j(χl) = gi(χl) ∀ j ∈ J , i ∈ B j, l = 1, . . . ,L.

(74)

Given the optimal Lagrange multipliers ς∗jil for the constraints {g j(χl) = gi(χl)}, the solution
{g∗j} of (74) can be obtained from its Lagrangian as

{g∗j} = arg min
{g j∈H }

1
2

J

∑
j=1

∥∥g j
∥∥2
H + JC

J

∑
j=1

Nj

∑
n=1

!(y jn,g j(x jn))+
J

∑
j=1
∑
i∈B j

L

∑
l=1

ς∗jil(g j(χl)−gi(χl)). (75)
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Arguing as in (67), the last term in (75) can be written as
J

∑
j=1
∑
i∈B j

L

∑
l=1

ς∗jil(g j(χl)−gi(χl)) =
J

∑
j=1
∑
i∈B j

L

∑
l=1

(ς∗jil− ς∗i jl)g j(χl)

thus rendering the cost in (75) separable across j. Hence, each g∗j can be obtained per node as

g∗j = arg min
g j∈H

V (x j1, . . . ,x jNj ,y j1, . . . ,y jNj ,{χl},g j)+
1
2
∥∥g j
∥∥2
H (76)

whereV (x j1, . . . ,x jNj ,y j1, . . . ,y jNj ,{χl},g j) := JC∑Nj
n=1 !(y jn,g j(x jn))+∑i∈B j ∑

L
l=1(ς

∗
jil−ς

∗
i jl)g j(χl).

Applying the Representer Theorem to (76) as in Wahba (1990) and Schölkopf and Smola (2002)
one readily arrives at

g∗j(x) =
Nj

∑
n=1

a∗jnK(x,x jn)+
L

∑
l=1

c∗jlK(x,χl). (77)

Appendix G. Proof of Proposition 2

Recall that µj := [µj1, . . . ,µjNj ]
T denotes the Lagrange multiplier associated with the constraint ξ j "

0 j (cf. Appendix E). The Lagrangian corresponding to (25) is given by

L ′′({w j},{b j},{ξ j},{λ j},{µj},{w j(t)},{b j(t)},{α j(t)},{β j(t)})

=
1
2

J

∑
j=1

‖w j‖
2+ JC

J

∑
j=1
1Tj ξ j−

J

∑
j=1

λTj (Y jΦ(X j)w j−1 jb j +ξ j)

−
J

∑
j=1

µTj ξ j +2
J

∑
j=1
αTj (t)Gw j +2

J

∑
j=1
β j(t)b j

+η
J

∑
j=1
∑
i∈B j

∥∥∥∥G
[
w j−

1
2
(w j(t)+wi(t))

]∥∥∥∥
2
+η

J

∑
j=1
∑
i∈B j

∥∥∥∥b j−
1
2
[b j(t)+bi(t)]

∥∥∥∥
2
.

From the KKT conditions for (25) it follows that

w j(t+1) = Ũ−1
j

{

ΦT (X j)Y jλ j(t+1)−GT

[

2α j(t)−η ∑
i∈B j

G(w j(t)+wi(t))
]}

, (78)

b j(t+1) =
1

2η|B j|

[

1Tj Y jλ j(t+1)−2β j(t)+η ∑
i∈B j

(β j(t)+βi(t))

]

(79)

where λ j(t+ 1) is the optimal Lagrange multiplier at iteration t+ 1, and Ũ j := IP + 2η|B j|GTG.
Using the Sherman-Morrison-Woodbury formula (Golub and Van Loan, 1996)

Ũ−1
j = IP−2η|B j|GT (IL+2η|B j|GGT )−1G. (80)

Substituting (80) into (78), left-multiplying by φT (x), and recalling that φT (x)φT (x′) =K(x,x′),
yields

φT (x)w j(t+1) =
(
kT (x,X j)−2η|B j|kT (x,Γ)Ũ−1

j K(Γ,X j)
)
Y jλ j(t+1)

−
(
kT (x,Γ)−2η|B j|kT (x,Γ)Ũ−1

j K(Γ,Γ)
)
f̃ j(t+1) (81)
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where the entries of the kernel vector are [k(x,X j)]n := K(x,x jn) and [k(x,Γ)]l := K(x,χl).
Note that g(t)

j (x) in (31) follows from (77) and can be written as g(t)
j (x) = φT (x)w j(t)+ b j(t).

Grouping terms in (81) that right-multiply kT (x,X j) and those that right-multiply kT (x,Γ), yields
a j(t) as in (32) and c j(t) as in (33), respectively. Finally, b j(t) in (34) is given by (79).

Appendix H. Proof of Proposition 3

To obtain iteration (35), consider first the dual problem for (25), that is

λ j(t+1) = arg max
λ j: 0 j#λ j#JC1 j

−
1
2
λTj Y j

(
Φ(X j)Ũ−1

j ΦT (X j)+
11T

2η|B j|

)
Y jλ j

+

(
1 j−Y jΦ(X j)Ũ−1

j G
T f̃ j(t)−

h j(t)1T

2η|B j|

)T
λ j (82)

where Ũ−1
j is given by (80), and f̃ j(t) as in Proposition 2. Using (80), the term Φ(X j)Ũ−1

j ΦT (X j)
can be written in terms of inner products, and summarized via kernels as

Φ(X j)Ũ−1
j ΦT (X j) =K(X j,X j)−2η|B j|K(X j,Γ)Ũ−1

j K(Γ,X j). (83)

Likewise, the term Φ(X j)Ũ−1
j GT f̃ j(t) can be expressed as

Φ(X j)Ũ−1
j G

T f̃ j(t) =
(
K(X j,Γ)−2η|B j|K(X j,Γ)Ũ−1

j K(Γ,Γ)
)
f̃ j(t). (84)

Plugging (83) and (84) into (82), yields (35).
To obtain iteration (36), left-multiply w j(t+1) in (78) by G to arrive at

w̃ j(t+1) = GŨ−1
j ΦT (X j)Y jλ j−GŨ−1

j G
T

[

2α j(t)−η ∑
i∈B j

(w̃ j(t)+ w̃i(t))
]

. (85)

The terms GŨ−1
j ΦT (X j) and GŨ−1

j GT can be respectively written as

GŨ−1
j ΦT (X j) =K(Γ,Γ)−2η|B j|K(Γ,Γ)Ũ−1

j K(Γ,X j) (86)

and
GŨ−1

j G
T =K(Γ,Γ)−2η|B j|K(Γ,Γ)Ũ−1

j K(Γ,Γ) . (87)

Substituting (86) and (87) into (85), yields (36), and completes the proof of the proposition.
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Abstract
Analysis of causal effects between continuous-valued variables typically uses either autoregressive
models or structural equation models with instantaneous effects. Estimation of Gaussian, linear
structural equation models poses serious identifiability problems, which is why it was recently pro-
posed to use non-Gaussian models. Here, we show how to combine the non-Gaussian instantaneous
model with autoregressive models. This is effectively what is called a structural vector autoregres-
sion (SVAR) model, and thus our work contributes to the long-standing problem of how to estimate
SVAR’s. We show that such a non-Gaussian model is identifiable without prior knowledge of net-
work structure. We propose computationally efficient methods for estimating the model, as well as
methods to assess the significance of the causal influences. The model is successfully applied on
financial and brain imaging data.
Keywords: structural vector autoregression, structural equation models, independent component
analysis, non-Gaussianity, causality

1. Introduction

Analysis of causal influences or effects has become an important topic in statistics and machine
learning, and has recently found applications in, for example, neuroinformatics (Roebroeck et al.,
2005; Kim et al., 2007) and bioinformatics (Opgen-Rhein and Strimmer, 2007). While the deeper
meaning of causality has been formalized in different ways (Pearl, 2000; Spirtes et al., 1993), we
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HYVÄRINEN, ZHANG, SHIMIZU AND HOYER

consider the problem here from a practical viewpoint, where coefficients in conventional statistical
models are interpreted as causal influences.

For continuous-valued variables, such an analysis is typically performed in two different ways.
First, if the time-resolution of the measurements is higher than the time-scale of causal influences,
one can estimate a classic autoregressive (AR) model with time-lagged variables and interpret the
autoregressive coefficients as causal effects. Second, if the measurements have a lower time resolu-
tion than the causal influences, or if the data has no temporal structure at all, one can use a model in
which the influences are instantaneous, leading to Bayesian networks or structural equation models
(SEM); see Bollen (1989).1

While estimation of autoregressive methods can be solved by classic regression methods, the
case of instantaneous effects is much more difficult. Most methods suffer from lack of identifi-
ability, because covariance information alone is not sufficient to uniquely characterize the model
parameters. Prior knowledge of the structure (fixing some of the connections to zero) of the SEM
is then necessary for most practical applications. However, a method was recently proposed which
uses the non-Gaussian structure of the data to overcome the identifiability problem (Shimizu et al.,
2006). If the disturbance variables (external influences) are non-Gaussian, no prior knowledge on
the network structure is needed to estimate the linear SEM, except for the ubiquitous assumption
of a directed acyclic graph (DAG) and the assumption of no latent variables. (The case of latent
variables, that is, unobserved confounders, was later considered by Hoyer et al., 2008.)

Here, we consider the general case where causal influences can occur either instantaneously
or with considerable time lags. Such models are one example of structural vector autoregressive
(SVAR) models popular in econometric theory, in which numerous attempts have been made for
its estimation, see, for example, Swanson and Granger (1997), Demiralp and Hoover (2003) and
Moneta and Spirtes (2006). We propose to use non-Gaussianity to estimate the model. We show
that this variant of the model is identifiable without other restrictions on the network structure than
acyclicity and no latent variables. To our knowledge, no model proposed for this problem has been
shown to be fully identifiable without prior knowledge of network structure. We further propose
two computationally efficient methods for estimating the model based on the theory of independent
component analysis or ICA (Hyvärinen et al., 2001).

The proposed non-Gaussian model not only allows estimation of both instantaneous and lagged
effects; it also shows that taking instantaneous influences into account can change the values of the
time-lagged coefficients quite drastically. Thus, we see that neglecting instantaneous influences can
lead to misleading interpretations of causal effects. The framework further points towards general-
izations of the well-known Granger causality measure (Granger, 1969).

The paper is structured as follows. We first define the model and discuss its relation to other
models in Section 2. We motivate the key assumption of non-Gaussianity in Section 3. Next, we de-
rive the likelihood and discuss some of its interpretations in Section 4. In Section 5 we propose two
computationally efficient estimation methods and compare them with simulations. Assessement of
the results using testing is considered in Section 6. Section 7 discusses some interesting phenomena
concerning the interpretation of the estimated parameter values. Experiments on financial and neu-
roscientific data are made in Section 8. Some extensions of the model are discussed in Section 9,
and Section 10 concludes the paper. Preliminary results were published in Hyvärinen et al. (2008)
and Zhang and Hyvärinen (2009).

1. Here, we assume that the learning is unsupervised, that is, the inputs to the system are not known or used. If the
inputs to the system are known, methods such as dynamic causal modelling can be used (Friston et al., 2003).
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2. A Non-Gaussian Structural Vector Autoregressive Model

In this section, we define our new model.

2.1 Background and Notation

Let us denote the observed time series by xi(t), i = 1, . . . ,n, t = 1, . . . ,T where i is the index of the
time series and t is the time index. All the time series (variables) are collected into a single column
vector x(t). Without loss of generality, we can assume that the xi(t) have zero mean.

In autoregressive modelling, we would model the dynamics by a model of the form

x(t) =
k

∑
τ=1
Bτx(t− τ)+ e(t) (1)

where k is the number of time-delays used, that is, the order of the autoregressive model, Bτ,τ =
1, . . . ,k are n×n matrices, and e(t) is the innovation process.

In structural equation models (SEM), or continuous-valued Bayesian networks, there is no time
structure in the data, and the variables are simply modelled as functions of the other variables:

x= Bx+ e (2)

where the vector e is the vector of disturbances or external influences. The diagonal of B is defined
to be zero. It is typically assumed that we have a sample of observations which are independent and
identically distributed.

2.2 Definition of Our Model

In many applications, the influences between the xi(t) can be both instantaneous and lagged. Thus,
we combine the two models in (1) and (2) into a single model. Denote by Bτ the n× n matrix
of the causal effects between the variables xi with time lag τ,τ = 0, . . . ,k . For τ > 0, the effects
are ordinary autoregressive effects from the past to the present, while for τ = 0, the effects are
“instantaneous”.

We define our model by a straightforward combination of (1) and (2) as

x(t) =
k

∑
τ=0
Bτx(t− τ)+ e(t) (3)

where the ei(t) are random processes modelling the disturbances. We make the following assump-
tions on the ei(t):

1. The ei(t) are are mutually independent, both of each other and over time. This is a typical
assumption in autoregressive models.

2. The ei(t) are non-Gaussian, which is an important assumption which distinguishes our model
from classic models, whether autoregressive models, structural-equation models, or Bayesian
networks.

3. The matrix modelling instantaneous effects, B0, corresponds to an acyclic graph, as is typical
in causal analysis. However this assumption may not be strictly necessary as will be discussed
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in Section 9. The acyclicity is equivalent to the existence of a permutation matrix P, which
corresponds to a “causal” ordering of the variables xi, such that the matrix PB0PT is lower-
triangular (i.e., entries above the diagonal are zero). Acyclicity also implies that the entries
on the diagonal are zero, even before such a permutation.

2.3 Relation to Other Models

Next, we discuss the relationships of our model with other models.

2.3.1 LINEAR NON-GAUSSIAN ACYCLIC MODEL

Our model is a generalization of the linear non-Gaussian acyclic model (LiNGAM) proposed in
Shimizu et al. (2006). If the order of the autoregressive part is zero, that is, k = 0, the model is
nothing else than the LiNGAM model, modelling instantaneous effects only. As shown in Shimizu
et al. (2006), the assumption of non-Gaussianity of the ei enables estimation of the model. This is
because the non-Gaussian structure of the data provides information not contained in the covariance
matrix which is the only source of information in most methods.

Non-Gaussianity enables model estimation using independent component analysis, which solves
the non-identifiability of factor analytic models using the assumption of non-Gaussianity of the fac-
tors (Comon, 1994; Hyvärinen et al., 2001). In fact, the estimation method in Shimizu et al. (2006)
uses an ICA algorithm as an essential part. This is because we can transform (2) into the factor-
analytic model of ICA:

x= (I−B)−1e (4)

where e is now a vector of latent variables. Under the assumptions of the model, in particular the
independence and non-Gaussianity of the disturbances ei, the model can be essentially estimated
(Comon, 1994). The acyclicity assumption also ensures that I−B is invertible.

However, there is an important indeterminacy which ICA cannot solve: the order of the compo-
nents. In a SEM, each disturbance corresponds to one of the observed variables. In contrast, ICA,
like most factor-analytic models, gives the factors in no particular order. Thus, after ICA estimation
(or as part of the ICA estimation) we have to establish the correspondence between the xi and the ei.
It was proven by Shimizu et al. (2006) that the correspondence can in fact be established based on
the acyclicity of B. Basically, only one of the possible orderings of the rows of (I−B) is such that
all the elements on the diagonal are non-zero, and can thus be scaled to equal one, which has to be
the case by definition.

Thus, the LiNGAM model can be estimated by basically first performing ICA estimation and
then finding the right ordering of the components based on acyclicity.

2.3.2 AUTOREGRESSIVE MODELS

On the other hand, if the matrix B0 has all zero entries, the model in Eq. (3) is a classic vector
autoregressive model in which future observations are linearly predicted from preceding ones. If we
knew in advance that B0 is zero, the model could thus be estimated by classic regression techniques
since we do not have the same variables on the left and right-hand sides of Eq. (3). However, our
model would still be different from classic autoregressive models because the disturbances ei(t) are
non-Gaussian.
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It is important to note here that an autoregressive model can serve two different goals: prediction
and analysis of causality. Our goal here is the latter: We estimate the parameter matrices Bτ in order
to interpret them as causal effects between the variables. This goal is distinct from simply predicting
future outcomes when passively observing the time series, as has been extensively discussed in the
literature on causality (Pearl, 2000; Spirtes et al., 1993). Thus, we emphasize that our model is not
intended to reduce prediction errors if we want to predict xi(t) using (passively) observed values of
the past x(t− 1),x(t− 2), . . .; for such prediction, an ordinary autoregressive model is likely to be
just as good.

2.3.3 STRUCTURAL VECTOR AUTOREGRESSIVE MODELS

Combinations of SEM and vector autoregressive models have been proposed in the econometric
literature, and called structural vector autoregressive models (SVAR). Although many of them are
quite similar to our model in spirit (Swanson and Granger, 1997; Demiralp and Hoover, 2003;
Moneta and Spirtes, 2006), we are not aware of any method in which non-Gaussianity would be
an essential assumption. We will see below how the assumption of non-Gaussianity is essential for
the identifiability of the model, which has been a serious problem in previous methods. In the next
section, we thus consider the justification of this assumption.

3. Why Disturbances Could be Non-Gaussian

Non-Gaussianity is the new assumption in our model. In this section, we attempt to justify why,
in many applications, we can consider the ei(t) to be non-Gaussian. The arguments are based on
heteroscedasticity. We do not by any means claim that we are the first to develop these arguments;
some of them are well-known and we merely re-iterate them here.

The principle of heteroscedasticity means that the variance of ei(t) depends on t: in some parts
of the time series, it is larger, and in other parts it is smaller. The shape of the distribution conditional
to the variance is the same always: often it is assumed to be Gaussian (normal).

We argue that heteroscedasticity is an important reason why, in many cases, the ei(t) should be
strongly non-Gaussian. Even if the Central Limit Theorem is applicable in the sense that ei(t) is a
sum of many different latent independent variables, the disturbances can be very non-Gaussian if,
for some reason, the variance of the ei(t) is changing.

The connection between heteroscedasticity and non-Gaussianity can be developed in a few sim-
ple equations. Denote by z(t) a standardized Gaussian random variable. Assume that a disturbance
e(t) (dropping the index i for simplicity) is a product of z and a random “variance” variable v(t):

e(t) = z(t)v(t)

where z(t) and v(t) are independent by definition. We can, in fact, drop the time indices and just
consider these time series as random variables. The distribution of v can be of different kinds,
whereas the distribution of z is fixed to standardized Gaussian. In the simplest case, v takes only
two different values, which means that the data points belong to just two different classes, and the
density is then a finite mixture of two Gaussian distributions.
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We can simply show the following well-known result: If z is Gaussian, e has always positive
kurtosis,2 regardless of the distribution of v (as long as v2 has non-zero variance). This is because

kurt(e) = E{e4}−3(E{e2})2 = E{v4z4}−3(E{v2z2})2 = 3[E{v4}− (E{v2})2] (5)

which is always positive because it is the variance of v2 multiplied by three (Beale and Mallows,
1959). It is easy to generalize this result to show that even if z is not Gaussian, the kurtosis is still
positive if the variance of v2 is large enough.

Heteroscedastity can be seen in some important application areas of causal modelling, in partic-
ular:

1. In econometrics, heteroscedastic models have a long tradition (Engle, 1995). For example,
in financial markets the volatility of a price is often assumed to be changing over time, and
volatility is nothing but the variance in some scaling.

2. In brain imaging, the power of rhytmic activity as measured by electroencephalography or
magnetoencephalography is non-constant (Hari and Salmelin, 1997). The power is essentially
the same as the variance.

We emphasize that the assumption of non-Gaussianity is fundamentally an empirical assump-
tion. It is fulfilled in some application areas and not in others. It can be validated by examining
the distributions of the estimates of the ei(t), which are simply obtained by solving for e(t) in (3)
after estimation of the model. Those estimates are linear functions of the data, which implies that
if the data were Gaussian, the ei(t) would necessarily be Gaussian. Thus, any non-Gaussianity in
the estimates is valid evidence for the Gaussianity of the underlying ei(t). In addition to visual
inspection, any formal tests for non-Gaussianity can be used, such as the Shapiro-Wilk test or the
Kolmogorov-Smirnov test. (Independence of the ei(t) can be validated in the same way, although it
seems to be more difficult to investigate by visualization or testing.)

However, in practice the question is not whether the disturbances are non-Gaussian but whether
they are sufficiently far from Gaussian to enable sufficiently accurate estimation. In the theory of
ICA, it has been shown that the asymptotic variance of the estimators is a function of the non-
Gaussianity of the components: When their distribution approaches Gaussianity, the asymptotic
variance goes to infinity (Cardoso and Laheld, 1996; Hyvärinen et al., 2001). Thus, instead of testing
non-Gaussianity it may be much more useful to simply measure the accuracy of the estimates by
bootstrapping and similar methods. If the disturbances are Gaussian (or very close to Gaussian), our
estimation method is likely to fail completely. Some other assumptions are then needed to obtain
identifiability of the model.

It should be also noted that the assumptions of non-Gaussianity and independence cannot be
easily disentangled from the assumption of linearity. If there are non-linearities in the system, these
may, for example, lead to non-Gaussian residuals even if the original disturbances were Gaussian.

4. Likelihood of the Model

To estimate our model, we start by formulating its likelihood.

2. We use here the definition of kurtosis given in Eq. (5), which is sometimes called excess kurtosis. Thus, kurtosis can
be either positive or negative.
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4.1 Likelihood of LiNGAM

First, we derive the likelihood of the LiNGAM model (Shimizu et al., 2006) which has not yet been
given in the literature. The starting point is the likelihood of the ICA model which is well-known,
see, for example, Pham and Garrat (1997) and Hyvärinen et al. (2001). Denote the ICA model by

x= As

for a square invertible matrix A, and independent non-Gaussian latent variables si. Denote the
observed sample by X = (x(1), . . . ,x(T )) and W = A−1. The log-likelihood is then usually given
in the form

logL0(X) =∑
t
∑
i

log pi(wTi x(t))+T logdet |W|

where the pi are the density functions of the independent components (here: disturbances). Since
the densities of the disturbances are not specified, we have in general a semi-parametric problem.
Different methods have been developed for approximating log pi, for example, Pham and Garrat
(1997), Karvanen and Koivunen (2002) and Chen and Bickel (2006). Here, we have to take into
account the fact that those methods usually assume that the independent components have been
normalized to unit variance, which is not the case in LiNGAM. Thus, we prefer to modify the
formula by normalizing the densities as follows:

logL1(X) =∑
t
∑
i

log p̃i(
wTi x(t)
σi

)−T∑
i

logσi+T logdet |W| (6)

where the p̃i are the densities of the disturbances standardized to unit variance, and the σ2
i are their

variances before standardization.
In fact, in practice it has been realized that often one can just fix the p̃i to a single function and

still obtain a satisfactory estimator. In particular, if we know that the disturbances are all super-
Gaussian (i.e., have positive kurtosis), fixing

log p̃i(s) =−
√

2|s|+ const.

is enough to provide a consistent estimator under weak constraints (Cardoso and Laheld, 1996;
Hyvärinen and Oja, 1998).

In LiNGAM, we have from (4) that in terms of the ICA model, A−1 =W = I−B0 (we use
the subindex 0 for B in LiNGAM to comply with the notation below). Now, we can simplify the
likelihood because of the DAG structure. The DAG structure means that for the right permutation
of its rows (corresponding to the causal ordering), W is lower-triangular. The determinant of a
triangular matrix is equal to the product of its diagonal elements, and a permutation does not change
the determinant, so the determinant ofW is equal to the product of the diagonal elements when the
variables are ordered in the causal order. But by definition of W in LiNGAM, those diagonal
elements are all equal to one, so the last term in (6) is zero. So, the likelihood of the LiNGAM
model is finally given by

logL(X) =∑
t
∑
i

log p̃i
(
wTi x(t)
σi

)
−T∑

i
logσi

=∑
t
∑
i

log p̃i

(
xi(t)−bT0,ix(t)

σi

)

−T∑
i

logσi (7)
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where the variances of the components can be estimated by taking the empirical variances as

σ2
i =

1
T ∑t

(xi(t)−bT0,ix(t))2.

(Alternatively, the σi could be obtained by a separate maximization of the likelihood, but this would
be more complicated computationally and conceptually.) Here,W is constrained to correspond to a
DAG, with ones added in the diagonal.

4.2 Likelihood of Our Model

Now we can derive the likelihood of our model. First note that from (3) we can derive

x(t) =
k

∑
τ=0
Bτx(t− τ)+ e(t)⇔ (I−B0)[x(t)−

k

∑
τ=1

(I−B0)
−1Bτx(t− τ)] = e(t),

which gives

x(t)−
k

∑
τ=1

(I−B0)
−1Bτx(t− τ) = B0[x(t)−

k

∑
τ=1

(I−B0)
−1Bτx(t− τ)]+ e(t)

which shows that the our model in (3) is a LiNGAM model for the residuals x(t)−∑k
τ=1(I−

B0)−1Bτx(t− τ). Denoting

Mτ = (I−B0)
−1Bτ andW= I−B0 (8)

and replacing x(t) in (7) by the residuals, we have

logL(X) =∑
t
∑
i

log p̃i
(
wTi [x(t)−∑k

τ=1Mτx(t− τ)]
σi

)
− logσi (9)

with

σ2
i =

1
T ∑t

(

wTi [x(t)−
k

∑
τ=1
Mτx(t− τ)]

)2

.

4.3 Information-Theoretic Interpretation

An interesting point to note is that the likelihood is now a sum of the negative entropies of the
residuals. The differential entropy of a random variable s can be written using the standardized
version of s, denoted by s̃, as follows:

H(s) =−
∫
ps(u) log ps(u)du=−

∫
ps̃(u) log ps̃(u)du+ logσs

where σ2
s is the variance of s. Thus, we can interpret the terms in (9) as the (negative) entropies of the

residuals. So, estimation is accomplished by minimizing the “prediction errors” or “uncertainties”
in the DAG if the entropies are interpreted as the prediction errors when each variable is predicted by
its parents. Note that for Gaussian variables, the entropies are very simple functions of the squared
errors (variances), while for non-Gaussian variables, they are also functions of the non-Gaussianity
(shape) of the distribution.
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5. Practical Estimation Methods

Next we propose two practical methods for estimating the model, and further show how to include
a sparseness penalty which may be very useful in practice.

5.1 A Two-Stage Method with Least-Squares Estimation

Optimization of the likelihood is difficult because it contains a complicated combinatorial opti-
mization part due to the constraint that B0 is acyclic. A conceptually simple way of reinforcing this
constraint would be to go through all possible orderings of the observed variables, and for each of
them, maximize the likelihood as a function of the Bτ so that B0 is constrained to be lower triangu-
lar. This is obviously computationally very expensive since the number of ordering is equal to n!
where n is the number of variables. Only for a very small n can this be computationally feasible.
(Another difficulty is that the likelihood contains a semiparametric part because we do not specify a
parametric model of the non-Gaussian distributions, but this problem has already been extensively
treated in the theory of ICA, and has been found not to be very serious in practice, see Hyvärinen
et al., 2001.)

To avoid the computational problems with likelihood, we propose a computationally simpler
two-stage method for estimating our model. The method combines classic least-squares estimation
of an autoregressive (AR) model with LiNGAM estimation.

5.1.1 DEFINITION

The basic idea is that the Mτ in (8) can be consistently, and computationally efficiently, estimated
by classic least-squares methods. Then, since the model is essentially a LiNGAM model for the
residuals of the predictions by theMτ, we simply use our previously developed estimation methods
for LiNGAM to estimate the rest of the parameters. These methods (Shimizu et al., 2006) seem to
tackle the combinatorial optimization problem in a satisfactory way. The ensuing method will be
justified in more detail below; it is defined as follows:

1. Estimate a classic autoregressive model for the data

x(t) =
k

∑
τ=1
Mτx(t− τ)+n(t) (10)

using any conventional implementation of a least-squares method. Note that here τ> 0, so it
is really a classic AR model. Denote the least-squares estimates of the autoregressive matrices
by M̂τ.

2. Compute the residuals, that is, estimates of n(t)

n̂(t) = x(t)−
k

∑
τ=1
M̂τx(t− τ).

3. Perform the LiNGAM analysis (Shimizu et al., 2006) on the residuals. This gives the estimate
of the matrix B0 as the solution of the instantaneous causal model

n̂(t) = B0n̂(t)+ e(t).
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4. Finally, compute the estimates of the causal effect matrices Bτ for τ> 0 as

B̂τ = (I− B̂0)M̂τ for τ> 0. (11)

5.1.2 CONSISTENCY PROOF

We now prove that this provides a consistent estimator of Bτ. First, the basic model definition in (3)
can be manipulated to yield

(I−B0)x(t) =
k

∑
τ=1
Bτx(t− τ)+ e(t)

and thus

x(t) =
k

∑
τ=1

(I−B0)
−1Bτx(t− τ)+(I−B0)

−1e(t). (12)

Now, a well-known result is that least-squares estimation of an AR model as in (10) is consistent
even if the innovation vector n(t) does not have independent or even uncorrelated elements (for
fixed t), and even if it is heteroscedastic and non-Gaussian. Thus, comparing (12) with (10), in the
limit we can equate the autoregressive matrices, which gives (I−B0)−1Bτ =Mτ for τ≥ 1, and thus
(11) is justified. (In fact, we anticipated (11) in the notation used in the likelihood in (9).)

Second, comparison of (12) with (10) shows that the residuals n̂(t) are, asymptotically, of the
form (I−B0)−1e(t). This means

n̂(t) = (I − B0)
−1e(t) ⇔ (I − B0)n̂(t) = e(t) ⇔ n̂(t) = B0n̂(t) + e(t)

which is the LiNGAM model for n̂(t). This shows that B0 is obtained as the LiNGAM analysis of
the residuals, and the consistency of our estimator of B0 follows from the consistency of LiNGAM
estimation (Shimizu et al., 2006). Thus, our method is consistent for all the Bτ. This obviously
proves, by construction, the identifiability of the model as well.

5.1.3 INTERPRETATION RELATED TO ICA OF RESIDUALS

An interesting viewpoint of the two-stage estimation method is analysis of the dependencies of the
innovations after estimating a classic AR model. Suppose we just estimate an AR model as in (1),
and interpret the coefficients as causal effects. Such an interpretation more or less presupposes
that the innovations ei(t) are independent of each other, because otherwise there is some structure
in the model which has not been modelled by the AR model. If the innovations are not indepen-
dent, the causal interpretation may not be justified. Thus, it seems necessary to further analyze the
dependencies in the innovations in cases where they are strongly dependent.

Analysis of the dependency structure in the residuals (which are, by definition, estimates of
innovations) is precisely what leads to the two-stage estimation method. As a first approach, one
could consider application of something like principal component analysis or independent compo-
nent analysis on the residuals. The problem with such an approach is that the interpretation of the
obtained results in the framework of causal analysis would be quite difficult. Our solution is to fit a
causal model like LiNGAM to the residuals, which leads to a straightforward causal interpretation
of the analysis of residuals which is logically consistent with the AR model.
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5.2 Method Based on Multichannel Blind Deconvolution

While the two-stage method proposed above is computationally very efficient, it is far from being
statistically optimal. The estimation of the autoregressive part takes in no way non-Gaussianity into
account and is thus likely to be suboptimal. However, it is useful because it provides a good initial
guess for any further iterative method.

Thus, to improve the results of the two-stage method, we further propose an estimation method
based on the similarity of our model with convolutive versions of ICA which are also called multi-
channel blind deconvolution (MBD). Estimation of the model Eq. (3) is, in fact, closely related to
the multichannel blind deconvolution problem with causal finite impulse response (FIR) filters (Ci-
chocki and Amari, 2002; Hyvärinen et al., 2001). MBD, as a direct extension of ICA, assumes that
the observed signals are convolutive mixtures of some spatially and independently and identically
distributed (i.i.d.) sources.

Using MBD methods is justified here due to the possibility or transforming an autoregressive
model into a moving-average model: In Eq. (3), the observed variables xi(t) can be considered as
convolutive mixtures of the disturbances ei(t). Thus, we can find estimates of Bτ, as well as ei(t),
in Eq. (3), by using MBD methods to estimate the filter matricesWτ

ê(t) =
k

∑
τ=0
Wτx(t− τ). (13)

Comparing (13) with (3), we can see that the Bτ can then be recovered from the estimated Wτ;
details are given below.

The basic statistical principle to estimate the MBD model is that the disturbances ei(t) should
be mutually independent for different i and different t. Under the assumption that at most one of
the sources is Gaussian, by making the estimated sources spatially and temporally independent,
MBD can recover the mixing system (here corresponding to ei(t) and Bτ) up to some scaling,
permutation, and time shift indeterminacies (Liu and Luo, 1998). This implies that our SVAR
model is identifiable by MBD if at most one of the disturbances ei is Gaussian.

There exist several well-developed algorithms for MBD. For example, one may adopt the one
based on natural gradient (Cichocki and Amari, 2002). By extending the LiNGAM analysis proce-
dure (Shimizu et al., 2006), we can find the estimate of Bτ in the following three steps, based on the
MBD estimates ofWτ.

1. Find the permutation of rows of W0 which yields a matrix W̃0 with only significantly non-
zero entries on the main diagonal. The permutation can be found using similar methods (e.g.,
the Hungarian algorithm) as in LiNGAM (Shimizu et al., 2006). Note that here we also need
to apply the same permutations to rows ofWτ (τ> 0) to produce W̃τ.

2. Divide each row of W̃0 and W̃τ (τ> 0) by the corresponding diagonal entry in W̃0. This gives
W̃′

0 and W̃′
τ, respectively. The final estimates of B0 and Bτ (τ > 0) can then be computed as

B̂0 = I−W̃′
0 and B̂τ =−W̃′

τ, respectively.

3. To obtain the causal order in the instantaneous effects, find the permutation matrix P (applied
equally to both rows and columns) of B̂0 which makes B̃0 = PB̂0PT as close as possible to
strictly lower triangular.
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5.3 Sparsification of the Causal Connections

For the purposes of interpretability and generalizability, it is often useful to sparsify the causal
connections, that is, to set insignificant entries of B̂τ to zero. Analogously to the development of
ICA with sparse connections (Zhang et al., 2009), we can incorporate an adaptive L1 penalty into the
likelihood of the MBD method to achieve fast model selection which performs such sparsification.
We use a penalty-based approach because traditional model selection based on information criteria
involves a combinatorial optimization problem whose complexity increases exponentially in the
dimensionality of the parameter space. In the MBD problem, this is often not computationally
feasible.

Thus, to make Wτ in Eq. (13) as sparse as possible, we maximize the penalized likelihood
defined as

pl({Wτ}) = logL({Wτ})−λ∑
i, j,τ

|wi, j,τ|/|ŵi, j,τ|, (14)

where L({Wτ}) is the likelihood, wi, j,τ the (i, j)th entry of Wτ, and ŵi, j,τ a consistent estimate
of wi, j,τ, such as the maximum likelihood estimate. The parameter λ is the general weight of the
penalty.

The idea here is that we first compute an initial estimate of the wi, j,τ by a conventional method
(such as maximum likelihood) and then use those estimates to compute a parameter-wise weighting
in the L1 penalty. The end result is that those wi, j,τ for which the initial estimates ŵi, j,τ were small
are heavily penalized, and likely to be zero in the final estimate obtained by maximization of pl.

This penalized likelihood is a special case of adaptive Lasso and therefore has the same consis-
tency in variable selection (Zou, 2006). In fact, it can also be used for selecting the order k of the
autoregressive model. In particular, to achieve model selection similar to the Bayesian Information
Criterion (BIC), one can set λ= logT , where T is the sample size (Zhang et al., 2009).

It may be also useful to penalize groups of parameters. In particular, to see if the historical
values of xi(t) causes x j(t) (i )= j), one needs to examine the combined effect of the group of param-
eters [B̂τ]i, j,τ= 1, ..., p, and therefore it makes sense to apply penalization on the parameter group.
Combining the above approach with group Lasso (Bach, 2008) leads to the following penalized
likelihood:3

pl({Wτ}) = logL({Wτ})−λ∑
i, j,τ

|wi, j,0|/|ŵi, j,0|− kλ∑
i, j

( k

∑
τ=1

w2
i, j,τ

)1/2/( k

∑
τ=1

ŵ2
i, j,τ

)1/2
,

where the last term has the coefficient k because the parameter group wi, j,τ,τ= 1, ...,k has k param-
eters.

5.4 Simulations

To investigate the performance of the proposed estimation methods, we conducted a series of simu-
lations. We set the number of lags k= 1 and the dimensionality n= 5. We randomly constructed the
strictly lower-triangular matrix B0 and matrix B1. To make the causal effects sparse, we set about
60% of the entries in the matrix B1 and the lower-triangular part of B0 to zero, while the magnitude
of the others is uniformly distributed between 0.05 and 0.5 and the sign is random. Super-Gaussian

3. Here we treat the instantaneous effects separately. If one would like to see if the total influence from xi(t− τ),τ =
0,1, ..., p to x j(t) is significant, all parameters wi, j,τ,τ= 0,1, ..., p should be treated as a group.
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disturbances ei(t) were generated by passing standardized i.i.d. Gaussian variables through a power
nonlinearity with exponent between 1.5 and 2.0 while keeping the original sign. The observations
x(t) were then generated according to the model in Eq. (3). Various sample sizes (T = 100, 300,
and 1000) were tested. We compared the performance of the two-stage method (Section 5.1), the
method by MBD (Section 5.2) and the MBD-based method with the sparsity penalty (Section 5.3).
In the last method, we set the penalization parameter in Eq. (14) as λ= logT to make its results con-
sistent with those obtained by BIC. The densities of the independent components were adaptively
estimated using the method in Pham and Garrat (1997). In each case, we repeated the experiments
for 5 replications.

Fig. 1 shows the scatter plots of the estimated parameters (including the strictly lower triangular
part of B0 and all entries of B1) versus the true ones. Different subplots correspond to different
sample sizes or different methods. The mean square error (MSE) of the estimated parameters is
also given in each subplot. One can see that as the sample sizes increases, all methods give better
results. For each sample size, the method based on MBD is always better than the two-stage method,
showing that the estimate by the MBD-based method is more efficient. Furthermore, due to the
prior knowledge that many parameters are zero, the MBD-based method with the sparsity penalty
performed best.

6. Assessment of the Significance of Causality

In practice, we also need to assess the significance of the estimated causal relations. While the spar-
sification method in Section 5.3 is related to this goal, here we propose a more principled approach
for testing the significance of the causal influences.

For the instantaneous effects xi(t)→ x j(t) (i )= j), the significance of causality is obtained by
assessing if the entries of B̂0 are statistically significantly different from zero. For the lagged effects
xi(t− τ)→ x j(t) (i )= j,τ> 0), however, one is often not interested in the significance of any single
coefficient in B̂τ: More frequently one aims to find out if the total effect from xi(t− τ) to x j(t) is
significant.

We propose two simple statistics. One is a measure of instantaneous variance contributed by
xi(t) to x j(t): S0(i← j) = [B0]2i j · var(xi(t))/var(x j(t)). If all time series have the same variance,
it is simplified to S0(i← j) = [B0]2i j. The other measures how strong the total lagged causal in-
fluence from xi(t) to x j(t) is; it is a measure of contributed variance from xi(t− τ),τ > 0 to x j(t):
Slag(i ← j) = var(∑τ>0[Bτ]i jx j(t − τ))/var(x j(t)). If all series xi(t) have the same variance and
are approximately temporally uncorrelated, the above statistic can be approximated by ∑τ>0[Bτ]2i j.
(Note that these quantities are not exactly proportions of variance explained because the explaining
variables are not necessarily uncorrelated.)

The asymptotic distributions of these statistics under the null hypothesis (with no causal effects)
are very difficult to derive, and they may also behave poorly in the finite sample case. Therefore, like
in Diks and DeGoede (2001) and Theiler et al. (1992), we use bootstrapping with surrogate data to
find the empirical distributions of each statistic under the null hypothesis. To generate the surrogate
data under the null hypothesis, in each bootstrapping replication we “scramble” the original series
xi(t), that is, each time series is randomly permuted in temporal order. We then calculate Ŝ∗, the
estimate of the statistic S (which may be S0(i← j) or Slag(i← j)) for the surrogate data. Next, the
α-level bootstrapping critical value c∗tα is found as the α-th quantile of the bootstrapping distribution
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Figure 1: Scatter plots of the estimated coefficients (y axis) versus the true ones (x axis) for different
sample sizes and different methods.

of Ŝ∗. Finally, we reject the null hypothesis if Ŝ > c∗tα, where Ŝ is the estimate of S for the original
data.

7. Remarks on the Interpretation of the Parameters

In this section, we discuss how the autoregressive parameters are changed by taking into account the
instantaneous effects, and how our model can be interpreted in the framework of Granger causality.

7.1 Interaction Between Instantaneous and Lagged Effects

Equation (11) shows the interesting fact already mentioned in the Introduction: Consistent estimates
of the Bτ are not obtained by a simple AR model fit even for τ> 0. Taking instantaneous effects into
account changes the estimation procedure for all the autoregressive matrices, if we want consistent
estimators as we usually do. Of course, this is only the case if there are instantaneous effects, that
is, B0 )= 0; otherwise, the estimates are not changed.
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While this phenomenon is, in principle, well-known in econometric literature (Swanson and
Granger, 1997; Demiralp and Hoover, 2003; Moneta and Spirtes, 2006), Eq. (11) is seldom applied
because estimation methods for B0 have not been well developed. To our knowledge, no estimation
method for B0 has been proposed which is consistent for the whole matrix without strong prior
assumptions on B0.

Next we present some theoretical examples of how the instantaneous and lagged effects interact
based on the formula in (11).

7.1.1 EXAMPLE 1: AN INSTANTANEOUS EFFECT MAY SEEM TO BE LAGGED

Consider first the case where the instantaneous and lagged matrices are as follows:

B0 =

(
0 1
0 0

)
, B1 =

(
0.9 0
0 0.9

)
.

That is, there is an instantaneous effect x2 → x1, and no lagged effects (other than the purely autore-
gressive xi(t−1)→ xi(t)). Now, if an AR(1) model is estimated for data coming from this model,
without taking the instantaneous effects into account, we get the autoregressive matrix

M1 = (I−B0)
−1B1 =

(
0.9 0.9
0 0.9

)
.

Thus, the effect x2 → x1 seems to be lagged although it is, actually, instantaneous.

7.1.2 EXAMPLE 2: SPURIOUS EFFECTS APPEAR

Consider three variables with the instantaneous effects x1 → x2 and x2 → x3, and no lagged effects
other than xi(t−1)→ xi(t), as given by

B0 =




0 0 0
1 0 0
0 1 0



 , B1 =




0.9 0 0
0 0.9 0
0 0 0.9



 .

If we estimate an AR(1) model for the data coming from this model, we obtain

M1 = (I−B0)
−1B1 =




0.9 0 0
0.9 0.9 0
0.9 0.9 0.9



 .

This means that the estimation of the simple autoregressive model leads to the inference of a direct
lagged effect x1 → x3, although no such direct effect exists in the model generating the data, for any
time lag.

A more reassuring result is the following: if the data follows the same causal ordering for
all time lags, that ordering is not contradicted by the neglect of instantaneous effect. A rigorous
definition of this property is the following.

Theorem 1 Assume that there is an ordering i( j), j = 1 . . .n of the variables such that no effect
goes backward, that is,

Bτ(i( j−δ), i( j)) = 0 for δ> 0,τ≥ 0,1 ≤ j ≤ n. (15)
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(In the purely instantaneous case, existence of such an ordering is equivalent to acyclicity of the
effects as noted in Section 2.2.) Then, the same property applies to theMτ,τ≥ 1 as well. Conversely,
if there is an ordering such that (15) applies toMτ,τ≥ 1 and B0, then it applies to Bτ,τ≥ 1 as well.

Proof : When the variables are ordered in this way (assuming such an order exists), all the matrices
Bτ are lower-triangular. The same applies to I−B0. Now, the product of two lower-triangular
matrices is lower-triangular; in particular theMτ are also lower-triangular according to (11), which
proves the first part of the theorem. The converse part follows from solving for Bτ in (11) and the
fact that the inverse of a lower-triangular matrix is lower-triangular.

What this theorem means is that if the variables really follow a single “causal ordering” for
all time lags, that ordering is preserved even if instantaneous effects are neglected and a classic
AR model is estimated for the data. Thus, there is some limit to how (11) can change the causal
interpretation of the results.

7.2 Generalizations of Granger Causality

The classic interpretation of causality in instantaneous SEMs would be that xi causes x j if the ( j, i)-
th coefficient in B0 is non-zero. On the other hand, in the time series context, the concept of
Granger causality (Granger, 1969) formalizes causality as the ability to reduce prediction error. A
simple operational definition of Granger causality can be based on the autoregressive coefficients
Mτ: If at least one of the coefficients from xi(t− τ),τ ≥ 1 to x j(t) is (significantly) non-zero, then
xi Granger-causes x j. This is because then the variable xi reduces the prediction error in x j in the
mean-square sense if it is included in the set of predictors, which is the very definition of Granger
causality.

In light of the results in this paper, we can generalize the concept of Granger causality in two
ways. First we can combine the two aspects of instantaneous and lagged effects. In fact, such a
concept of instantaneous causality was already alluded to by Granger (1969), but presumably due
to lack of proper estimation methods, that paper as well as most future developments considered
mainly non-instantaneous causality. The second generalization is to measure prediction error by the
information-theoretic definition of Section 4.3, essentially using entropy instead of mean squared
error. These two generalization are independent of each other in the sense that we can use any one
of them, omitting the other.

Both of these extensions are implicit in estimation of our model. Thus, we define that a variable
xi causes x j if at least one of the coefficients Bτ( j, i), giving the effect from xi(t − τ) to x j(t), is
(significantly) non-zero for τ ≥ 0. The condition for τ is different from Granger causality since
the value τ = 0, corresponding to instantaneous effects, is included. Moreover, since estimation of
the instantaneous effects changes the estimates of the lagged ones, the lagged effects used in our
definition are different from those usually used with Granger causality. Using entropy instead of
mean-squared error is implicit in this definition because non-Gaussianity is used in the estimation
of the model. In general, entropy minimization is closely related to ICA estimation (Hyvärinen,
1999) as well as the estimation of the present model as was discussed in Section 4.3. Notice that we
assume here, as in the general theory of Granger causality, that there are no unobserved confounders.
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8. Real Data Experiments

We applied our model together with the estimation and testing method on both financial data and
magnetoencephalography (MEG) data. In the former application, we used the sparsity penalty to
select significant effects, while in the latter one, bootstrapping was used.

8.1 Application in Finance

First, we use the model in Eq. (3) to find the causal relations among several world stock indices.
The chosen indices are Dow Jones Industrial Average (DJI) in USA, Nikkei 225 (N225) in Japan,
Hang Seng Index (HSI) in Hong Kong, and the Shanghai Stock Exchange Composite Index (SSEC)
in China. We used the daily dividend/split adjusted closing prices from 4th Dec 2001 to 11th Jul
2006, obtained from the Yahoo finance database. For the few days when the price is not available,
we use simple linear interpolation to estimate the price. Denoting the closing price of the ith index
on day t by Pi(t), the corresponding return is calculated by xi(t) = Pi(t)−Pi(t−1)

Pi(t−1) . The data for analysis
are x(t) = [x1(t), ...,x4(t)]T , with T = 1200 observations.

We applied the MBD-based method with the sparsity penalty to x(t). The kurtoses of the es-
timated disturbances êi are 3.9, 8.6, 4.1, and 7.6, respectively, implying that the disturbances are
non-Gaussian. We found that more than half of the coefficients in the estimated W0 and W1 are
exactly zero due to sparsity penalty. B̂0 and B̂1 were constructed based on W0 and W1, using the
procedure given in Section 5.2. It was found that B̂0 can be permuted to a strictly lower-triangular
matrix, meaning that the instantaneous effects follow a linear acyclic causal model. Finally, based
on B̂0 and B̂1, one can plot the causal diagram, which is shown in Fig. 2.

Fig. 2 reveals some interesting findings. First, DJIt−1 has significant impacts on N225t and HSIt ,
which is a well-known fact in the stock market. Second, the causal relations DJIt−1 →N225t →DJIt
and DJIt−1 → HSIt → DJIt are consistent with the time difference between Asia and USA. That is,
the causal effects from N225t and HSIt to DJIt , although seeming to be instantaneous, may actually
be mainly caused by the time difference. Third, unlike SSEC, HSI is very sensitive to others; it
is even strongly influenced by N225, another Asian index. Fourth, it may be surprising that there
is a significant negative effect from DJIt−1 to DJIt ; however, it is not necessary for DJIt to have
significant negative autocorrelations, due to the positive effect from DJIt−1 to DJIt going through
N225t and HSIt .

8.2 Application on MEG Data

Second, we applied the proposed model on the magnitudes of brain sources obtained from magne-
toencephalographic (MEG) signals to analyze their causal relationships. The raw recordings con-
sisted of the 204 gradiometer channels measured by the Vectorview helmet-shaped neuromagne-
tometer (Neuromag Ltd., Helsinki, Finland) in a magnetically shielded room at the Brain Research
Unit of the Low Temperature Laboratory of the Aalto University School of Science and Technol-
ogy. They were obtained from a healthy volunteer and lasted about 12 minutes. The data was
downsampled to 75 Hz.

To begin with, we separated sources underlying the recorded MEG data using a recently pro-
posed blind source separation method, Fourier-ICA (Hyvärinen et al., 2010). We manually selected
17 sources which are expected to correspond to brain activity, rejecting clear artifacts based on the
Fourier spectra and topographic distributions of the sources.
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Figure 2: Results of application of our model to daily returns of the stock indices DJI, N225, HSI,
and SSEC, with k= 1 lag. Large coefficients (greater than 0.1) are shown in bold and red.

Next, we fitted an ordinary vector autoregressive model with 10 lags on the estimated sources,
finding the corresponding innovation series which we denote by yi(t), i = 1, ...,17. Our goal was
to analyze if there are some influences between the magnitudes of these innovations. We prefer
to analyze the innovations because the innovations are approximately white both temporally and
spatially, and thus we can analyze the magnitudes with no contamination by linear (auto)correlations
of the source signals. The autoregressive model order 10 was chosen because it was the smallest
order that gave approximately white innovations.

We then fitted the SVAR model on the logarithmically transformed magnitudes xi(t) = log(0.2+
|yi(t)|), i = 1, ...,17. We determined the order k of our SVAR model by minimizing the AIC crite-
rion (Akaike, 1973), which is the negative log-likelihood of the MBD model plus a term measuring
the complexity of the model. The log-likelihood involves the densities of the MBD outputs êi(t),
which were modelled by a mixture of three Gaussians. From the candidate orders between 0 and
20, we found that k = 2 gave the minimum AIC.

After finding the estimate of the coefficients B̂τ,τ = 0,1,2 with the MBD-based approach, one
can easily calculate the estimates of the statistics S0(i ← j) and Slag(i ← j). The bootstrapping
approach given in Section 6 was used to evaluate if these estimated statistics are significant. Here
we need to test multiple hypotheses simultaneously; to reduce the type I error, we adopted the
Bonferroni correction (Shaffer, 1995) for multiple testing correction. We used the significance level
5%. For both the instantaneous and lagged effects, one needs to perform 17 × 16 = 272 tests;
therefore, the significance level for each individual test is then 0.05/272 ≈ 2×10−4. We used 104

replications for the bootstrapping.
For illustration, we give the empirical distribution of the statistics S0(7 ← 14) and Slag(7 ← 14),

as well as their estimated values for the original series xi(t), in Fig. 3. Clearly Ŝ0(7 ← 14) is
significant, while Ŝlag(7 ← 14) is not.

Fig. 4 shows the resulting diagram of causal analysis with instantaneous effects between the
magnitudes of the selected MEG sources, with the influences significant at 5% level (corrected for
multiple testing). What we see is that the connections tend to be strong between sources which
are close to each other. For example, the occipitoparietal sources such as #1, #2, #3, #8, and #11
have strong interconnections. Some perirolandic sources such as #5, #7, #10, and #14 are also
interconnected. Sources #4 and #16 seems to mediate between these two groups.
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Figure 3: Illustration of the empirical distribution of the statistics under the null hypothesis obtained
by bootstrapping. (a) For the statistic S0(7 ← 14). (b) For Slag(7 ← 14).

Figure 4: Results of application of our model on the log-magnitudes of the MEG sources (signifi-
cant at 5% level, corrected for multiple testing). Black dashed line: instantaneous effect.
Red solid line: lagged effect. The thickness of the lines indicates the strength of the
influences.
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9. Extensions of the Model

We have here assumed that B0 is acyclic, as is typical in causal analysis. However, this assumption
is only made because we do not know very well how to estimate a linear non-Gaussian Bayesian
network (or SEM) in the cyclic case. If we have a method which can estimate cyclic models, we do
not need the assumption of acyclicity in our combined model either; see Lacerda et al. (2008) for
one proposal. We could just use such a new method in our two-stage method instead of LiNGAM,
and nothing else would be changed. However, development of methods for estimating cyclic models
is orthogonal to the main contribution of our paper in the sense that we can use any such new method
to estimate the instantaneous model in our framework.

In formulating the likelihood we had to assume that the e(t) are independent and identically dis-
tributed for different time points. However, in our two-stage estimation method, no such assumption
was needed to guarantee consistency. In particular, the e(t) can be heteroscedastic, as long as e(t)
and e(t ′) are uncorrelated for t )= t ′ . In such a case, it might also be advantageous to change the
LiNGAM estimation method so that the ICA part is replaced by methods estimating (4) explicitly
based on temporal heteroscedasticity (Matsuoka et al., 1995; Hyvärinen, 2001; Pham and Cardoso,
2001); this is quite straightforward and necessitates no further changes in the method.

An interesting class of methods which is related to ours has been recently proposed by Gómez-
Herrero et al. (2008). The idea is to combine blind source separation with a linear autoregressive
model of the latent sources. The estimation of such a model can be accomplished by methods which
are quite similar to our estimation methods, see also Haufe et al. (2009). However, the interpretation
of the model is very different since, first, Gómez-Herrero et al. (2008) separate linear sources and
analyze their (causal) connections whereas we analyze connections between the observed variables,
and second, we estimate instantaneous causal influences whereas Gómez-Herrero et al. (2008) only
estimate lagged ones.

10. Conclusion

We showed how non-Gaussianity enables estimation of a causal discovery model in which the linear
effects can be either instantaneous or time-lagged. Like in the purely instantaneous case (Shimizu
et al., 2006), non-Gaussianity makes the model identifiable without explicit prior assumptions on
existence or non-existence of given causal effects. The theoretical developments are closely related
to independent component analysis. The classic assumption of acyclicity was made, although it
may not be necessary. From the practical viewpoint, an important implication is that considering
instantaneous effects changes the coefficient of the time-lagged effects as well. We proposed meth-
ods for computationally efficient estimation of the model, as well as for sparsification and testing of
the model coefficients.
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Abstract
The FastInf C++ library is designed to perform memory and time efficient approximate inference
in large-scale discrete undirected graphical models. The focus of the library is propagation based
approximate inference methods, ranging from the basic loopy belief propagation algorithm to prop-
agation based on convex free energies. Various message scheduling schemes that improve on the
standard synchronous or asynchronous approaches are included. Also implemented are a clique
tree based exact inference, Gibbs sampling, and the mean field algorithm. In addition to inference,
FastInf provides parameter estimation capabilities as well as representation and learning of shared
parameters. It offers a rich interface that facilitates extension of the basic classes to other inference
and learning methods.
Keywords: graphical models, Markov random field, loopy belief propagation, approximate infer-
ence

1. Introduction

Probabilistic graphical models (Pearl, 1988) are a framework for representing a complex joint dis-
tribution over a set of n random variables X = {X1 . . .Xn}. A qualitative graph encodes probabilistic
independencies between the variables and implies a decomposition of the joint distribution into a
product of local terms:

P(X ) =
1
Z∏i

ψi(Ci),

whereCi are subsets of X defined by the cliques of the graph structure andψi(Ci) are the quantitative
parameters (potential functions) that define the distribution. Computing marginal probabilities and
likelihood in graphical models are critical tasks needed both for making predictions and to facilitate
learning. Obtaining exact answers to these inference queries is often infeasible even for relatively
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modest problems. Thus, there is a growing need for inference methods that are both efficient and
can provide reasonable approximate computations. Despite few theoretical guarantees, the Loopy
Belief Propagation (LBP, Pearl, 1988) algorithm has gained significant popularity in the last two
decades due to impressive empirical success, and is now being used in a wide range of applications
ranging from transmission decoding to image segmentation (Murphy and Weiss, 1999; McEliece
et al., 1998; Shental et al., 2003). Recently there has been an explosion in practical and theoretical
interest in propagation based inference methods, and a range of improvements to the convergence
behavior and approximation quality of the basic algorithms have been suggested (Wainwright et al.,
2003; Wiegerinck and Heskes, 2003; Elidan et al., 2006; Meshi et al., 2009).

We present the FastInf library for efficient approximate inference in large scale discrete prob-
abilistic graphical models. While the library’s focus is propagation based inference techniques,
implementations of other popular inference algorithms such as mean field (Jordan et al., 1998) and
Gibbs sampling are also included. To facilitate inference for a wide range of models, FastInf’s rep-
resentation is flexible allowing the encoding of standard Markov random fields as well as template-
based probabilistic relational models (Friedman et al., 1999; Getoor et al., 2001), through the use
of shared parameters. In addition, FastInf also supports learning capabilities by providing param-
eter estimation based on the Maximum-Likelihood (ML) principle, with standard regularization.
Missing data is handled via the Expectation Maximization (EM) algorithm (Dempster et al., 1977).

FastInf has been used successfully in a number of challenging applications, ranging from infer-
ence in protein-protein networks with tens of thousands of variables and small cycles (Jaimovich
et al., 2005), through protein design (Fromer and Yanover, 2008) to object localization in cluttered
images (Elidan et al., 2006).

2. Features

The FastInf library was designed while focusing on generality and flexibility. Accordingly, a rich
interface enables implementation of a wide range of probabilistic graphical models to which all
inference and learning methods can be applied. A basic general-purpose propagation algorithm is
at the base of all propagation variants and allows straightforward extensions.

A model is defined via a graph interface that requires the specification of a set of cliques
C1 . . .Ck, and a corresponding set of tables that quantify the parametrization ψi(Ci) for each joint
assignment of the variables in the clique Ci. This general setting can be used to perform inference
both for the directed Bayesian network representation and the undirected Markov one.

2.1 Inference Methods

FastInf includes implementations of the following inference methods:

• Exact inference by the Junction-Tree algorithm (Lauritzen and Spiegelhalter, 1988)
• Loopy Belief Propagation (Pearl, 1988)
• Generalized Belief Propagation (Yedidia et al., 2005)
• Tree Re-weighted Belief Propagation (Wainwright et al., 2005)
• Propagation based on convexification of the Bethe free energy (Meshi et al., 2009).
• Mean field (Jordan et al., 1998)
• Gibbs sampling (Geman and Geman, 1984)
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By default, all methods are used with standard asynchronous message scheduling. We also imple-
mented two alternative scheduling approaches that can lead to better convergence properties (Wain-
wright et al., 2002; Elidan et al., 2006). All methods can be applied to both sum and max product
propagation schemes, with or without damping of messages.

2.2 Relational Representation

In many domains, a specific local interaction pattern can recur many times. To represent such
domains, it is useful to allow multiple cliques to share the same parametrization. In this case a set
of template table parametrizations ψ1, . . . ,ψT are used to parametrize all cliques using

P(X ) =
1
Z∏t ∏i∈I(t)

ψt(Ci),

where I(t) is the set of cliques that are mapped to the t’th potential. This template based represen-
tation allows the definition of large-scale models using a relatively small number of parameters.

2.3 Parameter Estimation

FastInf can also be used for learning the parameters of the model from evidence. This is done
by using gradient-based methods with the Maximum-Likelihood (ML) objective. The library also
handles partial evidence by applying the EM algorithm (Dempster et al., 1977). Moreover, FastInf
supports L1 and L2 regularization that is added as a penalty term to the ML objective.

3. Documentation

For detailed instructions on how to install and use the library, examples for usage and documentation
on the main classes of the library visit FastInf home page at: http://compbio.cs.huji.ac.il/
FastInf.
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Abstract

An important goal for machine learning is to transfer knowledge between tasks. For example, learn-
ing to play RoboCup Keepaway should contribute to learning the full game of RoboCup soccer.
Previous approaches to transfer in Keepaway have focused on transforming the original represen-
tation to fit the new task. In contrast, this paper explores the idea that transfer is most effective if
the representation is designed to be the same even across different tasks. To demonstrate this point,
a bird’s eye view (BEV) representation is introduced that can represent different tasks on the same
two-dimensional map. For example, both the 3 vs. 2 and 4 vs. 3 Keepaway tasks can be represented
on the same BEV. Yet the problem is that a raw two-dimensional map is high-dimensional and un-
structured. This paper shows how this problem is addressed naturally by an idea from evolutionary
computation called indirect encoding, which compresses the representation by exploiting its geom-
etry. The result is that the BEV learns a Keepaway policy that transfers without further learning or
manipulation. It also facilitates transferring knowledge learned in a different domain, Knight Joust,
into Keepaway. Finally, the indirect encoding of the BEV means that its geometry can be changed
without altering the solution. Thus static representations facilitate several kinds of transfer.

1. Introduction

Representation is a critical factor in the ability of any algorithm to learn autonomously (Clark,
1989). For example, a soccer player might represent the world through raw vision, distances and
angles to other objects, or qualitative features such as close and far. Different such representations
provide different perspectives to the learning algorithm. While one might be appropriate for learning
physical control, another might better suit strategic planning. This paper focuses in particular on the
effect of representation on task transfer, that is, bootstrapping knowledge gained learning one task
to facilitate learning another, related task (Caruana, 1997; Talvitie and Singh, 2007; Taylor et al.,
2007a). It turns out that representation not only affects the performance of such transfer, but also
the elegance of its implementation. For example, transferring an artificial neural network (ANN)
that takes as inputs parameters associated with objects (e.g., location, size, etc.) to a task with
more such objects may require transforming the network by adding inputs for parameters associated
with each new object (Taylor et al., 2007a). Yet such transformation can disrupt previous learning,
thereby requiring the transformed network to undergo additional training to regain even its former
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capabilities within the new scenario. As an alternative, this paper argues that an ideal representation
would require no such transformations (i.e., it would remain static) when transferring to a new task.

The idea that input (i.e., state) representation might remain static during transfer is plausible
because the raw inputs to biological organisms, for example, vision, remain the same even when
new tasks are confronted. For example, when a child graduates from playing Keepaway to full-
blown soccer, the number of photoreceptors in the eye do not change. The main idea in this paper
is that such static representation, when possible, facilitates transfer by ensuring that the semantics
of the representation are preserved even when the task changes.

To demonstrate the critical role of static representation in transfer, a novel state representation
is introduced called a bird’s eye view (BEV), which is a two-dimensional depiction of objects on the
ground from above. Conceptually, the BEV is a metaphor for an internal representation of the state
of the world from above. The BEV places objects into the context of the world geometry, allowing
geometric relationships to be more easily learned. Another advantage is that its input dimensionality
(i.e., number of inputs) is constant no matter howmany objects are on the field. That way, even if the
task is transferred to a version with more objects, the representation remains the same (i.e., static),
significantly simplifying task transfer.

However, the challenge for the BEV is that representing a high-resolution two-dimensional
field requires many input dimensions (i.e., many parameters), similarly to an eye. An outgrowth
of evolutionary computation designed to address such high-dimensional problems is indirect en-
coding, which compresses the representation of the solution by reusing information. The particular
indirect encoding in this paper, called a compositional pattern producing network (CPPN; Stan-
ley 2007), represents artificial neural network (ANN) mappings between high-dimensional spaces
by exploiting regularities in their geometry, which is well-suited to the BEV. An evolutionary al-
gorithm called Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT; Gauci
and Stanley 2008; Stanley et al. 2009; Gauci and Stanley 2010) that is designed to evolve CPPNs is
therefore able to learn effectively from the BEV.

The HyperNEAT BEV is tested in the common RoboCup Keepaway soccer reinforcement-
learning (RL) benchmark (Stone et al., 2005). Keepaway is important because it can potentially
serve as a stepping stone to full-blown soccer in the future, which is a major current goal in machine
learning (Kalyanakrishnan et al., 2007; Kitano et al., 1997; Kok et al., 2005; Kyrylov et al., 2005;
Mackworth, 2009; Stolzenburg et al., 2006). One interesting result with the BEV is the longest
holding time in the 3 vs. 2 variant of the task yet recorded. However, more importantly, unlike
any method so far, HyperNEAT can transfer from 3 vs. 2 to 4 vs. 3 Keepaway with no change in
representation and no further learning, demonstrating the critical role static representation plays in
learning and transfer. Furthermore, these transferred policies can then be further trained on the new
task without the need to alter the representation. Additional types of transfer within Keepaway are
investigated wherein the representation of the policy (i.e., the CPPN, or indirect encoding) remains
static while the BEV itself is changed by increasing resolution and by accommodating different
field sizes. Finally, cross-domain transfer is demonstrated by training on a distinctly different do-
main, Knight Joust (Taylor et al., 2007a), which is a simple predator-prey type domain, and then
transferring to 3 vs. 2 Keepaway.

The main result is that transfer through a static representation is consistently more robust and
often provides immediate benefits even without any further training. While static representations
are inherently high-dimensional because they must encompass many tasks, indirect encodings like
HyperNEAT’s CPPNs show that high-dimensionality need not be prohibitive. Thus, while machine
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learning often focuses on the learning algorithm, the hope is that this paper provokes a fruitful
conversation on the role of representation in transfer and learning in general.

It is finally important to acknowledge that the extent to which maintaining a static representation
is realistic depends upon the learning method, state information, and differences between domains.
Thus static representation is an ideal that when met can provide an advantage, as shown in this
paper.

The next section describes the importance of representation in learning, prior research in transfer
learning, and the methods that underlie the BEV representation. Section 3 explains how the BEV
is configured, how information is represented in the BEV, and how HyperNEAT trains the BEV. In
Section 4, the experiments that investigate the performance of the BEV in learning and transfer are
described. Finally, Section 5 presents the results of the BEV, followed by a discussion in Section 6.

2. Background

This section examines the critical role of representation in RL and then explains the geometry-based
methods that underlie the static representation investigated in this paper, and their relation to task
transfer.

2.1 Representation in Learning

A convenient model for problems in RL is the Markov decision process (MDP). In the MDP, the
learner knows its environment through a state observation s ∈ S, which is characterized by a set of
state variables s= 〈p1, p2, · · · , pn〉, in which each pi denotes a particular state parameter. By taking
an action a∈A, the agent transitions to a new state in S through the transition function T : S×A &→ S.
The reward function R : S &→ R determines the instantaneous reward associated with reaching each
state. Finally, the action that the agent takes from its current state is selected by the policy function
π : S &→ A (Puterman, 1994). For example, in the Keepaway soccer domain, the state space S for the
keeper with the ball can be defined as the set of distances and angles to each other player. The set of
actions A can be defined as a set of passes to teammates and holding the ball (Metzen et al., 2007;
Stone et al., 2001; Stone and Sutton, 2001; Stone et al., 2005). A simple policy π would be to pass
to the most open teammate when takers are close and hold the ball otherwise.

While the MDP framework provides a solid foundation for developing learning algorithms, it
does not suggest how to select a state and action representation appropriate for both the domain and
the learning algorithm. One popular approach to state representation, for example, in the RoboCup
Keepaway soccer domain, is to express the state as distances and angles to the other players rela-
tive to the agent with the ball (Metzen et al., 2007; Stone et al., 2001, 2005; Taylor et al., 2006).
However, this common representation is not the only one possible, which is important because repre-
sentation critically influences what is learned (Gauci and Stanley, 2008; Diuk et al., 2008; Tadepalli
et al., 2004; Tesauro, 1992).

To see the powerful effect of representation on learning, consider the common representation
in 3 vs. 2 Keepaway of 13 state parameters that are value-attributes for distance and angle relation-
ships among the players and the field. In contrast, 4 vs. 3 Keepaway, a similar task, requires an
increased number of state parameters to represent the distances and angles for the additional play-
ers. These additional parameters mean that the same representation cannot be applied to both tasks,
thereby complicating the transfer of knowledge between tasks. For example, the same concept must
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be learned repeatedly when the same decisions are made separately for multiple objects, such as
whether to pass to teammates who are out of bounds.

Relational RL addresses problems such as scaling and repetitious concepts by generalizing the
representation of information for learning algorithms to a relational form (Deroski et al., 2001).
For example, in the RoboCup Keepaway domain, instead of real-valued state parameters, general
relations can be defined. An example for deciding to whom to pass in 3 vs. 2 Keepaway is:

Pass(Teammate) :−Threatened(PlayerWithBall),Open(Teammate).

The relational form provides a more expressive representation that can be combined with
reinforcement-learning methods (Tadepalli et al., 2004). By focusing on the logic of relationships,
instead of on individual parameter values, these relationships can be applied to any number of ob-
jects. Furthermore, once a relationship is learned for one set of objects, it is learned for all similar
sets of objects.

One of relational RL’s goals is to provide an easier representation for transferring knowledge.
This transfer could be across objects in the domain or across different tasks. However, the design
and definition of these relationships are dependent upon the human designer, requiring expert do-
main knowledge. Learning is dependent upon the a priori defined relations. Continuous and noisy
domains present additional challenges to designing appropriate relations (Morales, 2003). Never-
theless, relational RL highlights the importance of representation to learning.

However, while state representation is important, it is not the only type of representation that
affects learning. Also significant is the representation of the learner itself, which impacts which
types of relationships can be learned and how easily they are found. For example, research in
temporal difference learning can employ look-up tables or more compact representations (Sutton,
1988, 1996; Tesauro, 1992), which work by encoding regularities. An important difference between
these representations is that the look-up table contains enough parameters to store associated actions
with every state, while compact representations must encode the solution with significantly fewer
parameters than states. To guarantee convergence with a look-up table, every state must be visited an
infinite number of times (Sutton and Barto, 1998) while compact representations need only discover
underlying regularities in the problem (Sutton, 1996; Tesauro, 1992).

Another important factor in representation is the geometry of the domain (e.g., which position
is adjacent to which and in what direction). Geometry plays a critical role in learning. For example,
if a checkers board is scrambled while the relationships among locations that have been moved
remain the same, the game would become more difficult to learn. This effect has been investigated
in checkers, wherein learning based on board geometry was demonstrated to enhance performance
versus learning while blind to geometry (Gauci and Stanley, 2008, 2010). Ideally, the solution
should be a function of the domain geometry, enabling the learner to take advantage of geometric
regularities. This paper focuses further on the critical role of representing geometry, particularly in
task transfer, which is described next.

2.2 Task Transfer

Task transfer means applying knowledge learned in one task to a new, related task (Caruana, 1997;
Talvitie and Singh, 2007; Taylor et al., 2007a). It allows learning to be recycled instead of starting
anew, thereby avoiding wasted computation. Additionally, a task may be so complex that it requires
initial training on a simpler version to reduce learning time and increase performance (Caruana,
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1997; Schmidhuber and Informatik, 1994; Tadepalli, 2008; Thrun and Mitchell, 1994). Thus the
capability to transfer is becoming increasingly important as the tasks studied in RL increase in
complexity. However, transfer learning faces several challenges: First, transfer is only effective
among compatible tasks and the particular knowledge that can transfer from one task to another must
be identified. Second, a method must be derived to actually implement the transfer of knowledge.
Finally, cases in which transfer hinders performance, or negative transfer, must be avoided (Pan
and Yang, 2008). There are several types of transfer learning problems and a variety of methods
that exploit their characteristics. These methods include translating the knowledge learned in one
task to another task (Ramon et al., 2007; Taylor et al., 2007a), choosing the best policy for the
current task from a set of previously learned policies (Talvitie and Singh, 2007), extracting advice
from previously learned tasks (Torrey et al., 2008a,b), and learning multiple tasks at the same time
(Collobert and Weston, 2008). This section reviews several such approaches.

An intuitive approach to transfer learning is to transform the representation of knowledge learned
in one task to a suitable form for a new task and then continue learning from that point. A success-
ful method that takes this approach is transfer via inter-task mapping for policy search methods
(TVITM-PS; Taylor et al. 2007a). TVITM-PS is such a leading method for transforming the policy
learned in the source task into a policy usable in the target task. In TVITM-PS, a transfer func-
tional ρ is defined to transform the policy π for a source task into the policy for a target task, such
that ρ(πsource) = πtarget . This functional is often hand-coded based on domain knowledge, though
learning it is possible. When there are novel state variables or actions, an incomplete mapping is
defined from the source to the target. TVITM-PS can be adapted to multiple representations. For
example, in an ANN, input or output nodes whose connections are not defined in the mapping (i.e.,
it is incomplete) are made fully connected to the existing hidden nodes with random weights. This
incomplete mapping implies that further training is needed to optimize the policies with respect to
the new state variables and actions. However, it makes it possible to begin in the target domain
from a better starting point than from scratch. TVITM-PS is a milestone in task transfer because it
introduces a formal approach to moving from one domain to another that defines how ambiguous
variables in the target domain should be treated. The performance of TVITM-PS is compared to
results in this paper.

Another method of transfer, which is one that is explored in this paper, is to recycle the exact
same policy from a source task in a later target task. The idea is that the policy can then continue
to improve in the target task. An existing approach to recycling past policies is to maintain a set
of policies and select among them. Alternating trusting Exploration and suspicious exploitation
(AtEase; Talvitie and Singh 2007) is such a transfer method; it aims to recognize when tasks are
related and when to exploit knowledge gained from previous tasks. It exploits knowledge from pre-
vious tasks by judging when to invoke the previously gained knowledge and from which policies.
To facilitate this process, a set of policies previously developed by learning source tasks are first
evaluated. This evaluation estimates the performance of these previously learned source policies on
the new target task. Second, the strategies are ranked by their expected performance on the target
task and the source policy with the best estimated performance is chosen. Finally, the chosen best
policy is set as the current policy for the target task. It remains as the policy for the target task until
the policy’s actual performance on the task falls below expectation (i.e., the estimated performance
from the evaluation of source policies is greater than the current performance) or reaches a maxi-
mum number of iterations (allowing other policies to be explored). If the expert policy falls below
expectation, the next best policy is selected and is set as the current expert policy. This method
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allows an accurate estimate of which policy from previously learned tasks is appropriate for the cur-
rent task. In contrast to this approach, this paper focuses on how to effectively leverage knowledge
gained in a single source policy to continue learning in the target domain. Thus the approach in this
paper can potentially combine with a multi-policy approach such as AtEase.

An important consideration in transfer is whether a human can understand the knowledge being
transferred among tasks. An alternative method to recycling previously learned policies directly is
to take advice from learned policies to augment decision making. This advice may take the form of
geometric knowledge, causal relationships, predictions, or any other type of information, allowing
researchers to more easily interpret the transferred knowledge. Rule extraction is one such method
that takes knowledge learned from a source domain and translates it into advice that aids a policy in
a target domain (Torrey et al., 2008b). The advice is generated as a conditional, if-then statement.
Torrey et al. (2008b) describe two methods for generating advice. One method is to compose rules
by decomposing the policy learned on a source task. For example, Q-values can be examined
directly and rules can be generated based on which actions are preferred. An alternative method
for generating advice is to analyze the behavior (instead of the policy) of an agent to generate
rules. Consider observing agents playing a game of Keepaway soccer. Through observation, it may
be apparent that a learned policy always passes the ball if opponents approach within one meter,
which may then be transformed into a rule to transfer to another task. These sets of rules have
the advantage of being understandable to humans, allowing researchers to know what knowledge is
being transferred and how it is contributing.

Interestingly, transfer learning does not always require a designated source and target task. In-
stead, knowledge may transfer among several tasks that are simultaneously being learned. By en-
coding the knowledge for multiple tasks within the same policy, the knowledge gained from each
individual task may combine with and complement the knowledge from other tasks. For example,
Collobert and Weston (2008) demonstrate transfer learning through multi-task training for natu-
ral language processing (NLP) with deep neural networks. There are many tasks related to NLP,
including part-of-speech tagging, chunking, named entity recognition, semantic role labeling, lan-
guage modeling, and relating words syntactically. The idea is that learning about one such task may
contribute to learning the others. By training the policies simultaneously for all these capabilities,
knowledge can be continually passed back and forth among all these tasks. In particular, Collobert
and Weston (2008) show that this method improves generalization and achieves competitive results
on the task of relating words with similar meaning.

This paper adds to our understanding of task transfer by focusing on the role of representation.
The next section reviews the NEAT method, upon which this representation-centric approach is
built.

2.3 NeuroEvolution of Augmenting Topologies (NEAT)

NEAT (Stanley and Miikkulainen, 2002, 2004) is a popular policy search method that evolves
ANNs. The main idea in this paper focuses on an extension of NEAT called HyperNEAT. Nev-
ertheless, the basic principles of NEAT still supply the foundation of the approach. Traditionally,
ANNs evolved by NEAT control agents that select actions based on their sensor inputs. It is proven
in a variety of challenging control and decision-making tasks (Aaltonen et al., 2009; Cardamone
et al., 2009; Stanley and Miikkulainen, 2002, 2004; Stanley et al., 2005; Taylor et al., 2006; White-
son, 2005; Whiteson and Whiteson, 2007). This section briefly reviews NEAT.
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NEAT is an evolutionary algorithm that starts with a population of small, simple ANNs that
increase their complexity over generations by adding new nodes and connections through mutation.
That way, the topology of the network does not need to be known a priori and NEAT finds a suitable
level of complexity for the task. NEAT is unlike many previous methods that evolved neural net-
works, that is, neuroevolution methods, which historically evolved either fixed-topology networks
(Gomez and Miikkulainen, 1999; Saravanan and Fogel, 1995), or arbitrary random-topology net-
works (Angeline et al., 1993; Gruau et al., 1996; Yao, 1999). Unlike these approaches, NEAT begins
evolution with a population of small, simple networks and increases the complexity of the network
topology into diverse species over generations, leading to increasingly sophisticated behavior. A
similar process of gradually adding new genes has been confirmed in natural evolution (Martin,
1999; Watson et al., 1987) and shown to improve adaptation in a few prior evolutionary (Altenberg,
1994) and neuroevolutionary (Harvey, 1993) approaches. However, a key feature that distinguishes
NEAT from prior work in growing ANNs is its unique approach to maintaining a healthy diversity
of increasingly complex structures simultaneously, as this section reviews. Complete descriptions
of the NEAT method, including experiments confirming the contributions of its components, are
available in Stanley and Miikkulainen (2002, 2004) and Stanley et al. (2005).

The NEAT method is based on three key ideas. First, to allow network structures to increase in
complexity over generations, a method is needed to keep track of which gene is which. Otherwise, it
is not clear in later generations which individual is compatible with which in a population of diverse
structures, or how their genes should be combined to produce offspring. NEAT solves this prob-
lem by assigning a unique historical marking to every new piece of network structure that appears
through a structural mutation. The historical marking is a number assigned to each gene corre-
sponding to its order of appearance over the course of evolution. The numbers are inherited during
crossover unchanged, and allow NEAT to perform crossover among diverse topologies without the
need for expensive topological analysis.

Second, NEAT divides the population into species so that individuals compete primarily within
their own niches instead of with the population at large. Because adding new structure is often
initially disadvantageous, this separation means that unique topological innovations are protected
and therefore have the opportunity to optimize their structure without direct competition from other
niches in the population. The historical markings help NEAT determine to which species different
individuals belong.

Third, many approaches that evolve network topologies and weights begin evolution with a
population of random topologies (Gruau et al., 1996; Yao, 1999). In contrast, NEAT begins with a
uniform population of simple networks with no hidden nodes, differing only in their initial random
weights. Because of speciation, novel topologies gradually accumulate over evolution, thereby al-
lowing diverse and complex phenotype topologies to be represented. No limit is placed on the size
to which topologies can grow. New structures are introduced incrementally as structural mutations
occur, and only those structures survive that are found to be beneficial through fitness evaluations.
In effect, then, NEAT searches for a compact, appropriate topology by incrementally adding com-
plexity to existing structure.

The important concept for the approach in this paper is that NEAT is a policy search method
that discovers the right topology and weights of a network to maximize performance on a task. The
next section reviews the extension of NEAT called HyperNEAT that allows it to exploit geometry
through representation.
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2.4 CPPNs and HyperNEAT

The primary reason that NEAT is chosen as the main vehicle to study alternate representations is
that it is easily extended to become an indirect encoding, which means a compressed description of
the solution network. Such compression makes the policy search practical even if the state space is
high-dimensional. One effective approach to indirect encoding is to compute the network structure
as a function of the domain’s geometry. This section describes such an extension of NEAT, called
Hypercube-based NEAT (HyperNEAT; Gauci and Stanley 2008; Stanley et al. 2009; Gauci and
Stanley 2010), which enables the novel state representation in this paper from a bird’s eye view.
The effectiveness of the geometry-based learning in HyperNEAT has been demonstrated in multiple
domains, such as checkers (Gauci and Stanley, 2008, 2010), multi-agent predator prey (D’Ambrosio
and Stanley, 2008; D’Ambroiso and Stanley, 2010), visual discrimination (Stanley et al., 2009), and
quadruped locomotion (Clune et al., 2009). For a full HyperNEAT description, see Stanley et al.
(2009) and Gauci and Stanley (2010).

The main idea in HyperNEAT is that it is possible to learn geometric relationships in the domain
through an indirect encoding that describes how the connectivity of the ANN can be generated as
a function of the domain geometry. Unlike a direct representation, wherein every dimension in the
policy space (i.e., each connection in the ANN) is described individually, an indirect representation
can describe a pattern of parameters in the policy space without explicitly enumerating every such
parameter. That is, information is reused in such an encoding, which is a major focus in the field
of generative and developmental systems from which HyperNEAT originates (Bentley and Kumar,
1999; Hornby and Pollack, 2002; Lindenmayer, 1968; Turing, 1952). Such information reuse is
what allows indirect encodings to search a compressed space. That is, HyperNEAT discovers the
regularities in the domain geometry and learns a policy based on them.

The indirect encoding in HyperNEAT is called a compositional pattern producing network
(CPPN; Stanley 2007), which encodes the connectivity pattern of an ANN (Gauci and Stanley,
2007, 2008; Stanley et al., 2009; Gauci and Stanley, 2010). The idea behind CPPNs is that a ge-
ometric pattern can be encoded by a composition of functions that are chosen to represent several
common regularities. For example, because the Gaussian function is symmetric, when it is com-
posed with any other function, the result is a symmetric pattern. The internal structure of a CPPN
is a weighted network, similar to an ANN, that denotes which functions are composed and in what
order. The appeal of this encoding is that it can represent a pattern of connectivity, with regularities
such as symmetry, repetition, and repetition with variation, through a network of simple functions
(i.e., the CPPN), which means that, instead of evolving ANNs directly, NEAT can evolve CPPNs
that generate ANN connectivity patterns (Figure 1). Furthermore, the indirect encoding represents
the connectivity of the ANN regardless of its size, which allows ANNs of arbitrary dimensionality
to be represented.

Formally, CPPNs are functions of geometry (i.e., locations in space) that output connectivity
patterns whose nodes are situated in n dimensions, where n is the number of dimensions in a Carte-
sian space. For each connection between two nodes in that space, the CPPN inputs their coordinates
and outputs their connection weight. That way, NEAT can evolve CPPNs that represent ANNs with
symmetries and regularities that are computed directly from the geometry of the state space. Con-
sider a CPPN that takes four inputs labeled x1, y1, x2, and y2; this point in four-dimensional space
can also denote the connection between the two-dimensional points (x1,y1) and (x2,y2). The output
of the CPPN for that input thereby represents the weight of that connection (Figure 1). By querying
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Figure 1: A CPPN Describes Connectivity. A grid of nodes, called the ANN substrate, is assigned
coordinates. (1) Every connection between layers in the substrate is queried by the CPPN
to determine its weight; the line connecting layers in the substrate represents a sample
such connection. (2) For each such query, the CPPN inputs the coordinates of the two
endpoints, which are highlighted on the input and output layers of the substrate. (3) The
weight between them is output by the CPPN. Thus, CPPNs, whose internal topology
and connection weights are evolved by HyperNEAT, can generate regular patterns of
connections.

every pair of points in the space, the CPPN can produce an ANN, wherein each queried point is
the position of a neuron. While CPPNs are themselves networks, the distinction in terminology
between CPPN and ANN is important for explicative purposes because in HyperNEAT, CPPNs en-
code ANNs. Because the connection weights are produced as a function of their endpoints, the final
structure is produced with knowledge of the domain geometry, which is literally depicted geometri-
cally within the constellation of nodes. In other words, parameters pi of the state vector s actually
exist at coordinates in space, giving it a geometry.

To help explain how CPPNs can compactly encode regular connectivity patterns, Figure 2 shows
how a very simple CPPN encodes a symmetric network. In effect, the CPPN paints a pattern within
a four-dimensional hypercube that is interpreted as an isomorphic connectivity pattern. The example
in Figure 2 illustrates the natural connection between the function embodied by the CPPN and the
geometry of the resultant network.

Connectivity patterns produced by a CPPN in this way are called substrates so that they can
be verbally distinguished from the CPPN, whose internal topology is independent of the substrate.
The experimenter defines both the location and role (i.e., hidden, input, or output) of each node
in the substrate. As a rule of thumb, nodes are placed on the substrate to reflect the geometry of
the domain (i.e., the state), which makes the setup straightforward (Gauci and Stanley, 2007, 2008;
Clune et al., 2009; Stanley et al., 2009; Gauci and Stanley, 2010). This way, the connectivity of the
substrate becomes a direct function of the domain geometry, which means that knowledge about the
problem can be injected into the search and HyperNEAT can exploit the regularities (e.g., adjacency,
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(a) ANN Substrate (b) CPPN
Figure 2: Example CPPN Describing Connections from a Single Node. An example CPPN (b) with

five inputs (x1,y1,x2,y2,bias) and one output (weight) contains a single Gaussian node
and five connections. The function produced is symmetric about x1 and x2 (because of the
Gaussian) and linear with respect to y2 (which directly connects to the CPPN output). For
the given fixed input node coordinate (x1 = 0,y1 = 0), the CPPN in effect produces the
function Gaussian(−x2)− y2. This pattern of weights from input node (0,0) is shown on
the substrate (a). Weight magnitudes are indicated by thickness and black lines indicate
positive values. Note that the pattern produces a set of weights that are symmetric about
the x-axis and linearly decreasing as the values of y2 increases. In this way, the function
embodied by the CPPN encodes a geometric pattern of weights in space. HyperNEAT
evolves the topologies and weights of such CPPNs.

or symmetry, which the CPPN sees) of a problem that are invisible to traditional encodings. For
example, one way that geometric knowledge can be imparted is by including a hidden node in the
CPPN that computes Gaussian(x2−x1), which imparts the concept of locality on the x-axis, an idea
employed in the implementation in this paper. The HyperNEAT algorithm is outlined in algorithm
1.

In summary, instead of evolving the ANN directly, HyperNEAT, through the NEAT method,
evolves the internal topology and weights of the CPPN that encodes it, which is significantly more
compact. The next section explains how this encoding makes it possible to learn from a bird’s eye
view.

3. Approach: Bird’s Eye View

A major challenge for the state representation in RL tasks is that specific state variables are often
tied to agents or individual objects, which makes it difficult to add more such objects without ex-
panding the state space (Taylor et al., 2007a). To address this problem, this section proposes a static
representation, the bird’s eye view (BEV) perspective, which enables scaling to higher complexity
states without the need to alter the representation. The BEV is explained first, followed by its im-
plementation, which is based on the HyperNEAT approach. Because it is relatively simple, the BEV
is chosen in this paper to exemplify the advantage of static representation in task transfer.

1746



EVOLVING STATIC REPRESENTATIONS FOR TASK TRANSFER

Input: Substrate Configuration
Output: Solution CPPN
Initialize population of minimal CPPNs with random weights;1
while Stopping criteria is not met do2
foreach CPPN in the population do3
foreach Possible connection in the substrate do4

Query the CPPN for weight w of connection;5
if Abs(w) >Threshold then6

Create connection with a weight scaled proportionally to w (Figure 1);7
end8

end9
Run the substrate as an ANN in the task domain to ascertain fitness;10

end11
Reproduce CPPNs according to the NEAT method to produce the next generation;12

end13
Output the Champion CPPN.14

Algorithm 1: Basic HyperNEAT Algorithm

3.1 Bird’s Eye View

Humans often visualize data from a BEV. Examples include maps for navigation, construction blue
prints, and sports play books. Key to these representations is that they remain the same (i.e., they
are static) no matter how many objects are represented on them. For example, a city map does
not change size or format when new buildings are constructed or new roads are created. Addition-
ally, the physical geometry of such representations allow agents to understand spatial relationships
among objects in the environment by placing them in the context of physical space. The BEV also
implicitly represents its borders by excluding space outside them from its field of view. As sug-
gested in Kuipers’ Spatial Semantic Hierarchy (SSH), such metrical representation of the geometry
of large-scale space is a critical component of human spatial reasoning (Kuipers, 2000).

A distinctive feature of the proposed representation is that not only is the agent state represented
from a BEV, but it also requests actions within the same BEV perspective. For example, to request
a pass the agent can indicate its target by simply highlighting it on a two-dimensional output array.
That way, instead of making decisions blind to the geometry of physical space, it can be taken into
account.

Egocentric data (Figure 3a) can be mapped to an equivalent BEV by translating from local
(relative) coordinates to global coordinates established by static points of reference (i.e., fiducials).
The global coordinates mark the location of objects in the BEV (Figure 3b). This translation allows
mapping any number of objects into the static representation of the BEV.

Importantly, the continuous coordinate system must be discretized so that each variable in the
state representation corresponds to a single discrete location. This discretization allows the two-
dimensional field to be represented with a finite set of parameters. The values of these parameters
denote objects in their respective regions.

Note that while the division of the field in Figure 3b appears reminiscent of tile coding (Sutton,
1996), that appearance is superficial because (1) a tile coding of the state variables in Figure 3a
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(a) Egocentric view (b) BEV
Figure 3: Alternative Representations of a Soccer Field. Several parameters (a) represent the

agent’s relationship with other agents on a soccer field (taken from a standard RoboCup
representation; Cheny et al. 2003). Each distance and angle pair represents a specific
relationship of the agent to another agent. The BEV (b) represents the same relationships
as paths in the geometric space. A square depicts the agent, circles depicts its teammates,
and triangles its opponents. The overhead perspective also makes it possible to represent
any number of agents without changing the representation.

would still be egocentric whereas the BEV is not, and (2) tile coding breaks the state representation
into chunks that can be optimized separately whereas the HyperNEAT CPPN derives the connectiv-
ity of the policy network directly from the geometric relationships among the squares in Figure 3b,
as explained next.

3.2 HyperNEAT: Learning from the BEV

Geometric patterns often exhibit spatial regularities. Examples include repetition and symmetry.
Furthermore, important geometric relationships such as locality and topological connectedness of-
ten critically influence informed spatial decision-making. The challenge for machine learning is that
learning is often blind to the geometry of the problem, making it difficult to exploit such relation-
ships (Gauci and Stanley, 2008, 2010). To understand the impact of learning from the true geometry
of the domain, consider a two-dimensional field converted to a traditional vector of parameters,
which removes the geometry (Figure 4). For example, consider a set of input values to an ANN
such as in to Figure 3a. Though each dist and θ pair is critically related in such a traditional rep-
resentation, an ANN has no inherent knowledge or explicit access to this relationship. In contrast,
HyperNEAT sees the task geometry, thereby exploiting geometric regularities and relationships,
such as locality, which the BEV naturally makes explicit.

For HyperNEAT to exploit patterns in a two-dimensional BEV (e.g., in soccer), the geometry
of the input layer of the substrate is made two-dimensional, as in Figure 5. That way, CPPNs can
compute the connectivity of the substrate as a function of that geometry. The x and y coordinates
of each input unit (i.e., each pi) are in the range [−1,1]. Furthermore, the output layer of the sub-
strate matches the dimensions of the BEV so that the CPPN can exploit the geometric relationship
between the input space and output space as well (Figure 5). That the outputs are themselves a
discretized two-dimensional plane is another significant difference from tile coding. Each coor-
dinate in this substrate represents a discretized region of the overhead view of physical space. A
four-dimensional CPPN with inputs x1,y1,x2, and y2 determines the weights between coordinates
in the two-dimensional input layer and the two-dimensional output layer, creating a pattern of con-
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Figure 4: The Importance of True Geometry. A two-dimensional field transformed into a vector of
parameters without any geometry forfeits knowledge of the geometry of the domain.

nections between regions in the physical space. To represent world state, objects and agents are
literally “drawn” onto the input substrate, which is a static size, like marking a map. The generated
network then can make decisions based on the relationships of such features in physical space and
thereby learn the significance of certain kinds of geometric relationships among objects that are not
identified a priori by the designer.

Figure 5: BEV Implemented in the Substrate. Each dimension ranges between [−1,1] and the input
and output planes of the substrate are equivalently constructed to take advantage of geo-
metric regularities between states and actions. Because CPPNs are an indirect encoding,
the high dimensionality of the weights does not affect performance. (The CPPN is the
search space.)

In this way, the BEV makes it possible to add new features (e.g., a new player) to the state
space without the need to add new inputs. Instead, they can now simply be drawn onto the existing
representation with no additional apparatus. That way, task transfer to different numbers of players
is made simple through the static representation.
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Interestingly, although the BEV is naturally held static its size or resolution can be changed
without retraining. A unique feature of CPPNs (which encode the BEV connectivity) is that the
same CPPN can query substrates of arbitrary size or resolution. It is important to note that even
when size or resolution are changed, the CPPN itself remains the same. Thus the BEV can extend
its representation to different field sizes or to different levels of detail (i.e., resolutions), as shown
in Figure 6. In this way, the CPPN allows not only transfer to different numbers of players, but to
different field sizes and resolutions, all without the need for retraining.

Figure 6: Changing the BEV. Two kinds of alterations are depicted in this figure. First, the BEV
can be altered by increasing the area of the substrate while maintaining the size of each
discrete cell by extrapolating new connection weights associated with previously unseen
cells. Second, resolution is increased by increasing the number of cells and shrinking the
area represented by each discrete cell. The CPPN automatically interpolates connection
weights for the new locations. Thus, the BEV allows new forms of transfer to differing
field sizes or levels of precision.

It is important to understand that the dimensionality of the search space in HyperNEAT is not
the same as the dimensionality of the substrate because the search space is the CPPN, which is a
compact encoding of the pattern of connections in the substrate. For example, if the substrate reso-
lution is 20×20 then the number of possible connections in the substrate is 400×400= 160,000.
However, a CPPN that encodes this connectivity can itself contain orders of magnitude fewer con-
nections. This fact also explains why resolution can increase without retraining. For example, if
resolution increases to 40× 40 (2,560,000 possible connections), there are new connections that
connect locations that previously did not exist at 20× 20. However, the same CPPN can simply
query the (x1,y1,x2,y2) coordinate of the new connections, thereby interpolating the weights of the
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new connections automatically. Although the number of connections in this example increases from
160,000 to 2,560,000, the dimensionality of the CPPN does not change at all.

The next section introduces the experiments that demonstrate the benefits of this geometric
approach.

4. Experimental Setup

The experiments in this paper are designed to investigate the role of representation in task transfer.
Of course, some representations are better suited to transfer in a given domain than others. Further,
the ability to transfer between tasks is dependent on the similarity of the tasks. However, this paper
focuses on the idea that a particularly effective representation for transfer is one that does not need
to change from one task to the next. Because the representation is consistent, it has the potential
to exhibit improved performance in the target domain immediately after transfer, without further
learning. The advantage of a consistent representation is that the semantic relationships learned
previously are preserved and then can be built upon. Because the BEV is the same irrespective
of the number of players on either side, it satisfies this requirement and allows the hypothesis that
consistent representation leads to immediate improvement in the target domain to be tested. This
section explains the domains, the methods compared, and the experimental configurations.

4.1 RoboCup Keepaway Domain

RoboCup simulated soccer Keepaway (Stone et al., 2001) is well-suited to such an investigation
because it is a popular RL performance benchmark and can be scaled to different numbers of agents
to create new versions of the same task. All experiments are run on the Keepaway 0.6 player bench-
mark (Stone et al., 2006) and the RoboCup Simulator Soccer Server v. 12.1.1 (Cheny et al., 2003).
RoboCup Keepaway is a popular benchmark (Metzen et al., 2007; Stone et al., 2005; Taylor et al.,
2007a; Whiteson et al., 2005) in part because it includes a large state space, partially observable
state, and noisy sensors and actuators. It is also a stepping stone to full-blown RoboCup Soccer,
one of the hottest tasks in machine learning (Kalyanakrishnan et al., 2007; Kitano et al., 1997; Kok
et al., 2005; Kyrylov et al., 2005; Mackworth, 2009; Stolzenburg et al., 2006). In Keepaway, keep-
ers try to maintain possession of the ball within a fixed region and takers attempt to take it away.
The number of agents and size of the field can be varied to make the task more or less difficult: The
smaller the field and the more players in the game, the harder it becomes.

4.2 Keepaway Benchmark

Each learning method in this paper is initially compared in the standard benchmark setup (Stone
et al., 2005) of the three keepers versus two takers task on a 20m×20m field. In this setup, agents’
sensors are noisy and their actions are nondeterministic. Takers follow static policies, wherein the
first two takers go towards the ball and additional takers attempt to block open keepers. The learner
only controls the keeper who possesses the ball; its choices are to hold the ball or pass to a specific
teammate. The keepers’ reward is the length of time they hold ball. In the 3 vs. 2 task, 13 variables
represent the agent’s state (Stone et al., 2005). These include each player’s distance to the center
of the field, the distance from the keeper with the ball to each other player, the distance from each
other keeper to the closest taker, and the minimum angle between the other keepers and the takers
(Figure 7). The three possible actions are holding the ball or passing to one of the other two keepers.
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Figure 7: Visualization of Traditional State Variables in 3 vs. 2 Keepaway. The 13 state parameters
that represent the state in the 3 vs. 2 Keepaway task are depicted in this figure. The three
keepers are represented by the circles and the takers represented by the triangles. The
state parameters include the distances from each player to the center of the field (marked
by the circle with the ×), the distances from the keeper with the ball (denoted by the
circle with the +) to each other player, the distance from each other keeper to the taker
nearest them, and the angles along the passing lanes.

To investigate the ability of a static representation, that is, the HyperNEAT BEV, to learn this
task, it is compared to both static policies (Stone et al., 2006) and the learning algorithms Sarsa
(Rummery and Niranjan, 1994), NEAT (Stanley andMiikkulainen, 2004), and EANT (Metzen et al.,
2007). Unlike the BEV, the traditional representation (with 13 state variables) through which these
methods learn in 3 vs. 2 Keepaway must be changed for different versions of the task, such as 4 vs.
3 Keepaway. The static benchmarks are Always-Hold, Random, and a Hand-Coded policy, which
holds the ball if no takers are within 10m (Stone and Sutton, 2001). These static benchmarks provide
a baseline to validate that the BEV learns a non-trivial policy in the initial task.

State action reward state action (Sarsa; Rummery and Niranjan 1994) is an on-policy temporal
difference RL method that learns the action-value function Q(s,a). The quintuple (s,a,r,s′,a′)
defines the update function for Q(s,a) by determining for a current state (s) and action (a) what
the reward (r) and the expected reward for the predicted next state (s′) and action (a′) will be. The
update equation is:

Q(s,a)← (1−α)Q(s,a)+α(r+ γQ(s′,a′)),

where α is the learning rate and γ is the discount factor for the future reward. The values in Q(s,a)
determine which action is taken in a given state by selecting the maximal value. Each keeper
separately learns which action to take in a given state to maximize the reward it receives (Taylor
et al., 2006).

Regular NEAT (Stanley and Miikkulainen, 2002) evolves ANNs to maximize a fitness function.
The ANN receives the 13 state inputs (like Sarsa) to define the state of the system and produce three
outputs to select an action. The fitness in RoboCup Keepaway is the average length of time that
keepers can hold the ball over a number of trials (Taylor et al., 2006). EANT (Metzen et al., 2007)
is an additional neuroevolution algorithm based on NEAT that learned Keepaway. Though similar
to NEAT, it distinguishes itself by more explicitly controlling the ratio of exploration to exploitation
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during the evolutionary process. These methods were chosen for comparison because they have
been tested in the same Keepaway configuration.

As described in Section 3, the HyperNEAT BEV transforms the traditional state representation
to explicitly capture the geometry. The standard substrate is a two-dimensional 20×20 input layer
connected to a 20×20 output layer. Thus both the state and action spaces have 400 dimensions each
(p1 . . . p400 and a1 . . .a400). As with Sarsa in Stone and Sutton (2001), this policy representation does
not include a hidden layer. However, the CPPN that encodes its weights does evolve internal nodes.
Each node in a substrate layer represents a 1m2 discrete chunk of Keepaway field. Each keeper’s
position is marked on the input layer with a positive value of 1.0 in its containing node and takers
are similarly denoted by −1.0. Paths are literally drawn from the keeper with the ball to the other
players (as in Figure 8).

Figure 8: Visualizing the BEV Input Layer in 3 vs. 2 Keepaway. The input layer of the BEV is
marked with the positions of keepers, takers and paths. The keeper with the ball is the
small square, other keepers are circles, and the takers are triangles. Positive input values
are denoted by lighter shades (for keepers and paths to keepers) and negative input values
are denoted by darker shades (for takers and paths to takers). The middle shade represents
an input of 0.0, the lightest shade is +1.0, and the darkest shade is −1.0. The BEV
represents the distances and angles to other players in a geometric configuration, allowing
geometric relationships to be exploited by HyperNEAT. Paths implicitly represent which
keeper possesses the ball by converging on that keeper. (Note that the actual standard
input layer in the experiments is 20×20.)

Positive values of 0.3 depict paths to other keepers and values of −0.3 depict paths to takers.
These input values for agents and paths are experimentally determined and robust to minor variation.
Actions are selected from among the output nodes (top layer of Figure 5) that correspond to where
the keepers are located: If the highest output is the node where the keeper with the ball is located,
it holds the ball. Otherwise, it passes to the teammate with the highest output at its node. This
method of action selection thus corresponds exactly to the three actions available to Sarsa, NEAT,
and EANT. A key property of this representation is that it is independent of the number of players
on either side, unlike the representation in the traditional approaches.

The population size in HyperNEAT is 100. Available CPPN activation functions are absolute
value, bipolar sigmoid, Gaussian, linear, sine, and step. Activation is signed, resulting in a node out-
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put range of [−1,1]. By convention, a connection is not expressed if the magnitude the correspond-
ing CPPN output is below a minimal threshold of 0.2 (Gauci and Stanley, 2007). The probability of
adding a node to the CPPN is 0.05 and the probability of adding a connection is 0.18. The disjoint
and excess node coefficients were both 1.0 and the weight difference coefficient was 1.0. The initial
compatibility threshold was 20.0. These parameters were found to be robust to moderate variation
in preliminary experimentation.

HyperNEAT evolves the CPPN that encodes the connectivity between the ANN layers in the
substrate (up to 160,000 connections with a 20×20 resolution). Fitness is assigned according to the
generated network’s ball possession time averaged over at least 30 trials, with additional trials up to
100 assigned to those above the mean, following Taylor et al. (2006). Additionally, the CPPNs in
the initial population are given the geometric concept of locality (Section 2.4).

4.3 Keepaway Transfer

Task transfer, the focus of this work, is first evaluated by training a HyperNEAT BEV on the 3 vs.
2 task on a 25m×25m field (instead of the standard 20m×20m) and then testing the trained BEVs
on the 4 vs. 3 version of the task on the same field without any further training. The larger field
is needed to accommodate the larger version of the task (Taylor et al., 2007b). To switch from 3
vs. 2 to 4 vs. 3, the additional players and paths are simply drawn on the input layer as usual, with
no transformation of the representation or further training. The resulting performance on 4 vs. 3
is compared to TVITM-PS (Taylor et al. 2007b; described in Section 2.2), which is the leading
transfer method for this task. TVITM-PS results are from policies represented by an ANN trained
by NEAT (Taylor et al., 2007b). Unlike the HyperNEAT BEV, TVITM-PS requires further training
after transfer because ρ expands the ANN by adding new state variables.

Additionally, two alternative forms of transfer are evaluated in Keepaway. The first is transfer
to increasing field sizes, which is evaluated by first training individuals on a small (15m×15m) field
size and then testing trained individuals on the trained and larger field sizes (each of 15m×15m,
20m×20m, and 25m×25m). To adjust for field size changes, the size of the HyperNEAT BEV
substrate is changed to match the different field sizes (i.e., if the field size is 15m×15m, the substrate
is 15× 15; if it is 25m×25m, the substrate is 25× 25). In this way, the relative meaning of each
discrete input unit is held constant (e.g., 15m×15m

15×15 = 1m2 per input and 25m×25m
25×25 = 1m2 per input).

The indirect encoding of the BEV extrapolates the trained knowledge from one field size to the other
field sizes.

Second, transfer to substrates of different resolutions is evaluated by training individuals on a
single field size, then doubling the resolution in each dimension of the substrate (i.e., an individual
trained on a 20m×20m field with a 20× 20 substrate is reevaluated on a substrate changed to
40× 40). This increase in resolution results in a smaller section of the field being represented by
each input (e.g., 20m×20m

20×20 = 1m2 per input and 20m×20m
40×40 = 1

4m
2 per input). The higher resolution

BEV is then tested on the same field size to evaluate the ability to transfer knowledge between
substrate resolutions. The new connections in the BEV are interpolated by the indirect encoding.
In principle, this ability to raise resolution could allow computational cost to be reduced by training
on a lower resolution and later raising resolution to increase the precision of the BEV.
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4.4 Knight Joust

Knight Joust is a predator-prey variant domain wherein the player (prey) starts on one side of the
field and the opponent (predator) starts on the opposite side (Taylor et al., 2007b). The player must
then travel to the opposite side of the field while evading the opponent. The name Knight Joust
reflects that the player is allowed three potential moves: move forward, knight jump left, and knight
jump right, where a knight jump is two steps in the direction left or right and then forward (as in
chess). The opponent follows a stochastic policy that attempts to intercept the player. The traditional
state representation consists of the distance to the opponent, the angle between the opponent and
the left side, and the angle between the opponent and the right side (Figure 9).

Figure 9: Knight Joust World. In Knight Joust, the player (circle) begins on the side marked Start
and must reach the side marked End, while evading the opponent (triangle). The player
is given the state information of the distance to the opponent, d, the angle between the
opponent and the left side, α, and the angle between the opponent and the right side, β.
This state information can similarly be drawn on the substrate of the BEV by marking the
position of the player, opponent, the path between them, and the paths to the corners.

While Knight Joust is significantly different from Keepaway, a feature of both is that at each step
the agent must make the decision that best avoids the opponent. However, Knight Joust is simpler,
eliminating such complexity as multiple agents, noise, and kicking a ball, making it more tractable.
The simplification makes it ideal for cross-domain transfer; because training is quicker and easier
than in Keepaway, knowledge is more quickly bootstrapped. In Taylor et al. (2007a), cross-domain
transfer from Knight Joust to Keepaway was shown to enhance learning. Additionally, the Hyper-
NEAT BEV can represent the state information in Figure 9 by drawing the state information onto
the inputs.

In particular, the player and opponent are indicated by +1.0 and −1.0 respectively. The path
to the opponent is shown by values of −0.3 and the paths to the goal-side corners are marked with
+0.3. Actions are selected from among the output nodes representing the position in front of the
player (move forward), the left corner (knight jump left), and the right corner (knight jump right).
This representation of state is similar to Keepaway, but the semantics are different: The player in
Knight Joust is selecting a direction of movement instead of a passing position and the paths to the
corners indicate the direction of the goal rather than teammate positions.
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The evaluation of cross-domain transfer is completed by first training for 20 generations in the
Knight Joust domain. Fitness is assigned to the individuals in Knight Joust by awarding 1 point
for only moving forward and a bonus of 20 points for reaching the end. Next, the champions of
these runs seed the runs for 3 vs. 2 Keepaway. Finally, Keepaway training is run for ten generations.
The runs seeded with individuals trained in Knight Joust can then be compared to Keepaway runs
without such transfer. This experiment is interesting because it can help to show that static transfer
is beneficial with the BEV even in cases where the input semantics of the two tasks have slightly
different meaning.

5. Results

This section describes the results of training the BEV on the Keepaway benchmark, the transfer
performance among variations of the Keepaway task, and finally the performance of the BEV in
cross-domain transfer from Knight Joust to Keepaway. Videos of evolved Keepaway behaviors are
available at http://eplex.cs.ucf.edu/hyperneat-keepaway.html.

5.1 RoboCup Keepaway Performance Evaluation

In the RoboCup Keepaway benchmark, performance is measured by the number of seconds that the
keepers maintain possession (Stone and Sutton, 2001; Stone et al., 2006; Taylor et al., 2007b). After
training, the champion of each epoch is tested over 1,000 trials. Performance results are averaged
over five runs with each consisting of 50 generations of evolution. This number of generations
was selected because the corresponding simulated time spent in RoboCup during training equals
simulated time (800-1,000 hours) for previous approaches (Taylor et al., 2006; Metzen et al., 2007).
The test on the 3 vs. 2 benchmark is intended to validate that the BEV learns competitively with
other leading methods.

In 3 vs. 2 Keepaway on the 20m×20m field, the best keepers from each of the five runs con-
trolled by a BEV substrate trained by HyperNEAT maintain possession of the ball on average for
15.4 seconds (sd = 1.31), which significantly outperforms (p < 0.05) all static benchmarks (Table
1). Furthermore, assuming similar variance, this performance significantly exceeds (p < 0.05) the
current best reported average results (Stone et al., 2001, 2005; Taylor et al., 2006) on this task for
both temporal difference learning (12.5 seconds) and NEAT (14.0 seconds), and matches EANT
(14.9 seconds; Table 1). The important implication of this result is that the HyperNEAT BEV is at
least competitive with the top learning algorithms on this task.

5.2 Keepaway Transfer Results

In transfer learning, the main focus of this work, the BEV is evaluated by testing individuals trained
for 20 generations only on the 3 vs. 2 task on a 25m×25m field. Learned policies are then tested
on both the 3 vs. 2 and 4 vs. 3 tasks for 1,000 trials each without any further training. Note that
this evaluation of transfer differs from Taylor et al. (2007b), in which teams trained on the smaller
task are further trained on the larger task after the transfer because new parameters are added. In
contrast, transfer within the BEV requires no changes or transformations. Performance is averaged
over five runs, following Taylor et al. (2006). Figure 10 shows the average test performance on both
3 vs. 2 (trained) and 4 vs. 3 (untrained; immediately after transfer) of each generation champion.
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METHOD AVERAGE HOLD TIME
HYPERNEAT BEV 15.4S
EANT 14.9S
NEAT 14.0S
SARSA 12.5S
HAND-TUNED BENCHMARK 8.3S
ALWAYS HOLD BENCHMARK 7.5S
RANDOM BENCHMARK 3.4S

Table 1: Average Best Performance by Method. The HyperNEAT BEV holds the ball longer than
previously reported best results for neuroevolution and temporal difference learning meth-
ods. Results are shown for Evolutionary Acquisition of Neural Topologies (EANT) from
Metzen et al. (2007), NeuroEvolution of Augmenting Topologies (NEAT) from Taylor
et al. (2006), and State action reward state action (Sarsa) from Stone and Sutton (2001).

Figure 10: Transfer Learning From 3 vs. 2 to 4 vs. 3 Keepaway on a 25m×25m Field. As the
performance (averaged over five runs) of the champion on the 3 vs. 2 task improves, the
transfer performance on the 4 vs. 3 task also consequently improves from 6.6 seconds
to 8.1 seconds without ever training for it. The improvement is positively correlated
(r = 0.87).

Testing performance on the 3 vs. 2 task improves to 14.3 seconds on average over each run.
At the same time, the test performance of these same individuals on the 4 vs. 3 task, which was
not trained, improves from 6.6 seconds to 8.1 seconds on average. In contrast, the previous best
approach to transfer learning in this domain required executing a transfer function and additional
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training for between 50 and 200 hours (depending on the chosen transfer function) beyond the
initial bootstrap training in 3 vs. 2 to achieve a comparable 8.0 second episode duration (Taylor
et al., 2007b). Thus, because the BEV is static, transfer is instantaneous and requires no special
adjustments to the representation to achieve the same result as many hours of further training with
the TVITM-PS transfer method.

Although the BEV improves in 4 vs. 3 Keepaway even when only trained in 3 vs. 2, it is still
informative to investigate the effect of further training in the 4 vs. 3 task. For this purpose, individ-
uals are trained on the 3 vs. 2 task for 20 generations and then further trained on the 4 vs. 3 task
for 30 generations. The performance of these policies is contrasted with keepers trained on 4 vs. 3
from scratch for 50 generations. Performance is averaged over five runs and generation champions
are evaluated over 1,000 episodes. Figure 11 shows the average test performance of the generation
champions. The individuals trained solely on 4 vs. 3 improve from 6.2 seconds to 8.0 seconds. In-
terestingly, this performance is equivalent to policies trained only in the 3 vs. 2 task and transferred
to 4 vs. 3. However, individuals trained on 3 vs. 2 for the first 20 generations increase their test
performance on 4 vs. 3 to 9.1 seconds over the last 30 generations. The final difference between
further training after transfer and training from scratch is significant (p< 0.05).

Figure 11: Further Training After Transfer From 3 vs. 2 to 4 vs. 3 Keepaway on a 25m×25m Field.
Performance of individuals trained on 3 vs. 2 then transferred to 4 vs. 3 and further
trained are contrasted with individuals solely trained on 4 vs. 3. All depicted results are
performance on the 4 vs. 3 task. Prior training on 3 vs. 2 and transfer to the 4 vs. 3
enhances keeper performance by beginning in a more optimal area of the search space.

An important factor in the superior performance of the learner that was transferred is the behav-
ior of the third taker in the 4 vs. 3 task, which seeks to block the most open player. This behavior
differs from 3 vs. 2, in which the two takers attempt to take the ball only by always heading towards
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it. When training on 4 vs. 3 without previously learning on 3 vs. 2, the third taker’s behavior may
inhibit performance by preventing important knowledge from being learned. For example, in 3 vs.
2 an important concept is to pass to the most open player. However, in 4 vs. 3 the most open player
is not always the best choice because of the behavior of the third taker; therefore policies that learn
the concept of passing to the most open player, which is still an important skill, are not discovered.

A thorough evaluation of transfer recognizes that there is more than one way to alter a task. Thus
transfer learning is also evaluated by testing the best policy trained in 3 vs. 2 on varied field sizes.
Stone et al. (2001) previously investigated this kind of transfer on their best Sarsa solution in an
easier version of the Keepaway task that does not include noise by testing a single high-performing
individual that was trained on a fixed field size (15m×15m) not only on the trained field size, but
also on the other two field sizes. The best policy trained by the HyperNEAT BEV (which, unlike
Sarsa, was subject to noise) on the 15m×15m field size was also tested in this way (Figure 12).

Figure 12: 3 vs. 2 Transfer Performance To Larger Field Sizes. Transfer to larger field sizes is eval-
uated by testing an individual trained on a single field size (15m×15m) on two larger
field sizes (20m×20m and 25m×25m) as well. The BEV is scaled by matching the
substrate size to the field size, thus maintaining the same field area represented by each
discrete unit on the substrate. Depicted results from Stone and Sutton (2001) show that
as a policy trained by Sarsa is transferred to larger field sizes, it decreases in perfor-
mance. However, the task is easier as field size increases, as shown by the performance
of hand-designed policies (Random, Always Hold, and Hand-Tuned) that increase in
performance as field size increases. In contrast, the BEV learns a policy that outper-
forms the hand-designed policies and transfers to the larger field sizes, significantly
improving performance.

The results are interesting because they show that the representation can cause performance to
vary in unexpected ways. For example, even though larger field sizes are easier, Stone and Sut-
ton (2001) report that the performance of the best keepers trained by Sarsa declines when they are
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transferred to larger fields. However, even hard-coded policies, such as Random, Always Hold, or
Hand Tuned, increase in performance as field size increases, demonstrating the decreased difficulty
of the task. Also, in contrast to Sarsa, when transferred to larger fields, the keepers trained with
the HyperNEAT BEV improve performance (as would be expected) from 5.6 seconds to 11.0 sec-
onds and 13.8 seconds, respectively, and outperform the hand-designed policies (Figure 12). These
improvements make sense because the task should become easier when there is more room on the
field.

The BEV’s advantage is that the geometric relationships encoded in the CPPN can be extrap-
olated as the field size increases, thereby extending the knowledge from the smaller field size to
the newer areas of the larger field. For Sarsa, such extrapolation is not possible because as field
size increases, the new areas represent previously unseen distances for which Sarsa was not trained.
Sarsa has no means to extrapolate geometric knowledge from the distances it has seen because, un-
like the CPPN, the knowledge learned is not a function of the domain geometry (i.e., the geometric
relationships on a two-dimensional soccer field). Instead, Sarsa learns a function of the examples
presented, which do not explicitly describe the geometry of the domain.

Another important lesson from changing the field size is that BEV performance requires a min-
imal resolution. When the field size is 15m×15m, the BEV performance appears to underperform
compared to Sarsa. In part, this difference is because Sarsa was tested originally without noise
(Stone et al., 2001). A later experiment with Sarsa trained on the 15m×15m with noise (Stone
et al., 2005) shows that its performance is similar to the BEV. However, another factor is simply
that when the field size is 15m×15m, the BEV resolution is also at 15×15, which may be too low
to capture the detail necessary to succeed in the task. Confirming this hypothesis, if the BEV is
trained at 30×30 resolution on a 15m×15m field, its performance rises significantly, to 7.1 seconds
compared to 7.4s for Sarsa when it is trained with noise on 15m×15m (Stone et al., 2005). This re-
sult raises the interesting question of whether resolution can be raised above the training resolution
without negative impact, as the next experiment addresses.

The final result in Keepaway is that the knowledge learned through the indirect encoding, that
is, the CPPN, is not negatively impacted by later increasing resolution from that at which the BEV
was trained. The substrate resolution of the champion individuals from five runs from training on
three field sizes (15m×15m, 20m×20m, and 25m×25m) are doubled in each dimension and then
tested again on the same field size. For example, a 20×20 BEV becomes 40×40, which means that
each input represents one quarter as much of the space as before. This BEV quadruples the number
of inputs and outputs while increasing the number of connections by a factor of 16 (from 160,000
to 2,560,000 connections). Table 2 shows that no matter the field size, even massively increasing
the resolution does not degrade performance and can even lead to a free performance increase.

For the 15m×15m, 20m×20m, and 25m×25m field sizes, doubling the size of each dimension
on average changes performance from 4.6 seconds to 5.3 seconds, 15.4 seconds to 15.9 seconds,
and 16.8 seconds to 16.9 seconds respectively. In one instance, on the 20m×20m field, performance
improved instantly from 16.6 seconds to 18.9 seconds. The advantage of this capability is that the
BEV resolution can be selectively increased while maintaining the same performance, which makes
possible further training with a higher resolution BEV.
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PERFORMANCE
TRAINING FIELD SIZE TRAINED RESOLUTION INCREASED RESOLUTION

15M×15M 4.6S 5.3S
20M×20M 15.4S 15.9S
25M×25M 16.8S 16.9S

Table 2: Average Performance of the Best Individuals at Different Resolutions. The regularities
learned by the indirect encoding are not dependent on the particular substrate resolution
and may be extrapolated to higher resolutions. Increasing the number of connections in
the substrate by a factor of 16 (by doubling the size of each dimension) does not degrade
performance; in fact, it even improves it significantly in some cases.

5.3 Knight Joust Transfer Results

Cross-domain transfer is evaluated from the non-Keepaway task of Knight Joust on a 20× 20 grid
to 3 vs. 2 Keepaway on a 20m×20m field. Evolution is run for 20 generations on the Knight Joust
task and then the champions seed the beginning generations of 3 vs. 2 Keepaway. Further training
is then performed over ten additional generations of evolution. Performance in Keepaway of the
champion players from Knight Joust is on average 0.3 seconds above the performance of initial
random individuals. After one generation of evolution, the best individuals from transfer exceed
the raw performance by 0.6 seconds. Finally, after ten further generations, the best individuals with
transfer hold the ball for 1.1 seconds longer than without transfer (Figure 13).

The differences are significant (p < 0.05). Thus even preliminary learning in a significantly
different domain proved beneficial to the BEV. In contrast, previous transfer results from Knight
Joust to Keepaway from Taylor and Stone (2007) demonstrated an initial performance advantage,
but after training for five simulator hours (which is less than the duration of ten generations) there
was no performance difference between learning with transfer and without it.

Overall, the results establish that the BEV is highly effective in transfer in Keepaway. The next
section discusses the deeper implications of these results.

6. Discussion and Future Work

Methods that alter representation remain important tools in task transfer for domains in which the
representation must change with the task. However, the BEV shows that a carefully chosen repre-
sentation with the right encoding can sometimes eliminate the need to change the representation,
even across different domains.

The deeper lesson is the critical role of representation in transfer and the consequent need for
algorithms that can learn from relatively high-dimensional static representations of task geometry.
Indeed, the human eye contains millions of photoreceptors, which provide the same set of inputs to
every visual task tackled by humans. No new photoreceptor is added for a new task. In effect, visual
input to the human eye is a static representation (i.e., it does not alter when changing tasks) of state
to the human brain. While it is true that the information from the eye is interpreted by the visual
cortex, the set of inputs to the cortex, which are the photoreceptors of the eye, remains the same. In
this paper, the BEV contains no hidden layers. However, by adding hidden layers it is possible to
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Figure 13: Transfer Results from Knight Joust to Keepaway. Direct transfer and further training
performance averaged over 30 runs is shown. The performance of raw champions from
Knight Joust on Keepaway outperforms initial random individual by 0.3 seconds. After
one generation, this advantage from transfer increases to 0.6 seconds and at 10 genera-
tions the advantage is 1.1 seconds. Thus performance on Keepaway, both instantaneous
and with further training, benefits from transfer from the Knight Joust domain with sig-
nificance p < 0.05.

add the intervening interpretation of the input state analogously to how the visual cortex interprets
data from the eye. HyperNEAT substrates with hidden layers have been shown to work in the past
in domains without transfer (D’Ambrosio and Stanley, 2008; Clune et al., 2009; Gauci and Stanley,
2010). Thus the prospects are good for expanding the scope of static transfer. Nevertheless, of
course the human eye represents an ideal, and not all possible domains are amenable to keeping the
representation static. Yet for those that are, the investigation in this paper shows that it can provide
an advantage.

The ability of a representation to remain static is dependent upon the particular differences be-
tween the tasks. Tasks that are semantically similar should be able to represent state information
similarly in the BEV, requiring no changes to the representation. Tasks that are significantly dif-
ferent, either through state information or actions, may not allow the representation to remain the
same. However, even then there are potential ways to allow the BEV to retain what was learned
in the previous task and build upon it while being altered. For example, one option is to add new
input layers or output layers. These new layers can denote new information or actions associated
with new objects in the environment while the previously-trained input and output layers retain the
prior knowledge. Geometry thus remains an advantage because state information that is connected
with the same location (e.g., all the state data for a single agent) would be located at the same coor-
dinate on separate layers. In contrast, an ANN without geometry would have no means to discern
which original inputs are associated with which new inputs and would thus instead have to learn
such relationships.
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The role of representation in transfer is relevant to all approaches to learning because transfer is
always an option for extending the scope of learning. Thus encoding research, such as in generative
and developmental systems (Bentley and Kumar, 1999; Hornby and Pollack, 2002; Lindenmayer,
1968; Stanley, 2007; Bentley and Kumar, 1999; Turing, 1952), and representation research, such
as in relational reinforcement learning (Deroski et al., 2001; Morales, 2003; Tadepalli et al., 2004),
is important to machine learning in general. Static representations mean that instead of training
a new policy, or retraining a previous one, the same policy can be transferred without change.
Additionally, the static nature of the representation allows the same policy to train on multiple
tasks simultaneously. For example, a soccer player does not practice by playing only soccer games.
Players improve through multiple drills and continually practice in-between games to refine skills.

The encoding of the solution also impacts the kinds of policies that are found. For example, in
this paper the policy is encoded by a CPPN that is expressed as a function of the task geometry,
which enables the solution to exploit regularities in the geometry and extrapolate to previously un-
seen areas of the geometry. It should also be possible to simplify the search for a policy that is a
function of the geometry in other learning approaches as well. The challenge is that gradient infor-
mation (i.e., error) cannot directly pass through the indirection between the ANN and its generating
CPPN. A method that solves this problem would open up the power of indirect encoding to all of
RL.

6.1 Prospects for Full RoboCup Soccer

An exciting implication of this work is that the power of static transfer and indirect encoding can
potentially bootstrap learning the complete game of soccer. After all, the key elements of soccer are
present in Keepaway as well. In fact, the results in this paper demonstrate that a static representation
can competitively learn to hold the ball in Keepaway and that this skill transfers immediately through
the BEV to variations of that task. The static BEV state representation enables the learned policy
to transfer to variations of the task in which the number of players is changed (e.g., 3 vs. 2 to 4 vs.
3). Furthermore, indirectly encoding the policy enables the same policy to be applied to variations
of the task in which the geometry has been changed (e.g., moving from 20m×20m to 25m×25m
field size) HyperNEAT has also been proven effective in a wide variety of tasks (D’Ambrosio and
Stanley, 2008; Clune et al., 2009; Stanley et al., 2009; Gauci and Stanley, 2010).

Interestingly, the Keepaway domain was designed as a stepping stone to scaling machine learn-
ing methods to the full RoboCup soccer domain (Stone and Sutton, 2001). The same principles that
enable the BEV to transfer among variations of the Keepaway domain also can potentially enable
the BEV to scale to full Keepaway soccer. For example, because the representation remains static
no matter how many players are on the field, training can begin with a small number of players,
such as 3 vs. 3 soccer, and iteratively add more players, eventually scaling up to the full 11 vs. 11
soccer game. Furthermore, varying the substrate configuration while the solution encoding remains
static makes it possible to train skills relevant to RoboCup on subsets of the full field, for example,
half-field offense/defense. In this way, varying the number of players and varying the field size are
both required to transfer from the RoboCup Keepaway domain to full RoboCup soccer. Thus this
study suggests a novel path to learning full-fledged soccer.

A distinctive feature of the BEV representation is that actions are also selected in the BEV, that
is, the outputs are in the same geometry as the field. In the RoboCup Keepaway domain, actions
are constrained to holding the ball and directly passing to a teammate. However, there are many
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other actions that are possible, such as clearing the ball, kicking the ball out of bounds, dribbling,
and passing to a location close to a teammate. Furthermore, the BEV can potentially control players
without the ball. By requesting actions in the BEV geometry, actions can be selected based on
positions instead of objects.

For example, the keeper with the ball can potentially select any position on the BEV to which
to kick the ball. That way, the BEV is not constrained in its actions. The player with the ball can
then choose from passes to teammates, passes to positions near teammates, or dribble by kicking
the ball to a nearby position and then pursuing the ball. Players without the ball can be controlled by
interpreting the outputs of the BEV as the desired location towards which that player should move.
Thus an interesting property of the BEV is that the state space can transfer, by accommodating new
players or field sizes, and the action space can also transfer in the same way. Ultimately, the promise
of such transfer is tied to the idea of static representation, whose potential was highlighted in this
paper.

7. Conclusion

This paper introduced the BEV representation, which simplifies task transfer by making the state
representation static. That way, no matter how many objects are in the domain, the size of the state
representation remains the same. In contrast, in traditional representations, changing the number
of players (e.g., in the RoboCup Keepaway task) forces changes in the representation by adding
dimensions to the state space. In addition to results competitive with leading methods on the Keep-
away benchmark, the BEV, which is enabled by an indirect encoding, achieved transfer learning
from 3 vs. 2 to 4 vs. 3 Keepaway without further training. Improvement after further training then
demonstrated that the knowledge gained from the transfer does indeed facilitate further learning
the more difficult task. Transfer also proved successful not only among variations on the number of
players, but also among different field sizes and substrate resolutions. Finally, cross-domain transfer
was demonstrated, from Knight Joust to Keepaway. The cross-domain transfer improved not only
immediate performance, but also enhanced further learning. All these results highlight the critical
role that representation plays in learning and transfer. By altering the representation, transfer learn-
ing is simplified. Yet high-dimensional static representations require indirect encodings that take
advantage of their expressive power, such as in HyperNEAT. The hope is that advanced represen-
tations in conjunction with indirect encoding can later contribute to scaling learning techniques to
more challenging tasks, such as the complete RoboCup soccer domain.
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Abstract
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and
relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have
sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance
matrices, also induce conditional independence structures via zeros in the implied precision ma-
trices. We describe the models and their use for robust estimation of sparse latent factor structure
and data/signal reconstruction. We develop computational algorithms for model exploration and
posterior mode search, addressing the hard combinatorial optimization involved in the search over
a huge space of potential sparse configurations. A mean-field variational technique coupled with
annealing is developed to successively generate “artificial” posterior distributions that, at the limit-
ing temperature in the annealing schedule, define required posterior modes in the GFM parameter
space. Several detailed empirical studies and comparisons to related approaches are discussed,
including analyses of handwritten digit image and cancer gene expression data.
Keywords: annealing, graphical factor models, variational mean-field method, MAP estimation,
sparse factor analysis, gene expression profiling

1. Introduction

Bayesian sparse modelling in multivariate analysis is of increasing interest in applications as diverse
as life science, economics and information science, and is driving a need for effective computational
methods for learning model structure, that is, sparse configurations. Parallel developments of sparse
latent factor models (e.g., West, 2003; Griffiths and Ghahramani, 2006; Lucas et al., 2006; Wang
et al., 2007; Archambeau and Bach, 2009; Carvalho et al., 2008; Guan and Dy, 2009; Rai and
Daumé, 2009) and inherently sparsely structured graphical models (e.g., Jordan, 1999, 2004; Dobra
et al., 2004; Jones et al., 2005; Carvalho and West, 2007) have explored Bayesian computations
using a range of stochastic and deterministic search methods. With a view to scaling to higher di-
mensions and identification of regions of interest in model structure space, efficient and effective
computation remains a challenge. We describe a previously undeveloped class of sparse graphi-
cal factor models (GFMs)—a subclass of linear, Gaussian latent factor models with sparse factor
loadings that also induce sparse conditional independencies. In this context, we develop a compu-
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tational technique for posterior mode evaluation using a hybrid of variational mean-field method
(Attias, 1999; Wainwright and Jordan, 2008) and annealing-based optimization.

As a previously unexplored class of sparse (linear, Gaussian) factor models, the intrinsic graph-
ical structure of the GFM arises from use of an orthogonal factor loadings matrix and appropriate
scaling of its columns, together with the usual diagonal covariance matrix for latent factors (with no
loss of generality). We show that this generally induces zero elements in the precision matrix of the
GFM, as well as the covariance matrix. Particularly, the zero entries in the covariance matrix have
corresponding zeros in the precision matrix. We also show that covariance matrices of fitted values
(i.e., “data reconstructions”) from such a model have the same sparse structure, and demonstrate
aspects of robustness of the model in inferring variable-latent factor relationships in the presence
of outliers. These properties are not shared in general by sparse factor models that lack the graph-
ical structure on variables, nor of course by non-sparse approaches. These intrinsic properties of
the GFM, along with relationships with earlier studies on sparse factor analyses, are discussed in
Section 2.

Our variational mean-field annealing algorithm (VMA2) addresses the combinatorial optimiza-
tion involved in aiming to compute approximate posterior modes for GFM parameters in the context
of the huge space of zero/non-zero potential patterns in factor loadings. Using a prescribed schedule
of decreasing temperatures, VMA2 successively generates tempered “artificial” posteriors that, at
the limiting zero temperature, yield posterior modes for both GFM parameters and the 0/1 loadings
indicators. Defined via an artificial, dynamic regularization on the posterior entropy of configured
sparse structures, VMA2 is developed in Section 3.

Section 4 provides additional algorithmic details, including prior modelling for evaluating de-
gree of sparseness, and a stochastic variant of VMA2 for higher-dimensional problems is described
in Section 5. Performance and comparisons on artificial data appear in Section 6. Section 7 summa-
rizes extensive, detailed empirical comparisons with related approaches in analyses of hand-written
digit images and cancer gene expression data. Section 8 concludes with brief additional comments.
A range of detailed supplementary materials, extended discussion on the gene expression studies
and R code, is accessible from http://daweb.ism.ac.jp/˜yoshidar/anneals/.

2. Sparse Graphical Factor Models

We describe the GFM with some intrinsic graphical properties, followed by connections to previ-
ously developed classes of sparse latent factor analyses.

2.1 GFM Form

Observed sample vectors xi ∈ Rp in p dimensional feature space are each linearly related to in-
dependent, unobserved Gaussian latent factor vectors λi ∈ Rk with additional Gaussian noise. We
are interested in sparse variable-factor relationships so that the bipartite mapping λ→ x is sparse,
with the underlying p× k matrix of coefficients—the factor loadings matrix—having a number of
zero elements; the p× k binary matrix Z defines this configured sparsity pattern. We use a sparse,
orthogonal loading matrix and diagonal covariance matrices for both latent factors and residuals;
the model is mathematically identified in the usual sense in factor analysis (Anderson, 2003).
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With Z as the p× k binary matrix with elements zg j such that variable g is related to factor j if
and only if zg j = 1, the GFM is

xi =Ψ1/2ΦZλi+νi with λi ∼N (λi|0,Δ) and νi ∼N (νi|0,Ψ)

where: (a) the factor loading matrix Ψ1/2ΦZ has ΦZ ≡ Φ ◦ Z with ◦ representing element-wise
product; (b) ΦZ is orthogonal, that is, Φ′

ZΦZ = Ik; (c) the factors have diagonal covariance matrix
Δ = diag(δ1, . . . ,δk); and (d) the idiosyncratic Gaussian noise (or residual) νi is independent of λi
and has covariance matrix Ψ = diag(ψ1, . . . ,ψp). The implied covariance matrix of the sampling
model, Σ, and the corresponding precision matrix, Σ−1, are

Σ=Ψ1/2{I+ΦZΔΦ
′
Z}Ψ

1/2 and Σ−1 =Ψ−1/2{I−ΦZTΦ′
Z}Ψ

−1/2 (1)

where T = diag(τ1, . . . ,τk) with τ j = δ j/(1+ δ j) ( j = 1 : k). In general, sparse loading matrices
induce some zero elements in the covariance matrix whether or not they are orthogonal, but not in
the implied precision matrix. In the GFM here, however, a sparse factor model also induces off-
diagonal zeros in Σ−1. Zeros in the precision matrix defines a conditional independence or graphical
model, hence the GFM terminology. In (1), the pattern of sparsity (location of zero entries) in the
covariance and precision matrices are the same. The set of variables associated with one specific
factor forms a clique in the induced graphical model, with sets of variables that have non-zero
loadings on any two factors lying in the separating subgraph between the corresponding cliques.
Hence, we have a natural and appealing framework in which sparse factor models and graphical
models are reconciled and consistent.

2.2 Some Model Attributes

In general, a non-orthogonal factor model with the sparse loading matrixW—a sparse extension of
probabilistic PCA (Bishop, 1999, 2006)—has the form

xi =Wλi+νi with λi ∼ N(0, I) and νi ∼ N(0,Ψ).

The GFM arises when a singular value decomposition is applied to the scaled-factor loading matrix
Ψ−1/2W = ΦZΔ1/2R with a k× k orthogonal matrix R being removed. This non-orthogonal model
defines a Bayes optimal reconstruction of the data via the fitted values (or extracted signal)

x̂(xi) :=WE[λi|xi] =WW ′(WW ′+Ψ)−1xi.

Then, asymptotically,

1
n

n

∑
i=1

x̂(xi)x̂(xi)′
p

−→ Cov[x̂(xi)] =WW ′(WW ′+Ψ)−1WW ′

and this is generally a non-sparse matrix (no zero entries) even thoughW is sparse. This is an incon-
sistency in the sense that data reconstructions should be expected to share the dominant patterns of
covariance sparsity evident in the original covariance matrixCov[xi] =WW ′+Ψ. In the GFM, how-
ever, Cov[x̂(xi)] = Ψ1/2ΦZGΦ′

ZΨ
1/2 where G is diagonal with entries δ2j/(1+ δ j). In such cases,

Cov[x̂(xi)] is sparse and shares the same 0 elements as Cov[xi].
Another feature of the GFM is related to a robust property acquired by the implied graphical

structure. Consider an example of 4 variables x′i = (xi1,xi2,xi3,xi4) and 2 factors λ′i = (λi1,λi2)
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Directed graph of sparse factor models Conditional independence graph 
induced from the GFM

Figure 1: Graphical model structure of an example GFM.

with two cliques in the conditional independence graph; {xi1,xi2,xi3} ← λi1 and {xi2,xi3,xi4} ←
λi2 (see Figure 1). The graph defines the decomposition of the joint density p(xi1,xi2,xi3,xi4) =
p(xi1|xi2,xi3)p(xi2,xi3|xi4)p(xi4) or p(xi1,xi2,xi3,xi4) = p(xi4|xi2,xi3)p(xi2,xi3|xi1)p(xi1). This im-
plies that presence of one or more outliers in the isolated feature variable, that is, xi1 or xi4, asso-
ciated with a single factor clique, has no effect on the variables, xi4 or xi1, once the intermediate
variables xi2 and xi3 are given. Then, the parameters involved in p(xi1) or p(xi4), for instance, the
loading components and the noise variances corresponding to the isolated variable, can be estimated
independently of the impact of outliers in xi4 or xi1. The numerical experiment shown in Section 7.1
highlights this robustness property in terms of data compression/restoration tasks, with comparison
to other sparse factor models.

2.3 Likelihood, Priors and Posterior

Denote by Θ the full set of parameters Θ = {Φ,Δ,Ψ}. Our computations aim to explore model
structures Z and corresponding posterior modes of parameters Θ under the posterior p(Z,Θ|X)
using specified priors and based on the n observations forming the columns of the p×n data matrix
X .

2.3.1 LIKELIHOOD FUNCTION

The likelihood function is

p(X |Z,Θ) ∝ |Ψ|−n/2|I−T |n/2etr(−SΨ−1/2+Ψ−1/2SΨ−1/2ΦZTΦ′
Z/2) (2)

where etr(A) = exp(trace(A)) for any square matrix A, and S is the sample sum-of-square matrix
S = XX ′ with elements sgh. In (2), the factor loadings appear only in the last term and form the
important statistic

trace(Ψ−1/2SΨ−1/2ΦZTΦ′
Z) =

k

∑
j=1

τ jφ
′
z jΨ

−1/2SΨ−1/2φz j

where φz j is column j of ΦZ, or φz j = φ j ◦ z j where φ j is column j of Φ and z j is column j of Z.
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2.3.2 PRIORS ON Θ AND Z

Priors over non-zero factor loadings may reflect substantive a priori knowledge if available, and
will then be inherently context specific. For examples here, however, we use uniform priors p(Θ|Z)
for exposition. Note that, on the critical factor loadings elements Φ, this involves a uniform on
the hypersphere defined by the orthogonality constraint that is then simply conditioned (by setting
implied elements of Φ to zero) as we move across candidate models Z.

Concerning the sparse structure Z, we adopt independent priors on the binary variates zg j with
logit(Pr(zg j = 1|ζg j)) = −ζg j/2 where logit(p) = log(p/(1− p)) and the parameters ζg j are as-
signed hyperpriors and included in the overall parameter set in later. Beta priors are obvious al-
ternatives to this; the logit leads to a minor algorithmic simplification, but otherwise the choice
is arbitrary. Using beta priors can be expected to lead to modest differences, if any of practical
relevance, in many cases, and users are free to explore variants. The critical point is that includ-
ing Bayesian inference on these p×k sparsity-determining quantities leads to “self-organization” as
their posterior distributions concentrate on larger or smaller values. Examples in Section 6 highlight
this.

2.4 MAP Estimation for (Θ,Z) in GFMs

Conditional on the p× k matrix of sparsity control hyperparameters ζ whose elements are the ζg j,
it follows that posterior modes (Z,Θ) maximize

2log p(Z,Θ|X ,ζ) = 2log p(Θ|Z)−
p

∑
g=1

k

∑
j=1

zg jζg j−
p

∑
g=1

(n logψg+ sggψ−1
g )

+
k

∑
j=1

(n log(1− τ j)+ τ jφ
′
z jΨ

−1/2SΨ−1/2φz j). (3)

The first two terms in (3) arise from the specified priors for Θ and Z, respectively. The quadratic
form in the last term is φ′z jΨ−1/2SΨ−1/2φz j = φ′jS(z j,Ψ)φ j for each j, where the key p× p matrices
S(z j,Ψ) have elements (S(z j,Ψ))gh given by

(S(z j,Ψ))gh = zg jzh jsgh(ψgψh)−1/2, for g,h= 1 : p. (4)

The (relative) signal-to-noise ratios τ j = δ j/(1+δ j) control the roles played by the last term in (3).
Optimizing (3) over Θ and Z involves many discrete variables and the consequent combina-

torial computational challenge. Greedy hill-climbing approaches will get stuck at improper local
solutions, often and quickly. The VMA2 method in Section 3 addresses this.

2.5 Links to Previous Sparse Factor Modelling and Learning

In the MAP estimation defined by (3), there are evident connections with traditional sparse princi-
pal component analyses (sparse PCA; Jolliffe et al., 2003, Zou et al., 2006 and d’Aspremont et al.,
2007). If Ψ = I and Δ = I, the latter likelihood component in (3) is the pooled-variance of pro-
jections, that is, ∑k

j=1φ
′
jS(z j, I)φ j, constructed by the k sparse loading vectors. This is the central

statistic optimized in many sparse PCAs. Differences among existing sparse PCAs arise in the way
they regulate degrees of sparseness and whether or not orthogonality is imposed on the loading
vectors.
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The direct sparse PCA of d’Aspremont et al. (2007) imposes an upper-bound d > 0 on the
cardinality of z j (the number of non-zero elements), with a resulting semidefinite programming of
computational complexity O(p4

√

log(p)). The applicability of that approach is therefore limited to
problems with p rather small. Such cardinality constraints can be regarded as suggestive of structure
for the prior distribution on ζ in our model.

The SCoTLASS algorithm of Jolliffe et al. (2003) uses !1-regularization on loading vectors,
later extended to SPCA using elastic nets by Zou et al. (2006). Recently, Mairal et al. (2009)
presented a !1-based dictionary learning for sparse coding in which the method aims to explore
sparsity on factor-sample mapping rather than that on factor-variable relations. Setting Laplace-like
prior distributions on scale loadings is a counterpart of !1-based penalization (Jolliffe et al., 2003;
Zou et al., 2006). However, our model-based perspective aims for a more probabilistic analysis, with
advantages in probabilistic assessment of appropriate dimension of the latent factor space as well
as flexibility in the determination of effective degrees of sparseness via the additional parameters
ζ. Other than the preceding studies, !1-regularizations have widely been employed to make sparse
latent factor analyses. Archambeau and Bach (2009) developed a general class of sparse latent
factor analyses involving sparse probabilistic PCA (Guan and Dy, 2009) and a sparse variant of
probabilistic canonical correlation analysis. A key idea of Archambeau and Bach (2009) is to place
the automatic relevance determination (ARD) prior of Mackay (1995) on each loading component,
and to apply a variational mean-field learning method.

Key advances in Bayesian sparse factor analysis build on non-parametric Bayesian modelling in
Griffiths and Ghahramani (2006) and Rai and Daumé (2009), and developments in Carvalho et al.
(2008) stemming from the original sparse Bayesian models in West (2003). Carvalho et al develop
MCMC and stochastic search methods for posterior exploration. MCMC posterior sampling can be
effective but is hugely challenged as the dimensions of data and factor variables increase. Our focus
here is MAP evaluation with a view to scaling to increasingly large dimensions, and we leave open
the opportunities for future work on MCMC methods in GFMs.

Most importantly, as remarked in Section 2.2, the GFM differs from some of the forgoing mod-
els in the conditional independence graphical structures induced. This characteristic contributes to
preserving sparse structure in the data compression/reconstruction process and also to the outlier
robustness issue. We leave further comparative discussion to Section 7.1, where we evaluate some
of the foregoing methods relative to the sparse GFM analysis in an image processing study.

3. Variational Mean-Field Annealing for MAP Search

Finding MAP estimates of the augmented posterior distribution (3) involves many discrete variables
zg j. Then, commonly applied search methods such as greedy hill-climbing algorithm often get stuck
in improper local solutions. Here, we present a general framework of VMA2 enabling us to escape
local mode traps by exploiting annealing.

3.1 Basic Principle

Relative to (3), consider the class of extended objective functions

GT (Θ,ω) = ∑
Z∈Z

ω(Z) log p(X ,Z,Θ|ζ)−T ∑
Z∈Z

ω(Z) logω(Z) (5)
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where ω(Z)—the sparsity configuration probability—represents any distribution over Z ∈ Z that
may depend on (X ,Θ,ζ), and where T ≥ 0. This modifies the original criterion (3) by taking the
expectation of p(X ,Z,Θ|ζ) with respect to ω(Z)—the expected complete data log-likelihood in the
context of EM algorithm—and by the inclusion of Shannon’s entropy of ω(Z) with the temperature
multiplier T.

Now, view (5) as a criterion to maximize over (Θ,ω) jointly for any given T. The following is a
key result:

Proposition 1 For any given parameters Θ and temperature T , (5) is maximized with respect to ω
at

ωT (Z) ∝ p(Z|X ,Θ,ζ)1/T . (6)

Proof See the Appendix.

For any given Θ, a large T leads to ωT (Z) being rather diffuse over sparse configurations Z so that
iterative optimization—alternating between Θ and ω—will tend to move more easily and freely
around the high-dimensional space Z. This suggests annealing beginning with the temperature T
large and successively reducing towards zero. We note that:

• As T → 0, ωT (Z) converges to a distribution degenerate at the conditional mode Ẑ(Θ,ζ) of
p(Z|X ,Θ,ζ), so that

• joint maximization of GT (Θ,ω) would approach the global maximum of the exact posterior
p(Θ,Z|X ,ζ) as T → 0.

The notion of the annealing operation is to realize a gradual move of successively-generated solu-
tions for Θ and ωT (Z), and to escape local mode traps by exploiting annealing. Note that, for any
given tempered posterior (6), the expectation in the first term of (5) is virtually impossible to be
taken due to the combinatorial explosion. In what follows, we introduce VMA2 as a mean-field
technique coupled with the annealing-based optimization to overcome this central computational
difficulty.

3.2 VMA2 based on Factorized, Tempered Posteriors

To define and implement a specific algorithm, we constrain the otherwise arbitrary “artificial con-
figuration probabilities” ω, and do so using a construction that induces analytic tractability. We
specify the simplest, factorized form

ω(Z) =
p

∏
g=1

k

∏
j=1

ω(zg j) :=
p

∏
g=1

k

∏
j=1

ω
zg j
g j (1−ωg j)1−zg j

in the same way as conventional Variational Bayes (VB) procedures do. In this GFM context, the
resulting optimization is eased using this independence relaxation as it gives rise to tractability in
computing the conditional expectation in the first term of (5).

If T = 1, and given the factorized ω, the objective function G1 exactly agrees with the free
energy, which bounds the posterior marginal as

log ∑
Z∈Z

p(X ,Θ,Z|ζ)≥ G1(Θ,ω).
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The lower-boundG1 is the criterion that the conventional VBmethods aim to maximize (Wainwright
and Jordan, 2008). This indicates that any solutions corresponding to the VB inference can be
obtained by stopping the cooling schedule at T = 1 in our method. Similar ideas have, of course,
been applied in deterministic annealing EM and annealed VB algorithms (e.g., Ueda and Nakano,
1998). These methods exploit annealing schemes to escape from local traps during coordinate-basis
updates in aiming to define variational approximations of posteriors.

Even with this relaxation, maximization over ω(Z) cannot be done for all elements of Z simulta-
neously and so is approached sequentially—sequencing through each ωg j in turn while conditioning
the others. For any given T this yields the optimizing value given by

ωg j(T ) ∝ exp
{ 1
T ∑

ZC\{g, j}

∏
h ,=g
∏
l ,= j

ω(zhl) log p(zg j = 1|X ,ZC\{g, j},Θ,ζ)
}

(7)

where C denotes the collection of all indices (g, j) for the p features and k factor variables, C \{g, j}
is the set of the paired indices (h, l) such that (h, l) ,= (g, j), and ZC\{g, j} stands for the set of zhls
other than zg j.

Starting with ωg j - 1/2 at an initial large value of T , (7) gradually concentrates to the point
mass as T decays to zero slowly:

ẑg j := lim
T↓0

ωg j(T ) =

{

1, if ∑
ZC\{g, j}

∏
h ,=g
∏
l ,= j

ω(zhl) log
p(zg j = 1,X ,ZC\{g, j},Θ,ζ)
p(zg j = 0,X ,ZC\{g, j},Θ,ζ)

> 0,

0, otherwise.

It remains true that, at the limiting zero temperature, the global maximum of GT (Θ,ω) is the set
of p× k point masses at the global posterior mode of p(Θ,Z|X ,ζ). This is seen trivially as follows:
(i) As T → 0, and with the non-factorized ω in (5), we have limiting value

sup
Z
log p(X ,Θ,Z|ζ) = sup

ω
G0(Θ,ω) (8)

with the point mass ω(Z) = δẐ(Z) at the location of the global maximum (Ẑ)g j = ẑg j. Further,
(ii) any point mass δẐ(Z) is representable by a fully factorized p× k point masses as δẐ(Z) =
∏g, j δẑg j(zg j).

It is stressed that the coordinate-basis updates (7) cannot, of course, guarantee convergence to
the global optimum even with prescribed annealing. Nevertheless, VMA2 represents a substantial
advance in its ability to move more freely and escape local mode traps. We also note the generality
of the idea, beyond factor models and also potentially using penalty functions other than entropy.

4. Sparse Learning in Graphical Factor Models

We first provide a specific form of VMA2 for the GFM, and then address the issue of evaluating
relevant degrees of sparseness.

4.1 MAP Algorithm

Computations alternate between conditional maximization steps for ω and Θ while reducing the
temperature T . At each step, the value of the objective function (5) is kept to refine until conver-
gence where the temperature reaches to zero. Specifically:
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1: Set a cooling schedule T = {T1, . . . ,Td} of length d where Td = 0;
2: Set ζ;
3: Initialize Θ;
4: Initialize ω(Z);
5: i← 0;
6: while ({the loop is not converged }∧{i≤ d})
7: i← i+1;
8: Compute configuration probabilities ωg j(Ti);
9: Optimize with respect to each column φ j ( j = 1 : k) of Φ in turn under full-

conditioning;
10: Optimize with respect to Δ under full-conditioning;
11: Optimize with respect to Ψ under full-conditioning;
12: Optimize with respect to ζ under full-conditioning;
13: end while

We now summarize key components in the iterative, annealed computation defined above.

4.2 Sparse Configuration Probabilities

First consider maximization with respect to each sparse configuration probability ωg j conditional
on all others. We note that the first term in (5) involves the expectation over Z with respect to the
probabilities ω, denoted by Eω[·]. Accordingly, for the key terms S(z j,Ψ) we have

Eω[S(z j,Ψ)] =Ω j ◦ (Ψ
−1/2SΨ−1/2) with (Ω j)gh =

{

ωg j, if g= h,
ωg jωh j, otherwise. (9)

Introduce the notationΨ−1/2SΨ−1/2 = (s1(Ψ), . . . ,sp(Ψ)) to represent the p columns of the scaled-
sample sum-of-square matrix here, and define the p−vector

ω̃g j = (ω1 j, . . . ,ωg−1, j,1,ωg+1, j, . . . ,ωp j)
′.

Then, the partial derivative of (5) with respect to ωg j conditional on Θ and the other configuration
probabilities leads to

logit(ωg j(T )) = Hgj(ζg j)/T where Hgj(ζg j) := τ jφg j(φ j ◦ ω̃g j)
′sg(Ψ)−ζg j.

This directly yields the conditional maximizer for ωg j in terms of the tempered negative energy
Hgj(ζg j)/T . As the temperature T is reduced towards zero, the resulting estimate tends towards 0
or 1 according to the sign of Hgj(ζg j).

4.3 Conditional Optimization over Φ

The terms in (5) that involve Φ are simply the expectation of the quadratic forms in the last term
of (3), with the term for each column φ j involving the key matrices S(z j,Ψ) defined in (4), for
each j = 1 : k. At each step through the overall optimization algorithm in Section 4.1, we sequence
through these columns of the loadings matrix in turn conditioning on the previously optimized

1779



YOSHIDA AND WEST

values of all other columns. In the context of the overall iterative MAP algorithm, this yields global
optimization over Φ as T → 0.

Conditional optimization then reduces to the following: for each j = 1 : k, sequence through
each column φ j in turn and at each step

maximize
φ j

φ′jEω[S(z j,Ψ)]φ j

subject to φ′jφ j = 1 and φ′mφ j = 0 for m ,= j,m= 1 : k. (10)

The optimization conditions on the most recently updated values of all other columns m ,= j at each
step, and is performed as one sweep as the line 9 in the algorithm of Section 4.1. Column order can
be chosen randomly or systematically each time while still maintaining convergence. In this step,
we stress that the original orthogonality condition is modified to Φ′

ZΦZ = I → ΦTΦ = I in (10). It
remains the case that iteratively refined estimates obtained from (10) satisfy the original condition
at the limiting zero temperature, yielding sparsity for Eω[S(z j,Ψ)], as detailed in the mathematical
derivations in supplementary material.

The specific computations required for the conditional optimization in (10) are as follows (with
supporting details in the Appendix). Note that the central matrices Eω[S(z j,Ψ)] required here are
trivially available from Equation (9).

1: Compute the p× (k− 1) matrix Φ(− j) = {φm}m,= j by simply deleting column j
from Φ;

2: Compute the p× p projection matrix N j = I p−Φ(− j)Φ
′
(− j);

3: Compute the eigenvector ϕ j corresponding to the most dominant eigenvalue of
N jEω[S(z j,Ψ)]N j;

4: Compute the required optimal vector φ j = N jϕ j/‖N jϕ j‖.

This procedure solves (10) by optimizing over an eigenvector already constrained by the orthogonal-
ity conditions. Here N j spans the null space of the current k − 1 columns of Φ(− j), so
N jEω[S(z j,Ψ)]N j defines the projection of Eω[S(z j,Ψ)] onto the orthogonal space and eigenvec-
tors ϕ j lie in the null space. It remains to ensure that the computed value φ j is of unit length, which
involves the normalization in the final step in part 4. Selecting the eigenvector with maximum
eigenvalue ensures the conditional maximization in (10).

4.4 Conditional Optimization over Δ

The variances δ j of the latent factors appear in Equations (3) and (5) in the sum over j = 1 : k of
terms

−n log(1+δ j)+δ j(1+δ j)
−1φ′jEω[S(z j,Ψ)]φ j.

This is unimodal in δ j with maximizing value

δ̂ j =max{0, n−1φ′jEω[S(z j,Ψ)]φ j−1}, (11)

and so the update at the line 10 of the MAP algorithm of Section 4.1 computes these values in
parallel for each factor j = 1 : k. Note that this may generate zero values, indicating the removal of
the corresponding factors from the model, and so inducing an intrinsic ability to prune the number
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of factors as being redundant in a model specified initially with a larger, encompassing value of
k. The configured sparse structure drives this pruning; any specific factor j that is inherently very
sparse generates a smaller value of the projected “variance explained” φ′jEω[S(z j,Ψ)]φ j, and so can
lead to δ̂ j = 0 as a result.

4.5 Conditional Optimization over Ψ

The diagonal noise covariance matrix Ψ appears in the objective function of Equation (5) in terms
that can be re-expressed as

−n log |Ψ|− trace(SΨ−1)+
k

∑
j=1

τ jtrace(φ jφ′jΨ−1/2(Ω j ◦S)Ψ−1/2)

where τ j = δ j/(1+ δ j) for each j. Differentiating this with respect to Ψ−1/2 yields the gradient
equation:

ndiag−1(Ψ1/2)−diag−1(SΨ−1/2)+
k

∑
j=1

τ jdiag−1(φ jφ′jΨ−1/2(Ω j ◦S)) = 0,

where diag−1(A) denotes the vector of the diagonal elements in A. Iterative solution of this non-
linear equation in Ψ can be performed via the reduced implicit equation

diag−1(Ψ) = n−1diag−1({I p−
k

∑
j=1

τ j(φ jφ
′
j)◦ (Ψ

−1/2Ω jΨ
1/2)}S).

4.6 Degrees of Sparseness

The prior over the logistic hyperparameters ζ= {ζg j} defining the Bernoulli probabilities for the zg j
is important in encouraging relevant degrees of sparseness. Extending the model via an hierarchical
prior for these parameters enables adaptation to data in evaluating relevant degrees of sparseness.
One first class of priors is used here, taking the ζg j to be conditionally independent and drawn from
the prior with positive part Gaussian distribution N+(ζg j|µ,σ) for some specified mean and vari-
ance (µ,σ). The annealing search can now be extended to include ζ, simply embedding conditional
optimization of (5) under this prior within each step of the iterative search. The conditional indepen-
dence structure of the model easily yields unique solutions for each of the ζg j in parallel as values
satisfying

ωg j =
exp(−ζg j/2)

1+ exp(−ζg j/2)
−
ζg j−µ
2σ

. (12)

Solutions to (12) are trivially, iteratively computed. Evidently, as ωg j approaches 0 or 1, the solution
for ζg j is shifted to the corresponding boundary. ζg j as a function of ωg j for several values of (µ,σ).

As mentioned earlier, the choice of this logit/truncated normal prior is a subjective preference
and could be replaced by others, such as beta priors. Again, we expect that this would typically lead
to modest differences, if any of practical relevance, in many cases.
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5. A Stochastic Search Variant for Large p

In problems with larger numbers of variables, the computations quickly become challenging, espe-
cially in view of the repeated eigen-decompositions required for updating factor loading matrix. In
our examples and experiments, analysis with dimensions p∼ 500 would be feasible using our own
R code (vma2gfm() available from the supplementary web site), but computation time then rapidly
increases with increasing p.More efficient low level coding will speed this, but nevertheless it is of
interest to explore additional opportunities for increasing the efficiency of the MAP search.

To reduce the computational time, we explore a stochastic variant of the original deterministic
VMA2 that uses realized Z matrices from current, conditional configuration probabilities ωg j(T ) at
each stage of the search process. The realized binary matrix Z = [z1, . . . ,zk] replaces the full matrix
Eω[S(z j,Ψ)] with a sparse alternative S(z j,Ψ). In larger, very sparse problems, this will enable us
to greatly reduce the computing time as each eigen-decomposition can be computed based only on
the components related to non-zero zg j values. This leads to a stochastic annealing search with all
other steps unchanged. We also have the additional benefit of the introduced randomness aiding in
potentially moving away from the stuck in suboptimal solutions. It should be stressed that this is an
optional complement to the deterministic algorithm and one that may be used for an initial period
of time prior to enable swifter initial iterations from arbitrary initial values, prior to switching to the
deterministic annealing once in the region of a posterior mode.

The modified search procedure over φ j in Equation (10) is:

1. Draw a set of binary values ẑg j, g= 1, . . . , p, according to the current configuration
probabilities ωg j(T );

2. Define the set of active variables by A j = {g|g ∈ 1 : p, ẑg j = 1}; denote by φ j,{A j}

the sub-vector of φ j for only the active variables, and S{A j}(z j,Ψ) the submatrix
of S(z j,Ψ) whose rows and columns correspond to only the active variables;

3. Solve the reduced optimization conditional on the A j, via:

maximize
φ j,{A j}

φ′j,{A j}
S{A j}(ẑ j,Ψ)φ j,{A j}

subject to ‖φ j,{A j}‖
2 = 1 and φ′m,{A j}

φ j,{A j} = 0 for m ,= j.

4. Update the full p−vector φ j with elements φ j,{A j} for the active variables and all
other elements zero.

For example, in a problem with p = 5000 but sparseness of the order of 5%, the A j will involve
a few hundred active variables, and eigenvalue decomposition will then be performed on matrices
of that order rather than 5000×5000.We note also that this strategy requires a modification to the
update operation for the configuration probabilities: the ωg j will be updated at any one step only for
the current indices g ∈ A j, keeping the remaining zg j at values previously obtained.

6. Experimental Results on Synthetic Data

Performance and comparisons on artificial data are shown to highlight some learning properties of
the GFM.
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Figure 2: Display of evolvingGT (Θ̂,ω) in the annealing process (from T = 2 to T = 0) with contour
plots. The black circle in each panel indicates the maximum point, and that corresponding
to T = 0 in the panel on the bottom-right corner indicates the optimal sparse structure.
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6.1 Visual Tracking of Annealing Process with a Toy Problem

The first experiment shows how the VMA2 method can solve the combinatorial optimization. Con-
sider 3 variables and 1 factor, so that xi = (φ1 · z1)λ1i+νi where all parameters except φ1 are fixed
asΨ= I and Δ= I. The likelihood function in (2) is then p(X |Z,Θ)∝ exp(φ′z1Sφz1/2). Assume that
true edge on z31 = 1, indicating xi3← λi1, is known, but z11 = 1 and z21 = 0 are treated as unknown.
Then, with the prior for z11 and z21 as logit(Pr(z11 = 1)) = logit(Pr(z21 = 1)) =−1.5, we explored
values for φ1 and ωg1, g = 1,2, based on an artificial data set drawn from the GFM, so as to refine
GT (Θ,ω) under the factorized ω(Z) = ω(z11)ω(z21).

We can map the surface GT (Θ,ω) over (ω11,ω21) when Θ is set at the optimized value Θ̂
for each (ω11,ω21). Figure 2 on the bottom-right corner displays a contour plot of G0(Θ̂,ω). The
maximum point lies in one of the four corners corresponding to ωg1 ∈ {0,1} and the global MAP
estimate has ω11 = 1 and ω21 = 0.

Figure 2 also shows a tracking result of the VMA2 search process starting from T = 2 and stop-
ping at T = 0. The change in GT (Θ̂,ω) and the corresponding maximizing values of (ω11,ω21) can
be monitored through the contour plots at selected temperatures. Starting from the initial values,
ω11 ≈ 0.5 and ω21 ≈ 0.5, at the highest temperature, the successively-generated maximum points
gradually come closer to the global optimum (ω11 = 1 and ω21 = 0) as the annealing process pro-
ceeds. At higher temperatures, GT (Θ̂,ω) is unimodal. In the overall search, the tempered criterion
begins to become bimodal after the trajectory moves into regions close to the global maximum.

This simple illustrative example highlights the key to success in the search: moving the trajec-
tory of solutions closer to the global maximum in earlier phases of the cooling schedule, before
the tempered criterion function exhibits substantial multimodality. Looking ahead, we may be able
to raise the power of the annealing search by, for example, using dynamic control of the cooling
schedule or more general penalty functions for ω.

6.2 Snapshot of Algorithm with 30 Variables and 4 Factors

In what follows, we will show some simulation studies to provide insights and comparisons. The
data sets have n = 100 data points drawn from the GFM with p = 30 and ktrue = 4, and with Ψ =
0.05I and Δ = diag(1.5,1.2,1.0,0.8). The zg j were independently generated with Pr(zg j = 1) =
0.3, yielding roughly 70% sparsity; then, non-zero elements of Φ where generated as independent
standard normal variates, following which ΦZ was constrained to orthogonality.

To explore sensitivity to the chosen temperature schedule for annealing, experiments were run
using three settings:

• (Log-inverse decay) Ti = 3/log2(i+1) for i= 1, . . . ,6999, and T7000 = 0
• (Linear decay) Ti = 3−6×103× (i−1) for i= 1, . . . ,1999, and T2000 = 0
• (Power decay) Ti = 3×0.99−(i−1) for i= 1, . . . ,1999, and T2000 = 0

For each, we evaluated the resulting MAP search in terms of comparison with the true model and
computational efficiency, in each case using a model with redundant factor dimension k = 8.

6.3 Annealing with Fixed Hyper-parameters

First analyses fixed ζg j = c and was run repeatedly across some grid points of c ∈ [0,5]. Figure
3 summarizes the evaluation of the receiver operating characteristics (ROC) for the three cooling
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Figure 3: ROC for threshold PCA assuming a known, true k = 4 factors (left), compared to VMA2
estimation of the GFM under the three cooling schedules and with k = 8 (right). TPR
(vertical) and FPR (horizontal) were calculated according to TP/P and FP/N where P
and N denote the numbers of non-zero and zero elements in true loadings, TP and FP are
the numbers of true positives and false positives, respectively.

schedules. The true positive (TPR) and false positive rates (FPR) were computed based on the
correspondences between estimated and true values of the zg j. For comparison, we used standard
PCA, extracting the dominant 4 eigenvectors and setting entries below a threshold (in absolute
value) to zero; sliding the threshold towards zero gives a range of truncated loadings vectors in the
PCA that define the ROC curve for this approach. The resulting ROC curve, shown in the left panel,
is very near to the 45◦ line, comparing very poorly with the annealed GFM; for the latter, each ROC
curve indicates rather accurate identification of the sparse structure and the curves differ in small
ways only as a function of cooling schedule. The choice of cooling schedule can, however, have a
more marked influence on results if initialized at temperatures that are too low.

6.4 Inference on Degrees of Sparseness

A second analysis uses the sparsity prior p(ζg j) = N+(ζg j|µ,σ) with µ= 3 and σ = 6, and adopts
the log-inverse cooling schedule. As shown in the right panel of Figure 4, the analysis realized
a reasonable control of FNR (15.4%) and FPR (0%), inducing a slightly less sparse solution than
the true structure. The GFM analysis automatically prunes the redundant factors, identifying the
true model dimension. Figure 5 displays a snapshot of evolving configuration probabilities ωg j and
hyper-parameters ζg j during the annealing schedule, demonstrating convergence over 2000 steps.
At around Ti - 0.45, all the configuration probabilities corresponding to the redundant four factors
reached to zero.

We further evaluated sensitivity to the choice of cooling schedules; in addition to the previous
three cooling schedules, we compared with:
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Identified precision matrix Identified loading matrix 
(k=8)

Precision matrix of 
artificial data

True loading matrix 
(ktrue=4)

Figure 4: Result of the VMA2 estimation using the log-inverse rate cooling in analysis of synthetic
data. (Left) Precision and factor loadings matrix used for generating the synthetic data
(p = 30, ktrue = 4). Non-zero elements are colored black. (Right) Estimated precision
and factor loadings matrix (k = 8); note that the MAP estimate sets the last four loading
vectors to zero and so identifies the true number of factors automatically.

• (Log-inverse decay) Ti = 0.7/log2(i+1) for i= 1, . . . ,6999 and, T7000 = 0
• (Linear decay) Ti = 0.7−6×103× (i−1) for i= 1, . . . ,1999 and, T2000 = 0
• (Power decay) Ti = 0.7×0.99−(i−1) for i= 1, . . . ,1999 and, T2000 = 0

The initial temperatures are reduced from 3 to 0.7. Figure 6 shows the variations of TPR and FPR
in the use of the six cooling schedules, evaluated in 20 analyses with replicated synthetic models
and data sets. The left and center panels indicate significant dominance of the annealing starting
from the higher initial temperatures. Performance in identifying model structure seriously degrades
when using a temperature schedule that starts too low, and the sensitivity to schedule is very limited
when beginning with reasonably high initial temperatures.

The right panel in Figure 6 shows TPR and FPR for the sparse PCA (SPCA) proposed by
Zou et al. (2006), evaluated on the same 20 data sets using the R code spca() available at CRAN
(http://cran.r-project.org/). With spca(), we can specify the number of nonzero elements
(cardinality) in each column of the factor loading matrix. We executed spca() after the assignment
of the true cardinality as well as the known factor dimension ktrue = 4. The figure indicates a
better performance of GFM annealed with high initial temperature than the sparse PCA, and this
is particularly notable in that the GFM analysis uses k = 8 and involves no a priori knowledge on
the degree of sparseness. It is important to see that the conducted comparison is biased since the
data were drawn from the GFM with the orthogonal loading matrix where SPCA does not make
orthogonality assumptions. In Section 7.1, we provide deeper comparisons among several existing
sparse factor analyses based on image processing in hand-written digits recognition.

6.5 Computing Time Questions

Figure 7 shows the CPU times required for the execution of the GFM analyses as above, repeated
with increasing dimension p ∈ {100,200,300,500,700,1000}. The data sets were again generated
from GFMs with 4 factors and roughly 70% sparseness. We then performed the VMA2 using a
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Figure 5: Convergence trajectories of the ζg j (upper) and ωg j (lower) in analysis of synthetic data
over 2000 steps of annealed MAP estimation.

linear decay cooling of length 2000, and using both deterministic and stochastic annealing in a
model with k= 8. The deterministic algorithm was not used for p≥ 500 due to substantial increase
in CPU times; this was eased via use of the stochastic search algorithm.
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Figure 6: Performance tests on 20 synthetic data sets for different cooling schedules and compari-
son between the GFM and a sparse PCA (SPCA). For each panel, TPR (black) and FPR
(blue) are plotted (vertical axis) against the 20 replicate simulations of artificial data.
The results of annealing with the higher and lower initial temperatures are shown in the
left and center panels respectively where the rates of cooling with log-inverse, linear and
power decays are denoted by box, diamond and circle, respectively. The right panel shows
the results of SPCA.

7. Real Data Applications

Experimental results on image analyses of hand-written digits (Section 7.1) and breast cancer gene
expression data (Section 7.2) are shown to demonstrate practical relevance of the GFMs in analyses
of high dimensional data.

7.1 Application: Hand-written Digit Recognition

We evaluate GFM in pattern recognition analyses of hand-written digit images, and make compar-
isons to three existing methods; (i) SPCA (Zou et al., 2006), (ii) sparse probabilistic PCA with
ARD prior (Archambeau and Bach, 2009), and (iii) MCMC-driven sparse factor analysis (West,
2003; Carvalho et al., 2008). These three methods are all based on models with non-orthogonal
sparse loading matrices. The training data set was made from 16×16 gray-scale images of 100 dig-
its (i.e., n= 100, p= 256) of ‘3’ that were randomly drawn from the postal zip code data available
at http://www-stat.stanford.edu/˜tibs/ElemStatLearn/ (Hastie et al., 2001). To evaluate
robustness of the four approaches, we added artificial outliers to 15 pixels (features) for about 5%
of the original 100 images. Some of the contaminated images are shown in the top-left panels of
Figure 8.

For the non-probabilistic method, that is, (i) SPCA, we performed data reconstruction in the
standard manner; x(xi) =WW ′xi withW the matrix of sparse, non-orthogonal loading vectors. In
applications of (ii) and (iii) that are inherently driven by probabilistic models, data reconstruction
was made via the posterior mean x(xi) =WE[λi|xi] using obtained sparse loading matrixW . For all
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Figure 7: (Left) CPU times (in seconds; Intel(R) Core(TM)2 Duo processor, 2.60Ghz) versus model
dimension p for the stochastic VMA2. For the deterministic VMA2, we terminated the
tests with the data larger than p = 300. Execution times for the deterministic algorithm
were approximately 468, 812 and 1100 sec for p = 100, 200 and 300. (Right) Identified
sparse loadings matrix, displayed as transpose, for the case of p= 1000 where the MAP
estimation achieved FPR= 12.0% and FNR= 18.4%.

the methods, setting factor dimensions to k = 10, we explored sparse estimates so that the degrees
of sparseness become approximately 30% (see Figure 8). For SPCA, we use the same number of
non-zero elements in each loading vector as in the estimated GFM. The GFM was estimated using
VMA2 with a fixed value for ζ and a linear cooling schedule of length 2000.

A set of 100 test data samples was created from the 100 samples above by adding outliers
drawn from a uniform distribution to randomly-chosen pixels with probability 0.2. Performance
of the four approaches to data compressions/reconstruction were assessed via mean square error
(MSE) between x(xi)s and the true, original test images without the outliers. The right four panels
in Figure 8 show some digit images reconstructed by each method with the corresponding origi-
nal/contaminated test data. The reconstruction errors for the training and test instances are also sum-
marized in the figure. For the results on (ii) and (iii)—the non-orthogonal probabilistic analyses—
the reconstructed digits were vaguely-outlined. Such poor reconstructions arise partly from effects
of the outliers spread from pixel to pixel along the complete graph defined by non-sparse preci-
sion matrix. This empirical result indicates the vulnerability issue of non-restricted sparse factor
models in presence of outliers. In the reconstructions of the test instances, the GFM could capture
characteristics of original digits with the highest accuracy among the methods. SPCA attained the
second highest accuracy in terms of MSE. These observations highlight the substantial merit of us-
ing sparse linear mapping in data reconstructions. The GFM and SPCA limit the propagations of
outliers within some factor cliques, as most pixel images in the other isolated, non-adjacent factor
cliques could be restored clearly.
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Figure 8: Comparison between GFM and the three alternative methods ((i)-(iii)) in the data
reconstruction of outlier hand-written digit images. For the implementation of
the sparse probabilistic PCA with ARD prior (ARD-PPCA), we prepared our own
R function which is available at Supplementary web site. In the application
of the MCMC-based sparse factor analysis, we used BFRM 2.0 distributed at
http://www.stat.duke.edu/research/software/west/bfrm/. In the four panels on the bottom-
right, d.s. denotes the degree of sparseness.

7.2 Application: Breast Cancer Gene Expression Study

Latent factor models are being more used in microarray-based gene expression studies in both basic
biological and clinical studies, such as cancer genomics. An example in breast cancer gene expres-
sion study here further illustrates the practical relevance of GFM structure and adds to comparisons
with other approaches. In addition to the summary details below, a much extended discussion of
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Figure 9: Identified factor probes (left) and sparse structure (right; binary matrix). In each image of
the left panel, expression signatures of the probes associated with each factor are depicted
across 138 samples (ordered along horizontal axis).

both statistical and biological aspects is available in supporting material at the first author’s web site
(see link below).

Among the goals of most such studies are identification of multiple factors that may represent
underlying activity of biological pathways and provide opportunities for improved predictive mod-
els with estimated latent factors for physiological and clinical outcomes (e.g., Carvalho et al., 2008;
Chang et al., 2009; Hirose et al., 2008; Lucas et al., 2006, 2009; West, 2003; Yoshida et al., 2004,
2006). Here we discuss an example application of our sparse GFM in analysis of data from previ-
ously published breast cancer studies (Cheng et al., 2006; Huang et al., 2003; Pittman et al., 2004;
West et al., 2001).

The GFM approach was applied to a sample of gene expression microarray data collected in the
CODeX breast cancer genomics study (Carvalho et al., 2008; Pittman et al., 2004; West et al., 2001)
at the Sun-Yat Sen Cancer Center, Taipei, during 2001-2004. In addition to summary expression
indices from Affymetrix Human Genome U95 arrays, the data set includes immunohistochemistry
(IHC) test for key hormonal receptor proteins in clinical prognostics; ERBB2 (Her2) and estrogen
(ER). The IHC measures are discrete: ER negative (ER=0), ER positive with low/high-level expres-
sion (ER=1 and ER=2), Her2 negative (Her2=0), and Her2 positive with low/high-level (Her2=1
and Her=2). We performed analysis of p = 996 genes with the expression levels that, on a log2
(fold change) scale, exceed a median level of 7 and a range of at least 3-fold changes across the
tumors. The data set, including the expression data and the IHC hormonal measures, are available
on-line as supplementary material.

The annealed estimation of GFM was run with k= 25, µ= 7 and σ= 10. The cooling schedule
was prescribed by a linearly-decreasing sequence of 2000 temperatures under which the decay rate
and initial temperature were set to 0.006 and 3, respectively. The applied GFM identified 19 factors,
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pruning from the model maximum k= 25. Heatmaps of gene expression for genes identified in each
of the factors appear in Figure 9 with the identified sparse pattern of the loadings matrix.

Evaluation and Annotation of Inferred Factors: To investigate potential biological connections
of the factors, we evaluated enrichment of the functional annotations shared by genes in each factor
through the Gene Ontology (GO). This exploration revealed associations between some factors and
GO biological processes; the complete and detailed results, including tables of the GO enrichment
analyses for each factor and detailed biological descriptions, are available from the web site of
supporting information.

Factors Related to ER: Figure 10 displays boxplots of fitted values of the factor scores for
each sample, plotted across all 19 factors and stratified by levels of each of the clinical ER and
Her2 (0/1/2) categories. For each sample i, the posterior mean of the factor vector, namely λ̂i =
(Ik+Δ)−1ΔΦ′

ZΨ
−1/2xi, is evaluated at the estimated model, providing the fitted values displayed.

We note strong association of ER status to factors 8 (GO: hormone metabolic process), 9 (GO:
glucose metabolic process, negative regulation of MAPK activity), 12 (GO: C21-steroid hormone
metabolic process), 14 (GO: apoptotic program, positive regulation of caspase activity), 18 (GO:
M phase of meiotic cell cycle) and 19 (GO: regulation of Rab protein signal transduction). These
clear relationships of ER status to multiple factors with intersecting but also distinct biological
pathway annotations is consistent with the known complexity of the broader ER network, as estro-
gen receptor-induced signaling impacts multiple cellular growth and developmentally related down-
stream target genes and strongly defines expression factors linked to breast cancer progression.

Her2 Status and Oncogenomic Recombination Hotspot on 17q12: Figure 10 indicates factor 16
as strongly associated with Her2 status (0,1) versus 2. Factor 16 significantly loads on only 7 genes
that include STARD3, GRB7 and two probe sets on the locus of ERBB2 (which encodes Her2).
This is consistent with earlier gene expression studies that have consistently identified a single ex-
pression pattern related to Her2 and a very small number of additional genes, and that have found
the “low Her2 positives” level(1) to be generally comparable to negatives. Interestingly, we note
that STARD3, GRB7 and ERBB2 are all located on the same chromosomal locus 17q12, which
is known as PPP1R1B-STARD3-TCAP-PNMT-PERLD1-ERBB2-MGC14832-GRB7 locus. This
locus has been reported in many studies (e.g., Katoh and Katoh, 2004) as an oncogenomic recombi-
nation hotspot which is amplified frequently in breast tumor cells, and the purely exploratory (i.e.,
unsupervised) GFM analysis clearly identifies the “Her2 factor” as strongly reflective of increased
expression of genes in this hotspot, consistent with the amplification inducing Her2 positivity.

Comparison to Non-sparse Analysis: Finally, we show a comparison to non-sparse traditional
PCA. Supplementary Fig.1 and 2 show the estimated factors (principal components) corresponding
to the most dominant 19 eigenvalues, stratified by the levels of ER and Her2. The PCA failed to
capture the existing factor relevant to Her2-specific phenotypes in the analysed data. Note that the
foregoing sparse analysis identified the Her2-relevant factor only through the 7 non-zero loadings.
Indeed, our post-analysis has found that the data set contains very few genes exhibiting significant
fold change across the Her2 phenotypes. The non-sparse analysis would capture many irrelevant
features through too redundant non-zero loadings. The failure of PCA signifies the importance of
sparse modelling in handling high-dimensional data having inherently sparse structure.
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Figure 10: Boxplots of fitted values of breast tumor-specific factor scores, stratified by protein IHC
determinations of clinical ER status (upper) and Her2 status (lower) in their 0/1/2 cate-
gories.

8. Additional Comments

The novel graphical property of GFMs provides a nice reconciliation of sparse covariance mod-
els with sparse precision models—sparse latent factor analysis and graphical models, respectively.
Some of the practical benefits of this arise from the ability of GFM to define data reconstructions
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exhibiting the same patterns of covariances as the model/data predict, and the potential to induce
robustness to outliers relative to non-graphical factor models, whether sparse or not. Some theoret-
ical questions remain about precise conditions under which the sparsity patterns of covariance and
precision matrices are guaranteed to agree in general sparse Gaussian factor models other than the
GFM form. Additionally, extensions to integrate non-parametric Bayesian model components for
factors, following Carvalho et al. (2008), are of clear future interest.

The ability of the VMA2 to aid in the identification of model structure in sparse GFM, and to
provide an additional computational strategy and tools to address the inherently challenging com-
binatorial optimization problem, has been demonstrated in our examples. Scaling to higher di-
mensional models is enabled by relaxation of the direct deterministic optimization viewpoint, with
stochastic search components that promote greater exploration of model space and can speed up
search substantially. Nevertheless, moving to higher dimensions will require new, creative compu-
tational implementations, such as using distributed computing, that will themselves require novel
methodological concepts.

The annealed search methodology evidently will apply in other contexts beyond factor models.
At one level, sparse factor models are an instance of problems of variable selection in multivari-
ate regression, in which the regression predictors (feature variables) are themselves unknown (i.e.,
are the factors). The annealed entropy approach is therefore in principle applicable to problems
involving regression model search and uncertainly in general classes of linear or nonlinear mul-
tivariate regression with potentially many predictor variables. Beyond this, the same can be said
about potential uses in other areas of graphical modelling involving structural inference of directed
or undirected graphical models, and also in multivariate time series problems where some of the
sparse structure may relate to relationships among variables over time.

We also remark on generalization of the basic form of VMA2 here that might use penalty func-
tions other than the Shannon’s entropy used here. The central idea of the VMA2 is the design
of a temperature-controlled iterative optimization that converges to the joint posterior distribution
of model parameters and sparse structure indicators. The entropy formulation used in our GFM
context was inspired by the form of the posterior itself, but similar algorithms—with the same con-
vergent property—could be designed using other forms. This, along with computational efficiency
questions and applications in models beyond the sparse GFM framework, and also potential ex-
tensions to consider heavy-tailed or Bayesian nonparametric distributions for latent factors and/or
residuals (e.g., Carvalho et al., 2008), are open areas for future research.
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Appendix A.

We present a proof of Proposition 1 and a derivation of optimization over Φ.

A.1 Proof of Proposition 1

Replace the objective function of (5) by multiplying by inverse temperature 1/T :

1
T
GT (Θ,ω) = ∑

Z∈Z

ω(Z) log p(X ,Z,Θ|ζ)1/T − ∑
Z∈Z

ω(Z) logω(Z).

An upper-bound of this modified criterion is derived as follows:

1
T
GT (Θ,ω) = ∑

Z∈Z

ω(Z) log
p(Z|X ,Θ,ζ)1/T p(X ,Θ|ζ)1/T

ω(Z)

= ∑
Z∈Z

ω(Z) log
p(Z|X ,Θ,ζ)1/T

ω(Z) ∑
Z′∈Z

p(Z′|X ,Θ,ζ)1/T
+K0

≤ K0.

In the second equality, the terms irrelevant to ω(Z) are included in K0 = log p(X ,Θ|ζ)1/T+
log∑Z′∈Z p(Z′|X ,Θ,ζ)1/T . The first term in the second line is the negative of the Kullback-Leibler
divergence between ω(Z) and the normalized tempered posterior distribution. The lower-bound of
the Kullback-Leibler divergence is attained if and only if

ω(Z) =
p(Z|X ,Θ,ζ)1/T

∑Z′∈Z p(Z′|X ,Θ,ζ)1/T
,

as required.

A.2 Derivation: Optimization over Φ

Let ρ j, j ∈ {1, . . . ,k} be the Lagrange multipliers to ensure the restrictions in (10). We now write
down the Lagrange function:

φ′jEω[S(z j,Ψ)]φ j−ρ j(‖φ j‖
2−1)− ∑

m,= j
ρmφ′mφ j. (13)

Differentiation of (13) with respect to φ j yields

Eω[S(z j,Ψ)]φ j−ρ jφ j− ∑
m,= j

ρmφm = 0. (14)

In order to solve this equation, the first step to be addressed is to find the closed form solution for the
vector of the Lagrange multipliers, ρ(− j) = {ρm}m,= j ∈ Rk−1. Multiplying (14) by each φ′m, m ,= j,
from the left, we have the k−1 equations as follows:

φ′mEω[S(z j,Ψ)]φ j− ∑
m,= j

ρmφ
′
mφ j = 0 for m s.t. m ,= j.
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This yields the matrix representation

Φ′
(− j)Eω[S(z j,Ψ)]φ j−Φ′

(− j)Φ(− j)ρ(− j) = 0,

which in turn leads to the solution for ρ(− j) as

ρ(− j) = (Φ′
(− j)Φ(− j))

−1Φ′
(− j)Eω[S(z j,Ψ)]φ j.

Substituting this into the original Equation (14) yields the eigenvalue equation

N jEω[S(z j,Ψ)]φ j−ρ jφ j = 0 with Nj = I−Φ(− j)Φ
′
(− j). (15)

Now consider the alternative, symmetrized eigenvalue equation

N jEω[S(z j,Ψ)]N jϕ j−ρ jϕ j = 0. (16)

Since N j is idempotent, left-multiplication of (16) by N j yields

N jEω[S(z j,Ψ)]N jϕ j−ρ jN jϕ j = 0.

which is equivalent to the required Equation (15) when φ j = N jϕ j.
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Abstract
We have developed a machine learning toolbox, called SHOGUN, which is designed for unified
large-scale learning for a broad range of feature types and learning settings. It offers a considerable
number of machine learning models such as support vector machines, hidden Markov models, mul-
tiple kernel learning, linear discriminant analysis, and more. Most of the specific algorithms are
able to deal with several different data classes. We have used this toolbox in several applications
from computational biology, some of them coming with no less than 50 million training exam-
ples and others with 7 billion test examples. With more than a thousand installations worldwide,
SHOGUN is already widely adopted in the machine learning community and beyond. SHOGUN is
implemented in C++ and interfaces to MATLAB,TM R, Octave, Python, and has a stand-alone com-
mand line interface. The source code is freely available under the GNU General Public License,
Version 3 at http://www.shogun-toolbox.org.
Keywords: support vector machines, kernels, large-scale learning, Python, Octave, R

1. Introduction

With the great advancements of machine learning in the past few years, many new learning algo-
rithms have been proposed, implemented in C/C++, and made publicly available. Their availability

∗. Also at Friedrich Miescher Laboratory, Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany.
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‡. Also at Trifense GmbH, Germendorfer Str. 79, 16727 Velten.
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has enabled systematic comparisons between newly developed methods, leading to an increased
visibility, and supporting their broad adoption in the community of machine learning as well as in
many others (see discussion in Sonnenburg et al., 2007). However, for example, there currently
exist more than 20 different publicly available implementations of Support Vector Machine (SVM)
solvers. Each one comes with its own interface, a small set of available kernel functions, and unique
benefits and drawbacks. There is no single unified way of interfacing with these implementations,
even though they all are based on essentially the same methodology of supervised learning. This
restraints users from fully taking advantage of the recent developments in machine learning algo-
rithms.

This motivated us to develop a machine learning toolbox that provides an easy, unified way for
solving certain types of machine learning problems. The result is a toolbox, called SHOGUN, with
a focus on large-scale learning using kernel methods and SVMs. It provides a generic interface to 15
SVM implementations, among them SVMlight, LibSVM, GPDT, SVMLin, LibLinear, and OCAS.
The SVMs can be easily combined with more than 35 different kernel functions.1 The toolbox not
only provides efficient implementations of the most common kernels, like the linear, polynomial,
Gaussian, and sigmoid, but also comes with several recently developed kernels such as the locality
improved, Fisher, TOP, spectrum, and the WD kernels for sequence analysis (see Sonnenburg et al.,
2007; Ben-Hur et al., 2008; Schweikert et al., 2009, and references therein). Moreover, it offers op-
tions for using precomputed kernels and allows easy integration of new implementations of kernels.
One of SHOGUN’s key features is the combined kernel to construct weighted linear combinations
of multiple kernels that may even be defined on different input domains. Also, several Multiple
Kernel Learning algorithms based on different regularization strategies are available to optimize the
weighting of the kernels (e.g., Sonnenburg et al., 2006a; Kloft et al., 2010).

Currently, two- and multiclass classification and regression are best supported. In addition to
kernel and distance based methods, SHOGUN implements many linear methods and features algo-
rithms to train hidden Markov models. Furthermore, it provides the basic functionality for solving
label sequence learning problems (Hidden Semi-Markov SVMs; cf. Rätsch and Sonnenburg, 2007;
Schweikert et al., 2009). The input feature objects can be dense or sparse vectors of strings, in-
tegers (8, 16, 32 or 64 bit; signed or unsigned), or floating point numbers (32 or 64 bit), and can
be converted into different feature types. Chains of “pre-processors” (e.g., subtracting the mean)
can be attached to each feature object allowing on-the-fly pre-processing. Finally, several com-
monly used performance measures, like accuracy and area under ROC or precision-recall curves,
are implemented in SHOGUN.

An important aspect in the design of SHOGUN was to enable very large-scale learning. It is
structured in a way that there is as little as possible overhead for storing the data and intermediate
results. Moreover, whenever possible, we implemented auxiliary routines that allow faster com-
putation of combinations of kernel elements that lead to significant speedup during training (for
some SVM implementations, e.g., SVMlight and GPDT) and evaluation (Sonnenburg et al., 2007).
Furthermore, linear SVMs can be efficiently trained using on the fly computed feature spaces, even
mixing sparse, dense and other data types.

This allowed us to use SHOGUN for solving several large-scale learning problems in biological
sequence analysis, for example, splice site recognition with up to 50 million example sequences for
training (Sonnenburg et al., 2007; Franc and Sonnenburg, 2009) and transcription start site recog-

1. Complete lists of SVM and kernel implementations together with user and developer documentation is available at
http://www.shogun-toolbox.org/doc.
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nition with almost 7 billion test sequences (Sonnenburg et al., 2006b). SHOGUN’s core functions
are encapsulated in a library (libshogun) and are easily accessible and extendible by C++ appli-
cation developers. What sets SHOGUN apart from many other machine learning toolboxes, is that
it provides interactive user interfaces to most major scripting languages that are currently used in
scientific computing, in particular Python, MATLAB, Octave, R, and a command-line version.

All classes and functions are documented and come with over 600 examples and a tutorial for
new users and developers is part of the release.2 Furthermore, there is an open access tutorial on
SVMs (Ben-Hur et al., 2008) that provides a SHOGUN-based command-line tool for illustrative
examples (available at http://svmcompbio.tuebingen.mpg.de). Maintaining high code quality
is ensured by a test suite that supports running the algorithms for each interface on predefined inputs
in order to detect breakage. SHOGUN runs on POSIX platforms, such as Linux, BSD, Mac OS X,
Cygwin, and Solaris.

2. Modular, Extendible Object-Oriented Design

SHOGUN is implemented in an object-oriented way using C++ as the programming language. All
objects inherit from CSGObject, which provides means for garbage collection via reference count-
ing, serialization, and versioning of the object. The implementations of many classes employ tem-
plates enabling SHOGUN’s support of many different data types without code duplication. As the
source code and user documentation is automatically generated using doxygen and written in-place
in the header files, it also drastically reduces the amount of work needed to maintain the documenta-
tion. As an example of SHOGUNs object-oriented design, consider the class CClassifier: From
this class, CKernelMachine, for example, is derived and provides basic functions for applying a
trained kernel classifier (computing f (x) = ∑N

i=1αi k(x,xi) + b) thus enabling code re-use when-
ever possible. The same holds for CDistanceMachine and CLinearClassifier (which provides
f (x) = w · x+ b etc.). Currently, SHOGUN implements 329 classes (see Figure 1 in supplemen-
tary material available at http://www.shogun-toolbox.org/jmlr10 for a sketch of the main
classes).3

3. Interfaces to Scripting Languages and Applications

Built around SHOGUN’s core are two types of interfaces: A modular interface that makes use of
the SWIG (http://www.swig.org), and a static interface. Thanks to SWIG, the modular interface
provides the exact same objects in a modular object-oriented way that are available from C++ to
other languages, such as R, Python, and Octave. Using so-called typemaps, it is convenient to
provide type mappings from the native datatype used in the interface to SHOGUN. For example, a
function void set features(double* features, int n, int m) can be called directly from
Octave with a single matrix argument, for example, set features(randn(3,4)). The variables n
and m are then automatically set to the matrix dimensions and together with a data pointer passed
to the SHOGUN core.

SHOGUN also provides a static interface with the same structure for all supported plattforms
, including the command-line interface where inputs are provided as either strings or files. It is

2. Examples are also accessible online at http://www.shogun-toolbox.org/doc/examples.html.
3. See http://www.shogun-toolbox.org/doc/annotated.html for the full annotated class listing.
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implemented independent of the target language through the class CSGInterface, which provides
abstract functions to deliver or obtain data from any particular plattform.

A community around SHOGUN is continuously developing, with a growing number of projects
building on it (cf. http://mloss.org/software/tags/shogun) and a mailing list with more than
100 subscribed users.4 By 10/2009, there had been at least 1,100 installations under the Linux
distributions Debian and Ubuntu. We will continue to develop SHOGUN and are confident that it
is and will continue to be useful, and will make an increasing impact beyond the machine learning
community by benefiting diverse applications.
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Abstract
After building a classifier with modern tools of machine learning we typically have a black box at
hand that is able to predict well for unseen data. Thus, we get an answer to the question what is the
most likely label of a given unseen data point. However, most methods will provide no answer why
the model predicted a particular label for a single instance and what features were most influential
for that particular instance. The only method that is currently able to provide such explanations are
decision trees. This paper proposes a procedure which (based on a set of assumptions) allows to
explain the decisions of any classification method.
Keywords: explaining, nonlinear, black box model, kernel methods, Ames mutagenicity

1. Introduction

Automatic nonlinear classification is a common and powerful tool in data analysis. Machine learn-
ing research has created methods that are practically useful and that can classify unseen data after
being trained on a limited training set of labeled examples.

Nevertheless, most of the algorithms do not explain their decision. However in practical data
analysis it is essential to obtain an instance-based explanation, that is, we would like to gain an
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understanding what input features made the nonlinear machine give its answer for each individual
data point.

Typically, explanations are provided jointly for all instances of the training set, for example
feature selection methods (including Automatic Relevance Determination) find out which inputs
are salient for a good generalization (see Guyon and Elisseeff, 2003, for a review). While this can
give a coarse impression about the global usefulness of each input dimension, it is still an ensemble
view and does not provide an answer on an instance basis.1 In the neural network literature also
solely an ensemble view was taken in algorithms like input pruning (e.g., Bishop, 1995; LeCun
et al., 1998). The only classification that does provide individual explanations are decision trees
(e.g., Hastie et al., 2001).

This paper proposes a simple framework that provides local explanation vectors applicable to
any classification method in order to help understanding prediction results for single data instances.
The local explanation yields the features relevant for the prediction at the very points of interest
in the data space, and is able to spot local peculiarities that are neglected in the global view, for
example, due to cancellation effects.

The paper is organized as follows: We define local explanation vectors as class probability gradi-
ents in Section 2 and give an illustration for Gaussian Process Classification (GPC). Some methods
output a prediction without a direct probability interpretation. For these we propose in Section 3 a
way to estimate local explanations. In Section 4 we apply our methodology to learn distinguishing
properties of Iris flowers by estimating explanation vectors for a k-NN classifier applied to the clas-
sic Iris data set. In Section 5 we discuss how our approach applied to a SVM classifier allows us to
explain how digit “2” is distinguished from digit “8” in the USPS data set. In Section 6 we focus on
a more real-world application scenario where the proposed explanation capabilities prove useful in
drug discovery: Human experts regularly decide how to modify existing lead compounds in order
to obtain new compounds with improved properties. Models capable of explaining predictions can
help in the process of choosing promising modifications. Our automatically generated explanations
match with chemical domain knowledge about toxifying functional groups of the compounds in
question. Section 7 contrasts our approach with related work and Section 8 discusses characteristic
properties and limitations of our approach, before we conclude the paper in Section 9.

2. Definitions of Explanation Vectors

In this Section we will give definitions for our approach of local explanation vectors in the classi-
fication setting. We start with a theoretical definition for multi-class Bayes classification and then
give a specialized definition being more practical for the binary case.

For the multi-class case, suppose we are given data points x1, . . . ,xn ∈ℜd with labels y1, . . . ,yn ∈
{1, . . . ,C} and we intend to learn a function that predicts the labels of unlabeled data points. As-
suming that the data is IID-sampled from some unknown joint distribution P(X ,Y ), we define the

1. This point is illustrated in Figure 1 (Section 2). Applying feature selection methods to the training set (a) will lead
to the (correct) conclusion that both dimensions are equally important for accurate classification. As an alternative
to this ensemble view, one may ask: Which features (or combinations thereof) are most influential in the vicinity
of each particular instance. As can be seen in Figure 1 (c), the answer depends on where the respective instance is
located. On the hypotenuse and at the corners of the triangle, both features contribute jointly, whereas along each of
the remaining two edges the classification depends almost completely on just one of the features.
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Bayes classifier,

g∗(x) = arg min
c∈{1,...,C}

P(Y $=c | X =x)

which is optimal for the 0-1 loss function (see Devroye et al., 1996).
For the Bayes classifier we define the explanation vector of a data point x0 to be the derivative

with respect to x at x = x0 of the conditional probability of Y $=g∗(x0) given X = x, or formally,

Definition 1
ζ(x0) :=

∂
∂x

P(Y $=g∗(x) | X =x)
∣

∣

∣

∣

x=x0

.

Note that ζ(x0) is a d-dimensional vector just like x0 is. The classifier g∗ partitions the data spaceℜd

into up to C parts on which g∗ is constant. We assume that the conditional distribution P(Y = c | X =
x) is first-order differentiable w.r.t. x for all classes c and over the entire input space. For instance,
this assumption holds if P(X = x | Y = c) is for all c first-order differentiable in x and the supports
of the class densities overlap around the border for all neighboring pairs in the partition by the
Bayes classifier. The vector ζ(x0) defines on each of those parts a vector field that characterizes the
flow away from the corresponding class. Thus entries in ζ(x0) with large absolute values highlight
features that will influence the class label decision of x0. A positive sign of such an entry implies
that increasing that feature would lower the probability that x0 is assigned to g∗(x0). Ignoring the
orientations of the explanation vectors, ζ forms a continuously changing (orientation-less) vector
field along which the class labels change. This vector field lets us locally understand the Bayes
classifier.

We remark that ζ(x0) becomes a zero vector, for example, when P(Y $= g∗(x) | X = x)|x=x0 is
equal to one in some neighborhood of x0. Our explanation vector fits well to classifiers where the
conditional distribution P(Y = c | X = x) is usually not completely flat in some regions. In the
case of deterministic classifiers, despite of this issue, Parzen window estimators with appropriate
widths (Section 3) can provide meaningful explanation vectors for many samples in practice (see
also Section 8).

In the case of binary classification we directly define local explanation vectors as local gradients
of the probability function p(x) = P(Y = 1 | X = x) of the learned model for the positive class.

For a probability function p : ℜd → [0,1] of a classification model learned from examples
{(x1,y1), . . . ,(xn,yn)} ∈ ℜd × {−1,+1} the explanation vector for a classified test point x0 is the
local gradient of p at x0:

Definition 2
ηp(x0) := ∇p(x)|x=x0 .

By this definition the explanation η is again a d-dimensional vector just like the test point x0 is.
The sign of each of its individual entries indicates whether the prediction would increase or decrease
when the corresponding feature of x0 is increased locally and each entry’s absolute value gives the
amount of influence in the change in prediction. The vector η gives the direction of the steepest
ascent from the test point to higher probabilities for the positive class. For binary classification the
negative version −ηp(x0) indicates the changes in features needed to increase the probability for
the negative class which may be especially useful for x0 predicted in the positive class.
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For an example we apply Definition 2 to model predictions learned by Gaussian Process Clas-
sification (GPC), see Rasmussen and Williams (2006). GPC is used here for three reasons:
(i) In our real-world application we are interested in classifying data from drug discovery, which
is an area where Gaussian processes have proven to show state-of-the-art performance, see, for
example, Obrezanova and Segall (2010), Obrezanova et al., Schroeter et al. (2007c), Schroeter
et al. (2007a), Schroeter et al. (2007b), Schwaighofer et al. (2007), Schwaighofer et al. (2008) and
Obrezanova et al. (2008). It is natural to expect a model with high prediction accuracy on a complex
problem to capture relevant structure of the data which is worth explaining and may give domain
specific insights in addition to the values predicted. For an evaluation of the explaining capabilities
of our approach on a complex problem from chemoinformatics see Section 6.
(ii) GPC does model the class probability function used in Definition 2 directly. For other classi-
fication methods such as Support Vector Machines that do not provide a probability function as its
output we give an example for an estimation method starting from Definition 1 in Section 3.
(iii) The local gradients of the probability function can be calculated analytically for differentiable
kernels as we discuss next.

Let f (x)=∑n
i=1αik(x,xi) be a Gaussian Process (GP) model trained on sample points x1, . . . ,xn ∈

ℜd where k is a kernel function and αi are the learned weights of each sample point. For a test point
x0 ∈ ℜd let var f (x0) be the variance of f (x0) under the GP posterior of f . Because the posterior
cannot be calculated analytically for GP classification models, we used an approximation by ex-
pectation propagation (EP) (Kuss and Ramussen, 2005). In the case of the probit likelihood term
defined by the error function, the probability for being of the positive class p(x0) can be computed
easily from this approximated posterior as

p(x0) =
1
2

erfc

(

− f (x0)√
2 ·

√

1+var f (x0)

)

,

where erfc denotes the complementary error function (see Equation 6 in Schwaighofer et al., 2008).
Then the local gradient of p(x0) is given by2

∇p(x)|x=x0 =
exp

(

− f (x0)2

2(1+var f (x0))

)

√
2π

(

∇ f (x)|x=x0
√

1+var f (x0)
−

1
2

f (x0)

(1+var f (x0))
3
2
∇var f (x)|x=x0

)

. (1)

As a kernel function choose, for example, the RBF-kernel k(x0,x1) = exp(−w(x0−x1)2), which has
the derivative (∂/∂x0, j)k(x0,x1) =−2wexp(−w(x0 − x1)2)(x0, j − x1, j) for j ∈ {1, . . . ,d}. Then the
elements of the local gradient ∇ f (x)|x=x0 are

∂ f
∂x0, j

=−2w
n

∑
i=1

αi exp(−w(x0 − xi)
2)(x0, j − xi, j) for j ∈ {1, . . . ,d}.

2. For a detailed derivation, see Appendix A.1.
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For var f (x0) = k(x0,x0)− kT
∗ (K +Σ)−1k∗ the derivative is given by3

∇var f (x)|x=x0 =
∂var f

∂x0, j
=

(

∂
∂x0, j

k(x0,x0)

)

−2∗ kT
∗ (K +Σ)−1 ∂

∂x0, j
k∗ for j ∈ {1, . . . ,d}.
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(d) Direction of explanation vectors

Figure 1: Explaining simple object classification with Gaussian Processes

Panel (a) of Figure 1 shows the training data of a simple object classification task and panel (b)
shows the model learned using GPC.4 The data is labeled −1 for the blue points and +1 for the red
points. As illustrated in panel (b) the model is a probability function for the positive class which
gives every data point a probability of being in this class. Panel (c) shows the probability gradient
of the model together with the local gradient explanation vectors. Along the hypotenuse and at the
corners of the triangle explanations from both features interact towards the triangle class while along

3. Here k∗ = (k(x0,x1), . . . ,k(x0,xn))T is the evaluation of the kernel function between the test point x0 and every
training point. Σ is the diagonal matrix of the variance parameter. For details see Rasmussen and Williams (2006,
Chapter 3).

4. Hyperparameters were tuned by a gradient ascend on the evidence.
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the edges the importance of one of the two feature dimensions dominates. At the transition from
the negative to the positive class the length of the local gradient vectors represents the increased
importance of the relevant features. In panel (d) we see that explanations close to the edges of the
plot (especially in the right hand side corner) point away from the positive class. However, panel
(c) shows that their magnitude is very small. For discussion of this issue see Section 8.

3. Estimating Explanation Vectors

Several classification methods directly estimate the decision rule, which often has no interpretation
as the probability function in terms of Definition 2. For example Support Vector Machines estimate
a decision function of the form

f (x) =
n

∑
i=1

αik(xi,x)+b,

αi,b ∈ ℜ. Suppose we have two classes (each with one cluster) in one dimension (see Figure 2)
and train a SVM with RBF kernel. For points outside the data clusters f (x) tends to zero. Thus, the
derivative of f (x) (shown as arrows above the curves) for points on the very left or on the very right
side of the axis will point to the wrong side. In the following, we will explain how explanations can

0

x

p(       |   )y=1  x
1

0.5

0

x

classifier output

Figure 2: Classifier output of an SVM (top) compared to p(y=1|x) (bottom).

be obtained for such classifiers.
In practice, we do not have access to the true underlying distribution P(X ,Y ). Consequently,

we have no access to the Bayes classifier as defined in Section 2. Instead, we can apply sophis-
ticated learning machinery like Support Vector Machines (Vapnik, 1995; Schölkopf and Smola,
2002; Müller et al., 2001) that estimates some classifier g that tries to mimic g∗. For test data points
z1, . . . ,zm ∈ℜd which are assumed to be sampled from the same unknown distribution as the train-
ing data, g estimates labels g(z1), . . . ,g(zm). Now, instead of trying to explain g∗, to which we have
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no access, we will define explanation vectors that help us understand the classifier g on the test data
points.

Since we do not assume that we have access to some intermediate real-valued classifier output
here (of which g might be a thresholded version and which further might not be an estimate of P(Y =
c | X =x)), we suggest to approximate g by another classifier ĝ, the actual form of which resembles
the Bayes classifier. There are several choices for ĝ, for example, GPC, logistic regression, and
Parzen windows.5 In this paper we apply Parzen windows to the training points to estimate the
weighted class densities P(Y =c) ·P(X | Y =c), for the index set Ic = {i | g(xi) = c}

p̂σ(x,y=c) =
1
n ∑i∈Ic

kσ(x− xi) (2)

and with kσ(z) being a Gaussian kernel kσ(z) = exp(−0.5 z)z/σ2)/
√

2πσ2 (as always other kernels
are also possible). This estimates P(Y =c | X =x) for all c,

p̂σ(y=c|x) =
p̂σ(x,y=c)

p̂σ(x,y=c)+ p̂σ(x,y $=c)
≈ ∑i∈Ic kσ(x− xi)

∑i kσ(x− xi)
(3)

and thus is an estimate of the Bayes classifier (that mimics g),

ĝσ(x) = arg min
c∈{1,...,C}

p̂σ(y $=c | x).

This approach has the advantage that we can use our estimated classifier g to generate any amount
of labeled data for constructing ĝ. The single hyper-parameter σ is chosen such that ĝ approximates
g (which we want to explain), that is,

σ̂ := argmin
σ

m

∑
j=1

I
{

g(z j) $= ĝσ(z j)
}

,

where I{· · ·} is the indicator function. σ is assigned the constant value σ̂ from here on and omitted
as a subscript. For ĝ it is straightforward to define explanation vectors:

Definition 3

ζ̂(z) :=
∂
∂x

p̂(y $=g(z) | x)
∣

∣

∣

∣

x=z
=

(

∑i/∈Ig(z)
k(z− xi)

)(

∑i∈Ig(z)
k(z− xi)(z− xi)

)

σ2
(

∑n
i=1 k(z− xi)

)2

−

(

∑i/∈Ig(z)
k(z− xi)(z− xi)

)(

∑i∈Ig(z)
k(z− xi)

)

σ2
(

∑n
i=1 k(z− xi)

)2 .

This is easily derived using Equation (3) and the derivative of Equation (2), see Appendix A.3.1.
Note that we use g instead of ĝ. This choice ensures that the orientation of ζ̂(z) fits to the labels
assigned by g, which allows better interpretations.

In summary, we imitate the classifier g which we would like to explain locally by a Parzen
window classifier ĝ that has the same form as the Bayes estimator and for which we can estimate the

5. For Support Vector Machines Platt (1999) fits a sigmoid function to map the outputs to probabilities. In the following,
we will present a more general method for estimating explanation vectors.
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explanation vectors using Definition 3. Practically there are some caveats: The mimicking classifier
ĝ has to be estimated from g even in high dimensions; this needs to be done with care. However,
in principle we have an arbitrary amount of training data available for constructing ĝ since we may
use our estimated classifier g to generate labeled data.

4. Explaining Iris Flower Classification by k-Nearest Neighbors

The Iris flower data set (introduced in Fisher, 1936) describes 150 flowers from the genus Iris by four
features: sepal length, sepal width, petal length, and petal width, all of which are easily measured
properties of certain leaves of the corolla of the flower. There are three clusters in this data set that
correspond to three different species: Iris setosa, Iris virginica, and Iris versicolor.

Let us consider the problem of classifying the data points of Iris versicolor (class 0) against the
other two species (class 1). We applied standard classification machinery to this problem as follows:

• Class 0 consists of all examples of Iris versicolor.

• Class 1 consists of all examples of Iris setosa and Iris virginica.

• Randomly split 150 data points into 100 training and 50 test examples.

• Normalize training and test set using the mean and variance of the training set.

• Apply k-nearest neighbor classification with k = 4 (chosen by leave-one-out cross-validation
on the training data).

• Training error is 3% (i.e., 3 mistakes in 100).

• Test error is 8% (i.e., 4 mistakes in 50).

In order to estimate explanation vectors we mimic the classification results with a Parzen window
classifier. The best fit (3% error) is obtained with a kernel width of σ= 0.26 (chosen by leave-one-
out cross-validation on the training data).

Since the explanation vectors live in the input space we can visualize them with scatter plots of
the initially measured features. The resulting explanations (i.e., vectors) for the test set are shown
in Figure 3. The blue markers correspond to explanation vectors of Iris setosa and the red markers
correspond to those of of Iris virginica (both class 1). Both groups of markers point to the green
markers of Iris versicolor. The most important feature is the combination of petal length and petal
width (see the corresponding panel), the product of which corresponds roughly to the area of the
petals. However, the resulting explanations for the two species in class 1 are different:

• Iris setosa (class 1) is different from Iris versicolor (class 0) because its petal area is smaller.

• Iris virginica (class 1) is different from Iris versicolor (class 0) because its petal area is larger.

Also the dimensions of the sepal (another part of the blossom) are relevant, but not as distinguishing.
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Figure 3: Scatter plots of the explanation vectors for the test data. Shown are all explanation vectors
for both classes: class 1 containing Iris setosa (shown in blue) and Iris virginica (shown
in red) versus class 0 containing only the species Iris versicolor (shown in green). Note
that the explanations why an Iris flower is not an Iris versicolor is different for Iris setosa
and Iris virginica.

5. Explaining USPS Digit Classification by Support Vector Machine

We now apply the framework of estimating explanation vectors to a high dimensional data set, the
USPS digits. The classification problem that we designed for illustration purposes is detailed in the
following list:

• digits: 16×16 images that are reshaped to 256×1 dimensional column vectors

• classifier: SVM from Schwaighofer (2002) with RBF kernel width σ = 1 and regularization
constant C = 10 (chosen by grid search in cross-validation on the training data).

• training set: 47 “twos”, 53 “eights”; training error 0.00

• test set: 48 “twos”, 52 “eights”; test error 0.05

We approximated the estimated class labels obtained by the SVM with the Parzen window classifier
(Parzen window size σ = 10.2505, chosen by grid search in cross-validation on the training data).
The SVM and the Parzen window classifier only disagreed on 2% of the test examples, so a good
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Figure 4: USPS digits (training set): “twos” (left) and “eights” (right) with correct classification.
For each digit from left to right: (i) explanation vector (with black being negative, white
being positive), (ii) the original digit, (iii-end) artificial digits along the explanation vector
towards the other class.

Figure 5: USPS digits (test set bottom part): “twos” (left) and “eights” (right) with correct classifi-
cation. For each digit from left to right: (i) explanation vector (with black being negative,
white being positive), (ii) the original digit, (iii-end) artificial digits along the explanation
vector towards the other class.
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fit was achieved. Figures 4 and 5 show our results. All parts show three examples per row. For
each example we display from left to right: (i) the explanation vector, (ii) the original digit, (iii-end)
artificial digits along the explanation vector towards the other class.6 These artificial digits should
help to understand and interpret the explanation vector. Let us first have a look at the results on the
training set:

Figure 4 (left panel): Let us focus on the top example framed in red. The line that forms the “two”
is part of some “eight” from the data set. Thus the parts of the lines that are missing show
up in the explanation vector: if the dark parts (which correspond to the missing lines) are
added to the “two” digit then it will be classified as an “eight”. In other words, because of
the lack of those parts the digit was classified as a “two” and not as an “eight”. A similar
explanation holds for the middle example framed in red in the same Figure. Not all examples
transform easily to “eights”: Besides adding parts of black lines, some existing black spots
(that make the digit be a “two”) must be removed. This is reflected in the explanation vector
by white spots/lines. The bottom “two”, framed in red, is actually a dash and is in the data set
by mistake. However, its explanation vector shows nicely which parts have to be added and
which have to be removed.

Figure 4 (right panel): We see similar results for the “eights” class. The explanation vectors again
tell us how the “eights” have to change to become classified as “twos”. However, sometimes
the transformation does not reach the “twos”. This is probably due to the fact that some of
the “eights” are inside the cloud of “eights”.

On the test set the explanation vectors are not as pronounced as on the training set. However, they
show similar tendencies:

Figure 5 (left panel): We see the correctly classified “twos”. Let’s focus on the example framed in
red. Again the explanation vector shows us how to edit the image of the “two” to transform it
into an “eights”, that is, exactly which parts of the digit were important for the classification
result. For several other “twos” the explanation vectors do not directly lead to the “eights”
but weight the different parts of the digits that were relevant for the classification.

Figure 5 (right panel): Similarly to the training data, we see that also these explanation vectors
are not bringing all “eights” to “twos”. Their explanation vectors mainly suggest to remove
most of the “eights” (black pixels) and add some black in the lower part (the light parts, which
look like a white shadow).

Overall, the explanation vectors tell us how to edit our example digits to change the assigned class
label. Hereby, we get a better understanding of the reasons why the chosen classifier classified the
way it did.

6. Explaining Mutagenicity Classification by Gaussian Processes

In the following Section we describe an application of our local gradient explanation methodology to
a complex real world data set. Our aim is to find structure specific to the problem domain that has not

6. For the sake of simplicity, no intermediate updates were performed, that is, artificial digits were generated by taking
equal-sized steps in the direction given by the original explanation vector calculated for the original digit.
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been fed into training explicitly but is captured implicitly by the GPC model in the high-dimensional
feature space used to determine its prediction. We investigate the task of predicting Ames mutagenic
activity of chemical compounds. Not being mutagenic (i.e., not able to cause mutations in the DNA)
is an important requirement for compounds under investigation in drug discovery and design. The
Ames test (Ames et al., 1972) is a standard experimental setup for measuring mutagenicity. The
following experiments are based on a set of Ames test results for 6512 chemical compounds that we
published previously.7

GPC was applied as follows:

• Class 0 consists of non-mutagenic compounds.

• Class 1 consists of mutagenic compounds.

• Randomly split 6512 data points into 2000 training and 4512 test examples such that:

– The training set consists of equally many class 0 and class 1 examples.
– For the steroid compound class the balance in the training and test set is enforced.

• 10 additional random splits were investigated individually. This confirmed the results pre-
sented below.

• Each example (chemical compound) is represented by a vector of counts of 142 molecular
substructures calculated using the DRAGON software (Todeschini et al., 2006).

• Normalize training and test set using the mean and variance of the training set.

• Apply GPC model with RBF kernel.

• Performance (84 % area under curve) confirms our previous results (Hansen et al., 2009).
Error rates can be obtained from Figure 6.

Together with the prediction we calculated the explanation vector (as introduced in Definition 2) for
each test point. The remainder of this Section is an evaluation of these local explanations.

In Figures 7 and 8 we show the distribution of the local importance of selected features across
the test set: For each input feature we generate a histogram of local importance values, as indicated
by its corresponding entry in the explanation vector of each of the 4512 test compounds. The
features examined in Figure 7 are counts of substructures known to cause mutagenicity. We show
all approved “specific toxicophores” introduced by Kazius et al. (2005) that are also represented
in the DRAGON set of features. The features shown in Figure 8 are known to detoxify certain
toxicophores (again see Kazius et al., 2005). With the exception of 7(e) the toxicophores also have
a toxifying influence according to our GPC prediction model. Feature 7(e) seems to be mostly
irrelevant for the prediction of the GPC model on the test points. In contrast the detoxicophores
show overall negative influence on the prediction outcome of the GPC model. Modifying the test
compounds by adding toxicophores will increase the probability of being mutagenic as predicted by
the GPC model while adding detoxicophores will decrease this predicted probability.

7. See Hansen et al. (2009) for results of modeling this set using different machine learning methods. The data itself is
available online at http://ml.cs.tu-berlin.de/toxbenchmark.

1814



HOW TO EXPLAIN INDIVIDUAL CLASSIFICATION DECISIONS

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

 

 

AUC = 0.84

Figure 6: Receiver operating characteristic curve of GPC model for mutagenicity prediction

We have seen that the conclusions drawn from our explanation vectors agree with established
knowledge about toxicophores and detoxicophores. While this is reassuring, such a sanity check re-
quired existing knowledge about which compounds are toxicophores and detoxicophores and which
are not. Thus it is interesting to ask whether we also could have discovered that knowledge from the
explanation vectors. To answer this question we ranked all 142 features by the means of their local
gradients.8 Clear trends result: 9 out of 10 known toxicophores can be found close to the top of the
list (mean rank of 19). The only exception (rank 81) is the aromatic nitrosamine feature.9 This trend
is even stronger for the detoxicophores: The mean rank of these five features is 138 (out of 142),
that is, they consistently exhibit the largest negative local gradients. Consequently, the established
knowledge about toxicophores and detoxicophores could indeed have been discovered using our
methodology.

In the following paragraph we will discuss steroids10 as an example of an important compound
class for which the meaning of features differs from this global trend, so that local explanation
vectors are needed to correctly identify relevant features.

Figure 9 displays the difference in relevance of epoxide (a) and aliphatic nitrosamine (c) sub-
structures for the predicted mutagenicity of steroids and non-steroid compounds. For compari-
son we also show the distributions for compounds chosen at random from the test set (b,d). Each
subfigure contains two measures of (dis-)similarity for each pair of distributions. The p-value of
the Kolmogorov-Smirnoff test (KS) gives the probability of error when rejecting the hypothesis
that both relative frequencies are drawn from the same underlying distribution. The symmetrized

8. Tables resulting from this ranking are made available as a supplement to this paper and can be downloaded from the
journals website.

9. This finding agrees with the result obtained by visually inspecting Figure 7(e). We found that only very few com-
pounds with this feature are present in the data set. Consequently, detection of this feature is only possible if enough
of these few compounds are included in the training data. This was not the case in the random split used to produce
the results presented above.

10. Steroids are natural products and occur in humans, animals, and plants. They have a characteristic backbone contain-
ing four fused carbon-rings. Many hormones important to the development of the human body are steroids, including
androgens, estrogens, progestagens, cholesterol and natural anabolics. These have been used as starting points for
the development of many different drugs, including the most reliable contraceptives currently on the market.
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(a) aromatic nitro
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(b) aromatic amine
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(c) aromatic nitroso
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(d) aliphatic nitrosamine
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Figure 7: Distribution of local importance of selected features across the test set of 4512 com-
pounds. Nine out of ten known toxicophores (Kazius et al., 2005) indeed exhibit positive
local gradients.
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(d) aliphatic carboxylic acid
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Figure 8: Distribution of local importance of selected features across the test set of 4512 com-
pounds. All five known detoxicophores exhibit negative local gradients

Kullback-Leibler divergence (KLD) gives a metric of the distance between the two distributions.11

While containing epoxides generally tends to make molecules mutagenic (see discussion above), we
do not observe this effect for steroids: In Figure 9(a), almost all epoxide containing non-steroids ex-
hibit positive gradients, thereby following the global distribution of epoxide containing compounds
as shown in Figure 7(f). In contrast, almost all epoxide containing steroids exhibit gradients just
below zero. “Immunity” of steroids to the epoxide toxicophore is an established fact and has first
been discussed by Glatt et al. (1983). This peculiarity in chemical space is clearly exhibited by
the local explanation given by our approach. For aliphatic nitrosamine, the situation in the GPC
model is less clear but still the toxifying influence seems to be less in steroids than in many other
compounds. To our knowledge, this phenomenon has not yet been discussed in the pharmaceutical
literature.

In conclusion, we can learn from the explanation vectors that:

• Toxicophores tend to make compounds mutagenic (class 1).

• Detoxicophores tend to make compounds non-mutagenic (class 0).

• Steroids are immune to the presence of some toxicophores (epoxide, possibly also aliphatic
nitrosamine).

11. Symmetry is achieved by averaging the two Kullback-Leibler divergences: KL(P1,P2)+KL(P2,P1)
2 , compare to Johnson

and Sinanovic (2000). To prevent zero-values in the histograms which would lead to infinite KL distances, an ε> 0
has been added to each bin count.
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(b) epoxide feature: random compounds vs. the rest
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(c) aliphatic nitrosamine feature: steroid vs. non-steroid
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Figure 9: The local distribution of feature importance to steroids and random non-steroid com-
pounds significantly differs for two known toxicophores. The small local gradients found
for the steroids (shown in blue) indicate that the presence of each toxicophore is irrelevant
to the molecules toxicity. For non-steroids (shown in red) the known toxicophores indeed
exhibit positive local gradients.

7. Related Work

Assigning potentially different explanations to individual data points distinguishes our approach
from conventional feature extraction methods that extract global features that are relevant for all
data points, that is, those features that allow to achieve a small overall prediction error. Our notion
of explanation is not related to the prediction error, but only to the label provided by the prediction
algorithm. Even if the error is large, our framework is able to answer the question why the algorithm
has decided on a data point the way it did.
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The explanation vector proposed here is similar in spirit to sensitivity analysis which is common
in various areas of information science. A classical example is outlier sensitivity in statistics (Ham-
pel et al., 1986). In this case, the effects of removing single data points on estimated parameters
are evaluated by an influence function. If the influence for a data point is significantly large, it is
detected as an outlier and should be removed for the following analysis. In regression problems,
leverage analysis is a procedure along similar lines. It detects leverage points which have potential
to give large impact on the estimate of the regression function. In contrast to the influential points
(outliers), removing a leverage sample may not actually change the regressor, if its response is very
close to the predicted value. E.g., for linear regression the samples whose inputs are far from the
mean are the leverage points. Our framework of explanation vectors considers a different view. It
describes the influence of moving single data points locally and it thus answers the question which
directions are locally most influential to the prediction. The explanation vectors are used to extract
sensitive features that are relevant to the prediction results, rather than detecting/eliminating the
influential samples.

In recent decades, explanation of results by expert systems has been an important topic in the
Artificial Intelligence community. Especially for expert systems based on Bayesian belief networks,
such explanation is crucial in practical use. In this context sensitivity analysis has also been used
as a guiding principle (Horvitz et al., 1988). There the influence is evaluated by removing a set of
variables (features) from the evidence and the explanation is constructed from those variables that
affect inference (relevant variables). For example, Suermondt (1992) measures the cost of omitting
a single feature Ei by the cross-entropy

H−(Ei) = H(p(D|E);P(D|E\Ei)) =
N

∑
j=1

P(d j|E) log
P(d j|E)

p(d j|E\Ei)
,

where E denotes the evidence and D = (d1, . . . ,dN)
T is the target variable. The cost of a subset

F ⊂ E can be defined similarly. This line of research is more connected to our work, because
explanation can depend on the assigned values of the evidence E, and is thus local.

Similarly Robnik-Sikonja and Kononenko (2008) and Strumbelj and Kononenko (2008) try to
explain the decision of trained kNN-, SVM-, and ANN-models for individual instances by measur-
ing the difference in their prediction with sets of features omitted. The cost of omitting features
is evaluated as the information difference, the log-odds ratio, or the difference of probabilities be-
tween the model with knowledge about all features and with omissions, respectively. To know what
the prediction would be without the knowledge of a certain feature the model is retrained for every
choice of features whose influence is to be explained. To save the time of combinatorial training
Robnik-Sikonja and Kononenko (2008) propose to use neutral values which have to be estimated
by a known prior distribution of all possible parameter values. As a theoretical framework for con-
sidering feature interactions, Strumbelj and Kononenko (2008) propose to calculate the differences
between model predictions for every choice of feature subset.

For multi-layer perceptrons Fraud and Clrot (2002) measure the importance of individual in-
put variables on clusters of test points. Therefore the change in the model output is evaluated for
the change of a single input variable in a chosen interval while all other input variables are fixed.
Lemaire and Feraud (2007) use a similar approach on an instance by instance basis. By considering
each input variable in turn there is no way to measure input feature interactions on the model output
(see LeCun et al., 1998).
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Figure 10: ζ(x) is the zero vector in the middle of the cluster in the middle.

The principal differences between our approach and these frameworks are: (i) We consider
continuous features and no structure among them is required, while some other frameworks start
from binary features and may require discretization steps with the need to estimate parameters for
it. (ii) We allow changes in any direction, that is, any weighted combination of variables, while
other approaches only consider one feature at a time or the omission of a set of variables.

8. Discussion

We have shown that our methods for calculating / estimating explanation vectors are useful in a
variety of situations. In the following we discuss their limitations.

8.1 What Can We Do if the Derivative is Zero?

This situation is depicted in Figure 10. In the lower panel we see a two-dimensional data set con-
sisting of three clusters. The middle cluster has a different class than the clusters on the left and
on the right. Only the horizontal coordinate (i.e., x1) is relevant for the classification. The upper
panel shows the projected data and a representative slice of ζ(x). However, the explanation ζ(x)
for the center point of the middle cluster is the zero vector, because at that point p(Y = 1|X = x)
is maximal. What can we do in such situations? Actually, the (normalized) explanation vector
is derived from the following optimization problem for finding the locally most influential direc-
tion: argmax‖ε‖=1 {p(Y $=g∗(x0)|X = x0 + ε)− p(Y $=g∗(x0)|X = x0)}. In case that the first deriva-
tive of the above criterion is zero, its Taylor expansion starts from the second order term, which
is a quadratic form of its Hessian matrix. In the example data set with three clusters, the explana-
tion vector is constant along the second dimension. The most interesting direction is given by the
eigenvector corresponding to the largest eigenvalue of the Hessian. This direction will be in our
example along the first dimension. Thus, we can learn from the Hessian that the first coordinate
is relevant for the classification, but we do not obtain an orientation for it. Instead it means that
both directions (left and right) will influence the classification. However, if the conditional distri-
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bution P(Y = 1 | X = x) is flat in some regions, no meaningful explanation can be obtained by the
gradient-based approach with the remedy mentioned above. Practically, by using Parzen window
estimators with larger widths, the explanation vector can capture coarse structures of the classifier
at the points that are not so far from the borders. In A.3.2 we give an illustration of this point. In the
future, we would like to work on global approaches, for example, based on distances to the borders,
or extensions of the approach by Robnik-Sikonja and Kononenko (2008). Since these procedures
are expected to be computationally demanding, our proposal is useful in practice, in particular for
probabilistic classifiers.

8.2 Does Our Framework Generate Different Explanations for Different Prediction Models?

When using the local gradient of the model prediction directly as in Definition 2 and Section 6,
the explanation follows the given model precisely by definition. For the estimation framework this
depends on whether the different classifiers classify the data differently. In that case the explanation
vectors will be different, which makes sense, since they should explain the classifier at hand, even
if its estimated labels were not all correct. On the other hand, if the different classifiers agree on all
labels, the explanation will be exactly equal.

8.3 Which Implicit Limitations Do Analytical Gradients Inherit From Gaussian Process
Models?

A particular phenomenon can be observed at the boundaries of the training data: Far from the
training data, Gaussian Process Classification models predict a probability of 0.5 for the positive
class. When querying the model in an area of the feature space where predictions are negative,
and one approaches the boundaries of the space populated with training data, explanation vectors
will point away from any training data and therefore also away from areas of positive prediction.
This behavior can be observed in Figure 1(d), where unit length vectors indicate the direction of
explanation vectors. In the right hand side corner, arrows point away from the triangle. However,
we can see that the length of these vectors is so small that they are not even visible in Figure
1(c). Consequently, this property of GPC models does not pose a restriction for identifying the
locally most influential features by investigating the features with the highest absolute values in the
respective partial derivatives, as shown in Section 6.

8.4 Stationarity of the Data

Since explanation vectors are defined as local gradients of the model prediction (see Definition 2),
no assumption on the data is made: The local gradients follow the predictive model in any case. If,
however, the model to be explained assumes stationarity of the data, the explanation vectors will
inherit this limitation and reflect any shortcomings of the model (e.g., when the model is applied
to non-stationary data). Our method for estimating explanation vectors, on the other hand, assumes
stationarity of the data.

When modeling data that is in fact non-stationary, appropriate measures to deal with such data
sets should be taken. One option is to separate the feature space into stationary and non-stationary
parts using Stationary Subspace Analysis as introduced by von Bünau et al. (2009). For further
approaches to data set shift see Sugiyama et al. (2007b), Sugiyama et al. (2007a), and the book by
Quionero-Candela et al. (2009).
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9. Conclusion

This paper proposes a method that sheds light on the black boxes of nonlinear classifiers. In other
words, we introduce a method that can explain the local decisions taken by arbitrary (possibly)
nonlinear classification algorithms. In a nutshell, the estimated explanations are local gradients that
characterize how a data point has to be moved to change its predicted label. For models where such
gradient information cannot be calculated explicitly, we employ a probabilistic approximate mimic
of the learning machine to be explained.

To validate our methodology we show how it can be used to draw new conclusions on how the
various Iris flowers in Fisher’s famous data set are different from each other and how to identify
the features with which certain types of digits 2 and 8 in the USPS data set can be distinguished.
Furthermore, we applied our method to a challenging drug discovery problem. The results on that
data fully agree with existing domain knowledge, which was not available to our method. Even
local peculiarities in chemical space (the extraordinary behavior of steroids) was discovered using
the local explanations given by our approach.

Future directions are two-fold: First we believe that our method will find its way into the tool
boxes of practitioners who not only want to automatically classify their data but who also would
like to understand the learned classifier. Thus using our explanation framework in computational
biology (see Sonnenburg et al., 2008) and in decision making experiments in psychophysics (e.g.,
Kienzle et al., 2009) seems most promising. The second direction is to generalize our approach to
other prediction problems such as regression.
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Appendix A.

In the following we present the derivation of direct local gradients and illustrate aspects like the
effect of different kernel functions, outliers and local non-linearities. Furthermore we present the
derivation of explanation vectors based on the parzen window estimation and illustrate how the
quality of the fit of the Parzen window approximation affects the quality of the estimated explanation
vectors.

A.1 Derivation of Direct Local Gradients

Equation (1) is derived by the following steps:
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A.2 Illustration of Direct Local Gradients

In the following we give some illustrative examples of our method to explain models using local
gradients. Since the explanation is derived directly from the respective model, it is interesting to
investigate its acurateness depending on different model parameters and in instructive scenarios.
We examine the effects that local gradients exhibit when choosing different kernel functions, when
introducing outliers, and when the classes are not linearly separable locally.

A.2.1 CHOICE OF KERNEL FUNCTION

Figure 11 shows the effect of different kernel functions on the triangle toy data from Figure 1. The
following observations can be made:

• In any case note that the local gradients explain the model, which in turn may or may not
capture the true situation.

• In Subfigure 11(a) the linear kernel leads to a model which fails to capture the non-linear class
separation. This model misspecification is reflected by the explanations given for this model
in Subfigure 11(b).

• The rational quadratic kernel is able to more accurately model the non-linear separation. In
Subfigure 11(c) a non-optimal degree parameter has been chosen for illustrative purposes.
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(d) rational quadratic explanation

Figure 11: The effect of different kernel functions to the local gradient explanations

For other parameter values the rational quadratic kernel leads to similar results as the RBF
kernel function used in Figure 1.

• The explanations in Subfigure 11(d) obtained for this model show local perturbations at the
small “bumps” of the model but the trends towards the positive class are still clear. As pre-
viously observed in Figure 1, the explanations make clear that both features interact at the
corners and on the hypotenuse of the triangle class.

A.2.2 OUTLIERS

In Figure 12 the effects of two outliers in the classification data to GPC with RBF kernel are shown.
Once more, note that the local gradients explain the model, which in turn may or may not capture the
true situation. The size of the region affected by the outliers depends on the kernel width parameter.
We consider the following items:

1824



HOW TO EXPLAIN INDIVIDUAL CLASSIFICATION DECISIONS

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

−1

−0.5

0

0.5

1

(a) outliers in classes

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

(b) outliers in model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) outlier explanation

Figure 12: The effect of outliers to the local gradient explanations

• Local gradients are in the same way sensitive to outliers as the model which they try to
explain. Here a single outlier deforms the model and with it the explanation which may be
extracted from it.

• Being derivatives the sensitivity of local gradients to a nearby outlier is increased over the
sensitivity of the model prediction itself.

• Thus the local gradient of a point near an outlier may not reflect a true explanation of the
features important in reality. Nevertheless it is the model here which is wrong around an
outlier in the first place.

• The histograms in the Figures 7, 8, and 9 in Section 6 show the trends of the respective
features in the distribution of all test points and are thus not affected by single outliers.

To compensate for the effect of outliers to the local gradients of points in the affected region
we propose to use a sliding window method to smooth the gradients around each point of interest.
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Thus for each point use the mean of all local gradients in the hypercube centered at this point and
of appropriate size. This way the disrupting effect of an outlier is averaged out for an appropriately
chosen window size.

A.2.3 LOCAL NON-LINEARITY
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(c) locally non-linear explanation

Figure 13: The effect of local non-linearity to the local gradient explanations

The effect of locally non-linear class boundaries in the data is shown in Figure 13 again for GPC
with an RBF kernel. The following points can be observed:

• All the non-linear class boundaries are accurately followed by the local gradients.

• The circle shaped region of negative examples surrounded by positive ones shows the full
range of feature interactions towards the positive class.

• On the ridge of single positive instances the model introduces small valleys which are re-
flected by the local gradients.
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A.3 Estimating by Parzen Window

Finally we elaborate on some details of our estimation approach of local gradients by Parzen window
approximation. First we give the derivation to obtain the explanation vector and second we examine
how the explanation varies with the goodness of fit of the Parzen window method.

A.3.1 DERIVATION OF EXPLANATION VECTORS

These are more details on the derivation of Definition 3. We use the index set Ic = {i | g(xi) = c}:
∂
∂x
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x
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)

σ2
(

∑n
i=1 k(z− xi)

)2

and thus for the index set Ig(z) = {i | g(xi) = g(z)}

ζ̂(z) =
∂
∂x

p̂(y $=g(z) | x)
∣

∣

∣

∣

x=z

=

(

∑i/∈Ig(z)
k(z− xi)

)(

∑i∈Ig(z)
k(z− xi)(z− xi)

)

σ2
(

∑n
i=1 k(z− xi)

)2

−

(

∑i/∈Ig(z)
k(z− xi)(z− xi)

)(

∑i∈Ig(z)
k(z− xi)

)

σ2
(

∑n
i=1 k(z− xi)

)2 .

A.3.2 GOODNESS OF FIT BY PARZEN WINDOW

In our estimation framework the quality of the local gradients depends on the approximation of the
classifier we want to explain by Parzen windows for which we can calculate the explanation vectors
as given by Definition 3.

Figure 14(a) shows an SVM model trained on the classification data from Figure 13(a). The
local gradients estimated for this model by different Parzen window approximations are depicted in
Subfigures 14(b), 14(c), and 14(d). We observe the following points:
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(b) estimated explanation with σ= 0.00069
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(c) estimated explanation with σ= 0.1
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(d) estimated explanation with σ= 1.0

Figure 14: Good fit of Parzen window approximation affects the quality of the estimated explana-
tion vectors

• The SVM model was trained with C = 10 and using an RBF kernel of width σ= 0.01.

• In Subfigure 14(b) a small window width has been chosen by minimizing the mean absolute
error over the validation set of labels predicted by the SVM classifier. Thus we obtain ex-
plaining local gradients on the class boundaries but zero vectors in the inner class regions.
While this resembles the piecewise flat SVM model most accurately it may be more useful
practically to choose a larger width to obtain non-zero gradients pointing to the borders in
this regions as well. For a more detailed discussion of zero gradients see Section 8.

• A larger width practically useful in this example is shown in Subfigure 14(c). Here the local
gradients in the inner class regions point to the other class as well.
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• For a too large window width in Subfigure 14(d) the approximation fails to obtain local gra-
dients which closely follow the model. Here only two directions are left and the gradients for
the blue class on the left and on the bottom point in the wrong direction.
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